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Preface

Welcome to EMNLP 2010, Conference on Empirical Methods in Natural Language Processing! The
conference is organized by SIGDAT, the Association for Computational Linguistics’ special interest
group on linguistic data and corpus-based approaches to NLP, and is held this year as a stand-alone
conference at the MIT Stata Center, Massachusetts, USA on October 9-11. 1

EMNLP 2010 received 500 submissions, a new record for the conference. The program committee was
able to accept 125 papers in total (an acceptance rate of 25%). Among them, 70 of the papers (14%)
were accepted for oral presentations, and 55 (11%) for poster presentations. The PC, which consists of
18 area chairs and 460 PC members from Asia, Europe, and North America, worked together to create
a strong program with high quality oral and poster presentations and enlightening invited talks.

First and foremost, we would like to thank the authors who submitted their work to EMNLP 2010. The
sheer number of submissions reflects how broad and active our field is. We are deeply indebted to the
area chairs and the PC members for their hard work. They enabled us to make a wonderful program
and to provide valuable feedback to the authors. We are very grateful to our invited speakers Kevin
Knight, Andrew Ng and Amit Singhal, who kindly agreed to give talks at EMNLP. Many thanks to
local arrangements chair, Regina Barzilay, who has made the conference smoothly held at the wonderful
venue of MIT; the publications chair, Eric Fosler-Lussier, who put this volume together with assistance
from Preethi Jyothi and Rohit Prabhavalkar; best paper award committee chair, Jason Eisner, who
lead the effort of selecting the best papers. Special thanks to David Yarowsky and Ken Church of
SIGDAT, as well as Jason Eisner, Philipp Koehn, Rada Mihalcea, who provided much valuable advice
and assistance in the past months. David Yarowsky also worked on the important issues of invitation
letters and travel grants. We are most grateful to Priscilla Rasmussen who helped us with various
logistic and organizational aspects of the conference. Rich Gerber and the START team responded to
our questions quickly, and helped us manage the large number of submissions smoothly; we would like
to thank them as well.

To enhance the quality of the conference, the program committee made a number of new efforts
and continued some existing good practices in PC management, paper selection, and conference
participation.

First, a strict process for selecting PC members was set up. PC members were first nominated by the
area chairs; PC co-chairs then carefully checked whether they were qualified as reviewers by looking
at their publications and academic experience. Second, a best reviewer award was created for the first
time in this conference. After the reviewing process, 86 outstanding PC members were selected as the
“best reviewers” as noted in the proceedings: they submitted all the reviews on time, made detailed,
constructive, and helpful comments, and actively participated in the paper discussion when necessary.
These recipients were first nominated by the area chairs and then endorsed by the PC co-chairs. The
awards are a recognition of the reviewers who really did hard work in reviews.

In paper selection, we created an author response period, as in the two previous EMNLP conferences.
Authors were able to read and respond to the reviews of their papers before the program committee
made a final decision. They were asked to correct factual errors in the reviews and answer questions

1Conference web site: http://www.lsi.upc.edu/events/emnlp2010/.
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raised in the reviewer comments. In some cases, reviewers changed their scores in view of the authors’
response; the area chairs read all responses carefully prior to making recommendations for acceptance.
As PC co-chairs, we did our best effort in final paper selection. The area chairs made accept/reject
suggestions to us on the papers in their areas. We carefully examined all the cases, discussing with
the area chars the submissions on which we had divergent opinions. In some cases, the original
suggestions by the area chairs were reversed after the discussions. The final paper selection was based
on the consensus of the program committee. The accepted papers were further classified into oral and
poster types, based on recommendations by the area chairs and discussions between the area chairs and
us. Those papers that are suitable for presentations for the general audience (novel, inspiring, widely
applicable, etc.) were selected as oral. After the paper notification, an independent committee for best
paper awards led by Jason Eisner was created. From the candidates nominated by the PC, the committee
performed independent reviews of the papers and made the best paper award selection, as listed in the
proceedings.

Since EMNLP is held in the US, many participants needed visas to attend the conference. In order to
help authors in the application for visas, a new procedure was implemented to anticipate the submission
of invitation letters. The information on whether the authors needed a visa was collected at the paper
submission time. The authors whose papers had average scores above a certain threshold were sent
invitation letters by David Yarowsky, even before paper acceptance notification. In this way, the authors
were given more time for their visa applications.

The success of a conference is really a result of the great efforts of everybody involved. We hope that
you enjoy the conference at the fantastic building of MIT Stata Center!

Hang Li and Lluı́s Màrquez
EMNLP 2010 Program Co-Chairs
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mon, Javier Artiles, Necip Fazil Ayan, Jing Bai, Collin Baker, Timothy Baldwin, Rafael Banchs, Carmen
Banea, Shenghua Bao, Marco Baroni, Roberto Basili, Beata Beigman Klebanov, Núria Bel, Anja Belz,
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Invited talks

“Why do we call it decoding?”
Kevin Knight, Information Sciences Institute, University of Southern California

The first natural language processing systems had a straightforward goal — decipher coded mes-
sages sent by the enemy. Sixty years later, we have many more applications! These include web
search, question answering, summarization, speech recognition, and language translation. This
talk explores connections between early decipherment research and today’s work. We find that
many ideas from the earlier era have become core to the field, while others still remain to be
picked up and developed.

“Unsupervised feature learning and Deep Learning”
Andrew Ng, Computer Science Department, Stanford University

Machine learning has seen numerous successes, but applying learning algorithms today often
means spending a long time laboriously hand-engineering the input feature representation. This
is often true for learning in NLP, vision, audio, and many other problems. To address this, re-
cently in machine learning there has been significant interest in unsupervised feature learning
algorithms, including “deep learning” algorithms, that can automatically learn rich feature rep-
resentations from unlabeled data. These algorithms build on such ideas as sparse coding, ICA,
and deep belief networks, and have proved very effective for learning good feature representa-
tions in many problems. Since these algorithms mostly learn from unlabeled data, they also have
the potential to learn from vastly increased amounts of data (since unlabeled data is cheap), and
therefore perhaps also achieving vastly improved performance. In this talk, I’ll survey the key
ideas in this nascent area of unsupervised feature learning and deep learning. I’ll outline a few
algorithms, and describe a few successful applications of these ideas to problems in NLP, au-
dio/speech, vision, and other problems.

“Challenges in running a commercial search engine”
Amit Singhal, Google, Inc.

These are exciting times for Information Retrieval and NLP. Web search engines have brought
IR to the masses. It now affects the lives of hundreds of millions of people, and growing, as
Internet search companies launch ever more products based on techniques developed in IR and
NLP research.The real world poses unique challenges for search algorithms. They operate at
unprecedented scales, and over a wide diversity of information. In addition, we have entered
an unprecedented world of “Adversarial Information Retrieval.” The lure of billions of dollars
of commerce, guided by search engines, motivates all kinds of people to try all kinds of tricks
to get their sites to the top of the search results. What techniques do people use to defeat IR
algorithms? What are the evaluation challenges for a web search engine? How much impact has
IR had on search engines? How does Google serve over 250 Million queries a day, often with
sub-second response times? This talk will show that the world of algorithm and system design
for commercial search engines can be described by two of Murphy’s Laws: a) If anything can go
wrong, it will, and b) If anything cannot go wrong, it will anyway.
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Fred Jelinek Best Paper Award
The EMNLP-2010 Best Paper Award is named in memory of Fred Jelinek (18 Nov. 1932 - 14 Sept. 2010).

“Dual Decomposition for Parsing with Non-Projective Head Automata,”
Terry Koo, Alexander M. Rush, Michael Collins, Tommi Jaakkola and David Sontag

This paper introduces algorithms for non-projective parsing based on dual decomposition. We
focus on parsing algorithms for non-projective head automata, a generalization of head-automata
models to non-projective structures. The dual decomposition algorithms are simple and efficient,
relying on standard dynamic programming and minimum spanning tree algorithms. They prov-
ably solve an LP relaxation of the non-projective parsing problem. Empirically the LP relaxation
is very often tight: for many languages, exact solutions are achieved on over 98% of test sen-
tences. The accuracy of our models is higher than previous work on a broad range of datasets.
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Abstract
This paper introduces dual decomposition as a
framework for deriving inference algorithms
for NLP problems. The approach relies on
standard dynamic-programming algorithms as
oracle solvers for sub-problems, together with
a simple method for forcing agreement be-
tween the different oracles. The approach
provably solves a linear programming (LP) re-
laxation of the global inference problem. It
leads to algorithms that are simple, in that they
use existing decoding algorithms; efficient, in
that they avoid exact algorithms for the full
model; and often exact, in that empirically
they often recover the correct solution in spite
of using an LP relaxation. We give experimen-
tal results on two problems: 1) the combina-
tion of two lexicalized parsing models; and
2) the combination of a lexicalized parsing
model and a trigram part-of-speech tagger.

1 Introduction
Dynamic programming algorithms have been re-
markably useful for inference in many NLP prob-
lems. Unfortunately, as models become more com-
plex, for example through the addition of new fea-
tures or components, dynamic programming algo-
rithms can quickly explode in terms of computa-
tional or implementational complexity.1 As a re-
sult, efficiency of inference is a critical bottleneck
for many problems in statistical NLP.

This paper introduces dual decomposition
(Dantzig and Wolfe, 1960; Komodakis et al., 2007)
as a framework for deriving inference algorithms in
NLP. Dual decomposition leverages the observation
that complex inference problems can often be
decomposed into efficiently solvable sub-problems.
The approach leads to inference algorithms with the
following properties:

1The same is true for NLP inference algorithms based on
other exact combinatorial methods, for example methods based
on minimum-weight spanning trees (McDonald et al., 2005), or
graph cuts (Pang and Lee, 2004).

• The resulting algorithms are simple and efficient,
building on standard dynamic-programming algo-
rithms as oracle solvers for sub-problems,2 to-
gether with a method for forcing agreement be-
tween the oracles.

• The algorithms provably solve a linear program-
ming (LP) relaxation of the original inference
problem.

• Empirically, the LP relaxation often leads to an
exact solution to the original problem.

The approach is very general, and should be appli-
cable to a wide range of problems in NLP. The con-
nection to linear programming ensures that the algo-
rithms provide a certificate of optimality when they
recover the exact solution, and also opens up the
possibility of methods that incrementally tighten the
LP relaxation until it is exact (Sherali and Adams,
1994; Sontag et al., 2008).

The structure of this paper is as follows. We
first give two examples as an illustration of the ap-
proach: 1) integrated parsing and trigram part-of-
speech (POS) tagging; and 2) combined phrase-
structure and dependency parsing. In both settings,
it is possible to solve the integrated problem through
an “intersected” dynamic program (e.g., for integra-
tion of parsing and tagging, the construction from
Bar-Hillel et al. (1964) can be used). However,
these methods, although polynomial time, are sub-
stantially less efficient than our algorithms, and are
considerably more complex to implement.

Next, we describe exact polyhedral formula-
tions for the two problems, building on connec-
tions between dynamic programming algorithms
and marginal polytopes, as described in Martin et al.
(1990). These allow us to precisely characterize the
relationship between the exact formulations and the

2More generally, other exact inference methods can be
used as oracles, for example spanning tree algorithms for non-
projective dependency structures.
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LP relaxations that we solve. We then give guaran-
tees of convergence for our algorithms by showing
that they are instantiations of Lagrangian relaxation,
a general method for solving linear programs of a
particular form.

Finally, we describe experiments that demonstrate
the effectiveness of our approach. First, we con-
sider the integration of the generative model for
phrase-structure parsing of Collins (2003), with the
second-order discriminative dependency parser of
Koo et al. (2008). This is an interesting problem
in its own right: the goal is to inject the high per-
formance of discriminative dependency models into
phrase-structure parsing. The method uses off-the-
shelf decoders for the two models. We find three
main results: 1) in spite of solving an LP relax-
ation, empirically the method finds an exact solution
on over 99% of the examples; 2) the method con-
verges quickly, typically requiring fewer than 10 it-
erations of decoding; 3) the method gives gains over
a baseline method that forces the phrase-structure
parser to produce the same dependencies as the first-
best output from the dependency parser (the Collins
(2003) model has an F1 score of 88.1%; the base-
line method has an F1 score of 89.7%; and the dual
decomposition method has an F1 score of 90.7%).

In a second set of experiments, we use dual de-
composition to integrate the trigram POS tagger of
Toutanova and Manning (2000) with the parser of
Collins (2003). We again find that the method finds
an exact solution in almost all cases, with conver-
gence in just a few iterations of decoding.

Although the focus of this paper is on dynamic
programming algorithms—both in the experiments,
and also in the formal results concerning marginal
polytopes—it is straightforward to use other com-
binatorial algorithms within the approach. For ex-
ample, Koo et al. (2010) describe a dual decompo-
sition approach for non-projective dependency pars-
ing, which makes use of both dynamic programming
and spanning tree inference algorithms.

2 Related Work
Dual decomposition is a classical method for solv-
ing optimization problems that can be decomposed
into efficiently solvable sub-problems. Our work is
inspired by dual decomposition methods for infer-
ence in Markov random fields (MRFs) (Wainwright

et al., 2005a; Komodakis et al., 2007; Globerson and
Jaakkola, 2007). In this approach, the MRF is de-
composed into sub-problems corresponding to tree-
structured subgraphs that together cover all edges
of the original graph. The resulting inference algo-
rithms provably solve an LP relaxation of the MRF
inference problem, often significantly faster than
commercial LP solvers (Yanover et al., 2006).

Our work is also related to methods that incorpo-
rate combinatorial solvers within loopy belief prop-
agation (LBP), either for MAP inference (Duchi et
al., 2007) or for computing marginals (Smith and
Eisner, 2008). Our approach similarly makes use
of combinatorial algorithms to efficiently solve sub-
problems of the global inference problem. However,
unlike LBP, our algorithms have strong theoretical
guarantees, such as guaranteed convergence and the
possibility of a certificate of optimality. These guar-
antees are possible because our algorithms directly
solve an LP relaxation.

Other work has considered LP or integer lin-
ear programming (ILP) formulations of inference in
NLP (Martins et al., 2009; Riedel and Clarke, 2006;
Roth and Yih, 2005). These approaches typically
use general-purpose LP or ILP solvers. Our method
has the advantage that it leverages underlying struc-
ture arising in LP formulations of NLP problems.
We will see that dynamic programming algorithms
such as CKY can be considered to be very effi-
cient solvers for particular LPs. In dual decomposi-
tion, these LPs—and their efficient solvers—can be
embedded within larger LPs corresponding to more
complex inference problems.

3 Background: Structured Models for NLP

We now describe the type of models used throughout
the paper. We take some care to set up notation that
will allow us to make a clear connection between
inference problems and linear programming.

Our first example is weighted CFG parsing. We
assume a context-free grammar, in Chomsky normal
form, with a set of non-terminals N . The grammar
contains all rules of the form A → B C and A →
w where A,B,C ∈ N and w ∈ V (it is simple
to relax this assumption to give a more constrained
grammar). For rules of the form A → w we refer
to A as the part-of-speech tag for w. We allow any
non-terminal to be at the root of the tree.
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Given a sentence with n words, w1, w2, . . . wn, a
parse tree is a set of rule productions of the form
〈A → B C, i, k, j〉 where A,B,C ∈ N , and
1 ≤ i ≤ k < j ≤ n. Each rule production rep-
resents the use of CFG rule A → B C where non-
terminal A spans words wi . . . wj , non-terminal B
spans words wi . . . wk, and non-terminal C spans
words wk+1 . . . wj . There are O(|N |3n3) such rule
productions. Each parse tree corresponds to a subset
of these rule productions, of size n− 1, that forms a
well-formed parse tree.3

We now define the index set for CFG parsing as

I = {〈A→ B C, i, k, j〉: A,B,C ∈ N ,

1 ≤ i ≤ k < j ≤ n}

Each parse tree is a vector y = {yr : r ∈ I},
with yr = 1 if rule r is in the parse tree, and yr =
0 otherwise. Hence each parse tree is represented
as a vector in {0, 1}m, where m = |I|. We use Y
to denote the set of all valid parse-tree vectors; the
set Y is a subset of {0, 1}m (not all binary vectors
correspond to valid parse trees).

In addition, we assume a vector θ = {θr : r ∈
I} that specifies a weight for each rule production.4

Each θr can take any value in the reals. The optimal
parse tree is y∗ = arg maxy∈Y y · θ where y · θ =∑

r yrθr is the inner product between y and θ.
We use yr and y(r) interchangeably (similarly for

θr and θ(r)) to refer to the r’th component of the
vector y. For example θ(A → B C, i, k, j) is a
weight for the rule 〈A→ B C, i, k, j〉.

We will use similar notation for other problems.
As a second example, in POS tagging the task is to
map a sentence of n words w1 . . . wn to a tag se-
quence t1 . . . tn, where each ti is chosen from a set
T of possible tags. We assume a trigram tagger,
where a tag sequence is represented through deci-
sions 〈(A,B) → C, i〉 where A,B,C ∈ T , and
i ∈ {3 . . . n}. Each production represents a tran-
sition where C is the tag of word wi, and (A,B) are

3We do not require rules of the form A → wi in this repre-
sentation, as they are redundant: specifically, a rule production
〈A → B C, i, k, j〉 implies a rule B → wi iff i = k, and
C → wj iff j = k + 1.

4We do not require parameters for rules of the formA→ w,
as they can be folded into rule production parameters. E.g.,
under a PCFG we define θ(A → B C, i, k, j) = logP (A →
B C | A) + δi,k logP (B → wi|B) + δk+1,j logP (C →
wj |C) where δx,y = 1 if x = y, 0 otherwise.

the previous two tags. The index set for tagging is

Itag = {〈(A,B)→ C, i〉 : A,B,C ∈ T , 3 ≤ i ≤ n}

Note that we do not need transitions for i = 1 or i =
2, because the transition 〈(A,B) → C, 3〉 specifies
the first three tags in the sentence.5

Each tag sequence is represented as a vector z =
{zr : r ∈ Itag}, and we denote the set of valid tag
sequences, a subset of {0, 1}|Itag|, as Z . Given a
parameter vector θ = {θr : r ∈ Itag}, the optimal
tag sequence is arg maxz∈Z z · θ.

As a modification to the above approach, we will
find it convenient to introduce extended index sets
for both the CFG and POS tagging examples. For
the CFG case we define the extended index set to be
I ′ = I ∪ Iuni where

Iuni = {(i, t) : i ∈ {1 . . . n}, t ∈ T}

Here each pair (i, t) represents word wi being as-
signed the tag t. Thus each parse-tree vector y will
have additional (binary) components y(i, t) spec-
ifying whether or not word i is assigned tag t.
(Throughout this paper we will assume that the tag-
set used by the tagger, T , is a subset of the set of non-
terminals considered by the parser, N .) Note that
this representation is over-complete, since a parse
tree determines a unique tagging for a sentence:
more explicitly, for any i ∈ {1 . . . n}, Y ∈ T , the
following linear constraint holds:

y(i, Y ) =
n∑

k=i+1

∑
X,Z∈N

y(X → Y Z, i, i, k) +

i−1∑
k=1

∑
X,Z∈N

y(X → Z Y, k, i− 1, i)

We apply the same extension to the tagging index
set, effectively mapping trigrams down to unigram
assignments, again giving an over-complete repre-
sentation. The extended index set for tagging is re-
ferred to as I ′tag.

From here on we will make exclusive use of ex-
tended index sets for CFG parsing and trigram tag-
ging. We use the set Y to refer to the set of valid
parse structures under the extended representation;

5As one example, in an HMM, the parameter θ((A,B) →
C, 3) would be logP (A|∗∗)+logP (B|∗A)+logP (C|AB)+
logP (w1|A) + logP (w2|B) + logP (w3|C), where ∗ is the
start symbol.
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each y ∈ Y is a binary vector of length |I ′|. We
similarly use Z to refer to the set of valid tag struc-
tures under the extended representation. We assume
parameter vectors for the two problems, θcfg ∈ R|I

′|

and θtag ∈ R|I
′
tag|.

4 Two Examples
This section describes the dual decomposition ap-
proach for two inference problems in NLP.

4.1 Integrated Parsing and Trigram Tagging

We now describe the dual decomposition approach
for integrated parsing and trigram tagging. First, de-
fine the set Q as follows:

Q = {(y, z) : y ∈ Y, z ∈ Z,
y(i, t) = z(i, t) for all (i, t) ∈ Iuni} (1)

Hence Q is the set of all (y, z) pairs that agree
on their part-of-speech assignments. The integrated
parsing and trigram tagging problem is then to solve

max
(y,z)∈Q

(
y · θcfg + z · θtag

)
(2)

This problem is equivalent to

max
y∈Y

(
y · θcfg + g(y) · θtag

)
where g : Y → Z is a function that maps a parse
tree y to its set of trigrams z = g(y). The benefit of
the formulation in Eq. 2 is that it makes explicit the
idea of maximizing over all pairs (y, z) under a set
of agreement constraints y(i, t) = z(i, t)—this con-
cept will be central to the algorithms in this paper.

With this in mind, we note that we have effi-
cient methods for the inference problems of tagging
and parsing alone, and that our combined objective
almost separates into these two independent prob-
lems. In fact, if we drop the y(i, t) = z(i, t) con-
straints from the optimization problem, the problem
splits into two parts, each of which can be efficiently
solved using dynamic programming:

(y∗, z∗) = (arg max
y∈Y

y · θcfg, arg max
z∈Z

z · θtag)

Dual decomposition exploits this idea; it results in
the algorithm given in figure 1. The algorithm opti-
mizes the combined objective by repeatedly solving
the two sub-problems separately—that is, it directly

Set u(1)(i, t)← 0 for all (i, t) ∈ Iuni

for k = 1 to K do

y(k) ← arg max
y∈Y

(y · θcfg −
∑

(i,t)∈Iuni

u(k)(i, t)y(i, t))

z(k) ← arg max
z∈Z

(z · θtag +
∑

(i,t)∈Iuni

u(k)(i, t)z(i, t))

if y(k)(i, t) = z(k)(i, t) for all (i, t) ∈ Iuni then
return (y(k), z(k))

for all (i, t) ∈ Iuni,
u(k+1)(i, t)← u(k)(i, t)+αk(y(k)(i, t)−z(k)(i, t))

return (y(K), z(K))

Figure 1: The algorithm for integrated parsing and tag-
ging. The parameters αk > 0 for k = 1 . . .K specify
step sizes for each iteration, and are discussed further in
the Appendix. The two arg max problems can be solved
using dynamic programming.

solves the harder optimization problem using an ex-
isting CFG parser and trigram tagger. After each
iteration the algorithm adjusts the weights u(i, t);
these updates modify the objective functions for the
two models, encouraging them to agree on the same
POS sequence. In section 6.1 we will show that the
variables u(i, t) are Lagrange multipliers enforcing
agreement constraints, and that the algorithm corre-
sponds to a (sub)gradient method for optimization
of a dual function. The algorithm is easy to imple-
ment: all that is required is a decoding algorithm for
each of the two models, and simple additive updates
to the Lagrange multipliers enforcing agreement be-
tween the two models.

4.2 Integrating Two Lexicalized Parsers
Our second example problem is the integration of
a phrase-structure parser with a higher-order depen-
dency parser. The goal is to add higher-order fea-
tures to phrase-structure parsing without greatly in-
creasing the complexity of inference.

First, we define an index set for second-order un-
labeled projective dependency parsing. The second-
order parser considers first-order dependencies, as
well as grandparent and sibling second-order depen-
dencies (e.g., see Carreras (2007)). We assume that
Idep is an index set containing all such dependen-
cies (for brevity we omit the details of this index
set). For convenience we define an extended index
set that makes explicit use of first-order dependen-
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cies, I ′dep = Idep ∪ Ifirst, where

Ifirst = {(i, j) : i ∈ {0 . . . n}, j ∈ {1 . . . n}, i 6= j}

Here (i, j) represents a dependency with head wi
and modifier wj (i = 0 corresponds to the root sym-
bol in the parse). We use D ⊆ {0, 1}|I

′
dep| to denote

the set of valid projective dependency parses.
The second model we use is a lexicalized CFG.

Each symbol in the grammar takes the form A(h)
where A ∈ N is a non-terminal, and h ∈ {1 . . . n}
is an index specifying that wh is the head of the con-
stituent. Rule productions take the form 〈A(a) →
B(b) C(c), i, k, j〉 where b ∈ {i . . . k}, c ∈ {(k +
1) . . . j}, and a is equal to b or c, depending on
whether A receives its head-word from its left or
right child. Each such rule implies a dependency
(a, b) if a = c, or (a, c) if a = b. We take Ihead

to be the index set of all such rules, and I ′head =
Ihead∪Ifirst to be the extended index set. We define
H ⊆ {0, 1}|I′head| to be the set of valid parse trees.

The integrated parsing problem is then to find

(y∗, d∗) = arg max
(y,d)∈R

(
y · θhead + d · θdep

)
(3)

where R = {(y, d) : y ∈ H, d ∈ D,
y(i, j) = d(i, j) for all (i, j) ∈ Ifirst}

This problem has a very similar structure to the
problem of integrated parsing and tagging, and we
can derive a similar dual decomposition algorithm.
The Lagrange multipliers u are a vector in R|Ifirst|

enforcing agreement between dependency assign-
ments. The algorithm (omitted for brevity) is identi-
cal to the algorithm in figure 1, but with Iuni, Y , Z ,
θcfg, and θtag replaced with Ifirst, H, D, θhead, and
θdep respectively. The algorithm only requires de-
coding algorithms for the two models, together with
simple updates to the Lagrange multipliers.

5 Marginal Polytopes and LP Relaxations
We now give formal guarantees for the algorithms
in the previous section, showing that they solve LP
relaxations of the problems in Eqs. 2 and 3.

To make the connection to linear programming,
we first introduce the idea of marginal polytopes in
section 5.1. In section 5.2, we give a precise state-
ment of the LP relaxations that are being solved
by the example algorithms, making direct use of
marginal polytopes. In section 6 we will prove that
the example algorithms solve these LP relaxations.

5.1 Marginal Polytopes
For a finite set Y , define the set of all distributions
over elements in Y as ∆ = {α ∈ R|Y| : αy ≥
0,
∑

y∈Y αy = 1}. Each α ∈ ∆ gives a vector of
marginals, µ =

∑
y∈Y αyy, where µr can be inter-

preted as the probability that yr = 1 for a y selected
at random from the distribution α.

The set of all possible marginal vectors, known as
the marginal polytope, is defined as follows:

M = {µ ∈ Rm : ∃α ∈ ∆ such that µ =
∑
y∈Y

αyy}

M is also frequently referred to as the convex hull of
Y , written as conv(Y). We use the notation conv(Y)
in the remainder of this paper, instead ofM.

For an arbitrary set Y , the marginal polytope
conv(Y) can be complex to describe.6 However,
Martin et al. (1990) show that for a very general
class of dynamic programming problems, the cor-
responding marginal polytope can be expressed as

conv(Y) = {µ ∈ Rm : Aµ = b, µ ≥ 0} (4)

where A is a p×m matrix, b is vector in Rp, and the
value p is linear in the size of a hypergraph repre-
sentation of the dynamic program. Note that A and
b specify a set of p linear constraints.

We now give an explicit description of the re-
sulting constraints for CFG parsing:7 similar con-
straints arise for other dynamic programming algo-
rithms for parsing, for example the algorithms of
Eisner (2000). The exact form of the constraints, and
the fact that they are polynomial in number, is not
essential for the formal results in this paper. How-
ever, a description of the constraints gives valuable
intuition for the structure of the marginal polytope.

The constraints are given in figure 2. To develop
some intuition, consider the case where the variables
µr are restricted to be binary: hence each binary
vector µ specifies a parse tree. The second con-
straint in Eq. 5 specifies that exactly one rule must
be used at the top of the tree. The set of constraints
in Eq. 6 specify that for each production of the form

6For any finite set Y , conv(Y) can be expressed as {µ ∈
Rm : Aµ ≤ b} where A is a matrix of dimension p ×m, and
b ∈ Rp (see, e.g., Korte and Vygen (2008), pg. 65). The value
for p depends on the set Y , and can be exponential in size.

7Taskar et al. (2004) describe the same set of constraints, but
without proof of correctness or reference to Martin et al. (1990).
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∀r ∈ I′, µr ≥ 0 ;
X

X,Y,Z∈N
k=1...(n−1)

µ(X → Y Z, 1, k, n) = 1 (5)

∀X ∈ N , ∀(i, j) such that 1 ≤ i < j ≤ n and (i, j) 6= (1, n):X
Y,Z∈N

k=i...(j−1)

µ(X → Y Z, i, k, j) =
X

Y,Z∈N
k=1...(i−1)

µ(Y → Z X, k, i− 1, j)

+
X

Y,Z∈N
k=(j+1)...n

µ(Y → X Z, i, j, k) (6)

∀Y ∈ T, ∀i ∈ {1 . . . n} : µ(i, Y ) =X
X,Z∈N

k=(i+1)...n

µ(X → Y Z, i, i, k) +
X

X,Z∈N
k=1...(i−1)

µ(X → Z Y, k, i− 1, i) (7)

Figure 2: The linear constraints defining the marginal
polytope for CFG parsing.

〈X → Y Z, i, k, j〉 in a parse tree, there must be
exactly one production higher in the tree that gener-
ates (X, i, j) as one of its children. The constraints
in Eq. 7 enforce consistency between the µ(i, Y )
variables and rule variables higher in the tree. Note
that the constraints in Eqs.(5–7) can be written in the
form Aµ = b, µ ≥ 0, as in Eq. 4.

Under these definitions, we have the following:

Theorem 5.1 Define Y to be the set of all CFG
parses, as defined in section 4. Then

conv(Y) = {µ ∈ Rm : µ satisifies Eqs.(5–7)}

Proof: This theorem is a special case of Martin et al.
(1990), theorem 2.

The marginal polytope for tagging, conv(Z), can
also be expressed using linear constraints as in Eq. 4;
see figure 3. These constraints follow from re-
sults for graphical models (Wainwright and Jordan,
2008), or from the Martin et al. (1990) construction.

As a final point, the following theorem gives an
important property of marginal polytopes, which we
will use at several points in this paper:

Theorem 5.2 (Korte and Vygen (2008), page 66.)
For any set Y ⊆ {0, 1}k, and for any vector θ ∈ Rk,

max
y∈Y

y · θ = max
µ∈conv(Y)

µ · θ (8)

The theorem states that for a linear objective func-
tion, maximization over a discrete set Y can be
replaced by maximization over the convex hull

∀r ∈ I′tag, νr ≥ 0 ;
X

X,Y,Z∈T

ν((X,Y )→ Z, 3) = 1

∀X ∈ T , ∀i ∈ {3 . . . n− 1}:X
Y,Z∈T

ν((Y,Z)→ X, i) =
X

Y,Z∈T

ν((Y,X)→ Z, i+ 1)

∀X ∈ T , ∀i ∈ {3 . . . n− 2}:X
Y,Z∈T

ν((Y,Z)→ X, i) =
X

Y,Z∈T

ν((X,Y )→ Z, i+ 2)

∀X ∈ T,∀i ∈ {3 . . . n} : ν(i,X) =
X

Y,Z∈T

ν((Y,Z)→ X, i)

∀X ∈ T : ν(1, X) =
X

Y,Z∈T

ν((X,Y )→ Z, 3)

∀X ∈ T : ν(2, X) =
X

Y,Z∈T

ν((Y,X)→ Z, 3)

Figure 3: The linear constraints defining the marginal
polytope for trigram POS tagging.

conv(Y). The problem maxµ∈conv(Y) µ ·θ is a linear
programming problem.

For parsing, this theorem implies that:

1. Weighted CFG parsing can be framed as a linear
programming problem, of the form maxµ∈conv(Y) µ·
θ, where conv(Y) is specified by a polynomial num-
ber of linear constraints.

2. Conversely, dynamic programming algorithms
such as the CKY algorithm can be considered to
be oracles that efficiently solve LPs of the form
maxµ∈conv(Y) µ · θ.

Similar results apply for the POS tagging case.

5.2 Linear Programming Relaxations
We now describe the LP relaxations that are solved
by the example algorithms in section 4. We begin
with the algorithm in Figure 1.

The original optimization problem was to find
max(y,z)∈Q

(
y · θcfg + z · θtag

)
(see Eq. 2). By the-

orem 5.2, this is equivalent to solving

max
(µ,ν)∈conv(Q)

(
µ · θcfg + ν · θtag

)
(9)

To formulate our approximation, we first define:

Q′ = {(µ, ν) : µ ∈ conv(Y), ν ∈ conv(Z),
µ(i, t) = ν(i, t) for all (i, t) ∈ Iuni}
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The definition of Q′ is very similar to the definition
of Q (see Eq. 1), the only difference being that Y
and Z are replaced by conv(Y) and conv(Z) re-
spectively. Hence any point inQ is also inQ′. It fol-
lows that any point in conv(Q) is also inQ′, because
Q′ is a convex set defined by linear constraints.

The LP relaxation then corresponds to the follow-
ing optimization problem:

max
(µ,ν)∈Q′

(
µ · θcfg + ν · θtag

)
(10)

Q′ is defined by linear constraints, making this a
linear program. Since Q′ is an outer bound on
conv(Q), i.e. conv(Q) ⊆ Q′, we obtain the guaran-
tee that the value of Eq. 10 always upper bounds the
value of Eq. 9.

In Appendix A we give an example showing
that in general Q′ includes points that are not in
conv(Q). These points exist because the agreement
between the two parts is now enforced in expecta-
tion (µ(i, t) = ν(i, t) for (i, t) ∈ Iuni) rather than
based on actual assignments. This agreement con-
straint is weaker since different distributions over
assignments can still result in the same first order
expectations. Thus, the solution to Eq. 10 may be
in Q′ but not in conv(Q). It can be shown that
all such solutions will be fractional, making them
easy to distinguish from Q. In many applications of
LP relaxations—including the examples discussed
in this paper—the relaxation in Eq. 10 turns out to
be tight, in that the solution is often integral (i.e., it
is in Q). In these cases, solving the LP relaxation
exactly solves the original problem of interest.

In the next section we prove that the algorithm
in Figure 1 solves the problem in Eq 10. A similar
result holds for the algorithm in section 4.2: it solves
a relaxation of Eq. 3, whereR is replaced by

R′ = {(µ, ν) : µ ∈ conv(H), ν ∈ conv(D),
µ(i, j) = ν(i, j) for all (i, j) ∈ Ifirst}

6 Convergence Guarantees
6.1 Lagrangian Relaxation
We now show that the example algorithms solve
their respective LP relaxations given in the previ-
ous section. We do this by first introducing a gen-
eral class of linear programs, together with an op-
timization method, Lagrangian relaxation, for solv-
ing these LPs. We then show that the algorithms in
section 4 are special cases of the general algorithm.

The linear programs we consider take the form

max
x1∈X1,x2∈X2

(θ1 · x1 + θ2 · x2) such that Ex1 = Fx2

The matricesE ∈ Rq×m andF ∈ Rq×l specify q lin-
ear “agreement” constraints between x1 ∈ Rm and
x2 ∈ Rl. The setsX1,X2 are also specified by linear
constraints, X1 = {x1 ∈ Rm : Ax1 = b, x1 ≥ 0}
and X2 =

{
x2 ∈ Rl : Cx2 = d, x2 ≥ 0

}
, hence the

problem is an LP.
Note that if we set X1 = conv(Y), X2 =

conv(Z), and define E and F to specify the agree-
ment constraints µ(i, t) = ν(i, t), then we have the
LP relaxation in Eq. 10.

It is natural to apply Lagrangian relaxation in
cases where the sub-problems maxx1∈X1 θ1 ·x1 and
maxx2∈X2 θ2 · x2 can be efficiently solved by com-
binatorial algorithms for any values of θ1, θ2, but
where the constraints Ex1 = Fx2 “complicate” the
problem. We introduce Lagrange multipliers u ∈ Rq

that enforce the latter set of constraints, giving the
Lagrangian:

L(u, x1, x2) = θ1 · x1 + θ2 · x2 + u · (Ex1 − Fx2)

The dual objective function is

L(u) = max
x1∈X1,x2∈X2

L(u, x1, x2)

and the dual problem is to find minu∈Rq L(u).
Because X1 and X2 are defined by linear con-

straints, by strong duality we have

min
u∈Rq

L(u) = max
x1∈X1,x2∈X2:Ex1=Fx2

(θ1 · x1 + θ2 · x2)

Hence minimizing L(u) will recover the maximum
value of the original problem. This leaves open the
question of how to recover the LP solution (i.e., the
pair (x∗1, x

∗
2) that achieves this maximum); we dis-

cuss this point in section 6.2.
The dual L(u) is convex. However, L(u) is

not differentiable, so we cannot use gradient-based
methods to optimize it. Instead, a standard approach
is to use a subgradient method. Subgradients are tan-
gent lines that lower bound a function even at points
of non-differentiability: formally, a subgradient of a
convex function L : Rn → R at a point u is a vector
gu such that for all v, L(v) ≥ L(u) + gu · (v − u).
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u(1) ← 0
for k = 1 to K do
x

(k)
1 ← arg maxx1∈X1(θ1 + (u(k))TE) · x1

x
(k)
2 ← arg maxx2∈X2(θ2 − (u(k))TF ) · x2

if Ex(k)
1 = Fx

(k)
2 return u(k)

u(k+1) ← u(k) − αk(Ex
(k)
1 − Fx

(k)
2 )

return u(K)

Figure 4: The Lagrangian relaxation algorithm.

By standard results, the subgradient for L at a point
u takes a simple form, gu = Ex∗1 − Fx∗2, where

x∗1 = arg max
x1∈X1

(θ1 + (u(k))TE) · x1

x∗2 = arg max
x2∈X2

(θ2 − (u(k))TF ) · x2

The beauty of this result is that the values of x∗1 and
x∗2, and by implication the value of the subgradient,
can be computed using oracles for the two arg max
sub-problems.

Subgradient algorithms perform updates that are
similar to gradient descent:

u(k+1) ← u(k) − αkg(k)

where g(k) is the subgradient ofL at u(k) and αk > 0
is the step size of the update. The complete sub-
gradient algorithm is given in figure 4. The follow-
ing convergence theorem is well-known (e.g., see
page 120 of Korte and Vygen (2008)):

Theorem 6.1 If limk→∞ αk = 0 and
∑∞

k=1 αk =
∞, then limk→∞ L(u(k)) = minu L(u).

The following proposition is easily verified:

Proposition 6.1 The algorithm in figure 1 is an in-
stantiation of the algorithm in figure 4,8 with X1 =
conv(Y), X2 = conv(Z), and the matrices E and
F defined to be binary matrices specifying the con-
straints µ(i, t) = ν(i, t) for all (i, t) ∈ Iuni.

Under an appropriate definition of the step sizes αk,
it follows that the algorithm in figure 1 defines a
sequence of Lagrange multiplers u(k) minimizing a
dual of the LP relaxation in Eq. 10. A similar result
holds for the algorithm in section 4.2.

8with the caveat that it returns (x
(k)
1 , x

(k)
2 ) rather than u(k).

6.2 Recovering the LP Solution

The previous section described how the method in
figure 4 can be used to minimize the dualL(u) of the
original linear program. We now turn to the problem
of recovering a primal solution (x∗1, x

∗
2) of the LP.

The method we propose considers two cases:

(Case 1) If Ex(k)
1 = Fx

(k)
2 at any stage during

the algorithm, then simply take (x(k)
1 , x

(k)
2 ) to be the

primal solution. In this case the pair (x(k)
1 , x

(k)
2 ) ex-

actly solves the original LP.9 If this case arises in the
algorithm in figure 1, then the resulting solution is
binary (i.e., it is a member of Q), and the solution
exactly solves the original inference problem.

(Case 2) If case 1 does not arise, then a couple of
strategies are possible. (This situation could arise
in cases where the LP is not tight—i.e., it has a
fractional solution—or where K is not large enough
for convergence.) The first is to define the pri-
mal solution to be the average of the solutions en-
countered during the algorithm: x̂1 =

∑
k x

(k)
1 /K,

x̂2 =
∑

k x
(k)
2 /K. Results from Nedić and Ozdaglar

(2009) show that as K → ∞, these averaged solu-
tions converge to the optimal primal solution.10 A
second strategy (as given in figure 1) is to simply
take (x(K)

1 , x
(K)
2 ) as an approximation to the primal

solution. This method is a heuristic, but previous
work (e.g., Komodakis et al. (2007)) has shown that
it is effective in practice; we use it in this paper.

In our experiments we found that in the vast ma-
jority of cases, case 1 applies, after a small number
of iterations; see the next section for more details.

7 Experiments

7.1 Integrated Phrase-Structure and
Dependency Parsing

Our first set of experiments considers the integration
of Model 1 of Collins (2003) (a lexicalized phrase-
structure parser, from here on referred to as Model

9We have that θ1 · x(k)
1 + θ2 · x(k)

2 = L(u(k), x
(k)
1 , x

(k)
2 ) =

L(u(k)), where the last equality is because x(k)
1 and x(k)

2 are de-
fined by the respective arg max’s. Thus, (x

(k)
1 , x

(k)
2 ) and u(k)

are primal and dual optimal.
10The resulting fractional solution can be projected back to

the setQ, see (Smith and Eisner, 2008; Martins et al., 2009).
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Itn. 1 2 3 4 5-10 11-20 20-50 **
Dep 43.5 20.1 10.2 4.9 14.0 5.7 1.4 0.4
POS 58.7 15.4 6.3 3.6 10.3 3.8 0.8 1.1

Table 1: Convergence results for Section 23 of the WSJ
Treebank for the dependency parsing and POS experi-
ments. Each column gives the percentage of sentences
whose exact solutions were found in a given range of sub-
gradient iterations. ** is the percentage of sentences that
did not converge by the iteration limit (K=50).

1),11 and the 2nd order discriminative dependency
parser of Koo et al. (2008). The inference problem
for a sentence x is to find

y∗ = arg max
y∈Y

(f1(y) + γf2(y)) (11)

where Y is the set of all lexicalized phrase-structure
trees for the sentence x; f1(y) is the score (log prob-
ability) under Model 1; f2(y) is the score under Koo
et al. (2008) for the dependency structure implied
by y; and γ > 0 is a parameter dictating the relative
weight of the two models.12 This problem is simi-
lar to the second example in section 4; a very sim-
ilar dual decomposition algorithm to that described
in section 4.2 can be derived.

We used the Penn Wall Street Treebank (Marcus
et al., 1994) for the experiments, with sections 2-21
for training, section 22 for development, and section
23 for testing. The parameter γ was chosen to opti-
mize performance on the development set.

We ran the dual decomposition algorithm with a
limit of K = 50 iterations. The dual decomposi-
tion algorithm returns an exact solution if case 1 oc-
curs as defined in section 6.2; we found that of 2416
sentences in section 23, case 1 occurred for 2407
(99.6%) sentences. Table 1 gives statistics showing
the number of iterations required for convergence.
Over 80% of the examples converge in 5 iterations or
fewer; over 90% converge in 10 iterations or fewer.

We compare the accuracy of the dual decomposi-
tion approach to two baselines: first, Model 1; and
second, a naive integration method that enforces the
hard constraint that Model 1 must only consider de-

11We use a reimplementation that is a slight modification of
Collins Model 1, with very similar performance, and which uses
the TAG formalism of Carreras et al. (2008).

12Note that the models f1 and f2 were trained separately,
using the methods described by Collins (2003) and Koo et al.
(2008) respectively.

Precision Recall F1 Dep
Model 1 88.4 87.8 88.1 91.4

Koo08 Baseline 89.9 89.6 89.7 93.3
DD Combination 91.0 90.4 90.7 93.8

Table 2: Performance results for Section 23 of the WSJ
Treebank. Model 1: a reimplementation of the genera-
tive parser of (Collins, 2002). Koo08 Baseline: Model 1
with a hard restriction to dependencies predicted by the
discriminative dependency parser of (Koo et al., 2008).
DD Combination: a model that maximizes the joint score
of the two parsers. Dep shows the unlabeled dependency
accuracy of each system.
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Figure 5: Performance on the parsing task assuming a
fixed number of iterations K. f-score: accuracy of the
method. % certificates: percentage of examples for which
a certificate of optimality is provided. % match: percent-
age of cases where the output from the method is identical
to the output when using K = 50.

pendencies seen in the first-best output from the de-
pendency parser. Table 2 shows all three results. The
dual decomposition method gives a significant gain
in precision and recall over the naive combination
method, and boosts the performance of Model 1 to
a level that is close to some of the best single-pass
parsers on the Penn treebank test set. Dependency
accuracy is also improved over the Koo et al. (2008)
model, in spite of the relatively low dependency ac-
curacy of Model 1 alone.

Figure 5 shows performance of the approach as a
function ofK, the maximum number of iterations of
dual decomposition. For this experiment, for cases
where the method has not converged for k ≤ K,
the output from the algorithm is chosen to be the
y(k) for k ≤ K that maximizes the objective func-
tion in Eq. 11. The graphs show that values of K
less than 50 produce almost identical performance to
K = 50, but with fewer cases giving certificates of
optimality (with K = 10, the f-score of the method
is 90.69%; with K = 5 it is 90.63%).
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Precision Recall F1 POS Acc
Fixed Tags 88.1 87.6 87.9 96.7

DD Combination 88.7 88.0 88.3 97.1

Table 3: Performance results for Section 23 of the WSJ.
Model 1 (Fixed Tags): a baseline parser initialized to the
best tag sequence of from the tagger of Toutanova and
Manning (2000). DD Combination: a model that maxi-
mizes the joint score of parse and tag selection.

7.2 Integrated Phrase-Structure Parsing and
Trigram POS tagging

In a second experiment, we used dual decomposi-
tion to integrate the Model 1 parser with the Stan-
ford max-ent trigram POS tagger (Toutanova and
Manning, 2000), using a very similar algorithm to
that described in section 4.1. We use the same train-
ing/dev/test split as in section 7.1. The two models
were again trained separately.

We ran the algorithm with a limit of K = 50 it-
erations. Out of 2416 test examples, the algorithm
found an exact solution in 98.9% of the cases. Ta-
ble 1 gives statistics showing the speed of conver-
gence for different examples: over 94% of the exam-
ples converge to an exact solution in 10 iterations or
fewer. In terms of accuracy, we compare to a base-
line approach of using the first-best tag sequence
as input to the parser. The dual decomposition ap-
proach gives 88.3 F1 measure in recovering parse-
tree constituents, compared to 87.9 for the baseline.

8 Conclusions

We have introduced dual-decomposition algorithms
for inference in NLP, given formal properties of the
algorithms in terms of LP relaxations, and demon-
strated their effectiveness on problems that would
traditionally be solved using intersections of dy-
namic programs (Bar-Hillel et al., 1964). Given the
widespread use of dynamic programming in NLP,
there should be many applications for the approach.

There are several possible extensions of the
method we have described. We have focused on
cases where two models are being combined; the
extension to more than two models is straightfor-
ward (e.g., see Komodakis et al. (2007)). This paper
has considered approaches for MAP inference; for
closely related methods that compute approximate
marginals, see Wainwright et al. (2005b).

A Fractional Solutions
We now give an example of a point (µ, ν) ∈ Q′\conv(Q)
that demonstrates that the relaxation Q′ is strictly larger
than conv(Q). Fractional points such as this one can arise
as solutions of the LP relaxation for worst case instances,
preventing us from finding an exact solution.

Recall that the constraints for Q′ specify that µ ∈
conv(Y), ν ∈ conv(Z), and µ(i, t) = ν(i, t) for all
(i, t) ∈ Iuni. Since µ ∈ conv(Y), µ must be a con-
vex combination of 1 or more members of Y; a similar
property holds for ν. The example is as follows. There
are two possible parts of speech, A and B, and an addi-
tional non-terminal symbol X . The sentence is of length
3, w1 w2 w3. Let ν be the convex combination of the
following two tag sequences, each with probability 0.5:
w1/A w2/A w3/A and w1/A w2/B w3/B. Let µ be
the convex combination of the following two parses, each
with probability 0.5: (X(A w1)(X(A w2)(B w3))) and
(X(A w1)(X(B w2)(A w3))). It can be verified that
µ(i, t) = ν(i, t) for all (i, t), i.e., the marginals for single
tags for µ and ν agree. Thus, (µ, ν) ∈ Q′.

To demonstrate that this fractional point is not in
conv(Q), we give parameter values such that this frac-
tional point is optimal and all integral points (i.e., ac-
tual parses) are suboptimal. For the tagging model, set
θ(AA→ A, 3) = θ(AB → B, 3) = 0, with all other pa-
rameters having a negative value. For the parsing model,
set θ(X → A X, 1, 1, 3) = θ(X → A B, 2, 2, 3) =
θ(X → B A, 2, 2, 3) = 0, with all other rule parameters
being negative. For this objective, the fractional solution
has value 0, while all integral points (i.e., all points inQ)
have a negative value. By Theorem 5.2, the maximum of
any linear objective over conv(Q) is equal to the maxi-
mum over Q. Thus, (µ, ν) 6∈ conv(Q).

B Step Size
We used the following step size in our experiments. First,
we initialized α0 to equal 0.5, a relatively large value.
Then we defined αk = α0 ∗ 2−ηk , where ηk is the num-
ber of times that L(u(k′)) > L(u(k′−1)) for k′ ≤ k. This
learning rate drops at a rate of 1/2t, where t is the num-
ber of times that the dual increases from one iteration to
the next. See Koo et al. (2010) for a similar, but less ag-
gressive step size used to solve a different task.
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Abstract

We study self-training with products of latent
variable grammars in this paper. We show
that increasing the quality of the automatically
parsed data used for self-training gives higher
accuracy self-trained grammars. Our genera-
tive self-trained grammars reach F scores of
91.6 on the WSJ test set and surpass even
discriminative reranking systems without self-
training. Additionally, we show that multi-
ple self-trained grammars can be combined in
a product model to achieve even higher ac-
curacy. The product model is most effective
when the individual underlying grammars are
most diverse. Combining multiple grammars
that were self-trained on disjoint sets of un-
labeled data results in a final test accuracy of
92.5% on the WSJ test set and 89.6% on our
Broadcast News test set.

1 Introduction

The latent variable approach of Petrov et al. (2006)
is capable of learning high accuracy context-free
grammars directly from a raw treebank. It starts
from a coarse treebank grammar (Charniak, 1997),
and uses latent variables to refine the context-free
assumptions encoded in the grammar. A hierarchi-
cal split-and-merge algorithm introduces grammar
complexity gradually, iteratively splitting (and po-
tentially merging back) each observed treebank cat-
egory into a number of increasingly refined latent
subcategories. The Expectation Maximization (EM)
algorithm is used to train the model, guaranteeing
that each EM iteration will increase the training like-
lihood. However, because the latent variable gram-
mars are not explicitly regularized, EM keeps fit-

ting the training data and eventually begins over-
fitting (Liang et al., 2007). Moreover, EM is a lo-
cal method, making no promises regarding the final
point of convergence when initialized from different
random seeds. Recently, Petrov (2010) showed that
substantial differences between the learned gram-
mars remain, even if the hierarchical splitting re-
duces the variance across independent runs of EM.

In order to counteract the overfitting behavior,
Petrov et al. (2006) introduced a linear smoothing
procedure that allows training grammars for 6 split-
merge (SM) rounds without overfitting. The in-
creased expressiveness of the model, combined with
the more robust parameter estimates provided by the
smoothing, results in a nice increase in parsing ac-
curacy on a held-out set. However, as reported by
Petrov (2009) and Huang and Harper (2009), an ad-
ditional 7th SM round actually hurts performance.

Huang and Harper (2009) addressed the issue of
data sparsity and overfitting from a different angle.
They showed that self-training latent variable gram-
mars on their own output can mitigate data spar-
sity issues and improve parsing accuracy. Because
the capacity of the model can grow with the size
of the training data, latent variable grammars are
able to benefit from the additional training data, even
though it is not perfectly labeled. Consequently,
they also found that a 7th round of SM training was
beneficial in the presence of large amounts of train-
ing data. However, variation still remains in their
self-trained grammars and they had to use a held-out
set for model selection.

The observation of variation is not surprising;
EM’s tendency to get stuck in local maxima has been
studied extensively in the literature, resulting in vari-
ous proposals for model selection methods (e.g., see
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Burnham and Anderson (2002)). What is perhaps
more surprising is that the different latent variable
grammars seem to capture complementary aspects
of the data. Petrov (2010) showed that a simple ran-
domization scheme produces widely varying gram-
mars. Quite serendipitously, these grammars can
be combined into an unweighted product model that
substantially outperforms the individual grammars.

In this paper, we combine the ideas of self-
training and product models and show that both
techniques provide complementary effects. We hy-
pothesize that the main factors contributing to the
final accuracy of the product model of self-trained
grammars are (i) the accuracy of the grammar used
to parse the unlabeled data for retraining (single
grammar versus product of grammars) and (ii) the
diversity of the grammars that are being combined
(self-trained grammars trained using the same auto-
matically labeled subset or different subsets). We
conduct a series of analyses to develop an under-
standing of these factors, and conclude that both di-
mensions are important for obtaining significant im-
provements over the standard product models.

2 Experimental Setup

2.1 Data

We conducted experiments in two genres: newswire
text and broadcast news transcripts. For the
newswire studies, we used the standard setup (sec-
tions 02-21 for training, 22 for development, and 23
for final test) of the WSJ Penn Treebank (Marcus et
al., 1999) for supervised training. The BLLIP cor-
pus (Charniak et al., 2000) was used as a source of
unlabeled data for self-training the WSJ grammars.
We ignored the parse trees contained in the BLLIP
corpus and retained only the sentences, which are
already segmented and tokenized for parsing (e.g.,
contractions are split into two tokens and punctua-
tion is separated from the words). We partitioned
the 1,769,055 BLLIP sentences into 10 equally sized
subsets1.

For broadcast news (BN), we utilized the Broad-

1We corrected some of the most egregious sentence segmen-
tation problems in this corpus, and so the number of sentences is
different than if one simply pulled the fringe of the trees. It was
not uncommon for a sentence split to occur on abbreviations,
such as Adm.

cast News treebank from Ontonotes (Weischedel et
al., 2008) together with the WSJ Penn Treebank for
supervised training, because their combination re-
sults in better parser models compared to using the
limited-sized BN corpus alone (86.7 F vs. 85.2 F).
The files in the Broadcast News treebank represent
news stories collected during different time periods
with a diversity of topics. In order to obtain a rep-
resentative split of train-test-development sets, we
divided them into blocks of 10 files sorted by alpha-
betical filename order. We used the first file in each
block for development, the second for test, and the
remaining files for training. This training set was
then combined with the entire WSJ treebank. We
also used 10 equally sized subsets from the Hub4
CSR 1996 utterances (Garofolo et al., 1996) for self-
training. The Hub 4 transcripts are markedly noisier
than the BLLIP corpus is, in part because it is harder
to sentence segment, but also because it was pro-
duced by human transcription of spoken language.

The treebanks were pre-processed differently for
the two genres. For newswire, we used a slightly
modified version of the WSJ treebank: empty
nodes and function labels were deleted and auxiliary
verbs were replaced with AUXB, AUXG, AUXZ,
AUXD, or AUXN to represent infinitive, progres-
sive, present, past, or past participle auxiliaries2.
The targeted use of the broadcast models is for pars-
ing broadcast news transcripts for language mod-
els in speech recognition systems. Therefore, in
addition to applying the transformations used for
newswire, we also replaced symbolic expressions
with verbal forms (e.g., $5 was replaced with five
dollars) and removed punctuation and case. The
Hub4 data was segmented into utterances, punctua-
tion was removed, words were down-cased, and con-
tractions were tokenized for parsing. Table 1 sum-
marizes the data set sizes used in our experiments,
together with average sentence length and standard
deviation.

2.2 Scoring
Parses from all models are compared with respective
gold standard parses using SParseval bracket scor-
ing (Roark et al., 2006). This scoring tool pro-

2Parsing accuracy is marginally affected. The average over
10 SM6 grammars with the transformation is 90.5 compared to
90.4 F without it, a 0.1% average improvement.
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Genre Statistics Train Dev Test Unlabeled

Newswire
# sentences 39.8k 1.7k 2.4k 1,769.1k

# words 950.0k 40.1k 56.7k 43,057.0k
length Avg./Std. 28.9/11.2 25.1/11.8 25.1/12.0 24.3/10.9

Broadcast News
# sentences 59.0k 1.0k 1.1k 4,386.5k

# words 1,281.1k 17.1k 19.4k 77,687.9k
length Avg./Std. 17.3/11.3 17.4/11.3 17.7/11.4 17.7/12.8

Table 1: The number of words and sentences, together with average (Avg.) sentence length and its standard deviation
(Std.), for the data sets used in our experiments.

duces scores that are identical to those produced
by EVALB for WSJ. For Broadcast News, SParse-
val applies Charniak and Johnson’s (Charniak and
Johnson, 2001) scoring method for EDITED nodes3.
Using this method, BN scores were slightly (.05-.1)
lower than if EDITED constituents were treated like
any other, as in EVALB.

2.3 Latent Variable Grammars

We use the latent variable grammar (Matsuzaki et
al., 2005; Petrov et al., 2006) implementation of
Huang and Harper (2009) in this work. Latent vari-
able grammars augment the observed parse trees in
the treebank with a latent variable at each tree node.
This effectively splits each observed category into
a set of latent subcategories. An EM-algorithm is
used to fit the model by maximizing the joint like-
lihood of parse trees and sentences. To allocate the
grammar complexity only where needed, a simple
split-and-merge procedure is applied. In every split-
merge (SM) round, each latent variable is first split
in two and the model is re-estimated. A likelihood
criterion is used to merge back the least useful splits
(50% merge rate for these experiments). This itera-
tive refinement proceeds for 7 rounds, at which point
parsing performance on a held-out set levels off and
training becomes prohibitively slow.

Since EM is a local method, different initial-
izations will result in different grammars. In
fact, Petrov (2010) recently showed that this EM-
algorithm is very unstable and converges to widely
varying local maxima. These local maxima corre-

3Non-terminal subconstituents of EDITED nodes are re-
moved so that the terminal constituents become immediate chil-
dren of a single EDITED node, adjacent EDITED nodes are
merged, and they are ignored for span calculations of the other
constituents.

spond to different high quality latent variable gram-
mars that have captured different types of patterns in
the data. Because the individual models’ mistakes
are independent to some extent, multiple grammars
can be effectively combined into an unweighted
product model of much higher accuracy. We build
upon this line of work and investigate methods to
exploit products of latent variable grammars in the
context of self-training.

3 Self-training Methodology

Different types of parser self-training have been pro-
posed in the literature over the years. All of them
involve parsing a set of unlabeled sentences with a
baseline parser and then estimating a new parser by
combining this automatically parsed data with the
original training data. McClosky et al. (2006) pre-
sented a very effective method for self-training a
two-stage parsing system consisting of a first-stage
generative lexicalized parser and a second-stage dis-
criminative reranker. In their approach, a large
amount of unlabeled text is parsed by the two-stage
system and the parameters of the first-stage lexical-
ized parser are then re-estimated taking the counts
from the automatically parsed data into considera-
tion.

More recently Huang and Harper (2009) pre-
sented a self-training procedure based on an EM-
algorithm. They showed that the EM-algorithm that
is typically used to fit a latent variable grammar
(Matsuzaki et al., 2005; Petrov et al., 2006) to a tree-
bank can also be used for self-training on automati-
cally parsed sentences. In this paper, we investigate
self-training with products of latent variable gram-
mars. We consider three training scenarios:

ST-Reg Training Use the best single grammar to
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Regular Best Average Product
SM6 90.8 90.5 92.0
SM7 90.4 90.1 92.2

Table 2: Performance of the regular grammars and their
products on the WSJ development set.

parse a single subset of the unlabeled data and
train 10 self-trained grammars using this single
set.

ST-Prod Training Use the product model to parse
a single subset of the unlabeled data and train
10 self-trained grammars using this single set.

ST-Prod-Mult Training Use the product model to
parse all 10 subsets of the unlabeled data and
train 10 self-trained grammars, each using a
different subset.

The resulting grammars can be either used individu-
ally or combined in a product model.

These three conditions provide different insights.
The first experiment allows us to investigate the
effectiveness of product models for standard self-
trained grammars. The second experiment enables
us to quantify how important the accuracy of the
baseline parser is for self-training. Finally, the third
experiment investigates a method for injecting some
additional diversity into the individual grammars to
determine whether a product model is most success-
ful when there is more variance among the individ-
ual models.

Our initial experiments and analysis will focus on
the development set of WSJ. We will then follow
up with an analysis of broadcast news (BN) to de-
termine whether the findings generalize to a second,
less structured type of data. It is important to con-
struct grammars capable of parsing this type of data
accurately and consistently in order to support struc-
tured language modeling (e.g., (Wang and Harper,
2002; Filimonov and Harper, 2009)).

4 Newswire Experiments

In this section, we compare single grammars and
their products that are trained in the standard way
with gold WSJ training data, as well as the three
self-training scenarios discussed in Section 3. We

ST-Reg Best Average Product
SM6 91.5 91.2 92.0
SM7 91.6 91.5 92.4

Table 3: Performance of the ST-Reg grammars and their
products on the WSJ development set.

report the F scores of both SM6 and SM7 grammars
on the development set in order to evaluate the ef-
fect of model complexity on the performance of the
self-trained and product models. Note that we use
6th round grammars to produce the automatic parse
trees for the self-training experiments. Parsing with
the product of the 7th round grammars is slow and
requires a large amount of memory (32GB). Since
we had limited access to such machines, it was in-
feasible for us to parse all of the unlabeled data with
the SM7 product grammars.

4.1 Regular Training

We begin by training ten latent variable models ini-
tialized with different random seeds using the gold
WSJ training set. Results are presented in Table 2.
The best F score attained by the individual SM6
grammars on the development set is 90.8, with an
average score of 90.5. The product of grammars
achieves a significantly improved accuracy at 92.04.
Notice that the individual SM7 grammars perform
worse on average (90.1 vs. 90.5) due to overfitting,
but their product achieves higher accuracy than the
product of the SM6 grammars (92.2 vs. 92.0). We
will further investigate the causes for this effect in
Section 5.

4.2 ST-Reg Training

Given the ten SM6 grammars from the previous sub-
section, we can investigate the three self-training
methods. In the first regime (ST-Reg), we use the
best single grammar (90.8 F) to parse a single subset
of the BLLIP data. We then train ten grammars from
different random seeds, using an equally weighted
combination of the WSJ training set with this sin-
gle set. These self-trained grammars are then com-
bined into a product model. As reported in Table 3,

4We use Dan Bikel’s randomized parsing evaluation com-
parator to determine the significance (p < 0.05) of the differ-
ence between two parsers’ outputs.
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ST-Prod Best Average Product
SM6 91.7 91.4 92.2
SM7 91.9 91.7 92.4

Table 4: Performance of the ST-Prod grammars and their
products on the WSJ development set.

thanks to the use of additional automatically labeled
training data, the individual SM6 ST-Reg grammars
perform significantly better than the individual SM6
grammars (91.2 vs. 90.5 on average), and the indi-
vidual SM7 ST-Reg grammars perform even better,
achieving a high F score of 91.5 on average.

The product of ST-Reg grammars achieves signif-
icantly better performance over the individual gram-
mars, however, the improvement is much smaller
than that obtained by the product of regular gram-
mars. In fact, the product of ST-Reg grammars per-
forms quite similarly to the product of regular gram-
mars despite the higher average accuracy of the in-
dividual grammars. This may be caused by the fact
that self-training on the same data tends to reduce
the variation among the self-trained grammars. We
will show in Section 5 that the diversity among the
individual grammars is as important as average ac-
curacy for the performance attained by the product
model.

4.3 ST-Prod Training

Since products of latent variable grammars perform
significantly better than individual latent variable
grammars, it is natural to try using the product
model for parsing the unlabeled data. To investi-
gate whether the higher accuracy of the automati-
cally labeled data translates into a higher accuracy
of the self-trained grammars, we used the product of
6th round grammars to parse the same subset of the
unlabeled data as in the previous experiment. We
then trained ten self-trained grammars, which we
call ST-Prod grammars. As can be seen in Table 4,
using the product of the regular grammars for label-
ing the self-training data results in improved individ-
ual ST-Prod grammars when compared with the ST-
Reg grammars, with 0.2 and 0.3 improvements for
the best SM6 and SM7 grammars, respectively. In-
terestingly, the best individual SM7 ST-Prod gram-
mar (91.9 F) performs comparably to the product of

ST-Prod-Mult Best Average Product
SM6 91.7 91.4 92.5
SM7 91.8 91.7 92.8

Table 5: Performance of the ST-Prod-Mult grammars and
their products on the WSJ development set.

the regular grammars (92.0 F) that was used to label
the BLLIP subset used for self-training. This is very
useful for practical reasons because a single gram-
mar is faster to parse with and requires less memory
than the product model.

The product of the SM6 ST-Prod grammars also
achieves a 0.2 higher F score compared to the prod-
uct of the SM6 ST-Reg grammars, but the product
of the SM7 ST-Prod grammars has the same perfor-
mance as the product of the SM7 ST-Reg grammars.
This could be due to the fact that the ST-Prod gram-
mars are no more diverse than the ST-Reg grammars,
as we will show in Section 5.

4.4 ST-Prod-Mult Training

When creating a product model of regular gram-
mars, Petrov (2010) used a different random seed for
each model and conjectured that the effectiveness of
the product grammars stems from the resulting di-
versity of the individual grammars. Two ways to
systematically introduce bias into individual mod-
els are to either modify the feature sets (Baldridge
and Osborne, 2008; Smith and Osborne, 2007) or
to change the training distributions of the individual
models (Breiman, 1996). Petrov (2010) attempted to
use the second method to train individual grammars
on either disjoint or overlapping subsets of the tree-
bank, but observed a performance drop in individ-
ual grammars resulting from training on less data,
as well as in the performance of the product model.
Rather than reducing the amount of gold training
data (or having treebank experts annotate more data
to support the diversity), we employ the self-training
paradigm to train models using a combination of the
same gold training data with different sets of the
self-labeled training data. This approach also allows
us to utilize a much larger amount of low-cost self-
labeled data than can be used to train one model by
partitioning the data into ten subsets and then train-
ing ten models with a different subset. Hence, in
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(b) Difference in F score between the product of SM6 regular grammars and the individual SM7 ST-Prod-Mult
grammars.

Figure 1: Difference in F scores between various individual grammars and representative product grammars.

the third self-training experiment, we use the prod-
uct of the regular grammars to parse all ten subsets
of the unlabeled data and train ten grammars, which
we call ST-Prod-Mult grammars, each using a dif-
ferent subset.

As shown in Table 5, the individual ST-Prod-Mult
grammars perform similarly to the individual ST-
Prod grammars. However, the product of the ST-
Prod-Mult grammars achieves significantly higher
accuracies than the product of the ST-Prod gram-
mars, with 0.3 and 0.4 improvements for SM6 and
SM7 grammars, respectively, suggesting that the use
of multiple self-training subsets plays an important
role in model combination.

5 Analysis

We conducted a series of analyses to develop an un-
derstanding of the factors affecting the effectiveness
of combining self-training with product models.

5.1 What Has Improved?

Figure 1(a) depicts the difference between the prod-
uct and the individual SM6 regular grammars on
overall F score, as well as individual constituent F
scores. As can be observed, there are significant

variations among the individual grammars, and the
product of the regular grammars improves almost all
categories, with a few exceptions (some individual
grammars do better on QP and WHNP constituents).

Figure 1(b) shows the difference between the
product of the SM6 regular grammars and the indi-
vidual SM7 ST-Prod-Mult grammars. Self-training
dramatically improves the quality of single gram-
mars. In most of the categories, some individ-
ual ST-Prod-Mult grammars perform comparably or
slightly better than the product of SM6 regular gram-
mars used to automatically label the unlabeled train-
ing set.

5.2 Overfitting vs. Smoothing

Figure 2(a) and 2(b) depict the learning curves of
the regular and the ST-Prod-Mult grammars. As
more latent variables are introduced through the iter-
ative SM training algorithm, the modeling capacity
of the grammars increases, leading to improved per-
formance. However, the performance of the regular
grammars drops after 6 SM rounds, as also previ-
ously observed in (Huang and Harper, 2009; Petrov,
2009), suggesting that the regular SM7 grammars
have overfit the relatively small-sized gold training
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data. In contrast, the performance of the self-trained
grammars continues to improve in the 7th SM round.
Huang and Harper (2009) argued that the additional
self-labeled training data adds a smoothing effect to
the grammars, supporting an increase in model com-
plexity without overfitting.

Although the performance of the individual gram-
mars, both regular and self-trained, varies signif-
icantly and the product model consistently helps,
there is a non-negligible difference between the im-
provement achieved by the two product models over
their component grammars. The regular product
model improves upon its individual grammars more
than the ST-Prod-Mult product does in the later SM
rounds, as illustrated by the relative error reduction
curves in figures 2(a) and (b). In particular, the prod-
uct of the SM7 regular grammars gains a remarkable
2.1% absolute improvement over the average perfor-
mance of the individual regular SM7 grammars and
0.2% absolute over the product of the regular SM6
grammars, despite the fact that the individual regular
SM7 grammars perform worse than the SM6 gram-
mars. This suggests that the product model is able
to effectively exploit less smooth, overfit grammars.
We will examine this issue further in the next sub-
section.

5.3 Diversity

From the perspective of Products of Experts (Hin-
ton, 1999) or Logarithmic Opinion Pools (Smith et
al., 2005), each individual expert learns complemen-
tary aspects of the training data and the veto power
of product models enforces that the joint prediction
of their product has to be licensed by all individual
experts. One possible explanation of the observa-
tion in the previous subsection is that with the ad-
dition of more latent variables, the individual gram-
mars become more deeply specialized on certain as-
pects of the training data. This specialization leads
to greater diversity in their prediction preferences,
especially in the presence of a small training set.
On the other hand, the self-labeled training set size
is much larger, and so the specialization process is
therefore slowed down.

Petrov (2010) showed that the individually
learned grammars are indeed very diverse by look-
ing at the distribution of latent annotations across the
treebank categories, as well as the variation in over-

all and individual category F scores (see Figure 1).
However, these measures do not directly relate to the
diversity of the prediction preferences of the gram-
mars, as we observed similar patterns in the regular
and self-trained models.

Given a sentence s and a set of grammars G =
{G1, · · · , Gn}, recall that the decoding algorithm of
the product model (Petrov, 2010) searches for the
best tree T such that the following objective function
is maximized: ∑

r∈T

∑
G∈G

log p(r|s, G)

where log p(r|s, G) is the log posterior probability
of rule r given sentence s and grammar G. The
power of the product model comes directly from the
diversity in log p(r|s, G) among individual gram-
mars. If there is little diversity, the individual
grammars would make similar predictions and there
would be little or no benefit from using a product
model. We use the average empirical variance of
the log posterior probabilities of the rules among the
learned grammars over a held-out set S as a proxy
of the diversity among the grammars:∑

s∈S

∑
G∈G

∑
r∈R(G,s)

p(r|s, G)VAR(log(p(r|s,G)))∑
s∈S

∑
G∈G

∑
r∈R(G,s)

p(r|s, G)

where R(G, s) represents the set of rules extracted
from the chart when parsing sentence s with gram-
mar G, and VAR(log(p(r|s,G))) is the variance of
log(p(r|s, G)) among all grammars G ∈ G.

Note that the average empirical variance is only
an approximation of the diversity among grammars.
In particular, this measure tends to be biased to pro-
duce larger numbers when the posterior probabili-
ties of rules tend to be small, because small differ-
ences in probability produce large changes in the log
scale. This happens for coarser grammars produced
in early SM stages when there is more uncertainty
about what rules to apply, with the rules remaining
in the parsing chart having low probabilities overall.

As shown in Figure 2(c), the average variances
all start at a high value and then drop, probably due
to the aforementioned bias. However, as the SM
iteration continues, the average variances increase
despite the bias. More interestingly, the variance
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Figure 2: Learning curves of the individual regular (a) and ST-Prod-Mult (b) grammars (average performance, with
minimum and maximum values indicated by bars) and their products before and after self-training on the WSJ de-
velopment set. The relative error reductions of the products are also reported. (c) The measured average empirical
variance among the grammars trained on WSJ.

among the regular grammars grows at a much faster
speed and is consistently greater when compared to
the self-trained grammars. This suggests that there
is more diversity among the regular grammars than
among the self-trained grammars, and explains the
greater improvement obtained by the regular product
model. It is also important to note that there is more
variance among the ST-Prod-Mult grammars, which
were trained on disjoint self-labeled training data,
and a greater improvement in their product model
relative to the ST-Reg and ST-Prod grammars, fur-
ther supporting the diversity hypothesis. Last but not
the least, the trend seems to indicate that the vari-
ance of the self-trained grammars would continue
increasing if EM training was extended by a few
more SM rounds, potentially resulting in even bet-
ter product models. It is currently impractical to test
this due to the dramatic increase in computational
requirements for an SM8 product model, and so we
leave it for future work.

5.4 Generalization to Broadcast News

We conducted the same set of experiments on the
broadcast news data set. While the development set
results in Table 6 show similar trends to the WSJ
results, the benefits from the combination of self-
training and product models appear even more pro-
nounced here. The best single ST-Prod-Mult gram-
mar (89.2 F) alone is able to outperform the product

of SM7 regular grammars (88.9 F), and their prod-
uct achieves another 0.7 absolute improvement, re-
sulting in a significantly better accuracy at 89.9 F.

Model Rounds Best Product

Regular
SM6 87.1 88.6
SM7 87.1 88.9

ST-Prod
SM6 88.5 89.0
SM7 89.0 89.6

ST-Prod-Mult
SM6 88.8 89.5
SM7 89.2 89.9

Table 6: F-score for various models on the BN develop-
ment set.

Figure 3 shows again that the benefits of self-
training and product models are complementary and
can be stacked. As can be observed, the self-
trained grammars have increasing F scores as the
split-merge rounds increase, while the regular gram-
mars have a slight decrease in F score after round 6.
In contrast to the newswire models, it appears that
the individual ST-Prod-Mult grammars trained on
broadcast news always perform comparably to the
product of the regular grammars at all SM rounds,
including the product of SM7 regular grammars.
This is noteworthy, given that the ST-Prod-Mult
grammars are trained on the output of the worse per-
forming product of the SM6 regular grammars. One
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Figure 3: Learning curves of the individual regular (a) and ST-Prod-Mult (b) grammars (average performance, with
minimum and maximum values indicated by bars) and their products before and after self-training on the BN develop-
ment set. The relative error reductions of the products are also reported. (c) The measured average empirical variance
among the grammars trained on BN.

possible explanation is that we used more unlabeled
data for self-training the broadcast news grammars
than for the newswire grammars. The product of the
ST-Prod-Mult grammars provides further and signif-
icant improvement in F score.

6 Final Results

We evaluated the best single self-trained gram-
mar (SM7 ST-Prod), as well as the product of
the SM7 ST-Prod-Mult grammars on the WSJ test
set. Table 7 compares these two grammars to
a large body of related work grouped into sin-
gle parsers (SINGLE), discriminative reranking ap-
proaches (RE), self-training (SELF), and system
combinations (COMBO).

Our best single grammar achieves an accuracy
that is only slightly worse (91.6 vs. 91.8 in F score)
than the product model in Petrov (2010). This is
made possible by self-training on the output of a
high quality product model. The higher quality of
the automatically parsed data results in a 0.3 point
higher final F score (91.6 vs. 91.3) over the self-
training results in Huang and Harper (2009), which
used a single grammar for parsing the unlabeled
data. The product of the self-trained ST-Prod-Mult
grammars achieves significantly higher accuracies
with an F score of 92.5, a 0.7 improvement over the
product model in Petrov (2010).

8Our ST-Reg grammars are trained in the same way as in

Type Parser LP LR EX
SI

N
G

L
E Charniak (2000) 89.9 89.5 37.2

Petrov and Klein (2007) 90.2 90.1 36.7
Carreras et al. (2008) 91.4 90.7 -

R
E Charniak and Johnson (2005) 91.8 91.2 44.8

Huang (2008) 92.2 91.2 43.5

SE
L

F Huang and Harper (2009)8 91.6 91.1 40.4
McClosky et al. (2006) 92.5 92.1 45.3

C
O

M
B

O Petrov (2010) 92.0 91.7 41.9
Sagae and Lavie (2006) 93.2 91.0 -
Fossum and Knight (2009) 93.2 91.7 -
Zhang et al. (2009) 93.3 92.0 -

This Paper
Best Single 91.8 91.4 40.3
Best Product 92.7 92.2 43.1

Table 7: Final test set accuracies on WSJ.

Although our models are based on purely gen-
erative PCFG grammars, our best product model
performs competitively to the self-trained two-step
discriminative reranking parser of McClosky et al.
(2006), which makes use of many non-local rerank-
ing features. Our parser also performs comparably
to other system combination approaches (Sagae and
Lavie, 2006; Fossum and Knight, 2009; Zhang et
al., 2009) with higher recall and lower precision,

Huang and Harper (2009) except that we keep all unary rules.
The reported numbers are from the best single ST-Reg grammar
in this work.
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but again without using a discriminative reranking
step. We expect that replacing the first-step genera-
tive parsing model in McClosky et al. (2006) with a
product of latent variable grammars would give even
higher parsing accuracies.

On the Broadcast News test set, our best perform-
ing single and product grammars (bolded in Table 6)
obtained F scores of 88.7 and 89.6, respectively.
While there is no prior work using our setup, we ex-
pect these numbers to set a high baseline.

7 Conclusions and Future Work

We evaluated methods for self-training high accu-
racy products of latent variable grammars with large
amounts of genre-matched data. We demonstrated
empirically on newswire and broadcast news genres
that very high accuracies can be achieved by training
grammars on disjoint sets of automatically labeled
data. Two primary factors appear to be determin-
ing the efficacy of our self-training approach. First,
the accuracy of the model used for parsing the unla-
beled data is important for the accuracy of the result-
ing single self-trained grammars. Second, the diver-
sity of the individual grammars controls the gains
that can be obtained by combining multiple gram-
mars into a product model. Our most accurate sin-
gle grammar achieves an F score of 91.6 on the WSJ
test set, rivaling discriminative reranking approaches
(Charniak and Johnson, 2005) and products of latent
variable grammars (Petrov, 2010), despite being a
single generative PCFG. Our most accurate product
model achieves an F score of 92.5 without the use of
discriminative reranking and comes close to the best
known numbers on this test set (Zhang et al., 2009).

In future work, we plan to investigate additional
methods for increasing the diversity of our self-
trained models. One possibility would be to utilize
more unlabeled data or to identify additional ways to
bias the models. It would also be interesting to deter-
mine whether further increasing the accuracy of the
model used for automatically labeling the unlabeled
data can enhance performance even more. A simple
but computationally expensive way to do this would
be to parse the data with an SM7 product model.

Finally, for this work, we always used products
of 10 grammars, but we sometimes observed that
subsets of these grammars produce even better re-

sults on the development set. Finding a way to se-
lect grammars from a grammar pool to achieve high
performance products is an interesting area of future
study.
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Abstract

Syntactic consistency is the preference to
reuse a syntactic construction shortly after its
appearance in a discourse. We present an anal-
ysis of the WSJ portion of the Penn Tree-
bank, and show that syntactic consistency is
pervasive across productions with various left-
hand side nonterminals. Then, we implement
a reranking constituent parser that makes use
of extra-sentential context in its feature set.
Using a linear-chain conditional random field,
we improve parsing accuracy over the gen-
erative baseline parser on the Penn Treebank
WSJ corpus, rivalling a similar model that
does not make use of context. We show that
the context-aware and the context-ignorant
rerankers perform well on different subsets of
the evaluation data, suggesting a combined ap-
proach would provide further improvement.
We also compare parses made by models, and
suggest that context can be useful for parsing
by capturing structural dependencies between
sentences as opposed to lexically governed de-
pendencies.

1 Introduction

Recent corpus linguistics work has produced ev-
idence of syntactic consistency, the preference to
reuse a syntactic construction shortly after its ap-
pearance in a discourse (Gries, 2005; Dubey et al.,
2005; Reitter, 2008). In addition, experimental stud-
ies have confirmed the existence of syntactic prim-
ing, the psycholinguistic phenomenon of syntactic
consistency1. Both types of studies, however, have

1Whether or not corpus-based studies of consistency have
any bearing on syntactic priming as a reality in the human mind

limited the constructions that are examined to partic-
ular syntactic constructions and alternations. For in-
stance, Bock (1986) and Gries (2005) examine spe-
cific constructions such as the passive voice, dative
alternation and particle placement in phrasal verbs,
and Dubey et al. (2005) deal with the internal struc-
ture of noun phrases. In this work, we extend these
results and present an analysis of the distribution of
all syntactic productions in the Penn Treebank WSJ
corpus. We provide evidence that syntactic consis-
tency is a widespread phenomenon across produc-
tions of various types ofLHS nonterminals, includ-
ing all of the commonly occurring ones.

Despite this growing evidence that the probability
of syntactic constructions is not independent of the
extra-sentential context, current high-performance
statistical parsers (e.g. (Petrov and Klein, 2007; Mc-
Closky et al., 2006; Finkel et al., 2008)) rely solely
on intra-sentential features, considering the partic-
ular grammatical constructions and lexical items
within the sentence being parsed. We address this
by implementing a reranking parser which takes ad-
vantage of features based on the context surrounding
the sentence. The reranker outperforms the genera-
tive baseline parser, and rivals a similar model that
does not make use of context. We show that the
context-aware and the context-ignorant models per-
form well on different subsets of the evaluation data,
suggesting a feature set that combines the two mod-
els would provide further improvement. Analysis of
the rerankings made provides cases where contex-
tual information has clearly improved parsing per-

is a subject of debate. See (Pickering and Branigan, 1999) and
(Gries, 2005) for opposing viewpoints.
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Figure 1: Visual representation of calculation of prior and
positive adaptation probabilities.t represents the pres-
ence of a construction in the target set.p represents the
presence of the construction in the prime set.

formance, indicating the potential of extra-sentential
contextual information to aid parsing, especially for
structural dependencies between sentences, such as
parallelism effects.

2 Syntactic Consistency in the Penn
Treebank WSJ

Syntactic consistency has been examined by Dubey
et al. (2005) for several English corpora, including
the WSJ, Brown, and Switchboard corpora. They
have provided evidence that syntactic consistency
exists not only within coordinate structures, but also
in a variety of other contexts, such as within sen-
tences, between sentences, within documents, and
between speaker turns in the Switchboard corpus.
However, their analysis rests on a selected number
of constructions concerning the internal structure of
noun phrases. We extend their result here to arbi-
trary syntactic productions.

There have also been studies into syntactic con-
sistency that consider all syntactic productions in
dialogue corpora (Reitter, 2008; Buch and Pietsch,
2010). These studies find an inverse correlation be-
tween the probability of the appearance of a syn-
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Figure 2: Production-types (singletons removed) catego-
rized into deciles by frequency and the proportion of the
production-types in that bin that is consistent to a signifi-
cant degree.

tactic structure and the distance since its last occur-
rence, which indicates syntactic consistency. These
studies, however, do not provide consistency results
on subsets of production-types, such as by produc-
tion LHS as our study does, so the implications that
can be drawn from them for improving parsing are
less apparent.

We adopt the measure used by Dubey et al. (2005)
to quantify syntactic consistency,adaptation prob-
ability. This measure originates in work on lexical
priming (Church, 2000), and quantifies the probabil-
ity of a target word or constructionw appearing in a
“primed” context. Specifically, four frequencies are
calculated, based on whether the target construction
appears in the previous context (the prime set), and
whether the construction appears after this context
(the target set):

fp,¬t(w) = # of timesw in prime set only

f¬p,t(w) = # of timesw in target set only

f¬p,¬t(w) = # of timesw in neither set

fp,t(w) = # of timesw in both sets

We also defineN to be the sum of the four fre-
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LHS prior pos adapt ratio + > prior sig. insig. + < prior sig.
ADJP 0.03 0.05 1.96 26 251 0
ADVP 0.21 0.24 1.15 26 122 0

NP 0.17 0.22 1.27 281 2284 0
PP 0.56 0.58 1.04 32 125 0

PRN 0.01 0.03 4.60 12 82 0
PRT 0.06 0.08 1.40 3 3 0
QP 0.03 0.18 5.41 24 147 0
S 0.30 0.34 1.13 42 689 1

SBAR 0.15 0.20 1.31 13 68 0
SINV 0.01 0.01 1.00 3 77 0
VP 0.08 0.12 1.56 148 1459 0

WHADVP 0.04 0.08 1.84 2 8 0
WHNP 0.07 0.10 1.39 3 47 0
WHPP 0.01 0.02 2.65 1 1 0

Table 1: Weighted average by production frequency among non-singleton production-types of prior and positive adap-
tation probabilities, and the ratio between them. The columns on the right show the number of production-types
for which the positive adaptation probability is significantly greater than, not different from, or less than the prior
probability. We excludeLHSs with a weighted average prior of less than 0.005, due to the small sample size.

quencies. Then, we define theprior and thepositive
adaptation probability of a construction as follows
(See also Figure 1):

prior(w) =
fp,t(w) + f¬p,t(w)

N

pos adapt(w) =
fp,t(w)

fp,t(w) + fp,¬t(w)

A positive adaptation probability that is greater
than the prior probability would be interpreted as
evidence for syntactic consistency for that construc-
tion. We conductχ2 tests for statistical signif-
icance testing. We analyze the Penn Treebank
WSJ corpus according this schema for all produc-
tions that occur in sections 2 to 22. These are the
standard training and development sets for train-
ing parsers. We did not analyze section 23 in or-
der not to use its characteristics in designing our
reranking parser so that we can use this section as
our evaluation test set. Our analysis focuses on the
consistency of rules between sentences, so we take
the previous sentence within the same article as the
prime set, and the current sentence as the target set
in calculating the probabilities given above. The
raw data from which we produced our analysis are
available athttp://www.cs.toronto.edu/

˜ jcheung/wsj_parallelism_data.txt .
We first present results for consistency in all the

production-types2, grouped by theLHS of the pro-
duction. Table 1 shows the weighted average prior
and positive adaptation probabilities for productions
by LHS, where the weighting is done by the num-
ber of occurrence of that production. Production-
types that only occur once are removed. It also
shows the number of production-types in which the
positive adaptation probability is statistically signif-
icantly greater than, not significantly different from,
and significantly lower than the prior probability.

Quite remarkably, very few production-types are
significantly less likely to reoccur compared to the
prior probability. Also note the wide variety ofLHSs
for which there is a large number of production-
types that are consistent to a significant degree.
While a large number of production-types appears
not to be significantly more likely to occur in a
primed context, this is due to the large number of
production-types which only appear a few times.
Frequently occurring production-types mostly ex-
hibit syntactic consistency.

We show this in Figure 2, in which we put
non-singleton production-types into ten bins by fre-

2That is, all occurrences of a production with a particular
LHS andRHS.
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Ten most frequent production-types
production f¬p,t fp,t fp,¬t prior pos adapt ratio
PP→ IN NP 5624 26224 5793 0.80 0.82 1.02
NP→ NP PP 9033 12451 9388 0.54 0.57 1.05
NP→ DT NN 9198 10585 9172 0.50 0.54 1.07
S→ NP VP 8745 9897 9033 0.47 0.52 1.11
S→ NP VP . 8576 8501 8888 0.43 0.49 1.13
S→ VP 8717 7867 9042 0.42 0.47 1.11
NP→ PRP 7208 5309 7285 0.32 0.42 1.33
ADVP → RB 7986 3949 7905 0.30 0.33 1.10
NP→ NN 7630 3390 7568 0.28 0.31 1.11
VP→ TO VP 7039 3552 7250 0.27 0.33 1.23

Ten most consistent among 10% most frequent production-types
production f¬p,t fp,t fp,¬t prior pos adapt ratio
QP→ # CD CD 51 18 45 0.00 0.29 163.85
NP→ JJ NNPS 52 7 53 0.00 0.12 78.25
NP→ NP , ADVP 109 24 99 0.00 0.20 58.05
NP→ DT JJ CD NN 63 6 67 0.00 0.08 47.14
PP→ IN NP NP 83 10 87 0.00 0.10 43.86
QP→ IN $ CD 51 3 49 0.00 0.06 42.28
NP→ NP : NP . 237 128 216 0.01 0.37 40.34
INTJ→ UH 59 4 60 0.00 0.06 39.26
ADVP → IN NP 108 11 83 0.00 0.12 38.91
NP→ CD CD 133 21 128 0.00 0.14 36.21

Table 2: Some instances of consistency effects of productions. All productions’pos adapt probability is significantly
greater than itsprior probability atp < 10−6.

quency and calculated the proportion of production-
types in that bin for which the positive adaptation
probability is significantly greater than the prior. It is
clear that the most frequently occurring production-
types are also the ones most likely to exhibit evi-
dence of syntactic consistency.

Table 2 shows the breakdown of the prior and
positive adaptation calculation components for the
ten most frequent production-types and the ten most
consistent (by the ratiopos adapt / prior) produc-
tions among the top decile of production-types. Note
that all of these production-types are consistent to a
statistically significant degree. Interestingly, many
of the most consistent production-types have NP as
theLHS, but overall, productions with many differ-
entLHS parents exhibit consistency.

3 A Context-Aware Reranker

Having established evidence for widespread syntac-
tic consistency in the WSJ corpus, we now investi-
gate incorporating extra-sentential context into a sta-
tistical parser. The first decision to make is whether
to incorporate the context into a generative or a dis-
criminative parsing model.

Employing a generative model would allow us to
train the parser in one step, and one such parser
which incorporates the previous context has been
implemented by Dubey et al. (2006). They imple-
ment a PCFG, learning the production probabilities
by a variant of standard PCFG-MLE probability es-
timation that conditions on whether a rule has re-
cently occurred in the context or not:

P (RHS|LHS,Prime) =
c(LHS → RHS,Prime)

c(LHS,Prime)

LHS and RHS represent the left-hand side and
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right-hand side of a production, respectively.Prime
is a binary variable which isTrue if and only if
the current production has occurred in the prime set
(the previous sentence).c represents the frequency
count.

The drawback of such a system is that it doubles
the state space of the model, and hence likely in-
creases the amount of data needed to train the parser
to a comparable level of performance as a more com-
pact model, or would require elaborate smoothing.
Dubey et al. (2006) find that this system performs
worse than the baseline PCFG-MLE model, drop-
ping F1 from 73.3% to 71.6%3.

We instead opt to incorporate the extra-sentential
context into a discriminative reranking parser, which
naturally allows additional features to be incorpo-
rated into the statistical model. Many discriminative
models of constituent parsing have been proposed in
recent literature. They can be divided into two broad
categories–those that rerank the N-best outputs of a
generative parser, and those that make all parsing de-
cisions using the discriminative model. We choose
to implement an N-best reranking parser so that we
can utilize state-of-the-art generative parsers to en-
sure a good selection of candidate parses to feed
into our reranking module. Also, fully discrimina-
tive models tend to suffer from efficiency problems,
though recent models have started to overcome this
problem (Finkel et al., 2008).

Our approach is similar to N-best reranking
parsers such as Charniak and Johnson (2005)
and Collins and Koo (2005), which implement a va-
riety of features to capture within-sentence lexical
and structural dependencies. It is also similar to
work which focuses on coordinate noun phrase pars-
ing (e.g. (Hogan, 2007; K̈ubler et al., 2009)) in that
we also attempt to exploit syntactic parallelism, but
in a between-sentence setting rather than in a within-
sentence setting that only considers coordination.

As evidence of the potential of an N-best rerank-
ing approach with respect to extra-sentential con-
text, we considered the 50-best parses in the devel-
opment set produced by the generative parser, and
categorized each into one of nine bins depending
on whether this candidate parse exhibits more, less,

3A similar model which conditions on whether productions
have previously occurredwithin the same sentence, however,
improves F1 to 73.6%.

Overlap
less equal more

worse F1
32519 7224 17280

(81.8%) (69.3%) (75.4%)

equal F1
1023 1674 540

(2.6%) (16.1%) (2.4%)

better F1
6224 1527 5106

(15.7%) (14.6%) (22.3%)

Table 3: Correlation between rule overlap and F1 com-
pared to the generative baseline for the 50-best parses in
the development set.

or the same amount of rule overlap with the previ-
ous correct parse than the generative baseline, and
whether the candidate parse has a better, worse, or
the same F1 measure than the generative baseline
(Table 3). We find that a larger percentage of candi-
date parses which share more productions with the
previous parse are better than the generative base-
line parse than for the other categories, and this dif-
ference is statistically significant (χ2 test).

3.1 Conditional Random Fields

For our statistical reranker, we implement a linear-
chain conditional random field (CRF). CRFs are a
very flexible class of graphical models which have
been used for various sequence and relational la-
belling tasks (Lafferty et al., 2001). They have been
used for tree labelling, in XML tree labelling (Jousse
et al., 2006) and semantic role labelling tasks (Cohn
and Blunsom, 2005). They have also been used for
shallow parsing (Sha and Pereira, 2003), and full
constituent parsing (Finkel et al., 2008; Tsuruoka et
al., 2009). We exploit the flexibility of CRFs by in-
corporating features that depend on extra-sentential
context.

In a linear-chain CRF, the conditional probabil-
ity of a sequence of labelsy = y{t=1...T} given a se-
quence of observed outputx = x{t=1...T} and weight
vectorθ = θ{k=1...K} is given as follows:

P (y|x) =
1

Z
exp(

T∑

t=1

∑

k

θkfk(yt−1, yt, x, t))
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where Z is the partition function. The feature func-
tionsfk(yt−1, yt, x, t) can depend on two neighbour-
ing parses, the sentences in the sequence, and the
position of the sentence in the sequence. Since our
feature functions do not depend on the words or
the time-step within the sequence, however, we will
write fk(yt−1, yt) from now on.

We treat each document in the corpus as one CRF
sequence, and each sentence as one time-step in
the sequence. The label sequence then is the se-
quence of parses, and the outputs are the sentences
in the document. Since there is a large number of
parses possible for each sentence and correspond-
ingly many possible states for each label variable,
we restrict the possible label state-space by extract-
ing the N-best parses from a generative parser, and
rerank over the sequences of candidate parses thus
provided. We use the generative parser of Petrov
and Klein (2007), a state-splitting parser that uses an
EM algorithm to find splits in the nonterminal sym-
bols to maximize training data likelihood. We use
the 20-best parses, with an oracle F1 of 94.96% on
section 23.

To learn the weight vector, we employ a stochastic
gradient ascent method on the conditional log like-
lihood, which has been shown to perform well for
parsing tasks (Finkel et al., 2008). In standard gra-
dient ascent, the conditional log likelihood with a L2
regularization term for a Gaussian prior for a train-
ing corpus ofN sequences is

L(θ) =

N∑

i=1

∑

t,k

θkfk(y
(i)
t−1, y

(i)
t )

−
N∑

i=1

log Z(i) −
∑

k

θ2
k

2σ2

And the partial derivatives with respect to the
weights are

∂L

∂θk

=
N∑

i=1

∑

t

fk(y
(i)
t−1, y

(i)
t )

−
N∑

i=1

∑

t

∑

y,y′

fk(y, y′)P (y, y′|x(i))

−
∑

k

θk

σ2

The first term is the feature counts in the train-
ing data, and the second term is the feature expecta-
tions according to the current weight vector. The
third term corresponds to the penalty to non-zero
weight values imposed by regularization. The prob-
abilities in the second term can be efficiently calcu-
lated by the CRF-version of the forward-backward
algorithm.

In standard gradient ascent, we update the weight
vector after iterating through the whole training cor-
pus. Because this is computationally expensive, we
instead use stochastic gradient ascent, which ap-
proximates the true gradient by the gradient calcu-
lated from a single sample from the training corpus.
We thus do not have to sum over the training set in
the above expressions. We also employ a learning
rate multiplier on the gradient. Thus, the weight up-
date for theith encountered training sequence during
training is

θ = θ + αi∇Lstochastic(θ)

αi = η
τ ×N

τ ×N + i

The learning rate function is modelled on the one
used by Finkel et al. (2008). It is designed such that
αi is halved afterτ passes through the training set.

We train the model by iterating through the train-
ing set in a randomly permuted order, updating the
weight vector after each sequence. The parameters
η, τ , andσ are tuned to the development set. The fi-
nal settings we use areη = 0.08, τ = 5, andσ = 50.
We use sections 2–21 of the Penn Treebank WSJ for
training, 22 for development, and 23 for testing. We
conduct 20-fold cross validation to generate the N-
best parses for the training set, as is standard for N-
best rerankers.

To rerank, we do inference with the linear-chain
CRF for the most likely sequence of parses using
the Viterbi algorithm.

3.2 Feature Functions

We experiment with various feature functions that
depend on the syntactic and lexical parallelism be-
tweenyt−1 andyt. We use the occurrence of a rule
in yt that occurred inyt−1 as a feature. Based on the
results of the corpus analysis, the first representation
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(1) (S (NP (DT NN)) (VP (VBD)))

(2) (S (NP (NNS)) (VP (VBD)))

Phrasal features:
Template: (parent, childL, childR, repeated)
(S, edge, NP,+), (S, NP, VP,+), (S, VP, edge, +), (NP, edge,
NNS,−), (NP, NNS, edge,−), (VP, edge, VBD,+), (VP, VBD,
edge,+)

Lexical features:
Template: (parent, POSL, POSR, repeated)
(S, edge, NNS,−), (S, NNS, VBD,−), (S, VBD, edge,+),
(NP, edge, NNS,−), (NP, NNS, edge,−), (VP, edge, VBD,
+), (VP, VBD, edge,+)

Figure 3: Example of features extracted from a parse se-
quence specified down to the POS level.

we tried was to simply enumerate the (non-lexical)
productions inyt along with whether that production
is found inyt−1. However, we found that our most
successful feature function is to consider overlaps in
partial structures of productions.

Specifically, we decompose a tree into all of the
nonlexical vertically and horizontally markovized
subtrees. Each of the subtrees inyt marked by
whether that same subtree occurs in the previous
tree is a feature. The simple production represen-
tation corresponds to a vertical markovization of 1
and a horizontal markovization of infinite. We found
that a vertical markovization of 1 and a horizontal
markovization of 2 produced the best results on our
data. We will call this model thephrasal model.

This schema so far only considers local substruc-
tures of parse trees, without being informed by the
lexical information found in the leaves of the tree.
We try another schema which considers the POS tag
sequences found in each subtree. A feature then is
the node label of the root of the subtree with the POS
tag sequence it dominates, again decomposed into
sequences of length 2 by markovization. We will
call this model thelexical model.

To extract features from this sequence, we con-
sider the substructures in the second parse, and mark
whether they are found in the first parse as well. We
add edge markers to mark the beginning and end of
constituents. See Figure 3 for an example of features

Method F1 (%)
Model-averaged 90.47
Combined, jointly trained −Context 90.33
Combined, jointly trained 90.31
Model-averaged−Context 90.22
lexical −Context 90.21
lexical 90.20
phrasal 90.12
phrasal −Context 89.74
Generative 89.70

Table 4: Development set (section 22) results of various
models that we trained. Italicized are the models we use
for the test set.

extracted by the two models.
We will consider various ways of combining the

two schemata above in the next section. In addition,
we also add a feature corresponding to the scaled log
probability of a parse tree derived from the genera-
tive parsing baseline. Scaling is necessary because
of the large differences in the magnitude of the log
probability for different sentences. The scaling for-
mula that we found to work best is to scale the max-
imum log probability among the N-best candidate
parses to be 1.0 and the minimum to be 0.0.

3.3 Results

We train the two models which make use of extra-
sentential context described in the previous section,
and use the model to parse the development and
test set. We also trained a model which combines
both sets of features, but we found that we get better
performance by training the two models separately,
then averaging the models by computing the respec-
tive averages of their features’ weights. Thus, we
use the model-averaged version of the models that
consider context in the test set experiments. The
generative parser forms the first baseline method
to which we compare our results. We also train a
reranker which makes use of the same features as we
described above, but without marking whether each
substructure occurs in the previous sentence. This is
thus a reranking method which does not make use
of the previous context. Again, we tried model aver-
aging, but this produces less accurate parses on the
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LP LR F1 Exact CB 0CB LP LR F1 Exact CB 0CB
development set – length≤ 40 development set – all sentences

Generative 90.33 90.20 90.27 39.92 0.68 71.99 89.64 89.75 89.70 37.76 0.82 68.65
+Context 91.25 90.71 90.98 41.25 0.61 73.45 90.62 90.33 90.47 38.88 0.74 70.47
−Context 90.85 90.78 90.82 40.62 0.62 73.00 90.28 90.38 90.22 38.24 0.74 70.00

Table 5: Parsing results on the development set (section 22)of the Penn Treebank WSJ (%, except forCB). Generative
is the generative baseline of Petrov and Klein (2007),+Context is the best performing reranking model using previous
context (model-averagedphrasal and lexical ), −Context is the best performing reranking model not using
previous context (jointly trainedphrasal andlexical ).

LP LR F1 Exact CB 0CB LP LR F1 Exact CB 0CB
test set – length≤ 40 test set – all sentences

Generative 90.04 89.84 89.94 38.31 0.80 68.33 89.60 89.35 89.47 36.05 0.94 65.81
+Context 90.63 90.11 90.37 39.02 0.73 69.40 90.17 89.64 89.91 36.84 0.87 67.09
−Context 90.64 90.43 90.54 38.62 0.72 69.84 90.20 89.97 90.08 36.47 0.85 67.55

Table 6: Parsing results on the test set (section 23) of the Penn Treebank WSJ (%, except forCB)

development set, so we use the jointly trained model
on the test set. We will refer to this model as the
context-ignorant or−Context model, as opposed to
the previous context-aware or+Context model. The
results of these experiments on the development set
are shown in Table 4.

PARSEVAL results4 on the development and test
set are presented in Tables 5 and 6. We see that
the reranked models outperform the generative base-
line model in terms of F1, and that the reranked
model that uses extra-sentential context outperforms
the version that does not use extra-sentential context
in the development set, but not in the test set. Us-
ing Bikel’s randomized parsing evaluation compara-
tor5, we find that both reranking models outperform
the baseline generative model to statistical signifi-
cance for recall and precision. The context-ignorant
reranker outperforms the context-aware reranker on
recall (p < 0.01), but not on precision (p = 0.42).
However, the context-aware model has the highest
exact match scores in both the development and the
test set.

The F1 result suggests two possibilities–either the
context-aware model captures the same information
as the context-ignorant model, but less effectively, or
the two models capture different information about

4This evaluation ignores punctuation and corresponds to the
new.prm parameter setting on evalb.

5http://www.cis.upenn.edu/ ˜ dbikel/
software.html

Sec. −Context better same +Context better
22 157 1357 186
23 258 1904 254

Table 7: Context-aware vs. context-ignorant reranking
results, by sentential F1.

the parses. Two pieces of evidence point to the
latter possibility. First, if the context-aware model
were truly inferior, then we would expect it to out-
perform the context-ignorant model on almost no
sentences. Otherwise, we would expect them to
do well on different sentences. Table 7 shows that
the context-aware model outperforms the context-
ignorant model on nearly as many trees in the test
section as the reverse. Second, if we hypotheti-
cally had an oracle that could determine whether the
context-ignorant or the context-aware model would
be more accurate on a sentence and if the two models
were complementary to each other, we would expect
to achieve a gain in F1 over the generative baseline
which is roughly the sum of the gain achieved by
each model separately. This is indeed the case, as
we are able to achieve F1s of 91.23% and 90.89%
on sections 22 and 23 respectively, roughly twice the
improvement that the individual models obtain.

To put our results in perspective, we now compare
the magnitude of the improvement in F1 our context-

30



System Baseline Best Imp. (rel.)
Dubey et al. (2006) 73.3 73.6 0.3 (1.1%)

Hogan (2007) 89.4 89.6 0.2 (1.9%)
This work 89.5 89.9 0.4 (3.8%)

Table 8: A comparison of parsers specialized to exploit
intra- or extra-sentential syntactic parallelism on section
23 in terms of the generative baseline they compare them-
selves against, the best F1 their non-baseline models
achieve, and the absolute and relative improvements.

aware model achieves over the generative baseline
to that of other systems specialized to exploit intra-
or extra-sentential parallelism. We achieve a greater
improvement despite the fact that our generative
baseline provides a higher level of performance, and
is presumably thus more difficult to improve upon
(Table 8). These systems do not compare themselves
against a reranked model that does not use paral-
lelism as we do in this work.

During inference, the Viterbi algorithm recov-
ers the most probable sequence of parses, and this
means that we are relying on the generative parser to
provide the context (i.e. the previous parses) when
analyzing any given sentence. We do another type of
oracle analysis in which we provide the parser with
the correct, manually annotated parse tree of the
previous sentence when extracting features for the
current sentence during training and parsing. This
“perfect context” model achieves F1s of 90.42% and
90.00% on sections 22 and 23 respectively, which is
comparable to the best results of our reranking mod-
els. This indicates that the lack of perfect contextual
information is not a major obstacle to further im-
proving parsing performance.

3.4 Analysis

We now analyze several specific cases in the devel-
opment set in which the reranker makes correct use
of contextual information. They concretely illustrate
how context can improve parsing performance, and
confirm our initial intuition that extra-sentential con-
text can be useful for parsing. The sentence in (3)
and (4) is one such case.

(3) Generative/Context-ignorant: (S (S A BMA
spokesman said “runaway medical costs” have

made health insurance “a significant
challenge) ,” and (S margins also have been
pinched ...) (. .))

(4) Context-aware: (S (NP A BMA spokesman)
(VP said “runaway medical costs” have made
health insurance “a significant challenge,” and
margins also have been pinched ...) (. .))

The baseline and the context-ignorant models
parse the sentence as a conjunction of two S clauses,
misanalyzing the scope of what is said by the BMA
spokesman to the first part of the conjunct. By an-
alyzing the features and feature weight values ex-
tracted from the parse sequence, we determined that
the context-aware reranker is able to correct the
analysis of the scoping due to a parallelism in the
syntactic structure. Specifically, the substructure
S → V P. is present in both this sentence and the
previous sentence of the reranked sequence, which
also contains a reporting verb.

(5) (S (NP BMA Corp., Kansas City, Mo.,) (VP
said it’s weighing “strategic alternatives” ...
and is contacting possible buyers ...) (. .))

As a second example, consider the following sen-
tence.

(6) Generative/Context-ignorant: To achieve
maximum liquidity and minimize price
volatility, (NP either all markets) (VP should
be open to trading or none).

(7) Context-aware: To achieve maximum liquidity
and minimize price volatility, (CC either) (S
(NP all markets) should be open to trading or
none).

The original generative and context-ignorant
parses posit that “either all markets” is a noun
phrase, which is incorrect. Syntactic parallelism cor-
rects this for two reasons. First, the reranker prefers
a determiner to start an NP in a consistent context,
as both surround sentences also contain this sub-
structure. Also, the previous sentence also contains
a conjunction CC followed by a S node under a S
node, which the reranker prefers.

While these examples show contextual features to
be useful for parsing coordinations, we also found
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context-awareness to be useful for other types of
structural ambiguity such as PP attachment ambi-
guity. Notice that the method we employ to cor-
rect coordination errors is different from previous
approaches which usually rely on lexical or syntac-
tic similarity between conjuncts rather than between
sentences. Our approach can thus broaden the range
of sentences that can be usefully reranked. For ex-
ample, there is little similarity between conjuncts to
avail of in the second example (Sentences 6 and 7).

Based on these analyses, it appears that con-
text awareness provides a source of information for
parsing which is not available to context-ignorant
parsers. We should thus consider integrating both
types of features into the reranking parser to build
on the advantages of each. Specifically, within-
sentence features are most appropriate for lexi-
cal dependencies and some structural dependencies.
Extra-sentential features, on the other hand, are ap-
propriate for capturing the syntactic consistency ef-
fects as we have demonstrated in this paper.

4 Conclusions

In this paper, we have examined evidence for syn-
tactic consistency between neighbouring sentences.
First, we conducted a corpus analysis of the Penn
Treebank WSJ, and shown that parallelism exists
between sentences for productions with a variety
of LHS types, generalizing previous results for
noun phrase structure. Then, we explored a novel
source of features for parsing informed by the extra-
sentential context. We improved on the parsing ac-
curacy over a generative baseline parser, and rival a
similar reranking model that does not rely on extra-
sentential context. By examining the subsets of
the evaluation data on which each model performs
best and also individual cases, we argue that con-
text allows a type of structural ambiguity resolution
not available to parsers which only rely on intra-
sentential context.
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Abstract

We present a unified view of two state-of-the-
art non-projective dependency parsers, both
approximate: the loopy belief propagation
parser of Smith and Eisner (2008) and the re-
laxed linear program of Martins et al. (2009).
By representing the model assumptions with
a factor graph, we shed light on the optimiza-
tion problems tackled in each method. We also
propose a new aggressive online algorithm to
learn the model parameters, which makes use
of the underlying variational representation.
The algorithm does not require a learning rate
parameter and provides a single framework for
a wide family of convex loss functions, includ-
ing CRFs and structured SVMs. Experiments
show state-of-the-art performance for 14 lan-
guages.

1 Introduction

Feature-rich discriminative models that break local-
ity/independence assumptions can boost a parser’s
performance (McDonald et al., 2006; Huang, 2008;
Finkel et al., 2008; Smith and Eisner, 2008; Martins
et al., 2009; Koo and Collins, 2010). Often, infer-
ence with such models becomes computationally in-
tractable, causing a demand for understanding and
improving approximate parsing algorithms.

In this paper, we show a formal connection be-
tween two recently-proposed approximate inference
techniques for non-projective dependency parsing:
loopy belief propagation (Smith and Eisner, 2008)
and linear programming relaxation (Martins et al.,
2009). While those two parsers are differently moti-
vated, we show that both correspond to inference in

a factor graph, and both optimize objective functions
over local approximations of the marginal polytope.
The connection is made clear by writing the explicit
declarative optimization problem underlying Smith
and Eisner (2008) and by showing the factor graph
underlying Martins et al. (2009). The success of
both approaches parallels similar approximations in
other fields, such as statistical image processing and
error-correcting coding. Throughtout, we call these
turbo parsers.1

Our contributions are not limited to dependency
parsing: we present a general method for inference
in factor graphs with hard constraints (§2), which
extends some combinatorial factors considered by
Smith and Eisner (2008). After presenting a geo-
metric view of the variational approximations un-
derlying message-passing algorithms (§3), and clos-
ing the gap between the two aforementioned parsers
(§4), we consider the problem of learning the model
parameters (§5). To this end, we propose an ag-
gressive online algorithm that generalizes MIRA
(Crammer et al., 2006) to arbitrary loss functions.
We adopt a family of losses subsuming CRFs (Laf-
ferty et al., 2001) and structured SVMs (Taskar et
al., 2003; Tsochantaridis et al., 2004). Finally, we
present a technique for including features not at-
tested in the training data, allowing for richer mod-
els without substantial runtime costs. Our experi-
ments (§6) show state-of-the-art performance on de-
pendency parsing benchmarks.

1The name stems from “turbo codes,” a class of high-
performance error-correcting codes introduced by Berrou et al.
(1993) for which decoding algorithms are equivalent to running
belief propagation in a graph with loops (McEliece et al., 1998).
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2 Structured Inference and Factor Graphs

Denote by X a set of input objects from which we
want to infer some hidden structure conveyed in an
output set Y. Each input x ∈ X (e.g., a sentence)
is associated with a set of candidate outputs Y(x) ⊆
Y (e.g., parse trees); we are interested in the case
where Y(x) is a large structured set.

Choices about the representation of elements of
Y(x) play a major role in algorithm design. In
many problems, the elements of Y(x) can be rep-
resented as discrete-valued vectors of the form y =
〈y1, . . . , yI〉, each yi taking values in a label set Yi.
For example, in unlabeled dependency parsing, I is
the number of candidate dependency arcs (quadratic
in the sentence length), and each Yi = {0, 1}. Of
course, the yi are highly interdependent.

Factor Graphs. Probabilistic models like CRFs
(Lafferty et al., 2001) assume a factorization of the
conditional distribution of Y ,

Pr(Y = y | X = x) ∝
∏
C∈C ΨC(x,yC), (1)

where each C ⊆ {1, . . . , I} is a factor, C is the set
of factors, each yC , 〈yi〉i∈C denotes a partial out-
put assignment, and each ΨC is a nonnegative po-
tential function that depends on the output only via
its restriction to C. A factor graph (Kschischang
et al., 2001) is a convenient representation for the
factorization in Eq. 1: it is a bipartite graph Gx com-
prised of variable nodes {1, . . . , I} and factor nodes
C ∈ C, with an edge connecting the ith variable
node and a factor node C iff i ∈ C. Hence, the fac-
tor graph Gx makes explicit the direct dependencies
among the variables {y1, . . . , yI}.

Factor graphs have been used for several NLP
tasks, such as dependency parsing, segmentation,
and co-reference resolution (Sutton et al., 2007;
Smith and Eisner, 2008; McCallum et al., 2009).

Hard and Soft Constraint Factors. It may be
the case that valid outputs are a proper subset of
Y1 × · · · × YI—for example, in dependency pars-
ing, the entries of the output vector y must jointly
define a spanning tree. This requires hard constraint
factors that rule out forbidden partial assignments
by mapping them to zero potential values. See Ta-
ble 1 for an inventory of hard constraint factors used
in this paper. Factors that are not of this special kind

are called soft factors, and have strictly positive po-
tentials. We thus have a partition C = Chard ∪ Csoft.

We let the soft factor potentials take the form
ΨC(x,yC) , exp(θ>φC(x,yC)), where θ ∈ Rd

is a vector of parameters (shared across factors) and
φC(x,yC) is a local feature vector. The conditional
distribution of Y (Eq. 1) thus becomes log-linear:

Prθ(y|x) = Zx(θ)−1 exp(θ>φ(x,y)), (2)

where Zx(θ) ,
∑

y′∈Y(x) exp(θ>φ(x,y′)) is the
partition function, and the features decompose as:

φ(x,y) ,
∑

C∈Csoft
φC(x,yC). (3)

Dependency Parsing. Smith and Eisner (2008)
proposed a factor graph representation for depen-
dency parsing (Fig. 1). The graph has O(n2) vari-
able nodes (n is the sentence length), one per candi-
date arc a , 〈h,m〉 linking a head h and modifier
m. Outputs are binary, with ya = 1 iff arc a belongs
to the dependency tree. There is a hard factor TREE

connected to all variables, that constrains the overall
arc configurations to form a spanning tree. There is a
unary soft factor per arc, whose log-potential reflects
the score of that arc. There are also O(n3) pair-
wise factors; their log-potentials reflect the scores
of sibling and grandparent arcs. These factors cre-
ate loops, thus calling for approximate inference.
Without them, the model is arc-factored, and ex-
act inference in it is well studied: finding the most
probable parse tree takes O(n3) time with the Chu-
Liu-Edmonds algorithm (McDonald et al., 2005),2

and computing posterior marginals for all arcs takes
O(n3) time via the matrix-tree theorem (Smith and
Smith, 2007; Koo et al., 2007).

Message-passing algorithms. In general
factor graphs, both inference problems—
obtaining the most probable output (the MAP)
argmaxy∈Y(x) Prθ(y|x), and computing the
marginals Prθ(Yi = yi|x)—can be addressed
with the belief propagation (BP) algorithm (Pearl,
1988), which iteratively passes messages between
variables and factors reflecting their local “beliefs.”

2There is a faster but more involvedO(n2) algorithm due to
Tarjan (1977).

35



A general binary factor: ΨC(v1, . . . , vn) =


1 v1, . . . , vn ∈ SC
0 otherwise, where SC ⊆ {0, 1}n.

•Message-induced distribution: ω , 〈mj→C〉j=1,...,n • Partition function: ZC(ω) ,
P
〈v1,...,vn〉∈SC

Qn
i=1m

vi
i→C

•Marginals: MARGi(ω) , Prω{Vi = 1|〈V1, . . . , Vn〉 ∈ SC} •Max-marginals: MAX-MARGi,b(ω) , maxv∈SC
Prω(v|vi = b)

• Sum-prod.: mC→i = m−1
i→C · MARGi(ω)/(1− MARGi(ω)) •Max-prod.: mC→i = m−1

i→C · MAX-MARGi,1(ω)/MAX-MARGi,0(ω)
• Local agreem. constr.: z ∈ conv SC , where z = 〈τi(1)〉ni=1 • Entropy: HC = logZC(ω)−

Pn
i=1 MARGi(ω) logmi→C

TREE ΨTREE(〈ya〉a∈A) =


1 y ∈ Ytree (i.e., {a ∈ A | ya = 1} is a directed spanning tree)
0 otherwise, where A is the set of candidate arcs.

• Partition function Ztree(ω) and marginals 〈MARGa(ω)〉a∈A computed via the matrix-tree theorem, with ω , 〈ma→TREE〉a∈A
• Sum-prod.: mTREE→a = m−1

a→TREE · MARGa(ω)/(1− MARGa(ω))

•Max-prod.: mTREE→a = m−1
a→TREE · MAX-MARGa,1(ω)/MAX-MARGa,0(ω), where MAX-MARGa,b(ω) , maxy∈Ytree Prω(y|ya = b)

• Local agreem. constr.: z ∈ Ztree, where Ztree , conv Ytree is the arborescence polytope
• Entropy: Htree = logZtree(ω)−

P
a∈A MARGa(ω) logma→TREE

XOR (“one-hot”) ΨXOR(v1, . . . , vn) =


1

Pn
i=1 vi = 1

0 otherwise.

• Sum-prod.: mXOR→i =
“P

j 6=imj→XOR

”−1
•Max-prod.: mXOR→i =

`
maxj 6=imj→XOR

´−1

• Local agreem. constr.:
P
i zi = 1, zi ∈ [0, 1],∀i •HXOR = −

P
i(mi→XOR/

P
j mj→XOR) log(mi→XOR/

P
j mj→XOR)

OR ΨOR(v1, . . . , vn) =


1

Pn
i=1 vi ≥ 1

0 otherwise.

• Sum-prod.: mOR→i =
“

1−
Q
j 6=i(1 +mj→OR)−1

”−1
•Max-prod.: mOR→i = max{1,minj 6=im

−1
j→OR}

• Local agreem. constr.:
P
i zi ≥ 1, zi ∈ [0, 1],∀i

OR-WITH-OUTPUT ΨOR-OUT(v1, . . . , vn) =


1 vn =

Wn−1
i=1 vi

0 otherwise.

• Sum-prod.: mOR-OUT→i =

( “
1− (1−m−1

n→OR-OUT)
Q
j 6=i,n(1 +mj→OR-OUT)−1

”−1
i < nQ

j 6=n(1 +mj→OR-OUT)− 1 i = n.

•Max-prod.: mOR-OUT→i =

(
min

n
mn→OR-OUT

Q
j 6=i,n max{1,mj→OR-OUT},max{1,minj 6=i,nm

−1
j→OR-OUT}

o
i < nQ

j 6=n max{1,mj→OR-OUT}min{1,maxj 6=nmj→OR-OUT} i = n.

Table 1: Hard constraint factors, their potentials, messages, and entropies. The top row shows expressions for a
general binary factor: each outgoing message is computed from incoming marginals (in the sum-product case), or
max-marginals (in the max-product case); the entropy of the factor (see §3) is computed from these marginals and the
partition function; the local agreement constraints (§4) involve the convex hull of the set SC of allowed configurations
(see footnote 5). The TREE, XOR, OR and OR-WITH-OUTPUT factors allow tractable computation of all these quantities
(rows 2–5). Two of these factors (TREE and XOR) had been proposed by Smith and Eisner (2008); we provide further
information (max-product messages, entropies, and local agreement constraints). Factors OR and OR-WITH-OUTPUT
are novel to the best of our knowledge. This inventory covers many cases, since the above formulae can be extended
to the case where some inputs are negated: just replace the corresponding messages by their reciprocal, vi by 1− vi,
etc. This allows building factors NAND (an OR factor with negated inputs), IMPLY (a 2-input OR with the first input
negated), and XOR-WITH-OUTPUT (an XOR factor with the last input negated).

In sum-product BP, the messages take the form:3

Mi→C(yi) ∝
∏
D 6=CMD→i(yi) (4)

MC→i(yi) ∝
∑

yC∼yiΨC(yC)
∏
j 6=iMj→C(yj). (5)

In max-product BP, the summation in Eq. 5 is re-
placed by a maximization. Upon convergence, vari-
able and factor beliefs are computed as:

τi(yi) ∝
∏
CMC→i(yi) (6)

τC(yC) ∝ ΨC(yC)
∏
iMi→C(yi). (7)

BP is exact when the factor graph is a tree: in the
sum-product case, the beliefs in Eqs. 6–7 correspond

3We employ the standard ∼ notation, where a summa-
tion/maximization indexed by yC ∼ yi means that it is over
all yC with the i-th component held fixed and set to yi.

to the true marginals, and in the max-product case,
maximizing each τi(yi) yields the MAP output. In
graphs with loops, BP is an approximate method, not
guaranteed to converge, nicknamed loopy BP. We
highlight a variational perspective of loopy BP in §3;
for now we consider algorithmic issues. Note that
computing the factor-to-variable messages for each
factorC (Eq. 5) requires a summation/maximization
over exponentially many configurations. Fortu-
nately, for all the hard constraint factors in rows 3–5
of Table 1, this computation can be done in linear
time (and polynomial for the TREE factor)—this ex-
tends results presented in Smith and Eisner (2008).4

4The insight behind these speed-ups is that messages on
binary-valued potentials can be expressed as MC→i(yi) ∝
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Figure 1: Factor graph corresponding to the dependency
parsing model of Smith and Eisner (2008) with sibling
and grandparent features. Circles denote variable nodes,
and squares denote factor nodes. Note the loops created
by the inclusion of pairwise factors (GRAND and SIB).

In Table 1 we present closed-form expressions
for the factor-to-variable message ratios mC→i ,
MC→i(1)/MC→i(0) in terms of their variable-to-
factor counterparts mi→C , Mi→C(1)/Mi→C(0);
these ratios are all that is necessary when the vari-
ables are binary. Detailed derivations are presented
in an extended version of this paper (Martins et al.,
2010b).

3 Variational Representations

Let Px , {Prθ(.|x) | θ ∈ Rd} be the family of all
distributions of the form in Eq. 2. We next present
an alternative parametrization for the distributions in
Px in terms of factor marginals. We will see that
each distribution can be seen as a point in the so-
called marginal polytope (Wainwright and Jordan,
2008); this will pave the way for the variational rep-
resentations to be derived next.

Parts and Output Indicators. A part is a pair
〈C,yC〉, where C is a soft factor and yC a partial
output assignment. We let R = {〈C,yC〉 | C ∈
Csoft,yC ∈

∏
i∈C Yi} be the set of all parts. Given

an output y′ ∈ Y(x), a part 〈C,yC〉 is said to be ac-
tive if it locally matches the output, i.e., if yC = y′C .
Any output y′ ∈ Y(x) can be mapped to a |R|-
dimensional binary vector χ(y′) indicating which
parts are active, i.e., [χ(y′)]〈C,yC〉 = 1 if yC = y′C

Pr{ΨC(YC) = 1|Yi = yi} and MC→i(yi) ∝
maxΨC(yC)=1 Pr{YC = yC |Yi = yi}, respectively for the
sum-product and max-product cases; these probabilities are in-
duced by the messages in Eq. 4: for an event A ⊆

Q
i∈C Yi,

Pr{YC ∈ A} ,
P

yC
I(yC ∈ A)

Q
i∈CMi→C(yi).

and 0 otherwise; χ(y′) is called the output indicator
vector. This mapping allows decoupling the feature
vector in Eq. 3 as the product of an input matrix and
an output vector:

φ(x,y) =
∑

C∈Csoft

φC(x,yC) = F(x)χ(y), (8)

where F(x) is a d-by-|R| matrix whose columns
contain the part-local feature vectors φC(x,yC).
Observe, however, that not every vector in {0, 1}|R|
corresponds necessarily to a valid output in Y(x).

Marginal Polytope. Moving to vector representa-
tions of outputs leads naturally to a geometric view
of the problem. The marginal polytope is the convex
hull5 of all the “valid” output indicator vectors:

M(Gx) , conv{χ(y) | y ∈ Y(x)}.

Note that M(Gx) only depends on the factor graph
Gx and the hard constraints (i.e., it is independent of
the parameters θ). The importance of the marginal
polytope stems from two facts: (i) each vertex of
M(Gx) corresponds to an output in Y(x); (ii) each
point in M(Gx) corresponds to a vector of marginal
probabilities that is realizable by some distribution
(not necessarily in Px) that factors according to Gx.

Variational Representations. We now describe
formally how the points in M(Gx) are linked to the
distributions in Px. We extend the “canonical over-
complete parametrization” case, studied by Wain-
wright and Jordan (2008), to our scenario (common
in NLP), where arbitrary features are allowed and
the parameters are tied (shared by all factors). Let
H(Prθ(.|x)) , −

∑
y∈Y(x) Prθ(y|x) log Prθ(y|x)

denote the entropy of Prθ(.|x), and Eθ[.] the ex-
pectation under Prθ(.|x). The component of µ ∈
M(Gx) indexed by part 〈C,yC〉 is denoted µC(yC).
Proposition 1. There is a map coupling each distri-
bution Prθ(.|x) ∈ Px to a unique µ ∈ M(Gx) such
that Eθ[χ(Y )] = µ. Define H(µ) , H(Prθ(.|x))
if some Prθ(.|x) is coupled to µ, and H(µ) = −∞
if no such Prθ(.|x) exists. Then:

1. The following variational representation for the
log-partition function (mentioned in Eq. 2) holds:

logZx(θ) = max
µ∈M(Gx)

θ>F(x)µ +H(µ). (9)

5The convex hull of {z1, . . . , zk} is the set of points that can
be written as

Pk
i=1 λizi, where

Pk
i=1 λi = 1 and each λi ≥ 0.
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space�������
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Figure 2: Dual parametrization of the distributions in
Px. Our parameter space (left) is first linearly mapped to
the space of factor log-potentials (middle). The latter is
mapped to the marginal polytope M(Gx) (right). In gen-
eral only a subset of M(Gx) is reachable from our param-
eter space. Any distribution in Px can be parametrized by
a vector θ ∈ Rd or by a point µ ∈M(Gx).

2. The problem in Eq. 9 is convex and its solution
is attained at the factor marginals, i.e., there is a
maximizer µ̄ s.t. µ̄C(yC) = Prθ(YC = yC |x)
for each C ∈ C. The gradient of the log-partition
function is∇ logZx(θ) = F(x)µ̄.

3. The MAP ŷ , argmaxy∈Y(x) Prθ(y|x) can be
obtained by solving the linear program

µ̂ , χ(ŷ) = argmax
µ∈M(Gx)

θ>F(x)µ. (10)

A proof of this proposition can be found in Mar-
tins et al. (2010a). Fig. 2 provides an illustration of
the dual parametrization implied by Prop. 1.

4 Approximate Inference & Turbo Parsing

We now show how the variational machinery just
described relates to message-passing algorithms and
provides a common framework for analyzing two re-
cent dependency parsers. Later (§5), Prop. 1 is used
constructively for learning the model parameters.

4.1 Loopy BP as a Variational Approximation
For general factor graphs with loops, the marginal
polytope M(Gx) cannot be compactly specified and
the entropy term H(µ) lacks a closed form, render-
ing exact optimizations in Eqs. 9–10 intractable. A
popular approximate algorithm for marginal infer-
ence is sum-product loopy BP, which passes mes-
sages as described in §2 and, upon convergence,
computes beliefs via Eqs. 6–7. Were loopy BP exact,
these beliefs would be the true marginals and hence
a point in the marginal polytope M(Gx). However,
this need not be the case, as elucidated by Yedidia et

al. (2001) and others, who first analyzed loopy BP
from a variational perspective. The following two
approximations underlie loopy BP:

• The marginal polytope M(Gx) is approximated by
the local polytope L(Gx). This is an outer bound;
its name derives from the fact that it only imposes
local agreement constraints ∀i, yi ∈ Yi, C ∈ C:∑

yi
τi(yi) = 1,

∑
yC∼yi τC(yC) = τi(yi). (11)

Namely, it is characterized by L(Gx) , {τ ∈
R|R|+ | Eq. 11 holds ∀i, yi ∈ Yi, C ∈ C}. The
elements of L(Gx) are called pseudo-marginals.
Clearly, the true marginals satisfy Eq. 11, and
therefore M(Gx) ⊆ L(Gx).

• The entropy H is replaced by its Bethe approx-
imation HBethe(τ ) ,

∑I
i=1(1 − di)H(τ i) +∑

C∈CH(τC), where di = |{C | i ∈ C}| is the
number of factors connected to the ith variable,
H(τ i) , −

∑
yi
τi(yi) log τi(yi) and H(τC) ,

−
∑

yC
τC(yC) log τC(yC).

Any stationary point of sum-product BP is a lo-
cal optimum of the variational problem in Eq. 9
with M(Gx) replaced by L(Gx) and H replaced by
HBethe (Yedidia et al., 2001). Note however that
multiple optima may exist, since HBethe is not nec-
essarily concave, and that BP may not converge.

Table 1 shows closed form expressions for the
local agreement constraints and entropies of some
hard-constraint factors, obtained by invoking Eq. 7
and observing that τC(yC) must be zero if configu-
ration yC is forbidden. See Martins et al. (2010b).

4.2 Two Dependency Turbo Parsers
We next present our main contribution: a formal
connection between two recent approximate depen-
dency parsers, which at first sight appear unrelated.
Recall that (i) Smith and Eisner (2008) proposed a
factor graph (Fig. 1) in which they run loopy BP,
and that (ii) Martins et al. (2009) approximate pars-
ing as the solution of a linear program. Here, we
fill the blanks in the two approaches: we derive ex-
plicitly the variational problem addressed in (i) and
we provide the underlying factor graph in (ii). This
puts the two approaches side-by-side as approximate
methods for marginal and MAP inference. Since
both rely on “local” approximations (in the sense
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of Eq. 11) that ignore the loops in their graphical
models, we dub them turbo parsers by analogy with
error-correcting turbo decoders (see footnote 1).

Turbo Parser #1: Sum-Product Loopy BP. The
factor graph depicted in Fig. 1—call it Gx—includes
pairwise soft factors connecting sibling and grand-
parent arcs.6 We next characterize the local polytope
L(Gx) and the Bethe approximationHBethe inherent
in Smith and Eisner’s loopy BP algorithm.

Let A be the set of candidate arcs, and P ⊆
A2 the set of pairs of arcs that have factors. Let
τ = 〈τA, τP 〉 with τA = 〈τa〉a∈A and τP =
〈τab〉〈a,b〉∈P . Since all variables are binary, we may
write, for each a ∈ A, τa(1) = za and τa(0) =
1 − za, where za is a variable constrained to [0, 1].
Let zA , 〈za〉a∈A; the local agreement constraints
at the TREE factor (see Table 1) are written as zA ∈
Ztree(x), where Ztree(x) is the arborescence poly-
tope, i.e., the convex hull of all incidence vectors
of dependency trees (Martins et al., 2009). It is
straightforward to write a contingency table and ob-
tain the following local agreement constraints at the
pairwise factors:

τab(1, 1) = zab, τab(0, 0) = 1− za − zb + zab
τab(1, 0) = za − zab, τab(0, 1) = zb − zab.

Noting that all these pseudo-marginals are con-
strained to the unit interval, one can get rid of all
variables τab and write everything as

za ∈ [0, 1], zb ∈ [0, 1], zab ∈ [0, 1],
zab ≤ za, zab ≤ zb, zab ≥ za + zb − 1,

(12)
inequalities which, along with zA ∈ Ztree(x), de-
fine the local polytope L(Gx). As for the factor en-
tropies, start by noting that the TREE-factor entropy
Htree can be obtained in closed form by computing
the marginals z̄A and the partition function Zx(θ)
(via the matrix-tree theorem) and recalling the vari-
ational representation in Eq. 9, yielding Htree =
logZx(θ)− θ>F(x)z̄A. Some algebra allows writ-
ing the overall Bethe entropy approximation as:

HBethe(τ ) = Htree(zA)−
∑
〈a,b〉∈P

Ia;b(za, zb, zab), (13)

where we introduced the mutual information asso-
ciated with each pairwise factor, Ia;b(za, zb, zab) =

6Smith and Eisner (2008) also proposed other variants with
more factors, which we omit for brevity.
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Figure 3: Details of the factor graph underlying the parser
of Martins et al. (2009). Dashed circles represent auxil-
iary variables. See text and Table 1.∑

ya,yb
τab(ya, yb) log τab(ya,yb)

τa(ya)τb(yb)
. The approximate

variational expression becomes logZx(θ) ≈

maxz θ>F(x)z +Htree(zA)−
∑

〈a,b〉∈P

Ia;b(za, zb, zab)

s.t. zab ≤ za, zab ≤ zb,
zab ≥ za + zb − 1, ∀〈a, b〉 ∈ P,
zA ∈ Ztree,

(14)
whose maximizer corresponds to the beliefs re-
turned by the Smith and Eisner’s loopy BP algorithm
(if it converges).

Turbo Parser #2: LP-Relaxed MAP. We now
turn to the concise integer LP formulation of Mar-
tins et al. (2009). The formulation is exact but NP-
hard, and so an LP relaxation is made there by drop-
ping the integer constraints. We next construct a fac-
tor graph G′x and show that the LP relaxation corre-
sponds to an optimization of the form in Eq. 10, with
the marginal polytope M(G′x) replaced by L(G′x).

G′x includes the following auxiliary variable
nodes: path variables 〈pij〉i=0,...,n,j=1,...,n, which
indicate whether word j descends from i in the de-
pendency tree, and flow variables 〈fka 〉a∈A,k=1,...,n,
which evaluate to 1 iff arc a “carries flow” to k,
i.e., iff there is a path from the root to k that passes
through a. We need to seed these variables imposing

p0k = pkk = 1,∀k, fh〈h,m〉 = 0, ∀h,m; (15)

i.e., any word descends from the root and from it-
self, and arcs leaving a word carry no flow to that
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word. This can be done with unary hard constraint
factors. We then replace the TREE factor in Fig. 1 by
the factors shown in Fig. 3:

• O(n) XOR factors, each connecting all arc vari-
ables of the form {〈h,m〉}h=0,...,n. These ensure
that each word has exactly one parent. Each factor
yields a local agreement constraint (see Table 1):∑n

h=0 z〈h,m〉 = 1, m ∈ {1, . . . , n} (16)

• O(n3) IMPLY factors, each expressing that if an
arc carries flow, then that arc must be active. Such
factors are OR factors with the first input negated,
hence, the local agreement constraints are:

fka ≤ za, a ∈ A, k ∈ {1, . . . , n}. (17)

• O(n2) XOR-WITH-OUTPUT factors, which im-
pose the constraint that each path variable pmk is
active if and only if exactly one incoming arc in
{〈h,m〉}h=0,...,n carries flow to k. Such factors
are XOR factors with the last input negated, and
hence their local constraints are:

pmk =
∑n

h=0 f
k
〈h,m〉, m, k ∈ {1, . . . , n} (18)

• O(n2) XOR-WITH-OUTPUT factors to impose the
constraint that words don’t consume other words’
commodities; i.e., if h 6= k and k 6= 0, then there
is a path from h to k iff exactly one outgoing arc
in {〈h,m〉}m=1,...,n carries flow to k:

phk =
∑n

m=1 f
k
〈h,m〉, h, k ∈ {0, . . . , n}, k /∈ {0, h}.

(19)

L(G′x) is thus defined by the constraints in Eq. 12
and 15–19. The approximate MAP problem, that
replaces M(G′x) by L(G′x) in Eq. 10, thus becomes:

maxz,f ,p θ>F(x)z
s.t. Eqs. 12 and 15–19 are satisfied.

(20)

This is exactly the LP relaxation considered by Mar-
tins et al. (2009) in their multi-commodity flow
model, for the configuration with siblings and grand-
parent features.7 They also considered a config-
uration with non-projectivity features—which fire
if an arc is non-projective.8 That configuration
can also be obtained here if variables {n〈h,m〉} are

7To be precise, the constraints of Martins et al. (2009) are
recovered after eliminating the path variables, via Eqs. 18–19.

8An arc 〈h,m〉 is non-projective if there is some word in its
span not descending from h (Kahane et al., 1998).

added to indicate non-projective arcs and OR-WITH-
OUTPUT hard constraint factors are inserted to en-
force n〈h,m〉 = z〈h,m〉∧

∨
min(h,m)<j<min(h,m) ¬phj .

Details are omitted for space.
In sum, although the approaches of Smith and Eis-

ner (2008) and Martins et al. (2009) look very dif-
ferent, in reality both are variational approximations
emanating from Prop. 1, respectively for marginal
and MAP inference. However, they operate on dis-
tinct factor graphs, respectively Figs. 1 and 3.9

5 Online Learning

Our learning algorithm is presented in Alg. 1. It is a
generalized online learner that tackles `2-regularized
empirical risk minimization of the form

minθ∈Rd
λ
2‖θ‖

2 + 1
m

∑m
i=1 L(θ;xi,yi), (21)

where each 〈xi,yi〉 is a training example, λ ≥ 0 is
the regularization constant, and L(θ;x,y) is a non-
negative convex loss. Examples include the logistic
loss used in CRFs (− log Prθ(y|x)) and the hinge
loss of structured SVMs (maxy′∈Y(x) θ>(φ(x,y′)−
φ(x,y)) + `(y′,y) for some cost function `). These
are both special cases of the family defined in Fig. 4,
which also includes the structured perceptron’s loss
(β → ∞, γ = 0) and the softmax-margin loss of
Gimpel and Smith (2010; β = γ = 1).

Alg. 1 is closely related to stochastic or online
gradient descent methods, but with the key advan-
tage of not needing a learning rate hyperparameter.
We sketch the derivation of Alg. 1; full details can
be found in Martins et al. (2010a). On the tth round,
one example 〈xt,yt〉 is considered. We seek to solve

minθ,ξ λm
2 ‖θ − θt‖2 + ξ

s.t. L(θ;xt,yt) ≤ ξ, ξ ≥ 0,
(23)

9Given what was just exposed, it seems appealing to try
max-product loopy BP on the factor graph of Fig. 1, or sum-
product loopy BP on the one in Fig. 3. Both attempts present se-
rious challenges: the former requires computing messages sent
by the tree factor, which requires O(n2) calls to the Chu-Liu-
Edmonds algorithm and hence O(n5) time. No obvious strat-
egy seems to exist for simultaneous computation of all mes-
sages, unlike in the sum-product case. The latter is even more
challenging, as standard sum-product loopy BP has serious is-
sues in the factor graph of Fig. 3; we construct in Martins et al.
(2010b) a simple example with a very poor Bethe approxima-
tion. This might be fixed by using other variants of sum-product
BP, e.g., ones in which the entropy approximation is concave.
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Lβ,γ(θ;x,y) , 1
β log

∑
y′∈Y(x) exp

[
β
(
θ>
(
φ(x,y′)− φ(x,y)

)
+ γ`(y′,y)

)]
(22)

Figure 4: A family of loss functions including as particular cases the ones used in CRFs, structured SVMs, and the
structured perceptron. The hyperparameter β is the analogue of the inverse temperature in a Gibbs distribution, while
γ scales the cost. For any choice of β > 0 and γ ≥ 0, the resulting loss function is convex in θ, since, up to a scale
factor, it is the composition of the (convex) log-sum-exp function with an affine map.

Algorithm 1 Aggressive Online Learning
1: Input: {〈xi,yi〉}mi=1, λ, number of epochs K
2: Initialize θ1 ← 0; set T = mK
3: for t = 1 to T do
4: Receive instance 〈xt, yt〉 and set µt = χ(yt)
5: Solve Eq. 24 to obtain µ̄t and Lβ,γ(θt, xt,yt)
6: Compute∇Lβ,γ(θt, xt,yt)=F(xt)(µ̄t−µt)

7: Compute ηt = min
{

1
λm ,

Lβ,γ(θt;xt,yt)

‖∇Lβ,γ(θt;xt,yt)‖2

}
8: Return θt+1 = θt − ηt∇Lβ,γ(θt;xt,yt)
9: end for

10: Return the averaged model θ̄ ← 1
T

∑T
t=1 θt.

which trades off conservativeness (stay close to the
most recent solution θt) and correctness (keep the
loss small). Alg. 1’s lines 7–8 are the result of tak-
ing the first-order Taylor approximation of L around
θt, which yields the lower bound L(θ;xt,yt) ≥
L(θt;xt,yt) + (θ − θt)>∇L(θt;xt,yt), and plug-
ging that linear approximation into the constraint of
Eq. 23, which gives a simple Euclidean projection
problem (with slack) with a closed-form solution.

The online updating requires evaluating the loss
and computing its gradient. Both quantities can
be computed using the variational expression in
Prop. 1, for any loss Lβ,γ(θ;x,y) in Fig. 4.10 Our
only assumption is that the cost function `(y′,y)
can be written as a sum over factor-local costs; let-
ting µ = χ(y) and µ′ = χ(y′), this implies
`(y′,y) = p>µ′ + q for some p and q which are
constant with respect to µ′.11 Under this assump-
tion, Lβ,γ(θ;x,y) becomes expressible in terms of
the log-partition function of a distribution whose
log-potentials are set to β(F(x)>θ + γp). From
Eq. 9 and after some algebra, we finally obtain
Lβ,γ(θ;x,y) =

10Our description also applies to the (non-differentiable)
hinge loss case, when β → ∞, if we replace all instances of
“the gradient” in the text by “a subgradient.”

11For the Hamming cost, this holds with p = 1 − 2µ and
q = 1>µ. See Taskar et al. (2006) for other examples.

max
µ′∈M(Gx)

θ>F(x)(µ′−µ)+
1
β
H(µ′)+γ(p>µ′+q).

(24)
Let µ̄ be a maximizer in Eq. 24; from the second
statement of Prop. 1 we obtain ∇Lβ,γ(θ;x,y) =
F(x)(µ̄−µ). When the inference problem in Eq. 24
is intractable, approximate message-passing algo-
rithms like loopy BP still allow us to obtain approx-
imations of the loss Lβ,γ and its gradient.

For the hinge loss, we arrive precisely at the max-
loss variant of 1-best MIRA (Crammer et al., 2006).
For the logistic loss, we arrive at a new online learn-
ing algorithm for CRFs that resembles stochastic
gradient descent but with an automatic step size that
follows from our variational representation.

Unsupported Features. As datasets grow, so do
the sets of features, creating further computational
challenges. Often only “supported” features—those
observed in the training data—are included, and
even those are commonly eliminated when their fre-
quencies fall below a threshold. Important infor-
mation may be lost as a result of these expedi-
ent choices. Formally, the supported feature set
is Fsupp ,

⋃m
i=1 supp φ(xi,yi), where supp u ,

{j |uj 6= 0} denotes the support of vector u. Fsupp

is a subset of the complete feature set, comprised of
those features that occur in some candidate output,
Fcomp ,

⋃m
i=1

⋃
y′i∈Y(xi)

supp φ(xi,y′i). Features
in Fcomp\Fsupp are called unsupported.

Sha and Pereira (2003) have shown that training a
CRF-based shallow parser with the complete feature
set may improve performance (over the supported
one), at the cost of 4.6 times more features. De-
pendency parsing has a much higher ratio (around
20 for bilexical word-word features, as estimated in
the Penn Treebank), due to the quadratic or faster
growth of the number of parts, of which only a few
are active in a legal output. We propose a simple
strategy for handling Fcomp efficiently, which can
be applied for those losses in Fig. 4 where β = ∞.
(e.g., the structured SVM and perceptron). Our pro-
cedure is the following: keep an active set F contain-
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CRF (TURBO PARS. #1) SVM (TURBO PARS. #2) SVM (TURBO #2)
ARC-FACT. SEC. ORD. ARC-FACT. SEC. ORD. |F| |F|

|Fsupp|
+NONPROJ., COMPL.

ARABIC 78.28 79.12 79.04 79.42 6,643,191 2.8 80.02 (-0.14)
BULGARIAN 91.02 91.78 90.84 92.30 13,018,431 2.1 92.88 (+0.34) (†)
CHINESE 90.58 90.87 91.09 91.77 28,271,086 2.1 91.89 (+0.26)
CZECH 86.18 87.72 86.78 88.52 83,264,645 2.3 88.78 (+0.44) (†)
DANISH 89.58 90.08 89.78 90.78 7,900,061 2.3 91.50 (+0.68)
DUTCH 82.91 84.31 82.73 84.17 15,652,800 2.1 84.91 (-0.08)
GERMAN 89.34 90.58 89.04 91.19 49,934,403 2.5 91.49 (+0.32) (†)
JAPANESE 92.90 93.22 93.18 93.38 4,256,857 2.2 93.42 (+0.32)
PORTUGUESE 90.64 91.00 90.56 91.50 16,067,150 2.1 91.87 (-0.04)
SLOVENE 83.03 83.17 83.49 84.35 4,603,295 2.7 85.53 (+0.80)
SPANISH 83.83 85.07 84.19 85.95 11,629,964 2.6 87.04 (+0.50) (†)
SWEDISH 87.81 89.01 88.55 88.99 18,374,160 2.8 89.80 (+0.42)
TURKISH 76.86 76.28 74.79 76.10 6,688,373 2.2 76.62 (+0.62)
ENGLISH NON-PROJ. 90.15 91.08 90.66 91.79 57,615,709 2.5 92.13 (+0.12)
ENGLISH PROJ. 91.23 91.94 91.65 92.91 55,247,093 2.4 93.26 (+0.41) (†)

Table 2: Unlabeled attachment scores, ignoring punctuation. The leftmost columns show the performance of arc-
factored and second-order models for the CRF and SVM losses, after 10 epochs with 1/(λm) = 0.001 (tuned on the
English Non-Proj. dev.-set). The rightmost columns refer to a model to which non-projectivity features were added,
trained under the SVM loss, that handles the complete feature set. Shown is the total number of features instantiated,
the multiplicative factor w.r.t. the number of supported features, and the accuracies (in parenthesis, we display the
difference w.r.t. a model trained with the supported features only). Entries marked with † are the highest reported in
the literature, to the best of our knowledge, beating (sometimes slightly) McDonald et al. (2006), Martins et al. (2008),
Martins et al. (2009), and, in the case of English Proj., also the third-order parser of Koo and Collins (2010), which
achieves 93.04% on that dataset (their experiments in Czech are not comparable, since the datasets are different).

ing all features that have been instantiated in Alg. 1.
At each round, run lines 4–5 as usual, using only
features in F. Since the other features have not been
used before, they have a zero weight, hence can be
ignored. When β = ∞, the variational problem in
Eq. 24 consists of a MAP computation and the solu-
tion corresponds to one output ŷt ∈ Y(xt). Only the
parts that are active in ŷt but not in yt, or vice-versa,
will have features that might receive a nonzero up-
date. Those parts are reexamined for new features
and the active set F is updated accordingly.

6 Experiments

We trained non-projective dependency parsers for
14 languages, using datasets from the CoNLL-X
shared task (Buchholz and Marsi, 2006) and two
datasets for English: one from the CoNLL-2008
shared task (Surdeanu et al., 2008), which contains
non-projective arcs, and another derived from the
Penn Treebank applying the standard head rules of
Yamada and Matsumoto (2003), in which all parse
trees are projective.12 We implemented Alg. 1,

12We used the provided train/test splits for all datasets. For
English, we used the standard test partitions (section 23 of the
Wall Street Journal). We did not exploit the fact that some
datasets only contain projective trees and have unique roots.

which handles any loss function Lβ,γ .13 When β <
∞, Turbo Parser #1 and the loopy BP algorithm of
Smith and Eisner (2008) is used; otherwise, Turbo
Parser #2 is used and the LP relaxation is solved with
CPLEX. In both cases, we employed the same prun-
ing strategy as Martins et al. (2009).

Two different feature configurations were first
tried: an arc-factored model and a model with
second-order features (siblings and grandparents).
We used the same arc-factored features as McDon-
ald et al. (2005) and second-order features that con-
join words and lemmas (at most two), parts-of-
speech tags, and (if available) morphological infor-
mation; this was the same set of features as in Mar-
tins et al. (2009). Table 2 shows the results obtained
in both configurations, for CRF and SVM loss func-
tions. While in the arc-factored case performance is
similar, in second-order models there seems to be a
consistent gain when the SVM loss is used. There
are two possible reasons: first, SVMs take the cost
function into consideration; second, Turbo Parser #2
is less approximate than Turbo Parser #1, since only
the marginal polytope is approximated (the entropy
function is not involved).

13The code is available at http://www.ark.cs.cmu.edu/
TurboParser.

42



β 1 1 1 1 3 5 ∞
γ 0 (CRF) 1 3 5 1 1 1 (SVM)
ARC-F. 90.15 90.41 90.38 90.53 90.80 90.83 90.66
2 ORD. 91.08 91.85 91.89 91.51 92.04 91.98 91.79

Table 3: Varying β and γ: neither the CRF nor the
SVM is optimal. Results are UAS on the English Non-
Projective dataset, with λ tuned with dev.-set validation.

The loopy BP algorithm managed to converge for
nearly all sentences (with message damping). The
last three columns show the beneficial effect of un-
supported features for the SVM case (with a more
powerful model with non-projectivity features). For
most languages, unsupported features convey help-
ful information, which can be used with little extra
cost (on average, 2.5 times more features are instan-
tiated). A combination of the techniques discussed
here yields parsers that are in line with very strong
competitors—for example, the parser of Koo and
Collins (2010), which is exact, third-order, and con-
strains the outputs to be projective, does not outper-
form ours on the projective English dataset.14

Finally, Table 3 shows results obtained for differ-
ent settings of β and γ. Interestingly, we observe
that higher scores are obtained for loss functions that
are “between” SVMs and CRFs.

7 Related Work

There has been recent work studying efficient com-
putation of messages in combinatorial factors: bi-
partite matchings (Duchi et al., 2007), projective
and non-projective arborescences (Smith and Eis-
ner, 2008), as well as high order factors with count-
based potentials (Tarlow et al., 2010), among others.
Some of our combinatorial factors (OR, OR-WITH-
OUTPUT) and the analogous entropy computations
were never considered, to the best of our knowledge.

Prop. 1 appears in Wainwright and Jordan (2008)
for canonical overcomplete models; we adapt it here
for models with shared features. We rely on the vari-
ational interpretation of loopy BP, due to Yedidia et
al. (2001), to derive the objective being optimized
by Smith and Eisner’s loopy BP parser.

Independently of our work, Koo et al. (2010)

14This might be due to the fact that Koo and Collins (2010)
trained with the perceptron algorithm and did not use unsup-
ported features. Experiments plugging the perceptron loss
(β → ∞, γ → 0) into Alg. 1 yielded worse performance than
with the hinge loss.

recently proposed an efficient dual decomposition
method to solve an LP problem similar (but not
equal) to the one in Eq. 20,15 with excellent pars-
ing performance. Their parser is also an instance
of a turbo parser since it relies on a local approxi-
mation of a marginal polytope. While one can also
use dual decomposition to address our MAP prob-
lem, the fact that our model does not decompose as
nicely as the one in Koo et al. (2010) would likely
result in slower convergence.

8 Conclusion

We presented a unified view of two recent approxi-
mate dependency parsers, by stating their underlying
factor graphs and by deriving the variational prob-
lems that they address. We introduced new hard con-
straint factors, along with formulae for their mes-
sages, local belief constraints, and entropies. We
provided an aggressive online algorithm for training
the models with a broad family of losses.

There are several possible directions for future
work. Recent progress in message-passing algo-
rithms yield “convexified” Bethe approximations
that can be used for marginal inference (Wainwright
et al., 2005), and provably convergent max-product
variants that solve the relaxed LP (Globerson and
Jaakkola, 2008). Other parsing formalisms can be
handled with the inventory of factors shown here—
among them, phrase-structure parsing.
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Abstract

In this paper, we develop multilingual super-
vised latent Dirichlet allocation (MLSLDA),
a probabilistic generative model that allows
insights gleaned from one language’s data to
inform how the model captures properties of
other languages. MLSLDA accomplishes this
by jointly modeling two aspects of text: how
multilingual concepts are clustered into themat-
ically coherent topics and how topics associ-
ated with text connect to an observed regres-
sion variable (such as ratings on a sentiment
scale). Concepts are represented in a general
hierarchical framework that is flexible enough
to express semantic ontologies, dictionaries,
clustering constraints, and, as a special, degen-
erate case, conventional topic models. Both
the topics and the regression are discovered
via posterior inference from corpora. We show
MLSLDA can build topics that are consistent
across languages, discover sensible bilingual
lexical correspondences, and leverage multilin-
gual corpora to better predict sentiment.

Sentiment analysis (Pang and Lee, 2008) offers
the promise of automatically discerning how people
feel about a product, person, organization, or issue
based on what they write online, which is potentially
of great value to businesses and other organizations.
However, the vast majority of sentiment resources
and algorithms are limited to a single language, usu-
ally English (Wilson, 2008; Baccianella and Sebas-
tiani, 2010). Since no single language captures a
majority of the content online, adopting such a lim-
ited approach in an increasingly global community
risks missing important details and trends that might
only be available when text in multiple languages is
taken into account.

Up to this point, multiple languages have been
addressed in sentiment analysis primarily by trans-
ferring knowledge from a resource-rich language to
a less rich language (Banea et al., 2008), or by ig-
noring differences in languages via translation into
English (Denecke, 2008). These approaches are lim-
ited to a view of sentiment that takes place through
an English-centric lens, and they ignore the poten-
tial to share information between languages. Ide-
ally, learning sentiment cues holistically, across lan-
guages, would result in a richer and more globally
consistent picture.

In this paper, we introduce Multilingual Super-
vised Latent Dirichlet Allocation (MLSLDA), a
model for sentiment analysis on a multilingual cor-
pus. MLSLDA discovers a consistent, unified picture
of sentiment across multiple languages by learning
“topics,” probabilistic partitions of the vocabulary
that are consistent in terms of both meaning and rel-
evance to observed sentiment. Our approach makes
few assumptions about available resources, requiring
neither parallel corpora nor machine translation.

The rest of the paper proceeds as follows. In Sec-
tion 1, we describe the probabilistic tools that we use
to create consistent topics bridging across languages
and the MLSLDA model. In Section 2, we present
the inference process. We discuss our set of seman-
tic bridges between languages in Section 3, and our
experiments in Section 4 demonstrate that this ap-
proach functions as an effective multilingual topic
model, discovers sentiment-biased topics, and uses
multilingual corpora to make better sentiment pre-
dictions across languages. Sections 5 and 6 discuss
related research and discusses future work, respec-
tively.

45



1 Predictions from Multilingual Topics

As its name suggests, MLSLDA is an extension of
Latent Dirichlet allocation (LDA) (Blei et al., 2003),
a modeling approach that takes a corpus of unan-
notated documents as input and produces two out-
puts, a set of “topics” and assignments of documents
to topics. Both the topics and the assignments are
probabilistic: a topic is represented as a probability
distribution over words in the corpus, and each doc-
ument is assigned a probability distribution over all
the topics. Topic models built on the foundations of
LDA are appealing for sentiment analysis because
the learned topics can cluster together sentiment-
bearing words, and because topic distributions are a
parsimonious way to represent a document.1

LDA has been used to discover latent structure
in text (e.g. for discourse segmentation (Purver et
al., 2006) and authorship (Rosen-Zvi et al., 2004)).
MLSLDA extends the approach by ensuring that this
latent structure — the underlying topics — is consis-
tent across languages. We discuss multilingual topic
modeling in Section 1.1, and in Section 1.2 we show
how this enables supervised regression regardless of
a document’s language.

1.1 Capturing Semantic Correlations

Topic models posit a straightforward generative pro-
cess that creates an observed corpus. For each docu-
ment d, some distribution θd over unobserved topics
is chosen. Then, for each word position in the doc-
ument, a topic z is selected. Finally, the word for
that position is generated by selecting from the topic
indexed by z. (Recall that in LDA, a “topic” is a
distribution over words).

In monolingual topic models, the topic distribution
is usually drawn from a Dirichlet distribution. Us-
ing Dirichlet distributions makes it easy to specify
sparse priors, and it also simplifies posterior infer-
ence because Dirichlet distributions are conjugate
to multinomial distributions. However, drawing top-
ics from Dirichlet distributions will not suffice if
our vocabulary includes multiple languages. If we
are working with English, German, and Chinese at
the same time, a Dirichlet prior has no way to fa-
vor distributions z such that p(good|z), p(gut|z), and

1The latter property has also made LDA popular for infor-
mation retrieval (Wei and Croft, 2006)).

p(hǎo|z) all tend to be high at the same time, or low
at the same time. More generally, the structure of our
model must encourage topics to be consistent across
languages, and Dirichlet distributions cannot encode
correlations between elements.

One possible solution to this problem is to use the
multivariate normal distribution, which can produce
correlated multinomials (Blei and Lafferty, 2005),
in place of the Dirichlet distribution. This has been
done successfully in multilingual settings (Cohen
and Smith, 2009). However, such models complicate
inference by not being conjugate.

Instead, we appeal to tree-based extensions of the
Dirichlet distribution, which has been used to induce
correlation in semantic ontologies (Boyd-Graber et
al., 2007) and to encode clustering constraints (An-
drzejewski et al., 2009). The key idea in this ap-
proach is to assume the vocabularies of all languages
are organized according to some shared semantic
structure that can be represented as a tree. For con-
creteness in this section, we will use WordNet (Miller,
1990) as the representation of this multilingual se-
mantic bridge, since it is well known, offers conve-
nient and intuitive terminology, and demonstrates the
full flexibility of our approach. However, the model
we describe generalizes to any tree-structured rep-
resentation of multilingual knowledge; we discuss
some alternatives in Section 3.

WordNet organizes a vocabulary into a rooted, di-
rected acyclic graph of nodes called synsets, short for
“synonym sets.” A synset is a child of another synset
if it satisfies a hyponomy relationship; each child “is
a” more specific instantiation of its parent concept
(thus, hyponomy is often called an “isa” relationship).
For example, a “dog” is a “canine” is an “animal” is
a “living thing,” etc. As an approximation, it is not
unreasonable to assume that WordNet’s structure of
meaning is language independent, i.e. the concept
encoded by a synset can be realized using terms in
different languages that share the same meaning. In
practice, this organization has been used to create
many alignments of international WordNets to the
original English WordNet (Ordan and Wintner, 2007;
Sagot and Fišer, 2008; Isahara et al., 2008).

Using the structure of WordNet, we can now de-
scribe a generative process that produces a distribu-
tion over a multilingual vocabulary, which encour-
ages correlations between words with similar mean-
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ings regardless of what language each word is in.
For each synset h, we create a multilingual word
distribution for that synset as follows:

1. Draw transition probabilities βh ∼ Dir (τh)
2. Draw stop probabilities ωh ∼ Dir (κh)
3. For each language l, draw emission probabilities for

that synset φh,l ∼ Dir (πh,l).

For conciseness in the rest of the paper, we will refer
to this generative process as multilingual Dirichlet
hierarchy, or MULTDIRHIER(τ ,κ,π).2 Each ob-
served token can be viewed as the end result of a
sequence of visited synsets λ. At each node in the
tree, the path can end at node i with probability ωi,1,
or it can continue to a child synset with probability
ωi,0. If the path continues to another child synset, it
visits child j with probability βi,j . If the path ends at
a synset, it generates word k with probability φi,l,k.3

The probability of a word being emitted from a path
with visited synsets r and final synset h in language
l is therefore

p(w, λ = r, h|l,β,ω,φ) = ∏
(i,j)∈r

βi,jωi,0

 (1− ωh,1)φh,l,w. (1)

Note that the stop probability ωh is independent of
language, but the emission φh,l is dependent on the
language. This is done to prevent the following sce-
nario: while synset A is highly probable in a topic
and words in language 1 attached to that synset have
high probability, words in language 2 have low prob-
ability. If this could happen for many synsets in
a topic, an entire language would be effectively si-
lenced, which would lead to inconsistent topics (e.g.

2Variables τh, πh,l, and κh are hyperparameters. Their mean
is fixed, but their magnitude is sampled during inference (i.e.
τh,iP
k τh,k

is constant, but τh,i is not). For the bushier bridges,
(e.g. dictionary and flat), their mean is uniform. For GermaNet,
we took frequencies from two balanced corpora of German and
English: the British National Corpus (University of Oxford,
2006) and the Kern Corpus of the Digitales Wörterbuch der
Deutschen Sprache des 20. Jahrhunderts project (Geyken, 2007).
We took these frequencies and propagated them through the
multilingual hierarchy, following LDAWN’s (Boyd-Graber et
al., 2007) formulation of information content (Resnik, 1995) as
a Bayesian prior. The variance of the priors was initialized to be
1.0, but could be sampled during inference.

3Note that the language and word are taken as given, but the
path through the semantic hierarchy is a latent random variable.

Topic 1 is about baseball in English and about travel
in German). Separating path from emission helps
ensure that topics are consistent across languages.

Having defined topic distributions in a way that can
preserve cross-language correspondences, we now
use this distribution within a larger model that can
discover cross-language patterns of use that predict
sentiment.

1.2 The MLSLDA Model

We will view sentiment analysis as a regression prob-
lem: given an input document, we want to predict
a real-valued observation y that represents the senti-
ment of a document. Specifically, we build on super-
vised latent Dirichlet allocation (SLDA, (Blei and
McAuliffe, 2007)), which makes predictions based
on the topics expressed in a document; this can be
thought of projecting the words in a document to low
dimensional space of dimension equal to the number
of topics. Blei et al. showed that using this latent
topic structure can offer improved predictions over re-
gressions based on words alone, and the approach fits
well with our current goals, since word-level cues are
unlikely to be identical across languages. In addition
to text, SLDA has been successfully applied to other
domains such as social networks (Chang and Blei,
2009) and image classification (Wang et al., 2009).
The key innovation in this paper is to extend SLDA
by creating topics that are globally consistent across
languages, using the bridging approach above.

We express our model in the form of a probabilis-
tic generative latent-variable model that generates
documents in multiple languages and assigns a real-
valued score to each document. The score comes
from a normal distribution whose sum is the dot prod-
uct between a regression parameter η that encodes
the influence of each topic on the observation and
a variance σ2. With this model in hand, we use sta-
tistical inference to determine the distribution over
latent variables that, given the model, best explains
observed data.

The generative model is as follows:

1. For each topic i = 1 . . .K, draw a topic distribution
{βi,ωi,φi} from MULTDIRHIER(τ ,κ,π).

2. For each document d = 1 . . .M with language ld:
(a) Choose a distribution over topics θd ∼

Dir (α).
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(b) For each word in the document n = 1 . . . Nd,
choose a topic assignment zd,n ∼ Mult (θd)
and a path λd,n ending at word wd,n according
to Equation 1 using {βzd,n

,ωzd,n
,φzd,n

}.

3. Choose a response variable from y ∼
Norm

(
η>z̄, σ2

)
, where z̄d ≡ 1

N

∑N
n=1 zd,n.

Crucially, note that the topics are not indepen-
dent of the sentiment task; the regression encourages
terms with similar effects on the observation y to
be in the same topic. The consistency of topics de-
scribed above allows the same regression to be done
for the entire corpus regardless of the language of the
underlying document.

2 Inference

Finding the model parameters most likely to explain
the data is a problem of statistical inference. We em-
ploy stochastic EM (Diebolt and Ip, 1996), using a
Gibbs sampler for the E-step to assign words to paths
and topics. After randomly initializing the topics,
we alternate between sampling the topic and path
of a word (zd,n, λd,n) and finding the regression pa-
rameters η that maximize the likelihood. We jointly
sample the topic and path conditioning on all of the
other path and document assignments in the corpus,
selecting a path and topic with probability

p(zn = k, λn = r|z−n,λ−n, wn, η, σ,Θ) =
p(yd|z, η, σ)p(λn = r|zn = k,λ−n, wn, τ ,κ,π)
p(zn = k|z−n, α). (2)

Each of these three terms reflects a different influence
on the topics from the vocabulary structure, the doc-
ument’s topics, and the response variable. In the next
paragraphs, we will expand each of them to derive
the full conditional topic distribution.

As discussed in Section 1.1, the structure of the
topic distribution encourages terms with the same
meaning to be in the same topic, even across lan-
guages. During inference, we marginalize over pos-
sible multinomial distributions β, ω, and φ, using
the observed transitions from i to j in topic k; Tk,i,j ,
stop counts in synset i in topic k, Ok,i,0; continue
counts in synsets i in topic k, Ok,i,1; and emission
counts in synset i in language l in topic k, Fk,i,l. The

H
L MN

θd

zd,n

λd,n

α

wd,n

σ

ηyd

K

βi,hτh

ωi,hκh

φi,h,lπh,l

Multilingual Topics Text Documents Sentiment Prediction

Figure 1: Graphical model representing MLSLDA.
Shaded nodes represent observations, plates denote repli-
cation, and lines show probabilistic dependencies.

probability of taking a path r is then

p(λn = r|zn = k,λ−n) =∏
(i,j)∈r

(
Bk,i,j + τi,j∑
j′ Bk,i,j′ + τi,j

Ok,i,1 + ωi∑
s∈0,1Ok,i,s + ωi,s

)
︸ ︷︷ ︸

Transition
Ok,rend,0 + ωrend∑

s∈0,1Ok,rend,s + ωrend,s

Fk,rend,wn + πrend,l∑
w′ Frend,w′ + πrend,w′︸ ︷︷ ︸

Emission

.

(3)

Equation 3 reflects the multilingual aspect of this
model. The conditional topic distribution for
SLDA (Blei and McAuliffe, 2007) replaces this term
with the standard Multinomial-Dirichlet. However,
we believe this is the first published SLDA-style
model using MCMC inference, as prior work has
used variational inference (Blei and McAuliffe, 2007;
Chang and Blei, 2009; Wang et al., 2009).

Because the observed response variable depends
on the topic assignments of a document, the condi-
tional topic distribution is shifted toward topics that
explain the observed response. Topics that move the
predicted response ŷd toward the true yd will be fa-
vored. We drop terms that are constant across all
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topics for the effect of the response variable,

p(yd|z, η, σ) ∝

exp
[

1
σ2

(
yd −

∑
k′ Nd,k′ηk′∑

k′ Nd,k′

)
ηzk∑

k′ Nd,k′

]
︸ ︷︷ ︸

Other words’ influence

exp

[
−η2

zk

2σ2
∑

k′ N2
d,k′

]
︸ ︷︷ ︸

This word’s influence

. (4)

The above equation represents the supervised aspect
of the model, which is inherited from SLDA.

Finally, there is the effect of the topics already
assigned to a document; the conditional distribution
favors topics already assigned in a document,

p(zn = k|z−n, α) =
Td,k + αk∑
k′ Td,k′ + αk′

. (5)

This term represents the document focus of this
model; it is present in all Gibbs sampling inference
schemes for LDA (Griffiths and Steyvers, 2004).

Multiplying together Equations 3, 4, and 5 allows
us to sample a topic using the conditional distribution
from Equation 2, based on the topic and path of the
other words in all languages. After sampling the
path and topic for each word in a document, we then
find new regression parameters η that maximize the
likelihood conditioned on the current state of the
sampler. This is simply a least squares regression
using the topic assignments z̄d to predict yd.

Prediction on documents for which we don’t have
an observed yd is equivalent to marginalizing over
yd and sampling topics for the document from Equa-
tions 3 and 5. The prediction for yd is then the dot
product of η and the empirical topic distribution z̄d.

We initially optimized all hyperparameters using
slice sampling. However, we found that the regres-
sion variance σ2 was not stable. Optimizing σ2 seems
to balance between modeling the language in the doc-
uments and the prediction, and thus is sensitive to
documents’ length. Given this sensitivity, we did
not optimize σ2 for our prediction experiments in
Section 4, but instead kept it fixed at 0.25. We leave
optimizing this variable, either through cross valida-
tion or adapting the model, to future work.

3 Bridges Across Languages

In Section 1.1, we described connections across lan-
guages as offered by semantic networks in a general
way, using WordNet as an example. In this section,
we provide more specifics, as well as alternative ways
of building semantic connections across languages.

Flat First, we can consider a degenerate mapping
that is nearly equivalent to running SLDA indepen-
dently across multiple languages, relating topics only
based on the impact on the response variable. Con-
sider a degenerate tree with only one node, with all
words in all languages associated with that node. This
is consistent with our model, but there is really no
shared semantic space, as all emitted words must
come from this degenerate “synset” and the model
only represents the output distribution for this single
node.

WordNet We took the alignment of GermaNet to
WordNet 1.6 (Kunze and Lemnitzer, 2002) and re-
moved all synsets that were had no mapped German
words. Any German synsets that did not have English
translations had their words mapped to the lowest
extant English hypernym (e.g. “beinbruch,” a bro-
ken leg, was mapped to “fracture”). We stemmed
all words to account for inflected forms not being
present (Porter and Boulton, 1970). An example
of the paths for the German word “wunsch” (wish,
request) is shown in Figure 2(a).

Dictionaries A dictionary can be viewed as a many
to many mapping, where each entry ei maps one
or more words in one language si to one or more
words ti in another language. Entries were taken
from an English-German dictionary (Richter, 2008)
a Chinese-English dictionary (Denisowski, 1997),
and a Chinese-German dictionary (Hefti, 2005). As
with WordNet, the words in entries for English and
German were stemmed to improve coverage. An
example for German is shown in Figure 2(b).

Algorithmic Connections In addition to hand-
curated connections across languages, one could also
consider automatic means of mapping across lan-
guages, such as using edit distance or local con-
text (Haghighi et al., 2008; Rapp, 1995) or us-
ing a lexical translation table obtained from paral-
lel text (Melamed, 1998). While we experimented
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wish.n.04

wish wunsch

entity.n.01

entitiabstraction.n.06

cognition.n.01 event.n.01

event ereignis vorgang act.n.02

deed act handlung

speech_act.n.01

request.n.02

option.n.02

ask request anfrag wunsch

altern option choic option

preference.n.03

objekt

(a) GermaNet

dict.1

room gelass

root

dict.2

room raum platz

room zimm raum

dict.3

stub

(b) Dictionary

Figure 2: Two methods for constructing multilingual distributions over words. On the left, paths to the German word
“wunsch” in GermaNet are shown. On the right, paths to the English word “room” are shown. Both English and German
words are shown; some internal nodes in GermaNet have been omitted for space (represented by dashed lines). Note
that different senses are denoted by different internal paths, and that internal paths are distinct from the per-language
expression.

with these techniques, constructing appropriate hier-
archies from these resources required many arbitrary
decisions about cutoffs and which words to include.
Thus, we do not consider them in this paper.

4 Experiments

We evaluate MLSLDA on three criteria: how well
it can discover consistent topics across languages
for matching parallel documents, how well it can
discover sentiment-correlated word lists from non-
aligned text, and how well it can predict sentiment.

4.1 Matching on Multilingual Topics

We took the 1996 documents from the Europarl cor-
pus (Koehn, 2005) using three bridges: GermaNet,
dictionary, and the uninformative flat matching.4 The
model is unaware that the translations of documents
in one language are present in the other language.
Note that this does not use the supervised framework

4For English and German documents in all experiments,
we removed stop words (Loper and Bird, 2002), stemmed
words (Porter and Boulton, 1970), and created a vocabulary
of the most frequent 5000 words per language (this vocabulary
limit was mostly done to ensure that the dictionary-based bridge
was of manageable size). Documents shorter than fifty content
words were excluded.

(as there is no associated response variable for Eu-
roparl documents); this experiment is to demonstrate
the effectiveness of the multilingual aspect of the
model. To test whether the topics learned by the
model are consistent across languages, we represent
each document using the probability distribution θd

over topic assignments. Each θd is a vector of length
K and is a language-independent representation of
the document.

For each document in one language, we computed
the Hellinger distance between it and all of the docu-
ments in the other language and sorted the documents
by decreasing distance. The translation of the docu-
ment is somewhere in that set; the higher the normal-
ized rank (the percentage of documents with a rank
lower than the translation of the document), the better
the underlying topic model connects languages.

We compare three bridges against what is to our
knowledge the only other topic model for unaligned
text, Multilingual Topics for Unaligned Text (Boyd-
Graber and Blei, 2009).5

5The bipartite matching was initialized with the dictionary
weights as specified by the Multilingual Topics for Unaligned
Text algorithm. The matching size was limited to 250 and the
bipartite matching was only updated on the initial iteration then
held fixed. This yielded results comparable to when the matching
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Figure 3: Average rank of paired translation document
recovered from the multilingual topic model. Random
guessing would yield 0.5; MLSLDA with a dictionary
based matching performed best.

Figure 3 shows the results of this experiment. The
dictionary-based bridge had the best performance on
the task, ranking a large proportion of documents
(0.95) below the translated document once enough
topics were available. Although GermaNet is richer,
its coverage is incomplete; the dictionary structure
had a much larger vocabulary and could build a more
complete multilingual topics. Using comparable in-
put information, this more flexible model performed
better on the matching task than the existing multi-
lingual topic model available for unaligned text. The
degenerate flat bridge did no better than the baseline
of random guessing, as expected.

4.2 Qualitative Sentiment-Correlated Topics

One of the key tasks in sentiment analysis has been
the collection of lists of words that convey senti-
ment (Wilson, 2008; Riloff et al., 2003). These
resources are often created using or in reference
to resources like WordNet (Whitelaw et al., 2005;
Baccianella and Sebastiani, 2010). MLSLDA pro-
vides a method for extracting topical and sentiment-
correlated word lists from multilingual corpora. If

was updated more frequently.

a WordNet-like resource is used as the bridge, the
resulting topics are distributions over synsets, not just
over words.

As our demonstration corpus, we used the Amherst
Sentiment Corpus (Constant et al., 2009), as it has
documents in multiple languages (English, Chinese,
and German) with numerical assessments of senti-
ment (number of stars assigned to the review). We
segmented the Chinese text (Tseng et al., 2005) and
used a classifier trained on character n-grams to re-
move English-language documents that were mixed
in among the Chinese and German language reviews.

Figure 4 shows extracted topics from German-
English and German-Chinese corpora. MLSLDA
is able to distinguish sentiment-bearing topics from
content bearing topics. For example; in the German-
English corpus, “food” and “children” topics are
not associated with a consistent sentiment signal,
while “religion” is associated with a more negative
sentiment. In contrast, in the German-Chinese cor-
pus, the “religion/society” topic is more neutral, and
the gender-oriented topic is viewed more negatively.
Negative sentiment-bearing topics have reasonable
words such as “pages,” “kǒng pà” (Chinese for “I’m
afraid that . . . ”) and “tuo” (Chienese for “discard”),
and positive sentiment-bearing topics have reason-
able words such as “great,” “good,” and “juwel” (Ger-
man for “jewel”).

The qualitative topics also betray some of the
weaknesses of the model. For example, in one of
the negative sentiment topics, the German word “gut”
(good) is present. Because topics are distributions
over words, they can encode the presence of nega-
tions like “kein” (no) and “nicht” (not), but not collo-
cations like “nicht gut.” More elaborate topic models
that can model local syntax and collocations (John-
son, 2010) provide options for addressing such prob-
lems.

We do not report the results for sentiment predic-
tion for this corpus because the baseline of predicting
a positive review is so strong; most algorithms do ex-
tremely well by always predicting a positive review,
ours included.

4.3 Sentiment Prediction
We gathered 330 film reviews from a German film
review site (Vetter et al., 2000) and combined them
with a much larger English film review corpus of over
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Figure 4: Topics, along with associated regression coefficient η from a learned 25-topic model on German-English (left)
and German-Chinese (right) documents. Notice that theme-related topics have regression parameter near zero, topics
discussing the number of pages have negative regression parameters, topics with “good,” “great,” “hǎo” (good) and
“überzeugt” (convinced) have positive regression parameters. For the German-Chinese corpus, note the presence of “gut”
(good) in one of the negative sentiment topics, showing the difficulty of learning collocations.

Train Test GermaNet Dictionary Flat
DE DE 73.8 24.8 92.2
EN DE 7.44 2.68 18.3

EN + DE DE 1.17 1.46 1.39

Table 1: Mean squared error on a film review corpus.
All results are on the same German test data, varying the
training data. Over-fitting prevents the model learning on
the German data alone; adding English data to the mix
allows the model to make better predictions.

5000 film reviews (Pang and Lee, 2005) to create a
multilingual film review corpus.6

The results for predicting sentiment in German
documents with 25 topics are presented in Table 1.
On a small monolingual corpus, prediction is very
poor. The model over-fits, especially when it has
the entire vocabulary to select from. The slightly
better performance using GermaNet and a dictionary
as topic priors can be viewed as basic feature selec-
tion, removing proper names from the vocabulary to

6We followed Pang and Lee’s method for creating a nu-
merical score between 0 and 1 from a star rating. We
then converted that to an integer by multiplying by 100;
this was done because initial data preprocessing assumed
integer values (although downstream processing did not as-
sume integer values). The German movie review corpus
is available at http://www.umiacs.umd.edu/˜jbg/
static/downloads_and_media.html

prevent over-fitting.

One would expect that prediction improves with a
larger training set. For this model, such an improve-
ment is seen even when the training set includes no
documents in the target language. Note that even the
degenerate flat bridge across languages provides use-
ful information. After introducing English data, the
model learns to prefer smaller regression parameters
(this can be seen as a form of regularization).

Performance is best when a reasonably large cor-
pus is available including some data in the target
language. For each bridge, performance improves
dramatically, showing that MLSLDA is successfully
able to incorporate information learned from both
languages to build a single, coherent picture of how
sentiment is expressed in both languages. With the
GermaNet bridge, performance is better than both
the degenerate and dictionary based bridges, showing
that the model is sharing information both through
the multilingual topics and the regression parameters.
Performance on English prediction is comparable
to previously published results on this dataset (Blei
and McAuliffe, 2007); with enough data, a monolin-
gual model is no longer helped by adding additional
multilingual data.
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5 Relationship to Previous Research

The advantages of MLSLDA reside largely in the
assumptions that it makes and does not make: docu-
ments need not be parallel, sentiment is a normally
distributed document-level property, words are ex-
changeable, and sentiment can be predicted as a re-
gression on a K-dimensional vector.

By not assuming parallel text, this approach can
be applied to a broad class of corpora. Other mul-
tilingual topic models require parallel text, either at
the document (Ni et al., 2009; Mimno et al., 2009)
or word-level (Kim and Khudanpur, 2004; Zhao and
Xing, 2006). Similarly, other multilingual sentiment
approaches also require parallel text, often supplied
via automatic translation; after the translated text
is available, either monolingual analysis (Denecke,
2008) or co-training is applied (Wan, 2009). In con-
trast, our approach requires fewer resources for a lan-
guage: a dictionary (or similar knowledge structure
relating words to nodes in a graph) and comparable
text, instead of parallel text or a machine translation
system.

Rather than viewing one language through the
lens of another language, MLSLDA views all lan-
guages through the lens of the topics present in a
document. This is a modeling decision with pros and
cons. It allows a language agnostic decision about
sentiment to be made, but it restricts the expressive-
ness of the model in terms of sentiment in two ways.
First, it throws away information important to sen-
timent analysis like syntactic constructions (Greene
and Resnik, 2009) and document structure (McDon-
ald et al., 2007) that may impact the sentiment rating.
Second, a single real number is not always sufficient
to capture the nuances of sentiment. Less critically,
assuming that sentiment is normally distributed is not
true of all real-world corpora; review corpora often
have a skew toward positive reviews. We standardize
responses by the mean and variance of the training
data to partially address this issue, but other response
distributions are possible, such as generalized linear
models (Blei and McAuliffe, 2007) and vector ma-
chines (Zhu et al., 2009), which would allow more
traditional classification predictions.

Other probabilistic models for sentiment classifi-
cation view sentiment as a word level feature. Some
models use sentiment word lists, either given or

learned from a corpus, as a prior to seed topics so
that they attract other sentiment bearing words (Mei
et al., 2007; Lin and He, 2009). Other approaches
view sentiment or perspective as a perturbation of
a log-linear topic model (Lin et al., 2008). Such
techniques could be combined with the multilingual
approach presented here by using distributions over
words that not only bridge different languages but
also encode additional information. For example, the
vocabulary hierarchies could be structured to encour-
age topics that encourage correlation among similar
sentiment-bearing words (e.g. clustering words asso-
ciated with price, size, etc.). Future work could also
more rigorously validate that the multilingual topics
discovered by MLSLDA are sentiment-bearing via
human judgments.

In contrast, MLSLDA draws on techniques that
view sentiment as a regression problem based on the
topics used in a document, as in supervised latent
Dirichlet allocation (SLDA) (Blei and McAuliffe,
2007) or in finer-grained parts of a document (Titov
and McDonald, 2008). Extending these models to
multilingual data would be more straightforward.

6 Conclusions

MLSLDA is a “holistic” statistical model for multi-
lingual corpora that does not require parallel text
or expensive multilingual resources. It discovers
connections across languages that can recover la-
tent structure in parallel corpora, discover sentiment-
correlated word lists in multiple languages, and make
accurate predictions across languages that improve
with more multilingual data, as demonstrated in the
context of sentiment analysis.

More generally, MLSLDA provides a formalism
that can be used to incorporate the many insights of
topic modeling-driven sentiment analysis to multi-
lingual corpora by tying together word distributions
across languages. MLSLDA can also contribute to
the development of word list-based sentiment sys-
tems: the topics discovered by MLSLDA can serve
as a first-pass means of sentiment-based word lists
for languages that might lack annotated resources.

MLSLDA also can be viewed as a sentiment-
informed multilingual word sense disambiguation
(WSD) algorithm. When the multilingual bridge is an
explicit representation of sense such as WordNet, part

53



of the generative process is an explicit assignment
of every word to sense (the path latent variable λ);
this is discovered during inference. The dictionary-
based technique may be viewed as a disambiguation
via a transfer dictionary. How sentiment prediction
impacts the implicit WSD is left to future work.

Better capturing local syntax and meaningful col-
locations would also improve the model’s ability to
predict sentiment and model multilingual topics, as
would providing a better mechanism for represent-
ing words not included in our bridges. We intend to
develop such models as future work.
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Abstract

Discovering and summarizing opinions from
online reviews is an important and challeng-
ing task. A commonly-adopted framework
generates structured review summaries with
aspects and opinions. Recently topic mod-
els have been used to identify meaningful re-
view aspects, but existing topic models do
not identify aspect-specific opinion words. In
this paper, we propose a MaxEnt-LDA hy-
brid model to jointly discover both aspects
and aspect-specific opinion words. We show
that with a relatively small amount of train-
ing data, our model can effectively identify as-
pect and opinion words simultaneously. We
also demonstrate the domain adaptability of
our model.

1 Introduction

With the dramatic growth of opinionated user-
generated content, consumers often turn to online
product reviews to seek advice while companies see
reviews as a valuable source of consumer feedback.
How to automatically understand, extract and sum-
marize the opinions expressed in online reviews has
therefore become an important research topic and
gained much attention in recent years (Pang and Lee,
2008). A wide spectrum of tasks have been studied
under review mining, ranging from coarse-grained
document-level polarity classification (Pang et al.,
2002) to fine-grained extraction of opinion expres-
sions and their targets (Wu et al., 2009). In partic-
ular, a general framework of summarizing reviews
of a certain product is to first identify different as-
pects (a.k.a. features) of the given product and then

extract specific opinion expressions for each aspect.
For example, aspects of a restaurant may include
food, staff, ambience and price, and opinion expres-
sions for staff may include friendly, rude, etc. Be-
cause of the practicality of this structured summary
format, it has been adopted in several previous stud-
ies (Hu and Liu, 2004; Popescu and Etzioni, 2005;
Brody and Elhadad, 2010) as well as some commer-
cial systems, e.g. the “scorecard” feature at Bing
shopping1.

Different approaches have been proposed to iden-
tify aspect words and phrases from reviews. Previ-
ous methods using frequent itemset mining (Hu and
Liu, 2004) or supervised learning (Jin and Ho, 2009;
Jin et al., 2009; Wu et al., 2009) have the limitation
that they do not group semantically related aspect
expressions together. Supervised learning also suf-
fers from its heavy dependence on training data. In
contrast, unsupervised, knowledge-lean topic mod-
eling approach has been shown to be effective in au-
tomatically identifying aspects and their representa-
tive words (Titov and McDonald, 2008; Brody and
Elhadad, 2010). For example, words such as waiter,
waitress, staff and service are grouped into one as-
pect.

We follow this promising direction and extend ex-
isting topic models to jointly identify both aspect
and opinion words, especially aspect-specific opin-
ion words. Current topic models for opinion mining,
which we will review in detail in Section 2, still lack
this ability. But separating aspect and opinion words
can be very useful. Aspect-specific opinion words
can be used to construct a domain-dependent senti-

1http://www.bing.com/shopping
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ment lexicon and applied to tasks such as sentiment
classification. They can also provide more informa-
tive descriptions of the product or service being re-
viewed. For example, using more specific opinion
words such as cozy and romantic to describe the am-
bience aspect in a review summary is more meaning-
ful than using generic words such as nice and great.
To the best of our knowledge, Brody and Elhadad
(2010) are the first to study aspect-specific opinion
words, but their opinion word detection is performed
outside of topic modeling, and they only consider
adjectives as possible opinion words.

In this paper, we propose a new topic modeling
approach that can automatically separate aspect and
opinion words. A novelty of this model is the inte-
gration of a discriminative maximum entropy (Max-
Ent) component with the standard generative com-
ponent. The MaxEnt component allows us to lever-
age arbitrary features such as POS tags to help sepa-
rate aspect and opinion words. Because the supervi-
sion relies mostly on non-lexical features, although
our model is no longer fully unsupervised, the num-
ber of training sentences needed is relatively small.
Moreover, training data can also come from a differ-
ent domain and yet still remain effective, making our
model highly domain adaptive. Empirical evaluation
on large review data sets shows that our model can
effectively identify both aspects and aspect-specific
opinion words with a small amount of training data.

2 Related Work

Pioneered by the work of Hu and Liu (2004), review
summarization has been an important research topic.
There are usually two major tasks involved, namely,
aspect or feature identification and opinion extrac-
tion. Hu and Liu (2004) applied frequent itemset
mining to identify product features without supervi-
sion, and considered adjectives collocated with fea-
ture words as opinion words. Jin and Ho (2009),
Jin et al. (2009) and Wu et al. (2009) used super-
vised learning that requires hand-labeled training
sentences to identify both aspects and opinions. A
common limitation of these methods is that they do
not group semantically related aspect expressions to-
gether. Furthermore, supervised learning usually re-
quires a large amount of training data in order to per-
form well and is not easily domain adaptable.

Topic modeling provides an unsupervised and
knowledge-lean approach to opinion mining. Titov
and McDonald (2008) show that global topic models
such as LDA (Blei et al., 2003) may not be suitable
for detecting rateable aspects. They propose multi-
grain topic models for discovering local rateable as-
pects. However, they do not explicitly separate as-
pect and opinion words. Lin and He (2009) propose
a joint topic-sentiment model, but topic words and
sentiment words are still not explicitly separated.
Mei et al. (2007) propose to separate topic and sen-
timent words using a positive sentiment model and
a negative sentiment model, but both models cap-
ture general opinion words only. In contrast, we
model aspect-specific opinion words as well as gen-
eral opinion words.

Recently Brody and Elhadad (2010) propose to
detect aspect-specific opinion words in an unsuper-
vised manner. They take a two-step approach by first
detecting aspect words using topic models and then
identifying aspect-specific opinion words using po-
larity propagation. They only consider adjectives as
opinion words, which may potentially miss opinion
words with other POS tags. We try to jointly capture
both aspect and opinion words within topic models,
and we allow non-adjective opinion words.

Another line of related work is about how to in-
corporate useful features into topic models (Zhu and
Xing, 2010; Mimno and McCallum, 2008). Our
MaxEnt-LDA hybrid bears similarity to these recent
models but ours is designed for opinion mining.

3 Model Description

Our model is an extension of LDA (Blei et al., 2003)
but captures both aspect words and opinion words.
To model the aspect words, we use a modified ver-
sion of the multi-grain topic models from (Titov and
McDonald, 2008). Our model is simpler and yet still
produces meaningful aspects. Specifically, we as-
sume that there are T aspects in a given collection of
reviews from the same domain, and each review doc-
ument contains a mixture of aspects. We further as-
sume that each sentence (instead of each word as in
standard LDA) is assigned to a single aspect, which
is often true based on our observation.

To understand how we model the opinion words,
let us first look at two example review sentences
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from the restaurant domain:
The food was tasty.
The waiter was quite friendly.

We can see that there is a strong association of
tasty with food and similarly of friendly with waiter.
While both tasty and friendly are specific to the
restaurant domain, they are each associated with
only a single aspect, namely food and staff, respec-
tively. Besides these aspect-specific opinion words,
we also see general opinion words such as great
in the sentence “The food was great!” These gen-
eral opinion words are shared across aspects, as op-
posed to aspect-specific opinion words which are
used most commonly with their corresponding as-
pects. We therefore introduce a general opinion
model and T aspect-specific opinion models to cap-
ture these different opinion words.

3.1 Generative Process
We now describe the generative process of the
model. First, we draw several multinomial word dis-
tributions from a symmetric Dirichlet prior with pa-
rameter β: a background model φB, a general aspect
model φA,g, a general opinion model φO,g, T as-
pect models {φA,t}T

t=1 and T aspect-specific opin-
ion models {φO,t}T

t=1. All these are multinomial
distributions over the vocabulary, which we assume
has V words. Then for each review document d, we
draw a topic distribution θd∼Dir(α) as in standard
LDA. For each sentence s in document d, we draw
an aspect assignment zd,s∼Multi(θd).

Now for each word in sentence s of document d,
we have several choices: The word may describe the
specific aspect (e.g. waiter for the staff aspect), or a
general aspect (e.g. restaurant), or an opinion either
specific to the aspect (e.g. friendly) or generic (e.g.
great), or a commonly used background word (e.g.
know). To distinguish between these choices, we in-
troduce two indicator variable, yd,s,n and ud,s,n, for
the nth word wd,s,n. We draw yd,s,n from a multi-
nomial distribution over {0, 1, 2}, parameterized by
πd,s,n. yd,s,n determines whether wd,s,n is a back-
ground word, aspect word or opinion word. We will
discuss how to set πd,s,n in Section 3.2. We draw
ud,s,n from a Bernoulli distribution over {0, 1} pa-
rameterized by p, which in turn is drawn from a sym-
metric Beta(γ). ud,s,n determines whether wd,s,n is
general or aspect-specific. We then draw wd,s,n as

TβΦB ΦA,t ΦO,t ΦA,g ΦO,g
DSNd,sxd,s,n πd,s,nyd,s,n wd,s,nud,s,n zd,s θd

{B,O,A}λ p γ α
Figure 1: The plate notation of our model.

follows:

wd,s,n ∼





Multi(φB) if yd,s,n = 0
Multi(φA,zd,s) if yd,s,n = 1, ud,s,n = 0
Multi(φA,g) if yd,s,n = 1, ud,s,n = 1
Multi(φO,zd,s) if yd,s,n = 2, ud,s,n = 0
Multi(φO,g) if yd,s,n = 2, ud,s,n = 1

.

Figure 1 shows our model using the plate notation.

3.2 Setting π with a Maximum Entropy Model
A simple way to set πd,s,n is to draw it from a
symmetric Dirichlet prior. However, as suggested
in (Mei et al., 2007; Lin and He, 2009), fully un-
supervised topic models are unable to identify opin-
ion words well. An important observation we make
is that aspect words and opinion words usually play
different syntactic roles in a sentence. Aspect words
tend to be nouns while opinion words tend to be ad-
jectives. Their contexts in sentences can also be dif-
ferent. But we do not want to use strict rules to sepa-
rate aspect and opinion words because there are also
exceptions. E.g. verbs such as recommend can also
be opinion words.

In order to use information such as POS tags
to help discriminate between aspect and opinion
words, we propose a novel idea as follows: We set
πd,s,n using a maximum entropy (MaxEnt) model
applied to a feature vector xd,s,n associated with
wd,s,n. xd,s,n can encode any arbitrary features we
think may be discriminative, e.g. previous, current
and next POS tags. Formally, we have

p(yd,s,n = l|xd,s,n) = πd,s,n
l =

exp
(
λl · xd,s,n

)
∑2

l′=0 exp
(
λl′ · xd,s,n

) ,
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where {λl}2
l=0 denote the MaxEnt model weights

and can be learned from a set of training sentences
with labeled background, aspect and opinion words.
This MaxEnt-LDA hybrid model is partially in-
spired by (Mimno and McCallum, 2008).

As for the features included in x, currently we
use two types of simple features: (1) lexical features
which include the previous, the current and the next
words {wi−1, wi, wi+1}, and (2) POS tag features
which include the previous, the current and the next
POS tags {POSi−1, POSi, POSi+1}.

3.3 Inference

We use Gibbs sampling to perform model inference.
Due to the space limit, we leave out the derivation
details and only show the sampling formulas. Note
that the MaxEnt component is trained first indepen-
dently of the Gibbs sampling procedure, that is, in
Gibbs sampling, we assume that the λ parameters
are fixed.

We use w to denote all the words we observe in
the collection, x to denote all the feature vectors for
these words, and y, z and u to denote all the hidden
variables. First, given the assignment of all other
hidden variables, to sample a value for zd,s, we use
the following formula:

P (zd,s = t|z¬(d,s), y, u,w, x) ∝
cd
(t) + α

cd
(·) + Tα

×
(

Γ
(
cA,t
(·) + V β

)

Γ
(
cA,t
(·) + nA,t

(·) + V β
) ·

V∏
v=1

Γ
(
cA,t
(v) + nA,t

(v) + β
)

Γ
(
cA,t
(v) + β

)
)

×
(

Γ
(
cO,t
(·) + V β

)

Γ
(
cO,t
(·) + nO,t

(·) + V β
) ·

V∏
v=1

Γ
(
cO,t
(v) + nO,t

(v) + β
)

Γ
(
cO,t
(v) + β

)
)

.

Here cd
(t) is the number of sentences assigned to as-

pect t in document d, and cd
(·) is the number of sen-

tences in document d. cA,t
(v) is the number of times

word v is assigned as an aspect word to aspect t,
and cO,t

(v) is the number of times word v is assigned
as an opinion word to aspect t. cA,t

(·) is the total num-
ber of times any word is assigned as an aspect word
to aspect t, and cO,t

(·) is the total number of times any
word is assigned as an opinion word to aspect t. All
these counts represented by a c variable exclude sen-
tence s of document d. nA,t

(v) is the number of times

word v is assigned as an aspect word to aspect t in
sentence s of document d, and similarly, nO,t

(v) is the
number of times word v is assigned as an opinion
word to aspect t in sentence s of document d.

Then, to jointly sample values for yd,s,n and
ud,s,n, we have

P (yd,s,n = 0|z, y¬(d,s,n), u¬(d,s,n), w,x)

∝ exp(λ0 · xd,s,n)∑
l′ exp(λl′ · xd,s,n)

·
cB(wd,s,n) + β

cB(·) + V β
,

P (yd,s,n = l, ud,s,n = b|z,y¬(d,s,n), u¬(d,s,n), w,x)

∝ exp(λl · xd,s,n)∑
l′ exp(λl′ · xd,s,n)

· g(wd,s,n, zd,s, l, b),

where the function g(v, t, l, b) (1 ≤ v ≤ V, 1 ≤ t ≤
T, l ∈ {1, 2}, b ∈ {0, 1}) is defined as follows:

g(v, t, l, b) =





cA,t
(v) +β

cA,t
(·) +V β

· c(0)+γ

c(·)+2γ if l = 1, b = 0

cO,t
(v) +β

cO,t
(·) +V β

· c(0)+γ

c(·)+2γ if l = 2, b = 0

cA,g
(v) +β

cA,g
(·) +V β

· c(1)+γ

c(·)+2γ if l = 1, b = 1

cO,g
(v) +β

cO,g
(·) +V β

· c(1)+γ

c(·)+2γ if l = 2, b = 1.

.

Here the various c variables denote various counts
excluding the nth word in sentence s of document d.
Due to space limit, we do not give full explanation
here.

4 Experiment Setup

To evaluate our MaxEnt-LDA hybrid model for
jointly modeling aspect and opinion words, we used
a restaurant review data set previously used in (Ganu
et al., 2009; Brody and Elhadad, 2010) and a ho-
tel review data set previously used in (Baccianella
et al., 2009). We removed stop words and used the
Stanford POS Tagger2 to tag the two data sets. Only
reviews that have no more than 50 sentences were
used. We also kept another version of the data which
includes the stop words for the purpose of extracting
the contextual features included in x. Some details
of the data sets are given in Table 1.

For our hybrid model, we ran 500 iterations of
Gibbs sampling. Following (Griffiths and Steyvers,
2004), we fixed the Dirichlet priors as follows: α =

2http://nlp.stanford.edu/software/tagger.shtml
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data set restaurant hotel
#tokens 1,644,923 1,097,739
#docs 52,574 14,443

Table 1: Some statistics of the data sets.

data set #sentences #tokens
restaurant 46 634
cell phone 125 4414

DVD player 180 3024

Table 2: Some statistics of the labeled training data.

50/T , β = 0.1 and γ = 0.5. We also experimented
with other settings of these priors and did not notice
any major difference. For MaxEnt training, we tried
three labeled data sets: one that was taken from the
restaurant data set and manually annotated by us3,
and two from the annotated data set used in (Wu et
al., 2009). Note that the latter two were used for test-
ing domain adaptation in Section 6.3. Some details
of the training sets are shown in Table 2.

In our preliminary experiments, we also tried two
variations of our MaxEnt-LDA hybrid model. (1)
The first is a fully unsupervised model where we
used a uniform Dirichlet prior for π. We found
that this unsupervised model could not separate as-
pect and opinion words well. (2) The second is a
bootstrapping version of the MaxEnt-LDA model
where we used the predicted values of y as pseudo
labels and re-trained the MaxEnt model iteratively.
We found that this bootstrapping procedure did not
boost the overall performance much and even hurt
the performance a little in some cases. Due to the
space limit we do not report these experiments here.

5 Evaluation

In this section we report the evaluation of our
model. We refer to our MaxEnt-LDA hybrid model
as ME-LDA. We also implemented a local version
of the standard LDA method where each sentence
is treated as a document. This is the model used
in (Brody and Elhadad, 2010) to identify aspects,
and we refer to this model as LocLDA.

Food Staff Order Taking Ambience
chocolate service wait room

dessert food waiter dining
cake staff wait tables

cream excellent order bar
ice friendly minutes place

desserts attentive seated decor
coffee extremely waitress scene

tea waiters reservation space
bread slow asked area
cheese outstanding told table

Table 4: Sample aspects of the restaurant domain using
LocLDA. Note that the words in bold are opinion words
which are mixed with aspect words.

5.1 Qualitative Evaluation
For each of the two data sets, we show four sample
aspects identified by ME-LDA in Table 3 and Ta-
ble 5. Because the hotel domain is somehow similar
to the restaurant domain, we used the labeled train-
ing data from the restaurant domain also for the hotel
data set. From the tables we can see that generally
aspect words are quite coherent and meaningful, and
opinion words correspond to aspects very well. For
comparison, we also applied LocLDA to the restau-
rant data set and present the aspects in Table 4. We
can see that ME-LDA and LocLDA give similar as-
pect words. The major difference between these two
models is that ME-LDA can sperate aspect words
and opinion words, which can be very useful. ME-
LDA is also able to separate general opinion words
from aspect-specific ones, giving more informative
opinion expressions for each aspect.

5.2 Evaluation of Aspects Identification
We also quantitatively evaluated the quality of the
automatically identified aspects. Ganu et al. (2009)
provide a set of annotated sentences from the restau-
rant data set, in which each sentence has been as-
signed one or more labels from a gold standard label
set S = {Staff, Food, Ambience, Price, Anecdote,
Misc}. To evaluate the quality of our aspect iden-
tification, we chose from the gold standard labels
three major aspects, namely Staff, Food and Ambi-
ence. We did not choose the other aspects because
(1) Price is often mixed with other aspects such as
Food, and (2) Anecdote and Misc do not show clear

3We randomly selected 46 sentences for manual annotation.
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Food Staff Order Taking Ambience General
Aspect Opinion Aspect Opinion Aspect Opinion Aspect Opinion Opinion

chocolate good service friendly table seated room small good
dessert best staff attentive minutes asked dining nice well
cake great food great wait told tables beautiful nice

cream delicious wait nice waiter waited bar romantic great
ice sweet waiter good reservation waiting place cozy better

desserts hot place excellent order long decor great small
coffee amazing waiters helpful time arrived scene open bad

tea fresh restaurant rude hour rude space warm worth
bread tasted waitress extremely manager sat area feel definitely
cheese excellent waitstaff slow people finally table comfortable special

Table 3: Sample aspects and opinion words of the restaurant domain using ME-LDA.

Service Room Condition Ambience Meal General
Aspect Opinion Aspect Opinion Aspect Opinion Aspect Opinion Opinion

staff helpful room shower room quiet breakfast good great
desk friendly bathroom small floor open coffee fresh good
hotel front bed clean hotel small fruit continental nice

english polite air comfortable noise noisy buffet included well
reception courteous tv hot street nice eggs hot excellent

help pleasant conditioning large view top pastries cold best
service asked water nice night lovely cheese nice small

concierge good rooms safe breakfast hear room great lovely
room excellent beds double room overlooking tea delicious better

restaurant rude bath well terrace beautiful cereal adequate fine

Table 5: Sample aspects and opinion words of the hotel domain using ME-LDA.

patterns in either word usage or writing styles, mak-
ing it even hard for humans to identify them. Brody
and Elhadad (2010) also only used these three as-
pects for quantitative evaluation. To avoid ambigu-
ity, we used only the single-labeled sentences for
evaluation. About 83% of the labeled sentences have
a single label, which confirms our observation that a
sentence usually belongs to a single aspect.

We first ran ME-LDA and LocLDA each to get
an inferred aspect set T . Following (Brody and El-
hadad, 2010), we set the number of aspects to 14
in both models. We then manually mapped each in-
ferred aspect to one of the six gold standard aspects,
i.e., we created a mapping function f(t) : T → S.
For sentence s of document d, we first assign it to an
inferred aspect as follows:

t∗ = arg max
t∈T

Nd,s∑

n=1

log P (wd,s,n|t).

We then assign the gold standard aspect f(t∗) to this

Aspect Method Precision Recall F-1
Staff LocLDA 0.804 0.585 0.677

ME-LDA 0.779 0.540 0.638
Food LocLDA 0.898 0.648 0.753

ME-LDA 0.874 0.787 0.828
Ambience LocLDA 0.603 0.677 0.638

ME-LDA 0.773 0.558 0.648

Table 6: Results of aspects identification on restaurant.

sentence. We then calculated the F-1 score of the
three aspects: Staff, Food and Ambience. The re-
sults are shown in Table 6. Generally ME-LDA has
given competitive results compared with LocLDA.
For Food and Ambience ME-LDA outperformed Lo-
cLDA, while for Staff ME-LDA is a little worse
than LocLDA. Note that ME-LDA is not designed
to compete with LocLDA for aspect identification.
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5.3 Evaluation of Opinion Identification
Since the major advantage of ME-LDA is its abil-
ity to separate aspect and opinion words, we further
quantitatively evaluated the quality of the aspect-
specific opinion words identified by ME-LDA.
Brody and Elhadad (2010) has constructed a gold
standard set of aspect-specific opinion words for the
restaurant data set. In this gold standard set, they
manually judged eight out of the 14 automatically
inferred aspects they had: J = {Ambiance, Staff,
Food-Main Dishes, Atmosphere-Physical, Food-
Baked Goods, Food-General, Drinks, Service}.
Each word is assigned a polarity score ranging from
-2.0 to 2.0 in each aspect. We used their gold stan-
dard words whose polarity scores are not equal to
zero. Because their gold standard only includes
adjectives, we also manually added more opinion
words into the gold standard set. To do so, we took
the top 20 opinion words returned by our method
and two baseline methods, pooled them together,
and manually judged them. We use precision at n
(P@n), a commonly used metric in information re-
trieval, for evaluation. Because top words are more
important in opinion models, we set n to 5, 10 and
20. For both ME-LDA and BL-1 below, we again
manually mapped each automatically inferred aspect
to one of the gold standard aspects.

Since LocLDA does not identify aspect-specific
opinion words, we consider the following two base-
line methods that can identify aspect-specific opin-
ion words:
BL-1: In this baseline, we start with all adjectives
as candidate opinion words, and use mutual infor-
mation (MI) to rank these candidates. Specifically,
given an aspect t, we rank the candidate words ac-
cording to the following scoring function:

ScoreBL-1(w, t) =
∑

v∈Vt

p(w, v) log
p(w, v)

p(w)p(v)
,

where Vt is the set of the top-100 frequent aspect
words from φA,t.
BL-2: In this baseline, we first use LocLDA to learn
a topic distribution for each sentence. We then as-
sign a sentence to the aspect with the largest proba-
bility and hence get sentence clusters. We manually
map these clusters to the eight gold standard aspects.
Finally, for each aspect we rank adjectives by their

Method P@5 P@10 P@20
ME-LDA 0.825∗,¦ 0.700∗ 0.569∗

BL-1 0.400 0.450 0.469
BL-2 0.725 0.650 0.563

Table 7: Average P@n of aspect-specific opinion words
on restaurant. * and ¦ indicate that the improvement hy-
pothesis is accepted at confidence level 0.9 respectively
for BL-1 and BL-2.

frequencies in the aspect and treat these as aspect-
specific opinion words.

The basic results in terms of the average precision
at n over the eight aspects are shown in Table 7. We
can see that ME-LDA outperformed the two base-
lines consistently. Especially, for P@5, ME-LDA
gave more than 100% relative improvement over
BL-1. The absolute value of 0.825 for P@5 also
indicates that top opinion words discovered by our
model are indeed meaningful.

5.4 Evaluation of the Association between
Opinion Words and Aspects

The evaluation in the previous section shows that our
model returns good opinion words for each aspect.
It does not, however, directly judge how aspect-
specific those opinion words are. This is because the
gold standard created by (Brody and Elhadad, 2010)
also includes general opinion words. E.g. friendly
and good may both be judged to be opinion words
for the staff aspect, but the former is more specific
than the latter. We suspect that BL-2 has comparable
performance with ME-LDA for this reason. So we
further evaluated the association between opinion
words and aspects by directly looking at how easy
it is to infer the corresponding aspect by only look-
ing at an aspect-specific opinion word. We selected
four aspects for evaluation: Ambiance, Staff, Food-
Main Dishes and Atmosphere-Physical . We chose
these four aspects because they are quite different
from each other and thus manual judgments on these
four aspects can be more objective. For each aspect,
similar to the pooling strategy in IR, we pooled the
top 20 opinion words identified by BL-1, BL-2 and
ME-LDA. We then asked two human assessors to
assign an association score to each of these words
as follows: If the word is closely associated with an
aspect, a score of 2 is given; if it is marginally as-
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Metrics Dataset BL-2 ME-LDA
nDCG@5 Restaurant 0.647 0.764

Hotel 0.782 0.820
nDCG@10 Restaurant 0.781 0.897

Hotel 0.722 0.789

Table 8: Average nDCG performance of BL-2 and ME-
LDA. Because only four aspects were used for evaluation,
we did not perform statistical significance test. We found
that in all cases ME-LDA outperformed BL-2 for either
all aspects or three out of four aspects.

sociated with an aspect, a score of 1 is given; other-
wise, 0 is given. We calculated the Kappa statistics
of agreement, and we got a quite high Kappa value
of 0.8375 and 0.7875 respectively for the restaurant
data set and the hotel data set. Then for each word
in an aspect, we took the average of the scores of
the two assessors. We used an nDCG-like metric to
compare the performance of our model and of BL-2.
The metric is defined as follows:

nDCG@k(t,M) =

∑k
i=1

Score(Mt,i)
log2(i+1)

iDCG@k(t)
,

where Mt,i is the ith aspect-specific opinion word
inferred by method M for aspect t, Score(Mt,i) is
the association score of this word, and iDCG@k(t)
is the score of the ideal DCG measure at k for as-
pect t, that is, the maximum DCG score assuming
an ideal ranking. We chose k = 5 and k = 10. The
average nDCG over the four aspects are presented
in Table 8. We can see that ME-LDA outperformed
BL-2 quite a lot for the restaurant data set, which
conforms to our hypothesis that ME-LDA generates
aspect-specific opinion words of stronger associa-
tion with aspects. For the hotel data set, ME-LDA
outperformed a little. This may be due to the fact
that we used the restaurant training data for the ho-
tel data set.

6 Further Analysis of MaxEnt

In this section, we perform some further evaluation
and analysis of the MaxEnt component in our model.

6.1 Feature Selection
Previous studies have shown that simple POS fea-
tures and lexical features can be very effective for
discovering aspect words and opinion words (Hu

Methods Average F-1
LocLDA 0.690

ME-LDA + A 0.631
ME-LDA + B 0.695
ME-LDA + C 0.705

Table 9: Comparison of the average F-1 using different
feature sets for aspect identification on restaurant.

and Liu, 2004; Jin et al., 2009; Wu et al., 2009;
Brody and Elhadad, 2010). for POS features, since
we observe that aspect words tend to be nouns while
opinion words tend to be adjectives but sometimes
also verbs or other part-of-speeches, we can expect
that POS features should be quite useful. As for lexi-
cal features, words from a sentiment lexicon can also
be helpful in discovering opinion words.

However, lexical features are more diverse so pre-
sumably we need more training data in order to de-
tect useful lexical features. Lexical features are also
more domain-dependent. On the other hand, we hy-
pothesize that POS features are more effective when
the amount of training data is small and/or the train-
ing data comes from a different domain. We there-
fore compare the following three sets of features:

• A: wi−1, wi, wi+1

• B: POSi−1, POSi, POSi+1

• C: A+ B
We show the comparison of the performance in Ta-
ble 9 using the average F-1 score defined in Sec-
tion 5.2 for aspect identification, and in Table 10 us-
ing the average P@n measure defined in Section 5.3
for opinion identification. We can see that Set B
plays the most important part, which conforms to
our hypothesis that POS features are very important
in opinion mining. In addition, we can see that Set C
performs a bit better than Set B, which indicates that
some lexical features (e.g., general opinion words)
may also be helpful. Note that here the training data
is from the same domain as the test data, and there-
fore lexical features are likely to be useful.

6.2 Examine the Size of Labeled Data

As we have seen, POS features play the major role
in discriminating between aspect and opinion words.
Because there are much fewer POS features than
word features, we expect that we do not need many
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Methods P@5 P@10 P@20
BL-2 0.725 0.650 0.563

ME-LDA + A 0.150 0.200 0.231
ME-LDA + B 0.775 0.688 0.569
ME-LDA + C 0.825 0.700 0.569

Table 10: Comparison of the average P@n using different
feature sets for opinion identification on restaurant.

Method F-1
LocalLDA 0.690

ME-LDA + 10 0.629
ME-LDA + 20 0.692
ME-LDA + 30 0.691
ME-LDA + 40 0.726
ME-LDA + 46 0.705

Table 11: Average F-1 with differen sizes of training data
on restaurant.

labeled sentences to learn the POS-based patterns.
We now examine the sensitivity of the performance
with respect to the amount of labeled data. We gen-
erated four smaller training data sets with 10, 20, 30
and 40 sentences each from the whole training data
set we have, which consists of 46 labeled sentences.
The results are shown in Table 11 and Table 12. We
can see that generally the performance stays above
BL when the number of training sentences is 20 or
more. This indicates that our model needs only a
relatively small number of high-quality training sen-
tences to achieve good results.

6.3 Domain Adaption

Since we find that the MaxEnt supervision relies
more on POS features than lexical features, we also
hypothesize that if the training sentences come from
a different domain the performance can still remain
relatively high. To test this hypothesis, we tried two

Method P@5 P@10 P@20
BL-2 0.725 0.650 0.563

ME-LDA + 10 0.700 0.563 0.488
ME-LDA + 20 0.875 0.650 0.600
ME-LDA + 30 0.825 0.700 0.569
ME-LDA + 40 0.825 0.688 0.581
ME-LDA + 46 0.825 0.700 0.569

Table 12: Average P@n of aspect-specific opinion words
with differen sizes of training data on restaurant.

Method Average F-1
restaurant + B 0.695
restaurant + C 0.705

cell phone + B 0.662
cell phone + C 0.629

DVD player + B 0.686
DVD player + C 0.635

Table 13: Average F-1 performance for domain adaption
on restaurant.

Method P@5 P@10 P@20
restaurant + B 0.775 0.688 0.569
restaurant + C 0.825 0.700 0.569

cell phone + B 0.775 0.675 0.588
cell phone + C 0.750 0.688 0.594

DVD player + B 0.775 0.713 0.575
DVD player + C 0.825 0.663 0.588

Table 14: Average P@n of aspect-specific opinion words
for domain adaption on restaurant.

quite different training data sets, one from the cell
phone domain and the other from the DVD player
domain, both used in (Wu et al., 2009).

We consider two feature sets defined in Sec-
tion 6.1 for domain adaption, namely B and C. The
results are shown in Table 13 and Table 14.

For aspect identification, using out-of-domain
training data performed worse than using in-domain
training data, but the absolute performance is still
decent. And interestingly, we can see that using B
is better than using C, indicating that lexical features
may hurt the performance in the cross-domain set-
ting. It suggests that lexical features are not easily
adaptable across domains for aspect identification.

For opinion identification, we can see that there
is no clear difference between using out-of-domain
training data and using in-domain training data,
which may indicate that our opinion identification
component is robust in domain adaption. Also, we
cannot easily tell whetherB has advantage over C for
opinion identification. One possible reason may be
that those general opinion words are useful across
domains, so lexical features may still be useful for
domain adaption.
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7 Conclusions

In this paper, we presented a topic modeling ap-
proach that can jointly identify aspect and opinion
words, using a MaxEnt-LDA hybrid. We showed
that by incorporating a supervised, discriminative
maximum entropy model into an unsupervised, gen-
erative topic model, we could leverage syntactic fea-
tures to help separate aspect and opinion words.
We evaluated our model on two large review data
sets from the restaurant and the hotel domains. We
found that our model was competitive in identifying
meaningful aspects compared with previous mod-
els. Most importantly, our model was able to iden-
tify meaningful opinion words strongly associated
with different aspects. We also demonstrated that
the model could perform well with a relatively small
amount of training data or with training data from a
different domain.

Our model provides a principled way to jointly
model both aspects and opinions. One of the future
directions we plan to explore is to use this model
to help sentence-level extraction of specific opinions
and their targets, which previously was only tackled
in a fully supervised manner. Another direction is to
extend the model to support polarity classification.
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Abstract

This paper presents a two-stage approach to
summarizing multiple contrastive viewpoints
in opinionated text. In the first stage, we
use an unsupervised probabilistic approach to
model and extract multiple viewpoints in text.
We experiment with a variety of lexical and
syntactic features, yielding significant perfor-
mance gains over bag-of-words feature sets.
In the second stage, we introduce Compara-
tive LexRank, a novel random walk formula-
tion to score sentences and pairs of sentences
from opposite viewpoints based on both their
representativeness of the collection as well as
their contrastiveness with each other. Exper-
imental results show that the proposed ap-
proach can generate informative summaries of
viewpoints in opinionated text.

1 Introduction

The amount of opinionated text available online has
been growing rapidly, increasing the need for sys-
tems that can summarize opinions expressed in such
text so that a user can easily digest them. In this pa-
per, we study how to summarize opinionated text in
a such a way that highlights contrast between multi-
ple viewpoints, which is a little-studied task.

Usually, online opinionated text is generated by
multiple people, and thus often contains multi-
ple viewpoints about an issue or topic. A view-
point/perspective refers to “a mental position from
which things are viewed” (cf. WordNet). An opin-
ion is usually expressed in association with a partic-
ular viewpoint, even though the viewpoint is usually

∗Now at Johns Hopkins University (mpaul@cs.jhu.edu).

not explicitly given; for example, a blogger that is
in favor of a policy would likely look at the positive
aspects of the policy (i.e., positive viewpoint), while
someone against the policy would likely empha-
size the negative aspects (i.e., negative viewpoint).
Moreover, in an opinionated text with diverse opin-
ions, the multiple viewpoints taken by opinion hold-
ers are often “contrastive”, leading to opposite po-
larities. Indeed, such contrast in opinions may be a
main driving force behind many online discussions.

Futhermore, opinions regarding news events and
other short-term issues may quickly emerge and dis-
appear. Such opinions may reflect many differ-
ent types of viewpoints which cannot be modeled
by current systems. For this reason, we believe
that a viewpoint summarization system would ben-
efit from the ability to extract unlabeled viewpoints
without supervision. Even if such clustering has in-
accuracies, it could still be a useful starting point for
human editors to select representative excerpts.

Thus, given a set of opinionated documents about
a topic, we aim at automatically extracting and sum-
marizing the multiple contrastive viewpoints implic-
itly expressed in the opinionated text to facilitate
digestion and comparison of different viewpoints.
Specifically, we will generate two types of multi-
view summaries: macro multi-view summary and
micro multi-view summary. A macro multi-view
summary would contain multiple sets of sentences,
each representing a different viewpoint; these differ-
ent sets of sentences can be compared to understand
the difference of multiple viewpoints at the “macro
level.” A micro multi-view summary would con-
tain a set of pairs of contrastive sentences (each pair

66



consists of two sentences representing two different
viewpoints), making it easy to understand the differ-
ence between two viewpoints at the “micro level.”

Although opinion summarization has been exten-
sively studied (e.g., (Liu et al., 2005; Hu and Liu,
2004; Hu and Liu, 2006; Zhuang et al., 2006)), ex-
isting work has not attempted to generate our envi-
sioned contrastive macro and micro multi-view sum-
maries in an unsupervised way, which is the goal of
our work. For example, Hu and Liu (2006) rank sen-
tences based on their dominant sentiment according
to the polarity of adjectives occuring near a product
feature in a sentence. A contradiction occurs when
two sentences are highly unlikely to be simultane-
ously true (cf. (Marneffe et al., 2008)). Although
little work has been done on contradiction detection,
there are a few notable approaches (Harabagiu et al.,
2006; Marneffe et al., 2008; Kim and Zhai, 2009).

The closest work to ours is perhaps that of Ler-
man and McDonald (2009) who present an approach
to contrastive summarization. They add an objective
to their summarization model such that the summary
model for one set of text is different from the model
for the other set. The idea is to highlight the key
differences between the sets, however this is a dif-
ferent type of contrast than the one we study here –
our goal is instead to make the summaries similar to
each other, to contrast how the same information is
conveyed through different viewpoints.

In this paper, we propose a two-stage approach
to solving this novel summarization problem, which
will be explained in the following two sections.

2 Modeling Viewpoints

The first challenge to be solved in order to generate
a contrastive summary of multiple viewpoints is to
model and extract these viewpoints which are hidden
in text. In this paper we propose to solve this chal-
lenge by employing the Topic-Aspect Model (TAM)
(Paul and Girju, 2010), which is an extension of the
Latent Dirichlet Allocation (LDA) model (Blei et al.,
2003) for jointly modeling topics and viewpoints in
text. While most existing work on such topic models
(including TAM) has taken a topic model as a gen-
erative model for word tokens in text, we propose to
take TAM as a generative model for more complex
linguistic features extracted from text. These are

more discriminative than single word tokens and can
improve the accuracy of extracting multiple view-
points as we will show in the experimental results’
section. Below we first give a brief introduction to
TAM and then present the proposed set of features.

2.1 Topic-Aspect Model (TAM)
LDA-style probabilistic topic models of document
content (Blei et al., 2003) have been shown to offer
state-of-the-art summarization quality. Such mod-
els also provide a framework for adding additional
structure to a summarization model (Haghighi and
Vanderwende, 2009). In our case, we want to add
more structure to a model to incorporate the notion
of viewpoint/perspective into our summaries.

When it comes to extracting viewpoints, recent re-
search suggests that it may be beneficial to model
both topics and perspectives, as sentiment may be
expressed differently depending on the issue in-
volved (Brody and Elhadad, 2010; Paul and Girju,
2010). For example, let’s consider a set of product
reviews for a home theater system. Content topics
in this data might include things like sound qual-
ity, usability, etc., while the viewpoints might be
the positive and negative sentiments. A word like
speakers, for instance depends on the sound topic
but not a viewpoint, while good would be an exam-
ple of a word that depends on a viewpoint but not
any particular topic. A word like loud would depend
on both (since it would be considered positive senti-
ment only in the context of the sound quality topic),
while a word like think depends on neither.

We make use of a recent model, the Topic-Aspect
Model (Paul and Girju, 2010), which can model
such behavior with or without supervision. Under
this model, a document has a mixture over topics as
well as a mixture over viewpoints. The two mix-
tures are drawn independently of each other, and
thus can be thought of as two separate clustering di-
mensions. A word is associated with variables de-
noting its topic and viewpoint assignments, as well
as two binary variables to denote if the word de-
pends on the topic and if the word depends on the
viewpoint. A word may depend on the topic, the
viewpoint, both, or neither, as in the above example.

The generative process for a document d under
this model can be briefly described as follows. For
each word in a document:
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1. Sample a topic z from P (z|d) and a viewpoint v
from P (v|d).

2. Sample a “level” ` ∈ {0, 1} from P (`|d). This
determines if the word will depend on the topic (topical
level) or not (background level).

3. Sample a “route” r ∈ {0, 1} from P (r|`, z). This
determines if the word will depend on the viewpoint.

4. Sample a word w from P (w|z, v, r, `).

The probabilities are multinomial/binomial dis-
tributions with Dirichlet/Beta priors, and thus this
model falls under the standard LDA framework. The
number of topics and number of viewpoints are pa-
rameters that must be specified. Inference can be
done with Gibbs sampling (Paul and Girju, 2010).

TAM naturally gives us a very rich output to
use in a viewpoint summarization application. If
we are doing unsupervised viewpoint extraction,
we can use the output of the model to compute
P (v|sentence) which could be used to generate
summaries that contain only excerpts that strongly
highlight one viewpoint over another. Similarly,
we could use the learned topic mixtures to generate
topic-specific summaries. Futhermore, the variables
r and ` tell us if a word is dependent on the view-
point and topic, and we could use this information
to focus on sentences that contain informative con-
tent words. Note that without supervision, TAM’s
clustering is based only on co-occurrences and the
patterns it captures may or may not correspond with
the viewpoints we wish to extract. Nonetheless, we
show in this research that it can indeed find mean-
ingful viewpoints with reasonable accuracy on cer-
tain data sets. Although we do not explore this in
this paper, additional information about the view-
points could be added to TAM by defining priors on
the distributions to further improve the accuracy of
viewpoint discovery.

2.2 Features

Previous work with TAM used only bag of words
features, which may not be the best features for cap-
turing viewpoints. For example, “Israel attacked
Palestine” and “Palestine attacked Israel” are iden-
tical excerpts in an exchangable bag of words rep-
resentation, yet one is more likely to come from the
perspective of a Palestinian and the other from an Is-
raeli. In this subsection, we will propose a variety of
feature sets. We evaluate the utility of these features

to the task of modeling viewpoints by measuring the
accuracy of unsupervised clustering.

2.2.1 Words
We have experimented with simple bag of words

features as baseline approaches, both with and with-
out removing stop words, and found that the accu-
racy of clustering by viewpoint is better when re-
taining all words. This supports the observation
that common function words may have important
psychological properties (Chung and Pennebaker,
2007). Thus, we do not do any stop word removal
for any of our other feature sets. We find that we get
better results by stemming the words, so we apply
Porter’s stemmer to all of our features described.

2.2.2 Dependency Relations
It has been shown that using syntactic information

can improve the accuracy of sentiment models (Joshi
and Rosé, 2009). Thus, instead of representing doc-
uments as a bag of words, we will experiment with
using features returned by a dependency parser. For
this, we used the Stanford parser1, which returns de-
pendency tuples of the form rel(a, b) where rel is
some dependency relation and a and b are tokens of
a sentence. We can use these specific tuples as fea-
tures, referred here as the full-tuple representation.

One problem with this representation is that we
are using very specific information and it is harder
for learning algorithms to find patterns due to the
lack of redundancy. One solution is to generalize
these features and rewrite a tuple rel(a, b) as two
tuples: rel(a, ∗) and rel(∗, b) (Greene and Resnik,
2009; Joshi and Rosé, 2009). We will refer to this as
the split-tuple representation.

2.2.3 Negation
If a word wi appears in the head of a neg rela-

tion, then we would like this to be reflected in other
dependency tuples in which wi occurs. For a tuple
rel(wi, wj), if either wi or wj is negated, then we
simply rewrite it as ¬rel(wi, wj).

An alternative would be to rewrite the individual
word wi as ¬wi. However in our experiments this
representation produced worse accuracies, perhaps
because this produces less redundancy.

1http://nlp.stanford.edu/software/
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2.2.4 Polarity
We also hypothesize that lexical polarity informa-

tion may improve our model. If we are using the
full-tuple representation, then a tuple becomes more
general by replacing the specific word with a + or
−. In the case that both words are polarity words,
we use two tuples, replacing only one word at a
time rather than replacing both words with their po-
larity signs. To determine the polarity of a word,
we simply use the Subjectivity Clues lexicon (Wil-
son et al., 2005) and as polarity values, positive (+),
negative (-), and neutral (*). Under our split-tuple
representation, this becomes more specific by re-
placing the ∗ with the polarity sign. For example,
the tuple amod(idea, good) would be represented
as amod(idea,+) and amod(∗, good). We collapse
negated features to flip the polarity sign such that
¬rel(a,+) becomes rel(a,−).

2.2.5 Generalized Relations
We also experimented with backing off the rela-

tions themselves. Since the Stanford dependencies
can be organized in a hierarchy2, we will represent
the relations at more generalized levels in the hi-
erarchy. For example, both a direct object and an
indirect object are a type of object. For a relation
rel, we define Rrel as the relation above rel in
the hierarchy – for example, Rdobj = obj. We
make an exception for neg which has its own im-
portant properties that we wish to retain, so we let
Rneg = neg. Thus, when using these features, we
rewrite rel(a, b) as Rrel(a, b).

3 Multi-Viewpoint Summarization

As a computation problem, extractive multi-
viewpoint summarization would take as input a set
of candidate excerpts3 X = {x1, x2, ..., x|X|} with
k viewpoints and generate two types of multi-view
contrastive summaries: 1) A macro contrastive sum-
mary Smacro consists of k disjoint sets of excerpts,
X1, X2, ..., Xk ⊂ X with each Xi containing repre-
sentative sentences of the i-th view (i.e., Smacro =
(X1, ..., Xk)). The number of excerpts in each Xi

can be empirically set based on application needs.
2The complete hierarchy can be found in the Stanford de-

pendencies manual (Marneffe and Manning, 2008).
3An “excerpt” refers to the smallest unit of text that will

make up our summary such as a sentence.

2) A micro contrastive summary Smicro consists
of a set of excerpt pairs, each containing two ex-
cerpts from two different viewpoints, i.e., Smicro =
{(s1, t1), ..., (sn, tn)} where si ∈ X and ti ∈ X are
two comparable excerpts representing two different
viewpoints. n is the length of the summary, which
can be set empirically based on application needs.
Note that both macro and micro summaries can re-
veal contrast between different viewpoints, though
at different granularity levels.

To generate macro and micro summaries based
on the probabilistic assignment of excerpts to view-
points given by TAM, we propose a novel extension
to the LexRank algorithm (Erkan and Radev, 2004),
a graph-based method for scoring representative ex-
cerpts to be used in a summary. Our key idea is to
modify the definition of the jumping probability in
the random walk model so that it would favor ex-
cerpts that represent a viewpoint well and encour-
age jumping to an excerpt comparable with the cur-
rent one but from a different viewpoint. As a re-
sult, the stationary distribution of the random walk
model would capture representative contrastive ex-
cerpts and allow us to generate both macro and mi-
cro contrastive summaries within a unified frame-
work. We now describe this novel summarization
algorithm (called Comparative LexRank) in detail.

3.1 Comparative LexRank

LexRank is a PageRank-like algorithm (Page et al.,
1998), where we define a random walk model on
top of a graph that has sentences to be summarized
as nodes and edges placed between two sentences
that are similar to each other. We can then score
all the sentences based on the expected probability
of a random walker visiting each sentence. We use
the short-hand P (xj |xi) to denote the probability of
being at node xj at a time t given that the walker
was at xi at time t − 1. The jumping probability
from node xi to node xj is given by:

P (xj |xi) =
sim(xi, xj)∑

j′∈X sim(xi, xj′)
(1)

where sim is a content similarity function defined
on two sentence/excerpt nodes.

Our extension is mainly to modify this jumping
probability in two ways so as to favor visiting con-
trastive representative opinions from multiple view-
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points. The first modification is to make it favor
jumping to a good representative excerpt x of any
viewpoint v (i.e., with high probability p(v|x) ac-
cording to the TAM model). The second modifica-
tion is to further favor jumping between two excerpts
that can potentially form a good contrastive pair for
use in generating a micro contrastive summary.

Specifically, under our model, the random walker
first decides whether to jump to a sentence of the
same viewpoint or to a sentence of a different view-
point. We define this decision as a binary variable
z ∈ {0, 1}. Intuitively, if we can force the ran-
dom walker to move back and forth between view-
points, then the final scores will favor sentences that
are similar across both viewpoints.

We define two different modified similarity func-
tions for the two possible values of z. The first one,
sim0 (corresponding to z = 0) scales the similarity
by the likelihood that the two x’s represent the same
viewpoint, and the second one, sim1 (for z = 1)
scales the similarity by the likelihood that the x’s
come from different viewpoints.

sim0(xi, xj) = sim(xi, xj)

k∑
m=1

P (v = m|xi)P (v = m|xj)

sim1(xi, xj) = sim(xi, xj)×∑
m1,m2∈[1,k],m1 6=m2

P (v = m1|xi)P (v = m2|xj)

where P (v|x) denotes the probability that the ex-
cerpt x belongs to the viewpoint v, and in general,
can be obtained through any multi-viewpoint model.
A special case of this is when the labels for view-
points are known, in which case P (v|x) = 1 for the
correct label and 0 for the others.

In our experiments, P (v|x) comes from the out-
put of TAM, and we define sim(xi, xj) as the cosine
between the vectors xi and xj , although again any
similarity function could be used. The conditional
transition probability from xi to xj given z is then:

P (xj |xi, z) =
simz(xi, xj)∑

j′∈X simz(xi, xj′)
(2)

Using λ to denote P (z = 0) and marginalizing
across z, we have the transition probability:

P (xj |xi) = λP (xj |xi, z = 0)+ (1−λ)P (xj |xi, z = 1)

The stationary distribution of the random walk
gives us a scoring of the excerpts to be used in our

summary. It is also possible to score pairs of ex-
cerpts that contrast each other. We define the score
for a pair (xi, xj) as the probability of being at xi
and transitioning to xj or vice versa, where xi and
xj are of opposite viewpoints. Specifically:

P (xi)P (xj |xi, z = 1) + P (xj)P (xi|xj , z = 1) (3)

3.2 Summary Generation
The final summary should be a set of excerpts that
have a high relevance score according to our scoring
algorithm, but are not redundant among each other.
Many techniques could be used to accomplish this
(Carbonell and Goldstein, 1998; McDonald, 2007),
but we use a simple greedy approach: at each step
of the summary generation algorithm, we add the
excerpt with the highest relevance score as long as
the excerpt’s redundancy score – the cosine similar-
ity between the candidate and the current summary
– is under some threshold δ. This is repeated until
the summary reaches a user-supplied length limit.
Macro contrastive summarization: A macro-level
summary consists of independent summaries for
each viewpoint, which we generate by first using the
random walk stationary distribution across all of the
data to rank the excerpts. We then separate the top-
ranked excerpts into two disjoint sets according to
their viewpoint based on whichever gives a greater
value of P (v|x), and finally remove redundancy and
produce the summary according to our method de-
scribed above. We refer to this as macro contrastive
summarization, because the summaries will contrast
each other in that they have related content, but the
excerpts in the summaries are not explicitly aligned
with each other.
Micro contrastive summarization: A candidate
excerpt for a micro-level summary will consist of
a pair (xi, xj) with the pairwise relevance score de-
fined in Equation 3. We can then rank these pairs and
remove redundancy. It is possible that both xi and xj
in a high-scoring pair may belong to the same view-
point; such a case would be filtered out since we are
mainly interested in including contrastive pairs in
our summary. We refer to this as micro contrastive
summarization, because the summaries will allow
us to see contrast at the level of individual excerpts
from different viewpoints.
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4 Experiments and Evaluation

4.1 Experimental Setup

Evaluation of multi-view summarization is challeng-
ing as there is no existing data set we can use. We
leverage the resources on the Web and created two
data sets in the domain of political opinion.

Our first dataset is a set of 948 verbatim responses
to a Gallup R© phone survey about the 2010 U.S.
healthcare bill (Jones, 2010), conducted March 4-7,
2010. Responses in this set tend to be short and of-
ten incomplete or otherwise ill-formed and informal
sentences. Respondants indicate if they are ‘for’ or
‘against’ the bill, and there is a roughly even mix of
the two viewpoints (45% for and 48% against).

We also use the Bitterlemons corpus, a collection
of 594 editorials about the Israel-Palestine conflict.
This dataset is fully described in (Lin et al., 2006)
and has been used in other perspective modeling lit-
erature (Lin et al., 2008; Greene and Resnik, 2009).
The style of this data differs substantially from the
healthcare data in that documents in this set tend to
be long and verbose articles with well-formed sen-
tences. It again contains a fairly even mixture of two
different perspectives: 312 articles from Israeli au-
thors and 282 articles from Palestinian authors.

Moreover, for the healthcare data set, manually
extracted opinion polls are available on the Web,
which we further leverage to construct gold stan-
dard summaries to evaluate our method quantita-
tively. The data and test sets are available at
http://apfel.ai.uiuc.edu/resources.html.

4.2 Stage One: Modeling Viewpoints

The main research question we want to answer in
modeling viewpoints is whether richer feature sets
would lead to better accuracy than word features.
We used our various feature sets as input to TAM
and measured the accuracy of clustering documents
by viewpoint. This evaluation serves both to mea-
sure how accurately this type of clustering can be
done, as well as to measure which types of features
are important for modeling viewpoints.

We found that the clustering accuracy is improved
if we measure the accuracy of only the subset of
documents such that P (v|doc) is greater than some
threshold (we used 0.8). Thus, the accuraries pre-
sented in this section are measured using this confi-

dence threshold. We will use this approach for the
summarization task as well, as it ensures we are only
summarizing documents where we have high confi-
dence about their viewpoint membership.

There are several parameters to set for TAM.
Since our focus is on comparing linguistic features
with word features, we simply set these parame-
ters to some reasonable values: We used Dirich-
let pseudo-counts of 80.0 for P (` = 0), 20.0 for
P (` = 1), uniform pseudo-counts of 5.0 for P (x),
0.1 for the topic and aspect mixtures, and 0.01 for
the word distributions. We tell the model to use 2
viewpoints as well as 5 topics for the healthcare cor-
pus and 8 topics for the Bitterlemons corpus.

There is high variance in the accuracies depend-
ing on how the Gibbs samplers were initialized. We
thus repeated the experiments many times to obtain
relatively confident measures – 200 times for the
healthcare set and 50 times for the Bitterlemons set,
with 2000 iterations each time. A natural way to se-
lect a model is to choose the model that gives the
highest likelihood to its input. To evaluate how well
this selection strategy would work, we measured the
correlation between accuracy and likelihood.

The results are shown in Table 1. We can make
several observations. (1) In all cases, the proposed
linguistic features yield higher accuracy than the
word features, supporting our hypothesis that for
viewpoint modeling, applying TAM to these features
improves performance over using simple word fea-
tures. Since virtually all existing work on topic mod-
els assumes word tokens as data to be modeled, our
results suggest that it would be interesting to explore
applying generative topic models to complex fea-
tures for other tasks as well. This may be because by
adding additional complex features to the observed
data, we artificially inflate the data likelihood to em-
phasize modeling co-occurrences of such features,
which effectively biases the model to capture a cer-
tain perspective of co-occurrences.

(2) The increase is substantially greater for the
Bitterlemons corpus, which may be due to the fact
that the parsing accuracy is likely better because the
language is formal. The split-tuple representation
is very significantly better for the healthcare corpus,
but it is not clear which is better for the Bitterlemons
corpus. It is also not clear how the generalized rela-
tions affect the performance.
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Healthcare Corpus Bitterlemons Corpus
Feature Set Mean Med Max MaxLL Corr Mean Med Max MaxLL Corr
bag of words 61.12 +/- 0.76% 61.01 72.17 52.92 0.187 68.22 +/- 3.31% 69.26 88.27 84.94 0.39
- no stopwords 60.58 +/- 0.79% 60.50 72.18 62.58 0.154 61.29 +/- 3.05% 57.69 91.34 82.91 0.33
full-tuples 62.42 +/- 0.88% 62.47 74.04 63.37 0.201 80.89 +/- 3.45% 85.40 94.07 92.10 0.34
+ negation 63.67 +/- 0.81% 64.54 74.07 69.25 0.338 80.60 +/- 3.88% 88.07 95.61 91.32 0.66
+ neg. + polarity 63.16 +/- 0.94% 64.46 74.05 67.8 0.455 82.53 +/- 3.55% 86.64 94.44 91.16 0.31
gen. full-tuples 63.80 +/- 0.73% 64.35 73.29 71.70 0.254 76.62 +/- 4.09% 84.56 94.53 84.56 0.25
split-tuples 68.32 +/- 0.90% 70.74 77.80 76.57 0.646 77.14 +/- 3.64% 81.29 92.99 88.13 0.30
+ negation 68.00 +/- 0.91% 69.11 79.73 76.14 0.187 83.53 +/- 3.05% 87.71 95.00 95.00 0.12
+ neg. + polarity 65.11 +/- 1.05% 65.35 78.59 67.22 0.159 81.24 +/- 3.37% 83.44 95.03 88.55 0.08
gen. split-tuples 69.31 +/- 0.83% 70.69 77.90 73.90 0.653 76.69 +/- 4.36% 83.78 93.60 91.67 0.09

Table 1: The clustering accuracy with TAM using a variety of feature sets. These results were averaged over 200 randomly-initialized Gibbs
sampling procedures for the healthcare set, and 50 procedures for the Bitterlemons set. The 95% confidence interval using a standard t-test is also
given. Max refers to the maximum accuracy obtained over the 200 or 50 instances. MaxLL refers to the clustering accuracy using the model that
yielded the highest corpus log-likelihood as defined by TAM. Corr refers to the Pearson correlation coefficient between accuracy and log-likelihood.

(3) It appears that adding polarity helps the full-
tuple features (by making them more general) but
hurts the split-tuple features (by making them more
specific). Negation significantly improves the full-
tuple features in the Bitterlemons corpus, but it is
not clear if it helps in the other cases. It should be
noted that capturing negation and polarity is a very
complex and difficult task, and it is not expected that
our simple approaches will accurately capture these
properties. Nonetheless, it seems that these simple
features may help in certain cases.

4.3 Stage Two: Summarizing Viewpoints
For the second stage (i.e., the Comparative LexRank
algorithm), we mainly want to evaluate the quality
of the generated contrastive multi-viewpoint sum-
mary and study the effectiveness of our extension
to the standard LexRank. Below we present exten-
sive evaluation of our summarization method on the
healthcare data. We do not have an evaluation set
with which to compute quantitative metrics on the
Bitterlemons corpus, so we will instead perform a
simple qualitative evaluation in the last subsection.

4.3.1 Gold Standard Summaries
The responses to the Gallup healthcare poll are

described in an article4 which gives a table of the
main responses found in the data along with their
prominence in the data. In a way, this represents an
expert human-generated summary of our database,
and we will use this as a gold standard macro con-
trastive summary against which the representative-

4http://www.gallup.com/poll/126521/Favor-Oppose-
Obama-Healthcare-Plan.aspx

ness of a multi-viewpoint contrastive summary can
be evaluated. The reasons given in this table will
be used verbatim as our reference set, excluding the
other/no-reason/no-opinion reasons. A sample of
this table is shown in Table 2.

We also want to develop a reference set for micro
contrastive summaries, where we are mainly inter-
ested in evaluating contrastiveness. To do this, we
asked 3 annotators to identify contrastive pairs in
the “main reasons” table described above. Each pair
must contain one reason from the ‘for’ side and one
reason from the ’against’ side, though we do not re-
quire a one-to-one alignment; that is, multiple pairs
may contain the same reason. We take the set of
pairs that were identified as being contrastive by at
least 2 annotators to be our gold set of contrastive
pairs. Because these pairs come from the gold sum-
mary, they are still representative of the collection as
a whole, rather than fine-grained contrasts.

The macro reference set contains 9 ‘for’ reasons
and 15 ‘against’ reasons. The micro reference set
contains 13 annotator-identified pairs composed of 9
unique ‘for’ reasons and 8 unique ‘against’ reasons.

4.3.2 Baseline Approaches
Graph-based algorithms: The standard LexRank
algorithm can also be used to score pairs of sen-
tences according to Equation 3. We will thus com-
pare our new LexRank extension to the unmodified
form of this algorithm. When λ = 1, the random
walk model only transitions to sentences within the
same viewpoint, and thus in this case our modified
algorithm produces the same ranking as the unmod-
ified LexRank. This will be our first baseline.
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For Against
People need health insurance/Too many uninsured 29% Will raise costs of insurance/Make it less affordable 20%
System is broken/Needs to be fixed 18% Does not address real problems 19%
Costs are out of control/Would help control costs 12% Need more information/clarity on how system would work 8%

Moral responsibility to provide/Obligation/Fair 12% Against big government/Too much government involvement 8%

Table 2: Some of the top reasons given along with their prominence in the healthcare data, as analyzed by Gallup. This is a sample of what will
serve as our gold set. The highlighted cells show an example of a contrastive pair identified by our annotators.

Model-based algorithms: We will also compare
against the approach of Lerman and McDonald
(2009) who introduce their contrastiveness objective
into a model-based summarization algorithm. The
basic form of this algorithm is to select a set of sen-
tences Sm to minimize the KL-divergence between
the models of the summary Sm and the entire collec-
tion Xm for a viewpoint m. The objective function
is: −

∑k
m=1KL(L(Sm)||L(Xm)) where L is an ar-

bitrary language model. We define L(A) simply as
the unigram distribution over words in the collection
A, a method also evaluated by Haghighi and Vander-
wende (2009). This is the fairest comparison to our
LexRank experiments, where sentences are also rep-
resented as unigrams. (We do not do any modeling
with TAM in our quantitative evaluation.)

Lerman and McDonald introduce an additional
term to maximize the KL-divergence between the
summary of one viewpoint and the collection of the
opposite viewpoint, so that each viewpoint’s sum-
mary is dissimilar to the other viewpoints. We bor-
row this idea but instead do the opposite so that the
viewpoints’ summaries are more (rather than less)
similar to each other. This contrastive version of our
model-based baseline is formulated as:

−
k∑

m1=1

KL(L(Sm1)||L(Xm1)) +(
1

k−1

∑
m2∈[1,k],m1 6=m2

KL(L(Sm1)||L(Xm2))
)

Our summary generation algorithm is to iteratively
add excerpts to the summary in a greedy fash-
ion, selecting the excerpt with the highest score in
each iteration. Note that this approach only gen-
erates macro-level summaries, leaving us with the
LexRank baseline for micro-level summaries.

4.3.3 Metrics
We will evaluate our summaries using a variant of

the standard ROUGE evaluation metric (Lin, 2004).
Recall that we have two different evaluation sets

– one that contains all of the reasons for each view-

point, and one that consists only of aligned pairs of
excerpts. Since the same excerpt may appear in mul-
tiple pairs, there would be significant redundancy in
our reference summary if we were to include every
pair. Thus, we will restrict a contrastive reference
summary to exclude overlapping pairs, and we will
have many reference sets for all possible combina-
tions of pairs. There is only one reference set for the
representativeness criterion.

Our reference summaries have a unique property
in that the summaries have already been annotated
with the prominence of the different reasons in the
data. A good summary should capture the more
prominent statements, so we will include this in our
scoring function. We thus augment the basic ROUGE

n-gram recall score by weighting the n-gram counts
in the reference summary according to this percent-
age. This is a generalization of the standard ROUGE

formula where this percentage would be uniform.
For evaluating the macro-level summaries, we

will score the summaries for the two viewpoints sep-
arately, given a reference set Refi and a candidate
summary Ci for a viewpoint v = i. The final score
is a combination of the scores for both viewpoints,
i.e. Srep = 0.5S(Refi, Ci)+0.5S(Refj , Cj) where
S(Ref,C) is our ROUGE-based scoring metric. It
would also be interesting to measure how well a
viewpoint’s summary matches the gold summary
of the opposite viewpoint, which will give insights
into how well the Comparative LexRank algorithm
makes the two summaries similar to each other. We
will measure this as the inverse of the above metric,
i.e. Sopp = 0.5S(Refi, Cj) + 0.5S(Refj , Ci).

Finally, to score the micro-level comparative sum-
maries (recall that this gives explicitly-aligned pairs
of excerpts), we will concatenate each pair (xi, xj)
as a single excerpt, and use these as the excerpts in
our reference and candidate summaries. The scor-
ing function is then Sp = S(Refpairs, Cpairs). Note
that we have multiple reference summaries for the
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λ Srep-1 Sopp-1 Srep-2 Sopp-2 Sp-1 Sp-2
0.0 .425 .416 .083 .060 .309 .036
0.2 .410 .423 .082 .065 .285 .044
0.5 .419 .434 .085 .072 .386 .044
0.8 .410 .324 .095 .028 .367 .062
1.0 .354 .240 .070 .006 .322 .057

MB .362 .246 .089 .003
MC .347 .350 .054 .059

Table 3: Our evaluation scores for various values of λ. Smaller val-
ues of λ favor greater contrastiveness. Note that λ = 1 should be con-
sidered a baseline, because at this value the algorithm ignores the con-
trastiveness and it becomes a standard summarization problem. MB and
MC refer to our model-based baselines described in Subsection 4.3.2.
Bold scores are significant over all baselines according to a paired t-test.

micro-level evaluation due to overlapping pairs in
the evaluation set. In this case, the ROUGE score
is defined as the maximum score among all possible
reference summaries (Lin, 2004).

We measure both unigram (removing stop words,
denoted S-1) and bigram (retaining stop words, de-
noted S-2) recall, stemming words in all cases.

4.3.4 Evaluation Results
In order to evaluate our Comparative LexRank

algorithm by itself, in this subsection we will not
use the output of TAM as part of our summariza-
tion input, and will assign excerpts fixed values of
P (v|x) = 1 for the correct label and 0 otherwise.
We constructed our sentence vectors with unigrams
(removing stop words) and no IDF weighting.

We set the PageRank damping factor (Erkan and
Radev, 2004) to 0.01 and tried combinations of
the redundancy threshold δ ∈ {0.01, 0.05, 0.1, 0.2}
with different values of λ, the parameter which con-
trols the level of contrastiveness. For each value of
λ, we optimized δ on the original data set according
to Srep×Sopp so that we can directly compare these
scores, and then we tuned δ separately for Sp. The
summary length is 6 excerpts. To obtain more ro-
bust results, we repeated the experiment 100 times
on random half-size subsets of our data. The scores
shown in Table 3 are averaged across these trials.

In general, increasing λ increases Srep, which
suggests that tuning λ behaves as expected, and
high- and mid-range λ values indeed produce sum-
maries where the summaries of the two viewpoints
are more similar to each other. Similarly, mid-range
λ values produce substantially higher values of Sp-1,
the unigram ROUGE scores for the micro contrastive

summary, although there is not a large difference be-
tween the bigram scores. An example of our micro-
level output is shown in Table 4.

As for our model-based baseline, we show results
for both the basic algorithm (denoted MB) in addi-
tion to the contrastive modification (denoted MC).
We see that the contrastive modification behaves
as expected and produces much higher scores for
Sopp, however, this method does not outperform our
LexRank algorithm. It is interesting to note that in
almost all cases where a contrastive objective is in-
troduced, the scores for the opposite viewpoint Sopp
increase without decreasing the Srep scores, sug-
gesting that contrastiveness can be introduced into a
multi-view summarization problem without dimin-
ishing the overall quality of the summary. It is
admittedly difficult to make generalizations about
these methods from experiments with only one data
set, but we have at least some evidence that our al-
gorithm works as intended.

4.4 Unsupervised Summarization
So far we have focused on evaluating our viewpoint
clustering models and our multi-view summariza-
tion algorithms separately. We will finally show how
these two stages might work in tandem in unsuper-
vised summarization of the Bitterlemons corpus.

Without a gold set, it is difficult to perform an
extensive automatic evaluation as we did with the
healthcare data. Instead we will perform a sim-
ple qualitative evaluation to see if the algorithm ap-
pears to achieve its goal. Thus, we asked 8 people
to guess if each viewpoint’s summary was written
by Israeli or Palestinian authors. To diversify the
summaries, for each annotator we randomly split
each summary into two equal-sized subsets of the
sentence set. Thus each person was asked to label
four different summaries, which were presented in
a random order. If humans can correctly identify
the viewpoints, then this would suggest both that the
TAM accurately clustered documents by viewpoint
and the summarization algorithm is selecting sen-
tences that coherently represent the viewpoints.

We first ran TAM on our data using the same pro-
cedure and parameters as in Subsection 4.2 using the
full-tuple features. We repeated this 10 times and
used the model that gave the highest data likelihood
as our model for summarization input. We then gen-
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For the Healthcare Bill Against the Healthcare Bill
the government already provides half of the healthcare dollars in the government is too much involvement.
united states [...] [they] might as well spend their dollars smarter
my kids are uninsured. a lot of people will be getting it that should be getting it on their own,

and my kids will be paying a lot of taxes.
so everybody would have it and afford it. we cannot afford it.
because of my family. i don’t know enough about it and i don’t know where exactly

it’s going to put my family.
because i have no health insurance and i need it. because i have health insurance.
cost of healthcare is so high. high costs.

Table 4: An example of our micro-level contrastive summarization output on the healthcare data, using δ = 0.05 and λ = 0.5.

erated macro contrastive summaries of our data for
the two viewpoints with 6 sentences per viewpoint.
We used unigram sentence vectors with IDF weight-
ing. We used λ = 0.5 and δ = 0.1, which gave the
highest score at this λ value on the healthcare data.

Only one of these sentences was clustered incor-
rectly by TAM. The human judges correctly labeled
78% of the summary sets, suggesting that our sys-
tem accurately selected some sentences that could
be recognized as belonging to the viewpoints, but
is not perfect. Unsupervised micro-level summaries
were less coherent. Many of the sentences are mis-
labeled, and the ones that are correctly labeled are
not representative of the collection.

This is not surprising, and indeed exposes the
challenge inherent in our problem definition: clus-
tering documents based on similarity and then high-
lighting sentences with high similarity but opposite
cluster membership are almost conflicting objectives
for an unsupervised learner. Such contrastive pairs
are perhaps the most difficult data points to model.
A good test of a viewpoint model may be whether it
can capture the nuanced properties of the viewpoints
needed to contrast them at the micro level.

5 Discussion

The properties of the text which we attempt to sum-
marize in our work are related to the concept of
framing from political science (Chong and Druck-
man, 2010), which is defined as “an interpretation or
evaluation of an issue, event, or person that empha-
sizes certain of its features or consequences” focus-
ing on “certain features and implications of the issue
– rather than others.” For example, someone in favor
of the healthcare bill might focus on the benefits and
someone against the bill might focus on the cost.

However, our approach is different in that our

contrastive objective encourages the summaries to
include each point as addressed by all viewpoints,
rather than each viewpoint selectively emphasizing
only certain points. In a sense, this makes our sum-
mary more like a live debate, where one side must
directly respond to a point raised by the other side.
For example, someone in favor of healthcare reform
might cite the high cost of the current system, but
someone against this might counter-argue that the
proposed system in the new bill has its own high
costs (as seen in the last row of Table 4). The idea is
to show how both sides address the same issues.

Thus, we can say that we are summarizing the
key arguments/issues/points from different opinions.
Futhermore, our models and algorithms are defined
very generally, and while we tested their viability in
the domain of political opinion, they may also be
useful for many other comparative tasks.

In conclusion, we have presented steps toward a
two-stage system that can automatically extract and
summarize viewpoints in opinionated text. First, we
have shown that accuracy of clustering documents
by viewpoint can be enhanced by using simple but
rich dependency features. This can be done within
the framework of existing probabilistic topic models
without altering the models simply by using a “bag
of features” representation of documents.

Second, we have introduced Comparative
LexRank, an extension of the LexRank algorithm
that aims to generate contrastive summaries both at
the macro and micro level. The algorithm presented
is general enough that it can be applied to any
number of viewpoints, and can accomodate input
where the viewpoints are either given fixed labels,
or given probabilistic assignments. The tradeoff
between contrast and representation can flexibly be
tuned to an application’s needs.
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Abstract

In the 1980s, plot units were proposed as a
conceptual knowledge structure for represent-
ing and summarizing narrative stories. Our
research explores whether current NLP tech-
nology can be used to automatically produce
plot unit representations for narrative text. We
create a system called AESOP that exploits
a variety of existing resources to identify af-
fect states and applies “projection rules” to
map the affect states onto the characters in a
story. We also use corpus-based techniques
to generate a new type of affect knowledge
base: verbs that impart positive or negative
states onto their patients (e.g., being eaten is
an undesirable state, but being fed is a desir-
able state). We harvest these “patient polar-
ity verbs” from a Web corpus using two tech-
niques: co-occurrence with Evil/Kind Agent
patterns, and bootstrapping over conjunctions
of verbs. We evaluate the plot unit representa-
tions produced by our system on a small col-
lection of Aesop’s fables.

1 Introduction

In the 1980s, plot units (Lehnert, 1981) were pro-
posed as a knowledge structure for representing nar-
rative stories and generating summaries. Plot units
are fundamentally different from the story represen-
tations that preceded them because they focus on the
affect states of characters and the tensions between
them as the driving force behind interesting and co-
hesive stories. Plot units were used in narrative sum-
marization studies, both in computer science and
psychology (Lehnert et al., 1981), but previous com-

putational models of plot units relied on tremendous
amounts of manual knowledge engineering.

The last few decades have seen tremendous ad-
vances in NLP and the emergence of many resources
that could be useful for plot unit analysis. So we em-
barked on a project to see whether plot unit repre-
sentations can be generated automatically using cur-
rent NLP technology. We created a system called
AESOP that uses a variety of resources to iden-
tify words that correspond to positive, negative, and
mental affect states. AESOP uses affect projection
rules to map the affect states onto the characters in
the story based on verb argument structure. Addi-
tionally, affect states are inferred based on syntactic
properties, and causal and cross-character links are
created using simple heuristics.

Affect states often arise from actions that produce
good or bad states for the character that is acted
upon. For example, “the cat ate the mouse” pro-
duces a negative state for the mouse because being
eaten is bad. Similarly, “the man fed the dog” pro-
duces a positive state for the dog because being fed
is generally good. Knowledge about the effects of
actions (i.e., state changes) on patients is not readily
available in existing semantic resources. We create
a new type of lexicon consisting of patient polarity
verbs (PPVs) that impart positive or negative states
on their patients. These verbs reflect world knowl-
edge about desirable/undesirable states for animate
beings; for example, being fed, paid or adopted are
generally desirable states, while being eaten, chased
or hospitalized are generally undesirable states.

We automatically generate a lexicon of “patient
polarity verbs” from a Web corpus using two tech-
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The Father and His Sons
(s1) A father had a family of sons who were perpetually
quarreling among themselves. (s2) When he failed to
heal their disputes by his exhortations, he determined
to give them a practical illustration of the evils of dis-
union; and for this purpose he one day told them to
bring him a bundle of sticks. (s3) When they had done
so, he placed the faggot into the hands of each of them
in succession, and ordered them to break it in pieces.
(s4) They tried with all their strength, and were not
able to do it. (s5) He next opened the faggot, took the
sticks separately, one by one, and again put them into
his sons’ hands, upon which they broke them easily.
(s6) He then addressed them in these words: “My sons,
if you are of one mind, and unite to assist each other,
you will be as this faggot, uninjured by all the attempts
of your enemies; but if you are divided among your-
selves, you will be broken as easily as these sticks.”

(a) “Father and Sons” Fable

Father Sons
(quarreling)a1

(stop quarreling)a3

(annoyed)a2

(exhortations)a4

(exhortations fail)a5

m

m

a

(teach lesson)a6
m

(get sticks & break)a7
m

(get sticks & break)a8

(cannot break sticks)a9
a

(cannot break sticks)a10

a

(bundle & break)a11
(bundle & break)a12

(break sticks)a13
a

(break sticks)a14

a

m

a

shared

request

request

mixed

shared

s2

s2

s2

s2

s2

s2

s4

s5

s5

s1

s2

s4

s5

s5

(lesson succeeds)a15s5

(b) Plot Unit Analysis for “Father and Sons” Fable

Figure 1: Sample Fable and Plot Unit Representation

niques: patterns that identify co-occurrence with
stereotypically evil or kind agents, and a bootstrap-
ping algorithm that learns from conjunctions of
verbs. We evaluate the plot unit representations pro-
duced by our system on a small collection of fables.

2 Overview of Plot Units

Plot unit structures consist of affect states for each
character, and links defining the relationships be-
tween them. Plot units include three types of affect
states: positive (+), negative (-), and mental (M).
Affect states can be connected by causal links and
cross-character links, which explain how the nar-
rative hangs together. Causal links exist between
affect states for the same character and have four
types: motivation (m), actualization (a), termination
(t) and equivalence (e). Cross-character links indi-
cate that a single event affects multiple characters.
For instance, if one character requests something of
another, then each character is assigned an M state
and a cross-character link connects the states.

To see a concrete example of a plot unit represen-
tation, a short fable, “The Father and His Sons,” is
shown in Figure 1(a) and our annotation of its plot
unit structure is shown in Figure 1(b). In this fable,
there are two characters, the “Father” and (collec-
tively) the “Sons”, who go through a series of affect
states depicted chronologically in the two columns.

The first affect state (a1) is produced from sen-
tence #1 (s1) and is a negative state for the sons be-
cause they are quarreling. This state is shared by the

father (via a cross-character link) who has a nega-
tive annoyance state (a2). The father decides that
he wants to stop the sons from quarreling, which
is a mental event (a3). The causal link from a2 to
a3 with an m label indicates that his annoyed state
“motivated” this decision. His first attempt is by ex-
hortations (a4). The first M (a3) is connected to the
second M (a4) with an m (motivation) link, which
represents subgoaling. The father’s overall goal is
to stop the quarreling (a3), and to do so he creates a
subgoal of exhorting the sons to stop (a4). The ex-
hortations fail, which produces a negative state (a5)
for the father. The a causal link indicates an “actu-
alization”, representing the failure of his plan (a4).

This failure motivates a new subgoal: teach the
sons a lesson (a6). At a high level, this subgoal
has two parts, indicated by the two gray regions
(a7 − a10 and a11 − a14). The first gray region
begins with a cross-character link (M to M), which
indicates a request (in this case, to break a bundle
of sticks). The sons fail at this, which upsets them
(a9) but pleases the father (a10). The second gray
region depicts the second part of the father’s sub-
goal; he makes a second request (a11 to a12) to sep-
arate the bundle and break the sticks, which the sons
successfully do, making them happy (a13) and the
father happy (a14) as well. This latter structure (the
second gray region) is an HONORED REQUEST plot
unit structure. At the end, the father’s plan succeeds
(a15) which is an actualization (a link) of his goal
to teach the sons a lesson (a6).
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3 Where Do Affect States Come From?

We briefly overview the variety of situations that can
be represented by affect states in plot units.
Direct Expressions of Emotion: Affect states can
correspond to positive/negative emotional states, as
have been studied in the realm of sentiment anal-
ysis. For example, “Max was disappointed” pro-
duces a negative affect state for Max, and “Max was
pleased” produces a positive affect state for Max.
Situational Affect States: Positive and negative af-
fect states can represent good and bad situational
states that characters find themselves in. These
states do not represent emotion, but indicate whether
a situation (state) is good or bad for a character
based on world knowledge. e.g., “The wolf had a
bone stuck in his throat.” produces a negative affect
state for the wolf. Similarly, “The woman recovered
her sight.” produces a positive affect state for the
woman.
Plans and Goals: The existence of a plan or goal is
represented as a mental state (M). Plans and goals
can be difficult to detect automatically and can be
revealed in many ways, such as:
• Direct expressions of plans/goals: a plan/goal
may be explicitly stated (e.g., “John wants food”).
• Speech acts: a plan or goal may be revealed
through a speech act. For example, “the wolf asked
an eagle to extract the bone” is a directive speech
act that indicates the wolf’s plan to resolve its
negative state (having a bone stuck). This example
illustrates how a negative state (bone stuck) can
motivate a mental state (plan). When a speech act
involves multiple characters, it produces multiple
mental states.
• Inferred plans/goals: plans and goals are some-
times inferred from actions. e.g., “the lion hunted
deer” implies that the lion has a plan to obtain food.
Similarly, “the serpent spat poison at John” implies
that the serpent wants to kill John.
• Plan/Goal completion: Plans and goals produce
+/- affect states when they succeed or fail. For
example, if the eagle successfully extracts the bone
from the wolf’s throat, then both the wolf and the
eagle will have positive affect states because both
were successful in their respective goals.

We observed that situational and plan/goal states
often originate from an action. When a character is

acted upon (the patient of a verb), then the charac-
ter may be in a positive or negative state depend-
ing upon whether the action was good or bad for
them based on world knowledge. For example, be-
ing fed, paid or adopted is generally desirable, but
being chased, eaten, or hospitalized is usually unde-
sirable. Consequently, we decided to create a lex-
icon of patient polarity verbs that produce positive
or negative states for their patients. In Section 4.2,
we present two methods for automatically harvest-
ing these verbs from a Web corpus.

4 AESOP: Automatically Generating Plot
Unit Representations

Our system, AESOP, automatically creates plot unit
representations for narrative text. AESOP has four
main steps: affect state recognition, character iden-
tification, affect state projection, and link creation.
During affect state recognition, AESOP identifies
words that may be associated with positive, nega-
tive, and mental states. AESOP then identifies the
main characters in the story and applies affect pro-
jection rules to map the affect states onto these char-
acters. During this process, some additional affect
states are inferred based on verb argument structure.
Finally, AESOP creates cross-character links and
causal links between affect states. We also present
two corpus-based methods to automatically produce
a new resource for affect state recognition: a patient
polarity verb lexicon.

4.1 Plot Unit Creation

4.1.1 Recognizing Affect States
The basic building blocks of plot units are af-

fect states which come in three flavors: positive,
negative, and mental. In recent years, many pub-
licly available resources have been created for sen-
timent analysis and other types of semantic knowl-
edge. We considered a wide variety of resources and
ultimately decided to experiment with five resources
that most closely matched our needs:
• FrameNet (Baker et al., 1998): We manually

identified 87 frame classes that seem to be associ-
ated with affect: 43 mental classes (e.g., COMMU-
NICATION and NEEDING), 22 positive classes (e.g.,
ACCOMPLISHMENT and SUPPORTING), and 22 neg-
ative classes (e.g., CAUSE HARM and PROHIBIT-
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ING). We use the verbs listed for these classes to
produce M, +, and - affect states.
•MPQA Lexicon (Wilson et al., 2005b): We used

the words listed as having positive or negative senti-
ment polarity to produce +/- states, when they occur
with the designated part-of-speech.
• OpinionFinder (Wilson et al., 2005a) (Version

1.4) : We used the +/- labels assigned by its con-
textual polarity classifier (Wilson et al., 2005b) to
create +/- states and the MPQASD tags produced
by its Direct Subjective and Speech Event Identifier
(Choi et al., 2006) to produce mental (M) states.
• Semantic Orientation Lexicon (Takamura et al.,

2005): We used the words listed as having posi-
tive or negative polarity to produce +/- affect states,
when they occur with the designated part-of-speech.
• Speech Act Verbs: We used 228 speech act

verbs from (Wierzbicka, 1987) to produce M states.

4.1.2 Identifying the Characters
For the purposes of this work, we made two sim-

plifying assumptions: (1) There are only two char-
acters per fable1, and (2) Both characters are men-
tioned in the fable’s title. The problem of corefer-
ence resolution for fables is somewhat different than
for other genres, primarily because the characters
are often animals (e.g., he=owl). So we hand-crafted
a simple rule-based coreference system. First, we
apply heuristics to determine number and gender
based on word lists, WordNet (Miller, 1990) and
part-of-speech tags. If no determination of a char-
acter’s gender or number can be made, we employ a
process of elimination. Given the two character as-
sumption, if one character is known to be male, but
there are female pronouns in the fable, then the other
character is assumed to be female. The same is done
for number agreement. Finally, if there is only one
character between a pronoun and the beginning of
a document, then we resolve the pronoun with that
character and the character assumes the gender and
number of the pronoun. Lastly, WordNet provides
some additional resolutions by exploiting hypernym
relations, for instance, linking peasant with man.

4.1.3 Mapping Affect States onto Characters
Plot unit representations are not just a set of af-

fect states, but they are structures that capture the
1We only selected fables that had two main characters.

chronological ordering of states for each character
as the narrative progresses. Consequently, every af-
fect state needs to be attributed to a character. Since
most plots revolve around events, we use verb argu-
ment structure as the primary means for projecting
affect states onto characters.

We developed four affect projection rules that or-
chestrate how affect states are assigned to the char-
acters. We used the Sundance parser (Riloff and
Phillips, 2004) to produce a shallow parse of each
sentence, which includes syntactic chunking, clause
segmentation, and active/passive voice recognition.
We normalized the verb phrases with respect to ac-
tive/passive voice to simplify the rules. We made the
assumption that the Subject of the VP is its AGENT
and the Direct Object of the VP is its PATIENT.2

The rules only project affect states onto AGENTS
and PATIENTS that refer to a character in the story.
The four projection rules are presented below.

1. AGENT VP : This rule applies when the VP
has no PATIENT or the PATIENT corefers with the
AGENT. All affect tags assigned to the VP are pro-
jected onto the AGENT. Example: “Mary laughed
(+)” projects a + affect state onto Mary.

2. VP PATIENT : This rule applies when the VP
has no agent, which is common in passive voice con-
structions. All affect tags assigned to the VP are
projected onto the PATIENT. Example: “John was
rewarded (+), projects a + affect state onto John.

3. AGENT VP PATIENT : This rules applies
when both an AGENT and PATIENT are present, do
not corefer, and at least one of them is a character. If
the PATIENT is a character, then all affect tags asso-
ciated with the VP are projected onto the PATIENT.
If the AGENT is a character and the VP has an M
tag, then we also project an M tag onto the AGENT
(representing a shared, cross-character mental state).

4. AGENT VERB1 to VERB2 PATIENT : This
rule has two cases: (a) If the AGENT and PATIENT
refer to the same character, then we apply Rule #1.
Example: “Bo decided to teach himself...” (b) If the
AGENT and PATIENT are different, then we apply
Rule #1 to VERB1 and Rule #2 to VERB2.

Finally, if an adverb or adjectival phrase has af-
fect, then that affect is mapped onto the preceding
VP and the rules above are applied. For all of the

2This is not always correct, but worked ok in our fables.
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rules, if a clause contains a negation word, then we
flip the polarity of all words in that clause.

4.1.4 Inferring Affect States
Recognizing plans and goals depends on world

knowledge and inference, and is beyond the scope
of this paper. However, we identified two cases
where affect states often can be inferred based on
syntactic properties. The first case involves verb
phrases (VPs) that have both an AGENT and PA-
TIENT, which corresponds to projection rule #3. If
the VP has polarity, then rule #3 assigns that po-
larity to the PATIENT, not the AGENT. For exam-
ple, “John killed Paul” imparts negative polarity on
Paul, but not necessarily on John. Unless we are
told otherwise, one assumes that John intentionally
killed Paul, and so in a sense, John accomplished
his goal. Consequently, this action should produce a
positive affect state for John. We capture this notion
of accomplishment as a side effect of projection rule
#3: if the VP has +/- polarity, then we produce an
inferred positive state for the AGENT.

The second case involves infinitive verb phrases
of the form: “AGENT VERB1 TO VERB2 PA-
TIENT” (e.g., “Susan tried to warn Mary”). The
infinitive VP construction suggests that the AGENT
has a goal or plan that is being put into motion (e.g.,
tried to, wanted to, attempted to, hoped to, etc.). To
capture this intuition, in rule #4 if VERB1 does not
already have an affect state assigned to it then we
produce an inferred mental state for the AGENT.

4.1.5 Causal and Cross-Character Links
Our research is focused primarily on creating af-

fect states for characters, but plot unit structures
also include cross-character links to connect states
that are shared across characters and causal links
between states for a single character. As an ini-
tial attempt to create complete plot units, AESOP
produces links using simple heuristics. A cross-
character link is created when two characters in a
clause have affect states that originated from the
same word. A causal link is created between each
pair of (chronologically) consecutive affect states
for the same character. Currently, AESOP only pro-
duces forward causal links (motivation (m), actual-
ization (a)) and does not produce backward causal
links (equivalence (e), termination (t)). For forward

links, the causal syntax only allows for five cases:
M

m→ M , +
m→ M , − m→ M , M a→ +, M a→ −.

So when AESOP produces a causal link between
two affect states, the order and types of the two states
uniquely determine which label it gets (m or a).

4.2 Generating PPV Lexicons

During the course of this research, we identified a
gap in currently available knowledge: we are not
aware of existing resources that identify verbs which
produce a desirable/undesirable state for their pa-
tients even though the verb itself does not carry po-
larity. For example, the verb eat describes an action
that is generally neutral, but being eaten is clearly
an undesirable state. Similarly, the verb fed does not
have polarity, but being fed is a desirable state for the
patient. In the following sections, we try to fill this
gap by using corpus-based techniques to automati-
cally acquire a Patient Polarity Verb (PPV) Lexicon.

4.2.1 PPV Harvesting with Evil/Kind Agents
The key idea behind our first approach is to iden-

tify verbs that frequently occur with evil or kind
agents. Our intuition was that an “evil” agent will
typically perform actions that are bad for the patient,
while a “kind” agent will typically perform actions
that are good for the patient.

We manually identified 40 stereotypically evil
agent words, such as monster, villain, terrorist, and
murderer, and 40 stereotypically kind agent words,
such as hero, angel, benefactor, and rescuer. We
searched the Google Web 1T N-gram corpus to
identify verbs that co-occur with these words as
probable agents. For each agent term, we applied
the pattern “* by [a,an,the] AGENT” and extracted
the matching N-grams. Then we applied a part-of-
speech tagger to each N-gram and saved the words
that were tagged as verbs (i.e., the words in the *
position).3 This process produced 811 negative (evil
agent) PPVs and 1362 positive (kind agent) PPVs.

4.2.2 PPV Bootstrapping over Conjunctions
Our second approach for acquiring PPVs is based

on an observation from sentiment analysis research
that conjoined adjectives typically have the same po-
larity (e.g. (Hatzivassiloglou and McKeown, 1997)).

3The POS tagging quality is undoubtedly lower than if tag-
ging complete sentences but it seemed reasonable.
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Our hypothesis was that conjoined verbs often share
the same polarity as well (e.g., “abducted and
killed” or “rescued and rehabilitated”). We exploit
this idea inside a bootstrapping algorithm to itera-
tively learn verbs that co-occur in conjunctions.

Bootstrapping begins with 10 negative and 10
positive PPV seeds. First, we extracted triples of
the form “w1 and w2” from the Google Web 1T
N -gram corpus that had frequency ≥ 100 and were
lower case. We separated each conjunction into
two parts: a primary VERB (“w1”) and a CONTEXT

(“and w2”), and created a copy of the conjunction
with the roles of w1 and w2 reversed. For example,
“rescued and adopted” produces:

VERB=“rescued” CONTEXT=“and adopted”
VERB=“adopted” CONTEXT=“and rescued”

Next, we applied the Basilisk bootstrapping al-
gorithm (Thelen and Riloff, 2002) to learn PPVs.
Basilisk identifies semantically similar words based
on their co-occurrence with seeds in contextual pat-
terns. Basilisk was originally designed for semantic
class induction using lexico-syntactic patterns, but
has also been used to learn subjective and objective
nouns (Riloff et al., 2003).

Basilisk first identifies the pattern contexts that
are most strongly associated with the seed words.
Words that occur in those contexts are labeled as
candidates and scored based on the strength of their
contexts. The top 5 candidates are selected and the
bootstrapping process repeats. Basilisk produces a
lexicon of learned words as well as a ranked list of
pattern contexts. Since we bootstrapped over verb
conjunctions, we also extracted new PPVs from the
contexts. We ran the bootstrapping process to create
a lexicon of 500 words, and we collected verbs from
the top 500 contexts as well.

5 Evaluation

Plot unit analysis of narrative text is enormously
complex – the idea of creating gold standard plot
unit annotations seemed like a monumental task.
So we began with relatively simple and constrained
texts that seemed appropriate: fables. Fables have
two desirable attributes: (1) they have a small cast
of characters, and (2) they typically revolve around
a moral, which is exemplified by a short and concise
plot. Even so, fables are challenging for NLP due to

anthropomorphic characters, flowery language, and
sometimes archaic vocabulary.

We collected 34 Aesop’s fables from a web site4,
choosing fables that have a true plot (some only con-
tain quotes) and exactly two characters. We divided
them into a development set of 11 stories, a tuning
set of 8 stories, and a test set of 15 stories.

Creating a gold standard was itself a substantial
undertaking, and training non-experts to produce
them did not seem feasible in the short term. So
the authors discussed and iteratively refined manual
annotations for the development and tuning sets un-
til we produced similar results and had a common
understanding of the task. Then two authors inde-
pendently created annotations for the test set, and a
third author adjudicated the differences.

5.1 Evaluation Procedure

For evaluation, we used recall (R), precision (P),
and F-measure (F). In our gold standard, each af-
fect state is annotated with the set of clauses that
could legitimately produce it. In most cases (75%),
we were able to ascribe the existence of a state to
precisely one clause. During evaluation, the system-
produced affect states must be generated from the
correct clause. However, for affect states that could
be ascribed to multiple clauses in a sentence, the
evaluation was done at the sentence level. In this
case, the system-produced affect state must come
from the sentence that contains one of those clauses.

Coreference resolution is far from perfect, so we
created gold standard coreference annotations for
our fables and used them for most of our experi-
ments. This allowed us to evaluate our approach
without coreference mistakes factoring in. In Sec-
tion 5.5, we re-evaluate our final results using auto-
matic coreference resolution.

5.2 Evaluation of Affect States using External
Resources

Our first set of experiments evaluates the quality of
the affect states produced by AESOP using only the
external resources. The top half of Table 1 shows the
results for each resource independently. FrameNet
produced the best results, yielding much higher re-
call than any other resource. The bottom half of Ta-

4www.pacificnet.net/∼johnr/aesop/
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Affect State M (59) + (47) - (37) All (143)
Resource(s) R P F R P F R P F R P F
FrameNet .49 .51 .50 .17 .57 .26 .14 .42 .21 .29 .51 .37
MPQA Lexicon .07 .50 .12 .21 .24 .22 .22 .38 .28 .15 .31 .20
OpinionFinder .42 .40 .41 .00 .00 .00 .03 .17 .05 .18 .35 .24
Semantic Orientation Lexicon .07 .44 .12 .17 .40 .24 .08 .38 .13 .10 .41 .16
Speech Act Verbs .36 .53 .43 .00 .00 .00 .00 .00 .00 .15 .53 .23
FrameNet+MPQA Lexicon .44 .52 .48 .30 .28 .29 .27 .38 .32 .35 .40 .37
FrameNet+OpinionFinder .53 .39 .45 .17 .38 .23 .16 .33 .22 .31 .38 .34
FrameNet+Semantic Orientation Lexicon .49 .51 .50 .26 .36 .30 .22 .42 .29 .34 .45 .39
FrameNet+Speech Act Verbs .51 .48 .49 .17 .57 .26 .14 .42 .21 .30 .49 .37

Table 1: Evaluation results for AESOP using external resources. The # in parentheses is the # of gold affect states.

Affect State M (59) + (47) - (37) All (143)
Resource(s) R P F R P F R P F R P F
- Evil Agent PPVs .07 .50 .12 .21 .40 .28 .46 .46 .46 .22 .44 .29
- Neg Basilisk PPVs .07 .44 .12 .11 .45 .18 .24 .45 .31 .13 .45 .20
- Evil Agent and Neg Basilisk PPVs .05 .43 .09 .21 .38 .27 .46 .40 .43 .21 .39 .27
+ Kind Agent PPVs (θ>1) .03 .33 .06 .28 .17 .21 .00 .00 .00 .10 .19 .13
+ Pos Basilisk PPVs .08 .56 .14 .02 .12 .03 .03 1.00 .06 .05 .39 .09
FrameNet+SOLex+EvilAgentPPVs .49 .54 .51 .30 .38 .34 .46 .42 .44 .42 .46 .44
FrameNet+EvilAgentPPVs .49 .54 .51 .28 .45 .35 .46 .46 .46 .41 .49 .45
FrameNet+EvilAgentPPVs+PosBasiliskPPVs .49 .53 .51 .30 .41 .35 .49 .49 .49 .43 .48 .45

Table 2: Evaluation results for AESOP with PPVs. The # in parentheses is the # of gold affect states.

ble 1 shows the results when combining FrameNet
with other resources. In terms of F score, the only
additive benefit came from the Semantic Orientation
Lexicon, which produced a better balance of recall
and precision and an F score gain of +2.

5.3 Evaluation of Affect States using PPVs

Our second set of experiments evaluates the quality
of the automatically generated PPV lexicons. The
top portion of Table 2 shows the results for the neg-
ative PPVs. The PPVs harvested by the Evil Agent
patterns produced the best results, yielding recall
and precision of .46 for negative states. Note that
M and + states are also generated from the negative
PPVs because they are inferred during affect projec-
tion (Section 4.1.4). The polarity of a negative PPV
can also be flipped by negation to produce a + state.

Basilisk’s negative PPVs achieved similar preci-
sion but lower recall. We see no additional recall
and some precision loss when the Evil Agent and
Basilisk PPV lists are combined. The precision drop
is likely due to redundancy, which creates spurious
affect states. If two different words have negative
polarity but refer to the same event, then only one
negative affect state should be generated. But AE-

SOP will generate two affect states, so one will be
spurious.

The middle section of Table 2 shows the results
for the positive PPVs. Both positive PPV lexicons
were of dubious quality, so we tried to extract a high-
quality subset of each list. For the Kind Agent PPVs,
we computed the ratio of the frequency of the verb
with Evil Agents versus Kind Agents and only saved
verbs with an Evil:Kind ratio (θ) > 1, which yielded
1203 PPVs. For the positive Basilisk PPVs, we used
only the top 100 lexicon and top 100 context verbs,
which yielded 164 unique verbs. The positive PPVs
did generate several correct affect states (including
a - state when a positive PPV was negated), but also
many spurious states.

The bottom section of Table 2 shows the impact
of the learned PPVs when combined with FrameNet
and the Semantic Orientation Lexicon (SOLex).
Adding the Evil Agent PPVs improved AESOP’s F
score from 39% to 44%, mainly due to a +8 recall
gain. The recall of the - states increased from 22%
to 46% with no loss of precision. Interestingly, if
we remove SOLex and use only FrameNet with our
PPVs, precision increases from 46% to 49% and re-
call only drops by -1. Finally, the last row of Table
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2 shows that adding Basilisk’s positive PPVs pro-
duces a small recall boost (+2) with a slight drop in
precision (-1).

Evaluating the impact of PPVs on plot unit struc-
tures is an indirect way of assessing their quality be-
cause creating plot units involves many steps. Also,
our test set is small so many verbs will never appear.
To directly measure the quality of our PPVs, we re-
cruited 3 people to manually review them. We devel-
oped annotation guidelines that instructed each an-
notator to judge whether a verb is generally good or
bad for its patient, assuming the patient is animate.
They assigned each verb to one of 6 categories: ×
(not a verb), 2 (always good), 1 (usually good), 0
(neutral, mixed, or requires inanimate patient), -1
(usually bad), -2 (always bad). Each annotator la-
beled 250 words: 50 words randomly sampled from
each of our 4 PPV lexicons5 (Evil Agent PPVs, Kind
Agent PPVs, Positive Basilisk PPVs, and Negative
Basilisk PPVs) plus 50 verbs labeled as neutral in
the MPQA lexicon.

First, we measured agreement based on three
groupings: negative (-2 and -1), neutral (0), or pos-
itive (1 and 2). We computed κ scores to measure
inter-annotator agreement for each pair of annota-
tors.6, but the κ scores were relatively low because
the annotators had trouble distinguishing the posi-
tive cases from the neutral ones. So we re-computed
agreement using two groupings: negative (-2 and -
1) and not-negative (0 through 2), and obtained κ
scores of .69, .71, and .74. We concluded that peo-
ple largely agree on whether a verb is bad for the
patient, but they do not necessarily agree if a verb is
good for the patient. One possible explanation is that
many “bad” verbs represent physical harm or dan-
ger: these verbs are both plentiful and easy to rec-
ognize. In contrast, “good” verbs are often more ab-
stract and open to interpretation (e.g., is being “en-
vied” or “feared” a good thing?).

We used the labels produced by the two an-
notators with the highest κ score to measure the
accuracy of our PPVs. Both the Evil Agent and
Negative Basilisk PPVs were judged to be 72.5%
accurate, averaged over the judges. The Kind Agent

5The top-ranked Evil/Kind Agent PPV lists (θ > 1) which
yields 1203 kind PPVs, and 477 evil PPVs, the top 164 positive
Basilisk verbs, and the 678 (unique) negative Basilisk verbs.

6We discarded words labeled as not a verb.

PPVs were only about 39% accurate, while the
Positive Basilisk PPVs were nearly 50% accurate.
These results are consistent with our impressions
that the negative PPVs are of relatively high quality,
while the positive PPVs are mixed. Some examples
of learned PPVs that were not present in our other
resources are:
- : censor, chase, fire, orphan, paralyze, scare, sue
+ : accommodate, harbor, nurse, obey, respect, value

5.4 Evaluation of Links
We represented each link as a 5-tuple
〈src-clause, src-state, tgt-clause, tgt-state, link-type〉,
where source/target denotes the direction of the
link, the source/target-states are the affect state type
(+,-,M) and link-type is one of 3 types: actualization
(a), motivation (m), or cross-character (xchar). A
system-produced link is considered correct if all 5
elements of the tuple match the human annotation.

Gold Aff States System Aff States
Links R P F R P F
xchar (56) .79 .85 .82 .18 .43 .25
a (51) .90 .94 .92 .04 .07 .05
m (26) 1.0 .57 .72 .15 .10 .12

Table 3: Link results; parentheses show # of gold links.

The second column of Table 3 shows the perfor-
mance of AESOP when using gold standard affect
states. Our simple heuristics for creating links work
surprisingly well for xchar and a links when given
perfect affect states. However, these heuristics pro-
duce relatively low precision for m links, albeit with
100% recall. This reveals that m links primarily do
connect adjacent states, but we need to be more dis-
criminating when connecting them. The third col-
umn of Table 3 shows the results when using system-
generated affect states. We see that performance is
much lower. This is not particularly surprising, since
AESOP’s F-score is 45%, so over half of the indi-
vidual states are wrong, which means that less than
a quarter of the pairs are correct. From that perspec-
tive, the xchar link performance is reasonable, but
the causal a and m links need improvement.

5.5 Analysis
We performed additional experiments to evaluate
some assumptions and components. First, we cre-
ated a Baseline system that is identical to AESOP
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except that it does not use the affect projection rules.
Instead, it naively projects every affect state in a
clause onto every character in that clause. The first
two rows of the table below show that AESOP’s pre-
cision is double the Baseline, with nearly the same
recall. This illustrates the importance of the projec-
tion rules for mapping affect states onto characters.

R P F
Baseline .44 .24 .31
AESOP, gold coref .43 .48 .45
AESOP, gold coref, infstates .39 .48 .43
AESOP, auto coref, infstates .24 .56 .34

Our gold standard includes pure inference affect
states that are critical to the plot unit structure but
come from world knowledge outside the story itself.
Of 157 affect states in our test set, 14 were pure in-
ference states. We ignored these states in our previ-
ous experiments because our system has no way to
generate them. The third row of the table shows that
including them lowers recall by -4. Generating pure
inferences is an interesting challenge, but they seem
to be a relatively small part of the problem.

The last row of the table shows AESOP’s perfor-
mance when we use our automated coreference re-
solver (Section 4.1.2) instead of gold standard coref-
erence annotations. We see a -15 recall drop coupled
with a +8 precision gain. We were initially puz-
zled by the precision gain but believe that it is pri-
marily due to the handling of quotations. Our gold
standard includes annotations for characters men-
tioned in quotations, but our automated coreference
resolver ignores quotations. Most fables end with
a moral, which is often a quote that may not men-
tion the plot. Consequently, AESOP generates more
spurious affect states from the quotations when us-
ing the gold standard annotations.

6 Related Work and Conclusions

Our research is the first effort to fully automate
the creation of plot unit structures. Other prelimi-
nary work has begun to look at plot unit modelling
for single character stories (Appling and Riedl,
2009). More generally, our work is related to re-
search in narrative story understanding (e.g., (El-
son and McKeown, 2009)), automatic affect state
analysis (Alm, 2009), and automated learning of
scripts (Schank and Abelson, 1977) and other con-

ceptual knowledge structures (e.g., (Mooney and
DeJong, 1985; Fujiki et al., 2003; Chambers and Ju-
rafsky, 2008; Chambers and Jurafsky, 2009; Kasch
and Oates, 2010)). Our work benefitted from prior
research in creating semantic resources such as
FrameNet (Baker et al., 1998) and sentiment lex-
icons and classifiers (e.g., (Takamura et al., 2005;
Wilson et al., 2005b; Choi et al., 2006)). We showed
that affect projection rules can effectively assign af-
fect states to characters. This task is similar to, but
not the same as, associating opinion words with their
targets or topics (Kim and Hovy, 2006; Stoyanov
and Cardie, 2008). Some aspects of affect state iden-
tification are closely related to Hopper and Thomp-
son’s (1980) theory of transitivity. In particular, their
notions of aspect (has an action completed?), benefit
and harm (how much does an object gain/lose from
an action?) and volition (did the subject make a con-
scious choice to act?).

AESOP produces affect states with an F score of
45%. Identifying positive states appears to be more
difficult than negative or mental states. Our sys-
tem’s biggest shortcoming currently seems to hinge
around identifying plans and goals. This includes
the M affect states that initiate plans, the +/- com-
pletion states, as well as their corresponding links.
We suspect that the relatively low recall on positive
affect states is due to our inability to accurately iden-
tify successful plan completions. Finally, these re-
sults are based on fables; plot unit analysis of other
types of texts will pose additional challenges.
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Abstract

Recent times have seen a tremendous growth
in mobile based data services that allow peo-
ple to use Short Message Service (SMS) to
access these data services. In a multilin-
gual society it is essential that data services
that were developed for a specific language
be made accessible through other local lan-
guages also. In this paper, we present a ser-
vice that allows a user to query a Frequently-
Asked-Questions (FAQ) database built in a lo-
cal language (Hindi) using Noisy SMS En-
glish queries. The inherent noise in the SMS
queries, along with the language mismatch
makes this a challenging problem. We handle
these two problems by formulating the query
similarity over FAQ questions as a combina-
torial search problem where the search space
consists of combinations of dictionary varia-
tions of the noisy query and its top-N transla-
tions. We demonstrate the effectiveness of our
approach on a real-life dataset.

1 Introduction

There has been a tremendous growth in the number
of new mobile subscribers in the recent past. Most
of these new subscribers are from developing coun-
tries where mobile is the primary information de-
vice. Even for users familiar with computers and the
internet, the mobile provides unmatched portability.
This has encouraged the proliferation of informa-
tion services built around SMS technology. Several
applications, traditionally available on Internet, are
now being made available on mobile devices using
SMS. Examples include SMS short code services.

Short codes are numbers where a short message in
a predesignated format can be sent to get specific
information. For example, to get the closing stock
price of a particular share, the user has to send a
message IBMSTOCKPR. Other examples are search
(Schusteritsch et al., 2005), access to Yellow Page
services (Kopparapu et al., 2007), Email 1, Blog 2 ,
FAQ retrieval 3 etc. The SMS-based FAQ retrieval
services use human experts to answer SMS ques-
tions.

Recent studies have shown that instant messag-
ing is emerging as the preferred mode of commu-
nication after speech and email.4 Millions of users
of instant messaging (IM) services and short mes-
sage service (SMS) generate electronic content in a
dialect that does not adhere to conventional gram-
mar, punctuation and spelling standards. Words are
intentionally compressed by non-standard spellings,
abbreviations and phonetic transliteration are used.
Typical question answering systems are built for use
with languages which are free from such errors. It
is difficult to build an automated question answer-
ing system around SMS technology. This is true
even for questions whose answers are well docu-
mented like in a Frequently-Asked-Questions (FAQ)
database. Unlike other automatic question answer-
ing systems that focus on searching answers from
a given text collection, Q&A archive (Xue et al.,
2008) or the Web (Jijkoun et al., 2005), in a FAQ
database the questions and answers are already pro-

1http://www.sms2email.com/
2http://www.letmeparty.com/
3http://www.chacha.com/
4http://www.whyconverge.com/
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Figure 1: Sample SMS queries with Hindi FAQs

vided by an expert. The main task is then to iden-
tify the best matching question to retrieve the rel-
evant answer (Sneiders, 1999) (Song et al., 2007).
The high level of noise in SMS queries makes this a
difficult problem (Kothari et al., 2009). In a multi-
lingual setting this problem is even more formidable.
Natural language FAQ services built for users in one
language cannot be accessed in another language.
In this paper we present a FAQ-based question an-
swering system over a SMS interface that solves this
problem for two languages. We allow the FAQ to be
in one language and the SMS query to be in another.

Multi-lingual question answering and information
retrieval has been studied in the past (Sekine and
Grishman, 2003)(Cimiano et al., 2009). Such sys-
tems resort to machine translation so that the search
can be performed over a single language space. In
the two language setting, it involves building a ma-
chine translation system engine and using it such
that the question answering system built for a sin-
gle language can be used.

Typical statistical machine translation systems
use large parallel corpora to learn the translation
probabilities (Brown et al., 2007). Traditionally
such corpora have consisted of news articles and
other well written articles. Since the translation sys-
tems are not trained on SMS language they perform
very poorly when translating noisy SMS language.
Parallel corpora comprising noisy sentences in one
language and clean sentences in another language
are not available and it would be hard to build such
large parallel corpora to train a machine translation
system. There exists some work to remove noise
from SMS (Choudhury et al., 2007) (Byun et al.,
2008) (Aw et al., 2006) (Neef et al., 2007) (Kobus
et al., 2008). However, all of these techniques re-
quire an aligned corpus of SMS and conventional
language for training. Such data is extremely hard
to create. Unsupervised techniques require huge
amounts of SMS data to learn mappings of non-
standard words to their corresponding conventional
form (Acharyya et al., 2009).

Removal of noise from SMS without the use of
parallel data has been studied but the methods used
are highly dependent on the language model and the
degree of noise present in the SMS (Contractor et
al., 2010). These systems are not very effective if
the SMSes contain grammatical errors (or the sys-
tem would require large amounts of training data in
the language model to be able to deal with all pos-
sible types of noise) in addition to misspellings etc.
Thus, the translation of a cleaned SMS, into a second
language, will not be very accurate and it would not
give good results if such a translated SMS is used to
query an FAQ collection.

Token based noise-correction techniques (such as
those using edit-distance, LCS etc) cannot be di-
rectly applied to handle the noise present in the SMS
query. These noise-correction methods return a list
of candidate terms for a given noisy token (E.g.
’gud’ − > ’god’,’good’,’guide’ ) . Considering all
these candidate terms and their corresponding trans-
lations drastically increase the search space for any
multi-lingual IR system. Also , naively replacing the
noisy token in the SMS query with the top matching
candidate term gives poor performance as shown by
our experiments. Our algorithm handles these and
related issues in an efficient manner.

In this paper we address the challenges arising
when building a cross language FAQ-based ques-
tion answering system over an SMS interface. Our
method handles noisy representation of questions in
a source language to retrieve answers across target
languages. The proposed method does not require
hand corrected data or an aligned corpus for explicit
SMS normalization to mitigate the effects of noise.
It also works well with grammatical noise. To the
best of our knowledge we are the first to address
issues in noisy SMS based cross-language FAQ re-
trieval. We propose an efficient algorithm that can
handle noise in the form of lexical and semantic cor-
ruptions in the source language.

2 Problem formulation

Consider an input SMS Se in a source language
e. We view Se as a sequence of n tokens Se =
s1, s2, . . . , sn. As explained in the introduction, the
input is bound to have misspellings and other lexical
and semantic distortions. Also let Qh denote the set
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of questions in the FAQ corpus of a target language
h. Each question Qh ∈ Qh is also viewed as a se-
quence of tokens. We want to find the question Q̂h

from the corpus Qh that best matches the SMS Se.

The matching is assisted by a source dictionary
De consisting of clean terms in e constructed from
a general English dictionary and a domain dictio-
nary of target language Dh built from all the terms
appearing in Qh. For a token si in the SMS in-
put, term te in dictionary De and term th in dictio-
nary Dh we define a cross-lingual similarity mea-
sure α(th, te, si) that measures the extent to which
term si matches th using the clean term te. We con-
sider th a cross lingual variant of si if for any te the
cross language similarity measure α(th, te, si) > ε.
We denote this as th ∼ si.

We define a weight function ω(th, te, si) using the
cross lingual similarity measure and the inverse doc-
ument frequency (idf) of th in the target language
FAQ corpus. We also define a scoring function to as-
sign a score to each question in the corpusQh using
the weight function. Consider a question Qh ∈ Qh.
For each token si, the scoring function chooses the
term from Qh having the maximum weight using
possible clean representations of si; then the weight
of the n chosen terms are summed up to get the
score. The score measures how closely the question
in FAQ matches the noisy SMS string Se using the
composite weights of individual tokens.

Score(Qh) =
n∑

i=1

max
th∈Qh,te∈De & th∼si

ω(th, te, si)

Our goal is to efficiently find the question Q̂h having
the maximum score.

3 Noise removal from queries

In order to process the noisy SMS input we first have
to map noisy tokens in Se to the possible correct lex-
ical representations. We use a similarity measure to
map the noisy tokens to their clean lexical represen-
tations.

3.1 Similarity Measure
For a term te ∈ De and token si of the SMS input
Se, the similarity measure γ(te, si) between them is

γ(te, si) =



LCSRatio(te,si)
EditDistanceSMS(te,si)

if te and si share

same starting

character *

0 otherwise

(1)

Where LCSRatio(te, si) =
length(LCS(te,si))

length(te)
and LCS(te, si)

is the Longest common subsequence between te and si.
* The intuition behind this measure is that people typically type the
first few characters of a word in an SMS correctly. This way we limit
the possible variants for a particular noisy token

The Longest Common Subsequence Ratio (LC-
SRatio) (Melamed et al., 1999) of two strings is the
ratio of the length of their LCS and the length of the
longer string. Since in the SMS scenario, the dictio-
nary term will always be longer than the SMS token,
the denominator of LCSRatio is taken as the length
of the dictionary term.

The EditDistanceSMS (Figure 2) compares the
Consonant Skeletons (Prochasson et al., 2007) of the
dictionary term and the SMS token. If the Leven-
shtein distance between consonant skeletons is small
then γ(te, si) will be high. The intuition behind us-
ing EditDistanceSMS can be explained through
an example. Consider an SMS token “gud” whose
most likely correct form is “good”. The longest
common subsequence for “good” and “guided” with
“gud” is “gd”. Hence the two dictionary terms
“good” and “guided” have the same LCSRatio of 0.5
w.r.t “gud”, but the EditDistanceSMS of “good”
is 1 which is less than that of “guided”, which has
EditDistanceSMS of 2 w.r.t “gud”. As a result the
similarity measure between “gud” and “good” will
be higher than that of “gud” and “guided”. Higher
the LCSRatio and lower the EditDistanceSMS ,
higher will be the similarity measure. Hence, for
a given SMS token “byk”, the similarity measure of
word “bike“ is higher than that of “break”.

4 Cross lingual similarity

Once we have potential candidates which are the
likely disambiguated representations of the noisy
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Procedure EditDistanceSMS(te, si)
Begin

return LevenshteinDistance(CS(si), CS(te)) + 1
End

Procedure CS (t): // Consonant Skeleton Generation
Begin

Step 1. remove consecutive repeated characters in t
// (fall→ fal)

Step 2. remove all vowels in t
//(painting → pntng, threat→ thrt)

return t
End

Figure 2: EditDistanceSMS

term, we map these candidates to appropriate terms
in the target language. We use a statistical dictionary
to achieve this cross lingual mapping.

4.1 Statistical Dictionary

In order to build a statistical dictionary we use
the statistical translation model proposed in (Brown
et al., 2007). Under IBM model 2 the transla-
tion probability of source language sentence ē =
{t1e, . . . , tje, . . . , tme } and a target language sentence
h̄ = {t1h, . . . , tih, . . . , tle} is given by

Pr(h̄|ē) = φ(l|m)
l∏

i=1

m∑
j=0

τ(tih|tje)a(j|i,m, l).

(2)
Here the word translation model τ(th|te) gives the
probability of translating the source term to target
term and the alignment model a(j|i,m, l) gives the
probability of translating the source term at position
i to a target position j. This model is learnt using an
aligned parallel corpus.

Given a clean term tie in source language we get
all the corresponding terms T = {t1h, . . . , tkh, . . .}
from the target language such that word translation
probability τ(tkh|tie) > ε. We rank these terms ac-
cording to the probability given by the word trans-
lation model τ(th|te) and consider only those tar-
get terms that are part of domain dictionary i.e.
tkh ∈ Dh.

4.2 Cross lingual similarity measure
For each term si in SMS input query, we find all
the clean terms te in source dictionary De for which
similarity measure γ(te, si) > φ. For each of these
term te, we find the cross lingual similar terms Tte
using the word translation model. We compute the
cross lingual similarity measure between these terms
as

α(si, te, th) = γ(te, si).τ(th, te) (3)

The measure selects those terms in target lan-
guage that have high probability of being translated
from a noisy term through one or more valid clean
terms.

4.3 Cross lingual similarity weight
We combine the idf and the cross lingual similarity
measure to define the cross lingual weight function
ω(th, te, si) as

ω(th, te, si) = α(th, te, si).idf(th) (4)

By using idf we give preference to terms that are
highly discriminative. This is necessary because
queries are distinguished from each other using in-
formative words. For example for a given noisy
token “bck” if a word translation model produces
a translation output “wapas” (as in came back) or
“peet” or “qamar” (as in back pain) then idf will
weigh “peet” more as it is relatively more discrim-
inative compared to “wapas” which is used fre-
quently.

5 Pruning and matching

In this section we describe our search algorithm and
the preprocessing needed to find the best question
Q̂h for a given SMS query.

5.1 Indexing
Our algorithm operates at a token level and its corre-
sponding cross lingual variants. It is therefore nec-
essary to be able to retrieve all questions Qh

th
that

contain a given target language term th. To do this
efficiently we index the questions in FAQ corpus us-
ing Lucene5. Each question in FAQ is treated as a
document. It is tokenized using whitespace as de-
limiter before indexing.

5http://lucene.apache.org/java/docs/

90



The cross lingual similarity weight calculation re-
quires the idf for a given term th. We query on this
index to determine the number of documents f that
contain th. The idf of each term in Dh is precom-
puted and stored in a hashtable with th as the key.
The cross lingual similarity measure calculation re-
quires the word translation probability for a given
term te. For every te in dictionary De, we store
Tte in a hashmap that contains a list of terms in the
target language along with their statistically deter-
mined translation probability τ(th|te) > ε, where
th ∈ Dh.

Since the query and the FAQs use terms from dif-
ferent languages, the computation of IDF becomes a
challenge (Pirkola, 1998) (Oard et al., 2007). Prior
work uses a bilingual dictionary for translations for
calculating the IDF. We on the other hand rely on
a statistical dictionary that has translation probabil-
ities. Applying the method suggested in the prior
work on a statistical dictionary leads to errors as the
translations may themselves be inaccurate.

We therefore calculate IDFs for target language
term (translation) and use it in the weight measure
calculation. The method suggested by Oard et al
(Oard et al., 2007) is more useful in retrieval tasks
for multiple documents, while in our case we need
to retrieve a specific document (FAQ).

5.2 List Creation
Given an SMS input string Se, we tokenize it on
white space and replace any occurrence of digits to
their string based form (e.g. 4get, 2day) to get a se-
ries of n tokens s1, s2, . . . , sn. A list Le

i is created
for each token si using terms in the monolingual dic-
tionary De. The list for a single character SMS to-
ken is set to null as it is most likely to be a stop word.
A term te from De is included in Le

i if it satisfies the
threshold condition

γ(te, si) > φ (5)

The threshold value φ is determined experimen-
tally. For every te ∈ Le

i we retrieve Tte and then
retrieve the idf scores for every th ∈ Tte . Using the
word translation probabilities and the idf score we
compute the cross lingual similarity weight to create
a new list Lh

i . A term th is included in the list only
if

τ(th|te) > 0.1 (6)

This probability cut-off is used to prevent poor
quality translations from being included in the list.

If more than one term te has the same transla-
tion th, then th can occur more than once in a given
list. If this happens, then we remove repetitive oc-
currences of th and assign it a weight equal to the
maximum weight amongst all occurrences in the list,
multiplied by the number of times it occurs. The
terms th in Lh

i are sorted in decreasing order of their
similarity weights. Henceforth, the term “list” im-
plies a sorted list.

For example given a SMS query “hw mch ds it cst
to stdy in india” as shown in Fig. 3, for each token
we create a list of possible correct dictionary words
by dictionary look up. Thus for token “cst” we get
dictionary words lik “cost, cast, case, close”. For
each dictionary word we get a set of possible words
in Hindi by looking at statistical translation table.
Finally we merged the list obtained to get single list
of Hindi words. The final list is ranked according to
their similarity weights.

5.3 Search algorithm
Given Se containing n tokens, we create n sorted
lists Lh

1 , L
h
2 , . . . , L

h
n containing terms from the do-

main dictionary and sorted according to their cross
lingual weights as explained in the previous section.
A naive approach would be to query the index using
each term appearing in all Lh

i to build a Collection
set C of questions. The best matching question Q̂h

will be contained in this collection. We compute the
score of each question in C using Score(Q) and the
question with highest score is treated as Q̂h. How-
ever the naive approach suffers from high runtime
cost.

Inspired by the Threshold Algorithm (Fagin et
al., 2001) we propose using a pruning algorithm
that maintains a much smaller candidate set C of
questions that can potentially contain the maximum
scoring question. The algorithm is shown in Fig-
ure 4. The algorithm works in an iterative manner.
In each iteration, it picks the term that has maxi-
mum weight among all the terms appearing in the
lists Lh

1 , L
h
2 , . . . , L

h
n. As the lists are sorted in the

descending order of the weights, this amounts to
picking the maximum weight term amongst the first
terms of the n lists. The chosen term th is queried to
find the set Qth . The set Qth is added to the candi-
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Figure 3: List creation

date set C. For each question Q ∈ Qth , we compute
its score Score(Q) and keep it along with Q. After
this the chosen term th is removed from the list and
the next iteration is carried out. We stop the iterative
process when a thresholding condition is met and fo-
cus only on the questions in the candidate set C. The
thresholding condition guarantees that the candidate
set C contains the maximum scoring question Q̂h.
Next we develop this thresholding condition.

Let us consider the end of an iteration. Sup-
pose Q is a question not included in C. At
best, Q will include the current top-most tokens
Lh

1 [1], Lh
2 [1], . . . , Lh

n[1] from every list. Thus, the
upper bound UB on the score of Q is

Score(Q) ≤
n∑

i=0

ω(Lh
i [1]).

Let Q∗ be the question in C having the maximum
score. Notice that if Q∗ ≥ UB, then it is guaranteed
that any question not included in the candidate set C
cannot be the maximum scoring question. Thus, the
condition “Q∗ ≥ UB” serves as the termination cri-
terion. At the end of each iteration, we check if the
termination condition is satisfied and if so, we can
stop the iterative process. Then, we simply pick the
question in C having the maximum score and return
it.

Procedure Search Algorithm
Input: SMS S = s1, s2, . . . , sn

Output: Maximum scoring question Q̂h.
Begin
∀si, construct Le

i for which γ(si, te) > ε
// Li lists variants of si

Construct lists Lh
1 , L

h
2 , . . . , L

h
n //(see Section 5.2).

// Lh
i lists cross lingual variants of si in decreasing

//order of weight.
Candidate list C = ∅.
repeat
j∗ = argmaxiω(Lh

i [1])
t∗h = Lh

j∗ [1]
// t∗h is the term having maximum weight among
// all terms appearing in the n lists.

Delete t∗h from the list Lh
j∗ .

Retrieve Qt∗
h

using the index
// Qt∗

h
: the set of all questions in Qh

//having the term t∗h
For each Q ∈ Qt∗

h

Compute Score(Q) and
add Q with its score into C

UB =
∑n

i=1 ω(Lh
i [1])

Q̂ = argmaxQ∈CScore(Q).
if Score(Q̂) ≥ UB, then

// Termination condition satisfied
Output Q̂ and exit.

forever
End

Figure 4: Search Algorithm with Pruning

6 Experiments

To evaluate our system we used noisy English SMS
queries to query a collection of 10, 000 Hindi FAQs.
These FAQs were collected from websites of vari-
ous government organizations and other online re-
sources. These FAQs are related to railway reser-
vation, railway enquiry, passport application and
health related issues. For our experiments we asked
6 human evaluators, proficient in both English and
Hindi, to create English SMS queries based on the
general topics that our FAQ collection dealt with.
We found 60 SMS queries created by the evaluators,
had answers in our FAQ collection and we desig-
nated these as the in-domain queries. To measure
the effectiveness of our system in handling out of
domain queries we used a total of 380 SMSes part of
which were taken from the NUS corpus (How et al.,
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whch metro statn z nr pragati maidan ?
dus metro goes frm airpot 2 new delhi rlway statn?
is dere any special metro pas 4 delhi uni students?
whn is d last train of delhi metro?
whr r d auto stands N delhi?

Figure 5: Sample SMS queries

2005) and the rest from the “out-of-domain” queries
created by the human evaluators. Thus the total SMS
query data size was 440. Fig 5 shows some of the
sample queries.

Our objective was to retrieve the correct Hindi
FAQ response given a noisy English SMS query. A
given English SMS query was matched against the
list of indexed FAQs and the best matching FAQ was
returned by the Pruning Algorithm described in Sec-
tion 5. A score of 1 was assigned if the retrieved
answer was indeed the response to the posed SMS
query else we assigned a score of 0. In case of out
of domain queries a score of 1 was assigned if the
output was NULL else we assigned a score of 0.

6.1 Translation System
We used the Moses toolkit (Koehn et al., 2007) to
build an English-Hindi statistical machine transla-
tion system. The system was trained on a collec-
tion of 150, 000 English and Hindi parallel sentences
sourced from a publishing house. The 150, 000 sen-
tences were on a varied range of subjects such as
news, literature, history etc. Apart from this the
training data also contained an aligned parallel cor-
pus of English and Hindi FAQs. The FAQs were
collected from government websites on topics such
as health, education, travel services etc.

Since an MT system trained solely on a collection
of sentences would not be very accurate in translat-
ing questions, we trained the system on an English-
Hindi parallel question corpus. As it was difficult
to find a large collection of parallel text consisting
of questions, we created a small collection of par-
allel questions using 240 FAQs and multiplied them
to create a parallel corpus of 50, 000 sentences. This
set was added to the training data and this helped fa-
miliarize the language model and phrase tables used
by the MT systems to questions. Thus in total the

MT system was trained on a corpus of 200, 000 sen-
tences.

Experiment 1 and 2 form the baseline against
which we evaluated our system. For our experi-
ments the lexical translation probabilities generated
by Moses toolkit were used to build the word trans-
lation model. In Experiment 1 the threshold φ de-
scribed in Equation 5 is set to 1. In Experiment 2
and 3 this is set to 0.5. The Hindi FAQ collection
was indexed using Lucene and a domain dictionary
Dh was created from the Hindi words in the FAQ
collection.

6.2 System Evaluation
We perform three sets of experiments to show how
each stage of the algorithm contributes in improving
the overall results.

6.2.1 Experiment 1

For Experiment 1 the threshold φ in Equation 5
is set to 1 i.e. we consider only those tokens in the
query which belong to the dictionary. This setup il-
lustrates the case when no noise handling is done.
The results are reported in Figure 6.

6.2.2 Experiment 2

For Experiment 2 the noisy SMS query was
cleaned using the following approach. Given a noisy
token in the SMS query it’s similarity (Equation 1)
with each word in the Dictionary is calculated. The
noisy token is replaced with the Dictionary word
with the maximum similarity score. This gives us
a clean English query.

For each token in the cleaned English SMS query,
we create a list of possible Hindi translations of the
token using the statistical translation table. Each
Hindi word was assigned a weight according to
Equation 4. The Pruning algorithm in Section 5 was
then applied to get the best matching FAQ.

6.2.3 Experiment 3

In this experiment, for each token in the noisy En-
glish SMS we obtain a list of possible English vari-
ations. For each English variation a corresponding
set of Hindi words from the statistical translation ta-
ble was obtained. Each Hindi word was assigned
a weight according to Equation 4. As described in
Section 5.2, all Hindi words obtained from English
variations of a given SMS token are merged to create
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Experiment 1 Experiment 2 Experiment 3
MRR Score 0.41 0.68 0.83

Table 1: MRR Scores

F1 Score
Expt 1 (Baseline 1) 0.23
Expt 2 (Baseline 2) 0.68

Expt 3 (Proposed Method) 0.72

Table 2: F1 Measure

a list of Hindi words sorted in terms of their weight.
The Pruning algorithm as described in Section 5 was
then applied to get the best matching FAQ.

We evaluated our system using two different cri-
teria. We used MRR (Mean reciprocal rank) and
the best matching accuracy. Mean reciprocal rank
is used to evaluate a system by producing a list of
possible responses to a query, ordered by probabil-
ity of correctness. The reciprocal rank of a query
response is the multiplicative inverse of the rank of
the first correct answer. The mean reciprocal rank
is the average of the reciprocal ranks of results for a
sample of queries Q.

MRR = 1/|Q|
Q∑

i=1

1/ranki (7)

Best match accuracy can be considered as a spe-
cial case of MRR where the size of the ranked list is
1. As the SMS based FAQ retrieval system will be
used via mobile phones where screen size is a ma-
jor constraint it is crucial to have the correct result
on the top. Hence in our settings the best match ac-
curacy is a more relevant and stricter performance
evaluation measure than MRR.

Table 1 compares the MRR scores for all three
experiments. Our method reports the highest MRR
of 0.83. Figure 6 shows the performance using the
strict evaluation criterion of the top result returned
being correct.

We also experimented with different values of
the threshold for Score(Q) (Section 5.3). The ROC
curve for various threshold is shown in Figure 7. The
result for both in-domain and out-of-domain queries
for the three experiments are shown in Figure 6 for
Score(Q) = 8. The F1 Score for experiments 1, 2 and
3 are shown in Table 2.

Figure 6: Comparison of results

Figure 7: ROC Curve for Score(Q)

6.3 Measuring noise level in SMS queries

In order to quantify the level of noise in the col-
lected SMS data, we built a character-level language
model(LM) using the questions in the FAQ data-set
(vocabulary size is 70) and computed the perplexity
of the language model on the noisy and the cleaned
SMS test-set. The perplexity of the LM on a cor-
pus gives an indication of the average number of bits
needed per n-gram to encode the corpus. Noise re-

Cleaned SMS Noisy SMS

English FAQ collection bigram 16.64 55.19
trigram 9.75 69.41

Table 3: Perplexity for Cleaned and Noisy SMS
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sults in the introduction of many previously unseen
n-grams in the corpus. Higher number of bits are
needed to encode these improbable n-grams which
results in increased perplexity. From Table 3 we can
see the difference in perplexity for noisy and clean
SMS data for the English FAQ data-set. Large per-
plexity values for the SMS dataset indicates a high
level of noise.

For each noisy SMS query e.g. “hw 2 prvnt ty-
phd” we manually created a clean SMS query “how
to prevent typhoid”. A character level language
model using the questions in the clean English FAQ
dataset was created to quantify the level of noise in
our SMS dataset. We computed the perplexity of the
language model on clean and noisy SMS queries.

7 Conclusion

There has been a tremendous increase in information
access services using SMS based interfaces. How-
ever, these services are limited to a single language
and fail to scale for multilingual QA needs. The
ability to query a FAQ database in a language other
than the one for which it was developed is of great
practical significance in multilingual societies. Au-
tomatic cross-lingual QA over SMS is challenging
because of inherent noise in the query and the lack
of cross language resources for noisy processing. In
this paper we present a cross-language FAQ retrieval
system that handles the inherent noise in source lan-
guage to retrieve FAQs in a target language. Our sys-
tem does not require an end-to-end machine transla-
tion system and can be implemented using a sim-
ple dictionary which can be static or constructed
statistically using a moderate sized parallel corpus.
This side steps the problem of building full fledged
translation systems but still enabling the system to
be scaled across multiple languages quickly. We
present an efficient algorithm to search and match
the best question in the large FAQ corpus of tar-
get language for a noisy input question. We have
demonstrated the effectiveness of our approach on a
real life FAQ corpus.
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Abstract

We present a machine learning approach for

the task of ranking previously answered ques-

tions in a question repository with respect to

their relevance to a new, unanswered refer-

ence question. The ranking model is trained

on a collection of question groups manually

annotated with a partial order relation reflect-

ing the relative utility of questions inside each

group. Based on a set of meaning and struc-

ture aware features, the new ranking model is

able to substantially outperformmore straight-

forward, unsupervised similarity measures.

1 Introduction

Open domain Question Answering (QA) is one of

the most complex and challenging tasks in natural

language processing. In general, a question answer-

ing system may need to integrate knowledge coming

from a wide variety of linguistic processing tasks

such as syntactic parsing, semantic role labeling,

named entity recognition, and anaphora resolution

(Prager, 2006). State of the art implementations of

these linguistic analysis tasks are still limited in their

performance, with errors that compound and prop-

agate into the final performance of the QA system

(Moldovan et al., 2002). Consequently, the perfor-

mance of open domain QA systems has yet to ar-

rive at a level at which it would become a feasible

alternative to the current paradigms for information

access based on keyword searches.

Recently, community-driven QA sites such as Ya-

hoo! Answers and WikiAnswers 1 have established

1answers.yahoo.com, wiki.answers.com

a new approach to question answering that shifts

the inherent complexity of open domain QA from

the computer system to volunteer contributors. The

computer is no longer required to perform a deep

linguistic analysis of questions and generate corre-

sponding answers, and instead acts as a mediator

between users submitting questions and volunteers

providing the answers.

An important objective in community QA is to

minimize the time elapsed between the submission

of questions by users and the subsequent posting

of answers by volunteer contributors. One useful

strategy for minimizing the response latency is to

search the QA repository for similar questions that

have already been answered, and provide the cor-

responding ranked list of answers, if such a ques-

tion is found. The success of this approach de-

pends on the definition and implementation of the

question-to-question similarity function. In the sim-

plest solution, the system searches for previously

answered questions based on exact string match-

ing with the reference question. Alternatively, sites

such as WikiAnswers allow the users to mark ques-

tions they think are rephrasings (“alternate word-

ings”, or paraphrases) of existing questions. These

question clusters are then taken into account when

performing exact string matching, therefore increas-

ing the likelihood of finding previously answered

questions that are semantically equivalent to the ref-

erence question.

In order to lessen the amount of work required

from the contributors, an alternative approach is to

build a system that automatically finds rephrasings

of questions, especially since question rephrasing
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seems to be computationally less demanding than

question answering. According to previous work in

this domain, a question is considered a rephrasing of

a reference question Q0 if it uses an alternate word-

ing to express an identical information need. For

example, Q0 and Q1 below are rephrasings of each

other, and consequently they are expected to have

the same answer.

Q0 What should I feed my turtle?

Q1 What do I feed my pet turtle?

Paraphrasings of a new question cannot always be

found in the community QA repository. We believe

that computing a ranked list of existing questions

that at least partially address the original informa-

tion need could also be useful to the user, at least

until other users volunteer to give an exact answer

to the original, unanswered reference question. For

example, in the absence of any additional informa-

tion about the reference question Q0, the expected

answers to questions Q2 and Q3 below may be seen

as partially overlapping in information content with

the expected answer for the reference question Q0.

An answer to question Q4, on the other hand, is less

likely to benefit the user, even though it has a signif-

icant lexical overlap with the reference question.

Q2 What kind of fish should I feed my turtle?

Q3 What do you feed a turtle that is the size of a

quarter?

Q4 What kind of food should I feed a turtle dove?

In this paper, we propose a supervised learning

approach to the question ranking problem, a gen-

eralization of the question paraphrasing problem in

which questions are ranked in a partial order based

on the relative information overlap between their ex-

pected answers and the expected answer of the refer-

ence question. Underlying the question ranking task

is the expectation that the user who submits a ref-

erence question will find the answers of the highly

ranked questions to be more useful than the answers

associated with the lower ranked questions. For the

reference question Q0 above, the learned ranking

model is expected to produce a partial order in which

Q1 is ranked higher than Q2, Q3 and Q4, whereas

Q2 and Q3 are ranked higher than Q4.

2 Partially Ordered Datasets for Question

Ranking

In order to enable the evaluation of question rank-

ing approaches, we have previously created a dataset

of 60 groups of questions (Bunescu and Huang,

2010b). Each group consists of a reference question

(e.g. Q0 above) that is associated with a partially or-

dered set of questions (e.g. Q1 to Q4 above). For

each reference questions, its corresponding partially

ordered set is created from questions in Yahoo! An-

swers and other online repositories that have a high

cosine similarity with the reference question. Out

of the 26 top categories in Yahoo! Answers, the 60

reference questions span a diverse set of categories.

Figure 1 lists the 20 categories covered, where each

category is shown with the number of corresponding

reference questions between parentheses.

Travel (10), Computers & Internet (6),

Beauty & Style (5), Entertainment &

Music (5), Food & Drink (5), Health (5),

Arts & Humanities (3), Cars &

Transportation (3), Consumer Electronics

(3), Pets (3), Family & Relationships

(2), Science & Mathematics (2),

Education & Reference (1), Environment

(1), Local Businesses (1), Pregnancy &

Parenting (1), Society & Culture (1),

Sports (1), Yahoo! Products (1)

Figure 1: The 20 categories represented in the dataset.

Inside each group, the questions are manually an-

notated with a partial order relation, according to

their utility with respect to the reference question.

We use the notation 〈Qi ≻ Qj |Qr〉 to encode the

fact that question Qi ismore useful than question Qj

with respect to the reference question Qr. Similarly,

〈Qi = Qj〉will be used to express the fact that ques-
tions Qi and Qj are reformulations of each other

(the reformulation relation is independent of the ref-

erence question). The partial ordering among the

questionsQ0 toQ4 above can therefore be expressed

concisely as follows: 〈Q0 = Q1〉, 〈Q1 ≻ Q2|Q0〉,
〈Q1 ≻ Q3|Q0〉, 〈Q2 ≻ Q4|Q0〉, 〈Q3 ≻ Q4|Q0〉.
Note that we do not explicitly annotate the rela-

tion 〈Q1 ≻ Q4|Q0〉, since it can be inferred based

on the transitivity of the more useful than relation:

〈Q1 ≻ Q2|Q0〉∧〈Q2 ≻ Q4|Q0〉 ⇒ 〈Q1 ≻ Q4|Q0〉.
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REFERENCE QUESTION (Qr)

Q5 What’s a nice summer camp to go to in Florida?

PARAPHRASING QUESTIONS (P )
Q6 What camps are good for a vacation during the summer in FL?

Q7 What summer camps in FL do you recommend?

USEFUL QUESTIONS (U )
Q8 Does anyone know a good art summer camp to go to in FL?

Q9 Are there any good artsy camps for girls in FL?

Q10 What are some summer camps for like singing in Florida?

Q11 What is a good cooking summer camp in FL?

Q12 Do you know of any summer camps in Tampa, FL?

Q13 What is a good summer camp in Sarasota FL for a 12 year old?

Q14 Can you please help me find a surfing summer camp for beginners in Treasure Coast, FL?

Q15 Are there any acting summer camps and/or workshops in the Orlando, FL area?

Q16 Does anyone know any volleyball camps in Miramar, FL?

Q17 Does anyone know about any cool science camps in Miami?

Q18 What’s a good summer camp you’ve ever been to?

NEUTRAL QUESTIONS (N )

Q19 What’s a good summer camp in Canada?

Q20 What’s the summer like in Florida?

Table 1: A question group.

Also note that no relation is specified between Q2

and Q3, and similarly no relation can be inferred be-

tween these two questions. This reflects our belief

that, in the absence of any additional information re-

garding the user or the “turtle” referenced in Q0, we

cannot compare questions Q2 and Q3 in terms of

their usefulness with respect to Q0.

Table 1 shows another reference questionQ5 from

our dataset, together with its annotated group of

questions Q6 to Q20. In order to make the anno-

tation process easier and reproducible, we have di-

vided it into two levels of annotation. During the

first annotation stage, each question group is parti-

tioned manually into 3 subgroups of questions:

• P is the set of paraphrasing questions.

• U is the set of useful questions.

• N is the set of neutral questions.

A question is deemed useful if its expected answer

may overlap in information content with the ex-

pected answer of the reference question. The ex-

pected answer of a neutral question, on the other

hand, should be irrelevant with respect to the ref-

erence question. Let Qr be the reference question,

Qp ∈ P a paraphrasing question, Qu ∈ U a useful

question, and Qn ∈ N a neutral question. Then the

following relations are assumed to hold among these

questions:

1. 〈Qp ≻ Qu|Qr〉: a paraphrasing question is

more useful than a useful question.

2. 〈Qu ≻ Qn|Qr〉: a useful question is more use-

ful than a neutral question.

Note that as long as these relations hold between

the 3 types of questions, the names of the sub-

groups and their definitions are irrelevant with re-

spect to the implied set of more useful than rela-

tions, since only the implied ternary relations will

be used for training and evaluating question rank-

ing approaches. We also assume that, by tran-

sitivity, the following ternary relations also hold:

〈Qp ≻ Qn|Qr〉, i.e. a paraphrasing question is

more useful than a neutral question. Furthermore, if

Qp1
, Qp2

∈ P are two paraphrasing questions, this

implies 〈Qp1
= Qp2

|Qr〉.
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For the vast majority of questions, the first annota-

tion stage is straightforward and non-controversial.

In the second annotation stage, we perform a finer

annotation of relations between questions in the

middle group U . Table 1 shows two such relations

(using indentation): 〈Q8 ≻ Q9|Q5〉 and 〈Q8 ≻
Q10|Q5〉. Question Q8 would have been a rephras-

ing of the reference question, were it not for the

noun “art” modifying the focus noun phrase “sum-

mer camp”. Therefore, the information content of

the answer to Q8 is strictly subsumed in the infor-

mation content associated with the answer to Q5.

Similarly, inQ9 the focus noun phrase is further spe-

cialized through the prepositional phrase “for girls”.

Therefore, (an answer to) Q9 is less useful to Q5

than (an answer to) Q8, i.e. 〈Q8 ≻ Q9|Q5〉. Fur-

thermore, the focus “art summer camp” in Q8 con-

ceptually subsumes the focus “summer camps for

singing” in Q10, therefore 〈Q8 ≻ Q10|Q5〉.
We call this dataset simple since most of the ref-

erence questions are shorter than the other questions

in their group. We have also created a complex ver-

sion of the same dataset, by selecting as the refer-

ence question in each group a longer question from

the same group. For example, if Q0 were a reference

question, it would be replaced with a more complex

question, such as Q2, or Q3. The annotation is re-

done to reflect the relative usefulness relations with

respect to the new reference questions. We believe

that the new complex dataset is closer to the actual

distribution of questions in community QA reposi-

tories: unanswered questions tend to be more spe-

cific (longer), whereas general questions (shorter)

are more likely to have been answered already. Each

dataset is annotated by two annotators, leading to

a total of 4 datasets: Simple1, Simple2, Complex1,

and Complex2.

Table 2 presents the following statistics on the two

types of datasets (Simple, Complex) for each anno-

tator (1, 2): the total number of paraphrasings (P),
the total number of useful questions (U), the total

number of neutral questions (N ), the total number

of more useful than ordered pairs encoded in the

dataset, either explicitly or through transitivity, and

the Inter-Annotator Agreement (ITA). We compute

the ITA as the precision (P) and recall (R) with re-

spect to the more useful than ordered pairs encoded

in one annotation (Pairs1) relative to the ordered

Dataset P U N Pairs ITA

Simple1 164 775 594 11015 P: 76.6

Simple2 134 778 621 10436 R: 81.6

Complex1 103 766 664 10654 P: 71.3

Complex2 89 730 714 9979 R: 81.3

Table 2: Dataset statistics.

pairs encoded in the other annotation (Pairs2).

P =
|Pairs1 ∩ Pairs2|

Pairs1

R =
|Pairs1 ∩ Pairs2|

Pairs2

The statistics in Table 2 indicate that the second

annotator was in general more conservative in tag-

ging questions as paraphrases or useful questions.

3 Unsupervised Methods for Question

Ranking

An ideal question ranking method would take an ar-

bitrary triplet of questions Qr, Qi and Qj as input,

and output an ordering between Qi and Qj with re-

spect to the reference question Qr, i.e. one of 〈Qi ≻
Qj |Qr〉, 〈Qi = Qj |Qr〉, or 〈Qj ≻ Qi|Qr〉. One ap-
proach is to design a usefulness function u(Qi, Qr)
that measures how useful question Qi is for the ref-

erence question Qr, and define the more useful than

(≻) relation as follows:

〈Qi ≻ Qj |Qr〉 ⇔ u(Qi, Qr) > u(Qj , Qr)

If we define I(Q) to be the information need asso-

ciated with question Q, then u(Qi, Qr) could be de-
fined as a measure of the relative overlap between

I(Qi) and I(Qr). Unfortunately, the information

need is a concept that, in general, is defined only

intensionally and therefore it is difficult to measure.

For lack of an operational definition of the informa-

tion need, we will approximate u(Qi, Qr) directly

as a measure of the similarity between Qi and Qr.

The similarity between two questions can be seen as

a special case of text-to-text similarity, consequently

one possibility is to use a general text-to-text simi-

larity function such as cosine similarity in the vector

space model (Baeza-Yates and Ribeiro-Neto, 1999):

cos(Qi, Qr) =
QT

i Qr

‖Qi‖‖Qr‖

100



Here, Qi and Qr denote the corresponding tf×idf
vectors.

As a measure of question similarity, one major

drawback of cosine similarity is that it is oblivious

of the meanings of words in each question. This par-

ticular problem is illustrated by the three questions

below. Q22 and Q23 have the same cosine similar-

ity with Q21, they are therefore indistinguishable in

terms of their usefulness to the reference question

Q21, even though we expect Q22 to be more use-

ful than Q23 (a place that sells hydrangea often sells

other types of plants too, possibly including cacti).

Q21 Where can I buy a hydrangea?

Q22 Where can I buy a cactus?

Q23 Where can I buy an iPad?

To alleviate the lexical chasm, we can redefine

u(Qi, Qr) to be the similarity measure proposed by

(Mihalcea et al., 2006) as follows:

mcs(Qi, Qr) =

∑

w∈{Qi}

maxSim(w,Qr) ∗ idf(w)

∑

w∈{Qi}

idf(w)
+

∑

w∈{Qr}

maxSim(w,Qi) ∗ idf(w)

∑

w∈{Qr}

idf(w)

Since scaling factors are immaterial for ranking, we

have ignored the normalization constant contained

in the original measure. For each word w ∈ Qi,

maxSim(w, Qr) computes the maximum semantic

similarity between w and any word wr ∈ Qr. The

similarity scores are weighted by the correspond-

ing idf’s, and normalized. A similar score is com-

puted for each word w ∈ Qr. The score computed

by maxSim depends on the actual function used

to compute the word-to-word semantic similarity.

In this paper, we evaluated four of the knowledge-

based measures explored in (Mihalcea et al., 2006):

wup (Wu and Palmer, 1994), res (Resnik, 1995), lin

(Lin, 1998), and jcn (Jiang and Conrath, 1997).

4 Supervised Learning for Question

Ranking

Cosine similarity, henceforth referred as cos, treats

questions as bags-of-words. The meta-measure pro-

posed in (Mihalcea et al., 2006), henceforth called

mcs, treats questions as bags-of-concepts. Both cos

and mcs ignore the syntactic relations between the

words in a question, and therefore may miss impor-

tant structural information. In the next three sec-

tions we describe a set of structural features that we

believe are relevant for judging question similarity.

These and other types of features will be integrated

in an SVM model for ranking, as described later in

Section 4.4.

4.1 Matching the Focus Words

If we consider the question Q24 below as reference,

question Q26 will be deemed more useful than Q25

when using cos or mcs because of the higher rela-

tive lexical and conceptual overlap with Q24. How-

ever, this is contrary to the actual ordering 〈Q25 ≻
Q26|Q24〉, which reflects the fact that Q25, which

expects the same answer type as Q24, should be

deemed more useful than Q26, which has a differ-

ent answer type.

Q24 What are some good thriller movies?

Q25 What are some thriller movies with happy end-

ing?

Q26 What are some good songs from a thriller

movie?

The analysis above shows the importance of us-

ing the answer type when computing the similar-

ity between two questions. However, instead of re-

lying exclusively on a predefined hierarchy of an-

swer types, we identify the question focus of a ques-

tion, defined as the set of maximal noun phrases in

the question that corefer with the expected answer

(Bunescu and Huang, 2010a). Focus nouns such as

movies and songs provide more discriminative in-

formation than general answer types such as prod-

ucts. We use answer types only for questions such

as Q27 or Q28 below that lack an explicit question

focus. In such cases, an artificial question focus is

created from the answer type (e.g. location for Q27,

or method for Q28).
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Q27 Where can I buy a good coffee maker?

Q28 How do I make a pizza?

Let fi and fr be the focus words corresponding to

questions Qi and Qr. We introduce a focus feature

φf , and set its value to be equal with the similarity

between the focus words:

φf (Qi, Qr) = wsim(fi, fr) (1)

We use wsim to denote a generic word meaning sim-

ilarity measure (e.g. wup, res, lin or jcn). When

computing the focus feature, the non-focus word

“movie” in Q26 will not be compared with the fo-

cus word “movies” in Q24, and therefore Q26 will

have a lower value for this feature than Q25, i.e.

φf (Q26, Q24) < φf (Q25, Q24).

4.2 Matching the Main Verbs

In addition to the question focus, the main verb of

a question can also provide key information in es-

timating question-to-question similarity. We define

the main verb to be the content verb that is highest

in the dependency tree of the question, e.g. buy for

Q27, or make for Q28. If the question does not con-

tain a content verb, the main verb is defined to be the

highest verb in the dependency tree, as for example

are in Q24 to Q26. The utility of a question’s main

verb in judging its similarity to other questions can

be seen more clearly in the questions below, where

Q29 is the reference:

Q29 How can I transfer music from iTunes to my

iPod?

Q30 How can I upload music to my iPod?

Q31 How can I play music in iTunes?

The fact that upload, as the main verb of Q30, is

more semantically related to transfer is essential in

deciding that 〈Q30 ≻ Q31|Q29〉, i.e. Q30 is more

useful than Q31 to Q29.

Let vi and vr be the main verbs corresponding to

questions Qi and Qr. We introduce a main verb fea-

ture φv as follows:

φv(Qi, Qr) = wsim(vi, vr) (2)

If Q29 is considered as reference question, it is ex-

pected that the main verb feature for question Q30

will have a higher value than the main verb feature

for Q31, i.e. φf (Q31, Q29) < φf (Q30, Q29).

Figure 2: Matched dependency trees.

4.3 Matching the Dependency Trees

The question focus and the main verb are only two

of the nodes in the syntactic dependency tree of a

question. In general, all the words in a question are

important when judging its semantic similarity with

another question. We therefore propose a more gen-

eral feature that exploits the dependency structure

of the question and, in doing so, it also considers

all the words in the question, like cos and mcs. For

any given question we initially ignore the direction

of the dependency arcs and change the question de-

pendency tree to be rooted at the focus word, as il-

lustrated in Figure 2 for questions Q5 and Q9. In-

terrogative patterns such as “What is” or “Are there

any” are automatically eliminated from the depen-

dency trees. We define the dependency tree similar-

ity between two questions Qi and Qr to be a func-

tion of similarities wsim(vi, vr) computed between

aligned nodes vi ∈ Qi and vr ∈ Qr. The nodes

of two dependency trees are aligned through a func-

tion MaxMatch(ui.C, ur.C) that takes two sets of

children nodes as arguments, one from Qi and one

from Qr, and finds the maximum weighted bipartite

matching between ui.C and ur.C. Given two chil-

dren nodes vi ∈ ui.C and vr ∈ ur.C, the weight of
a potential matching between vi and vr is defined
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simply as wsim(vi, vr). MaxMatch(ui.C, ur.C) is
furthermore constrained to match only nodes that

have compatible part-of-speech tags (e.g. nouns

are matched to nouns, verbs are matched to verbs),

and children nodes that have the same head-modifier

relationship with their parents (i.e. they are both

heads, or they are both dependents of their par-

ents). Table 3 shows the recursive algorithm used

TreeMatch(ui, ur)

[In]: Two dependency tree nodes ui, ur.

[Out]: A set of node pairsM.

1. setM← {(ui, ur)}
2. for each (vi, vr) ∈ MaxMatch(ui.C, ur.C):
3. setM←M∪ TreeMatch(vi, vr)

4. returnM

Table 3: Dependency Tree Matching.

for finding a matching between two question depen-

dency trees rooted at the focus words. The initial

arguments of the algorithm are the two focus words

ui = fi and ur = fr. Thus, the pair (fi, fr) is

the first pair of nodes to be added to the matching

M in step 1. In the next step, we compute the maxi-

mumweighted matching between the children nodes

ui.C and ur.C, and recursively call the matching al-

gorithm on pairs of matched nodes (vi, vr) fromM.

The algorithm stops when MaxMatch returns an

empty matching, which may happen when reach-

ing leaf nodes, or when no pair of children nodes

has compatible POS tags, or child-parent dependen-

cies. Figure 2 shows the results of applying the

tree matching algorithm on questions Q5 and Q9.

Matched nodes share the same index and are shown

in circles, whereas unmatched nodes are shown in

italics.

We introduce a new feature φt(Qi, Qr) whose

value is defined as the dependency tree similarity

between questions Qi and Qr. Once the optimum

matchingM(Qi, Qr) between dependency trees has
been found, φt(Qi, Qr) is computed as the nor-

malized sum of the similarities between pairs of

matched nodes vi and vr, as shown in Equations 3

and 4 below. When computing the similarity be-

tween two matched nodes, we factor in the similar-

ities between corresponding pairs of words on the

paths fi ; vi, fr ; vr between the focus words fi,

fr and the nodes vi, vr, as shown in Equation 5. This

has the effect of reducing the importance of words

that are farther away from the focus word in the de-

pendency tree.

φt(Qi, Qr) =
sim(Qi, Qr)

√

sim(Qi, Qi)sim(Qr, Qr)
(3)

sim(Qi, Qr) =
∑

(vi,vr)∈M(Qi,Qr)

sim(fi ; vi, fr ; vr) (4)

sim(u1 ; un, v1 ; vn) =

n
∏

i=1

wsim(ui, vi) (5)

If the word similarity function is normalized and

defined to return 1 for identical words, the nor-

malizer in Equation 3 becomes equivalent with
√

|Qi||Qr|. Thus, words that are left unmatched im-

plicitly decrease the dependency tree similarity.

4.4 An SVM Model for Ranking Questions

We consider learning a usefulness function

u(Qi, Qr) of the following general, linear form:

u(Qi, Qr) = w
T φ(Qi, Qr) (6)

The vector φ(Qi, Qr) is defined to contain the fol-

lowing generic features:

1. φf (Qi, Qr) = the semantic similarity between

focus words, as described in Section 4.1.

2. φv(Qi, Qr) = the semantic similarity between

main verbs, as described in Section 4.2.

3. φt(Qi, Qr) = the semantic similarity between

the dependency trees, as described in Sec-

tion 4.3.

4. cos(Qi, Qr) = the cosine similarity between the

two questions, as described in Section 3.

5. mcs(Qi, Qr) = the bag-of-concepts similarity

between the two questions, as described in Sec-

tion 3.

Each of the generic features φf , φv, φt, andmcs cor-

responds to four actual features, one for each possi-

ble choice of the word similarity function wsim (i.e.

wup, res, lin or jcn). An additional pair of features

is targeted at questions containing locations:
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6. φl(Qi, Qr) = 1 if both questions contain loca-

tions, 0 otherwise.

7. φd(Qi, Qr) = the normalized geographical dis-

tance between the locations in Qi and Qr, 0 if

φl(Qi, Qr) = 0.

Given two location names, we first find their latitude

and longitude using Google Maps, and then com-

pute the spherical distance between them using the

haversine formula.

The corresponding parameters w will be trained

on pairs from one of the partially ordered datasets

described in Section 2. We use the kernel version of

the large-margin ranking approach from (Joachims,

2002) which solves the optimization problem in Fig-

ure 3 below. The aim of this formulation is to find a

minimize:

J(w, ξ) = 1

2
‖w‖2 + C

∑

ξrij

subject to:

w
T φ(Qi, Qr)−w

T φ(Qj , Qr) ≥ 1− ξrij

ξrij ≥ 0
∀Qr, Qi, Qj ∈ D, 〈Qi ≻ Qj |Qr〉

Figure 3: SVM ranking optimization problem.

weight vector w such that 1) the number of ranking

constraints u(Qi, Qr) ≥ u(Qj , Qr) from the train-

ing data D that are violated is minimized, and 2) the

ranking function u(Qi, Qr) generalizes well beyond
the training data. The learnedw is a linear combina-

tion of the feature vectors φ(Qi, Qr), which makes

it possible to use kernels.

5 Experimental Evaluation

We use the four question ranking datasets described

in Section 2 to evaluate the three similarity mea-

sures cos, mcs, and φt, as well as the SVM rank-

ing model. We report one set of results for each of

the four word similarity measures wup, res, lin or

jcn. Each question similarity measure is evaluated

in terms of its accuracy on the set of ordered pairs,

and the performance is averaged between the two

annotators for the Simple and Complex datasets. If

〈Qi ≻ Qj |Qr〉 is a relation specified in the anno-

tation, we consider the tuple 〈Qi, Qj , Qr〉 correctly

classified if and only if u(Qi, Qr) > u(Qj , Qr),
where u is the question similarity measure. We used

the SVMlight 2 implementation of ranking SVMs,

with a cubic kernel and the standard parameters. The

SVM ranking model was trained and tested using

10-fold cross-validation, and the overall accuracy

was computed by averaging over the 10 folds.

We used the NLTK 3 implementation of the four

similarity measures wup, res, lin or jcn. The idf val-

ues for each word were computed from frequency

counts over the entire Wikipedia. For each ques-

tion, the focus is identified automatically by an SVM

tagger trained on a separate corpus of 2,000 ques-

tions manually annotated with focus information

(Bunescu and Huang, 2010a). The SVM tagger

uses a combination of lexico-syntactic features and

a quadratic kernel to achieve a 93.5% accuracy in

a 10-fold cross validation evaluation on the 2,000

questions. The head-modifier dependencies were

derived automatically from the syntactic parse tree

using the head finding rules from (Collins, 1999).

The syntactic tree is obtained using Spear 4, a syn-

tactic parser which comes pre-trained on an addi-

tional treebank of questions. The main verb of

a question is identified deterministically using a

breadth first traversal of the dependency tree.

The overall accuracy results presented in Table 4

show that the SVM ranking model obtains by far the

best performance on both datasets, a substantial 10%

higher than cos, which is the best performing unsu-

pervised method. The random baseline – assigning

a random similarity value to each pair of questions –

results in 50% accuracy. Even though its use of word

senses was expected to lead to superior results, mcs

does not perform better than cos on this dataset. Our

implementation of mcs did however perform better

than cos on the Microsoft paraphrase corpus (Dolan

et al., 2004). One possible reason for this behav-

ior is that mcs seems to be less resilient than cos

to differences in question length. Whereas the Mi-

crosoft paraphrase corpus was specifically designed

such that “the length of the shorter of the two sen-

tences, in words, is at least 66% that of the longer”

(Dolan and Brockett, 2005), the question ranking

datasets place no constraints on the lengths of the

2svmlight.joachims.org
3www.nltk.org
4www.surdeanu.name/mihai/spear
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Question wup res lin jcn

Dataset cos mcs φt mcs φt mcs φt mcs φt SVM

Simple 73.7 69.1 69.4 71.3 71.8 70.8 69.8 71.9 71.7 82.1

Complex 72.6 64.1 69.6 66.0 71.5 66.9 69.1 69.4 71.0 82.5

Table 4: Pairwise accuracy results.

Dataset all −φf −φv −φt −φl,d −cos −mcs −φf,t

Simple 82.1 79.3 82.0 80.2 81.5 80.3 81.4 78.5

Complex 82.5 81.3 81.3 78.7 81.8 79.2 81.8 77.4

Table 5: Ablation results.

questions. However, even though by themselves the

meaning aware mcs and the structure-and-meaning

aware φt do not outperform the bag-of-words cos,

they do help in increasing the performance of the

SVM ranking model, as can be inferred from the cor-

responding columns in Table 5. The table shows the

results of ablation experiments in which all but one

type of features are used. The results indicate that

all types of features are useful, with significant con-

tributions being brought especially by cos and the

focus related features φf,t.

The measures investigated in this paper are all

compositional and reduce the similarity computa-

tions to word level. The following question patterns

illustrate the need to design more complex similarity

measures that take into account the context of every

word in the question:

P1 Where can I find a job around 〈City 〉?

P2 What are some famous people from 〈City 〉?

P3 What is the population of 〈City 〉?

Below are three instantiations of the first question

pattern:

Q32 Where can I find a job around Anaheim, CA?

Q33 Where can I find a job around Los Angeles?

Q34 Where can I find a job around Vista, CA?

If we take Q32 as reference question, the fact that

the distance between Los Angeles and Anaheim is

smaller than the distance between Vista and Ana-

heim leads the ranking system to rank Q33 as more

useful than Q34 with respect to Q32, which is the

expected result. The preposition “around” from the

city context in the first pattern is a good indica-

tor that proximity relations are relevant in this case.

When the same three cities are used for instantiating

the other two patterns, it can be seen that the prox-

imity relations are no longer as relevant for judging

the relative usefulness of questions.

6 Future Work

We plan to integrate context dependent word sim-

ilarity measures into a more robust question util-

ity function. We also plan to make the dependency

tree matching more flexible in order to account for

paraphrase patterns that may differ in their syntactic

structure. The questions that are posted on commu-

nity QA sites often contain spelling or grammatical

errors. Consequently, we will work on interfacing

the question ranking system with a separate module

aimed at fixing orthographic and grammatical errors.

7 Related Work

The question rephrasing subtask has spawned a di-

verse set of approaches. (Hermjakob et al., 2002)

derive a set of phrasal patterns for question reformu-

lation by generalizing surface patterns acquired au-

tomatically from a large corpus of web documents.

The focus of the work in (Tomuro, 2003) is on deriv-

ing reformulation patterns for the interrogative part

of a question. In (Jeon et al., 2005), word trans-

lation probabilities are trained on pairs of seman-

tically similar questions that are automatically ex-

tracted from an FAQ archive, and then used in a

language model that retrieves question reformula-

tions. (Jijkoun and de Rijke, 2005) describe an FAQ
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question retrieval system in which weighted com-

binations of similarity functions corresponding to

questions, existing answers, FAQ titles and pages

are computed using a vector space model. (Zhao et

al., 2007) exploit the Encarta logs to automatically

extract clusters containing question paraphrases and

further train a perceptron to recognize question para-

phrases inside each cluster based on a combination

of lexical, syntactic and semantic similarity features.

More recently, (Bernhard and Gurevych, 2008) eval-

uated various string similarity measures and vec-

tor space based similarity measures on the task of

retrieving question paraphrases from the WikiAn-

swers repository. The aim of the question search

task presented in (Duan et al., 2008) is to return

questions that are semantically equivalent or close

to the queried question, and is therefore similar to

our question ranking task. Their approach is eval-

uated on a dataset in which questions are catego-

rized either as relevant or irrelevant. Our formula-

tion of question ranking is more general, and in par-

ticular subsumes the annotation of binary question

categories such as relevant vs. irrelevant, or para-

phrases vs. non-paraphrases. Moreover, we are able

to exploit the annotated utility relations as super-

vision in a learning for ranking approach, whereas

(Duan et al., 2008) use the annotated dataset to tune

the 3 parameters of a mostly unsupervised approach.

The question ranking task was first formulated in

(Bunescu and Huang, 2010b), where an initial ver-

sion of the dataset was also described. In this pa-

per, we introduce 4 versions of the dataset, a more

general meaning and structure aware similarity mea-

sure, and a supervised model for ranking that sub-

stantially outperforms the previously proposed util-

ity measures.

8 Conclusion

We presented a supervised learning approach to the

question ranking task in which previously known

questions are ordered based on their relative util-

ity with respect to a new, reference question. We

created four versions of a dataset of 60 groups of

questions 5, each annotated with a partial order rela-

tion reflecting the relative utility of questions inside

each group. An SVM ranking model was trained

5The dataset will be made publicly available.

on the dataset and evaluated together with a set of

simpler, unsupervised question-to-question similar-

ity models. Experimental results demonstrate the

importance of using structure and meaning aware

features when computing the relative usefulness of

questions.
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Abstract

The PECO framework is a knowledge repre-
sentation for formulating clinical questions.
Queries are decomposed into four aspects,
which are Patient-Problem (P), Exposure (E),
Comparison (C) and Outcome (O). However,
no test collection is available to evaluate such
framework in information retrieval. In this
work, we first present the construction of a
large test collection extracted from system-
atic literature reviews. We then describe an
analysis of the distribution of PECO elements
throughout the relevant documents and pro-
pose a language modeling approach that uses
these distributions as a weighting strategy. In
our experiments carried out on a collection of
1.5 million documents and 423 queries, our
method was found to lead to an improvement
of 28% in MAP and 50% in P@5, as com-
pared to the state-of-the-art method.

1 Introduction

In recent years, the volume of health and biomedi-
cal literature available in electronic form has grown
exponentially. MEDLINE, the authoritative reposi-
tory of citations from the medical and bio-medical
domain, contains more than 18 million citations.
Searching for clinically relevant information within
this large amount of data is a difficult task that med-
ical professionals are often unable to complete in a
timely manner. A better access to clinical evidence
represents a high impact application for physicians.

Evidence-Based Medicine (EBM) is a widely ac-
cepted paradigm for medical practice (Sackett et al.,
1996). EBM is defined as the conscientious, explicit
and judicious use of current best evidence in making

decisions about patient care. Practice EBM means
integrating individual clinical expertise with the best
available external clinical evidence from systematic
research. It involves tracking down the best evi-
dence from randomized trials or meta-analyses with
which to answer clinical questions. Richardson et
al. (1995) identified the following four aspects as the
key elements of a well-built clinical question:

• Patient-problem: what are the patient charac-
teristics (e.g. age range, gender, etc.)? What is
the primary condition or disease?

• Exposure-intervention: what is the main in-
tervention (e.g. drug, treatment, duration, etc.)?

• Comparison: what is the exposure compared
to (e.g. placebo, another drug, etc.)?

• Outcome: what are the clinical outcomes (e.g.
healing, morbidity, side effects, etc.)?

These elements are known as the PECO elements.
Physicians are educated to formulate their clinical
questions in respect to this structure. For example, in
the following question: “In patients of all ages with
Parkinson’s disease, does a Treadmill training com-
pared to no training allows to increase the walking
distance?” one can identify the following elements:

• P: Patients of all ages with Parkinson’s disease
• E: Treadmill training
• C: No treadmill training
• O: Walking distance

In spite of this well-defined question structure,
physicians still use keyword-based queries when
they search for clinical evidence. An explanation of
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that is the almost total absence of PECO search in-
terfaces. PubMed1, the most used search interface,
does not allow users to formulate PECO queries
yet. For the previously mentioned clinical question,
a physician would use the query “Treadmill AND
Parkinson’s disease”. There is intuitively much to
gain by using a PECO structured query in the re-
trieval process. This structure specifies the role of
each concept in the desired documents, which is
a clear advantage over a keyword-based approach.
One can for example differentiate two queries in
which a disease would be a patient condition or a
clinical outcome. This conceptual decomposition of
queries is also particularly useful in a sense that it
can be used to balance the importance of each ele-
ment in the search process.

Another important factor that prevented re-
searchers from testing approaches to clinical infor-
mation retrieval (IR) based on PECO elements is
the lack of a test collection, which contains a set of
documents, a set of queries and the relevance judg-
ments. The construction of such a test collection is
costly in manpower. In this paper, we take advan-
tage of the systematic reviews about clinical ques-
tions from Cochrane. Each Cochrane review ex-
amines in depth a clinical question and survey all
the available relevant publications. The reviews are
written for medical professionals. We transformed
them into a TREC-like test collection, which con-
tains 423 queries and 8926 relevant documents ex-
tracted from MEDLINE. In a second part of this pa-
per, we present a model integrating the PECO frame-
work in a language modeling approach to IR. An in-
tuitive method would try to annotate the concepts
in documents into PECO categories. One can then
match the PECO elements in the query to the ele-
ments detected in documents. However, as previous
studies have shown, it is very difficult to automat-
ically annotate accurately PECO elements in docu-
ments. To by-pass this issue, we propose an alter-
native that relies on the observed positional distri-
bution of these elements in documents. We will see
that different types of element have different distri-
butions. By weighting words according to their posi-
tions, we can indirectly weigh the importance of dif-
ferent types of element in search. As we will show

1www.pubmed.gov

in this paper, this approach turns out to be highly
effective.

This paper is organized as follows. We first briefly
review the previous work, followed by a description
of the test collection we have constructed. Next,
we give the details of the method we propose and
present our experiments and results. Lastly, we con-
clude with a discussion and directions for further
work.

2 Related work

The need to answer clinical questions related to a
patient care using IR systems has been well stud-
ied and documented (Hersh et al., 2000; Niu et al.,
2003; Pluye et al., 2005). There are a limited but
growing number of studies trying to use the PECO
elements in the retrieval process. (Demner-Fushman
and Lin, 2007) is one of the few such studies, in
which a series of knowledge extractors is used to
detect PECO elements in documents. These ele-
ments are later used to re-rank a list of retrieved ci-
tations from PubMed. Results reported indicate that
their method can bring relevant citations into higher-
ranking positions, and from these abstracts gener-
ate responses that answer clinicians’ questions. This
study demonstrates the value of the PECO frame-
work as a method for structuring clinical questions.
However, as the focus has been put on the post-
retrieval step (for question-answering), it is not clear
whether PECO elements are useful at the retrieval
step. Intuitively, the integration of PECO elements
in the retrieval process can also lead to higher re-
trieval effectiveness.

The most obvious scenario for testing this would
be to recognize PECO elements in documents prior
to indexing. When a PECO-structured query is for-
mulated, it is matched against the PECO elements
in the documents (Dawes et al., 2007). Neverthe-
less, the task of automatically identifying PECO el-
ements is a very difficult one. There are two major
reasons for that. First, previous studies have indi-
cated that there is a low to moderate agreement rate
among humans for annotating PECO elements. This
is due to the lack of standard definition for the el-
ement’ boundaries (e.g. can be words, phrases or
sentences) but also to the existence of several lev-
els of annotation. Indeed, there are a high number
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of possible candidates for each element and one has
to choose if it is a main element (i.e. playing a ma-
jor role in the clinical study) or secondary elements.
Second is the lack of sufficient annotated data that
can be used to train automatic tagging tools.

Despite all these difficulties, several efficient
detection methods have been proposed (Demner-
Fushman and Lin, 2007; Chung, 2009). Nearly all
of them are however restricted to a coarse-grain an-
notation level (i.e. tagging entire sentences as de-
scribing one element). This kind of coarser-grain
identification is more robust and more feasible than
the one at concept level, and it could be sufficient in
the context of IR. In fact, for IR purposes, what is
the most important is to correctly weight the words
in documents and queries. From this perspective,
an annotation at the sentence level may be suffi-
cient. Notwithstanding, experiments conducted us-
ing a collection of documents that were annotated at
a sentence-level only showed a small increase in re-
trieval accuracy (Boudin et al., 2010b) compared to
a traditional bag-of-words approach.

More recently, Boudin et al. (2010a) proposed an
alternative to the PECO detection issue that relies
on assigning different weights to words according to
their positions in the document. A location-based
weighting strategy is used to emphasize the most
informative parts of documents. They show that
a large improvement in retrieval effectiveness can
be obtained this way and indicate that the weights
learned automatically are correlated to the observed
distribution of PECO elements in documents. In this
work, we propose to go one step further in this direc-
tion by analyzing the distribution of PECO elements
in a large number of documents and define the posi-
tional probabilities of PECO elements accordingly.
These probabilities will be integrated in the docu-
ment language model.

3 Construction of the test collection

Despite the increasing use of search engines by med-
ical professionals, there is no standard test collection
for evaluating clinical IR. Constructing such a re-
source from scratch would require considerable time
and money. One way to overcome this obstacle is
to use already available systematic reviews. Sys-
tematic reviews try to identify, appraise, select and

synthesize all high quality research evidence rele-
vant to a clinical question. The best-known source
of systematic reviews in the healthcare domain is the
Cochrane collaboration2. It consists of a group of
over 15,000 specialists who systematically identify
and review randomized trials of the effects of treat-
ments. In particular, a review contains a reference
section, listing all the relevant studies to the clinical
question. These references can be considered as rel-
evant documents. In our work, we propose to use
these reviews as a way to semi-automatically build a
test collection. As the reviews are made by special-
ists in the area independently from our study, we can
avoid bias in our test collection.

We gathered a subset of Cochrane systematic re-
views and asked a group of annotators, one professor
and four Master students in family medicine, to cre-
ate PECO-structured queries corresponding to the
clinical questions. As clinical questions answered
in these reviews cover various aspects of one topic,
multiple variants of precise PECO queries were gen-
erated for each review. Moreover, in order to be able
to compare a PECO-based search strategy to a real
world scenario, this group have also provided the
keyword-based queries that they would have used
to search with PubMed. Below is an example of
queries generated from the systematic review about
“Aspirin with or without an antiemetic for acute mi-
graine headaches in adults”:

Keyword-based query

[aspirin and migraine]

PECO-structured queries

1. [adults 18 years or more with migraine]P

[aspirin alone]E

[placebo]C

[pain free]O

2. [adults 18 years or more with migraine]P

[aspirin plus an antiemetic]E

[placebo]C

[pain free]O

3. [adults 18 years or more with migraine]P

[aspirin plus metoclopramide]E

[active comparator]C

[use of rescue medication]O

2www.cochrane.org
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All the citations included in the “References” sec-
tion of the systematic review were extracted and
selected as relevant documents. These citations
were manually mapped to PubMed unique identi-
fiers (PMID). This is a long process that was under-
taken by two different workers to minimize the num-
ber of errors. At this step, only articles published in
journals referenced in PubMed are considered (e.g.
conference proceedings are not included).
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Figure 1: Histogram of the number of queries versus the
number of relevant documents.

We selected in sequential order from the set
of new systematic reviews3 and processed 156
Cochrane reviews. There was no restriction about
the topics covered or the number of included refer-
ences. The resulting test collection is composed of
423 queries and 8926 relevant citations (2596 differ-
ent citations). This number reduces to 8138 citations
once we remove the citations without any text in the
abstract (i.e. certain citations, especially old ones,
only contain a title). Figure 1 shows the statistics
derived from the number of relevant documents by
query. In this test collection, the average number of
documents per query is approximately 19 while the
average length of a document is 246 words.

4 Distribution of PECO elements

The observation that PECO elements are not evenly
distributed throughout the documents is not new. In
fact, most existing tagging methods used location-
based features. This information turns out to be very
useful because of the standard structure of medical
citations. Actually, many scientific journals explic-
itly recommend authors to write their abstracts in

3http://mrw.interscience.wiley.com/
cochrane/cochrane clsysrev new fs.html

compliance to the ordered rhetorical structure: In-
troduction, Methods, Results and Discussion. These
rhetorical categories are highly correlated to the dis-
tributions of PECO elements, as some elements are
more likely to occur in certain categories (e.g. clin-
ical outcomes are more likely to appear in the con-
clusion). The position is thus a strong indicator of
whether a text segment contains a PECO element or
not.

To the best of our knowledge, the first analysis
of the distribution of PECO elements in documents
was described in(Boudin et al., 2010a). A small col-
lection of manually annotated abstracts was used to
compute the probability that a PECO element oc-
curs in a specific part of the documents. This study
is however limited by the small number of anno-
tated documents (approximately 50 citations) and
the moderate agreement rate among human annota-
tors. Here we propose to use our test collection to
compute more reliable statistics.

The idea is to use the pairs of PECO-structured
query and relevant document, assuming that if a doc-
ument is relevant then it should contain the same
elements as the query. Of course, this is obvi-
ously not always the case. Errors can be introduced
by synonyms or homonyms and relevant documents
may not contain all of the elements described in the
query. But, with more than 8100 documents, it is
quite safe to say that this method produce fairly reli-
able results. Moreover, a filtering process is applied
to queries removing all non-informative words (e.g.
stopwords, numbers, etc.) from being counted.

There are several ways to look at the distribution
of PECO elements in documents. One can use the
rhetorical structure of abstracts to do that. However,
the high granularity level of such analysis would
make it less precise for IR purposes. Furthermore,
most of the citations available in PubMed are de-
void of explicitly marked sections. It is possible to
automatically detect these sections but only with a
non-negligible error rate (McKnight and Srinivasan,
2003). In our study, we chose to use a fixed num-
ber of partitions by dividing documents into parts of
equal length. This choice is motivated by its repeata-
bility and ease to implement, but also for compari-
son with previous studies.

We divided each relevant document into 10 parts
of equal length on a word level (from P1 to P10). We
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computed statistics on the number of query words
that occur in each of these parts. For each PECO el-
ement, the distribution of query words among the
parts of the documents is not uniform (Figure 2).
We observe distinctive distributions, especially for
Patient-Problem and Exposure elements, indicating
that first and last parts of the documents have higher
chance to contain these elements. This gives us a
clear and robust indication on which specific parts
should be enhanced when searching for a given el-
ement. Our proposed model will exploit the typical
distributions of PECO elements in documents.
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Figure 2: Distribution of each PECO element throughout
the different parts of the documents.

5 Retrieval Method

In this work, we use the language modeling ap-
proach to information retrieval. This approach as-
sumes that queries and documents are generated
from some probability distribution of text (Ponte and
Croft, 1998). Under this assumption, ranking a doc-
ument D as relevant to a query Q is seen as estimat-
ing P(Q|D), the probability that Q was generated by
the same distribution as D. A typical way to score
a document D as relevant to a query Q is to com-
pute the Kullback-Leibler divergence between their
respective language models:

score(Q,D) =
∑
w∈Q

P(w|Q) · log P(w|D) (1)

Under the traditional bag-of-words assumption,
i.e. assuming that there is no need to model term de-

pendence, a simple estimate for P(w|Q) can be ob-
tained by computing Maximum Likelihood Estima-
tion (MLE). It is calculated as the number of times
the word w appears in the query Q, divided by its
length:

P(w|Q) =
count(w,Q)

|Q|

A similar method is employed for estimating
P(w|D). Bayesian smoothing using Dirichlet pri-
ors is however applied to the maximum likelihood
estimator to compensate for data sparseness (i.e.
smoothing probabilities to remove zero estimates).
Given µ the prior parameter and C the collection of
documents, P(w|D) is computed as:

P(w|D) =
count(w,D) + µ · P(w|C)

|D| + µ

5.1 Model definition
In our model, we propose to use the distribution of
PECO elements observed in documents to empha-
size the most informative parts of the documents.
The idea is to get rid of the problem of precisely
detecting PECO elements by using a positional lan-
guage model. To integrate position, we estimate
a series of probabilities that constraints the word
counts to a specific part of the documents instead of
the entire document. Each document D is ranked by
a weighted linear interpolation. Given a document
D divided in 10 parts p ∈ [P1, P2 · · ·P10], P(w|D)

in equation 1 is redefined as:

P ′(w|D) = α · P(w|D) + β · Ptitle(w|D)

+ γ ·
∑

pi∈D

σe · Ppi
(w|D) (2)

where the σe weights for each type of element e

are empirically fixed to the values of the distribution
of PECO elements observed in documents. We then
redefine the scoring function to integrate the PECO
query formulation. The idea is to use the PECO
structure as a way to balance the importance of each
element in the retrieval step. The final scoring func-
tion is defined as:

scorefinal(Q,D) =
∑

e∈PECO

δe · score(Qe, D)
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In our model, there are a total of 7 weighting pa-
rameters, 4 corresponding to the PECO elements in
queries (δP, δE, δC and δO) and 3 for the document
language models (α, β and γ). These parameters
will be determined by cross-validation.

6 Results

In this section, we first describe the details of our
experimental protocol. Then, we present the results
obtained by our model on the constructed test col-
lection.

6.1 Experimental settings

As a collection of documents, we gathered 1.5 mil-
lions of citations from PubMed. We used the fol-
lowing constraints: citations with an abstract, hu-
man subjects, and belonging to one of the follow-
ing publication types: randomized control trials, re-
views, clinical trials, letters, editorials and meta-
analyses. The set of queries and relevance judg-
ments described in Section 3 is used to evaluate
our model. Relevant documents were, if not al-
ready included, added to the collection. Because
each query is generated from a systematic literature
review completed at a time t, we placed an addi-
tional restriction on the publication date of the re-
trieved documents: only documents published be-
fore time t are considered. Before indexing, each
citation is pre-processed to extract its title and ab-
stract text and then converted into a TREC-like doc-
ument format. Abstracts are divided into 10 parts of
equal length (the ones containing less than 10 words
are discarded). The following fields are marked in
each document: title, P1, P2 · · · P10. The following
evaluation measures are used:

• Precision at rank n (P@n): precision computed
on the n topmost retrieved documents.

• Mean Average Precision (MAP): average of
precision measures computed at the point of
each relevant document in the ranked list.

• Number of relevant documents retrieved

All retrieval tasks are performed using an “out-
of-the-shelf” version of the Lemur toolkit4. We use
the embedded tokenization algorithm along with the

4www.lemurproject.org

standard Porter stemmer. The number of retrieved
documents is set to 1000 and the Dirichlet prior
smoothing parameter to µ = 2000. In all our exper-
iments, we use the KL divergence scoring function
(equation 1) as baseline. Statistical significance is
computed using the well-known Student’s t-test. To
determine reasonable weights and avoid overtuning
the parameters, we use a 10-fold cross-validation op-
timizing the MAP values.

6.2 Experiments

We first investigated the impact of using PECO-
structured queries on the retrieval performance. As
far as we know, no quantitative evaluation of the
increase or decrease of performance in comparison
with a keyword-based search strategy has been re-
ported. Schardt et al. (2007) presented a compari-
son between PubMed and a PECO search interface
but failed to demonstrate any significant difference
between the two search protocols. The larger num-
ber of words in PECO-structured queries, on aver-
age 18.8 words per query compared to 4.3 words for
keyword queries, should capture more aspects of the
information need. But, it may also be a disadvan-
tage due to the fact that more noise can be brought
in, causing query-drift issues.

We propose two baselines using the keyword-
based queries. The first baseline (named Baseline-
1) uses keyword queries with the traditional lan-
guage modeling approach. This is one of the state-
of-the-art approaches in current IR research. This
retrieval model considers each word in a query as
an equal, independent source of information. In the
second baseline (named Baseline-2), we consider
multiword phrases. In our test collection, queries
are often composed of multiword phrases such as
“low back pain” or “early pregnancy”. It is clear
that finding the exact phrase “heart failure” is a
much stronger indicator of relevance than just find-
ing “heart” and “failure” scattered within a docu-
ment. The Indri operator #1 is used to perform
phrase-based retrieval. Phrases are already indicated
in queries by the conjunction and (e.g. vaccine and
hepatitis B). A simple regular expression is used to
recognize the phrases.

Results are presented in Table 1. As expected,
phrase-based retrieval leads to some increase in re-
trieval precision (P@5). However, the number of
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relevant documents retrieved is decreased. This is
due to the fact that we use exact phrase matching
that can reduce query coverage. One solution would
be to use unordered window features (Indri operator
#uwn) that would require words to be close together
but not necessarily in an exact sequence order (Met-
zler and Croft, 2005).

The PECO queries use PECO-structured queries
as a bag of words. We observe that PECO queries
do not enhance the average precision but increase
the P@5 significantly. The number of relevant doc-
uments retrieved is also larger. These results indi-
cate that formulating clinical queries according to
the PECO framework enhance the retrieval effec-
tiveness.

Model MAP P@5 #rel. ret.

Baseline-1 0.129 0.151 5369
Baseline-2 0.128 0.161∗ 4645
PECO-queries 0.126 0.172∗ 5433

Table 1: Comparing the performance measures of
keyword-based and PECO-structured queries in terms of
MAP, precision at 5 and number of relevant documents
retrieved (#rel. ret.). (∗: t.test < 0.05)

In a second series of experiments, we evaluated
the model we proposed in Section 5 . We compared
two variants of our model. The first variant (named
Model-1) uses a global σe distribution fixed accord-
ing to the average distribution of all PECO elements
(i.e. the observed probability that a PECO element
occurs in a document’ part, no matter which element
it is). The second variant (named Model-2) uses a
differentiated σe distribution for each type of PECO
element. The idea is to see if, given the fact that
PECO elements have different distributions in docu-
ments, using an adapted weight distribution for each
element can improve the retrieval effectiveness.

Previous studies have shown that assigning a dif-
ferent weight to each PECO element in the query
leads to better results (Demner-Fushman and Lin,
2007; Boudin et al., 2010a). In order to compare
our model with a similar method, we defined another
baseline (named Baseline-3) by fixing the parame-
ters β = 0 and γ = 0 in equation 2. We performed
a grid search (from 0 to 1 by step of 0.1) to find
the optimal δ weights. Regarding the last three pa-

rameters in our full models, namely α, β and γ, we
conducted a second grid search to find their optimal
values. Performance measures obtained in 10-fold
cross-validation (optimizing the MAP measure) by
these models are presented in Table 2.

A significant improvement is obtained by
the Baseline-3 over the keyword-based approach
(Baseline-2). The PECO decomposition of queries
is particularly useful to balance the importance of
each element in the scoring function. We observe a
large improvement in retrieval effectiveness for both
models over the two baselines. This strongly indi-
cates that a weighting scheme based on the word po-
sition in documents is effective. These results sup-
port our assumption that the distribution of PECO
elements in documents can be used to weight words
in the document language model.

However, we do not observe meaningful differ-
ences between Model-1 and Model-2. This tend to
suggest that a global distribution is likely more ro-
bust for IR purposes than separate distributions for
each type of element. Another possible reason is that
our direct mapping from positional distribution to
probabilities may not be the most appropriate. One
may think about using a different transformation, or
performing some smoothing. We will leave this for
our future work.

7 Conclusion

This paper first presented the construction of a test
collection for evaluating clinical information re-
trieval. From a set of systematic reviews, a group
of annotators were asked to generate structured clin-
ical queries and collect relevance judgments. The
resulting test collection is composed of 423 queries
and 8926 relevant documents. This test collection
provides a basis for researchers to experiment with
PECO-structured queries in clinical IR. The test col-
lection introduced in this paper, along with the man-
ual given to the group of annotators, will be available
for download5.

In a second step, this paper addressed the prob-
lem of using the PECO framework in clinical IR. A
straightforward idea is to identify PECO elements in
documents and use the elements in the retrieval pro-
cess. However, this approach does not work well be-

5http://www-etud.iro.umontreal.ca/∼boudinfl/pecodr/
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Model MAP % rel. P@5 % rel. #rel. ret.

Baseline-2 0.128 - 0.161 - 4645
Baseline-3 0.144 +12.5%∗ 0.196 +21.7%† 5780
Model-1 0.164 +28.1%† 0.241 +49.7%† 5768
Model-2 0.163 +27.3%† 0.240 +49.1%† 5770

Table 2: 10-fold cross validation scores for the Baseline-2, Baseline-3 and the two variants of our proposed model
(Model-1 and Model-2). Relative increase over the Baseline-2 is given, #rel. ret. is the number of relevant documents
retrieved. (†: t.test < 0.01, ∗: t.test < 0.05)

cause of the difficulty to automatically detect these
elements. Instead, we proposed a less demanding
approach that uses the distribution of PECO ele-
ments in documents to re-weight terms in the doc-
ument model. The observation of variable distribu-
tions in our test collection led us to believe that the
position information can be used as a robust indica-
tor of the presence of a PECO element. This strategy
turns out to be promising. On a data set composed
of 1.5 million citations extracted with PubMed, our
best model obtains an increase of 28% for MAP
and nearly 50% for P@5 over the classical language
modeling approach.

In future work, we intend to expand our analy-
sis of the distribution of PECO elements to a larger
number of citations. One way to do that would
be to automatically extract PubMed citations that
contain structural markers associated to PECO cate-
gories (Chung, 2009).
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Abstract

In this paper, we present a novel approach to
Web search result clustering based on the au-
tomatic discovery of word senses from raw
text, a task referred to as Word Sense Induc-
tion (WSI). We first acquire the senses (i.e.,
meanings) of a query by means of a graph-
based clustering algorithm that exploits cycles
(triangles and squares) in the co-occurrence
graph of the query. Then we cluster the search
results based on their semantic similarity to
the induced word senses. Our experiments,
conducted on datasets of ambiguous queries,
show that our approach improves search result
clustering in terms of both clustering quality
and degree of diversification.

1 Introduction

Over recent years increasingly huge amounts of
text have been made available on the Web. Popular
search engines such as Yahoo! and Google usually
do a good job at retrieving a small number of rel-
evant results from such an enormous collection of
Web pages (i.e. retrieving with high precision, low
recall). However, current search engines are still fac-
ing the lexical ambiguity issue (Furnas et al., 1987)
– i.e. the linguistic property owing to which any
particular word may convey different meanings. In
a recent study (Sanderson, 2008) – conducted us-
ing WordNet (Miller et al., 1990) and Wikipedia as
sources of ambiguous words – it was reported that
around 3% of Web queries and 23% of the most
frequent queries are ambiguous. Examples include:
“buy B-52” (a cocktail? a bomber? a DJ worksta-
tion? tickets for a band?), “Alexander Smith quotes”

(the novelist? the poet?), “beagle search” (dogs? the
Linux search tool? the landing spacecraft?).

Ambiguity is often the consequence of the low
number of query words entered on average by Web
users (Kamvar and Baluja, 2006). While average
query length is increasing – it is now estimated at
around 3 words per query1 – many search engines
such as Google have already started to tackle the
query ambiguity issue by reranking and diversify-
ing their results, so as to prevent Web pages that are
similar to each other from ranking too high on the
list.

In the past few years, Web clustering engines
(Carpineto et al., 2009) have been proposed as a
solution to the lexical ambiguity issue in Web In-
formation Retrieval. These systems group search re-
sults, by providing a cluster for each specific aspect
(i.e., meaning) of the input query. Users can then se-
lect the cluster(s) and the pages therein that best an-
swer their information needs. However, many Web
clustering engines group search results on the ba-
sis of their lexical similarity. For instance, consider
the following snippets returned for the beagle search
query:

1. Beagle is a search tool that ransacks your...

2. ...the beagle disappearing in search of game...

3. Beagle indexes your files and searches...

While snippets 1 and 3 both concern the Linux
search tool, they do not have any content word in

1http://www.hitwise.com/us/press-center/
press-releases/google-searches-apr-09
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common except our query words. As a result, they
will most likely be assigned to two different clusters.

In this paper we present a novel approach to Web
search result clustering which is based on the auto-
matic discovery of word senses from raw text – a
task referred to as Word Sense Induction (WSI). At
the core of our approach is a graph-based algorithm
that exploits cycles in the co-occurrence graph of
the input query to detect the query’s meanings. Our
experiments on two datasets of ambiguous queries
show that our WSI approach boosts search result
clustering in terms of both clustering quality and de-
gree of diversification.

2 Related Work

Web directories. A first, historical solution to
query ambiguity is that of Web directories, that
is taxonomies providing categories to which Web
pages are manually assigned (e.g., the Open Direc-
tory Project – http://dmoz.org). Given a query,
search results are organized by category. This ap-
proach has three main weaknesses: first, it is static,
thus it needs manual updates to cover new pages;
second, it covers only a small portion of the Web;
third, it classifies Web pages based on coarse cate-
gories. This latter feature of Web directories makes
it difficult to distinguish between instances of the
same kind (e.g., pages about artists with the same
surname classified as Arts:Music:Bands and
Artists). While methods for the automatic clas-
sification of Web documents have been proposed
(e.g., (Liu et al., 2005b; Xue et al., 2008)) and some
problems have been effectively tackled (Bennett and
Nguyen, 2009), these approaches are usually super-
vised and still suffer from relying on a predefined
taxonomy of categories.

Semantic Information Retrieval (SIR). A dif-
ferent direction consists of associating explicit se-
mantics (i.e., word senses or concepts) with queries
and documents, that is, performing Word Sense Dis-
ambiguation (WSD, see Navigli (2009)). SIR is per-
formed by indexing and/or searching concepts rather
than terms, thus potentially coping with two linguis-
tic phenomena: expressing a single meaning with
different words (synonymy) and using the same word
to express various different meanings (polysemy).
Over the years, different methods for SIR have been

proposed (Krovetz and Croft, 1992; Voorhees, 1993;
Mandala et al., 1998; Gonzalo et al., 1999; Kim et
al., 2004; Liu et al., 2005a, inter alia). However, con-
trasting results have been reported on the benefits of
these techniques: it has been shown that WSD has
to be very accurate to benefit Information Retrieval
(Sanderson, 1994) – a result that was later debated
(Gonzalo et al., 1999; Stokoe et al., 2003). Also,
it has been reported that WSD has to be very pre-
cise on minority senses and uncommon terms, rather
than on frequent words (Krovetz and Croft, 1992;
Sanderson, 2000).

SIR relies on the existence of a reference dictio-
nary to perform WSD (typically, WordNet) and thus
suffers from its static nature and its inherent paucity
of most proper nouns. This latter problem is partic-
ularly important for Web searches, as users tend to
retrieve more information about named entities (e.g.,
singers, artists, cities) than concepts (e.g., abstract
information about singers or artists).

Search Result Clustering. A more popular ap-
proach to query ambiguity is that of search result
clustering. Typically, given a query, the system starts
from a flat list of text snippets returned from one or
more commonly-available search engines and clus-
ters them on the basis of some notion of textual simi-
larity. At the root of the clustering approach lies van
Rijsbergen’s (1979) cluster hypothesis: “closely as-
sociated documents tend to be relevant to the same
requests”, whereas documents concerning different
meanings of the input query are expected to belong
to different clusters.

Approaches to search result clustering can be
classified as data-centric or description-centric
(Carpineto et al., 2009). The former focus more on
the problem of data clustering than on presenting the
results to the user. A pioneering example is Scat-
ter/Gather (Cutting et al., 1992), which divides the
dataset into a small number of clusters and, after the
selection of a group, performs clustering again and
proceeds iteratively. Developments of this approach
have been proposed which improve on cluster qual-
ity and retrieval performance (Ke et al., 2009). Other
data-centric approaches use agglomerative hierar-
chical clustering (e.g., LASSI (Yoelle Maarek and
Pelleg, 2000)), rough sets (Ngo and Nguyen, 2005)
or exploit link information (Zhang et al., 2008).

Description-centric approaches are, instead, more
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focused on the description to produce for each
cluster of search results. Among the most popular
and successful approaches are those based on suf-
fix trees (Zamir et al., 1997; Zamir and Etzioni,
1998), including later developments (Crabtree et al.,
2005; Bernardini et al., 2009). Other methods in
the literature are based on formal concept analy-
sis (Carpineto and Romano, 2004), singular value
decomposition (Osinski and Weiss, 2005), spectral
clustering (Cheng et al., 2005), spectral geometry
(Liu et al., 2008), link analysis (Gelgi et al., 2007),
and graph connectivity measures (Di Giacomo et al.,
2007). Search result clustering has also been viewed
as a supervised salient phrase ranking task (Zeng et
al., 2004).

Diversification. Another recent research topic
dealing with the query ambiguity issue is diversifi-
cation, which aims to rerank top search results based
on criteria that maximize their diversity. One of the
first examples of diversification algorithms is based
on the use of similarity functions to measure the
diversity among documents and between document
and query (Carbonell and Goldstein, 1998). Other
techniques use conditional probabilities to deter-
mine which document is most different from higher-
ranking ones (Chen and Karger, 2006) or use affinity
ranking (Zhang et al., 2005), based on topic variance
and coverage. More recently, an algorithm called Es-
sential Pages (Swaminathan et al., 2009) has been
proposed to reduce information redundancy and re-
turn Web pages that maximize coverage with respect
to the input query.

Word Sense Induction (WSI). In contrast to the
above approaches, we perform WSI to dynamically
acquire an inventory of senses of the input query.
Instead of performing clustering on the basis of the
surface similarity of Web snippets, we use our in-
duced word senses to group snippets. Very little
work on this topic exists: vector-based WSI was suc-
cessfully shown to improve bag-of-words ad-hoc In-
formation Retrieval (Schütze and Pedersen, 1995)
and preliminary studies (Udani et al., 2005; Chen
et al., 2008) have provided interesting insights into
the use of WSI for Web search result clustering.
A more recent attempt at automatically identify-
ing query meanings is based on the use of hidden
topics (Nguyen et al., 2009). However, in this ap-
proach topics – estimated from a universal dataset –

are query-independent and thus their number needs
to be established beforehand. In contrast, we aim
to cluster snippets based on a dynamic and finer-
grained notion of sense.

3 Approach

Web search result clustering is usually performed in
three main steps:

1. Given a query q, a search engine (e.g., Yahoo!) is
used to retrieve a list of results R = (r1, . . . , rn);

2. A clustering C = (C0, C1, . . . , Cm) of the results
in R is obtained by means of a clustering algo-
rithm;

3. The clusters in C are optionally labeled with an
appropriate algorithm (e.g., see Zamir and Etzioni
(1998) and Carmel et al. (2009)) for visualization
purposes.

Our key idea is to improve step 2 by means of a
Word Sense Induction algorithm: given a query q,
we first dynamically induce, from a text corpus, the
set of word senses of q (Section 3.1); next, we clus-
ter the Web results on the basis of the word senses
previously induced (Section 3.2).

3.1 Word Sense Induction
Word Sense Induction algorithms are unsupervised
techniques aimed at automatically identifying the
set of senses denoted by a word. These methods in-
duce word senses from text by clustering word oc-
currences based on the idea that a given word –
used in a specific sense – tends to co-occur with the
same neighbouring words (Harris, 1954). Several
approaches to WSI have been proposed in the litera-
ture (see Navigli (2009) for a survey), ranging from
clustering based on context vectors (e.g., Schütze
(1998)) to word clustering (e.g., Lin (1998)) and
co-occurrence graphs (e.g., Widdows and Dorow
(2002)).

Successful approaches such as HyperLex
(Véronis, 2004) – a graph algorithm based on the
identification of hubs in co-occurrence graphs –
have to cope with a high number of parameters to
be tuned (Agirre et al., 2006). To deal with this
issue we propose two variants of a simple, yet
effective, graph-based algorithm for WSI, that we
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describe hereafter. The algorithm consists of two
steps: graph construction and identification of word
senses.

3.1.1 Graph construction

Given a target query q, we build a co-occurrence
graph Gq = (V,E) such that V is a set of context
words related to q and E is the set of undirected
edges, each denoting a co-occurrence between pairs
of words in V . To determine the set of co-occurring
words V , we use the Google Web1T corpus (Brants
and Franz, 2006), a large collection of n-grams (n =
1, . . . , 5) – i.e., windows of n consecutive tokens –
occurring in one terabyte of Web documents. First,
for each content word w we collect the total num-
ber c(w) of its occurrences and the number of times
c(w,w′) that w and w′ occur together in any 5-gram
(we include inflected forms in the count); second,
we use the Dice coefficient to determine the strength
of co-occurrence between w and w′:

Dice(w,w′) =
2c(w,w′)

c(w) + c(w′)
. (1)

The rationale behind Dice is that dividing by the
sum of total counts of the two words drastically de-
creases the ranking of words that tend to co-occur
frequently with many other words (e.g., new, old,
nice, etc.).

The graph Gq = (V,E) is built as follows:

• Our initial vertex set V (0) contains all the con-
tent words from the snippet results of query q
(excluding stopwords); then, we add to V (0) the
highest-ranking words co-occurring with q in the
Web1T corpus, i.e., those words w for which
Dice(q, w) ≥ δ (the threshold δ is established ex-
perimentally, see Section 4.1). We set V := V (0)

and E := ∅.

• For each word w ∈ V (0), we select the high-
est ranking words co-occurring with w in Web1T,
that is those words w′ for which Dice(w,w′) ≥
δ. We add each of these words to V (note that
some w′ might already be in V (0)) and the
corresponding edge {w,w′} to E with weight
Dice(w,w′). Finally, we remove disconnected
vertices.

3.1.2 Identification of word senses
The main idea behind our approach is that edges

in the co-occurrence graph participating in cycles
are likely to connect vertices (i.e., words) belonging
to the same meaning component. Specifically, we fo-
cus on cycles of length 3 and 4, called respectively
triangles and squares in graph theory.

For each edge e, we calculate the ratio of triangles
in which e participates:

Tri(e) =
# triangles e participates in

# triangles e could participate in
(2)

where the numerator is the number of cycles of
length 3 in which e = {w,w′} participates, and the
denominator is the total number of neighbours of w
and w′. Similarly, we define a measure Sqr(e) of
the ratio of squares (i.e., cycles of length 4) an edge
e participates in to the number of possible squares e
could potentially participate in:

Sqr(e) =
# squares e participates in

# squares e could participate in
(3)

where the numerator is the number of squares con-
taining e and the denominator is the number of pos-
sible distinct pairs of neighbours of w and w′. If no
triangle (or square) exists for e, the value of the cor-
responding function is set to 0.

In order to disconnect the graph and determine
the meaning components, we remove all the edges
whose Tri (or Sqr) value is below a threshold σ. The
resulting connected components represent the word
senses induced for the query q. Notice that the num-
ber of senses is dynamically chosen based on the co-
occurrence graph and the algorithm’s thresholds.

Our triangular measure is the edge counterpart
of the clustering coefficient (or curvature) for ver-
tices, previously used to perform WSI (Widdows
and Dorow, 2002). However, it is our hunch that
measuring the ratio of squares an edge participates
in provides a stronger clue of how important that
edge is within a meaning component. In Section 4,
we will corroborate this idea with our experiments.

3.1.3 An example
As an example, let q = beagle. Two steps are per-

formed:
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1. Graph construction. We build the co-occurrence
graph Gbeagle = (V,E), an excerpt of which is
shown in Figure 1(a).

2. Identification of word senses. We calculate the
Sqr values of each edge in the graph. The edges
e whose Sqr(e) < σ are removed (we assume
σ = 0.25). For instance, Sqr({ dog, breed }) = 1

2 ,
as the edge participates in the square dog – breed
– puppy – canine – dog, but it could also have
participated in the potential square dog – breed
– puppy – search – dog. In fact, the other neigh-
bours of dog are canine, puppy and search, and
the other neighbour of breed is puppy, thus the
square can only be closed by connecting puppy
to either canine or search. In our example, the
only edges whose Sqr is below σ are: { dog,
puppy }, { dog, search } and { linux, mission }
(they participate in no square). We remove these
edges and select the resulting connected compo-
nents as the senses of the query beagle (shown in
Figure 1(b)). Note that, if we selected triangles
as our pruning measure, we should also remove
the following edges { search, index }, { index,
linux }, { linux, system } and { system, search }.
In fact, these edges do not participate in any tri-
angle (while they do participate in a square). As a
result, we would miss the computer science sense
of the query.

3.2 Clustering of Web results

Given our query q, we submit it to a search engine,
which returns a list of relevant search results R =
(r1, . . . , rn). We process each result ri by consid-
ering the corresponding text snippet and transform-
ing it to a bag of words bi (we apply tokenization,
stopwords and target word removal, and lemmatiza-
tion2). For instance, given the snippet:

“the beagle is a breed of medium-sized dog”,

we produce the following bag of words:

{ breed, medium, size, dog }.

As a result of the above processing, we obtain a
list of bags of words B = (b1, . . . , bn). Now, our
aim is to cluster our Web results R, i.e., the corre-
sponding bags of words B. To this end, rather than

2We use the WordNet lemmatizer.

dog

puppy

canine

index

linux

mission

system

search

breed

mars

lander

spacecraft

(a)

dog

puppy

canine

index

linux

mission

system

search

breed

mars

lander

spacecraft

(b)

Figure 1: The beagle example: (a) graph construction,
“weak” edges (according to Sqr) drawn in bold, (b) the
word senses induced after edge removal.

considering the interrelationships between them (as
is done in traditional search result clustering), we
intersect each bag of words bi ∈ B with the sense
clusters {S1, . . . , Sm} acquired as a result of our
Word Sense Induction algorithm (cf. Section 3.1).
The sense cluster with the largest intersection with
bi is selected as the most likely meaning of ri. For-
mally:

Sense(ri) =

8><>:
argmax
j=1,...,m

|bi ∩ Sj | if max
j

|bi ∩ Sj | > 0

0 else
(4)

where 0 denotes that no sense is assigned to result ri,
as the intersection is empty for all senses Sj . Oth-
erwise the function returns the index of the sense
having the largest overlap with bi – the bag of words
associated with the search result ri. As a result of
sense assignment for each ri ∈ R, we obtain a clus-
tering C = (C0, C1, . . . , Cm) such that:

Cj = {ri ∈ R : Sense(ri) = j}, (5)

that is, Cj contains the search results classified with
the j-th sense of query q (C0 includes unassigned
results). Finally, we sort the clusters in our clus-
tering C based on their “quality”. For each cluster
Cj ∈ C \ {C0}, we determine its similarity with
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the corresponding meaning Sj by calculating the fol-
lowing formula:

avgsim(Cj , Sj) =

∑
ri∈Cj

sim(ri, Sj)

|Cj |
. (6)

The formula determines the average similarity be-
tween the search results in cluster Cj and the corre-
sponding sense cluster Sj . The similarity between a
search result ri and Sj is determined as the normal-
ized overlap between its bag of words bi and Sj :

sim(ri, Sj) = sim(bi, Sj) =
|bi ∩ Sj |
|bi|

. (7)

Finally, we rank the elements ri within each clus-
ter Cj by their similarity sim(ri, Sj). We note that
the ranking and optimality of clusters can be im-
proved with more sophisticated techniques (Crab-
tree et al., 2005; Kurland, 2008; Kurland and
Domshlak, 2008; Lee et al., 2008, inter alia). How-
ever, this is outside the scope of this paper.

4 Experiments

4.1 Experimental Setup

Test Sets. We conducted our experiments on two
datasets:

• AMBIENT (AMBIguous ENTries), a recently
released dataset which contains 44 ambiguous
queries3. The sense inventory for the mean-
ings (i.e., subtopics)4 of queries is given by
Wikipedia disambiguation pages. For instance,
given the beagle query, its disambiguation page
in Wikipedia provides the meanings of dog, Mars
lander, computer search service, beer brand, etc.
The top 100 Web results of each query returned
by the Yahoo! search engine were tagged with
the most appropriate query senses according to
Wikipedia (amounting to 4400 sense-annotated
search results). To our knowledge, this is cur-
rently the largest dataset of ambiguous queries
available on-line. Other datasets, such as those
from the TREC competitions, are not focused on
distiguishing the subtopics of a query.

3http://credo.fub.it/ambient
4In the following, we use the terms subtopic and word sense

interchangeably.

dataset queries queries by length avg.
1 2 3 4 polys.

AMBIENT 44 35 6 3 0 17.9
MORESQUE 114 0 47 36 31 6.7

Table 1: Statistics on the datasets of ambiguous queries.

• MORESQUE (MORE Sense-tagged QUEry re-
sults), a new dataset of 114 ambiguous queries
which we developed as a complement to AMBI-
ENT following the guidelines provided by its au-
thors. In fact, our aim was to study the behaviour
of Web search algorithms on queries of differ-
ent lengths, ranging from 1 to 4 words. How-
ever, the AMBIENT dataset is composed mostly
of single-word queries. MORESQUE provides
dozens of queries of length 2, 3 and 4, together
with the 100 top results from Yahoo! for each
query annotated as in the AMBIENT dataset
(overall, we tagged 11,400 snippets). We decided
to carry on using Yahoo! mainly for homogeneity
reasons.

We report the statistics on the composition of the
two datasets in Table 1. Given that the snippets could
possibly be annotated with more than one Wikipedia
subtopic, we also determined the average number
of subtopics per snippet. This amounted to 1.01 for
AMBIENT and 1.04 for MORESQUE for snippets
with at least one subtopic annotation (51% and 53%
of the respective datasets). We can thus conclude
that multiple subtopic annotations are infrequent.

Parameters. Our graph-based algorithms have
two parameters: the Dice threshold δ for graph
construction (Section 3.1.1) and the threshold σ
for edge removal (Section 3.1.2). The best pa-
rameters, used throughout our experiments, were
(δ = 0.00033, σ = 0.45) with triangles and (δ =
0.00033, σ = 0.33) with squares. The parameter
values were obtained as a result of tuning on a small
in-house development dataset. The dataset was built
by automatically identifying monosemous words
and creating pseudowords following the scheme
proposed by Schütze (1998).

Systems. We compared Triangles and Squares
against the best systems reported by Bernardini et
al. (2009, cf. Section 2):
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• Lingo (Osinski and Weiss, 2005): a Web clus-
tering engine implemented in the Carrot2 open-
source framework5 that clusters the most frequent
phrases extracted using suffix arrays.

• Suffix Tree Clustering (STC) (Zamir and Et-
zioni, 1998): the original Web search clustering
approach based on suffix trees.

• KeySRC (Bernardini et al., 2009): a state-of-the-
art Web clustering engine built on top of STC with
part-of-speech pruning and dynamic selection of
the cut-off level of the clustering dendrogram.

• Essential Pages (EP) (Swaminathan et al., 2009):
a recent diversification algorithm that selects fun-
damental pages which maximize the amount of
information covered for a given query.

• Yahoo!: the original search results returned by
the Yahoo! search engine.

The first three of the above are Web search result
clustering approaches, whereas the last two produce
lists of possibly diversified results (cf. Section 2).

4.2 Experiment 1: Clustering Quality
Measure. While assessing the quality of cluster-
ing is a notably hard problem, given a gold standard
G we can calculate the Rand index (RI) of a cluster-
ing C, a common quality measure in the literature,
determined as follows (Rand, 1971; Manning et al.,
2008):

RI(C) =

∑
(w,w′)∈W×W,w 6=w′ δ(w,w′)

|{(w,w′) ∈ W ×W : w 6= w′}|
(8)

where W is the union set of all the words in C and
δ(w,w′) = 1 if any two words w and w′ are in the
same cluster both in C and in the gold standard G or
they are in two different clusters in both C and G,
otherwise δ(w,w′) = 0. In other words, we calcu-
late the percentage of word pairs that are in the same
configuration in both C and G. For the gold standard
G we use the clustering induced by the sense annota-
tions provided in our datasets for each snippet (i.e.,
each cluster contains the snippets manually associ-
ated with a particular Wikipedia subtopic). Similarly
to what was done in Section 3.2, untagged results are
grouped together in a special cluster of G.

5http://project.carrot2.org

System AMBIENT MORESQUE All
Squares 72.59 65.41 67.28
Triangles 66.13 64.47 64.93
Lingo 62.75 52.68 55.49
STC 61.48 51.52 54.29
KeySRC 66.49 55.82 58.78

Table 2: Results by Rand index (percentages).

Results. The results of all systems on the AM-
BIENT and MORESQUE datasets according to
the average Rand index are shown in Table 26.
In accordance with previous results in the litera-
ture, KeySRC performed generally better than the
other search result clustering systems, especially
on smaller queries. Our Word Sense Induction sys-
tems, Squares and Triangles, outperformed all other
systems by a large margin, thus showing a higher
clustering quality (with the exception of KeySRC
performing better than Triangles on AMBIENT).
Interestingly, all clustering systems perform more
poorly on longer queries (i.e., on the MORESQUE
dataset), however our WSI systems, and especially
Triangles, are more robust across query lengths.
Compared to Triangles, the Squares algorithm per-
forms better, confirming our hunch that Squares is a
more solid graph pattern.

4.3 Experiment 2: Diversification
Measure. Search result clustering can also be used
to diversify the top results returned by a search en-
gine. Thus, for each query q, one natural way of
measuring a system’s performance is to calculate the
subtopic recall-at-K (Zhai et al., 2003) given by the
number of different subtopics retrieved for q in the
top K results returned:

S-recall@K =
|
⋃K

i=1 subtopics(ri)|
M

(9)

where subtopics(ri) is the set of subtopics manually
assigned to the search result ri and M is the number
of subtopics for query q (note that in our experiments
M is the number of subtopics occurring in the 100
results retrieved for q, so S-recall@100 = 1). How-
ever, this measure is only suitable for systems re-
turning ranked lists (such as Yahoo! and EP). Given

6For reference systems we used the implementations of
Bernardini et al. (2009) and Osinski and Weiss (2005).
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System K=3 K=5 K=10 K=15 K=20
Squares 51.9 63.4 75.8 83.3 87.4
Triangles 50.8 62.4 75.2 82.7 86.6
Yahoo! 49.2 60.0 72.9 78.5 82.7
EP 40.6 53.2 68.6 77.2 83.3
KeySRC 44.3 55.8 72.0 79.1 83.2

Table 3: S-recall@K on all queries (percentages).

a clustering C = (C0, C1, . . . , Cm), we flatten it to a
list as follows: we add to the initially empty list the
first element of each cluster Cj (j = 1, . . . ,m); then
we iterate the process by selecting the second ele-
ment of each cluster Cj such that |Cj | ≥ 2, and so
on. The remaining elements returned by the search
engine, but not included in any cluster of C \ {C0},
are appended to the bottom of the list in their orig-
inal order. Note that the elements are selected from
each cluster according to their internal ranking (e.g.,
for our algorithms we use Formula 7 introduced in
Section 3.2).

Results. For the sake of clarity and to save space,
we selected the best systems from our previous ex-
periment, namely Squares, Triangles and KeySRC,
and compared their output with the original snippet
list returned by Yahoo! and the output of the EP di-
versification algorithm (cf. Section 4.1).

The S-recall@K (with K = 3, 5, 10, 15, 20) cal-
culated on AMBIENT+MORESQUE is reported
in Table 3. Squares and Triangles show the high-
est degree of diversification, with a subtopic recall
greater than all other systems, and with Squares con-
sistently performing better than Triangles. It is inter-
esting to observe that KeySRC performs worse than
Yahoo! with low values of K and generally better
with higher values of K.

Given that the two datasets complement each
other in terms of query lengths (with AMBIENT
having queries of length ≤ 2 and MORESQUE
with many queries of length ≥ 3), we studied the S-
recall@K trend for the two datasets. The results are
shown in Figures 2 and 3. While KeySRC does not
show large differences in the presence of short and
long ambiguous queries, our graph-based algorithms
do. For instance, as soon as K = 3 the Squares al-
gorithm obtains S-recall values of 37% and 57.5%
on AMBIENT and MORESQUE, respectively. The
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Figure 3: S-recall@K on MORESQUE.

difference decreases as K increases, but is still sig-
nificant when K = 10. We hypothesize that, because
they are less ambiguous, longer queries are easier
to diversify with the aid of WSI. However, we note
that, even with low values of K, Squares and Tri-
angles obtain higher S-recall than the other systems
(with KeySRC competing on AMBIENT whenK ≤
15). Finally, we observe that – with low values of K
– the Squares algorithm performs significantly better
than Triangles on shorter queries, and only slightly
better on longer ones.

5 Discussion

Results. Our results show that our graph-based al-
gorithms are able to consistently produce clusters of
better quality than all other systems tested in our
experiments. The results on S-recall@K show that
our approach can also be used effectively as a diver-
sification technique, performing better than a very
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recent proposal such as Essential Pages. The lat-
ter outperforms Yahoo! and KeySRC when K ≥
30 on AMBIENT, whereas on MORESQUE it per-
forms generally worse until higher values of K are
reached. If we analyze the entire dataset of 158
queries by length, EP works best after examining at
least 20 results on 1- and 2-word ambiguous queries,
whereas on longer queries a larger number of docu-
ments (≥ 30) needs to be analyzed before surpassing
Yahoo! performance.

The above considerations might not seem intu-
itive at first glance, as the average polysemy of
longer queries is lower (17.9 on AMBIENT vs. 6.7
on MORESQUE according to our gold standard).
However, we note that while the kind of ambigu-
ity of 1-word queries is generally coarser (e.g., bea-
gle as dog vs. lander vs. search tool), with longer
queries we often encounter much finer sense distinc-
tions (e.g., Across the Universe as song by The Bea-
tles vs. a 2007 film based on the song vs. a Star Trek
novel vs. a rock album by Trip Shakespeare, etc.).
Word Sense Induction is able to deal better with this
latter kind of ambiguity as discriminative words be-
come part of the meanings acquired.

Performance issues. Inducing word senses from
the query graph comes at a higher computational
cost than other non-semantic clustering techniques.
Indeed, the most time-consuming phase of our ap-
proach is the construction of the query graph, which
requires intensive querying of our database of co-
occurrences calculated from the Web1T corpus.
While graphs can be precomputed or cached, previ-
ously unseen queries will still require the construc-
tion of new graphs. Instead, triangles and squares, as
well as the resulting connected components, can be
calculated on the fly.

6 Conclusions

In this paper we have presented a novel approach
to Web search result clustering. Our key idea is to
induce senses for the target query automatically by
means of a graph-based algorithm focused on the
notion of cycles. The results of a Web search engine
are then mapped to the query senses and clustered
accordingly.

The paper provides three novel contributions.
First, we show that WSI boosts the quality of search

result clustering and improves the diversification of
the snippets returned as a flat list. We provide a clear
indication on the usefulness of a loose notion of
sense to cope with ambiguous queries. This is in
contrast to research on Semantic Information Re-
trieval, which has obtained contradictory and often
inconclusive results. The main advantage of WSI
lies in its dynamic production of word senses that
cover both concepts (e.g., beagle as a breed of dog)
and instances (e.g., beagle as a specific instance of
a space lander). In contrast, static dictionaries such
as WordNet – typically used in Word Sense Dis-
ambiguation – by their very nature encode mainly
concepts. Second, we propose two simple, yet ef-
fective, graph algorithms to induce the senses of
our queries. The best performing approach is based
on squares (cycles of length 4), a novel graph pat-
tern in WSI. Third, we contribute a new dataset of
114 ambiguous queries and 11,400 sense-annotated
snippets which complements an existing dataset of
ambiguous queries7. Given the lack of ambiguous
query datasets available (Sanderson, 2008), we hope
our new dataset will be useful in future compara-
tive experiments. Finally, we note that our approach
needed very little tuning. Moreover, its requirement
of a Web corpus of n-grams is not a stringent one, as
such corpora are available for several languages and
can be produced for any language of interest.

As regards future work, we intend to combine
our clustering algorithm with a cluster labeling al-
gorithm. We also aim to implement a number of
Word Sense Induction algorithms and compare them
in the same evaluation framework with more Web
search and Web clustering engines. Finally, it should
be possible to use precisely the same approach pre-
sented in this paper for document clustering, by
grouping the contexts in which the target query oc-
curs – and we will also experiment on this in the
future.
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Abstract

Targeted paraphrasing is a new approach to the
problem of obtaining cost-effective, reasonable
quality translation that makes use of simple and
inexpensive human computations by monolin-
gual speakers in combination with machine
translation. The key insight behind the process
is that it is possible to spot likely translation
errors with only monolingual knowledge of the
target language, and it is possible to generate al-
ternative ways to say the same thing (i.e. para-
phrases) with only monolingual knowledge
of the source language. Evaluations demon-
strate that this approach can yield substantial
improvements in translation quality.

1 Introduction

For most of the world’s languages, the availability of
translation is limited to two possibilities: high qual-
ity at high cost, via professional translators, and low
quality at low cost, via machine translation (MT). The
spectrum between these two extremes is very poorly
populated, and at any point on the spectrum the ready
availability of translation is limited to only a small
fraction of the world’s languages. There is, of course,
a long history of technological assistance to transla-
tors, improving cost effectiveness using translation
memory (Laurian, 1984; Bowker and Barlow, 2004)
or other interactive tools to assist translators (Esteban
et al., 2004; Khadivi et al., 2006). And there is a
recent and rapidly growing interest in crowdsourc-
ing with non-professional translators, which can be
remarkably effective (Munro, 2010). However, all
these alternatives face a central availability bottle-
neck: they require the participation of humans with
bilingual expertise.

In this paper, we report on a new exploration of
the middle ground, taking advantage of a virtually
unutilized resource: speakers of the source and tar-
get language who are effectively monolingual, i.e.
who each only know one of the two languages rel-
evant for the translation task. The solution we are
proposing has the potential to provide a more cost
effective approach to translation in scenarios where
machine translation would be considered acceptable
to use, if only it were generally of high enough qual-
ity. This would clearly exclude tasks like transla-
tion of medical reports, business contracts, or literary
works, where the validation of a qualified bilingual
translator is absolutely necessary. However, it does
include a great many real-world scenarios, such as
following news reports in another country, reading in-
ternational comments about a product, or generating
a decent first draft translation of a Wikipedia page
for Wikipedia editors to improve.

The use of monolingual participants in a human-
machine translation process is not entirely new.
Callison-Burch et al. (2004) pioneered the explo-
ration of monolingual post-editing within the MT
community, an approach extended more recently to
provide richer information to the user by Albrecht et
al. (2009) and Koehn (2009). There have also been at
least two independently developed human-machine
translation frameworks that employ an iterative pro-
tocol involving monolinguals on both the source and
target side. Morita and Ishida (2009) describe a sys-
tem in which target and source language speakers
perform editing of MT output to improve fluency
and adequacy, respectively; they utilize source-side
paraphrasing at a course grain level, although their ap-
proach is limited to requests to paraphrase the entire
sentence when the translation cannot be understood.
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Bederson et al. (2010) describe a similar protocol in
which cross-language communication is enhanced by
metalinguistic communication in the user interface.
Shahaf and Horvitz (2010) use machine translation
as a specific instance of a general game-based frame-
work for combining a range of machine and human
capabilities.

We call the technique used here targeted para-
phrasing. In a nutshell, target-language monolin-
guals identify parts of an initial machine translation
that don’t appear to be right, and source-language
monolinguals provide the MT system with alterna-
tive phrasings that might lead to better translations;
these are then passed through MT again and the best
scoring hypothesis is selected as the final translation.
This technique can be viewed as compatible with
the richer protocol- and game-based approaches, but
it is considerably simpler; in Sections 2 through 4
we describe the method and present evaluation re-
sults on Chinese-English translation. Unlike other
approaches, the technique also offers clear opportu-
nities to replace human participation with machine
components if the latter are up to the task; we discuss
this in Section 5 before wrapping up in Section 6
with conclusions and directions for future work.

2 Targeted Paraphrasing

The starting point for our approach is an observa-
tion: the source sentence provided as input to an MT
system is just one of many ways in which the mean-
ing could have been expressed, and for any given
MT system, some forms of expression are easier to
translate than others. The same basic observation
has been applied quite fruitfully over the past several
years to deal with statistical MT challenges involv-
ing segmentation, morphological analysis, and more
recently, source language word order (Dyer, 2007;
Dyer et al., 2008; Dyer and Resnik, 2010). Here we
apply it to the surface expression of meaning.

For example, consider the following real example
of translation from English to French by an automatic
MT system:

• Source: Polls indicate Brown, a state senator,
and Coakley, Massachusetts’ Attorney General,
are locked in a virtual tie to fill the late Sen. Ted
Kennedy’s Senate seat.

• System: Les sondages indiquent Brown,
un sénateur d’état, et Coakley,
Massachusetts’ Procureur général, sont en-
fermés dans une cravate virtuel à remplir le
regretté sénateur Ted Kennedy’s siège au Sénat.

A French speaker can look at this automatic transla-
tion and see immediately that the underlined parts
are wrong, even without knowing the intended source
meaning. We can identify the spans in the source En-
glish sentence that are responsible for these badly
translated French spans, and change them to alterna-
tive expressions with the same meaning (e.g. chang-
ing Massachusetts’ Attorney General to the Attorney
General of Massachusetts); if we do so and then use
the same MT system again, we obtain a translation
that is still imperfect (e.g. cravate means necktie),
but is more acceptable:

• System: Les sondages indiquent que Brown, un
sénateur d’état, et Coakley, le procureur général
du Massachusetts, sont enfermés dans une cra-
vate virtuel pourvoir le siége au Sénat de Sen.
Ted Kennedy, qui est décédé récemment.

Operationally, then, translation with targeted para-
phrasing includes the following steps.

Initial machine translation. For this paper, we
use the Google Translate Research API, which,
among other advantages, provides word-level align-
ments between the source text and its output. In
principle, however, any automatic translation system
can be used in this role, potentially at some cost
to quality, by performing post hoc target-to-source
alignment.

Identification of mistranslated spans. This step
identifies parts of the source sentence that lead to
ungrammatical, nonsensical, or apparently incorrect
translations on the target side. In the experiments
of Sections 3 and 4, this step is performed by hav-
ing monolingual target speakers identify likely error
spans on the target side, as in the French example
above, and projecting those spans back to the source
spans that generated them using word alignments
as the bridge (Hwa et al., 2005; Yarowsky et al.,
2001). In Section 5, we describe a heuristic but effec-
tive method for performing this fully automatically.
Du et al. (2010), in this proceedings, explore the
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use of source paraphrases without targeting appar-
ent mistranslations, using lattice translation (Dyer
et al., 2008) to efficiently represent and decode the
resulting very large space of paraphrase alternatives.

Source paraphrase generation. This step gener-
ates alternative expressions for the source spans iden-
tified in the previous step. In this paper, it is per-
formed by monolingual source speakers who perform
the paraphrase task: the speaker is given a sentence
with a phrase span marked, and is asked to replace the
marked text with a different way of saying the same
thing, so that the resulting sentence still makes sense
and means the same thing as the original sentence.
To illustrate in English, someone seeing John and
Mary took a European vacation this summer might
supply the paraphrase Mary went on a European, ver-
ifying that the resulting John and Mary went on a
European vacation this summer preserves the origi-
nal meaning. This step can also be fully automated
(Max, 2009) by taking advantage of bilingual phrase-
table pivoting (Bannard and Callison-Burch, 2005);
see Max (2010), in these proceedings, for a related
approach in which the paraphrases of a source phrase
are used to refine the estimated probability distribu-
tion over its possible target phrases.

Generating sentential source paraphrases. For
each sentence, there may be multiple paraphrased
spans. These are multiplied out to provide full-
sentence paraphrases. For example, if two non-
overlapping source spans are each paraphrased in
three ways, we generate 9 sentential source para-
phrases, each of which represents an alternative way
of expressing the original sentence.

Machine translation of alternative sentences.
The alternative source sentences, produced via para-
phrase, are sent through the same MT system, and
a single-best translation hypothesis is selected, e.g.
on the basis of the translation system’s model score.
In principle, one could also combine the alternatives
into a lattice representation and decode to find the
best path using lattice translation (Dyer et al., 2008);
cf. Du et al. (2010). One could also present trans-
lation alternatives to a target speaker for selection,
similarly to Callison-Burch et al. (2004).

Notice that with the exception of the initial trans-
lation, each remaining step in this pipeline can in-

volve either human participation or fully automatic
processing. The targeted paraphrasing framework
therefore defines a rich set of intermediate points on
the spectrum between fully automatic and fully hu-
man translation, of which we explore only a few in
this paper.

3 Pilot Study

In order to assess the potential of our approach,
we conducted a small pilot study, using eleven
sentences in simplified Chinese selected from
the article on “Water” in Chinese Wikipedia
(http://zh.wikipedia.org/zh-cn/%E6%B0%B4). This
article was chosen because its topic is well known
in both English-speaking and Chinese-speaking pop-
ulations. The first five sentences were taken from
the first paragraph of the article. The other six sen-
tences were taken from a randomly-chosen paragraph
in the article. As a preprocessing step, we removed
any parenthetical items from the input sentences, e.g.
“(H20)”. The shortest sentence in this set has 12 Chi-
nese characters, the longest has 54.1

Human participation in this task was accomplished
using Amazon Mechanical Turk, an online market-
place that enables human performance of small “hu-
man intelligence tasks” (HITs) in return for micropay-
ments. For each sentence, after we translated it au-
tomatically (using Google Translate), three English-
speaking Mechanical Turk workers (“Turkers”) on
the target side performed identification of mistrans-
lated spans. Each span identified was projected back
to its corresponding source span, and three Chinese-
speaking Turkers were asked to provide paraphrases
of each source span. These tasks were easy to per-
form (no more than around 30 seconds to complete
on average) and inexpensive (less than $1 for the
entire pilot study).2 The Chinese source span para-
phrases were then used to construct full-sentence
paraphrases, which were retranslated, once again by
Google Translate, to produce the output of the tar-
geted paraphrasing translation process.

1Note that this page is not a translation of the corresponding
English Wikipedia page or vice versa.

2The four English-speaking Turkers were recruited through
the normal Mechanical Turk mechanism. The three Chinese-
speaking Turkers were recruited offline by the authors in order to
quickly obtain results, although they participated as full-fledged
Turkers.

129



The initial translation outputs from Google Trans-
late (GT) and the results of the targeted paraphrasing
translation process (TP) were evaluated according
to widely used critera of fluency and adequacy. Flu-
ency ratings were obtained on a 5-point scale from
three native English speakers without knowledge of
Chinese. Translation adequacy ratings were obtained
from three native Chinese speakers who are also flu-
ent in English; they assessed adequacy of English
sentences by comparing the communicated meaning
to the Chinese source sentences.

Fluency was rated on the following scale:

1. Unintelligible: nothing or almost nothing of the sen-
tence is comprehensible.

2. Barely intelligible: only a part of the sentence (less
than 50%) is understandable.

3. Fairly intelligible: the major part of the sentence
passes.

4. Intelligible: all the content of the sentence is com-
prehensible, but there are errors of style and/or of
spelling, or certain words are missing.

5. Very intelligible: all the content of the sentence is
comprehensible. There are no mistakes.

Adequacy was rated on the following scale:

1. None of the meaning expressed in the reference sen-
tence is expressed in the sentence.

2. Little of the reference sentence meaning is expressed
in the sentence.

3. Much of the reference sentence meaning is expressed
in the sentence.

4. Most of the reference sentence meaning is expressed
in the sentence.

5. All meaning expressed in the reference sentence ap-
pears in the sentence.

For each GT output, we averaged across the ratings
of the alternative TP to produce average TP fluency
and adequacy scores. The average GT output rat-
ings, measuring the pure machine translation base-
line, were 2.36 for fluency and 2.91 for adequacy.
Averaging across the TP outputs, these rose to 3.32
and 3.49, respectively.

One could argue that a more sensible evaluation
is not to average across alternative TP outputs, but
rather to simulate the behavior of a target-language
speaker who simply chooses the one translation

among the alternatives that seems most fluent. If
we select the most fluent TP output for each source
sentence according to the English-speakers’ average
fluency ratings, we obtain average test set ratings of
3.58 for fluency and 3.73 for adequacy. Those are
respective gains of 0.82 and 1.21 over the baseline
initial MT output, each on a 5-point scale.

Figure 1 shows a selection of outputs: we present
the two cases where the most fluent TP alternative
shows the greatest gain in average fluency rating (best
gain +2.67); two cases near the median gain in av-
erage fluency (median +1); and the worst two cases
with respect to effect on average fluency rating (worst
-0.33). The table accurately conveys a qualitative im-
pression corresponding to the quantitative results: the
overall quality of translations appears to be improved
by our process consistently, despite the absence of
any bilingual input in the improvements.

4 Chinese-English Evaluation

As a followup to our pilot study, we conducted an
evaluation using Chinese-English test data taken from
the NIST MT’08 machine translation evaluation, in
order to obtain fully automatic translation evaluation
scores. We report on results for 49 sentences of the
1,357 in this data set. These underwent the same
targeted paraphrasing process as in the pilot study,
with the addition of a basic step to filter out cheaters:
we disregarded as invalid any responses consisting
purely of ASCII characters (signifying a non-Chinese
response) or responses that were identical to the orig-
inal source text.

Target English speakers identified 115 potential
mistranslation spans, or 2.3 spans per sentence, that
yielded at least one source paraphrase on the source
Chinese side. Chinese speakers provided 138 valid
paraphrases. The entire cost for the human tasks in
this experiment was $5.06, or a bit under $0.11 per
sentence on average.3

Table 1 reports on the results, evaluating in stan-
dard fashion using BLEU with the four English
MT’08 references for each Chinese sentence. Since
the targeted paraphrasing translation process (TP)
produces multiple hypotheses — one automatic trans-
lation output per sentential paraphrases — we se-
lected the single best output for each sentence by

3Invalid paraphrase responses were rejected, i.e. zero-cost.
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Condition Fluency Adequacy Sentence
GT 1.33 2.33 Water play life evolve into important to use.
TP 4.00 4.33 Water in the evolution of life played an important role.
GT 1.33 2.67 Human civilization from the source of the majority of large rivers

in the domain.
TP 3.33 4.67 Most of the origin of human civilization in river basin.
GT 2.33 3.00 In human daily life, the water in drinking, cleaning, washing and

other side to make use of an indispensable.
TP 3.67 3.33 In human daily life, water for drinking, cleaning, washing and other

essential role.
GT 2.00 2.33 Eastern and Western ancient Pak prime material view of both the

water regarded as a kind of basic groups into the elements, water is
the Chinese ancient five rows of a; the West ancient four elements
that also have water.

TP 3.00 3.33 East and West in ancient concept of simple substances regarded wa-
ter as a basic component elements. Among them, the five elements
of water is one of ancient China; Western ancient four elements
that also have water.

GT 4.00 4.00 Early cities will generally be in the water side of the establishment,
in order to solve irrigation, drinking and sewage problems.

TP 4.67 4.33 Early cities are generally built near the water to solve the irrigation,
drinking and sewage problems.

GT 3.0 3.33 Human very early on began to produce a water awareness.
TP 2.67 3.00 Man long ago began to understand the water produced.

Figure 1: Original Google Translate output (GT) for the pilot study in Section 3, together with translations produced by
the targeted paraphrase translation process (TP), selected to show a range from strong to weak improvements in fluency.
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Condition BLEU
GT (baseline) 28.33
GT n-best oracle 28.47
TP one-best 30.01
TP oracle 30.79
Human upper bound 49.41

Table 1: Results on a 49-sentence subset of the NIST
MT’08 Chinese-English test set

selecting the highest scoring English translation, ac-
cording to the translation score delivered with each
output by the Google Translate Research API. (The
original translation was, of course, included among
the candidates for selection.) This yielded an im-
provement of 1.68 BLEU points on the 49-sentence
test set (TP one-best).

One could argue that this result is simply a result of
having more hypotheses to choose from, not a result
of the targeted paraphrasing process itself. In order
to rule out this possibility, we generated (n + 1)-best
Google translations, setting n for each sentence to
match the number of alternative translations gener-
ated via targeted paraphrasing. We then chose the
best translation for each sentence, among the (n+1)-
best Google hypotheses, via oracle selection, using
the TERp metric (Snover et al., 2009) to evaluate
each hypothesis against the reference translations.4

The resulting BLEU score for the full set showed
negligible improvement (GT n-best oracle).

We did a similar oracle-best calculation using
TERp for targeted paraphrasing (TP oracle). The
result shows a potential gain of 2.46 BLEU points
over the baseline, if the best scoring alternative from
the targeted paraphrasing process were always cho-
sen.

In addition to aggregate scoring using BLEU, we
also looked at oracle results on a per-sentence ba-
sis using TERp (since BLEU more appropriate to
use at the document level, not the sentence level).
Identifying the best sentential paraphrase alternative
using TERp as an oracle, we find that the TERp
score would improve for 32 of the 49 test sentences,

4An “oracle” telling us which variant is best is not available
in the real world, of course, but in situations like this one, oracle
studies are often used to establish the magnitude of the potential
gain (Och et al., 2004).

65.3%. For those 32 sentences, the average gain is
8.36 TERp points.5 A fairer measure is the average
obtained when scoring zero gain for the 17 sentences
where no improvement was obtained; taking these
into account, i.e. assuming an oracle who chooses the
original translation if none of the paraphrase-based
alternatives are better, the average improvement over
the entire set of 49 sentences is 5.46 TERp points.

Although we have obtained results on only a small
subset of the full NIST MT’08 test set, our automatic
evaluation confirms the qualitative impressions in
Figure 1 and the subjective ratings results obtained
in our pilot study in Section 3. The TP oracle results
establish that by taking advantage of monolingual
human speakers, it is possible to obtain quite sub-
stantial gains in translation quality. The TP one-best
results demonstrate that the majority of that oracle
gain is obtained in automatic hypothesis selection,
simply by selecting the paraphrase-based alternative
translation with the highest translation score.

The last line in Table 1 shows a human upper
bound computed using the reference translations via
cross validation; that is, for each of the four reference
translations, we evaluate it as a hypothesized transla-
tion using the other three references as ground truth;
these four scores were then averaged. The value of
this upper bound is quite consistent with the bound
computed similarly by Callison-Burch (2009).

5 English-Chinese Evaluation

As we noted in Section 2, the targeted paraphrasing
translation process defines a set of human-machine
combinations that do not require bilingual expertise.
The previous section described human identification
of mistranslated spans on the target side, human gen-
eration of paraphrases for problematic sub-sentential
spans on the source side, and both automatic hypothe-
sis selection and human selection (via fluency ratings,
in Section 3).

In this section, we take a step toward more au-
tomated processing, replacing human identification
of mistranslated spans with an a fully automatic
method.6 The idea behind our automatic error iden-
tification is straightforward: if the source sentence

5“Gains” refer to a lower score: since TERp is an error
measure, lower is better.

6This section contains material we originally reported in
Buzek et al. (2010).
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GT: WTO chief negotiator on behalf of the United States to propose substantial reduction of
agricultural subsidies, Kai Fa countries substantially reduce industrial products import tariffs to Dapo
?? Doha Round of negotiations deadlock.
TP: World Trade Organization negotiator suggested the United States today, a substantial reduction
of agricultural subsidies, developing countries substantially reduce industrial products?? Import
tariffs, in order to break the deadlock in the Doha Round of trade negotiations.
REF: the main delegates at the world trade organization talks today suggested that the us make major
cuts in its agricultural subsidies and that developing countries significantly reduce import duties on
industrial products in order to break the deadlock in the doha round of trade talks .
GT: Emergency session of the Palestinian prime minister Salam Fayyad state will set a new Govern-
ment
TP: Emergency session of the Palestinian Prime Minister Salam Fayyad will set the new government
REF: state of emergency period ends ; palestinian prime minister fayyad to form new government
GT: Indian territory from south to north, one week before the start after another wet season, the
provincial residents hold long drought every rain in the mood to meet the heavy rain, but did not
expect rain came unexpectedly fierce, a rain disaster, roads become rivers, low-lying areas housing to
make Mo in the water, transport almost paralyzed, Zhi Jin statistics about You nearly 500 people due
to floods were killed.
TP: Indian territory from south to north, one week before the start have entered into the rainy season,
provincial residents hold long drought to hope rain in the mood to meet the heavy rain, but did not
feed rain came unexpectedly fierce, a rain disaster, roads change the river, low-lying areas housing
do not water, traffic almost to a standstill, since statistics are nearly 500 people due to floods killed.
REF: the whole of india , from south to north , started to progressively enter the monsoon season a
week ago . the residents of each state all greeted the heavy rains as relief at the end of a long drought
, but didn’t expect that the rain would come with unexpected violence , a real deluge . highways have
become rivers ; houses in low-lying areas have been surbmerged in the water ; the transport system is
nearly paralyzed . to date , figures show that nearly 500 people have unfortunately lost their lives to
the floods .
GT: But the Taliban said in the meantime, the other a German hostages kidnapped in very poor
health, began to fall into a coma and lost consciousness.
TP: But the Taliban said in the meantime, another German hostages kidnapped a very weak body
fell into a coma and began to lose consciousness.
REF: but at the same time the taliban said that another german hostage who had been kidnapped
was in extremely poor health , and had started to become comatose and to lose consciousness .
GT: Taliban spokesman Ahmadi told AFP in an unknown location telephone interview, said: We,
through tribal elders, representatives of direct contact with South Korea.
TP: Taliban spokesman Ahmadi told AFP in an unknown location telephone interview, said: We are
through tribal elders, directly with the South Korean leadership, business
REF: taliban spokesperson ahmadi said in a telephone interview by afp at an undisclosed location :
we have established direct contact with the south korean delegation through tribal elders .

Figure 2: Random sample of 5 items from study in Section 4: original Google translation (GT), results of targeted
paraphrasing translation process (TP), and a human reference translation.
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is translated to the target and then back-translated, a
comparison of the result with the original is likely to
identify places where the translation process encoun-
tered difficulty.7 Briefly, we automatically translate
source F to target E, then back-translate to produce F’
in the source language. We compare F and F’ using
TERp — which, in addition to its use as an evaluation
metric, is a form of string-edit distance that identifies
various categories of differences between two sen-
tences. When at least two consecutive edits are found,
we flag their smallest containing syntactic constituent
as a potential source of translation difficulty.8

In more detail, we posit that if an area of backtrans-
lation F’ has many edits relative to original sentence
F, then that area probably comes from parts of the
target translation that did not represent the desired
meaning in F very well. We only consider consec-
utive edits in certain of the TERp edit categories,
specifically, deletions (D), insertions (I), and shifts
(S); the two remaining categories, matches (M) and
paraphrases (P), indicate that the words are identical
or that the original meaning was preserved. Further-
more, we assume that while a single D, S, or I edit
might be fairly meaningless, a string of at least two of
those types of edits is likely to represent a substantive
problem in the translation.

In order to identify reasonably meaningful para-
phrase units based on potential errors, we rely on a
source language constituency parser. Using the parse,
we find the smallest constituent of the sentence con-
taining all of the tokens in a particular error string. At
times, these constituents can be quite large, even the
entire sentence. To weed out these cases, we restrict
constituent length to no more than 7 tokens.

For example, given

F The most recent probe to visit Jupiter was the
Pluto-bound New Horizons spacecraft in late Febru-
ary 2007.

E La investigación más reciente fue la visita de Júpiter
a Plutón de la envolvente sonda New Horizons a
fines de febrero de 2007.

7Exactly the same insight is behind the “source-side pseudo-
referencebased feature” employed by Soricut and Echihabi
(2010) in their system for predicting the trustworthiness of trans-
lations.

8It is possible that the difficulty so identified involves back-
translation only, not translation in the original direction. If that
is the case, then more paraphrasing will be done than necessary,
but the quality of the TP process’s output should not suffer.

F’ The latest research visit Jupiter was the Pluto-bound
New Horizons spacecraft in late February 2007.

spans in the the bolded phrase in F would be iden-
tified, based on the TERp alignment and smallest
containing constituent as shown in Figure 3.

In order to evaluate this approach, we again use
NIST MT08 data, this time going in the English-
to-Chinese direction since we are assuming source
language resources not currently available for Chi-
nese.9 We used English reference 0 as the source
sentence, and the original Chinese sentence as the
target.10

The data set comprises 1,357 sentence pairs. Us-
ing the above described algorithm to automatically
identify possible problem areas in the translation,
with the Google Translate API providing both the
translation and back-translation, we generated 1,780
potential error spans in 1,006 of the sentences, and,
continuing the targeted paraphrasing process, we ob-
tained up to three source paraphrases per span, for
the problemantic spans in 1,000 of those sentences.
(For six sentences, no paraphrases weres suggested
for any of the problematic spans.) These yielded
full-sentence paraphrase alternatives for the 1,000
sentences, which we again evaluated via an oracle
study.

For this study we used the TER metric (Snover
et al., 2006) rather than TERp. Comparing with the
GT output, we find that TP yields a better-translated
paraphrase sentence is available in 313 of the 1000
cases, or 31.3%, and for those 313 cases, TER for the
oracle-best paraphrase alternative improves on the
TER for the original sentence by 12.16 TER points.
Also taking into account the cases where there is
no improvement over the baseline, the average TER
score improves by 3.8 points. The cost for human
tasks in this study — just paraphrases, since identi-
fying problematic spans was done automatically —
was $117.48, or a bit under $0.12 per sentence.

9The Stanford parser (Klein and Manning, 2002), which
we use to identify source syntactic constituents, exists for both
English and Chinese, but TERp uses English resources such as
WordNet in order to capture acceptable variants of expression
for the same meaning. Matt Snover (personal communication) is
working on extension of TERp to other languages.

10We chose reference 0 because on inspection these references
seemed most reflective of native English grammar and usage.
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Figure 3: TERp alignment of a source sentence and its back-translation in order to identify a problematic source span.

6 Conclusions and Future Work

In this paper we have focused on a relatively less-
explored space on the spectrum between high quality
and low cost translation: sharing the burden of the
translation task among a fully automatic system and
monolingual human participants, without requiring
human bilingual expertise. The monolingual par-
ticipants in this framework perform straightforward
tasks: they identify parts of sentences in their lan-
guage that seem to have errors, they provide sub-
sentential paraphrases in context, and they judge the
fluency of sentences they are presented with (or, in a
variant still to be explored, they simply select which
target sentence they like the best). Unlike other pro-
posals for exploiting monolingual speakers in human-
machine collaborative translation, the human steps
here are amenable to automation, and in addition
to evaluating a mostly-human variant of our targeted
paraphrasing translation framework, we also assessed
a version in which the identification of mistranslated
spans (to be paraphrased) is done automatically.

Our experimentation yielded a consistent pattern
of results, supporting the conclusion that targeted

paraphrasing can lead to significant improvements
in translation, via several different measures. First,
a very small pilot study for Chinese-English trans-
lation in Wikipedia provided preliminary validation
that translation fluency and accuracy can be improved
quite significantly for a set of fairly chosen test sen-
tences, according to human ratings. Second, a small
experiment in Chinese-English translation using stan-
dard NIST test sentences suggested the potential for
dramatic gains using the BLEU and TERp scores,
with oracle improvements of 2.46 points and 5.46
points, respectively. In addition, a non-oracle experi-
ment, selecting the best hypothesis according to the
MT system’s model score, yielded a gain of nearly 1.7
BLEU points. And third, in a large scale evaluation
of the approach using English-Chinese translation
of 1,000 sentences, this time automating the step of
identifying potentially mistranslated parts of source
sentences, the oracle results demonstrated that a gain
of nearly 4 TER points is available.

These initial studies leave considerable room for
future work. One important step will be to better char-
acterize the relationship between cost and quality in
quantitative terms: how much does it cost to obtain
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how much quality improvement, and how does that
compare with typical professional translation costs of
$0.25 per word? This question is closely connected
with the dynamics of crowdsourcing platforms such
as Mechanical Turk — the cost per sentence in these
experiments works out to be around $0.12, but trans-
lation on a large scale will involve a complicated
ecosystem of workers and cheaters, tasks and motiva-
tions and incentives (Quinn and Bederson, 2009). A
related crowdsourcing issue requiring further study
is the availability of monolingual human participants
for a range of language pairs, in order to validate
the argument that drawing on monolingual human
participation will significantly reduce the severity of
the availability bottleneck. And, of course, in the
upper bound in Table 1 makes quite clear the cru-
cial value added by bilingual translators, when they
are available; we hope to explore whether the tar-
geted paraphrasing translation pipeline can improve
the productivity of post-editing by bilinguals, mak-
ing it easier to move toward the upper bound in a
cost-effective way.

Another set of issues concerns the underlying trans-
lation technology. A reviewer correctly notes that the
value of the approach taken here is likely to vary
depending upon the quality of the underlying trans-
lation system, and the approach may break down at
the extrema, when the baseline translation is either
already very good or completely awful. We chose
to use Google Translate for its wide availability and
the fact that it represents a state of the art baseline to
beat; however, in future work we plan to substitute
our own statistical MT systems, which will permit us
to experiment across a range of translation model and
language model LM training set sizes, and therefore
to vary quality while keeping other system details
constant. More directly connected to research in ma-
chine translation, this framework provides a variety
of opportunities for improving fully automatic sta-
tistical MT systems. We plan to implement a fully
automatic targeted paraphrasing translation pipeline,
using the automated methods discussed when intro-
ducing the pipeline in Section 2, including transla-
tion of targeted paraphrase lattices (cf. (Max, 2010;
Du et al., 2010)). Finally, we intend to explore the
application of our approach in scenarios involving
less-common languages, by using a more common
language as a pivot or bridge (Habash and Hu, 2009).
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Abstract

In this paper, we present a novel approach
to enhance hierarchical phrase-based machine
translation systems with linguistically moti-
vated syntactic features. Rather than directly
using treebank categories as in previous stud-
ies, we learn a set of linguistically-guided la-
tent syntactic categories automatically from a
source-side parsed, word-aligned parallel cor-
pus, based on the hierarchical structure among
phrase pairs as well as the syntactic structure
of the source side. In our model, each X non-
terminal in a SCFG rule is decorated with a
real-valued feature vector computed based on
its distribution of latent syntactic categories.
These feature vectors are utilized at decod-
ing time to measure the similarity between the
syntactic analysis of the source side and the
syntax of the SCFG rules that are applied to
derive translations. Our approach maintains
the advantages of hierarchical phrase-based
translation systems while at the same time nat-
urally incorporates soft syntactic constraints.

1 Introduction

In recent years, syntax-based translation mod-
els (Chiang, 2007; Galley et al., 2004; Liu et
al., 2006) have shown promising progress in im-
proving translation quality, thanks to the incorpora-
tion of phrasal translation adopted from the widely
used phrase-based models (Och and Ney, 2004) to
handle local fluency and the engagement of syn-
chronous context-free grammars (SCFG) to handle
non-local phrase reordering. Approaches to syntax-
based translation models can be largely categorized

into two classes based on their dependency on anno-
tated corpus (Chiang, 2007). Linguistically syntax-
based models (e.g., (Yamada and Knight, 2001; Gal-
ley et al., 2004; Liu et al., 2006)) utilize structures
defined over linguistic theory and annotations (e.g.,
Penn Treebank) and guide the derivation of SCFG
rules with explicit parsing on at least one side of
the parallel corpus. Formally syntax-based mod-
els (e.g., (Wu, 1997; Chiang, 2007)) extract syn-
chronous grammars from parallel corpora based on
the hierarchical structure of natural language pairs
without any explicit linguistic knowledge or anno-
tations. In this work, we focus on the hierarchi-
cal phrase-based models of Chiang (2007), which
is formally syntax-based, and always refer the term
SCFG, from now on, to the grammars of this model
class.

On the one hand, hierarchical phrase-based mod-
els do not suffer from errors in syntactic constraints
that are unavoidable in linguistically syntax-based
models. Despite the complete lack of linguistic
guidance, the performance of hierarchical phrase-
based models is competitive when compared to lin-
guistically syntax-based models. As shown in (Mi
and Huang, 2008), hierarchical phrase-based models
significantly outperform tree-to-string models (Liu
et al., 2006; Huang et al., 2006), even when at-
tempts are made to alleviate parsing errors using
either forest-based decoding (Mi et al., 2008) or
forest-based rule extraction (Mi and Huang, 2008).

On the other hand, when properly used, syntac-
tic constraints can provide invaluable benefits to im-
prove translation quality. The tree-to-string mod-
els of Mi and Huang (2008) can actually signif-
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icantly outperform hierarchical phrase-based mod-
els when using forest-based rule extraction together
with forest-based decoding. Chiang (2010) also ob-
tained significant improvement over his hierarchi-
cal baseline by using syntactic parse trees on both
source and target sides to induce fuzzy (not exact)
tree-to-tree rules and by also allowing syntactically
mismatched substitutions.

In this paper, we augment rules in hierarchical
phrase-based translation systems with novel syntac-
tic features. Unlike previous studies (e.g., (Zoll-
mann and Venugopal, 2006)) that directly use ex-
plicit treebank categories such as NP, NP/PP (NP
missing PP from the right) to annotate phrase pairs,
we induce a set of latent categories to capture the
syntactic dependencies inherent in the hierarchical
structure of phrase pairs, and derive a real-valued
feature vector for each X nonterminal of a SCFG
rule based on the distribution of the latent cate-
gories. Moreover, we convert the equality test of
two sequences of syntactic categories, which are ei-
ther identical or different, into the computation of
a similarity score between their corresponding fea-
ture vectors. In our model, two symbolically dif-
ferent sequences of syntactic categories could have
a high similarity score in the feature vector repre-
sentation if they are syntactically similar, and a low
score otherwise. In decoding, these feature vectors
are utilized to measure the similarity between the
syntactic analysis of the source side and the syntax
of the SCFG rules that are applied to derive trans-
lations. Our approach maintains the advantages of
hierarchical phrase-based translation systems while
at the same time naturally incorporates soft syntactic
constraints. To the best of our knowledge, this is the
first work that applies real-valued syntactic feature
vectors to machine translation.

The rest of the paper is organized as follows.
Section 2 briefly reviews hierarchical phrase-based
translation models. Section 3 presents an overview
of our approach, followed by Section 4 describing
the hierarchical structure of aligned phrase pairs and
Section 5 describing how to induce latent syntactic
categories. Experimental results are reported in Sec-
tion 6, followed by discussions in Section 7. Sec-
tion 8 concludes this paper.

2 Hierarchical Phrase-Based Translation

An SCFG is a synchronous rewriting system gener-
ating source and target side string pairs simultane-
ously based on a context-free grammar. Each syn-
chronous production (i.e., rule) rewrites a nonter-
minal into a pair of strings, γ and α, where γ (or
α) contains terminal and nonterminal symbols from
the source (or target) language and there is a one-to-
one correspondence between the nonterminal sym-
bols on both sides. In particular, the hierarchical
model (Chiang, 2007) studied in this paper explores
hierarchical structures of natural language and uti-
lize only a unified nonterminal symbol X in the
grammar,

X → 〈γ, α,∼〉

where ∼ is the one-to-one correspondence between
X’s in γ and α, and it can be indicated by un-
derscripted co-indexes. Two example English-to-
Chinese translation rules are represented as follows:

X → 〈give the pen to me,钢笔给我〉 (1)

X → 〈giveX1 to me, X1给我〉 (2)

The SCFG rules of hierarchical phrase-based
models are extracted automatically from corpora of
word-aligned parallel sentence pairs (Brown et al.,
1993; Och and Ney, 2000). An aligned sentence pair
is a tuple (E,F,A), where E = e1 · · · en can be in-
terpreted as an English sentence of length n, F =
f1 · · · fm its translation of length m in a foreign lan-
guage, andA a set of links between words of the two
sentences. Figure 1 (a) shows an example of aligned
English-to-Chinese sentence pair. Widely adopted
in phrase-based models (Och and Ney, 2004), a pair
of consecutive sequences of words from E and F is
a phrase pair if all words are aligned only within the
sequences and not to any word outside. We call a se-
quence of words a phrase if it corresponds to either
side of a phrase pair, and a non-phrase otherwise.
Note that the boundary words of a phrase pair may
not be aligned to any other word. We call the phrase
pairs with all boundary words aligned tight phrase
pairs (Zhang et al., 2008). A tight phrase pair is the
minimal phrase pair among all that share the same
set of alignment links. Figure 1 (b) highlights the
tight phrase pairs in the example sentence pair.
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Figure 1: An example of word-aligned sentence pair (a)
with tight phrase pairs marked in a matrix representation
(b).

The extraction of SCFG rules proceeds as fol-
lows. In the first step, all phrase pairs below a max-
imum length are extracted as phrasal rules. In the
second step, abstract rules are extracted from tight
phrase pairs that contain other tight phrase pairs by
replacing the sub phrase pairs with co-indexed X-
nonterminals. Chiang (2007) also introduced several
requirements (e.g., there are at most two nontermi-
nals at the right hand side of a rule) to safeguard
the quality of the abstract rules as well as keeping
decoding efficient. In our example above, rule (2)
can be extracted from rule (1) with the following sub
phrase pair:

X → 〈the pen,钢笔〉

The use of a unified X nonterminal makes hier-
archical phrase-based models flexible at capturing
non-local reordering of phrases. However, such flex-
ibility also comes at the cost that it is not able to
differentiate between different syntactic usages of
phrases. Suppose rule X → 〈I am readingX1, · · · 〉
is extracted from a phrase pair with I am reading a
book on the source side whereX1 is abstracted from
the noun phrase pair . If this rule is used to translate
I am reading the brochure of a book fair, it would
be better to apply it over the entire string than over
sub-strings such as I ... the brochure of. This is be-
cause the nonterminal X1 in the rule was abstracted
from a noun phrase on the source side of the training
data and would thus be better (more informative) to
be applied to phrases of the same type. Hierarchi-
cal phrase-based models are not able to distinguish
syntactic differences like this.

Zollmann and Venugopal (2006) attempted to ad-
dress this problem by annotating phrase pairs with

treebank categories based on automatic parse trees.
They introduced an extended set of categories (e.g.,
NP+V for she went and DT\NP for great wall, an
noun phrase with a missing determiner on the left)
to annotate phrase pairs that do not align with syn-
tactic constituents. Their hard syntactic constraint
requires that the nonterminals should match exactly
to rewrite with a rule, which could rule out poten-
tially correct derivations due to errors in the syn-
tactic parses as well as to data sparsity. For exam-
ple, NP cannot be instantiated with phrase pairs of
type DT+NN, in spite of their syntactic similarity.
Venugopal et al. (2009) addressed this problem by
directly introducing soft syntactic preferences into
SCFG rules using preference grammars, but they
had to face the computational challenges of large
preference vectors. Chiang (2010) also avoided hard
constraints and took a soft alternative that directly
models the cost of mismatched rule substitutions.
This, however, would require a large number of pa-
rameters to be tuned on a generally small-sized held-
out set, and it could thus suffer from over-tuning.

3 Approach Overview

In this work, we take a different approach to intro-
duce linguistic syntax to hierarchical phrase-based
translation systems and impose soft syntactic con-
straints between derivation rules and the syntactic
parse of the sentence to be translated. For each
phrase pair extracted from a sentence pair of a
source-side parsed parallel corpus, we abstract its
syntax by the sequence of highest root categories,
which we call a tag sequence, that exactly1 domi-
nates the syntactic tree fragments of the source-side
phrase. Figure 3 (b) shows the source-side parse tree
of a sentence pair. The tag sequence for “the pen”
is simply “NP” because it is a noun phrase, while
phrase “give the pen” is dominated by a verb fol-
lowed by a noun phrase, and thus its tag sequence is
“VBP NP”.

Let TS = {ts1, · · · , tsm} be the set of all tag se-
quences extracted from a parallel corpus. The syntax
of each X nonterminal2 in a SCFG rule can be then

1In case of a non-tight phrase pair, we only abstract and
compare the syntax of the largest tight part.

2There are three X nonterminals (one on the left and two on
the right) for binary abstract rules, two for unary abstract rules,
and one for phrasal rules.
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Tag Sequence Probability
NP 0.40
DT NN 0.35
DT NN NN 0.25

Table 1: The distribution of tag sequences forX1 inX →
〈I am reading X1, · · · 〉.

characterized by the distribution of tag sequences
~PX(TS) = (pX(ts1), · · · , pX(tsm)), based on the
phrase pairs it is abstracted from. Table 1 shows
an example distribution of tag sequences for X1 in
X → 〈I am reading X1, · · · 〉.

Instead of directly using tag sequences, as we
discussed their disadvantages above, we represent
each of them by a real-valued feature vector. Sup-
pose we have a collection of n latent syntactic cate-
gories C = {c1, · · · , cn}. For each tag sequence ts,
we compute its distribution of latent syntactic cate-
gories ~Pts(C) = (pts(c1), · · · , pts(cn)). For exam-
ple, ~P“NP VP”(C) = {0.5, 0.2, 0.3} means that the la-
tent syntactic categories c1, c2, and c3 are distributed
as p(c1) = 0.5, p(c2) = 0.2, and p(c3) = 0.3 for tag
sequence “NP VP”. We further convert the distribu-
tion to a normalized feature vector ~F (ts) to repre-
sent tag sequence ts:

~F (ts) = (f1(ts), · · · , fn(ts))

=
(pts(c1), · · · , pts(cn))

‖(pts(c1), · · · , pts(cn))‖

The advantage of using real-valued feature vec-
tors is that the degree of similarity between two tag
sequences ts and ts′ in the space of the latent syn-
tactic categories C can be simply computed as a dot-
product3 of their feature vectors:

~F (ts) · ~F (ts′) =
∑

1≤i≤n

fi(ts)fi(ts
′)

which computes a syntactic similarity score in the
range of 0 (totally syntactically different) to 1 (com-
pletely syntactically identical).

Similarly, we can represent the syntax of each X
nonterminal in a rule with a feature vector ~F (X),
computed as the sum of the feature vectors of tag

3Other measures such as KL-divergence in the probability
space are also feasible.

sequences weighted by the distribution of tag se-
quences of the nonterminal X:

~F (X) =
∑

ts∈TS

pX(ts)~F (ts)

Now we can impose soft syntactic constraints us-
ing these feature vectors when a SCFG rule is used
to translate a parsed source sentence. Given that aX
nonterminal in the rule is applied to a span with tag
sequence4 ts as determined by a syntactic parser, we
can compute the following syntax similarity feature:

SynSim(X, ts) = − log(~F (ts) · ~F (X))

Except that it is computed on the fly, this feature
can be used in the same way as the regular features
in hierarchical translation systems to determine the
best translation, and its feature weight can be tuned
in the same way together with the other features on
a held-out data set.

In our approach, the set of latent syntactic cate-
gories is automatically induced from a source-side
parsed, word-aligned parallel corpus based on the
hierarchical structure among phrase pairs along with
the syntactic parse of the source side. In what fol-
lows, we will explain the two critical aspects of
our approach, i.e., how to identify the hierarchi-
cal structures among all phrase pairs in a sentence
pair, and how to induce the latent syntactic cate-
gories from the hierarchy to syntactically explain the
phrase pairs.

4 Alignment-based Hierarchy

The aforementioned abstract rule extraction algo-
rithm of Chiang (2007) is based on the property that
a tight phrase pair can contain other tight phrase
pairs. Given two non-disjoint tight phrase pairs that
share at least one common alignment link, there are
only two relationships: either one completely in-
cludes another or they do not include one another
but have a non-empty overlap, which we call a non-
trivial overlap. In the second case, the intersection,
differences, and union of the two phrase pairs are

4A normalized uniform feature vector is used for tag se-
quences (of parsed test sentences) that are not seen on the train-
ing corpus.
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Figure 2: A decomposition tree of tight phrase pairs with
all tight phrase pairs listed on the right. As highlighted,
the two non-maximal phrase pairs are generated by con-
secutive sibling nodes.

also tight phrase pairs (see Figure 1 (b) for exam-
ple), and the two phrase pairs, as well as their inter-
section and differences, are all sub phrase pairs of
their union.

Zhang et al. (2008) exploited this property to con-
struct a hierarchical decomposition tree (Bui-Xuan
et al., 2005) of phrase pairs from a sentence pair to
extract all phrase pairs in linear time. In this pa-
per, we focus on learning the syntactic dependencies
along the hierarchy of phrase pairs. Our hierarchy
construction follows Heber and Stoye (2001).

Let P be the set of tight phrase pairs extracted
from a sentence pair. We call a sequentially-ordered
list5 L = (p1, · · · , pk) of unique phrase pairs pi ∈ P
a chain if every two successive phrase pairs in L
have a non-trivial overlap. A chain is maximal if
it can not be extended to its left or right with other
phrase pairs. Note that any sub-sequence of phrase
pairs in a chain generates a tight phrase pair. In par-
ticular, chain L generates a tight phrase pair τ(L)
that corresponds exactly to the union of the align-
ment links in p ∈ L. We call the phrase pairs
generated by maximal chains maximal phrase pairs
and call the other phrase pairs non-maximal. Non-
maximal phrase pairs always overlap non-trivially
with some other phrase pairs while maximal phrase
pairs do not, and it can be shown that any non-
maximal phrase pair can be generated by a sequence
of maximal phrase pairs. Note that the largest tight
phrase pair that includes all alignment links in A is
also a maximal phrase pair.

5The phrase pairs can be sequentially ordered first by the
boundary positions of the source-side phrase and then by the
boundary positions of the target-side phrase.
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Figure 3: (a) decomposition tree for the English side of
the example sentence pair with all phrases underlined, (b)
automatic parse tree of the English side, (c) two example
binarized decomposition trees with syntactic emissions
in depicted in (d), where the two dotted curves give an
example I(·) and O(·) that separate the forest into two
parts.

Lemma 1 Given two different maximal phrase
pairs p1 and p2, exactly one of the following alter-
natives is true: p1 and p2 are disjoint, p1 is a sub
phrase pair of p2, or p2 is a sub phrase pair of p1.

A direct outcome of Lemma 1 is that there is an
unique decomposition tree T = (N,E) covering all
of the tight phrase pairs of a sentence pair, where N
is the set of maximal phrase pairs and E is the set of
edges that connect between pairs of maximal phrase
pairs if one is a sub phrase pair of another. All of the
tight phrase pairs of a sentence pair can be extracted
directly from the nodes of the decomposition tree
(these phrase pairs are maximal), or generated by se-
quences of consecutive sibling nodes6 (these phrase
pairs are non-maximal). Figure 2 shows the decom-
position tree as well as all of the tight phrase pairs
that can be extracted from the example sentence pair
in Figure 1.

We focus on the source side of the decomposition
tree, and expand it to include all of the non-phrase

6Unaligned words may be added.

142



single words within the scope of the decomposition
tree as frontiers and attach each as a child of the low-
est node that contains the word. We then abstract the
trees nodes with two symbol, X for phrases, and B
for non-phrases, and call the result the decomposi-
tion tree of the source side phrases. Figure 3 (a) de-
picts such tree for the English side of our example
sentence pair. We further recursively binarize7 the
decomposition tree into a binarized decomposition
forest such that all phrases are directly represented
as nodes in the forest. Figure 3 (c) shows two of the
many binarized decomposition trees in the forest.

The binarized decomposition forest compactly
encodes the hierarchical structure among phrases
and non-phrases. However, the coarse abstraction
of phrases with X and non-phrases with B provides
little information on the constraints of the hierarchy.
In order to bring in syntactic constraints, we anno-
tate the nodes in the decomposition forest with syn-
tactic observations based on the automatic syntactic
parse tree of the source side. If a node aligns with
a constituent in the parse tree, we add the syntactic
category (e.g., NP) of the constituent as an emitted
observation of the node, otherwise, it crosses con-
stituent boundaries and we add a designated crossing
category CR as its observation. We call the resulting
forest a syntactic decomposition forest. Figure 3 (d)
shows two syntactic decomposition trees of the for-
est based on the parse tree in Figure 3 (b). We will
next describe how to learn finer-grained X and B
categories based on the hierarchical syntactic con-
straints.

5 Inducing Latent Syntactic Categories

If we designate a unique symbol S as the new root
of the syntactic decomposition forests introduced
in the previous section, it can be shown that these
forests can be generated by a probabilistic context-
free grammar G = (V,Σ, S,R, φ), where

• V = {S,X,B} is the set of nonterminals,

• Σ is the set of terminals comprising treebank
categories plus the CR tag (the crossing cate-
gory),

7The intermediate binarization nodes are also labeled as ei-
ther X or B based on whether they exactly cover a phrase or
not.

• S ∈ V is the unique start symbol,

• R is the union of the set of production rules
each rewriting a nonterminal to a sequence of
nonterminals and the set of emission rules each
generating a terminal from a nonterminal,

• and φ assigns a probability score to each rule
r ∈ R.

Such a grammar can be derived from the set of
syntactic decomposition forests extracted from a
source-side parsed parallel corpus, with rule prob-
ability scores estimated as the relative frequencies
of the production and emission rules.

The X and B nonterminals in the grammar are
coarse representations of phrase and non-phrases
and do not carry any syntactic information at all.
In order to introduce syntax to these nonterminals,
we incrementally split8 them into a set of latent
categories {X1, · · · , Xn} for X and another set
{B1, · · · , Bn} for B, and then learn a set of rule
probabilities9 φ on the latent categories so that the
likelihood of the training forests are maximized. The
motivation is to let the latent categories learn differ-
ent preferences of (emitted) syntactic categories as
well as structural dependencies along the hierarchy
so that they can carry syntactic information. We call
them latent syntactic categories. The learned Xi’s
represent syntactically-induced finer-grained cate-
gories of phrases and are used as the set of latent
syntactic categories C described in Section 3. In re-
lated research, Matsuzaki et al. (2005) and Petrov et
al. (2006) introduced latent variables to learn finer-
grained distinctions of treebank categories for pars-
ing, and Huang et al. (2009) used a similar approach
to learn finer-grained part-of-speech tags for tag-
ging. Our method is in spirit similar to these ap-
proaches.

Optimization of grammar parameters to maximize
the likelihood of training forests can be achieved

8We incrementally split each nonterminal to 2, 4, 8, and fi-
nally 16 categories, with each splitting followed by several EM
iterations to tune model parameters. We consider 16 an appro-
priate number for latent categories, not too small to differentiate
between different syntactic usages and not too large for the extra
computational and storage costs.

9Each binary production rule is now associated with a 3-
dimensional matrix of probabilities, and each emission rule as-
sociated with a 1-dimensional array of probabilities.
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by a variant of Expectation-Maximization (EM) al-
gorithm. Recall that our decomposition forests are
fully binarized (except the root). In the hypergraph
representation (Huang and Chiang, 2005), the hy-
peredges of our forests all have the same format10

〈(V,W ), U〉, meaning that node U expands to nodes
V and W with production rule U → VW . Given
a forest F with root node R, we denote e(U) the
emitted syntactic category at node U and LR(U) (or
PL(W ), or PR(V ))11 the set of node pairs (V,W )
(or (U, V ), or (U,W )) such that 〈(V,W ), U〉 is a hy-
peredge of the forest. Now consider node U , which
is either S, X , or B, in the forest. Let Ux be the
latent syntactic category12 of node U . We define
I(Ux) the part of the forest (includes e(U) but not
Ux) inside U , and O(Ux) the other part of the forest
(includes Ux but not e(U)) outside U , as illustrated
in Figure 3 (d). The inside-outside probabilities are
defined as:

PIN(Ux) = P (I(Ux)|Ux)

POUT(Ux) = P (O(Ux)|S)

which can be computed recursively as:

PIN(Ux) =
∑

(V,W )∈LR(U)

∑
y,z

φ(Ux → e(U))
×φ(Ux → VyWz)
×PIN(Vy)PIN(Wz)

POUT(Ux) =
∑

(V,W )∈PL(U)

∑
y,z

φ(Vy → e(V ))
×φ(Vy →WzUx)
×POUT(Vy)PIN(Wz)

+
∑

(V,W )∈PR(U)

∑
y,z

φ(Vy → e(V ))
×φ(Vy → UxWz)
×POUT(Vy)PIN(Wz)

In the E-step, the posterior probability of the oc-
currence of production rule13 Ux → VyWz is com-
puted as:

P (Ux → VyWz|F ) =

φ(Ux → e(U))
×φ(Ux → VyWz)

×POUT(Ux)PIN(Vy)PIN(Ww)

PIN(R)

10The hyperedge corresponding to the root node has a differ-
ent format because it is unary, but it can be handled similarly.
When clear from context, we use the same variable to present
both a node and its label.

11LR stands for the left and right children, PL for the parent
and left children, and PR for the parent and right children.

12We never split the start symbol S, and denote S0 = S.
13The emission rules can be handled similarly.

In the M-step, the expected counts of rule Ux →
VyWz for all latent categories Vy and Wz are accu-
mulated together and then normalized to obtain an
update of the probability estimation:

φ(Ux → VyWz) =
#(Ux → VyWz)∑

(V ′,W ′)

∑
y,z

#(Ux → VyWz)

Recall that each node U labeled asX in a forest is
associated with a phrase whose syntax is abstracted
by a tag sequence. Once a grammar is learned, for
each such node with a corresponding tag sequence
ts in forest F , we compute the posterior probability
that the latent category of node U being Xi as:

P (Xi|ts) =
POUT(Ui)PIN(Ui)

PIN(R)

This contributes P (Xi|ts) evidence that tag se-
quence ts belongs to a Xi category. When all
of the evidences are computed and accumulated in
#(Xi, ts), they can then be normalized to obtain the
probability that the latent category of ts is Xi:

pts(Xi) =
#(Xi, ts)∑
i #(Xi, ts)

As described in Section 3, the distributions of latent
categories are used to compute the syntactic feature
vectors for the SCFG rules.

6 Experiments

We conduct experiments on two tasks, English-to-
German and English-to-Chinese, both aimed for
speech-to-speech translation. The training data for
the English-to-German task is a filtered subset of the
Europarl corpus (Koehn, 2005), containing ∼300k
parallel bitext with ∼4.5M tokens on each side. The
dev and test sets both contain 1k sentences with one
reference for each. The training data for the English-
to-Chinese task is collected from transcription and
human translation of conversations in travel domain.
It consists of ∼500k parallel bitext with ∼3M to-
kens14 on each side. Both dev and test sets contain
∼1.3k sentences, each with two references. Both

14The Chinese sentences are automatically segmented into
words. However, BLEU scores are computed at character level
for tuning and evaluation.
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corpora are also preprocessed with punctuation re-
moved and words down-cased to make them suitable
for speech translation.

The baseline system is our implementation of the
hierarchical phrase-based model of Chiang (2007),
and it includes basic features such as rule and
lexicalized rule translation probabilities, language
model scores, rule counts, etc. We use 4-gram lan-
guage models in both tasks, and conduct minimum-
error-rate training (Och, 2003) to optimize feature
weights on the dev set. Our baseline hierarchical
model has 8.3M and 9.7M rules for the English-to-
German and English-to-Chinese tasks, respectively.

The English side of the parallel data is
parsed by our implementation of the Berkeley
parser (Huang and Harper, 2009) trained on the
combination of Broadcast News treebank from
Ontonotes (Weischedel et al., 2008) and a speechi-
fied version of the WSJ treebank (Marcus et al.,
1999) to achieve higher parsing accuracy (Huang et
al., 2010). Our approach introduces a new syntactic
feature and its feature weight is tuned in the same
way together with the features in the baseline model.
In this study, we induce 16 latent categories for both
X and B nonterminals.

Our approach identifies ∼180k unique tag se-
quences for the English side of phrase pairs in both
tasks. As shown by the examples in Table 2, the syn-
tactic feature vector representation is able to identify
similar and dissimilar tag sequences. For instance,
it determines that the sequence of “DT JJ NN” is
syntactically very similar to “DT ADJP NN” while
very dissimilar to “NN CD VP”. Notice that our la-
tent categories are learned automatically to maxi-
mize the likelihood of the training forests extracted
based on alignment and are not explicitly instructed
to discriminate between syntactically different tag
sequences. Our approach is not guaranteed to al-
ways assign similar feature vectors to syntactically
similar tag sequences. However, as the experimental
results show below, the latent categories are able to
capture some similarities among tag sequences that
are beneficial for translation.

Table 3 and 4 report the experimental results
on the English-to-German and English-to-Chinese
tasks, respectively. The addition of the syntax fea-
ture achieves a statistically significant improvement
(p ≤ 0.01) of 0.6 in BLEU on the test set of the

Baseline +Syntax ∆

Dev 16.26 17.06 0.80
Test 16.41 17.01 0.60

Table 3: BLEU scores of the English-to-German task
(one reference).

Baseline +Syntax ∆

Dev 46.47 47.39 0.92
Test 45.45 45.86 0.41

Table 4: BLEU scores of the English-to-Chinese task
(two references).

English-to-German task. This improvement is sub-
stantial given that only one reference is used for each
test sentence. On the English-to-Chinese task, the
syntax feature achieves a smaller improvement of
0.41 BLEU on the test set. One potential explanation
for the smaller improvement is that the sentences on
the English-to-Chinese task are much shorter, with
an average of only 6 words per sentence, compared
to 15 words in the English-to-German task. The
hypothesis space of translating a longer sentence is
much larger than that of a shorter sentence. There-
fore, there is more potential gain from using syn-
tax features to rule out unlikely derivations of longer
sentences, while phrasal rules might be adequate for
shorter sentences, leaving less room for syntax to
help as in the case of the English-to-Chinese task.

7 Discussions

The incorporation of the syntactic feature into the
hierarchical phrase-based translation system also
brings in additional memory load and computational
cost. In the worst case, our approach requires stor-
ing one feature vector for each tag sequence and one
feature vector for each nonterminal of a SCFG rule,
with the latter taking the majority of the extra mem-
ory storage. We observed that about 90% of the
X nonterminals in the rules only have one tag se-
quence, and thus the required memory space can be
significantly reduced by only storing a pointer to the
feature vector of the tag sequence for these nonter-
minals. Our approach also requires computing one
dot-product of two feature vectors for each nonter-
minal when a SCFG rule is applied to a source span.

145



Very similar Not so similar Very dissimilar
~F (ts) · ~F (ts′) > 0.9 0.4 ≤ ~F (ts) · ~F (ts′) ≤ 0.6 ~F (ts) · ~F (ts′) < 0.1

DT JJ NN
DT NN DT JJ JJ NML NN PP NP NN

DT JJ JJ NN DT JJ CC INTJ VB NN CD VP
DT ADJP NN DT NN NN JJ RB NP IN CD

VP
VB VP PP JJ NN JJ NN TO VP

VB RB VB PP VB NN NN VB JJ WHNP DT NN
VB DT DT NN VB RB IN JJ IN INTJ NP

ADJP
JJ ADJP JJ JJ CC ADJP IN NP JJ

PDT JJ ADJP VB JJ JJ AUX RB ADJP
RB JJ ADVP WHNP JJ ADJP VP

Table 2: Examples of similar and dissimilar tag sequences.

This cost can be reduced, however, by caching the
dot-products of the tag sequences that are frequently
accessed.

There are other successful investigations to
impose soft syntactic constraints to hierarchical
phrase-based models by either introducing syntax-
based rule features such as the prior derivation
model of Zhou et al. (2008) or by imposing con-
straints on translation spans at decoding time, e.g.,
(Marton and Resnik, 2008; Xiong et al., 2009;
Xiong et al., 2010). These approaches are all or-
thogonal to ours and it is expected that they can be
combined with our approach to achieve greater im-
provement.

This work is an initial effort to investigate latent
syntactic categories to enhance hierarchical phrase-
based translation models, and there are many direc-
tions to continue this line of research. First, while
the current approach imposes soft syntactic con-
straints between the parse structure of the source
sentence and the SCFG rules used to derive the
translation, the real-valued syntactic feature vectors
can also be used to impose soft constraints between
SCFG rules when rule rewrite occurs. In this case,
target side parse trees could also be used alone or to-
gether with the source side parse trees to induce the
latent syntactic categories. Second, instead of using
single parse trees during both training and decod-
ing, our approach is likely to benefit from exploring
parse forests as in (Mi and Huang, 2008). Third,
in addition to the treebank categories obtained by
syntactic parsing, lexical cues directly available in

sentence pairs could also to explored to guide the
learning of latent categories. Last but not the least,
it would be interesting to investigate discriminative
training approaches to learn latent categories that di-
rectly optimize on translation quality.

8 Conclusion

We have presented a novel approach to enhance
hierarchical phrase-based machine translation sys-
tems with real-valued linguistically motivated fea-
ture vectors. Our approach maintains the advan-
tages of hierarchical phrase-based translation sys-
tems while at the same time naturally incorpo-
rates soft syntactic constraints. Experimental results
showed that this approach improves the baseline hi-
erarchical phrase-based translation models on both
English-to-German and English-to-Chinese tasks.
We will continue this line of research and exploit
better ways to learn syntax and apply syntactic con-
straints to machine translation.
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Abstract

We propose a language-independent approach
for improving statistical machine translation
for morphologically rich languages using a
hybrid morpheme-word representation where
the basic unit of translation is the morpheme,
but word boundaries are respected at all stages
of the translation process. Our model extends
the classic phrase-based model by means
of (1) word boundary-aware morpheme-level
phrase extraction, (2) minimum error-rate
training for a morpheme-level translation
model using word-level BLEU, and (3) joint
scoring with morpheme- and word-level lan-
guage models. Further improvements are
achieved by combining our model with the
classic one. The evaluation on English to
Finnish usingEuroparl (714K sentence pairs;
15.5M English words) shows statistically sig-
nificant improvements over the classic model
based on BLEU and human judgments.

1 Introduction

The fast progress of statistical machine translation
(SMT) has boosted translation quality significantly.
While research keeps diversifying,the wordremains
the atomic token-unit of translation. This is fine for
languages with limited morphology like English and
French, or no morphology at all like Chinese, but
it is inadequate for morphologically rich languages
like Arabic, Czech or Finnish (Lee, 2004; Goldwater
and McClosky, 2005; Yang and Kirchhoff, 2006).

∗This research was sponsored in part by CSIDM (grant #
200805) and by a National Research Foundation grant entitled
“Interactive Media Search” (grant # R-252-000-325-279).

There has been a line of recent SMT research
that incorporates morphological analysis as part of
the translation process, thus providing access to the
information within the individual words. Unfortu-
nately, most of this work either relies on language-
specific tools, or only works for very small datasets.

Below we propose a language-independent ap-
proach to SMT of morphologically rich lan-
guages using a hybrid morpheme-word representa-
tion where the basic unit of translation is the mor-
pheme, but word boundaries are respected at all
stages of the translation process. We use unsuper-
vised morphological analysis and we incorporate its
output into the process of translation, as opposed to
relying on pre-processing and post-processing only
as has been done in previous work.

The remainder of the paper is organized as fol-
lows. Section 2 reviews related work. Sections 3
and 4 present our morphological and phrase merging
enhancements. Section 5 describes our experiments,
and Section 6 analyzes the results. Finally, Section 7
concludes and suggests directions for future work.

2 Related Work

Most previous work on morphology-aware ap-
proaches relies heavily on language-specific tools,
e.g., theTreeTagger(Schmid, 1994) or theBuck-
walter Arabic Morphological Analyzer (Buckwal-
ter, 2004), which hampers their portability to
other languages. Moreover, the prevalent method
for incorporating morphological information is by
heuristically-driven pre- or post-processing. For
example, Sadat and Habash (2006) use different
combinations of Arabic pre-processing schemes
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for Arabic-English SMT, whereas Oflazer and El-
Kahlout (2007) post-processes Turkish morpheme-
level translations by re-scoringn-best lists with a
word-based language model. These systems, how-
ever, do not attempt to incorporate their analysis as
part of the decoding process, but rather rely on mod-
els designed for word-token translation.

We should also note the importance of the trans-
lation direction: it is much harder to translate from a
morphologically poor to a morphologically rich lan-
guage, where morphological distinctions not present
in the source need to be generated in the target lan-
guage. Research in translating into morphologically
rich languages, has attracted interest for languages
like Arabic (Badr et al., 2008),Greek (Avramidis
and Koehn, 2008),Hungarian(Novák, 2009; Koehn
and Haddow, 2009),Russian (Toutanova et al.,
2008), andTurkish(Oflazer and El-Kahlout, 2007).
These approaches, however, either only succeed in
enhancing the performance for small bi-texts (Badr
et al., 2008; Oflazer and El-Kahlout, 2007), or im-
prove only modestly for large bi-texts1.

3 Morphological Enhancements

We present a morphologically-enhanced version of
the classic phrase-based SMT model (Koehn et al.,
2003). We use a hybrid morpheme-word representa-
tion where the basic unit of translation is the mor-
pheme, but word boundaries are respected at all
stages of the translation process. This is in con-
trast with previous work, where morphological en-
hancements are typically performed as pre-/post-
processing steps only.

In addition to changing the basic translation token
unit from a word to a morpheme, our model extends
the phrase-based SMT model with the following:

1. word boundary-aware morpheme-level phrase
extraction;

2. minimum error-rate training for a morpheme-
level model using word-level BLEU;

3. joint scoring with morpheme- and word-level
language models.

We first introduce our morpheme-level represen-
tation, and then describe our enhancements.

1Avramidis and Koehn (2008) improved by 0.15 BLEU over
a 18.05 English-Greek baseline; Toutanova et al. (2008) im-
proved by 0.72 BLEU over a 36.00 English-Russian baseline.

3.1 Morphological Representation

Our morphological representation is based on the
output of an unsupervised morphological analyzer.
Following Virpioja et al. (2007), we useMorfessor,
which is trained on raw tokenized text (Creutz and
Lagus, 2007). The tool segments words into mor-
phemes annotated with the following labels:PRE
(prefix),STM(stem),SUF(suffix). Multiple prefixes
and suffixes can be proposed for each word; word
compounding is allowed as well. The output can be
described by the following regular expression:

WORD= ( PRE* STM SUF* )+

For example,uncarefully is analyzed as

un/PRE+ care/STM+ ful/SUF+ ly/SUF

The above token sequence forms the input to our
system. We keep thePRE/STM/SUF tags as part
of the tokens, and distinguish betweencare/STM+
andcare/STM . Note also that the “+” sign is ap-
pended to each nonfinal tag so that we can distin-
guish word-internal from word-final morphemes.

3.2 Word Boundary-aware Phrase Extraction

The core translation structure of a phrase-based
SMT model is thephrase table, which is learned
from a bilingual parallel sentence-aligned corpus,
typically using the alignment template approach
(Och and Ney, 2004). It contains a set of bilingual
phrase pairs, each associated with five scores: for-
ward and backward phrase translation probabilities,
forward and backward lexicalized translation proba-
bilities, and a constant phrase penalty.

The maximum phrase lengthn is normally limited
to seven words; higher values ofn increase the table
size exponentially without actually yielding perfor-
mance benefit (Koehn et al., 2003). However, things
are different when translating with morphemes, for
two reasons: (1) morpheme-token phrases of length
n can span less thann words; and (2) morpheme-
token phrases may only partially span words.

The first point means that morpheme-token
phrase pairs span fewer word tokens, and thus cover
a smaller context, which may result in fewer total
extracted pairs compared to a word-level approach.
Figure 1 shows a case where three Finnish words
consist of nine morphemes. Previously, this issue
was addressed by simply increasing the value ofn

when using morphemes, which is of limited help.
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SRC = theSTM newSTM , unPRE+ democraticSTM immigrationSTM policySTM

TGT = uusiSTM , epäPRE+ demokraatSTM+ tSUF+ iSUF+ sSUF+ enSUF maahanmuuttoPRE+ politiikanSTM

(uusi=new  ,  epädemokraattisen=undemocratic    maahanmuuttopolitiikan=immigration policy)

Figure 1:Example of English-Finnish bilingual fragments morphologically segmented byMorfessor. Solid links
represent IBM Model 4 alignments at the morpheme-token level. Translation glosses for Finnish are given below.

The second point is more interesting: morpheme-
level phrases may span words partially, making them
potentially usable in translating unknown inflected
forms of known source language words, but also
creates the danger of generating sequences of mor-
phemes that are not legal target language words.

For example, let us consider the phrase in Fig-
ure 1: unPRE+ democratic STM. The original
algorithm will extract the spurious phraseepäPRE+
demokraat STM+t SUF+i SUF+sSUF+, beside
the correct one that hasenSUF appended at the
end. Such a spurious phrase does not generally help
in translating unknown inflected forms, especially
for morphologically-rich languages that feature mul-
tiple affixes, but negatively affects the translation
model in terms of complexity and quality.

We solve both problems by modifying the phrase-
pair extraction algorithm so that morpheme-token
phrases can extend longer thann, as long as they
span n words or less. We further require that
word boundaries be respected2, i.e., morpheme-
token phrases span a sequence of whole words. This
is a fair extension of the morpheme-token system
with respect to a word-token one since both are re-
stricted to span up ton word-tokens.

3.3 Morpheme-Token MERT Optimizing
Word-Token BLEU

Modern phrase-based SMT systems use a log-linear
model with the following typical feature functions:
language model probabilities, word penalty, distor-
tion cost, and the five parameters from the phrase ta-
ble. Their weights are set by optimizing BLEU score
(Papineni et al., 2001) directly using minimum error
rate training (MERT), as suggested by Och (2003).

In previous work, phrase-based SMT systems
using morpheme-token input/output naturally per-

2This means that we miss the opportunity to generate new
wordforms for known baseforms, but removes the problem of
proposing nonwords in the target language.

formed MERT at the morpheme-token level as well.
This is not optimal since the final expected system
output is a sequence of words, not morphemes. The
main danger is that optimizing a morpheme-token
BLEU score could lead to a suboptimal weight for
the word penalty feature function: this is because
the brevity penalty of BLEU is calculated with re-
spect to the number of morphemes, which may vary
for sentences with an identical number of words.

This motivates us to perform MERT at the word-
token level, although our input consists of mor-
phemes. In particular, for each iteration of MERT,
as soon as the decoder generates a morpheme-token
translation for a sentence, we convert it into a word-
token sequence, which is used to calculate BLEU.
We thus achieve MERT optimization at the word-
token level while translating a morpheme-token in-
put and generating a morpheme-token output.

3.4 Scoring with Twin Language Models

An SMT system that takes morpheme-token input
and generates morpheme-token output should natu-
rally use a morpheme-token language model (LM).
This has the advantage of alleviating the problem of
data sparseness, especially when translating into a
morphologically rich language, since the LM would
be able to handle some new unseen inflected forms
of known words. On the negative side, a morpheme-
token LM spans fewer word-tokens and thus has a
more limited word “horizon” compared to one op-
erating at the word level. As with the maximum
phrase length, mechanically increasing the order of
the morpheme-token LM has a limited impact.

In order to address the issue in a more princi-
pled manner, we enhance our model with a second
LM that works at the word-token level. This LM is
used together with the morpheme-token LM, which
is achieved by using two separate feature functions
in the log-linear SMT model: one for each LM. We
further had to modify the Moses decoder so that
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uusiSTM  , epäPRE+ demokraatSTM+ tSUF+ iSUF+ sSUF+ enSUF maahanmuuttoPRE+ politiikanSTM 

• Score: “sSUF+ enSUF maahanmuuttoPRE+”  ;  “enSUF maahanmuuttoPRE+ politiikanSTM ”

• Concatenate: uusi , epädemokraattisen maahanmuuttopolitiikan

• Score: “, epädemokraattisen maahanmuuttopolitiikan”

Previous hypotheses Current hypothesis

(i)

(ii)

(iii)

Figure 2:Scoring with twin LMs. Shown are: (i) The current state of the decoding process withthe target phrases
covered by the current partial hypotheses. (ii, iii) Scoring with 3-gram morpheme-token and 3-gram word-token LMs,
respectively. For the word-token LM, the morpheme-token sequence is concatenated into word-tokens before scoring.

it can be enhanced with an appropriate word-token
“view” on the partial morpheme-level hypotheses3.

The interaction of the twin LMs is illustrated in
Figure 2. The word-token LM can capture much
longer phrases and more complete contexts such
as “, ep̈ademokraattisen maahanmuuttopolitiikan”
compared to the morpheme-token LM.

Note that scoring with two LMs that see the out-
put sequence as different numbers of tokens is not
readily offered by the existing SMT decoders. For
example, the phrase-based model in Moses (Koehn
et al., 2007) allows scoring with multiple LMs, but
assumes they use the same token granularity, which
is useful for LMs trained on different monolingual
corpora, but cannot handle our case. While the fac-
tored translation model (Koehn and Hoang, 2007) in
Moses does allow scoring with models of different
granularity, e.g., lemma-token and word-token LMs,
it requires a 1:1 correspondence between the tokens
in the different factors, which clearly is not our case.

Note that scoring with twin LMs is conceptu-
ally superior ton-best re-scoring with a word-token
LM, e.g., (Oflazer and El-Kahlout, 2007), since it is
tightly integrated into decoding: it scores partial hy-
potheses and influenced the search process directly.

4 Enriching the Translation Model

Another general strategy for combining evidence
from the word-token and the morpheme-token rep-
resentations is to build two separate SMT systems
and then combine them. This can be done as a
post-processing system combination step; see (Chen
et al., 2009a) for an overview of such approaches.

3We use the term “hypothesis” to collectively refer to the
following (Koehn, 2003): thesource phrasecovered, the cor-
respondingtarget phrase, and most importantly, areference to
the previous hypothesisthat it extends.

However, for phrase-based SMT systems, it is theo-
retically more appealing to combine their phrase ta-
bles since this allows the translation models of both
systems to influence the hypothesis search directly.

We now describe our phrase table combination
approach. Note that it is orthogonal to the work pre-
sented in the previous section, which suggests com-
bining the two (which we will do in Section 5).

4.1 Building a Twin Translation Model

Figure 3 shows a general scheme of our twin trans-
lation model. First, we tokenize the input at differ-
ent granularities: (1) morpheme-token and (2) word-
token. We then build separate phrase tables (PT) for
the two inputs: a word-tokenPTw and a morpheme-
token PTm. Second, we re-tokenizePTw at the
morpheme level, thus obtaining a new phrase table
PTw→m, which is of the same granularity asPTm.
Finally, we mergePTw→m andPTm, and we input
the resulting phrase table to the decoder.

GIZA++

Decoding

Word alignment Morpheme alignment 

Word Morpheme

PTm

PTw→m

PTw

Morphological 

segmenta"on 

Phrase Extrac"on

PT merging

Phrase Extrac"on

GIZA++

Figure 3:Building a twin phrase table (PT). First, sep-
arate PTs are generated for different input granularities:
word-token and morpheme-token. Second, the word-
token PT is retokenized at the morpheme-token level. Fi-
nally, the two PTs are merged and used by the decoder.
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4.2 Merging and Normalizing Phrase Tables

Below we first describe the two general phrase ta-
ble combination strategies used in previous work:
(1) direct merging using additional feature func-
tions, and (2) phrase table interpolation. We then
introduce our approach.

Add-feature methods. The first line of research
on phrase table merging is exemplified by (Niehues
et al., 2009; Chen et al., 2009b; Do et al., 2009;
Nakov and Ng, 2009). The idea is to select one of
the phrase tables as primary and to add to it all non-
duplicating phrase pairs from the second table to-
gether with their associated scores. For each entry,
features can be added to indicate its origin (whether
from the primary or from the secondary table). Later
in our experiments, we will refer to these baseline
methods asadd-1 and add-2, depending on how
many additional features have been added. The val-
ues we used for these features in the baseline are
given in Section 5.4; their weights in the log-linear
model were set in the standard way using MERT.

Interpolation-based methods. A problem with
the above method is that the scores in the merged
phrase table that correspond to forward and back-
ward phrase translation probabilities, and forward
and backward lexicalized translation probabilities
can no longer be interpreted as probabilities since
they are not normalized any more. Theoretically,
this is not necessarily a problem since the log-linear
model used by the decoder does not assume that the
scores for the feature functions come from a normal-
ized probability distribution. While it is possible to
re-normalize the scores to convert them into prob-
abilities, this is rarely done; it also does not solve
the problem with the dropped scores for the dupli-
cated phrases. Instead, the conditional probabilities
in the two phrase tables are often interpolated di-
rectly, e.g., using linear interpolation. Representa-
tive work adopting this approach is (Wu and Wang,
2007). We refer to this method asinterpolation.

Our method. The above phrase merging ap-
proaches have been proposed for phrase tables de-
rived from different sources. This is in contrast with
our twin translation scenario, where the morpheme-
token phrase tables are built from the same training
dataset; the main difference being that word align-
ments and phrase extraction were performed at the

word-token level forPTw→m and at the morpheme-
token level forPTm. Thus, we propose different
merging approaches for the phrase translation prob-
abilities and for the lexicalized probabilities.

In phrase-based SMT, phrase translation probabil-
ities are computed using maximum likelihood (ML)

estimationφ(f̄ |ē) = #(f̄ ,ē)∑
f̄

#(f̄ ,ē)
, where#(f̄ , ē) is

the number of times the pair(f̄ , ē) is extracted from
the training dataset (Koehn et al., 2003). In order to
preserve the normalized ML estimations as much as
possible, we refrain from interpolation. Instead, we
use the raw counts for the two models#m(f̄ , ē) and
#w→m(f̄ , ē) directly as follows:

φ(f̄ , ē) =
#m(f̄ , ē) + #w→m(f̄ , ē)

∑
f̄ #m(f̄ , ē) +

∑
f̄ #w→m(f̄ , ē)

For lexicalized translation probabilities, we would
like to use simple interpolation. However, we notice
that when a phrase pair belongs to only one of the
phrase tables, the corresponding lexicalized score
for the other table would be zero. This might cause
some good phrases to be penalized just because they
were not extracted in both tables, which we want to
prevent. We thus perform interpolation fromPTm

andPTw according to the following formula:

lex(f̄ |ē) = α× lexm(f̄m|ēm)

+ (1− α)× lexw(f̄w|ēw)

where the concatenation of̄fm and ēm into word-
token sequences yields̄fw andēw, respectively.

If both (f̄m, ēm) and(f̄w, ēw) are present inPTm

andPTw, respectively, we have a simple interpola-
tion of their corresponding lexicalized scores lexm

and lexw. However, if one of them is missing, we
do not use a zero for its corresponding lexicalized
score, but use an estimate as follows.

For example, if only the entry(f̄m, ēm) is present
in PTm, we first convert (̄fm,ēm) into a word-token
pair (f̄m→w,ēm→w), and then induce a correspond-
ing word alignment from the morpheme-token align-
ment of (f̄m,ēm). We then estimate a lexicalized
phrase score using the original formula given in
(Koehn et al., 2003), where we plug this induced
word alignment and word-token lexical translation
probabilities estimated from the word-token dataset
The case when(f̄w, ēw) is present inPTw, but
(f̄m, ēm) is not, is solved similarly.
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5 Experiments and Evaluation

5.1 Datasets

In our experiments, we use the English-Finnish data
from the 2005 shared task (Koehn and Monz, 2005),
which is split into training, development, and test
portions; see Table 1 for details. We further split
the training dataset into four subsets T1, T2, T3, and
T4 of sizes 40K, 80K, 160K, and 320K parallel sen-
tence pairs, which we use for studying the impact of
training data size on translation performance.

Sent.
Avg. words Avg. morph.
en fi en fi

Train 714K 21.62 15.80 24.68 26.15
Dev 2K 29.33 20.99 33.40 34.94
Test 2K 28.98 20.72 33.10 34.47

Table 1: Dataset statistics. Shown are the number of
parallel sentences, and the average number of words and
Morfessormorphemes on the English and Finnish sides
of the training, development and test datasets.

5.2 Baseline Systems

We build two phrase-based baseline SMT systems,
both using Moses (Koehn et al., 2007):

w-system: works at the word-token level, extracts
phrases of up to seven words, and uses a 4-gram
word-token LM (as typical for phrase-based SMT);

m-system: works at the morpheme level, tok-
enized usingMorfessor4 and augmented with “+” as
described in Section 3.1.

Following Oflazer and El-Kahlout (2007) and Vir-
pioja et al. (2007), we use phrases of up to 10
morpheme-tokens and a 5-gram morpheme-token
LM. None of the enhancements described previ-
ously is applied yet. After decoding, morphemes are
concatenated back to words using the “+” markers.

To evaluate the translation quality, we compute
BLEU (Papineni et al., 2001) at the word-token
level. We further introduce a morpheme-token ver-
sion of BLEU, which we call m-BLEU: it first seg-
ments the system output and the reference trans-
lation into morpheme-tokens and then calculates a
BLEU score as usual. Table 2 shows the baseline re-
sults. We can see that them-systemachieves much

4We retrained Morfessor for Finnish/English on the
Finnish/English side of the training dataset.

w-system m-system
BLEU m-BLEU BLEU m-BLEU

T1 11.56 45.57 11.07 49.15
T2 12.95 48.63 12.68 53.78
T3 13.64 50.30 13.32 54.40
T4 14.20 50.85 13.57 54.70
Full 14.58 53.05 14.08 55.26

Table 2: Baseline system performance(on the test
dataset). Shown are word BLEU and morpheme m-
BLEU scores for thew-systemandm-system.

higher m-BLEU scores, indicating that it may have
better morpheme coverage5. However, them-system
is outperformed by thew-systemon the classic word-
token BLEU, which means that it either does not
perform as well as thew-systemor that word-token
BLEU is not capable of measuring the morpheme-
level improvements. We return to this question later.

5.3 Adding Morphological Enhancements

We now add our three morphological enhancements
from Section 3 to the baselinem-system:

phr (training) allow morpheme-token phrases to
get potentially longer than seven morpheme-tokens
as long as they cover no more than seven words;

tune (tuning) MERT for morpheme-token trans-
lations while optimizing word-token BLEU;

lm (decoding) scoring morpheme-token transla-
tion hypotheses with a 5-gram morpheme-token and
a 4-gram word-token LM.

The results are shown in Table 3 (ii). As we can
see, each of the three enhancements yields improve-
ments in BLEU score over them-system, both for
small and for large training corpora. In terms of per-
formance ranking,tune achieves the best absolute
improvement of 0.66 BLEU points onT1 and of 0.47
points on the full dataset, followed bylm andphr.

Table 3 (iii) further shows that usingphr and
lm together yields absolute improvements of 0.70
BLEU points onT1 and 0.50 points on the full train-
ing dataset. Further incorporatingtune, however,
only helps when training onT1.

Overall, the morphological enhancements are on
par with thew-systembaseline, and yield sizable im-

5Note that these morphemes were generated automatically
and thus many of them are erroneous.
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System T1 (40K) Full (714K)

(i)
w-system(w) 11.56 14.58
m-system(m) 11.07 14.08

(ii)
m+phr 11.44+0.37 14.43+0.35

m+tune 11.73+0.66 14.55+0.47

m+lm 11.58+0.51 14.53+0.45

(iii)
m+phr+lm 11.77+0.70 14.58+0.50

m+phr+lm+tune 11.90+0.83 14.39+0.31

Table 3: Impact of the morphological enhancements
(on test dataset). Shown are BLEU scores (in %) for
training onT1 and on the full dataset for (i) baselines,
(ii) enhancements individually, and (iii) combined. Su-
perscripts indicate absolute improvements w.r.tm-system.

provements over them-systembaseline: 0.83 BLEU
points onT1 and 0.50 on the full training dataset.

5.4 Combining Translation Tables

Finally, we investigate the effect of combining
phrase tables derived from a word-token and a
morpheme-token input, as described in Section 4.
We experiment with the following merging methods:

add-1: phrase table merging using one table as
primary and addingoneextra feature6;

add-2: phrase table merging using one table as
primary and addingtwo extra features7;

interpolation : simple linear interpolation with
one parameterα;

ourMethod: our interpolation-like merging
method described in Section 4.2.

Parameter tuning. We tune the parameters of the
above methods on the development dataset.

T1 (40K) Full (714K)

PTm is primary 11.99 13.45
PTw→m is primary 12.26 14.19

Table 4:Effect of selection of primary phrase table for
add-1 (on dev dataset):PTw→m, derived from a word-
token input, vs. PTm, from a morpheme-token input.
Shown is BLEU (in %) onT1 and the full training dataset.

For add-1 and add-2, we need to decide which
(PTw→m or PTm) phrase table should be consid-

6The feature values aree1, e
2/3 or e

1/3 (e=2.71828...);
when the phrase pair comes from both tables, from the primary
table only, and from the secondary table only, respectively.

7The feature values are(e1
, e

1), (e1
, e

0) or (e0
, e

1) when
the phrase pair comes from both tables, from the primary table
only, and from the secondary table only, respectively.

ered the primary table. Table 4 shows the results
when trying both strategies onadd-1. As we can see,
usingPTw→m as primary performs better onT1 and
on the full training dataset; thus, we will use it as
primary on the test dataset foradd-1andadd-2.

For interpolation-based methods, we need to
choose a value for the interpolation parameters. Due
to time constraints, we use the same value for the
phrase translation probabilities and for the lexical-
ized probabilities, and we perform grid search for
α ∈ {0.3, 0.4, 0.5, 0.6, 0.7} usinginterpolateon the
full training dataset. As Table 5 shows,α = 0.6
turns out to work best on the development dataset;
we will use this value in our experiments on the test
dataset both forinterpolateand forourMethod8.

α 0.3 0.4 0.5 0.6 0.7
BLEU 14.17 14.49 14.6 14.73 14.52

Table 5:Trying different values for interpolate (on dev
dataset). BLEU (in %) is for the full training dataset.

Evaluation on the test dataset.We integrate the
morphologically enhanced systemm+phr+lm and
the word-token basedw-systemusing the four merg-
ing methods above. The results for the full train-
ing dataset are shown in Table 6. As we can see,
add-1andadd-2make little difference compared to
them-systembaseline. In contrast,interpolationand
ourMethodyield sizable absolute improvements of
0.55 and 0.74 BLEU points, respectively, over the
m-system; moreover, they outperform thew-system.

Merging methods Full (714K)

(i)
m-system 14.08
w-system 14.58

(ii)
add-1 14.25+0.17

add-2 13.89−0.19

(iii)
interpolation 14.63+0.55

ourMethod 14.82+0.74

Table 6: Merging m+phr+lm and w-system (on test
dataset). BLEU (in %) is for the full training dataset. Su-
perscripts indicate performance gain/loss w.r.tm-system.

6 Discussion

Below we assess the significance of our results based
on micro-analysis and human judgments.

8Note that this might putourMethodat disadvantage.
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6.1 Translation Model Comparison
We first compare the following three phrase ta-
bles:PTm of m-system, maximum phrase length of
10 morpheme-tokens;PTw→m of w-system, maxi-
mum phrase length of 7 word-tokens, re-segmented
into morpheme-tokens; andPTm+phr – morpheme-
token input using word boundary-aware phrase ex-
traction, maximum phrase length of 7 word-tokens.

Full (714K)

(i)
PTm 43.5M
PTw→m 28.9M
PTm+phr 22.5M

(ii)
PTm+phr

⋂
PTm 21.4M

PTm+phr

⋂
PTw→m 10.7M

Table 7: Phrase table statistics.The number of phrase
pairs in (i) individual PTs and (ii) PT overlap, is shown.

PTm+phr versus PTm. Table 7 shows that
PTm+phr is about half the size ofPTm. Still, as
Table 3 shows,m+phr outperforms them-system.
Moreover, 95.07% (21.4M/22.5M) of the phrase
pairs inPTm+phr are also inPTm, which confirms
that boundary-aware phrase extraction selects good
phrase pairs fromPTm to be retained inPTm+phr.

PTm+phr versusPTw→m. These two tables
are comparable in size: 22.5M and 28.9M pairs,
but their overlap is only 47.67% (10.7M/22.5M) of
PTm+phr. Thus, enriching the translation model
with PTw→m helps improve coverage.

6.2 Significance of the Results

Table 8 shows the performance of our system com-
pared to the two baselines:m-systemandw-system.
We achieve an absolute improvement of 0.74 BLEU
points over them-system, from which our system
evolved. This might look modest, but note that
the baseline BLEU is only 14.08, and thus the rel-
ative improvement is 5.6%, which is not trivial.
Furthermore, we outperform thew-systemby 0.24
points (1.56% relative). Both improvements are sta-
tistically significant withp < 0.01, according to
Collins’ sign test (Collins et al., 2005).

In terms of m-BLEU, we achieve an improvement
of 2.59 points over thew-system, which suggest our
system might be performing better than what stan-
dard BLEU suggests. Below we test this hypothesis

BLEU m-BLEU

ourSystem 14.82 55.64
m-system 14.08 55.26
w-system 14.58 53.05

Table 8: Our system vs. the two baselines(on the test
dataset): BLEU and m-BLEU scores (in %).

by means of micro-analysis and human evaluation.
Translation Proximity Match. We performed

automatic comparison based on corresponding
phrases between the translation output (out) and the
reference (ref), using the source (src) test dataset as
a pivot. The decoding log gave us the phrases used
to translatesrc to out, and we only needed to find
correspondences betweensrc andref, which we ac-
complished by appending the test dataset to training
and performing IBM Model 4 word alignments.

We then looked for phrase triples (src, out, ref),
where there was a high character-level similarity be-
tweenout andref, measured usinglongest common
subsequence ratiowith a threshold of 0.7, set ex-
perimentally. We extracted 16,262 triples: for 6,758
of them, the translations matched the references ex-
actly, while in the remaining triples, they were close
wordforms9. These numbers support the hypothesis
that our approach yields translations close to the ref-
erence wordforms but unjustly penalized by BLEU,
which only gives credit for exact word matches10.

Human Evaluation. We asked four native
Finnish speakers to evaluate 50 random test sen-
tences. Following (Callison-Burch et al., 2009), we
provided them with the source sentence, its refer-
ence translation, and the outputs of three SMT sys-
tems (m-system, w-system, andourSystem), which
were shown in different order for each example and
were namedsys1, sys2and sys3(by order of ap-
pearance). We asked for three pairwise judgments:
(i) sys1vs. sys2, (ii) sys1vs. sys3, and (iii) sys2vs.
sys3. For each pair, a winner had to be designated;
ties were allowed. The results are shown in Table 10.
We can see that the judges consistently preferred

9Examples of such triples are (constitutional
structure , perustuslaillinen rakenne, perustuslaillisempi
rakenne) and (economic and social , taloudellisia ja
sosiaalisia, taloudellisten ja sosiaalisten)

10As a reference, thew-systemyielded 15,673 triples, and
6,392 of them were exact matches. Compared to our system,
this means 589 triples and 366 exact matches less.
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src : as a conservative , i am incredibly thrifty with taxpayers ’money .
ref : maltillisen kokoomuspuolueen edustajana suhtaudunerittain saastavaisesti veronmaksajienrahoihin .
our : konservatiivinen , olenerittain saastavaisesti veronmaksajienrahoja .
w : konservatiivinen , olen aarettoman tarkeaa kanssaveronmaksajienrahoja .
m : kutenkonservatiivinen , olenerittain saastavaisesti veronmaksajienrahoja .
Comment:our � m � w. our uses better paraphrases, from which the correct meaning could be inferred. The part
“aarettoman tarkeaa kanssa” inw does not mention the “thriftiness” and replaces it with “important” (tarkeaa), which
is wrong.m introduces “kuten”, which slightly alters the meaning towards “like a conservative, ...”.
src : we were very constructive and we negotiated until the last minute of these talks in the hague .
ref : olimme erittainrakentavia ja neuvottelimme haagissaviime hetkeen saakka.
our : olemme olleet hyvinrakentavia ja olemme neuvotelleetviime hetkeen saakkanaiden neuvottelujen haagissa .
w : olemme olleet hyvinrakentavia ja olemme neuvotelleetviime tippaan niinnaiden neuvottelujen haagissa .
m : olimme erittainrakentavanja neuvottelimmeviime hetkeen saakkanaiden neuvotteluiden haagissa .
Comment:our � m � w. In our, the meaning is very close toref with only a minor difference in tense at the
beginning. m only gets the case wrong in “rakentavan”, and the correct case is easily guessable. Forw, the “viime
tippaan” is in principle correct but somewhat colloquial, and the “niin” is extra and somewhat confusing.
src : it would be a very dangerous situation if the europeans wereto become logistically reliant on russia .
ref : olisi eritt äin vaarallinen tilanne , joseurooppalaisettulisivat logistisestiriippuvaisiksi ven̈ajäsẗa .
our : olisi eritt äin vaarallinen tilanne , joseurooppalaisettuleelogistisestiriippuvaisia ven̈ajän .
w : seolisi eritt äin vaarallinen tilanne , joseurooppalaistentulisi logistically riippuvaisia ven̈ajän .
m : seolisi hyvinvaarallinen tilanne , joseurooppalaisethaluavattulla logistisestiriippuvaisia ven̈ajän .
Comment:our � w � m. our is almost correct except for the wrong inflections at the end.w is inferior since it
failed to translate “logistically”. “haluavat tulla” inm suggests that the Europeans would “want to become logistically
dependent”, which is not the case. The “se” (it), and “hyvin”(a synonym of “eritẗain”) are minor mistakes/differences.

Table 9:English-Finnish translation examples. Shown are the source (src ), the reference (ref ), and the transla-
tions of three systems (our , w, m). Text in bold indicates matches with respect to theref , while italics show where a
system was judged inferior to the rest, as judged by native Finnish speakers.

(1) ourSystemto them-system, (2) ourSystemto the
w-system, (3) w-systemto them-system. These pref-
erences are statistically significant, as found by the
sign test. Comparing to Table 8, we can see that
BLEU correlates with human judgments better than
m-BLEU; we plan to investigate this in future work.

our vs. m our vs. w w vs. m

Judge 1 25 18 19 12 21 19
Judge 2 24 16 19 15 25 14
Judge 3 27† 12 17 11 27† 15
Judge 4 25 20 26† 12 22 22
Total 101‡ 66 81‡ 50 95† 70

Table 10: Human judgments: ourSystem(our) vs. m-
system(m) vs. w-system(w). For each pair, we show
the number of times each system was judged better than
the other one, ignoring ties. Statistically significant dif-
ferences are marked with† (p < 0.05) and‡ (p < 0.01).

Finally, Table 9 shows some examples demon-
strating how our system improves over thew-system
and them-system.

7 Conclusion and Future Work

In the quest towards a morphology-aware SMT that
only uses unannotated data, there are two key chal-
lenges: (1) to bring the performance of morpheme-
token systems to a level rivaling the standard word-
token ones, and (2) to incorporate morphological
analysis directly into the translation process.

This work satisfies the first challenge: we have
achieved statistically significant improvements in
BLEU for a large training dataset of 714K sentence
pairs and this was confirmed by human evaluation.

We think we have built a solid framework for the
second challenge, and we plan to extend it further.
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Abstract

As a prerequisite to translation of poetry, we
implement the ability to produce translations
with meter and rhyme for phrase-based MT,
examine whether the hypothesis space of such
a system is flexible enough to accomodate
such constraints, and investigate the impact of
such constraints on translation quality.

1 Introduction

Machine translation of poetry is probably one of the
hardest possible tasks that can be considered in com-
putational linguistics, MT, or even AI in general. It
is a task that most humans are not truly capable of.
Robert Frost is reported to have said that poetry is
that which gets lost in translation. Not surprisingly,
given the task’s difficulty, we are not aware of any
work in the field that attempts to solve this problem,
or even discuss it, except to mention its difficulty,
and professional translators like to cite it as an exam-
ple of an area where MT will never replace a human
translator. This may well be true in the near or even
long term. However, there are aspects of the prob-
lem that we can already tackle, namely the problem
of the poetic form.

Vladimir Nabokov, in his famous translation of
Eugene Onegin (Nabokov, 1965), a poem with a
very strict meter and rhyming scheme, heavily dis-
parages those translators that attempt to preserve the
form, claiming that since it is impossible to perfectly
preserve both the form and the meaning, the form
must be entirely sacrificed. On the other hand, Dou-
glas Hofstadter, who spends 600 pages describing

how to translate a 60 word poem in 80 different ways
in Le Ton beau de Marot (1998), makes a strong case
that a poem’s form must be preserved in translation,
if at all possible. Leaving the controversy to the pro-
fessional translators, we investigate whether or not
it is possible to produce translations that conform to
certain metrical constraints common in poetry.

Statistical machine translation techniques, unlike
their traditional rule-based counterparts, are in fact
well-suited to the task. Because the number of po-
tential translation hypotheses is very large, it is not
unreasonable to expect that some of them should
conform to an externally imposed standard. The
goal of this paper is to investigate how these hy-
potheses can be efficiently identified, how often they
are present, and what the quality penalty for impos-
ing them is.

2 Related Work

There has been very little work related to the transla-
tion of poetry. There has been some work where MT
techniques were used to produce poetry (Jiang and
Zhou, 2008). In other computational poetry work,
Ramakrishnan et al (2009) generate song lyrics from
melody and various algorithms for poetry gener-
ation (Manurung et al., 2000; Dı́az-Agudo et al.,
2002). There are books (Hartman, 1996) and arti-
cles (Bootz, 1996) on the subject of computer poetry
from a literary point of view. Finally, we must men-
tion Donald Knuth’s seminal work on complexity of
songs (Knuth, 1984).
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3 Statistical MT and Poetry

We can treat any poetic form as a constraint on the
potential outputs. A naive approach to ensure that an
output of the MT system is, say, a haiku, is to create
a haiku detector and to examine a (very large) n-best
list of translations. This approach would not suc-
ceed very often, since the haikus that may be among
the possible translations are a very small fraction of
all translations, and the MT decoder is not actively
looking for them, since it is not part of the cost it
attempts to minimize. Instead, we would want to re-
cast “Haikuness” as a feature function, such that a
real haiku has 0 cost, and those outputs that are not,
have large cost. This feature function must be local,
rather than global, so as to guide the decoder search.

The concept of feature functions as used in sta-
tistical MT is described by Och and Ney (Och and
Ney, 2002). For a phrase based system, a feature
function is a function whose inputs are a partial hy-
pothesis state sin, and a phrase pair p, and whose
outputs are the hypothesis state after p is appended
to the hypothesis: sout, and the cost incurred, c. For
hierarchical, tree-to-string and some other types of
MT systems which combine two partial hypotheses
and are not generating translations left-to-right, one
instead has two partial hypotheses states sleft and
sright as inputs, and the outputs are the same. Our
first goal is to describe how these functions can be
efficiently implemented.

The feature function costs are multiplied by fixed
weights and added together to obtain the total hy-
pothesis cost. Normally feature functions include
the logarithm of probability of target phrase given
source, source given target and other phrase-local
features which require no state to be kept, as well
as features like language model, which require non-
trivial state. The weights are usually learned auto-
matically, however we will set them manually for
our feature functions to be effectively infinite, since
we want them to override all other sources of infor-
mation.

We will now examine some different kinds of po-
etry and consider the properties of such feature func-
tions, especially with regard to keeping necessary
state. We are concerned with minimizing the amount
of information to be kept, both due to memory re-
quirements, and especially to ensure that compati-

ble hypotheses can be efficiently recombined by the
decoder.

3.1 Line-length constrained poetry

Some poetic genres, like the above-mentioned
haiku, require that a poem contain a certain num-
ber of lines (3 for haiku), each containing a certain
number of syllables (5,7,5 for haiku). These gen-
res include lanternes, fibs, tankas, and many others.
These genres impose two constraints. The first con-
straint is on total length. This requires that each hy-
pothesis state contain the current translation length
(in syllables). In addition, whenever a hypothesis is
expanded, we must keep track of whether or not it
would be possible to achieve the desired final length
with such an expansion. For example, if in the ini-
tial state, we have a choice between two phrases, and
picking the longer of the two would make it impos-
sible to have a 17-syllable translation later on, we
must impose a high cost on it, so as to avoid going
down a garden path.

The second constraint is on placing line breaks:
they must come at word boundaries. Therefore the
5th and 12th (and obviously 17th) syllable must end
words. This also requires knowing the current hy-
pothesis’ syllable length, but unlike the first con-
straint, it can be scored entirely locally, without con-
sidering possible future expansions. For either con-
straint, however, the sentence has to be assembled
strictly left-to-right, which makes it impossible to
build partial hypotheses that do not start the sen-
tence, which hierarchical and tree-to-string decoders
require.

3.2 Rhythmic poetry

Some famous Western poetry, notably Shakespeare,
is written in rhythmic poetry, also known as blank
verse. This poetry imposes a constraint on the pat-
tern of stressed and unstressed syllables. For exam-
ple, if we use 0 to indicate no stress, and 1 to indicate
stress, blank verse with iambic foot obeys the regu-
lar expression (01)∗, while one with a dactylic foot
looks like (100)∗. This genre is the easiest to han-
dle, because it does not require current position, but
only its value modulo foot length (e.g. for an iamb,
whether the offset is even or odd). It is even possi-
ble, as described in Section 4, to track this form in a
decoder that is not left-to-right.
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3.3 Rhythmic and rhyming poetry

The majority of English poetry that was written un-
til recently has both rhythm and rhyme. Generally
speaking, a poetic genre of this form can be de-
scribed by two properties. The first is a rhyming
scheme. A rhyming scheme is a string of letters,
each corresponding to a line of a poem, such that
the same letter is used for the lines that rhyme.
E.g. aa is a scheme for a couplet, a 2-line poem
whose lines rhyme. A sonnet might have a com-
plicated scheme like abbaabbacdecde. The second
property concerns meter. Usually lines that rhyme
have the same meter (i.e. the exact sequence of
stressed and unstressed syllables). For example, an
iambic pentameter is an iamb repeated 5 times, i.e.
0101010101. We can describe a genre completely
by its rhyming scheme and a meter for each letter
used in the rhyming scheme. We will refer to this ob-
ject as genre description. E.g. {abab, a : 010101, b :
10101010} is a quatrain with trimeter iambic and
tetrameter trochaic lines. Note that the other two
kinds of poetry can also be fit by this structure, if
one permits another symbol (we use *) to stand for
the syllables whose stress is not important, e.g. a
haiku: {abc, a : ∗∗∗∗∗, b : ∗∗∗∗∗∗∗, c : ∗∗∗∗∗}.
For this type of genre, we need to obey the same two
constraints as in the line-based poetry, but also to en-
sure that rhyming constraints hold. This requires us
to include in a state, for any outstanding rhyme let-
ter, the word that occurred at the end of that line. It
is not sufficient to include just the syllable that must
rhyme, because we wish to avoid self-rhymes (word
rhyming with an identical word).

4 Stress pattern feature function

We will first discuss an easier special case, namely
a feature function for blank verse, which we will re-
fer to as stress pattern feature function. This feature
function can be used for both phrase-based and hier-
archical systems.

In addition to a statistical MT system (Och and
Ney, 2004; Koehn et al., 2007), it is necessary to
have the means to count the syllables in a word and
to find out which ones are stressed. This can be done
with a pronunciation module of a text-to-speech
system, or a freely available pronunciation dictio-
nary, such as CMUDict (Rudnicky, 2010). Out-of-

vocabulary words can be treated as always imposing
a high cost.

4.1 Stress pattern for a phrase-based system

In a phrase based system, the feature function state
consists of the current hypothesis length modulo
foot length. For a 2-syllable foot, it is either 0 or
1, for a 3-syllable foot, 0, 1, or 2. The proposed
target phrase is converted into a stress pattern using
the pronunciation module, and the desired stress pat-
tern is left shifted by the current offset. The cost is
the number of mismatches of the target phrase vs.
the pattern. For example, if the desired pattern is
010, current offset is 1, and the proposed new phrase
has pattern 10011, we shift the desired pattern by 1,
obtaining 100 and extend it to length 5, obtaining
10010, matching it against the proposal. There is
one mismatch, at the fifth position, and we report a
cost of 1. The new state is simply the old state plus
phrase length, modulo foot length, 0 in this example.

4.2 Stress pattern for a hierarchical system

In a hierarchical system, we in general do not know
how a partial hypothesis might be combined on the
left. A hypothesis that is a perfect fit for pattern 010
would be horrible if it is placed at an offset that is
not divisible by 3, and vice versa, an apparently bad
hypothesis might be perfectly good if placed at such
an offset. To solve this problem, we create states
that track how well a partial hypothesis fits not only
the desired pattern, but all patterns obtained by plac-
ing this pattern at any offset, and also the hypothesis
length (modulo foot length, as usual). For instance,
if we observe a pattern 10101, we record the fol-
lowing state: {length: 1, 01 cost: 5, 10 cost: 0}.
If we now combine this state with another, such as
{length: 0, 01 cost: 1, 10 cost: 0}, we simply add
the lengths, and combine the costs either of the same
kind (if left state’s length is even), or the opposite (if
it is odd). In this instance we get {length: 1, 01
cost: 5, 10 cost: 1}. If both costs are greater than 0,
we can subtract the minimum cost and immediately
output it as cost: this is the unavoidable cost of this
combination. For this example we get cost of 1, and
a new state: {length: 1, 01 cost: 4, 10 cost: 0}. For
the final state, we output the remaining cost for the
pattern we desire. The approach is very similar for
feet of length 3.
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4.3 Stress pattern: Whatever fits

With a trivial modification we can output transla-
tions that can fit any one of the patterns, as long
as we do not care which. The approach is identical
for both hierarchical and phrase-based systems. We
simply track all foot patterns (length 2 and length
3 are the only ones used in poetry) as in the above
algorithm, taking care to combine the right pattern
scores based on length offset. The length offset now
has to be tracked modulo 2*3.

This feature function can now be used to trans-
late arbitrary text into blank verse, picking whatever
meter fits best. If no meters can fit completely, it
will produce translations with the fewest violations
(assuming the weight for this feature function is set
high).

5 General poetic form feature function

In this section we discuss a framework for track-
ing any poetic genre, specified as a genre descrip-
tion object (Section 3.3 above). As in the case of
the stress pattern function, we use a statistical MT
system, which is now required to be phrase-based
only. We also use a pronunciation dictionary, but
in addition to tracking the number and stress of syl-
lables, we must now be able to provide a function
that classifies a pair of words as rhyming or non-
rhyming. This is in itself a non-trivial task (Byrd
and Chodorow, 1985), due to lack of a clear defini-
tion of what constitutes a rhyme. In fact rhyming is
a continuum, from very strong rhymes to weak ones.
We use a very weak definition which is limited to a
single syllable: if the final syllables of both words
have the same nucleus and coda1, we say that the
words rhyme. We accept this weak definition be-
cause we prefer to err on the side of over-generation
and accept even really bad poetry.

5.1 Tracking the target length

The hardest constraint to track efficiently is the
range of lengths of the resulting sentence. Phrase-
based decoders use a limited-width beam as they
build up possible translations. Once a hypothesis
drops out of the beam, it cannot be recovered, since
no backtracking is done. Therefore we cannot afford

1In phonology, nucleus and coda together are in fact called
rhyme or rime

to explore a part of the hypothesis space which has
no possible solutions for our constraints, we must be
able to prune a hypothesis as soon as it leads us to
such a subspace, otherwise we will end up on an un-
recoverable garden path. To avoid this problem, we
need to have a set of possible sentence lengths avail-
able at any point in the search, and to impose a high
cost if the desired length is not in that set.

Computing this set exactly involves a standard dy-
namic programming sweep over the phrase lattice,
including only uncovered source spans. If the maxi-
mum source phrase size is k, source sentence length
is n and maximum target/source length ratio for a
phrase is l (and therefore target sentence is limited
to at most ln words), this sweep requires going over
O(n2) source ranges, each of which can be produced
in k ways, and tracking ln potential lengths in each,
resulting in O(n3kl) algorithm. This is unaccept-
ably slow to be done for each hypothesis (even not-
ing that hypotheses with the same set of already cov-
ered source position can share this computation).

We will therefore solve this task approximately.
First, we can note that in most cases the set of possi-
ble target lengths is a range. This is due to phrase
extraction constraints, which normally ensure that
the lengths of target phrases form a complete range.
This means that it is sufficient to track only a mini-
mum and maximum value for each range, reducing
time to O(n2k). Second, we can note that whenever
a source range is interrupted by a covered phrase and
split into two ranges, the minimal and maximal sen-
tence length is simply the sum of the correspond-
ing lengths over the two uncovered subranges, plus
the current hypothesis length. Therefore, if we pre-
compute the minimum and maximum lengths over
all ranges, using the same dynamic programming al-
gorithm in advance, it is only necessary to iterate
over the uncovered ranges (at most O(n), and O(1)
in practice, due to reordering constraints) at runtime
and sum their minimum and maximum values. As a
result, we only need to do O(n2k) work upfront, and
on average O(1) extra work for each hypothesis.

5.2 State space

A state for the feature function must contain the fol-
lowing elements:

• Current sentence length (in syllables)
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• Set of uncovered ranges (as needed for the
computation above)

• Zero or more letters from the rhyming scheme
with the associated word that has an outstand-
ing rhyme

5.3 The combination algorithm
To combine the hypothesis state sin with a phrase
pair p, do the following

1. Initialize cost as 0, sout as sin

2. Update sout: increment sentence length by tar-
get phrase length (in syllables), update cover-
age range

3. Compute minimum and maximum achievable
sentence length; if desired length not in range,
increment cost by a penalty

4. For each word in the target phrase

(a) If the word’s syllable pattern does not
match against desired pattern, add number
of mismatches to cost

(b) If at the end of a line:
i. If the line would end mid-word, incre-

ment cost by a penalty
ii. Let x be this line’s rhyme scheme let-

ter
iii. If x is present in the state sout, check

if the word associated with x rhymes
with the current word, if not, incre-
ment cost by a penalty

iv. Remove x with associated word from
the state sout

v. If letter x occurs further in the
rhyming scheme, add x with the cur-
rent word to the state sout

5.4 Tracking multiple patterns
The above algorithm will allow to efficiently search
the hypothesis space for a single genre description
object. In practice, however, there may be several
desirable patterns, any one of which would be ac-
ceptable. A naive approach, to use multiple fea-
ture functions, one with each pattern, does not work,
since the decoder is using a (log-)linear model, in
which costs are additive. As a result, a pattern that

matches one pattern, but not another, will still have
high cost, perhaps as high as a pattern that partially
matches both. We need to combine feature functions
not linearly, but with a min operator. This is easily
achieved by creating a combined state that encodes
the union of each individual function’s states (which
can share most of the information), and in addition
each feature function’s current total cost. As long
as at least one function has zero cost (i.e. can po-
tentially match), no cost is reported to the decoder.
As soon as all costs become positive, the minimum
over all costs is reported to the decoder as unavoid-
able cost, and should be subtracted from each fea-
ture function cost, bringing the minimum stored in
the output state back to 0.

It is also possible to prune the set of functions that
are still viable, based on their cost, to avoid keeping
track of patterns that cannot possibly match. Using
this approach we can translate arbitrary text, provide
a large number of poetic patterns and expect to get
some sort of poem at the end. Given a wide variety
of poetic genres, it is not unreasonable to expect that
for most inputs, some pattern will apply. Of course,
for translating actual poetry, we would likely have a
specific form in mind, and a positive outcome would
be less likely.

6 Results

We train a baseline phrase-based French-English
system using WMT-09 corpora (Callison-Burch et
al., 2009) for training and evaluation. We use a pro-
prietary pronunciation module to provide phonetic
representation of English words.

6.1 Stress Pattern Feature Function

We have no objective means of “poetic” quality eval-
uation. We are instead interested in two metrics:
percentage of sentences that can be translated while
obeying a stress pattern constraint, and the impact
of this constraint on BLEU score (Papineni et al.,
2002). Obviously, WMT test set is not itself in any
way poetic, so we use it merely to see if arbitrary
text can be forced into this constraint.

The BLEU score impact on WMT has been fairly
consistent during our experimentation: the BLEU
score is roughly halved. In particular, for the
above system the baseline score is 35.33, and stress
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Table 1: Stress pattern distribution
Name Pattern % of matches
Iamb 01 9.6%
Trochee 10 7.2%
Anapest 001 27.1%
Amphibrach 010 32.1%
Dactyl 100 23.8%

pattern-constrained system only obtains 18.93.
The proportion of sentences successfully matched

is 85%, and if we permit a single stress error, it is
93%, which suggests that the constraint can be sat-
isfied in the great majority of cases. The distribution
of stress patterns among the perfect matches is given
in Table 1.

Some of the more interesting example translations
with stress pattern enforcement enabled are given in
table 2.

6.2 Poetic Form Feature Function
For poetic form feature function, we perform the
same evaluation as above, to estimate the impact of
forcing prose into an arbitrary poetic form, but to get
more relevant results we also translate a poetic work
with a specific genre requirement.

Our poetic form feature function is given a list
of some 210 genre descriptions which vary from
Haikus to Shakespearean sonnets. Matching any one
of them satisfies the constraint. We translate WMT
blind set and obtain a BLEU score of 17.28 with the
baseline of 35.33 as above. The proportion of sen-
tences that satisfied one of the poetic constraints is
87%. The distribution of matched genres is given
in Table 3. Some of the more interesting example
translations are given in table 2.

For a proper poetic evaluation, we use a French
translation of Oscar Wilde’s Ballad of Reading Gaol
by Jean Guiloineau as input, and the original Wilde’s
text as reference. The poem consists of 109 stanzas
of 6 lines each, with a genre description of {abcbdb,
a/c/d: 01010101, b: 010101}. The French version
obeys the same constraint. We treat each stanza as a
sentence to be translated. The baseline BLEU score
is 10.27. This baseline score is quite low, as can
be expected for matching a literal MT translation
against a professional poetical translation. We eval-
uate our system with a poetic constraint given above.

Table 3: Genre distribution for WMT corpus.
(Descriptions of these genres can be found in Wikipedia,
http://en.wikipedia.org)

Genre Number Percentage
No poem 809 13.1%
Blank verse 5107 82.7%
Couplet 81 1.3%
Haiku 42 0.7%
Cinquain 33 0.5%
Dodoitsu 24 0.4%
Quinzaine 23 0.4%
Choka 18 0.3%
Fib 15 0.2%
Tanka 14 0.2%
Lanterne 4 0.1%
Triplet 1 0.02%
Quatrain 1 0.02%
Total 6172 100%

The resulting score is 7.28. Out of 109 stanzas, we
found 12 translations that satisfy the genre constraint
(If we allow any poetic form, 108 out of 109 stanzas
match some form). Two sample stanzas that satisfied
the constraints are given in Table 4.

7 Discussion and Future Work

In this work we demonstrate how modern-day sta-
tistical MT system can be constrained to search for
translations obeying particular length, meter, and
rhyming constraints, whether a single constraint, or
any one of a set. We further demonstrate that the hy-
pothesis space is often rich enough that these con-
straints can be satisfied. The impact on translation
quality, however, is quite profound, as is to be ex-
pected. It seems that at the present state of machine
translation, one does indeed have to choose between
getting either the form or the meaning right. In the
present form, however, we can already find good
translations, as a sort of found poetry (Drury, 2006),
by translating a large quantity of text, whether poetic
or not.

This is the first attempt to deal with poetry trans-
lation, and the great majority of work to achieve rea-
sonable quality in form and meaning still remains to
be done. One major problem with the current fea-
ture function is that while it can avoid the areas of
the search space where length constraints cannot be
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Table 2: Example translations. Stressed syllables are italicized
Reference A police spokesman said three people had been arrested and the

material was being examined.
Baseline A policeman said that three people were arrested and that the ma-

terial is currently being analyzed.
Stress Pattern (001) A police said that three were arrested and that the equipment is

currently being examined.
Poetic: Couplet in amphi-
brachic tetrameter

An of ficer stated that three were arrested
and that the equipment is currently tested.

Reference A trio of retired generals launched a mutiny in the Lords, protest-
ing against cuts in military spending: being armed-forces minister
is, they claimed, a part-time job.

Baseline A trio of retired generals have launched a revolt among the Lords,
protesting against cuts in military spending: they have proclaimed
only Minister of Defence is for them, a part-time employment.

Stress Pattern (010) A trio of general retirement launched a rebellion among Lords,
protesting the spending cuts troops: they claimed Minister only
defense is for them, a part-time job.

Poetic: Blank Verse in amphi-
brachic trimeter

A trio of generals retired
have launched an uprising among Lords,
protesting the spending cuts members:
they minister only proclaimed the
defense is for them, a part-time job.

Reference We must continue to condemn human rights abuses in Burma.
Baseline We must continue to denounce the violations of human rights

abuses in Burma.
Stress Pattern (100) We must continue to speak out against rights abuses committed in

Burma.
Poetic: Haiku: 5-7-5 syllables We must continue

denounce violations of
human rights Burma.
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Table 4: Sample translations from Oscar Wilde’s Ballad of Reading Gaol.
Wilde’s original Our translation
He did not wring his hands, as do Without hands twisted like these men,
Those witless men who dare Poor men without hope, dare
To try to rear the changeling Hope To nourish hope in our vault
In the cave of black Despair: Of desperation there
He only looked upon the sun, And looked toward the sun, drink cool
And drank the morning air. Until the evening air.
With slouch and swing around the ring We are in our circle we
We trod the Fool’s Parade! Dragged like the Fools’ Parade!
We did not care: we knew we were It mattered little, since we were
The Devil’s Own Brigade: The Devil’s sad Brigade:
And shaven head and feet of lead A shaved head and the feet of lead
Make a merry masquerade. Regardless gay charade!

satisfied, it cannot avoid the areas where rhyming
constraints are impossible to satisfy. As a result, we
need to allow a very wide hypothesis beam (5000 per
each source phrase coverage), to ensure that enough
hypotheses are considered, so that there are some
that lead to correct solutions later. We do not cur-
rently have a way to ensure that this happens, al-
though we can attempt to constrain the words that
end lines to have possible rhymes, or employ other
heuristics. A more radical solution is to create an
entirely different decoding algorithm which places
words not left-to-right, or in a hierarchical fashion,
but first placing words that must rhyme, and build-
ing hypotheses around them, like human translators
of poetry do.

As a result, the system at present is too slow, and
we cannot make it available online as a demo, al-
though we may be able to do so in the future.

The current approach relies on having enough lex-
ical variety in the phrase table to satisfy constraints.
Since our goal is not to be literal, but to obtain a
satisfactory compromise between form and mean-
ing, it would clearly be beneficial to augment target
phrases with synonyms and paraphrases, or to allow
for words to be dropped or added.
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Abstract

We describe a new scalable algorithm for
semi-supervised training of conditional ran-
dom fields (CRF) and its application to part-
of-speech (POS) tagging. The algorithm uses
a similarity graph to encourage similar n-
grams to have similar POS tags. We demon-
strate the efficacy of our approach on a do-
main adaptation task, where we assume that
we have access to large amounts of unlabeled
data from the target domain, but no additional
labeled data. The similarity graph is used dur-
ing training to smooth the state posteriors on
the target domain. Standard inference can be
used at test time. Our approach is able to scale
to very large problems and yields significantly
improved target domain accuracy.

1 Introduction

Semi-supervised learning (SSL) is the use of
small amounts of labeled data with relatively large
amounts of unlabeled data to train predictors. In
some cases, the labeled data can be sufficient to pro-
vide reasonable accuracy on in-domain data, but per-
formance on even closely related out-of-domain data
may lag far behind. Annotating training data for all
sub-domains of a varied domain such as all of Web
text is impractical, giving impetus to the develop-
ment of SSL techniques that can learn from unla-
beled data to perform well across domains. The ear-
liest SSL algorithm is self-training (Scudder, 1965),
where one makes use of a previously trained model
to annotate unlabeled data which is then used to
re-train the model. While self-training is widely

used and can yield good results in some applica-
tions (Yarowsky, 1995), it has no theoretical guaran-
tees except under certain stringent conditions, which
rarely hold in practice(Haffari and Sarkar, 2007).

Other SSL methods include co-training (Blum
and Mitchell, 1998), transductive support vector ma-
chines (SVMs) (Joachims, 1999), and graph-based
SSL (Zhu et al., 2003). Several surveys cover a
broad range of methods (Seeger, 2000; Zhu, 2005;
Chapelle et al., 2007; Blitzer and Zhu, 2008). A ma-
jority of SSL algorithms are computationally expen-
sive; for example, solving a transductive SVM ex-
actly is intractable. Thus we have a conflict between
wanting to use SSL with large unlabeled data sets
for best accuracy, but being unable to do so because
of computational complexity. Some researchers at-
tempted to resolve this conflict by resorting to ap-
proximations (Collobert et al., 2006), but those lead
to suboptimal results (Chapelle et al., 2007).

Graph-based SSL algorithms (Zhu et al., 2003;
Joachims, 2003; Corduneanu and Jaakkola, 2003;
Belkin et al., 2005; Subramanya and Bilmes, 2009)
are an important subclass of SSL techniques that
have received much attention in the recent past, as
they outperform other approaches and also scale eas-
ily to large problems. Here one assumes that the data
(both labeled and unlabeled) is represented by ver-
tices in a graph. Graph edges link vertices that are
likely to have the same label. Edge weights govern
how strongly the labels of the nodes linked by the
edge should agree.

Most previous work in SSL has focused on un-
structured classification problems, that is, problems
with a relatively small set of atomic labels. There
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has been much less work on SSL for structured pre-
diction where labels are composites of many atomic
labels with constraints between them. While the
number of atomic labels might be small, there will
generally be exponentially many ways to combine
them into the final structured label. Structured pre-
diction problems over sequences appear for exam-
ple in speech recognition, named-entity recogni-
tion, and part-of-speech tagging; in machine trans-
lation and syntactic parsing, the output may be tree-
structured.

Altun et al. (2005) proposed a max-margin ob-
jective for semi-supervised learning over structured
spaces. Their objective is similar to that of manifold
regularization (Belkin et al., 2005) and they make
use of a graph as a smoothness regularizer. However
their solution involves inverting a matrix whose size
depends on problem size, making it impractical for
very large problems. Brefeld and Scheffer (2006)
present a modified version of the co-training algo-
rithm for structured output spaces. In both of the
above cases, the underlying model is based on struc-
tured SVM, which does not scale well to very large
datasets. More recently Wang et al. (2009) proposed
to train a conditional random field (CRF) (Lafferty et
al., 2001) using an entropy-based regularizer. Their
approach is similar to the entropy minimization al-
gorithm (Grandvalet and Bengio, 2005). The prob-
lem here is that their objective is not convex and thus
can pose issues for large problems. Further, graph-
based SSL algorithms outperform algorithms based
on entropy minimization (Chapelle et al., 2007).

In this work, we propose a graph-based SSL
method for CRFs that is computationally practical
for very large problems, unlike the methods in the
studies cited above. Our method is scalable be-
cause it trains with efficient standard building blocks
for CRF inference and learning and also standard
graph label propagation machinery. Graph regular-
izer computations are only used for training, so at
test time, standard CRF inference can be used, un-
like in graph-based transductive methods. Briefly,
our approach starts by training a CRF on the source
domain labeled data, and then uses it to decode unla-
beled data from the target domain. The state posteri-
ors on the target domain are then smoothed using the
graph regularizer. Best state sequences for the unla-
beled target data are then created by Viterbi decod-

ing with the smoothed state posteriors, and this au-
tomatic target domain annotation is combined with
the labeled source domain data to retrain the CRF.

We demonstrate our new method in domain adap-
tation for a CRF part-of-speech (POS) tagger. While
POS tagging accuracies have reached the level of
inter-annotator agreement (>97%) on the standard
PennTreebank test set (Toutanova et al., 2003; Shen
et al., 2007), performance on out-of-domain data is
often well below 90%, impairing language process-
ing tasks that need syntactic information. For exam-
ple, on the question domain used in this paper, the
tagging accuracy of a supervised CRF is only 84%.
Our domain adaptation algorithm improves perfor-
mance to 87%, which is still far below in-domain
performance, but a significant reduction in error.

2 Supervised CRF

We assume that we have a set of labeled source do-
main examples Dl = {(xi,yi)}li=1, but only un-
labeled target domain examples Du = {xi}l+u

i=l+1.

Here xi = x
(1)
i x

(2)
i · · ·x

(|xi|)
i is the sequence of

words in sentence i and yi = y
(1)
i y

(2)
i · · · y

(|xi|)
i is

the corresponding POS tag sequence, with y(j)
i ∈ Y

where Y is the set of POS tags. Our goal is to learn
a CRF of the form:

p(yi|xi; Λ)∝exp
(Ni∑

j=1

K∑
k=1

λkfk(y(j−1)
i ,y

(j)
i ,xi, j)

)
for the target domain. In the above equation, Λ =
{λ1, . . . , λK} ∈ RK , fk(y(j−1)

i , y
(j)
i ,xi, j) is the k-

th feature function applied to two consecutive CRF
states and some window of the input sequence, and
λk is the weight of that feature. We discuss our fea-
tures in detail in Section 6. Given only labeled data
Dl, the optimal feature weights are given by:

Λ∗=argmin
Λ∈RK

[
−

l∑
i=1

log p(yi|xi; Λ)+γ‖Λ‖2
]

(1)

Here ‖Λ‖2 is the squared `2-norm and acts as the
regularizer, and γ is a trade-off parameter whose set-
ting we discuss in Section 6. In our case, we also
have access to the unlabeled data Du from the target
domain which we would like to use for training the
CRF. We first describe how we construct a similarity
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graph over the unlabeled which will be used in our
algorithm as a graph regularizer.

3 Graph Construction

Graph construction is the most important step in
graph-based SSL. The standard approach for un-
structured problems is to construct a graph whose
vertices are labeled and unlabeled examples, and
whose weighted edges encode the degree to which
the examples they link should have the same la-
bel (Zhu et al., 2003). Then the main graph con-
struction choice is what similarity function to use
for the weighted edges between examples. How-
ever, in structured problems the situation is more
complicated. Consider the case of sequence tag-
ging we are studying. While we might be able to
choose some appropriate sequence similarity to con-
struct the graph, such as edit distance or a string
kernel, it is not clear how to use whole sequence
similarity to constrain whole tag sequences assigned
to linked examples in the learning algorithm. Al-
tun et al. (2005) had the nice insight of doing the
graph construction not for complete structured ex-
amples but instead for the parts of structured exam-
ples (also known as factors in graphical model ter-
minology), which encode the local dependencies be-
tween input data and output labels in the structured
problem. However, their approach is too demanding
computationally (see Section 5), so instead we use
local sequence contexts as graph vertices, exploting
the empirical observation that the part of speech of
a word occurrence is mostly determined by its local
context.

Specifically, the set V of graph vertices consists
of all the word n-grams1 (types) that have occur-
rences (tokens) in training sentences (labeled and
unlabeled). We partition V = Vl ∪ Vu where Vl cor-
responds to n-grams that occur at least once in the
labeled data, and Vu corresponds to n-grams that oc-
cur only in the unlabeled data.

Given a symmetric similarity function between
types to be defined below, we link types u and v with

1We pad the n-grams at the beginning and end of sentences
with appropriate dummy symbols.

Description Feature
Trigram + Context x1 x2 x3 x4 x5

Trigram x2 x3 x4

Left Context x1 x2

Right Context x4 x5

Center Word x2

Trigram – Center Word x2 x4

Left Word + Right Context x2 x4 x5

Left Context + Right Word x1 x2 x4

Suffix HasSuffix(x3)

Table 1: Features we extract given a sequence of words
“x1 x2 x3 x4 x5” where the trigram is “x2 x3 x4”.

an edge of weight wuv, defined as:

wuv =

{
sim(u, v) if v ∈ K(u) or u ∈ K(v)
0 otherwise

whereK(u) is the set of k-nearest neighbors of u ac-
cording to the given similarity. For all experiments
in this paper, n = 3 and k = 5.

To define the similarity function, for each token
of a given type in the labeled and unlabeled data,
we extract a set of context features. For example,
for the token x2 x3 x4 occurring in the sequence
x1 x2 x3 x4 x5, we use feature templates that cap-
ture the left (x1 x2) and right contexts (x4 x5). Addi-
tionally, we extract suffix features from the word in
the middle. Table 1 gives an overview of the features
that we used. For each n-gram type, we compute the
vector of pointwise mutual information (PMI) val-
ues between the type and each of the features that
occur with tokens of that type. Finally, we use the
cosine distance between those PMI vectors as our
similarity function.

We have thus circumvented the problem of defin-
ing similarities over sequences by defining the graph
over types that represent local sequence contexts.
Since our CRF tagger only uses local features of the
input to score tag pairs, we believe that the graph
we construct captures all significant context infor-
mation. Figure 1 shows an excerpt from our graph.
The figure shows the neighborhoods of a subset of
the vertices with the center word ‘book.’ To reduce
clutter, we included only closest neighbors and the
edges that involve the nodes of interest.
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[the conference on]

[whose book on]
[the auction on]

[U.N.-backed conference on]

[the conference speakers]

[to schedule a]

[to postpone a]
VB

[to ace a]

[to book a]

[to run a]

[to start a] NN
NN

NN

VB
VB

[you book a]

[you rent a]

[you log a]

[you unrar a]

[to book some]
[to approve some]

VB
[to fly some]

[to approve parental-consent]

6

43
[the book that]

[the job that]

[the constituition that]

[the movie that]

[the city that]

NN

NN

[a movie agent]

[a clearing agent]

[a book agent]
7

4

6

Figure 1: Vertices with center word ‘book’ and their local neighborhoods, as well as the shortest-path distance between
them. Note that the noun (NN) and verb (VB) interpretations form two disjoint connected components.

It is remarkable that the neighborhoods are co-
herent, showing very similar syntactic configura-
tions. Furthermore, different vertices that (should)
have the same label are close to each other, form-
ing connected components for each part-of-speech
category (for nouns and verbs in the figure). We ex-
pect the similarity graph to provide information that
cannot be expressed directly in a sequence model.
In particular, it is not possible in a CRF to directly
enforce the constraint that similar trigrams appear-
ing in different sentences should have similar POS
tags. This constraint however is important dur-
ing (semi-supervised) learning, and is what makes
our approach different and more effective than self-
training.

In practice, we expect two main benefits from
our graph-based approach. First, the graph allows
new features to be discovered. Many words occur
only in the unlabeled data and a purely supervised
CRF would not be able to learn feature weights for
those observations. We could use self-training to
learn weights for those features, but self-training just
tends to reinforce the knowledge that the supervised
model already has. The similarity graph on the other
hand can link events that occur only in the unlabeled
data to similar events in the labeled data. Further-
more, because the graph is built over types rather
than tokens, it will encourage the same interpreta-
tion to be chosen for similar trigrams occurring in
different sentences. For example, the word ‘unrar’
will most likely not occur in the labeled training
data. Seeing it in the neighborhood of words for

which we know the POS tag will help us learn the
correct POS tag for this otherwise unknown word
(see Figure 1).

Second, the graph propagates adjustments to the
weights of known features. Many words occur only
a handful of times in our labeled data, resulting in
poor estimates of their contributions. Even for fre-
quently occurring events, their distribution in the tar-
get domain might be different from their distribution
in the source domain. While self-training might be
able to help adapt to such domain changes, its ef-
fectiveness will be limited because the model will
always be inherently biased towards the source do-
main. In contrast, labeled vertices in the similar-
ity graph can help disambiguate ambiguous contexts
and correct (some of) the errors of the supervised
model.

4 Semi-Supervised CRF

Given unlabeled data Du, we only have access to
the prior p(x). As the CRF is a discriminative
model, the lack of label information renders the
CRF weights independent of p(x) and thus we can-
not directly utilize the unlabeled data when train-
ing the CRF. Therefore, semi-supervised approaches
to training discriminative models typically use the
unlabeled data to construct a regularizer that is
used to guide the learning process (Joachims, 1999;
Lawrence and Jordan, 2005). Here we use the graph
as a smoothness regularizer to train CRFs in a semi-
supervised manner.

Our algorithm iterates between the following five
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Algorithm 1 Semi-Supervised CRF Training
Λs = crf-train(Dl, Λ0)
Set Λ(t)

0 = Λ(s)

while not converged do
{p} = posterior decode(Du, Λold)
{q} = token to type({p})
{q̂} = graph propagate({q})
D(1)

u = viterbi decode({q̂}, Λold)
Λ(t)

n+1 = crf-train(Dl ∪ D
(1)
u , Λ(t)

n )
end while
Return last Λ(t)

simple (and convex) steps: Given a set of CRF pa-
rameters, we first compute marginals over the un-
labeled data (posterior decode). The marginals
over tokens are then aggregated to marginals over
types (token to type), which are used to initial-
ize the graph label distributions. After running la-
bel propagation (graph propagate), the posteriors
from the graph are used to smooth the state posteri-
ors. Decoding the unlabeled data (viterbi decode)
produces a new set of automatic annotations that can
be combined with the labeled data to retrain the CRF
using the supervised CRF training objective (crf-
train). These steps, summarized in Algorithm 1, are
iterated until convergence.

4.1 Posterior Decoding

Let Λ(t)
n (t refers to target domain) represent the esti-

mate of the CRF parameters for the target domain af-
ter the n-th iteration.2 In this step, we use the current
parameter estimates to compute the marginal proba-
bilities

p(y(j)
i |xi; Λ(t)

n ) 1 ≤ j ≤ |xi|, i ∈ Dl

over POS tags for every word position j for i index-
ing over sentences in Dl ∪ Du.

4.2 Token-to-Type Mapping
Recall that our graph is defined over types while
the posteriors computed above involve particular to-
kens. We accumulate token-based marginals to cre-
ate type marginals as follows. For a sentence i and
word position j in that sentence, let T (i, j) be the

2In the first iteration, we initialize the target domain param-
eters to the source domain parameters: Λ

(t)
0 = Λ(s).

trigram (graph node) centered at position j. Con-
versely, for a trigram type u, let T−1(u) be the set
of actual occurrences (tokens) of that trigram u; that
is, all pairs (i, j) where i is the index of a sentence
where u occurs and j is the position of the center
word of an occurrence of u in that sentence. We cal-
culate type-level posteriors as follows:

qu(y) ,
1

|T−1(u)|
∑

(i,j)∈T−1(u)

p(y(j)
i |xi; Λ(t)

n ) .

This combination rule connects the token-centered
CRF with the type-centered graph. Other ways
of combining the token marginals, such as using
weights derived from the entropies of marginals,
might be worth investigating.

4.3 Graph Propagation
We now use our similarity graph (Section 3) to
smooth the type-level marginals by minimizing the
following convex objective:

C(q) =
∑
u∈Vl

‖ru − qu‖2

+ µ
∑

u∈V,v∈N (i)

wuv‖qu − qv‖2 + ν
∑
u∈V

‖qu − U‖2

s.t.
∑

y

qu(y) = 1 ∀u & qu(y) ≥ 0 ∀u, y (2)

where q = {q1, q2, . . . q|V |}. The setting of the
hyperparameters µ and ν will be discussed in Sec-
tion 6, N (u) is the set of neighbors of node u, and
ru is the empirical marginal label distribution for tri-
gram u in the labeled data. We use a squared loss to
penalize neighboring nodes that have different label
distributions: ‖qu − qv‖2 =

∑
y(qu(y) − qv(y))2,

additionally regularizing the label distributions to-
wards the uniform distribution U over all possible
labels Y . It can be shown that the above objective is
convex in q.

Our graph propagation objective can be seen as a
multi-class generalization of the quadratic cost crite-
rion (Bengio et al., 2007). The first term in the above
objective requires that we respect the information
in our labeled data. The second term is the graph
smoothness regularizer which requires that the qi’s
be smooth with respect to the graph. In other words,
if wuv is large, then qu and qv should be close in the
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squared-error sense. This implies that vertices u and
v are likely to have similar marginals over POS tags.
The last term is a regularizer and encourages all type
marginals to be uniform to the extent that is allowed
by the first two terms. If a unlabeled vertex does
not have a path to any labeled vertex, this term en-
sures that the converged marginal for this vertex will
be uniform over all tags, ensuring that our algorithm
performs at least as well as a standard self-training
based algorithm, as we will see later.

While the objective in Equation 2 admits a closed
form solution, it involves inverting a matrix of or-
der |V | and thus we use instead the simple iterative
update given by

q(m)
u (y) =

γu(y)
κu

where

γu(y) = ru(y)δ(u ∈ Vl)

+
∑

v∈N (u)

wuvq
(m−1)
v (y) + νU(y),

κu = δ(u ∈ Vl) + ν + µ
∑

v∈N (u)

wuv (3)

where m is the iteration index and δ is the indica-
tor function that returns 1 if and only if the con-
dition is true. The iterative procedure starts with
q(0)

u (y) = qu(y) as given in the previous section.
In all our experiments we run 10 iterations of the
above algorithm, and we denote the type marginals
at completion by q∗u(y).

4.4 Viterbi Decoding
Given the type marginals computed in the previous
step, we interpolate them with the original CRF to-
ken marginals. This interpolation between type and
token marginals encourages similar n-grams to have
similar posteriors, while still allowing n-grams in
different sentences to differ in their posteriors. For
each unlabeled sentence i and word position j in it,
we calculate the following interpolated tag marginal:

p̂(y(j)
i = y|xi) = αp(y(j)

i = y|xi; Λ(t)
n )

+ (1− α)q∗T (m,n)(y) (4)

where α is a mixing coefficient which reflects the
relative confidence between the original posteriors
from the CRF and the smoothed posteriors from the
graph. We discuss how we set α in Section 6.

The interpolated marginals summarize all the in-
formation obtained so far about the tag distribution
at each position. However, if we were to use them on
their own to select the most likely POS tag sequence,
the first-order tag dependencies modeled by the CRF
would be mostly ignored. This happens because the
type marginals obtained from the graph after label
propagation will have lost most of the sequence in-
formation. To enforce the first-order tag dependen-
cies we therefore use Viterbi decoding over the com-
bined interpolated marginals and the CRF transition
potentials to compute the best POS tag sequence for
each unlabeled sentence. We refer to these 1-best
transcripts as y∗i , i ∈ Du.

4.5 Re-training the CRF
Now that we have successfully labeled the unlabeled
target domain data, we can use it in conjunction with
the source domain labeled data to re-train the CRF:

Λ(t)
n+1 =argmin

Λ∈RK

[
−

l∑
i=1

log p(yi|xi; Λ(t)
n )

− η
l+u∑

i=l+1

log p(y∗i |xi; Λ(t)
n )+γ‖Λ‖2

]
(5)

where η and γ are hyper-parameters whose setting
we discuss in Section 6. Given the new CRF pa-
rameters Λ we loop back to step 1 (Section 4.1) and
iterate until convergence. It is important to note that
every step of our algorithm is convex, although their
combination clearly is not.

5 Related Work

Our work differs from previous studies of
SSL (Blitzer et al., 2006; III, 2007; Huang
and Yates, 2009) for improving POS tagging in
several ways. First, our algorithm can be general-
ized to other structured semi-supervised learning
problems, although POS tagging is our motivating
task and test application. Unlike III (2007), we
do not require target domain labeled data. While
the SCL algorithm (Blitzer et al., 2006) has been
evaluated without target domain labeled data, that
evaluation was to some extent transductive in that
the target test data (unlabeled) was included in the
unsupervised stage of SCL training that creates the
structural correspondence between the two domains.
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We mentioned already the algorithm of Altun et
al. (2005), which is unlikely to scale up because
its dual formulation requires the inversion of a ma-
trix whose size depends on the graph size. Gupta
et al. (2009) also constrain similar trigrams to have
similar POS tags by forming cliques of similar tri-
grams and maximizing the agreement score over
these cliques. Computing clique agreement poten-
tials however is NP-hard and so they propose ap-
proximation algorithms that are still quite complex
computationally. We achieve similar effects by us-
ing our simple, scalable convex graph regularization
framework. Further, unlike other graph-propagation
algorithms (Alexandrescu and Kirchhoff, 2009), our
approach is inductive. While one might be able
to make inductive extensions of transductive ap-
proaches (Sindhwani et al., 2005), these usually re-
quire extensive computational resources at test time.

6 Experiments and Results

We use the Wall Street Journal (WSJ) section of
the Penn Treebank as our labeled source domain
training set. We follow standard setup procedures
for this task and train on sections 00-18, compris-
ing of 38,219 POS-tagged sentences with a total of
912,344 words. To evaluate our domain-adaptation
approach, we consider two different target domains:
questions and biomedical data. Both target do-
mains are relatively far from the source domain
(newswire), making this a very challenging task.

The QuestionBank (Judge et al., 2006), provides
an excellent corpus consisting of 4,000 questions
that were manually annotated with POS tags and
parse trees. We used the first half as our develop-
ment set and the second half as our test set. Ques-
tions are difficult to tag with WSJ-trained taggers
primarily because the word order is very different
than that of the mostly declarative sentences in the
training data. Additionally, the unknown word rate
is more than twice as high as on the in-domain de-
velopment set (7.29% vs. 3.39%). As our unla-
beled data, we use a set of 10 million questions
collected from anonymized Internet search queries.
These queries were selected to be similar in style
and length to the questions in the QuestionBank.3

3In particular, we selected queries that start with an English
function word that can be used to start a question (what, who,

As running the CRF over 10 million sentences can
be rather cumbersome and probably unnecessary, we
randomly select 100,000 of these queries and treat
this asDu. Because the graph nodes and the features
used in the similarity function are based on n-grams,
data sparsity can be a serious problem, and we there-
fore use the entire unlabeled data set for graph con-
struction. We estimate the mutual information-based
features for each trigram type over all the 10 million
questions, and then construct the graph over only
the set of trigram types that actually occurs in the
100,000 random subset and the WSJ training set.

For our second target domain, we use the Penn
BioTreebank (PennBioIE, 2005). This corpus con-
sists of 1,061 sentences that have been manually an-
notated with POS tags. We used the first 500 sen-
tences as a development set and the remaining 561
sentences as our final test set. The high unknown
word rate (23.27%) makes this corpus very difficult
to tag. Furthermore, the POS tag set for this data is a
super-set of the Penn Treebank’s, including the two
new tags HYPH (for hyphens) and AFX (for com-
mon post-modifiers of biomedical entities such as
genes). These tags were introduced due to the im-
portance of hyphenated entities in biomedical text,
and are used for 1.8% of the words in the test set.
Any tagger trained only on WSJ text will automati-
cally predict wrong tags for those words. For unla-
beled data we used 100,000 sentences that were cho-
sen by searching MEDLINE for abstracts pertaining
to cancer, in particular genomic variations and muta-
tions (Blitzer et al., 2006). Since we did not have ac-
cess to additional unlabeled data, we used the same
set of sentences as target domain unlabeled data,Du.
The graph here was constructed over the 100,000 un-
labeled sentences and the WSJ training set. Finally,
we remind the reader that we did not use label infor-
mation for graph construction in either corpus.

6.1 Baselines

Our baseline supervised CRF is competitive
with state-of-the-art discriminative POS taggers
(Toutanova et al., 2003; Shen et al., 2007), achieving
97.17% on the WSJ development set (sections 19-
21). We use a fairly standard set of features, includ-
ing word identity, suffixes and prefixes and detectors

when, etc.), and have between 30 and 160 characters.
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Questions Bio
Dev Eval Dev Eval

Supervised CRF 84.8 83.8 86.5 86.2
Self-trained CRF 85.4 84.0 87.5 87.1
Semi-supervised CRF 87.6 86.8 87.5 87.6

Table 2: Domain adaptation experiments. POS tagging accuracies in %.

for special characters such as dashes and digits. We
do not use of observation-dependent transition fea-
tures. Both supervised and semi-supervised models
are regularized with a squared `2-norm regularizer
with weight set to 0.01.

In addition to the supervised baseline trained ex-
clusively on the WSJ, we also consider a semi-
supervised self-trained baseline (“Self-trained CRF”
in Table 2). In this approach, we first train a su-
pervised CRF on the labeled data and then do semi-
supervised training without label propagation. This
is different from plain self-training because it aggre-
gates the posteriors over tokens into posteriors over
types. This aggregation step allows instances of the
same trigram in different sentences to share infor-
mation and works better in practice than direct self-
training on the output of the supervised CRF.

6.2 Domain Adaptation Results
The data set obtained concatenating the WSJ train-
ing set with the 10 million questions had about 20
million trigram types. Of those, only about 1.1 mil-
lion trigram types occurred in the WSJ training set
or in the 100,000 sentence sub-sample. For the
biomedical domain, the graph had about 2.2 mil-
lion trigrams. For all our experiments we set hy-
perparameters as follows: for graph propagation,
µ = 0.5, ν = 0.01, for Viterbi decoding mixing,
α = 0.6, for CRF re-training, η = 0.001, γ = 0.01.
These parameters were chosen based on develop-
ment set performance. All CRF objectives were op-
timized using L-BFGS (Bertsekas, 2004).

Table 2 shows the results for both domains. For
the question corpus, the supervised CRF performs
at only 85% on the development set. While it is al-
most impossible to improve in-domain tagging ac-
curacy and tagging is therefore considered a solved
problem by many, these results clearly show that
the problem is far from solved. Self-training im-
proves over the baseline by about 0.6% on the de-

velopment set. However the gains from self-training
are more modest (0.2%) on the evaluation (test) set.
Our approach is able to provide a more solid im-
provement of about 3% absolute over the super-
vised baseline and about 2% absolute over the self-
trained system on the question development set. Un-
like self-training, on the question evaluation set, our
approach provides about 3% absolute improvement
over the supervised baseline. For the biomedical
data, while the performances of our approach and
self-training are statistically indistinguishable on the
development set, we see modest gains of about 0.5%
absolute on the evaluation set. On the same data, we
see that our approach provides about 1.4% absolute
improvement over the supervised baseline.

7 Analysis & Conclusion

The results suggest that our proposed approach pro-
vides higher gains relative to self-training on the
question data than on the biomedical corpus. We
hypothesize that this caused by sparsity in the graph
generated from the biomedical dataset. For the ques-
tions graph, the PMI statistics were estimated over
10 million sentences while in the case of the biomed-
ical dataset, the same statistics were computed over
just 100,000 sentences. We hypothesize that the lack
of well-estimated features in the case of the biomed-
ical dataset leads to a sparse graph.

To verify the above hypothesis, we measured the
percentage of trigrams that occur in the target do-
main (unlabeled) data that do not have any path to
a trigram in the source domain data, and the aver-
age minimum path length between a trigram in the
target data and a trigram in the source data (when
such a path exists). The results are shown in Ta-
ble 3. For the biomedical data, close to 50% of the
trigrams from the target data do not have a path to
a trigram from the source data. Even when such a
path exists, the average path length is about 22. On

174



Questions Bio
% of unlabeled trigrams

12.4 46.8not connected to
any labeled trigrams
average path length

9.4 22.4
between an unlabeled
trigram and its nearest

labeled trigram

Table 3: Analysis of the graphs constructed for the two
datasets discussed in Section 6. Unlabeled trigrams occur
in the target domain only. Labeled trigrams occur at least
once in the WSJ training data.

the other hand, for the question corpus, only about
12% of the target domain trigrams are disconnected,
and the average path length is about 9. These re-
sults clearly show the sparse nature of the biomed-
ical graph. We believe that it is this sparsity that
causes the graph propagation to not have a more no-
ticeable effect on the final performance. It is note-
worthy that making use of even such a sparse graph
does not lead to any degradation in results, which we
attribute to the choice of graph-propagation regular-
izer (Section 4.3).

We presented a simple, scalable algorithm for
training structured prediction models in a semi-
supervised manner. The approach is based on using
as a regularizer a nearest-neighbor graph constructed
over trigram types. Our results show that the ap-
proach not only scales to large datasets but also pro-
duces significantly improved tagging accuracies.
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Abstract

This paper focuses on the task of insert-
ing punctuation symbols into transcribed con-
versational speech texts, without relying on
prosodic cues. We investigate limitations as-
sociated with previous methods, and propose a
novel approach based on dynamic conditional
random fields. Different from previous work,
our proposed approach is designed to jointly
perform both sentence boundary and sentence
type prediction, and punctuation prediction on
speech utterances.

We performed evaluations on a transcribed
conversational speech domain consisting of
both English and Chinese texts. Empirical re-
sults show that our method outperforms an ap-
proach based on linear-chain conditional ran-
dom fields and other previous approaches.

1 Introduction

Outputs of standard automatic speech recognition
(ASR) systems typically consist of utterances where
important linguistic and structural information (e.g.,
true case, sentence boundaries, punctuation sym-
bols, etc) is not available. Such information is cru-
cial in improving the readability of the transcribed
speech texts, and plays an important role when fur-
ther processing is required, such as in part-of-speech
(POS) tagging, parsing, information extraction, and
machine translation.

We focus on the punctuation prediction task in
this work. Most previous punctuation prediction
techniques, developed mostly by the speech process-
ing community, exploit both lexical and prosodic
cues. However, in order to fully exploit prosodic fea-
tures such as pitch and pause duration, it is necessary

to have access to the original raw speech waveforms.
In some scenarios where further natural language
processing (NLP) tasks on the transcribed speech
texts become the main concern, speech prosody in-
formation may not be readily available. For exam-
ple, in the recent evaluation campaign of the Inter-
national Workshop on Spoken Language Translation
(IWSLT) (Paul, 2009), only manually transcribed or
automatically recognized speech texts are provided
but the original raw speech waveforms are not avail-
able.

In this paper, we tackle the task of predicting
punctuation symbols from a standard text processing
perspective, where only the speech texts are avail-
able, without relying on additional prosodic fea-
tures such as pitch and pause duration. Specifi-
cally, we perform the punctuation prediction task
on transcribed conversational speech texts, using the
IWSLT corpus (Paul, 2009) as the evaluation data.

Different from many other corpora such as broad-
cast news corpora, a conversational speech corpus
consists of dialogs where informal and short sen-
tences frequently appear. In addition, due to the
nature of conversation, it also contains more ques-
tion sentences compared to other corpora. An ex-
ample English utterance randomly selected from the
IWSLT corpus, along with its punctuated and cased
version, are shown below:

you are quite welcome and by the way we may get
other reservations so could you please call us
as soon as you fix the date

You are quite welcome . And by the way , we may
get other reservations , so could you please call
us as soon as you fix the date ?
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The rest of this paper is organized as follows.
We start with surveying related work in Section 2.
One class of widely-used previous techniques is then
studied in detail in Section 3. Next, we investigate
methods for improving existing methods in Section
4 and 5. Empirical evaluation results are presented
and discussed in Section 6. We finally conclude in
Section 7.

2 Related Work

Punctuation prediction has been extensively studied
in the speech processing field. It is also sometimes
studied together with a closely related task – sen-
tence boundary detection.

Much previous work assumes that both lexical
and prosodic cues are available for the task. Kim
and Woodland (2001) performed punctuation inser-
tion during speech recognition. Prosodic features to-
gether with language model probabilities were used
within a decision tree framework. Christensen et
al. (2001) focused on the broadcast news domain
and investigated both finite state and multi-layer per-
ceptron methods for the task, where prosodic and
lexical information was incorporated. Huang and
Zweig (2002) presented a maximum entropy-based
tagging approach to punctuation insertion in spon-
taneous English conversational speech, where both
lexical and prosodic features were exploited. Liu
et al. (2005) focused on the sentence boundary de-
tection task, by making use of conditional random
fields (CRF) (Lafferty et al., 2001). Their method
was shown to improve over a previous method based
on hidden Markov model (HMM).

There is relatively less work that exploited lexical
features only. Beeferman et al. (1998) focused on
comma prediction with a trigram language model. A
joint language model was learned from punctuated
texts, and commas were inserted so as to maximize
the joint probability score. Recent work by Gravano
et al. (2009) presented a purely n-gram based ap-
proach that jointly predicted punctuation and case
information of English.

Stolcke et al. (1998) presented a “hidden event
language model” that treated boundary detection
and punctuation insertion as an interword hidden
event detection task. Their proposed method was
implemented in the handy utility hidden-ngram as

part of the SRILM toolkit (Stolcke, 2002). It was
widely used in many recent spoken language trans-
lation tasks as either a preprocessing (Wang et al.,
2008) or postprocessing (Kirchhoff and Yang, 2007)
step. More details about this model will be given in
the next section.

Recently, there are also several research efforts
that try to optimize some downstream application
after punctuation prediction, rather than the predic-
tion task itself. Examples of such downstream ap-
plications include punctuation prediction for part-of-
speech (POS) tagging and name tagging (Hillard et
al., 2006), statistical machine translation (Matusov
et al., 2006), and information extraction (Favre et
al., 2008).

3 Hidden Event Language Model

Many previous research efforts consider the bound-
ary detection and punctuation insertion task as a hid-
den event detection task. One such well-known ap-
proach was introduced by Stolcke et al. (1998).
They adopted a HMM to describe a joint distribu-
tion over words and interword events, where the ob-
servations are the words, and the word/event pairs
are encoded as hidden states. Specifically, in this
task word boundaries and punctuation symbols are
encoded as interword events. The training phase
involves training an n-gram language model over
all observed words and events with smoothing tech-
niques. The learned n-gram probability scores are
then used as the HMM state-transition scores. Dur-
ing testing, the posterior probability of an event
at each word is computed with dynamic program-
ming using the forward-backward algorithm. The
sequence of most probable states thus forms the out-
put which gives the punctuated sentence.

Such a HMM-based approach has several draw-
backs. First, the n-gram language model is only
able to capture surrounding contextual information.
However, we argue that in many cases, modeling of
longer range dependencies is required for punctua-
tion insertion. For example, the method is unable
to effectively capture the long range dependency be-
tween the initial phrase “would you” which strongly
indicates a question sentence, and an ending ques-
tion mark. This hurts the punctuation prediction per-
formance for our task since we are particularly inter-
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ested in conversational speech texts where question
sentences appear frequently.

Thus, in practice, special techniques are usually
required on top of using a hidden event language
model in order to overcome long range dependen-
cies. Examples include relocating or duplicating
punctuation symbols to different positions of a sen-
tence such that they appear closer to the indicative
words (e.g., “how much” indicates a question sen-
tence). One such technique was introduced by the
organizers of the IWSLT evaluation campaign, who
suggested duplicating the ending punctuation sym-
bol to the beginning of each sentence before training
the language model1. Empirically, the technique has
demonstrated its effectiveness in predicting question
marks in English, since most of the indicative words
for English question sentences appear at the begin-
ning of a question. However, such a technique is
specially designed and may not be widely applica-
ble in general or to languages other than English.
Furthermore, a direct application of such a method
may fail in the event of multiple sentences per utter-
ance without clearly annotated sentence boundaries
within an utterance.

Another drawback associated with such an ap-
proach is that the method encodes strong depen-
dency assumptions between the punctuation symbol
to be inserted and its surrounding words. Thus, it
lacks the robustness to handle cases where noisy or
out-of-vocabulary (OOV) words frequently appear,
such as in texts automatically recognized by ASR
systems. In this paper, we devise techniques based
on conditional random fields to tackle the difficulties
due to long range dependencies.

4 Linear-Chain Conditional Random
Fields

One natural approach to relax the strong depen-
dency assumptions encoded by the hidden event lan-
guage model is to adopt an undirected graphical
model, where arbitrary overlapping features can be
exploited.

Conditional random fields (CRF) (Lafferty et al.,
2001) have been widely used in various sequence
labeling and segmentation tasks (Sha and Pereira,

1http://mastarpj.nict.go.jp/IWSLT2008/downloads/
case+punc tool using SRILM.instructions.txt

2003; Tseng et al., 2005). Unlike a HMM which
models the joint distribution of both the label se-
quence and the observation, a CRF is a discrimi-
native model of the conditional distribution of the
complete label sequence given the observation.

Specifically, a first-order linear-chain CRF which
assumes first-order Markov property is defined by
the following equation:

pλ(y|x) =
1

Z(x)
exp

(∑
t

∑
k

λkfk(x, yt−1, yt, t)

)
(1)

where x is the observation and y is the label se-
quence. Feature functions fk with time step t are
defined over the entire observation x and two adja-
cent hidden labels. Z(x) is a normalization factor to
ensure a well-formed probability distribution. Fig-
ure 1 gives a simplified graphical representation of
the model, where only the dependencies between la-
bel and observation in the same time step are shown.

y1

x1

y2

x2

y3

x3

. . . yn

xn

Figure 1: A simplified graphical representation for linear-
chain CRF (observations are shaded)

proposed tags
NONE COMMA (,) PERIOD (.)
QMARK (?) EMARK (!)

Table 1: The set of all possible tags for linear-chain CRF

We can model the punctuation prediction task as
the process of assigning a tag to each word, where
the set of possible tags is given in Table 1. That
is, we assume each word can be associated with
an event, which tells us which punctuation sym-
bol (possibly NONE) should be inserted after the
word. The training data consists of a set of utter-
ances where punctuation symbols are encoded as
tags that are assigned to the individual words. The
tag NONE means no punctuation symbol is inserted
after the current word. Any other tag refers to insert-
ing the corresponding punctuation symbol. In the
testing phase, the most probable sequence of tags is
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Sentence: no , please do not . would you save your questions for the end of my talk , when i ask for them ?

no please do not would you . . . my talk when . . . them
COMMA NONE NONE PERIOD NONE NONE . . . NONE COMMA NONE . . . QMARK

Figure 2: An example tagging of a training sentence for the linear-chain CRF

predicted and the punctuated text can then be con-
structed from such an output. An example tagging
of an utterance is illustrated in Figure 2.

Following (Sutton et al., 2007), we factorize a
feature of conditional random fields as a product
of a binary function on assignment of the set of
cliques at the current time step (in this case an edge),
and a feature function solely defined on the ob-
servation sequence. n-gram occurrences surround-
ing the current word, together with position infor-
mation, are used as binary feature functions, for
n = 1, 2, 3. All words that appear within 5 words
from the current word are considered when build-
ing the features. Special start and end symbols are
used beyond the utterance boundaries. For example,
for the word do shown in Figure 2, example fea-
tures include unigram features do@0, please@-1,
bigram feature would+you@[2,3], and trigram fea-
ture no+please+do@[-2,0].

Such a linear-chain CRF model is capable of mod-
eling dependencies between words and punctuation
symbols with arbitrary overlapping features, thus
avoiding the strong dependency assumptions in the
hidden event language model. However, the linear-
chain CRF model still exhibits several problems for
the punctuation task. In particular, the dependency
between the punctuation symbols and the indicative
words cannot be captured adequately, if they appear
too far away from each other. For example, in the
sample utterance shown in Figure 2, the long range
dependency between the ending question mark and
the indicative words would you which appear very
far away cannot be directly captured. The problem
arises because a linear-chain CRF only learns a se-
quence of tags at the individual word level but is not
fully aware of sentence level information, such as
the start and end of a complete sentence.

Hence, it would be more reasonable to hypothe-
size that the punctuation symbols are annotated at
the sentence level, rather than relying on a limited
window of surrounding words. A model that can

jointly perform sentence segmentation and sentence
type prediction, together with word level punctu-
ation prediction would be more beneficial for our
task. This motivates us to build a joint model for
performing such a task, to be presented in the next
section.

5 Factorial Conditional Random Fields

Extensions to the linear-chain CRF model have been
proposed in previous research efforts to encode long
range dependencies. One such well-known exten-
sion is the semi-Markov CRF (semi-CRF) (Sarawagi
and Cohen, 2005). Motivated by the hidden semi-
Markov model, the semi-CRF is particularly helpful
in text chunking tasks as it allows a state to persist
for a certain interval of time steps. This in practice
often leads to better modeling capability of chunks,
since state transitions within a chunk need not pre-
cisely follow the Markov property as in the case of
linear-chain CRF. However, it is not clear how such
a model can benefit our task, which requires word-
level labeling in addition to sentence boundary de-
tection and sentence type prediction.

The skip-chain CRF (Sutton and McCallum,
2004), another variant of linear-chain CRF, attaches
additional edges on top of a linear-chain CRF for
better modeling of long range dependencies between
states with similar observations. However, such a
model usually requires known long range dependen-
cies in advance and may not be readily applicable to
our task where such clues are not explicit.

As we have discussed above, since we would
like to jointly model both the word-level labeling
task and the sentence-level annotation task (sentence
boundary detection and sentence type prediction),
introducing an additional layer of tags to perform
both tasks together would be desirable. In this sec-
tion, we propose the use of factorial CRF (F-CRF)
(Sutton et al., 2007), which has previously been
shown to be effective for joint labeling of multiple
sequences (McCallum et al., 2003).
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The F-CRF as a specific case of dynamic condi-
tional random fields was originally motivated from
dynamic Bayesian networks, where an identical
structure repeats over different time steps. Analo-
gous to the linear-chain CRF, one can think of the F-
CRF as a framework that provides the capability of
simultaneously labeling multiple layers of tags for a
given sequence. It learns a joint conditional distri-
bution of the tags given the observation. Formally,
dynamic conditional random fields define the con-
ditional probability of a sequence of label vectors y
given the observation x as:

pλ(y|x) =
1

Z(x)
exp

(∑
t

∑
c∈C

∑
k

λkfk(x, y(c,t), t)

)
(2)

where cliques are indexed at each time step, C is a set
of clique indices, and y(c,t) is the set of variables in
the unrolled version of a clique with index c at time
t (Sutton et al., 2007). Figure 3 gives a graphical
representation of a two-layer factorial CRF, where
the cliques include the two within-chain edges (e.g.,
z2 − z3 and y2 − y3) and one between-chain edge
(e.g., z3 − y3) at each time step.

z1

y1

x1

z2

y2

x2

z3

y3

x3

. . .

. . .

zn

yn

xn

Figure 3: A two-layer factorial CRF

layer proposed tags
word NONE,COMMA,PERIOD,

QMARK,EMARK

sentence DEBEG,DEIN,QNBEG,QNIN,
EXBEG,EXIN

Table 2: The set of all possible tags proposed for each
layer

We build two layers of labels for this task, as
listed in Table 2. The word layer tags are respon-
sible for inserting a punctuation symbol (including
NONE) after each word, while the sentence layer

tags are used for annotating sentence boundaries and
identifying the sentence type (declarative, question,
or exclamatory). Tags from the word layer are the
same as those of the linear-chain CRF. The sentence
layer tags are designed for three types of sentences.
DEBEG and DEIN indicate the start and the inner
part of a declarative sentence respectively, likewise
for QNBEG and QNIN (question sentences), as well
as EXBEG and EXIN (exclamatory sentences). The
same example utterance we looked at in the previous
section is now tagged with these two layers of tags,
as shown in Figure 4. Analogous feature factoriza-
tion and the same n-gram feature functions used in
linear-chain CRF are used in F-CRF.

When learning the sentence layer tags together
with the word layer tags, the F-CRF model is capa-
ble of leveraging useful clues learned from the sen-
tence layer about sentence type (e.g., a question sen-
tence, annotated with QNBEG, QNIN, QNIN, . . .,
or a declarative sentence, annotated with DEBEG,
DEIN, DEIN, . . .), which can be used to guide the
prediction of the punctuation symbol at each word,
hence improving the performance at the word layer.
For example, consider jointly labeling the utterance
shown in Figure 4. Intuitively, when evidences
show that the utterance consists of two sentences –
a declarative sentence followed by a question sen-
tence, the model tends to annotate the second half of
the utterance with the sequence QNBEG QNIN . . ..
This in turn helps to predict the word level tag at
the end of the utterance as QMARK, given the de-
pendencies between the two layers existing at each
time step. In practice, during the learning process,
the two layers of tags are jointly learned, thus pro-
viding evidences that influence each other’s tagging
process.

In this work, we use the GRMM package (Sutton,
2006) for building both the linear-chain CRF (L-
CRF) and factorial CRF (F-CRF). The tree-based
reparameterization (TRP) schedule for belief propa-
gation (Wainwright et al., 2001) is used for approxi-
mate inference.

6 Experiments

We perform experiments on part of the corpus of the
IWSLT09 evaluation campaign (Paul, 2009), where
both Chinese and English conversational speech
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Sentence: no , please do not . would you save your questions for the end of my talk , when i ask for them ?

no please do not would you . . . my talk when . . . them
COMMA NONE NONE PERIOD NONE NONE . . . NONE COMMA NONE . . . QMARK
DEBEG DEIN DEIN DEIN QNBEG QNIN . . . QNIN QNIN QNIN . . . QNIN

Figure 4: An example tagging of a training sentence for the factorial CRF

texts are used. Two multilingual datasets are consid-
ered, the BTEC (Basic Travel Expression Corpus)
dataset and the CT (Challenge Task) dataset. The
former consists of tourism-related sentences, and the
latter consists of human-mediated cross-lingual di-
alogs in travel domain. The official IWSLT09 BTEC
training set consists of 19,972 Chinese-English ut-
terance pairs, and the CT training set consists of
10,061 such pairs. We randomly split each of the
two datasets into two portions, where 90% of the ut-
terances are used for training the punctuation predic-
tion models, and the remaining 10% for evaluating
the prediction performance. For all the experiments,
we use the default segmentation of Chinese as pro-
vided, and English texts are preprocessed with the
Penn Treebank tokenizer2. We list the statistics of
the two datasets after processing in Table 3. The
proportions of sentence types in the two datasets are
listed. The majority of the sentences are declarative
sentences. However, question sentences are more
frequent in the BTEC dataset compared to the CT
dataset. Exclamatory sentences contribute less than
1% for all datasets and are not listed. We also count
how often each utterance consists of multiple sen-
tences. The utterances from the CT dataset are much
longer (with more words per utterance), and there-
fore more CT utterances actually consist of multiple
sentences.

BTEC CT
CN EN CN EN

declarative sent. 64% 65% 77% 81%
question sent. 36% 35% 22% 19%

multi.sent./uttr. 14% 17% 29% 39%
avg.words./uttr. 8.59 9.46 10.18 14.33

Table 3: Statistics of the BTEC and CT datasets

For the methods based on the hidden event lan-
guage model, we design extensive experiments due

2http://www.cis.upenn.edu/∼treebank/tokenization.html

to many possible setups. Specifically, these exper-
iments can be divided into two categories: with or
without duplicating the ending punctuation symbol
to the start of a sentence before training. This set-
ting can be used to assess the impact of the proxim-
ity between the punctuation symbol and the indica-
tive words for the prediction task. Under each cat-
egory, two possible approaches are tried. The sin-
gle pass approach performs prediction in one sin-
gle step, where all the punctuation symbols are pre-
dicted sequentially from left to right. In the cas-
caded approach, we format the training sentences
by replacing all sentence-ending punctuation sym-
bols with special sentence boundary symbols first.
A model for sentence boundary prediction is learned
based on such training data. This step is then fol-
lowed by predicting the actual punctuation symbols.
Both trigram and 5-gram language models are tried
for all combinations of the above settings. This gives
us a total of 8 possible combinations based on the
hidden event language model. When training all the
language models, modified Kneser-Ney smoothing
(Chen and Goodman, 1996) for n-grams is used.

To assess the performance of the punctuation pre-
diction task, we compute precision (prec.), recall
(rec.), and F1-measure (F1), as defined by the fol-
lowing equations:

prec. =
# Correctly predicted punctuation symbols

# predicted punctuation symbols

rec. =
# Correctly predicted punctuation symbols

# expected punctuation symbols

F1 =
2

1/prec.+ 1/rec.

6.1 Performance on Correctly Recognized
Texts

The performance of punctuation prediction on both
Chinese (CN) and English (EN) texts in the correctly
recognized output of the BTEC and CT datasets are
presented in Table 4 and Table 5 respectively. The
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BTEC
NO DUPLICATION USE DUPLICATION

SINGLE PASS CASCADED SINGLE PASS CASCADED L-CRF F-CRF

LM ORDER 3 5 3 5 3 5 3 5

CN

Prec. 87.40 86.44 87.72 87.13 76.74 77.58 77.89 78.50 94.82 94.83
Rec. 83.01 83.58 82.04 83.76 72.62 73.72 73.02 75.53 87.06 87.94

F1 85.15 84.99 84.79 85.41 74.63 75.60 75.37 76.99 90.78 91.25

EN

Prec. 64.72 62.70 62.39 58.10 85.33 85.74 84.44 81.37 88.37 92.76
Rec. 60.76 59.49 58.57 55.28 80.42 80.98 79.43 77.52 80.28 84.73

F1 62.68 61.06 60.42 56.66 82.80 83.29 81.86 79.40 84.13 88.56

Table 4: Punctuation prediction performance on Chinese (CN) and English (EN) texts in the correctly recognized
output of the BTEC dataset. Percentage scores of precision (Prec.), recall (Rec.), and F1 measure (F1) are reported.

CT
NO DUPLICATION USE DUPLICATION

SINGLE PASS CASCADED SINGLE PASS CASCADED L-CRF F-CRF

LM ORDER 3 5 3 5 3 5 3 5

CN

Prec. 89.14 87.83 90.97 88.04 74.63 75.42 75.37 76.87 93.14 92.77
Rec. 84.71 84.16 77.78 84.08 70.69 70.84 64.62 73.60 83.45 86.92

F1 86.87 85.96 83.86 86.01 72.60 73.06 69.58 75.20 88.03 89.75

EN

Prec. 73.86 73.42 67.02 65.15 75.87 77.78 74.75 74.44 83.07 86.69
Rec. 68.94 68.79 62.13 61.23 70.33 72.56 69.28 69.93 76.09 79.62

F1 71.31 71.03 64.48 63.13 72.99 75.08 71.91 72.12 79.43 83.01

Table 5: Punctuation prediction performance on Chinese (CN) and English (EN) texts in the correctly recognized
output of the CT dataset. Percentage scores of precision (Prec.), recall (Rec.), and F1 measure (F1) are reported.

performance of the hidden event language model
heavily depends on whether the duplication method
is used and on the actual language under considera-
tion. Specifically, for English, duplicating the end-
ing punctuation symbol to the start of a sentence
before training is shown to be very helpful in im-
proving the overall prediction performance. In con-
trast, applying the same technique to Chinese hurts
the performance.

This observed difference is reasonable and ex-
pected. An English question sentence usually starts
with indicative words such as do you or where that
distinguish it from a declarative sentence. Thus, du-
plicating the ending punctuation symbol to the start
of a sentence so that it is near these indicative words
helps to improve the prediction accuracy. However,
Chinese presents quite different syntactic structures
for question sentences. First, we found that in many
cases, Chinese tends to use semantically vague aux-
iliary words at the end of a sentence to indicate a
question. Such auxiliary words include 吗 and 呢.
Thus, retaining the position of the ending punctu-

ation symbol before training yields better perfor-
mance. Another interesting finding is that, differ-
ent from English, other words that indicate a ques-
tion sentence in Chinese can appear at almost any
position in a Chinese sentence. Examples include
哪里有. . . (where . . . ), . . .是什么 (what . . . ), or
. . .多少. . . (how many/much . . . ). These pose diffi-
culties for the simple hidden event language model,
which only encodes simple dependencies over sur-
rounding words by means of n-gram language mod-
eling.

By adopting a discriminative model which ex-
ploits non-independent, overlapping features, the L-
CRF model generally outperforms the hidden event
language model. By introducing an additional layer
of tags for performing sentence segmentation and
sentence type prediction, the F-CRF model further
boosts the performance over the L-CRF model. We
perform statistical significance tests using bootstrap
resampling (Efron et al., 1993). The improvements
of F-CRF over L-CRF are statistically significant
(p < 0.01) on Chinese and English texts in the CT
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BTEC
NO DUPLICATION USE DUPLICATION

SINGLE PASS CASCADED SINGLE PASS CASCADED L-CRF F-CRF

LM ORDER 3 5 3 5 3 5 3 5

CN

Prec. 85.96 84.80 86.48 85.12 66.86 68.76 68.00 68.75 92.81 93.82
Rec. 81.87 82.78 83.15 82.78 63.92 66.12 65.38 66.48 85.16 89.01

F1 83.86 83.78 84.78 83.94 65.36 67.41 66.67 67.60 88.83 91.35

EN

Prec. 62.38 59.29 56.86 54.22 85.23 87.29 84.49 81.32 90.67 93.72
Rec. 64.17 60.99 58.76 56.21 88.22 89.65 87.58 84.55 88.22 92.68

F1 63.27 60.13 57.79 55.20 86.70 88.45 86.00 82.90 89.43 93.19

Table 6: Punctuation prediction performance on Chinese (CN) and English (EN) texts in the ASR output of IWSLT08
BTEC evaluation dataset. Percentage scores of precision (Prec.), recall (Rec.), and F1 measure (F1) are reported.

dataset, and on English texts in the BTEC dataset.
The improvements of F-CRF over L-CRF on Chi-
nese texts are smaller, probably because L-CRF

is already performing quite well on Chinese. F1
measures on the CT dataset are lower than those
on BTEC, mainly because the CT dataset consists
of longer utterances and fewer question sentences.
Overall, our proposed F-CRF model is robust and
consistently works well regardless of the language
and dataset it is tested on. This indicates that the
approach is general and relies on minimal linguistic
assumptions, and thus can be readily used on other
languages and datasets.

6.2 Performance on Automatically Recognized
Texts

So far we only evaluated punctuation prediction per-
formance on transcribed texts consisting of correctly
recognized words. We now present the evaluation
results on texts produced by ASR systems.

For evaluation, we use the 1-best ASR outputs of
spontaneous speech of the official IWSLT08 BTEC
evaluation dataset, which is released as part of the
IWSLT09 corpus. The dataset consists of 504 utter-
ances in Chinese, and 498 in English. Unlike the
correctly recognized texts described in Section 6.1,
the ASR outputs contain substantial recognition er-
rors (recognition accuracy is 86% for Chinese, and
80% for English (Paul, 2008)). In the dataset re-
leased by the IWSLT organizers, the correct punctu-
ation symbols are not annotated in the ASR outputs.
To conduct our experimental evaluation, we manu-
ally annotated the correct punctuation symbols on
the ASR outputs.

We used all the learned models in Section 6.1, and

applied them to this dataset. The evaluation results
are shown in Table 6. The results show that F-CRF

still gives higher performance than L-CRF and the
hidden event language model, and the improvements
are statistically significant (p < 0.01).

6.3 Performance in Translation

The evaluation process as described in Section 6.2
requires substantial manual efforts to annotate the
correct punctuation symbols. In this section, we in-
stead adopt an indirect approach to automatically
evaluate the performance of punctuation prediction
on ASR output texts by feeding the punctuated ASR
texts to a state-of-the-art machine translation sys-
tem, and evaluate the resulting translation perfor-
mance. The translation performance is in turn mea-
sured by an automatic evaluation metric which cor-
relates well with human judgments. We believe
that such a task-oriented approach for evaluating the
quality of punctuation prediction for ASR output
texts is useful, since it tells us how well the punc-
tuated ASR output texts from each punctuation pre-
diction system can be used for further processing,
such as in statistical machine translation.

In this paper, we use Moses (Koehn et al., 2007),
a state-of-the-art phrase-based statistical machine
translation toolkit, as our translation engine. We
use the entire IWSLT09 BTEC training set for train-
ing the translation system. The state-of-the-art un-
supervised Berkeley aligner3 (Liang et al., 2006) is
used for aligning the training bitext. We use all
the default settings of Moses, except with the lexi-
calized reordering model enabled. This is because

3http://code.google.com/p/berkeleyaligner/
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NO DUPLICATION USE DUPLICATION

SINGLE PASS CASCADED SINGLE PASS CASCADED L-CRF F-CRF

LM ORDER 3 5 3 5 3 5 3 5
CN→ EN 30.77 30.71 30.98 30.64 30.16 30.26 30.33 30.42 31.27 31.30
EN→ CN 21.21 21.00 21.16 20.76 23.03 24.04 23.61 23.34 23.44 24.18

Table 7: Translation performance on punctuated ASR outputs using Moses (Averaged percentage scores of BLEU)

lexicalized reordering gives better performance than
simple distance-based reordering (Koehn et al.,
2005). Specifically, the default lexicalized reorder-
ing model (msd-bidirectional-fe) is used.

For tuning the parameters of Moses, we use the
official IWSLT05 evaluation set where the correct
punctuation symbols are present. Evaluations are
performed on the ASR outputs of the IWSLT08
BTEC evaluation dataset, with punctuation symbols
inserted by each punctuation prediction method.
The tuning set and evaluation set include 7 reference
translations. Following a common practice in statis-
tical machine translation, we report BLEU-4 scores
(Papineni et al., 2002), which were shown to have
good correlation with human judgments, with the
closest reference length as the effective reference
length. The minimum error rate training (MERT)
(Och, 2003) procedure is used for tuning the model
parameters of the translation system. Due to the un-
stable nature of MERT, we perform 10 runs for each
translation task, with a different random initializa-
tion of parameters in each run, and report the BLEU-
4 scores averaged over 10 runs.

The results are reported in Table 7. The best
translation performances for both translation direc-
tions are achieved by applying F-CRF as the punc-
tuation prediction model to the ASR texts. Such im-
provements are observed to be consistent over dif-
ferent runs. The improvement of F-CRF over L-
CRF in translation quality is statistically significant
(p < 0.05) when translating from English to Chi-
nese. In addition, we also assess the translation
performance when the manually annotated punctu-
ation symbols as mentioned in Section 6.2 are used
for translation. The averaged BLEU scores for the
two translation tasks are 31.58 (Chinese to English)
and 24.16 (English to Chinese) respectively, which
show that our punctuation prediction method gives
competitive performance for spoken language trans-

lation.
It is important to note that in this work, we only

focus on optimizing the punctuation prediction per-
formance in the form of F1-measure, without regard
to the subsequent NLP tasks. How to perform punc-
tuation prediction so as to optimize translation per-
formance is an important research topic that is be-
yond the scope of this paper and needs further in-
vestigation in future work.

7 Conclusion

In this paper, we have proposed a novel approach
for predicting punctuation symbols for transcribed
conversational speech texts. Our proposed approach
is built on top of a dynamic conditional random
fields framework, which jointly performs punctua-
tion prediction together with sentence boundary and
sentence type prediction on speech utterances. Un-
like most previous work, it tackles the task from a
purely text processing perspective and does not rely
on prosodic cues.

Experimental results have shown that our pro-
posed approach outperforms the widely used ap-
proach based on the hidden event language model,
and also outperforms a method based on linear-chain
conditional random fields. Our proposed approach
has been shown to be general, working well on both
Chinese and English, and on both correctly recog-
nized and automatically recognized texts. Our pro-
posed approach also results in better translation ac-
curacy when the punctuated automatically recog-
nized texts are used in subsequent translation.
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Abstract

Many sequence labeling tasks in NLP require
solving a cascade of segmentation and tag-
ging subtasks, such as Chinese POS tagging,
named entity recognition, and so on. Tradi-
tional pipeline approaches usually suffer from
error propagation. Joint training/decoding in
the cross-product state space could cause too
many parameters and high inference complex-
ity. In this paper, we present a novel method
which integrates graph structures of two sub-
tasks into one using virtual nodes, and per-
forms joint training and decoding in the fac-
torized state space. Experimental evaluations
on CoNLL 2000 shallow parsing data set and
Fourth SIGHAN Bakeoff CTB POS tagging
data set demonstrate the superiority of our
method over cross-product, pipeline and can-
didate reranking approaches.

1 Introduction

There is a typical class of sequence labeling tasks
in many natural language processing (NLP) applica-
tions, which require solving a cascade of segmenta-
tion and tagging subtasks. For example, many Asian
languages such as Japanese and Chinese which
do not contain explicitly marked word boundaries,
word segmentation is the preliminary step for solv-
ing part-of-speech (POS) tagging problem. Sen-
tences are firstly segmented into words, then each
word is assigned with a part-of-speech tag. Both
syntactic parsing and dependency parsing usually
start with a textual input that is tokenized, and POS
tagged.

The most commonly approach solves cascaded
subtasks in a pipeline, which is very simple to im-
plement and allows for a modular approach. While,

the key disadvantage of such method is that er-
rors propagate between stages, significantly affect-
ing the quality of the final results. To cope with this
problem, Shi and Wang (2007) proposed a rerank-
ing framework in which N-best segment candidates
generated in the first stage are passed to the tag-
ging model, and the final output is the one with the
highest overall segmentation and tagging probabil-
ity score. The main drawback of this method is that
the interaction between tagging and segmentation is
restricted by the number of candidate segmentation
outputs. Razvan C. Bunescu (2008) presented an
improved pipeline model in which upstream subtask
outputs are regarded as hidden variables, together
with their probabilities are used as probabilistic fea-
tures in the downstream subtasks. One shortcom-
ing of this method is that calculation of marginal
probabilities of features may be inefficient and some
approximations are required for fast computation.
Another disadvantage of these two methods is that
they employ separate training and the segmentation
model could not take advantages of tagging infor-
mation in the training procedure.

On the other hand, joint learning and decoding
using cross-product of segmentation states and tag-
ging states does not suffer from error propagation
problem and achieves higher accuracy on both sub-
tasks (Ng and Low, 2004). However, two problems
arises due to the large state space, one is that the
amount of parameters increases rapidly, which is apt
to overfit on the training corpus, the other is that
the inference by dynamic programming could be in-
efficient. Sutton (2004) proposed Dynamic Con-
ditional Random Fields (DCRFs) to perform joint
training/decoding of subtasks using much fewer pa-
rameters than the cross-product approach. How-
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ever, DCRFs do not guarantee non-violation of hard-
constraints that nodes within the same segment get
a single consistent tagging label. Another draw-
back of DCRFs is that exact inference is generally
time consuming, some approximations are required
to make it tractable.

Recently, perceptron based learning framework
has been well studied for incorporating node level
and segment level features together (Kazama and
Torisawa, 2007; Zhang and Clark, 2008). The main
shortcoming is that exact inference is intractable
for those dynamically generated segment level fea-
tures, so candidate based searching algorithm is
used for approximation. On the other hand, Jiang
(2008) proposed a cascaded linear model which has
a two layer structure, the inside-layer model uses
node level features to generate candidates with their
weights as inputs of the outside layer model which
captures non-local features. As pipeline models, er-
ror propagation problem exists for such method.

In this paper, we present a novel graph structure
that exploits joint training and decoding in the fac-
torized state space. Our method does not suffer
from error propagation, and guards against viola-
tions of those hard-constraints imposed by segmen-
tation subtask. The motivation is to integrate two
Markov chains for segmentation and tagging sub-
tasks into a single chain, which contains two types of
nodes, then standard dynamic programming based
exact inference is employed on the hybrid struc-
ture. Experiments are conducted on two different
tasks, CoNLL 2000 shallow parsing and SIGHAN
2008 Chinese word segmentation and POS tagging.
Evaluation results of shallow parsing task show
the superiority of our proposed method over tradi-
tional joint training/decoding approach using cross-
product state space, and achieves the best reported
results when no additional resources at hand. For
Chinese word segmentation and POS tagging task, a
strong baseline pipeline model is built, experimental
results show that the proposed method yields a more
substantial improvement over the baseline than can-
didate reranking approach.

The rest of this paper is organized as follows: In
Section 2, we describe our novel graph structure. In
Section 3, we analyze complexity of our proposed
method. Experimental results are shown in Section
4. We conclude the work in Section 5.

2 Multi-chain integration using Virtual
Nodes

2.1 Conditional Random Fields
We begin with a brief review of the Conditional Ran-
dom Fields(CRFs). Let x = x1x2 . . . xl denote the
observed sequence, where xi is the ith node in the
sequence, l is sequence length, y = y1y2 . . . yl is a
label sequence over x that we wish to predict. CRFs
(Lafferty et al., 2001) are undirected graphic mod-
els that use Markov network distribution to learn the
conditional probability. For sequence labeling task,
linear chain CRFs are very popular, in which a first
order Markov assumption is made on the labels:

p(y|x) =
1

Z(x)

∏

i

φ(x,y, i)

,where

φ(x,y, i) = exp
(
wT f(x, yi−1, yi, i)

)

Z(x) =
∑
y

∏

i

φ(x,y, i)

f(x, yi−1, yi, i) =
[f1(x, yi−1, yi, i), . . .,fm(x, yi−1, yi, i)]T , each ele-
ment fj(x, yi−1, yi, i) is a real valued feature func-
tion, here we simplify the notation of state feature
by writing fj(x, yi, i) = fj(x, yi−1, yi, i), m is the
cardinality of feature set {fj}. w = [w1, . . . , wm]T

is a weight vector to be learned from the training
set. Z(x) is the normalization factor over all label
sequences for x.

In the traditional joint training/decoding approach
for cascaded segmentation and tagging task, each
label yi has the form si-ti, which consists of seg-
mentation label si and tagging label ti. Let s =
s1s2 . . . sl be the segmentation label sequence over
x. There are several commonly used label sets such
as BI, BIO, IOE, BIES, etc. To facilitate our dis-
cussion, in later sections we will use BIES label set,
where B,I,E represents Beginning, Inside and End of
a multi-node segment respectively, S denotes a sin-
gle node segment. Let t = t1t2 . . . tl be the tagging
label sequence over x. For example, in named entity
recognition task, ti ∈ {PER, LOC, ORG, MISC,
O} represents an entity type (person name, loca-
tion name, organization name, miscellaneous entity
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Figure 1: Graphical representation of linear chain CRFs
for traditional joint learning/decoding

name and other). Graphical representation of lin-
ear chain CRFs is shown in Figure 1, where tagging
label “P” is the simplification of “PER”. For nodes
that are labeled as other, we define si =S, ti =O.

2.2 Hybrid structure for cascaded labeling
tasks

Different from traditional joint approach, our
method integrates two linear markov chains for seg-
mentation and tagging subtasks into one that con-
tains two types of nodes. Specifically, we first
regard segmentation and tagging as two indepen-
dent sequence labeling tasks, corresponding chain
structures are built, as shown in the top and mid-
dle sub-figures of Figure 2. Then a chain of twice
length of the observed sequence is built, where
nodes x1, . . . , xl on the even positions are original
observed nodes, while nodes v1, . . . , vl on the odd
positions are virtual nodes that have no content in-
formation. For original nodes xi, the state space is
the tagging label set, while for virtual nodes, their
states are segmentation labels. The label sequence
of the hybrid chain is y = y1 . . . y2l = s1t1 . . . sltl,
where combination of consecutive labels siti repre-
sents the full label for node xi.

Then we let si be connected with si−1 and si+1

, so that first order Markov assumption is made
on segmentation states. Similarly, ti is connected
with ti−1 and ti+1. Then neighboring tagging and
segmentation states are connected as shown in the
bottom sub-figure of Figure 2. Non-violation of
hard-constraints that nodes within the same seg-
ment get a single consistent tagging label is guar-
anteed by introducing second order transition fea-
tures f(ti−1, si, ti, i) that are true if ti−1 6= ti and
si ∈ {I,E}. For example, fj(ti−1, si, ti, i) is de-

fined as true if ti−1 =PER, si =I and ti =LOC.
In other words, it is true, if a segment is partially
tagging as PER, and partially tagged as LOC. Since
such features are always false in the training corpus,
their corresponding weights will be very low so that
inconsistent label assignments impossibly appear in
decoding procedure. The hybrid graph structure can
be regarded as a special case of second order Markov
chain.

Hendrix ’s              girlfriend          Kathy       Etchingham

x1 x2 x3 x4 x5

s1 s2 s3 s4 s5

S S S B E

x1 x2 x3 x4 x5

t1 t2 t3 t4 t5

P O O P P
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t1 t2 t3 t4 t5

P O O P P
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v1 v2 v3 v4 v5

Integrate

Figure 2: Multi-chain integration using Virtual Nodes

2.3 Factorized features

Compared with traditional joint model that exploits
cross-product state space, our hybrid structure uses
factorized states, hence could handle more flexible
features. Any state feature g(x, yi, i) defined in
the cross-product state space can be replaced by a
first order transition feature in the factorized space:
f(x, si, ti, i). As for the transition features, we
use f(si−1, ti−1, si, i) and f(ti−1, si, ti, i) instead
of g(yi−1, yi, i) in the conventional joint model.

Features in cross-product state space require that
segmentation label and tagging label take on partic-
ular values simultaneously, however, sometimes we
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want to specify requirement on only segmentation or
tagging label. For example, “Smith” may be an end
of a person name, “Speaker: John Smith”; or a sin-
gle word person name “Professor Smith will . . . ”. In
such case, our observation is that “Smith” is likely a
(part of) person name, we do not care about its seg-
mentation label. So we could define state feature
f(x, ti, i) = true, if xi is “Smith” with tagging la-
bel ti=PER.

Further more, we could define features like
f(x, ti−1, ti, i), f(x, si−1, si, i), f(x, ti−1, si, i),
etc. The hybrid structure facilitates us to use
varieties of features. In the remainder of the
paper, we use notations f(x, ti−1, si, ti, i) and
f(x, si−1, ti−1, si, i) for simplicity.

2.4 Hybrid CRFs
A hybrid CRFs is a conditional distribution that fac-
torizes according to the hybrid graphical model, and
is defined as:

p(s, t|x) =
1

Z(x)

∏

i

φ(x, s, t, i)
∏

i

ψ(x, s, t, i)

Where

φ(x, s, t, i) = exp
(
wT

1 f(x, si−1, ti−1, si)
)

ψ(x, s, t, i) = exp
(
wT

2 f(x, ti−1, si, ti)
)

Z(x) =
∑

s,t

(∏

i

φ(x, s, t, i)
∏

i

ψ(x, s, t, i)

)

Where w1, w2 are weight vectors.
Luckily, unlike DCRFs, in which graph structure

can be very complex, and the cross-product state
space can be very large, in our cascaded labeling
task, the segmentation label set is often small, so
far as we known, the most complicated segmenta-
tion label set has only 6 labels (Huang and Zhao,
2007). So exact dynamic programming based algo-
rithms can be efficiently performed.

In the training stage, we use second order forward
backward algorithm to compute the marginal proba-
bilities p(x, si−1, ti−1, si) and p(x, ti−1, si, ti), and
the normalization factor Z(x). In decoding stage,
we use second order Viterbi algorithm to find the
best label sequence. The Viterbi decoding can be

Table 1: Time Complexity

Method Training Decoding
Pipeline (|S|2cs + |T |2ct)L (|S|2 + |T |2)U

Cross-Product (|S||T |)2cL (|S||T |)2U

Reranking (|S|2cs + |T |2ct)L (|S|2 + |T |2)NU

Hybrid (|S| + |T |)|S||T |cL (|S| + |T |)|S||T |U

used to label a new sequence, and marginal compu-
tation is used for parameter estimation.

3 Complexity Analysis

The time complexity of the hybrid CRFs train-
ing and decoding procedures is higher than that of
pipeline methods, but lower than traditional cross-
product methods. Let

• |S| = size of the segmentation label set.

• |T | = size of the tagging label set.

• L = total number of nodes in the training data
set.

• U = total number of nodes in the testing data
set.

• c = number of joint training iterations.

• cs = number of segmentation training itera-
tions.

• ct = number of tagging training iterations.

• N = number of candidates in candidate rerank-
ing approach.

Time requirements for pipeline, cross-product, can-
didate reranking and hybrid CRFs are summarized
in Table 1. For Hybrid CRFs, original node xi has
features {fj(ti−1, si, ti)}, accessing all label subse-
quences ti−1siti takes |S||T |2 time, while virtual
node vi has features {fj(si−1, ti−1, si)}, accessing
all label subsequences si−1ti−1si takes |S|2|T | time,
so the final complexity is (|S|+ |T |)|S||T |cL.

In real applications, |S| is small, |T | could be
very large, we assume that |T | >> |S|, so for
each iteration, hybrid CRFs is about |S| times slower
than pipeline and |S| times faster than cross-product
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Table 2: Feature templates for shallow parsing task

Cross Product CRFs Hybrid CRFs
wi−2yi, wi−1yi, wiyi wi−1si, wisi, wi+1si

wi+1yi, wi+2yi wi−2ti, wi−1ti, witi, wi+1ti, wi+2ti
wi−1wiyi, wiwi+1yi wi−1wisi, wiwi+1si

wi−1witi, wiwi+1ti
pi−2yi, pi−1yi, piyi pi−1si, pisi, pi+1si

pi+1yi, pi+2yi pi−2ti, pi−1ti, pi+1ti, pi+2ti
pi−2pi−1yi, pi−1piyi, pipi+1yi,
pi+1pi+2yi

pi−2pi−1si, pi−1pisi, pipi+1si, pi+1pi+2si

pi−3pi−2ti, pi−2pi−1ti, pi−1piti, pipi+1ti,
pi+1pi+2ti, pi+2pi+3ti, pi−1pi+1ti

pi−2pi−1piyi, pi−1pipi+1yi,
pipi+1pi+2yi

pi−2pi−1pisi, pi−1pipi+1si, pipi+1pi+2si

wipiti
wisi−1si

wi−1ti−1ti, witi−1ti, pi−1ti−1ti, piti−1ti
yi−1yi si−1ti−1si, ti−1siti

method. When decoding, candidate reranking ap-
proach requires more time if candidate number N >
|S|.

Though the space complexity could not be com-
pared directly among some of these methods, hybrid
CRFs require less parameters than cross-product
CRFs due to the factorized state space. This is sim-
ilar with factorized CRFs (FCRFs) (Sutton et al.,
2004).

4 Experiments

4.1 Shallow Parsing

Our first experiment is the shallow parsing task. We
use corpus from CoNLL 2000 shared task, which
contains 8936 sentences for training and 2012 sen-
tences for testing. There are 11 tagging labels: noun
phrase(NP), verb phrase(VP) , . . . and other (O), the
segmentation state space we used is BIES label set,
since we find that it yields a little improvement over
BIO set.

We use the standard evaluation metrics, which are
precision P (percentage of output phrases that ex-
actly match the reference phrases), recall R (percent-
age of reference phrases returned by our system),
and their harmonic mean, the F1 score F1 = 2PR

P+R
(which we call F score in what follows).

We compare our approach with traditional cross-
product method. To find good feature templates,
development data are required. Since CoNLL2000
does not provide development data set, we divide
the training data into 10 folds, of which 9 folds for
training and 1 fold for developing. After selecting
feature templates by cross validation, we extract fea-
tures and learn their weights on the whole training
data set. Feature templates are summarized in Table
2, where wi denotes the ith word, pi denotes the ith

POS tag.
Notice that in the second row, feature templates

of the hybrid CRFs does not contain wi−2si, wi+2si,
since we find that these two templates degrade per-
formance in cross validation. However, wi−2ti,
wi+2ti are useful, which implies that the proper con-
text window size for segmentation is smaller than
tagging. Similarly, for hybrid CRFs, the window
size of POS bigram features for segmentation is 5
(from pi−2 to pi+2, see the eighth row in the sec-
ond column); while for tagging, the size is 7 (from
pi−3 to pi+3, see the ninth row in the second col-
umn). However for cross-product method, their win-
dow sizes must be consistent.

For traditional cross-product CRFs and our hybrid
CRFs, we use fixed gaussian prior σ = 1.0 for both
methods, we find that this parameter does not signifi-
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Table 3: Results for shallow parsing task, Hybrid CRFs
significantly outperform Cross-Product CRFs (McNe-
mar’s test; p < 0.01)

Method Cross-Product
CRFs

Hybrid
CRFs

Training Time 11.6 hours 6.3 hours
Feature Num-
ber

13 million 10 mil-
lion

Iterations 118 141
F1 93.88 94.31

cantly affect the results when it varies between 1 and
10. LBFGS(Nocedal and Wright, 1999) method is
employed for numerical optimization. Experimen-
tal results are shown in Table 3. Our proposed CRFs
achieve a performance gain of 0.43 points in F-score
over cross-product CRFs that use state space while
require less training time.

For comparison, we also listed the results of pre-
vious top systems, as shown in Table 4. Our pro-
posed method outperforms other systems when no
additional resources at hand. Though recently semi-
supervised learning that incorporates large mounts
of unlabeled data has been shown great improve-
ment over traditional supervised methods, such as
the last row in Table 4, supervised learning is funda-
mental. We believe that combination of our method
and semi-supervised learning will achieve further
improvement.

4.2 Chinese word segmentation and POS
tagging

Our second experiment is the Chinese word seg-
mentation and POS tagging task. To facilitate com-
parison, we focus only on the closed test, which
means that the system is trained only with a des-
ignated training corpus, any extra knowledge is not
allowed, including Chinese and Arabic numbers, let-
ters and so on. We use the Chinese Treebank (CTB)
POS corpus from the Fourth International SIGHAN
Bakeoff data sets (Jin and Chen, 2008). The train-
ing data consist of 23444 sentences, 642246 Chinese
words, 1.05M Chinese characters and testing data
consist of 2079 sentences, 59955 Chinese words,
0.1M Chinese characters.

We compare our hybrid CRFs with pipeline and
candidate reranking methods (Shi and Wang, 2007)

Table 4: Comparison with other systems on shallow pars-
ing task

Method F1 Additional Re-
sources

Cross-Product CRFs 93.88
Hybrid CRFs 94.31
SVM combination 93.91
(Kudo and Mat-
sumoto, 2001)
Voted Perceptrons 93.74 none
(Carreras and Mar-
quez, 2003)
ETL (Milidiu et al.,
2008)

92.79

(Wu et al., 2006) 94.21 Extended features
such as token fea-
tures, affixes

HySOL 94.36 17M words unla-
beled

(Suzuki et al., 2007) data
ASO-semi 94.39 15M words unla-

beled
(Ando and Zhang,
2005)

data

(Zhang et al., 2002) 94.17 full parser output
(Suzuki and Isozaki,
2008)

95.15 1G words unla-
beled data

using the same evaluation metrics as shallow pars-
ing. We do not compare with cross-product CRFs
due to large amounts of parameters.

For pipeline method, we built our word segmenter
based on the work of Huang and Zhao (2007),
which uses 6 label representation, 7 feature tem-
plates (listed in Table 5, where ci denotes the ith

Chinese character in the sentence) and CRFs for pa-
rameter learning. We compare our segmentor with
other top systems using SIGHAN CTB corpus and
evaluation metrics. Comparison results are shown
in Table 6, our segmenter achieved 95.12 F-score,
which is ranked 4th of 26 official runs. Except for
the first system which uses extra unlabeled data, dif-
ferences between rest systems are not significant.

Our POS tagging system is based on linear chain
CRFs. Since SIGHAN dose not provide develop-
ment data, we use the 10 fold cross validation de-
scribed in the previous experiment to turning feature
templates and Gaussian prior. Feature templates are
listed in Table 5, where wi denotes the ith word in
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Table 5: Feature templates for Chinese word segmentation and POS tagging task

Segmentation feature templates
(1.1) ci−2si, ci−1si, cisi, ci+1si, ci+2si

(1.2) ci−1cisi, cici+1si, ci−1ci+1si

(1.3) si−1si

POS tagging feature templates
(2.1) wi−2ti, wi−1ti, witi, wi+1ti, wi+2ti
(2.2) wi−2wi−1ti, wi−1witi, wiwi+1ti, wi+1wi+2ti, wi−1wi+1ti
(2.3) c1(wi)ti, c2(wi)ti, c3(wi)ti, c−2(wi)ti, c−1(wi)ti
(2.4) c1(wi)c2(wi)ti, c−2(wi)c−1(wi)ti
(2.5) l(wi)ti
(2.6) ti−1ti

Joint segmentation and POS tagging feature templates
(3.1) ci−2si, ci−1si, cisi, ci+1si, ci+2si

(3.2) ci−1cisi, cici+1si, ci−1ci+1si

(3.3) ci−3ti, ci−2ti, ci−1ti, citi, ci+1ti, ci+2ti, ci+3ti
(3.4) ci−3ci−2ti, ci−2ci−1ti, ci−1citi, cici+1ti ci+1ci+2ti, ci+2ci+3ti, ci−2citi, cici+2ti
(3.5) cisiti
(3.6) citi−1ti
(3.7) si−1ti−1si, ti−1siti

Table 6: Word segmentation results on Fourth SIGHAN
Bakeoff CTB corpus

Rank F1 Description
1/26 95.89∗ official best, using extra un-

labeled data (Zhao and Kit,
2008)

2/26 95.33 official second
3/26 95.17 official third
4/26 95.12 segmentor in pipeline sys-

tem

Table 7: POS results on Fourth SIGHAN Bakeoff CTB
corpus

Rank Accuracy Description
1/7 94.29 POS tagger in pipeline sys-

tem
2/7 94.28 official best
3/7 94.01 official second
4/7 93.24 official third

the sentence, cj(wi), j > 0 denotes the jth Chinese
character of word wi, cj(wi), j < 0 denotes the jth

last Chinese character, l(wi) denotes the word length
of wi. We compare our POS tagger with other top
systems on Bakeoff CTB POS corpus where sen-
tences are perfectly segmented into words, our POS
tagger achieved 94.29 accuracy, which is the best of
7 official runs. Comparison results are shown in Ta-
ble 7.

For reranking method, we varied candidate num-
bers n among n ∈ {10, 20, 50, 100}. For hybrid
CRFs, we use the same segmentation label set as
the segmentor in pipeline. Feature templates are
listed in Table 5. Experimental results are shown
in Figure 3. The gain of hybrid CRFs over the
baseline pipeline model is 0.48 points in F-score,
about 3 times higher than 100-best reranking ap-
proach which achieves 0.13 points improvement.
Though larger candidate number can achieve higher
performance, such improvement becomes trivial for
n > 20.

Table 8 shows the comparison between our work
and other relevant work. Notice that, such com-
parison is indirect due to different data sets and re-
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Figure 3: Results for Chinese word segmentation and
POS tagging task, Hybrid CRFs significantly outperform
100-Best Reranking (McNemar’s test; p < 0.01)

Table 8: Comparison of word segmentation and POS tag-
ging, such comparison is indirect due to different data
sets and resources.

Model F1
Pipeline (ours) 90.40
100-Best Reranking (ours) 90.53
Hybrid CRFs (ours) 90.88
Pipeline (Shi and Wang, 2007) 91.67
20-Best Reranking (Shi and Wang,
2007)

91.86

Pipeline (Zhang and Clark, 2008) 90.33
Joint Perceptron (Zhang and Clark,
2008)

91.34

Perceptron Only (Jiang et al., 2008) 92.5
Cascaded Linear (Jiang et al., 2008) 93.4

sources. One common conclusion is that joint mod-
els generally outperform pipeline models.

5 Conclusion

We introduced a framework to integrate graph struc-
tures for segmentation and tagging subtasks into one
using virtual nodes, and performs joint training and
decoding in the factorized state space. Our approach
does not suffer from error propagation, and guards
against violations of those hard-constraints imposed
by segmentation subtask. Experiments on shal-
low parsing and Chinese word segmentation tasks
demonstrate our technique.
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Abstract

We define the crouching Dirichlet, hidden
Markov model (CDHMM), an HMM for part-
of-speech tagging which draws state prior dis-
tributions for each local document context.
This simple modification of the HMM takes
advantage of the dichotomy in natural lan-
guage between content and function words. In
contrast, a standard HMM draws all prior dis-
tributions once over all states and it is known
to perform poorly in unsupervised and semi-
supervised POS tagging. This modification
significantly improves unsupervised POS tag-
ging performance across several measures on
five data sets for four languages. We also show
that simply using different hyperparameter
values for content and function word states in
a standard HMM (which we call HMM+) is
surprisingly effective.

1 Introduction

Hidden Markov Models (HMMs) are simple, ver-
satile, and widely-used generative sequence models.
They have been applied to part-of-speech (POS) tag-
ging in supervised (Brants, 2000), semi-supervised
(Goldwater and Griffiths, 2007; Ravi and Knight,
2009) and unsupervised (Johnson, 2007) training
scenarios. Though discriminative models achieve
better performance in both semi-supervised (Smith
and Eisner, 2005) and supervised (Toutanova et al.,
2003) learning, there has been only limited work on
unsupervised discriminative sequence models (e.g.,
on synthetic data and protein sequences (Xu et al.,
2006)), and none to POS tagging.

The tagging accuracy of purely unsupervised
HMMs is far below that of supervised and semi-
supervised HMMs; this is unsurprising as it is still

not well understood what kind of structure is being
found by an unconstrained HMM (Headden III et al.,
2008). However, HMMs are fairly simple directed
graphical models, and it is straightforward to ex-
tend them to define alternative generative processes.
This also applies to linguistically motivated HMMs
for recovering states and sequences that correspond
more closely to those implicitly defined by linguists
when they label sentences with parts-of-speech.

One way in which a basic HMM’s structure is a
poor model for POS tagging is that there is no inher-
ent distinction between (open-class) content words
and (closed-class) function words. Here, we propose
two extensions to the HMM. The first, HMM+, is a
very simple modification where two different hyper-
parameters are posited for content states and func-
tion states, respectively. The other is thecrouch-
ing Dirichlet, hidden Markov model (CDHMM), an
extended HMM that captures this dichotomy based
on the statistical evidence that comes from context.
Content states display greater variance across lo-
cal context (e.g. sentences, paragraphs, documents),
and we capture this variance by adding a component
to the model for content states that is based on la-
tent Dirichlet allocation (Blei et al., 2003). This ex-
tension is in some ways similar to the LDAHMM
of Griffiths et al. (2005). Both models are compos-
ite in that two distributions do not mix with each
other. Unlike the LDAHMM, the generation of con-
tent states is folded into the CDHMM process.

We compare the HMM+ and CDHMM against a
basic HMM and LDAHMM on POS tagging on a
more extensive and diverse set of languages than
previous work in monolingual unsupervised POS
tagging: four languages from three families (Ger-
manic: English and German;Romance: Portuguese;
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andMayan: Uspanteko). The CDHMM easily out-
performs all other models, including HMM+, across
three measures (accuracy, F-score, and variation
of information) for unsupervised POS tagging on
most data sets. However, the HMM+ is surpris-
ingly competitive, outperforming the basic HMM
and LDAHMM, and rivaling or even passing the
CDHMM on some measures and data sets.

2 Background

The Bayesian formulation for a basic HMM (Gold-
water and Griffiths, 2007) is:

ψt|ξ ∼ Dir(ξ)
δt|γ ∼ Dir(γ)
wi|ti = t ∼ Mult(ψt)
ti|ti−1 = t ∼ Mult(δt)

Dir is the conjugate Dirichlet prior to Mult (a multi-
nomial distribution). The state transitions are gen-
erated by Mult(δt) whose priorδt is generated by
Dir(γ) with a symmetric (i.e. uniform) hyperparam-
eterγ. Emissions are generated by Mult(ψt) with
a prior ψt generated by Dir(ξ) with a symmetric
hyperparameterξ. Hyperparameter values smaller
than one encourage posteriors that are peaked, with
smaller values increasing this concentration. It is
not necessary that the hyperparameters be symmet-
ric, but this is a common approach when one wants
to be naı̈ve about the data. This is particularly ap-
propriate in unsupervised POS tagging with regard
to novel data since there won’t bea priori grounds
for favoring certain distributions over others.

There is considerable work on extensions to
HMM-based unsupervised POS tagging (see§6),
but here we concentrate on the LDAHMM (Grif-
fiths et al., 2005), which models topics and state
sequences jointly. The model is a composite of a
probabilistic topic model and an HMM in which a
single state is allocated for words generated from
the topic model. A strength of this model is that it
is able to use less supervision than previous topic
models since it does not require a stopword list.
While the topic model component still uses the bags-
of-words assumption, the joint model infers which
words are more likely to carry topical content and
which words are more likely to contribute to the
local sequence. This model is competitive with a

standard topic model, and its output is also compet-
itive when compared with a standard HMM. How-
ever, Griffiths et al. (2005) note that the topic model
component inevitably loses some finer distinctions
with respect to parts-of-speech. Though many con-
tent states such as adjectives, verbs, and nouns can
vary a great deal across documents, the topic state
groups these words together. This leads to assign-
ment of word tokens to clusters that are a poorer fit
for POS tagging. This paper shows that a model that
conflates the LDAHMM topics with content states
can significantly improve POS tagging.

3 Models

We aim to model the fact that in many languages
words can generally be grouped into function words
and content words and that these groups often
have significantly different distributions. There are
few function words and they appear frequently,
while there are many content words appearing infre-
quently. Another difference in distribution is often
implied in information retrieval by the use of stop-
word filters andtf-idf values to remove or reduce the
influence of words which occur frequently but have
low variance (i.e. their global probability is similar
to their local probability in a document).

A difference in distribution is also revealed when
the parts-of-speech are known. When no smoothing
parameters are added, the joint probability of a word
that is not ‘the’ or ‘a’ occurring with aDT tag (in
the Penn Treebank) is almost always zero. Similarly
peaked distributions are observed for other function
categories such asMD andCC. On the other hand,
the joint probability of any word occurring withNN
is much less likely to be zero and the distribution is
much less likely to be peaked.

We attempt to account for these two distributional
properties—that certain words have higher variance
across contexts (e.g. a document) and that certain
tags have more peaked emission distributions—in a
sequence model. To do this, we define thecrouching
Dirichlet, hidden Markov model1 (CDHMM). This
model, like LDAHMM, captures items of high vari-
ance across contexts, but it does so without losing

1We call our model a “crouching Dirichlet” model since it
involves a Dirichlet prior that generates distributions for certain
states as if it were “crouching” on the side.
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Figure 1: Graphical representation of relevant vari-
ables and dependencies at a given time stepi. Ob-
served wordwi is dependent on hidden stateti.
Edges to priorsθ, φ, ψ may or may not be activated
depending on the value ofti. The edge to transition
prior δ is always activated. Hyperparameters to pri-
ors are represented by dots. See§3.1 for details.

sequence distinctions, namely, a given word’s lo-
cal function via its part-of-speech. We also define
the HMM+, a simple adaptation of a basic HMM
which accounts for the latter property by using dif-
ferent priors for emissions from content and function
states.

3.1 CDHMM

The CDHMM incorporates an LDA-like module to
its graphical structure in order to capture words
and tags which have high variance across contexts.
Such tags correspond to content states. Like the
LDAHMM, the model is composite in that distribu-
tions over a single random variable are composed
of several different distribution functions which de-
pend on the value of the underlying variable.

We posit the following model (see fig. 1 for a dia-
gram of dependencies and all variables involved at a
single time step). We observe a sequence of tokens
w=(w1, . . . , wN ) that we assume is generated by
an underlying state sequencet=(t1, . . . , tN ) over a
state alphabetT with first order Markov dependen-
cies. T is a union of disjoint content statesC and
function statesF . In this composite model, the pri-
ors for the emission and transition for each step in

the sequence depend on whether statet at stepi is
t∈C or t∈F . If t∈C, the word emission is depen-
dent onφ (the content word prior) and the state tran-
sition is dependent onθ (the “topic” prior) andδ (the
transition prior). Ift∈F , the word emission proba-
bility is dependent onψ (the function word prior)
and the state transition onδ (again, the transition
prior). Therefore, ift∈F , the transition and emis-
sion structure is identical to the standard Bayesian
HMM.

To elaborate, three prior distributions are defined
globally for this model: (1)δt, the transition prior
such thatp(t̂|t, δt) = δt̂|t (2) ψt, the function word
prior such thatp(w|t, ψt) = ψw|t (3) φt, the content
word prior such thatp(w|t, φt) = φw|t. Locally for
each contextd (documents in our case), we define
θd, the topic prior such thatp(t|θd) = θt|d for t∈C.

The generative story is as follows:

1. For each statet∈T

(a) Draw a distribution over statesδt ∼
Dir(γ)

(b) If t∈C, draw a distribution over words
φt ∼ Dir(β)

(c) If t∈F , draw a distribution over words
ψt ∼ Dir(ξ)

2. For each contextd

(a) Draw a distributionθd ∼ Dir(α) over
statest∈C

(b) For each wordwi in d

i. draw ti from δti−1
◦ θd

ii. if ti∈C, then drawwi from φti , else
drawwi from ψti

For each contextd, we draw a prior distribution
θd—formally identical to the LDA topic prior—that
is defined only for the statest∈C. This prior is then
used to weight the draws for states at each word,
from δti−1

◦ θd, where we have defined the vector
valued operation◦ as follows:

(δti−1
◦ θd)ti =

{

1
Z

δti|ti−1
· θti|d ti∈C

1
Z

δti|ti−1
ti∈F

where(δti−1
◦ θd)ti is the element corresponding to

stateti in the vectorδti−1
◦ θd. Z is a normalization

constant such that the probability mass sums to one.
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p(ti|t−i,w) ∝











Nwi|ti
+β

Nti
+Wβ

Nti|di
+α

Ndi
+Cα

“

Nti|ti−1
+γ

”“

Nti+1|ti
+I[ti−1=ti=ti+1]+γ

”

Nti
+Tγ+I[ti=ti−1] ti ∈ C

Nwi|ti
+ξ

Nti
+Wξ

“

Nti|ti−1
+γ

”“

Nti+1|ti
+I[ti−1=ti=ti+1]+γ

”

Nti
+Tγ+I[ti=ti−1] ti ∈ F

Figure 2: Conditional distribution forti in the CDHMM.

The important thing to note is that the draw for
states at each word is proportional to acomposite
of (a) the product of the individual elements of the
topic and transition priors whenti∈C and (b) the
transition priors whenti∈F . The draw is propor-
tional to the product of topic and transition priors
whenti∈C because we have made a product of ex-
perts (PoE) factorization assumption (Hinton, 2002)
for tractability and to reduce the size of our model.
Without such an assumption, the transition parame-
ters would lie in a partitioned space of sizeO(|C|4)
as opposed toO(|T |2) for the current model. Fur-
thermore, this combination of a composite hidden
state space with a product of experts assumption al-
lows us to capture high variance for certain states.

To summarize, the CDHMM is a composite
model where both the observed token and the hidden
state variable are composite distributions. For the
hidden state, this means that there is a “topical” ele-
ment with high variance across contexts that is em-
bedded in the state sequence for a subset of events.
We embed this element through a PoE assumption
where transitions into content states are modeled as
a product of the transition probability and the local
probability of the content state.

Inference. We use a Gibbs sampler (Gao and
Johnson, 2008) to learn the parameters of this and
all other models under consideration. In this infer-
ence regime, two distributions are of particular in-
terest. One is the posterior density and the other is
the conditional distribution, neither of which can be
learned in closed form.

Letting Λ = (θ, δ, φ, ψ) andh = (α, β, γ, ξ), the
posterior density is given as

p(Λ|w, t;h) ∝ p(w, t|Λ)p(Λ;h)

Note thatp(w, t|Λ) is equal to

D
∏

d

Nd
∏

i

(

φwi|tiθti|dδti|ti−1

)I[ti∈C]

(

ψwi|tiδti|ti−1

)I[ti∈F ]
(1)

where I[·] is the indicator function,D is the number
of documents in the corpus andNd is the number of
tokens in documentd.

Another important measure is the conditional dis-
tribution which is conditioned on all the random
variables except the hidden state variable of interest
and which is derived by integrating out the priors:

p(ti|t−i,w;h) ∝ p(ti|t−i;h)p(wi|t,w−i;h) (2)

wheret−i is the joint random variablet without ti
andw−i is w without wi.

There are two well-known approaches to conduct-
ing Gibbs sampling for HMMs. The default method
is to sampleΛ based on the posterior, then sample
eachti based on the conditional distribution. An-
other approach is to sample directly from the con-
ditional distribution without sampling from the pos-
terior since the conditional distribution incorporates
the posterior through integration. This is called a
collapsed Gibbs sampler, which is the method em-
ployed for the models in this study.

The full conditional distribution for tag transitions
for the Gibbs sampler is given in Figure 2. At each
time step, we decrement all counts for the current
value ofti, sample a new value forti from a multino-
mial proportional to the conditional distribution and
assign that value toti. β, ξ are the hyperparameters
for the word emission priors of the content states and
function states, respectively.γ is the hyperparame-
ter for the state transition priors.α is the hyperpa-
rameter for the state prior given that it is in some
contextd. Note that we have overridden notation so
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that C andT here refer to the size of the alphabet.
W is the size of the vocabulary. Notation such as
Nti|ti−1

refers to the counts of the events indicated
by the subscript, minus the current token and tag un-
der consideration.Nti|ti−1

is the number of timesti
has occurred afterti−1 minus the tag forwi. Nwi|ti

is the number of timeswi has occurred withti minus
the current value.Nti andNdi

are the counts for the
given tag and document minus the current value.

In its broad outline, the CDHMM is not much
more complicated than an HMM since the decompo-
sition (eqn. 1) is nearly identical to that of an HMM
with the exception that conditional probabilities for
a subset of the states—the content states—are local.
An inference algorithm can be derived that involves
no more than adding a single term to the standard
MCMC algorithm for HMMs (see Figure 2).

3.2 HMM+

The CDHMM explicitly posits two different types
of states: function states and content states. Hav-
ing made this distinction, there is a very simple way
to capture the difference in emission distributions
for function and content states within an otherwise
standard HMM: posit different hyperparameters for
the two types. One type has a small hyperparame-
ter to model a sparse distribution for function words
and the other has a relatively large hyperparameter
to model a distribution with broader support. This
extension, which we refer to as HMM+, provides an
important benchmark to compare with the CDHMM
to see how much is gained by its additional ability to
model the fact that function words occur frequently
but have low variance across contexts.

As with the CDHMM, we use Gibbs sampling to
estimate the model parameters while holding the two
different hyperparameters fixed. The conditional
distribution for tag transitions for this model is iden-
tical to that in fig. 2 except that it does not have the

second term
Nti|di

+α

Ndi
+Cα

in the first case whereti∈C.

We are not aware of a published instance of such
an extension to the HMM—which our results show
to be surprisingly effective. Goldwater and Griffiths
(2007) posits different hyperparameters for individ-
ual states, but not for different groups of states.

corpus tokens docs avg. tags

WSJ 974254 1801 541 43
Brown 797328 343 2325 80

Tiger 447079 1090 410 58
Floresta 197422 1956 101 19

Uspanteko 70125 29 2418 83

Table 2: Number of tokens, documents, average to-
kens per document and total tag types for each cor-
pus.

4 Data and Experiments

Data. We use five datasets from four languages
(English, German, Portuguese, Uspanteko) for eval-
uating POS tagging performance.

• English: the Brown corpus (Francis et al., 1982)
and the Wall Street Journal portion of the Penn
Treebank (Marcus et al., 1994).

• German: the Tiger corpus (Brants et al., 2002).

• Portuguese: the full Bosque subset of the Floresta
corpus (Afonso et al., 2002).

• Uspanteko (an endangered Mayan language of
Guatemala): morpheme-segmented and POS-
tagged texts collected and annotated by the
OKMA language documentation project (Pixabaj
et al., 2007); we use the cleaned-up version de-
scribed in Palmer et al. (2009).

Table 2 provides the statistics for these corpora.
We lowercase all words, do not remove any punc-

tuation orhapax legomena, and we do not replace
numerals with a single identifier. Due to the nature
of the models, document boundaries are retained.

Evaluation We report values for three evaluation
metrics on all five corpora, using their full tagsets.

• Accuracy: We use a greedy search algorithm to
map each unsupervised tag to a gold label such
that accuracy is maximized. We evaluate on a
1-to-1 mapping between unsupervised tags and
gold labels, as well as many-to-1 (M-to-1), cor-
responding to the evaluation mappings used in
Johnson (2007). The 1-to-1 mapping provides a
stricter evaluation. The many-to-one mapping, on
the other hand, may be more adequate as unsu-
pervised tags tend to be more fine-grained than
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Model
Accuracy Pairwise P/R Scores

VI
1-to-1 M-to-1 P R F

W
S

J
(5

0) HMM 0.34 (0.01) 0.49 (0.03) 0.51 (0.03) 0.19 (0.01) 0.28 (0.01) 3.72 (0.08)
LDAHMM 0.30 (0.04) 0.45 (0.04) 0.25 (0.07) 0.27 (0.03) 0.26 (0.04) 3.64 (0.14)

HMM + 0.42 (0.04) 0.46 (0.05) 0.24 (0.03) 0.49 (0.03) 0.32 (0.03) 2.65 (0.15)
CDHMM 0.44 (0.01) 0.58 (0.02) 0.31 (0.01) 0.43 (0.03) 0.36 (0.02) 2.73 (0.08)

B
ro

w
n

(5
0) HMM 0.32 (0.01) 0.50 (0.02) 0.60 (0.02) 0.18 (0.00) 0.28 (0.01) 3.82 (0.05)

LDAHMM 0.28 (0.06) 0.41 (0.08) 0.25 (0.10) 0.28 (0.05) 0.25 (0.05) 3.71 (0.21)
HMM + 0.43 (0.06) 0.48 (0.07) 0.29 (0.05) 0.50 (0.04) 0.37 (0.05) 2.63 (0.19)

CDHMM 0.48 (0.02) 0.62 (0.02) 0.32 (0.03) 0.54 (0.04) 0.40 (0.03) 2.48 (0.06)

T
ig

er
(5

0) HMM 0.29 (0.02) 0.49 (0.02) 0.49 (0.04) 0.14 (0.01) 0.22 (0.02) 3.91 (0.06)
LDAHMM 0.31 (0.04) 0.50 (0.04) 0.26 (0.07) 0.24 (0.02) 0.25 (0.04) 3.51 (0.11)

HMM + 0.41 (0.08) 0.44 (0.05) 0.25 (0.05) 0.58 (0.10) 0.35 (0.06) 2.70 (0.25)
CDHMM 0.47 (0.01) 0.61 (0.02) 0.45 (0.01) 0.58 (0.03) 0.50 (0.02) 2.72 (0.04)

U
sp

.
(5

0) HMM 0.36 (0.01) 0.49 (0.02) 0.39 (0.01) 0.18 (0.00) 0.25 (0.00) 3.63 (0.04)
LDAHMM 0.35 (0.02) 0.47 (0.02) 0.26 (0.04) 0.23 (0.03) 0.24 (0.02) 3.52 (0.09)

HMM + 0.32 (0.02) 0.35 (0.03) 0.12 (0.02) 0.52 (0.05) 0.20 (0.02) 3.13 (0.06)
CDHMM 0.39 (0.02) 0.50 (0.02) 0.16 (0.02) 0.39 (0.03) 0.23 (0.02) 3.00 (0.06)

F
lo

r.
(5

0) HMM 0.30 (0.01) 0.58 (0.03) 0.62 (0.05) 0.18 (0.01) 0.28 (0.01) 3.51 (0.06)
LDAHMM 0.36 (0.06) 0.59 (0.04) 0.55 (0.10) 0.29 (0.07) 0.38 (0.08) 3.22 (0.15)

HMM + 0.35 (0.04) 0.52 (0.02) 0.28 (0.04) 0.43 (0.06) 0.34 (0.04) 2.58 (0.07)
CDHMM 0.36 (0.01) 0.64 (0.02) 0.37 (0.02) 0.27 (0.01) 0.31 (0.01) 2.73 (0.05)

Table 1: Evaluation on WSJ, Brown, Tiger, Floresta and Uspanteko for models with 50 states. For VI, lower
is better

gold part-of-speech tags. In particular, they tend
to form semantically coherent sub-classes of gold
parts of speech.

• Pairwise Precision and Recall: Viewing tagging
as a clustering task over tokens, we evaluate pair-
wise precision (P ) and recall (R) between the
model tag sequence (M ) and gold tag sequence
(G) by counting the true positives (tp), false pos-
itives (fp) and false negatives (fn) between the
two and settingP = tp/(tp + fp) and R =
tp/(tp + fn). tp is the number of token pairs that
share a tag inM as well as inG, fp is the number
token pairs that share the same tag inM but have
different tags inG, andfn is the number token
pairs assigned a different tag inM but the same
in G (Meila, 2007). We also provide thef -score
which is the harmonic mean ofP andR.

• Variation of Information (VI): The variation of
information is an information theoretic metric
that measures the amount of information lost and
gained in going from tag sequenceM toG (Meila,
2007). It is defined asV I(M,G) = H(M) +
H(G)− 2I(M,G) whereH denotes entropy and
I mutual information. Goldwater and Griffiths

(2007) noted that this measure can point out mod-
els that have more consistent errors in the form
of lower VI, even when accuracy figures are the
same.

We also report learning curves onM-to-1 with ge-
ometrically increasing training set sizes of 8, 16, 32,
64, 128, 256, 512, 1024, and all documents, or as
many as possible given the corpus.

5 Experiments

In this section we discuss our parameter settings and
experimental results.

5.1 Models and Parameters

We compare four different models:

• HMM : a standard HMM
• HMM +: an HMM in which the hyperparameters

for the word emissions are asymmetric, such that
content states have different word emission priors
compared to function states.

• LDAHMM : an HMM with a distinguished state
that generates words from a topic model (Griffiths
et al., 2005)
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Figure 3: Averaged many-to-one accuracy on the full tagset for the modelsHMM +, LDAHMM , CDHMM

when the number of states is set at 20, 30, 40 and 50 states.

• CDHMM: our HMM with context-based emis-
sions, where the context used is the document

We implemented all of these models, ensuring per-
formance differences are due to the models them-
selves rather than implementation details.

For all models, the transition hyperparametersγ
are set to0.1. For theLDAHMM andHMM all emis-
sion hyperparameters are set to 0.0001. These fig-
ures are the MCMC settings that provided the best
results in Johnson (2007). For the models that distin-
guish content and function states (HMM +, CDHMM),
we fixed the number of content states at 5 and set the
function state emission hyperparametersξ = 0.0001
and the content state emission hyperparametersβ =
0.1. For the models with an LDA or LDA-like com-
ponent (LDAHMM , CDHMM), we set the topic or
content-state hyperparameterα = 1.

For decoding, we use maximum posterior decod-
ing to obtain a single sample after the required burn-
in, as has been done in other unsupervised HMM
experiments. We use this sample for evaluation.

5.2 Results

Results for all models on the full tagset are provided
in table 1.2 Each number is the mean accuracy of
ten randomly initialized samples after a single chain
burn-in of 1000 iterations. The model with a sta-
tistically significant (p < 0.05) best score for each
measure and data set is given in plain bold. In cases

2Similar results are obtained with reduced tagsets, as is com-
monly done in other work on unsupervised POS-tagging.

where the differences for the best models are not sig-
nificantly different from each other, but are signifi-
cantly better from the others, the top model scores
are given in bold italic.

CDHMM is extremely strong on the accuracy met-
ric: it wins or ties for all datasets for both 1-to-1 and
M-to-1 measures. For pairwisef -score, it obtains
the best score for two datasets (WSJ and Tiger), and
ties with HMM + on Brown (we return to Uspanteko
and Floresta below in an experiment that varies the
number of states). For VI,HMM + andCDHMM both
easily outperform the other models, withCDHMM

winning Brown and Uspanteko andHMM + winning
Floresta.

In the case of Uspanteko, the absolute difference
in mean performance between models is smaller
overall but still significant. This is due to the reduced
variance between samples for all models. This is
striking because the non-CDHMM models have much
higher standard deviation on other corpora but have
sharply reduced standard deviation only for Uspan-
teko. The most likely explanation is that the Uspan-
teko corpus is much smaller than the other corpora.3

Nonetheless,CDHMM comes out strongest on most
measures.

A simple baseline for accuracy is to choose the
most frequent tag for all tokens; this gives accura-
cies of 0.14 (WSJ), 0.14 (Brown), 0.21 (Tiger), 0.20

3which is interesting in itself since the weak law of large
numbers implies that sample standard deviation decreases with
sample size, which in our case is the number of tokens rather
than the 10 samples under discussion
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Model
Accuracy P/R Scores

VI
1-to-1 M-to-1 P R F

U
sp

.
(1

00
)

HMM 0.36 (0.01) 0.58 (0.01) 0.56 (0.02) 0.16 (0.00) 0.25 (0.01) 3.53 (0.04)
LDAHMM 0.35 (0.01) 0.58 (0.02) 0.45 (0.04) 0.17 (0.01) 0.24 (0.01) 3.46 (0.06)

HMM + 0.35 (0.02) 0.41 (0.02) 0.18 (0.01) 0.36 (0.03) 0.24 (0.01) 3.25 (0.08)
CDHMM 0.40 (0.01) 0.59 (0.01) 0.25 (0.02) 0.27 (0.02) 0.26 (0.01) 3.05 (0.03)

F
lo

r.
(2

0) HMM 0.31 (0.02) 0.48 (0.03) 0.40 (0.03) 0.21 (0.01) 0.28 (0.02) 3.54 (0.10)
LDAHMM 0.35 (0.06) 0.46 (0.06) 0.27 (0.07) 0.45 (0.08) 0.33 (0.05) 3.10 (0.10)

HMM + 0.37 (0.04) 0.50 (0.03) 0.30 (0.02) 0.45 (0.06) 0.36 (0.03) 2.62 (0.06)
CDHMM 0.44 (0.02) 0.55 (0.02) 0.30 (0.01) 0.53 (0.03) 0.39 (0.02) 2.39 (0.07)

Table 3: Evaluation for Uspanteko and Floresta. Experiments in this table use state sizes that correspond
more closely to the size of the tag sets in the respective corpora.

(Floresta), and 0.11 (Uspanteko). Clearly, all of the
models easily outperform this baseline.

Number of states. Figure 3 shows the change in
accuracy for the different models for different cor-
pora when the overall number of states is varied
between 20 and 50. The figure shows results for
M-to-1. All models with the exception ofHMM +
show improvements as the number of states is in-
creased. This brings up the valid concern (Clark,
2003; Johnson, 2007) that a model could posit a
very large number of states and obtain high M-to-
1 scores. However, it is neither the case here nor
in any of the studies we cite. Furthermore, as is
strongly suggested withHMM +, it does not seem as
if all models will benefit from assuming a large num-
ber of states.

Looking at the results by number of states on VI
and f -score forCDHMM(Figure 5), it is clear that
Floresta displays the reverse pattern of all other data
sets where performance monotonically deteriorates
as state sizes are increased. Though the exact reason
is unknown, we believe it is partially due to the fact
that Floresta has 19 tags. We therefore wondered
whether positing a state size that more closely ap-
proximated the size of the gold tag set performs bet-
ter. Since the discrepancy is greatest for Uspanteko
and Floresta, we present tabulated results for exper-
iments with state settings of 100 and 20 states re-
spectively (table 3). With the exception of VI (where
lower is better) for Uspanteko, the scores generally
improve when the model state size is closer to the
gold size. M-to-1 goes down for Floresta when 20
states are posited, but this is to be expected since this
score is defined, to a certain extent, to do better with
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Figure 5:f -score and VI forCDHMM by number of
states

larger models.

Variance. As we average performance figures
over ten runs for each model, it is also instructive
to consider standard deviation across runs. Standard
deviation is lowest for theCDHMM models and the
vanilla HMM . Standard deviation is high forHMM +
andLDAHMM . This is not surprising forLDAHMM ,
since it has fifty topic parameters in addition to the
number of states posited, and random initial condi-
tions would have greater effect on the outcome than
for the other models. It is unexpected, however, that
HMM + has high variance over different chains. The
model shares the large content emission hyperpa-
rameterβ = 0.1 with CDHMM. At this point, it can
only be assumed that the additional LDA component
acts as a regularization factor forCDHMM and re-
duced the volatility in having a large emission hy-
perparameter.
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Figure 4: Learning curves on M-to-1 evaluation. The staplesat each point represent two standard deviations.

Learning curves We present learning curves on
different sizes of subcorpora in Figure 4. The graphs
are box plots of the full M-1 accuracy figures on
10 randomly initialized training runs for seven sub-
corpora in Brown, nine in WSJ, Tiger, Floresta and
three in Uspanteko.

Comparing the graphs, the performance ofHMM +
shows the strongest improvement for English and
German data as the amount of training data in-
creases. Also, it is evident thatCDHMM posts con-
sistent performance gains across data sets as it trains
on more data. This stands in opposition toHMM and
LDAHMM which do not seem able to take advantage
of more information for WSJ and Floresta. This
suggests that performance forCDHMM and HMM +
could improve if the training corpora were aug-
mented with out-of-corpus raw data. One exception
to the consistent improvement over increased data is
the performance of the models on Uspanteko, which
uniformly flatline. One reason might be that the tags
are labeled over segmented morphemes instead of
words like the other corpora. Another could be that
Uspanteko has a relatively large number of tags in a
very small corpus.

6 Related work

Unsupervised POS tagging is an active area of re-
search. Most recent work has involved HMMs.
Given that an unconstrained HMM is not well under-
stood in POS tagging, much work has been done on
examining the mechanism and the properties of the
HMM as applied to natural language data (Johnson,
2007; Gao and Johnson, 2008; Headden III et al.,
2008). Conversely, there has also been work focused
on improving the HMM as an inference procedure
that looked at POS tagging as an example (Graca et
al., 2009; Liang and Klein, 2009). Nonparametric
HMMs for unsupervised POS tag induction (Snyder
et al., 2008; Van Gael et al., 2009) have seen partic-
ular activity due to the fact that model size assump-
tions are unnecessary and it lets the data “speak for
itself.”

There is also work on alternative unsupervised
models that are not HMMs (Schütze, 1993; Abend
et al., 2010; Reichart et al., 2010b) as well as re-
search on improving evaluation of unsupervised tag-
gers (Frank et al., 2009; Reichart et al., 2010a).

Though they did not concentrate on unsupervised
methods, Haghighi and Klein (2006) conducted an
unsupervised experiment that utilized certain to-
ken features (e.g. character suffixes of 3 or less,
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has initial capital, etc.; the features themselves are
from Smith and Eisner (2005)) to learn parameters
in an undirected graphical model which was the
equivalent of an HMM in directed models. It was
also the first study to posit the one-to-one evalua-
tion criterion which has been repeated extensively
since (Johnson, 2007; Headden III et al., 2008;
Graca et al., 2009).

Finkel et al. (2007) is an interesting variant of un-
supervised POS tagging where a parse tree is as-
sumed and POS tags are induced from this structure
non-parametrically. It is the converse of unsuper-
vised parsing which assumes access to a tagged cor-
pus and induces a parsing model.

Other models more directly influenced or closely
parallel our work. Griffiths et al. (2005) is the work
that inspired the current approach where a set of
states is designated to capture variance across con-
texts. The primary goal of that model was to induce
a topic model given data that had not been filtered
of noise in the form of function words. As such,
distinguishing between topic states such that they
model different syntactic states was not attempted,
and we have seen in sec. 3 that such an extension is
not entirely straightforward.4 Boyd-Graber and Blei
(2009) has some parallels to our model in that a hid-
den variable over topics is distributed according to
a normalized product between a context prior and a
syntactic prior. However, it assumes a much greater
amount of information than we do in that a parse tree
as well as (possibly) POS tags are taken as observed.
The model has a very different goal from ours as
well, which is to infer a syntactically informed topic
model. Teichert and Daumé III (2010) is another
study with close similarities to our own. This study
models distinctions between closed class words and
open class words within a modified HMM. It is un-
clear from their formulation how the distinction be-
tween open class and closed class words is learned.

There is also extensive literature on learning se-
quence structure fromunlabeled text (Smith and
Eisner, 2005; Goldberg et al., 2008; Ravi and
Knight, 2009) which assume access to a tag dic-
tionary. Goldwater and Griffiths (2007) deserves
mention for examining a semi-supervised model

4We tested a variant ofLDAHMM in which more than one
state can generate topics. It did not achieve good results.

that sampled emission hyperparameters for each
state rather than a single symmetric hyperparame-
ter. They showed that this outperformed a symmet-
ric model. An interesting heuristic model is Zhao
and Marcus (2009) that uses a seed set of closed
class words to classify open class words.

7 Conclusion

We have shown that a hidden Markov model that
allocates a subset of the states to have distribu-
tions conditioned on localized domains can signif-
icantly improve performance in unsupervised part-
of-speech tagging. We have also demonstrated that
significant performance gains are possible simply
by setting a different emission hyperparameter for
a subgroup of the states. It is encouraging that these
results hold for both models not just on the WSJ but
across a diverse set of languages and measures.

We believe our proposed extensions to the HMM
are a significant contribution to the general HMM
and unsupervised POS tagging literature in that both
can be implemented with minimum modification
of existing MCMC inferred HMMs, have (nearly)
equivalent run times, produce output that is easy to
interpret since they are based on a generative frame-
work, and bring about considerable performance im-
provements at the same time.
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A.R. Teichert and H. Daumé III. 2010. Unsupervised
Part of Speech Tagging Without a Lexicon. InNIPS
Workshop on Grammar Induction, Representation of
Language and Language Learning 2010.

K. Toutanova, D. Klein, C. Manning, and Y. Singer.
2003. Feature-rich part-of-speech tagging with a
cyclic dependency network. InProceedings of
NAACL, pages 173–180.

J. Van Gael, A. Vlachos, and Z. Ghahramani. 2009. The
infinite HMM for unsupervised PoS tagging. InPro-
ceedings of EMNLP, pages 678–687.

L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans.
2006. Discriminative unsupervised learning of struc-
tured predictors. InProceedings of ICML, pages
1057–1064.

Q. Zhao and M. Marcus. 2009. A simple unsuper-
vised learner for POS disambiguation rules given only
a minimal lexicon. InProceedings of EMNLP, pages
688–697.

206



Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 207–217,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Improving Gender Classification of Blog Authors 
 

Arjun Mukherjee Bing Liu 
Department of Computer Science 
University of Illinois at Chicago 

851 South Morgan Street 
Chicago, IL 60607, USA 

amukherj@cs.uic.edu 
 

Department of Computer Science 
University of Illinois at Chicago 

851 South Morgan Street 
Chicago, IL 60607, USA 
liub@cs.uic.edu 

 
 
 
 

 
 

 

Abstract 

The problem of automatically classifying the 
gender of a blog author has important appli-
cations in many commercial domains. Exist-
ing systems mainly use features such as 
words, word classes, and POS (part-of-
speech) n-grams, for classification learning. 
In this paper, we propose two new techniques 
to improve the current result. The first tech-
nique introduces a new class of features 
which are variable length POS sequence pat-
terns mined from the training data using a se-
quence pattern mining algorithm. The second 
technique is a new feature selection method 
which is based on an ensemble of several fea-
ture selection criteria and approaches. Empir-
ical evaluation using a real-life blog data set 
shows that these two techniques improve the 
classification accuracy of the current state-of-
the-art methods significantly.  

1 Introduction 

Weblogs, commonly known as blogs, refer to on-
line personal diaries which generally contain in-
formal writings. With the rapid growth of blogs, 
their value as an important source of information 
is increasing. A large amount of research work 
has been devoted to blogs in the natural language 
processing (NLP) and other communities. There 
are also many commercial companies that exploit 
information in blogs to provide value-added ser-
vices, e.g., blog search, blog topic tracking, and 
sentiment analysis of people’s opinions on prod-
ucts and services. Gender classification of blog 
authors is one such study, which also has many 
commercial applications. For example, it can help 

the user find what topics or products are most 
talked about by males and females, and what 
products and services are liked or disliked by men 
and women. Knowing this information is crucial 
for market intelligence because the information 
can be exploited in targeted advertising and also 
product development. 

In the past few years, several authors have stu-
died the problem of gender classification in the 
natural language processing and linguistic com-
munities. However, most existing works deal with 
formal writings, e.g., essays of people, the Reuters 
news corpus and the British National Corpus 
(BNC). Blog posts differ from such text in many 
ways. For instance, blog posts are typically short 
and unstructured, and consist of mostly informal 
sentences, which can contain spurious information 
and are full of grammar errors, abbreviations, 
slang words and phrases, and wrong spellings. 
Due to these reasons, gender classification of blog 
posts is a harder problem than gender classifica-
tion of traditional formal text. 

Recent work has also attempted gender classi-
fication of blog authors using features such as 
content words, dictionary based content analysis 
results, POS (part-of-speech) tags and feature se-
lection along with a supervised learning algorithm 
(Schler et al., 2006; Argamon et al., 2007; Yan 
and Yan, 2006). This paper improves these exist-
ing methods by proposing two novel techniques. 
The first technique adds a new class of pattern 
based features to learning, which are not used in 
any existing work. The patterns are frequent se-
quences of POS tags which can capture complex 
stylistic characteristics of male and female au-
thors. We note that these patterns are very differ-
ent from the traditional n-grams because the 
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patterns are of variable lengths and need to satisfy 
some criteria in order for them to represent signif-
icant regularities. We will discuss them in detail 
in Section 3.5. 

The second technique is a new feature selec-
tion algorithm which uses an ensemble of feature 
selection criteria and methods. It is well known 
that each individual feature selection criterion and 
method can be biased and tends to favor certain 
types of features. A combination of them should 
be able to capture the most useful or discrimina-
tive features. 

Our experimental results based on a real life 
blog data set collected from a large number of 
blog hosting sites show that the two new tech-
niques enable classification algorithms to signifi-
cantly improve the accuracy of the current state-
of-the-art techniques (Argamon et al., 2007; 
Schler et al., 2006; Yan and Yan, 2006). We also 
compare with two publicly available systems, 
Gender Genie (BookBlog, 2007) and Gender 
Guesser (Krawetz, 2006). Both systems imple-
mented variations of the method given in (Arga-
mon et al., 2003). Here, the improvement of our 
techniques is even greater. 

2 Related Work 

There have been several recent papers on gender 
classification of blogs (e.g., Schler et al., 2006, 
Argamon et al., 2007; Yan and Yan, 2006; Now-
son et al., 2005). These systems use func-
tion/content words, POS tag features, word classes 
(Schler et al., 2006), content word classes (Arga-
mon et al., 2007), results of dictionary based con-
tent analysis, POS unigram (Yan and Yan, 2006), 
and personality types (Nowson et al., 2005) to 
capture stylistic behavior of authors’ writings for 
classifying gender. (Koppel et al. 2002) also used 
POS n-grams together with content words on the 
British National Corpus (BNC). (Houvardas and 
Stamatatos, 2006) even applied character (rather 
than word or tag) n-grams to capture stylistic fea-
tures for authorship classification of news articles 
in Reuters.  

However, these works use only one or a subset 
of the classes of features. None of them uses all 
features for classification learning. Given the 
complexity of blog posts, it makes sense to apply 
all classes of features jointly in order to classify 
genders. Moreover, having many feature classes is 

very useful as they provide features with varied 
granularities and diversities. However, this also 
results in a huge number of features and many of 
them are redundant and may obscure classifica-
tion. Feature selection is thus needed. Following 
the idea, this paper proposes a new ensemble fea-
ture selection method which is capable of extract-
ing good features from different feature classes 
using multiple criteria.  

We also note some less relevant literature. For 
example, (Tannen, 1990) deals with gender differ-
ences in “conversational style” and in “formal 
written essays”, and (Gefen and Straub, 1997) 
reports differences in perception of males and fe-
males in the use of emails. 

Our new POS pattern features are related to 
POS n-grams used in (Koppel et al., 2002; Arga-
mon et al., 2007), which considered POS 3-grams, 
2-grams and unigrams as features. As shown in 
(Baayen et. al. 1996), POS n-grams are very ef-
fective in capturing the fine-grained stylistic and 
heavier syntactic information. In this work, we go 
further by finding POS sequence patterns. As dis-
cussed in the introduction, our patterns are entire-
ly different from POS n-grams. First of all, they 
are of variable lengths depending on whatever 
lengths can catch the regularities. They also need 
to satisfy some constraints to ensure that they tru-
ly represent some significant regularity of male or 
female writings. Furthermore, our POS sequence 
patterns can take care of n-grams and capture ad-
ditional sequence regularities. These automatical-
ly mined pattern features are thus more 
discriminating for classification. 

3 Feature Engineering and Mining 

There are different classes of features that have 
been experimented for gender classification, e.g., 
F-measure, stylistic features, gender preferential 
features, factor analysis and word classes (Now-
son et al., 2005; Schler et al., 2006; Corney et al., 
2002; Argamon et al., 2007). We use all these ex-
isting features and also propose a new class of 
features that are POS sequence patterns, which 
replace existing POS n-grams. Also, as mentioned 
before, using all feature classes gives us features 
with varied granularities. Upon extracting all 
these classes of features, a new ensemble feature 
selection (EFS) algorithm is proposed to select a 
subset of good or discriminative features.  
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Below, we first introduce the existing features, 
and then present the proposed class of new pattern 
based features and how to discover them.  

3.1 F-measure 

The F-measure feature was originally proposed in 
(Heylighen and Dewaele, 2002) and has been used 
in (Nowson et al., 2005) with good results. Note 
that F-measure here is not the F-score or F-
measure used in text classification or information 
retrieval for measuring the classification or re-
trieval effectiveness (or accuracy). 

F-measure explores the notion of implicitness 
of text and is a unitary measure of text’s relative 
contextuality (implicitness), as opposed to its 
formality (explicitness). Contextuality and formal-
ity can be captured by certain parts of speech. A 
lower score of F-measure indicates contextuality, 
marked by greater relative use of pronouns, verbs, 
adverbs, and interjections; a higher score of F-
measure indicates formality, represented by great-
er use of nouns, adjectives, prepositions, and ar-
ticles. F-measure is defined based on the 
frequency of the POS usage in a text (freq.x below 
means the frequency of the part-of-speech x):  

F = 0.5 * [(freq.noun + freq.adj + freq.prep + 
freq.art) – (freq.pron + freq.verb + 
freq.adv + freq.int) + 100] 

(Heylighen and Dewaele, 2002) applied the F-
measure to a corpus with known author genders 
and found a distinct difference between the sexes. 
Females scored lower preferring a more contex-
tual style while males scored higher preferring a 
more formal style. F-measure values for male and 
female writings reported in (Nowson et al., 2005) 
also demonstrated a similar trend. In our work, we 
also use F-measure as one of the features. 

3.2 Stylistic Features 

These are features which capture people’s writing 
styles. The style of writing is typically captured 
by three types of features: part of speech, words, 
and in the blog context, words such as lol, hmm, 
and smiley that appear with high frequency. In this 
work, we use words and blog words as stylistic 
features. Part of speech features are mined using 
our POS sequence pattern mining algorithm. POS 
n-grams can also be used as features. However, 

since we mine all POS sequence patterns and use 
them as features, most discriminative POS n-
grams are already covered. In Section 5, we will 
also show that POS n-grams do not perform as 
well as our POS sequence patterns. 

3.3 Gender Preferential Features  

Gender preferential features consist of a set of 
signals that has been used in an email gender clas-
sification task (Corney et al., 2002). These fea-
tures come from various studies that have been 
undertaken on the issue of gender and language 
use (Schiffman, 2002). It was suggested by these 
studies and also various other works that women’s 
language makes more frequent use of emotionally 
intensive adverbs and adjectives like “so”, “terri-
bly”, “awfully”, “dreadfully” and women’s lan-
guage is more punctuated. On the other hand, 
men’s conversational patterns express “indepen-
dence” (Corney et al., 2002). In brief, the lan-
guage expressed by males is more proactive at 
solving problems while the language used by fe-
males is more reactive to the contribution of oth-
ers - agreeing, understanding and supporting. We 
used the gender preferential features listed in Ta-
ble 1, which indicate adjectives and adverbs based 
on the presence of suffixes and apologies as used 
in (Corney et al., 2002). The feature value as-
signment will be discussed in Section 5. 

f1 words ending with able  
f2 words ending with al  
f3 words ending with ful 
f4 words ending with ible 
f5 words ending with ic  
f6 words ending with ive  
f7 words ending with less  
f8 words ending with ly  
f9 words ending with ous  
f10 sorry words   

Table 1: Gender preferential features 

3.4 Factor Analysis and Word Classes 

Factor or word factor analysis refers to the process 
of finding groups of similar words that tend to 
occur in similar documents. This process is re-
ferred to as meaning extraction in (Chung and 
Pennebaker, 2007). Word lists for twenty factors, 
along with suggested labels/headings (for refer-
ence) were used as features in (Argamon et al., 
2007). Here we list some of those features (word 

209



classes) in Table 2. For the detailed list of such 
word classes, the reader is referred to (Argamon et 
al., 2007). We also used these word classes as fea-
tures in our work. In addition, we added three 
more new word classes implying positive, nega-
tive and emotional connotations and used them as 
features in our experiments. These are listed in 
Table 3. 

Factor Words 

Conversa-
tion 

know, people, think, person, tell, feel, friends, talk, 
new, talking, mean, ask, understand, feelings, care, 
thinking, friend, relationship, realize, question, an-
swer, saying 

Home 
woke, home, sleep, today, eat, tired, wake, watch, 
watched, dinner, ate, bed, day, house, tv, early, bor-
ing, yesterday, watching, sit 

Family 

years, family, mother, children, father, kids, parents, 
old, year, child, son, married, sister, dad, brother, 
moved, age, young, months, three, wife, living, col-
lege, four, high, five, died, six, baby, boy, spend, 
Christmas 

Food / 
Clothes 

food, eating, weight, lunch, water, hair, life, white, 
wearing, color, ice, red, fat, body, black, clothes, 
hot, drink, wear, blue, minutes, shirt, green, coffee, 
total, store, shopping 

Romance forget, forever, remember, gone, true, face, spent, 
times, love, cry, hurt, wish, loved 

Table 2: Words in factors 

Positive 

absolutely, abundance, ace, active, admirable, adore, 
agree, amazing, appealing, attraction, bargain, beam-
ing, beautiful, best, better, boost, breakthrough, breeze, 
brilliant, brimming, charming, clean, clear, colorful, 
compliment, confidence, cool, courteous, cuddly, daz-
zling, delicious, delightful, dynamic, easy, ecstatic, 
efficient, enhance, enjoy, enormous, excellent, exotic, 
expert, exquisite, flair, free, generous, genius, great, 
graceful, heavenly, ideal, immaculate, impressive, in-
credible, inspire, luxurious, outstanding, royal, speed, 
splendid, spectacular, superb, sweet, sure, supreme, 
terrific, treat, treasure, ultra, unbeatable, ultimate, 
unique, wow, zest 

Negative 

wrong, stupid, bad, evil, dumb, foolish, grotesque, 
harm, fear, horrible, idiot, lame, mean, poor, heinous, 
hideous, deficient, petty, awful, hopeless, fool, risk, 
immoral, risky, spoil, spoiled, malign, vicious, wicked, 
fright, ugly, atrocious, moron, hate, spiteful, meager, 
malicious, lacking 

Emotion 

aggressive, alienated, angry, annoyed, anxious, careful, 
cautious, confused, curious, depressed, determined, 
disappointed, discouraged, disgusted, ecstatic, embar-
rassed, enthusiastic, envious,  excited,  exhausted, 
frightened, frustrated, guilty, happy,  helpless, hopeful, 
hostile, humiliated, hurt, hysterical,  innocent, interest-
ed, jealous, lonely, mischievous,  miserable, optimistic, 
paranoid, peaceful, proud,  puzzled, regretful, relieved, 
sad, satisfied, shocked,  shy, sorry, surprised, suspi-
cious, thoughtful, undecided,  withdrawn 

Table 3: Words implying positive, negative and emo-
tional connotations 

3.5 Proposed POS Sequence Pattern Fea-
tures 

We now present the proposed POS sequence pat-
tern features and the mining algorithm. This re-
sults in a new feature class. A POS sequence 
pattern is a sequence of consecutive POS tags that 
satisfy some constraints (discussed below). We 
used (Tsuruoka and Tsujii, 2005) as our POS tag-
ger. 

As shown in (Baayen et. al., 1996), POS n-
grams are good at capturing the heavy stylistic 
and syntactic information. Instead of using all 
such n-grams, we want to discover all those pat-
terns that represent true regularities, and we also 
want to have flexible lengths (not fixed lengths as 
in n-grams). POS sequence patterns serve these 
purposes. Its mining algorithm mines all such pat-
terns that satisfy the user-specified minimum sup-
port (minsup) and minimum adherence 
(minadherence) thresholds or constraints. These 
thresholds ensure that the mined patterns represent 
significant regularities.   

The main idea of the algorithm is to perform a 
level-wise search for such patterns, which are 
POS sequences with minsup and minadherence. 
The support of a pattern is simply the proportion 
of documents that contain the pattern. If a pattern 
appears too few times, it is probably spurious. A 
sequence is called a frequent sequence if it satis-
fies minsup. The adherence of a pattern is meas-
ured using the symmetrical conditional 
probability (SCP) given in (Silva et al., 1999). 
The SCP of a sequence with two elements |xy| is 
the product of the conditional probability of each 
given the other, 

)()(
),()|()|(),(

2

yPxP
yxPxyPyxPyxSCP ==  

Given a consecutive sequence of POS tags 
|x1…xn|, called a POS sequence of length n, a dis-
persion point defines two subparts of the se-
quence. A sequence of length n contains n-1 
possible dispersion points. The SCP of the se-
quence |x1…xn| given the dispersion point (denoted 
by *) |x1…xn-1*xn| is: 
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The SCP measure can be extended so that all 
possible dispersion points are accounted for. 
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Hence the fairSCP of the sequence |x1…xn| is giv-
en by: 

∑
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fairSCP measures the adherence strength of POS 
tags in a sequence. The higher the fairSCP value, 
the more dominant is the sequence. Our POS se-
quence pattern mining algorithm is given below. 
Input: Corpus D = {d | d is a document containing a 

sequence of POS tags}, Tagset T = {t | t is a POS 
tag}, and the user specified minimum support (min-
sup) and minimum adherence (minadherence). 

Output: All POS sequence patterns (stored in SP) 
mined from D that satisfy minsup and minadhe-
rence.  

Algorithm mine-POS-pats(D, T, minsup, minadhe-
rence) 

1.  C1 ← count each t (∈ T) in D;  
2.  F1 ← {f | f ϵ C1 , f .count / n ≥ minsup};    // n = |D| 
3. SP1 ← F1; 
4.  for (k = 2; k ≤ MAX-length; k++) 
5. Ck = candidate-gen(Fk-1); 
6. for each document d ϵ D 
7. for each candidate POS sequence c ϵ Ck 
8. if (c is contained in d) 
9. c.count++; 
10. endfor 
11.    endfor 
12.   Fk ← {c ϵ Ck | c.count / n ≥ minsup}; 
13 SPk ← {f ϵ Fk | fairSCP(f) ≥ minadherence} 
14.  endfor 
15.  return SP ← U

k
kSP ; 

Function candidate-gen(Fk-1) 
1.   Ck ← ∅;  
2.   for each POS n-gram c ϵ Fk-1 
3.      for each t ϵ T 
4.         c′← addsuffix(c, t);  // adds tag t to c as suffix 
5.         add c′  to Ck ; 
6.      endfor 
7.   endfor 

We now briefly explain the mine-POS-pats algo-
rithm. The algorithm is based on level-wise 
search. It generates all POS patterns by making 
multiple passes over data. In the first pass, it 
counts the support of individual POS tags and de-
termines which of them have minsup (line 2). 
Multiple occurrences of a tag in a document are 
counted only once. Those in F1 are called length 1 

frequent sequences. All length 1 sequence patterns 
are stored in SP1. Since adherence is not defined 
for a single element, we have SP1 = F1 (line 3). In 
each subsequent pass k until MAX-length (which 
is the maximum length limit of the mined pat-
terns), there are three steps: 
1.  Using Fk-1 (frequent sequences found in the (k-

1) pass) as a set of seeds, the algorithm applies 
candidate-gen() to generate all possibly fre-
quent POS k-sequences (sequences of length k) 
(line 5). Those infrequent sequences (which are 
not in Fk-1) are discarded as adding more POS 
tags will not make them frequent based on the 
downward closure property in (Agrawal and 
Srikant, 1994). 

2.  D is then scanned to compute the actual sup-
port count of each candidate in Ck (lines 6-11).  

3.  At the end of each scan, it determines which 
candidate sequences have minsup and minad-
herence (lines 12 - 13). We compute Fk and SPk 
separately because adherence does not have the 
downward closure property as the support.   

Finally, the algorithm returns the set of all se-
quence patterns (line 15) that meet the minsup and 
minadherence thresholds.  

The candidate-gen() function generates all pos-
sibly frequent k-sequences by adding each POS 
tag t to c as suffix. c is a k-1-sequence in Fk-1.  

In our experiments, we used MAX-length = 7, 
minsup = 30%, and minadherence = 20% to mine 
all POS sequence patterns. All the mined patterns 
are used as features.   

Finally, it is worthwhile to note that mine-
POS-pat is very similar to the well-known GSP 
algorithm (Srikant and Agrawal, 1996). Likewise, 
it has linear scale up with data size. If needed, one 
can use MapReduce (Dean and Ghemawat, 2004) 
with suitable modifications in mine-POS-pats to 
speed things up by distributing to multiple ma-
chines for large corpora. Moreover, mining is a 
part of preprocessing of the algorithm and its 
complexity does not affect the final prediction, as 
it will be later shown that for model building and 
prediction, standard machine learning methods are 
used. 

4 Ensemble Feature Selection 

Since all classes of features discussed in Section 3 
are useful, we want to employ all of them. This 
results in a huge number of features. Many of 
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them are redundant and even harmful. Feature 
selection thus becomes important. There are two 
common approaches to feature selection: the filter 
and the wrapper approaches (Blum and Langley, 
1997; Kohavi and John, 1997). In the filter ap-
proach, features are first ranked based on a feature 
selection criterion such as information gain, chi-
square (χ2) test, and mutual information. A set of 
top ranked features are selected. On the contrary, 
the wrapper model chooses features and adds to 
the current feature pool based on whether the new 
features improve the classification accuracy.  

Both these approaches have drawbacks. While 
the wrapper approach becomes very time consum-
ing and impractical when the number of features 
is large as each feature is tested by building a new 
classifier. The filter approach often uses only one 
feature selection criterion (e.g., information gain, 
chi-square, or mutual information). Due to the 
bias of each criterion, using only a single one may 
result in missing out some good features which 
can rank high based on another criterion. In this 
work, we developed a novel feature selection me-
thod that uses multiple criteria, and combines both 
the wrapper and the filter approaches. Our method 
is called ensemble feature selection (EFS). 

4.1 EFS Algorithm 

EFS takes the best of both worlds. It first uses a 
number of feature selection criteria to rank the 
features following the filter model. Upon ranking, 
the algorithm generates some candidate feature 
subsets which are used to find the final feature set 
based on classification accuracy using the wrapper 
model. Since our framework generates much few-
er candidate feature subsets than the total number 
of features, using wrapper model with candidate 
feature sets is scalable. Also, since the algorithm 
generates candidate feature sets using multiple 
criteria and all feature classes jointly, it is able to 
capture most of those features which are discrimi-
nating. We now detail our EFS algorithm. 

The algorithm takes as input, a set of n features 
F = {f1, …, fn}, a set of t feature selection criteria 
Θ = {θ1, …, θt}, a set of t thresholds Τ = {τ1, …, 
τt} corresponding to the criteria in Θ, and a win-
dow w. τi is the base number of features to be se-
lected for criterion θi. w is used to vary τi (thus the 
number of features) to be used by the wrapper 
approach. 

Algorithm: EFS (F, Θ, Τ, w) 
1. for each θi  Θ 
2. Rank all features in F based on criterion θi and 

let ξi denotes the ranked features  
3. endfor 
4. for i = 1 to t 
5. Ci ← ∅ 
6. for τ = τi – w to τ = τi + w 
7. select first τ features ζi from ξi and add ζi to Ci 

in order 
8. endfor 
9. endfor 
10. // Ci = {ζ1,  …, ζ2w + 1}, where ζi is a set of fea-

tures 
11. OptCandFeatures ← ∅; 
12. Repeat steps 13 – 18 
13. Λ ← ∅ 
14. for i = 1 to t 
15. select and remove the first feature set ζi  Ci 

from Ci in order 
16. Λ ← Λ ∪ ζi  
17. endfor 
18. add Λ to OptCandFeatures  
19. // Λ is a set of features comprising of features in 

// feature sets ζi  Ci in the same position ∀ i 
20. until Ci = ∅ ∀ i 
21. for each Λ  OptCandFeatures 
22. Λ.score ← accuracy of 10-fold CV on training 

data on a chosen classifier (learning algo-
rithm) 

23. endfor 
24. return 

score.
maxarg

Λ

{ Λ | Λ  OptCandFeatures} 

We now explain our EFS algorithm. Using a set of 
different feature selection measures, Θ, we rank 
all features in our feature pool, F, using the set of 
criteria (lines 1–3). This is similar to the filter ap-
proach. In lines 4–9, we generate feature sets Ci, 1 
≤ i ≤ t for each of the t criteria. Each set Ci con-
tains feature subsets, and each subset ζi is the set of 
top τ features in ξi ranked based on criterion θi in 
lines 1–2. τ varies from τi – w to τi + w where τi is 
the threshold for criterion θi and w the window 
size. We vary τ and generate 2w + 1 feature sets 
and add all such feature sets ζi to Ci (in lines 6–8) 
in order. We do so because it is difficult to know 
the optimal threshold τi for each criterion θi. It 
should be noted that “adding in order” ensures the 
ordering of feature sets ζi  as shown in line 10, 
which will be later used to “select and remove in 
order” in line 15. In lines 11–20 we generate can-
didate feature sets using Ci and add each such 
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candidate feature set Λ to OptCandFeatures. Each 
candidate feature set Λ is a collection of top 
ranked features based on multiple criteria. It is 
generated by unioning the features in the first fea-
ture subset ζi, which is then removed from Ci for 
each criterion θi (lines 14-17). Each candidate fea-
ture set is added to OptCandFeatures in line 18. 
Since each Ci has 2w+1 feature subsets ζi, there 
are a total of 2w+1 candidate feature sets Λ in 
OptCandFeatures. Lines 21–23 assign an accuracy 
to each candidate feature set Λ  OptCandFeatures 
by running 10-fold cross validation on the training 
data using a chosen classifier with the features in 
Λ. Finally, the optimal feature set Λ  OptCand-
Features is returned in line 24. 

An interesting question arising in the EFS al-
gorithm is: How does one select the threshold τi 
for each criterion θi and the window size w? Intui-
tively, suppose that for criterion θi, the optimal 
subset of features is Sopt_i based on some optimal 
threshold τi. Then the final feature set is a collec-
tion of all features f  Sopt_i ∀ i. However, finding 
such optimal feature set Sopt_i or optimal threshold 
τi is a difficult problem. To counter this, we use 
the window w to select various feature subsets 
close to the top τi features in ξi. Thus, the thre-
shold values τi and window size w should be ap-
proximated by experiments. In our experiments, 
we used τi = top 1/20th of the features ranked in ξi 
for ∀ i and window size w = |F|/100, and got good 
results. Fortunately, as we will see in Section 6.2, 
these parameters are not sensitive at all, and any 
reasonably large size feature set seems to work 
equally well.  

Finally, we are aware that there are some exist-
ing ensemble feature selection methods in the ma-
chine learning literature (Garganté et al., 2007; Tuv 
et al., 2009). However, they are very different 
from our approach. They mainly use ensemble 
classification methods to help choose good fea-
tures rather than combining different feature se-
lection criteria and integrating different feature 
selection approaches as in our method.   

4.2 Feature Selection Criteria 

The set of feature selection criteria Θ = {θ1…θt} 
used in our work are those commonly used indi-
vidual selection criteria in the filter approach.  
 Let C ={c1, c2, …, cm} denotes the set of 

classes, and F = {f1, f2, …, fn} the set of features. 
We list the criteria in Θ used in our work below. 

Information Gain (IG): This is perhaps the most 
commonly used criterion, which is based on en-
tropy. The scoring function for information gain 
of a feature f is given by: 
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Mutual Information (MI): This metric is com-
monly used in statistical language modeling. The 
mutual information MI(f, c) between a class c and 
a feature f is defined as: 
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The scoring function generally used as the crite-
rion is the max among all classes. MI(f) = maxi 
{MI (f, ci)} (which we use). The weighted average 
over all classes can also be applied as the scoring 
function. 

χ2 Statistic: The χ2 statistic measures the lack of 
independence between a feature f and class c, and 
can be compared to the χ2 distribution with one 
degree of freedom. We use a 2x2 contingency ta-
ble of a feature f and a class c to introduce χ2 test. 

 c c  
f W X 
f  Y Z 

Table 4: Two-way contingency table of f and c 

In the table, W denotes the number of documents 
in the corpus in which feature f and class c co-
occur, X  the number of documents in which f oc-
curs without c, Y the number of documents in 
which c occurs without f, and Z the number of 
documents in which neither c nor f occurs. Thus, 
N = W + X + Y + Z is the total number of docu-
ments in the corpus. 
χ2 test is defined as: 
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The scoring function using the χ2 statistic is either 
the weighted average or max over all classes. In 
our experiments, we use the weighted average: 
χ2(f) = ∑=

m
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Cross Entropy (CE): This metric is similar to 
mutual information (Mladenic and Grobelnik, 
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1998): 
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Weight of Evidence for Text (WET): This crite-
rion is based on the average absolute weight of 
evidence (Mladenic and Grobelnik, 1998): 
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5 Feature Value Assignments 

After selecting features belonging to different 
classes, values are assigned differently to different 
classes of features. There are three common ways 
of feature value assignments: Boolean, TF (Term 
Frequency) and TF-IDF (product of term and in-
verted document frequency). For details of feature 
value assignments, interested readers are referred 
to (Joachims, 1997). While the Boolean scheme 
assigns a 1 to the feature value if the feature is 
present in the document and a 0 otherwise, the TF 
scheme assigns the relative frequency of the num-
ber of times that the feature occurs in the docu-
ment. We did not use TF-IDF as it did not yield 
good results in our preliminary experiments.  

The feature value assignment to different 
classes of features is done as follows: The value 
of F-measure was assigned based on its actual 
value. Stylistic features such words, and blog 
words were assigned values 1 or 0 in the Boolean 
scheme and the relative frequency in the TF 
scheme (we experimented with both schemes). 
Feature values for gender preferential features 
were also assigned in a similar way. Factor and 
word class features were assigned values accord-
ing to the Boolean or TF scheme if any of the 
words belonging to the feature class exists (factor 
or word class appeared in that document). Each 
POS sequence pattern feature was assigned a val-
ue according to the Boolean (or TF) scheme based 
on the appearances of the pattern in the POS 
tagged document. 

6 Experimental Results 

This section evaluates the proposed techniques 
and sees how they affect the classification accura-
cy. We also compare with the existing state-of-
the-art algorithms and systems. For algorithms, 

we compared with three representatives in (Arga-
mon et al., 2007), (Schler et al., 2006) and (Yan 
and Yan, 2006). Since they do not have publicly 
available systems, we implemented them. Each of 
them just uses a subset of the features used in our 
system. Recall our system includes all their fea-
tures and our own POS pattern based features. For 
systems, we compared with two public domain 
systems, Gender Genie (BookBlog, 2007) and 
Gender Guesser (Krawetz, 2006), which imple-
mented variations of the algorithm in (Argamon 
et. al, 2003).  

We used SVM classification, SVM regression, 
and Naïve Bayes (NB) as learning algorithms. 
Although SVM regression is not designed for 
classification, it can be applied based on the out-
put of positive or negative values. It actually 
worked better than SVM classification for our 
data. For SVM classification and regression, we 
used SVMLight (Joachims, 1999), and for NB we 
used (Borgelt, 2003). In all our experiments, we 
used accuracy as the evaluation measure as the 
two classes (male and female) are roughly ba-
lanced (see the data description below), and both 
classes are equally important.  

6.1 Blog Data Set  

To keep the problem of gender classification of 
informal text as general as possible, we collected 
blog posts from many blog hosting sites and blog 
search engines, e.g., blogger.com, technorati.com, 
etc. The data set consists of 3100 blogs. Each blog 
is labeled with the gender of its author. The gend-
er of the author was determined by visiting the 
profile of the author. Profile pictures or avatars 
associated with the profile were also helpful in 
confirming the gender especially when the gender 
information was not available explicitly. To en-
sure quality of the labels, one group of students 
collected the blogs and did the initial labeling, and 
the other group double-checked the labels by visit-
ing the actual blog pages. Out of 3100 posts, 1588 
(51.2%) were written by men and 1512 (48.8%) 
were written by women. The average post length 
is 250 words for men and 330 words for women.  

6.2 Results  

We used all features from different feature classes 
(Section 3) along with our POS patterns as our 
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pool of features. We used τ and w values stated in 
Section 4.1 and criteria mentioned in Section 4.2 
for our EFS algorithm. EFS was compared with 
three commonly used feature selection methods 
on SVM classification (denoted by SVM), SVM 
regression (denoted by SVM_R) and the NB clas-
sifier. The results are shown in Table 5. All results 
were obtained through 10-fold cross validation. 

Also, the total number of features selected by 
IG, MI, χ2, and EFS were roughly the same. Thus, 
the improvement in accuracy brought forth by 
EFS was chiefly due to the combination of fea-
tures selected (based on multi-criteria). 

To measure the accuracy improvement of using 
our POS patterns over common POS n-grams, we 
also compared our results with those from POS n-
grams (Koppel et al., 2002). The comparison re-
sults are given in Table 6. Table 6 also includes 
results to show the overall improvement in accu-
racy with our two new techniques. We tested our 
system without any feature selection and without 
using the POS sequence patterns as features. 

The comparison results with existing algo-
rithms and public domain systems using our real-
life blog data set are tabulated in Table 7. 

Also, to see whether feature selection helps and 
how many features are optimal, we varied τ and w 
of the EFS algorithm and plotted the accuracy vs. 
no. of features. These results are shown in Figure 
1. 

Feature  
Selection  

Value 
Assignment NB SVM SVM_R 

IG Boolean 71.32 76.61 78.32 
IG TF 66.01 72.84 74.13 
MI  Boolean 72.01 78.62 79.48 
MI TF 70.86 73.14 74.58 
χ2 Boolean 72.90 80.71 81.52 
χ2 TF 71.84 73.57 75.24 

EFS Boolean 73.57 86.24 88.56 
EFS TF 72.82 82.05 83.53 

Table 5: Accuracies of SVM, SVM_R and NB with 
different feature selection methods 

 
Settings NB SVM SVM_R

All features 63.01 68.84 70.03 
All features, no POS patterns 60.73 65.17 66.17 

POS 1,2,3-grams + EFS 71.24 82.71 83.86 
POS Patterns + EFS 73.57 86.24 88.56 

Table 6: Accuracies of POS n-grams and POS patterns 
with or without EFS (Boolean value assignment) 

 
System Accuracy (%)

Gender Genie 61.69 
Gender Guesser 63.78 

(Argamon et al., 2007) 77.86 
(Schler et al., 2006) 79.63 

(Yan and Yan, 2006) 68.75 
Our method 88.56 

Table 7: Accuracy comparison with other systems 
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Figure 1: Accuracy vs. no. of features using EFS 

6.3 Observations and Discussions  

Based on the results given in the previous section, 
we make the following observations:  
• SVM regression (SVM_R) performs the best 

(Table 5). SVM classification (SVM) also 
gives good accuracies. NB did not do so well.  

• Table 5 also shows that our EFS feature selec-
tion method brings about 6-10% improvement 
in accuracy over the other feature selection me-
thods based on SVM classification and SVM 
regression. The reason has been explained in 
the introduction section. Paired t-tests showed 
that all the improvements are statistically sig-
nificant at the confidence level of 95%. For 
NB, the benefit is less (3%).   

• Keeping all other parameters constant, Table 5 
also shows that Boolean feature values yielded 
better results than the TF scheme across all 
classifiers and feature selection methods.  

• Row 1 of Table 6 tells us that feature selection 
is very useful. Without feature selection (All 
features), SVM regression only achieves 70% 
accuracy, which is way inferior to the 88.56% 
accuracy obtained using EFS feature selection. 
Row 2 shows that without EFS and without 
POS sequence patterns, the results are even 
worse.  
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• Keeping all other parameters intact, Table 6 
also demonstrated the effectiveness of our POS 
pattern features over POS n-grams. We have 
discussed the reason in Section 3.2 and 3.5.  

• From Tables 5 and 6, we can infer that the 
overall accuracy improvement using EFS and 
all feature classes described in Section 3 is 
about 15% for SVM classification and regres-
sion and 10% for NB. Also, using POS se-
quence patterns with EFS brings about a 5% 
improvement over POS n-grams (Table 6). The 
improvement is more pronounced for SVM 
based methods than NB. 

• Table 7 summarizes the accuracy improvement 
brought by our proposed techniques over the 
existing state-of-art systems. Our techniques 
have resulted in substantial (around 9%) accu-
racy improvement over the best of the existing 
systems. Note that (Argamon et al., 2007) used 
Logistic Regression with word classes and 
POS unigrams as features. (Schler et al., 2006) 
used Winnow classifier with function words, 
content word classes, and POS features. (Yan 
and Yan, 2006) used Naive Bayes with content 
words and blog-words as features. For all these 
systems, we used their features and ran their 
original classifiers and also the three classifiers 
in this paper and report the best results.  For 
example, for (Argamon et al., 2007), we ran 
Logistic Regression and our three methods. 
SVM based methods always gave slightly bet-
ter results. We could not run Winnow due to 
some technical issues. SVM and SVM_R gave 
comparable results to those given in their orig-
inal papers. These results again show that our 
techniques are useful. All the gains are statisti-
cally significant at the confidence level of 
95%. 

• From Figure 1, we see that when the number of 
features selected is small (<100) the classifica-
tion accuracy is lower than that obtained by us-
ing all features (no feature selection). 
However, the accuracy increases rapidly as the 
number of selected features increases. After 
obtaining the best case accuracy, it roughly 
maintains the accuracy over a long range. The 
accuracies then gradually decrease with the in-
crease in the number of features. This trend is 
consistent with the prior findings in (Mladenic, 
1998; Rogati and Yang, 2002; Forman 2003; 

Riloff et al., 2006; Houvardas and Stamatatos, 
2006).  

It is important to note here that over a long 
range of 2000 to 20000 features, the accuracy 
is high and stable. This means that the thre-
sholds of EFS are easy to set. As long as they 
are in the range, the accuracy will be good. 

Finally, we would like to mention that (Herring 
and Paolillo, 06) has used genre relationships with 
gender classification. Their finding that subgenre 
“diary” contains more “female” and subgenre “fil-
ter” having more “male” stylistic features inde-
pendent of the author gender, may obscure gender 
classification as there are many factors to be con-
sidered. Herring and Paolillo referred only words 
as features which are not as fine grained as our 
POS sequence patterns. We are also aware of oth-
er factors influencing gender classification like 
genre, age and ethnicity. However, much of such 
information is hard to obtain reliably in blogs. 
They definitely warren some future studies. Also, 
EFS being a useful method for feature selection in 
machine learning, it would be useful to perform 
further experiments to investigate how well it per-
forms on a variety of classification datasets. This 
again will be an interesting future work. 

7  Conclusions 

This paper studied the problem of gender classifi-
cation. Although there have been several existing 
papers studying the problem, the current accuracy 
is still far from ideal. In this work, we followed 
the supervised approach and proposed two novel 
techniques to improve the current state-of-the-art. 
In particular, we proposed a new class of features 
which are POS sequence patterns that are able to 
capture complex stylistic regularities of male and 
female authors. Since there are a large number 
features that have been considered, it is important 
to find a subset of features that have positive ef-
fects on the classification task. Here, we proposed 
an ensemble feature selection method which takes 
advantage of many different types of feature se-
lection criteria in feature selection. Experimental 
results based on a real-life blog data set demon-
strated the effectiveness of the proposed tech-
niques. They help achieve significantly higher 
accuracy than the current state-of-the-art tech-
niques and systems.  

216



References 
Agrawal, R. and Srikant, R. 1994. Fast Algorithms for 

Mining Association Rules. VLDB. pp. 487-499. 
Argamon, S., Koppel, M., J Fine, AR Shimoni. 2003. 

Gender, genre, and writing style in formal written 
texts. Text-Interdisciplinary Journal, 2003. 

Argamon, S., Koppel, M., Pennebaker, J. W., Schler, J. 
2007. Mining the Blogosphere: Age, Gender and 
the varieties of self-expression, First Monday, 2007 
- firstmonday.org 

Baayen, H., H van Halteren, F Tweedie. 1996. Outside 
the cave of shadows: Using syntactic annotation to 
enhance authorship attribution, Literary and Lin-
guistic Computing, 11, 1996. 

Blum, A. and Langley, P. 1997. Selection of relevant 
features and examples in machine learning. Artifi-
cial Intelligence, 97(1-2):245-271. 

BookBlog, Gender Genie, Copyright 2003-2007, 
http://www.bookblog.net/gender/genie.html 

Borgelt, C. 2003. Bayes Classifier Induction. 
http://www.borgelt.net/doc/bayes/bayes.html 

Chung, C. K. and Pennebaker, J. W. 2007. Revealing 
people’s thinking in natural language: Using an au-
tomated meaning extraction method in open–ended 
self–descriptions, J. of Research in Personality. 

Corney, M., Vel, O., Anderson, A., Mohay, G. 2002. 
Gender Preferential Text Mining of E-mail Dis-
course. 18th annual Computer Security Applica-
tions Conference (ACSAC), 2002. 

J. Dean and S. Ghemawat. 2004. Mapreduce: Simpli-
fied data processing on large clusters, Operating 
Systems Design and Implementation, 2004. 

Forman, G., 2003. An extensive empirical study of fea-
ture selection metrics for text classification. JMLR, 
3:1289 - 1306 , 2003. 

Garganté, R. A., Marchiori, T. E., and Kowalczyk, S. 
R. W., 2007. A Genetic Algorithm to Ensemble Fea-
ture Selection. Masters Thesis. Vrije Universiteit, 
Amsterdam. 

Gefen, D., D. W. Straub. 1997. Gender differences in 
the perception and use of e-mail: An extension to 
the technology acceptance model. MIS Quart. 21(4) 
389–400. 

Herring, S. C., & Paolillo, J. C. 2006. Gender and ge-
nre variation in weblogs, Journal of Sociolinguis-
tics, 10 (4), 439-459. 

Heylighen, F., and Dewaele, J. 2002. Variation in the 
contextuality of language: an empirical measure. 
Foundations of Science, 7, 293–340. 

Houvardas, J. and Stamatatos, E. 2006. N-gram Fea-
ture Selection for Authorship Identification, Proc. of 
the 12th Int. Conf. on Artificial Intelligence: Me-
thodology, Systems, Applications, pp. 77-86. 

Joachims, T. 1999. Making large-Scale SVM Learning 
Practical. Advances in Kernel Methods - Support 

Vector Learning, B. Schölkopf and C. Burges and 
A. Smola (ed.), MIT-Press, 1999. 

Joachims, T. 1997. Text categorization with support 
vector machines, Technical report, LS VIII Number 
23, University of Dortmund, 1997 

Kohavi, R. and John, G. 1997. Wrappers for feature 
subset selection. Artificial Intelligence, 97(1-
2):273-324. 

Koppel, M., Argamon, S., Shimoni, A. R.. 2002. Auto-
matically Categorizing Written Text by Author 
Gender. Literary and Linguistic Computing. 

Krawetz, N. 2006. Gender Guesser. Hacker Factor 
Solutions. http://www.hackerfactor.com/ Gender-
Guesser.html 

Mladenic, D. 1998. Feature subset selection in text 
learning. In Proc. of ECML-98, pp. 95–100. 

Mladenic, D. and Grobelnik, D.1998. Feature selection 
for classification based on text hierarchy. Proceed-
ings of the Workshop on Learning from Text and 
the Web, 1998 

Nowson, S., Oberlander J., Gill, A. J., 2005. Gender, 
Genres, and Individual Differences. In Proceedings 
of the 27th annual meeting of the Cognitive Science 
Society (p. 1666–1671). Stresa, Italy. 

Riloff, E., Patwardhan, S., Wiebe, J.. 2006. Feature 
Subsumption for opinion Analysis. EMNLP,  

Rogati, M. and Yang, Y.2002. High performing and 
scalable feature selection for text classification. In 
CIKM, pp. 659-661, 2002. 

Schiffman, H. 2002. Bibliography of Gender and Lan-
guage. http://ccat.sas.upenn.edu/~haroldfs/ pop-
cult/bibliogs/gender/genbib.htm 

Schler, J., Koppel, M., Argamon, S, and Pennebaker J. 
2006. Effects of age and gender on blogging, In 
Proc. of the AAAI Spring Symposium Computa-
tional Approaches to Analyzing Weblogs. 

Silva, J., Dias, F., Guillore, S., Lopes, G. 1999. Using 
LocalMaxs Algortihm for the Extraction of Conti-
guous and Noncontiguous Multiword Lexical Units. 
Springer Lecture Notes in AI 1695, 1999 

Srikant, R. and Agrawal, R. 1996. Mining sequential 
patterns: Generalizations and performance im-
provements, In Proc. 5th Int. Conf. Extending Data-
base Technology (EDBT’96), Avignon, France. 

Tannen, D. (1990). You just don’t understand, New 
York: Ballantine. 

Tsuruoka, Y. and Tsujii, J. 2005. Bidirectional Infe-
rence with the Easiest-First Strategy for Tagging 
Sequence Data, HLT/EMNLP 2005, pp. 467-474. 

Tuv, E., Borisov, A., Runger, G., and Torkkola, K. 
2009. Feature selection with ensembles, artificial 
variables, and redundancy elimination. JMLR, 10. 

Yan, X., Yan, L. 2006. Gender Classification of Web-
log Authors. Computational Approaches to Analyz-
ing Weblogs, AAAI. 

217



Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 218–228,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Negative Training Data can be Harmful to Text Classification 
 
 

Xiao-Li  Li Bing Liu See-Kiong  Ng 
Institute for Infocomm Research University of Illinois at Chicago Institute for Infocomm Research 

1 Fusionopolis Way #21-01,  
Connexis Singapore 138632 

851 South Morgan Street,  
Chicago, IL 60607-7053, USA 

1 Fusionopolis Way #21-01,  
Connexis Singapore 138632 

xlli@i2r.a-star.edu.sg liub@cs.uic.edu skng@i2r.a-star.edu.sg
 
 

Abstract 

This paper studies the effects of training data 
on binary text classification and postulates 
that negative training data is not needed and 
may even be harmful for the task. Traditional 
binary classification involves building a clas-
sifier using labeled positive and negative 
training examples. The classifier is then ap-
plied to classify test instances into positive 
and negative classes. A fundamental assump-
tion is that the training and test data are iden-
tically distributed. However, this assumption 
may not hold in practice. In this paper, we 
study a particular problem where the positive 
data is identically distributed but the negative 
data may or may not be so. Many practical 
text classification and retrieval applications fit 
this model. We argue that in this setting nega-
tive training data should not be used, and that 
PU learning can be employed to solve the 
problem. Empirical evaluation has been con-
ducted to support our claim. This result is im-
portant as it may fundamentally change the 
current binary classification paradigm.  

1 Introduction 

Text classification is a well-studied problem in 
machine learning, natural language processing, and 
information retrieval. To build a text classifier, a 
set of training documents is first labeled with pre-
defined classes. Then, a supervised machine learn-
ing algorithm (e.g., Support Vector Machines 
(SVM), naïve Bayesian classifier (NB)) is applied 
to the training examples to build a classifier that is 
subsequently employed to assign class labels to the 
instances in the test set. In this paper, we focus on 
binary text classification with two classes (i.e. pos-
itive and negative classes).  

Most learning methods assume that the training 
and test data have identical distributions. However, 
this assumption may not hold in practice, i.e., the 
training and the test distributions can be different. 
The problem is called covariate shift or sample 
selection bias (Heckman 1979; Shimodaira 2000; 
Zadrozny 2004; Huang et al. 2007; Sugiyama et al. 
2008; Bickel et al. 2009). In general, this problem 
is not solvable because the two distributions can be 
arbitrarily far apart from each other. Various as-
sumptions were made to solve special cases of the 
problem. One main assumption was that the condi-
tional distribution of the class given an instance is 
the same over the training and test sets (Shimodai-
ra 2000; Huang et al. 2007; Bickel et al. 2009).  

In this paper, we study another special case of 
the problem in which the positive training and test 
samples have identical distributions, but the nega-
tive training and test samples may have different 
distributions. We believe this scenario is more ap-
plicable for binary text classification. As the focus 
in many applications is on identifying positive in-
stances correctly, it is important that the positive 
training and the positive test data have the same 
distribution. The distributions of the negative train-
ing and negative test data can be different. We be-
lieve that this special case of the sample selection 
bias problem is also more applicable for machine 
learning. We will show that a partially supervised 
learning model, called PU learning (learning from 
Positive and Unlabeled examples) fits this special 
case quite well (Liu et al. 2002).  

Following the notations in (Bickel et al. 2009), 
our special case of the sample selection bias prob-
lem can be formulated as follows: We are given a 
training sample matrix XL with row vectors x1, …, 
xk. The positive and negative training instances are 
governed by different unknown distributions p(x|λ) 
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and p(x|δ) respectively. The element yi of vector y 
= (y1,  y2, …, yk) is the class label for training in-
stance xi (yi ∈{+1, -1}, where +1 and -1 denote 
positive and negative classes respectively) and is 
drawn based on an unknown target concept p(y|x). 
In addition, we are also given an unlabeled test set 
in matrix XT with rows xk+1, …, xk+m. The (hidden) 
positive test instances in XT are also governed by 
the unknown distribution p(x|λ), but the (hidden) 
negative test instances in XT are governed by an 
unknown distribution, p(x|θ), where θ may or may 
not be the same as δ. p(x|θ) and p(x|δ) can differ 
arbitrarily, but there is only one unknown target 
conditional class distribution p(y|x).  

This problem setting is common in many appli-
cations, especially in those applications where the 
user is interested in identifying a particular type of 
documents (i.e. binary text classification). For ex-
ample, we want to find sentiment analysis papers 
in the literature. For training a text classifier, we 
may label the papers in some EMNLP proceedings 
as sentiment analysis (positive) and non-sentiment 
analysis (negative) papers. A classifier can then be 
built to find sentiment analysis papers from ACL 
and other EMNLP proceedings. However, this la-
beled training set will not be appropriate for identi-
fying sentiment analysis papers from the WWW, 
KDD and SIGIR conference proceedings. This is 
because although the sentiment analysis papers in 
these proceedings are similar to those in the train-
ing data, the non-sentiment analysis papers in these 
conferences can be quite different. Another exam-
ple is email spam detection. A spam classification 
system built using the training data of spam and 
non-spam emails from a university may not per-
form well in a company. The reason is that al-
though the spam emails (e.g., unsolicited 
commercial ads) are similar in both environments, 
the non-spam emails in them can be quite different.  

One can consider labeling the negative data in 
each environment individually so that only the 
negative instances relevant to the testing environ-
ment are used to train the classifier.  However, it is 
often impractical (if not impossible) to do so. For 
example, given a large blog hosting site, we want 
to classify its blogs into those that discuss stock 
markets (positive), and those that do not (nega-
tive). In this case, the negative data covers an arbi-
trary range of topics. It is clearly impractical to 
label all the negative data. 

Most existing methods for addressing the sam-

ple selection bias problem work as follows.  First, 
they estimate the bias of the training data based on 
the given test data using statistical methods. Then, 
a classifier is trained on a weighted version of the 
original training set based on the estimated bias. In 
this paper, we show that our special case of the 
sample selection bias problem can be solved in a 
much simpler and somewhat radical manner—by 
simply discarding the negative training data alto-
gether. We can use the positive training data and 
the unlabeled test data to build the classifier using 
the PU learning model  (Liu et al. 2002).  

PU learning was originally proposed to solve the 
learning problem where no labeled negative train-
ing data exist. Several algorithms have been devel-
oped in the past few years that can learn from a set 
of labeled positive examples augmented with a set 
of unlabeled examples. That is, given a set P of 
positive examples of a particular class (called the 
positive class) and a set U of unlabeled examples 
(which contains both hidden positive and hidden 
negative examples), a classifier is built using P and 
U to classify the data in U as well as future test 
data into two classes, i.e., those belonging to P 
(positive) and those not belonging to P (negative). 
In this paper, we also propose a new PU learning 
method which gives more consistently accurate 
results than the current methods.  

Our experimental evaluation shows that when 
the distributions of the negative training and test 
samples are different, PU learning is much more 
accurate than traditional supervised learning from 
the positive and negative training samples. This 
means that the negative training data actually 
harms classification in this case. In addition, when 
the distributions of the negative training and test 
samples are identical, PU learning is shown to per-
form equally well as supervised learning, which 
means that the negative training data is not needed.   

This paper thus makes three contributions. First, 
it formulates a new special case of the sample se-
lection bias problem, and proposes to solve the 
problem using PU learning by discarding the nega-
tive training data. Second, it proposes a new PU 
learning method which is more accurate than the 
existing methods. Third, it experimentally demon-
strates the effectiveness of the proposed method 
and shows that negative training data is not needed 
and can even be harmful. This result is important 
as it may fundamentally change the way that many 
practical classification problems should be solved.  
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2 Related Work  

A key assumption made by most machine learning 
algorithms is that the training and test samples 
must be drawn from the same distribution. As 
mentioned, this assumption can be violated in prac-
tice. Some researchers have addressed this problem 
under covariate shift or sample selection bias. 
Sample selection bias was first introduced in the 
econometrics by Heckman (1979). It came into the 
field of machine learning through the work of Za-
drozny (2004). The main approach in machine 
learning is to first estimate the distribution bias of 
the training data based on the test data, and then 
learn using weighted training examples to compen-
sate for the bias (Bickel et al. 2009).  

Shimodaira (2000) and Sugiyama and Muller 
(2005) proposed to estimate the training and test 
data distributions using kernel density estimation. 
The estimated density ratio could then be used to 
generate weighted training examples. Dudik et al. 
(2005) and Bickel and Scheffer (2007) used maxi-
mum entropy density estimation, while Huang et 
al. (2007) proposed kernel mean matching. Su-
giyama et al. (2008) and Tsuboi et al. (2008) esti-
mated the weights for the training instances by 
minimizing the Kullback-Leibler divergence be-
tween the test and the weighted training distribu-
tions. Bickel et al. (2009) proposed an integrated 
model. In this paper, we adopt an entirely different 
approach by dropping the negative training data 
altogether in learning. Without the negative train-
ing data, we use PU learning to solve the problem 
(Liu et al. 2002; Yu et al. 2002; Denis et al. 2002; 
Li et al. 2003; Lee and Liu, 2003; Liu et al. 2003; 
Denis et al. 2003; Li et al. 2007; Elkan and Noto, 
2008; Li et al. 2009; Li et al. 2010). We will dis-
cuss this learning model further in Section 3.  

Another related work to ours is transfer learning 
or domain adaptation. Unlike our problem setting, 
transfer learning addresses the scenario where one 
has little or no training data for the target domain, 
but has ample training data in a related domain 
where the data could be in a different feature space 
and follow a different distribution. A survey of 
transfer learning can be found in (Pan and Yang 
2009). Several NLP researchers have studied trans-
fer learning for different applications (Wu et al. 
2009a; Yang et al. 2009; Agirre & Lacalle 2009; 
Wu et al. 2009b; Sagae & Tsujii 2008; Goldwasser 
& Roth 2008; Li and Zong 2008; Andrew et al. 

2008; Chan and Ng 2007; Jiang and Zhai 2007; 
Zhou et al. 2006), but none of them addresses the 
problem studied here.  

3 PU Learning Techniques 

In traditional supervised learning, ideally, there is a 
large number of labeled positive and negative ex-
amples for learning. In practice, the negative ex-
amples can often be limited or unavailable. This 
has motivated the development of the model of 
learning from positive and unlabeled examples, or 
PU learning, where P denotes a set of positive ex-
amples, and U a set of unlabeled examples (which 
contains both hidden positive and hidden negative 
instances). The PU learning problem is to build a 
classifier using P and U in the absence of negative 
examples to classify the data in U or a future test 
data T. In our setting, the test set T will also act as 
the unlabeled set U.  

PU learning has been investigated by several re-
searchers in the past decade. A study of PAC learn-
ing for the setting under the statistical query model 
was given in (Denis, 1998). Liu et al. reported the 
sample complexity result and showed how the 
problem may be solved (Liu et al., 2002).  Subse-
quently, a number of practical algorithms (e.g., Liu 
et al., 2002; Yu et al., 2002; Li and Liu, 2003) 
were proposed. They generally follow a two-step 
strategy: (i) identifying a set of reliable negative 
documents RN from the unlabeled set; and then (ii) 
building a classifier using P (positive set), RN (re-
liable negative set) and U-RN (unlabelled set) by 
applying an existing learning algorithm (such as 
naive Bayesian classifier or SVM) iteratively. 
There are also some other approaches based on 
unbalanced errors (e.g., Liu et al. 2003; Lee and 
Liu, 2003; Elkan and Noto, 2008). 

In this section, we first introduce a representa-
tive PU learning technique S-EM, and then present 
a new technique called CR-SVM. 

3.1 S-EM Algorithm  

S-EM (Liu et al. 2002) is based on naïve Bayesian 
classification (NB) (Lewis, 1995; Nigam et al., 
2000) and the EM algorithm (Dempster et al. 
1977). It has two steps. The first step uses a spy 
technique to identify some reliable negatives (RN) 
from the unlabeled set U and the second step uses 
the EM algorithm to learn a Bayesian classifier 
from P, RN and U–RN. 
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Step 1: Extracting reliable negatives RN from U 
using a spy technique 
The spy technique in S-EM works as follows (Fig-
ure 1): First, a small set of positive examples (de-
noted by SP) called “spies” is randomly sampled 
from P (line 2). The default sampling ratio in S-
EM is s = 15%. Then, an NB classifier is built us-
ing P–SP as the positive set and U∪SP as the neg-
ative set (lines 3-5). The NB classifier is applied to 
classify each u ∈ U∪SP, i.e., to assign a probabil-
istic class label p(+|u) (+ means positive) to u. The 
idea of the spy technique is as follows. Since the 
spy examples were from P and were put into U as 
negatives in building the NB classifier, they should 
behave similarly to the hidden positive instances in 
U. We thus can use them to find the reliable nega-
tive set RN from U. Using the probabilistic labels 
of spies in SP and an input parameter l (noise lev-
el), a probability threshold t is determined. Due to 
space constraints, we are unable to explain l. De-
tails can be found in (Liu et al. 2002). t is then used 
to find RN from U (lines 8-10).  

1.  RN ← ∅;                  // Reliable negative set 
2.  SP ← Sample(P, s%);          // spy set 
3.  Assign each example in P – SP the class label +1; 
4.  Assign each example in U ∪SP the class label -1; 
5.  C ←NB(P – SP, U∪SP);   // Produce a NB classifier  
6.  Classify each u ∈U∪SP using C; 
7.  Decide a probability threshold t using SP and l; 
8.  For each u ∈U do 
9.       If its probability p(+|u) < t then 
10.          RN ← RN ∪ {u}; 

Figure 1. Spy technique for extracting RN from U 

Step 2: Learning using the EM algorithm 
Given the positive set P, the reliable negative set 
RN, and the remaining unlabeled set U–RN, we run 
EM using NB as the base learning algorithm. 

The naive Bayesian (NB) method is an effective 
text classification algorithm. There are two differ-
ent NB models, namely, the multinomial NB and 
the multi-variate Bernoulli NB. In this paper, we 
use the multinomial NB since it has been observed 
to perform consistently better than the multi-
variate Bernoulli NB (Nigam et al., 2000).  

Given a set of training documents D, each doc-
ument di ∈ D is an ordered list of words. We use 
wdi,k to denote the word in position k of di, where 
each word is from the vocabulary V = {w1, … , w|v|}, 
which is the set of all words considered in classifi-

cation. We also have a set of classes C = {c1, c2} 
representing positive and negative classes. For 
classification, we compute the posterior probability 
Pr(cj|di). Based on the Bayes rule and multinomial 
model, we have 

      
   (1) 

and with Laplacian smoothing, 

    (2) 

where N(wt,di) is the number of times that the word 
wt occurs in document di, and Pr(cj|di) {0,1} de-
pending on the class label of the document. As-
suming that probabilities of words are independent 
given the class, we have the NB classifier:  

 
(3) 

EM (Dempster et al. 1977) is a popular class of 
iterative algorithms for maximum likelihood esti-
mation in problems with incomplete data. It is of-
ten used to address missing values in the data by 
computing expected values using the existing val-
ues. The EM algorithm consists of two steps, the 
E-step and the M-step. The E-step fills in the miss-
ing data, and M-step re-estimated the parameters. 
This process is iterated till satisfaction (i.e. con-
vergence). For NB, the steps used by EM are iden-
tical to those used to build the classifier (equations 
(3) for the E-step, and equations (1) and (2) for the 
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ing Equations (1) and (2); 
4. Repeat 
5. For each document di in U-RN do     // E-Step 
6. Using the current classifier f  compute 

Pr(cj|di) using Equation (3); 
7. Learn a new NB classifier f from P, RN and U-

RN by computing Pr(cj) and Pr(wt|cj), using 
Equations (1) and (2);                       // M-Step 

8. Until the classifier parameters stabilize  
9. The last iteration of EM gives the final classifier f ; 
10. For each document di in U do  
11. If its probability Pr(+|di) ≥ 0.5 then 
12. Output di as a positive document; 
13. else Output di as a negative document 

Figure 2. EM algorithm with the NB classifier 
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M-step). In EM, Pr(cj|di) takes the value in [0, 1] 
instead of {0, 1} in all the three equations.                                                                               

The algorithm for the second step of S-EM is 
given in Figure 2. Lines 1-3 build a NB classifier f 
using P and RN. Lines 4-8 run EM until conver-
gence. Finally, the converged classifier is used to 
classify the unlabeled set U (lines 10-13).     

3.2 Proposed CR-SVM  

As we will see in the experiment section, the per-
formance of S-EM can be weak in some cases. 
This is due to the mixture model assumption of its 
NB classifier (Nigam et al. 2000), which requires 
that the mixture components and classes be of one-
to-one correspondence. Intuitively, this means that 
each class should come from a distinctive distribu-
tion rather than a mixture of multiple distributions. 
In our setting, however, the negative class often 
has documents of mixed topics, e.g., representing 
the broad class of everything else except the top-
ic(s) represented by the positive class.  

There are some existing PU learning methods 
based on SVM which can deal with this problem, 
e.g., Roc-SVM (Li and Liu, 2003). Like S-EM, 
Roc-SVM also has two steps. The first step uses 
Rocchio classification (Rocchio, 1971) to find a set 
of reliable negatives RN from U. In particular, this 
method treats the entire unlabeled set U as negative 
documents and then uses the positive set P and the 
unlabeled set U as the training data to build a Roc-
chio classifier. The classifier is subsequently ap-
plied to classify the unlabeled set U. Those 
documents that are classified as negative are then 
considered as reliable negative examples RN. The 
second step of Roc-SVM runs SVM iteratively 
(instead of EM). Unlike NB, SVM does not make 
any distributional assumption. 

However, Roc-SVM does not do well due to the 
weakness of its first step in finding a good set of 
reliable negatives RN. This motivates us to propose 
a new SVM based method CR-SVM to detect a 
better quality RN set. The second step of CR-SVM 
is similar to that in Roc-SVM.  

Step 1: Extracting reliable negatives RN from U 
using Cosine and Rocchio  

The first step of the proposed CR-SVM algorithm 
for finding a RN set consists of two sub-steps:  
Sub-step 1 (extracting the potential negative set 
PN using the cosine similarity): Given the positive 

set P and the unlabeled set U, we extract a set of 
potential negatives PN from U by computing the 
similarities of the unlabeled documents in U and 
the positive documents in P. The idea is that those 
documents in U that are very dissimilar to the doc-
uments in P are likely to be negative.  

1. PN = ∅;  
2. Represent each document in P and U as vectors us-

ing the TF-IDF representation; 
3. For each dj ∈ P do 
4.  

5. ; 
6. For each dj ∈ P  do 
7. compute cos(pr, dj) using Equation (4); 
8. Sort all the documents dj∈P according to cos(pr, dj) 

in decreasing order; 
9. ω = cos(pr, dp) where dp is ranked in the position of 

(1- l)*|P|; 
10. For each di ∈ U  do 
11. If cos(pr, di)< ω then 
12. PN = PN ∪{di} 

Figure 3. Extracting potential negatives PN from U 

The detailed algorithm is given in Figure 3. 
Each document in P and U is first represented as a 
vector d = (q1, q2, …, qn) using the TF-IDF scheme 
(Salton 1986). Each element qi (i=1, 2, …, n) in d 
represents a word feature wi. A positive representa-
tive vector (pr) is built by summing up the docu-
ments in P and normalizing it (lines 3-5). Lines 6-7 
compute the similarities of each document dj in P 
with pr using the cosine similarity, cos(pr, dj).  

Line 8 sorts the documents in P according to 
their cos(pr, dj) values. We want to filter away as 
many as possible hidden positive documents from 
U so that we can obtain a very pure negative set.  
Since the hidden positives in U should have the 
same behaviors as the positives in P in terms of 
their similarities to pr, we set their minimum simi-
larity as the threshold value ω which is the mini-
mum similarity before a document is considered as 
a potential negative document: 
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ment dj in P could be near 0 or smaller than most 
(or even all) negative documents. It would there-
fore be prudent to ignore a small percentage l of 
the documents in P most dissimilar to the repre-
sentative positive (pr) and assume them as noise or 
outliers.  Since we do not know the noise level of 
the data, to be safe, we use a noise level l = 5% as 
the default. The final classification result is not 
sensitive to l as long as it is not too big. In line 9, 
we use the noise level l to decide on a suitable ω. 
Then, for each document di in U, if its cosine simi-
larity cos(pr, di) < ω, we regard it as a potential 
negative and store it in PN (lines 10-12). 

Our experiment results showed that PN is still 
not sufficient or big enough for accurate PU learn-
ing. Thus, we need to do a bit more work to find 
the final RN.   

Sub-step 2 (extracting the final reliable negative 
set RN from U using Rocchio with PN): At this 
point, we have a positive set P and a potential neg-
ative set PN where PN is a purer negative set than 
U. To extract the final reliable negatives, we em-
ploy the Rocchio classification to build a classifier 
RC using P and PN (We do not use SVM here as it 
is very sensitive to the noise in PN). Those docu-
ments in U that are classified as negatives by RC 
will then be regarded as reliable negatives, and 
stored in set RN.   

The algorithm for this sub-step is given in Fig-
ure 4. Following the Rocchio formula, a positive 
and a negative prototype vectors p and n are built 
(lines 3 and 4), which are used to classify the doc-
uments in U (lines 5-7). α and β are parameters for 
adjusting the relative impact of the positive and 
negative examples. In this work, we use α = 16 and 
β = 4 as recommended in (Buckley et al. 1994).  

Step 2:  Learning by running SVM iteratively 

This step is similar to that in Roc-SVM, building 

the final classifier by running SVM iteratively with 
the sets P, RN and the remaining unlabeled set Q 
(Q = U – RN).  

The algorithm is given in Figure 5. We run 
SVM classifiers Si (line 3) iteratively to extract 
more and more negative documents from Q. The 
iteration stops when no more negative documents 
can be extracted from Q (line 5). There is, howev-
er, a danger in running SVM iteratively, as SVM is 
quite sensitive to noise. It is possible that during 
some iteration, SVM is misled by noisy data to 
extract many positive documents from Q and put 
them in the negative set RN. If this happens, the 
final SVM classifier will be inferior. As such, we 
employ a test to decide whether to keep the first 
SVM classifier or the final one. To do so, we use 
the final SVM classifier obtained at convergence 
(called Slast, line 9) to classify the positive set P to 
see if many positive documents in P are classified 
as negatives. Roc-SVM chooses 5% as the thre-
shold, so CR-SVM also uses this threshold. If there 
are 5% of positive documents (5%*|P|) in P that 
are classified as negative, it indicates that SVM has 
gone wrong and we should use the first SVM clas-
sifier (S1). In our experience, the first classifier is 
always quite strong; good results can therefore be 
achieved even without catching the last (possibly 
better) classifier.  

The main difference between Roc-SVM and 
CR-SVM is that Roc-SVM does not produce PN. It 
simply treats the unlabeled set U as negatives for 
extracting RN. Since PN is clearly a purer negative 
set than U, the use of PN by CR-SVM helps ex-
tract a better quality reliable negative set RN which 
subsequently allows the final classifier of CR-
SVM to give better results than Roc-SVM.   

Note that the methods (S-EM and CR-SVM) are 
all two-step algorithms in which the first step and 
the second step are independent of each other. The 
algorithm for the second step basically needs a 
good set of reliable negatives RN extracted from U. 
This means that one can pick any algorithm for the 
first step to work with any algorithm for the second 
step. For example, we can also have CR-EM which 
uses the algorithm (shown in Figures 3 and 4) of 
the first step of CR-SVM to combine with the al-
gorithm of the second step of S-EM. CR-EM ac-
tually works quite well as it is also able to exploit 
the more accurate reliable negative set RN ex-
tracted using cosine and Rocchio. 

 

1. RN = ∅;  
2. Represent each document in P, PN and U as vectors 

using the TF-IDF representation; 
3. ; 

4. ; 

5. For each di ∈ U  do 
6. If  cos(di, n)> cos(di, p) then 
7. RN  = RN ∪{di} 

Figure 4. Identifying RN using the Rocchio classifier 
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4 Empirical Evaluation 

We now present the experimental results to support 
our claim that negative training data is not needed 
and can even harm text classification. We also 
show the effectiveness of the proposed PU learning 
methods CR-SVM and CR-EM. The following 
methods are compared: (1) traditional supervised 
learning methods SVM and NB which use both 
positive and negative training data; (2) PU learning 
methods, including two existing methods S-EM 
and Roc-SVM and two new methods CR-SVM and 
CR-EM, and (3) one-class SVM (Schölkop et al., 
1999) where only positive training data is used in 
learning (the unlabeled set is not used at all).  

We used LIBSVM 1  for SVM and one-class 
SVM, and two publicly available 2  PU learning 
techniques S-EM and Roc-SVM. Note that we do 
not compare with some other PU learning methods 
such as those in (Liu et al. 2003, Lee and Liu, 2003 
and Elkan and Noto, 2008) as the purpose of this 
paper is not to find the best PU learning method 
but to show that PU learning can address our spe-
cial sample selection bias problem. Our current 
methods already do very well for this purpose.  

4.1 Datasets and Experimental Settings 

We used two well-known benchmark data collec-
tions for text classification, the Reuters-21578 col-
lection 3  and the 20 Newsgroup collection 4 . 
Reuters-21578 contains 21578 documents. We 
used the most populous 10 out of the 135 catego-
ries following the common practice of other re-
searchers. 20 Newsgroup has 11997 documents 
from 20 discussion groups. The 20 groups were 
also categorized into 4 main categories.  

We have performed two sets of experiments, 
and just used bag-of-words as features since our 
objective in this paper is not feature engineering.  

(1) Test set has other topic documents. This set 
of experiments simulates the scenario in which the 
negative training and test samples have different 
distributions. We select positive, negative and oth-
er topic documents for Reuters and 20 Newsgroup, 
and produce various data sets. Using these data 
sets, we want to show that PU learning can do bet-
                                                           
1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
2 http://www.cs.uic.edu/~liub/LPU/LPU-download.html 
3 http://www.research.att.com/~lewis/reuters21578.html 
4 http://people.csail.mit.edu/jrennie/20Newsgroups/ 

ter than traditional learning that uses both positive 
and negative training data. 

For the Reuters collection, each of the 10 cate-
gories is used as a positive class. We randomly 
select one or two of the remaining categories as the 
negative class (denoted by Neg 1 or Neg 2), and 
then we randomly choose some documents from 
the rest of the categories as other topic documents. 
These other topic documents are regarded as nega-
tives and added to the test set but not to the nega-
tive training data. They thus introduce a different 
distribution to the negative test data. We generated 
20 data sets (10*2) for our experiments this way. 

The 20 Newsgroup collection has 4 main cate-
gories with sub-categories5; the sub-categories in 
the same main category are relatively similar to 
each other. We are able to simulate two scenarios: 
(1) the other topic documents are similar to the 
negative class documents (similar case), and (2) 
the other topic documents are quite different from 
the negative class documents (different case). This 
allows us to investigate whether the classification 
results will be affected when the other topic docu-
ments are somewhat similar or vastly different 
from the negative training set. To create the train-
ing and test data for our experiments, we randomly 
select one sub-category from a main category (cat 
1) as the positive class, and one (or two) sub-
category from another category (cat 2) as the nega-
tive class (again denoted by Neg 1 or Neg 2). For 
the other topics, we randomly choose some docu-
                                                           
5  The four main categories and their corresponding sub-
categories are: computer (graphics, os, ibmpc.hardware, 
mac.hardware, windows.x), recreation (autos, motorcycles, 
baseball, hockey), science (crypt, electronics, med, space), and 
talk (politics.misc, politics.guns, politics.mideast, religion). 

1. Every document in P is assigned the class label +1; 
2. Every document in RN is assigned the label –1; 
3. Use P and RN  to train a SVM classifier Si, with i = 

1 initially and i = i+1 with each iteration (line 3-7);  
4. Classify Q using Si. Let the set of documents in Q 

that are classified as negative be W;  
5. If (W = ∅) then  stop; 
6. else Q = Q – W; 
7. RN = RN ∪W 
8. goto (3); 
9. Use the last SVM classifier Slast to classify P; 
10. If more than 5% positives are classified as negative  
11. then use S1 as the final classifier; 
12. else use Slast as the final classifier; 

Figure 5.  Constructing the final classifier using SVM 
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ments from the remaining sub-categories of cat 2 
for the similar case, and some documents from a 
randomly chosen different category (cat 3) (as the 
other topic documents) for the different case. We 
generated 8 data sets (4*2) for the similar case, 
and 8 data sets (4*2) for the different case.   

The training and test sets are then constructed as 
follows: we partition the positive (and similarly for 
the negative) class documents into two standard 
subsets: 70% for training and 30% for testing. In 
order to create different experimental settings, we 
vary the number of the other topic documents that 
are added to the test set as negatives, controlled by 
a parameter α, which is a percentage of |TN|, where 
|TN| is the size of the negative test set without the 
other topic documents. That is, the number of oth-
er topic documents added is α × |TN|.  

(2) Test set has no other topic documents. This 
set of experiments is the traditional classification 
in which the training and test data have the same 
distribution. We employ the same data sets as in 
(1) but without having any other topic documents 
in the test set. Here we want to show that PU learn-
ing can do equally well without using the negative 
training data even in the traditional setting.  

4.2 Results with Other Topic Documents in 
Test Set 

We show the results for experiment set (1), i.e. the 
distributions of the negative training and test data 
are different (caused by the inclusion of other topic 
documents in the test set, or the addition of other 
topic documents to complement existing negatives 
in the test set). The evaluation metric is the F-score 
on the positive class (Bollmann and Cherniavsky, 
1981), which is commonly used for evaluating text 
classification.  

4.2.1  Results on the Reuters data 
Figure 6 shows the comparison results when the 
negative class contains only one category of doc-
uments (Neg 1), while Figure 7 shows the results 
when the negative class contains documents from 
two categories (Neg 2) in the Reuters collection. 
The data points in the figures are the averages of 
the results from the corresponding datasets.  

Our proposed method CR-SVM is shown to per-
form consistently better than the other techniques. 
When the size of the other topic documents (x-
axis) in the test set increases, the F-scores of the 

two traditional learning methods SVM and NB 
decreased much more dramatically as compared 
with the PU learning techniques. The traditional 
learning models were clearly unable to handle dif-
ferent distributions for training and test data. 
Among the PU learning techniques, the proposed 
CR-SVM gave the best results consistently. Roc-
SVM did not do consistently well as it did not 
manage to find high quality reliable negatives RN 
sometimes. The EM based methods (CR-EM and 
S-EM) performed well in the case when we had 
only one negative class (Figure 6). However, it did 
not do well in the situation where there were two 
negative classes (Figure 7) due to the underlying 
mixture model assumption of the naïve Bayesian 
classifier. One-class SVM (OSVM) performed 
poorly because it did not exploit the useful infor-
mation in the unlabeled set at all.   

 
Figure 6. Results of Neg 1 using the Reuter data 

 
Figure 7. Results of Neg 2 using the Reuter data 

4.2.2  Results on 20 Newsgroup data 
Recall that for the 20 Newsgroup data, we have 
two settings: similar case and different case.  
Similar case: Here, the other topic documents are 
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similar to the negative class documents, as they 
belong to the same main category.  

The comparison results are given in Figure 8 
(Neg 1) and Figure 9 (Neg 2). We observe that 
CR-EM, S-EM and CR-SVM all performed well. 
EM based methods (CR-EM and S-EM) have a 
slight edge over CR-SVM. Again, the F-scores of 
the traditional supervised learning (SVM and NB) 
deteriorated when more other topic documents 
were added to the test set, while CR-EM, S-EM 
and CR-SVM were able to remain unaffected and 
maintained roughly constant F-scores. When the 
negative class contained documents from two cate-
gories (Neg 2), the F-scores of the traditional 
learning dropped even more rapidly. Both Roc-
SVM and One-class SVM (OSVM) performed 
poorly, due to the same reasons given previously.  

 
Figure 8. Results of Neg 1, similar case – using the 20 
Newsgroup data 

 
Figure 9. Results of Neg 2, similar case – using the 20 
Newsgroup data 

Different case: In this case, the other topic docu-
ments are quite different from the negative class 
documents, since they are originated from different 
main categories.  

The results are shown in Figures 10 (Neg 1) and 
11 (Neg 2). The trends are similar to those for the 
similar case, except that the performance of the 
traditional supervised learning methods (SVM and 
NB) dropped even more rapidly with more other 
topic documents. As the other topic documents 
have very different distributions from the negatives 
in the training set in this case, they really confused 
the traditional classifiers. In contrast, the three PU 
learning techniques were still able to perform con-
sistently well, regardless of the number of other 
topic documents added to the test data.  

 
Figure 10. Results of Neg 1, different case – using the 
20 Newsgroup data  

 
Figure 11.  Results of Neg 2, different case – using the 
20 Newsgroup data 

In summary, the results showed that learning 
with negative training data based on the traditional 
paradigm actually harms classification when the 
identical distribution assumption does not hold.  

4.3 Results without Other Topic Documents in 
Test Set 

Given an application, one may not know whether 
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the identical distribution assumption holds. The 
above results showed that PU learning is better 
when it does not hold.  How about when the as-
sumption does hold? To find out, we compared the 
results of SVM, NB, and three PU learning me-
thods using the datasets without any other topic 
documents added to the test set. In this case, the 
training and test data distributions are the same. 

Table 1 shows the results for this scenario. Note 
that for PU learning, the negative training data 
were not used. The traditional supervised learning 
techniques (SVM and NB), which made full use of 
the positive and negative training data, only per-
formed just about 1-2% better than the PU learning 
method CR-SVM (which is not statistically signifi-
cant based on paired t-test). This suggests that we 
can do away with negative training data, since PU 
learning can perform equally well without them.  
This has practical importance since the full cover-
age of negative training data is hard to find and to 
label in many applications. 

From the results in Figures 6–11 and Table 1, 
we can conclude that PU learning can be used for 
binary text classification without the negative 
training data (which can be harmful for the task). 
CR-SVM is our recommended PU learning method 
based on its generally consistent performance. 

Table 1. Comparison of methods without other docu-
ments in test set 

 Methods 
Reuters 
 (Neg 1) 

Reuters 
 (Neg 2) 

20News 
(Neg 1) 

20News 
(Neg 2) 

SVM 0.971 0.964 0.988 0.990 
NB 0.972 0.947 0.988 0.992 
S-EM 0.952 0.921 0.974 0.975 
CR-EM 0.955 0.897 0.983 0.986 
CR-SVM 0.960 0.959 0.967 0.974 

5 Conclusions 

This paper studied a special case of the sample se-
lection bias problem in which the positive training 
and test distributions are the same, but the negative 
training and test distributions may be different. We 
showed that in this case, the negative training data 
should not be used in learning, and PU learning 
can be applied to this setting. A new PU learning 
algorithm (called CR-SVM) was also proposed to 
overcome the weaknesses of the current two-step 
algorithms.  
 Our experiments showed that the traditional 
classification methods suffered greatly when the 
distributions are different for the negative training 

and test data, but PU learning does not. We also 
showed that PU learning performed equally well in 
the ideal case where the training and test data have 
identical distributions. As such, it can be advanta-
geous to discard the potentially harmful negative 
training data and use PU learning for classification.  
 In our future work, we plan to do more compre-
hensive experiments to compare the classic super-
vised learning and PU learning techniques with 
different kinds of settings, for example, by varying 
the ratio between positive and negative examples, 
as well as their sizes. It is also important to explore 
how to catch the best iteration of the SVM/NB 
classifier in the iterative running process of the 
algorithms. Finally, we would like to point out that 
it is conceivable that negative training data could 
still be useful in many cases. An interesting direc-
tion to explore is to somehow combine the ex-
tracted reliable negative data from the unlabeled 
set and the existing negative training data to further 
enhance learning algorithms.  
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Abstract

Automated essay scoring is one of the most
important educational applications of natural
language processing. Recently, researchers
have begun exploring methods of scoring es-
says with respect to particular dimensions of
quality such as coherence, technical errors,
and relevance to prompt, but there is rela-
tively little work on modeling organization.
We present a new annotated corpus and pro-
pose heuristic-based and learning-based ap-
proaches to scoring essays along the organi-
zation dimension, utilizing techniques that in-
volve sequence alignment, alignment kernels,
and string kernels.

1 Introduction

Automated essay scoring, the task of employing
computer technology to evaluate and score writ-
ten text, is one of the most important educational
applications of natural language processing (NLP)
(see Shermis and Burstein (2003) and Shermis et al.
(2010) for an overview of the state of the art in this
task). Recent years have seen a surge of interest in
this and other educational applications in the NLP
community, as evidenced by the panel discussion
on “Emerging Application Areas in Computational
Linguistics” at NAACL 2009, as well as increased
participation in the series of workshops on “Innova-
tive Use of NLP for Building Educational Applica-
tions”. Besides its potential commercial value, au-
tomated essay scoring brings about a number of rel-
atively less-studied but arguably rather challenging
discourse-level problems that involve the computa-
tional modeling of different facets of text structure,
such as content, coherence, and organization.

A major weakness of many existing essay scor-
ing engines such as IntelliMetric (Elliot, 2001) and
Intelligent Essay Assessor (Landauer et al., 2003)
is that they adopt a holistic scoring scheme, which
summarizes the quality of an essay with a single
score and thus provides very limited feedback to
the writer. In particular, it is not clear which di-
mension of an essay (e.g., coherence, relevance)
a score should be attributed to. Recent work ad-
dresses this problem by scoring a particular dimen-
sion of essay quality such as coherence (Miltsakaki
and Kukich, 2004), technical errors, and relevance
to prompt (Higgins et al., 2004). Automated sys-
tems that provide instructional feedback along mul-
tiple dimensions of essay quality such asCriterion
(Burstein et al., 2004) have also begun to emerge.

Nevertheless, there is an essay scoring dimension
for which few computational models have been de-
veloped —organization. Organization refers to the
structure of an essay. A high score on organization
means that writers introduce a topic, state their po-
sition on that topic, support their position, and con-
clude, often by restating their position (Silva, 1993).
A well-organized essay is structured in a way that
logically develops an argument. Note that organi-
zation is a different facet of text structure than co-
herence, which is concerned with the transition of
ideas at both the global (e.g., paragraph) and local
(e.g., sentence) levels. While organization is an im-
portant dimension of essay quality, state-of-the-art
essay scoring software such as e-rater V.2 (Attali
and Burstein, 2006) employs rather simple heuristic-
based methods for computing the score of an essay
along this particular dimension.

Our goal in this paper is to develop a compu-
tational model for the organization of student es-
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says. While many models of text coherence have
been developed in recent years (e.g., Barzilay and
Lee (2004), Barzilay and Lapata (2005), Soricut and
Marcu (2006), Elsner et al. (2007)), the same is not
true for text organization. One reason is the avail-
ability of training and test data for coherence mod-
eling. Coherence models are typically evaluated on
the sentence ordering task, and hence training and
test data can be generated simply by scrambling the
order of the sentences in a text. On the other hand, it
is not particularly easy to find poorly organized texts
for training and evaluating organization models. We
believe that student essays are an ideal source of
well- and poorly-organized texts. We evaluate our
organization model on a data set of 1003 essays an-
notated with organization scores.

In sum, our contributions in this paper are two-
fold. First, we address a less-studied discourse-level
task — predicting the organization score of an essay
— by developing a computational model of organi-
zation, thus establishing a baseline against which fu-
ture work on this task can be compared. Second, we
annotate a subset of our student essay corpus with
organization scores and make this data set publicly
available. Since progress in organization modeling
is hindered in part by the lack of a publicly anno-
tated corpus, we believe that our data set will be a
valuable resource to the NLP community.

2 Corpus Information

We use as our corpus the 4.5 million word Interna-
tional Corpus of Learner English (ICLE) (Granger
et al., 2009), which consists of more than 6000 es-
says written by university undergraduates from 16
countries and 16 native languages who are learners
of English as a Foreign Language. 91% of the ICLE
texts are argumentative. The essays we used vary
greatly in length, containing an average of 31.1 sen-
tences in 7.5 paragraphs, averaging 4.1 sentences per
paragraph. About one quarter of the essays had five
or fewer paragraphs, and another quarter contained
nine or more paragraphs. Similarly, about one quar-
ter of essays contained 24 or fewer sentences and the
longest quarter contained 36 or more sentences

We selected a subset consisting of 1003 essays
from the ICLE to annotate and use for training and
testing of our model of essay organization. While

Topic Languages Essays
Most university degrees are
theoretical and do not prepare
students for the real world.
They are therefore of very lit-
tle value.

13 147

The prison system is out-
dated. No civilized society
should punish its criminals: it
should rehabilitate them.

11 103

In his novel Animal Farm,
George Orwell wrote “All
men are equal but some are
more equal than others.” How
true is this today?

10 82

Table 1: Some examples of writing topics.

narrativewriting asks students to compose descrip-
tive stories,argumentative(also known aspersua-
sive) writing requires students to state their opinion
on a topic and to validate that opinion with convinc-
ing arguments. For this reason, we selected only ar-
gumentative essays rather than narrative pieces, be-
cause they contain the discourse structures and kind
of organization we are interested in modeling.

To ensure representation across native languages
of the authors, we selected mostly essays written
in response to topics which are well-represented in
multiple languages. This avoids many issues that
may arise when certain vocabulary is used in re-
sponse to a particular topic for which essays written
by authors from only a few languages are available.
Table 1 shows three of the twelve topics selected for
annotation. Fifteen native languages are represented
in the set of essays selected for annotation.

3 Corpus Annotation

To develop our essay organization model, human an-
notators scored 1003 essays using guidelines in an
essay annotation rubric. Annotators evaluated the
organization of each essay using a numerical score
from 1 to 4 at half-point increments. This contrasts
with previous work on essay scoring, where the cor-
pus is annotated with a binary decision (i.e.,goodor
bad) for a given scoring dimension (e.g., Higgins et
al. (2004)). Hence, our annotation scheme not only
provides a finer-grained distinction of organization
quality (which can be important in practice), but also
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makes the prediction task more challenging.
The meaning of each integer score was described

and discussed in detail. Table 2 shows the descrip-
tion of each score for the organization dimension.

Score Description of Essay Organization
4 essay iswell structured and is organized in

a way that logically develops an argument
3 essay isfairly well structured but could

somewhat benefit from reorganization
2 essay is poorly structured and would

greatly benefit from reorganization
1 essay iscompletely unstructured and re-

quires major reorganization

Table 2: Descriptions of the meaning of each score.

Our annotators were selected from over 30 appli-
cants who were familiarized with the scoring rubric
and given sample essays to score. The six who were
most consistent with the expected scores were given
additional essays to annotate. To ensure consistency
in scoring, we randomly selected a large subset of
our corpus (846 essays) to have graded by two differ-
ent annotators. Analysis of these doubly annotated
essays reveals that, though annotators only exactly
agree on the organization score of an essay 29% of
the time, the scores they apply are within 0.5 points
in 71% of essays and within 1.0 point in 93% of es-
says. Additionally, if we treat one annotator’s scores
as a gold standard and the other annotator’s scores
as predictions, the predicted scores have a mean er-
ror of 0.54 and a mean squared error of 0.50. Table 3
shows the number of essays that received each of the
seven scores for organization.

score 1.0 1.5 2.0 2.5 3.0 3.5 4.0
essays 24 14 35 146 416 289 79

Table 3: Distribution of organization scores.

4 Function Labeling

As mentioned before, a high score on organization
means that writers introduce a topic, support their
position, and conclude. If one or more of these ele-
ments are missing or if they appear out of order (e.g.,
the conclusion appears before the introduction), the
resulting essay will typically be considered poorly
organized. Hence, knowing thediscourse function

label of each paragraph in an essay would be help-
ful for predicting its organization score.

Two questions naturally arise. First, how can we
obtain the discourse function label of each para-
graph? One way is to automatically acquire such
labels from a corpus of student essays where each
paragraph is annotated with its discourse function
label. To our knowledge, however, there is no pub-
licly available corpus that is annotated with such in-
formation. As a result, we will resort to labeling a
paragraph with its function label heuristically.

Second, which paragraph function labels would
be most useful for scoring the organization of an es-
say? Based on our linguistic intuition, we identify
four potentially useful paragraph function labels: In-
troduction, Body, Rebuttal, and Conclusion. Table 4
gives the descriptions of these labels.

Label Name Paragraph Type
I Introduction introduces essay topic and

states author’s position and
main ideas

B Body provides reasons, evidence,
and examples to support main
ideas

C Conclusion summarizes and concludes ar-
guments made in body para-
graphs

R Rebuttal considers counter-arguments
to thesis or main ideas

Table 4: Descriptions of paragraph function labels.

Setting aside for the moment the problem of ex-
actly how to predict an essay’s organization score
given its paragraph sequence, the problem of ob-
taining paragraph labels to use for this task still re-
mains. As mentioned above, we adopt a heuristic ap-
proach to paragraph function labeling. The question,
then, is: what kind of knowledge sources should our
heuristics be based on? We have identified two types
of knowledge sources that are potentially useful for
paragraph labeling. The first of these are positional,
dealing with where in the essay a paragraph appears.
So for example, the first paragraph in an essay is
likely to be an Introduction, while the last is likely
to be a Conclusion. A paragraph in any other posi-
tion, on the other hand, is more likely to be a Body
or Rebuttal paragraph.

231



Label Name Sentence Function
P Prompt restates the prompt given to the author and contains no new material or opinions
T Transition shifts the focus to new topics but contains no meaningful information
H Thesis states the author’s position on the topic for which he/she isarguing
M Main Idea asserts reasons and foundational arguments that support the thesis
E Elaboration further explains reasons and ideas but contains no evidenceor examples
S Support provides evidence and examples to support the claims made inother statements
C Conclusion summarizes and concludes the entire argument or one of the main ideas
R Rebuttal considers counter-arguments that contrast with the thesisor main ideas
O Solution puts to rest the questions and problems brought up by counter-arguments
U Suggestion proposes solutions the problems brought up by the argument

Table 5: Descriptions of sentence function labels.

A second potentially useful knowledge source in-
volves the types of sentences appearing in a para-
graph. This idea presupposes that, like paragraphs,
sentences too can have discourse function labels in-
dicating the logical role they play in an argument.
The sentence label schema we propose, which is de-
scribed in Table 5, is based on work in discourse
structure by Burstein et al. (2003), but features addi-
tional sentence labels.

To illustrate why these sentence function labels
may be useful for paragraph labeling, consider a
paragraph containing a Thesis sentence. The pres-
ence of a Thesis sentence is a strong indicator that
the paragraph containing it is either an Introduction
or Conclusion. Similarly, a paragraph containing
Rebuttal or Solution sentences is more likely to be
a Body or Rebuttal paragraph.

Hence, to obtain a paragraph’s function label,
we need to first label its sentences. However, we
are faced with the same problem: how can we ob-
tain the sentence function labels? One way is to
learn them from a corpus where each sentence is
manually annotated with its sentence function la-
bel, which is the approach adopted by Burstein et
al. (2003). However, this annotated corpus is not
publicly available. In fact, to our knowledge, there
is no publicly-available corpus that is annotated with
sentence function labels. Consequently, we adopt a
heuristic approach to sentence function labeling.

Overall, we created a knowledge-lean set of
heuristic rules labeling paragraphs and sentences.
Because many of the paragraph labeling heuristics
depend on the availability of sentence labels, we will
describe the sentence labeling heuristics first. For

each sentence function labelx, we identify several
features whose presence increases our confidence
that a given sentence is an example ofx. So for
example, the presence of any of the words “agree”,
“think”, or “opinion” increases our confidence that
the sentence they occur in is a Thesis. If the sentence
instead contains words such as “however”, “but”,
or “argue”, these increase our confidence that the
sentence is a Rebuttal. The features we examine
for sentence labeling are not limited to words, how-
ever. Each content word the sentence shares with
the essay prompt gives us evidence that the sentence
is a restatement of the prompt. Having searched a
sentence for all these clues, we finally assign the
sentence the function label having the most support
among the clues found.

The heuristic rules for paragraph labeling are sim-
ilar in nature, though they depend heavily on the
labels of a paragraph’s component sentences. If a
paragraph contains Thesis, Prompt, or Background
sentences, the paragraph is likely to be an Introduc-
tion. However, if a paragraph contains Main Idea,
Support, or Conclusion sentences, it is likely to be
a Body paragraph. Finally, as mentioned previously,
some positional information is used in labeling para-
graphs. For example, a paragraph that is the first
paragraph in an essay is likely to be an Introduction,
but a paragraph that is neither the first nor the last
is likely to be either a Rebuttal or Body paragraph.
After searching a paragraph for all these features,
we gather the pieces of evidence in support of each
paragraph label and assign the paragraph the label
having the most support.1

1Space limitations preclude a complete listing of these para-
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5 Heuristic-Based Organization Scoring

Having applied labels to each paragraph in an es-
say, how can we use these labels to predict the es-
say’s score? Recall that the importance of each para-
graph label stems not from the label itself, but from
the sequence of labels it appears in. Motivated by
this observation, we exploit a technique that is com-
monly used in bioinformatics —sequence align-
ment. While sequence alignment has also been used
in text and paraphrase generation (e.g., Barzilay and
Lee (2002; 2003)), it has not been extensively ap-
plied to other areas of language processing, includ-
ing essay scoring. In this section, we will present
two heuristic approaches to organization scoring,
one based on aligningparagraph sequencesand the
other on aligningsentence sequences.

5.1 Aligning Paragraph Sequences

As mentioned above, our first approach to heuristic
organization scoring involves aligning paragraph se-
quences. Specifically, this approach operates in two
steps. Given an essaye in the test set, we (1) find the
k essays in the training set that are most similar toe

via paragraph sequence alignment, and then (2) pre-
dict the organization score ofe by aggregating the
scores of itsk nearest neighbors obtained in the first
step. Below we describe these two steps in detail.

First, to obtain thek nearest neighbors ofe,
we employ the Needleman-Wunsch alignment algo-
rithm (Needleman and Wunsch, 1970), which com-
putes a similarity score for any pair of essays by
finding an optimal alignment between their para-
graph sequences. To illustrate why we believe se-
quence alignment can help us determine which es-
says are most similar, consider two example es-
says. One essay, which we will call IBBBC, begins
with an Introductory paragraph, follows it with three
Body paragraphs, and finally ends with a Conclud-
ing paragraph. Another essay CRRRI begins with
a paragraph stating its Conclusion, follows it with
three Rebuttal paragraphs, and ends with a para-
graph Introducing the essay’s topic. We can tell by
a casual glance at the sequences that any reasonable
similarity function should tell us that they are not

graph and sentence labeling heuristics. See our website at
http://www.hlt.utdallas.edu/ ˜ alan/ICLE/ for
the complete list of heuristics.

very similar. The Needleman-Wunsch alignment al-
gorithm has this effect since the score of the align-
ment it produces would be hurt by the facts that (1)
there is not much overlap in the sets of paragraph
labels each contains, and (2) the paragraph labels
they do share (I and C) do not occur in the same
order. The resulting alignment would therefore con-
tain many mismatches or indels.2

If we now consider a third essay whose para-
graph sequence could be represented as IBRBC, a
good similarity function should tell us that IBBBC
and IBRBC are very similar. The Needleman-
Wunsch alignment score between the two paragraph
sequences has this property, as the alignment al-
gorithm would discover that the two sequences are
identical except for the third paragraph label, which
could be mismatched for a small penalty. We would
therefore conclude that the IBBBC and IBRBC es-
says should receive similar organization scores.

To fully specify how to find thek nearest neigh-
bors of an essay, we need to define a similarity func-
tion between paragraph labels. In sequence align-
ment, similarity functionS(i, j) tells us how likely
it is that symboli (in our case, a paragraph label)
will be substituted with another symbolj. While
we expect that in an alignment between high-scoring
essays, an Introduction paragraph is most likely to
be aligned with another Introduction paragraph, how
much worse should the alignment score be if an In-
troduction paragraph needs to be mismatched with
a Rebuttal paragraph or replaced with an indel? We
solve this problem by heuristically defining the sim-
ilarity function as follows:S(i, j) = 1 wheni = j,
S(i, j) = −1 when i 6= j, and alsoS(i,−) =
S(−, i) = −1, where ‘−’ is an indel. In other
words, the similarity function encourages the align-
ment between two identical function labels and dis-
courages the alignment between two different func-
tion labels, regardless of the type of function labels.

After obtaining thek nearest neighbors ofe, the
next step is to predict the organization score ofe

by aggregating the scores of itsk nearest neighbors
into one number. (Note that we know the organiza-

2In pairwise sequence alignment, a mismatch occurs when
one symbol has to be substituted for another to make two se-
quences match. An indel indicates that in order to transform
one sequence to match another, we must eitherinsert a symbol
into one sequence ordelete a symbol from the other sequence.
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tion score of each nearest neighbor, since they are
all taken from the training set.) One natural way to
do this would be to take the mean, median, or mode
of its k nearest neighboring essays from the training
set. Hence, our first heuristic methodHp for scoring
organization has three variants.

5.2 Aligning Sentence Sequences

An essay’s paragraph sequence captures information
about its organization at a high level, but ignores
much of its lower level structure. Since we have also
heuristically labeled sentences, it now makes sense
to examine the sequences of sentence function labels
within an essay’s paragraphs. The intuition is that at
least some portion of an essay’s organization score
can be attributed to the organization of the sentence
sequences of its component paragraphs.

To address this concern, we propose a second
heuristic approach to organization scoring. Given
a test essaye, we first find for eachparagraph in
e thek paragraphsin the training set that are most
similar to it. Specifically, each paragraph is repre-
sented by its sequence ofsentencefunction labels.
Given this paragraph representation, we can find the
k nearest neighbors of a paragraph by applying the
Needleman-Wunsch algorithm described in the pre-
vious subsection to alignsentencesequences, using
the same similarity function we defined above.

Next, we score each paragraphpi by aggregating
the scores of itsk nearest neighbors obtained in the
first step, assuming the score of a nearest neighbor
paragraph is the same as the organization score of
the training set essay containing it. As before, we
can employ the mean, median, or mode to aggregate
the scores of the nearest neighbors ofpi.

Finally, we predict the organization score ofe by
aggregating the scores of its paragraphs obtained in
the second step. Again, we can employ mean, me-
dian, or mode to aggregate the scores. Since we have
three ways of aggregating the scores of a paragraph’s
nearest neighbors and three ways of aggregating the
resulting paragraph scores, this second methodHs

for scoring organization has nine variants.

6 Learning-Based Organization Scoring

In the previous section, we proposed two heuris-
tic approaches to organization scoring, one based

on aligning paragraph label sequences and the other
based on aligning sentence label sequences. In the
process of constructing these two systems, however,
we created a lot of information about the essays
which might also be useful for organization scoring,
but which the heuristic systems are unable to exploit.
To remedy the problem, we introduce three learning-
based systems which abstract the additional infor-
mation we produced in three different ways. In each
system, we use the SVMlight (Joachims, 1999) im-
plementation of regression support vector machines
(SVMs) (Cortes and Vapnik, 1995) to train a regres-
sor because SVMs have been frequently and suc-
cessfully applied to a variety of NLP problems.

6.1 Linear Kernel

Owing to the different ways we presented of com-
bining the scores of an essay’s nearest neighbors,
the paragraph label sequence alignment approach
has three variants, and its sentence label sequence
alignment counterpart has nine. Unfortunately, these
heuristic approaches suffer from two major weak-
nesses. First, it is not intuitively clear which of
these 12 ways for predicting an essay’s organiza-
tion score is clearly better than the others. Second,
it is not clear that thek nearest neighbors of an es-
say will always be similar to it with respect to or-
ganization score. While we do expect the alignment
scores between good essays with reasonable para-
graph sequences to be high, poorly organized es-
says by their nature have more random paragraph
sequences. Hence, we have no intuition about thek

nearest neighbors of a poor essay, as it may have as
high an alignment score with another poorly orga-
nized essay as with a good essay.

Our solution to these problems is to use the orga-
nization scores obtained by the 12 heuristic variants
as features in a linear kernel SVM learner. We be-
lieve that using the estimates given by all the 12 vari-
ants of the two heuristic approaches rather than only
one of them addresses the first weakness mentioned
above. The second weakness, on the other hand, is
addressed by treating the organization score predic-
tions obtained by the nearest neighbor methods as
features for an SVM learner rather than as estimates
of an essay’s organization score.

The approach we have just described, however,
does not exploit the full power of linear kernel
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SVMs. One strength of linear kernels is that they
make it easy to incorporate a wide variety of dif-
ferent types of features. In an attempt to further
enhance the prediction capability of the SVM re-
gressor, we will provide it with not only the 12 fea-
tures derived from the heuristic-based approaches,
but also with two additional types of features.

First, to give our learner more direct access to
the information we used to heuristically predict es-
say scores, we can extractparagraph label subse-
quences3 from each essay and use them as features.
To illustrate the intuition behind these features, con-
sider two paragraph subsequences: Introduction–
Body and Rebuttal–Introduction. It is fairly typi-
cal to see the first subsequence, I–B, at the begin-
ning of a good essay, so its occurrence should give
us a small amount of evidence that the essay it oc-
curs in is well-organized. The presence of the sec-
ond subsequence, R–I, however, should indicate that
its essay’s organization is poor because, in general, a
good essay should not give a Rebuttal before an In-
troduction. Because we can envision subsequences
of various lengths being useful, we create a binary
presence or absence feature in the linear kernel for
each paragraph subsequence of length 1, 2, 3, 4, or
5 appearing in the training set.

Second, we employsentence label subsequences
as features in the linear kernel. Recall that when
describing our alignment-based nearest neighbor
organization score prediction methods, we noted
that an essay’s organization score may be partially
attributable to how well the sentences within its
paragraphs are organized. For example, if one
of an essay’s paragraphs contains the sentence la-
bel subsequence Main Idea–Elaboration–Support–
Conclusion this gives us some evidence that the es-
say is overall well-organized since one of its compo-
nent paragraphs contains this reasonably-organized
subsequence. An essay with a paragraph contain-
ing the subsequence Conclusion–Support–Thesis–
Rebuttal, however, is likely to be poorly orga-
nized because this is a poorly-organized subse-
quence. Since sentence label subsequences of dif-
fering lengths may be useful for score prediction, we
create a binary presence or absence feature for each
sentence label subsequence of length 1, 2, 3, 4, or 5

3Note that a subsequence is not necessarily contiguous.

in the training set.
While the number of nearest neighbor features is

manageable, the presence of a large number of fea-
tures can sometimes confuse a learner. For that rea-
son, we do feature selection on the two types of
subsequence features, selecting only 100 features
for each type that has the highest information gain
(see Yang and Pedersen (1997) for details). We
call the system resulting from the use of these three
types of featuresRlnps because it usesRegression
with linear kernel to predict essay scores, and it
usesnearest neighbor,paragraph subsequence, and
sentence subsequence features.

6.2 String Kernel

In a traditional learning setting, the feature set em-
ployed by an off-the-shelf learning algorithm typ-
ically consists offlat features (i.e., features whose
values are discrete- or real-valued, as the ones de-
scribed in the Linear Kernel subsection). Advanced
machine learning algorithms such as SVMs, on the
other hand, have enabled the use ofstructuredfea-
tures (i.e., features whose values are structures such
as parse trees and sequences), owing to their ability
to employkernelsto efficiently compute the similar-
ity between two potentially complex structures.

Perhaps the most obvious advantage of employ-
ing structured features issimplicity. To understand
this advantage, consider learning in a traditional set-
ting. Recall that we can only employ flat features in
this setting, as we did with the linear kernel. Hence,
if we want to use information from a parse tree as
features, we will need to design heuristics to extract
the desired parse-based features from parse trees.
For certain tasks, designing a good set of heuris-
tics can be time-consuming and sometimes difficult.
On the other hand, SVMs enable a parse tree to
be employed directly as a structured feature, obvi-
ating the need to design heuristics to extract infor-
mation from potentially complex structures. How-
ever, structured features have only been applied to a
handful of NLP tasks such as semantic role labeling
(Moschitti, 2004), syntactic parsing and named en-
tity identification (Collins and Duffy, 2002), relation
extraction (Bunescu and Mooney, 2005), and coref-
erence resolution (Versley et al., 2008). Our goal
here is to explore this rarely-exploited capability of
SVMs for the task of essay scoring.
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While the vast majority of previous NLP work
on using structured features have involved tree ker-
nels, we employ a kernel that is rarely investigated in
NLP: string kernels(Lodhi et al., 2002). Informally,
a string kernel aims to efficiently compute the sim-
ilarity between two strings (or sequences) of sym-
bols based on the similarity of their subsequences.
We apply string kernels to essay scoring as follows:
we represent each essay using its paragraph function
label sequence, and employ a string kernel to com-
pute the similarity between two essays based on this
representation. Typically, a string kernel takes as in-
put two parameters:K (which specifies the length
of the subsequences in the two strings to compare)
andλ (which is a value between 0 and 1 that spec-
ifies whether matches between non-contiguous sub-
sequences in the two strings should be considered
as important as matches between contiguous subse-
quences). In our experiments, we select values for
these parameters in a somewhat arbitrary manner. In
particular, sinceλ ranges between 0 and 1, we sim-
ply set it to 0.5. ForK, since in the flat features we
considered all paragraph label sequences of lengths
from 1 to 5, we again take the middle value, setting
it to 3. We call the system using this kernelRs be-
cause it uses aRegression SVM with astring kernel
to predict essay scores.

6.3 Alignment Kernel

In general, the purpose of a kernel function is to
measure the similarity between two examples. The
string kernel we described in the previous subsec-
tion is just one way of measuring the similarity of
two essays given their paragraph sequences. While
this may be the most obvious way to use paragraph
sequence information from a machine learning per-
spective, our earlier use of the Needleman-Wunsch
algorithm suggests a more direct way of extracting
structured information from paragraph sequences.

More specifically, recall that the Needleman-
Wunsch algorithm finds an optimal alignment be-
tween two paragraph sequences, where an opti-
mal alignment is defined as an alignment having
the highest possible alignment score. The optimal
alignment score can be viewed as another similar-
ity measure between two essays. As such, with
some slight modifications, the alignment score be-
tween two paragraph sequences can be used as the

kernel value for an Alignment Kernel.4 We call
the system using this kernelRa because it uses a
Regression SVM with analignment kernel to pre-
dict essay scores.

6.4 Combining Kernels

Recall that the flat features are computed using a lin-
ear kernel, while the two types of structured features
are computed using string and alignment kernels. If
we want our learner to make use of more than one of
these types of features, we need to employ acompos-
ite kernel to combine them. Specifically, we define
and employ the following composite kernel:

Kc(F1, F2) =
1

n

n∑

i=1

Ki(F1, F2),

whereF1 andF2 are the full set of features (contain-
ing both flat and structured features) that represent
the two essays under consideration,Ki is theith ker-
nel we are combining, andn is the number of kernels
we are combining. To ensure that each kernel under
consideration contributes equally to the composite
kernel, each kernel valueKi(F1, F2) is normalized
so that its value falls between 0 and 1.

7 Evaluation

7.1 Evaluation Metrics

We designed three evaluation metrics to measure the
error of our organization scoring system. The sim-
plest metric,S1, is perhaps the most intuitive. It
measures the frequency at which a system predicts
the wrong score out of the seven possible scores.
Hence, a system that predicts the right score only
25% of the time would receive anS1 score of 0.75.

The S2 metric is slightly less intuitive thanS1,
but no less reasonable. It measures the average
distance between the system’s score and the actual
score. This metric reflects the idea that a system
that estimates scores close to the annotator-assigned
scores should be preferred over a system whose esti-
mations are further off, even if both systems estimate
the correct score at the same frequency.

Finally, the S3 evaluation metric measures the
average square of the distance between a system’s

4In particular, we note that for theoretical reasons, a kernel
function must always return a non-negative value. The align-
ment score function does not have this property, so we increase
all alignment scores until their theoretical minimum valueis 0.
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organization score estimations and the annotator-
assigned scores. The intuition behind this system
is that not only should we prefer a system whose es-
timations are close to the annotator scores, but we
should also prefer one whose estimations are not too
frequently very far away from the annotator scores.
These three scores are given by:

1

N

∑

Ai 6=Ei

1,
1

N

N∑

i=1

|Ai − Ei|,
1

N

N∑

i=1

(Ai − Ei)
2,

whereAi andEi are the annotator assigned and sys-
tem estimated scores respectively for essayi, andN

is the number of essays. Since many of the systems
we have described assign test essays real-valued or-
ganization scores, to obtainEi for systemS1 we
round the outputs of each system to the nearest of
the seven scores the human annotators were permit-
ted to assign (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0).

To test our system, we performed 5-fold cross val-
idation on our 1003 essay set, micro-averaging our
results into three scores corresponding to the three
scoring metrics described above.

7.2 Results and Discussion

The average baseline. As mentioned before, there
is no standard baseline for organization modeling
against which we can compare our systems. To start
with, we employ a simple “average” baseline.Avg

computes the average organization score of essays
in the training set and assigns this score to each test
set essay. Results of this baseline are shown in row
1 of Table 6. Though simple, this baseline is by no
means easy-to-beat, since 41% of the essays have a
score of 3, and 96% of the essays have a score that
is within one point of 3.

Heuristic baselines. Recall that we have 12 ver-
sions of the two heuristic approaches to organization
prediction. Space limitations preclude a discussion
of the results of all these versions, so instead, to ob-
tain the strongest baseline results, we show only the
best results achieved by the three versions based on
aligning paragraph label sequences in row 2 (Hp)
and the best results achieved by the nine versions
based on aligning sentence label sequences in row
3 (Hs) of Table 6. It is clear from the results that
theHp systems yielded the best baseline predictions
under all three scoring metrics, performing signif-
icantly better than both theAvg and Hs systems

System S1 S2 S3
1 Avg .585 .412 .348
2 Hp .548 .339 .198
3 Hs .575 .397 .329
4 Rlnps .520 .331 .186
5 Rs .577 .369 .222
6 Ra .686 .519 .429
7 Rlsnps .534 .332 .187
8 Rlanps .541 .332 .178
9 Rsa .517 .325 .177

10 Rlsanps .517 .323 .175

Table 6: System Performance

(p < 0.01) with respect to theS2 andS3 metrics,
but its S1 performance is less significant with re-
spect toAvg (p < 0.1) and is indistinguishable at
even thep < 0.1 level fromHs.5 In general, how-
ever, it appears to be the case that systems based
on aligning paragraph label sequences achieve better
results than systems that attempt to align sentence
label sequences.

Learning-based approaches. Rows 4–6 of Table
6 show the results we obtained using each of the
three single-kernel systems. When compared to the
best baseline, these results suggest thatHp is a pretty
good heuristic approach to organization scoring. In
fact, only one of these three learning-based sys-
tems (Rlnps) performs better thanHp under the three
scoring metrics, and in each case, the difference be-
tween the two is not significant even atp < 0.1. This
suggests that, even thoughRlnps performs slightly
better thanHp, the only major benefit we have ob-
tained by using the linear kernel is that it has made
it unnecessary for us to choose between the 12 pro-
posed heuristic systems.

Considering that the second best one-kernel sys-
tem, Rs, does not have access to any of the near-
est neighbor features, which have already proven
useful, its performance seems reasonably good in
that its performance is at least better than theAvg

system. This suggests that, even thoughRs does
not perform exceptionally, it is extracting some use-
ful information for organization scoring from the
heuristically assigned paragraph label sequences.
The best one-kernel system,Rlnps, however, is sig-

5All significance tests are two-tailed pairedt-tests.
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nificantly better thanRs with respect to all three
scoring metrics, withp < 0.1 for S1 andp < 0.05
for S2 andS3. By contrast, it initially appears that
the alignment kernel is not extracting any useful
information from these paragraph sequences at all,
since itsS1, S2, andS3 scores are all much worse
than all of the baseline systems. The second best
one-kernel systemRs performs significantly better
thanRa atp < 0.01 for all three scoring metrics.

Next, we explore the impact of composite kernels,
which allow our learners to make use of multiple
types of flat and structured features. Specifically, the
results shown in rows 7–9 are obtained by combin-
ing two kernels at a time. These experiments reveal
the surprising result that the two worst performing
single-kernel systems,Rs andRa, when combined
into Rsa, yield the best two-kernel system results,
which are significant with respect to the best one-
kernel system results underS3 at p < 0.1. This re-
sult suggests that these two different methods of ex-
tracting information from paragraph sequences pro-
vide us with different kinds of evidence useful for
organization scoring, although neither method by it-
self was exceptionally useful. ThoughRsa does
not have any access to nearest neighbor informa-
tion, it still performs significantly better thanHp at
p < 0.05 underS1 andS3.

While we have already pointed out thatRsa is
the best composite two-kernel system, it is not clear
which ofRlsnps andRlanps is second-best. Neither
system consistently performs better than the other
under all three scoring metrics, and the differences
between them are not significant even atp < 0.1. It
is clear only thatRsa is better than both, as its scores
are statistically significantly better atp < 0.01 with
respect toRlsnps andRlanps under at least one of
the three scoring metrics in each case.

Finally, in the last row of Table 6, we combine
all three kernels into one SVM learner. The most
important lesson we learn from this experiment is
that each of the three kernels provides the learner
with a different kind of useful information, so that
a composite kernel using all three sources of in-
formation performs better than any system using
fewer kernels. Although the improvements over the
best two-kernel system (Rsa) and one-kernel sys-
tem (Rlnps) are small, they are still statistically sig-
nificant atp < 0.1 under one of the scoring metrics,

S3. When we compare this combined system to the
best baseline (Hp), we discover the improvements
derived from the three-kernel system are significant
improvements over it atp < 0.05 andp < 0.01 with
respect toS1 andS3 respectively.

Feature analysis. To better understand which of
the three flat features (nearest neighbors, paragraph
label sequences, or sentence label sequences) con-
tributes the most to the linear kernel portion of the
systems’ performances, we analyze the three fea-
ture types onRlnps using the backward elimination
feature selection algorithm. First, we remove each
of the three feature groups independently from the
Rlnps’s feature set and determine which of the three
removals yields the best performance according to
each scoring metric. Next, among the remaining
two feature groups, we repeat the same step, remov-
ing each of the two groups independently from the
feature set to determine which of the two removals
yields the best performance.

While space limitations preclude showing the ac-
tual numbers, the trend is consistent among all three
scoring metrics: the first feature type to remove
is paragraph sequences (meaning that they are the
least important) and the last to remove is the near-
est neighbor features. Nevertheless, performance al-
ways drops when a feature type is removed, indicat-
ing that all three feature types contribute positively
to overall performance. The fact that flat paragraph
sequence features proved to be least useful high-
lights the importance of the structured methods we
presented for using paragraph sequence information.

8 Conclusions

We have investigated the relatively less-studied
problem of modeling the organization in student es-
says. The contributions of our work include the
novel application of two techniques from bioinfor-
matics and machine learning — sequence align-
ment and string kernels, as well as the introduc-
tion of alignment kernels — to essay scoring. We
showed that each technique makes a significant con-
tribution to a scoring system, and we hope that this
work will increase awareness of these powerful tech-
niques among NLP researchers. Finally, to stimulate
work on this problem, we make our corpus of anno-
tated essays available to other researchers.
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Abstract

Models of latent document semantics such as
the mixture of multinomials model and La-
tent Dirichlet Allocation have received sub-
stantial attention for their ability to discover
topical semantics in large collections of text.
In an effort to apply such models to noisy
optical character recognition (OCR) text out-
put, we endeavor to understand the effect
that character-level noise can have on unsu-
pervised topic modeling. We show the ef-
fects both with document-level topic analy-
sis (document clustering) and with word-level
topic analysis (LDA) on both synthetic and
real-world OCR data. As expected, experi-
mental results show that performance declines
as word error rates increase. Common tech-
niques for alleviating these problems, such as
filtering low-frequency words, are successful
in enhancing model quality, but exhibit fail-
ure trends similar to models trained on unpro-
cessed OCR output in the case of LDA. To our
knowledge, this study is the first of its kind.

1 Introduction

As text data becomes available in massive quanti-
ties, it becomes increasingly difficult for human cu-
rators to manually catalog and index modern docu-
ment collections. To aid in the automation of such
tasks, algorithms can be used to create models of
the latent semantics present in a given corpus. One
example of this type of analysis is document cluster-
ing, in which documents are grouped into clusters
by topic. Another type of topic analysis attempts
to discover finer-grained topics—labeling individual
words in a document as belonging to a particular

topic. This type of analysis has grown in popular-
ity recently as inference on models containing large
numbers of latent variables has become feasible.

The modern explosion of data includes vast
amounts of historical documents, made available
by means of Optical Character Recognition (OCR),
which can introduce significant numbers of er-
rors. Undertakings to produce such data include
the Google Books, Internet Archive, and HathiTrust
projects. In addition, researchers are having increas-
ing levels of success in digitizing hand-written man-
uscripts (Bunke, 2003), though error rates remain
much higher than for OCR. Due to their nature, these
collections often lack helpful meta-data or labels. In
the absence of such labels, unsupervised machine
learning methods can reveal patterns in the data.

Finding good estimates for the parameters of
models such as the mixture of multinomials docu-
ment model (Walker and Ringger, 2008) and the La-
tent Dirichlet Allocation (LDA) model (Blei et al.,
2003) requires accurate counts of the occurrences
and co-occurrences of words. Depending on the
age of a document and the way in which it was
created, the OCR process results in text containing
many types of noise, including character-level er-
rors, which distort these counts. It is obvious, there-
fore, that model quality must suffer, especially since
unsupervised methods are typically much more sen-
sitive to noise than supervised methods. Good su-
pervised learning algorithms are substantially more
immune to spurious patterns in the data created by
noise for the following reason: under the mostly
reasonable assumption that the process contributing
the noise operates independently from the class la-
bels, the noise in the features will not correlate well
with the class labels, and the algorithm will learn
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to ignore those features arising from noise. Unsu-
pervised models, in contrast, have no grounding in
labels to prevent them from confusing patterns that
emerge by chance in the noise with the “true” pat-
terns of potential interest. For example, even on
clean data, LDA will often do poorly if the very sim-
ple feature selection step of removing stop-words is
not performed first. Though we expect model qual-
ity to decrease, it is not well understood how sensi-
tive these models are to OCR errors, or how quality
deteriorates as the level of OCR noise increases.

In this work we show how the performance of un-
supervised topic modeling algorithms degrades as
character-level noise is introduced. We demonstrate
the effect using both artificially corrupted data and
an existing real-world OCR corpus. The results are
promising, especially in the case of relatively low
word error rates (e.g. less than 20%). Though model
quality declines as errors increase, simple feature se-
lection techniques enable the learning of relatively
high quality models even as word error rates ap-
proach 50%. This result is particularly interesting
in that even humans find it difficult to make sense
of documents with error rates of that magnitude
(Munteanu et al., 2006).

Because of the difficulties in evaluating topic
models, even on clean data, these results should not
be interpreted as definitive answers, but they do offer
insight into prominent trends. For example, proper-
ties of the OCR data suggest measures that can be
taken to improve performance in future work. It is
our hope that this work will lead to an increase in
the usefulness of collections of OCRed texts, as doc-
ument clustering and topic modeling expose useful
patterns to historians and other interested parties.

The remainder of the paper is outlined as follows.
After an overview of related work in Section 2, Sec-
tion 3 introduces the data used in our experiments,
including an explanation of how the synthetic data
were created and of some of their properties. Sec-
tion 4 describes how the experiments were designed
and carried out, and gives an analysis of the results
both empirically and qualitatively. Finally, conclu-
sions and future work are presented in Section 5.

2 Related Work

Topic models have been used previously to process
documents digitized by OCR, including eighteenth-
century American newspapers (Newmann and
Block, 2006), OCRed editions of Science (Blei and
Lafferty, 2006), OCRed NIPS papers (Wang and
McCallum, 2006), and books digitized by the Open
Content Alliance (Mimno and Mccallum, 2007).
Most of this previous work ignores the presence of
OCR errors or attempts to remove corrupted tokens
with special pre-processing such as stop-word re-
moval and frequency cutoffs. Also, there are at least
two instances of using topic modeling to improve
the results of an OCR algorithm (Wick et al., 2007;
Farooq et al., 2009).

Similar evaluations to ours have been conducted
to assess the effect of OCR errors on supervised doc-
ument classification (Taghva et al., 2001; Agarwal et
al., 2007), information retrieval (Taghva et al., 1994;
Beitzel et al., 2003), and a more general set of natu-
ral language processing tasks (Lopresti, 2008). Re-
sults suggest that in these supervised tasks OCR er-
rors have a minimal impact on the performance of
the methods employed, though it has remained un-
clear how well these results transfer to unsupervised
methods.

3 Data

We conducted experiments on synthetic and real
OCR data. As a real-world dataset, we used a cor-
pus consisting of 604 of the Eisenhower World War
II communiqués (Jordan, 1945; Lund and Ringger,
2009). These documents relate the daily progress
of the Allied campaign from D-Day until the Ger-
man surrender. They were originally produced as
telegrams and were distributed as mimeographed
copies. The quality of the originals is often quite
poor, making them a challenging case for OCR en-
gines. The communiqués have been OCRed using
three popular OCR engines: ABBYY FineReader
(ABBYY, 2010), OmniPage Pro (Nuance Commu-
nications, Inc., 2010), and Tesseract (Google, Inc.,
2010). In addition, the curator of the collection has
created a “gold standard” transcription, from which
it is possible to obtain accurate measures of average
document word error rates (WER) for each engine,
which are: 19.9%, 30.4%, and 50.1% respectively.
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While the real-world data is attractive as an ex-
ample of just the sort of data that the questions ad-
dressed here apply to, it is limited in size and scope.
All of the documents in the Eisenhower corpus dis-
cuss the fairly narrow topic of troop movements and
battle developments taking place at the end of World
War II. Neither the subject matter nor the means of
conveyance allowed for a large or diverse vocabu-
lary of discourse.

In an attempt to generalize our results to larger
and more diverse data, we also ran experiments
using synthetic OCR data. This synthetic data
was created by corrupting “clean” datasets, adding
character-level noise. The synthetic data was cre-
ated by building a noise model based on mistakes
made by the worst performing OCR engine on the
Eisenhower dataset, Tesseract.

To construct the noise model, a character-level
alignment between the human transcribed Eisen-
hower documents and the OCR output was first com-
puted. From this alignment, the contingency table
Md was generated such that Md

x,y was the count of
the instances in which a character x in the transcript
was aligned with a y in the OCR output. The rows
in this matrix were then normalized so that each rep-
resented the parameters of a categorical distribution,
conditioned on x. To parameterize the amount of
noise being generated, the Md matrix was interpo-
lated with an identity matrix I using a parameter γ so
that the final interpolated parameters Mi were cal-
culated with the formula Mi = γMd + (1 − γ)I.
So that at γ = 0, Mi = I and no errors were in-
troduced. At γ = 1.0, Mi = Md, and we would
expect to see characters corrupted at the same rate
as in the output of the OCR engine.

We then iterated over each document, choosing a
new (possibly the same) character yl for each orig-
inal character xl according to the probability distri-
bution p(yl = w′|xl = w) = M i

w,w′ . Our pro-
cess was a one-substitution algorithm, as we did not
include instances of insertions or deletions, conse-
quently words were changed but not split or deleted.
This allowed for a more straightforward calculation
of word error rate. Segmentation errors can still
occur in the learning stage, however, as the noise
model sometimes replaced alphabet characters with
punctuation characters, which were treated as delim-
iters by our tokenizer.

Dataset |D| K # Types # Tokens
20 News 19997 20 107211 2261805
Reuters 11367 81 29034 747458
Enron 4935 32 60495 2063667
Eisenhower 604 N/A 8039 76674

Table 1: Summary of test dataset characteristics. |D| is
the number of documents in the dataset. K is the number
of human-labeled classes provided with the dataset.

We chose three datasets to corrupt: 20 News-
groups (Lang, 1995), Reuters 21578 (Lewis, 1997),
and the LDC-annotated portion of the Enron e-mail
archive (Berry et al., 2007). Each of these datasets
were corrupted at values γ = i∗0.01 for i ∈ (0, 13).
At this point, the word error rate of the corrupted
data was near 50% and, since this was approxi-
mately the WER observed for the worst OCR engine
on the real-world data, we chose to stop there. The
word error rate was calculated during the corruption
process. Here is an example sentence corrupted at
two γ values:

γ = 0.000 I am also attaching the RFP itself.
γ = 0.02 I am also attachEng the RFP itself.
γ = 0.10 I Jm alAo attaching the RFP itself.

Table 3 shows some basic statistics for the
datasets. The values shown are for the “clean” ver-
sions of the data. For an example of how noise
and pre-processing techniques affect these counts
see Section 4.1.

It is interesting to note that the word error rates
produced by the noise model appear to be signif-
icantly higher than first expected. One might as-
sume that the WER should increase fairly steadily
from 0% at γ = 0 to about 50% (the error rate
achieved by the Tesseract OCR engine on the Eisen-
hower dataset) at γ = 1. There are at least two
sources for the discrepancy. First, the vocabulary
of the Eisenhower dataset does not match well with
that of any of the source datasets from which the
synthetic data were generated. This means that the
word and character distributions are different and so
the error rates will be as well. Secondly, whereas our
technique gives the same probability of corruption to
all instances of a given character, errors in true OCR
output are bursty and more likely to be concentrated
in specific tokens, or regions, of a document. This
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is because most sources of noise do not affect docu-
ment images uniformly. Also, modern OCR engines
do not operate at just the character level. They in-
corporate dictionaries and language models to pre-
vent them from positing words that are highly un-
likely. As a consequence, an OCR engine is much
more likely to either get a whole word correct, or to
miss it completely, concentrating multiple errors in
a single word. This is the difference between 10 er-
rors in a single word, which only contributes 1 to the
numerator of the WER formula and 10 errors spread
across 10 different words, which contributes 10 to
the numerator. Furthermore, because content bear-
ing words tend to be relatively rare, language mod-
els are poorer for them than for frequent function
words, meaning that the words most correlated with
semantics are also the most likely to be corrupted by
an OCR engine.

An example of this phenomenon is easy to find.
In the Enron corpus, there are 165,871 instances of
the word “the” and 102 instances of the string “thc”.
Since “c” has a high rate of confusion with “e”, we
would expect at least some instances of “the” to be
corrupted to “thc” by the error model. At γ = 0.03,
there are 156,663 instances of the word “the” and
513 instances of “thc”. So, the noise model converts
“the” to “thc” roughly 0.3% of the time. In con-
trast, there are no instances of “thc” in the Tesseract
OCR output even though there are 5186 instances
of “the” in the transcription text, and so we would
expect approximately 16 occurrences of “thc” if the
errors introduced by the noise model were truly rep-
resentative of the errors in the actual OCR output.

Another interesting property of the noise intro-
duced by actual OCR engines and our synthetic
noise model is the way in which this noise affects
words distributions. This is very important, since
word occurrence and co-occurrence counts are the
basis for model inference in both clustering and
topic modeling. As mentioned previously, one com-
mon way of lessening the impact of OCR noise
when training topic models over OCRed data is to
apply a frequency cutoff filter to cull words that oc-
cur fewer than a certain number of times. Figures 1
and 2 show the number of word types that are culled
from the synthetic 20 Newsgroups OCR data and the
Eisenhower OCR data, respectively, at various levels
of noise. Note that the cutoff filters use a strict “less
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Figure 1: The number of word types culled with fre-
quency cutoff filters applied to the 20 Newsgroups data
with various levels of errors introduced.

than”, so a frequency cutoff of 2 eliminates only
words that occur once in the entire dataset. Also,
these series are additive, as the words culled with
a frequency cutoff of 2 are a subset of those culled
with a frequency cutoff of j > 2.

In both cases, it is apparent that by far the largest
impact that noise has is in the creation of single-
tons. It seems that the most common corruptions in
these scenarios is the creation of one-off word types
through a unique corruption of a (most likely rare)
word. This means that it is unlikely that enough evi-
dence will be available to associate, through similar
contexts, the original word and its corrupted forms.

Due to the fact that most clustering and topic
models ignore the forms of word tokens (the charac-
ters that make them up), and only take into account
word identities, we believe that the similarity in the
way in which real OCR engines and our synthetic
OCR noise model distort word distributions is suf-
ficient evidence to support the use of the synthetic
data until larger and better real-world OCR datasets
can be made available. Though the actual errors will
take a different form, the character-level details of
the errors are less relevant than the word distribution
alterations for the models in question.

4 Experimental Results

We ran experiments on both the real and synthetic
OCR data. In this section we explain our experi-
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Figure 2: The number of word types culled with fre-
quency cutoff filters applied to the transcript and three
OCR engine outputs for the Eisenhower data.

mental methodology and present both empirical and
qualitative analyses of the results.

4.1 Methodology

For the synthetic OCR datasets, we ran clustering
experiments using EM on a mixture of multinomials
(c.f. (Walker and Ringger, 2008)). We specified
the number of clusters to be the same as the num-
ber of classes provided with the data. Clusters were
evaluated using several external cluster quality met-
rics which compare “gold standard” labels to those
created through clustering. The metrics used were
Variation of Information (VI) (Meilă, 2007), and
the Adjusted Rand Index (ARI) (Hubert and Arabie,
1985). Other metrics were also calculated (e.g. the
V-Measure (Rosenberg and Hirschberg, 2007), and
Average Entropy (Liu et al., 2003)), but these results
were excluded due to space constraints and the fact
that their plots are similar to those shown. We did
not cluster the Eisenhower data because of the ab-
sence of the class labels necessary for evaluation.

For both the synthetic and non-synthetic data we
also trained LDA topic models (Blei et al., 2003) us-
ing Gibbs sampling. We used the implementation
found in the MALLET software package (McCal-
lum, 2002) with the option enabled to learn the pri-
ors during sampling as discussed by Wallach et al.
(2009a). Each LDA model was trained on 90% of
the documents in each dataset. The trained model

was used to calculate an estimate of the marginal
log-likelihood of the remaining 10% of the docu-
ments using the left-to-right algorithm (Wallach et
al., 2009b). The number of topics used for each
dataset was adjusted a priori according to the num-
ber of documents it contained. We used 100 topics
for Enron and Eisenhower, 150 for Reuters, and 200
for 20 Newsgroups.

In addition to running experiments on the “raw”
synthetic data, we also applied simple unsupervised
feature selectors before training in order to evalu-
ate the effectiveness of such measures in mitigat-
ing problems caused by OCR errors. For the topic
modeling (LDA) experiments three feature selectors
were used. The first method employed was a simple
term frequency cutoff filter (TFCF), with a cutoff
of 5 as in (Wang and McCallum, 2006). The next
method employed was Term Contribution (TC), a
feature selection algorithm developed for document
clustering (Liu et al., 2003). Term contribution is
parameterized by the number of word types that are
to remain after selection. We attempted three val-
ues for this parameter, 10,000, 20,000, and 50,000.
The final method we employed was a method called
Top-N per Document (TNPD) (Walker and Ring-
ger, 2010), which is a simple feature selection al-
gorithm that first assigns each type in every doc-
ument a document-specific score (e.g. its TF-IDF
weight), and then selects words to include in the fi-
nal vocabulary by choosing the N words with the
highest score from each document in the corpus. We
found that N = 1 gave the best results at the great-
est reduction in word types. After the vocabulary is
built, all words not in the vocabulary are culled from
the documents. This does not mean that all docu-
ments contain only one word after feature selection,
as the top word in one document may occur in many
other documents, even if it is not the top word in
those documents. Likewise, if two documents would
both contribute the same word, then the second doc-
ument makes no contribution to the vocabulary. This
process can result in vocabularies with thousands of
words, leaving sufficient words in each document
for analysis. For the clustering experiments, initial
tests showed little difference in the performance of
the feature selectors, so only the TNPD selector was
used. Figures 3(a) and 3(b) show how the various
pre-processing methods affect word type and token
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(a) The number of word types remaining after pre-processing.
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Figure 3: The effect of pre-processing on token and type counts for the 20 Newsgroups dataset at various error rates.

counts, respectively, for the 20 Newsgroups dataset.
In contrast, without pre-processing the number of
types scales from 107,211 to 892,983 and the num-
ber of tokens from 2,261,805 to 3,073,208.

Because all of these procedures alter the number
of words and tokens in the final data, log-likelihood
measured on a held-out set cannot be used to accu-
rately compare the quality of topic models trained
on pre-processed data, as the held-out data will con-
tain many unknown words. If the held-out data is
also pre-processed to only include known words,
then the likelihood will be greater for those proce-
dures that remove the most tokens, as the product
that dominates the calculation will have fewer terms.
If unknown words are allowed to remain, even a
smoothed model will assign them very little prob-
ability and so models will be heavily penalized.

We use an alternative method for evaluating the
topic models, discussed in (Griffiths et al., 2005), to
avoid the aforementioned problems with an evalu-
ation based on log-likelihood. Since the synthetic
data is derived from datasets that have topical docu-
ment labels, we are able to use the output from LDA
in a classification problem with the word vectors
for each document being replaced by the assigned
topic vectors. This is equivalent to using LDA as a
dimensionality reduction pre-process for document
classification. A naive Bayes learner is trained on a
portion of the topic vectors, labeled with the origi-
nal document label, and then the classification accu-

racy on a held-out portion of the data is computed.
Ten-fold cross-validation is used to control for sam-
pling issues. The rationale behind this evaluation is
that, even though the topics discovered by LDA will
not correspond directly to the labels, there should at
least be a high degree of correlation. Models that
discover topical semantics that correlate well with
the labels applied by humans will yield higher clas-
sification accuracies and be considered better mod-
els according to this metric.

To compensate for the randomness inherent in
the algorithms, each experiment was replicated ten
times. The results of these runs were averaged to
produce the values reported here.

4.2 Empirical Analysis
Both the mixture of multinomials document model
and LDA appear to be fairly resilient to character-
level noise. Figures 4 and 5 show the results of the
document clustering experiments with and without
feature selection, respectively. Memory issues pre-
vented the collection of results for the highest error
rates on the Enron and Reuters data without feature
selection.

With no pre-processing, the results are somewhat
mixed. The Enron dataset experiences almost no
quality degradation as the WER increases, yielding
remarkably constant results according to the metrics.
However, this may be an artifact of the relatively
poor starting performance for this dataset, a result
of the fact that the gold standard labels do not align
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Figure 4: Results for the clustering experiments on the three synthetic datasets without feature selection.

well with automatically discovered patterns because
they correspond to external events. In contrast, the
Reuters data appears to experience drastic degrada-
tion in performance. Once feature selection occurs,
however, performance remains much more stable as
error rates increase.

Figure 6(a) shows the results of running LDA on
the transcript and digitized versions of the Eisen-
hower dataset. Log-likelihoods of the held-out set
are plotted with respect to the WER observed for
each OCR engine. The results support the find-
ing that the WER of the OCR engine that produced
the data has a significant negative correlation with
model quality. Unfortunately, it was not possible
to compare the performance of the pre-processing
methods on this dataset, due to a lack of document
topic labels and the deficiencies of log-likelihood
mentioned previously.

Figure 6(b) shows the results of the LDA topic-
modeling experiments on the three “raw” synthetic
datasets. Similar trends are observed in this graph.
LDA experiences a marked degree of performance
degradation, with all of the trend lines indicating a
linear decrease in log-likelihood.

Figures 7(a) through 7(c) show the results of eval-
uating the various proposed pre-processing proce-
dures in the context of topic modeling. In the graph
“noop.0” represents no pre-processing, “tc.N” are
the Term Contribution method parameterized to se-
lectN word types, “tfcf.5” is the term frequency cut-

off filter with a cutoff of 5 and “tnpd.1” is the Top
N per Document method with N = 1. The y-axis is
the average of the results for 10 distinct trials, where
the output for each trial is the average of the ten ac-
curacies achieved using ten-fold cross-validation as
described in Section 4.1.

Here, the cross-validation accuracy metric reveals
a slightly different story. These results show that
topic quality on both the raw and pre-processed
noisy data degrades at a rate relative to the amount
of errors in the data. That is, the difference in perfor-
mance between two relatively low word error rates
(e.g. 5% and 7% on the Reuters data) is small,
whereas the differences between two high error rates
(e.g. 30% and 32% on the Reuters data) can be rela-
tively quite large.

While pre-processing does improve model qual-
ity, in the case of LDA this improvement amounts
to a nearly constant boost; at high error rates quality
is improved the same amount as at low error rates.
Degradations in model quality, therefore, follow the
same trends, occurring at mostly the same rate in
pre-processed data as in the raw noisy data. This is
in contrast to the clustering experiments where pre-
processing virtually eliminates failure trends.

4.3 Qualitative Analysis

Higher values measured with automated metrics
such as log-likelihood on a held-out set and the
cross-validation classification metric discussed here
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Figure 5: Results for the clustering experiments on the three synthetic OCR datasets with TNPD feature selection.

do not necessarily indicate superior topics according
to human judgement (Chang et al., 2009). In order
to provide a more thorough discussion of the relative
quality of the topic models induced on the OCR data
versus those induced on clean data, we sampled the
results of several of the runs of the LDA algorithm.
In Tables 2 and 3 we show the top words for the
five topics with the highest learned topic prior (α in
the LDA literature) learned during Gibbs sampling.
This information is shown for the Reuters data first
with no corruption and then at the highest error rate
for which we have results for that data of 45% WER.

In general, there appears to be a surprisingly good
correlation between the topics learned on the clean
data and those learned on the corrupted data, given
the high level of noise involved. The topics are
generally cohesive, containing mostly terms relat-
ing to financial market news. However, the topics
trained on the clean data, though all related to finan-
cial markets, are fairly distinctive. Topic 3, for ex-
ample seems to be about fluctuations in stock prices,
and Topics 106 and 34 about business acquisitions
and mergers. The topics trained on the noisy data
are fairly homogeneous and the differences between
them are more difficult to identify.

In addition, it appears as though the first topic
(topic 93) is not very coherent at all. This topic is
significantly larger, in terms of the number of tokens
assigned to it than the other topics shown in either
table. In addition, the most probable words listed for

the topic seem less cohesive than for the other top-
ics. It contains many two-letter words that are likely
a mixture of valid terms (e.g., stock exchange and
ticker symbols, and parts of place names like “Rio
de Janeiro”) and corruptions of real words. For ex-
ample, even though there are no instances of “ts” as
a distinct token in the clean Reuters data, it is in the
list of the top 19 words for topic 93. This is perhaps
due to the fact that “is” can easily be converted to
“ts” by mistaking t for i.

It is also the case that, for most topics learned
on the corrupted data, the most probable words for
those topics tend to be shorter, on average, than for
topics learned on clean data. We believe this is due
to the fact that the processes used to add noise to the
data (both real OCR engines and our synthetic noise
model) are more likely to corrupt long words, es-
pecially in the case of the synthetic data which was
created using a character-level noise model.

Examination of the data tends to corroborate this
hypothesis, though even long words usually contain
only a few errors. For example, in the 20 News-
groups data there are 379 instances of the word “yes-
terday”, a long word that is not close to other English
words in edit distance. When the data has been cor-
rupted to a WER of 47.9%, however, there are only
109 instances of “yesterday” and 132 tokens that are
within an edit distance of 1 from “yesterday”.

To some extent, we would expect to observe sim-
ilar trends in real-world data. However, most OCR
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Figure 6: Log-likelihood of heldout data for the LDA experiments.
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Figure 7: Average ten-fold cross-validation accuracy for the LDA pre-processing experiments on the synthetic OCR
data.
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Topic Words Tokens
64 told, market, reuters, reuter, added, time,

year, major, years, president, make, made,
march, world, today, officials, industry,
government, move

67159

3 year, pct, prices, expected, rise, lower,
higher, demand, increase, due, fall, de-
cline, current, high, end, added, level,
drop, market

32907

106 reuter, corp, company, unit, sale, march,
dlrs, mln, sell, subsidiary, acquisition,
terms, group, april, purchase, acquired,
products, division, business

22167

34 shares, dlrs, company, mln, stock, pct,
share, common, reuter, corp, agreement,
march, shareholders, buy, cash, outstand-
ing, merger, acquire, acquisition

22668

7 mln, cts, net, shr, qtr, revs, reuter, avg, shrs,
march, mths, dlrs, sales, st, corp, oct, note,
year, april

18511

Table 2: Top words for the five topics with the highest α
prior values found using MALLET for one run of LDA
on the uncorrupted Reuters data.

engines employ language models and dictionaries to
attempt to mitigate OCR errors. As a result, given
that a word recognition error has occurred in true
OCR output, it is more likely to be an error that lies
at an edit distance greater than one from the true
word, or else it would have been corrected inter-
nally. For example, there are 349 instances of the
word “yesterday” in the Eisenhower transcripts, and
284 instances in the Tesserect OCR output and only
5 tokens within an edit distance of one, meaning that
60 corruptions of this word contained more than one
error, making up 90% of the errors for that word.
However, many of these errors still contain most of
the letters from the original word (e.g. “yesterdj.”,
and “yestjkday”). In all cases, the corrupted versions
of a given word are very rare, occurring usually only
once or twice in the noisy output, making them use-
less features for informing a model.

5 Conclusions and Future Work

The primary outcome of these experiments is an
understanding regarding when clustering and LDA
topic models can be expected to function well on
noisy OCR data. Our results imply that clustering
methods should perform almost as well on OCR data
as they do on clean data, provided that a reasonable
feature selection algorithm is employed. The LDA
topic model degraded less gracefully in performance

Topic Words Tokens
93 reuter, march, pct, year, april, ed, market,

er, told, es, st, end, ts, al, de, ng, id, sa,
added

258932

99 company, pct, corp, shares, stock, dlrs,
share, offer, group, reuter, mln, march,
unit, stake, buy, cash, bid, sale, board

50377

96 mln, cts, net, shr, qtr, dlrs, revs, reuter,
note, oper, avg, march, shrs, year, mths, st,
sales, corp, oct

54659

141 mln, dlrs, year, net, quarter, share, com-
pany, billion, tax, sales, earnings, dlr,
profit, march, income, ln, results, sale, corp

40475

53 pct, year, rose, rise, january, february, fell,
march, index, december, month, figures,
compared, reuter, rate, earlier, show, ago,
base

22556

Table 3: Top words for the five topics with the highest α
prior values found using MALLET for one run of LDA
on the Reuters data corrupted with the data-derived noise
model to a WER of 45%.

with the addition of character level errors to its in-
put, with higher error rates impacting model quality
in a way that was apparent empirically in the log-
likelihood and ten-fold cross-validation metrics as
well as through human inspection of the produced
topics. Pre-processing the data also helps model
quality for LDA, yet still yields failure trends sim-
ilar to those observed on unprocessed data.

We found it to be the case that even in data with
high word error rates, corrupted words often share
many characters in common with their uncorrupted
form. This suggests an approach in which word sim-
ilarities are used to cluster the unique corrupted ver-
sions of a word in order to increase the evidence
available to the topic model during training time and
improve model quality. As the quality of models in-
creases on these noisy datasets, we anticipate a con-
sequent rise in their usefulness to researchers and
historians as browsing the data and mining it for use-
ful patterns becomes more efficient and profitable.
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Abstract

Representing documents by vectors that are
independent of language enhances machine
translation and multilingual text categoriza-
tion. We use discriminative training to create
a projection of documents from multiple lan-
guages into a single translingual vector space.
We explore two variants to create these pro-
jections: Oriented Principal Component Anal-
ysis (OPCA) and Coupled Probabilistic Latent
Semantic Analysis (CPLSA). Both of these
variants start with a basic model of docu-
ments (PCA and PLSA). Each model is then
made discriminative by encouraging compa-
rable document pairs to have similar vector
representations. We evaluate these algorithms
on two tasks: parallel document retrieval
for Wikipedia and Europarl documents, and
cross-lingual text classification on Reuters.
The two discriminative variants, OPCA and
CPLSA, significantly outperform their corre-
sponding baselines. The largest differences in
performance are observed on the task of re-
trieval when the documents are only compa-
rable and not parallel. The OPCA method is
shown to perform best.

1 Introduction

Given the growth of multiple languages on the In-
ternet, Natural Language Processing must operate
on dozens of languages. It is becoming critical that
computers reach high performance on the following
two tasks:

• Comparable and parallel document re-
trieval — Cross-language information retrieval
and text categorization have become impor-
tant with the growth of the Web (Oard and
Diekema, 1998). In addition, machine trans-
lation (MT) systems can be improved by

training on sentences extracted from paral-
lel or comparable documents mined from the
Web (Munteanu and Marcu, 2005). Compa-
rable documents can also be used for learning
word-level translation lexicons (Fung and Yee,
1998; Rapp, 1999).

• Cross-language text categorization — Appli-
cations of text categorization, such as sentiment
classification (Pang et al., 2002), are now re-
quired to run on multiple languages. Catego-
rization is usually trained on the language of
the developer: it needs to be easily extended to
other languages.

There are two broad approaches to comparable
document retrieval and cross-language text catego-
rization. One approach is to translate queries or a
training set from different languages into a single
target language. Standard monolingual retrieval and
classification algorithms can then be applied in the
target language.

Alternatively, a cross-language system can project
a bag-of-words vector into a translingual lower-
dimensional vector space. Ideally, vectors in this
space represent the semantics of a document, inde-
pendent of the language.

The advantage of pre-translation is that MT sys-
tems tend to preserve the meaning of documents.
However, MT can be very slow (more than 1 second
per document), preventing its use on large training
sets. When full MT is not practical, a fast word-by-
word translation model can be used instead, (Balles-
teros and Croft, 1996) but may be less accurate.

Conversely, applying a projection into a low-
dimensional space is quick. Linear projection al-
gorithms use matrix-sparse vector multiplication,
which can be easily parallelized. However, as seen
in section 3, the accuracies of previous projection
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techniques are not as high as machine translation.
This paper presents two techniques: Oriented

PCA and Coupled PLSA. These techniques retain
the high speed of projection, while approaching or
exceeding the quality level of word glossing. We im-
prove the quality of the projections by the use of dis-
criminative training: we minimize the difference be-
tween comparable documents in the projected vec-
tor space. Oriented PCA minimizes the difference
by modifying the eigensystem of PCA (Diamantaras
and Kung, 1996), while Coupled PLSA uses poste-
rior regularization (Graca et al., 2008; Ganchev et
al., 2009) on the topic assignments of the compara-
ble documents.

1.1 Previous work
There has been extensive work in projecting mono-
lingual documents into a vector space. The ini-
tial algorithm for projecting documents was Latent
Semantic Analysis (LSA), which modeled bag-of-
word vectors as low-rank Gaussians (Deerwester et
al., 1990). Subsequent projection algorithms were
based on generative models of individual terms in
the documents, including Probabilistic Latent Se-
mantic Analysis (PLSA) (Hofmann, 1999) and La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003).

Work on cross-lingual projections followed a sim-
ilar pattern of moving from Gaussian models to
term-wise generative models. Cross-language La-
tent Semantic Indexing (CL-LSI) (Dumais et al.,
1997) applied LSA to concatenated comparable doc-
uments from multiple languages. Similarly, Polylin-
gual Topic Models (PLTM) (Mimno et al., 2009)
generalized LDA to tuples of documents from mul-
tiple languages. The experiments in section 3 use
CL-LSI and an algorithm similar to PLTM as bench-
marks.

The closest previous work to this paper is the
use of Canonical Correlation Analysis (CCA) to find
projections for multiple languages whose results are
maximally correlated with each other (Vinokourov
et al., 2003).

PLSA-, LDA-, and CCA-based cross-lingual
models have also been trained without the use of par-
allel or comparable documents, using only knowl-
edge from a translation dictionary to achieve sharing
of topics across languages (Haghighi et al., 2008; Ja-
garlamudi and Daumé, 2010; Zhang et al., 2010).

Such work is complementary to ours and can be
used to extend the models to domains lacking par-
allel documents.

Outside of NLP, researchers have designed al-
gorithms to find discriminative projections. We
build on the Oriented Principal Component Analysis
(OPCA) algorithm (Diamantaras and Kung, 1996),
which finds projections that maximize a signal-to-
noise ratio (as defined by the user). OPCA has been
used to create discriminative features for audio fin-
gerprinting (Burges et al., 2003).

1.2 Structure of paper

This paper now presents two algorithms for translin-
gual document projection (in section 2): OPCA and
Coupled PLSA (CPLSA). To explain OPCA, we
first review CL-LSI in section 2.1, then discuss the
details of OPCA (section 2.2), and compare it to
CCA (section 2.3). To explain CPLSA, we first
introduce Joint PLSA (JPLSA), analogous to CL-
LSI, in section 2.4, and then describe the details of
CPLSA (section 2.5).

We have evaluated these algorithms on two dif-
ferent tasks: comparable document retrieval (sec-
tion 3.2) and cross-language text categorization
(section 3.3). We discuss the findings of the evalua-
tions and extensions to the algorithms in section 4.

2 Algorithms for translingual document
projection

2.1 Cross-language Latent Semantic Indexing

Cross-language Latent Semantic Indexing (CL-LSI)
is Latent Semantic Analysis (LSA) applied to multi-
ple languages. First, we review the mathematics of
LSA.

LSA models an n × k document-term matrix D,
where n is the number of documents and k is the
number of terms. The model of the document-term
matrix is a low-rank Gaussian. Originally, LSA was
presented as performing a Singular Value Decompo-
sition (Deerwester et al., 1990), but here we present
it as eigendecomposition, to clarify its relationship
with OPCA.

LSA first computes the correlation matrix be-
tween terms:

C = DTD. (1)
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The Rayleigh quotient for a vector ~v with the matrix
C is

~vTC~v

~vT~v
, (2)

and is equal to the variance of the data projected us-
ing the vector ~v, normalized by the length of ~v, if D
has columns that are zero mean. Good projections
retain a large amount of variance. LSA maximizes
the Rayleigh ratio by taking its derivative against ~v
and setting it to zero. This yields a set of projections
that are eigenvectors of C,

C~vj = λj~vj , (3)

where λj is the jth-largest eigenvalue. Each eigen-
value is also the variance of the data when projected
by the corresponding eigenvector ~vj . LSA simply
uses top d eigenvectors as projections.

LSA is very similar to Principal Components
Analysis (PCA). The only difference is that the cor-
relation matrix C is used, instead of the covariance
matrix. In practice, the document-term matrix D is
sparse, so the column means are close to zero, and
the correlation matrix is close to the covariance ma-
trix.

There are a number of methods to form the
document-term matrix D. One method that works
well in practice is to compute the log(tf)-idf weight-
ing: (Dumais, 1990; Wild et al., 2005)

Dij = log2(fij + 1) log2(n/dj), (4)

where fij is the number of times term j occurs in
document i, n is the total number of documents,
and dj is the total number of documents that con-
tain term j. Applying a logarthm to the term counts
makes the distribution of matrix entries approach
Gaussian, which makes the LSA model more valid.

Cross-language LSI is an application of LSA
where each row of D is formed by concatenating
comparable or parallel documents in multiple lan-
guages. If a single term occurs in multiple lan-
guages, the term only has one slot in the concate-
nation, and the term count accumulates for all lan-
guages. Such terms could be proper nouns, such as
“Smith” or “Merkel”.

In general, the elements of D are computed via

Dij = log2

(∑
m

fm
ij + 1

)
log2(n/dj), (5)

where fm
ij is the number of times term j occurs in

document i in language m. Here, dj is the number
of documents term j appears in, and n is the total
number of documents across all languages.

Because CL-LSI is simply LSA applied to con-
catenated documents, it models terms in document
vectors jointly across languages as a single low-rank
Gaussian.

2.2 Oriented Principal Component Analysis
The limitations of CL-LSI can be illustrated by con-
sidering Oriented Principal Components Analysis
(OPCA), a generalization of PCA. A user of OPCA
computes a signal covariance matrix S and a noise
covariance matrix N. OPCA projections ~vj max-
imize the ratio of the variance of the signal pro-
jected by ~vj to the variance of the noise projected
by ~vj . This signal-to-noise ratio is the generalized
Rayleigh quotient: (Diamantaras and Kung, 1996)

~vTS~v

~vTN~v
. (6)

Taking the derivative of the Rayleigh quotient with
respect to the projections ~v and setting it to zero
yields the generalized eigenproblem

S~vj = λjN~vj . (7)

This eigenproblem has no local minima, and can be
solved with commonly available parallel code.

PCA is a specialization of OPCA, where the noise
covariance matrix is assumed to be the identity (i.e.,
uncorrelated noise). PCA projections maximize the
signal-to-noise ratio where the signal is the empiri-
cal covariance of the data, and the noise is spherical
white noise. PCA projections are not truly appropri-
ate for forming multilingual document projections.

Instead, we want multilingual document projec-
tions to maximize the projected covariance of doc-
ument vectors across all languages, while simulta-
neously minimizing the projected distance between
comparable documents (see Figure 1). OPCA gives
us a framework for finding such discriminative pro-
jections. The covariance matrix for all documents
is the signal covariance in OPCA, and captures the
meaning of documents across all languages. The
projection of this covariance matrix should be max-
imized. The covariance matrix formed from differ-
ences between comparable documents is the noise
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covariance in OPCA: we wish to minimize the lat-
ter covariance, to make the projection language-
independent.

Specifically, we create the weighted document-
term matrix Dm for each language:

Dij,m = log2(f
m
ij + 1)log2(n/dj). (8)

We then derive a signal covariance matrix over all
languages:

S =
∑
m

DT
mDm/n− ~µT

m~µm, (9)

where ~µm is the mean of each Dm over its columns,
and a noise covariance matrix,

N =
∑
m

(Dm −D)T (Dm −D)/n+ γI, (10)

where D is the mean across all languages of the
document-term matrix,

D =
1

M

∑
m

Dm, (11)

and M is the number of languages. Applying equa-
tion (7) to these matrices and taking the top gener-
alized eigenvectors yields the projection matrix for
OPCA.

Note the regularization term of γI in equation
(10). The empirical sample of comparable docu-
ments may not cover the entire space of translation
noise the system will encounter in the test set. For
safety, we add a regularizer that prevents the vari-
ance of a term from getting too small. We tuned γ
on the development sets in section 3.2: for log(tf)-
idf weighted vectors, C = 0.1 works well for the
data sets and dimensionalities that we tried. We use
C = 0.1 for all final tests.

2.3 Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is a tech-
nique that is related to OPCA. CCA was kernelized
and applied to creating cross-language document
models by (Vinokourov et al., 2003). In CCA, a lin-
ear projection is found for each language, such that
the projections of the corpus from each language are
maximally correlated with each other. Similar to
OPCA, this linear projection can be found by find-
ing the top generalized eigenvectors of the system

en

es

en

en

en

es

es

es

Maximizes overall variance

… while minimizing distance 

between comparable pairs

Figure 1: OPCA finds a projection that maximizes the
variance of all documents, while minimizing distance be-
tween comparable documents

(7), where S is now a matrix of cross-correlations
that the projection maximizes,

S =

[
0 C12

C21 0

]
, (12)

and N is a matrix of autocorrelations that the projec-
tion minimizes,

N =

[
C11 + γI 0

0 C22 + γI

]
. (13)

Here, Cij is the (cross-)covariance matrix, with di-
mension equal to the vocabulary size, that is com-
puted between the document vectors for languages
i and j. Analogous to OPCA, γ is a regularization
term, set by optimizing performance on a validation
set. Like OPCA, these matrices can be generalized
to more than two languages. Unlike OPCA, CCA
finds projections that maximize the cross-covariance
between the projected vectors, instead of minimiz-
ing Euclidean distance.1

By definition, CCA cannot take advantage of the
information that same term occurs simultaneously in
comparable documents. As shown in section 3, this

1Note that the eigenvectors have length equal to the sum of
the length of the vocabularies of each language. The projections
for each language are created by splitting the eigenvectors into
sections, each with length equal to the vocabulary size for each
language.
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information is useful and helps OPCA perform bet-
ter then CCA. In addition, CCA encourages compa-
rable documents to be projected to vectors that are
mutually linearly predictable. This is not the same
OPCA’s projected vectors that have low Euclidean
distance: the latter may be preferred by algorithms
that consume the projections.

2.4 Cross-language Topic Models

We now turn to a baseline generative model that
is analogous to CL-LSI. Our baseline joint PLSA
model (JPLSA) is closely related to the poly-lingual
LDA model of (Mimno et al., 2009). The graphical
model for JPLSA is shown at the top in Figure 2.
We describe the model for two languages, but it is
straightforward to generalize to more than two lan-
guages, as in (Mimno et al., 2009).
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Figure 2: Graphical models for JPLSA (top) and CPLSA
(bottom)

The model sees documents di as sequences of
words w1, w2, . . . , wni from a vocabulary V . There
are T cross-language topics, each of which has a dis-
tribution φt over words in V . In the case of mod-
els for two languages, we define the vocabulary V
to contain word types from both languages. In this
way, each topic is shared across languages.

Each topic-specific distribution φt, for t =
1 . . . T , is drawn from a symmetric Dirichlet prior
with concentration parameter β. Given the topic-
specific word distributions, the generative process
for a corpus of paired documents [d1

i , d
2
i ] in two lan-

guages L1 and L2 is described in the next paragraph.
For each pair of documents, pick a distribution

over topics θi, from a symmetric Dirichlet prior with

concentration parameter α. Then generate the doc-
uments d1

i and d2
i in turn. Each word token in each

document is generated independently by first pick-
ing a topic z from a multinomial distribution with
parameter θi (MULTI(θi)), and then generating the
word token from the topic-specific word distribution
for the chosen topic MULTI(φz).

The probability of a document pair [d1, d2] with
words [w1

1, w
1
2, . . . , w

1
n1

], [w2
1, w

2
2, . . . , w

2
n2

], topic
assignments [z1

1 , . . . , z
1
n1

], [z2
1 , . . . , z

2
n2

], and a com-
mon topic vector θ is given by:

P (θ|α)
n1∏

j=1

P (z1
j |θ)P (w1

j |φz1
j
)

n2∏
j=1

P (z2
j |θ)P (w2

j |φz2
j
)

The difference between the JPLSA model and the
poly-lingual topic model of (Mimno et al., 2009)
is that we merge the vocabularies in the two lan-
guages and learn topic-specific word distributions
over these merged vocabularies, instead of having
pairs of topic-specific word distributions, one for
each language, like in (Mimno et al., 2009). Thus
our model is more similar to the CL-LSI model, be-
cause it can be seen as viewing a pair of documents
in two languages as one bigger document containing
the words in both documents.

Another difference between our model and the
poly-lingual LDA model of (Mimno et al., 2009)
is that we use maximum aposteriori (MAP) instead
of Bayesian inference. Recently, MAP inference
was shown to perform comparably to the best in-
ference method for LDA (Asuncion et al., 2009),
if the hyper-parameters are chosen optimally for
the inference method. Our initial experiments with
Bayesian versus MAP inference for parallel docu-
ment retrieval using JPLSA confirmed this result.
In practice our baseline model outperforms poly-
lingual LDA as mentioned in our experiments.

2.5 Coupled Probabilistic Latent Semantic
Analysis

The JPLSA model assumes that a pair of translated
or comparable documents have a common topic dis-
tribution θ. JPLSA fits its parameters to optimize the
probability of the data, given this assumption.

For the task of comparable document retrieval, we
want our topic model to assign similar topic distri-
butions θ to a pair of corresponding documents. But
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this is not exactly what the JPLSA model is doing.
Instead, it derives a common topic vector θ which
explains the union of all tokens in the English and
foreign documents, instead of making sure that the
best topic assignment for the English document is
close to the best topic assignment of the foreign doc-
ument. This difference becomes especially appar-
ent when corresponding documents have different
lengths. In this case, the model will tend to derive
a topic vector θ which explains the longer document
best, making the sum of the two documents’ log-
likelihoods higher. Modeling the shorter document’s
best topic carries little weight.

Modeling both documents equally is what Cou-
pled PLSA (CPLSA) is designed to do. The graphi-
cal model for CPLSA is shown at the bottom of Fig-
ure 2. In this figure, the topic vectors of a pair of
documents in two languages are shown completely
independent. We use the log-likelihood according to
this model, but also add a regularization term, which
tries to make the topic assignments of correspond-
ing documents close. In particular, we use poste-
rior regularization (Graca et al., 2008; Ganchev et
al., 2009) to place linear constraints on the expec-
tations of topic assignments to two corresponding
documents.

For two linked documents d1 and d2, we would
like our model to be such that the expected fraction
of tokens in d1 that get assigned topic t is approxi-
mately the same as the expected fraction of tokens in
d2 that get assigned the same topic t, for each topic
t = 1 . . . T . This is exactly what we need to make
each pair of corresponding documents close.

Let z1 and z2 denote vectors of topic assignments
to the tokens in document d1 and d2, respectively.
Their dimensionality is equal to the lengths of the
two documents, n1 and n2. We define a space of
posterior distributions Q over hidden topic assign-
ments to the tokens in d1 and d2, that has the desired
property: the expected fraction of each topic is ap-
proximately equal in d1 and d2. We can formulate
this constrained space Q as follows:

Q = {q1(z1), q2(z
2)}

such that

Eq1 [

∑n1
j=1 1(z1

j = t)

n1
]−Eq2 [

∑n2
j=1 1(z2

j = t)

n2
] ≤ εt

Eq2 [

∑n2
j=1 1(z2

j = t)

n2
]−Eq1 [

∑n1
j=1 1(z1

j = t)

n1
] ≤ εt

We then formulate an objective function that max-
imizes the log-likelihood of the data while simulta-
neously minimizing the KL-divergence between the
desired distribution set Q and the posterior distri-
bution according to the model: P (z1|d1, θ1, φ) and
P (z2|d2, θ2, φ).

The objective function for a single document pair
is as follows:

logP (d1|θ1, φ) + logP (d2|θ2, φ)
−KL(Q||P (z1|d1, θ1, φ), P (z2|d2, θ2, φ))
−||ε||

The final corpus-wide objective is summed over
document-pairs, and also contains terms for the
probabilities of the parameters θ and φ given the
Dirichlet priors. The norm of ε is minimized, which
makes the expected proportions of topics in two doc-
uments as close as possible.

Following (Ganchev et al., 2009), we fit the pa-
rameters by an EM-like algorithm, where for each
document pair, after finding the posterior distri-
bution of the hidden variables, we find the KL-
projection of this posterior onto the constraint set,
and take expected counts with respect to this projec-
tion; these expected counts are used in the M-step.
The projection is found using a simple projected gra-
dient algorithm.2

For both the baseline JPLSA and the CPLSA
models, we performed learning through MAP infer-
ence using EM (with a projection step for CPLSA).
We did up to 500 iterations for each model, and did
early stopping based on task performance on the de-
velopment set. The JPLSA model required more it-
erations before reaching its peak accuracy, tending
to require around 300 to 450 iterations for conver-
gence. CPLSA required fewer iterations, but each
iteration was slower due to the projection step.

2We initialized the models deterministically by assigning
each word to exactly one topic to begin with, such that all topics
have roughly the same number of words. Words were sorted by
frequency and thus words of similar frequency are more likely
to be assigned to the same topic.This initialization method out-
performed random initialization and we use it for all models.
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All models use α = 1.1 and β = 1.01 for the
values of the concentration parameters. We found
that the performance of the models was not very sen-
sitive to these values, in the region that we tested
(α, β ∈ [1.001, 1.1]). Higher hyper-parameter val-
ues resulted in faster convergence, but the final per-
formance was similar across these different values.

3 Experimental validation

We test the proposed discriminative projections ver-
sus more established cross-language models on the
two tasks described in the introduction: retrieving
comparable documents from a corpus, and training
a classifier in one language and using it in another.
We measure accuracy on a test set, and also examine
the sensitivity to dimensionality of the projection on
development sets.

3.1 Speed of training and evaluation
We first test the speed of the various algorithms dis-
cussed in this paper, compared to a full machine
translation system. When finding document projec-
tions, CL-LSI, OPCA, CCA, JPLSA, and CPLSA
are equally fast: they perform a matrix multiplica-
tion and require O(nk) operations, where n is the
number of distinct words in the documents and k is
the dimensionality of the projection.3 A single CPU
core can read the indexed documents into memory
and take logarithms at 216K words per second. Pro-
jecting into a 2000-dimensional space operates at
41K words per second. Translating word-by-word
operates at 274K words per second. In contrast, ma-
chine translation processes 50 words per second, ap-
proximately 3 orders of magnitude slower.

Total training time for OPCA on 43,380 pairs of
comparable documents was 90 minutes, running on
an 8-core CPU for 2000 dimensions. On the same
corpus, JPLSA requires 31 minutes per iteration and
CPLSA requires 377 minutes per iteration. CPLSA
requires a factor of five times fewer iterations: over-
all, it is twice as slow as JPLSA.

3.2 Retrieval of comparable documents
In comparable document retrieval, a query is a doc-
ument in one language, which is compared to a cor-

3For JPLSA and CPLSA this is the case only when perform-
ing a single EM iteration at test time, which we found to per-
form best.

pus of documents in another language. By mapping
all documents into the same vector space, the com-
parison is a vector comparison. For our experiments
with CL-LSI, OPCA, and CCA, we use cosine sim-
ilarity between vectors to rank the documents.

For the JPLSA and CPLSA models, we map the
documents to corresponding topic vectors θ, and
compute distance between these probability vectors.
The mapping to topic vectors requires EM iterations,
or folding-in (Hofmann, 1999). We found that per-
forming a single EM iteration resulted in best per-
formance so we used this for all models. For com-
puting distance we used the L1-norm of the differ-
ence, which worked a bit better than the Jensen-
Shannon divergence between the topic vectors used
in (Mimno et al., 2009).

We test all algorithms on the Europarl data set
of documents in English and Spanish, and a set of
Wikipedia articles in English and Spanish that con-
tain interlanguage links between them (i.e., articles
that the Wikipedia community have identified as
comparable across languages).

For the Europarl data set, we use 52,685 doc-
uments as training, 11,933 documents as a devel-
opment set, and 18,415 documents as a final test
set. Documents are defined as speeches by a sin-
gle speaker, as in (Mimno et al., 2009).4 For the
Wikipedia set, we use 43,380 training documents,
8,675 development documents, and 8,675 final test
set documents.

For both corpora, the terms are extracted by word-
breaking all documents, removing the top 50 most
frequent terms and keeping the next 20,000 most fre-
quent terms. No stemming or folding is applied.

We assess performance by testing each document
in English against all possible documents in Span-
ish, and vice versa. We measure the Top-1 accu-
racy (i.e., whether the true comparable is the clos-
est in the test set), and the Mean Reciprocal Rank
of the true comparable, and report the average per-
formance over the two retrieval directions. Ties are
counted as errors.

We tuned the dimensionality of the projections on
the development set, as shown in Figures 3 and 4.

4The training section contains documents from the years 96
through 99 and the year 02; the dev section contains documents
from 01, and the test section contains documents from 00 plus
the first 9 months of 03.

257



We chose the best dimension on the development set
for each algorithm, and used it on the final test set.
The regularization γ was tuned for CCA: γ = 10 for
Europarl, and γ = 3 for Wikipedia.

Figure 3: Mean reciprocal rank versus dimension for Eu-
roparl

Figure 4: Mean reciprocal rank versus dimension for
Wikipedia

In the two figures, we evaluate the five projec-
tion methods, as well as a word-by-word transla-
tion method (denoted by WbW in the graphs). Here
“word-by-word” refers to using cosine distance after
applying a word-by-word translation model to the
Spanish documents.

The word-by-word translation model was trained
on the Europarl training set, using the WDHMM
model (He, 2007), which performs similarly to IBM

Model 4. The probability matrix of generating
English words from Spanish words was multiplied
by each document’s log(tf)-idf vector to produce a
translated document vector. We found that multi-
plying the probability matrix to the log(tf)-idf vector
was more accurate on the development set than mul-
tiplying the tf vector directly. This vector was either
tested as-is, or mapped through LSA learned from
the English training set of the corpus. In the figures,
the dimensionality of WbW translation refers to the
dimensionality of monolingual LSA.

The overall ordering of the six models is dif-
ferent for the Europarl and Wikipedia development
datasets. The discriminative models outperform
the corresponding generative ones (OPCA vs CL-
LSI) and (CPLSA vs JPLSA) for both datasets, and
OPCA performs best overall, dominating the best
fast-translation based model, as well as the other
projection methods, including CCA.

On Europarl, JPLSA and CPLSA outperform CL-
LSI, with the best dimension or JPLSA also slightly
outperforming the best setting for the word-by-word
translation model, whereas on Wikipedia the PLSA-
based models are significantly worse than the other
models.

The results on the final test set, evaluating each
model using its best dimensionality setting, confirm
the trends observed on the development set. The fi-
nal results are shown in Tables 1 and 2. For these
experiments, we use the unpaired t-test with Bon-
ferroni correction to determine the smallest set of
algorithms that have statistically significantly better
accuracy than the rest. The p-value threshold for sig-
nificance is chosen to be 0.05. The accuracies for
these significantly superior algorithms are shown in
boldface.

For Wikipedia and Europarl, we include an ad-
ditional baseline model,“Untranslated”: this refers
to applying cosine distance to both the Spanish and
English documents directly (since they share some
vocabulary terms). For Wikipedia, comparable doc-
uments seem to share many common terms, so co-
sine distance between untranslated documents is a
reasonable benchmark.

From the final Europarl results we can see that the
best models can learn to retrieve parallel documents
from the narrow Europarl domain very well. All
dimensionality reduction methods can learn from
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cleanly parallel data, but discriminative training can
bring additional error reduction.

In previously reported work, (Mimno et al., 2009)
evaluate parallel document retrieval using PLTM on
Europarl speeches in English and Spanish, using
training and test sets of size similar to ours. They
report an accuracy of 81.2% when restricting to test
documents of length at least 100 and using 50 topics.
JPLSA with 50 topics obtains accuracy of 98.9% for
documents of that length.

The final Wikipedia results are also similar to the
the development set results. The problem setting for
Wikipedia is different, because corresponding doc-
uments linked in Wikipedia may have widely vary-
ing degrees of parallelism. While most linked doc-
uments share some main topics, they could cover
different numbers of sub-topics at varying depths.
Thus the training data of linked documents is noisy,
which makes it hard for projection methods to learn.
The word-by-word translation model in this setting
is trained on clean, but out-of-domain parallel data
(Europarl), so it has the disadvantage that it may not
have a good coverage of the vocabulary; however,
it is not able to make use of the Wikipedia train-
ing data since it requires sentence-aligned transla-
tions. We find it encouraging that the best projection
method OPCA outperformed word-by-word trans-
lation. This means that OPCA is able to uncover
topic correspondence given only comparable docu-
ment pairs, and to learn well in this noisy setting.

The PLSA-based models fare worse on Wikipedia
document retrieval. CPLSA outperforms JPLSA
more strongly, but both are worse than CL-LSI and
even the Untranslated baseline. We think this is
partly explained by the diverse vocabulary in the het-
erogenous Wikipedia collection. All other models
use log(tf)-idf weighting, which automatically as-
signs importance weights to terms, whereas the topic
models use word counts. This weighting is very use-
ful for Wikipedia. For example, if we apply the
untranslated matching using raw word counts, the
MRR is 0.1024 on the test set, compared to 0.5383
for log(tf)-idf. We hypothesize that using a hierar-
chical topic model that automatically learns about
more general and more topic-specific words would
be helpful in this case. It is also possible that PLSA-
based models require cleaner data to learn well.

The overall conclusion is that OPCA outper-

Algorithm Dimension Accuracy MRR
OPCA 1000 0.9742 0.9806
CPLSA 1000 0.9716 0.9782
Word-by-word N/A 0.9707 0.9779
Word-by-word 5000 0.9706 0.9778
JPLSA 1000 0.9645 0.9726
CCA 1500 0.9613 0.9705
CL-LSI 3000 0.9457 0.9595
Untranslated N/A 0.1595 0.2564

Table 1: Test results for comparable document retrieval
in Europarl. Boldface indicates statistically significant
superior results.

Algorithm Dimension Accuracy MRR
OPCA 2000 0.7255 0.7734
Word-by-word N/A 0.7033 0.7467
CCA 1500 0.6894 0.7378
Word-by-word 5000 0.6786 0.7236
CL-LSI 5000 0.5302 0.6130
Untranslated N/A 0.4692 0.5383
CPLSA 200 0.4579 0.5130
JPLSA 1000 0.3322 0.3619

Table 2: Test results for comparable document retrieval
in Wikipedia. Boldface indicates statistically significant
best result.

formed all other document retrieval methods we
tested, including fast machine translation of docu-
ments. Additionally, both discriminative projection
methods outperformed their generative counterparts.

3.3 Cross-language text classification
The second task is to train a text categorization sys-
tem in one language, and test it with documents in
another. To evaluate on this task, we use the Mul-
tilingual Reuters Collection, defined and provided
by (Amini et al., 2009). We test the English/Spanish
language pair. The collection has news articles in
English and Spanish, each of which has been trans-
lated to the other by the Portage translation sys-
tem (Ueffing et al., 2007).

From the English news corpus, we take 13,131
documents as training, 1,875 documents as develop-
ment, and 1,875 documents as test. We take the En-
glish training documents translated into Spanish as
our comparable training data. For testing, we use the
entire Spanish news corpus of 12,342 documents, ei-
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ther mapped with cross-lingual projection, or trans-
lated by Portage.

The data set was provided by (Amini et al.,
2009) as already-processed document vectors, using
BM25 weighting. Thus, we only test OPCA, CL-
LSI, and related methods: JPLSA and CPLSA re-
quire modeling the term counts directly.

The performance on the task is measured by clas-
sification accuracy on the six disjoint category la-
bels defined by (Amini et al., 2009). To introduce
minimal bias due to the classifier model, we use 1-
nearest neighbor on top of the cosine distance be-
tween vectors as a classifier. For all of the tech-
niques, we treated the vocabulary in each language
as completely separate, using the top 10,000 terms
from each language.

Note that no Spanish labeled data is provided
for training any of these algorithms: only English
and translated English news is labeled. The op-
timal dimension (and γ for CCA) on the devel-
opment set was chosen to maximize the accuracy
of English classification and translated English-to-
Spanish classification.

Algorithm Dim. English Spanish
Accuracy Accuracy

Full MT 50 0.8483 0.6484
OPCA 100 0.8412 0.5954
Word-by-word 50 0.8483 0.5780
CCA 150 0.8388 0.5384
Full MT N/A 0.8046 0.5323
CL-LSI 150 0.8401 0.5105
Word-by-word N/A 0.8046 0.4481

Table 3: Test results for cross-language text categoriza-
tion

The test classification accuracy is shown in Ta-
ble 3. As above, the smallest set of superior al-
gorithms as determined by Bonferroni-corrected t-
tests are shown in boldface. The results for MT and
word-by-word translation use the log(tf)-idf vector
directly for documents that were written in English,
and use a Spanish-to-English translated vector if the
document was written in Spanish. As in section 3.2,
word-by-word translation multiplied each log(tf)-idf
vector by the translation probability matrix trained
on Europarl.

The tests show that OPCA is better than CCA,

CL-LSI, plain word-by-word translation, and even
full translation for Spanish documents. However,
if we post-process full translation by an LSI model
trained on the English training set, full translation
is the most accurate. If full translation is time-
prohibitive, then OPCA is the best method: it is sig-
nificantly better than word-by-word translation fol-
lowed by LSI.

4 Discussion and Extensions

OPCA extends naturally to multiple languages.
However, it requires memory and computation time
that scales quadratically with the size of the vocab-
ulary. As the number of languages goes up, it may
become impractical to perform OPCA directly on a
large vocabulary.

Researchers have solved the problem of scaling
OPCA by using Distortion Discriminant Analysis
(DDA) (Burges et al., 2003). DDA performs OPCA
in two stages which avoids the need for solving a
very large generalized eigensystem. As future work,
DDA could be applied to mapping documents in
many languages simultaneously.

Spherical Admixture Models (Reisinger et al.,
2010) have recently been proposed that combine an
LDA-like hierarchical generative model with the use
of tf-idf representations. A similar model could be
used for CPLSA: future work will show whether
such a model can outperform OPCA.

5 Conclusions

This paper presents two different methods for creat-
ing discriminative projections: OPCA and CPLSA.
Both of these methods avoid the use of artificial
concatenated documents. Instead, they model docu-
ments in multiple languages, with the constraint that
comparable documents should map to similar loca-
tions in the projected space.

When compared to other techniques, OPCA had
the highest accuracy while still having a run-time
that allowed scaling to large data sets. We therefore
recommend the use of OPCA as a pre-processing
step for large-scale comparable document retrieval
or cross-language text categorization.
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Abstract

We present three novel methods of compactly
storing very large n-gram language models.
These methods use substantially less space
than all known approaches and allow n-gram
probabilities or counts to be retrieved in con-
stant time, at speeds comparable to modern
language modeling toolkits. Our basic ap-
proach generates an explicit minimal perfect
hash function, that maps all n-grams in a
model to distinct integers to enable storage of
associated values. Extensions of this approach
exploit distributional characteristics of n-gram
data to reduce storage costs, including variable
length coding of values and the use of tiered
structures that partition the data for more effi-
cient storage. We apply our approach to stor-
ing the full Google Web1T n-gram set and all
1-to-5 grams of the Gigaword newswire cor-
pus. For the 1.5 billion n-grams of Gigaword,
for example, we can store full count informa-
tion at a cost of 1.66 bytes per n-gram (around
30% of the cost when using the current state-
of-the-art approach), or quantized counts for
1.41 bytes per n-gram. For applications that
are tolerant of a certain class of relatively in-
nocuous errors (where unseen n-grams may
be accepted as rare n-grams), we can reduce
the latter cost to below 1 byte per n-gram.

1 Introduction

The availability of very large text collections, such
as the Gigaword corpus of newswire (Graff, 2003),
and the Google Web1T 1-5gram corpus (Brants and
Franz, 2006), have made it possible to build mod-
els incorporating counts of billions of n-grams. The
storage of these language models, however, presents

serious problems, given both their size and the need
to provide rapid access. A prevalent approach for
language model storage is the use of compact trie
structures, but these structures do not scale well and
require space proportional to both to the number
of n-grams and the vocabulary size. Recent ad-
vances (Talbot and Brants, 2008; Talbot and Os-
borne, 2007b) involve the development of Bloom fil-
ter based models, which allow a considerable reduc-
tion in the space required to store a model, at the cost
of allowing some limited extent of false positives
when the model is queried with previously unseen
n-grams. The aim is to achieve sufficiently compact
representation that even very large language models
can be stored totally within memory, avoiding the
latencies of disk access. These Bloom filter based
models exploit the idea that it is not actually neces-
sary to store the n-grams of the model, as long as,
when queried with an n-gram, the model returns the
correct count or probability for it. These techniques
allow the storage of language models that no longer
depend on the size of the vocabulary, but only on the
number of n-grams.

In this paper we give three different models for
the efficient storage of language models. The first
structure makes use of an explicit perfect hash func-
tion that is minimal in that it maps n keys to in-
tegers in the range 1 to n. We show that by us-
ing a minimal perfect hash function and exploit-
ing the distributional characteristics of the data we
produce n-gram models that use less space than all
know approaches with no reduction in speed. Our
two further models achieve even more compact stor-
age while maintaining constant time access by us-
ing variable length coding to compress the n-grams
values and by using tiered hash structures to parti-
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tion the data into subsets requiring different amounts
of storage. This combination of techniques allows
us, for example, to represent the full count informa-
tion of the Google Web1T corpus (Brants and Franz,
2006) (where count values range up to 95 billion) at
a cost of just 2.47 bytes per n-gram (assuming 8-
bit fingerprints, to exclude false positives) and just
1.41 bytes per n-gram if we use 8-bit quantization
of counts. These costs are 36% and 57% respec-
tively of the space required by the Bloomier Filter
approach of Talbot and Brants (2008). For the Gi-
gaword dataset, we can store full count information
at a cost of only 1.66 bytes per n-gram. We re-
port empirical results showing that our approach al-
lows a look-up rate which is comparable to existing
modern language modeling toolkits, and much faster
than a competitor approach for space-efficient stor-
age. Finally, we propose the use of variable length
fingerprinting for use in contexts which can tolerate
a higher rate of ‘less damaging’ errors. This move
allows, for example, the cost of storing a quantized
model to be reduced to 1 byte per n-gram or less.

2 Related Work

A range of lossy methods have been proposed, to
reduce the storage requirements of LMs by discard-
ing information. Methods include the use of entropy
pruning techniques (Stolcke, 1998) or clustering (Je-
linek et al., 1990; Goodman and Gao, 2000) to re-
duce the number of n-grams that must be stored.
A key method is quantization (Whittaker and Raj,
2001), which reduces the value information stored
with n-grams to a limited set of discrete alternatives.
It works by grouping together the values (probabil-
ities or counts) associated with n-grams into clus-
ters, and replacing the value to be stored for each
n-gram with a code identifying its value’s cluster.
For a scheme with n clusters, codes require log2n
bits. A common case is 8-bit quantization, allow-
ing up to 256 distinct ‘quantum’ values. Differ-
ent methods of dividing the range of values into
clusters have been used, e.g. Whittaker and Raj
(2001) used the Lloyd-Max algorithm, whilst Fed-
erico and Bertoldi (2006) use the simpler Binning
method to quantize probabilities, and show that the
LMs so produced out-perform those produced us-
ing the Lloyd-Max method on a phrase-based ma-

chine translation task. Binning partitions the range
of values into regions that are uniformly populated,
i.e. producing clusters that contain the same num-
ber of unique values. Functionality to perform uni-
form quantization of this kind is provided as part of
various LM toolkits, such as IRSTLM. Some of the
empirical storage results reported later in the paper
relate to LMs recording n-gram count values which
have been quantized using this uniform binning ap-
proach. In the rest of this section, we turn to look
at some of the approaches used for storing language
models, irrespective of whether lossy methods are
first applied to reduce the size of the model.

2.1 Language model storage using Trie
structures

A widely used approach for storing language mod-
els employs the trie data structure (Fredkin, 1960),
which compactly represents sequences in the form
of a prefix tree, where each step down from the
root of the tree adds a new element to the sequence
represented by the nodes seen so far. Where two
sequences share a prefix, that common prefix is
jointly represented by a single node within the trie.
For language modeling purposes, the steps through
the trie correspond to words of the vocabulary, al-
though these are in practice usually represented by
24 or 32 bit integers (that have been uniquely as-
signed to each word). Nodes in the trie correspond-
ing to complete n-grams can store other informa-
tion, e.g. a probability or count value. Most mod-
ern language modeling toolkits employ some ver-
sion of a trie structure for storage, including SRILM
(Stolcke, 2002), CMU toolkit (Clarkson and Rosen-
feld, 1997), MITLM (Hsu and Glass, 2008), and
IRSTLM (Federico and Cettolo, 2007) and imple-
mentations exist which are very compact (Germann
et al., 2009). An advantage of this structure is that it
allows the stored n-grams to be enumerated. How-
ever, although this approach achieves a compact of
representation of sequences, its memory costs are
still such that very large language models require
very large storage space, far more than the Bloom
filter based methods described shortly, and far more
than might be held in memory as a basis for more
rapid access. The memory costs of such models
have been addressed using compression methods,
see Harb et al. (2009), but such extensions of the
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approach present further obstacles to rapid access.

2.2 Bloom Filter Based Language Models

Recent randomized language models (Talbot and
Osborne, 2007b; Talbot and Osborne, 2007a; Tal-
bot and Brants, 2008; Talbot and Talbot, 2008; Tal-
bot, 2009) make use of Bloom filter like structures
to map n-grams to their associated probabilities or
counts. These methods store language models in
relatively little space by not actually keeping the n-
gram key in the structure and by allowing a small
probability of returning a false positive, i.e. so that
for an n-gram that is not in the model, there is a
small risk that the model will return some random
probability instead of correctly reporting that the n-
gram was not found. These structures do not allow
enumeration over the n-grams in the model, but for
many applications this is not a requirement and their
space advantages make them extremely attractive.
Two major approaches have been used for storing
language models: Bloom Filters and Bloomier Fil-
ters. We give an overview of both in what follows.

2.2.1 Bloom Filters
A Bloom filter (Bloom, 1970) is a compact data

structure for membership queries, i.e. queries of the
form “Is this key in the Set?”. This is a weaker struc-
ture than a dictionary or hash table which also asso-
ciates a value with a key. Bloom filters use well be-
low the information theoretic lower bound of space
required to actually store the keys and can answer
queries in O(1) time. Bloom filters achieve this feat
by allowing a small probability of returning a false
positive. A Bloom filter stores a set S of n elements
in a bit array B of size m. Initially B is set to con-
tain all zeros. To store an item x from S in B we
compute k random independent hash functions on
x that each return a value in the range [0 . .m− 1].
These values serve as indices to the bit array B and
the bits at those positions are set to 1. We do this
for all elements in S, storing to the same bit array.
Elements may hash to an index inB that has already
been set to 1 and in this case we can think of these
elements as “sharing” this bit. To test whether set S
contains a key w, we run our k hash functions on w
and check if all those locations in B are set to 1. If
w ∈ S then the bloom filter will always declare that
w belongs to S, but if x /∈ S then the filter can only

say with high probability that w is not in S. This er-
ror rate depends on the number of k hash functions
and the ratio of m/n. For instance with k = 3 hash
functions and a bit array of size m = 20n, we can
expect to get a false positive rate of 0.0027.

Talbot and Osborne (2007b) and Talbot and Os-
borne (2007a) adapt Bloom filters to the requirement
of storing values for n-grams by concatenating the
key (n-gram) and value to form a single item that is
inserted into the filter. Given a quantization scheme
allowing values in the range [1 . . V ], a quantized
value v is stored by inserting into the filter all pair-
ings of the n-gram with values from 1 up to v. To re-
trieve the value for a given key, we serially probe the
filter for pairings of the key with each value from 1
upwards, until the filter returns false. The last value
found paired with the key in the filter is the value re-
turned. Talbot and Osborne use a simple logarithmic
quantization of counts that produce limited quan-
tized value ranges, where most items will have val-
ues that are low in the range, so that the serial look-
up process will require quite a low number of steps
on average. For alternative quantization schemes
that involve greater value ranges (e.g. the 256 values
of a uniform 8-bit scheme) and/or distribute n-grams
more evenly across the quantized values, the average
number of look-up steps required will be higher and
hence the speed of access per n-gram accordingly
lower. In that case also, the requirement of insert-
ing n-grams more than once in the filter (i.e. with
values from 1 up to the actual value v being stored)
could substantially reduce the space efficiency of the
method, especially if low false positive rates are re-
quired, e.g. the case k = 3,m = 20n produces a
false positive rate of 0.0027, as noted above, but in a
situation where 3 key-value items were being stored
per n-gram on average, this error rate would in fact
require a storage cost of 60 bits per original n-gram.

2.2.2 Bloomier Filters
More recently, Talbot and Brants (2008) have pro-

posed an approach to storing large language mod-
els which is based on the Bloomier Filter technique
of Chazelle et al. (2004). Bloomier Filters gener-
alize the Bloom Filter to allow values for keys to
be stored in the filter. To test whether a given key
is present in a populated Bloomier filter, we apply
k hash functions to the key and use the results as
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indices for retrieving the data stored at k locations
within the filter, similarly to look-up in a Bloom fil-
ter. In this case, however, the data retrieved from the
filter consists of k bit vectors, which are combined
with a fingerprint of the key, using bitwise XOR, to
return the stored value. The risk of false positives
is managed by making incorporating a fingerprint of
the n-gram, and by making bit vectors longer than
the minimum length required to store values. These
additional error bits have a fairly predictable impact
on error rates, i.e. with e error bits, we anticipate the
probability of falsely construing an unseen n-gram
as being stored in the filter to be 2−e. The algo-
rithm required to correctly populate the Bloomier fil-
ter with stored data is complicated, and we shall not
consider its details here. Nevertheless, when using v
bits to represent values and e bits for error detection,
this approach allows a language model to be stored
at a cost of is 1.23 · (v + e) bits per n-gram.

3 Single Minimal Perfect Hash Ranking
Approach

We first describe our basic structure we call Single
Minimal Perfect Hash Rank (S-MPHR) that is more
compact than that of Talbot and Brants (2008) while
still keeping a constant look up time. In the next
two sections we describe variations on this model to
further reduce the space required while maintaining
a constant look up time. The S-MPHR structure can
be divided into 3 parts as shown in Figure 1: Stage
1 is a minimal perfect hash function; Stage 2 is a
fingerprint and rank array; and Stage 3 is a unique
value array. We discuss each stage in turn.

FP5 FP FP1 FP3 FP2 FP FP4 ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function

Array of K distinct probability values / frequency counts

p1 p2 p3 p4 p5 p6 ... pK

rank(key5) rank(key) rank(key1) rank(key3) rank(key2) rank(key) rank(key4) ...

Figure 1: The Single MPHR structure

3.1 Minimal Perfect Hash Function
The first part of the structure is a minimal perfect
hash function that maps every n-gram in the training
data to a distinct integer in the range 0 to N − 1,
whereN is the total number of n-grams to store. We
use these integers as indices into the array of Stage
2 of our structure.

We use the Hash, displace, and compress (CHD)
(Belazzougui et al., 2009) algorithm to generate a
minimal perfect hash function that requires 2.07 bits
per key and has O(1) access. The algorithm works
as follows. Given a set S that contains N = |S|
keys (in our case n-grams) that we wish to map to
integers in the range 0 to N − 1, so that every key
maps to a distinct integer (no collisions).

The first step is to use a hash function g(x), to
map every key to a bucket B in the range 0 to r.
(For this step we use a simple hash function like the
one used for generating fingerprints in the pervious
section.)

Bi = {x ∈ S|g(x) = i} 0 ≤ i ≤ r

The function g(x) is not perfect so several keys can
map to the same bucket. Here we choose r ≤ N ,
so that the number of buckets is less than or equal
to the number of keys (to achieve 2.07 bits per key
we use r = N

5 , so that the average bucket size is 5).
The buckets are then sorted into descending order
according to the number of keys in each bucket |Bi|.

For the next step, a bit array, T , of size N is ini-
tialized to contain all zeros T [0 . . . N − 1]. This bit
array is used during construction to keep track of
which integers in the range 0 to N − 1 the minimal
perfect hash has already mapped keys to. Next we
must assume we have access to a family of random
and independent hash functions h1, h2, h3, . . . that
can be accessed using an integer index. In practice
it sufficient to use functions that behave similarly to
fully random independent hash functions and Belaz-
zougui et al. (2009) demonstrate how such functions
can be generated easily by combining two simple
hash functions.

Next is the “displacement” step. For each bucket,
in the sorted order from largest to smallest, they
search for a random hash function that maps all ele-
ments of the bucket to values in T that are currently
set to 0. Once this function has been found those
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positions in T are set to 1. So, for each bucket Bi,
it is necessary to iteratively try hash functions, h`

for ` = 1, 2, 3, . . . to hash every element of Bi to a
distinct index j in T that contains a zero.

{h`(x)|x ∈ Bi} ∩ {j|T [j] = 1} = ∅

where the size of {h`(x)|x ∈ Bi} is equal to the size
of Bi. When such a hash function is found we need
only to store the index, `, of the successful function
in an array σ and set T [j] = 1 for all positions j that
h` hashed to. Notice that the reason the largest buck-
ets are handled first is because they have the most el-
ements to displace and this is easier when the array
T contains more empty positions (zeros).

The final step in the algorithm is to compress the σ
array (which has length equal to the number of buck-
ets |B|), retaining O(1) access. This compression is
achieved using simple variable length encoding with
an index array (Fredriksson and Nikitin, 2007).

3.2 Fingerprint and Rank Array
The hash function used in Stage 1 is perfect, so it
is guaranteed to return unique integers for seen n-
grams, but our hash function will also return inte-
ger values in the range 0 to N − 1 for n-grams that
have not been seen before (were not used to build the
hash function). To reduce the probability of these
unseen n-grams giving false positives results from
our model we store a fingerprint of each n-gram in
Stage 2 of our structure that can be compared against
the fingerprints of unseen n-grams when queried.
If these fingerprints of the queried n-gram and the
stored n-gram do not match then the model will
correctly report that the n-gram has not been seen
before. The size of this fingerprint determines the
rate of false positives. Assuming that the finger-
print is generated by a random hash function, and
that the returned integer of an unseen key from the
MPH function is also random, expected false posi-
tive rate for the model is the same as the probabil-
ity of two keys randomly hashing to the same value,
1

2m , where m is the number of bits of the finger-
print. The fingerprint can be generated using any
suitably random hashing algorithm. We use Austin
Appleby’s Murmurhash21 implementation to finger-
print each n-gram and then store the m highest or-
der bits. Stage 2 of the MPHR structure also stores

1http://murmurhash.googlepages.com/

a rank for every n-gram along with the fingerprint.
This rank is an index into the array of Stage 3 of
our structure that holds the unique values associated
with any n-gram.

3.3 Unique Value Array

We describe our storage of the values associated
with n-grams in our model assuming we are storing
frequency “counts” of n-grams, but it applies also to
storing quantized probabilities. For every n-gram,
we store the ‘rank’ of the frequency count r(key),
(r(key) ∈ [0...R − 1]) and use a separate array in
Stage 3 to store the frequency count value. This is
similar to quantization in that it reduces the num-
ber of bits required for storage, but unlike quanti-
zation it does not require a loss of any information.
This was motivated by the sparsity of n-gram fre-
quency counts in corpora in the sense that if we take
the lowest n-gram frequency count and the high-
est n-gram frequency count then most of the inte-
gers in that range do not occur as a frequency count
of any n-grams in the corpus. For example in the
Google Web1T data, there are 3.8 billion unique n-
grams with frequency counts ranging from 40 to 95
Billion yet these n-grams only have 770 thousand
distinct frequency counts (see Table 2). Because
we only store the frequency rank, to keep the pre-
cise frequency information we need only dlog2Ke
bits per n-gram, where K is the number of distinct
frequency counts. To keep all information in the
Google Web1T data we need only dlog2 771058e =
20 bits per n-gram. Rather than the bits needed
to store the maximum frequency count associated
with an n-gram, dlog2 maxcounte, which for Google
Web1T would be dlog2 95119665584e = 37 bits per
n-gram.

unique maximum n-gram unique
n-grams frequency count counts

1gm 1, 585, 620 71, 363, 822 16, 896
2gm 55, 809, 822 9, 319, 466 20, 237
3gm 250, 928, 598 829, 366 12, 425
4gm 493, 134, 812 231, 973 6, 838
5gm 646, 071, 143 86, 943 4, 201
Total 1, 447, 529, 995 71, 363, 822 60, 487

Table 1: n-gram frequency counts from Gigaword corpus
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unique maximum n-gram unique
n-grams frequency count counts

1gm 13, 588, 391 95, 119, 665, 584 238, 592
2gm 314, 843, 401 8, 418, 225, 326 504, 087
3gm 977, 069, 902 6, 793, 090, 938 408, 528
4gm 1, 313, 818, 354 5, 988, 622, 797 273, 345
5gm 1, 176, 470, 663 5, 434, 417, 282 200, 079
Total 3, 795, 790, 711 95, 119, 665, 584 771, 058

Table 2: n-gram frequency counts from Google Web1T
corpus

3.4 Storage Requirements
We now consider the storage requirements of our S-
MPHR approach, and how it compares against the
Bloomier filter method of Talbot and Brants (2008).
To start with, we put aside the gains that can come
from using the ranking method, and instead con-
sider just the costs of using the CHD approach for
storing any language model. We saw that the stor-
age requirements of the Talbot and Brants (2008)
Bloomier filter method are a function of the number
of n-grams n, the bits of data d to be stored per n-
gram (with d = v + e: v bits for value storage, and
e bits for error detection), and a multiplying factor
of 1.23, giving an overall cost of 1.23d bits per n-
gram. The cost for our basic approach is also easily
computed. The explicit minimal PHF computed us-
ing the CHD algorithm brings a cost of 2.07 bits per
n-gram for the PHF itself, and so the comparable
overall cost to store a S-MPHR model is 2.07 + d
bits per n-gram. For small values of d, the Bloomier
filter approach has the smaller cost, but the ‘break-
even’ point occurs when d = 9. When d is greater
than 9 bits (as it usually will be), our approach wins
out, being up to 18% more efficient.

The benefits that come from using the ranking
method (Stage 3), for compactly storing count val-
ues, can only be evaluated in relation to the distribu-
tional characteristics specific corpora, for which we
show results in Section 6.

4 Compressed MPHR Approach

Our second approach, called Compressed MPHR,
further reduces the size of the model whilst main-
taining O(1) time to query the model. Most com-
pression techniques work by exploiting the redun-
dancy in data. Our fingerprints are unfortunately
random sequences of bits, so trying to compress

FP5 FP FP1 FP3 FP2 FP FP4 ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function

Array of K distinct probability values / frequency counts

p1 p2 p3 p4 p5 p6 ... pK

rank(key5) rank(key) rank(key1) rank(key3) rank(key2) rank(key) rank(key4) ...

Fingerprint Array

Compressed Rank Array

Figure 2: Compressed MPHR structure

these is fruitless, but the ranks associated with n-
grams contain much redundancy and so are likely to
compress well. We therefore modify our original ar-
chitecture to put the ranks and fingerprints into sep-
arate arrays, of which the ranks array will be com-
pressed, as shown in Figure 2.

Much like the final stage of the CHD minimal
perfect hash algorithm we employ a random access
compression algorithm of Fredriksson and Nikitin
(2007) to reduce the size required by the array of
ranks. This method allows compression while re-
taining O(1) access to query the model.

The first step in the compression is to encode
the ranks array using a dense variable length cod-
ing. This coding works by assigning binary codes
with different lengths to each number in the rank ar-
ray, based on how frequent that number occurs. Let
s1, s2, s3, . . . , sK be the ranks that occur in the rank
array sorted by there frequency. Starting with most
frequent number in the rank array (clearly 1 is the
most common frequency count in the data unless it
has been pruned) s1 we assign it the bit code 0 and
then assign s2 the bit code 1, we then proceed by as-
signing bit codes of two bits, so s3 is assigned 00, s4
is assigned 01, etc. until all two bit codes are used
up. We then proceed to assign 3 bit codes and so on.
All of the values from the rank array are coded in
this form and concatenated to form a large bit vector
retaining their original ordering. The length in bits
for the ith number is thus blog2 (i+ 2)c and so the
number of bits required for the whole variable length
coded rank array is: b =

∑K
i=0 f(si)blog2 (i+ 2)c.

Where f() gives the frequency that the rank occurs
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andK is the total number of distinct ranks. The code
for the ith number is the binary representation with
length blog2 (i+ 2)c of the number obtained using
the formula:

code = i+ 2− 2blog2 (i+2)c

This variable length coded array is not useful by it-
self because we do not know where each number be-
gins and ends, so we also store an index array hold
this information. We create an additional bit array
D of the same size b as the variable length coded ar-
ray that simply contains ones in all positions that a
code begins in the rank array and zeros in all other
positions. That is the ith rank in the variable length
coded array occurs at position select1(D, i), where
select1 gives the position of the ith one in the ar-
ray. We do not actually store theD array, but instead
we build a more space efficient structure to answer
select1 queries. Due the distribution of n-gram fre-
quencies, the D array is typically dense in contain-
ing a large proportion of ones, so we build a rank9sel
dictionary structure (Vigna, 2008) to answer these
queries in constant time. We can use this structure
to identify the ith code in our variable length en-
coded rank array by querying for its starting posi-
tion, select1(D, i), and compute its length using its
ending position, select1(D, i+1)−1. The code and
its length can then be decoded to obtain the original
rank:

rank = code + 2(length in bits) − 2

5 Tiered MPHR

In this section we describe an alternative route to ex-
tending our basic S-MPHR model to achieve better
space efficiency, by using multiple hash stores. The
method exploits distributional characteristics of the
data, i.e. that lower rank values (those assigned to
values shared by very many n-grams) are sufficient
for representing the value information of a dispro-
portionately large subset of the data. For the Google
Web 1T data, for example, we find that the first 256
ranks account for nearly 85% of distinct n-grams, so
if we could store ranks for these n-grams using only
the 8 bits they require, whilst allowing perhaps 20
bits per n-gram for the remaining 15%, we would
achieve an average of just under 10 bits per n-gram
to store all the rank values.

To achieve this gain, we might partition the n-
gram data into subsets requiring different amounts
of space for value storage, and put these subsets in
separate MPHRs, e.g. for the example just men-
tioned, with two MPHRs having 8 and 20 bit value
storage respectively. Partitioning to a larger number
h of MPHRs might further reduce this average cost.
This simple approach has several problems. Firstly,
it potentially requires a series of look up steps (i.e.
up to h) to retrieve the value for any n-gram, with
all hashes needing to be addressed to determine the
unseen status of an unseen n-gram. Secondly, mul-
tiple look ups will produce a compounding of error
rates, since we have up to h opportunities to falsely
construe an unseen n-gram as seen, or to construe
a seen n-gram as being stored in the wrong MPHR
and so return an incorrect count for it.

FP5 FP FP1 FP3 FP2 FP FP4 ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function #1

rank(key5) Redirect 1 Redirect 2 rank(key3) rank(key2) Redirect 1 Redirect 2 ...

Minimal Perfect Hash Function  #2 Minimal Perfect Hash Function #3

rank(key) rank(key) ... rank(key) rank(key) rank(key) ... rank(key)

Figure 3: Tiered minimal perfect hash data structure

We will here explore an alternative approach that
we call Tiered MPHR, which avoids this compound-
ing of errors, and which limits the number of looks
ups to a maximum of 2, irrespective of how many
hashes are used. This approach employs a single
top-level MPHR which has the full set of n-grams
for its key-set, and stores a fingerprint for each. In
addition, space is allocated to store rank values, but
with some possible values being reserved to indicate
redirection to other secondary hashes where values
can be found. Each secondary hash has a minimal
perfect hash function that is computed only for the
n-grams whose values it stores. Secondary hashes
do not need to record fingerprints, as fingerprint test-
ing is done in the top-level hash.

For example, we might have a configuration of
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three hashes, with the top-level MPHR having 8-bit
storage, and with secondary hashes having 10 and 20
bit storage respectively. Two values of the 8-bit store
(e.g. 0 and 1) are reserved to indicate redirection
to the specific secondary hashes, with the remaining
values (2 . . 255) representing ranks 1 to 254. The
10-bit secondary hash can store 1024 different val-
ues, which would then represent ranks 255 to 1278,
with all ranks above this being represented in the
20-bit hash. To look up the count for an n-gram,
we begin with the top-level hash, where fingerprint
testing can immediately reject unseen n-grams. For
some seen n-grams, the required rank value is pro-
vided directly by the top-level hash, but for others
a redirection value is returned, indicating precisely
the secondary hash in which the rank value will be
found by simple look up (with no additional finger-
print testing). Figure 3 gives a generalized presenta-
tion of the structure of tiered MPHRs. Let us repre-
sent a configuration for a tiered MPHR as a sequence
of bit values for their value stores, e.g. (8,10,20)
for the example above, or H = (b1, . . . .bh) more
generally (with b1 being the top-level MPHR).

The overall memory cost of a particular config-
uration depends on distributional characteristics of
the data stored. The top-level MPHR of config-
uration (b1, . . . .bh) stores all n-grams in its key-
set, so its memory cost is calculated as before as
N × (2.07 +m + b1) (m the fingerprint size). The
top-level MPHR must reserve h− 1 values for redi-
rection, and so covers ranks [1 . . (2b1 −h+1)]. The
second MPHR then covers the next 2b2 ranks, start-
ing at (2b1 − h+ 2), and so on for further secondary
MPHRs. This range of ranks determines the pro-
portion µi of the overall n-gram set that each sec-
ondary MPHR bi stores, and so the memory cost of
each secondary MPHR is N ×µi× (2.07+ bi). The
optimal T-MPHR configuration for a given data set
is easily determined from distributional information
(of the coverage of each rank), by a simple search.

6 Results

In this section, we present some results comparing
the performance of our new storage methods to some
of the existing methods, regarding the costs of stor-
ing LMs, and regarding the data access speeds that
alternative systems allow.

Method
Gigaword Web1T

full quantized full quantized
Bloomier 6.00 3.08 7.53 3.08
S-MPHR 3.76 2.76 4.26 2.76
C-MPHR 2.19 2.09 3.40 2.09
T-MPHR 2.16 1.91 2.97 1.91

Table 3: Space usage in bytes/ngram using 12-bit finger-
prints and storing all 1 to 5 grams

Method
Gigaword Web1T

full quantized full quantized
Bloomier 5.38 2.46 6.91 2.46
S-MPHR 3.26 2.26 3.76 2.26
C-MPHR 1.69 1.59 2.90 1.59
T-MPHR 1.66 1.41 2.47 1.41

Table 4: Space usage in bytes/n-gram using 8-bit finger-
prints and storing all 1 to 5 grams

6.1 Comparison of memory costs

To test the effectiveness of our models we built mod-
els storing n-grams and full frequency counts for
both the Gigaword and Google Web1T corpus stor-
ing all 1,2,3,4 and 5 grams. These corpora are very
large, e.g. the Google Web1T corpus is 24.6GB
when gzip compressed and contains over 3.7 bil-
lion n-grams, with frequency counts as large as 95
billion, requiring at least 37 bits to be stored. Us-
ing the Bloomier algorithm of Talbot and Brants
(2008) with 37 bit values and 12 bit fingerprints
would require 7.53 bytes/n-gram, so we would need
26.63GB to store a model for the entire corpus.

In comparison, our S-MPHR method requires
only 4.26 bytes per n-gram to store full frequency
count information and stores the entire Web1T cor-
pus in just 15.05GB or 57% of the space required by
the Bloomier method. This saving is mostly due to
the ranking method allowing values to be stored at a
cost of only 20 bits per n-gram. Applying the same
rank array optimization to the Bloomier method sig-
nificantly reduces its memory requirement, but S-
MPHR still uses only 86% of the space that the
Bloomier approach requires. Using T-MPHR in-
stead, again with 12-bit fingerprints, we can store
full counts for the Web 1T corpus in 10.50GB,
which is small enough to be held in memory on
many modern machines. Using 8-bit fingerprints, T-
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Method bytes/
ngram

SRILM Full, Compact 33.6
IRSTLM, 8-bit Quantized 9.1

Bloomier 12bit fp, 8bit Quantized 3.08
S-MPHR 12bit fp, 8bit Quantized 2.76
C-MPHR 12bit fp, 8bit Quantized 2.09
T-MPHR 12bit fp, 8bit Quantized 1.91

Table 5: Comparison between approaches for storing all
1 to 5 grams of the Gigaword Corpus

MPHR can store this data in just 8.74GB.
Tables 3, 4 and 5 show results for all methods2 on

both corpora, for storing full counts, and for when
8-bit binning quantization of counts is used.

6.2 Access speed comparisons

The three models we present in this paper perform
queries in O(1) time and are thus asymptotically
optimal, but this does not guarantee they perform
well in practice, therefore in this section we mea-
sure query speed on a large set of n-grams and com-
pare it to that of modern language modeling toolk-
its. We build a model of all unigrams and bigrams
in the Gigaword corpus (see Table 1) using the C-
MPHR method, SRILM (Stolcke, 2002), IRSTLM
(Federico and Cettolo, 2007), and randLM3 (Talbot
and Osborne, 2007a) toolkits. RandLM is a mod-
ern language modeling toolkit that uses Bloom filter
based structures to store large language models and
has been integrated so that it can be used as the lan-
guage model storage for the Moses statistical ma-
chine translation system (Koehn et al., 2007). We
use randLM with the BloomMap (Talbot and Tal-
bot, 2008) storage structure option with 8 bit quan-
tized values and an error rate equivalent to using 8
bit fingerprints (as recommended in the Moses doc-
umentation). All methods are implemented in C++
and are run on a machine with 2.80GHz Intel Xeon
E5462 processor and 64 GB of RAM. In addition
we show a comparison to using a modern database,
MySQL 5.0, to store the same data. We measure
the speed of querying all models for the 55 mil-
lion distinct bigrams that occur in the Gigaword,

2All T-MPHR results are for optimal configurations: Gi-
gaword full:(2,3,16), Gigaword quant:(1,8), Web1T
full:(8,6,7,8,9,10,13,20), Web1T quant:(1,8).

3http://sourceforge.net/projects/randlm/

Test Time Speed
(hr :min:sec) queries/sec

C-MPHR 00 : 01 : 50 507362
IRSTLM 00 : 02 : 12 422802
SRILM 00 : 01 : 29 627077
randLM 00 : 27 : 28 33865

MySQL 5 29 : 25 : 01 527

Table 6: Look-up speed performance comparison for C-
MPHR and several other LM storage methods

these results are shown in Table 6. Unsurprisingly
all methods perform significantly faster than using a
database as they build models that reside completely
in memory. The C-MPHR method tested here is
slower than both S-MPHR and T-MPHR models due
to the extra operations required for access to the vari-
able length encoded array yet still performs similarly
to SRILM and IRSTLM and is 14.99 times faster
than using randLM.

7 Variable Length Fingerprints

To conclude our presentation of new methods for
space-efficient language model storage, we suggest
an additional possibility for reducing storage costs,
which involves using different sizes of fingerprint
for different n-grams. Recall that the only errors al-
lowed by our approach are false-positives, i.e. where
an unseen n-gram is falsely construed as being part
of the model and a value returned for it. The idea be-
hind using different sizes of fingerprint is that, intu-
itively, some possible errors seem worse than others,
and in particular, it seems likely to be less damaging
if we falsely construe an unseen n-gram as being a
seen n-gram that has a low count or probability than
as being one with a high count or probability.

False positives arise when our perfect hashing
method maps an unseen n-gram to position where
the stored n-gram fingerprint happens to coincide
with that computed for the unseen n-gram. The risk
of this occurring is a simple function of the size
of fingerprints. To achieve a scheme that admits a
higher risk of less damaging errors, but enforces a
lower risk of more damaging errors, we need only
store shorter fingerprints for n-grams in our model
that have low counts or probabilities, and longer
fingerprints for n-grams with higher values. This
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idea could be implemented in different ways, e.g.
by storing fingerprints of different lengths contigu-
ously within a bit array, and constructing a ‘selection
structure’ of the kind described in Section 4 to allow
us to locate a given fingerprint within the bit array.

FP5 FP FP1 FP3 FP2 FP FP4 ...

key1 key2 key3 key4 key5 keyN...

Minimal Perfect Hash Function

rank(key5) Redirect 1 Redirect 2 rank(key3) rank(key2) Redirect 1 Redirect 2 ...

Minimal Perfect Hash Function

rank(key) rank(key) ... rank(key)

Minimal Perfect Hash Function

first j bits of 
fingerprint

FP FP ... FP

last m - j 
bits of 

fingerprint
rank(key) rank(key) ... rank(key)

FP FP ... FP

Figure 4: Variable length fingerprint T-MPHR structure
using j bit fingerprints for the n-grams which are most
rare and m bit fingerprints for all others.

We here instead consider an alternative imple-
mentation, based on the use of tiered structures. Re-
call that for T-MPHR, the top-level MPHR has all
n-grams of the model as keys, and stores a fin-
gerprint for each, plus a value that may represent
an n-gram’s count or probability, or that may redi-
rect to a second-level hash where that information
can be found. Redirection is done for items with
higher counts or probabilities, so we can achieve
lower error rates for precisely these items by stor-
ing additional fingerprint information for them in
the second-level hash (see Figure 4). For example,
we might have a top-level hash with only 4-bit fin-
gerprints, but have an additional 8-bits of fingerprint
for items also stored in a second-level hash, so there
is quite a high risk (close to 1

16 ) of returning a low
count for an unseen n-gram, but a much lower risk
of returning any higher count. Table 7 applies this
idea to storing full and quantized counts of the Gi-
gaword and Web 1T models, when fingerprints in the
top-level MPHR have sizes in the range 1 to 6 bits,
with the fingerprint information for items stored in
secondary hashes being ‘topped up’ to 12 bits. This
approach achieves storage costs of around 1 byte per
n-gram or less for the quantized models.

Bits in
lowest
finger-
print

Giga-
word
Quan-
tized

Web1T
Quan-
tized

Giga-
word
All

Web1T
All

1 0.55 0.55 1.00 1.81
2 0.68 0.68 1.10 1.92
3 0.80 0.80 1.21 2.02
4 0.92 0.92 1.31 2.13
5 1.05 1.04 1.42 2.23
6 1.17 1.17 1.52 2.34

Table 7: Bytes per fingerprint for T-MPHR model using 1
to 6 bit fingerprints for rarest n-grams and 12 bit (in total)
fingerprints for all other n-grams. (All configurations are
as in Footnote 2.)

8 Conclusion

We have presented novel methods of storing large
language models, consisting of billions of n-grams,
that allow for quantized values or frequency counts
to be accessed quickly and which require far less
space than all known approaches. We show that it
is possible to store all 1 to 5 grams in the Gigaword
corpus, with full count information at a cost of just
1.66 bytes per n-gram, or with quantized counts for
just 1.41 bytes per n-gram. We have shown that our
models allow n-gram look-up at speeds comparable
to modern language modeling toolkits (which have
much greater storage costs), and at a rate approxi-
mately 15 times faster than a competitor approach
for space-efficient storage.
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Abstract

Syntax-based translation models shouldin
principle be efficient with polynomially-sized
search space, but in practice they are often
embarassingly slow, partly due to the cost
of language model integration. In this paper
we borrow from phrase-based decoding the
idea to generate a translationincrementally
left-to-right, and show that for tree-to-string
models, with a clever encoding of deriva-
tion history, this method runs in average-
case polynomial-time in theory, and linear-
time with beam search in practice (whereas
phrase-based decoding is exponential-time in
theory and quadratic-time in practice). Exper-
iments show that, with comparable translation
quality, our tree-to-string system (in Python)
can run more than 30 times faster than the
phrase-based system Moses (in C++).

1 Introduction

Most efforts in statistical machine translation so far
are variants of either phrase-based or syntax-based
models. From a theoretical point of view, phrase-
based models are neither expressive nor efficient:
they typically allow arbitrary permutations and re-
sort to language models to decide the best order. In
theory, this process can be reduced to the Traveling
Salesman Problem and thus requires an exponential-
time algorithm (Knight, 1999). In practice, the de-
coder has to employ beam search to make it tractable
(Koehn, 2004). However, even beam search runs in
quadratic-time in general (see Sec. 2), unless a small
distortion limit (say,d=5) further restricts the possi-
ble set of reorderings to those local ones by ruling
out any long-distance reorderings that have a “jump”

in theory in practice
phrase-based exponential quadratic
tree-to-string polynomial linear

Table 1: [main result] Time complexity of our incremen-
tal tree-to-string decoding compared with phrase-based.
In practice means “approximate search with beams.”

longer thand. This has been the standard prac-
tice with phrase-based models (Koehn et al., 2007),
which fails to capture important long-distance re-
orderings like SVO-to-SOV.

Syntax-based models, on the other hand, use
syntactic information to restrict reorderings to
a computationally-tractable and linguistically-
motivated subset, for example those generated by
synchronous context-free grammars (Wu, 1997;
Chiang, 2007). In theory the advantage seems quite
obvious: we can now express global reorderings
(like SVO-to-VSO) in polynomial-time (as opposed
to exponential in phrase-based). But unfortunately,
this polynomial complexity is super-linear (being
generally cubic-time or worse), which is slow in
practice. Furthermore, language model integration
becomes more expensive here since the decoder now
has to maintain target-language boundary words at
both ends of a subtranslation (Huang and Chiang,
2007), whereas a phrase-based decoder only needs
to do this at one end since the translation is always
growing left-to-right. As a result, syntax-based
models are often embarassingly slower than their
phrase-based counterparts, preventing them from
becoming widely useful.

Can we combine the merits of both approaches?
While other authors have explored the possibilities
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of enhancing phrase-based decoding with syntax-
aware reordering (Galley and Manning, 2008), we
are more interested in the other direction, i.e., can
syntax-based models learn from phrase-based de-
coding, so that they still model global reordering, but
in an efficient (preferably linear-time) fashion?

Watanabe et al. (2006) is an early attempt in
this direction: they design a phrase-based-style de-
coder for the hierarchical phrase-based model (Chi-
ang, 2007). However, this algorithm even with the
beam search still runs in quadratic-time in prac-
tice. Furthermore, their approach requires grammar
transformation that converts the original grammar
into an equivalent binary-branching Greibach Nor-
mal Form, which is not always feasible in practice.

We take a fresh look on this problem and turn our
focus to one particular syntax-based paradigm, tree-
to-string translation (Liu et al., 2006; Huang et al.,
2006), since this is the simplest and fastest among
syntax-based approaches. We develop an incremen-
tal dynamic programming algorithm and make the
following contributions:

• we show that, unlike previous work, our in-
cremental decoding algorithm runs in average-
casepolynomial-time in theory for tree-to-
string models, and the beam search version runs
in linear-time in practice (see Table 1);

• large-scale experiments on a tree-to-string sys-
tem confirm that, with comparable translation
quality, our incremental decoder (in Python)
can run more than 30 times faster than the
phrase-based system Moses (in C++) (Koehn
et al., 2007);

• furthermore, on the same tree-to-string system,
incremental decoding is slightly faster than the
standard cube pruning method at the same level
of translation quality;

• this is also the first linear-time incremental de-
coder that performs global reordering.

We will first briefly review phrase-based decod-
ing in this section, which inspires our incremental
algorithm in the next section.

2 Background: Phrase-based Decoding

We will use the following running example from
Chinese to English to explain both phrase-based and
syntax-based decoding throughout this paper:

0 Bùsh́ı 1

Bush
yǔ 2

with
Sh̄alóng3

Sharon
jǔx́ıng 4

hold
le
-ed

5 hùıtán 6

meeting

‘Bush held talks with Sharon’

2.1 Basic Dynamic Programming Algorithm

Phrase-based decoders generate partial target-
language outputs in left-to-right order in the form
of hypotheses(Koehn, 2004). Each hypothesis has
a coverage vectorcapturing the source-language
words translated so far, and can be extended into a
longer hypothesis by a phrase-pair translating an un-
covered segment. This process can be formalized as
a deductive system. For example, the following de-
duction step grows a hypothesis by the phrase-pair
〈yǔ Sh̄alóng, with Sharon〉 covering Chinese span
[1-3]:

(• •••6) : (w, “Bush held talks”)

(•••3•••) : (w′, “Bush held talks with Sharon”) (1)

where a• in the coverage vector indicates the source
word at this position is “covered” and wherew and
w′ = w+c+d are the weights of the two hypotheses,
respectively, withc being the cost of the phrase-pair,
and d being thedistortion cost. To computed we
also need to maintain the ending position of the last
phrase (the3 and6 in the coverage vector).

To add a bigram model, we split each−LM item
above into a series of+LM items; each+LM item
has the form(v,a ) wherea is the last word of the
hypothesis. Thus a+LM version of (1) might be:

(• •••6,
talks) : (w, “Bush held talks”)

(•••3•••,
Sharon) : (w′, “Bush held talks with Sharon”)

where the score of the resulting+LM item

w′ = w + c + d− log Plm(with | talk)

now includes acombination costdue to the bigrams
formed when applying the phrase-pair. The com-
plexity of this dynamic programming algorithm for
g-gram decoding isO(2nn2|V |g−1) wheren is the
sentence length and|V | is the English vocabulary
size (Huang and Chiang, 2007).
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1 2 3 4 5

Figure 1: Beam search in phrase-based decoding expands
the hypotheses in the current bin (#2) into longer ones.

VP

PP

P

yǔ

x1:NP

VP

VV

jǔx́ıng

AS

le

x2:NP
→ heldx2 with x1

Figure 2: Tree-to-string ruler3 for reordering.

2.2 Beam Search in Practice

To make the exponential algorithm practical, beam
search is the standard approximate search method
(Koehn, 2004). Here we group+LM items into n
bins, with each binBi hosting at mostb items that
cover exactlyi Chinese words (see Figure 1). The
complexity becomesO(n2b) because there are a to-
tal of O(nb) items in all bins, and to expand each
item we need to scan the whole coverage vector,
which costsO(n). This quadratic complexity is still
too slow in practice and we often set a smalldistor-
tion limit of dmax (say, 5) so that no jumps longer
than dmax are allowed. This method reduces the
complexity toO(nbdmax) but fails to capture long-
distance reorderings (Galley and Manning, 2008).

3 Incremental Decoding for Tree-to-String
Translation

We will first briefly review tree-to-string translation
paradigm and then develop an incremental decoding
algorithm for it inspired by phrase-based decoding.

3.1 Tree-to-string Translation

A typical tree-to-string system (Liu et al., 2006;
Huang et al., 2006) performs translation in two
steps: parsing and decoding. A parser first parses the
source language input into a 1-best treeT , and the
decoder then searches for the bestderivation(a se-

(a) Bùsh́ı [yǔ Sh̄alóng]1 [jǔx́ıng le hùıtán ]2

⇓ 1-best parser

(b) IP@ǫ

NP@1

Bùsh́ı

VP@2

PP@2.1

P

yǔ

NP@2.1.2

Sh̄alóng

VP@2.2

VV

jǔx́ıng

AS

le

NP@2.2.3

hùıtán
r1 ⇓

(c) NP@1

Bùsh́ı

VP@2

PP@2.1

P

yǔ

NP@2.1.2

Sh̄alóng

VP@2.2

VV

jǔx́ıng

AS

le

NP@2.2.3

hùıtán

r2 ⇓ r3 ⇓

(d) Bush held NP@2.2.3

hùıtán

with NP@2.1.2

Sh̄alóng

r4 ⇓ r5 ⇓

(e) Bush [held talks]2 [with Sharon]1

Figure 3: An example derivation of tree-to-string trans-
lation (much simplified from Mi et al. (2008)). Shaded
regions denote parts of the tree that matches the rule.

quence of translation steps)d∗ that converts source
treeT into a target-language string.

Figure 3 shows how this process works. The Chi-
nese sentence (a) is first parsed into tree (b), which
will be converted into an English string in 5 steps.
First, at the root node, we apply ruler1 preserving
the top-level word-order

(r1) IP (x1:NP x2:VP)→ x1 x2

which results in two unfinished subtrees, NP@1 and
VP@2 in (c). HereX@η denotes a tree node of la-
bel X at tree addressη (Shieber et al., 1995). (The
root node has addressǫ, and the first child of nodeη
has addressη.1, etc.) Then ruler2 grabs theBùsh́ı
subtree and transliterate it into the English word
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in theory in practice

phrase* O(2nn2 · |V |g−1) O(n2b)

tree-to-str O(nc · |V |4(g−1)) O(ncb2)

this work* O(nk log2(cr) · |V |g−1) O(ncb)

Table 2: Summary of time complexities of various algo-
rithms.b is the beam width,V is the English vocabulary,
and c is the number of translation rules per node. As a
special case, phrase-based decoding with distortion limit
dmax is O(nbdmax). *: incremental decoding algorithms.

“Bush”. Similarly, ruler3 shown in Figure 2 is ap-
plied to the VP subtree, which swaps the two NPs,
yielding the situation in (d). Finally two phrasal
rulesr4 andr5 translate the two remaining NPs and
finish the translation.

In this framework, decoding without language
model (−LM decoding) is simply a linear-time
depth-first search with memoization (Huang et al.,
2006), since a tree ofn words is also of size
O(n) and we visit every node only once. Adding
a language model, however, slows it down signifi-
cantly because we now have to keep track of target-
language boundary words, but unlike the phrase-
based case in Section 2, here we have to remember
both sides the leftmost and the rightmost boundary
words: each node is now split into+LM items like
(η a ⋆ b) whereη is a tree node, anda andb are left
and right English boundary words. For example, a
bigram+LM item for node VP@2 might be

(VP@2 held⋆ Sharon).

This is also the case with other syntax-based models
like Hiero or GHKM: language model integration
overhead is the most significant factor that causes
syntax-based decoding to be slow (Chiang, 2007). In
theory+LM decoding isO(nc|V |4(g−1)), whereV
denotes English vocabulary (Huang, 2007). In prac-
tice we have to resort to beam search again: at each
node we would only allow top-b +LM items. With
beam search, tree-to-string decoding with an inte-
grated language model runs in timeO(ncb2), where
b is the size of the beam at each node, andc is (max-
imum) number of translation rules matched at each
node (Huang, 2007). See Table 2 for a summary.

3.2 Incremental Decoding

Can we borrow the idea of phrase-based decoding,
so that we also grow the hypothesis strictly left-
to-right, and only need to maintain the rightmost
boundary words?

The key intuition is to adapt the coverage-vector
idea from phrase-based decoding to tree-to-string
decoding. Basically, a coverage-vector keeps track
of which Chinese spans have already been translated
and which have not. Similarly, here we might need
a “tree coverage-vector” that indicates which sub-
trees have already been translated and which have
not. But unlike in phrase-based decoding, we can
not simply choose any arbitrary uncovered subtree
for the next step, since rules already dictate which
subtree to visit next. In other words what we need
here is not really a tree coverage vector, but more of
a derivation history.

We develop this intuition into an agenda repre-
sented as a stack. Since tree-to-string decoding is a
top-down depth-first search, we can simulate this re-
cursion with a stack of active rules, i.e., rules that are
not completed yet. For example we can simulate the
derivation in Figure 3 as follows. At the root node
IP@ǫ, we choose ruler1, and push its English-side
to the stack, with variables replaced by matched tree
nodes, herex1 for NP@1 andx2 for VP@2. So we
have the following stack

s = [� NP@1 VP@2],

where the dot� indicates the next symbol to process
in the English word-order. Since node NP@1 is the
first in the English word-order, we expand it first,
and push ruler2 rooted at NP to the stack:

[� NP@1 VP@2 ] [ � Bush].

Since the symbol right after the dot in the top rule is
a word, we immediately grab it, and append it to the
current hypothesis, which results in the new stack

[� NP@1 VP@2 ] [Bush � ].

Now the top rule on the stack has finished (dot is at
the end), so we trigger a “pop” operation which pops
the top rule and advances the dot in the second-to-
top rule, denoting that NP@1 is now completed:

[NP@1
� VP@2].
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stack hypothesis
[<s> � IP@ǫ

</s>] <s>

p [<s> � IP@ǫ
</s>] [ � NP@1 VP@2] <s>

p [<s> � IP@ǫ
</s>] [ � NP@1 VP@2] [ � Bush] <s>

s [<s> � IP@ǫ
</s>] [ � NP@1 VP@2] [Bush � ] <s> Bush

c [<s> � IP@ǫ
</s>] [NP@1

� VP@2] <s> Bush
p [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [ � held NP@2.2.3 with NP@2.1.2] <s> Bush

s [<s> � IP@ǫ
</s>] [NP@1

� VP@2] [held � NP@2.2.3 with NP@2.1.2] <s> Bush held
p [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [held � NP@2.2.3 with NP@2.1.2] [ � talks] <s> Bush held

s [<s> � IP@ǫ
</s>] [NP@1

� VP@2] [held � NP@2.2.3 with NP@2.1.2] [talks � ] <s> Bush held talks
c [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [held NP@2.2.3

� with NP@2.1.2] <s> Bush held talks
s [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [held NP@2.2.3 with � NP@2.1.2] <s> Bush held talks with

p [<s> � IP@ǫ
</s>] [NP@1

� VP@2] [held NP@2.2.3 with � NP@2.1.2] [ � Sharon] <s> Bush held talks with
s [<s> � IP@ǫ

</s>] [NP@1
� VP@2] [held NP@2.2.3 with � NP@2.1.2] [Sharon� ] <s> Bush held talks with Sharon

c [<s> � IP@ǫ
</s>] [NP@1

� VP@2] [held NP@2.2.3 with NP@2.1.2
� ] <s> Bush held talks with Sharon

c [<s> � IP@ǫ
</s>] [NP@1 VP@2

� ] <s> Bush held talks with Sharon
c [<s> IP@ǫ

� </s>] <s> Bush held talks with Sharon
s [<s> IP@ǫ

</s>� ] <s> Bush held talks with Sharon</s>

Figure 4: Simulation of tree-to-string derivation in Figure 3 in the incremental decoding algorithm. Actions:p, predict;
s, scan;c, complete (see Figure 5).

Item ℓ : 〈s, ρ〉 : w; ℓ: step,s: stack,ρ: hypothesis,w: weight

Equivalence ℓ : 〈s, ρ〉 ∼ ℓ : 〈s′, ρ′〉 iff. s = s′ andlastg−1(ρ) = lastg−1(ρ
′)

Axiom 0 : 〈[<s>g−1
� ǫ </s>], <s>

g−1〉 : 0

Predict
ℓ : 〈... [α � η β], ρ〉 : w

ℓ + |C(r)| : 〈... [α � η β] [� f(η, E(r))], ρ〉 : w + c(r)
match(η, C(r))

Scan
ℓ : 〈... [α � e β], ρ〉 : w

ℓ : 〈... [α e � β], ρe〉 : w − log Pr(e | lastg−1(ρ))

Complete
ℓ : 〈... [α � η β] [γ�], ρ〉 : w

ℓ : 〈... [α η � β], ρ〉 : w

Goal |T | : 〈[<s>g−1 ǫ </s>�], ρ</s>〉 : w

Figure 5: Deductive system for the incremental tree-to-string decoding algorithm. Functionlastg−1(·) returns the
rightmostg − 1 words (forg-gram LM), andmatch(η, C(r)) tests matching of ruler against the subtree rooted at
nodeη. C(r) andE(r) are the Chinese and English sides of ruler, and functionf(η,E(r)) = [xi 7→ η.var(i)]E(r)
replaces each variablexi on the English side of the rule with the descendant nodeη.var(i) underη that matchesxi.
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The next step is to expand VP@2, and we use ruler3

and push its English-side “VP→ heldx2 with x1”
onto the stack, again with variables replaced by
matched nodes:

[NP@1
� VP@2] [ � held NP@2.2.3 with NP@2.1.2]

Note that this is a reordering rule, and the stack al-
ways follows the English word order because we
generate hypothesis incrementally left-to-right. Fig-
ure 4 works out the full example.

We formalize this algorithm in Figure 5. Each
item 〈s, ρ〉 consists of a stacks and a hypothesis
ρ. Similar to phrase-based dynamic programming,
only the lastg−1 words ofρ are part of the signature
for decoding withg-gram LM. Each stack is a list of
dotted rules, i.e., rules with dot positions indicting
progress, in the style of Earley (1970). We call the
last (rightmost) rule on the stack thetop rule, which
is the rule being processed currently. The symbol af-
ter the dot in the top rule is called thenext symbol,
since it is the symbol to expand or process next. De-
pending on the next symbola, we can perform one
of the three actions:

• if a is a nodeη, we perform a Predict action
which expandsη using a ruler that can pattern-
match the subtree rooted atη; we pushr is to
the stack, with the dot at the beginning;

• if a is an English word, we perform a Scan ac-
tion which immediately adds it to the current
hypothesis, advancing the dot by one position;

• if the dot is at the end of the top rule, we
perform a Complete action which simply pops
stack and advance the dot in the new top rule.

3.3 Polynomial Time Complexity

Unlike phrase-based models, we show here
that incremental decoding runs in average-case
polynomial-time for tree-to-string systems.

Lemma 1. For an input sentence ofn words and
its parse tree of depthd, the worst-case complex-
ity of our algorithm isf(n, d) = c(cr)d|V |g−1 =
O((cr)dng−1), assuming relevant English vocabu-
lary |V | = O(n), and where constantsc, r andg are
the maximum number of rules matching each tree
node, the maximum arity of a rule, and the language-
model order, respectively.

Proof. The time complexity depends (in part) on the
number of all possible stacks for a tree of depthd. A
stack is a list of rules covering a path from the root
node to one of the leaf nodes in the following form:

R1

︷ ︸︸ ︷

[... �η1...]

R2

︷ ︸︸ ︷

[... �η2...] ...

Rs

︷ ︸︸ ︷

[... �ηs...],

whereη1 = ǫ is the root node andηs is a leaf node,
with stack depths ≤ d. Each ruleRi(i > 1) ex-
pands nodeηi−1, and thus hasc choices by the defi-
nition of grammar constantc. Furthermore, each rule
in the stack is actually a dotted-rule, i.e., it is associ-
ated with a dot position ranging from 0 tor, wherer
is the arity of the rule (length of English side of the
rule). So the total number of stacks isO((cr)d).

Besides the stack, each state also maintains(g−1)
rightmost words of the hypothesis as the language
model signature, which amounts toO(|V |g−1). So
the total number of states isO((cr)d|V |g−1). Fol-
lowing previous work (Chiang, 2007), we assume
a constant number of English translations for each
foreign word in the input sentence, so|V | = O(n).
And as mentioned above, for each state, there arec
possible expansions, so the overall time complexity
is f(n, d) = c(cr)d|V |g−1 = O((cr)dng−1).

We do average-case analysis below because the
tree depth (height) for a sentence ofn words is a
random variable: in the worst-case it can be linear in
n (degenerated into a linear-chain), but we assume
this adversarial situation does not happen frequently,
and the average tree depth isO(log n).

Theorem 1. Assume for eachn, the depth of a
parse tree ofn words, notateddn, distributes nor-
mally with logarithmic mean and variance, i.e.,
dn ∼ N (µn, σ2

n), whereµn = O(log n) andσ2
n =

O(log n), then the average-case complexity of the
algorithm ish(n) = O(nk log2(cr)+g−1) for constant
k, thus polynomial inn.

Proof. From Lemma 1 and the definition of average-
case complexity, we have

h(n) = Edn∼N (µn,σ2
n
)[f(n, dn)],

whereEx∼D[·] denotes the expectation with respect
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to the random variablex in distributionD.

h(n) = Edn∼N (µn,σ2
n
)[f(n, dn)]

= Edn∼N (µn,σ2
n
)[O((cr)dnng−1)],

= O(ng−1
Edn∼N (µn,σ2

n
)[(cr)

dn ]),

= O(ng−1
Edn∼N (µn,σ2

n
)[exp(dn log(cr))]) (2)

Sincedn ∼ N (µn, σ2
n) is a normal distribution,

dn log(cr) ∼ N (µ′, σ′2) is also a normal distribu-
tion, whereµ′ = µn log(cr) andσ′ = σn log(cr).
Thereforeexp(dn log(cr)) is a log-normal distribu-
tion, and by the property of log-normal distribution,
its expectation isexp (µ′ + σ′2/2). So we have

Edn∼N (µn,σ2/2)[exp(dn log(cr))]

= exp (µ′ + σ′2/2)

= exp (µn log(cr) + σ2
n log2(cr)/2)

= exp (O(log n) log(cr) + O(log n) log2(cr)/2)

= exp (O(log n) log2(cr))

≤ exp (k(log n) log2(cr)), for some constantk

= exp (log nk log2(cr))

= nk log2(cr). (3)

Plug it back to Equation (2), and we have the
average-case complexity

Edn
[f(n, dn)] ≤ O(ng−1nk log2(cr))

= O(nk log2(cr)+g−1). (4)

Sincek, c, r andg are constants, the average-case
complexity is polynomial in sentence lengthn.

The assumptiondn ∼ N (O(log n), O(log n))
will be empirically verified in Section 5.

3.4 Linear-time Beam Search

Though polynomial complexity is a desirable prop-
erty in theory, the degree of the polynomial,
O(log cr) might still be too high in practice, depend-
ing on the translation grammar. To make it linear-
time, we apply the beam search idea from phrase-
based again. And once again, the only question to
decide is the choice of “binning”: how to assign each
item to a particular bin, depending on their progress?

While the number of Chinese words covered is a
natural progress indicator for phrase-based, it does
not work for tree-to-string because, among the three
actions, only scanning grows the hypothesis. The
prediction and completion actions do not make real

progress in terms ofwords, though they do make
progress on thetree. So we devise a novel progress
indicator natural for tree-to-string translation: the
number of tree nodes covered so far. Initially that
number is zero, and in a prediction step which ex-
pands nodeη using ruler, the number increments by
|C(r)|, the size of the Chinese-side treelet ofr. For
example, a prediction step using ruler3 in Figure 2
to expand VP@2 will increase the tree-node count by
|C(r3)| = 6, since there are six tree nodes in that
rule (not counting leaf nodes or variables).

Scanning and completion do not make progress
in this definition since there is no new tree node
covered. In fact, since both of them are determin-
istic operations, they are treated as “closure” op-
erators in the real implementation, which means
that after a prediction, we always do as many scan-
ning/completion steps as possible until the symbol
after the dot is another node, where we have to wait
for the next prediction step.

This method has|T | = O(n) bins where|T | is
the size of the parse tree, and each bin holdsb items.
Each item can expand toc new items, so the overall
complexity of this beam search isO(ncb), which is
linear in sentence length.

4 Related Work

The work of Watanabe et al. (2006) is closest in
spirit to ours: they also design an incremental decod-
ing algorithm, but for the hierarchical phrase-based
system (Chiang, 2007) instead. While we leave de-
tailed comparison and theoretical analysis to a future
work, here we point out some obvious differences:

1. due to the difference in the underlying trans-
lation models, their algorithm runs inO(n2b)
time with beam search in practice while ours
is linear. This is because each prediction step
now hasO(n) choices, since they need to ex-
pand nodes like VP[1, 6] as:

VP[1,6]→ PP[1,i] VP[i, 6],

where the midpointi in general hasO(n)
choices (just like in CKY). In other words, their
grammar constantc becomesO(n).

2. different binning criteria: we use the number of
tree nodes covered, while they stick to the orig-
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inal phrase-based idea of number of Chinese
words translated;

3. as a result, their framework requires gram-
mar transformation into the binary-branching
Greibach Normal Form (which is not always
possible) so that the resulting grammar always
contain at least one Chinese word in each rule
in order for a prediction step to always make
progress. Our framework, by contrast, works
with any grammar.

Besides, there are some other efforts less closely
related to ours. As mentioned in Section 1, while
we focus on enhancing syntax-based decoding with
phrase-based ideas, other authors have explored the
reverse, but also interesting, direction of enhancing
phrase-based decoding with syntax-aware reorder-
ing. For example Galley and Manning (2008) pro-
pose a shift-reduce style method to allow hiearar-
chical non-local reorderings in a phrase-based de-
coder. While this approach is certainly better than
pure phrase-based reordering, it remains quadratic
in run-time with beam search.

Within syntax-based paradigms, cube pruning
(Chiang, 2007; Huang and Chiang, 2007) has be-
come the standard method to speed up+LM de-
coding, which has been shown by many authors to
be highly effective; we will be comparing our incre-
mental decoder with a baseline decoder using cube
pruning in Section 5. It is also important to note
that cube pruning and incremental decoding are not
mutually exclusive, rather, they could potentially be
combined to further speed up decoding. We leave
this point to future work.

Multipass coarse-to-fine decoding is another pop-
ular idea (Venugopal et al., 2007; Zhang and Gildea,
2008; Dyer and Resnik, 2010). In particular, Dyer
and Resnik (2010) uses a two-pass approach, where
their first-pass,−LM decoding is also incremental
and polynomial-time (in the style of Earley (1970)
algorithm), but their second-pass,+LM decoding is
still bottom-up CKY with cube pruning.

5 Experiments

To test the merits of our incremental decoder we
conduct large-scale experiments on a state-of-the-art
tree-to-string system, and compare it with the stan-
dard phrase-based system of Moses. Furturemore we

also compare our incremental decoder with the stan-
dard cube pruning approach on the same tree-to-
string decoder.

5.1 Data and System Preparation

Our training corpus consists of 1.5M sentence pairs
with about 38M/32M words in Chinese/English, re-
spectively. We first word-align them by GIZA++ and
then parse the Chinese sentences using the Berke-
ley parser (Petrov and Klein, 2007), then apply
the GHKM algorithm (Galley et al., 2004) to ex-
tract tree-to-string translation rules. We use SRILM
Toolkit (Stolcke, 2002) to train a trigram language
model with modified Kneser-Ney smoothing on the
target side of training corpus. At decoding time,
we again parse the input sentences into trees, and
convert them into translation forest by rule pattern-
matching (Mi et al., 2008).

We use the newswire portion of 2006 NIST MT
Evaluation test set (616 sentences) as our develop-
ment set and the newswire portion of 2008 NIST
MT Evaluation test set (691 sentences) as our test
set. We evaluate the translation quality using the
BLEU-4 metric, which is calculated by the script
mteval-v13a.pl with its default setting which is case-
insensitive matching ofn-grams. We use the stan-
dard minimum error-rate training (Och, 2003) to
tune the feature weights to maximize the system’s
BLEU score on development set.

We first verify the assumptions we made in Sec-
tion 3.3 in order to prove the theorem that tree depth
(as a random variable) is normally-distributed with
O(log n) mean and variance. Qualitatively, we veri-
fied that for mostn, tree depthd(n) does look like a
normal distribution. Quantitatively, Figure 6 shows
that average tree height correlates extremely well
with 3.5 log n, while tree height variance is bounded
by 5.5 log n.

5.2 Comparison with Cube pruning

We implemented our incremental decoding algo-
rithm in Python, and test its performance on the de-
velopment set. We first compare it with the stan-
dard cube pruning approach (also implemented in
Python) on the same tree-to-string system.1 Fig-

1Our implementation of cube pruning follows (Chiang,
2007; Huang and Chiang, 2007) where besides a beam sizeb

of unique+LM items, there is also a hard limit (of 1000) on the
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Figure 7: Comparison with cube pruning. The scatter plot in (a) confirms that our incremental decoding scales linearly
with sentence length, while cube pruning super-linearly (b = 50 for both). The comparison in (b) shows that at the
same level of translation quality, incremental decoding isslightly faster than cube pruning, especially at smaller beams.
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length. The mean depth clearly scales with3.5 log n, and
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ure 7(a) is a scatter plot of decoding times versus
sentence length (using beamb = 50 for both sys-
tems), where we confirm that our incremental de-
coder scales linearly, while cube pruning has a slight
tendency of superlinearity. Figure 7(b) is a side-by-
side comparison of decoding speed versus transla-
tion quality (in BLEU scores), using various beam
sizes for both systems (b=10–70 for cube pruning,
andb=10–110 for incremental). We can see that in-
cremental decoding is slightly faster than cube prun-
ing at the same levels of translation quality, and the
difference is more pronounced at smaller beams: for

number of (non-unique) pops from priority queues.
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Figure 8: Comparison of our incremental tree-to-string
decoder with Moses in terms of speed. Moses is shown
with various distortion limits (0, 6, 10,+∞; optimal: 10).

example, at the lowest levels of translation quality
(BLEU scores around 29.5), incremental decoding
takes only 0.12 seconds, which is about 4 times as
fast as cube pruning. We stress again that cube prun-
ing and incremental decoding are not mutually ex-
clusive, and rather they could potentially be com-
bined to further speed up decoding.

5.3 Comparison with Moses

We also compare with the standard phrase-based
system of Moses (Koehn et al., 2007), with stan-
dard settings except for the ttable limit, which we set
to 100. Figure 8 compares our incremental decoder
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system/decoder BLEU time
Moses (optimaldmax=10) 29.41 10.8

tree-to-str: cube pruning (b=10) 29.51 0.65
tree-to-str: cube pruning (b=20) 29.96 0.96
tree-to-str: incremental (b=10) 29.54 0.32
tree-to-str: incremental (b=50) 29.96 0.77

Table 3: Final BLEU score and speed results on the test
data (691 sentences), compared with Moses and cube
pruning. Time is in seconds per sentence, including pars-
ing time (0.21s) for the two tree-to-string decoders.

with Moses at various distortion limits (dmax=0, 6,
10, and+∞). Consistent with the theoretical anal-
ysis in Section 2, Moses with no distortion limit
(dmax = +∞) scalequadratically, and monotone
decoding (dmax = 0) scale linearly. We use MERT
to tune the best weights for each distortion limit, and
dmax = 10 performs the best on our dev set.

Table 3 reports the final results in terms of BLEU
score and speed on the test set. Our linear-time
incremental decoder with the small beam of size
b = 10 achieves a BLEU score of 29.54, compara-
ble to Moses with the optimal distortion limit of 10
(BLEU score 29.41). But our decoding (including
source-language parsing) only takes 0.32 seconds a
sentences, which is more than 30 times faster than
Moses. With a larger beam ofb = 50 our BLEU
score increases to 29.96, which is a half BLEU point
better than Moses, but still about 15 times faster.

6 Conclusion

We have presented an incremental dynamic pro-
gramming algorithm for tree-to-string translation
which resembles phrase-based based decoding. This
algorithm is the first incremental algorithm that runs
in polynomial-time in theory, and linear-time in
practice with beam search. Large-scale experiments
on a state-of-the-art tree-to-string decoder confirmed
that, with a comparable (or better) translation qual-
ity, it can run more than 30 times faster than the
phrase-based system of Moses, even though ours is
in Python while Moses in C++. We also showed that
it is slightly faster (and scale better) than the popular
cube pruning technique. For future work we would
like to apply this algorithm to forest-based transla-
tion and hierarchical system by pruning the first-pass
−LM forest. We would also combine cube pruning

with our incremental algorithm, and study its perfor-
mance with higher-order language models.
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Abstract

Strong indications of perspective can often
come from collocations of arbitrary length; for
example, someone writing get the government
out of my X is typically expressing a conserva-
tive rather than progressive viewpoint. How-
ever, going beyond unigram or bigram features
in perspective classification gives rise to prob-
lems of data sparsity. We address this prob-
lem using nonparametric Bayesian modeling,
specifically adaptor grammars (Johnson et al.,
2006). We demonstrate that an adaptive naı̈ve
Bayes model captures multiword lexical usages
associated with perspective, and establishes a
new state-of-the-art for perspective classifica-
tion results using the Bitter Lemons corpus, a
collection of essays about mid-east issues from
Israeli and Palestinian points of view.

1 Introduction

Most work on the computational analysis of senti-
ment and perspective relies on lexical features. This
makes sense, since an author’s choice of words is
often used to express overt opinions (e.g. describing
healthcare reform as idiotic or wonderful) or to frame
a discussion in order to convey a perspective more
implicitly (e.g. using the term death tax instead of
estate tax). Moreover, it is easy and efficient to rep-
resent texts as collections of the words they contain,
in order to apply a well known arsenal of supervised
techniques (Laver et al., 2003; Mullen and Malouf,
2006; Yu et al., 2008).

At the same time, standard lexical features have
their limitations for this kind of analysis. Such fea-
tures are usually created by selecting some small
n-gram size in advance. Indeed, it is not uncommon

to see the feature space for sentiment analysis limited
to unigrams. However, important indicators of per-
spective can also be longer (get the government out
of my). Trying to capture these using standard ma-
chine learning approaches creates a problem, since
allowing n-grams as features for larger n gives rise
to problems of data sparsity.

In this paper, we employ nonparametric Bayesian
models (Orbanz and Teh, 2010) in order to address
this limitation. In contrast to parametric models, for
which a fixed number of parameters are specified in
advance, nonparametric models can “grow” to the
size best suited to the observed data. In text analysis,
models of this type have been employed primarily
for unsupervised discovery of latent structure — for
example, in topic modeling, when the true number of
topics is not known (Teh et al., 2006); in grammatical
inference, when the appropriate number of nontermi-
nal symbols is not known (Liang et al., 2007); and
in coreference resolution, when the number of enti-
ties in a given document is not specified in advance
(Haghighi and Klein, 2007). Here we use them for
supervised text classification.

Specifically, we use adaptor grammars (Johnson
et al., 2006), a formalism for nonparametric Bayesian
modeling that has recently proven useful in unsuper-
vised modeling of phonemes (Johnson, 2008), gram-
mar induction (Cohen et al., 2010), and named entity
structure learning (Johnson, 2010), to make super-
vised naı̈ve Bayes classification nonparametric in
order to improve perspective modeling. Intuitively,
naı̈ve Bayes associates each class or label with a
probability distribution over a fixed vocabulary. We
introduce adaptive naı̈ve Bayes (ANB), for which in
principle the vocabulary can grow as needed to in-
clude collocations of arbitrary length, as determined
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by the properties of the dataset. We show that using
adaptive naı̈ve Bayes improves on state of the art
classification using the Bitter Lemons corpus (Lin
et al., 2006), a document collection that has been
used by a variety of authors to evaluate perspective
classification.

In Section 2, we review adaptor grammars, show
how naı̈ve Bayes can be expressed within the for-
malism, and describe how — and how easily — an
adaptive naı̈ve Bayes model can be created. Section 3
validates the approach via experimentation on the Bit-
ter Lemons corpus. In Section 4, we summarize the
contributions of the paper and discuss directions for
future work.

2 Adapting Naı̈ve Bayes to be Less Naı̈ve

In this work we apply the adaptor grammar formal-
ism introduced by Johnson, Griffiths, and Goldwa-
ter (Johnson et al., 2006). Adaptor grammars are a
generalization of probabilistic context free grammars
(PCFGs) that make it particularly easy to express non-
parametric Bayesian models of language simply and
readably using context free rules. Moreover, John-
son et al. provide an inference procedure based on
Markov Chain Monte Carlo techniques that makes
parameter estimation straightforward for all models
that can be expressed using adaptor grammars.1 Vari-
ational inference for adaptor grammars has also been
recently introduced (Cohen et al., 2010).

Briefly, adaptor grammars allow nonterminals to
be rewritten to entire subtrees. In contrast, a non-
terminal in a PCFG rewrites only to a collection
of grammar symbols; their subsequent productions
are independent of each other. For instance, a tradi-
tional PCFG might learn probabilities for the rewrite
rule PP 7→ P NP. In contrast, an adaptor gram-
mar can learn (or “cache”) the production PP 7→
(P up)(NP(DET a)(N tree)). It does this by posit-
ing that the distribution over children for an adapted
non-terminal comes from a Pitman-Yor distribution.

A Pitman-Yor distribution (Pitman and Yor, 1997)
is a distribution over distributions. It has three pa-
rameters: the discount, a, such that 0 ≤ a < 1,
the strength, b, a real number such that −a < b,

1And, better still, they provide code that
implements the inference algorithm; see
http://www.cog.brown.edu/ mj/Software.htm.

and a probability distribution G0 known as the base
distribution. Adaptor grammars allow distributions
over subtrees to come from a Pitman-Yor distribu-
tion with the PCFG’s original distribution over trees
as the base distribution. The generative process for
obtaining draws from a distribution drawn from a
Pitman-Yor distribution can be described by the “Chi-
nese restaurant process” (CRP). We will use the CRP
to describe how to obtain a distribution over obser-
vations composed of sequences of n-grams, the key
to our model’s ability to capture perspective-bearing
n-grams.

Suppose that we have a base distribution Ω that is
some distribution over all sequences of words (the
exact structure of such a distribution is unimportant;
such a distribution will be defined later in Table 1).
Suppose further we have a distribution φ drawn from
PY (a, b,Ω), and we wish to draw a series of obser-
vations w from φ. The CRP gives us a generative
process for doing those draws from φ, marginaliz-
ing out φ. Following the restaurant metaphor, we
imagine the ith customer in the series entering the
restaurant to take a seat at a table. The customer sits
by making a choice that determines the value of the
n-gram wi for that customer: she can either sit at an
existing table or start a new table of her own.2

If she sits at a new table j, that table is assigned
a draw yj from the base distribution, Ω; note that,
since Ω is a distribution over n-grams, yj is an n-
gram. The value of wi is therefore assigned to be yj ,
and yj becomes the sequence of words assigned to
that new table. On the other hand, if she sits at an
existing table, then wi simply takes the sequence of
words already associated with that table (assigned as
above when it was first occupied).

The probability of joining an existing table j,
with cj patrons already seated at table j, is cj−a

c·+b ,
where c· is the number of patrons seated at all tables:
c· =

∑
j′ cj′ . The probability of starting a new table

is b+t∗a
c·+b , where t is the number of tables presently

occupied.
Notice that φ is a distribution over the same space

as Ω, but it can drastically shift the mass of the dis-
tribution, compared with Ω, as more and more pa-

2Note that we are abusing notation by allowing wi to cor-
respond to a word sequence of length ≥ 1 rather than a single
word.
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trons are seated at tables. However, there is always
a chance of drawing from the base distribution, and
therefore every word sequence can also always be
drawn from φ.

In the next section we will write a naı̈ve Bayes-like
generative process using PCFGs. We will then use
the PCFG distribution as the base distribution for a
Pitman-Yor distribution, adapting the naı̈ve Bayes
process to give us a distribution over n-grams, thus
learning new language substructures that are useful
for modeling the differences in perspective.

2.1 Classification Models as PCFGs
Naı̈ve Bayes is a venerable and popular mechanism
for text classification (Lewis, 1998). It posits that
there are K distinct categories of text — each with a
distinct distribution over words — and that every doc-
ument, represented as an exchangeable bag of words,
is drawn from one (and only one) of these distribu-
tions. Learning the per-category word distributions
and global prevalence of the classes is a problem of
posterior inference which can be approached using a
variety of inference techniques (Lowd and Domingos,
2005).

More formally, naı̈ve Bayes models can be ex-
pressed via the following generative process:3

1. Draw a global distribution over classes θ ∼
Dir (α)

2. For each class i ∈ {1, . . . ,K}, draw a word
distribution φi ∼ Dir (λ)

3. For each document d ∈ {1, . . . ,M}:
(a) Draw a class assignment zd ∼ Mult (θ)
(b) For each word position n ∈ {1, . . . , Nd,

draw wd,n ∼ Mult (φzd
)

A variant of the naı̈ve Bayes generative process can
be expressed using the adaptor grammar formalism
(Table 1). The left hand side of each rule represents
a nonterminal which can be expanded, and the right
hand side represents the rewrite rule. The rightmost
indices show replication; for instance, there are |V |
rules that allow WORDi to rewrite to each word in the

3Here α and λ are hyperparameters used to specify priors
for the class distribution and classes’ word distributions, respec-
tively; α is a symmetric K-dimensional vector where each ele-
ment is π. Nd is the length of document d. Resnik and Hardisty
(2010) provide a tutorial introduction to the naı̈ve Bayes genera-
tive process and underlying concepts.

SENT 7→ DOCd d = 1, . . . ,m
DOCd

0.001 7→ IDd WORDSi d = 1, . . . ,m;
i ∈ {1,K}

WORDSi 7→ WORDSi WORDi i ∈ {1,K}
WORDSi 7→ WORDi i ∈ {1,K}
WORDi 7→ v v ∈ V ; i ∈ {1,K}

Table 1: A naı̈ve Bayes-inspired model expressed as a
PCFG.

vocabulary. One can assume a symmetric Dirichlet
prior of Dir (1̄) over the production choices unless
otherwise specified — as with the DOCd production
rule above, where a sparse prior is used.

Notice that the distribution over expansions for
WORDi corresponds directly to φi in Figure 1(a).
There are, however, some differences between the
model that we have described above and the standard
naı̈ve Bayes model depicted in Figure 1(a). In par-
ticular, there is no longer a single choice of class per
document; each sentence is assigned a class. If the
distribution over per-sentence labels is sparse (as it
is above for DOCd), this will closely approximate
naı̈ve Bayes, since it will be very unlikely for the
sentences in a document to have different labels. A
non-sparse prior leads to behavior more like models
that allow parts of a document to express sentiment
or perspective differently.

2.2 Moving Beyond the Bag of Words

The naı̈ve Bayes generative distribution posits that
when writing a document, the author selects a distri-
bution of categories zd for the document from θ. The
author then generates words one at a time: each word
is selected independently from a flat multinomial
distribution φzd

over the vocabulary.
However, this is a very limited picture of how text

is related to underlying perspectives. Clearly words
are often connected with each other as collocations,
and, just as clearly, extending a flat vocabulary to
include bigram collocations does not suffice, since
sometimes relevant perspective-bearing phrases are
longer than two words. Consider phrases like health
care for all or government takeover of health care,
connected with progressive and conservative posi-
tions, respectively, during the national debate on
healthcare reform. Simply applying naı̈ve Bayes,
or any other model, to a bag of n-grams for high n is
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Figure 1: A plate diagram for naı̈ve Bayes and adaptive naı̈ve Bayes. Nodes represent random variables and parameters;
shaded nodes represent observations; lines represent probabilistic dependencies; and the rectangular plates denote
replication.

going to lead to unworkable levels of data sparsity;
a model should be flexible enough to support both
unigrams and longer phrases as needed.

Following Johnson (2010), however, we can use
adaptor grammars to extend naı̈ve Bayes flexibly to
include richer structure like collocations when they
improve the model, and not including them when
they do not. This can be accomplished by introduc-
ing adapted nonterminal rules: in a revised genera-
tive process, the author can draw from Pitman-Yor
distribution whose base distribution is over word se-
quences of arbitrary length.4 Thus in a setting where,
say, K = 2, and our two classes are PROGRESSIVE

and CONSERVATIVE, the sequence health care for all
might be generated as a single unit for the progressive
perspective, but in the conservative perspective the
same sequence might be generated as three separate
draws: health care, for, all. Such a model is pre-
sented in Figure 1(b). Note the following differences
between Figures 1(a) and 1(b):

• zd selects which Pitman-Yor distribution to draw
from for document d.
• φi is the distribution over n-grams that comes

from the Pitman-Yor distribution.
• Wd,n represents an n-gram draw from φi

• a, b are the Pitman-Yor strength and discount
parameters.
• Ω is the Pitman-Yor base distribution with τ as

its uniform hyperparameter.
4As defined above, the base distribution is that of the PCFG

production rule WORDSi. Although it has non-zero probability
of producing any sequence of words, it is biased toward shorter
word sequences.

Returning to the CRP metaphor discussed when we
introduced the Pitman-Yor distribution, there are two
restaurants, one for the PROGRESSIVE distribution
and one for the CONSERVATIVE distribution. Health
care for all has its own table in the PROGRESSIVE

restaurant, and enough people are sitting at it to make
it popular. There is no such table in the CONSERVA-
TIVE restaurant, so in order to generate those words,
the phrase health care for all would need to come
from a new table; however, it is more easily explained
by three customers sitting at three existing, popular
tables: health care, for, and all.

We follow the convention of Johnson (2010) by
writing adapted nonterminals as underlined. The
grammar for adaptive naı̈ve Bayes is shown in Ta-
ble 2. The adapted COLLOCi rule means that every
time we need to generate that nonterminal, we are
actually drawing from a distribution drawn from a
Pitman-Yor distribution. The distribution over the
possible yields of the WORDSi rule serves as the
base distribution.

Given this generative process for documents, we
can now use statistical inference to uncover the pos-
terior distribution over the latent variables, thus dis-
covering the tables and seating assignments of our
metaphorical restaurants that each cater to a specific
perspective filled with tables populated by words and
n-grams.

The model presented in Table 2 is the most straight-
forward way of extending naı̈ve Bayes to collocations.
For completeness, we also consider the alternative
of using a shared base distribution rather than dis-
tinguishing the base distributions of the two classes.
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SENT 7→ DOCd d = 1, . . . ,m
DOCd

0.001 7→ IDd SPANi d = 1, . . . ,m;
i ∈ {1,K}

SPANi 7→ SPANi COLLOCi i ∈ {1,K}
SPANi 7→ COLLOCi i ∈ {1,K}
COLLOCi 7→ WORDSi i ∈ {1,K}
WORDSi 7→ WORDSi WORDi i ∈ {1,K}
WORDSi 7→ WORDi i ∈ {1,K}
WORDi 7→ v v ∈ V ; i ∈ {1,K}

Table 2: An adaptive naı̈ve Bayes grammar. The
COLLOCi nonterminal’s distribution over yields is drawn
from a Pitman-Yor distribution rather than a Dirichlet over
production rules.

SENT 7→ DOCd d = 1, . . . ,m
DOCd

0.001 7→ IDd SPANi d = 1, . . . ,m;
i ∈ {1,K}

SPANi 7→ SPANi COLLOCi i ∈ {1,K}
SPANi 7→ COLLOCi i ∈ {1,K}
COLLOCi 7→ WORDS i ∈ {1,K}
WORDS 7→ WORDS WORD

WORDS 7→ WORD

WORD 7→ v v ∈ V

Table 3: An adaptive naı̈ve Bayes grammar with a com-
mon base distribution for collocations. Note that, in con-
trast to Table 2, there are no subscripts on WORDS or
WORD.

Briefly, using a shared base distribution posits that
the two classes use similar word distributions, but
generate collocations unique to each class, whereas
using separate base distributions assumes that the
distribution of words is unique to each class.

3 Experiments

3.1 Corpus Description

We conducted our classification experiments on the
Bitter Lemons (BL) corpus, which is a collection of
297 essays averaging 700-800 words in length, on
various Middle East issues, written from both the
Israeli and Palestinian perspectives. The BL corpus
was compiled by Lin et al. (2006) and is derived from
a website that invites weekly discussions on a topic
and publishes essays from two sets of authors each
week.5 Two of the authors are guests, one from each
perspective, and two essays are from the site’s regular
contributors, also one from each perspective, for a

5http://www.bitterlemons.org
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Figure 2: An alternative adaptive naı̈ve Bayes with a com-
mon base distribution for both classes.

Training Set

Test Set

Corpus Filter

Grammar 
Generator

Corpus Filter

Vocabulary 
Generator AG Classifier

Figure 3: Corpus preparation and experimental setup.

total of four essays on each topic per week. We chose
this corpus to allow us to directly compare our results
with Greene and Resnik’s (2009) Observable Proxies
for Underlying Semantics (OPUS) features and Lin
et al.’s Latent Sentence Perspective Model (LSPM).
The classification goal for this corpus is to label each
document with the perspective of its author, either
Israeli or Palestinian.

Consistent with prior work, we prepared the corpus
by dividing it into two groups, one group containing
all of the essays written by the regular site contrib-
utors, which we call the Editor set, and one group
comprised of all the essays written by the guest con-
tributors, which we call the Guest set. Similar to the
above mentioned prior work, we perform classifica-
tion using one group as training data and the other as
test data and perform two folds of classification. The
overall experimental setup and corpus preparation
process is presented in Figure 3.
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3.2 Experimental Setup

The vocabulary generator determines the vocabulary
used by a given experiment by converting the training
set to lower case, stemming with the Porter stemmer,
and filtering punctuation. We remove from the vocab-
ulary any words that appeared in only one document
regardless of frequency within that document, words
with frequencies lower than a threshold, and stop
words.6 The vocabulary is then passed to a grammar
generator and a corpus filter.

The grammar generator uses the vocabulary to gen-
erate the terminating rules of the grammar from the
ANB grammar presented in Tables 2 and 3. The cor-
pus filter takes in a set of documents and replaces all
words not in the vocabulary with “out of vocabulary”
markers. This process ensures that in all experiments
the vocabulary is composed entirely of words from
the training set. After the groups have been filtered,
the group used as the test set has its labels removed.
The test and training set are then sent, along with the
grammar, into the adaptor grammar inference engine.

Each experiment ran for 3000 iterations. For the
runs where adaptation was used we set the initial
Pitman-Yor a and b parameters to 0.01 and 10 respec-
tively, then slice sample (Johnson and Goldwater,
2009).

We use the resulting sentence parses for classifi-
cation. By design of the grammar, each sentence’s
words will belong to one and only one distribution.
We identify that distribution from each of the test
set sentence parses and use it as the sentence level
classification for that particular sentence. We then
use majority rule on the individual sentence classifi-
cations in a document to obtain the document classifi-
cation. (In most cases the sentence-level assignments
are overwhelmingly dominated by one class.)

3.3 Results and Analysis

Table 4 gives the results and compares to prior
work. The support vector machine (SVM), NB-
B and LSPM results are taken directly from Lin
et al. (2006). NB-B indicates naı̈ve Bayes with
full Bayesian inference. LSPM is the Latent
Sentence Perspective Model, also from Lin et
al. (2006). OPUS results are taken from Greene

6In these experiments, a frequency threshold of 4 was se-
lected prior to testing.

Training Set Test Set Classifier Accuracy
Guests Editors SVM 88.22
Guests Editors NB-B 93.46
Guests Editors LSPM 94.93
Guests Editors OPUS 97.64
Guests Editors ANB* 99.32
Guests Editors ANB Com 99.93
Guests Editors ANB Sep 99.87
Editors Guests SVM 81.48
Editors Guests NB-B 85.85
Editors Guests LSPM 86.99
Editors Guests OPUS 85.86
Editors Guests ANB* 84.98
Editors Guests ANB Com 82.76
Editors Guests ANB Sep 88.28

Table 4: Classification results. ANB* indicates the same
grammar as Adapted Naı̈ve Bayes, but with adaptation dis-
abled. Com and Sep refer to whether the base distribution
was common to both classes or separate.

and Resnik (2009). Briefly, OPUS features are gener-
ated from observable grammatical relations that come
from dependency parses of the corpus. Use of these
features provided the best classification accuracy for
this task prior to this work. ANB* refers to the gram-
mar from Table 2, but with adaptation disabled. The
reported accuracy values for ANB*, ANB with a
common base distribution (see Table 3), and ANB
with separate base distributions (see Table 2) are
the mean values from five separate sampling chains.
Bold face indicates statistical signficance (p < 0.05)
by unpaired t-test between the reported value and
ANB*.

Consistent with all prior work on this corpus we
found that the classification accuracy for training on
editors and testing on guests was lower than the other
direction since the larger number of editors in the
guest set allows for greater generalization. The dif-
ference between ANB* and ANB with a common
base distribution is not statistically significant. Also
of note is that the classification accuracy improves
for testing on Guests when the ANB grammar is al-
lowed to adapt and a separate base distribution is used
for the two classes (88.28% versus 84.98% without
adaptation).

Table 5 presents some data on adapted rules
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Unique Unique Percent of Group
Class Group Unigrams Cached n-grams Cached Vocabulary Cached
Israeli Editors 2,292 19,614 77.62
Palestinian Editors 2,180 17,314 86.54
Israeli Guests 2,262 19,398 79.91
Palestinian Guests 2,005 16,946 74.94

Table 5: Counts of cached unigrams and n-grams for the two classes compared to the vocabulary sizes.

Israeli Palestinian
zionist dream american jew
zionist state achieve freedom
zionist movement palestinian freedom
american leadership support palestinian
american victory palestinian suffer
abandon violence palestinian territory
freedom (of the) press palestinian statehood
palestinian violence palestinian refugee

Table 6: Charged bigrams captured by the framework.

learned once inference is complete. The column
labeled unique unigrams cached indicates the num-
ber of unique unigrams that appear on the right hand
side of the adapted rules. Similarly, unique n-grams
cached indicates the number of unique n-grams that
appear on the right hand side of the adapted rules.
The rightmost column indicates the percentage of
terms from the group vocabulary that appear on the
right hand side of adapted rules as unigrams. Values
less than 100% indicate that the remaining vocabu-
lary terms are cached in n-grams. As the table shows,
a significant number of the rules learned during infer-
ence are n-grams of various sizes.

Inspection of the captured bigrams showed that
it captured sequences that a human might associate
with one perspective over the other. Table 6 lists just
a few of the more charged bigrams that were captured
in the adapted rules.

More specific caching information on the individ-
ual groups and classes is provided in Table 7. This
data clearly demonstrates that raw n-gram frequency
alone is not indicative of how many times an n-gram
is used as a cached rule. For example, consider the
bigram people go, which is used as a cached bigram
only three times, yet appears in the corpus 407 times.
Compare that with isra palestinian, which is cached

the same number of times but appears only 18 times
in the corpus. In other words, the sequence people go
is more easily explained by two sequential unigrams,
not a bigram. The ratio of cache use counts to raw
bigrams gives a measure of strength of collocation
between the terms of the n-gram. We conjecture that
the rareness of caching for n > 2 is a function of the
small corpus size. Also of note is the improvement in
performance of ANB* over NB-B when training on
guests, which we suspect is due to our use of sampled
versus fixed hyperparameters.

4 Conclusions

In this paper, we have applied adaptor grammars in
a supervised setting to model lexical properties of
text and improve document classification according
to perspective, by allowing nonparametric discovery
of collocations that aid in perspective classification.
The adaptive naı̈ve Bayes model improves on state
of the art supervised classification performance in
head-to-head comparisons with previous approaches.

Although there have been many investigations on
the efficacy of using multiword collocations in text
classification (Bekkerman and Allan, 2004), usually
such approaches depend on a preprocessing step such
as computing tf-idf or other measures of frequency
based on either word bigrams (Tan et al., 2002) or
character n-grams (Raskutti et al., 2001). In con-
trast, our approach combines phrase discovery with
the probabilistic model of the text. This allows for
the collocation selection and classification to be ex-
pressed in a single model, which can then be extended
later; it also is truly generative, as compared with fea-
ture induction and selection algorithms that either
under- or over-generate data.

There are a number of interesting directions in
which to take this research. As Johnson et al. (2006)
argue, and as we have confirmed here, the adaptor
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Guest Editor
Israeli Palestinian Israeli Palestinian

palestinian OOV 11 299 palestinian isra 6 178 palestinian OOV 8 254 OOV israel 7 198
OOV palestinian 7 405 OOV palestinian 6 405 OOV palestinian 7 319 OOV palestinian 6 319
isra OOV 6 178 palestinian OOV 5 29 OOV israel 7 123 OOV work 5 254
israel OOV 6 94 one OOV 4 25 OOV us 6 115 OOV agreement 5 75
sharon OOV 4 74 side OOV 3 21 OOV part 5 56 palestinian reform 4 49
polit OOV 4 143 polit OOV 3 299 israel OOV 5 81 palestinian OOV 4 81
OOV us 4 29 peopl go 3 407 attempt OOV 5 91 OOV isra 4 15
OOV state 4 37 palestinian govern 3 94 time OOV 4 63 one OOV 4 27
israel palestinian 4 52 palestinian accept 3 220 remain OOV 4 85 isra palestinian 4 17
even OOV 4 43 OOV state 3 150 OOV time 4 70 isra OOV 4 63
arafat OOV 4 41 OOV israel 3 18 OOV area 4 49 howev OOV 4 149
appear OOV 4 53 OOV end 3 20 OOV arafat 4 28 want OOV 3 36
total OOV 3 150 OOV act 3 105 isra OOV 4 8 us OOV 3 35
palestinian would 3 65 isra palestinian 3 18 would OOV 3 28 recent OOV 3 220
palestinian isra 3 35 israel OOV 3 198 use OOV 3 198 palestinian isra 3 115

Table 7: Most frequently used cached bigrams. The first colum in each section is the number of times that bigram was
used as a cached rule. The second column indicates the raw count of that bigram in the Guests or Editors group.

grammar formalism makes it quite easy to work with
latent variable models, in order to automatically dis-
cover structures in the data that have predictive value.
For example, it is easy to imagine a model where in
addition to a word distribution for each class, there
is also an additional shared “neutral” distribution:
for each sentence, the words in that sentence can ei-
ther come from the class-specific content distribution
or the shared neutral distribution. This turns out to
be the Latent Sentence Perspective Model of Lin et
al. (2006), which is straightforward to encode using
the adaptor grammar formalism simply by introduc-
ing two new nonterminals to represent the neutral
distribution:

SENT 7→ DOCd d = 1, . . . ,m
DOCd 7→ IDd WORDSi d = 1, . . . ,m;

i ∈ {1,K}
DOCd 7→ IDd NEUTS d = 1, . . . ,m;
WORDSi 7→ WORDSi WORDi i ∈ {1,K}
WORDSi 7→ WORDi i ∈ {1,K}
WORDi 7→ v v ∈ V ; i ∈ {1,K}
NEUT 7→ NEUTSi NEUTi

NEUT 7→ NEUT

NEUT 7→ v v ∈ V

Running this grammar did not produce improvements
consistent with those reported by Lin et al. We plan to
investigate this further, and a natural follow-on would
be to experiment with adaptation for this variety of
latent structure, to produce an adapted LSPM-like
model analogous to adaptive naı̈ve Bayes.

Viewed in a larger context, computational classi-

fication of perspective is closely connected to social
scientists’ study of framing, which Entman (1993)
characterizes as follows: “To frame is to select some
aspects of a perceived reality and make them more
salient in a communicating text, in such a way as
to promote a particular problem definition, causal
interpretation, moral evaluation, and/or treatment rec-
ommendation for the item described.” Here and in
other work (e.g. (Laver et al., 2003; Mullen and Mal-
ouf, 2006; Yu et al., 2008; Monroe et al., 2008)),
it is clear that lexical evidence is one key to under-
standing how language is used to frame discussion
from one perspective or another; Resnik and Greene
(2009) have shown that syntactic choices can pro-
vide important evidence, as well. Another promising
direction for this work is the application of adaptor
grammar models as a way to capture both lexical and
grammatical aspects of framing in a unified model.
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Abstract

In many applications, replacing a complex
word form by its stem can reduce sparsity, re-
vealing connections in the data that would not
otherwise be apparent. In this paper, we focus
on prefix verbs: verbs formed by adding a pre-
fix to an existing verb stem. A prefix verb is
considered compositional if it can be decom-
posed into a semantically equivalent expres-
sion involving its stem. We develop a clas-
sifier to predict compositionality via a range
of lexical and distributional features, includ-
ing novel features derived from web-scale N-
gram data. Results on a new annotated cor-
pus show that prefix verb compositionality can
be predicted with high accuracy. Our system
also performs well when trained and tested on
conventional morphological segmentations of
prefix verbs.

1 Introduction

Many verbs are formed by adding prefixes to exist-
ing verbs. For example,remarry is composed of a
prefix, re-, and a stem,marry. We present an ap-
proach to predicting the compositionality of prefix
verbs. The verbremarry is compositional; it means
to marry again. On the other hand,retire is gener-
ally non-compositional; it rarely meansto tire again.
There is a continuum of compositionality in prefix
verbs, as in other complex word forms and multi-
word expressions (Bannard et al., 2003; Creutz and
Lagus, 2005; Fazly et al., 2009; Xu et al., 2009).

We adopt a definition of compositionality specifi-
cally designed to support downstream applications
that might benefit from knowledge of verb stems.

For example, suppose our corpus contains the fol-
lowing sentence: “Pope Clement VII denied Henry
VIII permission to marry again before a decision
was given in Rome.” A user might submit the ques-
tion, “Which pope refused Henry VIII permission to
remarry?” If we can determine that the meaning of
remarrycould also be provided via the stemmarry,
we could addmarry to our search terms. This is
known asmorphological query expansion(Bilotti et
al., 2004). Here, such an expansion leads to a better
match between question and answer.

Previous work has shown that “full morpholog-
ical analysis provides at most very modest bene-
fits for retrieval” (Manning et al., 2008). Stem-
ming, lemmatization, and compound-splitting often
increase recall at the expense of precision, but the
results depend on the morphological complexity of
the text’s language (Hollink et al., 2004).

The lack of success in applying morphological
analysis in IR is unsurprising given that most pre-
vious systems are not designed with applications
in mind. For example, the objective of the influ-
ential Linguistica program is “to produce an out-
put that matches as closely as possible the analy-
sis that would be given by a human morphologist”
(Goldsmith, 2001). Unsupervised systems achieve
this aim by exploiting learning biases such as min-
imum description length for lexicons (Goldsmith,
2001; Creutz and Lagus, 2007) and high entropy
across morpheme boundaries (Keshava and Pitler,
2006). Supervised approaches learn directly from
words annotated by morphologists (Van den Bosch
and Daelemans, 1999; Toutanova and Cherry, 2009),
often usingCELEX, a lexical database that includes
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morphological information (Baayen et al., 1996).
The conventional approach in morphology is to

segment words into separate morphemes even when
the words are not entirely compositional combina-
tions of their parts (Creutz and Lagus, 2005). For
example, whileco- is considered a separate mor-
pheme in the verbcooperate, the meaning ofcoop-
erate is not simplyto operate jointly. These forms
are sometimes viewed asperturbationsof compo-
sition (de Marken, 1996). In practice, a user may
query, “Which nations do not cooperate with the In-
ternational Criminal Court?” An expansion of the
query to includeoperatemay have undesirable con-
sequences.

Rather than relying on conventional standards, we
present an algorithm whose objective is to find only
those prefix verbs that exhibit semantic composi-
tionality; i.e., prefix verbs that are fully meaning-
preserving, sums-of-their-parts. We produce a new
corpus, annotated according to this definition. We
use these annotated examples to learn a discrimina-
tive model of semantic compositionality.

Our classifier relies on a variety of features that
exploit the distributional patterns of verbs and stems.
We build on previous work that applies semantics
to morphology (Yarowsky and Wicentowski, 2000;
Schone and Jurafsky, 2001; Baroni et al., 2002), and
also on work that exploits web-scale data for seman-
tic analysis (Turney, 2001; Nakov, 2007; Kummer-
feld and Curran, 2008). For example, we measure
how often a prefix verb appears with a hyphen be-
tween the prefix and stem. We also look at the dis-
tribution of the stem as a separate word: we calculate
the probability of the prefix verb and the separated
stem’s co-occurrence in a segment of discourse; we
also calculate the distributional similarity between
the verb and the separated stem. High scores for
these measures indicate compositionality. We ex-
tract counts from a web-scale N-gram corpus, allow-
ing us to efficiently leverage huge volumes of unla-
beled text.

Our system achieves 93.6% accuracy on held-out
data, well above several baselines and comparison
systems. We also train and test our system on con-
ventional morphological segmentations. Our clas-
sifier remains reliable in this setting, making half
as many errors as the state-of-the-art unsupervised
Morfessor system (Creutz and Lagus, 2007).

2 Problem Definition and Setting

A prefix verb is a derived word with a bound mor-
pheme as prefix. While derivation can change both
the meaning and part-of-speech of a word (as op-
posed to inflection, which does not change “referen-
tial or cognitive meaning” (Katamba, 1993)), here
the derived form remains a verb.

We define prefix-verb compositionality as a se-
mantic equivalence between a verb and a paraphrase
involving the verb’s stem. The stem must be used as
a verb in the paraphrase. Words can be introduced,
if needed, to account for the meaning contributed by
the prefix, e.g.,outbuild⇒build more/better/faster
than. A bidirectional entailment between the prefix
verb and the paraphrase is required.

Words can have different meanings in different
contexts. For example, a nation might “resort to
force,” (non-compositional) while a computer pro-
gram can “resorta linked list” (compositional). We
therefore define prefix-verb compositionality as a
context-specific property of verb tokens rather than
a global property of verb types. However, it is worth
noting that we ultimately found the compositionality
of types to be very consistent across contexts (Sec-
tion 5.1.2), and we were unable to leverage contex-
tual information to improve classification accuracy;
our final system is essentially type-based. Other re-
cent morphological analyzers have also been type-
based (Keshava and Pitler, 2006; Poon et al., 2009).

Our system takes as input a verb token in unin-
flected form along with its sentence as context. The
verb must be divisible into an initial string and a fol-
lowing remainder such that the initial string is on
our list of prefixes and the remainder is on our list of
stems. Hyphenation is allowed, e.g., bothre-enter
andreenterare acceptable inputs. The system deter-
mines whether the prefix/stem combination is com-
positional in the current context. For example, the
verbunionizein, “The workers must unionize,” can
be divided into a prefixun- and a stemionize. The
system should determine that hereunionizeis not a
compositional combination of these parts.

The algorithm requires a list of prefixes and stems
in a given language. For our experiments, we use
both dictionary and corpus-based methods to con-
struct these lists (Section 4).
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3 Supervised Compositionality Detection

We use a variety of lexical and statistical informa-
tion when deciding whether a prefix verb is compo-
sitional. We adopt a discriminative approach. We
assume some labeled examples are available to train
a classifier. Relevant information is encoded in a
feature vector, and a learning algorithm determines
a set of weights for the features using the training
data. As compositionality is a binary decision, we
can adopt any standard package for binary classifi-
cation. In our experiments we use support vector
machines.

Our features include both local information that
depends only on the verb string (sometimes referred
to as lexical features) and also global information
that depends on the verb and the stem’s distribution
in text. Our approach can therefore be regarded as a
simple form of semi-supervised learning; we lever-
age both a small number of labeled examples and a
large volume of unlabeled text.

If a frequency or similarity is undefined in our cor-
pus, we indicate this with a separate feature; weights
on these features act as a kind of smoothing.

3.1 Features based on Web-Scale N-gram Data

We use web-scale N-gram data to extract distribu-
tional features. The most widely-used N-gram cor-
pus is the Google 5-gram Corpus (Brants and Franz,
2006). We useGoogle V2: a new N-gram corpus
(also with N-grams of length one-to-five) created
from the same one-trillion-word snapshot of the web
as the Google 5-gram Corpus, but with enhanced fil-
tering and processing of the source text (Lin et al.,
2010). For Google V2, the source text was also part-
of-speech tagged, and the resulting part-of-speech
tag distribution is included for each N-gram. There
are 4.1 billion N-grams in the corpus.

The part-of-speech tag distributions are particu-
larly useful, as they allow us to collect verb-specific
counts. For example, while a string likereuseoc-
curs 1.1 million times in the web corpus, it is only
tagged as a verb 270 thousand times. Conflating the
noun/verb senses can lead to misleading scores for
certain features. E.g., the hyphenation frequency
of re-usewould appear relatively low, even though
reuseis semantically compositional.

Lin et al. (2010) also provide a high-coverage,

10-million-phrase set of clusters extracted from the
N-grams; we use these for our similarity features
(Section 3.1.3). There are 1000 clusters in total.
The data does not provide the context vectors for
each phrase; rather, each phrase is listed with its 20
most similar clusters, measured by cosine similar-
ity with the cluster centroid. We use these centroid
similarities as values in a 1000-dimensional cluster-
membership feature space. To calculate the similar-
ity between two verbs, we calculate the cosine simi-
larity between their cluster-membership vectors.

The feature classes in the following four subsec-
tions each make use of web-scale N-gram data.

3.1.1 HYPH features

Hyphenated verbs are usually compositional (e.g.,
re-elect). Of course, a particular instance of a com-
positional verb may or may not occur in hyphenated
form. However, across a large corpus, compositional
prefix verbs tend to occur in a hyphenated form more
often than do non-compositional prefix verbs. We
therefore provide real-valued features for how often
the verb was hyphenated and unhyphenated on the
web. For example, we collect counts for the fre-
quencies ofre-elect(33K) andreelect(9K) in our
web corpus, and we convert the frequencies to log-
counts. We also give real-valued features for the hy-
phenated/unhyphenated log-counts using only those
occurrences of the verb that weretaggedas a verb,
exploiting the tag distributions in our web corpus as
described above.

Nakov and Hearst (2005) previously used hy-
phenation counts as an indication of a syntactic re-
lationship between nouns. In contrast, we leverage
hyphenation counts as an indication of a semantic
property of verbs.

3.1.2 COOC features

COOC features, and also theSIM (Section 3.1.3)
andYAH (Section 3.2.2) features, concern the asso-
ciation in text between the prefix verb and its stem,
where the stem occurs as a separate word. We call
this the separated stem.

If a prefix verb is compositional, it is more likely
to occur near its separated stem in text. We often
seeagreeanddisagree, readandreread, etc. occur-
ring in the same segment of discourse. We create
features for the association of the prefix verb and its
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separated stem in a discourse. We include the log-
count of how often the verb and stem occur in the
same N-gram (of length 2-to-5) in our N-gram cor-
pus. Note that the 2-to-4-gram counts are not strictly
a subset of the 5-gram counts, since fewer 5-grams
pass the data’s minimum frequency threshold.

We also include a real-valued pointwise mutual
information (PMI) feature for the verb and separated
stem’s co-occurrence in an N-gram. For the PMI, we
regard occurrence in an N-gram as an event, and cal-
culate the probability that a verb and separated stem
jointly occur in an N-gram, divided by the probabil-
ity of their occurring in an N-gram independently.

3.1.3 SIM features

If a prefix verb is compositional, it should oc-
cur in similar contexts to its stem. The idea that
a stem and stem+affix should be semantically sim-
ilar has been exploited previously for morphological
analysis (Schone and Jurafsky, 2000). We include
a real-valued feature for the distributional similar-
ity of the verb and stem using Lin’s thesaurus (Lin,
1998). The coverage of this measure was low: it
was non-zero for only 93 of the 1000 prefix verbs in
our training set. We therefore also include distribu-
tional similarity calculated using the web-scale 10-
million-phrase clustering as described above. Us-
ing this data, similarity is defined for 615 of the
1000 training verbs. We also explored a variety of
WordNet-based similarity measures, but these ulti-
mately did not prove helpful on development data.

3.1.4 FRQ features

We include real-valued features for the raw fre-
quencies of the verb and the stem on the web. If
these frequencies are widely different, it may in-
dicate a non-compositional usage. Yarowsky and
Wicentowski (2000) use similar statistics to iden-
tify words related by inflection, but they gather their
counts from a much smaller corpus. In addition,
higher-frequency prefix verbs may bea priori more
likely to be non-compositional. A certain frequency
is required for an irregular usage to become famil-
iar to language speakers. The potential correlation
between frequency and non-compositionality could
thus also be exploited by the classifier via theFRQ

features.

3.2 Other Features

3.2.1 LEX features

We provide lexical features for various aspects
of a prefix verb. Binary features indicate the oc-
currence of particular verbs, prefixes, and stems,
and whether the prefix verb is hyphenated. While
hyphenated prefix verbs are usually compositional,
even non-compositional prefix verbs may be hy-
phenated if the prefix and stem terminate and be-
gin with a vowel, respectively. For example, non-
compositional uses ofco-operateare often hyphen-
ated, whereas the compositionalremarry is rarely
hyphenated. We therefore have indicator features
for the conjunction of the prefix and the first letter
of the stem (e.g.,co-o), and also for the prefix con-
joined with a flag indicating whether the stem begins
with a vowel (e.g.,co+vowel).

3.2.2 YAH features

While the COOC features capture many cases
where the verb and separated stem occur in close
proximity (especially, but not limited to, conjunc-
tions), there are many other cases where a longer
distance might separate a compositional verb and
its separated stem. For example, consider the sen-
tence, “Brush the varnish on, but do not overbrush.”
Here, the verb and separated stem do not co-occur
within a 5-gram window, and their co-occurrence
will therefore not be recorded in our N-gram cor-
pus. As an approximation for co-occurrence counts
within a longer segment of discourse, we count the
number ofpageson the web where the verb and sep-
arated stem co-occur. We use hit-counts returned
by the Yahoo search engine API.1 Similar to our
COOC features, we include a real-valued feature for
the pointwise mutual information of the prefix verb
and separated stem’s co-occurrence on a web page,
i.e., we use Turney’s PMI-IR (Turney, 2001).

Baroni et al. (2002) use similar statistics to help
discover morphologically-related words. In contrast
to our features, however, their counts are derived
from source text that is several orders of magnitude
smaller in size.

1http://developer.yahoo.com/search/boss/
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3.2.3 DIC features

One potentially useful resource, when available,
is a dictionary of the conventional morphological
segmentations of words in the language. Although
these segmentations have been created for a differ-
ent objective than that of our annotations, we hy-
pothesize that knowledge of morphology can help
inform our system’s predictions. For each prefix
verb, we include features for whether or not the pre-
fix and stem are conventionally segmented into sep-
arate morphemes, according to a morphological dic-
tionary. Similar to the count-based features, we in-
clude aDIC-undefined feature for the verbs that are
not in the dictionary; any precompiled dictionary
will have imperfect coverage of actual test examples.

Interestingly,DIC features are found to be among
our least useful features in the final evaluation.

4 Experiments

4.1 Resources

We useCELEX (Baayen et al., 1996) as our dictio-
nary for theDIC features. We also useCELEX to help
extract our lists of prefixes and stems. We take ev-
ery prefix that is marked inCELEX as forming a new
verb by attaching to an existing verb. For stems, we
use every verb that occurs inCELEX, but we also
extend this list by automatically collecting a large
number of words that were automatically tagged as
verbs in the NYT section of Gigaword (Graff, 2003).
To be included in the extra-verb list, a verb must oc-
cur more than ten times and be tagged as a verb more
than 70% of the time by a part-of-speech tagger. We
thereby obtain 43 prefixes and 6613 stems.2 We
aimed for an automatic, high-precision list for our
initial experiments. This procedure is also amenable
to human intervention; one could alternatively cast a
wider net for possible stems and then manually filter
false positives.

4.2 Annotated Data

We carried out a medium-scale annotation to provide
training and evaluation data for our experiments.3

2The 43 prefixes are: a- ab- ac- ad- as- be- circum- co- col-
com- con- cor- counter- cross- de- dis- e- em- en- ex- fore- im-
in- inter- ir- mis- out- over- per- photo- post- pre- pro- psycho-
re- sub- super- sur- tele- trans- un- under- with-

3Our annotated data is publicly available at:
http://www.cs.ualberta.ca/∼ab31/verbcomp/

The data for our annotations also comes from the
NYT section of Gigaword. We first build a list of
possible prefix verbs. We include any verb that a) is
composed of a valid prefix and stem; and b) occurs
at least twice in the corpus.4 If the verb occurs less
than 50 times in the corpus, we also require that it
was tagged as a verb in at least 70% of cases. This
results in 2077 possible prefix verbs for annotation.

For each verb type in our list of possible prefix
verbs, we randomly select for annotation sentences
from Gigaword containing the verb. We take at most
three sentences for each verb type so that a few very
common types (such asbecome, understand, andim-
prove) do not comprise the majority of annotated ex-
amples. The resulting set of sentences includes a
small number of sentences with incorrectly-tagged
non-verbs; these are simply marked as non-verbs
by our annotators and excluded from our final data
sets. A graphical program was created for the an-
notation; the program automatically links to the on-
line Merriam-Webster dictionary entries for the pre-
fix verb and separated stem. When in doubt about
a verb’s meaning, our annotators adhere to the dic-
tionary definitions. A single annotator labeled 1718
examples, indicating for each sentence whether the
prefix verb was compositional. A second annota-
tor then labeled a random subset of 150 of these ex-
amples, and agreement was calculated. The annota-
tors agreed on 137 of the 150 examples. TheKappa
statistic (Jurafsky and Martin, 2000, page 315), with
P(E) computed from the confusion matrices, is 0.82,
above the 0.80 level considered to indicate good re-
liability.

For our experiments, the 1718 annotated exam-
ples are randomly divided into 1000 training, 359
development, and 359 held-out test examples.

4.3 Classifier Settings

We train a linear support vector machine classifier
using the efficientLIBLINEAR package (Fan et al.,
2008). We use L2-loss and L2-regularization. We

4We found that the majority of single-occurrence verbs in
the Gigaword data were typos. We would expect true hapax
legomena to be largely compositional, and we could potentially
derive better statistics if we include them (Baayen and Sproat,
1996). One possible option, employed in previous work, is to
ensure words of interest are “manually corrected for typing er-
rors before further analysis” (Baayen and Renouf, 1996).
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optimize the choice of features and regularization
hyperparameter on development data, attaining a
maximum whenC = 0.1.

4.4 Evaluation

We compare the following systems:

1. Base1: always choose compositional (the ma-
jority class).

2. Base2: for each prefix, choose the majority
class over the verbs having that prefix in train-
ing data.

3. Morf : the unsupervised Morfessor sys-
tem (Creutz and Lagus, 2007) (Categories-
ML, from 110K-word corpus). If Morfessor
splits the prefix and stem into separate mor-
phemes, we take the prediction as composi-
tional. If it does anything else, we take it as
non-compositional.

4. SCD: SupervisedCompositionalityDetection:
the system proposed in this paper.

We evaluate usingaccuracy: the percentage of ex-
amples classified correctly in held-out test data.

5 Results

We first analyze our annotations, gaining insight into
the relation between our definition and conventional
segmentations. We also note the consistency of our
annotations across contexts. We then provide the
main results of our system. Finally, we provide the
results of our system when trained and tested on con-
ventional morphological segmentations.

5.1 Analysis of Annotations

5.1.1 Annotation consistency with dictionaries

The majority of our examples are not present in
a morphological dictionary, even in one as compre-
hensive asCELEX. The prefix verbs are inCELEX

for only 670 of the 1718 total annotated instances.
For those that are inCELEX, Table 1 provides

the confusion matrix that relates theCELEX seg-
mentations to our annotations. The table shows
that the major difference between our annotations
andCELEX is that our definition of compositionality
is more strict than conventional morphological seg-
mentations. WhenCELEX does not segment the pre-
fix from the stem (case 0), our annotations agree in

CELEX segmentation
1 0

Compositionality 1 227 10
annotation 0 250 183

Table 1: Confusion matrix on the subset of prefix verb
annotations that are also inCELEX. 1 indicates that the
prefix and stem are segmented into separate morphemes,
0 indicates otherwise.

183 of 193 cases. WhenCELEX does split the prefix
from the stem (case 1), the meaning is semantically
compositional in less than half the cases. This is
a key difference between conventional morphology
and our semantic definition.

It is also instructive to analyze the 10 cases that
are semantically compositional but whichCELEX

did not segment. Most of these are verbs that are
conventionally viewed as single morphemes because
they entered English as complete words. For exam-
ple,await comes from the Old North Frenchawait-
ier, itself from waitier. In practice, it is useful to
know thatawait is compositional, i.e. that it can be
rephrased aswait for. Downstream applications can
exploit the compositionality ofawait, but miss the
opportunity if using the conventional lack of seg-
mentation.

5.1.2 Annotation consistency across contexts

We next analyze our annotated data to determine
the consistency of compositionality across different
occurrences of the same prefix-verb type. There are
1248 unique prefix verbs in our 1718 labeled exam-
ples: 45 verbs occur three times, 380 occur twice
and 823 occur only once. Of the 425 verbs that oc-
cur multiple times, only 6 had different annotations
in different examples (i.e., six verbs occur in both
compositional and non-compositional usages in our
dataset). These six instances are subtle, debatable,
and largely uninteresting, depending on distinctions
like whether theproclaim sense ofblazoncan sub-
stitute for thecelebratesense ofemblazon, etc.

It is easy to find clearer ambiguities online,
such as compositional examples of typically non-
compositional verbs (how torecovera couch, when
to redressa wound, etc.). However, in our data verbs
like recoverandredressalways occur in their more
dominant non-compositional sense. People may
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Set # Base1 Base2 Morf SCD

Test 359 65.7 87.2 73.8 93.6
∈ CELEX 128 30.5 73.4 50.8 89.8
/∈ CELEX 231 85.3 94.8 86.6 95.7
∈ train 107 69.2 93.5 74.8 97.2
/∈ train 252 64.3 84.5 73.4 92.1

Table 2: Number of examples (#) and accuracy (%) on
test data, and on in-CELEX vs. not-in-CELEX, and in-
training-data vs. not-in-training splits.

consciously or unconsciously recognize the possi-
bility for confusion and systematically hyphenate
prefixes from the stem if a less-common composi-
tional usage is employed. For example, our data has
“ repressyour feelings” for the non-compositional
case but the hyphenated “re-pressthe center” for the
compositional usage.5

Due to the consistency of compositionality across
contexts, context-basedfeaturesmay simply not be
very useful for classification. All the features we de-
scribe in Section 3 depend only on the prefix verb
itself and not the verb context. Various context-
dependent features did not improve accuracy on our
development data and were thus excluded from the
final system.

5.2 Main Results

The first row of Table 2 gives the results of all
systems on test data. SCD achieves 93.6% ac-
curacy, making one fifth as many errors as the
majority-class baseline (Base1) and half as many er-
rors as the more competitive prefix-based predictor
(Base2). The substantial difference between SCD
and Base2 shows that SCD is exploiting much infor-
mation beyond the trivial memorization of a deci-
sion for each prefix. Morfessor performs better than
Base1 but significantly worse than Base2. This indi-
cates that state-of-the-artunsupervisedmorpholog-
ical segmentation is not yet practical for semantic
preprocessing. Of course, Morfessor was also de-
signed with a different objective; in Section 5.3 we
compare Morfessor and SCD on conventional mor-

5Note that many examples likerecover, repressandredress
are only ambiguous in text, not in speech. Pronunciation re-
duces ambiguity in the same way that hyphens do in text. Con-
versely, observe that knowledge of compositionality could po-
tentially help speech synthesis.

Prefix # Tot # Comp SCD
re- 166 147 95.8

over- 26 25 96.2
out- 23 18 91.3
de- 21 0 100.0

pre- 19 16 94.7
un- 17 1 94.1
dis- 10 0 90.0

under- 9 7 77.8
co- 7 6 100.0
en- 5 2 60.0

Table 3: Total number of examples (# Tot), number of
examples that are compositional (# Comp), and accuracy
(%) of SCD on test data, by prefix.

phological segmentations.
We further analyzed the systems by splitting the

test data two ways.
First, we separate verbs that occur in our mor-

phological dictionary (∈ CELEX) from those that
do not (/∈ CELEX). Despite using the dictionary
segmentation itself as a feature, the performance
of SCD is worse on the∈ CELEX verbs (89.8%).
The comparison systems drop even more dramati-
cally on this subset. The∈ CELEX verbs comprise
the more frequent, irregular verbs in English. Non-
compositionality is the majority class on the exam-
ples that are in the dictionary.

On the other hand, one would expect verbs that
arenot in a comprehensive dictionary to be largely
compositional, and indeed most of the/∈ CELEX

verbs are compositional. However, there is still
much to be gained from applying SCD, which makes
a third as many errors as the system which always
assigns compositional (95.7% for SCD vs. 85.3%
for Base1).

Our second way of splitting the data is to divide
our test set into prefix verbs that also occurred in
training sentences (∈ train) and those that did not (/∈
train). Over 70% did not occur in training. SCD
scores 97.2% accuracy on those that did. The clas-
sifier is thus able to exploit the consistency of anno-
tations across different contexts (Section 5.1.2). The
92.1% accuracy on the/∈-train portion also shows
the features allow the system to generalize well to
new, previously-unseen verbs.

Table 3 gives the results of our system on sets of
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-LEX -HYPH -COOC -SIM -YAH -FRQ -DIC

85.0 92.8 92.5 93.6 93.6 93.6 93.6
85.5 93.6 92.8 93.0 93.3 93.9
86.9 90.5 93.3 93.6 93.6
84.1 90.3 93.3 93.6
87.5 90.5 93.0
85.5 89.4

Table 4: Accuracy (%) of SCD as different feature classes
are removed. Performance with all features is 93.6%.

verbs divided according to their prefix. The table in-
cludes those prefixes that occurred at least 5 times
in the test set. Note that the prefixes have a long
tail: these ten prefixes cover only 303 of the 359
test examples. Accuracy is fairly high across all the
different prefixes. Note also that the three prefixes
de-, un-, anddis- almost always correspond to non-
compositional verbs. Each of these prefixes corre-
sponds to a subtle form of negation, and it is usually
difficult to paraphrase the negation using the stem.
For example,to demilitarizedoes not meanto not
militarize (or any other simple re-phrasing using the
stem as a verb), and so our annotation marks it as
non-compositional. Whether such a strict strategy is
ultimately best may depend on the target application.

Feature Analysis

We perform experiments to evaluate which features
are most useful for this task. Table 4 gives the ac-
curacy of our system as different feature classes are
removed. A similar table was previously used for
feature analysis in Dauḿe III and Marcu (2005).
Each row corresponds to performance with a group
of features; each entry is performance with a par-
ticular feature class individually removed the group.
We remove the least helpful feature class from each
group in succession moving group-to-group down
the rows.

We first remove theDIC features. These do not
impact performance on test data. The last row gives
the performance with onlyHYPH features (85.5, re-
moving LEX), and onlyLEX features (89.4, remov-
ing HYPH). These are found to be the two most ef-
fective features for this task, followed by theCOOC

statistics. The other features, while marginally help-
ful on development data, are relatively ineffective on
the test set. In all cases, removingLEX features hurts

Base1 Base2 Morf SCD
76.0 79.6 72.4 86.4

Table 5: Accuracy (%) onCELEX.

the most. RemovingLEX not only removes useful
stem, prefix, and hyphen information, but it also im-
pairs the ability of the classifier to use the other fea-
tures to separate the examples.

5.3 CELEX Experiments and Results

Finally, we train and test our system on prefix verbs
where the segmentation decisions are provided by
a morphological dictionary. We are interested in
whether the strong results of our system could trans-
fer to conventional morphological segmentations.
We extract all verbs in CELEX that are valid verbs
for our system (divisible into a prefix and verb stem),
and take the CELEX segmentation as the label; i.e.,
whether the prefix and stem are separated into dis-
tinct morphemes. We extract 1006 total verbs.

We take 506 verbs for training, 250 verbs as a
development set (to tune our classifier’s regulariza-
tion parameter) and 250 verbs as a final held-out test
set. We use the same features and classifier as in
our main results, except we remove theDIC features
which are now the instance labels.

Table 5 shows the performance of our two base-
line systems along with Morfessor and SCD. While
the majority-class baseline is much higher, the
prefix-based baseline is 7%lower, indicating that
knowledge of prefixes, and lexical features in gen-
eral, are less helpful for conventional segmentations.
In fact, performance only drops 2% when we re-
move theLEX features, showing that web-scale in-
formation alone can enable solid performance on
this task. Surprisingly, Morfessor performs worse
here, below both baselines and substantially below
the supervised system. We confirmed our Morfessor
program was generating the same segmentations as
the online demo. We also experimented with Lin-
guistica (Goldsmith, 2001), training on a large cor-
pus, but results were worse than with Morfessor.

Accurate segmentation of prefix verbs is clearly
part of the mandate of these systems; prefix verb
segmentation is simply a very challenging task. Un-
like other, less-ambiguous tasks in morphology, a
prefix/stem segmentation is plausible for all of our
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input verbs, since the putative morphemes are by
definition valid morphemes in the language.

Overall, the results confirm and extend previous
studies that show semantic information is helpful in
morphology (Schone and Jurafsky, 2000; Yarowsky
and Wicentowski, 2000). However, we reiterate that
optimizing systems according to conventional mor-
phology may not be optimal for downstream ap-
plications. Furthermore, accuracy is substantially
lower in this setting than in our main results. Target-
ing conventional segmentations may be both more
challenging and less useful than focusing on seman-
tic compositionality.

6 Related Work

There is a large body of work on morphological
analysis of English, but most of this work does not
handle prefixes. Porter’s stemmer is a well-known
suffix-stripping algorithm (Porter, 1980), while
publicly-available lemmatizers likemorpha (Min-
nen et al., 2001) and PC-KIMMO (Karp et al., 1992)
only process inflectional morphology. FreeLing (At-
serias et al., 2006) comes with a few simple rules
for deterministically stripping prefixes in some lan-
guages, but not English (e.g., onlysemi-andre- can
be stripped when analyzing OOV Spanish verbs).

A number of modern morphological analyzers use
supervised machine learning. These systems could
all potentially benefit from the novel distributional
features used in our model. Van den Bosch and
Daelemans (1999) use memory-based learning to
analyze Dutch. Wicentowski (2004)’s supervised
WordFrame model includes a prefixation compo-
nent. Results are presented on over 30 languages.
Erjavec and D̆zeroski (2004) present a supervised
lemmatizer for Slovene. Dreyer et al. (2008) per-
form supervised lemmatization on Basque, English,
Irish and Tagalog; like us they include results when
the set of lemmas is given. Toutanova and Cherry
(2009) present a discriminative lemmatizer for En-
glish, Bulgarian, Czech and Slovene, but only han-
dle suffix morphology. Poon et al. (2009) present an
unsupervised segmenter, but one that is based on a
log-linear model that can include arbitrary and in-
terdependent features of the type proposed in our
work. We see potential in combining the best el-
ements of both approaches to obtain a system that

does not need annotated training data, but can make
use of powerful web-scale features.

Our approach follows previous systems for mor-
phological analysis that leverage semantic as well
as orthographic information (Yarowsky and Wicen-
towski, 2000; Schone and Jurafsky, 2001; Baroni et
al., 2002). Similar problems also arise in core se-
mantics, such as how to detect the compositionality
of multi-word expressions (Lin, 1999; Baldwin et
al., 2003; Fazly et al., 2009). Our problem is sim-
ilar to the analysis of verb-particle constructions or
VPCs (e.g.,round up, sell off, etc.) (Bannard et al.,
2003). Web-scale data can be used for a variety of
problems in semantics (Lin et al., 2010), including
classifying VPCs (Kummerfeld and Curran, 2008).

We motivated our work by describing applications
in information retrieval, and here Google is clearly
the elephant in the room. It is widely reported that
Google has been using stemming since 2003; for ex-
ample, a search today forPorter stemmingreturns
pages describing thePorter stemmer, and the re-
turned snippets have words likestemming, stem-
mer, andstem in bold text. Google can of course
develop high-quality lists of morphological variants
by paying attention to how users reformulate their
queries. User query sessions have previously been
used to expand queries using similar terms, such as
substitutingfeline for cat (Jones et al., 2006). We
show that high-quality, IR-friendly stemming is pos-
sible even without query data. Furthermore, query
data could be combined with our other features for
highly discriminative word stemming in context.

Beyond information retrieval, suffix-based stem-
ming and lemmatization have been used in a range
of NLP applications, including text categorization,
textual entailment, and statistical machine transla-
tion. We believe accurate prefix-stripping can also
have an impact in these areas.

7 Conclusions and Future Work

We presented a system for predicting the semantic
compositionality of prefix verbs. We proposed a
new, well-defined and practical definition of compo-
sitionality, and we annotated a corpus of sentences
according to this definition. We trained a discrimina-
tive model to predict compositionality using a range
of lexical and web-scale statistical features. Novel
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features include measures of the frequency of prefix-
stem hyphenation, and statistics for the likelihood of
the verb and stem co-occurring as separate words in
an N-gram. The classifier is highly accurate across a
range of prefixes, correctly predicting composition-
ality for 93.6% of examples.

Our preliminary results provide strong motiva-
tion for investigating and applying new distribu-
tional features in the prediction of both conventional
morphology and in task-directed semantic composi-
tionality. Our techniques could be used on a variety
of other complex word forms. In particular, many
of our features extend naturally to identifying stem-
stem compounds (likepanfryor healthcare). Also, it
would be possible for our system to handle inflected
forms by first converting them to their lemmas us-
ing a morphological analyzer. We could also jointly
learn the compositionality of words across their in-
flections, along the lines of Yarowsky and Wicen-
towski (2000).

There are also other N-gram-derived features that
warrant further investigation. One source of in-
formation that has not previously been exploited is
the “lexical fixedness” (Fazly et al., 2009) of non-
compositional prefix verbs. If prefix verbs are rarely
rephrased in another form, they are likely to be non-
compositional. For example, in our N-gram data,
the count ofquest againis relatively low compared
to the count ofrequest, indicating requestis non-
compositional. On the other hand,marry again is
relatively frequent, indicating thatremarry is com-
positional. Incorporation of these and other N-gram
counts could further improve classification accuracy.
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Abstract

We show that jointly performing semantic role
labeling (SRL) on bitext can improve SRL
results on both sides. In our approach, we
use monolingual SRL systems to produce ar-
gument candidates for predicates in bitext at
first. Then, we simultaneously generate SRL
results for two sides of bitext using our joint
inference model. Our model prefers the bilin-
gual SRL result that is not only reasonable on
each side of bitext, but also has more consis-
tent argument structures between two sides.
To evaluate the consistency between two argu-
ment structures, we also formulate a log-linear
model to compute the probability of aligning
two arguments. We have experimented with
our model on Chinese-English parallel Prop-
Bank data. Using our joint inference model,
F1 scores of SRL results on Chinese and En-
glish text achieve 79.53% and 77.87% respec-
tively, which are 1.52 and 1.74 points higher
than the results of baseline monolingual SRL
combination systems respectively.

1 Introduction

In recent years, there has been an increasing inter-
est in SRL on several languages. However, little
research has been done on how to effectively per-
form SRL on bitext, which has important applica-
tions including machine translation (Wu and Fung,
2009). A conventional way to perform SRL on bi-
text is performing SRL on each side of bitext sep-
arately, as has been done by Fung et al. (2007) on
Chinese-English bitext. However, it is very difficult
to obtain good SRL results on both sides of bitext

in this way. The reason is that even the state-of-
the-art SRL systems do not have very high accuracy
on both English text (Màrquez et al., 2008; Pradhan
et al., 2008; Punyakanok et al., 2008; Toutanova et
al., 2008), and Chinese text (Che et al., 2008; Xue,
2008; Li et al., 2009; Sun et al., 2009).

On the other hand, the semantic equivalence be-
tween two sides of bitext means that they should
have consistent predicate-argument structures. This
bilingual argument structure consistency can guide
us to find better SRL results. For example, in Fig-
ure 1(a), the argument structure consistency can
guide us to choose a correct SRL result on Chinese
side. Consistency between two argument structures
is reflected by sound argument alignments between
them, as shown in Figure 1(b). Previous research has
shown that bilingual constraints can be very help-
ful for parsing (Burkett and Klein, 2008; Huang et
al., 2008). In this paper, we show that the bilingual
argument structure consistency can be leveraged to
substantially improve SRL results on both sides of
bitext.

Formally, we present a joint inference model to
preform bilingual SRL. Using automatic word align-
ment on bitext, we first identify a pair of predicates
that align with each other. And we use monolin-
gual SRL systems to produce argument candidates
for each predicate. Then, our model jointly generate
SRL results for both predicates from their argument
candidates, using integer linear programming (ILP)
technique. An overview of our approach is shown in
Figure 2.

Our joint inference model consists of three com-
ponents: the source side, the target side, and the ar-
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In recent years the pace of opening up to the outside of China `s construction market    has   further    accelerated
[    AM-TMP    ]  [                                                        A1                                                 ]          [   A2  ]   [   Pred   ]

R1:    [                A1                  ]    [ AM-TMP ]    [            C-A1           ]     [ AM-ADV ]    [Pred]
R2:    [                                                     A1                                           ]     [ AM-ADV ]    [Pred]

中国 建筑 市场 近年 来 对 外 开放 步伐 进一步 加快
      zhongguo jianzhu shichang      jinnian lai        dui wai kaifang bufa         jinyibu         jiakuai

[    AM-TMP   ] [                                                        A1                                                  ]         [   A2   ]  [    Pred    ]
In recent years the pace of opening up to the outside of China `s construction market    has   further    accelerated

中国 建筑 市场 近年 来 对 外 开放 步伐 进一步 加快
[ A1 ] [ AM-TMP ] [ C-A1          ]    [AM-ADV]    [Pred]

(a) Word alignment and SRL results for a Chinese-English predicate pair.

(b) Argument alignments for a Chinese-English predicate pair.

Figure 1: An example from Chinese-English parallel PropBank. In (a), the SRL results are generated by the state-
of-the-art monolingual SRL systems. The English SRL result is correct. But it is to more difficult to get correct
SRL result on Chinese side, because the AM-TMP argument embeds into a discontinuous A1 argument. The Chinese
SRL result in the row marked by ‘R1’ is correct and consistent with the result on English side. Whereas the result in
the row marked by ‘R2’ is incorrect and inconsistent with the result on English side, with the circles showing their
inconsistency. The argument structure consistency can guide us to choose the correct Chinese SRL result.

Monolingual
SRL System

Monolingual
SRL System

Our Joint
Inference

Model

Source-side
 Predidate

Target side
Predicate

Source-side
SRL 

Candidates

Target-side
SRL 

Candidates Bilingual
SRL Result

Figure 2: Overview of our approach.

gument alignment between two sides. These three
components correspond to three interrelated factors:
the quality of the SRL result on source side, the qual-
ity of the SRL result on target side, and the argu-
ment structure consistency between the SRL results
on both sides. To evaluate the consistency between
the two argument structures in our joint inference
model, we formulate a log-linear model to compute
the probability of aligning two arguments. Experi-
ments on Chinese-English parallel PropBank shows
that our model significantly outperforms monolin-
gual SRL combination systems on both Chinese and
English sides.

The rest of this paper is organized as follows: Sec-
tion 2 introduces related work. Section 3 describes
how we generate SRL candidates on each side of bi-
text. Section 4 presents our joint inference model.
Section 5 presents our experiments. And Section 6
concludes our work.

2 Related Work

Some existing work on monolingual SRL combina-
tion is related to our work. Punyakanok et al. (2004;
2008) formulated an ILP model for SRL. Koomen
et al. (2005) combined several SRL outputs using
ILP method. Màrquez et al. (2005) and Pradhan et
al. (2005) proposed combination strategies that are
not based on ILP method. Surdeanu et al. (2007)
did a complete research on a variety of combination
strategies. Zhuang and Zong (2010) proposed a min-
imum error weighting combination strategy for Chi-
nese SRL combination.

Research on SRL utilizing parallel corpus is also
related to our work. Padó and Lapata (2009) did
research on cross-lingual annotation projection on
English-German parallel corpus. They performed
SRL only on the English side, and then mapped
the English SRL result to German side. Fung et
al. (2007) did pioneering work on studying argu-
ment alignment on Chinese-English parallel Prop-
Bank. They performed SRL on Chinese and En-
glish sides separately. Then, given the SRL result
on both sides, they automatically induced the argu-
ment alignment between two sides.

The major difference between our work and all
existing research is that our model performs SRL in-
ference on two sides of bitext simultaneously. In our
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model, we jointly consider three interrelated factors:
SRL result on the source side, SRL result on the tar-
get side, and the argument alignment between them.

3 Generating Candidates for Inference

3.1 Monolingual SRL System

As shown in Figure 2, we need to use a monolin-
gual SRL system to generate candidates for our joint
inference model. We have implemented a monolin-
gual SRL system which utilize full phrase-structure
parse trees to perform SRL. In this system, the whole
SRL process is comprised of three stages: pruning,
argument identification, and argument classification.
In the pruning stage, the heuristic pruning method
in (Xue, 2008) is employed. In the argument iden-
tification stage, a number of argument locations are
identified in a sentence. In the argument classifica-
tion stage, each location identified in the previous
stage is assigned a semantic role label. Maximum
entropy classifier is employed for both the argument
identification and classification tasks. And Zhang
Le’s MaxEnt toolkit1 is used for implementation.

We use the monolingual SRL system described
above for both Chinese and English SRL tasks. For
the Chinese SRL task, the features used in this paper
are the same with those used in (Xue, 2008). For
the English SRL task, the features used are the same
with those used in (Pradhan et al., 2008).

3.2 Output of the Monolingual SRL System

The maximum entropy classifier in our monolingual
SRL system can output classification probabilities.
We use the classification probability of the argument
classification stage as an argument’s probability. As
illustrated in Figure 3, in an individual system’s out-
put, each argument has three attributes: its location
in sentence loc, represented by the number of its first
word and last word; its semantic role label l; and its
probability p.

So each argument outputted by a system is a triple
(loc, l, p). For example, the A0 argument in Figure 3
is ((0, 2),A0, 0.94). Because these outputs are to be
combined, we call such triple a candidate.

1http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit
.html

Sent: 	û Ý] è� ¤�¥I	n ­� O�:
Args: [ A0 ] [Pred] [ A1 ]
loc: (0, 2) (4, 7)
l: A0 A1

p: 0.94 0.92

Figure 3: Three attributes of an output argument: location
loc, label l, and probability p.

3.3 Generating and Merging Candidates
To generate candidates for joint inference, we need
to have multiple SRL results on each side of bi-
text. Therefore, for both Chinese and English SRL
systems, we use the 3-best parse trees of Berkeley
parser (Petrov and Klein, 2007) and 1-best parse
trees of Bikel parser (Bikel, 2004) and Stanford
parser (Klein and Manning, 2003) as inputs. All the
three parsers are multilingual parsers. The second
and third best parse trees of Berkeley parser are used
for their good quality. Therefore, each monolingual
SRL system produces 5 different outputs.

Candidates from different outputs may have the
same loc and l but different p. So we merge all
candidates with the same loc and l into one by av-
eraging their probabilities. For a merged candidate
(loc, l, p), we say that p is the probability of assign-
ing l to loc.

4 Joint Inference Model

Our model can be conceptually decomposed to three
components: the source side, the target side, and the
argument alignment. The objective function of our
joint inference model is the weighted sum of three
sub-objectives:

max Os + λ1Ot + λ2Oa (1)

where Os and Ot represent the quality of the SRL
results on source and target sides, and Oa represents
the soundness of the argument alignment between
the SRL results on two sides, λ1, λ2 are positive
weights corresponding to the importance of Ot and
Oa respectively.

4.1 Components of Source and Target Sides
4.1.1 Source Side Component

The source side component aims to improve the
SRL result on source side. This is equivalent to a
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monolingual SRL combination problem.
For convenience, we denote the whole semantic

role label set for source language as {ls1, ls2, . . . , lsLs
},

in which ls1 ∼ ls6 stand for the key argument labels
A0 ∼ A5 respectively. Suppose there are Ns differ-
ent locations, denoted as locs1, . . . , loc

s
Ns

, among all
candidates on the source side. The probability of as-
signing lsj to locsi is ps

ij . An indicator variable xij is
defined as:

xij = [locsi is assigned label lsj ].

Then the source side sub-objective Os in equation
(1) is the sum of arguments’ probabilities on source
side:

Os =

Ns∑
i=1

Ls∑
j=1

(ps
ij − Ts)xij (2)

where Ts is a bias to prevent including too many can-
didates in solution (Surdeanu et al., 2007).

We consider the following two linguistically mo-
tivated constraints:

1. No duplication: There is no duplication for key
arguments: A0 ∼ A5.

2. No overlapping: Arguments cannot overlap
with each other.

In (Punyakanok et al., 2004), several more con-
straints are considered. According to (Surdeanu
et al., 2007), however, no significant performance
improvement can be obtained by considering more
constraints than the two above. So we do not con-
sider other constraints.

The inequalities in (3) make sure that each locsi is
assigned at most one label.

∀1 ≤ i ≤ Ns :

Ls∑
j=1

xij ≤ 1 (3)

The inequalities in (4) satisfy the No duplication
constraint.

∀1 ≤ j ≤ 6 :

Ns∑
i=1

xij ≤ 1 (4)

For any source side location locsi , let Ci denote
the index set of the locations that overlap with it.
Then the No overlapping constraint means that if
locsi is assigned a label, i.e.,

∑Ns
j=1 xij = 1, then

for any u ∈ Ci, locsu cannot be assigned any label,

i.e.,
∑Ns

j=1 xuj = 0. A common technique in ILP
modeling to form such a constraint is to use a suf-
ficiently large auxiliary constant M . And the con-
straint is formulated as:

∀1 ≤ i ≤ Ns :
∑
u∈Ci

Ls∑
j=1

xuj ≤ (1−
Ls∑
j=1

xij)M (5)

In this case,M only needs to be larger than the num-
ber of candidates to be combined. In this paper,
M = 500 is large enough.

4.1.2 Target Side Component
In principle, the target side component of our joint

inference model is the same with the source side
component.

The whole semantic role label set for target lan-
guage is denoted by {lt1, lt2, . . . , ltLt

}. There are
Nt different locations, denoted as loct1, . . . , loc

t
Nt

,
among all candidates in the target side. And lt1 ∼ lt6
stand for the key argument labels A0 ∼ A5 respec-
tively. The probability of assigning ltj to loctk is pt

kj .
An indicator variable ykj is defined as:

ykj = [loctk is assigned label ltj ].

Then the target side sub-objective Ot in equation (1)
is:

Ot =

Nt∑
k=1

Lt∑
j=1

(pt
kj − Tt)ykj (6)

The constraints on target side are as follows:
Each loctk is assigned at most one label:

∀1 ≤ k ≤ Nt :

Lt∑
j=1

ykj ≤ 1 (7)

The No duplication constraint:

∀1 ≤ j ≤ 6 :

Nt∑
k=1

ykj ≤ 1 (8)

The No overlapping constraint:

∀1 ≤ k ≤ Nt :
∑
v∈Ck

Lt∑
j=1

yvj ≤ (1−
Lt∑

j=1

ykj)M (9)

In (9), Ck denotes the index set of the locations that
overlap with loctk, and the constant M is set to 500
in this paper.
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4.2 Argument Alignment
The argument alignment component is the core of
our joint inference model. It gives preference to the
bilingual SRL results that have more consistent ar-
gument structures.

For a source side argument args
i = (locsi , l

s) and
a target side argument argt

k = (loctk, l
t), let zik be

the following indicator variable:

zik = [args
i aligns with argt

k].

We use pa
ik to represent the probability that args

i and
argt

k align with each other, i.e., pa
ik = P (zik = 1).

We call pa
ik the argument alignment probability

between args
i and argt

k.

4.2.1 Argument Alignment Probability Model
We use a log-linear model to compute the argu-

ment alignment probability pa
ik between args

i and
argt

k. Let (s, t) denote a bilingual sentence pair and
wa denote the word alignment on (s, t). Our log-
linear model defines a distribution on zik given the
tuple tup = (args

i , arg
t
k, wa, s, t):

P (zik|tup) ∝ exp(wTφ(tup))

where φ(tup) is the feature vector. With this model,
pa

ik can be computed as pa
ik = P (zik = 1|tup).

In order to study the argument alignment in cor-
pus and to provide training data for our log-linear
model, we have manually aligned the arguments in
60 files (chtb 0121.fid to chtb 0180.fid) of Chinese-
English parallel PropBank. On this data set, we get
the argument alignment matrix in Table 1.

Ch\En A0 A1 A2 A3 A4 AM* NUL
A0 492 30 4 0 0 0 46
A1 98 853 43 2 0 0 8
A2 9 57 51 1 0 47 0
A3 1 0 2 6 0 0 0
A4 0 0 2 0 3 0 0
AM* 0 2 39 0 0 895 221
NUL 53 14 27 0 0 45 0

Table 1: The argument alignment matrix on manually
aligned corpus.

Each entry in Table 1 is the number of times for
which one type of Chinese argument aligns with one
type of English argument. AM* stands for all ad-
juncts types like AM-TMP, AM-LOC, etc., and NUL

means that the argument on the other side cannot be
aligned with any argument on this side. For exam-
ple, the number 46 in the A0 row and NUL column
means that Chinese A0 argument cannot be aligned
with any argument on English side for 46 times in
our manually aligned corpus.

We use the following features in our model.
Word alignment feature: If there are many word-
to-word alignments between args

i and argt
k, then

it is very probable that args
i and argt

k would align
with each other. We adopt the method used in (Padó
and Lapata, 2009) to measure the word-to-word
alignments between args

i and argt
k. And the word

alignment feature is defined as same as the word
alignment-based word overlap in (Padó and Lapata,
2009). Note that this is a real-valued feature.
Head word alignment feature: The head word
of an argument is usually more representative than
other words. So we use whether the head words of
args

i and argt
k align with each other as a binary fea-

ture. The use of this feature is inspired by the work
in (Burkett and Klein, 2008).
Semantic role labels of two arguments: From Ta-
ble 1, we can see that semantic role labels of two ar-
guments are a good indicator of whether they should
align with each other. For example, a Chinese A0
argument aligns with an English A0 argument most
of the times, and never aligns with an English AM*
argument in Table 1. Therefore, the semantic role
labels of args

i and argt
k are used as a feature.

Predicate verb pair: Different predicate pairs have
different argument alignment patterns. Let’s take the
Chinese predicate O�/zengzhang and the English
predicate grow as an example. The argument align-
ment matrix for all instances of the Chinese-English
predicate pair (zengzhang, grow) in our manually
aligned corpus is shown in Table 2.

CH \EN A0 A1 A2 AM* NUL
A0 0 16 0 0 0
A1 0 0 12 0 0
AM* 0 0 4 7 10
NUL 0 0 0 2 0

Table 2: The argument alignment matrix for the predicate
pair (zengzhang, grow).

From Table 2 we can see that all A0 arguments of
zengzhang align with A1 arguments of grow. This
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is very different from the results in Table 1, where a
Chinese A0 argument tends to align with an English
A0 argument. This phenomenon shows that a pred-
icate pair can determine which types of arguments
should align with each other. Therefore, we use the
predicate pair as a feature.

4.2.2 Argument Alignment Component
The argument alignment sub-objective Oa in

equation (1) is the sum of argument alignment prob-
abilities:

Oa =

Ns∑
i=1

Nt∑
k=1

(pa
ik − Ta)zik (10)

where Ta is a bias to prevent including too many
alignments in final solution, and pa

ik is computed
using the log-linear model described in subsec-
tion 4.2.1.
Oa reflects the consistency between argument

structures on two sides of bitext. Larger Oa means
better argument alignment between two sides, thus
indicates more consistency between argument struc-
tures on two sides.

The following constraints are considered:
1. Conformity with bilingual SRL result. For

all candidates on both source and target sides, only
those that are chosen to be arguments on each side
can be aligned.

2. One-to-many alignment limit. Each argument
can not be aligned with more than 3 arguments.

3. Complete argument alignment. Each argument
on source side must be aligned with at least one ar-
gument on target side, and vice versa.

The Conformity with bilingual SRL result con-
straint is necessary to validly integrate the bilingual
SRL result with the argument alignment. This con-
straint means that if args

i and argt
k align with each

other, i.e., zik = 1, then locsi must be assigned
a label on source side, i.e.,

∑Ls
j=1 xij = 1, and

loctk must be assigned a label on target side, i.e.,∑Lt
j=1 ykj = 1. So this constraint can be represented

as:

∀1 ≤ i ≤ Ns, 1 ≤ k ≤ Nt :

Ls∑
j=1

xij ≥ zik (11)

∀1 ≤ k ≤ Nt, 1 ≤ i ≤ Ns :

Lt∑
j=1

ykj ≥ zik (12)

The One-to-many alignment limit constraint
comes from our observation on manually aligned
corpus. We have found that no argument aligns with
more than 3 arguments in our manually aligned cor-
pus. This constraint can be represented as:

∀1 ≤ i ≤ Ns :

Nt∑
k=1

zik ≤ 3 (13)

∀1 ≤ k ≤ Nt :

Ns∑
i=1

zik ≤ 3 (14)

The Complete argument alignment constraint
comes from the semantic equivalence between two
sides of bitext. For each source side location locsi ,
if it is assigned a label, i.e.,

∑Ls
j=1 xij = 1, then it

must be aligned with some arguments on target side,
i.e.,

∑Nt
k=1 zik ≥ 1. This can be represented as:

∀1 ≤ i ≤ Ns :

Nt∑
k=1

zik ≥
Ls∑
j=1

xij (15)

Similarly, each target side argument must be aligned
to at least one source side argument. This can be
represented as:

∀1 ≤ k ≤ Nt :

Ns∑
i=1

zik ≥
Lt∑

j=1

ykj (16)

4.3 Complete Argument Alignment as a Soft
Constraint

Although the hard Complement argument alignment
constraint is ideally reasonable, in real situations this
constraint does not always hold. The manual argu-
ment alignment result shown in Table 1 indicates
that in some cases an argument cannot be aligned
with any argument on the other side (see the NUL
row and column in Table 1). Therefore, it would
be reasonable to change the hard Complement argu-
ment alignment constraint to a soft one. To do so,
we need to remove the hard Complement argument
alignment constraint and add penalty for violation of
this constraint.

If an argument does not align with any argument
on the other side, we say it aligns with NUL. And we
define the following indicator variables:
zi,NUL = [args

i aligns with NUL], 1 ≤ i ≤ Ns.
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zNUL,k = [argt
k aligns with NUL], 1 ≤ k ≤ Nt.

Then
∑Ns

i=1 zi,NUL is the number of source side ar-
guments that align with NUL. And

∑Nt
k=1 zNUL,k is

the number of target side arguments that align with
NUL. For each argument that aligns with NUL, we
add a penalty λ3 to the argument alignment sub-
objective Oa. Therefore, the sub-objective Oa in
equation (10) is changed to:

Oa =

Ns∑
i=1

Nt∑
k=1

(pa
ik − Ta)zik

−λ3(

Ns∑
i=1

zi,NUL +

Nt∑
k=1

zNUL,k) (17)

From the definition of zi,NUL, it is obvious that,
for any 1 ≤ i ≤ Ns, zi,NUL and zik(1 ≤ k ≤ Nt)

have the following relationship: If
∑Nt

k=1 zik ≥ 1,
i.e., args

i aligns with some arguments on target side,
then zi,NUL = 0; Otherwise, zi,NUL = 1. These
relationships can be captured by the following con-
straints:

∀1 ≤ i ≤ Ns, 1 ≤ k ≤ Nt : zi,NUL ≤ 1−zik (18)

∀1 ≤ i ≤ Ns :

Nt∑
k=1

zik + zi,NUL ≥ 1 (19)

Similarly, for any 1 ≤ k ≤ Nt, zNUL,k and
zik(1 ≤ i ≤ Ns) observe the following constraints:

∀1 ≤ k ≤ Nt, 1 ≤ i ≤ Ns : zNUL,k ≤ 1− zik
(20)

∀1 ≤ k ≤ Nt :

Ns∑
i=1

zik + zNUL,k ≥ 1 (21)

4.4 Models Summary

So far, we have presented two versions of our joint
inference model. The first version treats Comple-
ment argument alignment as a hard constraint. We
will refer to this version as Joint1. The objective
function of Joint1 is defined by equations (1, 2, 6,
10). And the constraints of Joint1 are defined by
equations (3-5, 7-9, 11-16).

The sencond version treats Complement argument
alignment as a soft constraint. We will refer to this
version as Joint2. The objective function of Joint2

is defined by equations (1, 2, 6, 17). And the con-
straints of Joint2 are defined by equations (3-5, 7-9,
11-14, 18-21).

Our baseline models are monolingual SRL com-
bination models. We will refer to the source side
combination model as SrcCmb. The objective of Sr-
cCmb is to maximize Os, which is defined in equa-
tion (2). And the constraints of SrcCmb are defined
by equations (3-5). Similarly, we will refer to the tar-
get side combination model as TrgCmb. The objec-
tive of TrgCmb is to maximize Ot defined in equa-
tion (6). And the constraints of TrgCmb are defined
by equations (7-9). In this paper, we employ lp-
solve2 to solve all ILP models.

5 Experiments

5.1 Experimental Setup

In our experiments, we use the Xinhua News por-
tion of Chinese and English data in LDC OntoNotes
Release 3.0. This data is a Chinese-English parallel
proposition bank described in (Palmer et al., 2005).
It contains parallel proposition annotations for 325
files (chtb 0001.fid to chtb 0325.fid) from Chinese-
English parallel Treebank. The English part of this
data contains proposition annotations only for ver-
bal predicates. Therefore, we only consider verbal
predicates in this paper.

We employ the GIZA++ toolkit (Och and Ney,
2003) to perform automatic word alignment. Be-
sides the parallel PropBank data, we use additional
4,500K Chinese-English sentence pairs3 to induce
word alignments for both directions, with the default
GIZA++ settings. The alignments are symmetrized
using the intersection heuristic (Och and Ney, 2003),
which is known to produce high-precision align-
ments.

We use 80 files (chtb 0001.fid to chtb 0080.fid)
as test data, and 40 files (chtb 0081.fid to
chtb 0120.fid) as development data. Although our
joint inference model needs no training, we still
need to train a log-linear argument alignment prob-
ability model, which is used in the joint inference
model. As specified in subsection 4.2.1, the train-

2http://lpsolve.sourceforge.net/
3These data includes the following LDC corpus:

LDC2002E18, LDC2003E07, LDC2003E14, LDC2005T06,
LDC2004T07, LDC2000T50.
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ing set for the argument alignment probability model
consists of 60 files (chtb 0121.fid to chtb 0180.fid)
with manual argument alignment. Unfortunately,
the quality of automatic word alignment on one-
to-many Chinese-English sentence pairs is usually
very poor. So we only include one-to-one Chinese-
English sentence pairs in all data. And not all predi-
cates in a sentence pair can be included. Only bilin-
gual predicate pairs are included. A bilingual pred-
icate pair is defined to be a pair of predicates in bi-
text which align with each other in automatic word
alignment. Table 3 shows how many sentences and
predicates are included in each data set.

Test Dev Train
Articles 1-80 81-120 121-180

Chinese Sentences 1067 578 778
English Sentences 1182 620 828

Bilingual pairs 821 448 614
Chinese Predicates 3792 2042 2572
English Predicates 2864 1647 1860

Bilingual pairs 1476 790 982

Table 3: Sentence and predicate counts.

Our monolingual SRL systems are trained sep-
arately. Our Chinese SRL system is trained on
640 files (chtb 0121.fid to chtb 0931.fid) in Chinese
Propbank 1.0. Because Xinhua News is a quite dif-
ferent domain from WSJ, the training set for our En-
glish SRL system includes not only Sections 02∼21
of WSJ data in English Propbank, but also 205 files
(chtb 0121.fid to chtb 0325.fid) in the English part
of parallel PropBank. For Chinese, the syntactic
parsers are trained on 640 files (chtb 0121.fid to
chtb 0931.fid) plus the broadcast news portion of
Chinese Treebank 6.0. For English, the syntactic
parsers are trained on the following data: Sections
02∼21 of WSJ data in English Treebank, 205 files
(chtb 0121.fid to chtb 0325.fid) of Xinhua News
data in OntoNotes 3.0, and the Sinorama data in
OntoNotes 3.0. We treat discontinuous and corefer-
ential arguments in accordance to the CoNLL-2005
shared task (Carreras and Màrquez, 2005). The first
part of a discontinuous argument is labeled as it is,
and the second part is labeled with a prefix “C-”.
All coreferential arguments are labeled with a prefix
“R-”.

5.2 Tuning Parameters in Models

The models Joint1, Joint2, SrcCmb, and TrgCmb
have different parameters. For each model, we have
automatically tuned its parameters on development
set using Powell’s Mothod (Brent, 1973). Powell’s
Method is a heuristic optimization algorithm that
does not require the objective function to have an ex-
plicit analytical formula. For a monolingual model
like SrcCmb or TrgCmb, our objective is to maxi-
mize the F1 score of the model’s result on develop-
ment set. But a joint model, like Joint1 or Joint2,
generates SRL results on both sides of bitext. So
our objective is to maximize the sum of the two F1

scores of the model’s results for both Chinese and
English on development set. For all models, we re-
gard the parameters to be tuned as variables. Then
we optimize our objective using Powell’s Method.
The solution of this optimization is the values of pa-
rameters. To avoid finding poor local optimum, we
perform the optimization 30 times with different ini-
tial parameter values, and choose the best solution
found. The final parameter values are listed in Ta-
ble 4.

Model Ts Tt Ta λ1 λ2 λ3

SrcCmb 0.21 - - - - -
TrgCmb - 0.32 - - - -
Joint1 0.17 0.22 0.36 0.96 1.04 -
Joint2 0.15 0.26 0.42 1.02 1.21 0.15

Table 4: Parameter values in models.

5.3 Individual SRL Outputs’ Performance

As specified in subsection 3.3, the monoligual SRL
system uses different parse trees to generate multi-
ple SRL outputs. The performance of these outputs
on test set is shown in Table 5. In Table 5, O1∼O3
are the outputs using 3-best parse trees of Berkeley
parser respectively, O4 and O5 are the outputs us-
ing the best parse trees of Stanford parser and Bikel
parser respectively.

As specified in subsection 5.1, only a small part
of English SRL training data is in the same domain
with test data. Therefore, the English SRL result in
Table 5 is not very impressive. But the Chinese SRL
result is pretty good.
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Side Outputs P (%) R(%) F1

O1 79.84 71.95 75.69
O2 78.53 70.32 74.20

Chinese O3 78.41 69.99 73.96
O4 73.21 67.13 70.04
O5 75.32 63.78 69.07

O1 77.13 70.42 73.62
O2 75.88 69.06 72.31

English O3 75.74 68.65 72.02
O4 71.57 66.11 68.73
O5 73.12 68.04 70.49

Table 5: The results of individual monolingual SRL out-
puts on test set.

5.4 Effects of Different Constraints

The One-to-many limit and Complete argument
alignment constraints in subsection 4.2.2 comes
from our empirical knowledge. To investigate the
effect of these two constraits, we remove them from
our joint inference models one by one, and observe
the performance variations on test set. The results
are shown in Table 6. In Table 6, ‘c2’ refers to the
One-to-many limit constraint, ‘c3’ refers to the Com-
plete argument alignment constraint, and ‘-’ means
removing. For example, ‘Joint1 - c2’ means remov-
ing the constraint ‘c2’ from the model Joint1. Recall
that the only difference between Joint1 and Joint2 is
that ‘c3’ is a hard constraint in Joint1, but a soft con-
straint in Joint2. Therefore, ‘Joint2 - c3’ and ‘Joint2
- c2 - c3’ do not appear in Table 6, because they are
the same with ‘Joint1 - c3’ and ‘Joint1 - c2 - c3’
respectively.

Model Side P (%) R(%) F1

Joint1

Chinese

82.95 75.21 78.89
Joint1 - c2 81.46 75.97 78.62
Joint1 - c3 82.36 74.68 78.33
Joint1 - c2 - c3 82.04 74.67 78.18
Joint2 83.35 76.04 79.53
Joint2 - c2 82.41 76.03 79.09

Joint1

English

79.38 75.16 77.21
Joint1 - c2 78.51 75.22 76.83
Joint1 - c3 78.66 74.55 76.55
Joint1 - c2 - c3 78.37 74.37 76.32
Joint2 79.64 76.18 77.87
Joint2 - c2 78.41 75.89 77.13

Table 6: Results of different joint models on test set.

From Table 6, we can see that the constraints ‘c2’
and ‘c3’ both have positive effect in our joint in-
ference model, because removing any one of them
causes performance degradation. And removing
‘c3’ from Joint1 causes more performance degrada-
tion than removing ‘c2’. This means that ‘c3’ plays
a more important role than ‘c2’ in our joint inference
model. Indeed, by treating ‘c3’ as a soft constraint,
the model Joint2 has the best performance on both
sides of bitext.

5.5 Final Results
We use Joint2 as our final joint inference model.
And as specified in subsection 4.4, our baselines are
monolingual SRL combination models: SrcCmb for
Chinese, and TrgCmb for English. Note that SrcCmb
and TrgCmb are basically the same as the state-of-
the-art combination model in (Surdeanu et al., 2007)
with No overlapping and No duplication constraints.
The final results on test set are shown in Table 7.

Side Model P (%) R(%) F1

Chinese SrcCmb 82.58 73.92 78.01
Joint2 83.35 76.04 79.53

English TrgCmb 79.02 73.44 76.13
Joint2 79.64 76.18 77.87

Table 7: Comparison between monolingual combination
model and our joint inference model on test set.

From Table 5 and Table 7, we can see that SrcCmb
and TrgCmb improve F1 scores over the best indi-
vidual SRL outputs by 2.32 points and 2.51 points
on Chinese and English seperately. Thus they form
strong baselines for our joint inference model. Even
so, our joint inference model still improves F1 score
over SrcCmb by 1.52 points, and over TrgCmb by
1.74 points.

From Table 7, we can see that, despite only part of
training data for English SRL system is in-domain,
our joint inference model still produces good En-
glish SRL result. And the F1 score of Chinese SRL
result reaches 79.53%, which represents the state-
of-the-art Chinese SRL performance to date.

6 Conclusions

In this paper, we propose a joint inference model
to perform bilingual SRL. Our joint inference
model incorporates not only linguistic constraints on
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source and target sides of bitext, but also the bilin-
gual argument structure consistency requirement on
bitext. Experiments on Chinese-English parallel
PropBank show that our joint inference model is
very effective for bilingual SRL. Compared to state-
of-the-art monolingual SRL combination baselines,
our joint inference model substantially improves
SRL results on both sides of bitext. In fact, the so-
lution of our joint inference model contains not only
the SRL results on bitext, but also the optimal argu-
ment alignment between two sides of bitext. This
makes our model especially suitable for application
in machine translation, which needs to obtain the ar-
gument alignment.
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Lluı́s Màrquez, Mihai Surdeanu, Pere Comas, and Jordi
Turmo. 2005. A Robust Combination Strategy for
Semantic Role Labeling. In Proceedings of EMNLP-
2005, pages 644-651.

Frans J. Och, and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29:19-51.
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Abstract

This paper presents a method for the auto-
matic discovery of MANNER relations from
text. An extended definition of MANNER is
proposed, including restrictions on the sorts
of concepts that can be part of its domain and
range. The connections with other relations
and the lexico-syntactic patterns that encode
MANNER are analyzed. A new feature set spe-
cialized on MANNER detection is depicted and
justified. Experimental results show improve-
ment over previous attempts to extract MAN-
NER. Combinations of MANNER with other
semantic relations are also discussed.

1 Introduction

Extracting semantic relations from text is an impor-
tant step towards understanding the meaning of text.
Many applications that use no semantics, or only
shallow semantics, could benefit by having available
more text semantics. Recently, there is a growing in-
terest in text semantics (Màrquez et al., 2008; Davi-
dov and Rappoport, 2008).

An important semantic relation for many appli-
cations is the MANNER relation. Broadly speaking,
MANNER encodes the mode, style, way or fashion
in which something is done or happened. For ex-
ample, quick delivery encodes a MANNER relation,
since quick is the manner in which the delivery hap-
pened.

An application of MANNER detection is Question
Answering, where many how questions refer to this
particular relation. Consider for example the ques-
tion How did the President communicate his mes-

sage?, and the text Through his spokesman, Obama
sent a strong message [. . . ]. To answer such ques-
tions, it is useful to identify first the MANNER rela-
tions in text.

MANNER occurs frequently in text and it is
expressed by a wide variety of lexico-syntactic
patterns. For example, PropBank annotates
8,037 ARGM-MNR relations (10.7%) out of 74,980
adjunct-like arguments (ARGMs). There are verbs
that state a particular way of doing something, e.g.,
to limp implicitly states a particular way of walk-
ing. Adverbial phrases and prepositional phrases
are the most productive patterns, e.g., The nation’s
industrial sector is now growing very slowly if at
all and He started the company on his own. Con-
sider the following example: The company said
Mr. Stronach will personally direct the restructur-
ing assisted by Manfred Gingl, [. . . ]1. There are
two MANNER relations in this sentence: the under-
lined chunks of text encode the way in which Mr.
Stronach will direct the restructuring.

2 Previous Work

The extraction of semantic relations in general has
caught the attention of several researchers. Ap-
proaches to detect semantic relations usually focus
on particular lexical and syntactic patterns. There
are both unsupervised (Davidov et al., 2007; Turney,
2006) and supervised approaches. The SemEval-
2007 Task 04 (Girju et al., 2007) aimed at relations
between nominals. Work has been done on detect-
ing relations within noun phrases (Nulty, 2007),

1Penn TreeBank, file wsj 0027, sentence 10.
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named entities (Hirano et al., 2007), clauses (Sz-
pakowicz et al., 1995) and syntax-based comma res-
olution (Srikumar et al., 2008). There have been
proposals to detect a particular relation, e.g., CAUSE

(Chang and Choi, 2006), INTENT (Tatu, 2005),
PART-WHOLE (Girju et al., 2006) and IS-A (Hearst,
1992).

MANNER is a frequent relation, but besides the-
oretical studies there is not much work on detect-
ing it. Girju et al. (2003) propose a set of fea-
tures to extract MANNER exclusively from adverbial
phrases and report a precision of 64.44% and re-
call of 68.67%. MANNER is a semantic role, and all
the works on the extraction of roles (Gildea and Ju-
rafsky, 2002; Giuglea and Moschitti, 2006) extracts
MANNER as well. However, these approaches treat
MANNER as any other role and do not use any spe-
cific features for its detection. As we show in this
paper, MANNER has its own unique characteristics
and identifying them improves the extraction accu-
racy. The two most used semantic role annotation
resources, FrameNet (Baker et al., 1998) and Prop-
Bank (Palmer et al., 2005), include MANNER.

The main contributions of this paper are: (1) em-
pirical study of MANNER and its semantics;
(2) analysis of the differences with other relations;
(3) lexico-syntactic patterns expressing MANNER;
(4) a set of features specialized on the detection of
MANNER; and (5) the way MANNER combines with
other semantic relations.

3 The Semantics of MANNER Relation

Traditionally, a semantic relation is defined by stat-
ing the kind of connection linking two concepts.
For example, MANNER is loosely defined by the
PropBank annotation guidelines2 as manner adverbs
specify how an action is performed [. . . ] manner
should be used when an adverb be an answer to
a question starting with ’how?’. We find this kind
of definition weak and prone to confusion (Section
3.2). Nonetheless, to the best of our knowledge,
semantic relations have been mostly defined stating
only a vague definition.

Following (Helbig, 2005), we propose an ex-
tended definition for semantic relations, includ-

2http://verbs.colorado.edu/˜mpalmer/projects/ace/PBguide
lines.pdf, page 26.

ing semantic restrictions for its domain and range.
These restrictions help deciding which relation
holds between a given pair of concepts. A relation
shall not hold between two concepts unless they be-
long to its domain and range. These restrictions are
based on theoretical and empirical grounds.

3.1 MANNER Definition
Formally, MANNER is represented as MNR(x, y),
and it should be read x is the manner in which
y happened. In addition, DOMAIN(MNR) and
RANGE(MNR) are the sets of sorts of concepts that
can be part of the first and second argument.

RANGE(MNR), namely y, is restricted to situa-
tions, which are defined as anything that happens
at a time and place. Situations include events and
states and can be expressed by verbs or nouns, e.g.,
conference, race, mix and grow. DOMAIN(MNR),
namely x, is restricted to qualities (ql), non temporal
abstract objects (ntao) and states (st). Qualities rep-
resent characteristics that can be assigned to other
concepts, such as slowly and abruptly. Non tempo-
ral abstract objects are intangible entities. They
are somehow product of human reasoning and are
not palpable. They do not encode periods or points
of time, such as week, or yesterday. For example,
odor, disease, and mile are ntao; book and car are
not because they are tangible. Unlike events, states
are situations that do not imply a change in the con-
cepts involved. For example, standing there or hold-
ing hands are states; whereas walking to the park
and pinching him are events. For more details about
these semantic classes, refer to (Helbig, 2005).

These semantic restrictions on MANNER come af-
ter studying previous definitions and manual exami-
nation of hundreds of examples. Their use and ben-
efits are described in Section 4.

3.2 MANNER and Other Semantic Relations
MANNER is close in meaning with several other rela-
tions, specifically INSTRUMENT, AT-LOCATION and
AT-TIME.

Asking how does not identify MANNER in many
cases. For example, given John broke the window
[with a hammer], the question how did John break
the window? can be answered by with the hammer,
and yet the hammer is not the MANNER but the IN-
STRUMENT of the broke event. Other relations that
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may be confused as MANNER include AT-LOCATION

and AT-TIME, like in [The dog jumped]x [over the
fence]y and [John used to go]x [regularly]y.

A way of solving this ambiguity is by prioritiz-
ing the semantic relations among the possible can-
didates for a given pair of concepts. For exam-
ple, if both INSTRUMENT and MANNER are possi-
ble, the former is extracted. In a similar fashion, AT-
LOCATION and AT-TIME could have higher priority
than MANNER. This idea has one big disadvantage:
the correct detection of MANNER relies on the detec-
tion of several other relations, a problem which has
proven difficult and thus would unnecessarily intro-
duce errors.

Using the proposed extended definition one may
discard the false MANNER relations above. Hammer
is not a quality, non temporal abstract object or state
(hammers are palpable objects), so by definition a
relation of the form MNR(the hammer, y) shall not
hold. Similarly, fence and week do not fulfill the
domain restriction, so MNR(over the fence, y) and
MNR(every other week, y) are not valid either.

MANNER also relates to CAUSE. Again, ask-
ing how? does not resolve the ambiguity. Given
The legislation itself noted that it [was introduced]x
“by request,” [. . . ] (wsj 0041, 47), we believe
the underlined PP indicates the CAUSE and not the
MANNER of x because the introduction of the leg-
islation is the effect of the request. Using the ex-
tended definition, since request is an event (it im-
plies a change), MNR(by request, y) is discarded
based on the domain and range restrictions.

4 Argument Extraction

In order to implement domain and range restrictions,
one needs to map words to the four proposed se-
mantic classes: situations (si), states (st), qualities
(ql) and non temporal abstract objects (ntao). These
classes are the ones involved in MNR; work has been
done to define in a similar way more relations, but
we do not report on that in this paper.

First, the head word of a potential argument is
identified. Then, the head is mapped into a seman-
tic class using three sources of information: POS
tags, WordNet hypernyms and named entity (NE)
types. Table 1 presents the rules that define the map-
ping. We obtained them following a data-driven ap-

proach using a subset of MANNER annotation from
PropBank and FrameNet. Intermediate classes are
defined to facilitate legibility; intermediate classes
ending in -NE only involve named entity types.

Words are automatically POS tagged using a
modified Brill tagger. We do not perform word sense
disambiguation because in our experiments it did not
bring any improvement; all senses are considered
for each word. isHypo(x) for a given word w in-
dicates if any of the senses of w is a hyponym of x
in WordNet 2.0. An in-house NE recognizer is used
to assign NE types. It detects 90 types organized
in a hierarchy with an accuracy of 92% and it has
been used in a state-of-the-art Question Answering
system (Moldovan et al., 2007). As far as the map-
ping is concerned, only the following NE types are
used: human, organization, country, town, province,
other-loc, money, date and time. The mapping also
uses an automatically built list of verbs and nouns
that encode events (verb events and noun events).

The procedure to map words into semantic
classes has been evaluated on a subset of PropBank
which was not used to define the mapping. First,
we selected 1,091 sentences which contained a total
of 171 MANNER relations. We syntactically parsed
the sentences using Charniak’s parser and then per-
formed argument detection by matching the trees to
the syntactic patterns depicted in Section 5. 52,612
arguments pairs were detected as potential MAN-
NER. Because of parsing errors, 146 (85.4%) of the
171 MANNER relations are in this set.

After mapping and enforcing domain and range
constraints, the argument pairs were reduced to
11,724 (22.3%). The filtered subset includes 140
(81.8%) of the 171 MANNER relations. The filtering
does make mistakes, but the massive pruning mainly
filters out potential relations that do not hold: it fil-
ters 77.7% of argument pairs and it only misclassi-
fies 6 pairs.

5 Lexico-Syntactic Patterns Expressing
MANNER

MANNER is expressed by a wide variety of lexico-
syntactic patterns, implicitly or explicitly.

Table 2 shows the syntactic distribution of MAN-
NER relation in PropBank. We only consider rela-
tions between a single node in the syntactic tree and
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Class Rule
situation state || event
state POStag=verb || isHypo(state.n.4)
event (POStag=verb && in(verb events)) || (POStag=noun &&

!animate object && (isHypo(phenomenon.n.1) || isHypo(event.n.1)
|| in(noun events)))

animate object livingNE || (POStag=noun && ((isHypo(entity.n.1) &&

!isHypo(thing.n.9) && !isHypo(anticipation.n.4)) ||
isHypo(social group.n.1)))

livingNE neType=(human | organization | country | town | province |
other-loc)

quality POStag=(adverb | gerund) || headPP=(with | without)
non temporal abstract object abstract object && !temporal

abstract object neType=money || isHypo(thing.n.9) || (!isHypo(social group.n.1)

&& (isHypo(abstraction.n.6 | psychological feature.n.1 |
possession.n.2 | event.n.1 | state.n.4 | group.n.1 | act.n.2)))

temporal TemporalNE || isHypo(time period.n.1) || isHypo(time.n.5)
temporalNE ne-type=(date | time)

Table 1: Mapping for the semantic classes used for defining DOMAIN(MNR) and RANGE(MNR).
.

Synt. #Occ. %Occ. Example
pattern File, #sent Sentence
ADVP 3559 45.3% wsj 0039, 24 This story line might [resonate]y [more strongly]ADVP if Mr. Lane

had as strong a presence in front of the camera as he does behind it.
PP 3499 44.6% wsj 2451, 0 NBC may yet find a way to [take]y a passive, minority interest in a

program-maker [without violating the rules]PP.
RB 286 3.6% wsj 0052, 3 Backe is [a [[closely]RB [held]y]ADJP media firm]NP run by former

CBS Inc. President Jon Backe.
S 148 1.9% wsj 1217, 25 Salomon [posted]y an unexpectedly big gain in quarterly earnings,

[aided by its securities trading and investments banking activities]S.
NP 120 1.5% wsj 0100, 21 [. . . ] he [graduated]y [Phi Beta Kappa]NP from the University of

Kentucky at age 18, after spending only 2 1/2 years in college.
Other 240 3.1% wsj 1337, 0 Tokyo stocks [closed]y [firmer]ADJP Monday, with the Nikkei index

making its fifth consecutive daily gain.

Table 2: Syntactic patterns encoding MANNER in PropBank, number of occurrences, and examples. A total of 7,852
MANNER relations are encoded in PropBank between a single node in the syntactic tree and a verb. In all examples,
MNR(x, y) holds, where x is the text underlined. Syntactic annotation comes straight from the Penn TreeBank.

a verb; MANNER relations expressed by trace chains
identifying coreference and split arguments are ig-
nored. This way, we consider 7,852 MANNER out
of the total of the 8,037 PropBank annotates. Be-
cause ADVPs and PPs represent 90% of MANNER

relations, in this paper we focus exclusively on these
two phrases.

For both ADVP and PP the most common direct
ancestor is either a VP or S, although examples are
found that do not follow this rule. Table 3 shows the
number of occurrences for several parent nodes and
examples. Only taking into account phrases whose

ancestor is either a VP or S yields a coverage of 98%
and thus those are the focus of this work.

5.1 Ambiguities of MANNER

Both ADVPs and PPs are highly ambiguous when
the task is to identify their semantics. The PropBank
authors (Palmer et al., 2005) report discrepancies
between annotators mainly with AT-LOCATION and
simply no relation, i.e., when a phrase does not en-
code a role at all. In their annotation, 22.2% of AD-
VPs encode MANNER (30.3% AT-TIME), whereas
only 4.6% of PPs starting with in and 6.1% start-
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Parent #Occ. Example
Phrase File, #sent Sentence

VP 3306 ADVP wsj 2341, 23 The company [was [officially]ADVP [merged]y with Bristol-Myers
Co. earlier this month]VP.

3107 PP wsj 2320, 7 This is something P&G [would [do]y [with or without Kao]PP]VP,
says Mr. Zurkuhlen.

S 215 ADVP wsj 0044, 6 [[Virtually word by word]ADVP, the notes [matched]y questions and
answers on the social-studies section of the test the student was
taking.]S

339 PP wsj 2454, 9 [[Under the laws of the land]PP, the ANC [remains]y an illegal or-
ganization, and its headquarters are still in Lusaka, Zambia.]S

ADJP 17 ADVP wsj 1057, 85 [. . . ] ABC touted “Call to Glory,” but the military drama was
[[missing]y [in action]PP]ADJP within weeks.

4 PP wsj 2431, 14 Two former ministers [were]y [[so heavily]ADVP implicated]ADJP in
the Koskotas affair that PASOK members of Parliament voted [. . . ]

PP 9 ADVP wsj 1249, 24 In Japan, by contrast, companies tend to develop their talent and
[promote]y [from [within]PP]PP.

9 PP wsj 1505, 30 London share prices were [influenced]y [[largely]ADVP by declines
on Wall Street and weakness in the British pound]PP.

Table 3: Examples of ADVPs and PPs encoding MANNER with different nodes as parents. In all examples, MNR(x, y)
holds, where x is the underlined phrase. Syntactic annotation comes straight from the Penn TreeBank.

ing with at encode MANNER. The vast majority of
PPs encode either a AT-TIME or AT-LOCATION.

MANNER relations expressed by ADVPs are eas-
ier to detect since the adverb is a clear signal. Ad-
verbs ending in -ly are more likely to encode a MAN-
NER. Not surprisingly, the verb they attach to also
plays an important role. Section 6.2 depicts the fea-
tures used.

PPs are more complicated since the preposition
per se is not a signal of whether or not the phrase
encodes a MANNER. Even prepositions such as un-
der and over can introduce a MANNER. For ex-
ample, A majority of an NIH-appointed panel rec-
ommended late last year that the research con-
tinue under carefully controlled conditions, [. . . ]
(wsj 0047, 9) and [. . . ] bars where Japanese rev-
elers sing over recorded music, [. . . ] (wsj 0300, 3).
Note that in both cases, the head of the NP contained
in the PP encoding MANNER (conditions and music)
belongs to ntao (Section 4). Other prepositions, like
with and like are more likely to encode a MANNER,
but again it is not guaranteed.

6 Approach

We propose a supervised learning approach, where
instances are positive and negative MANNER exam-
ples. Due to their intrinsic difference, we build dif-

ferent models for ADVPs and PPs.

6.1 Building the Corpus

The corpus building procedure is as follows. First,
all ADVPs and PPs whose parent node is a VP or
S and encode a MANNER according to PropBank
are extracted, yielding 3559 and 3499 positive in-
stances respectively. Then, 10,000 examples of AD-
VPs and another 10,000 of PPs from the Penn Tree-
Bank not encoding a MANNER according to Prop-
Bank are added. These negative instances must have
as their parent node either VP or S as well and are
selected randomly.

The total number of instances, 13,559 for ADVPs
and 13,499 for PPs, are then divided into training
(60%), held-out (20%) and test (20%). The held-out
portion is used to tune the feature set and the final
results provided are the ones obtained with the test
portion, i.e., instances that have not been used in any
way to learn the models. Because PropBank adds se-
mantic role annotation on top of the Penn TreeBank,
we have gold syntactic annotation for all instances.

6.2 Selecting features

Selected features are derived from previous works
on detecting semantic roles, namely (Gildea and
Jurafsky, 2002) and the participating systems in
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No. Feature Values Explanation
1 parent-node {S, VP} syntactic node of ADVP’s parent
2 num-leaves N number of words in ADVP
3 adverb {often, strongly, . . . } main adverb of ADVP
4 dictionary {yes, no} is adverb is in dictionary?
5 ends-with-ly {yes, no} does adverb end in -ly?
6 POS-tag-bef POStags POS tag word before adverb
7 POS-tag-aft POStags POS tag word after adverb
8 verb {assigned, go, . . .} main verb the ADVP attaches to
9 distance N number of words between adverb and verb

Table 4: Features used for extracting MANNER from ADVPs, their values and explanation. Features 4 and 5 are
specialized on MANNER detection.

No. Feature Values Explanation
1 parent-node {S, VP} syntactic node of PP’s parent
2 next-node {NP, SBAR, , . . .} syntactic node of sibling to the right of PP
3 num-pp-bef N number of sibling before PP which are PP
4 num-pp-aft N number of sibling after PP which are PP
5 first-word {with, after, . . .} first word in PP
6 first-POS-tag POStags first POS tag in PP
7 first-prep {by, on, . . . } first preposition in PP
8 POS-tag-bef POStags POS tag before first-word
9 POS-tag-aft POStags POs tag after first-word

10 word-aft {one, their, . . . } word after first-word
11 has-rb {yes, no} does the PP contain an adverb?
12 has-quotes {yes, no} does the PP have any quotes?
13 head-np-lemma {amount, year, . . . } head of the NP whose parent is the PP
14 head-is-last {yes, no} is head-np the last word of the sentence?
15 head-has-cap {yes, no} does the PP have a capitalized word?
16 verb {approved, fly, . . . } verb the PP attaches to
17 verb-lemma {approve, be, . . . } verb lemma the PP attaches to
18 verb-pas {yes, no} is verb in passive voice?

Table 5: Features used for extracting MANNER from PPs, their values and explanation. Features in bold letters are new
and specialized on detecting MANNER from PPs.

CoNLL-2005 Shared Task (Carreras and Màrquez,
2005), combined with new, manner-specific features
that we introduce. These new features bring a signif-
icant improvement and are dependent on the phrase
potentially encoding a MANNER. Experimentation
has shown that MANNER relations expressed by an
ADVP are easier to detect than the ones expressed
by a PP.

Adverbial Phrases The feature set used is depicted
in Table 4. Some features are typical of semantic
role labeling, but features adverb, dictionary
and ends-with-ly are specialized to MANNER

extraction from ADVPs. These three additional fea-
tures bring a significant improvement (Section 7).

We only provide details for the non-obvious fea-
tures.

The main adverb and verb are retrieved by select-
ing the last adverb or verb of a sequence. For exam-
ple, in more strongly, the main adverb is strongly,
and in had been rescued the main verb is rescued.

Dictionary tests the presence of the
adverb in a custom built dictionary which
contains all lemmas for adverbs in WordNet
whose gloss matches the regular expression in
a .* (manner|way|fashion|style). For example,
more.adv.1: used to form the comparative of some
adjectives and adverbs does not belong to the
dictionary, and strongly.adv.1: with strength or in a
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strong manner does. This feature is an extension of
the dictionary presented in (Girju et al., 2003).

Given the sentence [. . . ] We [work
[damn hard]ADVP at what we do for damn lit-
tle pay]VP, and [. . . ] (wsj 1144, 128), the features
are: {parent-node:VP, num-leaves:2, adverb:hard,
dictionary:no, ends-with-ly:no, POS-tag-bef:RB,
POS-tag-aft:IN, verb:work, distance:1}, and it is a
positive instance.

Prepositional Phrases PPs are known to be highly
ambiguous and more features need to be added. The
complete set is depicted in Table 5.

Some features are typical of semantic role detec-
tion; we only provide a justification for the new
features added. Num-pp-bef and num-pp-aft
captures the number of PP siblings before and after
the PP. The relative order of PPs is typically MAN-
NER, AT-LOCATION and AT-TIME (Hawkins, 1999),
and this feature captures this idea without requiring
temporal or local annotation.

PPs having quotes are more likely to en-
code a MANNER, the chunk of text between
quotes being the manner. For example, use
in “very modest amounts” (wsj 0003, 10) and re-
ward with “page bonuses” (wsj 0012, 8).
head-np indicates the head noun of the NP

that attaches to the preposition to form the PP. It
is retrieved by selecting the last noun in the NP.
Certain nouns are more likely to indicate a MAN-
NER than others. This feature captures the do-
main restriction. For nouns, only non temporal
abstract objects and states can encode a MAN-
NER. Some examples of positive instances are
haul in the guests’ [honor], lift in two [stages], win
at any [cost], plunge against the [mark] and ease
with little [fanfare]. However, counterexamples can
be found as well: say through his [spokesman] and
do over the [counter].
Verb-pas indicates if a verb is in passive

voice. In that case, a PP starting with by is much
more likely to encode an AGENT than a MAN-
NER. For example, compare (1) “When the fruit is
ripe, it [falls]y from the tree [by itself]PP,” he says.
(wsj 0300, 23); and (2) Four of the planes [were
purchased]y [by International Lease]PP from Singa-
pore Airlines in a [. . . ] transaction (wsj 0243, 3).
In the first example a MANNER holds; in the second

an AGENT.
Given the sentence Kalipharma is a New Jersey-

based pharmaceuticals concern that [sells products
[under the Purepac label]PP]VP. (wsj 0023, 1), the
features are: {parent-node:VP, next-node:-, num-
pp-bef:0, num-pp-aft:0, first-word:under, first-POS-
tag:IN, first-prep:under, POS-tag-bef:NNS, POS-
tag-aft:DT, word-aft:the, has-rb:no, has-quotes:no,
head-np-lemma:label, head-is-last:yes, head-has-
cap:yes, verb:sells, verb-lemma:sell, verb-pas:no},
and it is a positive instance.

7 Learning Algorithm and Results

7.1 Experimental Results

As a learning algorithm we use a Naive Bayes clas-
sifier, well known for its simplicity and yet good per-
formance. We trained our models with the training
corpus using 10-fold cross validation, and used the
held-out portion to tune the feature set and adjust
parameters. More features than the ones depicted
were tried, but we only report the final set. For ex-
ample, named entity recognition and flags indicat-
ing the presence of AT-LOCATION and AT-TIME re-
lations for the verb were tried, but they did not bring
any significant improvement.

Table 6 summarizes the results obtained. We re-
port results only on the test corpus, which corre-
sponds to instances not seen before and therefore
they are a honest estimation of the performance.
The improvement brought by subsets of features
and statistical significance tests are also reported.
We test the significance of the difference in per-
formance between two feature sets i and j on a
set of ins instances with the Z-score test, where
z =

abs(erri,errj)
σd

, errk is the error made using set

k, and σd =

√
erri(1−erri)

ins +
errj(1−errj)

ins .

ADVPs The full set of features yields a F-measure
of 0.815. The three specialized features (3, 4 and
5) are responsible for an improvement of .168 in the
F-measure. This difference in performance yields a
Z-score of 7.1, which indicates that it is statistically
significant.

PPs All the features proposed yield a F-measure of
0.693. The novel features specialized in MANNER

detection from PPs (in bold letters in Table 5) bring
an improvement of 0.059, which again is significant.
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Phrase #MNR Feat. Set #MNR retrieved #MNR correct P R F

ADVP 678 1,2,6-9 908 513 .565 .757 .647
all 757 585 .773 .863 .815

PP 705 1,2,5,6,8-10,16,17 690 442 .641 .627 .634
all 713 491 .689 .696 .693

Table 6: Results obtained during testing for different sets of features.

The Z-score is 2.35, i.e., the difference in perfor-
mance is statistically significant with a confidence
greater than 97.5%. Thus, adding the specialized
features is justified.

7.2 Error Analysis

The mapping of words to semantic classes is
data-driven and decisions were taken so that the
overall accuracy is high. However, mistakes
are made. Given We want to [see]y the mar-
ket from the inside, the underlined PP encodes a
MANNER and the mapping proposed (Table 1)
does not map inside to ntao. Similarly, given
Like their cohorts in political consulting, the litiga-
tion advisers [encourage]y their clients [. . . ], the
underlined text encodes a MANNER and yet cohorts
is subsumed by social group.n.1 and therefore is not
mapped to ntao.

The model proposed for MANNER detection
makes mistakes as well. For ADVPs, if the main
adverb has not been seen during training, chances of
detecting MANNER are low. For example, the classi-
fier fails to detect the following MANNER relations:
[. . . ] which together own about [. . . ] (wsj 0671, 1);
and who has ardently supported [. . . ] (wsj 1017,
26) even though ardently is present in the dictionary
and ends in -ly;

For PPs, some errors are due to the Prop-
Bank annotation. For example, in Shearson
Lehman Hutton began its coverage of the company
with favorable ratings. (wsj 2061, 57), the under-
lined text is annotated as ARG2, even though it
does encode a MANNER. Our model correctly de-
tects a MANNER but it is counted as a mistake.
Manners encoded by under and at are rarely de-
tected, as in that have been consolidated in fed-
eral court under U.S. District Judge Milton Pollack
(wsj 1022.mrg, 10).

8 Comparison with Previous Work

To the best of our knowledge, there have not been
much efforts to detect MANNER alone. Girju et al.
(2003), present a supervised approach for ADVP
similar to the one reported in this paper, yielding
a F-measure of .665. Our augmented feature set
obtains a F-measure of .815, clearly outperforming
their method (Z-test, confidence > 97.5%). More-
over, ADVPs only represent 45.3% of MANNER as a
semantic role in PropBank. We also have presented
a model to detect MANNER encoded by a PP, the
other big chunk of MANNER (44.6%) in PropBank.

Complete systems for Semantic Role Labeling
perform poorly when detecting MANNER; the Top-
10 systems in CoNLL-2005 shared task3 obtained
F-measures ranging from .527 to .592. We have
trained our models using the training data provided
by the task organizers (using the Charniak parser
syntactic information), and tested with the provided
test set (test.wsj). Our models yield a Precision of
.759 and Recall of .626 (F-measure .686), bringing a
significant improvement over those systems (Z-test,
confidence > 97.5%). When calculating recall, we
take into account all MANNER in the test set, not
only ADVPs and PPs whose fathers are S or VP (i.e.
not only the ones our models are able to detect). This
evaluation is done with exactly the same data pro-
vided from the task organizers for both training and
test.

Unlike typical semantic role labelers, our features
do not include rich syntactic information (e.g. syn-
tactic path from verb to the argument). Instead, we
only require the value of the parent and in the case of
PPs, the sibling node. When repeating the CoNLL-
2005 Shared Task training and test using gold syn-
tactic information, the F-measure obtained is .714,
very close to the .686 obtained with Charniak syn-
tactic trees (not significant, confidence > 97.5%).

3http://www.lsi.upc.es/˜srlconll/st05/st05.html
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Even though syntactic parsers achieve a good perfor-
mance, they make mistakes and the less our models
rely on them, the better.

9 Composing MANNER with PURPOSE

MANNER can combine with other semantic rela-
tions in order to reveal implicit relations that oth-
erwise would be missed. The basic idea is to com-
pose MANNER with other relations in order to in-
fer another MANNER. A necessary condition for
combining MANNER with another relation R is the
compatibility of RANGE(MNR) with DOMAIN(R) or
RANGE(R) with DOMAIN(MNR). The extended def-
inition (Section 3) allows to quickly determine if two
relations are compatible (Blanco et al., 2010).

The new MANNER is automatically inferred
by humans when reading, but computers need
an explicit representation. Consider the follow-
ing example: [. . . ] the traders [place]y orders
[via computers]MNR [to buy the basket of stocks
. . . ]PRP (wsj 0118, 48). PropBank states the basic
annotation between brackets: via computers is the
MANNER and to buy the basket [. . . ] the PURPOSE

of the place orders event. We propose to combine
these two relations in order to come up with the new
relation MNR(via computers, buy the basket [. . . ] ).
This relation is obvious when reading the sentence,
so it is omitted by the writer. However, any seman-
tic representation of text needs as much semantics as
possible explicitly stated.

This claim is supported by several PropBank
examples: (1) The classics have [zoomed]y
[in price]MNR [to meet the competition]PRP,
and . . . (wsj 0071, 9) and (2) . . . the govern-
ment [curtailed]y production [with land-idling
programs]MNR [to reduce price-depressing
surpluses]PRP (wsj 0113, 12). In both exam-
ples, PropBank encodes the MANNER and PURPOSE

for event y indicated with brackets. After com-
bining both relations, two new MANNER arise:
MNR(in price, meet the competition) and MNR(with
land-idling programs, reduce price-depressing
surpluses).

Out of 237 verbs having in PropBank both PUR-
POSE and MANNER annotation, the above inference
method yields 189 new valid MANNER not present
in PropBank (Accuracy .797).

MANNER and other relations. MANNER does
not combine with relations such as CAUSE, AT-
LOCATION or AT-TIME. For example, given And
they continue [anonymously]x,MNR [attacking]y CIA
Director William Webster [for being too accom-
modating to the committee]z,CAU (wsj 0590, 27),
there is no relation between x and z. Similarly,
given [In the tower]x,LOC, five men and women
[pull]y [rhythmically]z,MNR on ropes attached to
[. . . ] (wsj 0089, 5) and [In May]x,TMP, the two
companies, [through their jointly owned holding
company]z,MNR, Temple, [offered]y [. . . ] (wsj 0063,
3), no connection exists between x and z.

10 Conclusions

We have presented a supervised method for the au-
tomatic discovery of MANNER. Our approach is
simple and outperforms previous work. Our mod-
els specialize in detecting the most common pattern
encoding MANNER. By doing so we are able to spe-
cialize our feature sets and outperform previous ap-
proaches that followed the idea of using dozens of
features, most of them potentially useless, and let-
ting a complicated machine learning algorithm de-
cide the actual useful features.

We believe that each relation or role has its own
unique characteristics and capturing them improves
performance. We have shown this fact for MANNER

by examining examples, considering the kind of ar-
guments that can be part of the domain and range,
and considering theoretical works (Hawkins, 1999).

We have shown performance using both gold syn-
tactic trees and the output from the Charniak parser,
and there is not a big performance drop. This is
mainly due to the fact that we do not use deep syn-
tactic information in our feature sets.

The combination of MANNER and PURPOSE

opens up a novel paradigm to perform semantic in-
ference. We envision a layer of semantics using a
small set of basic semantic relations and inference
mechanisms on top of them to obtain more seman-
tics on demand. Combining semantic relations in
order to obtain more relation is only one of the pos-
sible inference methods.
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Lluı́s Màrquez, Xavier Carreras, Kenneth C. Litkowski,
and Suzanne Stevenson. 2008. Semantic Role Label-
ing: An Introduction to the Special Issue. Computa-
tional Linguistics, 34(2):145–159.

Dan Moldovan, Christine Clark, and Mitchell Bowden.
2007. Lymba’s PowerAnswer 4 in TREC 2007. In
Proceedings of the Sixteenth Text REtrieval Confer-
ence (TREC 2007).

Paul Nulty. 2007. Semantic Classification of Noun
Phrases Using Web Counts and Learning Algorithms.
In Proceedings of the ACL 2007 Student Research
Workshop, pages 79–84, Prague, Czech Republic.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

Vivek Srikumar, Roi Reichart, Mark Sammons, Ari Rap-
poport, and Dan Roth. 2008. Extraction of Entailed
Semantic Relations Through Syntax-Based Comma
Resolution. In Proceedings of ACL-08: HLT, pages
1030–1038, Columbus, Ohio.

Barker Szpakowicz, Ken Barker, and Stan Szpakowicz.
1995. Interactive semantic analysis of Clause-Level
Relationships. In Proceedings of the Second Confer-
ence of the Pacific Association for Computational Lin-
guistics, pages 22–30.

Marta Tatu. 2005. Automatic Discovery of Intentions in
Text and its Application to Question Answering. In
Proceedings of the ACL Student Research Workshop,
pages 31–36, Ann Arbor, Michigan.

Peter D. Turney. 2006. Expressing Implicit Semantic
Relations without Supervision. In Proceedings of the
21st International Conference on Computational Lin-
guistics and 44th Annual Meeting of the Association
for Computational Linguistics, pages 313–320, Syd-
ney, Australia.

324



Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 325–334,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Tense Sense Disambiguation: a New Syntactic Polysemy Task

Roi Reichart
ICNC

Hebrew University of Jerusalem
roiri@cs.huji.ac.il

Ari Rappoport
Institute of Computer Science

Hebrew University of Jerusalem
arir@cs.huji.ac.il

Abstract

Polysemy is a major characteristic of natu-
ral languages. Like words, syntactic forms
can have several meanings. Understanding the
correct meaning of a syntactic form is of great
importance to many NLP applications. In this
paper we address an important type of syn-
tactic polysemy – the multiple possible senses
of tense syntactic forms. We make our dis-
cussion concrete by introducing the task of
Tense Sense Disambiguation(TSD): given a
concrete tense syntactic form present in a sen-
tence, select its appropriate sense among a
set of possible senses. Using English gram-
mar textbooks, we compiled a syntactic sense
dictionary comprising common tense syntac-
tic forms and semantic senses for each. We an-
notated thousands of BNC sentences using the
defined senses. We describe a supervised TSD
algorithm trained on these annotations, which
outperforms a strong baseline for the task.

1 Introduction

The function of syntax is to combine words to ex-
press meanings, using syntactic devices such as
word order, auxiliary words, and morphology (Gold-
berg, 1995). Virtually all natural language devices
used for expressing meanings (e.g., words) exhibit
polysemy. Like words, concrete syntactic forms (the
sentence words generated by specific syntactic de-
vices) can have several meanings. Consider the fol-
lowing sentences:

(a) Theyare playing chess in the park.

(b) Theyare playing chess next Tuesday.

Both contain the concrete syntactic form ‘are play-
ing’, generated by the abstract syntactic form usu-
ally known as ‘present progressive’ (am/is/are + V-
ing). In (a), the meaning is ‘something happening
now’, while in (b) it is ‘a plan to do something in the
future’. Note that the polysemy is of the syntactic
form as a unit, not of individual words. In particu-
lar, the verb ‘play’ is used in the same sense in both
cases.

In this paper we address a prominent type of syn-
tactic form polysemy: the multiple possible senses
that tense syntactic forms can have. Disambiguat-
ing the polysemy of tense forms is of theoretical
and practical importance (Section 2). To make our
discussion concrete, we introduce the task ofTense
Sense Disambiguation(TSD): given a concrete tense
syntactic form in a sentence, select its correct sense
among a given set of possible senses (Section 3).

The disambiguation of polysemy is a fundamental
problem in NLP. For example, Word Sense Disam-
biguation (WSD) continues to attract a large number
of researchers (Agirre and Edmonds, 2006). TSD
has the same structure as WSD, with different dis-
ambiguated entities.

For experimenting with the TSD task, we com-
piled an English syntactic sense dictionary based
on a thorough study of three major English gram-
mar projects (Section 4). We selected 3000 sen-
tences from the British National Corpus containing
4702 concrete syntactic forms, and annotated each
of these by its sense (Section 5).We developed a su-
pervised learning TSD algorithm that uses various
feature types and takes advantage of the task struc-
ture (Section 6). Our algorithm substantially outper-
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forms the ‘most frequent sense’ baseline (Section 7).
TSD is fundamental to sentence understanding

and thus to NLP applications such as textual infer-
ence, question answering and information retrieval.
To the best of our knowledge, this is the first paper to
address this task. In Section 8 we discuss research
directions relevant to TSD placing the new task in
the context of the previous research of syntactic am-
biguity resolution.

2 TSD Motivation

In this work we follow linguistics theories that posit
that tense does not directly reflect conceptual time as
one might think. Dinsmore (1991) and Cutrer (1994)
explain that the same tense may end up indicating
very different objective time relations relative to the
sentence production time.

Fauconnier (2007) exemplifies such phenomena.
In the following sentences, the present tense corre-
sponds to thefuture time: (1) The boat leaves next
week. (2) When he comes tomorrow, I will tell him
about the party. (3) If I see him next week, I will ask
him to call you.

In contrast, the following present tense sentences
talk about events that happened in thepast: (1) I am
walking down the street one day when suddenly this
guy walks up to me. (2) He catches the ball. He
runs. He makes a touchdown. (morning-after sports
report).

Another set of examples is related to the past
tense. In the following sentences it corresponds to
a presenttime: (1) Do you have a minute? I wanted
to ask you a question. (2) I wish I lived closer to my
family now. In contrast, in the following two sen-
tences, it corresponds to a future time: (1) If I had
the time next week, I would go to your party. (2) I
cannot go to the concert tonight. You will have to
tell me how it was.

Fauconnier explains these phenomena by a model
for the grammar of tense. According to this model,
the grammar specifies partial constraints on time and
fact/prediction status that hold locally between men-
tal spaces within a discourse configuration. We may
obtain actual information about time by combining
this with other available pragmatic information. Ac-
cordingly, the same tense may end up indicating
very different objective time relations relative to the

speech event.
TSD fits well with modern linguistics theories.

For example, in the construction grammar frame-
work (Goldberg, 1995), the ‘construction’ is the ba-
sic unit, comprised of a form and a meaning. Words,
multiword expressions, and syntactic forms are all
valid constructions. It is thus very natural to address
the sense disambiguation problem for all of these. In
this paper we focus on tense constructions.

For many NLP applications, it is very important
to disambiguate the tense forms of the sentence.
Among these applications are: (1) machine transla-
tion, as the actual time described by one tense form
in the source language may be described by a dif-
ferent tense form in the target language; (2) under-
standing the order of events in a text; (3) textual en-
tailment, when the optional entailed sentences refer
to the time and/or order of events of the source sen-
tence. Many more examples also exist.

3 The TSD Task

In this section we formally define the TSD task, dis-
cuss its nature vs. WSD, and describe various con-
crete task variants.

Task definition. First, some essential terminol-
ogy. The function of syntax is to combine lexi-
cal items (words, multiword expressions) to express
meanings. This function is achieved through syntac-
tic devices. The most common devices in English
are word order, morphology, and the usage of auxil-
iary words. AnAbstract Syntactic Form (ASF)is a
particular set of devices that can be used to express a
set of meanings. AConcrete Syntactic Form (CSF)
is a concrete set of words generated by an ASF for
expressing a certain meaning in an utterance1. A
CSF isambiguousif its generating ASF has more
than one meaning, which is the usual case. In this
case we also say that the ASF is ambiguous.

Here are a few examples. The ‘present progres-
sive’ ASF has the form ‘am/is/are V-ing’2, which
employs all three main devices. It is ambiguous,

1In some linguistic theories, the central notion is thecon-
struction, which combines an ASF (referred to as the form of
the construction) with a single meaning (Goldberg, 1995).

2Note that strictly speaking, these are three different ASFs.
We refer to this ASF family by a single name because they have
the same set of meanings and because it is standard to treat them
as a single ASF.

326



as shown in Section 1. The ‘present simple’ ASF
has the form ‘V(+s)’3, and is ambiguous as well: in
the sentence ‘My Brother arrives this evening’, the
CSF ‘arrives’ conveys the meaning of ‘a future event
arranged for a definite time’, while in the sentence
‘The sun rises in the East’ the meaning is that of a
repeated event.

TSD vs. WSD. The TSD task is to disambiguate
the semantic sense of a tense syntactic form. TSD
is clearly different from WSD. This is obvious when
the CSF comprises two words that are not a multi-
word expression, and is usually also the case when it
comprises a single word. Consider the ‘My Brother
arrives this evening’ example above. While the verb
‘arrive’ has two main senses: ‘reach a place’, and
‘begin’, as in ‘Summer has arrived’, in that example
we focused on the disambiguation of the tense sense
of the ‘arrives’ construction.

Concrete task variants. Unlike with words, the
presence of a particular CSF in a sentence is not
trivially recognizable. Consequently, there are three
versions of the TSD task: (1) we are given the sen-
tence, a marked subset of its words comprising a
CSF, and the ASF that has generated these words;
(2) we are given the sentence and a marked subset
of its words comprising a CSF, without knowing the
generating ASF; (3) we are given only the sentence
and we need to find the contained CSFs and their
ASFs. In all cases, we need to disambiguate the
sense of the ASFs. We feel that the natural granu-
larity of the task is captured by version (2). How-
ever, since the ASF can usually be identified using
relatively simple features, we also report results for
version (1). The main difficulty in all versions is
identifying the appropriate sense, as is the case with
WSD.

4 The Syntactic Sense Dictionary

A prerequisite to any concrete experimentation with
the TSD task is a syntactic sense dictionary. Based
on a thorough examination of three major English
grammar projects, we compiled a set of 18 com-
mon English tense ASFs and their possible senses.
The projects are (1) the Cambridge University Press

3Again, these are two ASFs, one adding an ‘s’ and one using
the verb as is.

English Grammar In Use series, comprising three
books (essential, intermediate and advanced) (Mur-
phy, 2007; Murphy, 1994; Hewings, 2005); (2)
the English grammar texts resulting from the sem-
inal corpus-based Cobuild project (elementary, ad-
vanced) (Willis and Wright, 2003; Willis, 2004); (3)
the Longman Grammar of Spoken and Written En-
glish (Biber et al., 1999).

As in any sense dictionary, in many cases it is hard
to draw the line between senses. In order to be able
to explore the computational limits of the task, we
have adopted a policy of fine sense granularity. For
example, senses 1 and 3 of the ‘present simple’ ASF
in Table 1 can be argued to be quite similar to each
other, having a very fine semantic distinction. A spe-
cific application may choose to collapse some senses
into one.

We used the conventional ASF names, which
should not be confused with their meanings (e.g., the
‘present simple’ ASF can be used to refer tofuture,
not present, events, as in Table 1, sense 4).

The ASF set thus obtained is: real conditionals,
hypothetical conditionals, wishes, reported speech,
present simple, present progressive, present perfect,
present perfect progressive, past simple, past pro-
gressive, past perfect, past perfect progressive, ‘be
+ going + to + infinitive’, future progressive, future
perfect, future perfect progressive, ‘would’ tense
forms, and ‘be + to + infinitive’. Note that the first
four ASFs are not direct tense forms; we include
them because they involve tensed sub-sentences
whose disambiguation is necessary for disambigua-
tion of the whole ASF. The total number of possible
senses for these 18 ASFs is 103.

Table 1 shows the complete senses set for the
‘present simple’ and ‘be + to + infinitive’ ASFs, plus
an example sentence for each sense. Space limita-
tions prevent us from listing all form senses here;
we will make the listing available online.

5 Corpus Creation and Annotation

We selected 3000 sentences from the British Na-
tional Corpus (BNC) (Burnard, 2000), containing
4702 CSFs (1.56 per sentence). These sentences
with their CSFs were sense annotated. To select
the 3000 sentences, we randomly sampled sentences
from the various written and spoken sections of the
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Present Simple
1 Things that are always true

It gets cold in the winter.
2 Regular and repeated actions and habits

My parents often eat meat.
3 General facts

Mr. Brown is a teacher.
4 A future event arranged for a definite time

The next train arrives at 11:30.
5 Plans, expectations and hopes

We hope to see you soon.
6 Ordering someone to do something

Take your hands out of your pockets!
7 Something happening now, with verbs that are

not used in the present progressive in this sense
I do not deny the allegation.

8 Events happening now (informal;
common in books, scripts, radio etc.)
She goes up to this man and looks into his eyes.

9 Past actions
I was sitting in the park reading a newspaper
when all of a sudden this dog jumps at me.

10 Newspaper headlines, for recent events
Quake hits central Iran.

11 When describing the content of a book
Thompson gives an exhaustive list in chapter six.
‘be + to + infinitive’

1 Events that are likely to happen in the near future
Police officers are to visit every home in the area.

2 Official arrangements, formal instructions & or-
ders
You are not to leave without my permission.

3 In an if-clause to say that something must
happen before something else can happen
If the human race is to survive, we must look at
environmental problems now.

Table 1: The full set of senses of the ‘present simple’
and ‘be + to + infinitive’ abstract syntactic forms (ASFs),
with an example for each.

corpus, giving each section an equal weight. To
guarantee ample representation of ASFs, we man-
ually defined auxiliary words typical of each ASF
(e.g., ‘does’, ‘been’ etc), and sampled hundreds of
sentences for each set of these auxiliary words. To
make sure that our definition of auxiliary words does
not skew the sampling process, and to obtain ASFs
that do not have clear auxiliary words, we have also
added 1000 random sentences. The number of CSF
instances obtained for each ASF ranges from 100
(future perfect) to over 850 (present simple). All

senses are represented; the number of senses repre-
sented by at least 15 CSFs is 77 (out of 103, average
number of CSFs per sense is 45.65).

We implemented an interactive application that
displays a sentence and asks an annotator to (1) mark
words that participate in the CSFs contained in the
sentence; (2) specify the ASF(s) of these CSFs; and
(3) select the appropriate ASF sense from the set
of possible senses. Annotators could also indicate
‘none of these senses’, which they did for 2.6% (122
out of 4702) of the CSFs.

Annotation was done by two annotators (univer-
sity students). To evaluate inter-annotator agree-
ment, a set of 210 sentences (7% of the corpus),
containing at least 10 examples of each ASF, was
tagged by both annotators. The CSF+ASF identifi-
cation inter-annotator agreement was 98.7%, and the
inter-annotator agreement for the senses was 84.2%.
We will make the annotated corpus and annotation
guidelines available online.

6 Learning Algorithm

In this section we describe our learning model for
the TSD task. First, note that the syntactic sense is
not easy to deduce from readily computable anno-
tations such as the sentence’s POS tagging, depen-
dency structure, or parse tree (see Section 8). Hence,
a learning algorithm is definitely needed.

As common in supervised learning, we encode the
CSFs into feature vectors and then apply a learning
algorithm to induce a classifier. We first discuss the
feature set and then the algorithm.

Features. We utilize three sets of features: basic
features, lexical features, and a set of features based
on part-of-speech (POS) tags (Table 2). The ‘aux-
iliary words’ referred to in the table are the manu-
ally specified words for each ASF that have assisted
us in sampling the corpus (see Section 5). ‘Content
words’ are the non-auxiliary words appearing in the
CSF4. Content words are usually verbs, since we fo-
cus here on tense-related ASFs. The position and
distance of a form are based on its leftmost word
(auxiliary or content).

The personal pronouns used in the position fea-
tures are: I, you, he, she, it, they, and we. For

4Usually, there is a single content word. However, there may
be more than one, e.g. for phrasal verbs.
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simplicity, we considered every word starting with
a capital letter that is not the first word in the sen-
tence to be a name.

Each ‘Conditional’ CSF contains two tense CSFs.
The one that is not the CSF currently encoded by the
features is referred to as its ‘mate’.

For the time lexical features we used 16 words
(e.g., recently, often, now). For the reported speech
lexical features we used 14 words (e.g., said, replied,
wrote5). The words were obtained from the gram-
mar texts and our corpus development set.

The POS tagset used by the POS-based features is
that of the WSJ PennTreebank (see Section 7). The
possible verb tags in this tagset are:VB for the base
form, VBD for past tense,VBN for past participle,
VBG for a present participle or gerund (-ing),VBP

for present tense that is not 3rd person singular, and
VBZ for present simple 3rd person singular.

Conjunctions and prepositions are addressed
through the POS tagsCC and IN. Using thePRP

tag to detect pronouns or lexical lists for conjunc-
tions and prepositions yielded no significant change
in the results.

In Section 7 we explore the impact each of the
feature sets has on the performance of the algorithm.
Our results indicate that the basic features have the
strongest impact, the POS-based features enhance
the performance in specific cases and the lexical fea-
tures only marginally affect the final results.

Algorithm. Denote byxi the feature vector of a
CSF instancei, by Ci the set of possible labels for
xi, and byci ∈ Ci the correct label. The training
set is{(xj , Cj , cj)}

n
j=1. Let (xn+1, Cn+1) be a test

CSF. As noted in Section 3, there are two versions
of the task, one in whichCi includes the totality of
sense labels, and one in which it includes only the la-
bels associated with a particular ASF. In both cases,
the task is to select which of the labels inCn+1 is its
correct labelcn+1.

Owing to the task structure, it is preferable to
use an algorithm that allows us to restrict the pos-
sible labels of each CSF. For both task versions, this
would help in computing better probabilities during
the training stage, since we know the ASF type of
training CSFs. For the task version in which the ASF

5These are all in a past form due to the semantics of the
reported speech form.

Basic Features
Form words.Auxiliary and content words of the CSF.
Form type.The type, if it is known during test time.
Other forms. The auxiliary and content words (and
type, if known) of the other CSFs present in the sen-
tence.
Position.The position of the CSF in the sentence, its
distance from the end of the sentence, whether it is in
the first (last) three words in the sentence, its distance
from the closest personal pronoun or name.
Wish. Is there a CSF of type ‘wish’ before the en-
coded form, the number of CSFs between that ‘wish’
form and the encoded CSF (if there are several such
‘wish’ forms, we take the closest one to the encoded
form).
Conditional.Does the word ‘if’ appear before the en-
coded form, is the ‘if’ the first word in the sentence,
the number of CSFs between the ‘if’ and the encoded
form, the auxiliary and content words (and type, if
known) of the mate form, is there a comma between
the encoded form and its mate form, does the word
‘then’ appear between the encoded form and its mate
form.
Punctuation.The type of end of sentence marker, dis-
tance of the encoded form from the closest predeces-
sor (successor) comma.

Lexical Features
Time.Time words appearing in the sentence, if any.
Reported speech.Reported speech words appearing
in the sentence, if any.
Be.Does the encoded form contain the verb ‘be’.

Features Based on POS Tags
Form.The POS of the verb in the encoded form.
Other forms.The POS of the verb in the other CSFs
in the sentence.
POS tags.The POS tags of the two words to the left
(right) of the encoded form.
Conjunction POS.Is there a Conjunction (CC) be-
tween the encoded form and its closest predecessor
(successor) form, the distance from that conjunction.
Preposition POS.Is there a Preposition (IN) between
the encoded form and its closest predecessor (succes-
sor) form, the distance from that preposition.

Table 2: Basic features (top), lexical features (middle)
and POS tags-based features (bottom) used by the TSD
classifier.

type is known at test time, this would also help dur-
ing the test stage.

For the version in which ASF type is known at test
time, we experimented in two scenarios. In the first,
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we take the ASF type at test time from the manual
annotation and provide it to the algorithm. In the
second, instead of the manual annotation, we imple-
mented a simple rule-based classifier for selecting
ASF types. The classifier decides what is the type of
an ASF according to the POS tag of its verb and to
its auxiliary words (given in the annotation). For ex-
ample, if we see the auxiliary phrase ‘had been’ and
the verb POS is notVBG, then the ASF is ‘past per-
fect simple’. This classifier’s accuracy on our devel-
opment (test) data is 94.1 (91.6)%. In this scenario,
when given a test CSF,Xn+1, its set of possible la-
belsCn+1 is defined by the classifier output. In the
features in which ASF type is used (see table 2), it is
taken from the classifier output in this case.

The sequential model algorithm presented by
Even-Zohar and Roth (2001) directly supports this
label restriction requirement6. We use theSNOW

learning architecture for multi-class classification
(Roth, 1998), which contains an implementation of
that algorithm. TheSNOW system allows us not
to define restrictions if so desired. It also lets us
choose the learning algorithm used when it builds
its classifier network. The algorithm can be Percep-
tron (MacKay, 2002), Winnow (Littlestone, 1988)
or Naive Bayes (MacKay, 2002)7. In Section 7 we
analyze the effect that these decisions have on our
results.

Classifier Selection. Investigating the best config-
uration of theSNOW system with development data,
we found that Naive Bayes gave the best or close
to best result in all experimental conditions. We
therefore report our results when this algorithm is
used. Naive Bayes is particularly useful when rela-
tively small amounts of training CSF instances are
available (Zhang, 2004), and achieves good results
when compared to other classifiers for the WSD task
(Mooney, 1996), which might explain our results.
Fine tuning of Winnow parameters also leads to high
performance (sometimes the best), but most other
parameter configurations lead to disappointing re-

6Note that the name of the learning algorithm is derived
from the fact that it utilizes classifiers to sequentially restrict
the number of competing classes while maintaining with high
probability the presence of the true outcome. The classification
task it performs is not sequential in nature.

7Or a combination of these algorithms, which we did not
explore in this paper.

sults. For the Perceptron, most parameter config-
urations lead to good results (much better than the
baseline), but these were a few percent worse than
the best Winnow or Naive Bayes results.

7 Experimental Results

Experimental setup. We divided the 3000 anno-
tated sentences (containing 4702 CSFs) to three
datasets: training data (2100 sentences, 3183
forms), development data (300 sentences, 498
forms) and test data (600 sentences, 1021 forms).
We used the development data to design the features
for our learning model and to tune the parameters
of the SNOW sequential model. In addition we used
this data to design the rules of the ASF type classifier
(which is not statistical and does not have a training
phase).

For the POS features, we induced POS tags using
the MXPOST POS tagger (Ratnaparkhi, 1996). The
tagger was trained on sections 2-21 of the WSJ Pen-
nTreebank (Marcus et al., 1993) annotated with gold
standard POS tags. We used a publicly available im-
plementation of the sequentialSNOW model8.

We experimented in three conditions. In the first
(TypeUnknown), the ASF type is not known at test
time. In the last two, it is known at test time.
These two conditions differ in whether the type is
taken from the gold standard annotation of the test
sentences (TypeKnown), or from the output of the
simple rule-based classifier (TypeClassifier, see Sec-
tion 6). For both conditions, the results reported be-
low are when both ASF type features and possible
labels sets are provided during training by the man-
ual annotation. This is true also for the training of
the MFS baseline (see below)9.

We report an algorithm’s quality using accuracy,
that is, the number of test CSFs that were correctly
resolved by the algorithm divided by the total num-
ber of test CSFs.

Baseline. We compared the performance of our al-
gorithm to the ‘most frequent sense’ (MFS) base-

8http://l2r.cs.uiuc.edu/∼cogcomp/asoftware.php?
skey=SNOW

9For the TypeClassifier condition, we also experimented us-
ing an ML technique that sometimes reduces noise, where train-
ing is done using the classifier types. We obtained very similar
results to those reported.
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TypeUnknown TypeClassifier TypeKnown
Our algorithm 49.7% 58.8% 62%
MFS baseline 13.5% 42.9% 46.7%

Table 3: Performance of our algorithm and of the MFS
baseline where at test time ASF type is known (right),
unknown (left) or given by a simple rule-based classifier
(middle). Our algorithm is superior in all three condi-
tions.

Constrained Model Unconstrained Classifier
All Base+Lexical All Base+Lexical

features features features features
Type 57.9% 57.7% 53% 50.1%
features
No type 57.2% 55.4% 48% 42.6%
features

Table 4: Impact of POS features. When the constrained
model is used (left section), POS features have no effect
on the results when ASF type information is encoded.
When an unconstrained classifier is used, POS features
affect the results both when ASF type features are used
and when they are not (see discussion in the text).

line. This baseline is common in semantic disam-
biguation tasks and is known to be quite strong. In
the condition where the ASF type is not known at
test time, MFS gives each form in the test set the
sense that was the overall most frequent in the train-
ing set. That is, in this case the baseline gives all
test set CSFs the same sense. When the ASF type
is known at test time, MFS gives each test CSF the
most frequent senseof that ASF typein the training
set. That is, in this case all CSFs having the same
ASF type get the same sense, and forms of different
types are guaranteed to get different senses.

Recall that the condition where ASF type is
known at test time is further divided to two condi-
tions. In the TypeKnown condition, MFS selects the
most frequent sense of the manually created ASF
type, while in the TypeClassifier condition it selects
the most frequent sense of the type decided by the
rule-based classifier. In this condition, if the classi-
fier makes a mistake, MFS will necessarily make a
mistake as well.

Note that a random baseline which selects a sense
for every test CSF from a uniform distribution over
the possible senses (103 in our case) would score
very poorly.

Results. Table 3 shows our results. Results are
shown where ASF type is not known at test time

(left), when it is decided at test time by a rule-based
classifier (middle) and when it is known at test time
(right). Our algorithm outperforms the MFS base-
line in all three conditions. As expected, both our al-
gorithm and the MFS baseline perform better when
ASF type information is available at test time (Type-
Classifier and TypeKnown conditions), and improve
as this data becomes more accurate (the TypeKnown
condition)10.

Analyzing the per-type performance of our algo-
rithm reveals that it outperforms the MFS baseline
for each and every ASF type. For example, in the
TypeKnown condition, the accuracy gain of our al-
gorithm over the baseline11 varies from 4% for the
‘present perfect’ to 30.6% and 29.1% for the ‘past
perfect’ and ‘present simple’ ASFs.

Below we analyze the roles of the different com-
ponents of our learning algorithm in performing the
TSD task. Since this is the first exploration of the
task, it is important to understand what properties
are essential for achieving good performance. The
analysis is done by experimenting with development
data, and focuses on the TypeKnown and TypeUn-
known conditions. Patterns for the TypeClassifier
condition are very similar to the patterns for the
TypeKnown condition.

The Possible Senses Constraint.We use the
learning model of Even-Zohar and Roth (2001),
which allows us to constrain the possible senses
an input vector can get to the senses of its ASF
type. We ran our model without this constraint dur-
ing both training and test time (recall that for the
above results, this constraint was always active dur-
ing training). In this case, the only difference be-
tween the TypeKnown and the TypeUnknown con-
ditions is whether ASF type features are encoded at
test time. In the TypeKnown condition, the accu-
racy of the algorithm drops from 57.9% (when us-
ing training and test time constraints and ASF type
features) to 53% (when using only ASF type fea-
tures but no constraints). In the TypeUnknown con-
dition, accuracy drops from 57.24% (when using
training time constraints) to 48.03% (when neither
constraints nor ASF type features are used). Note

10Recall that the performance of the rule-based ASF type
classifier on test data is not 100% but 91.6% (Section 6).

11accuracy(algorithm)− accuracy(MFS).
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that the difference between the constrained model
and the unconstrained model is quite large.

The MFS baseline achieves on development data
42.9% and 13.2% in the TypeKnown and TypeUn-
known conditions respectively12. Thus, the algo-
rithm outperforms the baseline both when the con-
strained model is used and when an unconstrained
multi-class classifier is used.

Note also that when constraints on the possible
labels are available at training time, test time con-
straints and ASF type features (whose inclusion is
the difference between the TypeKnown and Type-
Unknown) have a minor effect on the results (57.9%
for TypeKnown compared to 57.24% for TypeUn-
known). However, when training time constraints
on the possible labels are not available at training
time, ASF type features alone do have a significant
effect on the result (53% for TypeKnown compared
to 48.03% for TypeUnknown).

POS Features. We next explore the impact of the
POS features on the results. These features encode
the inflection of the verbs in the CSF, as well as the
POS tags of the two words to the left and right of the
CSF.

Verb forms provide some partial information cor-
responding to the ASF type features encoded at the
TypeKnown scenario. Table 4 shows that when both
label constraints and ASF type features are used,
POS features have almost no impact on the final re-
sults. When the constrained model is used but ASF
type features are not encoded, POS features have an
effect on the results. We conclude that when using
the constrained model, POS features are important
mainly for ASF type information. When the uncon-
strained classifier is used, POS features have an ef-
fect on performance whether ASF type features are
encoded or not. In the last case the impact of POS
features is larger. In other words, when using an un-
constrained classifier, POS features give more than
ASF type information to to the model.

Lexical Features. To explore the impact of the
lexical features, we removed the following features:
time words, reported speech words and ‘be’ indi-
cation features. We saw no impact on model per-
formance when using the constrained model, and a

12Note that these numbers are for development data only.

0.5% decrease when using the unconstrained classi-
fier. That is, our model does not require these lexical
features, which is somewhat counter-intuitive. Lex-
ical statistics may turn out to be helpful when using
a much larger training set.

Conditional and Wish Features. The condition-
als and ‘wish’ features have a more substantial im-
pact on the results, as they have a role in defining the
overall syntactic structure of the sentence. Discard-
ing these features leads to 4% and 1.4% degradation
in model accuracy when using the constrained and
unconstrained models respectively.

8 Relevant Previous Work

As far as we know, this is the first paper to address
the TSD task. In this section we describe related
research directions and compare them with TSD.

A relevant task to TSD is WSD (Section 1 and
Section 3). Many algorithmic approaches and tech-
niques have been applied to supervised WSD (for
reviews see (Agirre and Edmonds, 2006; Mihalcea
and Pedersen, 2005; Navigli, 2009)). Among these
are various classifiers, ensemble methods combin-
ing several supervised classifiers, bootstrapping and
semi-supervised learning methods, using the Web
as a corpus and knowledge-based methods relying
mainly on machine readable dictionaries. Specif-
ically related to this paper are works that exploit
syntax (Martinez et al., 2002; Tanaka et al., 2007)
and ensemble methods (e.g. (Brody et al., 2006))
to WSD. The references above also describe some
unsupervised word sense induction algorithms.

Our TSD algorithm uses theSNOW algorithm,
which is a sparse network of classifiers (Section 6).
Thus, it most resembles the ensemble approach to
WSD. That approach has achieved very good results
in several WSD shared tasks (Pedersen, 2000; Flo-
rian and Yarowsky, 2002).

Since temporal reasoning is a direct applica-
tion of TSD, research on this direction is relevant.
Such research goes back to (Passonneau, 1988),
which introduced thePUNDIT temporal reasoning
system. For each tensed clause,PUNDIT first de-
cides whether it refers to an actual time (as in ‘We
flew TWA to Boston’) or not (as in ‘Tourists flew
TWA to Boston’, or ‘John always flew his own plane
to Boston’). The temporal structure of actual time
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clauses is then further analyzed.PUNDIT’s classi-
fication is much simpler than in the TSD task, ad-
dressing only actual vs. non-actual time.PUNDIT’s
algorithmic approach is that of a Prolog rule based
system, compared to our statistical learning corpus-
based approach. We are not aware of further re-
search that followed their sense disambiguation di-
rection.

Current temporal reasoning research focuses on
temporal ordering of events (e.g., (Lapata, 2006;
Chambers and Jurafsky, 2008)), for which an ac-
cepted atomic task is the identification of the tem-
poral relation between two expressions (see e.g., the
TempEval task in SemEval ’07 (Verhagen et al.,
2007)). This direction is very different from TSD,
which deals with the semantics ofindividual con-
crete tense syntactic forms. In this sense, TSD is an
even more atomic task for temporal reasoning.

A potential application of TSD is machine trans-
lation where it can assist in translating tense and as-
pect. Indeed several papers have explored tense and
aspect in the MT context. Dorr (1992) explored the
integration of tense and aspect information with lex-
ical semantics for machine translation. Schiehlen
(2000) analyzed the effect tense understanding has
on MT. Ye and Zhang (2005) explored tense tagging
in a cross-lingual context. Ye et al., (2006) extracted
features for tense translation between Chinese and
English. Murata et al., (2007) compared the perfor-
mance of several MT systems in translating tense
and aspect and found that various ML techniques
perform better on the task.

Another related field is ‘deep’ parsing, where a
sentence is annotated with a structure containing in-
formation that might be relevant for semantic inter-
pretation (e.g. (Hajic, 1998; Baldwin et al., 2007)).
TSD senses, however, are not explicitly represented
in these grammatical structures, and we are not
aware of any work that utilized them to do some-
thing close to TSD. This is a good subject for future
research.

9 Conclusion and Future Work

In this paper we introduced the Tense Sense Disam-
biguation (TSD) task, defined as selecting the cor-
rect sense of a concrete tense syntactic form in a sen-
tence among the senses of abstract syntactic forms

in a syntactic sense dictionary. Unlike in other se-
mantic disambiguation tasks, the sense to be disam-
biguated is not lexical but of asyntacticstructure.
We prepared a syntactic sense dictionary, annotated
a corpus by it, and developed a supervised classifier
for sense disambiguation that outperformed a strong
baseline.

An obvious direction for future work is to expand
the annotated corpus and improve the algorithm by
experimenting with additional features. For exam-
ple, we saw that seeing the full paragraph containing
a sentence helps human annotators decide on the ap-
propriate sense which implies that using larger con-
texts may improve the algorithm.

TSD can be a very useful operation for various
high-level applications, for example textual infer-
ence, question answering, and information retrieval,
in the same way that textual entailment (Dagan et
al., 2006) was designed to be. In fact, TSD can assist
textual entailment as well, since the sense of a tense
form may provide substantial information about the
relations entailed from the sentence. Using TSD
in such applications is a major direction for future
work.
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Abstract

Information-extraction (IE) research typically
focuses on clean-text inputs. However, an IE
engine serving real applications yields many
false alarms due to less-well-formed input.
For example, IE in a multilingual broadcast
processing system has to deal with inaccu-
rate automatic transcription and translation.
The resulting presence of non-target-language
text in this case, and non-language mate-
rial interspersed in data from other applica-
tions, raise the research problem of making
IE robust to such noisy input text. We ad-
dress one such IE task: entity-mention de-
tection. We describe augmenting a statistical
mention-detection system in order to reduce
false alarms from spurious passages. The di-
verse nature of input noise leads us to pursue
a multi-faceted approach to robustness. For
our English-language system, at various miss
rates we eliminate 97% of false alarms on in-
puts from other Latin-alphabet languages. In
another experiment, representing scenarios in
which genre-specific training is infeasible, we
process real financial-transactions text con-
taining mixed languages and data-set codes.
On these data, because we do not train on data
like it, we achieve a smaller but significant im-
provement. These gains come with virtually
no loss in accuracy on clean English text.

1 Introduction
Information-extraction (IE) research is typically per-
formed on clean text in a predetermined language.
Lately, IE has improved to the point of being usable
for some real-world tasks whose accuracy require-
ments are reachable with current technology. These
uses include media monitoring, topic alerts, sum-
marization, population of databases for advanced

search, etc. These uses often combine IE with tech-
nologies such as speech recognition, machine trans-
lation, topic clustering, and information retrieval.

The propagation of IE technology from isolated
use to aggregates with such other technologies, from
NLP experts to other types of computer scientists,
and from researchers to users, feeds back to the IE
research community the need for additional inves-
tigation which we loosely refer to as “information-
extraction robustness” research. For example:

1. Broadcast monitoring demands that IE handle
as input not only clean text, but also the tran-
scripts output by speech recognizers.

2. Multilingual applications, and the imperfection
of translation technology, require IE to contend
with non-target-language text input (Pitrelli et
al., 2008).

3. Naive users at times input to IE other material
which deviates from clean text, such as a PDF
file that “looks” like plain text.

4. Search applications require IE to deal with
databases which not only possess clean text but
at times exhibit other complications like mark-
up codes particular to narrow, application-
specific data-format standards, for example, the
excerpt from a financial-transactions data set
shown in Figure 1.

Legacy industry-specific standards, such as il-
lustrated in this example, are part of long-
established processes which are cumbersome
to convert to a more-modern database format.
Transaction data sets typically build up over a
period of years, and as seen here, can exhibit
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:54D://121000358
BANK OF BOSTON
:55D:/0148280005
NEVADA DEPT.OF VET.94C RECOV.FD
-5:MAC:E19DECA8CHK:641EB09B8968

USING OF FIELD 59: ONLY /INS/ WHEN
FOLLOWED BY BCC CODE IN CASE
OF QUESTIONS DONT HESITATE TO
CONTACT US QUOTING REFERENCE
NON-STC CHARGES OR VIA E-MAIL:
YOVANKA(UL)BRATASOVA(AT)BOA.CZ.
BEST REGARDS
BANKA OBCHODNIKA, A.S. PRAGUE, CZ

:58E::ADTX//++ ADDITIONAL
INFORMATION ++ PLEASE BE
INFORMED THAT AS A RESULT OF
THE PURCHASE OFFER ENDED ON 23
MAR 2008 CALDRADE LTD. IS
POSSESSING WITH MORE THEN 90
PER CENT VOTING RIGHT OF SLICE.
THEREFOR CALDRADE LTD. IS
EXERCISING PURCHASE RIGHTS
FOR ALL SLICE SHARES WHICH ARE
CURRENTLY NOT INHIS OWN.
PURCHASE PRICE: HUF 1.940 PER
SHARE. PLEASE :58E::ADTX//NOTE
THAT THOSE SHARES WHICH WILL
NOT BE PRESENTED TO THE OFFER
WILL BE CANCELLED AND INVALID.

:58:SIE SELBST
TRN/REF:515220 035
:78:RUECKGABE DES BETRAGES LT.
ANZBA43 M ZWECKS RUECKGABE IN
AUD. URSPR. ZU UNSEREM ZA MIT
REF. 0170252313279065 UND IHRE
RUECKG. :42:/BNF/UNSERE REF:

Figure 1:Example application-specific text, in this
case from financial transactions.

peculiar mark-up interspersed with meaning-
ful text. They also suffer complications arising
from limited-size entry fields and a diversity
of data-entry personnel, leading to effects like
haphazard abbreviation and improper spacing,
as shown. These issues greatly complicate the
IE problem, particularly considering that adapt-
ing IE to such formats is hampered by the exis-
tence of a multitude of such “standards” and by
lack of sufficient annotated data in each one.

A typical state-of-the-art statistical IE engine will
happily process such “noisy” inputs, and will typ-
ically provide garbage-in/garbage-out performance,
embarrassingly reporting spurious “information” no
human would ever mistake. Yet it is also inappro-
priate to discard such documents wholesale: even
poor-quality inputs may have relevant information
interspersed. This information can include accurate
speech-recognition output, names which are recog-
nizable even in wrong-language material, and clean
target-language passages interleaved with the mark-
up. Thus, here we address methods to make IE ro-
bust to such varied-quality inputs. Specifically, our
overall goals are

• to skip processing non-language material such
as standard or database-specific mark-up,

• to process all non-target-language text cau-
tiously, catching interspersed target-language
text as well as text which is compatible with
the target language,e.g. person names which
are the same in the target- and non-target lan-
guage, and

• to degrade gracefully when processing anoma-
lous target-language material,

while minimizing any disruption of the processing
of clean, target-language text, and avoiding any ne-
cessity for explicit pre-classification of the genre of
material being input to the system. Such explicit
classification would be impractical in the presence
of the interleaving and the unconstrained data for-
mats from unpredetermined sources.

We begin our robustness work by addressing an
important and basic IE task: mention detection
(MD). MD is the task of identifying and classifying
textual references to entities in open-domain texts.
Mentions may be of type “named” (e.g. John, Las
Vegas), “nominal” (e.g. engineer, dentist)
or “pronominal” (e.g. they, he). A mention also
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has a specific class which describes the type of en-
tity it refers to. For instance, consider the following
sentence:

Julia Gillard, prime
minister of Australia,
declared she will enhance
the country’s economy.

Here we see three mentions of one person en-
tity: Julia Gillard, prime minister, and
she; these mentions are of type named, nominal,
and pronominal, respectively.Australia and
country are mentions of type named and nominal,
respectively, of a single geopolitical entity. Thus, the
MD task is a more general and complex task than
named-entity recognition, which aims at identifying
and classifying only named mentions.

Our approach to IE has been to use language-
independent algorithms, in order to facilitate reuse
across languages, but we train them with language-
specific data, for the sake of accuracy. Therefore, in-
put is expected to be predominantly in a target lan-
guage. However, real-world data genres inevitably
include some mixed-language/non-linguistic input.
Genre-specific training is typically infeasible due
to such application-specific data sets being unanno-
tated, motivating this line of research. Therefore, the
goal of this study is to investigate schemes to make a
language-specific MD engine robust to the types of
interspersed non-target material described above. In
these initial experiments, we work with English as
the target language, though we aim to make our ap-
proach to robustness as target-language-independent
as possible.

While our ultimate goal is a language-
independent approach to robustness, in these
initial experiments, English is the target language.
However, we process mixed-language material
including real-world data with its own peculiar
mark-up, text conventions including abbreviations,
and mix of languages, with the goal of English MD.

We approach robust MD using a multi-stage strat-
egy. First, non-target-character-set passages (here,
non-Latin-alphabet) are identified and marked for
non-processing. Then, following word-tokenization,
we apply a language classifier to a sliding variable-
length set of windows in order to generate fea-
tures for each word indicative of how much the text
around that word resembles good English, primar-
ily in comparison to other Latin-alphabet languages.
These features are used in a separate maximum-
entropy classifier whose output is a single feature to

add to the MD classifier. Additional features, pri-
marily to distinguish English from non-language in-
put, are added to MD as well. An example is the
minimum of the number of letters and the number of
digits in the “word”, which when greater than zero
often indicates database detritus. Then we run the
MD classifier enhanced with these new robustness-
oriented features. We evaluate using a detection-
error-trade-off (DET) (Martin et al., 1997) anal-
ysis, in addition to traditional precision/recall/F -
measure.

This paper is organized as follows. Section 2 dis-
cusses previous work. Section 3 describes the base-
line maximum-entropy-based MD system. Section 4
introduces enhancements to the system to achieve
robustness. Section 5 describes databases used for
experiments, which are discussed in Section 6, and
Section 7 draws conclusions and plots future work.

2 Previous work on mention detection

The MD task has close ties to named-entity recog-
nition, which has been the focus of much recent re-
search (Bikel et al., 1997; Borthwick et al., 1998;
Tjong Kim Sang, 2002; Florian et al., 2003; Bena-
jiba et al., 2009), and has been at the center of sev-
eral evaluations: MUC-6, MUC-7, CoNLL’02 and
CoNLL’03 shared tasks. Usually, in computational-
linguistics literature, a named entity represents an
instance of either a location, a person, an organi-
zation, and the named-entity-recognition task con-
sists of identifying each individual occurrence of
names of such an entity appearing in the text. As
stated earlier, in this paper we are interested in
identification and classification of textual references
to object/abstractionmentions, which can be either
named, nominal or pronominal. This task has been
a focus of interest in ACE since 2003. The recent
ACE evaluation campaign was in 2008.

Effort to handle noisy data is still limited, espe-
cially for scenarios in which the system at decoding
time does not have prior knowledge of the input data
source. Previous work dealing with unstructured
data assumes the knowledge of the input data source.
As an example, E. Minkovet al. (Minkov et al.,
2005) assume that the input data is text from e-mails,
and define special features to enhance the detection
of named entities. Milleret al. (Miller et al., 2000)
assume that the input data is the output of a speech
or optical character recognition system, and hence
extract new features for better named-entity recog-
nition. In a different research problem, L. Yiet al.
eliminate the noisy text from the document before
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performing data mining (Yi et al., 2003). Hence,
they do not try to process noisy data; instead, they
remove it. The approach we propose in this paper
does not assume prior knowledge of the data source.
Also we do not want to eliminate the noisy data, but
rather attempt to detect the appropriate mentions, if
any, that appear in that portion of the data.

3 Mention-detection algorithm
Similarly to classical NLP tasks such as base phrase
chunking (Ramshaw and Marcus, 1999) and named-
entity recognition (Tjong Kim Sang, 2002), we for-
mulate the MD task as a sequence-classification
problem, by assigning to each word token in the
text a label indicating whether it starts a specific
mention, is inside a specific mention, or is out-
side any mentions. We also assign to every non-
outside label a class to specify entity typee.g. per-
son, organization, location, etc. We are interested
in a statistical approach that can easily be adapted
for several languages and that has the ability to
integrate easily and make effective use of diverse
sources of information to achieve high system per-
formance. This is because, similar to many NLP
tasks, good performance has been shown to depend
heavily on integrating many sources of informa-
tion (Florian et al., 2004). We choose a Maximum
Entropy Markov Model (MEMM) as described pre-
viously (Florian et al., 2004; Zitouni and Florian,
2009). The maximum-entropy model is trained us-
ing the sequential conditional generalized iterative
scaling (SCGIS) technique (Goodman, 2002), and it
uses aGaussian prior for regularization (Chen and
Rosenfeld, 2000)1.

3.1 Mention detection: standard features

The featues used by our mention detection systems
can be divided into the following categories:

1. Lexical Features Lexical features are imple-
mented as tokenn-grams spanning the current
token, both preceding and following it. For a
tokenxi, tokenn-gram features will contain the
previousn−1 tokens (xi−n+1, . . . xi−1) and the
following n− 1 tokens (xi+1, . . . xi+n−1). Set-
ting n equal to 3 turned out to be a good choice.

2. Gazetteer-based Features The gazetteer-
based features we use are computed on tokens.

1Note that the resulting model cannot really be called a
maximum-entropy model, as it does not yield the model which
has the maximum entropy (the second term in the product), but
rather is a maximum-a-posteriori model.

The gazetteers consist of several class of
dictionaries: including person names, country
names, company names, etc. Dictionar-
ies contain single names such asJohn or
Boston, and also phrases such asBarack
Obama,New York City, orThe United
States. During both training and decoding,
when we encounter in the text a token or a
sequence of tokens that completely matches an
entry in a dictionary, we fire its corresponding
class.

The use of this framework to build MD systems
for clean English text has given very competitive re-
sults at ACE evaluations (Florian et al., 2006). Try-
ing other classifiers is always a good experiment,
which we didn’t pursue here for two reasons: first,
the MEMM system used here is state-of-the-art, as
proven in evaluations and competitions – while it is
entirely possible that another system might get better
results, we don’t think the difference would be large.
Second, we are interested in ways of improving per-
formance on noisy data, and we expect any system
to observe similar degradation in performance when
presented with unexpected input – showing results
for multiple classifier types might very well dilute
the message, so we stuck to one classifier type.

4 Enhancements for robustness
As stated above, our goal is to skip spans of charac-
ters which do not lend themselves to target-language
MD, while minimizing impact on MD for target-
language text, with English as the initial target lan-
guage for our experiments. More specifically, our
task is to process data automatically in any unprede-
termined format from any source, during which we
strive to avoid outputting spurious mentions on:

• non-language material, such as mark-up tags
and other data-set detritus, as well as non-text
data such as code or binaries likely mistakenly
submitted to the MD system,

• non-target-character-set material, here, non-
Latin-alphabet material, such as Arabic and
Chinese in their native character sets, and

• target-character-set material not in the target
language, here, Latin-alphabet languages other
than English.

It is important to note that this is not merely
a document-classification problem; this non-target
data is often interspersed with valid input text.
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Mark-up is the obvious example of interspersing;
however, other categories of non-target data can also
interleave tightly with valid input. A few examples:

• English text is sometimes infixed right in a Chi-

nese sentence, such as

• some translation algorithms will leave un-
changed an untranslatable word, or will
transliterate it into the target language using a
character convention which may not be a stan-
dard known to the MD engine, and

• some target-alphabet-but-non-target-language
material will be compatible with the target
language, particularly people’s names. An
example with English as the target lan-
guage is Barack Obama in the Spanish
text ...presidente de Estados
Unidos, Barack Obama, dijo el
da 24 que ....

Therefore, to minimize needless loss of process-
able material, a robustness algorithm ideally does a
sliding analysis, in which, character-by-character or
word-by-word, material may be deemed to be suit-
able to process. Furthermore, a variety of strategies
will be needed to contend with the diverse nature of
non-target material and the patterns in which it will
appear among valid input.

Accordingly, the following is a summary of algo-
rithmic enhancements to MD:

1. detection of standard file formats, such as
SGML, and associated detagging,

2. segmentation of the file into target- vs. non-
target-character-set passages, such that the lat-
ter not be processed further,

3. tokenization to determine word and sentence
units, and

4. MD, augmented as follows:

• Sentence-level categorization of likeli-
hood of good English.

• If “clean” English was detected, run the
same clean baseline model as described in
Section 3.

• If the text is determined to be a
bad fit to English, run an alternate
maximum-entropy model that is heavily

based on gazetteers, using only context-
independent (e.g. primarily gazetteer-
based) features, to catch isolated ob-
vious English/English-compatible names
embedded in otherwise-foreign text.

• If in between “clean” and “bad”, use
a “mixed” maximum-entropy MD model
whose training data and feature set are
augmented to handle interleaving of En-
glish with mark-up and other languages.

These MD-algorithm enhancements will be de-
scribed in the following subsections.

4.1 Detection and detagging for standard file
formats

Some types of mark-up are well-known standards,
such as SGML (Warmer and van Egmond, 1989).
Clearly the optimal way of dealing with them is to
apply detectors of these specific formats, and associ-
ated detaggers, as done previously (Yi et al., 2003).
For this reason, standard mark-up is not a subject of
the current study; rather, our concern is with mark-
up peculiar to specific data sets, as described above,
and so while this step is part of our overall strategy,
it is not employed in the present experiments.

4.2 Character-set segmentation

Some entity mentions may be recognizable in a non-
target language which shares the target-language’s
character set, for example, a person’s name recog-
nizable by English speakers in an otherwise-not-
understandable Spanish sentence. However, non-
target character sets, such as Arabic and Chinese
when processing English, represent pure noise for
an IE system. Therefore, deterministic character-
set segmentation is applied, to mark non-target-
character-set passages for non-processing by the re-
mainder of the system, or, in a multilingual system,
to be diverted to a subsystem suited to process that
character set. Characters which can be ambiguous
with regard to character set, such as some punctua-
tion marks, are attached to target-character-set pas-
sages when possible, but are not considered to break
non-target-character-set passages surrounding them
on both sides.

4.3 Tokenization

Subsequent processing is based on determination of
the language of target-alphabet text. The fundamen-
tal unit of such processing is target-alphabet word,
necessitating tokenization at this point into word-
level units. This step includes punctuation sepa-
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ration as well as the detction of sentence bound-
ary (Zimmerman et al., 2006).

4.4 Robust mention detection

After preprocessing steps presented earlier, we de-
tect mentions using a cascaded approach that com-
bines several MD classifiers. Our goal is to select
among maximum-entropy MD classifiers trained
separately to represent different degrees of “nois-
iness” occurring in many genres of data, includ-
ing machine-translation output, informal communi-
cations, mixed-language material, varied forms of
non-standard database mark-up, etc. We somewhat-
arbitrarily choose to employ three classifiers as de-
scribed below. We select a classifier based on a
sentence-level determination of the material’s fit to
the target language. First, we build ann-gram lan-
guage model on clean target-language training text.
This language model is used to compute the perplex-
ity (PP ) of each sentence during decoding. The
PP indicates the quality of the text in the target-
language (i.e. English) (Brown et al., 1992); the
lower the PP , the cleaner the text. A sentence
with a PP lower than a thresholdθ1 is considered
“clean” and hence the “clean” baseline MD model
described in Section 3 is used to detect mentions
of this sentence. The clean MD model has access
to standard features described in Section 3.1. In
the case where a sentence looks particularly badly
matched to the target language, defined asPP > θ2,
we use a “gazetteer-based” model based on a dic-
tionary look-up to detect mentions; we retreat to
seeking known mentions in a context-independent
manner reflecting that most of the context consists
of out-of-vocabulary words. The gazetteer-based
MD model has access only to gazetteer information
and does not look to lexical context during decod-
ing, reflecting the likelihood that in this poor ma-
terial, words surrounding any recognizable mention
are foreign and therefore unusable. In the case of an
in-between determination, that is, a sentence with
θ1 < PP < θ2, we use a “mixed” MD model, based
on augmenting the training data set and the feature
set as described in the next section. The values ofθ1

andθ2 are estimated empirically on a separate devel-
opment data set that is also used to tune the Gaussian
prior (Chen and Rosenfeld, 2000). This set contains
a mix of clean English and Latin-alphabet-but-non-
English text that is not used for traning and evalua-
tion.

The advantage of this combination strategy is that
we do not need pre-defined knowledge of the text

source in order to apply an appropriate model. The
selection of the appropriate model to use for de-
coding is done automatically based onPP value of
the sentence. We will show in the experiments sec-
tion how this combination strategy is effective not
only in maintaining good performance on a clean
English text but also in improving performance on
non-English data when compared to other source-
specific MD models.

4.5 Mixed mention detection model

The mixed MD model is designed to process “sen-
tences” mixing English with non-English, whether
foreign-language or non-language material. Our
approach is to augment model training compared
to the clean baseline by adding non-English,
mixed-language, and non-language material, and
to augment the model’s feature set with language-
identification features more localized than the
sentence-level perplexity described above, as well as
other features designed primarily to distinguish non-
language material such as mark-up codes.

4.5.1 Language-identification features

We apply an n-gram-based language classi-
fier (Prager, 1999) to variable-length sliding win-
dows as follows. For each word, we run 1- through
6-preceding-word windows through the classifier,
and 1- through 6-word windows beginning with the
word, for a total of 12 windows, yielding for each
window a result like:

0.235 Swedish
0.148 English
0.134 French
...

For each of the 12 results, we extract three fea-
tures: the identity of the top-scoring language, here,
Swedish; the confidence score in the top-scoring
language, here,0.235; and the score difference be-
tween the target language (English for these ex-
periments) and the top-scoring non-target language,
here, 0.148 − 0.235 = −0.087. Thus we have
a 36-feature vector for each word. We bin these
and use them as input to a maximum-entropy clas-
sifier (separate from the MD classifier) which out-
puts “English” or “Non-English”, and a confidence
score. These scores in turn are binned into six cate-
gories to serve as a “how-English-is-it” feature in the
augmented MD model. The language-identification
classifier and the maximum-entropy “how-English”
classifier are each trained on text data separate from
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each other and from the training and test sets for
MD.

4.5.2 Additional features

The following features are designed to capture
evidence of whether a “word” is in fact linguistic
material or not: number of alphabetic characters,
number of characters, maximum consecutive rep-
etitions of a character, numbers of non-alphabetic
and non-alphanumeric characters, fraction of char-
acters which are alphabetic, fraction alphanumeric,
and number of vowels. These features are part of the
augmentation of the mixed MD model relative to the
clean MD model.

5 Data sets

Four data sets are used for our initial experiments.
One, “English”, consists of 367 documents total-
ing 170,000 words, drawn from web news stories
from various sources and detagged to be plain text.
This set is divided into 340 documents as a train-
ing set and 27 for testing, annotated as described in
more detail elsewhere (Han, 2010). These data av-
erage approximately 21 annotated mentions per 100
words.

The second set, “Latin”, consists of 23 detagged
web news articles from 11 non-English Latin-
alphabet languages totaling 31,000 words. Of these
articles, 12 articles containing 19,000 words are
used as a training set, with the remaining used for
testing, and each set containing all 11 languages.
They are annotated using the same annotation con-
ventions as “English”, and from the perspective of
English; that is, only mentions which would be clear
to an English speaker are labeled, such asBarack
Obama in the Spanish example in Section 4. For
this reason, these data average only approximately 5
mentions per 100 words.

The third, “Transactions”, consists of approxi-
mately 60,000 words drawn from a text data set
logging real financial transactions. Figure 1 shows
example passages from this database, anonymized
while preserving the character of the content.

This data set logs transactions by a staff of
customer-service representatives. English is the pri-
mary language, but owing to international clientele,
occasionally representatives communicate in other
languages, such as the German here, or in English
but mentioning institutions in other countries, here, a
Czech bank. Interspersed among text are codes spe-
cific to this application which delineate and identify
various information fields and punctuate long pas-

sages. The application also places constraints on
legal characters, leading to the unusual representa-
tion of underline and the “at” sign as shown, mak-
ing for an e-mail address which is human-readable
but likely not obvious to a machine. Abbreviations
represent terms particularly common in this appli-
cation area, though they may not be obvious with-
out adapting to the application; these include stan-
dards likeHUF, a currency code which stands for
Hungarian forint, and financial-transaction peculiar-
ities like BNF for “beneficiary” as seen in Figure 1.
In short, good English is interspersed with non-
language content, foreign-language text, and rough
English like data-entry errors and haphazard abbre-
viations. These data average 4 mentions per 100
words.

Data sets with peculiarities analogous to those in
this Transactions set are commonplace in a variety
of settings. Training specific to data sets like this is
often infeasible due to lack of labeled data, insuffi-
cient data for training, and the multitude of such data
formats. For this reason, we do not train on Transac-
tions, letting our testing on this data set serve as an
example of testing on such data formats unseen.

6 Experiments

MD systems were trained to recognize the 116
entity-mention types shown in Table 1, annotated as
described previously (Han, 2010). The clean-data
classifier was trained on the English training data us-
ing the feature set described in Section 3.1. The clas-
sifier for “mixed”-quality data and the “gazetteer”
model were each trained on that set plus the “Latin”
training set and the supplemental set. In addition,
“mixed” training included the additional features de-
scribed in Section 4.5. The framework used to build
the baseline MD system is similar to the one we used
in the ACE evaluation2. This system has achieved
competitive results with anF -measure of 82.7 when
trained on the seven main types of ACE data with
access to wordnet and part-of-speech-tag informa-
tion as well as output of other MD and named-entity
recognizers (Zitouni and Florian, 2008).

It is instructive to evaluate on the individual com-
ponent systems as well as the combination, despite
the fact that the individual components are not well-
suited to all the data sets, for example, the mixed
and gazetteer systems being a poorer fit to the En-
glish task than the baseline, and vice versa for the

2NIST’s ACE evaluation plan:
http://www.nist.gov/speech/tests/ace/index.htm
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age event-custody facility people date
animal event-demonstration food percent duration
award event-disaster geological-object person e-mail-address
cardinal event-legal geo-political product measure
disease event-meeting law substance money
event event-performance location title-of-a-work phone-number
event-award event-personnel ordinal vehicle ticker-symbol
event-communication event-sports organ weapon time
event-crime event-violence organization web-address

Table 1: Entity-type categories used in these experiments.The eight in the right-most column are not
further distinguished by mention type, while the remaining36 are further classified as named, nominal or
pronominal, for a total of36× 3 + 8 = 116 mention labels.

English Latin Transactions
P R F P R F P R F

Clean 78.7 73.6 76.1 16.0 40.0 22.9 19.5 32.2 24.3
Mixed 77.9 69.7 73.6 78.5 55.9 65.3 37.1 47.8 41.7
Gazetteer 76.9 66.2 71.1 77.8 55.5 64.8 36.5 47.5 41.3
Combination 78.1 73.2 75.6 80.4 56.0 66.0 38.5 49.1 43.2

Table 2: Performance of clean, mixed, and gazetteer-based mention detection systems as well as their com-
bination. Performance is presented in terms of Precision (P), Recall (R), andF -measure (F).

non-target data sets. Precision/recall/F -measure re-
sults are shown in Table 2. Not surprisingly, the
baseline system, intended for clean data, performs
poorly on noisy data. The mixed and gazetteer sys-
tems, having a variety of noisy data in their train-
ing set, perform much better on the noisy conditions,
particularly on Latin-alphabet-non-English data be-
cause that is one of the conditions included in its
training, while Transactions remains a condition not
covered in the training set and so shows less im-
provement. However, because the mixed classifier,
and moreso the gazetteer classifier, are oriented to
noisy data, on clean data they suffer in performance
by 2.5 and 5F -measure points, respectively. But
system combination serves us well: it recovers all
but 0.5F -measure point of this loss, while also ac-
tually performing better on the noisy data sets than
the two classifiers specifically targeted toward them,
as can be seen in Table 2. It is important to note
that the major advantage of using the combination
model is the fact that we do not have to know the
data source in order to select the appropriate MD
model to use. We assume that the data source is
unknown, which is our claim in this work, and we
show that we obtain better performance than using
source-specific MD models. This reflects the fact

that a noisy data set will in fact have portions with
varying degrees of “noise”, so the combination out-
performs any single model targeted to a single par-
ticular level of noise, enabling the system to con-
tend with such variability without the need for pre-
segregating sub-types of data for noise level. The
obtained improvement from the system combination
over all other models is statistically significant based
on the stratified bootstrap re-sampling significance
test (Noreen, 1989). We consider results statistically
significant whenp < 0.05, which is the case in this
paper. This approach was used in the named-entity-
recognition shared task of CoNNL-20023.

It should be noted that some completely-non-
target types of data, such as non-target-character set
data, have been omitted from analysis here. In-
cluding them would make our system look compar-
atively stronger, as they would have only spurious
mentions and so generate false alarms but no correct
mentions in the baseline system, while our system
deterministically removes them.

As mentioned above, we view MD robustness pri-
marily as an effort to eliminate, relative to a base-
line system, large volumes of spurious “mentions”
detected in non-target input content, while minimiz-

3http://www.cnts.ua.ac.be/conll2002/ner/
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(a) DET plot for clean (baseline), mixed, gazetteer,
and combination MD systems on the Latin-alphabet-
non-English text. The clean system (upper curve)
performs far worse than the other three systems de-
signed to provide robustness; these systems in turn
perform nearly indistinguishably.

(b) DET plot for clean (baseline), mixed, gazetteer,
and combination MD systems on the Transactions
data set. The clean system (upper/longer curve)
reaches far higher false-alarm rates, while never ap-
proaching the lower miss rates achievable by any of
the other three systems, which in turn perform com-
parably to each other.

Figure 2:DET plots for Latin-alphabet-non-English and Transactions data sets

ing disruption of detection in target input. A sec-
ondary goal is recall in the event of occasional valid
mentions in such non-target material. Thus, as in-
put material degrades, precision increases in impor-
tance relative to recall. As such, we view precision
and recall asymmetrically on this task, and so rather
than evaluating purely in terms ofF -measure, we
perform a detection-error-trade-off (DET) (Martin
et al., 1997) analysis, in which we plot a curve of
miss rate on valid mentions vs. false-alarm rate, with
the curve traced by varying a confidence threshold
across its range. We measure false-alarm and miss
rates relative to the number of actual mentions anno-
tated in the data set:

FA rate =
# false alarms

# annotated mentions
(1)

Miss rate =
# misses

# annotated mentions
(2)

where false alarms are “mentions” output by the sys-
tem but not appearing in annotation, while misses
are mentions which are annotated but do not ap-
pear in the system output. Each mention is treated
equally in this analysis, so frequently-recurring en-
tity/mention types weigh on the results accordingly.

Figure 2a shows a DET plot for the clean, mixed,
gazetteer, and combination systems on the “Latin”
data set, while Figure 2b shows the analogous plot
for the “Transactions” data set. The drastic gains

made over the baseline system by the three experi-
mental systems are evident in the plots. For exam-
ple, on Latin, choosing an operating point of a miss
rate of 0.6 (nearly the best achievable by the clean
system), we find that the robustness-oriented sys-
tems eliminate 97% of the false alarms of the clean
baseline system, as the plot shows false-alarm rates
near 0.07 compared to the baseline’s of 2.08. Gains
on Transaction data are more modest, owing to this
case representing a data genre not included in train-
ing. It should be noted that the jaggedness of the
Transaction curves traces to the repetitive nature of
some of the terms in this data set.

In making a system more oriented toward robust-
ness in the face of non-target inputs, it is important
to quantify the effect of these systems being less-
oriented toward clean, target-language text. Figure 3
shows the analogous DET plot for the English test
set, showing that achieving robustness through the
combination system comes at a small cost to accu-
racy on the text the original system is trained to pro-
cess.

7 Conclusions
For information-extraction systems to be useful,
their performance must degrade gracefully when
confronted with inputs which deviate from ideal
and/or derive from unknown sources in unknown
formats. Imperfectly-translated, mixed-language,
marked-up text and non-language material must not
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Figure 3: DET plot for clean (baseline), mixed,
gazetteer, and combination MD systems on clean English
text, verifying that performance by the clean system (low-
est curve) is very closely approximated by the combina-
tion system (second-lowest curve), while the mixed sys-
tem performs somewhat worse and the gazetteer system
(top curve), worse still, reflecting that these systems are
increasingly oriented toward noisy inputs.

be processed in a garbage-in-garbage-out fashion
merely because the system was designed only to
handle clean text in one language. Thus we have em-
barked on information-extraction-robustness work,
to improve performance on imperfect inputs while
minimizing disruption of processing of clean text.
We have demonstrated that for one IE task, mention
detection, a multi-faceted approach, motivated by
the diversity of input data imperfections, can elimi-
nate a large proportion of the spurious outputs com-
pared to a system trained on the target input, at a
relatively small cost of accuracy on that target input.
This outcome is achieved by a system-combination
approach in which a perplexity-based measure of
how well the input matches the target language is
used to select among models designed to deal with
such varying levels of noise. Rather than relying on
explicit recognition of genre of source data, the ex-
perimental system merely does its own assessment
of how much each sentence-sized chunk matches the
target language, an important feature in the case of
unknown text sources.

Chief among directions for further work is to con-
tinue to improve performance on noisy data, and to
strengthen our findings via larger data sets. Addi-
tionally, we look forward to expanding analysis to
different types of imperfect input, such as machine-
translation output, different types of mark-up, and
different genres of real data. Further work should
also explore the degree to which the approach to
achieving robustness must vary according to the tar-

get language. Finally, robustness work should be ex-
panded to other information-extraction tasks.
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Abstract 

Seed sampling is critical in semi-supervised 
learning. This paper proposes a clustering-
based stratified seed sampling approach to 
semi-supervised learning.  First, various clus-
tering algorithms are explored to partition the 
unlabeled instances into different strata with 
each stratum represented by a center. Then, 
diversity-motivated intra-stratum sampling is 
adopted to choose the center and additional 
instances from each stratum to form the unla-
beled seed set for an oracle to annotate. Fi-
nally, the labeled seed set is fed into a 
bootstrapping procedure as the initial labeled 
data. We systematically evaluate our stratified 
bootstrapping approach in the semantic rela-
tion classification subtask of the ACE RDC 
(Relation Detection and Classification) task. 
In particular, we compare various clustering 
algorithms on the stratified bootstrapping per-
formance. Experimental results on the ACE 
RDC 2004 corpus show that our clustering-
based stratified bootstrapping approach 
achieves the best F1-score of 75.9 on the sub-
task of semantic relation classification, ap-
proaching the one with golden clustering. 

1 Introduction 

Semantic relation extraction aims to detect and 
classify semantic relationships between a pair of 
named entities occurring in a natural language text. 
Many machine learning approaches have been pro-
posed to attack this problem, including supervised 
(Miller et al., 2000; Zelenko et al., 2003; Culotta 
and Soresen, 2004; Kambhatla, 2004; Zhao and 

Grishman, 2005; Zhou et al., 2005; Zhang et al., 
2006; Zhou and Zhang, 2007; Zhou et al., 2007; 
Qian et al., 2008; Zhou et al., 2010), semi-
supervised (Brin, 1998; Agichtein and Gravano, 
2000; Zhang, 2004; Chen et al., 2006; Qian et al., 
2009; Zhou et al., 2009), and unsupervised meth-
ods (Hasegawa et al., 2004; Zhang et al., 2005; 
Chen et al., 2005). 

Current work on relation extraction mainly 
adopts supervised learning methods, since they 
achieve much better performance. However, they 
normally require a large number of manually la-
beled relation instances, whose acquisition is both 
time consuming and labor intensive. In contrast, 
unsupervised methods do not need any manually 
labeled instances. Nevertheless, it is difficult to 
assess their performance due to the lack of evalua-
tion criteria. As something between them, semi-
supervised learning has received more and more 
attention recently. With the plenitude of unlabeled 
natural language text at hand, semi-supervised 
learning can significantly reduce the need for la-
beled data with only limited sacrifice in perform-
ance. For example, Abney (2002) proposes a 
bootstrapping algorithm which chooses the unla-
beled instances with the highest probability of be-
ing correctly labeled and add them in turn into the 
labeled training data iteratively. 

This paper focuses on bootstrapping-based semi-
supervised learning in relation extraction. Since the 
performance of bootstrapping depends much on the 
quality and quantity of the seed set and researchers 
tend to employ as few seeds as possible (e.g. 100 
instances) to save time and labor, the quality of the 
seed set plays a critical role in bootstrapping. Fur-
thermore, the imbalance of different classes and 
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the inherent structural complexity of instances will 
severely weaken the strength of bootstrapping and 
semi-supervised learning as well. Therefore, it is 
critical for a bootstrapping procedure to select an 
appropriate seed set, which should be representa-
tive and diverse. However, most of current semi-
supervised relation extraction systems (Zhang, 
2004; Chen et al., 2006) use a random seed sam-
pling strategy, which fails to fully exploit the affin-
ity nature in the training data to derive the seed set. 
Alternatively, Zhou et al. (2009) bootstrap a set of 
weighted support vectors from both labeled and 
unlabeled data using SVM and feed these instances 
into semi-supervised relation extraction. However, 
their seed set is sequentially generated only to en-
sure that there are at least 5 instances for each rela-
tion class. Our previous work (Qian et al., 2009) 
attempts to solve this problem via a simple strati-
fied sampling strategy for selecting the seed set. 
Experimentation on the ACE RDC 2004 corpus 
shows that the stratified sampling strategy achieves 
promising results for semi-supervised learning. 
Nevertheless, the success of the strategy relies on 
the assumption that the true distribution of all rela-
tion types is already known, which is impractical 
for real NLP applications. 

This paper presents a clustering-based stratified 
seed sampling approach for semi-supervised rela-
tion extraction, without the assumption on the true 
distribution of different relation types. The motiva-
tions behind our approach are that the unlabeled 
data can be partitioned into a number of strata us-
ing a clustering algorithm and that representative 
and diverse seeds can be derived from such strata 
in the framework of stratified sampling (Neyman, 
1934) for an oracle to annotate. Particularly, we 
employ a diversity-motivated intra-stratum sam-
pling scheme to pick a center and additional in-
stances as seeds from each stratum. Experimental 
results show the effectiveness of the clustering-
based stratified seed sampling for semi-supervised 
relation classification. 

The rest of this paper is organized as follows. 
First an overview of the related work is given in 
Section 2. Then, Section 3 introduces the stratified 
bootstrapping framework including an intra-
stratum sampling scheme while Section 4 describes 
various clustering algorithms. The experimental 
results on the ACE RDC 2004 corpus are reported 
in Section 5. Finally we conclude our work and 
indicate some future directions in Section 6. 

2 Related Work 

In semi-supervised learning for relation extraction, 
most of previous work construct the seed set either 
randomly (Zhang, 2004; Chen et al., 2006) or se-
quentially (Zhou et al., 2009). Qian et al. (2009) 
adopt a stratified sampling strategy to select the 
seed set. However, their method needs a stratifica-
tion variable such as the known distribution of the 
relation types, while our method uses clustering to 
divide relation instances into different strata. 

In the literature, clustering techniques have been 
employed in active learning to sample representa-
tive seeds in a certain extent (Nguyen and 
Smeulders, 2004; Tang et al., 2002; Shen et al., 
2004). Our work is similar to the formal frame-
work, as proposed in Nguyen and Smeulders 
(2004), in which K-medoids clustering is incorpo-
rated into active learning. The cluster centers are 
used to construct a classifier and which in turn 
propagates classification decision to other exam-
ples via a local noise model. Unlike their probabil-
istic models, we apply various clustering 
algorithms together with intra-stratum sampling to 
select a seed set in discriminative models like 
SVMs. In active learning for syntactic parsing, 
Tang et al. (2002) employ a sampling strategy of 
“most uncertain per cluster” to select representa-
tive examples and weight them using their cluster 
density, while we pick a few seeds (the number of 
the sampled seeds is proportional to the cluster 
density) from a cluster in addition to its center. 
Shen et al. (2004) combine multiple criteria to 
measure the informativeness, representativeness, 
and diversity of examples in active learning for 
named entity recognition. Unlike our sampling 
strategy of clustering for representativeness and 
stratified sampling for diversity, they either select 
cluster centroids or diverse examples from a pre-
chosen set in terms of some combined metrics. To 
the best of our knowledge, this is the first work to 
address the issue of seed selection using clustering 
techniques for semi-supervised learning with dis-
criminative models. 

3 Stratified Bootstrapping Framework 

The stratified bootstrapping framework consists of 
three major components: an underlying supervised 
learner and a bootstrapping algorithm on top of it 

347



as usual, plus a clustering-based stratified seed 
sampler. 

3.1 Underlying Supervised Learner 

Due to recent success in tree kernel-based relation 
extraction, this paper adopts a tree kernel-based 
method in the underlying supervised learner. Fol-
lowing the previous work in relation extraction 
(Zhang et al., 2006; Zhou et al., 2007; Qian et al., 
2008), we use the standard convolution tree kernel 
(Collins and Duffy, 2001) to count the number of 
common sub-trees as the structural similarity be-
tween two parse trees. Besides, to properly repre-
sent a relation instance, this paper adopts the 
Unified Parse and Semantic Tree (UPST), as pro-
posed in Qian et al. (2008). To our knowledge, the 
USPT has achieved the best performance in rela-
tion extraction so far on the ACE RDC 2004 cor-
pus. 

In particular, we use the SVMlight-TK1 package 
as our classifier. Since the package is a binary clas-
sifier, we adapt it to the multi-class tasks of rela-
tion extraction by applying the one vs. others 
strategy, which builds K binary classifiers so as to 
separate one class from all others. The final classi-
fication decision of an instance is determined by 
the class that has the maximal SVM output margin. 

3.2 Bootstrapping Algorithm 

Following Zhang (2004), we have developed a 
baseline self-bootstrapping procedure, which keeps 
augmenting the labeled data by employing the 
models trained from previously available labeled 
data, as shown in Figure 1. 

Since the SVMlight-TK package doesn’t output 
any probability that it assigns to the class label on 
an instance, we devise a metric to measure the con-
fidence with regard to the classifier’s prediction. 
Given a sequence of output margins of all K binary 
classifiers at some iteration, denoted as 
{m1,m2,…mK} with mi the margin for the i-th clas-
sifier, we compute the margin gap between the 
largest and the mean of the others, i.e. 

)1/()max(max
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Where K denotes the total number of relation 
classes, and mi denotes the output margin of the i-

                                                           
1 http://ai-nlp.info.uniroma2.it/moschitti/ 

Require: labeled seed set L
Require: unlabeled data set U
Require: batch size S
Repeat
    Train a single classifier on L
    Run the classifier on U
    Find at most S instances in U that the classifier has
the highest prediction confidence
    Add them into L
Until: no data points available or the stoppage
condition is reached

Algorithm self-bootstrapping

 
Figure 1: Self-bootstrapping algorithm 

th classifier. Intuitively, the bigger the H, the 
greater the difference between the maximal margin 
and all others, and thus the more reliably the classi-
fier makes the prediction on the instance.  

3.3 Clustering-based Stratified Seed Sampler 

Stratified sampling is a method of sampling in 
statistics, in which the members of a population are 
grouped into relatively homogeneous subgroups 
(i.e. strata) according to one certain property, and 
then a sample is selected from each stratum. This 
process of grouping is called stratification, and the 
property on which the stratification is performed is 
called the stratification variable. Previous work 
justifies theoretically and practically that stratified 
sampling is more appropriate than random sam-
pling for general use (Neyman, 1934) as well as for 
relation extraction (Qian et al., 2009). However, 
the difficulty lies in how to find the appropriate 
stratification variable for complicated tasks, such 
as relation extraction. 

The idea of clustering-based stratification cir-
cumvents this problem by clustering the unlabeled 
data into a number of strata without the need to 
explicitly specify a stratification variable. Figure 2 
illustrates the clustering-based stratified seed sam-
pling strategy employed in the bootstrapping pro-
cedure, where RSET denotes the whole unlabeled 
data, SeedSET the seed set to be labeled and 
|RSETi| the number of instances in the i-th cluster2 
RSETi. Here, a relation instance is represented us-
ing USPT and the similarity between two instances 
is computed using the standard convolution tree 
                                                           
2 Hereafter, when we refer to clusters from the viewpoint of 
stratified sampling, they are often called “strata”. 
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kernel, as described in Section 3.1 (i.e., both the 
clustering and the classification adopt the same 
structural representation, since we want the repre-
sentative seeds in the clustering space to be also 
representative in the classification space). After 
clustering, a certain number of instances from 
every stratum are sampled using an intra-stratum 
scheme (c.f. Subsection 3.4). Normally, this num-
ber is proportional to the size of that stratum in the 
whole data set. However, in case this number is 0 
due to the rounding of real numbers, it is set to 1 to 
ensure the existence of at least one seed from that 
stratum. Furthermore, to ensure that the total num-
ber of instances being sampled equals the pre-
scribed NS, the number of seeds from dominant 
strata may be slightly adjusted accordingly. Finally, 
these instances form the unlabeled seed set for an 
oracle to annotate as the input to the underlying 
supervised learner in the bootstrapping procedure. 

3.4 Intra-stratum sampling 

Given the distribution of clusters, a simple way to 
select the most representative instances is to 
choose the center of each cluster with the cluster 
prior as the weight of the center (Tang et al., 2002; 
Nguyen and Smeulders, 2004). Nevertheless, for 
the complicated task of relation extraction on the 
ACE RDC corpora, which is highly skewed across 
different relation classes, only considering the cen-
ter of each cluster would severely under-represent 
the high-density data. To overcome this problem, 
we adopt a sampling approach, in particular strati-
fied sampling, which takes the size of each stratum 
into consideration. 

Given the size of the seed set NS and the number 
of strata K, a natural question will arise as how to 
select the remaining (NS-K) seeds after we have 
extracted the K centers from the K strata. We view 
this problem as intra-stratum sampling, which is 
required to choose the remaining number of seeds 
from inside individual stratum (excluding the cen-
ters themselves).  

At the first glance, sampling a certain number of 
seeds from one particular stratum (e.g., RSETi), 
seems to be the same sampling problem as we have 
encountered before, which aims to select the most 
representative and diverse seeds. This will natu-
rally lead to another application of a clustering al-
gorithm to the stratification of the stratum RSETi.  

Require: RSET ={R1,R2,…,RN}, the set of unlabeled 
relation instances and K, the number of strata being 
clustered 
Output: SeedSET with the size of NS (100) 
Procedure 

Initialize SeedSET = NULL 
Cluster RSET into K strata using a clustering 

algorithm and perform stratum pruning if 
necessary. 

Calculate the number of instances being sampled 
for each stratum i={1,2,…,K} 

S
i

i N
N

RSETN ∗=
||    (2) 

and adjust this number if necessary. 
Perform intra-strata sampling to form SeedSETi 

from each stratum RSETi, by selecting the center 
Ci and (Ni-1) additional instances 

Generate SeedSET by summating RSETi from each 
stratum 

 
Figure 2: Clustering-based stratified seed sampling  

Nevertheless, remember the fact that, this time for 
the stratum RSETi, the center Ci has been chosen, 
so it may not be reasonable to extract additional 
centers in this way. Therefore, in order to avoid 
recursion and over-complexity, we employ a diver-
sity-motivated intra-stratum sampling scheme 
(Shen et al., 2004), called KDN (K-diverse 
neighbors), which aims to maximize the training 
utility of all seeds from a stratum. The motivation 
is that we prefer the seeds with high variance to 
each other, thus avoiding repetitious seeds from a 
single stratum. The basic idea is to add a candidate 
instance to the seed set only if it is sufficiently dif-
ferent from any previously selected seeds, i.e., the 
similarity between the candidate instance and any 
of the current seeds is less than a threshold β. In 
this paper, the threshold β is set to the average 
pair-wise similarity between any two instances in a 
stratum.  

4 Clustering Algorithms 

This section describes several typical clustering 
algorithms in the literature, such as K-means, HAC, 
spectral clustering and affinity propagation, as well 
as their application in this paper. 

4.1 K-medoids (KM) 

As a simple yet effective clustering method, the K-
means algorithm assigns each instance to the clus-
ter whose center (also called centroid) is nearest. In 
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particular, the center is the average of all the in-
stances in the cluster, i.e., with its coordinates the 
arithmetic means for each dimension separately 
over all the instances in the cluster. 

One problem with K-means is that it does not 
yield the same result with each run while the other 
problem is the requirement for the concept of a 
mean to be definable, which is unfortunately not 
available in our setting (we employ a parse tree 
representation for a relation instance). Hence, we 
adopt a variant of K-means, namely, K-medoids, 
where a medoid, rather than a centroid, is defined 
as a representative of a cluster. Besides, K-
medoids has proved to be more robust to noise and 
outliers in comparison with K-means. 

4.2 Hierarchical Agglomerative Clustering 
(HAC) 

Different from K-medoids, hierarchical clustering 
creates a hierarchy of clusters which can be 
represented in a tree structure called a dendrogram. 
The root of the tree consists of a single cluster 
containing all objects, and the leaves correspond to 
individual object.  

Typically, hierarchical agglomerative clustering 
(HAC) starts at the leaves and successively merges 
two clusters together as long as they have the 
shortest distance among all the pair-wise distances 
between any two clusters.  

Given a specified number of clusters, the key 
problem is to determine where to cut the hierarchi-
cal tree into clusters. In this paper, we generate the 
final flat cluster structures greedily by maximizing 
the equal distribution of instances among different 
clusters. 

4.3 Spectral Clustering (SC) 

Spectral clustering has become more and more 
popular recently. Taking as input a similarity 
matrix between any two instances, spectral 
clustering makes use of the spectrum of the 
similarity matrix of the data to perform 
dimensionality reduction for clustering in fewer 
dimensions.  

Compared to the “traditional algorithms” such 
as K-means or HAC, spectral clustering has many 
fundamental advantages. Results obtained by 
spectral clustering often outperform the traditional 
approaches. Furthermore, spectral clustering is 
very simple to implement and can be solved 

efficiently using standard linear algebra methods 
(von Luxburg, 2006). 

4.4 Affinity Propagation (AP) 

As a new emerging clustering algorithm, affinity 
propagation (AP) (Frey and Dueck, 2007) is basi-
cally an iterative message-passing procedure in 
which the instances being clustered compete to 
serve as cluster exemplars by exchanging two 
types of messages, namely, “responsibility” and 
“availability”.  After the procedure converges or 
has repeated a finite number of iterations, each 
cluster is represented by an exemplar. AP was re-
ported to find clusters with much lower error than 
those found by other methods. 

For our application, affinity propagation takes as 
input a similarity matrix, whose elements represent 
either the similarity between two different in-
stances or the preference (a real number p) for an 
instance when two instances are the same. One 
problem with AP is that the number of clusters 
cannot be pre-defined, which is indirectly deter-
mined by the preference as well as the convergence 
procedure itself. 

5 Experimentation 

This section systematically evaluates the boot-
strapping approach using clustering-based strati-
fied seed sampling, in the relation classification 
(i.e., given the relationship already detected) sub-
task of relation extraction on the ACE RDC 2004 
corpus. 

5.1 Experimental Setting 

The ACE RDC 2004 corpus 3  is gathered from 
various newspapers, newswire and broadcasts. It 
contains 451 documents and 5702 positive relation 
instances of 7 relation types and 23 subtypes be-
tween 7 entity types. For easy reference with re-
lated work in the literature, evaluation is done on 
347 documents (from nwire and bnews domains), 
which include 4305 relation instances. Table 1 lists 
the major relation types and subtypes, including 
their corresponding instance numbers and ratios in 
our evaluation set. One obvious observation from 
the table is that the numbers of different relation 
types is highly imbalanced. These 347 documents 
are then divided into 3 disjoint sets randomly, with 
                                                           
3 http//www.ldc.upenn.edu/ Projects/ACE/ 
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Types Subtypes # % 
Located 738 17.1 
Near 87 2.0 PHYS 
Part-Whole 378 8.8 
Business 173 4.0 
Family 121 2.8 PER-SOC 
Other 55 1.3 
Employ-Executive 489 11.4 
Employ-Staff 539 12.5 
Employ-Undeter. 78 1.8 
Member-of-Group 191 4.4 
Subsidiary 206 4.8 
Partner 12 0.3 

EMP-
ORG 

Other 80 1.9 
User-or-Owner 200 4.6 
Inventor-or-Man. 9 0.2 ART 
Other 2 0.0 
Ethnic 39 0.9 
Ideology 48 1.1 OTHER-

AFF 
Other 54 1.3 
Citizen-or-Resid. 273 6.3 
Based-In 215 5.0 GPE-AFF 
Other 39 0.9 

DISC   279 6.5 
Total   4305 100.0 

Table 1: Relation types and their corresponding instance 
numbers and ratios in the ACE RDC 2004 corpus 
 
10% of them (35 files, around 400 instances) held 
out as the test data set, 10% of them (35 files, 
around 400 instances) used as the development 
data set to fine-tune various settings and parame-
ters, while the remaining 277 files (over 3400 in-
stances) used as the training data set, from which 
the seed set will be sampled. 

The corpus is parsed using Charniak’s parser 
(Charniak, 2001) and relation instances are gener-
ated by extracting all pairs of entity mentions oc-
curring in the same sentence with positive 
relationships. For easy comparison with related 
work, we only evaluate the relation classification 
task on the 7 major relation types of the ACE RDC 
2004 corpus. For the SVMlight-TK classifier, the 
training parameters C (SVM) and λ (tree kernel) 
are fine-tuned to 2.4 and 0.4 respectively.  

The performance is measured using the standard 
P/R/F1 (Precision/Recall/F1-measure). For each 

relation type, P is the ratio of the true relation in-
stances in all the relation instances being identified, 
R is the ratio of the true relation instances being 
identified in all the true relation instances in the 
corpus, and F1 is the harmonic mean of P and R. 
The overall performance P/R/F1 is then calculated 
using the micro-average measure over all major 
class types. 

5.2 Experimental Results 

Comparison of various seed sampling strategies 
without intra-stratum sampling on the devel-
opment data 

Table 2 compares the performance of bootstrap-
ping-based relation classification using various 
seed sampling strategies without intra-stratum 
sampling on the development data. Here, the size 
of the seed set L is set to 100, and the top 100 in-
stances with the highest confidence (c.f. Formula 1) 
are augmented at each iteration. For sampling 
strategies marked with an asterisk, we performed 
10 trials and calculated their averages. Since for 
these strategies the seed sets sampled from differ-
ent trials may be quite different, their performance 
scores vary in a great degree accordingly. This ex-
perimental setting and notation are also used in all 
the subsequent experiments unless specified. Be-
sides, two additional baseline sampling strategies 
are included for comparison: sequential sampling 
(SEQ), which selects a sequentially-occurring L 
instances as the seed set, and random sampling 
(RAND), which randomly selects L instances as 
the seed set. 

Table 2 shows that 
1) RAND outperforms SEQ by 1.2 units in F1-

score. This is due to the fact that the seed set 
via RAND may better reflect the distribution of 
the whole training data than that via SEQ, nev-
ertheless at the expense of collecting the whole 
training data in advance. 

2) While HAC performs moderately better than 
RAND, it is surprising that both KM and AP 
perform even worse than SEQ, and that SC per-
forms worse than RAND. Furthermore, all the 
four clustering-based seed sampling strategies 
achieve much smaller performance improve-
ment in F1-score than RAND, among which 
KM performs worst with performance im-
provement of only 0.1 in F1-score. 
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Sampling 
strategies P(ΔP) R(ΔR) F1(ΔF1) 

RAND* 69.1(3.1) 66.4(0.2) 67.8(2.0) 
SEQ* 65.8(2.6) 68.0(0.1) 66.6(1.3) 
KM* 62.0(0.9) 61.0(-0.5) 61.3(0.1) 
HAC 69.9(1.3) 70.4(0.4) 70.1(0.8) 
SC* 67.1(1.5) 68.1(0.0) 67.5(0.8) 
AP 66.6(2.0) 66.2(0.1) 66.4(1.1) 
Table 2: Comparison of various seed sampling strate-
gies without intra-stratum sampling on the development 
data 

3) All the performance improvements from boot-
strapping largely come from the improvements 
in precision. While the bootstrapping procedure 
makes the SVM classifier more accurate, it 
lacks enough generalization ability.  

To explain above special phenomena, we have a 
look at the clustering results. Our inspection re-
veals that most of them are severely imbalanced, 
i.e., some clusters are highly dense while others are 
extremely sparse. This indicates that merely select-
ing the centers from each cluster cannot properly 
represent the overall distribution. Moreover, the 
centers with high density lack the generalization 
ability due to its solitude in the cluster, leading to 
less performance enhancement than expected. 

The only exception is HAC, which much outper-
forms RAND by 2.3 in F1-score, although HAC is 
usually not considered as an effective clustering 
algorithm. The reason may be that HAC creates a 
hierarchy of clusters in the top-down manner by 
cutting a cluster into two. Therefore, the centers in 
the two sibling clusters will be closer to each other 
than they are to the centers in other clusters. Be-
sides, the final flat cluster structures given a spe-
cial number of clusters are generated greedily from 
the cluster hierarchy by maximizing the equal dis-
tribution of instances among different clusters. In 
other words, when the cluster number reaches a 
certain threshold, the dense area will get more 
seeds represented in the seed set. As a consequence, 
the distribution of all the seeds sampled by HAC 
will approximate the distribution of the whole 
training data in some degree, while the seeds sam-
pled by other clustering algorithm are kept as far as 
possible due to the objective of clustering and the 
lack of intra-stratum sampling. 

These observations also justify the application 
of the stratified seed sampling to the bootstrapping 
procedure, which enforces the number of seeds 

sampled from a cluster to be proportional to its 
density, presumably approximated by its size in 
this paper. 
 
Comparison of different cluster numbers with 
intra-stratum sampling on the development 
data 

In order to fine-tune the optimal cluster numbers 
for seed sampling, we compare the performance of 
different numbers of clusters for each clustering 
algorithm on the development data set and report 
their F-scores in Table 3. For reference, we also 
list the F-score for golden clustering (GOLD), in 
which all instances are grouped in terms of their 
annotated ground relation major types (7), major 
types considering relation direction (13), subtypes 
(23), and subtypes considering direction (38). Be-
sides, the performance of clustering-based semi-
supervised relation classification is also measured 
over other typical cluster numbers (i.e., 1, 50, 60, 
80, 100). Particularly, when the cluster number 
equals 1, it means that only diversity other than 
representativeness is considered in the seed sam-
pling. Among these clustering algorithms, one of 
the distinct characteristics with the AP algorithm is 
that the number of clusters cannot be specified in 
advance, rather, it is determined by the pre-defined 
preference parameter (c.f. Subsection 4.4). There-
fore, we should tune the preference parameter so as 
to get the pre-defined cluster number. However, 
sometimes we still couldn’t get the exact number 
of clusters as we expected. In these cases, we use 
the approximate cluster numbers for AP instead.  

Table 3 shows that 
1) The performance for all the clustering algo-

rithms varies in some degree with the number 
of clusters being grouped. Interestingly, the 
performance with only one cluster is better 
than those of clustering-based strategies with 
100 clusters, at most cases. This implies that 
the diversity of the seeds is at least as impor-
tant as their representativeness. And this could 
be further explained by our observation that, 
with the increase of cluster numbers, the clus-
ters get smaller and denser while their centers 
also come closer to each other. Therefore, the 
representativeness and diversity as well as the 
distribution of the seeds sampled from them 
may vary accordingly, leading to different per-
formance. 
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# of  
 Clusters GOLD KM* HAC SC* AP 

1 -  68.7  68.7  - - 
7 73.9 70.3  73.3 72.1 - 

13 70.2 68.9  70.3 67.3 - 
23 64.9 72.3  72.9 68.9 71.1 
38 60.8 69.9  71.6 68.0 71.6 
50 - 68.5  69.9 68.5 70.4 
60 - 66.3  68.5 68.6 69.7 
80 - 64.2  65.9 68.0 68.1 

100 - 61.3  70.1 67.5 66.4 
Table 3: Performance in F1-score over different cluster 
numbers with intra-stratum sampling on the develop-
ment data 

2) Golden clustering achieves the best performance 
of 73.9 in F1-score when the cluster number is 
set to 7, significantly higher than the perform-
ance using other cluster numbers. Interestingly, 
this number coincides with the number of major 
relation types needed to be classified in our task. 
This is reasonable since the instances with the 
same relation type should be much more similar 
than those with different relation types and it is 
easy to discriminate the seed set of one relation 
type from that of other relation types. 

3) Among the four clustering algorithms, HAC 
achieves best performance over most of cluster 
numbers. This further verifies the aforemen-
tioned analysis. That is, as a hierarchical clus-
tering algorithm, HAC can sample seeds that 
better capture the distribution of the training 
data. 

4) For KM, the best performance is achieved 
around the number of 23 while for both HAC 
and SC, the optimal cluster number is consis-
tent with GOLD clustering, namely, 7. For AP, 
the optimal cluster number for AP is 38. This is 
largely due to that we fail to cluster the training 
data into about 7 and 13 groups no matter how 
we vary the preference parameter.  

 
Final comparison of different clustering algo-
rithms on the held-out test data  

After the optimal cluster numbers are determined 
for each clustering algorithm, we apply these num-
bers on the held-out test data and report the per-
formance results (P/R/F1 and their respective 
improvements) in Table 4. For easy reference, we 
also include the performance for GOLD, RAND, 
and SEQ sampling strategies.  
 

Sampling 
strategies P(ΔP) R(ΔR) F1(ΔF1) 

GOLD 79.5(7.8) 72.7(2.1) 76.0(4.8) 
RAND* 71.9(3.7) 69.7(0.1) 70.8(1.8) 
SEQ* 71.9(2.6) 65.2(0.1) 69.3(1.3) 
KM* 73.6(2.1) 72.3(0.3) 72.9(1.2) 
HAC 79.0(10.2) 73.0(1.1) 75.9(5.6) 
SC* 72.3(2.1) 72.1(0.4) 72.2(1.2) 
AP 75.7(2.5) 72.0(0.4) 73.7(1.4)
Table 4: Performance of various clustering-based seed 
sampling strategies on the held-out test data with the 
optimal cluster number for each clustering algorithm 

 
Table 4 shows that 

1) Among all the clustering algorithms, HAC 
achieves the best F1-score of 75.9, significantly 
higher than RAND and SEQ by 5.1 and 6.6 re-
spectively. The improvement comes not only 
from significant precision boost, but also from 
moderate recall increase. This further justifies 
the merits of HAC as a clustering algorithm for 
stratified seed sampling in semi-supervised re-
lation classification.  

2) HAC approaches the best F1-score of 76.0 for 
golden clustering. Obviously, this doesn’t mean 
HAC performs as well as golden clustering in 
terms of clustering quality measures, rather it 
does imply that HAC achieves the performance 
improvement by making the seed set better rep-
resent the overall distribution over inherent 
structure of relation instances, while golden 
clustering accomplishes this using the distribu-
tion over relation types. Since the distribution 
over relation types doesn’t always conform to 
that over instance structures, and for a statistical 
discriminative classifier, often the latter is more 
important than the former, it will be no surprise 
if HAC outperforms golden clustering in some 
real applications, e.g. clustering-based stratified 
sampling. 

6 Conclusion and Future Work 

This paper presents a stratified seed sampling 
strategy based on clustering algorithms for semi-
supervised learning. Our strategy does not rely on 
any stratification variable to divide the training 
instances into a number of strata. Instead, the strata 
are formed via clustering, given a metric measur-
ing the similarity between any two instances. Fur-
ther, diversity-motivated intra-strata sampling is 
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employed to sample additional instances from 
within each stratum besides its center. We compare 
the effect of various clustering algorithms on the 
performance of semi-supervised learning and find 
that HAC achieves the best performance since the 
distribution of its seed set better approximates that 
of the whole training data. Extensive evaluation on 
the ACE RDC 2004 benchmark corpus shows that 
our clustering-based stratified seed sampling strat-
egy significantly improves the performance of 
semi-supervised relation classification. 

We believe that our clustering-based stratified 
seed sampling strategy can not only be applied to 
other semi-supervised learning tasks, but also can 
be incorporated into active learning, where the in-
stances to be labeled at each iteration as well as the 
seed set could be selected using clustering tech-
niques, thus further reducing the amount of in-
stances needed to be annotated.  

For the future work, it is possible to adapt our 
one-level clustering-based sampling to the multi-
level one, where for every stratum it is still possi-
ble to divide it into lower sub-strata for further 
stratified sampling in order to make the seeds bet-
ter represent the true distribution of the data. 
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Abstract

Multi-category bootstrapping algorithms were
developed to reduce semantic drift. By ex-
tracting multiple semantic lexicons simultane-
ously, a category’s search space may be re-
stricted. The best results have been achieved
through reliance on manually crafted negative
categories. Unfortunately, identifying these
categories is non-trivial, and their use shifts
the unsupervised bootstrapping paradigm to-
wards a supervised framework.

We present NEG-FINDER, the first approach
for discovering negative categories automat-
ically. NEG-FINDER exploits unsupervised
term clustering to generate multiple nega-
tive categories during bootstrapping. Our al-
gorithm effectively removes the necessity of
manual intervention and formulation of nega-
tive categories, with performance closely ap-
proaching that obtained using negative cate-
gories defined by a domain expert.

1 Introduction

Automatically acquiring semantic lexicons from text
is essential for overcoming the knowledge bottle-
neck in many NLP tasks, e.g. question answer-
ing (Ravichandran and Hovy, 2002). Many of the
successful methods follow the unsupervised itera-
tive bootstrapping framework (Riloff and Shepherd,
1997). Bootstrapping has since been effectively ap-
plied to extracting general semantic lexicons (Riloff
and Jones, 1999), biomedical entities (Yu and
Agichtein, 2003) and facts (Carlson et al., 2010).

Bootstrapping is often considered to be minimally
supervised, as it is initialised with a small set of seed

terms of the target category to extract. These seeds
are used to identify patterns that can match the tar-
get category, which in turn can extract new lexicon
terms (Riloff and Jones, 1999). Unfortunately, se-
mantic drift often occurs when ambiguous or erro-
neous terms and/or patterns are introduced into the
iterative process (Curran et al., 2007).

In multi-category bootstrapping, semantic drift is
often reduced when the target categories compete
with each other for terms and/or patterns (Yangarber
et al., 2002). This process is most effective when
the categories bound each other’s search space. To
ensure this, manually crafted negative categories are
introduced (Lin et al., 2003; Curran et al., 2007).
Unfortunately, this makes these algorithms substan-
tially more supervised.

The design of negative categories is a very time
consuming task. It typically requires a domain ex-
pert to identify the semantic drift and its cause, fol-
lowed by a significant amount of trial and error in or-
der to select the most suitable combination of nega-
tive categories. This introduces a substantial amount
of supervised information into what was an unsuper-
vised framework, and in turn negates one of the main
advantages of bootstrapping — the quick construc-
tion of accurate semantic lexicons.

We show that although excellent performance is
achieved using negative categories, it varies greatly
depending on the negative categories selected. This
highlights the difficulty of crafting negative cate-
gories and thus the necessity for tools that can au-
tomatically identify them.

Our second contribution is the first fully unsu-
pervised approach, NEG-FINDER, for discovering

356



negative categories automatically. During boot-
strapping, efficient clustering techniques are applied
to sets of drifted candidate terms to generate new
negative categories. Once a negative category is
identified it is incorporated into the subsequent it-
erations whereby it provides the necessary semantic
boundaries for the target categories.

We demonstrate the effectiveness of our ap-
proach for extracting biomedical semantic lexicons
by incorporating NEG-FINDER within the WMEB-
DRIFT bootstrapping algorithm (McIntosh and Cur-
ran, 2009). NEG-FINDER significantly outperforms
bootstrapping prior to the domain expert’s negative
categories. We show that by using our discovered
categories we can reach near expert-guided perfor-
mance. Our methods effectively remove the neces-
sity of manual intervention and formulation of neg-
ative categories in semantic lexicon bootstrapping.

2 Background

Various automated pattern-based bootstrapping al-
gorithms have been proposed to iteratively build se-
mantic lexicons. In multi-level bootstrapping, a lex-
icon is iteratively expanded from a small sample of
seed terms (Riloff and Jones, 1999). The seed terms
are used to identify contextual patterns they appear
in, which in turn may be used to extract new lexi-
con entries. This process is repeated with the new
expanded lexicon identifying new patterns.

When bootstrapping semantic lexicons, polyse-
mous or erroneous terms and/or patterns that weakly
constrain the semantic class are eventually extracted.
This often causes semantic drift — when a lexicon’s
intended meaning shifts into another category dur-
ing bootstrapping (Curran et al., 2007). For exam-
ple, female names may drift into gemstones when
the terms Ruby and Pearl are extracted.

Multi-category bootstrapping algorithms, such as
BASILISK (Thelen and Riloff, 2002), NOMEN (Yan-
garber et al., 2002), and WMEB (McIntosh and
Curran, 2008), aim to reduce semantic drift by
extracting multiple semantic categories simultane-
ously. These algorithms utilise information about
other semantic categories in order to reduce the cate-
gories from drifting towards each other. This frame-
work has recently been extended to extract different
relations from text (Carlson et al., 2010).

2.1 Weighted MEB

In Weighted Mutual Exclusion Bootstrapping
(WMEB, McIntosh and Curran, 2008), multiple se-
mantic categories iterate simultaneously between
the term and pattern extraction phases, competing
with each other for terms and patterns. Semantic
drift is reduced by forcing the categories to be mu-
tually exclusive. That is, candidate terms can only
be extracted by a single category and patterns can
only extract terms for a single category.

In WMEB, multiple bootstrapping instances are
initiated for each competing target category. Each
category’s seed set forms its initial lexicon. For
each term in the category lexicon, WMEB identifies
all candidate contextual patterns that can match the
term in the text. To ensure mutual exclusion between
the categories, candidate patterns that are identified
by multiple categories in an iteration are excluded.
The remaining patterns are then ranked according to
the reliability measure and relevance weight.

The reliability of a pattern for a given category
is the number of extracted terms in the category’s
lexicon that match the pattern. A pattern’s relevance
weight is defined as the sum of the χ-squared values
between the pattern (p) and each of the lexicon terms
(t): weight(p) =

∑
t∈T χ

2(p, t). These metrics are
symmetrical for both candidate terms and patterns.

The top-m patterns are then added to the pool of
extracting patterns. If each of the top-m patterns al-
ready exists in the pool, the next unseen pattern is
added to the pool. This ensures at least one new pat-
tern is added to the pool in each iteration.

In the term selection phase, all patterns within the
pattern pool are used to identify candidate terms.
Like the candidate patterns, terms that are extracted
by multiple categories in the same iteration are also
excluded. The remaining candidate terms are ranked
with respect to their reliability and relevance weight,
and the top-n terms are added to the lexicon.

2.2 Detecting semantic drift in WMEB

In McIntosh and Curran (2009), we showed that
multi-category bootstrappers are still prone to se-
mantic drift in the later iterations. We proposed a
drift detection metric based on our hypothesis that
semantic drift occurs when a candidate term is more
similar to the recently added terms than to the seed
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and high precision terms extracted in the earlier
iterations. Our metric is based on distributional sim-
ilarity measurements and can be directly incorpo-
rated into WMEB’s term selection phase to prevent
drifting terms from being extracted (WMEB-DRIFT).

The drift metric is defined as the ratio of the aver-
age distributional similarity of the candidate term to
the first n terms extracted into the lexicon L, and to
the last m terms extracted in the previous iterations:

drift(term, n,m) =
avgsim(L1...n, term)

avgsim(L(N−m+1)...N , term)
(1)

2.3 Negative categories
In multi-category bootstrapping, improvements in
precision arise when semantic boundaries between
multiple target categories are established. Thus, it is
beneficial to bootstrap categories that share similar
semantic spaces, such as female names and flowers.

Unfortunately, it is difficult to predict if a tar-
get category will suffer from semantic drift and/or
whether it will naturally compete with the other tar-
get categories. Once a domain expert establishes
semantic drift and its possible cause, a set of neg-
ative/stop categories that may be of no direct inter-
est are manually crafted to prevent semantic drift.
These additional categories are then exploited dur-
ing another round of bootstrapping to provide fur-
ther competition for the target categories (Lin et al.,
2003; Curran et al., 2007).

Lin et al. (2003) improved NOMEN’s perfor-
mance for extracting diseases and locations from
the ProMED corpus by incorporating negative cat-
egories into the bootstrapping process. They first
used one general negative category, seeded with the
10 most frequent nouns in the corpus that were un-
related to the target categories. This single nega-
tive category resulted in substantial improvements in
precision. In their final experiment, six negative cat-
egories that were notable sources of semantic drift
were identified, and the inclusion of these lead to
further performance improvements (∼20%).

In similar experiments, both Curran et al. (2007)
and McIntosh (2010) manually crafted negative
categories that were necessary to prevent semantic
drift. In particular, in McIntosh (2010), a biomedical
expert spent considerable time (∼15 days) and effort

Initial Lexicon

Drift Cache

Clustered Terms Negative Lexicon

Figure 1: NEG-FINDER: Local negative discovery

identifying potential negative categories and subse-
quently optimising their associated seeds in trial and
error bootstrapping runs.

By introducing manually crafted negative cate-
gories, a significant amount of expert domain knowl-
edge is introduced. The use of this expert knowl-
edge undermines the principle advantages of un-
supervised bootstrapping, by making it difficult to
bootstrap lexicons for a large number of categories
across diverse domains or languages. In this pa-
per, we aim to push multi-category bootstrapping
back into its original minimally-supervised frame-
work, with as little performance loss as possible.

3 NEG-FINDER

Our approach, Negative Category Finder for Boot-
strapping (NEG-FINDER), can be easily incorporated
into bootstrapping algorithms that exclude candidate
terms or facts based on a selection criteria, includ-
ing WMEB-DRIFT and Paşca et al.’s (2006) large-
scale fact extraction system. For simplicity, we de-
scribe our approach within the WMEB-DRIFT boot-
strapping algorithm. Figure 1 shows the framework
of our approach.

To discover negative categories during bootstrap-
ping, NEG-FINDER must identify a representative
cluster of the drifted terms. In this section, we
present the two types of clustering used (maximum
and outlier), and our three different levels of nega-
tive discovery (local, global and mixture).

3.1 Discovering negative categories

We have observed that semantic drift begins to dom-
inate when clusters of incorrect terms with similar
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meanings are extracted. In the term selection phase
of WMEB-DRIFT, the top-n candidate terms that sat-
isfy the drift detection threshold are added to the ex-
panding lexicon. Those terms which are considered
but do not meet the threshold are excluded.

In NEG-FINDER, these drifted terms are cached as
they may provide adequate seed terms for new neg-
ative categories. However, the drifted terms can also
include scattered polysemous or correct terms that
share little similarity with the other drifted terms.
Therefore, simply using the first set of drifted terms
to establish a negative category is likely to introduce
noise rather than a cohesive competing category.

To discover negative categories, we exploit hi-
erarchical clustering to group similar terms within
the cache of drifted terms. In agglomerative hi-
erarchical clustering, a single term is assigned to
an individual cluster, and these clusters are itera-
tively merged until a final cluster is formed contain-
ing all terms (Kaufmann and Rousseeuw, 1990). In
our approach, the similarity between two clusters is
computed as the average distributional similarity be-
tween all pairs of terms across the clusters (average-
link clustering).

For calculating the similarity between two terms
we use the distributional similarity approach de-
scribed in Curran (2004). We extracted window-
based features from the set of candidate patterns to
form context vectors for each term. We use the
standard t-test weight and weighted Jaccard measure
functions (Curran, 2004).

To ensure adequate coverage of the possible drift-
ing topics, negative discovery and hence clustering
is only performed when the drift cache consists of at
least 20 terms.

3.2 Maximum and outlier clustering
Although hierarchical clustering is quadratic, we can
efficiently exploit the agglomerative process as the
most similar terms will merge into clusters first.
Therefore, to identify the k most similar terms, we
can exit the clustering process as soon as a cluster
of size k is established. We refer to this approach as
maximum clustering.

In our next clustering method, we aim to form a
negative category with as little similarity to the tar-
get seeds. We use an outlier clustering strategy, in
which the drifted term t with the least average distri-

butional similarity to the first n terms in the lexicon
must be contained in the cluster of seeds. We use
average similarity to the first n terms, as it is already
pre-computed for the drift detection metric. As with
maximum clustering, once a cluster of size k con-
taining the term t is formed, the clustering process
can be terminated.

3.3 Incorporating the negative category

After a cluster of negative seed terms is established,
the drift cache is cleared, and a new negative cate-
gory is created and introduced into the iterative boot-
strapping process in the next iteration. This means
that the negative category can only influence the
subsequent iterations of bootstrapping. The nega-
tive categories can compete with all other categories,
including any previously introduced negative cate-
gories, however the negative categories do not con-
tribute to the drift caches.

Before the new category is introduced, its first
set of extracting patterns must be identified. For
this, the complete set of extracting patterns match-
ing any of the negative seeds are considered and
ranked with respect to the seeds. The top scoring
patterns are considered sequentially until m patterns
are assigned to the new negative category. To ensure
mutual exclusion between the new category and the
target categories, a candidate pattern that has previ-
ously been selected by a target category cannot be
used to extract terms for either category in the sub-
sequent iterations.

3.4 Levels of negative discovery

Negative category discovery can be performed at a
local or global level, or as a mixture of both. In local
discovery, each target category has its own drifted
term cache and can generate negative categories ir-
respective of the other target categories. This is
shown in Figure 1. The drifted terms (shaded) are
extracted away from the lexicon into the local drift
cache, which is then clustered. A cluster is then used
to initiate a negative category’s lexicon. Target cate-
gories can also generate multiple negative categories
across different iterations.

In global discovery, all drifted terms are pooled
into a global cache, from which a single negative
category can be identified in an iteration. This is
based on our intuition that multiple target categories
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TYPE MEDLINE

No. Terms 1 347 002
No. Patterns 4 090 412
No. 5-grams 72 796 760
No. Unfiltered tokens 6 642 802 776

Table 1: Filtered 5-gram dataset statistics.

may be drifting into similar semantic categories, and
enables these otherwise missed negative categories
to be established.

In the mixture discovery method, both global and
local negative categories can be formed. A cate-
gory’s drifted terms are collected into its local cache
as well as the global cache. Negative discovery is
then performed on each cache when they contain at
least 20 terms. Once a local negative category is
formed, the terms within the local cache are cleared
and also removed from the global cache. This pre-
vents multiple negative categories being instantiated
with overlapping seed terms.

4 Experimental setup

To compare the effectiveness of our negative discov-
ery approaches we consider the task of extracting
biomedical semantic lexicons from raw text.

4.1 Data

The algorithms take as input a set of candidate terms
to be extracted into semantic lexicons. The source
text collection consists of 5-grams (t1, t2, t3, t4, t5)
from approximately 16 million MEDLINE abstracts.1

The set of possible candidate terms correspond to
the middle tokens (t3), and the possible patterns are
formed from the surrounding tokens (t1, t2, t4, t5).
We do not use syntactic knowledge, as we did not
wish to rely on any tools that require supervised
training, to ensure our technique is as domain and
language independent as possible.

Limited preprocessing was required to extract the
5-grams from MEDLINE. The XML markup was
removed, and the collection was tokenised and split
into sentences using bio-specific NLP tools (Grover
et al., 2006). Filtering was applied to remove infre-
quent patterns and terms – patterns appearing with
less than 7 different terms, and terms only appearing

1The set contains all MEDLINE titles and abstracts available
up to Oct 2007.

CAT DESCRIPTION

ANTI Antibodies: MAb IgG IgM rituximab infliximab
(κ1:0.89, κ2:1.0)

CELL Cells: RBC HUVEC BAEC VSMC SMC (κ1:0.91,
κ2:1.0)

CLNE Cell lines: PC12 CHO HeLa Jurkat COS (κ1:0.93,
κ2: 1.0)

DISE Diseases: asthma hepatitis tuberculosis HIV malaria
(κ1:0.98, κ2:1.0)

DRUG Drugs: acetylcholine carbachol heparin penicillin
tetracyclin (κ1:0.86, κ2:0.99)

FUNC Molecular functions and processes: kinase ligase
acetyltransferase helicase binding (κ1:0.87, κ2:0.99)

MUTN Protein and gene mutations: Leiden C677T C282Y
35delG null (κ1:0.89, κ2:1.0)

PROT Proteins and genes: p53 actin collagen albumin IL-6
(κ1:0.99, κ2:1.0)

SIGN Signs and symptoms: anemia fever hypertension
hyperglycemia cough (κ1:0.96, κ2:0.99)

TUMR Tumors: lymphoma sarcoma melanoma osteosarcoma
neuroblastoma (κ1:0.89, κ2:0.95)

Table 2: The MEDLINE semantic categories

with those patterns were removed. The statistics of
the resulting dataset are shown in Table 1.

4.2 Semantic categories

The semantic categories we extract from MEDLINE

were inspired by the TREC Genomics entities (Hersh
et al., 2007) and are described in detail in McIntosh
(2010). The hand-picked seeds selected by a domain
expert for each category are shown in italics in Table
2. These were carefully chosen to be as unambigu-
ous as possible with respect to the other categories.

4.3 Negative categories

In our experiments, we use two different sets of neg-
ative categories. These are shown in Table 3. The
first set corresponds to those used in McIntosh and
Curran (2008), and were identified by a domain ex-
pert as common sources of semantic drift in prelimi-
nary experiments with MEB and WMEB. The AMINO

ACID category was created in order to filter common
MUTN errors. The ANIMAL and BODY PART cate-
gories were formed with the intention of preventing
drift in the CELL, DISE and SIGN categories. The
ORGANISM category was then created to reduce the
new drift forming in the DISE category after the first
set of negative categories were introduced.

The second set of negative categories was identi-
fied by an independent domain expert with limited
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CATEGORY SEED TERMS

1 AMINO ACID arginine cysteine glycine glutamate histamine
ANIMAL insect mammal mice mouse rats
BODY PART breast eye liver muscle spleen
ORGANISM Bartonella Borrelia Cryptosporidium

Salmonella toxoplasma
2 AMINO ACID Asn Gly His Leu Valine

ANIMAL animals dogs larvae rabbits rodents
ORGANISM Canidia Shigella Scedosporium Salmonella

Yersinia
GENERIC decrease effects events increase response
MODIFIERS acute deep intrauterine postoperative

secondary
PEOPLE children females men subjects women
SAMPLE biopsies CFU sample specimens tissues

Table 3: Manually crafted negative categories

knowledge of NLP and bootstrapping. This expert
identified three similar categories to the first expert,
however their seeds are very different. They also
identified three more categories than the first.

4.4 Lexicon evaluation

Our evaluation process follows that of McIntosh
and Curran (2009) and involved manually inspect-
ing each extracted term and judging whether it was
a member of the semantic class. This manual eval-
uation was performed by two domain experts and is
necessary due to the limited coverage of biomedical
resources. Inter-annotator agreement scores are pro-
vided in Table 2.2 To make later evaluations more
efficient, all evaluators’ decisions for each category
are cached.

Unfamiliar terms were checked using online re-
sources including MEDLINE, MeSH, and Wikipedia.
Each ambiguous term was counted as correct if it
was classified into one of its correct categories, such
as lymphoma, which is a TUMR and DISE. If a term
was unambiguously part of a multi-word term we
considered it correct. Abbreviations, acronyms, and
obvious misspelled words were included.

For comparing the performance of the algorithms,
the average precision for the top-1000 terms over the
10 target categories is measured. To identify when
semantic drift has a significant impact, we report the
precision of specific sections of the lexicon, e.g. the
801-1000 sample corresponds to the last 200 terms.

2All disagreements were discussed, and the kappa scores κ1

and κ2 are those before and after the discussions, respectively.

1-500 1-1000
WMEB-DRIFT 74.3 68.6
+negative 1 87.7 82.8
+negative 2 83.8 77.8

Table 4: Influence of negative categories

4.5 System settings

All experiments were performed using the 10 tar-
get categories as input. Unless otherwise stated, no
hand-picked negative categories are used.

Each target category is initialised with the 5 hand-
picked seed terms (Table 2). In each iteration a max-
imum of 5 lexicon terms and 5 new patterns can
be extracted by a category. The bootstrapping al-
gorithms are run for 200 iterations.

The drift detection metric is calculated over the
first 100 terms and previous 5 terms extracted into
the lexicon, and the filter threshold is set to 0.2, as
in McIntosh and Curran (2009). To ensure infre-
quent terms are not used to seed negative categories,
drifted terms must occur at least 50 times to be re-
tained in the drift cache. Negative category discov-
ery is only initiated when the drifted cache contains
at least 20 terms, and a minimum of 5 terms are used
to seed a negative category.

4.6 Random seed experiments

Both McIntosh and Curran (2009) and Pantel et
al. (2009) have shown that a bootstrapper’s per-
formance can vary greatly depending on the input
seeds. To ensure our methods are compared reliably,
we also report the average precision of randomised
seed experiments. Each algorithm is instantiated 10
times with different random gold seeds for each tar-
get category. These gold seeds are randomly sam-
pled from the evaluation cache formed in McIntosh
and Curran (2009).

5 Results

5.1 Influence of negative categories

In our first experiments, we investigate the per-
formance variations and improvements gained us-
ing negative categories selected by two indepen-
dent domain experts. Table 4 shows WMEB-DRIFT’s
average precision over the 10 target categories with
and without the two negative category sets. Both
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1-200 201-400 401-600 601-800 801-1000 1-1000
WMEB-DRIFT 79.5 74.8 64.7 61.9 62.1 68.6
NEG-FINDER
First discovered 79.5 74.3 64.8 67.8 66.6 70.7
Local discovery

+maximum 79.5 74.8 67.3 69.3 70.5 72.2
+outlier 79.5 73.9 64.8 67.8 71.0 71.5

Global discovery
+maximum 79.5 73.9 65.7 73.2 72.7 73.4
+outlier 79.5 74.7 65.6 71.4 68.2 72.1

Mixture discovery
+maximum 79.5 74.7 69.3 73.3 72.8 74.0
+outlier 79.5 75.2 69.7 72.0 69.4 73.2

Table 5: Performance comparison of WMEB-DRIFT and NEG-FINDER

sets significantly improve WMEB-DRIFT, however
there is a significant performance difference be-
tween them. This demonstrates the difficulty of se-
lecting appropriate negative categories and seeds for
the task, and in turn the necessity for tools to dis-
cover them automatically.

5.2 Negative category discovery

Table 5 compares the performance of NEG-FINDER

incorporated with WMEB-DRIFT. Each method has
equal average precision over the first 200 terms, as
semantic drift does not typically occur in the early
iterations. Each discovery method significantly out-
performs WMEB-DRIFT in the later stages, and over
the top 1000 terms.3

The first discovery approach corresponds to the
naı̈ve NEG-FINDER system that generates local neg-
ative categories from the first five drifted terms. Al-
though it outperforms WMEB-DRIFT, its advantage
is smaller than the clustering methods.

The outlier clustering approach, which we pre-
dicted to be the most effective, was surprisingly less
accurate than the maximum approach for selecting
negative seeds. This is because the seed cluster
formed around the outlier term is not guaranteed to
have high pair-wise similarity and thus it may repre-
sent multiple semantic categories.

Local discovery was the least effective discov-
ery approach. Compared to local discovery, global
discovery is capable of detecting new negative cate-
gories earlier, and the categories it detects are more

3Statistical significance was tested using computationally-
intensive randomisation tests (Cohen, 1995).

CATEGORY NEGATIVE SEEDS

CELL-NEG animals After Lambs Pigs Rabbits
TUMR-NEG inoperable multinodular nonresectable

operated unruptured
GLOBAL days Hz mM post Torr
GLOBAL aortas eyes legs mucosa retinas
GLOBAL men offspring parents persons relatives
GLOBAL Australian Belgian Dutch European Italian
GLOBAL Amblyospora Branhamella Phormodium

Pseudanabaena Rhodotorula

Table 6: Negative categories from mixture discovery

likely to compete with multiple target categories.
The NEG-FINDER mixture approach, which ben-

efits from both local and global discovery, identi-
fies the most useful negative categories. Table 6
shows the seven discovered categories — two lo-
cal negative categories from CELL and TUMOUR,
and five global categories were formed. Many of
these categories are similar to those identified by
the domain experts. For example, clear categories
for ANIMAL, BODY PART, PEOPLE and ORGANISM

are created. By identifying and then including these
negative categories, NEG-FINDER significantly out-
performs WMEB-DRIFT by 5.4% over the top-1000
terms and by 10.7% over the last 200 terms, where
semantic drift is prominent. These results demon-
strate that suitable negative categories can be identi-
fied and exploited during bootstrapping.

5.3 Boosting hand-picked negative categories

In our next set of experiments, we investigate
whether NEG-FINDER can improve state-of-the-
art performance by identifying new negative cate-
gories in addition to the manually selected negative
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1-200 201-400 401-600 601-800 801-1000 1-1000
WMEB-DRIFT
+negative 1 90.5 87.3 82.0 74.6 79.8 82.8
+negative 2 87.8 82.2 78.7 76.1 63.3 77.8

WMEB-DRIFT
+restart +local 85.5 82.6 76.5 75.7 68.5 78.4
+restart +global 84.0 83.8 79.1 74.8 69.5 79.7
+restart +mixture 85.2 85.0 82.3 72.5 72.7 81.4

Table 7: Performance of WMEB-DRIFT using negative categories discovered by NEG-FINDER

601-800 801-1000 1-1000
WMEB-DRIFT
+negative 1 74.6 79.8 82.8

NEG-FINDER
+negative 1 +local 76.4 80.1 83.2
+negative 1 +global 77.5 76.0 82.7
+negative 1 +mixture 76.7 79.9 83.2

Table 8: Performance of NEG-FINDER with manually
crafted negative categories

categories. Both NEG-FINDER and WMEB-DRIFT

are initialised with the 10 target categories and the
first set of negative categories.

Table 8 compares our best performing systems
(NEG-FINDER maximum clustering) with standard
WMEB-DRIFT, over the last 400 terms where seman-
tic drift dominates. NEG-FINDER effectively dis-
covers additional categories and significantly out-
performs WMEB-DRIFT. This further demonstrates
the utility of our approach.

5.4 Restarting with new negative categories

The performance improvements so far using NEG-
FINDER have been limited by the time at which new
negative categories are discovered and incorporated
into the bootstrapping process. That is, system im-
provements can only be gained from the negative
categories after they are generated. For example,
in Local NEG-FINDER, five negative categories are
discovered in iterations 83, 85, 126, 130 and 150.
On the other hand, in the WMEB-DRIFT +negative
experiments (Table 8 row 2), the hand-picked neg-
ative categories can start competing with the target
categories in the very first iteration of bootstrapping.

To test the full utility of NEG-FINDER, we use the
set of discovered categories as competing input for
WMEB-DRIFT. Table 7 shows the average precision
of WMEB-DRIFT over the 10 target categories when

it is restarted with the new negative categories dis-
covered from our three approaches (using maximum
clustering). Over the first 200 terms, significant im-
provements are gained using the new negative cate-
gories (+6%). However, the manually selected cat-
egories are far superior in preventing drift (+11%).
This may be attributed by the target categories not
strongly drifting into the new negative categories un-
til the later stages, whereas the hand-picked cate-
gories were selected on the basis of observed drift
in the early stages (over the first 500 terms).

Each NEG-FINDER approach significantly outper-
forms WMEB-DRIFT with no negative categories.
For example, using the NEG-FINDER mixture cat-
egories increases precision by 12.8%. These ap-
proaches also outperform their corresponding inline
discovery methods (e.g. +7.4% with mixture discov-
ery – Table 5).

Table 7 shows that each of the discovered neg-
ative sets can significantly outperform the negative
categories selected by a domain expert (negative set
2) (+0.6 – 3.9%). Our best system’s performance
(mixture: 81.4%) closely approaches that of the su-
perior negative set, trailing by only 1.4%.

5.5 Individual categories
In this section, we analyse the effect of NEG-FINDER

on the individual target categories. Table 9 shows
the average precision of the lexicons for some tar-
get categories. All categories, except TUMOUR, im-
prove significantly with the inclusion of the discov-
ered negative categories. In particular, the CELL

and SIGN categories, which are affected severely by
semantic drift, increase by up to 33.3% and 45.2%,
respectively. The discovered negative categories
are more effective than the manually crafted sets in
reducing semantic drift in the ANTIBODY, CELL and
DISEASE lexicons.
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ANTI CELL DISE SIGN TUMR

WMEB-DRIFT 92.9 47.8 49.3 27.9 39.5
+negative 1 91.6 73.1 87.8 76.5 48.7
+negative 2 85.8 68.0 84.2 71.3 16.3
NEG-FINDER
+mixture 94.9 73.9 56.0 41.0 42.2
+mixture +negative 1 90.8 77.2 87.8 78.2 48.2
WMEB-DRIFT
+restart +local 89.9 78.8 71.6 73.1 32.2
+restart +global 94.6 79.0 81.9 62.6 35.2
+restart +mixture 92.6 81.1 91.1 63.6 47.5

Table 9: Individual category results (1-1000 terms)

5.6 Random seed experiments

In Table 10, we report the results of our randomised
experiments. Over the last 200 terms, WMEB-DRIFT

with the first set of negative categories (row 2) is out-
performed by NEG-FINDER (row 4). NEG-FINDER

also significantly boosts the performance of the orig-
inal negative categories by identifying additional
negative categories (row 5). Our final experiment,
where WMEB-DRIFT is re-initialised with the nega-
tive categories discovered by NEG-FINDER, further
demonstrates the utility of our method. On average,
the discovered negative categories significantly out-
perform the manually crafted negative categories.

6 Conclusion

In this paper, we have proposed the first completely
unsupervised approach to identifying the negative
categories that are necessary for bootstrapping large
yet precise semantic lexicons. Prior to this work,
negative categories were manually crafted by a do-
main expert, undermining the advantages of an un-
supervised bootstrapping paradigm.

There are numerous avenues for further examina-
tion. We intend to use sophisticated clustering meth-
ods, such as CBC (Pantel, 2003), to identify multiple
negative categories across the target categories in a
single iteration. We would also like to explore the
suitability of NEG-FINDER for relation extraction.

Our initial analysis demonstrated that although
excellent performance is achieved using negative
categories, large performance variations occur when
using categories crafted by different domain experts.

In NEG-FINDER, unsupervised clustering ap-
proaches are exploited to automatically discover

401-600 801-1000
WMEB-DRIFT 66.9 58.5
+negative 1 73.1 61.7
NEG-FINDER
+mixture 71.9 64.2
+mixture +negative 1 76.1 66.7
WMEB-DRIFT
+restart +mixture 78.0 70.8

Table 10: Random seed results

negative categories during bootstrapping. NEG-
FINDER identifies cohesive negative categories and
many of these are semantically similar to those iden-
tified by domain experts.

NEG-FINDER significantly outperforms the state-
of-the-art algorithm WMEB-DRIFT, before negative
categories are crafted, by up to 5.4% over the top-
1000 terms; and by 10.7% over the last 200 terms ex-
tracted, where semantic drift is extensive. The new
discovered categories can also be fully exploited in
bootstrapping, where they successfully outperform
a domain expert’s negative categories and approach
that of another expert.

The result is an effective approach that can be in-
corporated within any bootstrapper. NEG-FINDER

successfully removes the necessity of including
manually crafted supervised knowledge to boost a
bootstrapper’s performance. In doing so, we revert
the multi-category bootstrapping framework back to
its originally intended minimally supervised frame-
work, with little performance trade-off.
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Abstract

Existing graph-based ranking methods for
keyphrase extraction compute asingle impor-
tance score for each word via asingle ran-
dom walk. Motivated by the fact that both
documents and words can be represented by
a mixture of semantic topics, we propose to
decompose traditional random walk into mul-
tiple random walks specific to various topics.
We thus build a Topical PageRank (TPR) on
word graph to measure word importance with
respect to different topics. After that, given
the topic distribution of the document, we fur-
ther calculate the ranking scores of words and
extract the top ranked ones as keyphrases. Ex-
perimental results show that TPR outperforms
state-of-the-art keyphrase extraction methods
on two datasets under various evaluation met-
rics.

1 Introduction

Keyphrases are defined as a set of terms in a doc-
ument that give a brief summary of its content for
readers. Automatic keyphrase extraction is widely
used in information retrieval and digital library (Tur-
ney, 2000; Nguyen and Kan, 2007). Keyphrase ex-
traction is also an essential step in various tasks of
natural language processing such as document cate-
gorization, clustering and summarization (Manning
and Schutze, 2000).

There are two principled approaches to extracting
keyphrases: supervised and unsupervised. The su-
pervised approach (Turney, 1999) regards keyphrase
extraction as a classification task, in which a model
is trained to determine whether a candidate phrase
is a keyphrase. Supervised methods require a doc-

ument set with human-assigned keyphrases as train-
ing set. In Web era, articles increase exponentially
and change dynamically, which demands keyphrase
extraction to be efficient and adaptable. However,
since human labeling is time consuming, it is im-
practical to label training set from time to time.
We thus focus on the unsupervised approach in this
study.

In the unsupervised approach, graph-based rank-
ing methods are state-of-the-art (Mihalcea and Ta-
rau, 2004). These methods first build a word graph
according to word co-occurrences within the docu-
ment, and then use random walk techniques (e.g.,
PageRank) to measure word importance. After that,
top ranked words are selected as keyphrases.

Existing graph-based methods maintain asingle
importance score for each word. However, a docu-
ment (e.g., news article or research article) is usu-
ally composed of multiple semantic topics. Taking
this paper for example, it refers to two major top-
ics, “keyphrase extraction” and “random walk”. As
words are used to express various meanings corre-
sponding to different semantic topics, a word will
play different importance roles in different topics
of the document. For example, the words “phrase”
and “extraction” will be ranked to be more impor-
tant in topic “keyphrase extraction”, while the words
“graph” and “PageRank” will be more important in
topic “random walk”. Since they do not take topics
into account, graph-based methods may suffer from
the following two problems:

1. Good keyphrases should be relevant to the ma-
jor topics of the given document. In graph-
based methods, the words that are strongly con-
nected with other words tend to be ranked high,
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which do not necessarily guarantee they are rel-
evant to major topics of the document.

2. An appropriate set of keyphrases should also
have a good coverage of the document’s ma-
jor topics. In graph-based methods, the ex-
tracted keyphrases may fall into a single topic
of the document and fail to cover other substan-
tial topics of the document.

To address the problem, it is intuitive to consider
the topics of words and document in random walk
for keyphrase extraction. In this paper, we pro-
pose to decompose traditional PageRank into multi-
ple PageRanks specific to various topics and obtain
the importance scores of words under different top-
ics. After that, with the help of the document topics,
we can further extract keyphrases that are relevant
to the document and at the same time have a good
coverage of the document’s major topics. We call
the topic-decomposed PageRank as Topical PageR-
ank (TPR).

In experiments we find that TPR can extract
keyphrases with high relevance and good cover-
age, which outperforms other baseline methods un-
der various evaluation metrics on two datasets. We
also investigate the performance of TPR with dif-
ferent parameter values and demonstrate its robust-
ness. Moreover, TPR is unsupervised and language-
independent, which is applicable in Web era with
enormous information.

TPR for keyphrase extraction is a two-stage pro-
cess:

1. Build a topic interpreter to acquire the topics of
words and documents.

2. Perform TPR to extract keyphrases for docu-
ments.

We will introduce the two stages in Section 2 and
Section 3.

2 Building Topic Interpreters

To run TPR on a word graph, we have to acquire
topic distributions of words. There are roughly two
approaches that can provide topics of words: (1) Use
manually annotated knowledge bases, e.g., Word-
Net (Miller et al., 1990); (2) Use unsupervised ma-
chine learning techniques to obtain word topics from

a large-scale document collection. Since the vocab-
ulary in WordNet cannot cover many words in mod-
ern news and research articles, we employ the sec-
ond approach to build topic interpreters for TPR.

In machine learning, various methods have been
proposed to infer latent topics of words and docu-
ments. These methods, known as latent topic mod-
els, derive latent topics from a large-scale document
collection according to word occurrence informa-
tion. Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) is a representative of topic models. Com-
pared to Latent Semantic Analysis (LSA) (Landauer
et al., 1998) and probabilistic LSA (pLSA) (Hof-
mann, 1999), LDA has more feasibility for inference
and can reduce the risk of over-fitting.

In LDA, each wordw of a documentd is regarded
to be generated by first sampling a topicz from d’s
topic distributionθ(d), and then sampling a word
from the distribution over wordsφ(z) that charac-
terizes topicz. In LDA, θ(d) andφ(z) are drawn
from conjugate Dirichlet priorsα andβ, separately.
Therefore,θ andφ are integrated out and the prob-
ability of word w given documentd and priors is
represented as follows:

pr(w|d, α, β) =
K∑

z=1

pr(w|z, β)pr(z|d, α), (1)

whereK is the number of topics.
Using LDA, we can obtain the topic distribution

of each wordw, namelypr(z|w) for topic z ∈ K.
The word topic distributions will be used in TPR.
Moreover, using the obtained word topic distribu-
tions, we can infer the topic distribution of a new
document (Blei et al., 2003), namelypr(z|d) for
each topicz ∈ K, which will be used for ranking
keyphrases.

3 Topical PageRank for Keyphrase
Extraction

After building a topic interpreter to acquire the
topics of words and documents, we can perform
keyphrase extraction for documents via TPR. Given
a documentd, the process of keyphrase extraction
using TPR consists of the following four steps which
is also illustrated in Fig. 1:

1. Construct a word graph ford according to word
co-occurrences withind.
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Figure 1: Topical PageRank for Keyphrase Extraction.

2. Perform TPR to calculate the importance
scores for each word with respect to different
topics.

3. Using the topic-specific importance scores of
words, rank candidate keyphrases respect to
each topic separately.

4. Given the topics of documentd, integrate the
topic-specific rankings of candidate keyphrases
into a final ranking, and the top ranked ones are
selected as keyphrases.

3.1 Constructing Word Graph

We construct a word graph according to word co-
occurrences within the given document, which ex-
presses the cohesion relationship between words
in the context of document. The document is re-
garded as a word sequence, and the link weights be-
tween words is simply set to the co-occurrence count
within a sliding window with maximumW words in
the word sequence.

It was reported in (Mihalcea and Tarau, 2004)
the graph direction does not influence the perfor-
mance of keyphrase extraction very much. In this
paper we simply construct word graphs with direc-
tions. The link directions are determined as follows.
When sliding aW -width window, at each position,
we add links from the first word pointing to other
words within the window. Since keyphrases are usu-
ally noun phrases, we only add adjectives and nouns
in word graph.

3.2 Topical PageRank

Before introducing TPR, we first give some formal
notations. We denoteG= (V,E) as the graph of a
document, with vertex setV = {w1, w2, · · · , wN}
and link set(wi, wj) ∈ E if there is a link from
wi to wj . In a word graph, each vertex represents
a word, and each link indicates the relatedness be-
tween words. We denote the weight of link(wi, wj)
as e(wi, wj), and the out-degree of vertexwi as
O(wi)=

∑
j:wi→wj

e(wi, wj).
Topical PageRank is based on PageRank (Page et

al., 1998). PageRank is a well known ranking al-
gorithm that uses link information to assign global
importance scores to web pages. The basic idea of
PageRank is that a vertex is important if there are
other important vertices pointing to it. This can be
regarded as voting or recommendation among ver-
tices. In PageRank, the scoreR(wi) of word wi is
defined as

R(wi) = λ
∑

j:wj→wi

e(wj , wi)

O(wj)
R(wj) + (1− λ)

1

|V |
,

(2)
whereλ is adamping factor range from0 to 1, and
|V | is the number of vertices. The damping fac-
tor indicates that each vertex has a probability of
(1 − λ) to perform random jump to another vertex
within this graph. PageRank scores are obtained by
running Eq. (2) iteratively until convergence. The
second term in Eq. (2) can be regarded as a smooth-
ing factor to make the graph fulfill the property of
being aperiodic and irreducible, so as to guarantee
that PageRank converges to a unique stationary dis-
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tribution. In PageRank, the second term is set to be
the same value1|V | for all vertices within the graph,
which indicates there are equal probabilities of ran-
dom jump to all vertices.

In fact, the second term of PageRank in Eq. (2)
can be set to be non-uniformed. Suppose we as-
sign larger probabilities to some vertices, the final
PageRank scores will prefer these vertices. We call
this Biased PageRank.

The idea of Topical PageRank (TPR) is to run
Biased PageRank for each topic separately. Each
topic-specific PageRank prefers those words with
high relevance to the corresponding topic. And
the preferences are represented using random jump
probabilities of words.

Formally, in the PageRank of a specific topic
z, we will assign a topic-specific preference value
pz(w) to each wordw as its random jump proba-
bility with

∑
w∈V pz(w) = 1. The words that are

more relevant to topicz will be assigned larger prob-
abilities when performing the PageRank. For topic
z, the topic-specific PageRank scores are defined as
follows:

Rz(wi) = λ
∑

j:wj→wi

e(wj , wi)

O(wj)
Rz(wj)+(1−λ)pz(wi).

(3)
In Fig. 1, we show an example with two topics. In

this figure, we use the size of circles to indicate how
relevant the word is to the topic. In the PageRanks
of the two topics, high preference values will be as-
signed to different words with respect to the topic.
Finally, the words will get different PageRank val-
ues in the two PageRanks.

The setting of preference valuespz(w) will have
a great influence to TPR. In this paper we use three
measures to set preference values for TPR:

• pz(w) = pr(w|z), is the probability that word
w occurs given topicz. This indicates how
much that topicz focuses on wordw.

• pz(w) = pr(z|w), is the probability of topicz
given wordw. This indicates how much that
wordw focuses on topicz.

• pz(w) = pr(w|z) × pr(z|w), is the product of
hub and authority values. This measure is in-
spired by the work in (Cohn and Chang, 2000).

Both PageRank and TPR are all iterative algo-
rithms. We terminate the algorithms when the num-
ber of iterations reaches100 or the difference of each
vertex between two neighbor iterations is less than
0.001.

3.3 Extract Keyphrases Using Ranking Scores

After obtaining word ranking scores using TPR, we
begin to rank candidate keyphrases. As reported in
(Hulth, 2003), most manually assigned keyphrases
turn out to be noun phrases. We thus select noun
phrases from a document as candidate keyphrases
for ranking.

The candidate keyphrases of a document is ob-
tained as follows. The document is first tokenized.
After that, we annotate the document with part-
of-speech (POS) tags1. Third, we extract noun
phrases with pattern(adjective) * (noun)+ ,
which represents zero or more adjectives followed
by one or more nouns. We regard these noun phrases
as candidate keyphrases.

After identifying candidate keyphrases, we rank
them using the ranking scores obtained by TPR.
In PageRank for keyphrase extraction, the ranking
score of a candidate keyphrasep is computed by
summing up the ranking scores of all words within
the phrase:R(p)=

∑
wi∈p

R(wi) (Mihalcea and Ta-
rau, 2004; Wan and Xiao, 2008a; Wan and Xiao,
2008b). Then candidate keyphrases are ranked in
descending order of ranking scores. The topM can-
didates are selected as keyphrases.

In TPR for keyphrase extraction, we first com-
pute the ranking scores of candidate keyphrases sep-
arately for each topic. That is for each topicz we
compute

Rz(p) =
∑

wi∈p

Rz(wi). (4)

By considering the topic distribution of document,
We further integrate topic-specific rankings of can-
didate keyphrases into a final ranking and extract
top-ranked ones as the keyphrases of the document.
Denote the topic distribution of the documentd
as pr(z|d) for each topicz. For each candidate
keyphrasep, we compute its final ranking score as

1In experiments we use Stanford POS Tagger fromhttp:
//nlp.stanford.edu/software/tagger.shtml
with English tagging modelleft3words-distsim-wsj .
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follows:

R(p) =
K∑

z=1

Rz(p)× pr(z|d). (5)

After ranking candidate phrases in descending order
of their integrated ranking scores, we select the top
M as the keyphrases of documentd.

4 Experiments

4.1 Datasets

To evaluate the performance of TPR for keyphrase
extraction, we carry out experiments on two
datasets.

One dataset was built by Wan and Xiao2 which
was used in (Wan and Xiao, 2008b). This dataset
contains308 news articles in DUC2001 (Over et al.,
2001) with 2, 488 manually annotated keyphrases.
There are at most10 keyphrases for each document.
In experiments we refer to this dataset asNEWS.

The other dataset was built by Hulth3 which was
used in (Hulth, 2003). This dataset contains2, 000
abstracts of research articles and19, 254 manually
annotated keyphrases. In experiments we refer to
this dataset asRESEARCH.

Since neitherNEWSnor RESEARCHitself is
large enough to learn efficient topics, we use the
Wikipedia snapshot at March 20084 to build topic
interpreters with LDA. After removing non-article
pages and the articles shorter than100 words, we
collected2, 122, 618 articles. After tokenization,
stop word removal and word stemming, we build the
vocabulary by selecting20, 000 words according to
their document frequency. We learn LDA models by
taking each Wikipedia article as a document. In ex-
periments we learned several models with different
numbers of topics, from50 to 1, 500 respectively.
For the words absent in topic models, we simply set
the topic distribution of the word as uniform distri-
bution.

4.2 Evaluation Metrics

For evaluation, the words in both standard and ex-
tracted keyphrases are reduced to base forms using

2http://wanxiaojun1979.googlepages.com .
3It was obtained from the author.
4http://en.wikipedia.org/wiki/Wikipedia_

database .

Porter Stemmer5 for comparison. In experiments
we select three evaluation metrics.

The first metric is precision/recall/F-measure rep-
resented as follows,

p =
ccorrect

cextract
, r =

ccorrect

cstandard
, f =

2pr

p+ r
, (6)

where ccorrect is the total number of correct
keyphrases extracted by a method,cextract the to-
tal number of automatic extracted keyphrases, and
cstandard the total number of human-labeled stan-
dard keyphrases.

We note that the ranking order of extracted
keyphrases also indicates the method performance.
An extraction method will be better than another one
if it can rank correct keyphrases higher. However,
precision/recall/F-measure does not take the order
of extracted keyphrases into account. To address the
problem, we select the following two additional met-
rics.

One metric is binary preference measure
(Bpref) (Buckley and Voorhees, 2004). Bpref is
desirable to evaluate the performance considering
the order in which the extracted keyphrases are
ranked. For a document, if there areR correct
keyphrases withinM extracted keyphrases by a
method, in whichr is a correct keyphrase andn is
an incorrect keyphrase, Bpref is defined as follows,

Bpref=
1

R

∑

r∈R

1−
|n ranked higher thanr|

M
. (7)

The other metric is mean reciprocal rank
(MRR) (Voorhees, 2000) which is used to evaluate
how the first correct keyphrase for each document is
ranked. For a documentd, rankd is denoted as the
rank of the first correct keyphrase with all extracted
keyphrases, MRR is defined as follows,

MRR =
1

|D|

∑

d∈D

1

rankd
, (8)

whereD is the document set for keyphrase extrac-
tion.

Note that although the evaluation scores of most
keyphrase extractors are still lower compared to

5http://tartarus.org/ ˜ martin/
PorterStemmer .
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other NLP-tasks, it does not indicate the perfor-
mance is poor because even different annotators may
assign different keyphrases to the same document.

4.3 Influences of Parameters to TPR

There are four parameters in TPR that may influence
the performance of keyphrase extraction including:
(1) window sizeW for constructing word graph, (2)
the number of topicsK learned by LDA, (3) dif-
ferent settings of preference valuespz(w), and (4)
damping factorλ of TPR.

In this section, we look into the influences of these
parameters to TPR for keyphrase extraction. Except
the parameter under investigation, we set parameters
to the following values:W =10,K=1, 000, λ=0.3
andpz(w) = pr(z|w), which are the settings when
TPR achieves the best (or near best) performance on
bothNEWSandRESEARCH. In the following tables,
we use “Pre.”, “Rec.” and “F.” as the abbreviations
of precision, recall and F-measure.

4.3.1 Window SizeW

In experiments onNEWS, we find that the perfor-
mance of TPR is stable whenW ranges from5 to 20
as shown in Table 1. This observation is consistent
with the findings reported in (Wan and Xiao, 2008b).

Size Pre. Rec. F. Bpref MRR
5 0.280 0.345 0.309 0.213 0.636

10 0.282 0.348 0.312 0.214 0.638
15 0.282 0.347 0.311 0.214 0.646
20 0.284 0.350 0.313 0.215 0.644

Table 1: Influence of window sizeW when the num-
ber of keyphrasesM=10 onNEWS.

Similarly, whenW ranges from2 to 10, the per-
formance onRESEARCHdoes not change much.
However, the performance onNEWSwill become
poor whenW = 20. This is because the abstracts
in RESEARCH(there are121 words per abstract on
average) are much shorter than the news articles
in NEWS(there are704 words per article on av-
erage). If the window sizeW is set too large on
RESEARCH, the graph will become full-connected
and the weights of links will tend to be equal, which
cannot capture the local structure information of ab-
stracts for keyphrase extraction.

4.3.2 The Number of TopicsK

We demonstrate the influence of the number of
topicsK of LDA models in Table 2. Table 2 shows
the results whenK ranges from50 to 1, 500 and
M =10 on NEWS. We observe that the performance
does not change much as the number of topics
varies until the number is much smaller (K = 50).
The influence is similar onRESEARCHwhich indi-
cates that LDA is appropriate for obtaining topics of
words and documents for TPR to extract keyphrases.

K Pre. Rec. F. Bpref MRR
50 0.268 0.330 0.296 0.204 0.632

100 0.276 0.340 0.304 0.208 0.632
500 0.284 0.350 0.313 0.215 0.648

1000 0.282 0.348 0.312 0.214 0.638
1500 0.282 0.348 0.311 0.214 0.631

Table 2: Influence of the number of topicsK when
the number of keyphrasesM=10 onNEWS.

4.3.3 Damping Factorλ

Damping factorλ of TPR reconciles the influ-
ences of graph walks (the first term in Eq.(3)) and
preference values (the second term in Eq.(3)) to the
topic-specific PageRank scores. We demonstrate
the influence ofλ on NEWSin Fig. 2. This fig-
ure shows the precision/recall/F-measure whenλ =
0.1, 0.3, 0.5, 0.7, 0.9 and M ranges from1 to 20.
From this figure we find that, whenλ is set from0.2
to 0.7, the performance is consistently good. The
values of Bpref and MRR also keep stable with the
variations ofλ.

4.3.4 Preference Values

Finally, we explore the influences of different set-
tings of preference values for TPR in Eq.(3). In Ta-
ble 3 we show the influence when the number of
keyphrasesM = 10 on NEWS. From the table, we
observe thatpr(z|w) performs the best. The similar
observation is also got onRESEARCH.

In keyphrase extraction task, it is required to find
the keyphrases that can appropriately represent the
topics of the document. It thus does not want to ex-
tract those phrases that may appear in multiple top-
ics like common words. The measurepr(w|z) as-
signs preference values according to how frequently
that words appear in the given topic. Therefore, the
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Figure 2: Precision, recall and F-measure of TPR withλ=0.1, 0.3, 0.5, 0.7 and0.9 whenM ranges from1
to 20 onNEWS.

common words will always be assigned to a rela-
tively large value in each topic-specific PageRank
and finally obtain a high rank.pr(w|z) is thus not a
good setting of preference values in TPR. In the con-
trast,pr(z|w) prefers those words that are focused
on the given topic. Usingpr(z|w) to set preference
values for TPR, we will tend to extract topic-focused
phrases as keyphrases.

Pref Pre. Rec. F. Bpref MRR
pr(w|z) 0.256 0.316 0.283 0.192 0.584
pr(z|w) 0.282 0.348 0.312 0.214 0.638

prod 0.259 0.320 0.286 0.193 0.587

Table 3: Influence of three preference value settings
when the number of keyphrasesM=10 onNEWS.

4.4 Comparing with Baseline Methods

After we explore the influences of parameters to
TPR, we obtain the best results on bothNEWSand
RESEARCH. We further select three baseline meth-
ods, i.e., TFIDF, PageRank and LDA, to compare
with TPR.

The TFIDF computes the ranking scores of words
based on words’tfidf values in the document,
namelyR(w) = tfw × log(idfw). While in PageR-
ank (i.e., TextRank), the ranking scores of words are
obtained using Eq.(2). The two baselines do not use
topic information of either words or documents. The
LDA computes the ranking score for each word us-
ing the topical similarity between the word and the
document. Given the topics of the documentd and
a wordw, We have used various methods to com-

pute similarity including cosine similarity, predic-
tive likelihood and KL-divergence (Heinrich, 2005),
among which cosine similarity performs the best on
both datasets. Therefore, we only show the results of
the LDA baseline calculated using cosine similarity.

In Tables 4 and 5 we show the compar-
ing results of the four methods on bothNEWS
and RESEARCH. Since the average number of
manual-labeled keyphrases onNEWSis larger than
RESEARCH, we setM = 10 for NEWSandM =
5 for RESEARCH. The parameter settings on both
NEWSandRESEARCHhave been stated in Section
4.3.

Method Pre. Rec. F. Bpref MRR
TFIDF 0.239 0.295 0.264 0.179 0.576

PageRank 0.242 0.299 0.267 0.184 0.564
LDA 0.259 0.320 0.286 0.194 0.518
TPR 0.282 0.348 0.312 0.214 0.638

Table 4: Comparing results onNEWSwhen the num-
ber of keyphrasesM=10.

Method Pre. Rec. F. Bpref MRR
TFIDF 0.333 0.173 0.227 0.255 0.565

PageRank 0.330 0.171 0.225 0.263 0.575
LDA 0.332 0.172 0.227 0.254 0.548
TPR 0.354 0.183 0.242 0.274 0.583

Table 5: Comparing results onRESEARCHwhen the
number of keyphrasesM=5.

From the two tables, we have the following obser-
vations.
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Figure 3: Precision-recall results onNEWSwhenM
ranges from1 to 20.

First, TPR outperform all baselines on both
datasets. The improvements are all statistically sig-
nificant tested with bootstrap re-sampling with 95%
confidence. This indicates the robustness and effec-
tiveness of TPR.

Second, LDA performs equal or better than
TFIDF and PageRank under precision/recall/F-
measure. However, the performance of LDA un-
der MRR is much worse than TFIDF and PageR-
ank, which indicates LDA fails to correctly extract
the first keyphrase earlier than other methods. The
reason is: (1) LDA does not consider the local struc-
ture information of document as PageRank, and (2)
LDA also does not consider the frequency infor-
mation of words within the document. In the con-
trast, TPR enjoys the advantages of both LDA and
TFIDF/PageRank, by using the external topic infor-
mation like LDA and internal document structure
like TFIDF/PageRank.

Moreover, in Figures 3 and 4 we show the
precision-recall relations of four methods onNEWS
andRESEARCH. Each point on the precision-recall
curve is evaluated on different numbers of extracted
keyphrasesM . The closer the curve to the upper
right, the better the overall performance. The results
again illustrate the superiority of TPR.

4.5 Extracting Example

At the end, in Table 6 we show an example of
extracted keyphrases using TPR from a news arti-
cle with title “Arafat Says U.S. Threatening to Kill
PLO Officials” (The article number in DUC2001
is AP880510-0178). Here we only show the top
10 keyphrases, and the correctly extracted ones
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Figure 4: Precision-recall results onRESEARCH
whenM ranges from1 to 10.

are marked with “(+)”. We also mark the num-
ber of correctly extracted keyphrases after method
name like “(+7)” after TPR. We also illustrate the
top 3 topics of the document with their topic-
specific keyphrases. It is obvious that the top topics,
on “Palestine”, “Israel” and “terrorism” separately,
have a good coverage on the discussion objects of
this article, which also demonstrate a good diversity
with each other. By integrating these topic-specific
keyphrases considering the proportions of these top-
ics, we obtain the best performance of keyphrase ex-
traction using TPR.

In Table 7 we also show the extracted keyphrases
of baselines from the same news article. For TFIDF,
it only considered the frequency properties of words,
and thus highly ranked the phrases with “PLO”
which appeared about16 times in this article, and
failed to extract the keyphrases on topic “Israel”.
LDA only measured the importance of words using
document topics without considering the frequency
information of words and thus missed keyphrases
with high-frequency words. For example, LDA
failed to extract keyphrase “political assassination”,
in which the word “assassination” occurred8 times
in this article.

5 Related Work

In this paper we proposed TPR for keyphrase ex-
traction. A pioneering achievement in keyphrase ex-
traction was carried out in (Turney, 1999) which re-
garded keyphrase extraction as a classification task.
Generally, the supervised methods need manually
annotated training set which is time-consuming and
in this paper we focus on unsupervised method.
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TPR (+7)
PLO leader Yasser Arafat(+), Abu Jihad, Khalil
Wazir(+), slaying Wazir, political assassina-
tion(+), Palestinian guerrillas(+), particulary
Palestinian circles, Israeli officials(+), Israeli
squad(+), terrorist attacks(+)
TPR, Rank 1 Topic on “Palestine”
PLO leader Yasser Arafat(+), United States(+),
State Department spokesman Charles Redman,
Abu Jihad, U.S. government document, Palestine
Liberation Organization leader, political assassi-
nation(+), Israeli officials(+), alleged document
TPR, Rank 2 Topic on “Israel”
PLO leader Yasser Arafat(+), United States(+),
Palestine Liberation Organization leader, Israeli
officials(+), U.S. government document, alleged
document, Arab government, slaying Wazir, State
Department spokesman Charles Redman, Khalil
Wazir(+)
TPR, Rank 3 Topic on “terrorism”
terrorist attacks(+), PLO leader Yasser Arafat(+),
Abu Jihad, United States(+), alleged docu-
ment, U.S. government document, Palestine Lib-
eration Organization leader, State Department
spokesman Charles Redman, political assassina-
tion(+), full cooperation

Table 6: Extracted keyphrases by TPR.

Starting with TextRank (Mihalcea and Tarau,
2004), graph-based ranking methods are becoming
the most widely used unsupervised approach for
keyphrase extraction. Litvak and Last (2008) ap-
plied HITS algorithm on the word graph of a docu-
ment for keyphrase extraction. Although HITS itself
worked the similar performance to PageRank, we
plan to explore the integration of topics and HITS in
future work. Wan (2008b; 2008a) used a small num-
ber of nearest neighbor documents to provide more
knowledge for keyphrase extraction. Some meth-
ods used clustering techniques on word graphs for
keyphrase extraction (Grineva et al., 2009; Liu et
al., 2009). The clustering-based method performed
well on short abstracts (with F-measure0.382 on
RESEARCH) but poorly on long articles (NEWSwith
F-measure score0.216) due to two non-trivial is-
sues: (1) how to determine the number of clus-

TFIDF (+5)
PLO leader Yasser Arafat(+), PLO attacks, PLO
offices, PLO officials(+), PLO leaders, Abu Ji-
had, terrorist attacks(+), Khalil Wazir(+), slaying
wazir, political assassination(+)
PageRank (+3)
PLO leader Yasser Arafat(+), PLO officials(+),
PLO attacks, United States(+), PLO offices, PLO
leaders, State Department spokesman Charles
Redman, U.S. government document, alleged
document, Abu Jihad
LDA (+5)
PLO leader Yasser Arafat(+), Palestine Liberation
Organization leader, Khalil Wazir(+), Palestinian
guerrillas(+), Abu Jihad, Israeli officials(+), par-
ticulary Palestinian circles, Arab government,
State Department spokesman Charles Redman,
Israeli squad(+)

Table 7: Extracted keyphrases by baselines.

ters, and (2) how to weight each cluster and select
keyphrases from the clusters. In this paper we fo-
cus on improving graph-based methods via topic de-
composition, we thus only compare with PageRank
as well as TFIDF and LDA and do not compare with
clustering-based methods in details.

In recent years, two algorithms were proposed to
rank web pages by incorporating topic information
of web pages within PageRank (Haveliwala, 2002;
Nie et al., 2006). The method in (Haveliwala, 2002),
is similar to TPR which also decompose PageRank
into various topics. However, the method in (Haveli-
wala, 2002) only considered to set the preference
values usingpr(w|z) (In the context of (Haveliwala,
2002),w indicates Web pages). In Section 4.3.4 we
have shown that the setting of usingpr(z|w) is much
better thanpr(w|z).

Nie et al. (2006) proposed a more complicated
ranking method. In this method, topical PageRanks
are performed together. The basic idea of (Nie et al.,
2006) is, when surfing following a graph link from
vertexwi to wj , the ranking score on topicz of wi

will have a higher probability to pass to the same
topic of wj and have a lower probability to pass to
a different topic ofwj . When the inter-topic jump
probability is0, this method is identical to (Haveli-
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wala, 2002). We implemented the method and found
that the random jumps between topics did not help
improve the performance for keyphrase extraction,
and did not demonstrate the results of this method.

6 Conclusion and Future Work

In this paper we propose a new graph-based frame-
work, Topical PageRank, which incorporates topic
information within random walk for keyphrase ex-
traction. Experiments on two datasets show that
TPR achieves better performance than other base-
line methods. We also investigate the influence of
various parameters on TPR, which indicates the ef-
fectiveness and robustness of the new method.

We consider the following research directions as
future work.

1. In this paper we obtained latent topics us-
ing LDA learned from Wikipedia. We de-
sign to obtain topics using other machine learn-
ing methods and from other knowledge bases,
and investigate the influence to performance of
keyphrase extraction.

2. In this paper we integrated topic information
in PageRank. We plan to consider topic infor-
mation in other graph-based ranking algorithms
such as HITS (Kleinberg, 1999).

3. In this paper we used Wikipedia to train
LDA by assuming Wikipedia is an exten-
sive snapshot of human knowledge which can
cover most topics talked about inNEWSand
RESEARCH. In fact, the learned topics are
highly dependent on the learning corpus. We
will investigate the influence of corpus selec-
tion in training LDA for keyphrase extraction
using TPR.
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Abstract

In this paper, we investigate how modeling
content structure can benefit text analysis ap-
plications such as extractive summarization
and sentiment analysis. This follows the lin-
guistic intuition that rich contextual informa-
tion should be useful in these tasks. We
present a framework which combines a su-
pervised text analysis application with the in-
duction of latent content structure. Both of
these elements are learned jointly using the
EM algorithm. The induced content struc-
ture is learned from a large unannotated cor-
pus and biased by the underlying text analysis
task. We demonstrate that exploiting content
structure yields significant improvements over
approaches that rely only on local context.1

1 Introduction

In this paper, we demonstrate that leveraging doc-
ument structure significantly benefits text analysis
applications. As a motivating example, consider
the excerpt from a DVD review shown in Table 1.
This review discusses multiple aspects of a product,
such as audio and video properties. While the word
“pleased” is a strong indicator of positive sentiment,
the sentence in which it appears does not specify the
aspect to which it relates. Resolving this ambiguity
requires information about global document struc-
ture.

A central challenge in utilizing such informa-
tion lies in finding a relevant representation of con-
tent structure for a specific text analysis task. For

1Code and processed data presented here are available at
http://groups.csail.mit.edu/rbg/code/content structure.html

Audio Audio choices are English, Spanish and French
Dolby Digital 5.1 ... Bass is still robust and powerful,
giving weight to just about any scene – most notably
the film’s exciting final fight. Fans should be pleased
with the presentation.

Extras This single-disc DVD comes packed in a black
amaray case with a glossy slipcover. Cover art has
clearly been designed to appeal the Twilight crowd ...
Finally, we’ve got a deleted scenes reel. Most of the
excised scenes are actually pretty interesting.

Table 1: An excerpt from a DVD review.

instance, when performing single-aspect sentiment
analysis, the most relevant aspect of content struc-
ture is whether a given sentence is objective or sub-
jective (Pang and Lee, 2004). In a multi-aspect
setting, however, information about the sentence
topic is required to determine the aspect to which
a sentiment-bearing word relates (Snyder and Barzi-
lay, 2007). As we can see from even these closely re-
lated applications, the content structure representa-
tion should be intimately tied to a specific text anal-
ysis task.

In this work, we present an approach in which a
content model is learned jointly with a text analy-
sis task. We assume complete annotations for the
task itself, but we learn the content model from raw,
unannotated text. Our approach is implemented in
a discriminative framework using latent variables to
represent facets of content structure. In this frame-
work, the original task features (e.g., lexical ones)
are conjoined with latent variables to enrich the fea-
tures with global contextual information. For ex-
ample, in Table 1, the feature associated with the
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word “pleased” should contribute most strongly to
the sentiment of the audio aspect when it is aug-
mented with a relevant topic indicator.

The coupling of the content model and the task-
specific model allows the two components to mutu-
ally influence each other during learning. The con-
tent model leverages unannotated data to improve
the performance of the task-specific model, while
the task-specific model provides feedback to im-
prove the relevance of the content model. The com-
bined model can be learned effectively using a novel
EM-based method for joint training.

We evaluate our approach on two complementary
text analysis tasks. Our first task is a multi-aspect
sentiment analysis task, where a system predicts the
aspect-specific sentiment ratings (Snyder and Barzi-
lay, 2007). Second, we consider a multi-aspect ex-
tractive summarization task in which a system ex-
tracts key properties for a pre-specified set of as-
pects. On both tasks, our method for incorporating
content structure consistently outperforms structure-
agnostic counterparts. Moreover, jointly learning
content and task parameters yields additional gains
over independently learned models.

2 Related Work

Prior research has demonstrated the usefulness of
content models for discourse-level tasks. Examples
of such tasks include sentence ordering (Barzilay
and Lee, 2004; Elsner et al., 2007), extraction-based
summarization (Haghighi and Vanderwende, 2009)
and text segmentation (Chen et al., 2009). Since
these tasks are inherently tied to document structure,
a content model is essential to performing them suc-
cessfully. In contrast, the applications considered in
this paper are typically developed without any dis-
course information, focusing on capturing sentence-
level relations. Our goal is to augment these models
with document-level content information.

Several applications in information extraction
and sentiment analysis are close in spirit to our
work (Pang and Lee, 2004; Patwardhan and Riloff,
2007; McDonald et al., 2007). These approaches
consider global contextual information when de-
termining whether a given sentence is relevant to
the underlying analysis task. All assume that rele-
vant sentences have been annotated. For instance,

Pang and Lee (2004) refine the accuracy of sen-
timent analysis by considering only the subjective
sentences of a review as determined by an indepen-
dent classifier. Patwardhan and Riloff (2007) take
a similar approach in the context of information ex-
traction. Rather than applying their extractor to all
the sentences in a document, they limit it to event-
relevant sentences. Since these sentences are more
likely to contain information of interest, the extrac-
tion performance increases.

Another approach, taken by Choi and Cardie
(2008) and Somasundaran et al. (2009) uses lin-
guistic resources to create a latent model in a task-
specific fashion to improve performance, rather than
assuming sentence-level task relevancy. Choi and
Cardie (2008) address a sentiment analysis task by
using a heuristic decision process based on word-
level intermediate variables to represent polarity.
Somasundaran et al. (2009) similarly uses a boot-
strapped local polarity classifier to identify sentence
polarity.

McDonald et al. (2007) propose a model
which jointly identifies global polarity as well as
paragraph- and sentence-level polarity, all of which
are observed in training data. While our approach
uses a similar hierarchy, McDonald et al. (2007) is
concerned with recovering the labels at all levels,
whereas in this work we are interested in using la-
tent document content structure as a means to benefit
task predictions.

While our method also incorporates contextual
information into existing text analysis applications,
our approach is markedly different from the above
approaches. First, our representation of context en-
codes more than the relevance-based binary distinc-
tion considered in the past work. Our algorithm ad-
justs the content model dynamically for a given task
rather than pre-specifying it. Second, while previ-
ous work is fully supervised, in our case relevance
annotations are readily available for only a few ap-
plications and are prohibitively expensive to obtain
for many others. To overcome this drawback, our
method induces a content model in an unsupervised
fashion and connects it via latent variables to the
target model. This design not only eliminates the
need for additional annotations, but also allows the
algorithm to leverage large quantities of raw data for
training the content model. The tight coupling of rel-
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evance learning with the target analysis task leads to
further performance gains.

Finally, our work relates to supervised topic mod-
els in Blei and McAullife (2007). In this work, la-
tent topic variables are used to generate text as well
as a supervised sentiment rating for the document.
However, this architecture does not permit the usage
of standard discriminative models which condition
freely on textual features.

3 Model

3.1 Problem Formulation

In this section, we describe a model which incorpo-
rates content information into a multi-aspect sum-
marization task.2 Our approach assumes that at
training time we have a collection of labeled doc-
uments DL, each consisting of the document text
s and true task-specific labeling y∗. For the multi-
aspect summarization task, y∗ consists of sequence
labels (e.g., value or service) for the tokens of a
document. Specifically, the document text s is
composed of sentences s1, . . . , sn and the label-
ings y∗ consists of corresponding label sequences
y1, . . . , yn.3

As is common in related work, we model each yi
using a CRF which conditions on the observed doc-
ument text. In this work, we also assume a content
model, which we fix to be the document-level HMM
as used in Barzilay and Lee (2004). In this content
model, each sentence si is associated with a hidden
topic variable Ti which generates the words of the
sentence. We will use T = (T1, . . . , Tn) to refer to
the hidden topic sequence for a document. We fix
the number of topics to a pre-specified constant K.

3.2 Model Overview

Our model, depicted in Figure 1, proceeds as fol-
lows: First the document-level HMM generates
a hidden content topic sequence T for the sen-
tences of a document. This content component is
parametrized by θ and decomposes in the standard

2In Section 3.6, we discuss how this framework can be used
for other text analysis applications.

3Note that each yi is a label sequence across the words in si,
rather than an individual label.

y1
i ym

iy2
i

. . .

Ti

w1
i wm

iw2
i

. . .

Ti−1 Ti+1

(w2
i = pleased) ∧ (Ti = 3)

w2
i = pleased

...

si

Figure 1: A graphical depiction of our model for
sequence labeling tasks. The Ti variable represents
the content model topic for the ith sentence si. The
words of si, (w1

i , . . . , w
m
i ), each have a task label

(y1
i , . . . , y

m
i ). Note that each token label has an

undirected edge to a factor containing the words of
the current sentence, si as well as the topic of the
current sentence Ti.

HMM fashion:4

Pθ(s,T ) =
n∏
i=1

Pθ(Ti|Ti−1)
∏
w∈si

Pθ(w|Ti) (1)

Then the label sequences for each sentence in
the document are independently modeled as CRFs
which condition on both the sentence features and
the sentence topic:

Pφ(y|s,T ) =
n∏
i=1

Pφ(yi|si, Ti) (2)

Each sentence CRF is parametrized by φ and takes
the standard form:

Pφ(y|s, T ) ∝

exp

∑
j

φT
[
fN (yj , s, T ) + fE(yj , yj+1)

]
4We also utilize a hierarchical emission model so that each

topic distribution interpolates between a topic-specific distribu-
tion as well as a shared background model; this is intended to
capture domain-specific stop words.
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y∗

θ

φ

Content
Parameters

Task
Parameters

Task Labels

Text

Content
Structure

Figure 2: A graphical depiction of the generative
process for a labeled document at training time (See
Section 3); shaded nodes indicate variables which
are observed at training time. First the latent un-
derlying content structure T is drawn. Then, the
document text s is drawn conditioned on the content
structure utilizing content parameters θ. Finally, the
observed task labels for the document are modeled
given s and T using the task parameters φ. Note that
the arrows for the task labels are undirected since
they are modeled discriminatively.

where fN (·) and fE(·) are feature functions associ-
ated with CRF nodes and transitions respectively.

Allowing the CRF to condition on the sentence
topic Ti permits predictions to be more sensitive to
content. For instance, using the example from Ta-
ble 1, we could have a feature that indicates the word
“pleased” conjoined with the segment topic (see Fig-
ure 1). These topic-specific features serve to disam-
biguate word usage.

This joint process, depicted graphically in Fig-
ure 2, is summarized as:

P (T , s,y∗) = Pθ(T , s)Pφ(y∗|s,T ) (3)

Note that this probability decomposes into a
document-level HMM term (the content component)
as well as a product of CRF terms (the task compo-
nent).

3.3 Learning

During learning, we would like to find the
document-level HMM parameters θ and the summa-
rization task CRF parameters φ which maximize the

likelihood of the labeled documents. The only ob-
served elements of a labeled document are the docu-
ment text s and the aspect labels y∗. This objective
is given by:

LL(φ, θ) =
∑

(s,y∗)∈DL

logP (s,y∗)

=
∑

(s,y∗)∈DL

log
∑
T

P (T , s,y∗)

We use the EM algorithm to optimize this objec-
tive.

E-Step The E-Step in EM requires computing the
posterior distribution over latent variables. In this
model, the only latent variables are the sentence top-
ics T . To compute this term, we utilize the decom-
position in Equation (3) and rearrange HMM and
CRF terms to obtain:

P (T , s,y∗) = Pθ(T , s)Pφ(y∗|T , s)

=

(
n∏
i=1

Pθ(Ti|Ti−1)
∏
w∈si

Pθ(w|Ti)
)
·(

n∏
i=1

Pφ(y∗i |si, Ti)
)

=
n∏
i=1

Pθ(Ti|Ti−1)·(∏
w∈si

Pθ(w|Ti)Pφ(y∗i |si, Ti)
)

We note that this expression takes the same form as
the document-level HMM, except that in addition to
emitting the words of a sentence, we also have an
observation associated with the sentence sequence
labeling. We treat each Pφ(y∗i |si, Ti) as part of the
node potential associated with the document-level
HMM. We utilize the Forward-Backward algorithm
as one would with the document-level HMM in iso-
lation, except that each node potential incorporates
this CRF term.

M-Step We perform separate M-Steps for content
and task parameters. The M-Step for the content pa-
rameters is identical to the document-level HMM
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content model: topic emission and transition dis-
tributions are updated with expected counts derived
from E-Step topic posteriors.

The M-Step for the task parameters does not have
a closed-form solution. Recall that in the M-Step,
we maximize the log probability of all random vari-
ables given expectations of latent variables. Using
the decomposition in Equation (3), it is clear that
the only component of the joint labeled document
probability which relies upon the task parameters is
logPφ(y∗|s,T ). Thus for the M-Step, it is sufficient
to optimize the following with respect to φ:

ET |s,y∗ logPφ(y∗|s,T )

=
n∑
i=1

ETi|si, y
∗
i
logPφ(y∗i |si, Ti)

=
n∑
i=1

K∑
k=1

P (Ti = k|si, y∗i ) logPφ(y∗i |si, Ti)

The first equality follows from the decomposition
of the task component into independent CRFs (see
Equation (2)). Optimizing this objective is equiva-
lent to a weighted version of the conditional likeli-
hood objective used to train the CRF in isolation. An
intuitive explanation of this process is that there are
multiple CRF instances, one for each possible hid-
den topic T . Each utilizes different content features
to explain the sentence sequence labeling. These in-
stances are weighted according to the posterior over
T obtained during the E-Step. While this objective
is non-convex due to the summation over T , we can
still optimize it using any gradient-based optimiza-
tion solver; in our experiments, we used the LBFGS
algorithm (Liu et al., 1989).

3.4 Inference

We must predict a label sequence y for each sen-
tence s of the document. We assume a loss function
over a sequence labeling y and a proposed labeling
ŷ, which decomposes as:

L(y, ŷ) =
∑
j

L(yj , ŷj)

where each position loss is sensitive to the kind of
error which is made. Failing to extract a token is
penalized to a greater extent than extracting it with

an incorrect label:

L(yj , ŷj) =


0 if ŷj = yj

c if yj 6= NONE and ŷj = NONE
1 otherwise

In this definition, NONE represents the background
label which is reserved for tokens which do not cor-
respond to labels of interest. The constant c repre-
sents a user-defined trade-off between precision and
recall errors. For our multi-aspect summarization
task, we select c = 4 for Yelp and c = 5 for Amazon
to combat the high-precision bias typical of condi-
tional likelihood models.

At inference time, we select the single labeling
which minimizes the expected loss with respect to
model posterior over label sequences:

ŷ = min
ŷ

Ey|sL(y, ŷ)

= min
ŷ

∑
j=1

Eyj |sL(yj , ŷj)

In our case, we must marginalize out the sentence
topic T :

P (yj |s) =
∑
T

P (yj , T |s)

=
∑
T

Pθ(T |s)Pφ(yj |s, T )

This minimum risk criterion has been widely used in
NLP applications such as parsing (Goodman, 1999)
and machine translation (DeNero et al., 2009). Note
that the above formulation differs from the stan-
dard CRF due to the latent topic variables. Other-
wise the inference task could be accomplished by
directly obtaining posteriors over each yj state using
the Forward-Backwards algorithm on the sentence
CRF.

Finding ŷ can be done efficiently. First, we ob-
tain marginal token posteriors as above. Then, the
expected loss of a token prediction is computed as
follows: ∑

ŷj

P (yj |s)L(yj , ŷj)

Once we obtain expected losses of each token pre-
diction, we compute the minimum risk sequence la-
beling by running the Viterbi algorithm. The po-
tential for each position and prediction is given by
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the negative expected loss. The maximal scoring se-
quence according to these potentials minimizes the
expected risk.

3.5 Leveraging unannotated data

Our model allows us to incorporate unlabeled doc-
uments, denoted DU , to improve the learning of the
content model. For an unlabeled document we only
observe the document text s and assume it is drawn
from the same content model as our labeled docu-
ments. The objective presented in Section 3.3 as-
sumed that all documents were labeled; here we sup-
plement this objective by capturing the likelihood
of unlabeled documents according to the content
model:

LU (θ) =
∑

s∈DU

logPθ(s)

=
∑

s∈DU

log
∑
T

Pθ(s,T )

Our overall objective function is to maximize the
likelihood of both our labeled and unlabeled data.
This objective corresponds to:

L(φ, θ) =LU (θ) + LL(φ, θ)

This objective can also be optimized using the EM
algorithm, where the E-Step for labeled and unla-
beled documents is outlined above.

3.6 Generalization

The approach outlined can be applied to a wider
range of task components. For instance, in Sec-
tion 4.1 we apply this approach to multi-aspect sen-
timent analysis. In this task, the target y consists of
numeric sentiment ratings (y1, . . . , yK) for each of
K aspects. The task component consists of indepen-
dent linear regression models for each aspect sen-
timent rating. For the content model, we associate
a topic with each paragraph; T consists of assign-
ments of topics to each document paragraph.

The model structure still decomposes as in Fig-
ure 2, but the details of learning are slightly differ-
ent. For instance, because the task label (aspect sen-
timent ratings) is not localized to any region of the
document, all content model variables influence the
target response. Conditioned on the target label, all

topic variables become correlated. Thus when learn-
ing, the E-Step requires computing a posterior over
paragraph topic tuples T :

P (T |y, s) ∝ P (s,T )P (y|T , s)

For the case of our multi-aspect sentiment task, this
computation can be done exactly by enumerating
T tuples, since the number of sentences and pos-
sible topics is relatively small. If summation is in-
tractable, the posterior may be approximated using
variational techniques (Bishop, 2006), which is ap-
plicable to a broad range of potential applications.

4 Experimental Set-Up

We apply our approach to two text analysis tasks that
stand to benefit from modeling content structure:
multi-aspect sentiment analysis and multi-aspect re-
view summarization.

4.1 Tasks
In the following section, we define each task in de-
tail, explain the task-specific adaptation of the model
and describe the data sets used in the experiments.
Table 2 summarizes statistics for all the data sets.

For all tasks, when using a content model with a
task model, we utilize a new set of features which
include all the original features as well as a copy
of each feature conjoined with the content topic as-
signment (see Figure 1). We also include a fea-
ture which indicates whether a given word was most
likely emitted from the underlying topic or from a
background distribution.

Multi-Aspect Sentiment Ranking The goal of
multi-aspect sentiment classification is to predict a
set of numeric ranks that reflects the user satisfaction
for each aspect (Snyder and Barzilay, 2007). One of
the challenges in this task is to attribute sentiment-
bearing words to the aspects they describe. Informa-
tion about document structure has the potential to
greatly reduce this ambiguity.

Following standard sentiment ranking ap-
proaches (Wilson et al., 2004; Pang and Lee, 2005;
Goldberg and Zhu, 2006; Snyder and Barzilay,
2007), we employ ordinary linear regression to
independently map bag-of-words representations
into predicted aspect ranks. In addition to com-
monly used lexical features, this set is augmented
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Task
Labeled

Unlabeled
Avg. Size

Train Test Words Sents
Multi-aspect sentiment 600 65 — 1,027 20.5
Multi-aspect summarization

Amazon 35 24 12,684 214 11.7
Yelp 48 48 33,015 178 11.2

Table 2: This table summarizes the size of each corpus. In each case, the unlabeled texts of both labeled and
unlabeled documents are used for training the content model, while only the labeled training corpus is used
to train the task model. Note that the entire data set for the multi-aspect sentiment analysis task is labeled.

with content features as described above. For this
application, we fix the number of HMM states to be
equal to the predefined number of aspects.

We test our sentiment ranker on a set of DVD re-
views from the website IGN.com.5 Each review is
accompanied by 1-10 scale ratings in four categories
that assess the quality of a movie’s content, video,
audio, and DVD extras. In this data set, segments
corresponding to each of the aspects are clearly de-
lineated in each document. Therefore, we can com-
pare the performance of the algorithm using auto-
matically induced content models against the gold
standard structural information.

Multi-Aspect Review Summarization The goal
of this task is to extract informative phrases that
identify information relevant to several predefined
aspects of interest. In other words, we would like our
system to both extract important phrases (e.g., cheap
food) and label it with one of the given aspects (e.g.,
value). For concrete examples and lists of aspects
for each data set, see Figures 3b and 3c. Variants of
this task have been considered in review summariza-
tion in previous work (Kim and Hovy, 2006; Brana-
van et al., 2009).

This task has elements of both information extrac-
tion and phrase-based summarization — the phrases
we wish to extract are broader in scope than in stan-
dard template-driven IE, but at the same time, the
type of selected information is restricted to the de-
fined aspects, similar to query-based summarization.
The difficulty here is that phrase selection is highly
context-dependent. For instance, in TV reviews such
as in Figure 3b, the highlighted phrase “easy to read”
might refer to either the menu or the remote; broader

5http://dvd.ign.com/index/reviews.html

context is required for correct labeling.
We evaluated our approach for this task on two

data sets: Amazon TV reviews (Figure 3b) and Yelp
restaurant reviews (Figure 3c). To eliminate noisy
reviews, we only retain documents that have been
rated “helpful” by the users of the site; we also re-
move reviews which are abnormally short or long.

Each data set was manually annotated with aspect
labels using Mechanical Turk, which has been used
in previous work to annotate NLP data (Snow et al.,
2008). Since we cannot select high-quality annota-
tors directly, we included a control document which
had been previously annotated by a native speaker
among the documents assigned to each annotator.
The work of any annotator who exhibited low agree-
ment on the control document annotation was ex-
cluded from the corpus. To test task annotation
agreement, we use Cohen’s Kappa (Cohen, 1960).
On the Amazon data set, two native speakers anno-
tated a set of four documents. The agreement be-
tween the judges was 0.54. On the Yelp data set, we
simply computed the agreement between all pairs of
reviewers who received the same control documents;
the agreement was 0.49.

4.2 Baseline Comparison and Evaluation

Baselines For all the models, we obtain a baseline
system by eliminating content features and only us-
ing a task model with the set of features described
above. We also compare against a simplified vari-
ant of our method wherein a content model is in-
duced in isolation rather than learned jointly in the
context of the underlying task. In our experiments,
we refer to the two methods as the No Content
Model (NoCM) and Independent Content Model
(IndepCM) settings, respectively. The Joint Content
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M = Movie
V = Video
A = Audio
E = Extras

M This collection certainly offers some nostalgic 
fun, but at the end of the day, the shows themselves, 
for the most part, just don't hold up. (5)

V Regardless, this is a fairly solid presentation, but 
it's obvious there was room for improvement.  (7)

A Bass is still robust and powerful. Fans should be 
pleased with this presentation. (8)

E The deleted scenes were quite lengthy, but only 
shelled out a few extra laughs. (4) 

(a) Sample labeled text from the multi-aspect sentiment corpus

[R Big multifunction remote] with [R easy-to-
read keys].   The on-screen menu is [M easy to 
use] and you [M can rename the inputs] to one 
of several options (DVD, Cable, etc.).

R = Remote
M = Menu
I = Inputs
E = Economy
V = Video
S = Sound
A = Appearance
F = Features

I bought this TV because the [V overall picture 
quality is good] and it's [A unbelievably thin].

[I Plenty of inputs], including [I 2 HDMI ports], 
which is [E unheard of in this price range].

(b) Sample labeled text from the Amazon multi-aspect summa-
rization corpus

[F All the ingredients are fresh], [V the sizes are 
huge] and [V the price is cheap]. F = Food

A = Atmosphere
V = Value
S = Service
O = Overall

[O This place rocks!]  [V Pricey, but worth it] .

[A The place is a pretty good size] and
[S the staff is super friendly].

(c) Sample labeled text from the Yelp multi-aspect summarization
corpus

Figure 3: Excerpts from the three corpora with the
corresponding labels. Note that sentences from the
multi-aspect summarization corpora generally focus
on only one or two aspects. The multi-aspect senti-
ment corpus has labels per paragraph rather than per
sentence.

Model (JointCM) setting refers to our full model de-
scribed in Section 3, where content and task compo-
nents are learned jointly.

Evaluation Metrics For multi-aspect sentiment
ranking, we report the average L2 (squared differ-
ence) and L1 (absolute difference) between system
prediction and true 1-10 sentiment rating across test
documents and aspects.

For the multi-aspect summarization task, we mea-
sure average token precision and recall of the label
assignments (Multi-label). For the Amazon corpus,
we also report a coarser metric which measures ex-
traction precision and recall while ignoring labels
(Binary labels) as well as ROUGE (Lin, 2004). To
compute ROUGE, we control for length by limiting

L1 L2

NoCM 1.37 3.15
IndepCM 1.28†* 2.80†*
JointCM 1.25† 2.65†*
Gold 1.18†* 2.48†*

Table 3: The error rate on the multi-aspect sentiment
ranking. We report mean L1 and L2 between system
prediction and true values over all aspects. Marked
results are statistically significant with p < 0.05: *
over the previous model and † over NoCM.

F1 F2 Prec. Recall
NoCM 28.8% 34.8% 22.4% 40.3%
IndepCM 37.9% 43.7% 31.1%†* 48.6%†*
JointCM 39.2% 44.4% 32.9%†* 48.6%†

Table 4: Results for multi-aspect summarization on
the Yelp corpus. Marked precision and recall are
statistically significant with p < 0.05: * over the
previous model and † over NoCM.

each system to predict the same number of tokens as
the original labeled document.

Our metrics of statistical significance vary by
task. For the sentiment task, we use Student’s t-
test. For the multi-aspect summarization task, we
perform chi-square analysis on the ROUGE scores
as well as on precision and recall separately, as
is commonly done in information extraction (Fre-
itag, 2004; Weeds et al., 2004; Finkel and Manning,
2009).

5 Results

In this section, we present the results of the methods
on the tasks described above (see Tables 3, 4, and 5).

Baseline Comparisons Adding a content model
significantly outperforms the NoCM baseline on
both tasks. The highest F1 error reduction – 14.7%
– is achieved on multi-aspect summarization on the
Yelp corpus, followed by the reduction of 11.5% and
8.75%, on multi-aspect summarization on the Ama-
zon corpus and multi-aspect sentiment ranking, re-
spectively.

We also observe a consistent performance boost
when comparing against the IndepCM baseline.
This result confirms our hypothesis about the ad-
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Multi-label Binary labels
F1 F2 Prec. Recall F1 F2 Prec. Recall ROUGE

NoCM 18.9% 18.0% 20.4% 17.5% 35.1% 33.6% 38.1% 32.6% 43.8%
IndepCM 24.5% 23.8% 25.8%†* 23.3%†* 43.0% 41.8% 45.3%†* 40.9%†* 47.4%†*
JointCM 28.2% 31.3% 24.3%† 33.7%†* 47.8% 53.0% 41.2%† 57.1%†* 47.6%†*

Table 5: Results for multi-aspect summarization on the Amazon corpus. Marked ROUGE, precision, and
recall are statistically significant with p < 0.05: * over the previous model and † over NoCM.

vantages of jointly learning the content model in the
context of the underlying task.

Comparison with additional context features
One alternative to an explicit content model is to
simply incorporate additional features into NoCM
as a proxy for contextual information. In the
multi-aspect summarization case, this can be accom-
plished by adding unigram features from the sen-
tences before and after the current one.6

When testing this approach, however, the perfor-
mance of NoCM actually decreases on both Ama-
zon (to 15.0% F1) and Yelp (to 24.5% F1) corpora.
This result is not surprising for this particular task –
by adding these features, we substantially increase
the feature space without increasing the amount of
training data. An advantage of our approach is
that our learned representation of context is coarse,
and we can leverage large quantities of unannotated
training data.

Impact of content model quality on task per-
formance In the multi-aspect sentiment ranking
task, we have access to gold standard document-
level content structure annotation. This affords us
the ability to compare the ideal content structure,
provided by the document authors, with one that is
learned automatically. As Table 3 shows, the manu-
ally created document structure segmentation yields
the best results. However, the performance of our
JointCM model is not far behind the gold standard
content structure.

The quality of the induced content model is de-
termined by the amount of training data. As Fig-
ure 4 shows, the multi-aspect summarizer improves
with the increase in the size of raw data available for
learning content model.

6This type of feature is not applicable to our multi-aspect
sentiment ranking task, as we already use unigram features from
the entire document.

10

20

30

0% 50% 100%

M
ul

ti
-l

ab
el

 
F

1

Percentage of unlabeled data

22.8

26.0
28.2

Figure 4: Results on the Amazon corpus using the
complete annotated set with varying amounts of ad-
ditional unlabeled data.7

Compensating for annotation sparsity We hy-
pothesize that by incorporating rich contextual in-
formation, we can reduce the need for manual task
annotation. We test this by reducing the amount of
annotated data available to the model and measur-
ing performance at several quantities of unannotated
data. As Figure 5 shows, the performance increase
achieved by doubling the amount of annotated data
can also be achieved by adding only 12.5% of the
unlabeled data.

6 Conclusion

In this paper, we demonstrate the benefits of incor-
porating content models in text analysis tasks. We
also introduce a framework to allow the joint learn-
ing of an unsupervised latent content model with a
supervised task-specific model. On multiple tasks
and datasets, our results empirically connect model
quality and task performance, suggesting that fur-

7Because we append the unlabeled versions of the labeled
data to the unlabeled set, even with 0% additional unlabeled
data, there is a small data set to train the content model.
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Figure 5: Results on the Amazon corpus using half
of the annotated training documents. The content
model is trained with 0%, 12.5%, and 25% of addi-
tional unlabeled data.7 The dashed horizontal line
represents NoCM with the complete annotated set.

ther improvements in content modeling may yield
even further gains.
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Abstract

This work concerns automatic topic segmen-
tation of email conversations. We present a
corpus of email threads manually annotated
with topics, and evaluate annotator reliabil-
ity. To our knowledge, this is the first such
email corpus. We show how the existing topic
segmentation models (i.e., Lexical Chain Seg-
menter (LCSeg) and Latent Dirichlet Alloca-
tion (LDA)) which are solely based on lex-
ical information, can be applied to emails.
By pointing out where these methods fail and
what any desired model should consider, we
propose two novel extensions of the models
that not only use lexical information but also
exploit finer level conversation structure in a
principled way. Empirical evaluation shows
that LCSeg is a better model than LDA for
segmenting an email thread into topical clus-
ters and incorporating conversation structure
into these models improves the performance
significantly.

1 Introduction

With the ever increasing popularity of emails and
web technologies, it is very common for people to
discuss issues, events, agendas or tasks by email.
Effective processing of the email contents can be
of great strategic value. In this paper, we study
the problem of topic segmentation for emails, i.e.,
grouping the sentences of an email thread into a
set of coherent topical clusters. Adapting the stan-
dard definition of topic (Galley et al., 2003) to con-
versations/emails, we consider a topic is something
about which the participant(s) discuss or argue or

express their opinions. For example, in the email
thread shown in Figure 1, according to the major-
ity of our annotators, participants discuss three top-
ics (e.g., ‘telecon cancellation’, ‘TAG document’,
and ‘responding to I18N’). Multiple topics seem to
occur naturally in social interactions, whether syn-
chronous (e.g., chats, meetings) or asynchronous
(e.g., emails, blogs) conversations. In multi-party
chat (Elsner and Charniak, 2008) report an average
of 2.75 discussions active at a time. In our email cor-
pus, we found an average of 2.5 topics per thread.

Topic segmentation is often considered a pre-
requisite for other higher-level conversation analy-
sis and applications of the extracted structure are
broad, encompassing: summarization (Harabagiu
and Lacatusu, 2005), information extraction and or-
dering (Allan, 2002), information retrieval (Dias et
al., 2007), and intelligent user interfaces (Dredze et
al., 2008). While extensive research has been con-
ducted in topic segmentation for monologues (e.g.,
(Malioutov and Barzilay, 2006), (Choi et al., 2001))
and synchronous dialogs (e.g., (Galley et al., 2003),
(Hsueh et al., 2006)), none has studied the problem
of segmenting asynchronous multi-party conversa-
tions (e.g., email). Therefore, there is no reliable an-
notation scheme, no standard corpus, and no agreed-
upon metrics available. Also, it is our key hypothe-
sis that, because of its asynchronous nature, and the
use of quotation (Crystal, 2001), topics in an email
thread often do not change in a sequential way. As a
result, we do not expect models which have proved
successful in monologue or dialog to be as effective
when they are applied to email conversations.

Our contributions in this paper aim to remedy
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these problems. First, we present an email corpus
annotated with topics and evaluate annotator agree-
ment. Second, we adopt a set of metrics to mea-
sure the local and global structural similarity be-
tween two annotations from the work on multi-party
chat disentanglement (Elsner and Charniak, 2008).
Third, we show how the two state-of-the-art topic
segmentation methods (i.e., LCSeg and LDA) which
are solely based on lexical information and make
strong assumptions on the resulting topic models,
can be effectively applied to emails, by having them
to consider, in a principled way, a finer level struc-
ture of the underlying conversations. Experimen-
tal results show that both LCSeg and LDA benefit
when they are extended to consider the conversa-
tional structure. When comparing the two methods,
we found that LCSeg is better than LDA and this
advantage is preserved when they are extended to
incorporate conversational structure.

2 Related Work

Three research areas are directly related to our study:
a) text segmentation models, b) probabilistic topic
models, and c) extracting and representing the con-
versation structure of emails.

Topic segmentation has been extensively studied
both for monologues and dialogs. (Malioutov and
Barzilay, 2006) uses the minimum cut model to seg-
ment spoken lectures (i.e., monologue). They form a
weighted undirected graph where the vertices repre-
sent sentences and the weighted links represent the
similarity between sentences. Then the segmenta-
tion problem can be solved as a graph partitioning
problem, where the assumption is that the sentences
in a segment should be similar, while sentences in
different segments should be dissimilar. They op-
timize the ‘normalized cut’ criterion to extract the
segments. In general, the minimization of the nor-
malized cut criterion is NP-complete. However, the
linearity constraint on text segmentation for mono-
logue allows them to find an exact solution in poly-
nomial time. In our extension of LCSeg, we use
a similar method to consolidate different segments;
however, in our case the linearity constraint is ab-
sent. Therefore, we approximate the optimal solu-
tion by spectral clustering (Shi and Malik, 2000).
Moving to the task of segmenting dialogs, (Galley

et al., 2003) first proposed the lexical chain based
unsupervised segmenter (LCSeg) and a supervised
segmenter for segmenting meeting transcripts. Their
supervised approach uses C4.5 and C4.5 rules binary
classifiers with lexical and conversational features
(e.g., cue phrase, overlap, speaker, silence, and lex-
ical cohesion function). Their supervised approach
performs significantly better than LCSeg. (Hsueh
et al., 2006) follow the same approaches as (Galley
et al., 2003) on both manual transcripts and ASR
output of meetings. They perform segmentation at
both coarse (topic) and fine (subtopic) levels. For
the topic level, they achieve similar results as (Gal-
ley et al., 2003), with the supervised approach out-
performing LCSeg. However, for the subtopic level,
LCSeg performs significantly better than the super-
vised one. In our work, we show how LCSeg per-
forms when applied to the temporal ordering of the
emails in a thread. We also propose its extension to
leverage the finer conversation structure of emails.

The probabilistic generative topic models, such
as LDA and its variants (e.g., (Blei et al., 2003),
(Steyvers and Griffiths, 2007)), have proven to be
successful for topic segmentation in both mono-
logue (e.g., (Chen et al., 2009)) and dialog (e.g.,
(Georgescul et al., 2008)). (Purver et al., 2006) uses
a variant of LDA for the tasks of segmenting meet-
ing transcripts and extracting the associated topic
labels. However, their approach for segmentation
does not perform better than LCSeg. In our work,
we show how the general LDA performs when ap-
plied to email conversations and describe how it can
be extended to exploit the conversation structure of
emails.

Several approaches have been proposed to cap-
ture an email conversation . Email programs (e.g.,
Gmail, Yahoomail) group emails into threads using
headers. However, our annotations show that top-
ics change at a finer level of granularity than emails.
(Carenini et al., 2007) present a method to capture an
email conversation at the finer level by analyzing the
embedded quotations in emails. A fragment quota-
tion graph (FQG) is generated, which is shown to be
beneficial for email summarization. In this paper, we
show that topic segmentation models can also bene-
fit significantly from this fine conversation structure
of email threads.
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3 Corpus and Evaluation Metrics

There are no publicly available email corpora anno-
tated with topics. Therefore, the first step was to
develop our own corpus. We have annotated the
BC3 email corpus (Ulrich et al., 2008) with top-
ics1. The BC3 corpus, previously annotated with
sentence level speech acts, meta sentence, subjectiv-
ity, extractive and abstractive summaries, is one of a
growing number of corpora being used for email re-
search. The corpus contains 40 email threads from
the W3C corpus2. It has 3222 sentences and an av-
erage of 5 emails per thread.

3.1 Topic Annotation

Topic segmentation in general is a nontrivial and
subjective task (Hsueh et al., 2006). The conver-
sation phenomenon called ‘Schism’ makes it even
more challenging for conversations. In schism a
new conversation takes birth from an existing one,
not necessarily because of a topic shift but because
some participants refocus their attention onto each
other, and away from whoever held the floor in the
parent conversation and the annotators can disagree
on the birth of a new topic (Aoki et al., 2006). In the
example email thread shown in Figure 1, a schism
takes place when people discuss about ‘responding
to I18N’. All the annotators do not agree on the fact
that the topic about ‘responding to I18N’ swerves
from the one about ‘TAG document’. The annota-
tors can disagree on the number of topics (i.e., some
are specific and some are general), and on the topic
assignment of the sentences3. To properly design an
effective annotation manual and procedure we per-
formed a two-phase pilot study before carrying out
the actual annotation. For the pilot study we picked
five email threads randomly from the corpus. In the
first phase of the pilot study we selected five uni-
versity graduate students to do the annotation. We
then revised our instruction manual based on their
feedback and the source of disagreement found. In

1The BC3 corpus had already been annotated for email sum-
marization, speech act recognition and subjectivity detection.
This new annotation with topics will be also made publicly
available at http://www.cs.ubc.ca/labs/lci/bc3.html

2http://research.microsoft.com/en-
us/um/people/nickcr/w3c-summary.html

3The annotators also disagree on the topic labels, however
in this work we are not interested in finding the topic labels.

the second phase we tested with a university postdoc
doing the annotation.

For the actual annotation we selected three com-
puter science graduates who are also native speakers
of English. They annotated 39 threads of the BC3
corpus4. On an average they took seven hours to an-
notate the whole dataset.

BC3 contains three human written abstract sum-
maries for each email thread. With each email thread
the annotators were also given an associated human
written summary to give a brief overview of the cor-
responding conversation. The task of finding topics
was carried out in two phases. In the first phase, the
annotators read the conversation and the associated
summary and list the topics discussed. They spec-
ify the topics by a short description (e.g., “meeting
agenda”, “location and schedule”) which provides a
high-level overview of the topic. The target number
of topics and the topic labels were not given in ad-
vance and they were instructed to find as many top-
ics as needed to convey the overall content structure
of the conversation.

In the second phase the annotators identify the
most appropriate topic for each sentence. However,
if a sentence covers more than one topic, they were
asked to label it with all the relevant topics according
to their order of relevance. If they find any sentence
that does not fit into any topic, they are told to label
those as the predefined topic ‘OFF-TOPIC’. Wher-
ever appropriate they were also asked to make use of
two other predefined topics: ‘INTRO’ and ‘END’.
INTRO (e.g., ‘hi’, ‘hello’) signifies the section (usu-
ally at the beginning) of an email that people use to
begin their email. Likewise, END (e.g., ‘Cheers’,
‘Best’) signifies the section (usually at the end) that
people use to end their email. The annotators car-
ried out the task on paper. We created the hierar-
chical thread view (‘reply to’ relation) using ‘TAB’s
(indentation) and each participant’s name is printed
in a different color as in Gmail.

Table 1 shows some basic statistics computed on
the three annotations of the 39 email threads5. On

4The annotators in the pilot and in the actual study were dif-
ferent so we could reuse the threads used in pilot study. How-
ever, one thread on which the pilot annotators agree fully, was
used as an example in the instruction manual. This gives 39
threads left for the actual study.

5We got 100% agreement on the two predefined topics ‘IN-
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average we have 26.3 sentences and 2.5 topics per
thread. A topic contains an average of 12.6 sen-
tences. The average number of topics active at a
time is 1.4. The average entropy is 0.94 and cor-
responds (as described in detail in the next section)
to the granularity of the annotation. These statistics
(number of topics and topic density) indicate that the
dataset is suitable for topic segmentation.

Mean Max Min
Number of sentences 26.3 55 13
Number of topics 2.5 7 1
Avg. topic length 12.6 35 3
Avg. topic density 1.4 3.1 1
Entropy 0.94 2.7 0

Table 1: Corpus statistics of human annotations

Metrics Mean Max Min
1-to-1 0.804 1 0.31
lock 0.831 1 0.43
m-to-1 0.949 1 0.61

Table 2: Annotator agreement in the scale of 0 to 1

3.2 Evaluation Metrics
In this section we describe the metrics used to com-
pare different human annotations and system’s out-
put. As different annotations (or system’s output)
can group sentences in different number of clusters,
metrics widely used in classification, such as the κ
statistic, are not applicable. Again, our problem of
topic segmentation for emails is not sequential in na-
ture. Therefore, the standard metrics widely used in
sequential topic segmentation for monologues and
dialogs, such as Pk and WindowDiff(WD), are
also not applicable. We adopt the more appropri-
ate metrics 1-to-1, lock and m-to-1, introduced re-
cently by (Elsner and Charniak, 2008). The 1-to-1
metric measures the global similarity between two
annotations. It pairs up the clusters from the two
annotations in a way that maximizes (globally) the
total overlap and then reports the percentage of over-
lap. lock measures the local agreement within a con-

TRO’ and ‘END’. In all our computation (i.e., statistics, agree-
ment, system’s input) we excluded the sentences marked as ei-
ther ‘INTRO’ or ‘END’

text of k sentences. To compute the loc3 metric for
the m-th sentence in the two annotations, we con-
sider the previous 3 sentences: m-1, m-2 and m-3,
and mark them as either ‘same’ or ‘different’ de-
pending on their topic assignment. The loc3 score
between two annotations is the mean agreement on
these ‘same’ or ‘different’ judgments, averaged over
all sentences. We report the agreement found in 1-
to-1 and lock in Table 2. In both of the metrics we
get high agreement, though the local agreement (av-
erage of 83%) is little higher than the global agree-
ment (average of 80%).

If we consider the topic of a randomly picked sen-
tence as a random variable then its entropy measures
the level of detail in an annotation. If the topics are
evenly distributed then the uncertainty (i.e., entropy)
is higher. It also increases with the increase of the
number of topics. Therefore, it is a measure of how
specific an annotator is and in our dataset it varies
from 0 6 to 2.7. To measure how much the annota-
tors agree on the general structure we use the m-to-1
metric. It maps each of the source clusters to the
single target cluster with which it gets the highest
overlap, then computes the total percentage of over-
lap. This metric is asymmetrical and not a measure
to be optimized7, but it gives us some intuition about
specificity (Elsner and Charniak, 2008). If one an-
notator divides a cluster into two clusters then, the
m-to-1 metric from fine to coarse is 1. In our corpus
by mapping from fine to coarse we get an m-to-1
average of 0.949.

4 Topic Segmentation Models

Developing automatic tools for segmenting an email
thread is challenging. The example email thread in
Figure 1 demonstrates why. We use different col-
ors and fonts to represent sentences of different top-
ics8. One can notice that email conversations are
different from written monologues (e.g., newspaper)
and dialogs (e.g., meeting, chat) in various ways.
As a communication media Email is distributed (un-
like face to face meeting) and asynchronous (unlike

60 uncertainty happens when there is only one topic found
7hence we do not use it to compare our models.
82 of the 3 annotators agree on this segmentation. Green rep-

resents topic 1 (‘telecon cancellation’), orange indicates topic 2
(‘TAG document’) and magenta represents topic 3 (‘responding
to I18N’)
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chat), meaning that different people from different
locations can collaborate at different times. There-
fore, topics in an email thread may not change in
sequential way. In the example, we see that topic 1
(i.e., ‘telecon cancellation’) is revisited after some
gaps.

The headers (i.e., subjects) do not convey much
information and are often misleading. In the exam-
ple thread, participants use the same subject (i.e.,
20030220 telecon) but they talk about ‘responding
to I18N’ and ‘TAG document’ instead of ‘telecon
cancellation’. Writing style varies among partici-
pants, and many people tend to use informal, short
and ungrammatical sentences. These properties of
email limit the application of techniques that have
been successful in monologues and dialogues.

LDA and LCSeg are the two state-of-the-art mod-
els for topic segmentation of multi-party conversa-
tion (e.g., (Galley et al., 2003), (Hsueh et al., 2006),
(Georgescul et al., 2008)). In this section, at first we
describe how the existing models of topic segmen-
tation can be applied to emails. We then point out
where these methods fail and propose extensions of
these basic models for email conversations.

4.1 Latent Dirichlet Allocation (LDA)
Our first model is the probabilistic LDA model
(Steyvers and Griffiths, 2007). This model relies on
the fundamental idea that documents are mixtures of
topics, and a topic is a multinomial distribution over
words. The generative topic model specifies the fol-
lowing distribution over words within a document:

P (wi) =
T∑

j=1

P (wi|zi = j)P (zi = j)

Where T is the number of topics. P (wi|zi = j) is
the probability of word wi under topic j and P (zi =
j) is the probability that jth topic was sampled for
the ith word token. We refer the multinomial dis-
tributions φ(j) = P (w|zi = j) and θ(d) = P (z)
as topic-word distribution and document-topic dis-
tribution respectively. (Blei et al., 2003) refined this
basic model by placing a Dirichlet (α) prior on θ.
(Griffiths and Steyvers, 2003) further refined it by
placing a Dirichlet (β) prior on φ. The inference
problem is to find φ and θ given a document set.
Variational EM has been applied to estimate these

two parameters directly. Instead of estimating φ and
θ, one can also directly estimate the posterior distri-
bution over z = P (zi = j|wi) (topic assignments
for words). One efficient estimation technique uses
Gibbs sampling to estimate this distribution.

This framework can be directly applied to an
email thread by considering each email as a doc-
ument. Using LDA we get z = P (zi = j|wi)
(i.e., topic assignments for words). By assuming the
words in a sentence occur independently we can esti-
mate the topic assignments for sentences as follows:

P (zi = j|sk) =
∏

wi∈sk

P (zi = j|wi)

where, sk is the kth sentence for which we can
assign the topic by: j∗ = argmaxjP (zi = j|sk).

4.2 Lexical Chain Segmenter (LCSeg)

Our second model is the lexical chain based seg-
menter LCSeg, (Galley et al., 2003). LCSeg as-
sumes that topic shifts are likely to occur where
strong term repetitions start and end9. LCSeg at first
computes ‘lexical chains’ for each non-stop word
based on word repetitions. It then ranks the chains
according to two measures: ‘number of words in the
chain’ and ‘compactness of the chain’. The more
compact (in terms of number of sentences) and the
more populated chains get higher scores.

The algorithm then works with two adjacent anal-
ysis windows, each of a fixed size k which is em-
pirically determined. For each sentence boundary,
LCSeg computes the cosine similarity (or lexical co-
hesion function) at the transition between the two
windows. Low similarity indicates low lexical cohe-
sion, and a sharp change signals a high probability
of an actual topic boundary. This method is similar
to TextTiling (Hearst, 1997) except that the similar-
ity is computed based on the scores of the ‘lexical
chains’ instead of ‘term counts’. In order to apply
LCSeg on email threads we arrange the emails based
on their temporal relation (i.e., arrival time) and ap-
ply the LCSeg algorithm to get the topic boundaries.

9One can also consider other lexical semantic relations (e.g.,
synonym, hypernym, hyponym) in lexical chaining. However,
Galley et al., (Galley et al., 2003) uses only repetition relation
as previous research results (e.g., (Choi, 2000)) account only
for repetition.
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From: Brian To: rdf core Subject: 20030220 telecon Date: Tue Feb 17 13:52:15 
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     From: Jeremy To: Brian Subject: Re: 20030220 telecon Date: Wed Feb 18 05:18:10 
 
���������������������	
�	����
�������������	���
����	
������
���
�����������
��������������������

�������$% ������



������

�����
#���

	!�
       I think that means we will not formally respond to I18N on the charmod comments, shall I tell them          [d] 
      that we do not intend to, but that the e-mail discussion has not shown any disagreement.  

e.g. I have informed the RDF Core WG of your decisions, and no one has indicated unhappiness                [e] 
- however we have not formally discussed these issues;  and are not likely to.  

 
From: Brian To: Jeremy Subject: Re: 20030220 telecon Date: Wed Feb 18 13:16:21  
 
> I think that means we will not formally respond to I18N on the charmod comments, shall  
> I tell them that we do not intend to, but that the e-mail discussion has not shown any disagreement.  
Ah. Is this a problem. Have I understood correctly they are going through last call again anyway.                [f] 
> e.g. I have informed the RDF Core WG of your decisions, and no one has indicated unhappiness  
> - however we have not formally discussed these issues; and are not likely to.  
When is the deadline? I'm prepared to decide by email so we can formally respond by email.                       [g] 
 
From: Pat To: Brian Subject: Re: 20030220 telecon Date: Wed Feb 18 16:56:26 
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From: Jeremy To: Brian Subject: Re: 20030220 telecon Date: Thu Feb 19 05:42:21 
 
> Ah. Is this a problem.  
> Have I understood correctly they are going through last call again anyway.  
Yes - I could change my draft informal response to indicate that if we have any other formal                        [j] 
response it will be included in our LC review comments on their new documents.  
> When is the deadline? 
> I'm prepared to decide by email so we can formally respond by email.  
Two weeks from when I received the message ....i.e. during Cannes                                                               [k] 
-I suspect that is also the real deadline, in that I imagine they want to make their final decisions at         
Cannes.  
I am happy to draft a formal response that is pretty vacuous, for e-mail vote.                                                  [l] 
  
 From: Brian To: Pat Subject: Re: 20030220 telecon Date: Thu Feb 19 06:10:53 
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>Likewise, whether or not anyone else in the WG agrees with any of my own personal comments, …[m] 
       ! 
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 From: Brian To: Jeremy  

       Subject: Re: 20030220 telecon Date: Thu Feb 19 10:06:57 
          
         > I am happy to draft a formal response that is pretty vacuous, for e-mail vote.  
         Please do.                                    [o]  

Figure 1: Sample thread from the BC3 corpus. Each dif-
ferent color/font indicates a different topic. Right most
column specifies the fragments (sec 4.4).

Figure 2: Fragment Quotation Graph for emails

4.3 Limitation of Existing Approaches

The main limitation of the two models discussed
above is that they take the bag-of-words (BOW)
assumption without considering the fact that an
email thread is a multi-party, asynchronous conver-
sation10. The only information relevant to LDA is
term frequency. LCSeg considers both term fre-
quency and how closely the terms occur in a docu-
ment. These models do not consider the word order,
syntax and semantics. However, several improve-
ments of LDA over the BOW approach have been
proposed. (Wallach, 2006) extends the model be-
yond BOW by considering n-gram sequences. (Grif-
fiths et al., 2005) presents an extension of the topic
model that is sensitive to word-order and automat-
ically learns the syntactic as well as semantic fac-
tors that guide word choice. (Boyd-Graber and Blei,
2010) describes another extension to consider syn-
tax of the text. As described earlier, one can also
incorporate lexical semantics (i.e., synonym, hyper-
nym, hyponym) into the LCSeg model. However,
we argue that these models are still inadequate for
finding topics in emails especially when topics are
closely related (e.g., ‘extending the meeting’ and
‘scheduling the meeting’) and distributional varia-
tions are subtle. To better identify the topics in an
email thread we need to consider the email specific
conversation features (e.g., reply-to relation, usage
of quotations). As can be seen in the example (Fig-
ure 1), people often use quotations to talk about the
same topic. In fact in our corpus we found an av-
erage quotation usage of 6.44 per thread. Therefore,

10though in LCSeg we provide minimal conversation struc-
ture in the form of temporal relation between emails.
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we need to leverage this useful information in a prin-
cipled way to get the best out of our models. Specif-
ically, we need to capture the conversation structure
at the fragment (quotation) level and to incorporate
this structure into our models.

In the next section, we describe how one can cap-
ture the conversation structure at the fragment level
in the form of Fragment Quotation Graph (hence-
forth, FQG). In Section 4.5 and 4.6 respectively, we
show how the LDA and LCSeg models can be ex-
tended so that they take this conversation structure
into account for topic segmentation.

4.4 Extracting Conversation Structure
We demonstrate how to build a FQG through the ex-
ample email thread involving 7 emails shown in Fig-
ure 1. For convenience we do not show the real con-
tent but abbreviate them as a sequence of fragments.

In the first pass by processing the whole thread
we identify the new (i.e., quotation depth 0) and
quoted (i.e., quotation depth > 0) fragments based
on the usage of quotation (>) marks. For instance,
email E3 contains two new fragments (f, g), and
two quoted fragments (d, e) of depth 1. E2 contains
abc and de. Then in the second step, we compare the
fragments with each other and based on the overlap
we find the distinct fragments. If necessary we split
the fragments in this step. For example, de in E2 is
divided into d and e distinct fragments when com-
pared with the fragments of E3. This process gives
15 distinct fragments which constitute the vertices
of the FQG. In the third step, we compute the edges,
which represent referential relations between frag-
ments. For simplicity we assume that any new frag-
ment is a potential reply to its neighboring quoted
fragments. For example, for the fragments of E4 we
create two edges from h ((h,a),(h,b)) and one edge
from i ((i,b)). We then remove the redundant edges.
In E6 we found the edges (n,h), (n,a) and (n,m). As
(h,a) is already there we exclude (n,a). The FQG
with all the redundant edges removed is shown at the
right in Figure 2. If an email does not contain quotes
then the fragments of that email are connected to the
fragments of the source email to which it replies.

The advantage of the FQG is that it captures the
conversation at finer granularity level in contrast to
the structure found by the ‘reply-to’ relation at the
email level, which would be merely a sequence from

E1 to E7 in this example. Another advantage of
this structure is that it allows us to find the ‘hidden
fragments’. Hidden fragments are quoted fragments
(shaded fragment m in fig 2 which corresponds to
the fragment made bold in fig 1), whose original
email is missing in the user’s inbox. (Carenini et
al., 2007) study this phenomenon and its impact on
email summarization in detail.

4.5 Regularizing LDA with FQG
The main advantage of the probabilistic (Bayesian)
models is that they allow us to incorporate multiple
knowledge sources in a coherent way in the form of
priors (or regularizer). We want to regularize LDA
in a way that will force two sentences in the same or
adjacent fragments to fall in the same topical cluster.
The first step forwards this aim is to regularize the
topic-word distribution with a word network such
that two connected words get similar topic distribu-
tions. Then we can easily extend it to fragments. In
this section, at first we describe how one can regu-
larize the LDA model with a word network, then we
extend this by regularizing LDA with FQG.

Assume we are given a word network as an undi-
rected graph with nodes (V ) representing the words
and the edges (E) representing the links between
words. We want to regularize the LDA model such
that two connected words u, v have similar topic-
word distributions (i.e., φ(u)

j ≈ φ(v)
j for j = 1 . . . T ).

Note that the standard conjugate Dirichlet prior on
φ is limited in that all words share a common vari-
ance parameter, and are mutually independent ex-
cept normalization constraint (Minka, 1999). There-
fore it does not allow us to encode this knowledge.
Very recently, (Andrzejewski et al., 2009) shows
how to encode ‘must-link’ and ‘cannot-link’ (be-
tween words) into the LDA model by using a Dirich-
let Forest prior. We reimplemented this model; how-
ever, we only use its capability of encoding ‘must-
links’. Therefore, we just illustrate how to encode
‘must-links’ here. Interested readers can see (An-
drzejewski et al., 2009) for the method of encoding
‘cannot-links’.

Must links such as (a, b), (b, c), or (x, y) in Fig-
ure 3(A) can be encoded into the LDA model by us-
ing a Dirichlet Tree (henceforth, DT) prior. Like the
traditional Dirichlet, DT is also a conjugate to the
multinomial but under a different parameterization.
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Instead of representing a multinomial sample as the
outcome of a K-sided die, in this representation we
represent a sample as the outcome of a finite stochas-
tic process. The probability of a leaf is the product of
branch probabilities leading to that leaf. The words
constitute the leaves of the tree.

DT distribution is the distribution over leaf prob-
abilities. Let ωn be the DT edge weight leading into
node n, C(n) be the children of node n, L be the
leaves of the tree, I the internal nodes, and L(n)
be the leaves in the subtree under n. We gener-
ate a sample φk from Dirichlet Tree(Ω) by draw-
ing a multinomial at each internal node i ∈ I from
Dirichlet(ωC(i)) (i.e., the edge weights from i to
its children). The probability density function of
DT(φk|Ω) is given by:

DT (φk|Ω) ≈
(∏

l∈L φ
kωl−1

l

)(∏
i∈I

(∑
j∈L(i) φ

k
j

)∆(i)
)

Here ∆(i) = ωi −
∑

j∈C(i) ω
j (i.e., the differ-

ence between the in-degree and out-degree of inter-
nal node i. Note that if ∆(i) = 0 for all i ∈ I , then
the DT reduces to the typical Dirichlet distribution.

Suppose we have the following (Figure 3(A))
word network. The network can be decomposed
into a collection of chains (e.g., (a,b,c), (p), and
(x,y)). For each chain having number of elements
more than one (e.g., (a,b,c), (x,y)), we have a subtree
(see Figure 3(B)) in the DT with one internal node
(blank in figure) and the words as leaves. We assign
λβ as the weights of these edges where λ is the reg-
ularization strength and β is the hyperparameter of
the symmetric Dirichlet prior on φ. The root node of
the Dirichlet tree then connects to the internal node i
with weight |L(i)|β. The other nodes (words) which
form single element chains (e.g, (p)) are connected
to the root directly with weight β. Notice that when
λ = 1 (i.e., no regularization), ∆(i) = 0 and our
model reduces to the original LDA. By tuning λ we
control the strength of regularization.

Figure 3: Incorporating word network into DT

To regularize LDA with FQG, we form the word
network where a word is connected to the words in
the same or adjacent fragments. Specifically, if word
wi ∈ fragx and word wj ∈ fragy (wi 6= wj), we
create a link (wi, wj) if x = y or (x, y) ∈ E, where
E is the set of edges of the FQG. Implicitly by doing
this we want two sentences in the same or adjacent
fragments to have similar topic distributions, and fall
in the same topical cluster.

4.6 LCSeg with FQG
If we examine the FQG carefully, different paths
(considering the fragments of the first email as root
nodes) can be interpreted as subconversations. As
we walk down a path topic shifts may occur along
the pathway. We incorporate FQG into the LCSeg
model in three steps. First, we extract the paths of
a FQG. We then apply LCSeg algorithm on each of
the extracted paths separately. This process gives the
segmentation decisions along the paths of the FQG.
Note that a fragment can be in multiple paths (e.g.,
f , g, in Figure 2) which will cause its sentences to
be in multiple segments found by LCSeg. There-
fore, as a final step we need a consolidation method.
Our intuition is that sentences in a consolidated seg-
ment should fall in same segments more often when
we apply LCSeg in step 2. To consolidate the seg-
ments found, we form a weighted undirected graph
where the vertices V represent the sentences and the
edge weights w(u, v) represent the number of times
sentence u and v fall in the same segment. The con-
solidation problem can be formulated as a N-mincut
graph partitioning problem where we try to optimize
the Normalized Cut criterion:

Ncut(A,B) =
cut(A,B)
assoc(A, V )

+
cut(B,A)
assoc(B, V )

where cut(A,B) = Σu∈A,v∈Bw(u, v) and
assoc(A, V ) = Σu∈A,t∈V w(u, t) is the total con-
nection from nodes in partition A to all nodes in the
graph and assoc(B, V ) is similarly defined. How-
ever, solving this problem turns out to be NP-hard.
Hence, we approximate the solution following (Shi
and Malik, 2000) which has been successfully ap-
plied to image segmentation in computer vision.

This approach makes a difference only if FGQ
contains more than one path. In fact in our corpus
we found an average paths of 7.12 per thread.
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Avg. Topic LDA LDA +FQG LCSeg LCSeg +FQG Speaker Block 5
Number 2.10 1.90 2.2 2.41 4.87 5.69
Length 13.3 15.50 13.12 12.41 5.79 4.60
Density 1.83 1.60 1.01 1.39 1.37 1.00
Entropy 0.98 0.75 0.81 0.93 1.88 2.39

Table 3: Corpus statistics of different system’s annotation

5 Experiments

We ran our four systems LDA, LDA+FQG, LCSeg,
and LCSeg+FQG on the dataset11. The statistics
of these four annotations and two best performing
baselines (i.e., ‘Speaker’ and ‘Block 5’ as described
below) are shown in Table 3. For brevity we just
mention the average measures. Comparing with Ta-
ble 1, we see that these fall within the bounds of the
human annotations.

We compare our results in Table 4, where we also
provide the results of some simple baseline systems.
We evaluated the following baselines and report the
best two in Table 4.

All different: Each sentence is a separate topic.
All same: The whole thread is a single topic.
Speaker: The sentences from each participant

constitute a separate topic.
Blocks of k(= 5, 10, 15): Each consecutive

group of k sentences is a topic.
Most of these baselines perform rather poorly.

All different is the worst baseline with mean 1-to-
1 score of 0.10 (max: 0.33, min: 0.03) and mean
loc3 score of 0.245 (max: 0.67, min: 0). Block
10 has mean 1-to-1 score of 0.35 (max: 0.71, min:
0.13) and mean loc3 score of 0.584 (max: 0.76,
min: 0.31). Block 15 has mean 1-to-1 score of
0.32 (max: 0.77, min: 0.16) and mean loc3 score
of 0.56 (max: 0.82, min: 0.38). All same is optimal
for threads containing only one topic, but its perfor-
mance rapidly degrades as the number of topics in
a thread increases. It has mean 1-to-1 score of 0.28
(max: 112, min: 0.11) and mean loc3 score of 0.54

11For a fair comparison of the systems we set the same topic
number per thread for all of them. If at least two of the anno-
tators agree on the topic number we set that number, otherwise
we set the floor value of the average topic number. λ is set to 20
in LDA+FQG.

12The maximum value of 1 is due to the fact that for some
threads some annotators found only one topic

(max: 1, min: 0.34).
As shown in Table 4, Speaker and Blocks of 5 are

two strong baselines especially for the loc3. In gen-
eral, our systems perform better than the baselines,
but worse than the gold standard. Of all the systems,
the basic LDA model performs very disappointingly.
In the local agreement it even fails to beat the base-
lines. A likely explanation is that the independence
assumption made by LDA when computing the dis-
tribution over topics for a sentence from the distribu-
tion over topics for the words causes sentences in a
local context to be excessively distributed over top-
ics. Another possible explanation for LDA’s disap-
pointing performance is the limited amount of data
available for training. In our corpus, the average
number of sentences per thread is 26.3 (see table 1)
which might not be sufficient for the LDA models.

If we compare the performance of the regularized
LDA (in the table LDA+FQG) with the basic LDA
we get a significant (p=0.0002 (1-to-1), p=9.8e-07
(loc3)) improvement in both of the measures 13. This
supports our claim that sentences connected by ref-
erential relations in the FQG usually refer to the
same topic. The regularization also prevents the lo-
cal context from being overly distributed over topics.

A comparison of the basic LCSeg with the basic
LDA reveals that LCSeg is a better model for email
topic segmentation (p=0.00017 (1-to-1), p<2.2e-16
(loc3)). One possible reason is that LCSeg extracts
the topics keeping the local context intact. An-
other reason could be the term weighting scheme
employed by LCSeg. Unlike LDA, which considers
only ‘repetition’, LCSeg also considers how tightly
the ‘repetition’ happens. When we incorporate the
conversation structure (i.e., FQG) into LCSeg (in the
table LCSeg+FQG), we get a significant improve-
ment in the 1-to-1 measure over the basic LCSeg
(p=0.0014). Though the local context (i.e., loc3) suf-

13Tests of significance were done by paired t-test with df=116
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Baselines Systems Human
Scores Speaker Block 5 LDA LDA+FQG LCSeg LCSeg+FQG
Mean 1-to-1 0.52 0.38 0.57 0.62 0.62 0.68 0.80
Max 1-to-1 0.94 0.77 1.00 1.00 1.00 1.00 1.00
Min 1-to-1 0.23 0.14 0.24 0.24 0.33 0.33 0.31
Mean loc3 0.64 0.57 0.54 0.61 0.72 0.71 0.83
Max loc3 0.97 0.73 1.00 1.00 1.00 1.00 1.00
Min loc3 0.27 0.42 0.38 0.38 0.40 0.40 0.43

Table 4: Comparison of Human, System and best Baseline annotations

fers a bit, the decrease in performance is minimal
and it is not significant. The fact that LCSeg is a
better model than LDA is also preserved when we
incorporate FQG into them (p=2.140e-05 (1-to-1),
p=1.3e-09 (loc3)). Overall, LCSeg+FQG is the best
model for this data.

6 Future Work

There are some other important features that our
models do not consider. The ‘Speaker’ feature is
a key source of information. A participant usu-
ally contributes to the same topic. The best base-
line ‘Speaker’ in Table 4 also favours this claim.
Another possibly critical feature is the ‘mention of
names’. In multi-party discussion people usually
mention each other’s name for the purpose of dis-
entanglement (Elsner and Charniak, 2008). In our
corpus we found 175 instances where a participant
mentions other participant’s name. In addition to
these, ‘Subject of the email’, ‘topic-shift cue words’
can also be beneficial for a model. As a next step
for this research, we will investigate how to exploit
these features in our methods.

We are also interested in the near future to transfer
our approach to other similar domains by hierarchi-
cal Bayesian multi-task learning and other domain
adaptation methods. We plan to work on both syn-
chronous (e.g., chats, meetings) and asynchronous
(e.g., blogs) domains.

7 Conclusion

In this paper we presented an email corpus annotated
for topic segmentation. We extended LDA and LC-
Seg models by incorporating the fragment quotation
graph, a fine-grain model of the conversation, which
is based on the analysis of quotations. Empirical

evaluation shows that the fragment quotation graph
helps both these models to perform significantly bet-
ter than their basic versions, with LCSeg+FQG be-
ing the best performer.
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Abstract

Several recent discourse parsers have em-
ployed fully-supervised machine learning ap-
proaches. These methods require human an-
notators to beforehand create an extensive
training corpus, which is a time-consuming
and costly process. On the other hand, un-
labeled data is abundant and cheap to col-
lect. In this paper, we propose a novel
semi-supervised method for discourse rela-
tion classification based on the analysis of co-
occurring features in unlabeled data, which is
then taken into account for extending the fea-
ture vectors given to a classifier. Our exper-
imental results on the RST Discourse Tree-
bank corpus and Penn Discourse Treebank in-
dicate that the proposed method brings a sig-
nificant improvement in classification accu-
racy and macro-average F-score when small
training datasets are used. For instance, with
training sets of c.a. 1000 labeled instances, the
proposed method brings improvements in ac-
curacy and macro-average F-score up to 50%
compared to a baseline classifier. We believe
that the proposed method is a first step towards
detecting low-occurrence relations, which is
useful for domains with a lack of annotated
data.

1 Introduction

Automatic detection of discourse relations in natu-
ral language text is important for numerous tasks in
NLP, such as sentiment analysis (Somasundaran et
al., 2009), text summarization (Marcu, 2000) and di-
alogue generation (Piwek et al., 2007). However,
most of the recent work employing discourse re-
lation classifiers are based on fully-supervised ma-
chine learning approaches (duVerle and Prendinger,

2009; Pitler et al., 2009; Lin et al., 2009). Two
of the main corpora with discourse annotations are
the RST Discourse Treebank (RSTDT) (Carlson et
al., 2001) and the Penn Discourse Treebank (PDTB)
(Prasad et al., 2008a), which are both based on the
Wall Street Journal (WSJ) corpus.

In the RSTDT, annotation is done using 78
fine-grained discourse relations, which are usually
grouped into 18 coarser-grained relations. Each of
these relations has furthermore several possible con-
figurations for its arguments—its ‘nuclearity’ (Mann
and Thompson, 1988). In practice, a classifier
trained on these coarse-grained relations must solve
a 41-class classification problem. Some of the re-
lations corresponding to these classes are relatively
more frequent in the corpus, such as the ELAB-
ORATION[N][S] relation (4441 instances), or the
ATTRIBUTION[S][N] relation (1612 instances).1

However, other relation types occur very rarely,
such as TOPIC-COMMENT[S][N] (2 instances), or
EVALUATION[N][N] (3 instances). A similar phe-
nomenon can be observed in PDTB, in which 15
level-two relations are employed: Some, such as
EXPANSION.CONJUNCTION, occur as often as 8759
times throughout the corpus, whereas the remainder
of the relations, such as EXPANSION.EXCEPTION

and COMPARISON.PRAGMATIC CONCESSION, can
appear as rarely as 17 and 12 times respectively. Al-
though supervised approaches to discourse relation
learning achieve good results on frequent relations,
performance is poor on rare relation types (duVerle
and Prendinger, 2009).

Nonetheless, certain infrequent relation types
might be important for specific tasks. For instance,

1We use the notation [N] and [S] respectively to denote the
nucleus and satellite in a RST discourse relation.
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capturing the RST TOPIC-COMMENT[S][N] and
EVALUATION[N][N] relations can be useful for
sentiment analysis (Pang and Lee, 2008).

Another situation where detection of low-
occurring relations is desirable is the case where we
have only a small training set at our disposal, for in-
stance when there is not enough annotated data for
all the relation types described in a discourse the-
ory. In this case, all the dataset’s relations can be
considered rare, and being able to build an efficient
classifier depends on the capacity to deal with this
lack of annotated data.

Our contributions in this paper are summarized as
follows.

• We propose a semi-supervised method that
exploits the abundant, freely-available unla-
beled data, which is harvested for feature co-
occurrence information, and used as a basis to
extend feature vectors to help classification for
cases where unknown features are found in test
vectors.

• The proposed method is evaluated on the
RSTDT and PDTB corpus, where it signifi-
cantly improves accuracy and macro-average
F-score when small training sets are used. For
instance, when trained on moderately small
datasets with ca. 1000 instances, the proposed
method increases the macro-average F-score
and accuracy up to 50%, compared to a base-
line classifier.

2 Related Work

Since the release in 2001 of the RSTDT corpus,
several fully-supervised discourse parsers have been
built in the RST framework. In the recent work of
duVerle and Prendinger (2009), a discourse parser
based on Support Vector Machines (SVM) (Vapnik,
1995) is proposed. SVMs are employed to train two
classifiers: One, binary, for determining the pres-
ence of a relation, and another, multi-class, for deter-
mining the relation label between related text spans.
For the discourse relation classifier, shallow lexical,
syntactic and structural features, including ‘domi-
nance sets’ (Soricut and Marcu, 2003) are used. For
relation classification, they report an accuracy of
0.668, and an F-score of 0.509 for the creation of
the full discourse tree.

The unsupervised method of Marcu and Echihabi
(2002) was the first that tried to detect implicit rela-
tions (i.e. relations not accompanied by a cue phrase,
such as ‘however’, ‘but’), using word pairs extracted
from two spans of text. Their method attempts to
capture the difference of polarity in words. For ex-
ample, the word pair (sell, hold) indicates a CON-
TRAST relation.

Discourse relation classifiers have also been
trained using PDTB. Pitler et al. (2008) performed a
corpus study of the PDTB, and found that ‘explicit’
relations can be most of the times distinguished by
their discourse connectives. Their discourse relation
classifier reported an accuracy of 0.93 for explicit
relations and in overall an accuracy of 0.744 for all
relations in PDTB.

Lin et al. (2009) studied the problem of detecting
implicit relations in PDTB. Their relational classi-
fier is trained using features extracted from depen-
dency paths, contextual information, word pairs and
production rules in parse trees. They reported for
their classifier an accuracy of 0.402, which is an im-
provement of 14.1% over the previous state-of-the-
art for implicit relation classification in PDTB. For
the same task, Pitler et al. (2009) also used word
pairs, as well as several other types of features such
as verb classes, modality, context, and lexical fea-
tures.

In text classification, similarity measures have
been employed in kernel methods, where they have
been shown to improve accuracy over ‘bag-of-
words’ approaches. In Siolas and d’Alché-Buc
(2000), a semantic proximity measure based on
WordNet (Fellbaum, 1998) is defined, as a basis to
create a proximity matrix for all terms of the prob-
lem. This matrix is then used to smooth the vectorial
data, and the resulting ‘semantic’ metric is incorpo-
rated into a SVM kernel, resulting in a significant
increase of accuracy and F-score over a baseline.

Cristianini et al. (2002) have used a lexical sim-
ilarity measure derived from Latent Semantic In-
dexing (Deerwester et al., 1990), where the seman-
tic similarity between two terms is inferred from
the analysis of their co-occurrence patterns: Terms
that co-occur often in the same documents are con-
sidered as related. In this work, the statistical co-
occurrence information is extracted by the means of
singular value decomposition. The authors observe
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substantial improvements in performance for some
datasets, while little effect is obtained for others.

Semantic kernels have also been shown to be effi-
cient for text classification tasks, in the case in of un-
balanced and sparse datasets. In Basili et al. (2006),
a ‘conceptual density’ metric based on WordNet is
introduced, and employed in a SVM kernel. Using
this metric results in improved accuracy of 10% for
text classification in poor training conditions. How-
ever, the authors observe that when the number of
training documents is increased, the improvement
produced by the semantic kernel is lower.

Bloehdorn et al. (2006) compare the performance
of different semantic kernels, based on several mea-
sures of semantic relatedness in WordNet. For each
measure, the authors note a performance increase
when little training data is available, or when the
feature representations are very sparse. However,
for our task, classification of discourse relations, we
employ not only words but also other types of fea-
tures such as parse tree production rules, and thus
cannot compute semantic kernels using WordNet.

In this paper, we are not aiming at defining
novel features for improving performance in RST or
PDTB relation classification. Instead we incorporate
numerous features that have been shown to be useful
for discourse relation learning and explore the pos-
sibilities of using unlabeled data for this task. One
of our goals is to improve classification accuracy for
rare discourse relations.

3 Method

Given a set of unlabeled instances U and labeled in-
stances L, our objective is to learn an n-class rela-
tion classifier H such that for a given test instance
x return its correct relation type H(x). In the case
of discourse relation learning we are interested in
the situation where |U | >> |L|. Here, we use the
notation |A| to denote the number of elements in a
set A. A fundamental problem that one encounters
when trying to learn a classifier for a large number
of relations with small training dataset is that most
of the features that appear in the test instances ei-
ther never occur in training instances or appear a
small number of times. Therefore, the classifica-
tion algorithm does not have sufficient information
to correctly predict the relation type of the given test

instance. We propose a method that first computes
the co-occurrence between features using unlabeled
data and use that information to extend the feature
vectors during training and testing, thereby reducing
the sparseness in test feature vectors. In Section 3.1,
we introduce the concept of feature co-occurrence
matrix and describe how it is computed using unla-
beled data. A method to extend feature vectors dur-
ing training and testing is presented in Section 3.2.
We defer the details on exact features used in the
method to Section 3.3. It is noteworthy that the
proposed method does not depend or assume a par-
ticular multi-class classification algorithm. Conse-
quently, it can be used with any multi-class classifi-
cation algorithm to learn a discourse relation classi-
fier.

3.1 Feature Co-occurrence Matrix

We represent an instance using a d dimensional fea-
ture vector f = [f1, . . . , fd]T, where fi ∈ R. We
define a feature co-occurrence matrix, C such that
the (i, j)-th element of C, C(i,j) ∈ [0, 1] denotes
the degree of co-occurrence between the two fea-
tures fi and fj . If both fi and fj appear in a fea-
ture vector then we define them to be co-occurring.
The number of different feature vectors in which fi
and fj co-occur is denoted by the function h(fi, fj).
From our definition of co-occurrence it follows that
h(fi, fj) = h(fj , fi). Importantly, feature co-
occurrences can be calculated only using unlabeled
data.

Feature co-occurrence matrices can be computed
using any co-occurrence measure. For the current
task we use the χ2-measure (Plackett, 1983) as the
preferred co-occurrence measure because of its sim-
plicity. χ2-measure between two features fi and fj
is defined as follows,

χ2
i,j =

2∑
k=1

2∑
l=1

(Oi,jk,l − E
i,j
k,l)

2

Ei,jk,l
. (1)

Therein,Oi,j andEi,j are the 2×2 matrices contain-
ing respectively observed frequencies and expected
frequencies, which are respectively computed using
C as,

Oi,j =
(

h(fi, fj) Zi − h(fi, fj)
Zj − h(fi, fj) Zs − Zi − Zj

)
, (2)
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and

Ei,j =

(
Zi·Zj

Zs

Zi·(Zs−Zj)
Zs

Zj ·(Zs−Zi)
Zs

(Zs−Zi)·(Zs−Zj)
Zs

)
. (3)

Here, Zi =
∑

k 6=i h(fi, fk), and Zs =
∑n

i=1 Zi.
Finally, we create the feature co-occurrence ma-

trix C, such that, for all pairs of features (fi, fj),

C(i,j) =
{
χ̂2
i,j if χ2

i,j > c

0 otherwise
. (4)

Here χ̂2
i,j =

χ2
i,j−χ2

min

χ2
max−χ2

min
∈ [0, 1], and c is the critical

value, which, for a confidence level of 0.05 and one
degree of freedom, can be set to 3.84. KeepingC(i,j)

in the range [0, 1] makes it convenient to filter out
low-relevance co-occurrences at the feature vector
extension step of Section 3.2.

In discourse relation learning, the feature space
can be extremely large. For example, with word
pair features (discussed later in Section 3.3), any
two words that appear in two adjoining discourse
units can form a feature. Because the number of
elements in the feature co-occurrence matrix is pro-
portional to the square of the feature space’s dimen-
sion, computing co-occurrences for all pairs of fea-
tures can be computationally costly. Moreover, stor-
ing a large matrix in memory for further computa-
tions can be problematic. To reduce the dimension-
ality and improve the sparseness in the feature co-
occurrence matrix, we use entropy-based feature se-
lection (Manning and Schütze, 1999). The negative
entropy, E(fi), of a feature fi is defined as follows,

E(fi) = −
∑
j 6=i

p(i, j) · log (p (i, j)) . (5)

Here, p(i, j) is the probability that feature fi co-
occurs with feature fj , and is given by p(i, j) =
h(fi, fj)/Zi.

If a particular feature fi co-occurs with many
other features, then its negative entropy E(fi) de-
creases. Because we are interested in identifying
salient co-occurrences between features, we can ig-
nore the features that tend to co-occur with many
other features. Consequently, we sort the features in
the descending order of their entropy, and select the
top rankedN number of features to build the feature

co-occurrence matrix. This feature selection proce-
dure can efficiently reduce the dimensions of the fea-
ture co-occurrence matrix to N × N . Because the
feature co-occurrence matrix is symmetric, we must
only store the elements for the upper (or lower) tri-
angular portion of it.

3.2 Feature Vector Extension
Once the feature co-occurrence matrix is computed
using unlabeled data as described in Section 3.1, we
can use it to extend a feature vector during train-
ing and testing. The proposed feature vector exten-
sion method is inspired by query expansion in the
field of Information Retrieval (Salton and Buckley,
1983; Fang, 2008). One of the reasons that a clas-
sifier might perform poorly on a test instance is that
there are features in the test instance that were not
observed during training. We call FU = {fi} the
set of features that were not observed by the clas-
sifier during training (i.e. occurring in test data but
not in training data). For each of those features, we
use the feature co-occurrence matrix to find the set
of co-occurring features, Fc(fi).

Let us denote the feature vector corresponding to
a training or test instance x by fx. We use the su-
perscript notation, f ix to denote the i-th feature in fx.
Moreover, the total number of features of fx is indi-
cated by d(x). For a feature f ix in fx, we define n(i)
number of expansion features, f (i,1)

x , . . . , f
(i,n(i))
x as

follows. First, we require that each expansion fea-
ture f (i,j)

x belongs to Fc(fi). Second, the value of
f

(i,j)
x is set to f ix · C(i,j). The expansion features

for each feature f ix are then appended to the orig-
inal feature vector fx to create an extended feature
vector, f ′x, where,

f ′x = (f1
x , . . . , f

d(x)
x , (6)

f (i,1)
x , . . . , f (i,n(i))

x , . . . ,

f (d(x),1)
x , . . . , f (d(x),n(d(x))

x ).

In total, doing so augments the original vector’s size
by
∑

fi∈U |Fc(fi)|. All training and test instances
are extended in this fashion.

Note that because this process can potentially in-
crease the dimension too much, it is possible to re-
tain only candidate co-occurring features of Fc(fi)
possessing a co-occurrence value C(i,j) above a cer-
tain threshold. In the experiments of Section 4 how-
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ever, we experienced dimension increase of 10000 at
most, which did not require us to use thresholding.

3.3 Features

We use three types of features: Word pairs, produc-
tion rules from the parse tree, as well as features en-
coding the lexico-syntactic context at the border be-
tween two units of text (Soricut and Marcu, 2003).
Our word pairs are lemmatized using the Wordnet-
based lemmatizer of NLTK (Loper and Bird, 2002).

Figure 1 shows the parse tree for a sentence com-
posed of two discourse units, which serve as argu-
ments of a discourse relation we want to generate a
feature vector from. Lexical heads have been calcu-
lated using the projection rules of Magerman (1995),
and annotated between brackets. Surrounded by
dots is, for each argument, the minimal set of sub-
parse trees containing strictly all the words of the
argument.

We first extract all possible lemmatized word-
pairs from the two arguments, such as (Mr., when),
(decline, ask) or (comment, sale). Next, we extract
from left and right argument separately, all produc-
tion rules from the sub-parse trees, such as NP 7→
NNP NNP, NNP 7→ “Sherry” or TO 7→ “to”.

Finally, we encode in our features three nodes of
the parse tree, which capture the local context at the
connection point between the two arguments: The
first node, which we call Nw, is the highest ances-
tor of the first argument’s last word w, and is such
that Nw’s right-sibling is the ancestor of the second
argument’s first word. Nw’s right-sibling node is
called Nr. Finally, we call Np the parent of Nw and
Nr. For each node, we encode in the feature vec-
tor its part-of-speech (POS) and lexical head. For
instance, in Figure 1, we have Nw = S(comment),
Nr = SBAR(when), and Np = VP(declined). In the
PDTB, certain discourse relations have disjoint ar-
guments. In this case, as well as in the case where
the two arguments belong to different sentences, the
nodes Nw, Nr, Np cannot be defined, and their cor-
responding features are given the value zero.

4 Experiments

The proposed method is independent of any partic-
ular classification algorithm. Because our goal is
strictly to evaluate the relative benefit of employing

the proposed method, and not the absolute perfor-
mance when used with a specific classification algo-
rithm, we select a logistic regression classifier, for its
simplicity. We use the multi-class logistic regression
(maximum entropy model) implemented in the Clas-
sias toolkit (Okazaki, 2009). Regularization param-
eters are set to their default value of one and are fixed
throughout the experiments described in the paper.

To create our unlabeled dataset, we use sentences
extracted from the English Wikipedia2, as they are
freely available and relatively easy to collect. For
further extraction of syntactic features, these sen-
tences are automatically parsed using the Stanford
parser (Klein and Manning, 2003). Then, they are
segmented into elementary discourse units (EDUs)
using our sequential discourse segmenter (Hernault
et al., 2010). The relatively high performance of
this RST segmenter, which has an F-score of 0.95
compared to that of 0.98 between human annota-
tors (Soricut and Marcu, 2003), is acceptable for this
task. We collect and parse 100000 sentences from
random Wikipedia articles. As there is no segmen-
tation tool for the PDTB framework, we assume that
co-occurrence information taken from EDUs created
using a RST segmenter is also useful for extending
feature vectors of PDTB relations. Unless other-
wise noted, the experiments presented in the rest of
this paper are done using those 100000 unlabeled in-
stances.

In the unlabeled data, any two consecutive dis-
course units might not always be connected by a dis-
course relation. Therefore, we introduce an artificial
NONE relation in the training set, in order to facil-
itate this. Instances of the NONE relation are gen-
erated randomly by pairing consecutive discourse
units which are not connected by a discourse relation
in the training data. NONE is also learnt as a separate
discourse relation class by the multi-class classifica-
tion algorithm. This enables us to detect discourse
units between which there exist no discourse rela-
tion, thereby improving the classification accuracy
for other relation types.

We follow the common practice in discourse re-
search for partitioning the discourse corpora into
training and test set. For the RST classifier, the
dedicated training and test sets of the RSTDT are

2http://en.wikipedia.org
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NP (Sherry)

S (declined)

VP (declined)
NNP NNP

declined

VBD (declined)

Mr. Sherry to

VP (comment)

comment when asked about the sales

TO VP

SBAR (when)

WHADVP (when)

WRB

S (asked)

VP (asked)

VBN PP (about)

IN NP (sales)
DT NNS

.

. (.)

Argument 1 Argument 2

VB

S (comment)

Figure 1: Two arguments of a discourse relation, and the minimum set of subtrees that contain them—lexical heads
are indicated between brackets.

employed. For the PDTB classifier, we conform to
the guidelines of Prasad et al. (2008b, 5): The por-
tion of the corpus corresponding to sections 2–21
of the WSJ is used for training the classifier, while
the portion corresponding to WSJ section 23 is used
for testing. In order to extract syntactic features, all
training and test data are furthermore aligned with
their corresponding parse trees in the Penn Treebank
(Marcus et al., 1993).

Because in the PDTB an instance can be
annotated with several discourse relations
simultaneously—called ‘senses’ in Prasad et
al. (2008b)—for each instance with n senses in
the corpus, we create n identical feature vectors,
each being labeled by one of the instance’s senses.
However, in the RST framework, only one relation
is allowed to hold between two EDUs. Conse-
quently, each instance from the RSTDT is labeled
with a single discourse relation, from which a
single feature vector is created. For RSTDT, we
extract 25078 training vectors and 1633 test vectors.
For PDTB we extract 49748 training vectors and
1688 test vectors. There are 41 classes (relation
types) in the RSTDT relation classification task,
and 29 classes in the PDTB task. For the PDTB,
we selected level-two relations, because they have
better expressivity and are not too fine-grained.
We experimentally set the entropy-based feature
selection parameter to N = 5000. With large N
values, we must store and process large feature
co-occurrence matrices. For example, doubling
the number of selected features, N to 10000 did

not improve the classification accuracy, although
it required 4GB of memory to store the feature
co-occurrence matrix.

Figure 2 shows the number of features that occur
in test data but not in labeled training data, against
the number of training instances. It can be seen from
Figure 2 that, with less training data available to the
classifier, we can potentially obtain more informa-
tion regarding features by looking at unlabeled data.
However, when the training dataset’s size increases,
the number of features that only appear in test data
decreases rapidly. This inverse relation between the
training dataset size and the number of features that
only appear in test data can be observed in both
RSTDT and PDTB datasets. For a training set of
100 instances, there are 23580 unseen features in
the case of RSTDT, and 27757 in the case of PDTB.
The number of unseen features is halved for a train-
ing set of 1800 instances in the case of RSTDT, and
for a training set of 1300 instances in the case of
PDTB. Finally, when selecting all available training
data, we count only 1365 unseen test features in the
case of RSTDT, and 87 in the case of PDTB.

In the following experiments, we use macro-
averaged F-scores to evaluate the performance of the
proposed discourse relation classifier on test data.
Macro-averaged F-score is not influenced by the
number of instances that exist in each relation type.
It equally weights the performance on both frequent
relation types and infrequent relation types. Because
we are interested in measuring the overall perfor-
mance of a discourse relation classifier across all re-
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Figure 2: Number of features seen only in the test set, as
a function of the number of training instances used.

lation types we use macro-averaged F-score as the
preferred evaluation metric for this task.

We train a multi-class logistic regression model
without extending the feature vectors as a baseline
method. This baseline is expected to show the ef-
fect of using the proposed feature vector extension
approach for the task of discourse relation learn-
ing. Experimental results on RSTDT and PDTB
datasets are depicted in Figures 3 and 4. From
these figures, we see that the proposed feature ex-
tension method outperforms the baseline for both
RSTDT and PDTB datasets for the full range of
training dataset sizes. However, whereas the differ-
ence of scores between the two methods is obvious
for small amounts of training data, this difference
progressively decreases as we increase the amount
of training data. Specifically, with 100 training in-
stances, the difference between baseline and pro-
posed method is the largest: For RSTDT, the base-
line has a macro-averaged F-score of 0.084, whereas
the the proposed method has a macro-averaged F-
score of 0.189 (ca. 119% increase in F-score). For
PDTB, the baseline has an F-score of 0.016, while
the proposed method has an F-score of 0.089 (459%
increase). The difference of scores between the two
methods then progressively diminishes as the num-
ber of training instances is increased, and fades be-
yond 10000 training instances. The reason for this
behavior is given by Figure 2: For a small number
of training instances, the number of unseen features
in training data is large. In this case, the feature vec-

tor extension process is comprehensive, and score
can be increased by the use of unlabeled data. When
more training data is progressively used, the num-
ber of unseen test features sharply diminishes, which
means feature vector extension becomes more lim-
ited, and the performance of the proposed method
gets progressively closer to the baseline. Note that
we plotted PDTB performance up to 25000 train-
ing instances, as the number of unseen test features
becomes so small past this point that the perfor-
mances of the proposed method and baseline are
identical. Using all PDTB training data (49748 in-
stances), both baseline and proposed method reach a
macro-average F-score of 0.308.
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Figure 3: Macro-average F-score (RSTDT) as a function
of the number of training instances used.
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Figure 4: Macro-average F-score (PDTB) as a function
of the number of training instances used.
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#Tr = 1 #Tr = 2 #Tr = 3 #Tr = 5 #Tr = 7

Relation name B. P.M. B. P.M. B. P.M. B. P.M. B. P.M.

Attribution[N][S] – 0.127 – 0.237 – 0.458 0.038 0.290 0.724 0.773
Attribution[S][N] – 0.597 – 0.449 0.009 0.639 0.250 0.721 0.579 0.623
Background[N][S] – 0.113 – – – 0.036 – 0.095 – 0.089
Cause[N][S] – – – 0.128 – – – 0.034 0.057 0.187
Comparison[N][S] – 0.118 – 0.037 – – 0.133 0.130 0.143 0.031
Condition[N][S] – 0.041 – 0.136 – 0.113 – 0.154 0.242 0.152
Condition[S][N] – – – 0.122 0.133 0.148 0.214 0.233 0.390 0.308
Contrast[N][N] – – – 0.086 – 0.073 0.050 0.111 – 0.109
Contrast[N][S] – 0.071 – – – 0.188 – 0.087 – 0.136
Elaboration[N][S] – 0.134 – 0.126 0.004 0.067 0.004 0.340 – 0.165
Enablement[N][S] – – – 0.462 – 0.579 0.115 0.423 0.419 0.438
Joint[N][N] – 0.030 – 0.015 – – 0.016 0.059 0.015 0.155
Manner-Means[N][S] – – – 0.056 – 0.103 0.345 0.372 0.412 0.383
Summary[N][S] – 0.429 – 0.453 0.080 0.358 – 0.349 0.154 0.471
Temporal[N][S] – 0.158 – – – 0.091 – 0.052 0.204 0.101

Accuracy 0.000 0.110 0.000 0.105 0.004 0.146 0.034 0.222 0.122 0.213
Macro-average F-score 0.000 0.060 0.000 0.069 0.008 0.101 0.038 0.118 0.107 0.134

Table 1: F-scores for RSTDT relations, using a training set containing #Tr instances of each relation. B. indicates
F-score for baseline, P.M. for the proposed method. A boldface indicates the best classifier for each relation.

Although the distribution of discourse relations
in RSTDT and PDTB is not uniform, it is possi-
ble to study the performance of the proposed method
when all relations are made equally rare. We evalu-
ate performance on artificially-created training sets
containing an equal amount of each discourse rela-
tion. Table 1 contains the F-score for each RSTDT
relation, using training sets containing respectively
one, two, three, five and seven instances of each
relation. For space considerations, only relations
with significant results are shown. We observe that,
when using respectively one and two instances of
each relation, the baseline classifier is unable to de-
tect any relation, and has a macro-average F-score
of zero. Contrastingly, the classifier built with fea-
ture vector extension reaches in those cases an F-
score of 0.06. Furthermore, when employing the
proposed method, certain relations have relatively
high F-scores even with very little labeled data: With
one training instance, ATTRIBUTION[S][N] has an
F-score of 0.597, while SUMMARY[N][S] has an F-
score of 0.429. With three training instances, EN-
ABLEMENT[N][S] has an F-score of 0.579. When

the amount of each relation is increased, the baseline
classifier starts detecting more relations. In all cases,
the proposed method performs better in terms of ac-
curacy and macro-average F-score. With a train-
ing set containing seven instances of each relation,
the baseline’s macro-average F-score is starting to
get closer to the extended classifier’s, with superior
performances for several relations, such as COM-
PARISON[N][S], CONDITION[N][S], and TEMPO-
RAL[N][S]. Still, in this case, the extended classi-
fier’s accuracy is higher than the baseline (0.213 ver-
sus 0.122). Table 2 summarizes the outcome of the
same experiments performed on the PDTB dataset.
The results exhibit a similar trend, despite the base-
line classifier having a relatively high accuracy for
each case.

Using the data from Figures 2, 3 and 4, it is pos-
sible to calculate the relative score change occur-
ring when using the proposed method, as a func-
tion of the number of unseen features found in test
data. This graph is plotted in Figure 5. Besides
macro-average F-score, we additionally plot accu-
racy change. In the top subfigure, representing the
case of RSTDT, we see that, for the lowest amount
of unseen test features, the proposed method does
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#Tr = 1 #Tr = 2 #Tr = 3 #Tr = 5 #Tr = 7

Relation name B. P.M. B. P.M. B. P.M. B. P.M. B. P.M.

Comparison.Concession[2][1] – 0.056 – – – 0.133 – – – 0.154
Comparison.Contrast[2][1] – – – 0.333 – – – 0.190 0.105 0.368
Contingency.Cause[1][2] – 0.013 – 0.007 – – – 0.026 – 0.013
Contingency.Condition[1][2] – 0.082 – 0.160 – 0.127 0.250 0.253 0.214 0.171
Contingency.Condition[2][1] – – – – – 0.074 – 0.143 0.250 0.296
Contingency.Prag. cond.[1][2] – – – 0.133 – 0.034 – – 0.133 0.043
Contingency.Prag. cond.[2][1] – – – – – – 0.133 0.087 0.154 0.087
Expansion.Conjunction[1][2] 0.326 0.352 0.326 0.351 0.326 0.368 0.332 0.371 0.335 0.384
Expansion.Instantiation[1][2] – – – – – 0.042 – 0.057 – 0.131
Temporal.Asynchronous[1][2] – 0.204 – – – 0.142 0.039 0.148 – 0.035
Temporal.Asynchronous[2][1] – – – – – 0.316 – 0.483 0.143 –
Temporal.Synchrony[1][2] – – – 0.032 – 0.162 0.032 0.103 0.032 0.157
Temporal.Synchrony[2][1] – – – 0.083 – 0.143 0.200 0.308 0.211 0.174

Accuracy 0.195 0.201 0.195 0.202 0.195 0.212 0.202 0.214 0.204 0.213
Macro-average F-score 0.015 0.033 0.015 0.054 0.015 0.084 0.045 0.108 0.072 0.100

Table 2: F-scores for PDTB relations.

not bring any change in F-score or accuracy. In-
deed, as the number of unknown features is low,
feature vector extension is very limited, and does
not improve the performance compared to the base-
line. Then, a progressive increase of both accuracy
and macro-average F-score is observed, as the num-
ber of unseen test features is incremented. For in-
stance, for 8500 unseen test features, the macro-
average F-score increase (resp. accuracy increase)
is 25% (resp. 2.5%), while it is 20% (resp. 1%) for
11000 unseen test instances. These values reach a
maximum of 119% macro-average F-score increase,
and 66% accuracy increase, when 23500 features
unseen during training are present in test data. This
situation corresponds in Figures 3 and 4 to the case
of very small training sets. The bottom subfigure
of Figure 2, for the case of PDTB, reveals a sim-
ilar tendency. The macro-average F-score increase
(resp. accuracy increase) is negligible for 1000 un-
seen test features, while this increase is 21% for both
macro-average F-score and accuracy in the case of
9700 unseen test features, and 459% (resp. 630% for
accuracy) when 28000 unseen features are found in
test data. This shows that the proposed method is
useful when large numbers of features are missing
from the training set, which corresponds in practice
to small training sets, with few training instances for
each relation type. For large training sets, most fea-

tures are encountered by the classifier during train-
ing, and feature vector extension does not bring use-
ful information.

We empirically evaluate the effect of using differ-
ent amounts of unlabeled data on the performance of
the proposed method. We use respectively 100 and
10000 labeled training instances, create feature co-
occurrence matrices with different amounts of unla-
beled data, and evaluate the performance in relation
classification. Experimental results for RSTDT are
illustrated in Figure 6 (top). From Figure 6 it appears
clearly that macro-average F-scores improve with
increased number of unlabeled instances. However,
the benefit of using larger amounts of unlabeled data
is more pronounced when only a small number of la-
beled training instances are employed (ca. 100). In
fact, with 100 labeled training instances, the maxi-
mum improvement in F-score is 119% (corresponds
to using all our 100000 unlabeled instances). How-
ever, the maximum improvement in F-score with
10000 labeled training instances is small, only 2.5%
(corresponds to 10000 unlabeled instances).

The effect of using unlabeled data on PDTB rela-
tion classification is illustrated in Figure 6 (bottom).
Similarly, we consecutively set the labeled training
dataset size to 100 and 10000 instances, and plot the
macro-average F-score against the unlabeled dataset
size. As in the RSTDT experiment, the benefit of us-
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Figure 5: Score change as a function of unseen test fea-
tures for RSTDT (top) and PDTB (bottom).

ing unlabeled data is more obvious when the num-
ber of labeled training instances is small. In par-
ticular, with 100 training instances, the maximum
improvement in F-score is 459% (corresponds to
100000 unlabeled instances). However, with 10000
labeled training instances the maximum improve-
ment in F-score is 15% (corresponds to 100 unla-
beled instances). These results confirm that, on the
one hand performance improvement is more promi-
nent for smaller training sets, and that on the other
hand, performance is increased when using larger
amounts of unlabeled data.

5 Conclusion

We presented a semi-supervised method which ex-
ploits the co-occurrence of features in unlabeled
data, to extend feature vectors during training and
testing in a discourse relation classifier. Despite the
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Figure 6: Macro-average F-score for RSTDT (top) and
PDTB (bottom), for 100 and 10000 training instances,
against the number of unlabeled instances.

simplicity of the proposed method, it significantly
improved the macro-average F-score in discourse re-
lation classification for small training datasets, con-
taining low-occurrence relations. We performed an
evaluation on two popular datasets, the RSTDT and
PDTB. We empirically evaluated the benefit of using
a variable amount of unlabeled data for the proposed
method. Although the macro-average F-scores of
the classifiers described are too low to be used di-
rectly as discourse analyzers, the gain in F-score and
accuracy for small labeled datasets are a promising
perspective for improving classification accuracy for
infrequent relation types. In particular, the proposed
method can be employed in existing discourse clas-
sifiers that work well on popular relations, and be
expected to improve the overall accuracy.
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Abstract

Language is sensitive to both semantic and
pragmatic effects. To capture both effects,
we model language use as a cooperative game
between two players: a speaker, who gener-
ates an utterance, and a listener, who responds
with an action. Specifically, we consider the
task of generating spatial references to ob-
jects, wherein the listener must accurately
identify an object described by the speaker.
We show that a speaker model that acts op-
timally with respect to an explicit, embedded
listener model substantially outperforms one
that is trained to directly generate spatial de-
scriptions.

1 Introduction

Language is about successful communication be-
tween a speaker and a listener. For example, if the
goal is to reference the target object O1 in Figure 1,
a speaker might choose one of the following two ut-
terances:

(a) right of O2 (b) on O3

Although both utterances are semantically correct,
(a) is ambiguous between O1 and O3, whereas (b)
unambiguously identifies O1 as the target object,
and should therefore be preferred over (a). In this
paper, we present a game-theoretic model that cap-
tures this communication-oriented aspect of lan-
guage interpretation and generation.

Successful communication can be broken down
into semantics and pragmatics. Most computational

Figure 1: An example of a 3D model of a room. The
speaker’s goal is to reference the target object O1 by de-
scribing its spatial relationship to other object(s). The
listener’s goal is to guess the object given the speaker’s
description.

work on interpreting language focuses on compo-
sitional semantics (Zettlemoyer and Collins, 2005;
Wong and Mooney, 2007; Piantadosi et al., 2008),
which is concerned with verifying the truth of a sen-
tence. However, what is missing from this truth-
oriented view is the pragmatic aspect of language—
that language is used to accomplish an end goal, as
exemplified by speech acts (Austin, 1962). Indeed,
although both utterances (a) and (b) are semantically
valid, only (b) is pragmatically felicitous: (a) is am-
biguous and therefore violates the Gricean maxim
of manner (Grice, 1975). To capture this maxim, we
develop a model of pragmatics based on game the-
ory, in the spirit of Jäger (2008) but extended to the
stochastic setting. We show that Gricean maxims
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fall out naturally as consequences of the model.
An effective way to empirically explore the prag-

matic aspects of language is to work in the grounded
setting, where the basic idea is to map language to
some representation of the non-linguistic world (Yu
and Ballard, 2004; Feldman and Narayanan, 2004;
Fleischman and Roy, 2007; Chen and Mooney,
2008; Frank et al., 2009; Liang et al., 2009). Along
similar lines, past work has also focused on inter-
preting natural language instructions (Branavan et
al., 2009; Eisenstein et al., 2009; Kollar et al., 2010),
which takes into account the goal of the communi-
cation. This work differs from ours in that it does
not clarify the formal relationship between pragmat-
ics and the interpretation task. Pragmatics has also
been studied in the context of dialog systems. For
instance, DeVault and Stone (2007) present a model
of collaborative language between multiple agents
that takes into account contextual ambiguities.

We present our pragmatic model in a grounded
setting where a speaker must describe a target object
to a listener via spatial description (such as in the
example given above). Though we use some of the
techniques from work on the semantics of spatial de-
scriptions (Regier and Carlson, 2001; Gorniak and
Roy, 2004; Tellex and Roy, 2009), we empirically
demonstrate that having a model of pragmatics en-
ables more successful communication.

2 Language as a Game

To model Grice’s cooperative principle (Grice,
1975), we formulate the interaction between a
speaker S and a listener L as a cooperative game, that
is, one in which S and L share the same utility func-
tion. For simplicity, we focus on the production and
interpretation of single utterances, where the speaker
and listener have access to a shared context. To sim-
plify notation, we suppress writing the dependence
on the context.

The Communication Game

1. In order to communicate a target o to L, S pro-
duces an utterance w chosen according to a
strategy pS(w | o).

2. L interprets w and responds with a guess g ac-
cording to a strategy pL(g | w).

3. S and L collectively get a utility of U(o, g).

o w g

U

speaker listener

ps(w | o) pl(g | w)

target utterance guess

utility

Figure 2: Diagram representing the communication
game. A target, o, is given to the speaker that generates
an utterance w. Based on this utterance, the listener gen-
erates a guess g. If o = g, then both the listener and
speaker get a utility of 1, otherwise they get a utility of 0.

This communication game is described graphi-

on O3

1

near O3

0

right of O2

0

Figure 3: Three instances of the communication game on
the scenario in Figure 1. For each instance, the target o,
utterance w, guess g, and the resulting utility U are shown
in their respective positions. A utility of 1 is awarded only
when the guess matches the target.

cally in Figure 2. Figure 3 shows several instances of
the communication game being played for the sce-
nario in Figure 1.

Grice’s maxim of manner encourages utterances
to be unambiguous, which motivates the following
utility, which we call (communicative) success:

U(o, g) def= I[o = g], (1)

where the indicator function I[o = g] is 1 if o =
g and 0 otherwise. Hence, a utility-maximizing
speaker will attempt to produce unambiguous utter-
ances because they increase the probability that the
listener will correctly guess the target.
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Given a speaker strategy pS(w | o), a listener
strategy pL(g | w), and a prior distribution over tar-
gets p(o), the expected utility obtained by S and L is
as follows:

EU(S, L) =
∑
o,w,g

p(o)pS(w|o)pL(g|w)U(o, g)

=
∑
o,w

p(o)pS(w|o)pL(o|w). (2)

3 From Reflex Speaker to Rational
Speaker

Having formalized the language game, we now ex-
plore various speaker and listener strategies. First,
let us consider literal strategies. A literal speaker
(denoted S:LITERAL) chooses uniformly from the
set of utterances consistent with a target object, i.e.,
the ones which are semantically valid;1 a literal lis-
tener (denoted L:LITERAL) guesses an object con-
sistent with the utterance uniformly at random.

In the running example (Figure 1), where the tar-
get object is O1, there are two semantically valid ut-
terances:

(a) right of O2 (b) on O3

S:LITERAL selects (a) or (b) each with probability
1
2 . If S:LITERAL chooses (a), L:LITERAL will guess
the target object O1 correctly with probability 1

2 ; if
S:LITERAL chooses (b), L:LITERAL will guess cor-
rectly with probability 1. Therefore, the expected
utility EU(S:LITERAL, L:LITERAL) = 3

4 .
We say S:LITERAL is an example of a reflex

speaker because it chooses an utterance without
taking the listener into account. A general reflex
speaker is depicted in Figure 4(a), where each edge
represents a potential utterance.

Suppose we now have a model of some listener
L. Motivated by game theory, we would optimize
the expected utility (2) given pL(g | w). We call
the resulting speaker S(L) the rational speaker with
respect to listener L. Solving for this strategy yields:

pS(L)(w | o) = I[w = w∗], where

w∗ = argmax
w′

pL(o | w′). (3)

1Semantic validity is approximated by a set of heuristic rules
(e.g. left is all positions with smaller x-coordinates).

S
w1

o w2

w3

S(L)
w1

o

L
g1

w2 g2

g3

w3

(a) Reflex speaker (b) Rational speaker

Figure 4: (a) A reflex speaker (S) directly selects an ut-
terance based only on the target object. Each edge rep-
resents a different choice of utterance. (b) A rational
speaker (S(L)) selects an utterance based on an embed-
ded model of the listener (L). Each edge in the first layer
represents a different choice the speaker can make, and
each edge in the second layer represents a response of the
listener.

Intuitively, S(L) chooses an utterance, w∗, such that,
if listener L were to interpret w∗, the probability of
L guessing the target would be maximized.2 The ra-
tional speaker is depicted in Figure 4(b), where, as
before, each edge at the first level represents a possi-
ble choice for the speaker, but there is now a second
layer representing the response of the listener.

To see how an embedded model of the listener
improves communication, again consider our run-
ning example in Figure 1. A speaker can describe
the target object O1 using either w1 = on O3 or
w2 = right of O2. Suppose the embedded listener
is L:LITERAL, which chooses uniformly from the
set of objects consistent with the given utterance.
In this scenario, pL:LITERAL(O1 | w1) = 1 because
w1 unambiguously describes the target object, but
pL:LITERAL(O1 | w2) = 1

2 . The rational speaker
S(L:LITERAL) would therefore choose w1, achiev-
ing a utility of 1, which is an improvement over the
reflex speaker S:LITERAL’s utility of 3

4 .

2If there are ties, any distribution over the utterances having
the same utility is optimal.
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4 From Literal Speaker to Learned
Speaker

In the previous section, we showed that a literal
strategy, one that considers only semantically valid
choices, can be used to directly construct a reflex
speaker S:LITERAL or an embedded listener in a
rational speaker S(L:LITERAL). This section fo-
cuses on an orthogonal direction: improving literal
strategies with learning. Specifically, we construct
learned strategies from log-linear models trained on
human annotations. These learned strategies can
then be used to construct reflex and rational speaker
variants—S:LEARNED and S(L:LEARNED), respec-
tively.

4.1 Training a Log-Linear Speaker/Listener
We train the speaker, S:LEARNED, (similarly, lis-
tener, L:LEARNED) on training examples which
comprise the utterances produced by the human an-
notators (see Section 6.1 for details on how this
data was collected). Each example consists of a 3D
model of a room in a house that specifies the 3D po-
sitions of each object and the coordinates of a 3D
camera. When training the speaker, each example is
a pair (o, w), where o is the input target object and
w is the output utterance. When training the listener,
each example is (w, g), where w is the input utter-
ance and g is the output guessed object.

For now, an utterance w consists of two parts:

• A spatial preposition w.r (e.g., right of) from a
set of possible prepositions.3

• A reference object w.o (e.g., O3) from the set
of objects in the room.

We consider more complex utterances in Section 5.
Both S:LEARNED and L:LEARNED are

parametrized by log-linear models:

pS:LEARNED(w|o; θS) ∝ exp{θ>S φ(o, w)} (4)

pL:LEARNED(g|w; θL) ∝ exp{θ>L φ(g, w)} (5)

where φ(·, ·) is the feature vector (see below), θS

and θL are the parameter vectors for speaker and lis-
tener. Note that the speaker and listener use the same

3We chose 10 prepositions commonly used by people to de-
scribe objects in a preliminary data gathering experiment. This
list includes multi-word units, which function equivalently to
prepositions, such as left of.

set of features, but they have different parameters.
Furthermore, the first normalization sums over pos-
sible utterances w while the second normalization
sums over possible objects g in the scene. The two
parameter vectors are trained to optimize the log-
likelihood of the training data under the respective
models.

Features We now describe the features φ(o, w).
These features draw inspiration from Landau and
Jackendoff (1993) and Tellex and Roy (2009).

Each object o in the 3D scene is represented by
its bounding box, which is the smallest rectangular
prism containing o. The following are functions of
the camera, target (or guessed object) o, and the ref-
erence object w.o in the utterance. The full set of
features is obtained by conjoining these functions
with indicator functions of the form I[w.r = r],
where r ranges over the set of valid prepositions.

• Proximity functions measure the distance be-
tween o and w.o. This is implemented as the
minimum over all the pairwise Euclidean dis-
tances between the corners of the bounding
boxes. We also have indicator functions for
whether o is the closest object, among the top
5 closest objects, and among the top 10 closest
objects to w.o.

• Topological functions measure containment be-
tween o and w.o: vol(o ∩ w.o)/vol(o) and
vol(o ∩ w.o)/vol(w.o). To simplify volume
computation, we approximate each object by a
bounding box that is aligned with the camera
axes.

• Projection functions measure the relative posi-
tion of the bounding boxes with respect to one
another. Specifically, let v be the vector from
the center of w.o to the center of o. There is a
function for the projection of v onto each of the
axes defined by the camera orientation (see Fig-
ure 5). Additionally, there is a set of indicator
functions that capture the relative magnitude of
these projections. For example, there is a indi-
cator function denoting whether the projection
of v onto the camera’s x-axis is the largest of
all three projections.
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Figure 5: The projection features are computed by pro-
jecting a vector v extending from the center of the ref-
erence object to the center of the target object onto the
camera axes fx and fy .

5 Handling Complex Utterances

So far, we have only considered speakers and lis-
teners that deal with utterances consisting of one
preposition and one reference object. We now ex-
tend these strategies to handle more complex utter-
ances. Specifically, we consider utterances that con-
form to the following grammar:4

[noun] N → something | O1 | O2 | · · ·
[relation] R → in front of | on | · · ·
[conjunction] NP → N RP∗

[relativization] RP → R NP

This grammar captures two phenomena of lan-
guage use, conjunction and relativization.

• Conjunction is useful when one spatial relation
is insufficient to disambiguate the target object.
For example, in Figure 1, right of O2 could re-
fer to the vase or the table, but using the con-
junction right of O2 and on O3 narrows down
the target object to just the vase.

• The main purpose of relativization is to refer
to objects without a precise nominal descrip-
tor. With complex utterances, it is possible to
chain relative prepositional phrases, for exam-
ple, using on something right of O2 to refer to
the vase.

4Naturally, we disallow direct reference to the target object.

Given an utterance w, we define its complexity |w|
as the number of applications of the relativization
rule, RP → R NP, used to produce w. We had only
considered utterances of complexity 1 in previous
sections.

5.1 Example Utterances

To illustrate the types of utterances available under
the grammar, again consider the scene in Figure 1.

Utterances of complexity 2 can be generated ei-
ther using the relativization rule exclusively, or both
the conjunction and relativization rules. The rela-
tivization rule can be used to generate the following
utterances:

• on something that is right of O2

• right of something that is left of O3

Applying the conjunction rule leads to the following
utterances:

• right of O2 and on O3

• right of O2 and under O1

• left of O1 and left of O3

Note that we inserted the words that is after each N

and the word and between every adjacent pair of RPs
generated via the conjunction rule. This is to help a
human listener interpret an utterance.

5.2 Extending the Rational Speaker

Suppose we have a rational speaker S(L) defined in
terms of an embedded listener L which operates over
utterances of complexity 1. We first extend L to in-
terpret arbitrary utterances of our grammar. The ra-
tional speaker (defined in (2)) automatically inherits
this extension.

Compositional semantics allows us to define the
interpretation of complex utterances in terms of sim-
pler ones. Specifically, each node in the parse tree
has a denotation, which is computed recursively
in terms of the node’s children via a set of sim-
ple rules. Usually, denotations are represented as
lambda-calculus functions, but for us, they will be
distributions over objects in the scene. As a base
case for interpreting utterances of complexity 1, we
can use either L:LITERAL or L:LEARNED (defined
in Sections 3 and 4).
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Given a subtree w rooted at u ∈ {N, NP, RP}, we
define the denotation of w, JwK, to be a distribution
over the objects in the scene in which the utterance
was generated. The listener strategy pL(g|w) = JwK
is recursively as follows:

• If w is rooted at N with a single child x, then JwK
is the uniform distribution over N (x), the set of
objects consistent with the word x.

• If w is rooted at NP, we recursively compute the
distributions over objects g for each child tree,
multiply the probabilities, and renormalize (Hin-
ton, 1999).

• If w is rooted at RP with relation r, we recursively
compute the distribution over objects g′ for the
child NP tree. We then appeal to the base case
to produce a distribution over objects g which are
related to g′ via relation r.

This strategy is defined formally as follows:

pL(g | w) ∝
I[g ∈ N (x)] w = (N x)
k∏

j=1
pL(g | wj) w = (NP w1 . . . wk)∑

g′
pL(g | (r, g′))pL(g′ | w′) w = (RP (R r) w′)

(6)

Figure 6 shows an example of this bottom-
up denotation computation for the utterance
on something right of O2 with respect to the scene
in Figure 1. The denotation starts with the lowest
NP node JO2K, which places all the mass on O2
in the scene. Moving up the tree, we compute
the denotation of the RP, Jright of O2K, using the
RP case of (6), which results in a distribution that
places equal mass on O1 and O3.5 The denotation
of the N node JsomethingK is a flat distribution over
all the objects in the scene. Continuing up the tree,
the denotation of the NP is computed by taking a
product of the object distributions, and turns out
to be exactly the same split distribution as its RP

child. Finally, the denotation at the root is computed
by applying the base case to on and the resulting
distribution from the previous step.

5It is worth mentioning that this split distribution between
O1 and O3 represents the ambiguity mentioned in Section 3
when discussing the shortcomings of S:LITERAL.

Figure 6: The listener model maps an utterance to a dis-
tribution over objects in the room. Each internal NP or RP
node is a distribution over objects in the room.

Generation So far, we have defined the listener
strategy pL(g | w). Given target o, the rational
speaker S(L) with respect to this listener needs to
compute argmaxw pL(o | w) as dictated by (3). This
maximization is performed by enumerating all utter-
ances of bounded complexity.

5.3 Modeling Listener Confusion

One shortcoming of the previous approach for ex-
tending a listener is that it falsely assumes that a lis-
tener can reliably interpret a simple utterance just as
well as it can a complex utterance.

We now describe a more realistic speaker which
is robust to listener confusion. Let α ∈ [0, 1] be
a focus parameter which determines the confusion
level. Suppose we have a listener L. When presented
with an utterance w, for each application of the rela-
tivization rule, we have a 1−α probability of losing
focus. If we stay focused for the entire utterance
(with probability α|w|), then we interpret the utter-
ance according to pL. Otherwise (with probability
1 − α|w|), we guess an object at random according
to prnd(g | w). We then use (3) to define the rational
speaker S(L) with respect the following “confused
listener” strategy:

p̃L(g | w) = α|w|pL(g | w) + (1− α|w|)prnd(g | w).
(7)

As α → 0, the confused listener is more likely to
make a random guess, and thus there is a stronger
penalty against using more complex utterances. As
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α → 1, the confused listener converges to pL and the
penalty for using complex utterances vanishes.

5.4 The Taboo Setting

Notice that the rational speaker as defined so far
does not make full use of our grammar. Specifi-
cally, the rational speaker will never use the “wild-
card” noun something nor the relativization rule in
the grammar because an NP headed by the wildcard
something can always be replaced by the object ID
to obtain a higher utility. For instance, in Figure 6,
the NP spanning something right of O2 can be re-
placed by O3.

However, it is not realistic to assume that all ob-
jects can be referenced directly. To simulate scenar-
ios where some objects cannot be referenced directly
(and to fully exercise our grammar), we introduce
the taboo setting. In this setting, we remove from
the lexicon some fraction of the object IDs which are
closest to the target object. Since the tabooed objects
cannot be referenced directly, a speaker must resort
to use of the wildcard something and relativization.

For example, in Figure 7, we enable tabooing
around the target O1. This prevents the speaker from
referring directly to O3, so the speaker is forced to
describe O3 via the relativization rule, for example,
producing something right of O2.

Figure 7: With tabooing enabled around O1, O3 can no
longer be referred to directly (represented by an X).

6 Experiments

We now present our empirical results, showing that
rational speakers, who have embedded models of lis-

Figure 8: Mechanical Turk speaker task: Given the tar-
get object (e.g., O1), a human speaker must choose an
utterance to describe the object (e.g., right of O2).

teners, can communicate more successfully than re-
flex speakers, who do not.

6.1 Setup

We collected 43 scenes (rooms) from the Google
Sketchup 3D Warehouse, each containing an aver-
age of 22 objects (household items and pieces of fur-
niture arranged in a natural configuration). For each
object o in a scene, we create a scenario, which rep-
resents an instance of the communication game with
o as the target object. There are a total of 2,860 sce-
narios, which we split evenly into a training set (de-
noted TR) and a test set (denoted TS).

We created the following two Amazon Mechani-
cal Turk tasks, which enable humans to play the lan-
guage game on the scenarios:

Speaker Task In this task, human annotators play
the role of speakers in the language game. They are
prompted with a target object o and asked to each
produce an utterance w (by selecting a preposition
w.r from a dropdown list and clicking on a reference
object w.o) that best informs a listener of the identity
of the target object.

For each training scenario o, we asked three
speakers to produce an utterance w. The three result-
ing (o, w) pairs are used to train the learned reflex
speaker (S:LITERAL). These pairs were also used to
train the learned reflex listener (L:LITERAL), where
the target o is treated as the guessed object. See Sec-
tion 4.1 for the details of the training procedure.

Listener Task In this task, human annotators play
the role of listeners. Given an utterance generated by
a speaker (human or not), the human listener must
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O2

O1

O3

Question: What object is right of           ?O2

Figure 9: Mechanical Turk listener task: a human listener
is prompted with an utterance generated by a speaker
(e.g., right of O2), and asked to click on an object (shown
by the red arrow).

guess the target object that the speaker saw by click-
ing on an object. The purpose of the listener task is
to evaluate speakers, as described in the next section.

6.2 Evaluation

Utility (Communicative Success) We primarily
evaluate a speaker by its ability to communicate suc-
cessfully with a human listener. For each test sce-
nario, we asked three listeners to guess the object.
We use pL:HUMAN(g | w) to denote the distribution
over guessed objects g given prompt w. For exam-
ple, if two of the three listeners guessed O1, then
pL:HUMAN(O1 | w) = 2

3 . The expected utility (2) is
then computed by averaging the utility (communica-
tive success) over the test scenarios TS:

SUCCESS(S) = EU(S, L:HUMAN) (8)

=
1
|TS|

∑
o∈TS

∑
w

pS(w|o)pL:HUMAN(o|w).

Exact Match As a secondary evaluation metric,
we also measure the ability of our speaker to exactly
match an utterance produced by a human speaker.
Note that since there are many ways of describing
an object, exact match is neither necessary nor suffi-
cient for successful communication.

We asked three human speakers to each pro-
duce an utterance w given a target o. We use
pS:HUMAN(w | o) to denote this distribution; for ex-
ample, pS:HUMAN(right of O2 | o) = 1

3 if exactly one
of the three speakers uttered right of O2. We then

Speaker Success Exact Match
S:LITERAL [reflex] 4.62% 1.11%
S(L:LITERAL) [rational] 33.65% 2.91%
S:LEARNED [reflex] 38.36% 5.44%
S(L:LEARNED) [rational] 52.63% 14.03%
S:HUMAN 41.41% 19.95%

Table 1: Comparison of various speakers on communica-
tive success and exact match, where only utterances of
complexity 1 are allowed. The rational speakers (with
respect to both the literal listener L:LITERAL and the
learned listener L:LEARNED) perform better than their
reflex counterparts. While the human speaker (composed
of three people) has higher exact match (it is better at
mimicking itself), the rational speaker S(L:LEARNED)
actually achieves higher communicative success than the
human listener.

define the exact match of a speaker S as follows:

MATCH(S) =
1
|TS|

∑
o∈TS

∑
w

pS:HUMAN(w | o)pS(w | o).

(9)

6.3 Reflex versus Rational Speakers
We first evaluate speakers in the setting where only
utterances of complexity 1 are allowed. Table 1
shows the results on both success and exact match.
First, our main result is that the two rational speak-
ers S(L:LITERAL) and S(L:LEARNED), which each
model a listener explicitly, perform significantly bet-
ter than the corresponding reflex speakers, both in
terms of success and exact match.

Second, it is natural that the speakers that in-
volve learning (S:LITERAL and S(L:LITERAL))
outperform the speakers that only consider the
literal meaning of utterances (S:LEARNED and
S(L:LEARNED)), as the former models capture sub-
tler preferences using features.

Finally, we see that in terms of exact match, the
human speaker S:HUMAN performs the best (this
is not surprising because human exact match is es-
sentially the inter-annotator agreement), but in terms
of communicative success, S(L:LEARNED) achieves
a higher success rate than S:HUMAN, suggesting
that the game-theoretic modeling undertaken by the
rational speakers is effective for communication,
which is ultimate goal of language.

Note that exact match is low even for the “human
speaker”, since there are often many equally good
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Figure 10: Communicative success as a function of focus
parameter α without tabooing on TSDEV. The optimal
value of α is obtained at 0.79.

ways to evoke an object. At the same time, the suc-
cess rates for all speakers are rather low, reflecting
the fundamental difficulty of the setting: sometimes
it is impossible to unambiguously evoke the target
object via short utterances. In the next section, we
show that we can improve the success rate by al-
lowing the speakers to generate more complex utter-
ances.

6.4 Generating More Complex Utterances
We now evaluate the rational speaker
S(L:LEARNED) when it is allowed to generate
utterances of complexity 1 or 2. Recall from
Section 5.3 that the speaker depends on a focus
parameter α, which governs the embedded listener’s
ability to interpret the utterance. We divided the test
set (TS) in two halves: TSDEV, which we used to
tune the value of α and TSFINAL, which we used to
evaluate success rates.

Figure 10 shows the communicative success as
a function of α on TSDEV. When α is small, the
embedded listener is confused more easily by more
complex utterances; therefore the speaker tends to
choose mostly utterances of complexity 1. As α
increases, the utterances increase in complexity, as
does the success rate. However, when α approaches
1, the utterances are too complex and the success
rate decreases. The dependence between α and av-
erage utterance complexity is shown in Figure 11.

Table 2 shows the success rates on TSFINAL for
α → 0 (all utterances have complexity 1), α = 1 (all
utterances have complexity 2), and α tuned to max-
imize the success rate based on TSDEV. Setting α
in this manner allows us to effectively balance com-
plexity and ambiguity, resulting in an improvement
in the success rate.
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Figure 11: Average utterance complexity as a function of
the focus parameter α on TSDEV. Higher values of α
yield more complex utterances.

Taboo Success Success Success
Amount (α → 0) (α = 1) (α = α∗) α∗

0% 51.78% 50.99% 54.53% 0.79
5% 38.75% 40.83% 43.12% 0.89

10% 29.57% 29.69% 30.30% 0.80
30% 12.40% 13.04% 12.98% 0.81

Table 2: Communicative success (on TSFINAL) of the
rational speaker S(L:LEARNED) for various values of α
across different taboo amounts. When the taboo amount
is small, small values of α lead to higher success rates. As
the taboo amount increases, larger values of α (resulting
in more complex utterances) are better.

7 Conclusion

Starting with the view that the purpose of language
is successful communication, we developed a game-
theoretic model in which a rational speaker gener-
ates utterances by explicitly taking the listener into
account. On the task of generating spatial descrip-
tions, we showed the rational speaker substantially
outperforms a baseline reflex speaker that does not
have an embedded model. Our results therefore sug-
gest that a model of the pragmatics of communica-
tion is an important factor to consider for generation.
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Abstract

For resource-limited language pairs, coverage
of the test set by the parallel corpus is an
important factor that affects translation qual-
ity in two respects: 1) out of vocabulary
words; 2) the same information in an input
sentence can be expressed in different ways,
while current phrase-based SMT systems can-
not automatically select an alternative way
to transfer the same information. Therefore,
given limited data, in order to facilitate trans-
lation from the input side, this paper pro-
poses a novel method to reduce the transla-
tion difficulty using source-side lattice-based
paraphrases. We utilise the original phrases
from the input sentence and the correspond-
ing paraphrases to build a lattice with esti-
mated weights for each edge to improve trans-
lation quality. Compared to the baseline sys-
tem, our method achieves relative improve-
ments of 7.07%, 6.78% and 3.63% in terms
of BLEU score on small, medium and large-
scale English-to-Chinese translation tasks re-
spectively. The results show that the proposed
method is effective not only for resource-
limited language pairs, but also for resource-
sufficient pairs to some extent.

1 Introduction

In recent years, statistical MT systems have been
easy to develop due to the rapid explosion in data
availability, especially parallel data. However, in
reality there are still many language pairs which
lack parallel data, such as Urdu–English, Chinese–
Italian, where large amounts of speakers exist for
both languages; of course, the problem is far worse

for pairs such as Catalan–Irish. For such resource-
limited language pairs, sparse amounts of parallel
data would cause the word alignment to be inac-
curate, which would in turn lead to an inaccurate
phrase alignment, and bad translations would re-
sult. Callison-Burch et al. (2006) argue that lim-
ited amounts of parallel training data can lead to the
problem of low coverage in that many phrases en-
countered at run-time are not observed in the train-
ing data and so their translations will not be learned.
Thus, in recent years, research on addressing the
problem of unknown words or phrases has become
more and more evident for resource-limited lan-
guage pairs.

Callison-Burch et al. (2006) proposed a novel
method which substitutes a paraphrase for an un-
known source word or phrase in the input sentence,
and then proceeds to use the translation of that para-
phrase in the production of the target-language re-
sult. Their experiments showed that by translating
paraphrases a marked improvement was achieved in
coverage and translation quality, especially in the
case of unknown words which previously had been
left untranslated. However, on a large-scale data set,
they did not achieve improvements in terms of auto-
matic evaluation.

Nakov (2008) proposed another way to use para-
phrases in SMT. He generates nearly-equivalent syn-
tactic paraphrases of the source-side training sen-
tences, then pairs each paraphrased sentence with
the target translation associated with the original
sentence in the training data. Essentially, this
method generates new training data using para-
phrases to train a new model and obtain more useful
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phrase pairs. However, he reported that this method
results in bad system performance. By contrast,
real improvements can be achieved by merging the
phrase tables of the paraphrase model and the orig-
inal model, giving priority to the latter. Schroeder
et al. (2009) presented the use of word lattices
for multi-source translation, in which the multiple
source input texts are compiled into a compact lat-
tice, over which a single decoding pass is then per-
formed. This lattice-based method achieved positive
results across all data conditions.

In this paper, we propose a novel method us-
ing paraphrases to facilitate translation, especially
for resource-limited languages. Our method does
not distinguish unknown words in the input sen-
tence, but uses paraphrases of all possible words
and phrases in the source input sentence to build a
source-side lattice to provide a diverse and flexible
list of source-side candidates to the SMT decoder
so that it can search for a best path and deliver the
translation with the highest probability. In this case,
we neither need to change the phrase table, nor add
new features in the log-linear model, nor add new
sentences in the training data.

The remainder of this paper is organised as fol-
lows. In Section 2, we define the “translation diffi-
culty” from the perspective of the source side, and
then examine how well the test set is covered by
the phrase table and the parallel training data . Sec-
tion 3 describes our paraphrase lattice method and
discusses how to set the weights for the edges in the
lattice network. In Section 4, we report comparative
experiments conducted on small, medium and large-
scale English-to-Chinese data sets. In Section 5,
we analyse the influence of our paraphrase lattice
method. Section 6 concludes and gives avenues for
future work.

2 What Makes Translation Difficult?

2.1 Translation Difficulty
We use the term “translation difficulty” to explain
how difficult it is to translate the source-side sen-
tence in three respects:

• The OOV rates of the source sentences in the
test set (Callison-Burch et al., 2006).

• Translatability of a known phrase in the input

sentence. Some particular grammatical struc-
tures on the source side cannot be directly
translated into the corresponding structures on
the target side. Nakov (2008) presents an ex-
ample showing how hard it is to translate an En-
glish construction into Spanish. Assume that an
English-to-Spanish SMT system has an entry
in its phrase table for “inequality of income”,
but not for “income inequality”. He argues that
the latter phrase is hard to translate into Span-
ish where noun compounds are rare: the correct
translation in this case requires a suitable Span-
ish preposition and a reordering, which are hard
for the system to realize properly in the target
language (Nakov, 2008).

• Consistency between the reference and the
target-side sentence in the training corpus.
Nakov (2008) points out that if the target-side
sentence in the parallel corpus is inconsistent
with the reference of the test set, then in some
cases, a test sentence might contain pieces that
are equivalent, but syntactically different from
the phrases learned in training, which might re-
sult in practice in a missed opportunity for a
high-quality translation. In this case, if we use
paraphrases for these pieces of text, then we
might improve the opportunity for the transla-
tion to approach the reference, especially in the
case where only one reference is available.

2.2 Coverage

As to the first aspect – coverage – we argue that
the coverage rate of the new words or unknown
words are more and more becoming a “bottleneck”
for resource-limited languages. Furthermore, cur-
rent SMT systems, either phrase-based (Koehn et al.,
2003; Chiang, 2005) or syntax-based (Zollmann and
Venugopal, 2006), use phrases as the fundamental
translation unit, so how much the phrase table and
training data can cover the test set is an important
factor which influences the translation quality. Ta-
ble 1 shows the statistics of the coverage of the test
set on English-to-Chinese FBIS data, where we can
see that the coverage of unigrams is very high, es-
pecially when the data is increased to the medium
size (200K), where unigram coverage is greater than
90%. Based on the observations of the unknown un-
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20K Cov.(%) 200K Cov.(%)
PL Tset PT Corpus in PT in Corpus PT Corpus in PT in Corpus
1 5,369 3,785 4,704 70.5 87.61 4,941 5,230 92.03 97.41
2 24,564 8,631 15,109 35.14 61.51 16,803 21,071 68.40 85.78
3 37,402 4,538 12,091 12.13 32.33 12,922 22,531 34.55 60.24
4 41,792 1,703 6,150 4.07 14.72 5,974 14,698 14.29 35.17
5 43,008 626 2,933 1.46 6.82 2,579 8,425 5.99 19.59
6 43,054 259 1,459 0.6 3.39 1,192 4,856 2.77 11.28
7 42,601 119 821 0.28 1.93 581 2,936 1.36 6.89
8 41,865 51 505 0.12 1.21 319 1,890 0.76 4.51
9 40,984 34 341 0.08 0.83 233 1,294 0.57 3.16
10 40,002 22 241 0.05 0.6 135 923 0.34 2.31

Table 1: The coverage of the test set by the phrase table and the parallel corpus based on different amount of the
training data. “PL” indicates the Phrase Length N , where {1 <= N <= 10}; “20K” and “200K” represent the sizes
of the parallel data for model training and phrase extraction; “Cov.” indicates the coverage rate; “Tset” represents the
number of unique phrases with the length N in the Test Set; “PT” represents the number of phrases of the Test Set
occur in the Phrase Table; “Corpus” indicates the number of phrases of the Test Set appearing in the parallel corpus;
“in PT” indicates the coverage of the phrases in the Test Set by the phrase table and correspondingly “in Corpus”
represents the coverage of the phrases in the Test Set by the Parallel Corpus.

igrams, we found that most are named entities (NEs)
such as person name, location name, etc. From the
bigram phrases, the coverage rates begin to signifi-
cantly decline. It can also be seen that phrases con-
taining more than 5 words rarely appear either in the
phrase table or in the parallel corpus, which indi-
cates that data sparseness is severe for long phrases.
Even if the size of the corpus is significantly in-
creased (e.g. from 20K to 200K), the coverage of
long phrases is still quite low.

With respect to these three aspects of the transla-
tion difficulty, especially for data-limited language
pairs, we propose a more effective method to make
use of the paraphrases to facilitate translation pro-
cess.

3 Paraphrase Lattice for Input Sentences

In this Section, we propose a novel method to em-
ploy paraphrases to reduce the translation difficulty
and in so doing increase the translation quality.

3.1 Motivation
Our idea to build a paraphrase lattice for SMT is in-
spired by the following points:

• Handling unknown words is a challenging issue
for SMT, and using paraphrases is an effective
way to facilitate this problem (Callison-Burch
et al., 2006);

• The method of paraphrase substitution does not
show any significant improvement, especially
on a large-scale data set in terms of BLEU (Pa-
pineni et al., 2002) scores (Callison-Burch et
al., 2006);

• Building a paraphrase lattice might provide
more translation options to the decoder so that
it can flexibly search for the best path.

The major contributions of our method are:

• We consider all N -gram phrases rather than
only unknown phrases in the test set, where
{1 <= N <= 10};

• We utilise lattices rather than simple substitu-
tion to facilitate the translation process;

• We propose an empirical weight estimation
method to set weights for edges in the word lat-
tice, which is detailed in Section 3.4.

3.2 Paraphrase Acquisition
Paraphrases are alternative ways to express the same
or similar meaning given a certain original word,
phrase or segment. The paraphrases used in our
method are generated from the parallel corpora
based on the algorithm in (Bannard and Callison-
Burch, 2005), in which paraphrases are identified
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by pivoting through phrases in another language.
In this algorithm, the foreign language translations
of an English phrase are identified, all occurrences
of those foreign phrases are found, and all English
phrases that they translate as are treated as potential
paraphrases of the original English phrase (Callison-
Burch et al., 2006). A paraphrase has a probability
p(e2|e1) which is defined as in (2):

p(e2|e1) =
∑
f

p(f |e1)p(e2|f) (1)

where the probability p(f |e1) is the probability that
the original English phrase e1 translates as a particu-
lar phrase f in the other language, and p(e2|f) is the
probability that the candidate paraphrase e2 trans-
lates as the foreign language phrase.

p(e2|f) and p(f |e1) are defined as the transla-
tion probabilities which can be calculated straight-
forwardly using maximum likelihood estimation by
counting how often the phrases e and f are aligned
in the parallel corpus as in (2) and (3):

p(e2|f) ≈ count(e2, f)∑
e2

count(e2, f)
(2)

p(f |e1) ≈
count(f, e1)∑
f count(f, e1)

(3)

3.3 Construction of Paraphrase Lattice

To present paraphrase options to the PB-SMT de-
coder, lattices with paraphrase options are con-
structed to enrich the source-language sentences.
The construction process takes advantage of the cor-
respondence between detected paraphrases and po-
sitions of the original words in the input sentence,
then creates extra edges in the lattices to allow the
decoder to consider paths involving the paraphrase
words.

An toy example is illustrated in Figure 1: given
a sequence of words {w1, . . . , wN} as the input,
two phrases α = {α1, . . . , αp} and β = {β1, . . . , βq}
are detected as paraphrases for S1 = {wx, . . . , wy}
(1 ≤ x ≤ y ≤ N ) and S2 = {wm, . . . , wn}
(1 ≤ m ≤ n ≤ N ) respectively. The following
steps are taken to transform them into word lattices:

1. Transform the original source sentence into
word lattices. N + 1 nodes (θk, 0 ≤ k ≤ N )

... ...
wx wm... wy

...

 1

...

Source side 

sentence

Generated 

lattice

!1 !2 … !p

 1  2 …  q

Paraphrase A

Paraphrase B

!1

!2 ...
!p

 2

 q

... ... wn

...
wx wm wy wn... ... ...

Figure 1: An example of lattice-based paraphrases for an
input sentence

are created, and N edges (referred to as “ORG-
E” edges) labeled with wi (1 ≤ i ≤ N ) are
generated to connect them sequentially.

2. Generate extra nodes and edges for each of the
paraphrases. Taking α as an example, firstly,
p − 1 nodes are created, and then p edges
(referred as “NEW-E” edges) labeled with αj

(1 ≤ j ≤ p) are generated to connect node
θx−1, p− 1 nodes and θy−1.

Via step 2, word lattices are generated by adding
new nodes and edges coming from paraphrases.
Note that to build word lattices, paraphrases with
multi-words are broken into word sequences, and
each of the words produces one extra edge in the
word lattices as shown in the bottom part in Figure 1.

Figure 2 shows an example of constructing the
word lattice for an input sentence which is from the
test set used in our experiments.1 The top part in
Figure 2 represents nodes (double-line circles) and
edges (solid lines) that are constructed by the orig-
inal words from the input sentence, while the bot-
tom part in Figure 2 indicates the final word lattice
with the addition of new nodes (single-line circles)
and new edges (dashed lines) which come from the
paraphrases. We can see that the paraphrase lattice
increases the diversity of the source phrases so that it
can provide more flexible translation options during
the decoding process.

1Figure 2 contains paths that are duplicates except for the
weights. We plan to handle this in future work.
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Figure 2: An example of how to build a paraphrase lattice for an input sentence

3.4 Weight Estimation
Estimating and normalising the weight for each edge
in the word lattice is a challenging issue when the
edges come from different sources. In this section,
we propose an empirical method to set the weights
for the edges by distinguishing the original (“ORG-
E”) and new (“NEW-E”) edges in the lattices. The
aim is to utilize the original sentences as the ref-
erences to weight the edges from paraphrases, so
that decoding paths going through “ORG-E” edges
will tend to have higher scores than those which use
“NEW-E” ones. The assumption behind this is that
the paraphrases are alternatives for the original sen-
tences, so decoding paths going though them ought
to be penalised.

Therefore, for all the “ORG-E” edges, their
weights in the lattice are set to 1.0 as the reference.
Thus, in the log-linear model, decoding paths going
though these edges are not penalised because they
do not come from the paraphrases.

By contrast, “NEW-E” are divided into two
groups for the calculation of weights:

• For “NEW-E” edges which are outgoing edges
of the lattice nodes that come from the original
sentences, the probabilities p(es|ei)

2 of their
2es indicates the source phrase S, ei represents one of the

corresponding paraphrases are utilised to pro-
duce empirical weights. Supposing that a set of
paraphrases X = {x1, . . . , xk} start at node A
which comes from the original sentence, so that
X are sorted descendingly based on the proba-
bilities p(es|ei), their corresponding edges for
node A are G = {g1, . . . , gk}, then the weights
are calculated as in (4):

w(ei) =
1

k + i
(1 <= i <= k) (4)

where k is a predefined parameter to trade off
between decoding speed and the number of
potential paraphrases being considered. Thus,
once a decoding path goes though one of these
edges, it will be penalised according to its para-
phrase probabilities.

• For all other “NEW-E” edges, their weights
are set to 1.0, because the paraphrase penalty
has been counted in their preceding “NEW-E”
edges.

Figure 2 illustrates the weight estimation results.
Nodes coming from the original sentences are drawn
in double-line circles (e.g. nodes 0 to 7), while

paraphrases of S.

424



nodes created from paraphrases are shown in single-
line circles (e.g. nodes 8 to 10). “ORG-E” edges are
drawn in solid lines and “NEW-E” edges are shown
using dashed lines. As specified previously, “ORG-
E” edges are all weighted by 1.0 (e.g. edge labeled
“the” from node 0 to 1). By contrast, “NEW-E”
edges in the first group are weighted by equation
(4) (e.g. edges in dashed lines start from node 0
to node 2 and 8), while others in the second group
are weighted by 1.0 (e.g. edge labeled “training”
from node 8 to 2). Note that penalties of the paths
going through paraphrases are counted by equation
(4), which is represented by the weights of “NEW-
E” edges in the first group. For example, starting
from node 2, paths going to node 9 and 10 are pe-
nalised because lattice weights are also considered
in the log-linear model. However, other edges do
not imply penalties since their weights are set to 1.0.

The reason to set all weights for the “ORG-E”
edges to a uniform weight (e.g. 1.0) instead of a
lower empirical weight is to avoid excessive penal-
ties for the original words. For example, in Fig-
ure 2, the original edge from node 3 to 4 (con-
tinue) has a weight of 1.0, so the paths going though
the original edges from node 2 to 4 (will continue)
have a higher lattice score (1.0 × 1.0 = 1.0) than
the paths going through the edges of paraphrases
(e.g. will resume (score: 0.125 × 1.0 = 0.125) and
will go (score: 0.11 × 1.0 = 0.11)), or any other
mixed paths that goes through original edges and
paraphrase edges, such as will continuous (score:
1.0 × 0.125 = 0.125). The point is that we should
have more trust when translating the original words,
but if we penalise (set weights < 1.0) the “ORG-
E” edges whenever there is a paraphrase for them,
then when considering the context of the lattice,
paraphrases will be favoured systematically. That is
why we just penalise the “NEW-E” edges in the first
group and set other weights to 1.0.

As to unknown words in the input sentence, even
if we give them a prioritised weight, they would
be severely penalised in the decoding process. So
we do not need to distinguish unknown words when
building and weighting the paraphrase lattice.

4 Experiments

4.1 System and Data Preparation

For our experiments, we use Moses (Koehn et al.,
2007) as the baseline system which can support
lattice decoding. We also realise a paraphrase
substitution-based system (Para-Sub)3 based on the
method in (Callison-Burch, 2006) to compare with
the baseline system and our proposed paraphrase
lattice-based (Lattice) system.

The alignment is carried out by GIZA++ (Och
and Ney, 2003) and then we symmetrized the word
alignment using the grow-diag-final heuristic. The
maximum phrase length is 10 words. Parameter tun-
ing is performed using Minimum Error Rate Train-
ing (Och, 2003).

The experiments are conducted on English-to-
Chinese translation. In order to fully compare our
proposed method with the baseline and the “Para-
Sub” system, we perform the experiments on three
different sizes of training data: 20K, 200K and 2.1
million pairs of sentences. The former two sizes of
data are derived from FBIS,4 and the latter size of
data consists of part of HK parallel corpus,5 ISI par-
allel data,6 other news data and parallel dictionar-
ies from LDC. All the language models are 5-gram
which are trained on the monolingual part of parallel
data.

The development set (devset) and the test set for
experiments using 20K and 200K data sets are ran-
domly extracted from the FBIS data. Each set in-
cludes 1,200 sentences and each source sentence
has one reference. For the 2.1 million data set, we
use a different devset and test set in order to verify
whether our proposed method can work on a lan-
guage pair with sufficient resources. The devset is
the NIST 2005 Chinese-English current set which
has only one reference for each source sentence and
the test set is the NIST 2003 English-to-Chinese
current set which contains four references for each
source sentence. All results are reported in BLEU
and TER (Snover et al., 2006) scores.

3We use “Para-Sub” to represent their system in the rest of
this paper.

4This is a multilingual paragraph-aligned corpus with LDC
resource number LDC2003E14.

5LDC number: LDC2004T08.
6LDC number: LDC2007T09.
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20K 200K
SYS BLEU CI 95% pair-CI 95% TER BLEU CI 95% pair-CI 95% TER

Baseline 14.42 [-0.81, +0.74] – 75.30 23.60 [-1.03, +0.97] – 63.56
Para-Sub 14.78 [-0.78, +0.82] [+0.13, +0.60] 73.75 23.41 [-1.04, +1.00] [-0.46, +0.09] 63.84
Lattice 15.44 [-0.85, +0.84] [+0.74, +1.30] 73.06 25.20 [-1.11, +1.15] [+1.19, +2.01] 62.37

Table 2: Comparison between the baseline, “Para-Sub” and our “Lattice” (paraphrase lattice) method.

The paraphrase data set used in our lattice-based
and the “Para-Sub” systems is same which is de-
rived from the “Paraphrase Phrase Table”7 of TER-
Plus (Snover et al., 2009). The parameter k in equa-
tion 4 is set to 7.

4.2 Paraphrase Filtering

The more edges there are in a lattice, the more
complicated the decoding is in the search process.
Therefore, in order to reduce the complexity of the
lattice and increase decoding speed, we must fil-
ter out some potential noise in the paraphrase table.
Two measures are taken to optimise the paraphrases
when building a paraphrase lattice:

• Firstly, we filter out all the paraphrases whose
probability is less than 0.01;

• Secondly, given a source-side input sentence,
we retrieve all possible paraphrases and their
probabilities for source-side phrases which ap-
pear in the paraphrase table. Then we remove
the paraphrases which are not occurred in the
“phrase table” of the SMT system. This mea-
sure intends to avoid adding new “unknown
words” to the source-side sentence. After
this measure, we can acquire the final para-
phrases which can be denoted as a quadru-
ple < SEN ID,Span, Para, Prob >, where
“SEN ID” indicates the ID of the input sen-
tence, “Span” represents the span of the source-
side phrase in the original input sentence,
“Para” indicates the paraphrase of the source-
side phrase, and “Prob” represents the probabil-
ity between the source-side phrase and its para-
phrase, which is used to set the weight of the
edge in the lattice. The quadruple is used to
construct the weighted lattice.

7http://www.umiacs.umd.edu/˜snover/terp/
downloads/terp-pt.v1.tgz.

4.3 Experimental Results

The experimental results conducted on small and
medium-sized data sets are shown in Table 2. The
95% confidence intervals (CI) for BLEU scores are
independently computed on each of three systems,
while the “pair-CI 95%” are computed relative to
the baseline system only for “Para-Sub” and “Lat-
tice” systems. All the significance tests use boot-
strap and paired-bootstrap resampling normal ap-
proximation methods (Zhang and Vogel, 2004).8

Improvements are considered to be significant if the
left boundary of the confidence interval is larger
than zero in terms of the “pair-CI 95%”. It can
be seen that 1) our “Lattice” system outperforms
the baseline by 1.02 and 1.6 absolute (7.07% and
6.78% relative) BLEU points in terms of the 20K
and 200K data sets respectively, and our system also
decreases the TER scores by 2.24 and 1.19 (2.97%
and 1.87% relative) points than the baseline system.
In terms of the “pair-CI 95%”, the left boundaries
for 20K and 200K data are respectively “+0.74” and
“+1.19”, which indicate that the “Lattice” system is
significantly better than the baseline system on these
two data sets. 2) The “Para-Sub” system performs
slightly better (0.36 absolute BLEU points) than the
baseline system on the 20K data set, but slightly
worse (0.19 absolute BLEU points) than the baseline
on the 200K data set, which indicates that the para-
phrase substitution method used in (Callison-Burch
et al., 2006) does not work on resource-sufficient
data sets. In terms of the “pair-CI 95%”, the left
boundary for 20K data is “+0.13”, which indicates
that it is significantly better than the baseline sys-
tem, while the left boundary is “-0.46” for 200K
data, which indicates that the “Para-Sub” system
is significantly worse than the baseline system. 3)
comparing the “Lattice” system with the “Para-Sub”

8http://projectile.sv.cmu.edu/research/
public/tools/bootStrap/tutorial.htm.
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SYS BLEU CI 95% pair-CI 95% NIST TER
Baseline 14.04 [-0.73, +0.40] – 6.50 74.88
Para-Sub 14.13 [-0.56, +0.56] [-0.18, +0.40] 6.52 74.43
Lattice 14.55 [-0.75, +0.32] [+0.15,+0.83] 6.55 73.28

Table 3: Comparison between the baseline and our paraphrase lattice method on a large-scale data set.

system, the “pair-CI 95%” for 20K and 200K data
are respectively [+0.41, +0.92] and [+1.40, +2.17],
which indicates that the “Lattice” system is signif-
icantly better than the “Para-Sub” system on these
two data sets as well. 4) In terms of the two metrics,
our proposed method achieves the best performance,
which shows that our method is effective and consis-
tent on different sizes of data.

In order to verify our method on large-scale
data, we also perform experiments on 2.1 million
sentence-pairs of English-to-Chinese data as de-
scribed in Section 4.1. The results are shown in Ta-
ble 3. From Table 3, it can be seen that the “Lattice”
system achieves an improvement of 0.51 absolute
(3.63% relative) BLEU points and a decrease of 1.6
absolute (2.14% relative) TER points compared to
the baseline. In terms of the “pair-CI 95%”, the left
boundary for the “Lattice” system is “+0.15” which
indicates that it is significantly better than the base-
line system in terms of BLEU. Interestingly, in our
experiment, the “Para-Sub” system also outperforms
the baseline on those three automatic metrics. How-
ever, in terms of the “pair-CI 95%”, the left bound-
ary for the “Para-Sub” system is “-0.18” which indi-
cates that it is not significantly better than the base-
line system in terms of BLEU. The results also show
that our proposed method is effective and consistent
even on a large-scale data set.

It also can be seen that the improvement on 2.1
million sentence-pairs is less than that of the 20K
and 200K data sets. That is, as the size of the train-
ing data increases, the problems of data sparseness
decrease, so that the coverage of the test set by the
parallel corpus will correspondingly increase. In this
case, the role of paraphrases in decoding becomes a
little weaker. On the other hand, it might become a
kind of noise to interfere with the exact translation
of the original source-side phrases when decoding.
Therefore, our proposed method may be more ap-
propriate for language pairs with limited resources.

5 Analysis

5.1 Coverage of Paraphrase Test Set

The coverage rate of the test set by the phrase ta-
ble is an important factor that could influence the
translation result, so in this section we examine the
characteristics of the updated test set that adds in the
paraphrases. We take the 200K data set to examine
the coverage issue. Table 4 is an illustration to com-
pare the new coverage and the old coverage (without
paraphrases) on medium sized training data.

PL Tset PT New Cov.(%) Old Cov.(%)
1 9,264 8,994 97.09 92.03
2 32,805 25,796 78.63 68.40
3 39,918 15,708 39.35 34.55
4 42,247 6,479 15.34 14.29
5 43,088 2,670 6.20 5.99
6 43,066 1,204 2.80 2.77
7 42,602 582 1.37 1.36
8 41,865 319 0.76 0.76
9 40,984 233 0.57 0.57
10 40,002 135 0.34 0.34

Table 4: The coverage of the paraphrase-added test set by
the phrase table on medium size of the training data.

From Table 4, we can see that the coverage of un-
igrams, bigrams, trigrams and 4-grams goes up by
about 5%, 10%, 5% and 1%, while from 5-grams
there is only a slight or no increase in coverage.
These results show that 1) most of the paraphrases
that are added in are lower-order n-grams; 2) the
paraphrases can increase the coverage of the input
by handling the unknown words to some extent.

However, we observed that most untranslated
words in the “Para-Sub” and “Lattice” systems are
still NEs, which shows that in our paraphrase table,
there are few paraphrases for the NEs. Therefore,
to further improve the translation quality using para-
phrases, we also need to acquire the paraphrases for
NEs to increase the coverage of unknown words.
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Source:     whether or the albanian rebels can be genuinely disarmed completely is the main challenge to nato .

Ref:           能否    真正    彻底    地    解除    阿族    的    武装    是    北约    面临    的    主要    挑战    。

Baseline:   不管    阿    叛乱    分子    才    能    真正    disarmed    完全    是    北约    的    主要   挑战   。

Para-Sub:  能否    阿族    叛乱    分子    可以    真正    裁军    完全    是    北约    的    主要    挑战    。

Lattice:      能否   真正  阿族   叛乱    分子    可以    完全  非 军事 武装  是    北约    的    主要    挑战   。 

Figure 3: An example from three systems to compare the processing of OOVs

5.2 Analysis on Translation Results

In this section, we give an example to show the ef-
fectiveness of using paraphrase lattices to deal with
unknown words. The example is evaluated accord-
ing to both automatic evaluation and human evalua-
tion at sentence level.

See Figure 3 as an illustration of how the
paraphrase-based systems process unknown words.
According to the word alignments between the
source-side sentence and the reference, the word
“disarmed” is translated into two Chinese words “�
ø” and “Éã”. These two Chinese words are dis-
continuous in the reference, so it is difficult for the
PB-SMT system to correctly translate the single En-
glish word into a discontinuous Chinese phrase. In
fact in this example, “disarmed” is an unknown word
and it is kept untranslated in the result of the base-
line system. In the “Para-Sub” system, it is trans-
lated into “`�” based on a paraphrase pair PP1 =
“disarmed ∥ disarmament ∥ 0.087” and its transla-
tion pair T1 = “disarmament ∥ `�”. The number
“0.087” is the probability p1 that indicates to what
extent these two words are paraphrases. It can be
seen that although “`�” is quite different from the
meaning of “disarmed”, it is understandable for hu-
man in some sense. In the “Lattice” system, the
word “disarmed” is translated into three Chinese
words “: �/ Éã” based on a paraphrase pair
PP2 = “disarmed ∥ demilitarized ∥ 0.099” and its
translation pair T2 = “demilitarized ∥ : �/ É
ã”. The probability p2 is slightly greater than p1.

We argue that the reason that the “Lattice” system
selects PP2 and T2 rather than PP1 and T1 is be-
cause of the weight estimation in the lattice. That
is, PP2 is more prioritised, while PP1 is more pe-
nalised based on equation (4).

From the viewpoint of human evaluation, the

paraphrase pair PP2 is more appropriate than PP1,
and the translation T2 is more similar to the origi-
nal meaning than T1. The sentence-level automatic
evaluation scores for this example in terms of BLEU
and TER metrics are shown in Table 5.

SYS BLEU TER
Baseline 20.33 66.67
Para-Sub 21.78 53.33
Lattice 23.51 53.33

Table 5: Comparison on sentence-level scores in terms of
BLEU and TER metrics.

The BLEU score of the “Lattice” system is much
higher than the baseline, and the TER score is quite
a bit lower than the baseline. Therefore, from the
viewpoint of automatic evaluation, the translation
from the “Lattice” system is also better than those
from the baseline and “Para-Sub” systems.

6 Conclusions and Future Work

In this paper, we proposed a novel method using
paraphrase lattices to facilitate the translation pro-
cess in SMT. Given an input sentence, our method
firstly discovers all possible paraphrases from a
paraphrase database for N -grams (1 <= N <= 10)
in the test set, and then filters out the paraphrases
which do not appear in the phrase table in order to
avoid adding new unknown words on the input side.
We then use the original words and the paraphrases
to build a word lattice, and set the weights to priori-
tise the original edges and penalise the paraphrase
edges. Finally, we import the lattice into the de-
coder to perform lattice decoding. The experiments
are conducted on English-to-Chinese translation us-
ing the FBIS data set with small and medium-sized
amounts of data, and on a large-scale corpus of 2.1
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million sentence pairs. We also performed compar-
ative experiments for the baseline, the “Para-Sub”
system and our paraphrase lattice-based system. The
experimental results show that our proposed system
significantly outperforms the baseline and the “Para-
Sub” system, and the effectiveness is consistent on
the small, medium and large-scale data sets.

As for future work, firstly we plan to propose a
pruning algorithm for the duplicate paths in the lat-
tice, which will track the edge generation with re-
spect to the path span, and thus eliminate duplicate
paths. Secondly, we plan to experiment with another
feature function in the log-linear model to discount
words derived from paraphrases, and use MERT to
assign an appropriate weight to this feature function.
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Abstract

This paper studies the problem of mining en-
tity translation, specifically, mining English
and Chinese name pairs. Existing efforts
can be categorized into (a) a transliteration-
based approach leveraging phonetic similar-
ity and (b) a corpus-based approach exploiting
bilingual co-occurrences, each of which suf-
fers from inaccuracy and scarcity respectively.
In clear contrast, we use unleveraged re-
sources of monolingual entity co-occurrences,
crawled from entity search engines, repre-
sented as two entity-relationship graphs ex-
tracted from two language corpora respec-
tively. Our problem is then abstracted as find-
ing correct mappings across two graphs. To
achieve this goal, we propose a holistic ap-
proach, of exploiting both transliteration sim-
ilarity and monolingual co-occurrences. This
approach, building upon monolingual corpora,
complements existing corpus-based work, re-
quiring scarce resources of parallel or compa-
rable corpus, while significantly boosting the
accuracy of transliteration-based work. We
validate our proposed system using real-life
datasets.

1 Introduction

Entity translation aims at mapping the entity names
(e.g., people, locations, and organizations) in source
language into their corresponding names in target
language. While high quality entity translation is es-
sential in cross-lingual information access and trans-

∗This work was done when the first two authors visited Mi-
crosoft Research Asia.

lation, it is non-trivial to achieve, due to the chal-
lenge that entity translation, though typically bear-
ing pronunciation similarity, can also be arbitrary,
e.g., Jackie Chan and Ä� (pronounced Cheng
Long). Existing efforts to address these challenges
can be categorized into transliteration- and corpus-
based approaches. Transliteration-based approaches
(Wan and Verspoor, 1998; Knight and Graehl, 1998)
identify translations based on pronunciation similar-
ity, while corpus-based approaches mine bilingual
co-occurrences of translation pairs obtained from
parallel (Kupiec, 1993; Feng et al., 2004) or compa-
rable (Fung and Yee, 1998) corpora, or alternatively
mined from bilingual sentences (Lin et al., 2008;
Jiang et al., 2009). These two approaches have com-
plementary strength– transliteration-based similar-
ity can be computed for any name pair but cannot
mine translations of little (or none) phonetic simi-
larity. Corpus-based similarity can support arbitrary
translations, but require highly scarce resources of
bilingual co-occurrences, obtained from parallel or
comparable bilingual corpora.

In this paper, we propose a holistic approach,
leveraging both transliteration- and corpus-based
similarity. Our key contribution is to replace the
use of scarce resources of bilingual co-occurrences
with the use of untapped and significantly larger
resources of monolingual co-occurrences for trans-
lation. In particular, we extract monolingual co-
occurrences of entities from English and Chinese
Web corpora, which are readily available from en-
tity search engines such as PeopleEntityCube1, de-
ployed by Microsoft Research Asia. Such engine

1http://people.entitycube.com
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automatically extracts people names from text and
their co-occurrences to retrieve related entities based
on co-occurrences. To illustrate, Figure 1(a) demon-
strates the query result for “Bill Gates,” retrieving
and visualizing the “entity-relationship graph” of re-
lated people names that frequently co-occur with
Bill in English corpus. Similarly, entity-relationship
graphs can be built over other language corpora, as
Figure 1(b) demonstrates the corresponding results
for the same query, from Renlifang2 on Chinese Web
corpus. From this point on, for the sake of simplic-
ity, we refer to English and Chinese graphs, simply
as Ge and Gc respectively. Though we illustrate with
English-Chinese pairs in the paper, our method can
be easily adapted to other language pairs.

In particular, we propose a novel approach of ab-
stracting entity translation as a graph matching prob-
lem of two graphs Ge and Gc in Figures 1(a) and (b).
Specifically, the similarity between two nodes ve

and vc in Ge and Gc is initialized as their transliter-
ation similarity, which is iteratively refined based on
relational similarity obtained from monolingual co-
occurrences. To illustrate this, an English news ar-
ticle mentioning “Bill Gates” and “Melinda Gates”
evidences a relationship between the two entities,
which can be quantified from their co-occurrences
in the entire English Web corpus. Similarly, we
can mine Chinese news articles to obtain the re-
lationships between “��·��” and “�ôH·�
�”. Once these two bilingual graphs of people and
their relationships are harvested, entity translation
can leverage these parallel relationships to further
evidence the mapping between translation pairs, as
Figure 1(c) illustrates.

To highlight the advantage of our proposed ap-
proach, we compare our results with commercial
machine translators (1) Engkoo3 developed in Mi-
crosoft Research Asia and (2) Google Translator4.
In particular, Figure 2 reports the precision for two
groups– “heads” that belong to top-100 popular peo-
ple (determined by the number of hits), among ran-
domly sampled 304 people names5 from six graph
pairs of size 1,000 each, and the remaining “tails”.
Commercial translators such as Google, leveraging

2http://renlifang.msra.cn
3http://www.engkoo.com
4http://translate.google.com
5See Section 4 for the sampling process.
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Figure 2: Comparison for Head and Tail datasets

bilingual co-occurrences that are scarce for tails,
show significantly lower precision for tails. Mean-
while, our work, depending solely on monolin-
gual co-occurrences, shows high precision, for both
heads and tails.

Our focus is to boost translation accuracy for
long tails with non-trivial Web occurrences in each
monolingual corpus, but not with much bilingual co-
occurrences, e.g., researchers publishing actively in
two languages but not famous enough to be featured
in multi-lingual Wikipedia entries or news articles.
As existing translators are already highly accurate
for popular heads, this focus well addresses the re-
maining challenges for entity translation.

To summarize, we believe that this paper has the
following contributions:

• We abstract entity translation problem as
a graph mapping between entity-relationship
graphs in two languages.

• We develop an effective matching algo-
rithm leveraging both pronunciation and co-
occurrence similarity. This holistic approach
complements existing approaches and en-
hances the translation coverage and accuracy.

• We validate the effectiveness of our approach
using various real-life datasets.

The rest of this paper is organized as follows. Sec-
tion 2 reviews existing work. Section 3 then devel-
ops our framework. Section 4 reports experimental
results and Section 5 concludes our work.
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(a) English PeopleEntityCube Ge (b) Chinese Renlifang Gc

(c) Abstracting translation as graph mapping

Figure 1: Illustration of entity-relationship graphs

2 Related Work

In this section, we first survey related efforts, cate-
gorized into transliteration-based and corpus-based
approaches. Our approach leveraging both is com-
plementary to these efforts.

2.1 Transliteration-based Approaches
Many name translations are loosely based on
phonetic similarity, which naturally inspires
transliteration-based translation of finding the
translation with the closest pronunciation similarity,
using either rule-based (Wan and Verspoor, 1998) or
statistical (Knight and Graehl, 1998; Li et al., 2004)

approaches. However, people are free to designate
arbitrary bilingual names of little (or none) pho-
netic similarity, for which the transliteration-based
approach is not effective.

2.2 Corpus-based Approaches

Corpus-based approach can mine arbitrary transla-
tion pairs, by mining bilingual co-occurrences from
parallel and comparable bilingual corpora. Using
parallel corpora (Kupiec, 1993; Feng et al., 2004),
e.g., bilingual Wikipedia entries on the same per-
son, renders high accuracy but suffers from high
scarcity. To alleviate such scarcity, (Fung and Yee,
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1998; Shao and Ng, 2004) explore a more vast re-
source of comparable corpora, which share no par-
allel document- or sentence-alignments as in paral-
lel corpora but describe similar contents in two lan-
guages, e.g., news articles on the same event. Al-
ternatively, (Lin et al., 2008) extracts bilingual co-
occurrences from bilingual sentences, such as an-
notating terms with their corresponding translations
in English inside parentheses. Similarly, (Jiang et
al., 2009) identifies potential translation pairs from
bilingual sentences using lexical pattern analysis.

2.3 Holistic Approaches

The complementary strength of the above two ap-
proaches naturally calls for a holistic approach,
such as recent work combining transliteration-
and corpus-based similarity mining bilingual co-
occurrences using general search engines. Specifi-
cally, (Al-Onaizan and Knight, 2002) uses translit-
eration to generate candidates and then web corpora
to identify translations. Later, (Jiang et al., 2007)
enhances to use transliteration to guide web mining.

Our work is also a holistic approach, but leverag-
ing significantly larger corpora, specifically by ex-
ploiting monolingual co-occurrences. Such expan-
sion enables to translate “long-tail” people entities
with non-trivial Web occurrences in each monolin-
gual corpus, but not much bilingual co-occurrences.
Specifically, we initialize name pair similarity using
transliteration-based approach, and iteratively rein-
forces base similarity using relational similarity.

3 Our Framework

Given two graphs Ge = (Ve, Ee) and Gc = (Vc, Ec)
harvested from English and Chinese corpora respec-
tively, our goal is to find translation pairs, or a set S
of matching node pairs such that S ⊆ Ve × Vc. Let
R be a |Ve|-by-|Vc| matrix where each Rij denotes
the similarity between two nodes i ∈ Ve and j ∈ Vc.

Overall, with the matrix R, our approach consists
of the following three steps, as we will discuss in the
following three sections respectively:

1. Initialization: computing base translation sim-
ilarities Rij between two entity nodes using
transliteration similarity

2. Reinforcement model: reinforcing the trans-

lation similarities Rij by exploiting the mono-
lingual co-occurrences

3. Matching extraction: extracting the matching
pairs from the final translation similarities Rij

3.1 Initialization with Transliteration

We initialize the translation similarity Rij as the
transliteration similarity. This section explains how
to get the transliteration similarity between English
and Chinese names using an unsupervised approach.

Formally, let an English name Ne =
(e1, e2, · · · , en) and a Chinese name Nc =
(c1, c2, · · · , cm) be given, where ei is an English
word and Ne is a sequence of the words, and ci

is a Chinese character and Nc is a sequence of
the characters. Our goal is to compute a score
indicating the similarity between the pronunciations
of the two names.

We first convert Nc into its Pinyin representation
PYc = (s1, s2, · · · , sm), where si is the Pinyin rep-
resentation of ci. Pinyin is the romanization rep-
resentation of pronunciation of Chinese character.
For example, the Pinyin representation of Ne =
(“Barack”, “Obama”) is PYc =(“ba”, “la”, “ke”,
“ao”, “ba”, “ma”). The Pinyin representations of
Chinese characters can be easily obtained from Chi-
nese character pronunciation dictionary. In our ex-
periments, we use an in-house dictionary, which
contains pronunciations of 20, 774 Chinese charac-
ters. For the Chinese characters having multiple pro-
nunciations, we only use the most popular one.

Calculation of transliteration similarity between
Ne and Nc is now transformed to calculation of pro-
nunciation similarity between Ne and PYc. Because
letters in Chinese Pinyins and English strings are
pronounced similarly, we can further approximate
pronunciation similarity between Ne and PYc us-
ing their spelling similarity. In this paper, we use
Edit Distance (ED) to measure the spelling similar-
ity. Moreover, since words in Ne are transliterated
into characters in PYc independently, it is more ac-
curate to compute the ED between Ne and PYc, i.e.,
EDname(Ne, PYc), as the sum of the EDs of all
component transliteration pairs, i.e., every ei in Ne

and its corresponding transliteration (si) in PYc. In
other words, we need to first align all sj’s in PYc

with corresponding ei in Ne based on whether they
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are translations of each other. Then based on the
alignment, we can calculate EDname(Ne, PYc) us-
ing the following formula.

EDname(Ne, PYc) =
∑

i

ED(ei, esi) (1)

where esi is a string generated by concatenating all
si’s that are aligned to ei and ED(ei, esi) is the
Edit Distance between ei and esi, i.e., the mini-
mum number of edit operations (including inser-
tion, deletion and substitution) needed to transform
ei into esi. Because an English word usually con-
sists of multiple syllables but every Chinese charac-
ter consists of only one syllable, when aligning ei’s
with sj’s, we add the constraint that each ei is al-
lowed to be aligned with 0 to 4 si’s but each si can
only be aligned with 0 to 1 ei. To get the align-
ment between PYc and Ne which has the minimal
EDname(Ne, PYc), we use a Dynamic Program-
ming based algorithm as defined in the following
formula:

EDname(N
1,i
e , PY 1,j

c ) = min(

EDname(N
1,i−1
e , PY 1,j

c ) + Len(ei),

EDname(N
1,i
e , PY 1,j−1

c ) + Len(sj),

EDname(N
1,i−1
e , PY 1,j−1

c ) + ED(ei, sj),

EDname(N
1,i−1
e , PY 1,j−2

c ) + ED(ei, PY j−1,j
c ),

EDname(N
1,i−1
e , PY 1,j−3

c ) + ED(ei, PY j−2,j
c ),

EDname(N
1,i−1
e , PY 1,j−4

c ) + ED(ei, PY j−3,j
c ))

where, given a sequence X = (x1, x2, · · ·)
such that xi is a word, X i,j is the subsequence
(xi, xi+1, · · · , xj) of X and Len(X) is the number
of letters except spaces in the sequence X . For in-
stance, the minimal Edit Distance between the En-
glish name “Barack Obama” and the Chinese Pinyin
representation “ba la ke ao ba ma” is 4, as the
best alignment is: “Barack” ↔ “ba la ke” (ED: 3),
“Obama”↔ “ao ba ma” (ED: 1). Finally the translit-
eration similarity between Nc and Ne is calculated
using the following formula.

Simtl(Nc, Ne) = 1− EDname(Ne, PYc)

Len(PYc) + Len(Ne)
(2)

For example, Simtl(“Barack Obama”, “®n
.·£®j”) is 1− 4

11+12 = 0.826.

3.2 Reinforcement Model
From the initial similarity, we model our problem as
an iterative approach that iteratively reinforces the
similarity Rij of the nodes i and j from the matching
similarities of their neighbor nodes u and v.

The basic intuition is built on exploiting the sim-
ilarity between monolingual co-occurrences of two
different languages. In particular, we assume two
entities with strong relationship co-occur frequently
in both corpora. In order to express this intuition, we
formally define an iterative reinforcement model as
follows. Let Rt

ij denote the similarity of nodes i and
j at t-th iteration:

Rt+1
ij = λ

∑
(u,v)k∈Bt(i,j,θ)

Rt
uv

2k
+ (1− λ)R0

ij (3)

The model is expressed as a linear combination
of (a) the relational similarity

∑
Rt

uv/2k and (b)
transliteration similarity R0

ij . (λ is the coefficient
for interpolating two similarities.)

In the relational similarity, Bt(i, j, θ) is an or-
dered set of the best matching pairs between neigh-
bor nodes of i and ones of j such that ∀(u, v)k ∈
Bt(i, j, θ), Rt

uv ≥ θ, where (u, v)k is the match-
ing pair with k-th highest similarity score. We con-
sider (u, v) with similarity over some threshold θ,
or Rt

uv ≥ θ, as a matching pair. In this neighbor
matching process, if many-to-many matches exist,
we select only one with the greatest matching score.
Figure 3 describes such matching process more for-
mally. N(i) and N(j) are the sets of neighbor nodes
of i and j, respectively, and H is a priority queue
sorting pairs in the decreasing order of similarity
scores.

Meanwhile, note that, in order to express that
the confidence for matching (i, j) progressively con-
verges as the number of matched neighbors in-
creases, we empirically use decaying coefficient
1/2k for Rt

uv, because
∑∞

k=1 1/2k = 1.

3.3 Matching Extraction
After the convergence of the above model, we get
the |Ve|-by-|Vc| similarity matrix R∞. From this
matrix, we extract one-to-one matches maximizing
the overall similarity.

More formally, this problem can be stated as
the maximum weighted bipartite matching (West,
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Bt(i, j, θ)← {}
∀u ∈ N(i),∀v ∈ N(j) : H.push(u, v; Rt

uv)
while H is not empty do

(u, v; s)← H.pop()
if s < θ then

break
end if
if neither u nor v are matched yet then

Bt(i, j, θ)← Bt(i, j, θ) ∪ {(u, v)}
end if

end while
return Bt(i, j, θ)

Figure 3: How to get the ordered set Bt(i, j, θ)

2000)– Given two groups of entities Ve and Vc from
the two graphs Ge and Gc, we can build a weighted
bipartite graph is G = (V, E), where V = Ve ∪ Vc

and E is a set of edges (u, v) with weight R∞
uv. To

filter out null alignment, we construct only the edges
with weight R∞

uv ≥ δ. From this bipartite graph,
the maximum weighted bipartite matching problem
finds a set of pairwise non-adjacent edges S ⊆ E
such that

∑
(u,v)∈S R∞

uv is the maximum. Well-
known algorithms include Hungarian algorithm with
time complexity of O(|V |2 log |V |+ |V ||E|) (West,
2000).

In this paper, to speed up processing, we consider
a greedy alternative with the following steps– (1)
choose the pair with the highest similarity score, (2)
remove the corresponding row and column from the
matrix, and (3) repeat (1) and (2) until their match-
ing scores are over a specific threshold δ.

4 Experiments

This section reports our experimental results to eval-
uate our proposed approach. First, we report our ex-
perimental setting in Section 4.1. Second, we vali-
date the effectiveness and the scalability of our ap-
proach over a real-life dataset in Section 4.2.

4.1 Experimental Settings

This section describes (1) how we collect the En-
glish and Chinese EntityCube datasets, (2) how to
build ground-truth test datasets for evaluating our
framework, and (3) how to set up three parameters
λ, θ, and δ.

First, we crawled Ge = (Ve, Ee) and Gc =
(Vc, Ec) from English and Chinese EntityCubes.
Specifically, we built a graph pairs (Ge, Gc) expand-
ing from a “seed pair” of nodes se ∈ Ve and sc ∈ Vc

until the number of nodes for each graph becomes
1,0006. More specifically, when we build a graph
Ge by expanding from se, we use a queue Q. We
first initialize Q by pushing the seed node se. We
then iteratively pop a node ve from Q, save ve into
Ve, and push its neighbor nodes in decreasing order
of co-occurrence scores with ve. Similarly, we can
get Gc from a counterpart seed node vc. By using
this procedure, we built six graph pairs from six dif-
ferent seed pairs. In particular, the six seed nodes
are English names and its corresponding Chinese
names representing a wide range of occupation do-
mains (e.g., ‘Barack Obama,’ ‘Bill Gates,’ ‘Britney
Spears,’ ‘Bruno Senna,’ ‘Chris Paul,’ and ‘Eminem’)
as Table 1 depicts. Meanwhile, though we demon-
strate the effectiveness of the proposed method for
mining name translations in Chinese and English
languages, the method can be easily adapted to other
language pairs.

Table 1: Summary for graphs and test datasets obtained
from each seed pair

i |Ve|, |Vc| |Ti| English Name Chinese Name
1 1,000 51 Barack Obama ®n.·£®j
2 1,000 52 Bill Gates ��·��
3 1,000 40 Britney Spears Y}�·����
4 1,000 53 Bruno Senna Y0L·¬�
5 1,000 51 Chris Paul .°�·â[
6 1,000 57 Eminem �²�ð

Second, we manually searched for about 50
“ground-truth” matched translations for each graph
pair to build test datasets Ti, by randomly selecting
nodes within two hops7 from the seed pair (se, sc),
since nodes outside two hops may include nodes
whose neighbors are not fully crawled. More specif-
ically, due to our crawling process expanding to add
neighbors from the seed, the nodes close to the seed
have all the neighbors they would have in the full
graph, while those far from the node may not. In or-
der to pick the nodes that well represent the actual

6Note, this is just a default setting, which we later increase
for scalability evaluation in Figure 6.

7Note that the numbers of nodes within two hops in Ge and
Gc are 327 and 399 on average respectively.
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neighbors, we built test datasets among those within
two hops. However, this crawling is used for the
evaluation sake only, and thus does not suggest the
bias in our proposed framework. Table 1 describes
the size of such test dataset for each graph pair.

Lastly, we set up the three parameters λ, θ, and
δ using 6-fold cross validation with 6 test datasets
Ti’s of the graphs. More specifically, for each
dataset Ti, we decide λi and θi such that average
MRR for the other 5 test datasets is maximized.
(About MRR, see more details of Equation (4) in
Section 4.2.) We then decide δi such that average
F1-score is maximized. Figure 4 shows the average
MRR for λi and θi with default values θ = 0.66
and λ = 0.2. Based on these results, we set λi with
values {0.2, 0.15, 0.2, 0.15, 0.2, 0.15} that optimize
MRR in datasets T1, . . . T6, and similarly θi with
{0.67, 0.65, 0.67, 0.67, 0.65, 0.67}. We also set δi

with values {0.63, 0.63, 0.61, 0.61, 0.61, 0.61} opti-
mizing F1-score with the same default values λ =
0.2 and θ = 0.66. We can observe the variances
of optimal parameter setting values are low, which
suggests the robustness of our framework.

4.2 Experimental Results
This section reports our experimental results using
the evaluation datasets explained in previous sec-
tion. For each graph pair, we evaluated the ef-
fectiveness of (1) reinforcement model using MRR
measure in Section 4.2.1 and (2) overall framework
using precision, recall, and F1 measures in Sec-
tion 4.2.2. We also validated (3) scalability of our
framework over larger scale of graphs (with up to
five thousand nodes) in Section 4.2.3. (In all experi-
mental results, Bold numbers indicate the best per-
formance for each metric.)

4.2.1 Effectiveness of reinforcement model
We evaluated the reinforcement model over

MRR (Voorhees, 2001), the average of the recipro-
cal ranks of the query results as the following for-
mula:

MRR =
1

|Q|
∑
q∈Q

1

rankq
(4)

Each q is a ground-truth matched pair (u, v) such
that u ∈ Ve and v ∈ Vc, and rankq is the rank of the
similarity score of Ruv among all Ruk’s such that
k ∈ Vc. Q is a set of such queries. By comparing

MRRs for two matrices R0 and R∞, we can validate
the effectiveness of the reinforcement model.

• Baseline matrix (R0): using only the translit-
eration similarity score, i.e., without reinforce-
ment

• Reinforced matrix (R∞): using the reinforced
similarity score obtained from Equation (3)

Table 2: MRR of baseline and reinforced matrices

Set
MRR

Baseline R0 Reinforced R∞

T1 0.6964 0.8377
T2 0.6213 0.7581
T3 0.7095 0.7989
T4 0.8159 0.8378
T5 0.6984 0.8158
T6 0.5982 0.8011

Average 0.6900 0.8082

We empirically observed that the iterative model
converges within 5 iterations. In all experiments, we
used 5 iterations for the reinforcement.

Table 2 summarizes our experimental results. As
these figures show, MRR scores significantly in-
crease after applying our reinforcement model ex-
cept for the set T4 (on average from 69% to 81%),
which indirectly shows the effectiveness of our rein-
forcement model.

4.2.2 Effectiveness of overall framework
Based on the reinforced matrix, we evaluated

the effectiveness of our overall matching framework
using the following three measures–(1) precision:
how accurately the method returns matching pairs,
(2) recall: how many the method returns correct
matching pairs, and (3) F1-score: the harmonic
mean of precision and recall. We compared our ap-
proach with a baseline, mapping two graphs with
only transliteration similarity.

• Baseline: in matching extraction, using R0 as
the similarity matrix by bypassing the rein-
forcement step

• Ours: using R∞, the similarity matrix con-
verged by Equation (3)
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Figure 4: Parameter setup for λ, θ, and δ

In addition, we compared ours with the machine
translators of Engkoo and Google. Table 3 summa-
rizes our experimental results.

As this table shows, our approach results in the
highest precision (about 80% on average) without
compromising the best recall of Google, i.e., 61%
of Google vs. 63% of ours. Overall, our approach
outperforms others in all three measures.

Meanwhile, in order to validate the translation ac-
curacy over popular head and long-tail, as discussed
in Section 1, we separated the test data into two
groups and analyzed the effectiveness separately.
Figure 5 plots the number of hits returned for the
names from Google search engine. According to the
distribution, we separate the test data into top-100
popular people with the highest hits and the remain-
ing, denoted head and tail, respectively.
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Table 4 shows the effectiveness with both
datasets, respectively. As difference of the effective-
ness between tail and head (denoted diff ) with re-
spect to three measures shows, our approach shows
stably high precision, for both heads and tails.

4.2.3 Scalability
To validate the scalability of our approach, we

evaluated the effectiveness of our approach over the
number of nodes in two graphs. We built larger six
graph pairs (Ge, Gc) by expanding them from the
seed pairs further until the number of nodes reaches
5,000. Figure 6 shows the number of matched trans-
lations according to such increase. Overall, the num-
ber of matched pairs linearly increases as the num-
ber of nodes increases, which suggests scalability.
The ratio of node overlap in two graphs is about be-
tween 7% and 9% of total node size.
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Figure 6: Matched translations over |Ve| and |Vc|

5 Conclusion

This paper abstracted name translation problem as a
matching problem of two entity-relationship graphs.
This novel approach complements existing name
translation work, by not requiring rare resources
of parallel or comparable corpus yet outperforming
the state-of-the-art. More specifically, we combine
bilingual phonetic similarity and monolingual Web
co-occurrence similarity, to compute a holistic no-
tion of entity similarity. To achieve this goal, we de-
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Table 3: Precision, Recall, and F1-score of Baseline, Engkoo, Google, and Ours over test sets Ti

Set Precision Recall F1-score
Engkoo Google Baseline Ours Engkoo Google Baseline Ours Engkoo Google Baseline Ours

T1 0.5263 0.4510 0.5263 0.8974 0.3922 0.4510 0.1961 0.6863 0.4494 0.4510 0.2857 0.7778
T2 0.7551 0.75 0.7143 0.8056 0.7115 0.75 0.2885 0.5577 0.7327 0.75 0.4110 0.6591
T3 0.5833 0.7925 0.5556 0.7949 0.5283 0.7925 0.1887 0.5849 0.5545 0.7925 0.2817 0.6739
T4 0.5 0.45 0.7368 0.7353 0.425 0.45 0.35 0.625 0.4595 0.45 0.4746 0.6757
T5 0.6111 0.3137 0.5 0.7234 0.4314 0.3137 0.1765 0.6667 0.5057 0.3137 0.2609 0.6939
T6 0.5636 0.8947 0.6 0.8605 0.5438 0.8947 0.1053 0.6491 0.5536 0.8947 0.1791 0.74

AVG 0.5899 0.6086 0.6055 0.8028 0.5054 0.6086 0.2175 0.6283 0.5426 0.6086 0.3155 0.7034

Table 4: Precision, Recall, and F1-score of Engkoo, Google, and Ours with head and tail datasets

Method
Precision Recall F1-score

head tail diff head tail diff head tail diff
Engkoo 0.6082 0.5854 0.0229 0.59 0.4706 0.1194 0.5990 0.5217 0.0772
Google 0.75 0.5588 0.1912 0.75 0.5588 0.1912 0.75 0.5588 0.1912

Ours 0.8462 0.7812 0.0649 0.66 0.6127 0.0473 0.7416 0.6868 0.0548

veloped a graph alignment algorithm that iteratively
reinforces the matching similarity exploiting rela-
tional similarity and then extracts correct matches.
Our evaluation results empirically validated the ac-
curacy of our algorithm over real-life datasets, and
showed the effectiveness on our proposed perspec-
tive.
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Donghui Feng, Yajuan Lü, and Ming Zhou. 2004.
A New Approach for English-Chinese Named En-
tity Alignment. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP’04), pages 372–379. Association for Com-
putational Linguistics.

Pascale Fung and Lo Yuen Yee. 1998. An IR Ap-
proach for Translating New Words from Nonparal-
lel,Comparable Texts. In Proceedings of the 17th In-
ternational Conference on Computational Linguistics
(COLING’98), pages 414–420. Association for Com-
putational Linguistics.

Long Jiang, Ming Zhou, Lee feng Chien, and Cheng Niu.
2007. Named Entity Translation with Web Mining and
Transliteration. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI’07), pages 1629–1634. Morgan Kaufmann Pub-
lishers Inc.

Long Jiang, Shiquan Yang, Ming Zhou, Xiaohua Liu, and
Qingsheng Zhu. 2009. Mining Bilingual Data from
the Web with Adaptively Learnt Patterns. In Proceed-
ings of the 47th Annual Meeting of the Association for
Computational Linguistics (ACL’09), pages 870–878.
Association for Computational Linguistics.

Kevin Knight and Jonathan Graehl. 1998. Ma-
chine Transliteration. Computational Linguistics,
24(4):599–612.

Julian Kupiec. 1993. An Algorithm for finding Noun
Phrase Correspondences in Bilingual Corpora. In Pro-
ceedings of the 31th Annual Meeting of the Association
for Computational Linguistics (ACL’93), pages 17–22.
Association for Computational Linguistics.

Haizhou Li, Zhang Min, and Su Jian. 2004. A Joint
Source-Channel Model for Machine Transliteration.
In Proceedings of the 42nd Annual Meeting on Associ-
ation for Computational Linguistics (ACL’04), pages
159–166. Association for Computational Linguistics.

Dekang Lin, Shaojun Zhao, Benjamin Van Durme, and
Marius Pasca. 2008. Mining Parenthetical Transla-

438



tions from the Web by Word Alignment. In Proceed-
ings of the 46th Annual Meeting of the Association
for Computational Linguistics (ACL’08), pages 994–
1002. Association for Computational Linguistics.

Li Shao and Hwee Tou Ng. 2004. Mining New Word
Translations from Comparable Corpora. In Proceed-
ings of the 20th International Conference on Computa-
tional Linguistics (COLING’04), pages 618–624. As-
sociation for Computational Linguistics.

Ellen M. Voorhees. 2001. The trec question answering
track. Natural Language Engineering, 7(4):361–378.

Stephen Wan and Cornelia Maria Verspoor. 1998. Auto-
matic English-Chinese Name Transliteration for De-
velopment of Multilingual Resources. In Proceed-
ings of the 17th International Conference on Compu-
tational Linguistics (COLING’98), pages 1352–1356.
Association for Computational Linguistics.

Douglas Brent West. 2000. Introduction to Graph The-
ory. Prentice Hall, second edition.

439



Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 440–450,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Non-isomorphic Forest Pair Translation 
 

 
Hui Zhang1, 2, 3   Min Zhang1   Haizhou Li1   Eng Siong Chng2 

 

1Institute for Infocomm Research   
2Nanyang Technological University  
3USC Information Science Institute  

huizhang.fuan@gmail.com   {mzhang, hli}@i2r.a-star.edu.sg   aseschng@ntu.edu.sg 
 
 
 
 
 

 
 
 
 
 

Abstract 

This paper studies two issues, non-isomorphic 
structure translation and target syntactic structure 
usage, for statistical machine translation in the 
context of forest-based tree to tree sequence trans-
lation. For the first issue, we propose a novel 
non-isomorphic translation framework to capture 
more non-isomorphic structure mappings than tra-
ditional tree-based and tree-sequence-based trans-
lation methods. For the second issue, we propose a 
parallel space searching method to generate hypo-
thesis using tree-to-string model and evaluate its 
syntactic goodness using tree-to-tree/tree sequence 
model. This not only reduces the search complexity 
by merging spurious-ambiguity translation paths 
and solves the data sparseness issue in training, but 
also serves as a syntax-based target language mod-
el for better grammatical generation. Experiment 
results on the benchmark data show our proposed 
two solutions are very effective, achieving signifi-
cant performance improvement over baselines 
when applying to different translation models. 

1 Introduction 

Recently syntax-based methods have achieved very 
promising results and attracted increasing interests in 
statistical machine translation (SMT) research com-
munity due to their ability to provide informative 
context structure information and convenience in 
carrying out word transformation and sub-span reor-
dering. Fundamentally, syntax-based SMT views 

translation as a structural transformation process. 
Generally speaking, from modeling viewpoint, a 
syntax-based model tries to convert the source struc-
tures into target structures iteratively and recursively 
while from decoding viewpoint a syntax-based sys-
tem segments an input tree/forest into many 
sub-fragments, translates each of them separately, 
combines the translated sub-fragments and then finds 
out the best combinations. Therefore, from bilingual 
viewpoint, we face two fundamental problems: the 
mapping between bilingual structures and the way of 
carrying out the target structures combination.  

For the first issue, a number of models have been 
proposed to model the structure mapping between 
tree and string (Galley et al., 2004; Liu et al., 2006; 
Yamada and Knight, 2001; DeNeefe and Knight, 
2009) and between tree and tree (Eisner, 2003; 
Zhang et al., 2007 & 2008; Liu et al., 2009). How-
ever, one of the major challenges is that all the cur-
rent models only allow one-to-one mapping from one 
source frontier non-terminal node (Galley et al., 2004) 
to one target frontier non-terminal node in a bilingual 
translation rule. Therefore, all those translation equi-
valents with one-to-many frontier non-terminal node 
mapping cannot be covered by the current 
state-of-the-art models. This may largely compro-
mise the modeling ability of translation rules. 

For the second problem, currently, the combina-
tion is driven by only the source side (both 
tree-to-string model and tree-to-tree model only 
check the source span compatibility when combining 
different target structures in decoding) or only the 
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target side (string to tree model). There is no well 
study in considering both the source side information 
and the compatibility between different target syn-
tactic structures during combination. In addition, it is 
well known that the traditional tree-to-tree models 
suffer heavily from the data sparseness issue in 
training and the spurious-ambiguity translation path 
issue (the same translation with different syntactic 
structures) in decoding. 

In addition, because of the performance limitation 
of automatic syntactic parser, researchers propose 
using packed forest (Tomita, 1987; Klein and Man-
ning, 2001; Huang, 2008)1 instead of 1-best parse 
tree to carry out training (Mi and Huang, 2008) and 
decoding (Mi et al., 2008) in order to reduce the side 
effect caused by parsing errors of the one-best tree. 
However, when we apply the tree-to-tree model to 
the bilingual forest structures, both training and de-
coding become very complicated. 

In this paper, to address the first issue, we propose 
a framework to model the non-isomorphic translation 
process from source tree fragment to target tree se-
quence, allowing any one source frontier 
non-terminal node to be translated into any number 
of target frontier non-terminal nodes. For the second 
issue, we propose a technology to model the combi-
nation task by considering both sides’ syntactic 
structure information. We evaluate and integrate the 
two technologies into forest-based tree to tree se-
quence translation. Experimental results on the 
NIST-2003 and NIST-2005 Chinese-English transla-
tion tasks show that our methods significantly out-
perform the forest-based tree to string and previous 
tree to tree models as well as the phrase-based model.  

The remaining of the paper is organized as fol-
lowing. Section 2 reviews the related work. In sec-
tion 3 and section 4, we discuss the proposed for-
est-based rule extraction (non-isomorphic mapping) 
and decoding algorithms (target syntax information 
usage). Finally we report the experimental results in 
section 5 and conclude the paper in section 6. 

2 Related Work 

Much effort has been done in the syntax-based trans-
lation modeling. Yamada and Knight (2001) propose 
                                                           
1 A packed forest is a compact representation of a set of trees 
with sharing substructures; formally, it is defined as a triple a 
triple൏ ܸ, ,ܧ ܵ ൐, where ܸ is non-terminal node set, ܧ is hy-
per-edge set and ܵ is leaf node set (i.e. all sentence words). 
Every node in ܸ covers a consecutive sequence of leaf, every 
hyper-edge in ܧ connect the father node to its children nodes as 
in a tree. Figure 8 is a packed forest contains two trees. 

a string to tree model. Galley et al. (2004) propose 
the GHKM scheme to model the string-to-tree map-
ping. Liu et al. (2006) propose a tree-to-string trans-
lation model. Liu et al. (2007) propose the tree se-
quence to string model to capture rules covered by 
continuous sequence of trees. Shieber (2007), De-
Neefe and Knight (2009) and Carreras and Collins 
(2009) propose synchronous tree adjoin grammar to 
capture more tree-string mapping beyond the GHKM 
scheme. Zhang et al. (2009a) propose the concept of 
virtual node to reform a tree sequence as a tree, and 
design efficient algorithms for tree sequence model 
in forest context. All these works only consider either 
the source side or the target side syntax information. 

To capture both side syntax contexts, Eisner (2003) 
studies the bilingual dependency tree-to-tree map-
ping in conceptual level. Zhang et al. (2008) propose 
tree sequence-based tree-to-tree modeling. Liu et al. 
(2009) propose efficient algorithms for tree-to-tree 
model in the forest-based training and decoding 
scheme. One common limitation of the above works 
is they only allow the one-to-one mapping between 
each non-terminal frontier node, and thus they suffer 
from the issue of rule coverage. On the other hand, 
due to the data sparseness issue and model coverage 
issue, previous tree-to-tree (Zhang et al., 2008; Liu et 
al., 2009) decoder has to rely solely on the span in-
formation or source side information to combine the 
target syntactic structures, without checking the 
compatibility of the merging nodes, in order not to 
fail many translation paths. Thus, this solution fails 
to effectively utilize the target structure information. 

To address this issue, tree sequence (Liu et al., 
2007; Zhang et al., 2008) and virtual node (Zhang et 
al., 2009a) are two concepts with promising results 
reported. In this paper, with the help of these two 
concepts, we propose a novel framework to solve the 
one-to-many non-isomorphic mapping issue. In addi-
tion, our proposed solution of using target syntax 
information enables our forest-based tree-to-tree se-
quence translation decoding algorithm to not only 
capture bilingual forest information but also have 
almost the same complexity as forest-based 
tree-to-string translation. This reduces the time/space 
complexity exponentially. 

3 Tree to Tree Sequence Rules 

The motivation of introducing tree to tree sequence 
rules is to add target syntax information to 
tree-to-string rules. Following, we first briefly review 
the definition of tree-to-string rules, and then de-
scribe the tree-to-tree sequence rules. 
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3.1 Tree to String Rules 

VP

ADVP

AD

VP

VV

努力
(try hard to)

学习
(study)

try to studyhard  
    

Fig. 1. A word-aligned sentence pair with source tree 
 

 
   
   Fig. 2 Examples of tree to string rules 
 

Fig. 2 illustrates the examples of tree to string rules 
extracted from Fig. 1. The tree-to-string rule is very 
simple. Its source side is a sub-tree of source parse 
tree and its target side is a string with only one varia-
ble/non-terminal X. The source side and the target 
side is translation of each other with the constraint of 
word alignments. Please note that there is no any 
target syntactic or linguistic information used in the 
tree-to-string model. 

3.2 Tree to Tree Sequence Rules 

It is more challenging when extracting rules with 
target tree structure as constraint. Fig. 3 extends Fig. 
1 with target tree structure. The problem is that, giv-
en a source tree node, we are able to find its target 
string translation, but these target string may not 
form a linguistic sub-tree. For example, in Fig. 3, the 
source tree node “ADVP” in solid eclipse is trans-
lated to “try hard to” in the target sentence, but there 

is no corresponding sub-tree covering and only cov-
ering it in the target side.  

Given the example rules in Fig. 2, what are their 
corresponding rules with target syntax information? 
The answer is that the previous tree or tree se-
quence-based models fail to model the Rule 1 and 
Rule 2 at Fig. 2, since at frontier node level they only 
allow one-to-one node mapping but the solution is 
one-to-many non-terminal frontier node mapping. 
The concept of “virtual node” (Zhang et al. 2009a) is 
a solution to this issue. To facilitate discussion, we 
first introduce three concepts. 

 

 
 

Fig. 3. A word-aligned bi-parsed tree 
 

 

Fig. 4. A restructured tree with a virtual span root 
 

• Def. 1. The “node sequence” is a sequence of 
nodes (either leaf or internal nodes) covering a 
consecutive span. For example, in Fig 3, “VBP 
RB TO” and “VBP ADVP TO” are two “node 
sequence” covering the same span “try hard to”. 
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• Def. 2. The “root node sequence” of a span is 
such a node sequence that any node in this se-
quence could not be a child of a node in other 
node sequence of the span. Intuitively, the “root 
node sequence” of a span is the node sequence 
with the highest topology level. For example, 
“VBP ADVP TO” is the “root node sequence” 
of the span of “try hard to”. It is easy to prove 
that given any span, there exist one and only one 
“root node sequence”. 

 

• Def. 3. The “span root” of a span is such a node 
that if the “root node sequence” contains only 
one tree node, then the “span root” is this tree 
node; otherwise, the “span root” is the virtual 
father node (Zhang et al., 2009a) of the “root 
node sequence”. Fig. 4 illustrates the reformed 
Fig. 3 by introducing the virtual node 
“VBP+ADVP+TO” as the “span root” of the 
span of “try hard to”. 

 

 

The “span root” facilitates us to extract rules with 
target side structure information. Given a sub-tree of 
the source tree, we have a set of non-terminal frontier 
nodes. For each such frontier node, we can find its 
corresponding target “span root”. If the “span root” 
is a virtual node, then we add it into the target tree as 
a virtual segmentation joint point. After adding the 
“span root” as joint point, we are able to ensure that 
each frontier source node has only one corresponding 
target node, then we can use any traditional rule ex-
traction algorithm to extract rules, including those 
rules with one-to-many non-terminal frontier map-
pings. 

 
 

Fig. 5. Tree-to-tree sequence rules 

Fig. 5 lists the corresponding rules with target 
structure information of the tree-to-string rules in Fig 
2. All the three rules cannot be extracted by previous 
tree-to-tree mapping methods (Liu et al., 2009). The 
previous tree-sequence-based methods (Zhang et al., 
2008; Zhang et al., 2009a) can extracted rule 3 since 
they allow one-to-many mapping in root node level. 
But they cannot extract rule 1 and rule 2. Therefore, 
for any tree-to-string rule, our method can always 
find the corresponding tree-to-tree sequence rule. As 
a result, our rule coverage is the same as 
tree-to-string framework while our rules contain 
more informative target syntax information. Later we 
will show that using our decoding algorithm the 
tree-to-tree sequence search space is exponentially 
reduced to the same as tree-to-string search space. 
That is to say, we do not need to worry about the ex-
ponential search space issue of tree-to-tree sequence 
model existing in previous work. 

3.3 Rule Extraction in Tree Context 

Given a word aligned tree pair, we first extract the 
set of minimum tree to string rules (Galley et al. 
2004), then for each tree-to-string rule, we can easily 
extract its corresponding tree-to-tree sequence rule 
by introducing the virtual span root node. After that, 
we generate the composite rules by iteratively com-
bining small rules.  
 

    
 

Fig. 6. Rule combination and virtual node removing 
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  Please note that in generating composite rules, if 
the joint node is a virtual node, we have to recover 
the original link and remove this virtual node to 
avoid unnecessary ambiguity. Fig. 6 illustrates the 
combination process of rule 2 and rule 3 in Fig. 5. As 
a result, all of our extract rules do not contain any 
internal virtual nodes. 

3.4 Rule Extraction in Forest Context 

In forest pair context, we also first generate the 
minimum tree-to-string rule set as Mi et al. (2008), 
and for each tree-to-string rule, we find its corres-
ponding tree-to-tree sequence rules, and then do rule 
composition. 

In tree pair context, given a tree-to-string rule, 
there is one and only one corresponding tree-to-tree 
sequence rule. But in forest pair context, given one 
such tree-to-string rule, there are many correspond-
ing tree-to-tree sequence rules. All these sub-trees 
form one or more sub-forests2 of the entire big target 
forest. If we can identify the sub-forests, i.e., all of 
the hyper-edges of the sub-forests, we can retrieve all 
the sub-trees from the sub-forests as the target sides 
of the corresponding tree-to-tree sequence rules. 

Given a source sub-tree, we can obtain the target 
root span where the target sub-forests start and the 
frontier spans where the target sub-forests stop. To 
indentify all the hyper-edges in the sub-forests, we 
start from every node covering the root span, traverse 
from top to down, mark all the hyper-edges visited 
and stop at the node if its span is a sub-span of one of 
the forest frontier spans or if it is a word node. The 
reason we stop at the node once it fell into a frontier 
span (i.e. the span of the node is a sub-span of the 
frontier span) is to guarantee that given any frontier 
span, we could stop at the “root node sequence” of 
this span by Def. 2. 

For example, Fig. 7 is a source sub-tree of rule 2 
in Fig. 5 and the circled part in Fig. 8 is one of its 
corresponding target sub-forests. Its corresponding 
target root span is [1,4] (corresponding to source root 
“VP” ) and its corresponding target frontier span is 
{[1,3], study[4,4]}. Now given the target forest, we 
start from node VP[1,4] and traverse from top to 
down, finally stop at following nodes: VBP[1,1], 
ADVP[2,2], TO[3,3], study .  

                                                           
2 All the sub-forests cover the same span. But their roots have 
different grammar tags as the roots’ names. The root may be a 
virtual span root node in the case of the one-to-many frontier 
non-terminal node mappings. 

Please note that the starting root node must be a 
single node, being either a normal forest node or a 
virtual “span root” node. The virtual “span root” 
node serves as the frontier node of upper rules and 
root node of the currently being extracted rules. Be-
cause we extract rules in a top-to-down manner, the 
necessary virtual “span root” node for current 
sub-forest has already been added into the global 
forest when extracting upper level rules. 

 

 
 

Figure 7. A source sub-tree in rule 2 
 

 
 

Fig. 8. The corresponding target sub-forest for the tree of 
Figure 7. 

3.5 Fractional Count of Rule 

Following Mi and Huang (2008) and Liu et al. 
(2009), we assign a fractional count to a rule to 
measure how likely it appears given the context of 
the forest pair. In following equation, “S” means 
source sub-tree, “T” means target sub-tree, “SF” is 
source forest and “TF” is the target forest. 
 
 ܲሺܵ, ,ܨܵ| ܶ ሻܨܶ ؆ ܲሺܵ|ܵܨ, ሻܨܶ כ ܲሺܶ|ܵܨ, ؆ሻܨܶ ܲሺܵ|ܵܨሻ כ ܲሺܶ|ܶܨሻ 
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The above equation means the fractional count of 
a source-target tree pair is just the product of each of 
their fractional count in corresponding forest context 
in following equation. 
 ܲሺݐݏ݁ݎ݋ܨ| ݁݁ݎݐܾݑݏሻ ൌ  ሻݐ݋݋ݎ ݐݏ݁ݎ݋ሺ݂ߚߙሻ݁݁ݎݐܾݑݏሺߚߙ

ൌ ሻݐ݋݋ݎ ݁݁ݎݐܾݑݏሺߙ כ ∏ ܲሺ݄ሻ௛א௦௨௕௧௥௘௘ כ ∏ ሻݐ݋݋ݎ ݐݏ݁ݎ݋ሺ݂ߚߙ௟௘௔௩௘௦ሺ௦௨௕௧௥௘௘ሻאሻ௩ݒሺߚ  

 
 

where ߙ and ߚ are the outside and inside probabil-
ities. In addition, if a sub-tree root is a virtual node 
(formed by a root node sequence), then we use fol-
lowing equation to approximate the outside probabil-
ity of the virtual node. 

ሻݏ݊ ݁ܿ݊݁ݑݍ݁ݏ ݁݀݋ሺ݊ߙ  ൌ ඨ ෑ ௡௦# ೚೑ ೙೚೏೐ೞ ೔೙ ೙ೞ א ሺ݊ሻ௡ߙ
 

4 Decoding 

4.1 Traditional Forest-based Decoding 

A typical translation process of a forest-based system 
is to first convert the source packed forest into a tar-
get translation forest, and then apply search algo-
rithm to find the best translation result from this tar-
get translation forest (Mi et al., 2008).  

For the tree-to-string model, the forest conversion 
process is as following: given an input packed forest, 
we do pattern matching (Zhang et al., 2009b) with 
the source side structures in the rule set. For each 
matched rule, we establish its target side as a hy-
per-edge in the target forest.   

 

 
 

Fig. 9. A forest conversion step in a tree to string model 
 
Fig. 9 exemplifies a conversion step in the tree to 

string model. A sub-tree structure with two hy-
per-edge “VP[2,4] => ADVP[2,2] VP[3,4]” and 
“VP[3,4] => ADVP[3,4] VP[4,4]” is converted into 
a target hyper-edge “X-VP[2,4] => X-ADVP[3,3] 
X-ADVP[2,2]  X-VP[4,4] ”.  The node “X-VP[4,4]” 

in the target forest means that its syntactic label in 
target forest is “X” and it is translated from the 
source node “VP[4,4]” in the source forest. In this 
target hyper-edge, “X-ADVP[3,3] X-ADVP[2,2]” 
means the translation from source node “ADVP[3,3]” 
is put before the translation from “ADVP[2,2]”, 
representing a structure reordering. 

4.2 Toward Bilingual Syntax-aware Trans-
lation Generation 

As we could see in section 4.1, there is only one kind 
of non-terminal symbol “X” in the target side. It is a 
big challenge to rely on such a coarse label to gener-
ate a translation with fine syntactic quality. For ex-
ample, a source node may be translated into a “NP” 
(noun phrase) in target side. However, in this rule set 
with the only symbol “X”, it may be merged with 
upper structure as a “VP” (verb phrase) instead, be-
cause there is no way to favor one over another. In 
this case, the target tree does not well model the 
translation syntactically. In addition, all of the inter-
nal structure information in the target side is ignored 
by the tree-to-string rules. 

One natural solution to the above issue is to use 
the tree to tree/tree sequence model, which have 
richer target syntax structures for more discrimina-
tive probability and finer labels to guide the combi-
nation process. However, the tree to tree/tree se-
quence model may face very severe computational 
problem and so-called “spurious ambiguities” issue.  

Theoretically, if in the tree-to-tree sequence mod-
el-based decoding, we just give a penalty to the in-
compatible-node combinations instead of pruning out 
the translation paths, then the set of sentences gener-
ated by the tree-to-tree sequence model is identical to 
that of the tree-to-string model since every 
tree-to-tree sequence rule can be projected into a 
tree-to-string rule. Motivated by this, we propose a 
solution call parallel hypothesis spaces searching to 
solve the computational and “spurious ambiguities” 
issues mentioned above. In the meanwhile, we can 
fully utilize the target structure information to guide 
translation.  

We restructure the tree-to-tree sequence rule set by 
grouping all the rules according to their correspond-
ing tree-to-string rules. This behaves like a 
“tree-to-forest” rule. The “forest” encodes all the tree 
sequences with same corresponding string. With the 
re-constructed rule set, during decoding, we generate 
two target translation hypothesis spaces (in the form 
of packed forests) synchronously by the tree-to-string 
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rules and tree-to-tree sequence rules, and maintain 
the projection between them. In other words, we 
generate hypothesis (searching) from the 
tree-to-string forest and calculate the probability 
(evaluating syntax goodness) for each hypothesis by 
the hyper-edges in the tree-to-tree sequence forest.  

4.3 Parallel Hypothesis Spaces 

 
 

Fig. 10. Mapping from tree-to-tree sequence into 
tree-to-string rule 

 
In this subsection, we describe what the parallel 
search spaces are and how to construct them. As 
shown at Fig. 10, given a tree-to-tree sequence rule, 
it is easy to find its corresponding tree-to-string rule 
by simply ignoring the target inside structure and 
renaming the root and leaves non-terminal labels into 
“X”. We iterate through the tree-to-tree sequence rule 
set, find its corresponding tree-to-string rule and then 
group those rules with the same tree-to-string projec-
tion. After that, the original tree-to-tree sequence rule 
set becomes a set of smaller rule sets. Each of them is 
indexed by a unique tree-to-string rule.  

We apply the tree-to-string rules to generate an 
explicit target translation forest to represent the target 
sentences space. At the same time, whenever a 
tree-to-string rule is applied, we also retrieve its cor-
responding tree-to-tree sequence rule set and gener-
ate a set of latent hyper-edges with fine-grained syn-
tax information. In this case, we have two parallel 
forests, one with coarse explicit hyper-edges and the 
other fine and latent. Given a hyper-edge (or a node) 
in the coarse forest, there are a group of correspond-
ing latent hyper-edges (or nodes) with finer syntax 
labels in the fine forest. Accordingly, given a tree in 
the coarse forest, there is a corresponding sub-forest 
in the latent fine forest. We can view the latent fine 
forest as imbedded inside the explicit coarse forest. If 
an explicit hyper-edge is viewed as a big cable, then 

the group of its corresponding latent hyper-edges is 
the small wires inside it. 

We rely on the explicit hyper-edges to enumerate 
possible hypothesis while using the latent hy-
per-edges to measure its translation probability and 
syntax goodness. Thus, the complexity of the search 
space is reduced into the tree-to-string model level, 
while keeping the target language generation syntac-
tic aware. More importantly, we thoroughly avoid 
those spurious ambiguities introduced by the 
tree-to-tree sequence rules. 

4.4 Decoding with Parallel Hypothesis 
Spaces 

 

 
 

Fig. 11. Derivation path and derivation forest 
 
In this subsection, we show exactly how our decoder 
finds the best result from the parallel spaces. We 
generate hypothesis by traversing the coarse forest in 
the parallel spaces with cube-pruning (Huang and 
Chiang, 2007). Given a newly generated hypothesis, 
it is affiliated with a derivation path (tree) in the 
coarse forest and a group of derivation paths 
(sub-forest) in the finer forest. As shown in Fig. 11, 
the left part is the derivation path formed by a coarse 
hyper-edge, consisting the newly-generated sub-tree 
“X => X X X” connecting with three previous-
ly-generated sub paths while the right part is the de-
rivation forest formed by newly-generated finer hy-
per-edges rooted at “VP” and “S”, and previous-
ly-generated sub-forests.  

In this paper, we use the sum of probabilities of all 
the derivation paths in the finer forest to measure the 
quality of the candidate translation suggested by the 
hypothesis. From Fig. 11, we can see there may be 
more than one corresponding finer forests, it is easy 
to understand that the sum of all the trees’ probabili-
ties in these finer forests is equal to the sum of the 
inside probability of all these root nodes of these fin-
er forests. We adopt the dynamic programming to 
compute the probability of the finer forest: whenever 
we generate a new hypothesis by concatenating a 

446



coarse hyper-edge and its sub-path, we find its cor-
responding finer hyper-edges and sub-forests, do the 
combination and accumulate probabilities from bot-
tom to up. For the coarse hyper-edge, because there 
is only one label “X”, any sub-path could be easily 
concatenated with upper structure covering the same 
sub-span without the need of checking label compa-
tibility. While for the finer hyper-edges, we only link 
the root nodes of sub-forests to upper hyper-edges 
with the same linking node label. This is to guarantee 
syntactic goodness. In case there are some leaf nodes 
of the upper hyper-edges fail to find corresponding 
sub-forest roots with the same label (e.g. the “NP” in 
red color in the rightmost of Fig 11), we simply link 
it into the nodes with the least inside probability 
(among these sub-forests), and at the same time give 
a penalty score to this combination. If some root 
nodes of some sub-forest still cannot find upper leaf 
nodes to concatenate (e.g. the “CP” in red color in 
Fig. 11), we simply ignore them. After the combina-
tion process, it is straightforward to accumulate the 
inside probability dynamically from bottom up. 

5 Experiment 

5.1 Experimental Settings 

We evaluate our method on the Chinese-English 
translation task. We first carry out a series empirical 
study on a set of parallel data with 30K sentence 
pairs, and then do experiment on a larger data set to 
ensure that the effectiveness of our method is consis-
tent across data set of different size. We use the 
NIST 2002 test set as our dev set, and NIST 2003 
and NIST 2005 test sets as our test set. A 3-gram 
language model is trained on the target side of the 
training data by the SRILM Toolkits (Stolcke, 2002) 
with modified Kneser-Ney smoothing (Kneser and 
Ney, 1995). We train Charniak’s parser (Charniak, 
2000) on CTB5.0 for Chinese and ETB3.0 for Eng-
lish and modify it to output packed forest. GIZA++ 
(Och and Ney, 2003) and the heuristics 
“grow-diag-final-and” are used to generate m-to-n 
word alignments. For the MER training (Och, 2003), 
Koehn’s MER trainer (Koehn, 2007) is modified for 
our system. For significance test, we use Zhang et 
al.’s implementation (Zhang et al, 2004). Our evalu-
ation metrics is case-sensitive closest BLEU-4 (Pa-
pineni et al., 2002). We use following features in our 
systems: 1) bidirectional tree-to-tree sequence proba-
bility, 2) bidirectional tree-to-string probability, 3) 
bidirectional lexical translation probability, 4) target 
language model, 5) source tree probability 6) the av-

erage number of unmatched nodes in the target forest. 
7) the length of the target translation, 8) the number 
of glue rules used. 

5.2 Empirical Study on Small Data 

We set forest pruning threshold (Mi et al., 2008) to 8 
on both source and target forests for rule extraction. 
For each source sub-tree, we set its height up to 3, 
width up to 7 and extract up to 10-best target struc-
tures. In decoding, we set the pruning threshold to 10 
for the input source forest. Table 1 compares the 
performance in NIST 2003 data set of our method 
and several state-of-the-art systems as our baseline. 
 

1) MOSES: phrase-based system (Koehn et al., 
2007) 

2) FT2S: forest-based tree-to-string system (Mi 
and Huang, 2008; Mi et al., 2008) 

3) FT2T: forest-based tree-to-tree system (Liu et 
al., 2009).  

4) FT2TS (1to1): our forest-based tree-to-tree 
sequence system, where 1to1 means only 
one-to-one frontier non-terminal node map-
ping is allowed, thus the system does not fol-
low our non-isomorphic mapping framework.  

5) FT2TS (1toN): our forest-based tree-to-tree 
sequence system that allows one-to-many 
frontier non-terminal node mapping by fol-
lowing our non-isomorphic mapping frame-
work   

 
In addition, our proposed parallel searching space 

(PSS) technology can be applied to both tree to tree 
and tree to sequence systems. Thus in table 1, for the 
tree-to-tree/tree sequence systems, we report two 
BLEU scores, one uses this technology (withPSS) 
and one does not (noPSS). 

 
Model BLEU-4 
MOSES 23.39 
FT2S 26.10 

FT2T noPSS 23.40 
withPSS 24.46 

FT2TS (1to1) noPSS 25.39 
withPSS 26.58 

FT2TS (1toN) noPSS 26.30 
withPSS 27.70 

 
Table 1. Performance comparison of different methods 
 
 From Table 1, we can see that:  
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1) All the syntax-based systems (except FT2T 
(noPSS) (23.40)) consistently outperform the 
phrase-based system MOSES significantly 
݌) ൏ 0.01 ), indicating that syntactic know-
ledge is very useful to SMT. 

2) The PSS technology shows significant perfor-
mance improvement ሺ݌ ൏ 0.01ሻ in all mod-
els, which clearly shows effectiveness of the 
PSS technology in utilizing target structures 
for target language generation.  

3) FT2TS (1toN) significantly outperforms 
݌) ൏ 0.01) FT2TS (1to1) in both cases (noPSS 
and withPSS). This convincingly shows the 
effectiveness of our non-isomorphic mapping 
framework in capturing the non-isomorphic 
structure translation equivalences. 

4) Both FT2TS systems significantly outperform 
FT2T( ݌ ൏ 0.01). This verifies the effective-
ness of tree sequence rules. 

5) FT2TS shows different level of performance 
improvements over FT2S with the best case 
having 1.6 (27.70-26.10) BLEU score im-
provement over FT2S. This suggests that the 
target structure information is very useful, but 
we need to find a correct way to effectively 
utilize it. 

 
1to1 1toN ratio 
1735871 2363771 1:1.36 

 
Table 2. Statistics on node mapping in forest, where 

“1to1” means the number of nodes in source forest 
that can be translated into one node in target forest 
and “1toN” means the number of nodes in source 
forest that have to be translated into more than one 
node in target forest, where the node refers to 
non-terminal nodes only 

 
Model # of rules T2S covered 

FT2T 295732 26.8% 

FT2TS(1to1) 631487 57.1% 

FT2TS (1toN) 1945168 100% 

 
Table 3. Statistics of rule coverage, where “T2S 

covered” means the percentage of tree-to-string 
rules that can be covered by the model 

 
Table 2 studies the node isomorphism between bi-

lingual forest pair. We can see that the 
non-isomorphic node translation mapping (1toN) 

accounts for 57.6% (=1.36/(1+1.36)) of all the forest 
non-terminal nodes with target translation. This 
means that the one-to-many node mapping is a major 
issue in structure transformation. It also empirically 
justifies the importance of our non-isomorphic map-
ping framework.  

Table 3 shows the rule coverage of different bi-
lingual structure mapping model. FT2T only covers 
26.8% tree-to-string rules, so it performs worse than 
FT2S as shown in Table 1. FT2TS (1to1) does not 
allow one-to-many frontier node mapping, so it could 
only recover the non-isomorphic node mapping in 
the root level, while FT2TS (1toN) could make it at 
both root and leaf levels. Therefore, it is not surpris-
ing that in Table 3, FT2TS (1toN) cover many more 
rules than FT2TS (1to1) because given a source tree, 
there are many leaves, if any one of them is 
non-isomorphic, then it could not be covered by the 
FT2TS (1to1).  
 

Decoding Method BLEU-4 Speed 
(sec/sent)

Traditional: 
FT2TS (1toN) (noPPS) 26.30 152.6 

Ours: 
FT2TS (1toN) (withPPS) 27.70 5.22 

 
Table 4. Performance and speed comparison  

 
Table 4 clearly shows the advantage of our decod-

er over the traditional one. Ours could not only gen-
erate better translation result, but also be 
152.6/5.22>30 times faster. This mainly attributes to 
two reasons: 1) one-to-many frontier node mapping 
equipments the model with more ability to capture 
more non-isomorphic structure mappings than tradi-
tional models, and 2) “parallel search space” enables 
the decoder to fully utilize target syntactic informa-
tion, but keeping the size of search space the same as 
that a “tree to string” model explores. 

5.3 Results on Larger Data Set 

We also carry out experiment on a larger dataset 
consisting of the small dataset used in last section 
and the FBIS corpus. In total, there are 280K parallel 
sentence pairs with 9.3M Chinese words and 11.8M 
English words. A 3-gram language model is trained 
on the target side of the parallel corpus and the GI-
GA3 Xinhua portion. We compare our system 
(FT2TS with 1toN and withPPS) with two 
state-of-the-art baselines: the phrase-based system 
MOSES and the forest-based tree-to-string system 
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implemented by us. Table 5 clearly shows the effec-
tiveness of our method is consistent across small and 
larger corpora, outperforming FT2S by 1.6-1.8 
BLEU and the MOSES by 3.3-4.0 BLEU statistically 
significantly (p<0.01). 
 

Model BLEU 
NIST2003 NIST2005 

MOSES 29.51 27.53 
FT2S 31.21 29.72 
FT2TS 32.88 31.50 

   
Table 5. Performance on larger data set 

6 Conclusions 

In this paper, we propose a framework to address the 
issue of bilingual non-isomorphic structure mapping 
and a novel parallel searching space scheme to effec-
tively utilize target syntactic structure information in 
the context of forest-based tree to tree sequence ma-
chine translation. Based on this framework, we de-
sign an efficient algorithm to extract tree-to-tree se-
quence translation rules from word aligned bilingual 
forest pairs. We also elaborate the parallel searching 
space-based decoding algorithm and the node label 
checking scheme, which leads to very efficient de-
coding speed as fast as the forest-based tree-to-string 
model does, at the same time is able to utilize infor-
mative target structure knowledge. We evaluate our 
methods on both small and large training data sets 
and two NIST test sets. Experimental results show 
our methods statistically significantly outperform the 
state-of-the-art models across different size of cor-
pora and different test sets. In the future, we are in-
terested in testing our algorithm at forest-based tree 
sequence to tree sequence translation. 
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Abstract

We describe a new approach to SMT adapta-
tion that weights out-of-domain phrase pairs
according to their relevance to the target do-
main, determined by both how similar to it
they appear to be, and whether they belong to
general language or not. This extends previ-
ous work on discriminative weighting by us-
ing a finer granularity, focusing on the prop-
erties of instances rather than corpus com-
ponents, and using a simpler training proce-
dure. We incorporate instance weighting into
a mixture-model framework, and find that it
yields consistent improvements over a wide
range of baselines.

1 Introduction

Domain adaptation is a common concern when op-
timizing empirical NLP applications. Even when
there is training data available in the domain of inter-
est, there is often additional data from other domains
that could in principle be used to improve perfor-
mance. Realizing gains in practice can be challeng-
ing, however, particularly when the target domain is
distant from the background data. For developers
of Statistical Machine Translation (SMT) systems,
an additional complication is the heterogeneous na-
ture of SMT components (word-alignment model,
language model, translation model, etc.), which pre-
cludes a single universal approach to adaptation.

In this paper we study the problem of us-
ing a parallel corpus from a background domain
(OUT) to improve performance on a target do-
main (IN) for which a smaller amount of parallel

training material—though adequate for reasonable
performance—is also available. This is a standard
adaptation problem for SMT. It is difficult when IN
and OUT are dissimilar, as they are in the cases we
study. For simplicity, we assume that OUT is ho-
mogeneous. The techniques we develop can be ex-
tended in a relatively straightforward manner to the
more general case when OUT consists of multiple
sub-domains.

There is a fairly large body of work on SMT
adaptation. We introduce several new ideas. First,
we aim to explicitly characterize examples from
OUT as belonging to general language or not. Pre-
vious approaches have tried to find examples that
are similar to the target domain. This is less ef-
fective in our setting, where IN and OUT are dis-
parate. The idea of distinguishing between general
and domain-specific examples is due to Daumé and
Marcu (2006), who used a maximum-entropy model
with latent variables to capture the degree of speci-
ficity. Daumé (2007) applies a related idea in a
simpler way, by splitting features into general and
domain-specific versions. This highly effective ap-
proach is not directly applicable to the multinomial
models used for core SMT components, which have
no natural method for combining split features, so
we rely on an instance-weighting approach (Jiang
and Zhai, 2007) to downweight domain-specific ex-
amples in OUT. Within this framework, we use fea-
tures intended to capture degree of generality, in-
cluding the output from an SVM classifier that uses
the intersection between IN and OUT as positive ex-
amples.

Our second contribution is to apply instance
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weighting at the level of phrase pairs. Sentence
pairs are the natural instances for SMT, but sen-
tences often contain a mix of domain-specific and
general language. For instance, the sentence Sim-
ilar improvements in haemoglobin levels were re-
ported in the scientific literature for other epoetins
would likely be considered domain-specific despite
the presence of general phrases like were reported
in. Phrase-level granularity distinguishes our work
from previous work by Matsoukas et al (2009), who
weight sentences according to sub-corpus and genre
membership.

Finally, we make some improvements to baseline
approaches. We train linear mixture models for con-
ditional phrase pair probabilities over IN and OUT
so as to maximize the likelihood of an empirical
joint phrase-pair distribution extracted from a de-
velopment set. This is a simple and effective alter-
native to setting weights discriminatively to maxi-
mize a metric such as BLEU. A similar maximum-
likelihood approach was used by Foster and Kuhn
(2007), but for language models only. For compar-
ison to information-retrieval inspired baselines, eg
(Lü et al., 2007), we select sentences from OUT
using language model perplexities from IN. This
is a straightforward technique that is arguably bet-
ter suited to the adaptation task than the standard
method of treating representative IN sentences as
queries, then pooling the match results.

The paper is structured as follows. Section 2 de-
scribes our baseline techniques for SMT adaptation,
and section 3 describes the instance-weighting ap-
proach. Experiments are presented in section 4. Sec-
tion 5 covers relevant previous work on SMT adap-
tation, and section 6 concludes.

2 Baseline SMT Adaptation Techniques

Standard SMT systems have a hierarchical param-
eter structure: top-level log-linear weights are used
to combine a small set of complex features, inter-
preted as log probabilities, many of which have their
own internal parameters and objectives. The top-
level weights are trained to maximize a metric such
as BLEU on a small development set of approxi-
mately 1000 sentence pairs. Thus, provided at least
this amount of IN data is available—as it is in our
setting—adapting these weights is straightforward.

We focus here instead on adapting the two most im-
portant features: the language model (LM), which
estimates the probability p(w|h) of a target word w
following an ngram h; and the translation models
(TM) p(s|t) and p(t|s), which give the probability
of source phrase s translating to target phrase t, and
vice versa. We do not adapt the alignment procedure
for generating the phrase table from which the TM
distributions are derived.

2.1 Simple Baselines
The natural baseline approach is to concatenate data
from IN and OUT. Its success depends on the two
domains being relatively close, and on the OUT cor-
pus not being so large as to overwhelm the contribu-
tion of IN.

When OUT is large and distinct, its contribution
can be controlled by training separate IN and OUT
models, and weighting their combination. An easy
way to achieve this is to put the domain-specific
LMs and TMs into the top-level log-linear model
and learn optimal weights with MERT (Och, 2003).
This has the potential drawback of increasing the
number of features, which can make MERT less sta-
ble (Foster and Kuhn, 2009).

2.2 Linear Combinations
Apart from MERT difficulties, a conceptual problem
with log-linear combination is that it multiplies fea-
ture probabilities, essentially forcing different fea-
tures to agree on high-scoring candidates. This is
appropriate in cases where it is sanctioned by Bayes’
law, such as multiplying LM and TM probabilities,
but for adaptation a more suitable framework is of-
ten a mixture model in which each event may be
generated from some domain. This leads to a linear
combination of domain-specific probabilities, with
weights in [0, 1], normalized to sum to 1.

Linear weights are difficult to incorporate into the
standard MERT procedure because they are “hid-
den” within a top-level probability that represents
the linear combination.1 Following previous work
(Foster and Kuhn, 2007), we circumvent this prob-
lem by choosing weights to optimize corpus log-
likelihood, which is roughly speaking the training
criterion used by the LM and TM themselves.

1This precludes the use of exact line-maximization within
Powell’s algorithm (Och, 2003), for instance.
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For the LM, adaptive weights are set as follows:

α̂ = argmax
α

∑
w,h

p̃(w, h) log
∑
i

αipi(w|h), (1)

where α is a weight vector containing an element αi
for each domain (just IN and OUT in our case), pi
are the corresponding domain-specific models, and
p̃(w, h) is an empirical distribution from a target-
language training corpus—we used the IN dev set
for this.

It is not immediately obvious how to formulate an
equivalent to equation (1) for an adapted TM, be-
cause there is no well-defined objective for learning
TMs from parallel corpora. This has led previous
workers to adopt ad hoc linear weighting schemes
(Finch and Sumita, 2008; Foster and Kuhn, 2007;
Lü et al., 2007). However, we note that the final con-
ditional estimates p(s|t) from a given phrase table
maximize the likelihood of joint empirical phrase
pair counts over a word-aligned corpus. This sug-
gests a direct parallel to (1):

α̂ = argmax
α

∑
s,t

p̃(s, t) log
∑
i

αipi(s|t), (2)

where p̃(s, t) is a joint empirical distribution ex-
tracted from the IN dev set using the standard pro-
cedure.2

An alternative form of linear combination is a
maximum a posteriori (MAP) combination (Bacchi-
ani et al., 2004). For the TM, this is:

p(s|t) =
cI(s, t) + β po(s|t)

cI(t) + β
, (3)

where cI(s, t) is the count in the IN phrase table of
pair (s, t), po(s|t) is its probability under the OUT
TM, and cI(t) =

∑
s′ cI(s

′, t). This is motivated by
taking β po(s|t) to be the parameters of a Dirich-
let prior on phrase probabilities, then maximizing
posterior estimates p(s|t) given the IN corpus. In-
tuitively, it places more weight on OUT when less
evidence from IN is available. To set β, we used the
same criterion as for α, over a dev corpus:

β̂ = argmax
β

∑
s,t

p̃(s, t) log
cI(s, t) + β po(s|t)

cI(t) + β
.

2Using non-adapted IBM models trained on all available IN
and OUT data.

The MAP combination was used for TM probabil-
ities only, in part due to a technical difficulty in for-
mulating coherent counts when using standard LM
smoothing techniques (Kneser and Ney, 1995).3

2.3 Sentence Selection

Motivated by information retrieval, a number of
approaches choose “relevant” sentence pairs from
OUT by matching individual source sentences from
IN (Hildebrand et al., 2005; Lü et al., 2007), or
individual target hypotheses (Zhao et al., 2004).
The matching sentence pairs are then added to the
IN corpus, and the system is re-trained. Although
matching is done at the sentence level, this informa-
tion is subsequently discarded when all matches are
pooled.

To approximate these baselines, we implemented
a very simple sentence selection algorithm in which
parallel sentence pairs from OUT are ranked by the
perplexity of their target half according to the IN lan-
guage model. The number of top-ranked pairs to re-
tain is chosen to optimize dev-set BLEU score.

3 Instance Weighting

The sentence-selection approach is crude in that it
imposes a binary distinction between useful and
non-useful parts of OUT. Matsoukas et al (2009)
generalize it by learning weights on sentence pairs
that are used when estimating relative-frequency
phrase-pair probabilities. The weight on each sen-
tence is a value in [0, 1] computed by a perceptron
with Boolean features that indicate collection and
genre membership.

We extend the Matsoukas et al approach in sev-
eral ways. First, we learn weights on individual
phrase pairs rather than sentences. Intuitively, as
suggested by the example in the introduction, this
is the right granularity to capture domain effects.
Second, rather than relying on a division of the cor-
pus into manually-assigned portions, we use features
intended to capture the usefulness of each phrase
pair. Finally, we incorporate the instance-weighting
model into a general linear combination, and learn
weights and mixing parameters simultaneously.

3Bacchiani et al (2004) solve this problem by reconstitut-
ing joint counts from smoothed conditional estimates and un-
smoothed marginals, but this seems somewhat unsatisfactory.
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3.1 Model
The overall adapted TM is a combination of the
form:

p(s|t) = αt pI(s|t) + (1− αt) po(s|t), (4)

where pI(s|t) is derived from the IN corpus us-
ing relative-frequency estimates, and po(s|t) is an
instance-weighted model derived from the OUT cor-
pus. This combination generalizes (2) and (3): we
use either αt = α to obtain a fixed-weight linear
combination, or αt = cI(t)/(cI(t) + β) to obtain a
MAP combination.

We model po(s|t) using a MAP criterion over
weighted phrase-pair counts:

po(s|t) =
cλ(s, t) + γu(s|t)∑

s′ cλ(s′, t) + γ
(5)

where cλ(s, t) is a modified count for pair (s, t)
in OUT, u(s|t) is a prior distribution, and γ is a
prior weight. The original OUT counts co(s, t) are
weighted by a logistic function wλ(s, t):

cλ(s, t) = co(s, t) wλ(s, t) (6)

= co(s, t) [1 + exp(−
∑
i

λifi(s, t))]
−1,

where each fi(s, t) is a feature intended to charac-
terize the usefulness of (s, t), weighted by λi.

The mixing parameters and feature weights (col-
lectively φ) are optimized simultaneously using dev-
set maximum likelihood as before:

φ̂ = argmax
φ

∑
s,t

p̃(s, t) log p(s|t;φ). (7)

This is a somewhat less direct objective than used
by Matsoukas et al, who make an iterative approxi-
mation to expected TER. However, it is robust, effi-
cient, and easy to implement.4

To perform the maximization in (7), we used
the popular L-BFGS algorithm (Liu and Nocedal,
1989), which requires gradient information. Drop-
ping the conditioning on φ for brevity, and let-
ting c̄λ(s, t) = cλ(s, t) + γu(s|t), and c̄λ(t) =

4Note that the probabilities in (7) need only be evaluated
over the support of p̃(s, t), which is quite small when this dis-
tribution is derived from a dev set. Maximizing (7) is thus much
faster than a typical MERT run.

∑
s′ c̄λ(s′, t):

∂ log p(s|t)
∂αt

= kt

[
pI(s|t)
p(s|t)

− po(s|t)
p(s|t)

]
∂ log p(s|t)

∂γ
=

1− αt
p(s|t)

[
u(s|t)
c̄λ(t)

− c̄λ(s, t)

c̄λ(t)2

]
∂ log p(s|t)

∂λi
=

1− αt
p(s|t)

[
cλ′

i
(s, t)

c̄λ(t)
−
c̄λ(s, t)cλ′

i
(t)

c̄λ(t)2

]

where:

kt =

{
1 fixed weight
−cI(t)/(cI(t) + β)2 MAP

cλ′
i
(s, t) = fi(s, t)(1− wλ(s, t))cλ(s, t)

and:
cλ′

i
(t) =

∑
s′

cλ′
i
(s′, t).

3.2 Interpretation and Variants
To motivate weighting joint OUT counts as in (6),
we begin with the “ideal” objective for setting
multinomial phrase probabilities θ = {p(s|t),∀st},
which is the likelihood with respect to the true IN
distribution pÎ(s, t). Jiang and Zhai (2007) sug-
gest the following derivation, making use of the true
OUT distribution pô(s, t):

θ̂ = argmax
θ

∑
s,t

pÎ(s, t) log pθ(s|t) (8)

= argmax
θ

∑
s,t

pÎ(s, t)

pô(s, t)
pô(s, t) log pθ(s|t)

≈ argmax
θ

∑
s,t

pÎ(s, t)

pô(s, t)
co(s, t) log pθ(s|t),

where co(s, t) are the counts from OUT, as in (6).
This has solutions:

pθ̂(s|t) =
pÎ(s, t)

pô(s, t)
co(s, t)/

∑
s′

pÎ(s
′, t)

pô(s′, t)
co(s

′, t),

and from the similarity to (5), assuming γ = 0, we
see that wλ(s, t) can be interpreted as approximat-
ing pÎ(s, t)/pô(s, t). The logistic function, whose
outputs are in [0, 1], forces pÎ(s, t) ≤ pô(s, t). This
is not unreasonable given the application to phrase
pairs from OUT, but it suggests that an interesting al-
ternative might be to use a plain log-linear weighting
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function exp(
∑

i λifi(s, t)), with outputs in [0,∞].
We have not yet tried this.

An alternate approximation to (8) would be to let
wλ(s, t) directly approximate pÎ(s, t). With the ad-
ditional assumption that (s, t) can be restricted to the
support of co(s, t), this is equivalent to a “flat” alter-
native to (6) in which each non-zero co(s, t) is set to
one. This variant is tested in the experiments below.

A final alternate approach would be to combine
weighted joint frequencies rather than conditional
estimates, ie: cI(s, t) + wλ(s, t)co(, s, t), suitably
normalized.5 Such an approach could be simulated
by a MAP-style combination in which separate β(t)
values were maintained for each t. This would make
the model more powerful, but at the cost of having
to learn to downweight OUT separately for each t,
which we suspect would require more training data
for reliable performance. We have not explored this
strategy.

3.3 Simple Features
We used 22 features for the logistic weighting
model, divided into two groups: one intended to re-
flect the degree to which a phrase pair belongs to
general language, and one intended to capture simi-
larity to the IN domain.

The 14 general-language features embody
straightforward cues: frequency, “centrality” as
reflected in model scores, and lack of burstiness.
They are:

• total number of tokens in the phrase pair (1);

• OUT corpus frequency (1);

• OUT-corpus frequencies of rarest source and
target words (2);

• perplexities for OUT IBM1 models, in both di-
rections (2);

• average and minimum source and target word
“document frequencies” in the OUT corpus,
using successive 100-line pseudo-documents6

(4); and
5We are grateful to an anonymous reviewer for pointing this

out.
6One of our experimental settings lacks document bound-

aries, and we used this approximation in both settings for con-
sistency.

• average and minimum source and target word
values from the OUT corpus of the following
statistic, intended to reflect degree of burstiness
(higher values indicate less bursty behaviour):
g/(L − L/(l + 1) + ε), where g is the sum
over all sentences containing the word of the
distance (number of sentences) to the nearest
sentence that also contains the word, L is the
total number of sentences, l is the number of
sentences that contain the word, and ε is a small
constant (4).

The 8 similarity-to-IN features are based on word
frequencies and scores from various models trained
on the IN corpus:

• 1gram and 2gram source and target perplexities
according to the IN LM (4);7

• source and target OOV counts with respect to
IN (2); and

• perplexities for IN IBM1 models, in both direc-
tions (2).

To avoid numerical problems, each feature was
normalized by subtracting its mean and dividing by
its standard deviation.

3.4 SVM Feature

In addition to using the simple features directly, we
also trained an SVM classifier with these features
to distinguish between IN and OUT phrase pairs.
Phrase tables were extracted from the IN and OUT
training corpora (not the dev as was used for instance
weighting models), and phrase pairs in the intersec-
tion of the IN and OUT phrase tables were used as
positive examples, with two alternate definitions of
negative examples:

1. Pairs from OUT that are not in IN, but whose
source phrase is.

2. Pairs from OUT that are not in IN, but whose
source phrase is, and where the intersection of
IN and OUT translations for that source phrase
is empty.

7In the case of the Chinese experiments below, source LMs
were trained using text segmented with the LDC segmenter, as
were the other Chinese models in our system.
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The classifier trained using the 2nd definition had
higher accuracy on a development set. We used it to
score all phrase pairs in the OUT table, in order to
provide a feature for the instance-weighting model.

4 Experiments

4.1 Corpora and System

We carried out translation experiments in two dif-
ferent settings. The first setting uses the Euro-
pean Medicines Agency (EMEA) corpus (Tiede-
mann, 2009) as IN, and the Europarl (EP) cor-
pus (www.statmt.org/europarl) as OUT,
for English/French translation in both directions.
The dev and test sets were randomly chosen from
the EMEA corpus. Figure 1 shows sample sentences
from these domains, which are widely divergent.

The second setting uses the news-related sub-
corpora for the NIST09 MT Chinese to English
evaluation8 as IN, and the remaining NIST paral-
lel Chinese/English corpora (UN, Hong Kong Laws,
and Hong Kong Hansard) as OUT. The dev cor-
pus was taken from the NIST05 evaluation set, aug-
mented with some randomly-selected material re-
served from the training set. The NIST06 and
NIST08 evaluation sets were used for testing. (Thus
the domain of the dev and test corpora matches IN.)
Compared to the EMEA/EP setting, the two do-
mains in the NIST setting are less homogeneous and
more similar to each other; there is also considerably
more IN text available.

The corpora for both settings are summarized in
table 1.

corpus sentence pairs
Europarl 1,328,360
EMEA train 11,770
EMEA dev 1,533
EMEA test 1,522
NIST OUT 6,677,729
NIST IN train 2,103,827
NIST IN dev 1,894
NIST06 test 1,664
NIST08 test 1,357

Table 1: Corpora

8www.itl.nist.gov/iad/mig//tests/mt/2009

The reference medicine for Silapo is
EPREX/ERYPO, which contains epoetin alfa.
Le médicament de référence de Silapo est
EPREX/ERYPO, qui contient de l’époétine alfa.
—
I would also like to point out to commissioner Liika-
nen that it is not easy to take a matter to a national
court.
Je voudrais préciser, à l’adresse du commissaire
Liikanen, qu’il n’est pas aisé de recourir aux tri-
bunaux nationaux.

Figure 1: Sentence pairs from EMEA (top) and Europarl
text.

We used a standard one-pass phrase-based sys-
tem (Koehn et al., 2003), with the following fea-
tures: relative-frequency TM probabilities in both
directions; a 4-gram LM with Kneser-Ney smooth-
ing; word-displacement distortion model; and word
count. Feature weights were set using Och’s MERT
algorithm (Och, 2003). The corpus was word-
aligned using both HMM and IBM2 models, and the
phrase table was the union of phrases extracted from
these separate alignments, with a length limit of 7.
It was filtered to retain the top 30 translations for
each source phrase using the TM part of the current
log-linear model.

4.2 Results

Table 2 shows results for both settings and all meth-
ods described in sections 2 and 3. The 1st block
contains the simple baselines from section 2.1. The
natural baseline (baseline) outperforms the pure IN
system only for EMEA/EP fren. Log-linear combi-
nation (loglin) improves on this in all cases, and also
beats the pure IN system.

The 2nd block contains the IR system, which was
tuned by selecting text in multiples of the size of the
EMEA training corpus, according to dev set perfor-
mance. This significantly underperforms log-linear
combination.

The 3rd block contains the mixture baselines. The
linear LM (lin lm), TM (lin tm) and MAP TM (map
tm) used with non-adapted counterparts perform in
all cases slightly worse than the log-linear combi-
nation, which adapts both LM and TM components.
However, when the linear LM is combined with a
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method EMEA/EP NIST
fren enfr nst06 nst08

in 32.77 31.98 27.65 21.65
out 20.42 17.41 19.85 15.71
baseline 33.61 31.15 26.93 21.01
loglin 35.94 32.62 28.09 21.85
ir 33.75 31.91 —– —–
lin lm 35.61 31.55 28.02 21.68
lin tm 35.32 32.52 27.16 21.32
map tm 35.15 31.99 27.20 21.17
lm+lin tm 36.42 33.49 27.83 22.03
lm+map tm 36.28 33.31 28.05 22.11
iw all 36.55 33.73 28.74 22.28
iw all map 37.01 33.90 30.04 23.76
iw all flat 36.50 33.42 28.31 22.13
iw gen map 36.98 33.75 29.81 23.56
iw sim map 36.82 33.68 29.66 23.53
iw svm map 36.79 33.67 —– —–

Table 2: Results, for EMEA/EP translation into English
(fren) and French (enfr); and for NIST Chinese to En-
glish translation with NIST06 and NIST08 evaluation
sets. Numbers are BLEU scores.

linear TM (lm+lin tm) or MAP TM (lm+map TM),
the results are much better than a log-linear com-
bination for the EMEA setting, and on a par for
NIST. This is consistent with the nature of these two
settings: log-linear combination, which effectively
takes the intersection of IN and OUT, does relatively
better on NIST, where the domains are broader and
closer together. Somewhat surprisingly, there do not
appear to be large systematic differences between
linear and MAP combinations.

The 4th block contains instance-weighting mod-
els trained on all features, used within a MAP TM
combination, and with a linear LM mixture. The
iw all map variant uses a non-0 γ weight on a uni-
form prior in po(s|t), and outperforms a version
with γ = 0 (iw all) and the “flattened” variant de-
scribed in section 3.2. Clearly, retaining the origi-
nal frequencies is important for good performance,
and globally smoothing the final weighted frequen-
cies is crucial. This best instance-weighting model
beats the equivalant model without instance weights
by between 0.6 BLEU and 1.8 BLEU, and beats the
log-linear baseline by a large margin.

The final block in table 2 shows models trained

on feature subsets and on the SVM feature described
in 3.4. The general-language features have a slight
advantage over the similarity features, and both are
better than the SVM feature.

5 Related Work

We have already mentioned the closely related work
by Matsoukas et al (2009) on discriminative cor-
pus weighting, and Jiang and Zhai (2007) on (non-
discriminative) instance weighting. It is difficult to
directly compare the Matsoukas et al results with
ours, since our out-of-domain corpus is homoge-
neous; given heterogeneous training data, however,
it would be trivial to include Matsoukas-style iden-
tity features in our instance-weighting model. Al-
though these authors report better gains than ours,
they are with respect to a non-adapted baseline. Fi-
nally, we note that Jiang’s instance-weighting frame-
work is broader than we have presented above, en-
compassing among other possibilities the use of un-
labelled IN data, which is applicable to SMT settings
where source-only IN corpora are available.

It is also worth pointing out a connection with
Daumé’s (2007) work that splits each feature into
domain-specific and general copies. At first glance,
this seems only peripherally related to our work,
since the specific/general distinction is made for fea-
tures rather than instances. However, for multino-
mial models like our LMs and TMs, there is a one to
one correspondence between instances and features,
eg the correspondence between a phrase pair (s, t)
and its conditional multinomial probability p(s|t).
As mentioned above, it is not obvious how to ap-
ply Daumé’s approach to multinomials, which do
not have a mechanism for combining split features.
Recent work by Finkel and Manning (2009) which
re-casts Daumé’s approach in a hierarchical MAP
framework may be applicable to this problem.

Moving beyond directly related work, major
themes in SMT adaptation include the IR (Hilde-
brand et al., 2005; Lü et al., 2007; Zhao et al.,
2004) and mixture (Finch and Sumita, 2008; Fos-
ter and Kuhn, 2007; Koehn and Schroeder, 2007; Lü
et al., 2007) approaches for LMs and TMs described
above, as well as methods for exploiting monolin-
gual in-domain text, typically by translating it auto-
matically and then performing self training (Bertoldi
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and Federico, 2009; Ueffing et al., 2007; Schwenk
and Senellart, 2009). There has also been some
work on adapting the word alignment model prior to
phrase extraction (Civera and Juan, 2007; Wu et al.,
2005), and on dynamically choosing a dev set (Xu
et al., 2007). Other work includes transferring latent
topic distributions from source to target language for
LM adaptation, (Tam et al., 2007) and adapting fea-
tures at the sentence level to different categories of
sentence (Finch and Sumita, 2008).

6 Conclusion

In this paper we have proposed an approach for
instance-weighting phrase pairs in an out-of-domain
corpus in order to improve in-domain performance.
Each out-of-domain phrase pair is characterized by
a set of simple features intended to reflect how use-
ful it will be. The features are weighted within a
logistic model to give an overall weight that is ap-
plied to the phrase pair’s frequency prior to making
MAP-smoothed relative-frequency estimates (dif-
ferent weights are learned for each conditioning
direction). These estimates are in turn combined
linearly with relative-frequency estimates from an
in-domain phrase table. Mixing, smoothing, and
instance-feature weights are learned at the same time
using an efficient maximum-likelihood procedure
that relies on only a small in-domain development
corpus.

We obtained positive results using a very sim-
ple phrase-based system in two different adaptation
settings: using English/French Europarl to improve
a performance on a small, specialized medical do-
main; and using non-news portions of the NIST09
training material to improve performance on the
news-related corpora. In both cases, the instance-
weighting approach improved over a wide range of
baselines, giving gains of over 2 BLEU points over
the best non-adapted baseline, and gains of between
0.6 and 1.8 over an equivalent mixture model (with
an identical training procedure but without instance
weighting).

In future work we plan to try this approach with
more competitive SMT systems, and to extend in-
stance weighting to other standard SMT components
such as the LM, lexical phrase weights, and lexical-
ized distortion. We will also directly compare with

a baseline similar to the Matsoukas et al approach in
order to measure the benefit from weighting phrase
pairs (or ngrams) rather than full sentences. Finally,
we intend to explore more sophisticated instance-
weighting features for capturing the degree of gen-
erality of phrase pairs.
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Abstract

There is considerable interest in interdis-
ciplinary combinations of automatic speech
recognition (ASR), machine learning, natu-
ral language processing, text classification and
information retrieval. Many of these boxes,
especially ASR, are often based on consid-
erable linguistic resources. We would like
to be able to process spoken documents with
few (if any) resources. Moreover, connect-
ing black boxes in series tends to multiply er-
rors, especially when the key terms are out-of-
vocabulary (OOV). The proposed alternative
applies text processing directly to the speech
without a dependency on ASR. The method
finds long (∼ 1 sec) repetitions in speech,
and clusters them into pseudo-terms (roughly
phrases). Document clustering and classi-
fication work surprisingly well on pseudo-
terms; performance on a Switchboard task ap-
proaches a baseline using gold standard man-
ual transcriptions.

1 Introduction

Can we do IR-like tasks without ASR? Information
retrieval (IR) typically makes use of simple features
that count terms within/across documents such as
term frequency (tf) and inverse document frequency
(IDF). Crucially, to compute these features, it is suf-
ficient to count repetitions of a term. In particular,
for many IR-like tasks, there is no need for an au-
tomatic speech recognition (ASR) system to label
terms with phonemes and/or words.

This paper builds on Jansen et al. (2010), a
method for discovering terms with zero resources.

This approach identifies long, faithfully repeated
patterns in the acoustic signal. These acoustic repe-
titions often correspond to terms useful for informa-
tion retrieval tasks. Critically, this method does not
require a phonetically interpretable acoustic model
or knowledge of the target language.

By analyzing a large untranscribed corpus of
speech, this discovery procedure identifies a vast
number of repeated regions that are subsequently
grouped using a simple graph-based clustering
method. We call the resulting groups pseudo-terms
since they typically represent a single word or phrase
spoken at multiple points throughout the corpus.
Each pseudo-term takes the place of a word or
phrase in bag of terms vector space model of a text
document, allowing us to apply standard NLP algo-
rithms. We show that despite the fully automated
and noisy method by which the pseudo-terms are
created, we can still successfully apply NLP algo-
rithms with performance approaching that achieved
with the gold standard manual transcription.

Natural language processing tools can play a key
role in understanding text document collections.
Given a large collection of text, NLP tools can clas-
sify documents by category (classification) and or-
ganize documents into similar groups for a high
level view of the collection (clustering). For exam-
ple, given a collection of news articles, these tools
can be applied so that the user can quickly see the
topics covered in the news articles, and organize the
collection to find all articles on a given topic. These
tools require little or no human input (annotation)
and work across languages.

Given a large collection of speech, we would like
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tools that perform many of the same tasks, allow-
ing the user to understand the contents of the col-
lection while listening to only small portions of the
audio. Previous work has applied these NLP tools
to speech corpora with similar results (see Hazen
et al. (2007) and the references therein.) However,
unlike text, which requires little or no preprocess-
ing, audio files are typically first transcribed into
text before applying standard NLP tools. Automatic
speech recognition (ASR) solutions, such as large
vocabulary continuous speech recognition (LVCSR)
systems, can produce an automatic transcript from
speech, but they require significant development ef-
forts and training resources, typically hundreds of
hours of manually transcribed speech. Moreover,
the terms that may be most distinctive in particular
spoken documents often lie outside the predefined
vocabulary of an off-the-shelf LVCSR system. This
means that unlike with text, where many tools can be
applied to new languages and domains with minimal
effort, the equivalent tools for speech corpora often
require a significant investment. This greatly raises
the entry threshold for constructing even a minimal
tool set for speech corpora analysis.

The paper proceeds as follows. After a review
of related work, we describe Jansen et al. (2010),
a method for finding repetitions in speech. We
then explain how these repetitions are grouped into
pseudo-terms. Document clustering and classifica-
tion work surprisingly well on pseudo-terms; perfor-
mance on a Switchboard task approaches a baseline
based on gold standard manual transcriptions.

2 Related Work

In the low resource speech recognition regime,
most approaches have focused on coupling small
amounts of orthographically transcribed speech (10s
of hours) with much larger collections of untran-
scribed speech (100s or 1000s of hours) to train ac-
curate acoustic models with semi-supervised meth-
ods (Novotney and Schwartz, 2009). In these ef-
forts, the goal is to reduce the annotation require-
ments for the construction of competent LVCSR sys-
tems. This semi-supervised paradigm was relaxed
even further with the pursuit of self organizing units
(SOUs), phone-like units for which acoustic mod-
els are trained with completely unsupervised meth-

ods (Garcia and Gish, 2006). Even though the move
away from phonetic acoustic models improves the
universality of the architecture, small amounts of or-
thographic transcription are still required to connect
the SOUs with the lexicon.

The segmental dynamic time warping (S-DTW)
algorithm (Park and Glass, 2008) was the first truly
zero resource effort, designed to discover portions of
the lexicon directly by searching for repeated acous-
tic patterns in the speech signal. This work im-
plicitly defined a new direction for speech process-
ing research: unsupervised spoken term discovery,
the entry point of our speech corpora analysis sys-
tem. Subsequent extensions of S-DTW (Jansen et
al., 2010) permit applications to much larger speech
collections, a flexibility that is vital to our efforts.

As mentioned above, the application of NLP
methods to speech corpora have traditionally relied
on high resource ASR systems to provide automatic
word or phonetic transcripts. Spoken document
topic classification has been an application of partic-
ular interest (Hazen et al., 2007), for which the rec-
ognized words or phone n-grams are used to charac-
terize the documents. These efforts have produced
admirable results, with ASR transcript-based per-
formance approached that obtained using the gold
standard manual transcripts. Early efforts to per-
form automatic topic segmentation of speech input
without the aid of ASR systems have been promis-
ing (Malioutov et al., 2007), but have yet to exploit
the full the range of NLP tools.

3 Identifying Matched Regions

Our goal is to identify pairs of intervals within and
across utterances of several speakers that contain
the same linguistic content, preferably meaningful
words or terms.

The spoken term discovery algorithm of Jansen et
al. (2010) efficiently searches the space of

(
n
2

)
in-

tervals, where n is the number of speech frames.1

Jansen et al. (2010) is based on dotplots (Church and
Helfman, 1993), a method borrowed from bioinfor-
matics for finding repetitions in DNA sequences.

1Typically, each frame represents a 25 or 30 ms window of
speech sampled every 10 ms
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Figure 1: An example of a dotplot for the string “text
processing vs. speech processing” plotted against itself.
The box calls out the repeated substring: “processing.”

3.1 Acoustic Dotplots
When applied to text, the dotplot construct is re-
markably simple: given character strings s1 and s2,
the dotplot is a Boolean similarity matrix K(s1, s2)
defined as

Kij(s1, s2) = δ(s1[i], s2[j]).

Substrings common to s1 and s2 manifest them-
selves as diagonal line segments in the visualization
of K. Figure 1 shows an example text dotplot where
both s1 and s2 are taken to be the string “text pro-
cessing vs. speech processing.” The boxed diago-
nal line segment arises from the repeat of the word
“processing,” while the main diagonal line trivially
arises from self-similarity. Thus, the search for line
segments inK off the main diagonal provides a sim-
ple algorithmic means to identify repeated terms of
possible interest, albeit sometimes partial, in a col-
lection of text documents. The challenge is to gen-
eralize these dotplot techniques for application to
speech, an inherently noisy, real-valued data stream.

The strategy is to replace character strings with
frame-based speech representations of the form
x = x1, x2, . . . xN , where each xi ∈ Rd is a d-
dimensional vector space representation of the ith

overlapping window of the signal. Given vector time
series x = x1, x2, . . . xN and y = y1, y2, . . . yM for
two spoken documents, the acoustic dotplot is the
real-valuedN×M cosine similarity matrixK(x,y)
defined as
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Figure 2: An example of an acoustic dotplot for 8 seconds
of speech (posteriorgrams) plotted against itself. The box
calls out a repetition of interest.

Kij(x,y) =
1
2

[
1 +

〈xi, yj〉
‖xi‖‖yj‖

]
. (1)

Even though the application to speech is a distinctly
noisier endeavor, sequences of frames repeated be-
tween the two audio clips will still produce approx-
imate diagonal lines in the visualization of the ma-
trix. The search for matched regions thus reduces
to the robust search for diagonal line segments in
K, which can be efficiently performed with standard
image processing techniques.

Included in this procedure is the application of a
diagonal median filter of duration κ seconds. The
choice of κ determines an approximate threshold
on the duration of the matched regions discovered.
Large κ values (∼ 1 sec) will produce a relatively
sparse list of matches corresponding to long words
or short phrases; smaller κ values (< 0.5 sec)
will admit shorter words and syllables that may be
less informative from a document analysis perspec-
tive. Given the approximate nature of the procedure,
shorter κ values also admit less reliable matches.

3.2 Posteriorgram Representation

The acoustic dotplot technique can operate on any
vector time series representation of the speech sig-
nal, including a standard spectrogram. However, at
the individual frame level, the cosine similarities be-
tween frequency spectra of distinct speakers produc-
ing the same phoneme are not guaranteed to be high.
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Figure 3: An example of a posteriorgram.

Thus, to perform term discovery across a multi-
speaker corpus, we require a speaker-independent
representation. Phonetic posteriorgrams are a suit-
able choice, as each frame is represented as the pos-
terior probability distribution over a set of speech
sounds given the speech observed at the particular
point in time, which is largely speaker-independent
by construction. Figure 3 shows an example poste-
riorgram for the utterance “I had to do that,” com-
puted with a multi-layer perceptron (MLP)-based
English phonetic acoustic model (see Section 5 for
details). Each row of the figure represents the pos-
terior probability of the given phone as a function of
time through the utterance and each column repre-
sents the posterior distribution over the phone set at
that particular point in time.

The construction of speaker independent acous-
tic models typically requires a significant amount of
transcribed speech. Our proposed strategy is to em-
ploy a speaker independent acoustic model trained
in a high resource language or domain to interpret
multi-speaker data in the zero resource target set-
ting.2 Indeed, we do not need to know a language
to detect when a word of sufficient length has been
repeated in it.3 By computing cosine similarities

2A similarly-minded approach was taken in Hazen et al.
(2007) and extended in Hazen and Margolis (2008), where the
authors use Hungarian phonetic trigrams features to character-
ize English spoken documents for a topic classification task.

3While in this paper our acoustic model is based on our eval-
uation corpus, this is not a requirement of our approach. Future
work will investigate performance of other acoustic models.

of phonetic posterior distribution vectors (as op-
posed to reducing the speech to a one-best phonetic
token sequence), the phone set used need not be
matched to the target language. With this approach,
a speaker-independent model trained on the phone
set of a reference language may be used to perform
speaker independent term discovery in any other.

In addition to speaker independence, the use of
phonetic posteriorgrams introduces representational
sparsity that permits efficient dotplot computation
and storage. Notice that the posteriorgram dis-
played in Figure 3 consists of mostly near-zero val-
ues. Since cosine similarity (Equation 1) between
two frames can only be high if they have significant
mass on the same phone, most comparisons need not
be made. Instead, we can apply a threshold and store
each posteriorgram as an inverted file, performing
inner product multiplies and adds only when they
contribute. Using a grid of approximately 100 cores,
we were able to perform theO(n2) dotplot computa-
tion and line segment search for 60+ hours of speech
(corresponding to a 500 terapixel dotplot) in approx-
imately 5 hours.

Figure 2 displays the posteriorgram dotplot for
8 seconds of speech against itself (i.e., x = y).
The prominent main diagonal line results from self-
similarity, and thus is ignored in the search. The
boxed diagonal line segment results from two dis-
tinct occurrences of the term one million dollars.
The large black boxes in the image result from
long stretches of silence of filled pauses; fortunately,
these are easily filtered with speech activity detec-
tion or simple measures of posteriorgram stability.

4 Creating Pseudo-Terms

Spoken documents will be represented as bags of
pseudo-terms, where pseudo-terms are computed
from acoustic repetitions described in the previous
section. Let M be a set of matched regions (m),
each consisting of a pair of speech intervals con-
tained in the corpus (m = [t(i)1 , t

(i)
2 ], [t(j)1 , t

(j)
2 ] indi-

cates the speech from t
(i)
1 to t(i)2 is an acoustic match

to the speech from t
(j)
1 to t(j)2 ). If a particular term

occurs k times, the setM can include as many as
(
k
2

)
distinct elements corresponding to that term, so we
require a procedure to group them into clusters. We
call the resulting clusters pseudo-terms since each
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cluster is a placeholder for a term (word or phrase)
spoken in the collection. Given the match list M
and the pseudo-term clusters, it is relatively straight-
forward to represent spoken documents as bags of
pseudo-terms.

To perform this pseudo-term clustering we repre-
sented matched regions as vertices in a graph with
edges representing similarities between these re-
gions. We employ a graph-clustering algorithm that
extracts connected components. Let G = (V,E) be
an unweighted, undirected graph with vertex set V
and edge set E. Each vi ∈ V corresponds to a sin-
gle speech interval ([t(i)1 , t

(i)
2 ]) present in M (each

m ∈M has a pair of such intervals, so |V | = 2|M|)
and each eij ∈ E is an edge between vertex vi and
vj .

The set E consists of two types of edges. The
first represents repeated speech at distinct points
in the corpus as determined by the match list M.
The second represents near-identical intervals in the
same utterance (i.e. the same speech) since a sin-
gle interval can show up in several matches in M
and the algorithm in Section 3 explicitly ignores
self-similarity. Given the intervals [t(i)1 , t

(i)
2 ] and

[t(j)1 , t
(j)
2 ] contained in the same utterance and with

corresponding vertices vi, vj ∈ V , we introduce
an edge eij if fractional overlap fij exceeds some
threshold τ , where fij = max(0, rij) and

rij =
(t(i)2 − t

(i)
1 ) + (t(j)2 − t

(j)
1 )

max(t(i)2 , t
(j)
2 )−min(t(i)1 , t

(j)
1 )
− 1. (2)

From the graph G, we produce one pseudo-term
for each connected component. More sophisticated
edge weighting schemes would likely provide ben-
efit. In particular, we expect improved clustering
by introducing weights that reflect acoustic sim-
ilarity between match intervals, rather than rely-
ing solely upon the term discovery algorithm to
make a hard decision. Such confidence weights
would allow even shorter pseudo-terms to be con-
sidered (by reducing κ) without greatly increasing
false alarms. With such a shift, more sophisticated
graph-clustering mechanisms would be warranted
(e.g. Clauset et al. (2004)). We plan to pursue this
in future work.

Counts Terms
5 keep track of
5 once a month
2 life insurance
2 capital punishment
9 paper; newspaper
3 talking to you

Table 1: Pseudo-terms resulting from a graph clustering
of matched regions (κ = 0.75, τ = 0.95). Counts indi-
cate the number of times the times the pseudo-terms ap-
pear across 360 conversation sides in development data.

Table 1 contains several examples of pseudo-
terms and the matched regions included in each
group. The orthographic forms are taken from the
transcripts in the data (see Section 5). Note that for
some pseudo-terms, the words match exactly, while
for others, the phrases are distinct but phonetically
similar. However, even in this case, there is often
substantial overlap in the spoken terms.

5 Data

For our experiments we used the Switchboard
Telephone Speech Corpus (Godfrey et al., 1992).
Switchboard is a collection of roughly 2,400 two-
sided telephone conversations with a single partici-
pant per side. Over 500 participants were randomly
paired and prompted with a topic for discussion.
Each conversation belongs to one of 70 pre-selected
topics with the two sides restricted to separate chan-
nels of the audio.

To develop and evaluate our methods, we cre-
ated three data sets from the Switchboard corpus: a
development data set, a held out tuning data
set and an evaluation data set. The develop-
ment data set was created by selecting the six most
commonly prompted topics (recycling, capital pun-
ishment, drug testing, family finance, job benefits,
car buying) and randomly selecting 60 sides of con-
versations evenly across the topics (total 360 con-
versation sides.) This corresponds to 35.7 hours of
audio. Note that each participant contributed at most
one conversation side per topic, so these 360 conver-
sation sides represent 360 distinct speakers. All al-
gorithm development and experimentation was con-
ducted exclusively on the development data.

For the tuning data set, we selected an additional
60 sides of conversations evenly across the same six
topics used for development, for a total of 360 con-
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versations and 37.5 hours of audio. This data was
used to validate our experiments on the develop-
ment data by confirming the heuristic used to select
algorithmic parameters, as described below. This
data was not used for algorithm development. The
evaluation data set was created once parameters had
been selected for a final evaluation of our methods.
We selected this data by sampling 100 conversation
sides from the next six most popular conversation
topics (family life, news media, public education,
exercise/fitness, pets, taxes), yielding 600 conversa-
tion sides containing 61.6 hours of audio.

In our experiments below, we varied the match
duration κ between 0.6 s and 1.0 s and the overlap
threshold τ between 0.75 and 1.0. We measured the
resulting effects on the number of unique pseudo-
terms generated by the process. In general, de-
creasing κ results in more matched regions increas-
ing the number of pseudo-terms. Similarly, increas-
ing τ forces fewer regions to be merged, increasing
the total number of pseudo-terms. Table 2 shows
how these parameters change the number of pseudo-
terms (features) per document and the average num-
ber of occurrences of each pseudo-term. The user
could tune these parameters to select pseudo-terms
that were long and occurred in many documents. In
the next sections, we consider how these parameters
effect performance of various learning settings.

To provide the requisite speaker independent
acoustic model, we compute English phone pos-
teriorgrams using the multi-stream multi-layer
perceptron-based architecture of Thomas et al.
(2009), trained on 300 hours of conversational tele-
phone speech. While this is admittedly a large
amount of supervision, it is important to emphasize
our zero resource term discovery algorithm does not
rely on the phonetic interpretability of this refer-
ence acoustic model. The only requirement is that
the same target language phoneme spoken by dis-
tinct speakers map to similar posterior distributions
over the reference language phoneme set. Thus,
even though we evaluate the system on matched-
language Switchboard data, it can be just as easily
applied to any target language with no language-
specific knowledge or training resources required.4

4The generalization of the speaker independence of acous-
tic models across languages is not well understood. Indeed, the
performance of our proposed system would depend to some ex-

κ τ Features Feat. Frequency Feat./Doc.
0.6 0.75 5,809 2.15 34.7
0.6 0.85 23,267 2.22 143.4
0.6 0.95 117,788 2.38 779.8
0.6 1.0 333,816 2.32 2153.4

0.75 0.75 8,236 2.31 52.8
0.75 0.85 18,593 2.36 121.7
0.75 0.95 48,547 2.36 318.2
0.75 1.0 90,224 2.18 546.9
0.85 0.75 5,645 2.52 39.5
0.85 0.85 8,832 2.44 59.8
0.85 0.95 15,805 2.24 98.3
0.85 1.0 24,480 2.10 142.4
1.0 0.75 1,844 2.39 12.3
1.0 0.85 2,303 2.24 14.4
1.0 0.95 3,239 2.06 18.6
1.0 1.0 4,205 1.93 22.7

Table 2: Statistics on the number of features (pseudo-
terms) generated for different settings of the match dura-
tion κ and the overlap threshold τ .

6 Document Clustering

We begin by considering document clustering, a
popular approach to discovering latent structure in
document collections. Unsupervised clustering al-
gorithms sort examples into groups, where each
group contains documents that are similar. A user
exploring a corpus can look at a few documents in
each cluster to gain an overview of the content dis-
cussed in the corpus. For example, clustering meth-
ods can be used on search results to provide quick
insight into the coverage of the returned documents
(Zeng et al., 2004).

Typically, documents are clustered based on a bag
of words representation. In the case of clustering
conversations in our collection, we would normally
obtain a transcript of the conversation and then ex-
tract a bag of words representation for clustering.
The resulting clusters may represent topics, such as
the six topics used in our switchboard data. Such
groupings, available with no topic labeled training
data, can be a valuable tool for understanding the
contents of a speech data collection. We would like
to know if similar clustering results can be obtained
without the use of a manual or automatic transcript.
In our case, we substitute the pseudo-terms discov-
ered in a conversation for the transcript, representing

tent on the phonetic similarity of the target and reference lan-
guage. Unsupervised learning of speaker independent acoustic
models remains an important area of future research.
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the document as a bag of pseudo-terms instead of ac-
tual words. Can a clustering algorithm achieve sim-
ilar results along topical groups with our transcript-
free representation as it can with a full transcript?

In our experiments, we use the six topic labels
provided by Switchboard as the clustering labels.
The goal is to cluster the data into six balanced
groups according to these topics. While Switch-
board topics are relatively straightforward to iden-
tify since the conversations were prompted with spe-
cific topics, we believe this task can still demon-
strate the effectiveness of our representation relative
to the baseline methods. After all, topic classifica-
tion without ASR is still a difficult task.

6.1 Evaluation Metrics
There are numerous approaches to evaluating clus-
tering algorithms. We consider several methods: Pu-
rity, Entropy and B-Cubed. For a full treatment of
these metrics, see Amigó et al. (2009).

Purity measures the precision of each cluster, i.e.,
how many examples in each cluster belong to the
same true topic. Purity ranges between zero and one,
with one being optimal. While optimal purity can be
obtained by putting each document in its own clus-
ter, we fix the number of clusters in all experiments
so purity numbers are comparable. The purity of a
cluster is defined as the largest percentage of exam-
ples in a cluster that have the same topic label. Purity
of the entire clustering is the average purity of each
cluster:

purity(C,L) =
1
N

∑
ci∈C

max
lj∈L
|ci ∩ lj | (3)

where C is the clustering, L is the reference label-
ing, and N are the number of examples. Following
this notation, ci is a specific cluster and lj is a spe-
cific true label.

Entropy measures how the members of a cluster
are distributed amongst the true labels. The global
metric is computed by taking the weighted aver-
age of the entropy of the members of each cluster.
Specifically, entropy(C,L) is given by:

−
∑
ci∈C

Ni

N

∑
lj∈L

P (ci, lj) log2 P (ci, lj) (4)

where Ni is the number of instances in cluster i,
P (ci, lj) is the probability of seeing label lj in clus-
ter ci and the other variables are defined as above.

B-Cubed measures clustering effectiveness from
the perspective of a user’s inspecting the clustering
results (Bagga and Baldwin, 1998). B-Cubed preci-
sion can be defined as an algorithm as follows: sup-
pose a user randomly selects a single example. She
then proceeds to inspect every other example that
occurs in the same cluster. How many of these items
will have the same true label as the selected exam-
ple (precision)? B-Cubed recall operates in a sim-
ilar fashion, but it measures what percentage of all
examples that share the same label as the selected
example will appear in the selected cluster. Since B-
Cubed averages its evaluation over each document
and not each cluster, it is less sensitive to small er-
rors in large clusters as opposed to many small errors
in small clusters. We include results for B-Cubed
F1, the harmonic mean of precision and recall.

6.2 Clustering Algorithms

We considered several clustering algorithms: re-
peated bisection, globally optimal repeated bisec-
tion, and agglomerative clustering (see Karypis
(2003) for implementation details). Each bisection
algorithm is run 10 times and the optimal clustering
is selected according to a provided criteria function
(no true labels needed). For each clustering method,
we evaluated several criteria functions. Addition-
ally, we considered different scalings of the feature
values (the number of times the pseudo-terms ap-
pear in each document). We found that scaling each
feature by the inverse document frequency, effec-
tively TFIDF, produced the best results, so we use
that scaling in all of our experiments. We also ex-
plored various similarity metrics and found cosine
similarity to be the most effective.

We used the Cluto clustering library for all clus-
tering experiments (Karypis, 2003). In the following
section, we report results for the optimal clustering
configuration based on experiments on the develop-
ment data.

6.3 Baselines

We compared our pseudo-term feature set perfor-
mance to two baselines: (1) Phone Trigrams and
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(2) Word Transcripts. The Phone Trigram base-
line is derived automatically using an approach sim-
ilar to Hazen et al. (2007). This baseline is based
on a vanilla phone recognizer on top of the same
MLP-based acoustic model (see Section 5 and the
references therein for details) used to discover the
pseudo-terms. In particular, the phone posterior-
grams were transformed to frame-level monophone
state likelihoods (through division by the frame-
level priors). These state likelihoods were then used
along with frame-level phone transition probabilities
to Viterbi decode each conversation side. It is impor-
tant to emphasize that the reliability of phone recog-
nizers depends on the phone set matching the appli-
cation language. Using the English acoustic model
in this manner on another language will significantly
degrade the performance numbers reported below.

The Word Transcript baseline starts with Switch-
board transcripts. This baseline serves as an upper
bound of what large vocabulary recognition can pro-
vide for this task. n-gram features are computed
from the transcript. Performance is reported sepa-
rately for unigrams, bigrams and trigrams.

6.4 Results

To optimize parameter settings, match duration (κ)
and overlap threshold (τ ) were swept over a wide
range (0.6 < κ < 1.0 and 0.75 < τ < 1.0) using a
variety of clustering algorithms and training criteria.
Initial results on development data showed promis-
ing performance for the default I2 criteria in Cluto
(repeated bisection set to maximize the square root
of within cluster similarity). Representative results
on development data with various parameter settings
for this clustering configuration appear in Table 3.

A few observations about results on development
data. First, the three evaluation metrics are strongly
correlated. Second, for each κ the same narrow
range of τ values achieve good results. In general,
settings of τ > 0.9 were all comparable. Essen-
tially, setting a high threshold for merging matched
regions was sufficient without further tuning. Third,
we observed that decreasing κ meant more features,
but that these additional features did not necessarily
lead to more useful features for clustering. For ex-
ample, κ = 0.70 gave a small number of reasonably
good features, while κ = 0.60 can give an order of
magnitude more features without much of a change

Pseudo-term Results
κ τ Features Purity Entropy B3 F1

0.60 0.95 117,788 0.9639 0.2348 0.9306
0.60 0.96 143,299 0.9750 0.1664 0.9518
0.60 0.97 178,559 0.9667 0.2116 0.9366
0.60 0.98 223,511 0.9528 0.2717 0.9133
0.60 0.99 333,630 0.9583 0.2641 0.9210
0.60 1.0 333,816 0.9583 0.2641 0.9210
0.70 0.93 58,303 0.9528 0.3114 0.9105
0.70 0.94 66,054 0.9667 0.2255 0.9358
0.70 0.95 74,863 0.9583 0.2669 0.9210
0.70 0.96 86,070 0.9611 0.2529 0.9260
0.70 0.97 100,623 0.9639 0.2326 0.9312
0.70 0.98 117,535 0.9556 0.2821 0.9158
0.70 0.99 161,219 0.9056 0.4628 0.8372
0.70 1.0 161,412 0.9333 0.4011 0.8760

Phone Recognizer Baseline
Type Features Purity Entropy B3 F1

Phone Trigram 28,110 0.6194 1.3657 0.5256
Manual Word Transcript Baselines

Type Features Purity Entropy B3 F1
Word Unigram 7,330 0.9917 0.0559 0.9839
Word Bigram 74,216 0.9833 0.1111 0.9678
Word Trigram 224,934 0.9889 0.0708 0.9787

Table 3: Clustering results on development data using
globally optimal repeated bisection and I2 criteria. The
best results over the manual word transcript baselines
and for each match duration (κ) are highlighted in bold.
Pseudo-term results are better than the phonetic baseline
and almost as good as the transcript baseline.

in clustering performance. Finally, while pseudo-
term results are not as good as with the manual
transcripts (unigrams), they achieve similar results.
Compared with the phone trigram features deter-
mined by the phone recognizer output, the pseudo-
terms perform significantly better. Note that these
two automatic approaches were built using the iden-
tical MLP-based phonetic acoustic model.

We sought to select the optimal parameter settings
for running on the evaluation data using the devel-
opment data and the held out tuning data. We de-
fined the following heuristic to select the optimal pa-
rameters. We choose settings for κ, τ and the clus-
tering parameters that independently maximize the
performance averaged over all runs on development
data. We then selected the single run correspond-
ing to these parameter settings and checked the re-
sult on the held out tuning data. This setting was
also the best performer on the held out set, so we
used these parameters for evaluation. The best per-
forming parameters were globally optimal repeated
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κ τ Features Purity Entropy B3 F1
0.70 0.98 123,901 0.9778 0.1574 0.9568
Phone Trigram 28,374 0.6389 1.2345 0.5513
Word Unigram 7,640 0.9972 0.0204 0.9945
Word Bigram 77,201 0.9972 0.0204 0.9945
Word Trigram 233,744 0.9972 0.0204 0.9945

Table 4: Results on held out tuning data. The parameters
(globally optimal repeated bisection clustering with I2
criteria, κ = 0.70 seconds and τ = 0.98) were selected
using the development data and validated on tuning data.
Note that the clusters produced by each manual transcript
test were identical in this case.

κ τ Features Purity Entropy B3 F1
0.70 0.98 279,239 0.9517 0.3366 0.9073
Phone Trigram 31,502 0.7000 1.0496 0.6355
Word Unigram 9939 0.9883 0.0831 0.9772
Word Bigram 110,859 0.9883 0.0910 0.9771
Word Trigram 357,440 0.9900 0.0775 0.9803

Table 5: Results on evaluation data. The parameters
(globally optimal repeated bisection clustering with I2
criteria, κ = 0.7 seconds and τ = 0.98) were selected
using the development data and validated on tuning data.

bisection clustering with I2 criteria, κ = 0.7 s and
τ = 0.98. Note that examining Table 3 alone may
suggest other parameters, but we found our selection
method to yield optimal results on the tuning data.

Results on held out tuning and evaluation data for
this setting compared to the manual word transcripts
and phone recognizer output are shown in Tables
4 and 5. On both the tuning data and evaluation
data, we obtain similar results as on the development
data. While the manual transcript baseline is bet-
ter than our pseudo-term representations, the results
are quite competitive. This demonstrates that use-
ful clustering results can be obtained without a full-
blown word recognizer. Notice also that the pseudo-
term performance remains significantly higher than
the phone recognizer baseline on both sets.

7 Supervised Document Classification

Unsupervised clustering methods are attractive since
they require no human annotations. However, ob-
taining a few labeled examples for a simple label-
ing task can be done quickly, especially with crowd
sourcing systems such as CrowdFlower and Ama-
zon’s Mechanical Turk (Snow et al., 2008; Callison-
Burch and Dredze, 2010). In this setting, a user
may listen to a few conversations and label them by

topic. A supervised classification algorithm can then
be trained on these labeled examples and used to au-
tomatically categorize the rest of the data. In this
section, we evaluate if supervised algorithms can be
trained using the pseudo-term representation of the
speech.

We set up a multi-class supervised classification
task, where each document is labeled using one of
the six Switchboard topics. A supervised learning
algorithm is trained on a sample of labeled docu-
ments and is then asked to label some test data. Re-
sults are measured in terms of accuracy. Since the
documents are a balanced sample of the six topics,
random guessing would yield an accuracy of 0.1667.

We proceed as with the clustering experiments.
We evaluate different representations for various set-
tings of κ and τ and different classifier parameters
on the development data. We then select the opti-
mal parameter settings and validate this selection on
the held out tuning data, before generating the final
representations for the evaluation once the optimal
parameters have been selected.

For learning we require a multi-class classifier
training algorithm. We evaluated four popular
learning algorithms: a) MIRA—a large margin on-
line learning algorithm (Crammer et al., 2006); b)
Confidence Weighted (CW) learning—a probabilis-
tic large margin online learning algorithm (Dredze
et al., 2008; Crammer et al., 2009); c) Maxi-
mum Entropy—a log-linear discriminative classi-
fier (Berger et al., 1996); and d) Support Vec-
tor Machines (SVM)—a large margin discriminator
(Joachims, 1998).5 For each experiment, we used
default settings of the parameters (tuning did not sig-
nificantly change the results) and 10 online iterations
for the online methods (MIRA, CW). Each reported
result is based on 10-fold cross validation.

Table 6 shows results for various parameter set-
tings and the four learning algorithms on develop-
ment data. As before, we observe that values for
τ > 0.9 tend to do well. The CW learning algo-
rithm performs the best on this data, followed by
Maximum Entropy, MIRA and SVM. The optimal
κ for classification is 0.75, close to the 0.7 value
selected in clustering. As before, pseudo-terms do

5We used the “variance” formulation with k = 1 for CW
learning, Gaussian regularization for the Maximum Entropy
classifier, and a linear kernel for the SVM.
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κ τ MaxEnt SVM CW MIRA
0.60 0.99 0.8972 0.6944 0.8667 0.8972
0.60 1.0 0.8972 0.6944 0.8639 0.8944
0.70 0.97 0.9000 0.7722 0.8500 0.8056
0.70 0.98 0.8806 0.7417 0.8917 0.8167
0.70 0.99 0.9000 0.6556 0.9194 0.9056
0.70 1.0 0.8917 0.6556 0.9194 0.9083
0.75 0.94 0.8778 0.7806 0.8639 0.8056
0.75 0.95 0.8778 0.7694 0.8889 0.8111
0.75 0.96 0.9028 0.7778 0.9000 0.8778
0.75 0.97 0.9111 0.7722 0.9250 0.9278
0.75 0.98 0.9056 0.7417 0.9194 0.9167
0.85 0.85 0.8639 0.7833 0.8500 0.8167
0.85 0.90 0.8611 0.7528 0.8611 0.8583
0.85 0.91 0.8389 0.7500 0.8722 0.8556
0.85 0.92 0.8528 0.7222 0.8944 0.8556
Phone Trigram 0.6111 0.7139 0.9138 0.5000
Word Unigram 0.9472 0.8861 0.9861 0.9306
Word Bigram 0.9250 0.8833 0.9917 0.9278
Word Trigram 0.9278 0.8611 0.9889 0.9222

Table 6: The top 15 results (measured as average accu-
racy across the 4 algorithms) for pseudo-terms on de-
velopment data. The best pseudo-term and manual tran-
script results for each algorithm are bolded. All results
are based on 10-fold cross validation. Pseudo-term re-
sults are better than the phonetic baseline and almost as
good as the transcript baseline.

well, though not as well as the upper bound based
on manual transcripts. The performance for pseudo-
terms and phone trigrams are roughly comparable,
though we expect pseudo-terms to be more robust
across languages.

Using the same selection heuristic as in cluster-
ing, we select the optimal parameter settings, vali-
date them on the held out tuning data, and compute
results on evaluation data. The best performing con-
figuration was for κ = 0.75 seconds and τ = 0.97.
Notice these parameters are very similar to the best
parameters selected for clustering. Results on held
out tuning and evaluation data for this setting com-
pared to the manual transcripts are shown in Tables
7 and 8. As with clustering, we see good overall
performance as compared with manual transcripts.
While the performance drops, results suggest that
useful output can be obtained without a transcript.

8 Conclusions

We have presented a new strategy for applying stan-
dard NLP tools to speech corpora without the aid
of a large vocabulary word recognizer. Built in-
stead on top of the unsupervised discovery of term-

κ τ MaxEnt SVM CW MIRA
0.75 0.97 0.8722 0.7389 0.8972 0.8750
Phone Trigram 0.7167 0.6972 0.9056 0.5083
Word Unigram 0.9500 0.9056 0.9806 0.9250
Word Bigram 0.9444 0.9111 0.9833 0.9250
Word Trigram 0.9417 0.8972 0.9778 0.9250

Table 7: Results on held out tuning data. The parameters
(κ = 0.75 seconds and τ = 0.97) were selected using the
development data and validated on tuning data. All re-
sults are based on 10-fold cross validation. Pseudo-term
results are very close to the transcript baseline and often
better than the phonetic baseline.

κ τ MaxEnt SVM CW MIRA
0.75 0.97 0.8683 0.7167 0.7850 0.7150
Phone Trigram 0.8600 0.7750 0.9183 0.6233
Word Unigram 0.9533 0.9317 0.9850 0.9267
Word Bigram 0.9467 0.9200 0.9900 0.9367
Word Trigram 0.9383 0.9233 0.9817 0.9367

Table 8: Results on evaluation data. The parameters
(κ = 0.75 seconds and τ = 0.97) were selected using the
development data and validated on tuning data. All re-
sults are based on 10-fold cross validation. Pseudo-term
results are very close to the transcript baseline and often
better than the phonetic baseline.

like units in the speech, we perform unsupervised
topic clustering as well as supervised classification
of spoken documents with performance approaching
that achieved with the manual word transcripts, and
generally matching or exceeding that achieved with
a phonetic recognizer. Our study identified several
opportunities and challenges in the development of
NLP tools for spoken documents that rely on little
or no linguistic resources such as dictionaries and
training corpora.
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Abstract

In situated dialogue humans often utter lin-
guistic expressions that refer to extralinguistic
entities in the environment. Correctly resolv-
ing these references is critical yet challeng-
ing for artificial agents partly due to their lim-
ited speech recognition and language under-
standing capabilities. Motivated by psycholin-
guistic studies demonstrating a tight link be-
tween language production and human eye
gaze, we have developed approaches that in-
tegrate naturally occurring human eye gaze
with speech recognition hypotheses to resolve
exophoric references in situated dialogue in
a virtual world. In addition to incorporat-
ing eye gaze with the best recognized spo-
ken hypothesis, we developed an algorithm to
also handle multiple hypotheses modeled as
word confusion networks. Our empirical re-
sults demonstrate that incorporating eye gaze
with recognition hypotheses consistently out-
performs the results obtained from processing
recognition hypotheses alone. Incorporating
eye gaze with word confusion networks fur-
ther improves performance.

1 Introduction

Given a rapid growth in virtual world applications
for tutoring and training, video games and simu-
lations, and assistive technology, enabling situated
dialogue in virtual worlds has become increasingly
important. Situated dialogue allows human users to
navigate in a spatially rich environment and carry
a conversation with artificial agents to achieve spe-
cific tasks pertinent to the environment. Different

from traditional telephony-based spoken dialogue
systems and multimodal conversational interfaces,
situated dialogue supports immersion and mobility
in a visually rich environment and encourages so-
cial and collaborative language use (Byron et al.,
2005; Gorniak et al., 2006). In situated dialogue, hu-
man users often need to make linguistic references,
known as exophoric referring expressions (e.g., the
book to the right), to extralinguistic entities
in the environment. Reliably resolving these ref-
erences is critical for dialogue success. However,
reference resolution remains a challenging problem,
partly due to limited speech and language process-
ing capabilities caused by poor speech recognition
(ASR), ambiguous language, and insufficient prag-
matic knowledge.

To address this problem, motivated by psycholin-
guistic studies demonstrating a close relationship
between language production and eye gaze, our
previous work has incorporated naturally occurring
eye gaze in reference resolution (Prasov and Chai,
2008). Our findings have shown that eye gaze can
partially compensate for limited language process-
ing and domain modeling. However, this work was
conducted in a setting where users only spoke to a
static visual interface. In situated dialogue, human
speech and eye gaze patterns are much more com-
plex. The dynamic nature of the environment and
the complexity of spatially rich tasks have a massive
influence on what the user will look at and say. It is
not clear to what degree prior findings can generalize
to situated dialogue. Therefore, this paper explores
new studies on incorporating eye gaze for exophoric
reference resolution in a fully situated virtual envi-
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ronment — a more realistic approximation of real
world interaction. In addition to incorporating eye
gaze with the best recognized spoken hypothesis, we
developed an algorithm to also handle multiple hy-
potheses modeled as word confusion networks.

Our empirical results have demonstrated the util-
ity of eye gaze for reference resolution in situ-
ated dialogue. Although eye gaze is much more
noisy given the mobility of the user, our results
have shown that incorporating eye gaze with recog-
nition hypotheses consistently outperform the re-
sults obtained from processing recognition hypothe-
ses alone. In addition, incorporating eye gaze with
word confusion networks further improves perfor-
mance. Our analysis also indicates that, although a
word confusion network appears to be more compli-
cated, the time complexity of its integration with eye
gaze is well within the acceptable range for real-time
applications.

2 Related Work

Prior work in reference resolution within situated di-
alogue has focused on using visual context to assist
reference resolution during interaction. In (Kelleher
and van Genabith, 2004) and (Byron et al., 2005), vi-
sual features of objects are used to model the focus
of attention. This attention modeling is subsequently
used to resolve references. In contrast to this line of
research, here we explore the use of human eye gaze
during real-time interaction to model attention and
facilitate reference resolution. Eye gaze provides a
richer medium for attentional information, but re-
quires processing of a potentially noisy signal.

Eye gaze has been used to facilitate human ma-
chine conversation and automated language process-
ing. For example, eye gaze has been studied in
embodied conversational discourse as a mechanism
to gather visual information, aid in thinking, or fa-
cilitate turn taking and engagement (Nakano et al.,
2003; Bickmore and Cassell, 2004; Sidner et al.,
2004; Morency et al., 2006; Bee et al., 2009).
Recent work has explored incorporating eye gaze
into automated language understanding such as au-
tomated speech recognition (Qu and Chai, 2007;
Cooke and Russell, 2008), automated vocabulary ac-
quisition (Liu et al., 2007; Qu and Chai, 2010), at-
tention prediction (Qvarfordt and Zhai, 2005; Fang

et al., 2009).
Motivated by previous psycholinguistic findings

that eye gaze is tightly linked with language pro-
cessing (Just and Carpenter, 1976; Tanenhous et al.,
1995; Meyer and Levelt, 1998; Griffin and Bock,
2000), our prior work incorporates eye gaze into
reference resolution. Our results demonstrate that
such use of eye gaze can potentially compensate
for a conversational systems limited language pro-
cessing and domain modeling capability (Prasov and
Chai, 2008). However, this work is conducted in a
static visual environment and evaluated only on tran-
scribed spoken utterances. In situated dialogue, eye
gaze behavior is much more complex. Here, gaze
fixations may be made for the purpose of naviga-
tion or scanning the environment rather than refer-
ring to a particular object. Referring expressions can
be made to objects that are not in the user’s field of
view, but were previously visible on the interface.
Additionally, users may make egocentric spatial ref-
erences (e.g. “the chair on the left”) which require
contextual knowledge (e.g. the users position in the
environment) in order to resolve. Therefore, the fo-
cus of our work here is on exploring these complex
user behaviors in situated dialogue and examining
how to combine eye gaze with ASR hypotheses for
improved reference resolution.

Alternative ASR hypotheses have been used in
many different ways in speech driven systems. Par-
ticularly, in (Mangu et al., 2000) multiple lattice
alignment is used for construction of word confusion
networks and in (Hakkani-Tür et al., 2006) word
confusion networks are used for named entity de-
tection. In the study presented here, we apply word
confusion networks (to represent ASR hypotheses)
along with eye gaze to the problem of reference res-
olution.

3 Data Collection

In this investigation, we created a 3D virtual world
(using the Irrlicht game engine1) to support situated
dialogue. We conducted a Wizard of Oz study in
which the user must collaborate with a remote arti-
ficial agent cohort (controlled by a human) to solve
a treasure hunting task. The cohort is an “expert”
in treasure hunting and has some knowledge regard-

1http://irrlicht.sourceforge.net/
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ing the locations of the treasure items, but cannot
see the virtual environment. The user, immersed in
the virtual world, must navigate the environment and
conduct a mixed-initiative dialogue with the agent to
find the hidden treasures. During the experiments,
a noise-canceling microphone was used to record
user speech and the Tobii 1750 display-mounted eye
tracker was used to record user eye movements.

A snapshot of user interaction with the treasure
hunting environment is shown in Figure 1. Here,
the user’s eye fixation is represented by the white
dot and saccades (eye movements) are represented
by white lines. The virtual world contains 10 rooms
with a total of 155 unique objects that encompass 74
different object types (e.g. chair or plant).

Figure 1: Snapshot of the situated treasure hunting envi-
ronment

Table 1 shows a portion of a sample dialogue be-
tween a user and the expert. Each Si represents a
system utterance and each Ui represents a user ut-
terance. We focus on resolving exophoric referring
expressions, which are enclosed in brackets here. In
our dataset, an exophoric referring expression is a
non-pronominal noun phrase that refers to an en-
tity in the extralinguistic environment. It may be
an evoking reference that initially refers to a new
object in the virtual world (e.g. an axe in utter-
ance U2) or a subsequent reference to an entity in the
virtual world which has previously been mentioned
in the dialogue (e.g. an axe in utterance U3). In
our study we focus on resolving exophoric referring
expressions because they are tightly coupled with a
user’s eye gaze behavior.

From this study, we constructed a parallel spoken
utterance and eye gaze corpus. Utterances, which

S1 Describe what you’re doing.
U1 I just came out from the room that

I started and i see [one long sword]
U2 [one short sword] and [an axe]
S2 Compare these objects.
U3 one of them is long and one of them

is really short, and i see [an axe]

Table 1: A conversational fragment demonstrating inter-
action with exophoric referring expressions.

Utterance: i just came out from the room that
i started and i see [one long sword]

Ht : . . . i 5210 see 5410 [one 5630
long 6080 sword 6460]

H1: . . . icy 5210 winds 5630 along 6080
so 6460 words 68000

H2: . . . icy 5210 [wine 5630] along 6080
so 6460 words 6800

. . .
H25: . . . icy 5210 winds 5630

[long 6080 sword 6460]
. . .

Table 2: Sample n-best list of recognition hypotheses

are separated by a long pause (500 ms) in speech,
are automatically recognized using the Microsoft
Speech SDK. Gaze fixations are characterized by
objects in the virtual world that are fixated via a
user’s eye gaze. When a fixation points to multi-
ple spatially overlapping objects, only the one in the
forefront is deemed to be fixated. The data corpus
was transcribed and annotated with 2204 exophoric
referring expressions amongst 2052 utterances from
15 users.

4 Word Confusion Networks

For each user utterance in our dataset, an n-best list
(with n = 100) of recognition hypotheses ranked
in order of likelihood is produced by the Microsoft
Speech SDK. One way to use the speech recogni-
tion results (as in most speech applications) is to use
the top ranked recognition hypothesis. This may not
be the best solution because a large amount of infor-
mation is being ignored. Table 2 demonstrates this
problem. Here, the number after the underscore de-
notes a timestamp associated with each recognized
spoken word. The strings enclosed in brackets de-
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note recognized referring expressions. In this exam-
ple, the manual transcription of the original utter-
ance is shown by Ht. In this case, the system must
first identify one long sword as a referring ex-
pression and then resolve it to the correct set of en-
tities in the virtual world. However, not until the
twenty fifth ranked recognition hypothesis H25, do
we see a referring expression closest to the actual ut-
tered referring expression. Moreover, in utterances
with multiple referring expressions, there may not
be a single recognition hypothesis that contains all
referring expressions, but each referring expression
may be contained in some recognition hypothesis.
Thus, it is desirable to consider the entire n-best list
of hypotheses.

To address this issue, we adopted the word con-
fusion network (WCN): a compact representation
of a word lattice or n-best list (Mangu et al.,
2000). A WCN captures alternative word hypothe-
ses and their corresponding posterior probabilities
in time-ordered sets. In addition to being compact,
an important feature for efficient post-processing
of recognition hypotheses for real-time systems,
WCNs are capable of representing more competing
hypotheses than either n-best lists or word lattices.
Figure 2 shows an example of a WCN for the utter-
ance “. . . I see one long sword” along with a timeline
(in milliseconds) depicting the eye gaze fixations to
potential referent objects that correspond to the ut-
terance. The confusion network shows competing
word hypotheses along with corresponding proba-
bilities in log scale.

Using our data set, we can show that word con-
fusion networks contain significantly more words
that can compose a referring expression than the top
recognition hypothesis. The confusion network key-
word error rate (KWER) is 0.192 compared to a 1-
best list KWER of 0.318, where a keyword is a word
that can be contained in a referring expression. The
overall WER for word confusion networks and 1-
best lists are 0.315 and 0.460, respectively. The re-
ported WCN word error rates are all oracle word er-
ror rates reflecting the best WER that can be attained
using any path in the confusion network. One more
important feature of word confusion networks is that
they provide time alignment for words that occur at
approximately the same time interval in competing
hypotheses. This is not only useful for efficient syn-

tactic parsing, which is necessary for identifying re-
ferring expressions, but also critical for integration
with time aligned gaze streams.

5 Reference Resolution Algorithm

We have developed an algorithm that combines an
n-best list of speech recognition hypotheses with di-
alogue, domain, and eye-gaze information to resolve
exophoric referring expressions. There are three in-
puts to the multimodal reference resolution algo-
rithm for each utterance: (1) an n-best list of alter-
native speech recognition hypotheses (n = 100 for a
WCN and n = 1 for the top recognized hypothesis),
(2) a list of fixated objects (by eye gaze) that tempo-
rally correspond to the spoken utterance and (3) a set
of potential referent objects. Since during the trea-
sure hunting task people typically only speak about
objects that are visible or have recently been visible
on the screen, an object is considered to be a poten-
tial referent if it is present within a close proximity
(in the same room) of the user while an utterance is
spoken.

The multimodal reference resolution algorithm
proceeds with the following four steps:

Step 1: construct word confusion network A
word confusion network is constructed out of the in-
put n-best list of alternative recognition hypotheses
with the SRI Language Modeling (SRILM) toolkit
(Stolcke, 2002) using the procedure described in
(Mangu et al., 2000). This procedure aligns words
from the n-best list into equivalence classes. First,
instances of the same word containing approxi-
mately the same starting and ending timestamps are
clustered. Then, equivalence classes with common
time ranges are merged. For each competing word
hypothesis its probability is computed by summing
the posteriors of all utterance hypotheses containing
this word. In our work, instead of using the actual
posterior probability of each utterance hypothesis
(which was not available), we assigned each utter-
ance hypothesis a probability based on its position
in the ranked list. Figure 2 depicts a portion of the
resulting word confusion network (showing compet-
ing word hypotheses and their probabilities in log
scale) constructed from the n-best list in Table 2.
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Figure 2: Sample parallel speech and eye gaze data streams, including a portion of the sample WCN

Step 2: extract referring expressions from WCN
The word confusion network is syntactically parsed
using a modified version of the CYK (Cooke and
Schwartz, 1970; Kasami, 1965; Younger, 1967)
parsing algorithm that is capable of taking a word
confusion network as input rather than a single
string. We call this the CYK-WCN algorithm. To
do the parsing, we applied a set of grammar rules
largely derived from a different domain in our pre-
vious work (Prasov and Chai, 2008). A parse chart
of the sample word confusion network is shown in
Table 3. Here, just as in the CYK algorithm the
chart is filled in from left to right then bottom to
top. The difference is that the chart has an added
dimension for competing word hypotheses. This
is demonstrated in position 15 of the WCN, where
one and wine are two nouns that constitute com-
peting words. Note that some words from the con-
fusion network are not in the chart (e.g. winds)
because they are out of vocabulary. The result of
the syntactic parsing is that the parts of speech of
all sub-phrases in the confusion network are identi-
fied. Next, a set of all exophoric referring expres-
sions (i.e. non-pronominal noun phrases) found in

the word confusion network are extracted. Each re-
ferring expression has a corresponding confidence
score, which can be computed in many many dif-
ferent ways. Currently, we simply take the mean of
the probability scores of the expression’s constituent
words. The sample WCN has four such phrases
(shown in bold in Table 3): wine at position 15 with
length 1, one long sword at position 15 with
length 3, long sword at position 16 with length
2, and sword at position 17 with length 1.

Step 3: resolve referring expressions Each re-
ferring expression rj is resolved to the top k po-
tential referent objects according to the probabil-
ity P (oi|rj), where k is determined by information
from the linguistic expressions. P (oi|rj) is deter-
mined using the following expression:

P (oi|rj) =
AS(oi)

α × Compat(oi, rj)1−α∑
i

AS(oi)
α × Compat(oi, rj)1−α

(1)
In this equation,

• AS: Attentional salience score of a particu-
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...
5
4

length 3 NP→ NUM Adj-NP
2 Adj-NP→ ADJ N,

NP→ Adj-NP
1 (1) N→ wine, NP→ N ADJ→ long N→ sword,

(2) NUM→ one NP→ N
... 14 15 16 17 18 ...

WCN position

Table 3: Syntactic parsing of word confusion network

lar object oi, which is determined based on
the gaze fixation intensity of an object at the
start time of referring expression rj . The fix-
ation intensity of an object is defined as the
amount of time that the object is fixated during
a predefined time windowW (Prasov and Chai,
2008). As in (Prasov and Chai, 2008), we set
W = [−1500..0] ms relative to the beginning
of referring expression rj .

• Compat: Compatibility score, which specifies
whether the object oi is compatible with the in-
formation specified by the referring expression
rj . Currently, the compatibility score is set to 1
if referring expression rj and object oi have the
same object type (e.g. chair), and 0 otherwise.

• α: Importance weight, in the range [0..1], of
attentional salience relative to compatibility.
A high α value indicates that the attentional
salience score based on eye gaze carries more
weight in deciding referents, while a low α
value indicates that compatibility carries more
weight. In this work, we set α = 0.5 to indicate
equal weighting between attentional salience
and compatibility. If we do not want to inte-
grate eye gaze in reference resolution, we can
set α = 0.0. In this case, reference resolution
will be purely based on compatibility between
visual objects and information specified via lin-
guistic expressions.

Once all probabilities are calculated, each refer-
ring expression is resolved to a set of referent ob-
jects. Finally, this results in a set of (referring ex-
pression, referent object set) pairs with confidence
scores, which are determined by two components.

The first component is the confidence score of the
referring expression, which is explained in the Step
1 of the algorithm. The second component is the
probability that the referent object set is indeed the
referent of this expression (which is determined by
Equation 1). There are various ways to combine
these two components together to form an overall
confidence score for the pair. Here we simply mul-
tiply the two components. The confidence score for
the pair is used in the following step to prune un-
likely referring expressions.

Step 4: post-prune The resulting set of (referring
expression, referent object set) pairs is pruned to re-
move pairs that fall under one of the following two
conditions: (1) the pair has a confidence score equal
to or below a predefined threshold ε (currently, the
threshold is set to 0 and thus keeps all resolved pairs)
and (2) the pair temporally overlaps with a higher
confidence pair. For example, in Table 3, the re-
ferring expressions one long sword and wine
overlap in position 15. Finally, the resulting (refer-
ring expression, referent object set) pairs are sorted
in ascending order according to their constituent re-
ferring expression timestamps.

6 Experimental Results

Using our data, described in Section 3, we applied
the multimodal reference resolution algorithm de-
scribed in Section 5. All of the data is used to
report the experimental results. Reference resolu-
tion model parameters are set based on our prior
work in a different domain (Prasov and Chai, 2008).
For each utterance we compare the reference reso-
lution performance with and without the integration
of eye gaze information. We also evaluate using a
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word confusion network compared to a 1-best list to
model speech recognition hypotheses. For perspec-
tive, reference resolution with recognized speech in-
put is compared with transcribed speech.

6.1 Evaluation Metrics

The reference resolution algorithm outputs a list of
(referring expression, referent object set) pairs for
each utterance. We evaluate the algorithm by com-
paring the generated pairs to the annotated “gold
standard” pairs using F-measure. We perform the
following two types of evaluation:

• Lenient Evaluation: Due to speech recognition
errors, there are many cases in which the al-
gorithm may not return a referring expression
that exactly matches the gold standard refer-
ring expression. It may only match based on
the object type. For example, the expressions
one long sword and sword are different,
but they match in terms of the intended object
type. For applications in which it is critical to
identify the objects referred to by the user, pre-
cisely identifying uttered referring expressions
may be unnecessary. Thus, we evaluate the ref-
erence resolution algorithm with a lenient com-
parison of (referring expression, referent object
set) pairs. In this case, two pairs are considered
a match if at least the object types specified via
the referring expressions match each other and
the referent object sets are identical.

• Strict Evaluation: For some applications it may
be important to identify exact referring ex-
pressions in addition to the objects they re-
fer to. This is important for applications that
attempt to learn a relationship between refer-
ring expressions and referenced objects. For
example, in automated vocabulary acquisition,
words other than object types must be identi-
fied so the system can learn to associate these
words with referenced objects. Similarly, in
systems that apply priming for language gen-
eration, identification of the exact referring ex-
pressions from human users could be impor-
tant. Thus, we also evaluate the reference reso-
lution algorithm with a strict comparison of (re-
ferring expression, referent object set) pairs. In

this case, a referring expression from the sys-
tem output needs to exactly match the corre-
sponding expression from the gold standard.

6.2 Role of Eye Gaze

We evaluate the effect of incorporating eye gaze
information into the reference resolution algorithm
using the top best recognition hypothesis (1-best),
the word confusion network (WCN), and the man-
ual speech transcription (Transcription). Speech
transcription, which contains no recognition errors,
demonstrates the upper bound performance of our
approach. When no gaze information is used, ref-
erence resolution solely depends on linguistic and
semantic processing of referring expressions. Table
4 shows the lenient reference resolution evaluation
using F-measure. This table demonstrates that le-
nient reference resolution is improved by incorpo-
rating eye gaze information. This effect is statisti-
cally significant in the case of transcription and 1-
best (p < 0.0001 and p < 0.009, respectively) and
marginal (p < 0.07) in the case of WCN.

Configuration Without Gaze With Gaze
Transcription 0.619 0.676

WCN 0.524 0.552
1-best 0.471 0.514

Table 4: Lenient F-measure Evaluation

Configuration Without Gaze With Gaze
Transcription 0.584 0.627

WCN 0.309 0.333
1-best 0.039 0.035

Table 5: Strict F-measure Evaluation

Table 5 shows the strict reference resolution eval-
uation using F-measure. As can be seen in the ta-
ble, incorporating eye gaze information significantly
(p < 0.0024) improves reference resolution per-
formance when using transcription and marginally
(p < 0.113) in the case of WCN optimized for strict
evaluation. However there is no difference for the 1-
best hypotheses which result in extremely low per-
formance. This observation is not surprising since 1-
best hypotheses are quite error prone and less likely
to produce the exact expressions.
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Since eye gaze can be used to direct navigation in
a mobile environment as in situated dialogue, there
could be situations where eye gaze does not reflect
the content of the corresponding speech. In such
situations, integrating eye gaze in reference reso-
lution could be detrimental. To further understand
the role of eye gaze in reference resolution, we ap-
plied our reference resolution algorithm only to ut-
terances where speech and eye gaze are considered
closely coupled (i.e., eye gaze reflects the content of
speech). More specifically, following the previous
work (Qu and Chai, 2010), we define a closely cou-
pled utterance as one in which at least one noun or
adjective describes an object that has been fixated by
the corresponding gaze stream.

Table 6 and Table 7 show the performance based
on closely coupled utterances using lenient and strict
evaluation, respectively. In the lenient evaluation,
reference resolution performance is significantly im-
proved for all input configurations when eye gaze
information is incorporated (p < 0.0001 for tran-
scription, p < 0.015 for WCN, and p < 0.0022 for
1-best). In each case the closely coupled utterances
achieve higher performance than the entire set of ut-
terances evaluated in Table 5. Aside from the 1-best
case, the same is true when using strict evaluation
(p < 0.0006 for transcription and p < 0.046 for
WCN optimized for strict evaluation). This observa-
tion indicates that in situated dialogue, some mech-
anism to predict whether a gaze stream is closely
coupled with the corresponding speech content can
be beneficial in further improving reference resolu-
tion performance.

Configuration Without Gaze With Gaze
Transcription 0.616 0.700

WCN 0.523 0.570
1-best 0.473 0.537

Table 6: Lenient F-measure Evaluation for Closely Cou-
pled Utterances

6.3 Role of Word Confusion Network
The effect of incorporating eye gaze with WCNs
rather than 1-best recognition hypotheses into ref-
erence resolution can also be seen in Tables 4 and
5. Table 4 shows a significant improvement when
using WCNs rather than 1-best hypotheses for both

Configuration Without Gaze With Gaze
Transcription 0.579 0.644

WCN 0.307 0.345
1-best 0.045 0.038

Table 7: Strict F-measure Evaluation for Closely Coupled
Utterances

with (p < 0.015) and without (p < 0.0012) eye
gaze configurations. Similarly, Table 5 shows a sig-
nificant improvement in strict evaluation when us-
ing WCNs rather than 1-best hypotheses for both
with (p < 0.0001) and without (p < 0.0001) eye
gaze configurations. These results indicate that us-
ing word confusion networks improves both lenient
and strict reference resolution. This observation is
not surprising since identifying correct linguistic ex-
pressions will enable better search for semantically
matching referent objects.

Although WCNs lead to better performance, uti-
lizing WCNs is more computationally expensive
compared to 1-best recognition hypotheses. Never-
theless, in practice, WCN depth, which specifies the
maximum number of competing word hypotheses in
any position of the word confusion network, can be
limited to a certain value |d|. For example, in Figure
2 the depth of the shown WCN is 8 (there are 8 com-
peting word hypotheses in position 17 of the WCN).
The WCN depth can be limited by pruning word al-
ternatives with low probabilities until, at most, the
top |d| words remain in each position of the WCN.
It is interesting to observe how limiting WCN depth
can affect reference resolution performance. Figure
3 demonstrates this observation. In this figure the
resolution performance (in terms of lenient evalua-
tion) for WCNs of varying depth is shown as dashed
lines for with and without eye gaze configurations.
As a reference point, the performance when utiliz-
ing 1-best recognition hypotheses is shown as solid
lines. It can be seen that as the depth increases, the
performance also increases until the depth reaches 8.
After that, there is no performance improvement.

7 Discussion

In Section 6.2 we have shown that incorporating
eye gaze information improves reference resolu-
tion performance. Eye-gaze information is particu-
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Figure 3: Lenient F-measure at each WCN Depth

larly helpful for resolving referring expressions that
are ambiguous from the perspective of the artificial
agent. Consider a scenario where the user utters a
referring expression that has an equivalent seman-
tic compatibility with multiple potential referent ob-
jects. For example, in a room with multiple books,
the user utters “the open book to the right”, but only
the phrase “the book” is recognized by the ASR. If
a particular book is fixated during interaction, there
is a high probability that it is indeed being referred
to by the user. Without eye gaze information, the se-
mantic compatibility alone could be insufficient to
resolve this referring expression. Thus, when eye
gaze information is incorporated, the main source of
performance improvement comes from better iden-
tification of potential referent objects.

In Section 6.3 we have shown that incorporating
multiple speech recognition hypotheses in the form
of a word confusion network further improves ref-
erence resolution performance. This is especially
true when exact referring expression identification
is required (F-measure of 0.309 from WCNs com-
pared to F-measure of 0.039 from 1-best hypothe-
ses). Using a WCN improves identification of low-
probability referring expressions. Consider a sce-
nario where the top recognition hypothesis of an ut-
terance contains no referring expressions or an in-
correct referring expression that has no semantically
compatible potential referent objects. If a referring
expression with a high compatibility value to some
potential referent object is present in a lower proba-
bility hypothesis, this referring expression can only
be identified when a WCN rather than a 1-best hy-
pothesis is utilized. Thus, when word confusion net-

works are incorporated, the main source of perfor-
mance improvement comes from better referring ex-
pression identification.

7.1 Computational Complexity

One potential concern of using word confusion net-
works rather than 1-best hypotheses is that they are
more computationally expensive to process. The
asymptotic computational complexity for resolving
the referring expressions using the algorithm pre-
sented in this work with a WCN is the summa-
tion of three components: (1) O(|G| · |d|2 · |w|3)
for confusion network construction and parsing, (2)
O(|r|·|O|·log(|O|)) for reference resolution, and (3)
O(|r|2) for selection of (referring expression, ref-
erent object set) pairs. Here, |w| is the number of
words in the input speech signal (or, more precisely,
the number of words in the longest ASR hypothesis
for a given utterance); |G| is the size of the parsing
grammar; |d| is the depth of the constructed word
confusion network; |O| is the number of potential
referent objects for each utterance; and |r| is the
number of referring expressions that are extracted
from the word confusion network.

The complexity is dominated by the word confu-
sion network construction and parsing. Also, both
the number of words in an input utterance ASR hy-
pothesis |w| and the number of referring expressions
in a word confusion network |r| are dependent on ut-
terance length. In our study, interactive dialogue is
encouraged and, thus, utterances are typically short;
with a mean length of 6.41 words and standard de-
viation of 4.35 words. The longest utterances in our
data set has 31 words. WCN depth |d| has a mean of
10.1, a standard deviation of 8.1, and a maximum 89
words. In practice, as shown in Section 6.3, limiting
|d| to 8 words achieves comparable reference resolu-
tion results as using a full word confusion network.

To demonstrate the applicability of our reference
resolution algorithm for real-time processing, we ap-
plied it on the data corpus presented in Section 3.
This corpus contains utterances with a mean input
time of 2927.5 ms and standard deviation of 1903.8
ms. On a 2.4 GHz AMD Athlon(tm) 64 X2 Dual
Core Processor, the runtimes resulted in a real time
factor of 0.0153 on average. Thus, on average, an
utterance from this corpus can be processed in just
under 45 ms, which is well within the range of ac-
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ceptable real-time performance.

7.2 Error Analysis

As can be seen in Section 6, even when using tran-
scribed data, reference resolution performance still
has room for improvement (achieving the highest le-
nient F-measure of 0.700 when eye gaze is utilized
for resolving closely coupled utterances). In this
section, we elaborate on the potential error sources.
Specifically, we discuss two types of error: (1) a re-
ferring expression is incorrectly recognized or (2) a
recognized referring expression is not resolved to a
correct referent object set.

Given transcribed data, which simulates per-
fectly recognized utterances, all referring expression
recognition errors arise due to incorrect language
processing. Most of these errors occur because an
incorrect part of speech (POS) tag is assigned to a
word, or an out-of-vocabulary (OOV) word is en-
countered, or the parsing grammar has insufficient
coverage. A particularly interesting parsing prob-
lem occurs due to the nature of spoken language.
Since punctuation is sometimes unavailable, given
an utterance with several consecutive nouns, it is un-
clear which of these nouns should be treated as head
nouns and which should be treated as noun modi-
fiers. For example, in the utterance “there is a desk
lamp table and two chairs” it is unclear if the itali-
cized expression should be parsed as a single phrase
or as a list of (two) phrases a desk and lamp.
Thus, some timing information should be used for
disambiguation.

Object set identification errors are more prevalent
than referring expression recognition errors. The
majority of these errors occur because a referring
expression is ambiguous from the perspective of the
conversational system and there is not enough in-
formation to choose amongst multiple potential ref-
erent objects due to limited speech recognition and
domain modeling. One reason for this is that a re-
ferring expression may be resolved to an incorrect
number of referent objects. Another reason is that a
pertinent object attribute or a distinguishing spatial
relationship between objects specified by the user
cannot be established by the system. For example,
during the utterance “I see a vase left of the table”
there are two vases visible on the screen creating an
ambiguity if the phrase left of is not processed

correctly. This is caused by an inadequate repre-
sentation of spatial relationships and processing of
spatial language. One more reason for potential am-
biguity is the lack of pragmatic knowledge that can
support adequate inference. For example, when the
user refers to two sofa objects using the phrase “an
armchair and a sofa”, the system lacks pragmatic
knowledge to indicate that arm chair refers to
the smaller of the two objects. Some of these errors
can be avoided when eye gaze information is avail-
able to the system. However, due to the noisy nature
of eye gaze data, many such referring expressions
remain ambiguous even when eye gaze information
is considered.

8 Conclusion

In this work, we have examined the utility of eye
gaze and word confusion networks for reference res-
olution in situated dialogue within a virtual world.
Our empirical results indicate that incorporating
eye gaze information with recognition hypotheses
is beneficial for the reference resolution task com-
pared to only using recognition hypotheses. Further-
more, using a word confusion network rather than
the top best recognition hypothesis further improves
reference resolution performance. Our findings also
demonstrate that the processing speed necessary to
integrate word confusion networks with eye gaze
information is well within the acceptable range for
real-time applications.
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Abstract

In this paper we address two key challenges
for extractive multi-document summarization:
the search problem of finding the best scoring
summary and the training problem of learn-
ing the best model parameters. We propose an
A* search algorithm to find the best extractive
summary up to a given length, which is both
optimal and efficient to run. Further, we pro-
pose a discriminative training algorithm which
directly maximises the quality of the best sum-
mary, rather than assuming a sentence-level
decomposition as in earlier work. Our ap-
proach leads to significantly better results than
earlier techniques across a number of evalua-
tion metrics.

1 Introduction

Multi-document summarization aims to present
multiple documents in form of a short summary.
This short summary can be used as a replacement
for the original documents to reduce, for instance,
the time a reader would spend if she were to read
the original documents. Following dominant trends
in summarization research (Mani, 2001), we focus
solely on extractive summarization which simplifies
the summarization task to the problem of identify-
ing a subset of units from the document collection
(here sentences) which are concatenated to form the
summary.

Most multi-document summarization systems de-
fine a model which assigns a score to a candidate
summary based on the features of the sentences in-
cluded in the summary. The research challenges are
then twofold: 1) the search problem of finding the
best scoring summary for a given document set, and

2) the training problem of learning the model pa-
rameters to best describe a training set consisting of
pairs of document sets with model or reference sum-
maries – typically human authored extractive or ab-
stractive summaries.

Search is typically performed by a greedy al-
gorithm which selects each sentence in decreasing
order of model score until the desired summary
length is reached (see, e.g., Saggion (2005)) or us-
ing heuristic strategies based on position in docu-
ment or lexical clues (Edmundson, 1969; Brandow
et al., 1995; Hearst, 1997; Ouyang et al., 2010).1

We show in this paper that the search problem can
be solved optimally and efficiently using A* search
(Russell et al., 1995). Assuming the model only uses
features local to each sentence in the summary, our
algorithm finds the best scoring extractive summary
up to a given length in words.

Framing summarization as search suggests that
many of the popular training techniques are max-
imising the wrong objective. These approaches train
a classifier, regression or ranking model to distin-
guish between good and bad sentences under an
evaluation metric, e.g., ROUGE (Lin, 2004). The
model is then used during search to find a summary
composed of high scoring (‘good’) sentences (see
for a review Ouyang et al. (2010)). However, there
is a disconnect between the model used for training
and the model used for prediction. In this paper we
present a solution to this disconnect in the form of
a training algorithm that optimises the full predic-
tion model directly with the search algorithm intact.
The training algorithm learns parameters such that

1Genetic algorithms have also been devised for solving the
search problem (see, e.g., Riedhammer et al. (2008)), however
these approaches do not guarantee optimality, nor are they effi-
cient enough to be practicable for large datasets.
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the best scoring whole summary under the model
has a high score under the evaluation metric. We
demonstrate that this leads to significantly better test
performance than a competitive baseline, to the tune
of 3% absolute increase for ROUGE-1, -2 and -SU4.

The paper is structured as follows. Section 2
presents the summarization model. Next in sec-
tion 3 we present an A* search algorithm for finding
the best scoring (argmax) summary under the model
with a constraint on the maximum summary length.
We show that this algorithm performs search effi-
ciently, even for very large document sets composed
of many sentences. The second contribution of the
paper is a new training method which directly opti-
mises the summarization system, and is presented in
section 4. This uses the minimum error-rate training
(MERT) technique from machine translation (Och,
2003) to optimise the summariser’s output to an ar-
bitrary evaluation metric. Section 5 describes our
experimental setup and section 6 the results. Finally
we conclude in section 7.

2 Summarization Model

Extractive multi-document summarization aims to
find the most important sentences from a set of doc-
uments, which are then collated and presented to
the user in form of a short summary. Following
the predominant approach to data-driven summari-
sation, we define a linear model which scores sum-
maries as the weighted sum of their features,

s(y|x) = Φ(x,y) · λ , (1)

where x is the document set, composed of k sen-
tences, y ⊆ {1 . . . k} are the set of selected sen-
tence indices, Φ(·, ·) is a feature function which re-
turns a vector of features for the candidate summary
and λ are the model parameters. We further assume
that the features decompose with the sentences in
the summary, Φ(x,y) =

∑
i∈y φ(xi), and there-

fore the scoring function also decomposes along the
same lines,

s(y|x) =
∑
i∈y

φ(xi) · λ . (2)

While this assumption greatly simplifies inference, it
does constrain the representative power of the model
by disallowing global features, e.g., those which

measure duplication in the summary.2 Under this
model, the search problem is to solve

ŷ = arg max
y

s(y|x) , (3)

for which we develop a best-first algorithm using A*
search, as described in section 3. The training chal-
lenge is to find the parameters, λ, to best model the
training set. This is achieved by finding λ such that
ŷ is similar to the gold standard summary accord-
ing to an automatic evaluation metric, as described
in section 4.

3 A* Search

The prediction problem is to find the best scoring
extractive summary (see Equation 3) up to a given
length, L. At first glance, this appears to be a sim-
ple problem that might be solved efficiently with a
greedy algorithm, say by taking the sentences in or-
der of decreasing score and stopping just before the
summary exceeds the length threshold. However,
the greedy algorithm cannot be guaranteed to find
the best summary; to do so requires arbitrary back-
tracking to revise previous incorrect decisions.

The problem of constructing the summary can be
considered a search problem in which we start with
an empty summary and incrementally enlarge the
summary by concatenating a sentence from our doc-
ument set. The search graph starts with an empty
summary (the starting state) and each outgoing edge
adds a sentence to produce a subsequent state, and
is assigned a score under the model. A goal state is
any state with no more words than the given thresh-
old. The summarisation problem is then equivalent
to finding the best scoring path (summed over the
edge scores) between the start state and a goal state.

The novel insight in our work is to use A* search
(Russell et al., 1995) to solve the prediction prob-
lem. A* is a best-first search algorithm which can
efficiently find the best scoring path or the n-best
paths (unlike the greedy algorithm which is not op-
timal, and the backtracking variant which is not ef-
ficient). The search procedure requires a scoring
function for each state, here s(y|x) from (2), and

2Our approach could be adapted to support global features,
which would require changes to the heuristic for A* search to
bound the score obtainable from the global features. This may
incur an additional computational cost over a purely local fea-
ture model and perhaps also necessitate using beam search.
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a heuristic function which estimates the additional
score to get from a given state to a goal state. For
the search to be optimal – guaranteed to find the best
scoring path as the first solution – the heuristic must
be admissible, meaning that it bounds from above
the score for reaching a goal state. We present three
different admissible heuristics later in this section,
which bound the score with differing tightness and
consequently different search cost.

Algorithm 1 presents A* search for our extractive
summarisation model. Given a set of sentences to
summary, a scoring and a heuristic function, it finds
the best scoring summary. This is achieved by build-
ing the search graph incrementally, and storing each
frontier state in a priority queue (line 1) which is
sorted by the sum of the state’s score and its heuris-
tic. These states are popped off the queue (line 3)
and expanded by adding a sentence, which is then
added to the schedule (lines 8–14). We designate
special finishing states using a boolean variable (the
last entry in the tuple in lines 1, 7 and 12). Fin-
ishing states (with value T) denote ceasing to ex-
pand the summary, and consequently their scores
do not include the heuristic component. When-
ever one of these states is popped in line 2, we
know that it outscores all competing hypotheses and
therefore represents the optimal summary (because
the heuristic is guaranteed to never underestimate
the cost to a goal state from an unfinished state).3

Note that in algorithm 1 we create the summary
by building a list of sentence indices in sorted or-
der to avoid spurious ambiguity which would un-
necessarily expand the search space. The function
length(y,x) =

∑
n∈y length(xn) returns the length

of sentences specified.
We now return to the problem of defining the

heuristic function, h(y; x, l) which provides an up-
per bound on the additional score achievable in
reaching a goal state from state y. We present three
different variants of increasing fidelity, that is, that
bound the cost to a goal state more tightly. Algo-
rithm 2 is the simplest, which simply finds the max-
imum score per word from the set of unused sen-

3To improve the efficiency of Algorithm 1 we make a small
modification to avoid expanding every possible edge in step 8,
of which there are O(k) options. Instead we expand a small
number (here, 3) at a time and defer the remaining items until
later by inserting a special node into the schedule. These special
nodes are represented using a third ‘to-be-continued’ state into
the done flag.

Algorithm 1 A* search for extractive summarization.
Require: set of sentences, x = x1, . . . , xk

Require: scoring function s(·)
Require: heuristic function h(·)
Require: summary length limit L
1: schedule = [(0, ∅, F)] {priority queue of triples}

{(A* score, sentence indices, done flag)}
2: while schedule 6= [] do
3: v,y, f ← pop(schedule)
4: if f = T then
5: return y {success}
6: else
7: push(schedule, (s(y|x),y,T))
8: for y ← [max(y) + 1, k] do
9: y′ ← y ∪ y

10: if length(y′,x) ≤ L then
11: v′ ← s(y′|x) + h(y′;x, l)
12: push(schedule, (v′,y′, F))
13: end if
14: end for
15: end if
16: end while

tences and then extrapolates this out over the re-
maining words available to the length threshold. In
the algorithm, we use the shorthand sn = φ(xn) · λ
for sentence n’s score, ln = length(xn) for its length
and ly =

∑
n∈y ln for the total length of the current

state (unfinished summary).

Algorithm 2 Uniform heuristic, h1(y; x, L)
Require: x sorted in order of score/length
1: n← max(y) + 1

2: return (L− ly)max
(

sn
ln
, 0

)

The h1 heuristic is overly simple in that it assumes
we can ‘reuse’ a high scoring short sentence many
times despite this being disallowed by the model.
For this reason we develop an improved bound, h2,
in Algorithm 3. This incrementally adds each sen-
tence in order of its score-per-word until the length
limit is reached. If the limit is to be exceeded,
the heuristic scales down the final sentence’s score
based on the fraction of words than can be used to
reach the limit.

The fractional usage of the final sentence in h2

could be considered overly optimistic, especially
when the state has length just shy of the limit L. If
the next best ranked sentence is a long one, then it
will be used in the heuristic to over-estimate of the
state. This is complicated to correct, and doing so
exactly would require full backtracking which is in-
tractable and would obviate the entire point of using
A* search. Instead we use a subtle modification in
h3 (Alg. 4) which is equivalent to h2 except in the
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Algorithm 3 Aggregated heuristic, h2(y; x, L)
Require: x sorted in order of score/length
1: v ← 0
2: l′ ← ly
3: for n ∈ [max(y) + 1, k] do
4: if sn ≤ 0 then
5: return v
6: end if
7: if l′ + ln ≤ L then
8: l′ ← l′ + ln
9: v ← v + sn

10: else
11: return v + ln

L−l′ sn

12: end if
13: end for
14: return v

instance where the next best score/word sentence is
too long, where it skips over these sentences until
it finds the best scoring sentence that does fit. This
helps to address the overestimate of h2 and should
therefore lead to a smaller search graph and faster
runtime due to its early elimination of dead-ends.

Algorithm 4 Agg.+final heuristic, h3(y; x, L)
Require: x sorted in order of score/length
1: n← max(y) + 1
2: if n ≤ k ∧ sn > 0 then
3: if ly + ln ≤ L then
4: return h2(y;x, L)
5: else
6: for m ∈ [n+ 1, k] do
7: if ly + lm ≤ L then
8: return sm

L−ly
lm

9: end if
10: end for
11: end if
12: end if
13: return 0

The search process is illustrated in figure 1. When
a node is visited in the search, if it satisfied the
length constraint then the all its child nodes are
added to the schedule. These nodes are scored with
the score for the summary thus far plus a heuristic
term. For example, the value of 4+1.5=5.5 for the
{1} node arises from a score of 4 plus a heuristic of
(7− 5) · 34 = 1.5, reflecting the additional score that
would arise if it were to use half of the next sentence
to finish the summary. Note that in finding the best
two summaries the search process did not need to
instantiate the full search graph.

To test the efficacy of A* search with each of the
different heuristic functions, we now present empir-
ical runtime results. We used the training data as
described in Section 5.2 and for each document set

start

(4+1.5,{1},F)

+1

(3+2,{2},F)
+2

(2+2,{3},F)
+3

(1+0,{4},F)

+4

(0,{},T)

finish

(7+0,{1,2},F)

+2

(6+0,{1,3},F)+3

(5+0,{1,4},F)

+4

(5+0,{2,3},F)
+3

(4+0,{2,4},F)

+4

(5,{1,4},T)
finish

(6+0,{2,3,4},F)
+4

(5,{2,3},T)

finish

Figure 1: Example of the A* search graph created to find
the two top scoring summaries of length ≤ 7 when sum-
marising four sentences with scores of 4, 3, 2 and 1 re-
spectively and lengths of 5, 4, 3 and 1 respectively. The
h1 heuristic was used and the score and heuristic scores
are shown separately for clarity. Bold nodes were visited
while dashed nodes were visited but found to exceed the
length constraint.

generated the 100-best summaries with word limit
L = 200. Figure 2 shows the number of nodes
and edges visited by A* search, reflecting the space
and time cost of the algorithm, as a function of the
number of sentences in the document set being sum-
marised. All three heuristics shown an empirical
increase in complexity that is roughly linear in the
document size, although there are some notable out-
liers, particularly for the uniform heuristic. Surpris-
ingly the aggregated heuristic, h2, is not consider-
ably more efficient than the uniform heuristic h1,
despite bounding the cost more precisely. However,
the aggregated+final heuristic, h3, consistently out-
performs the other two methods. For this reason we
have used h3 in all subsequent experimentation.

4 Training

We frame the training problem as one of finding
model parameters, λ, such that the predicted out-
put, ŷ closely matches the gold standard, r.4 The
quality of the match is measured using an automatic
evaluation metric. We adopt the standard machine
learning terminology of loss functions, which mea-
sure the degree of error in the prediction, ∆(ŷ, r).
In our case the accuracy is measured by the ROUGE

4The gold standard is typically an abstractive summary, and
as such it is usually impossible for an extractive summarizer to
match it exactly.
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Figure 2: Efficiency of A* search search is roughly linear
in the number of sentences in the document set. The y
axis measures the search graph size in terms of the num-
ber of edges in the schedule and the number of nodes
visited. Measured with the final parameters after training
to optimise ROUGE-2 with the three different heuristics
and expanding five nodes in each step.

score, R, and the loss is simply 1 - R. The training
problem is to solve

λ̂ = arg min
λ

∆(ŷ, r) , (4)

where with a slight abuse of notation, ŷ and r are
taken to range over the corpus of many document-
sets and summaries.

To optimise the weights we use the minimum er-
ror rate training (MERT) technique (Och, 2003), as
used for training statistical machine translation sys-
tems. This approach is a first order optimization
method using Powell search to find the parameters
which minimise the loss on the training data. MERT
requires n-best lists which it uses to approximate
the full space of possible outcomes. We use the
A* search algorithm to construct these n-best lists,5

and use MERT to optimise the ROUGE score on the
training set for the R-1, R-2 and R-SU4 variants of
the metric.

5We used n = 100 in our experiments.

5 Experimental settings

In this section we describe the features for which we
learn weights. We also describe the input data used
in training and testing.

5.1 Summarization system
The summarizer we use is an extractive, query-based
multi-document summarization system. It is given
two inputs: a query (place name) associated with an
image and a set of documents. The summarizer uses
the following features, as reported in previous work
(Edmundson, 1969; Brandow et al., 1995; Radev et
al., 2001; Conroy et al., 2005; Aker and Gaizauskas,
2009; Aker and Gaizauskas, 2010a):

• querySimilarity: Sentence similarity to the
query (cosine similarity over the vector repre-
sentation of the sentence and the query).
• centroidSimilarity: Sentence similarity to the

centroid. The centroid is composed of the 100
most frequently occurring non stop words in
the document collection (cosine similarity over
the vector representation of the sentence and
the centroid). For each word/term in the vec-
tor we store a value which is the product of
the term frequency in the document and the in-
verse document frequency, a measurement of
the term’s distribution over the set of docu-
ments (Salton and Buckley, 1988).
• sentencePosition: Position of the sentence

within its document. The first sentence in the
document gets the score 1 and the last one gets
1
n where n is the number of sentences in the
document.
• inFirst5: Binary feature indicating whether the

sentence occurs is one of the first 5 sentences
of the document.
• isStarter: A sentence gets a binary score if it

starts with the query term (e.g. Westminster
Abbey, The Westminster Abbey, The Westmin-
ster or The Abbey) or with the object type, e.g.
The church. We also allow gaps (up to four
words) between the and the query/object type
to capture cases such as The most magnificent
abbey, etc.
• LMProb: The probability of the sentence un-

der a unigram language model. We trained
a separate language model on Wikipedia arti-
cles about locations for each object type, e.g.,

486



church, bridge, etc. When we generate a sum-
mary about a location of type church, for in-
stance, then we apply the church language
model on the related input documents related
to the location.6

• sentenceCount: Each sentence gets assigned a
value of 1. This feature is used to learn whether
summaries with many sentences are better than
summaries with few sentences or vice versa.
• wordCount: Number of words in the summary,

to decide whether the model should favor long
summaries or short ones.

5.2 Data

For training and testing we use the freely avail-
able image description corpus described in Aker and
Gaizauskas (2010b). The corpus is based around
289 images of static located objects (e.g Eiffel
Tower, Mont Blanc) each with a manually assigned
place name and object type category (e.g. church,
mountain). For each place name there are up to
four model summaries that were created manually
after reading existing image descriptions taken from
the VirtualTourist travel community web-site. Each
summary contains a minimum of 190 and a maxi-
mum of 210 words. We divide this set of 289 place
names into training and testing sets. Both sets are
described in the following subsections.

Training We use 184 place names from the 289
set for training feature weights. For each train-
ing place name we gather all descriptions associ-
ated with it from VirtualTourist. We compute for
each sentence in each description a ROUGE score
by comparing the sentence to those included in the
model summaries for that particular place name and
retaining the highest score. Table 1 gives some de-
tails about this training data.

We use ROUGE as a metric to maximize be-
cause it is also used in DUC7 and TAC.8 How-
ever, it should be noted that any automatic metric
could be used instead of ROUGE. In particular we
use ROUGE 1 (R-1), ROUGE 2 (R-2) and ROUGE
SU4 (R-SU4). R-1 and R-2 compute the number

6For our training and testing sets we manually assigned each
location to its corresponding object type (Aker and Gaizauskas,
2009).

7http://duc.nist.gov/
8http://www.nist.gov/tac/

Max Min Avg
Sentences/place 1724 3 260
Words/sentence 37 3 17

Table 1: The training input data contains 184 place
names with 42333 sentences in total. The numbers in
the columns give detail about the number of sentences
for each place and the lengths of the sentences.

Max Min Avg
Documents/place 20 5 12
Sentences/place 1716 15 132
Sentences/document 275 1 10
Words/sentence 211 1 20

Table 2: In domain test data. The numbers in the columns
give detail about the number of documents (descriptions)
for each place, number of sentences for each place and
document (description) and the lengths of the sentences.

of uni-gram and bi-gram overlaps, respectively, be-
tween the automatic and model summaries. R-SU4
allows bi-grams to be composed of non-contiguous
words, with a maximum of four words between the
bi-grams.

Testing For testing purposes we use the rest of
the place names (105) from the 289 place name
set. For each place name we use a set of input
documents, generate a summary from these docu-
ments using our summarizer and compare the results
against model summaries of that place name using
ROUGE. We experimented with two different input
document types: out of domain and in domain.

The in domain documents are the VirtualTourist
original image descriptions from which the model
summaries were derived. As with the training set
we take all place name descriptions for a particular
place and use them as input documents to our sum-
marizer. Table 2 summarizes these input documents.

The out of domain documents are retrieved from
the web. Compared to the in domain documents
these documents should more challenging to sum-
marize because they will contain different kinds
of documents to those seen in training. For each
place name we retrieved the top ten related web-
documents using the Yahoo! search engine with the
place name as a query. The text from these docu-
ments is extracted using an HTML parser and passed
to the summarizer. Table 3 gives an overview of this
data.
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Max Min Avg
Sentences/place 1773 55 328
Sentence/document 874 1 32
Words/sentence 236 1 21

Table 3: Out of domain test data. The numbers in the
columns give detail about the number of sentences for
each place and document and the lengths of the sentences.

6 Results

To evaluate our approach we used two different as-
sessment methods: ROUGE (Lin, 2004) and manual
readability. In the following we present the results
of each assessment.

6.1 Automatic Evaluation using ROUGE

We report results for training and testing. In
both training and testing we distinguish between
three different summaries: wordLimit, sentence-
Limit and regression. WordLimit and sentenceLimit
summaries are the ones generated using the model
trained by MERT. As described in section 4 we
trained the summariser using the A* search decoder
to maximise the ROUGE score of the best scoring
summaries. We used the heuristic function h3 in
A* search because it is the best performing heuris-
tic, and 100-best lists. To experiment with differ-
ent summary length conditions we differentiate be-
tween summaries with a word limit (wordLimit, set
to 200 words) and summaries containing N number
of sentences (sentenceLimit) as stop condition in A*
search. We set N so that in both wordLimit and sen-
tenceLimit summaries we obtain more or less the
same number of words (because our training data
contains on average 17 words for each word we set
N to 12, 12*17=194). However, this is only the case
in the training. In the testing for both wordLimit and
sentenceLimit we generate summaries with the same
word limit constraint which allows us to have a fair
comparison between the ROUGE recall scores.

The regression summaries are our baseline. In
these summaries the sentences are ranked based on
the weighted features produced by Support Vec-
tor Regression (SVR).9 Ouyang et al. (2010) use
multi-document summarization and linear regres-
sion methods to rank sentences in the documents.
As regression model they used SVR and showed

9We use the term regression to refer to SVR.

Type metric R-1 R-2 R-SU4

wordLimit
R-1 0.5792 0.3176 0.3580
R-2 0.5656 0.3208 0.3510

R-SU4 0.5688 0.3197 0.3585

sentenceLimit
R-1 0.5915 0.3507 0.3881
R-2 0.5783 0.3601 0.3890

R-SU4 0.5870 0.3546 0.3929

regression
R-1 0.4993 0.1946 0.2448
R-2 0.4833 0.1949 0.2413

R-SU4 0.5009 0.2031 0.2562

Table 4: ROUGE scores obtained on the training data.

that it out-performed classification and Learning To
Rank methods on the DUC 2005 to 2007 data. For
comparison purpose we use SVR as a baseline sys-
tem for learning feature weights. It should be noted
that these weights are learned based on single sen-
tences. However, to have a fair comparison between
all our summary types we use these weights to gen-
erate summaries using the A* search with the word
limit as constraint. We do this for reporting both for
training and testing results.

The results for training are shown in Table 4. The
table shows ROUGE recall numbers obtained by
comparing model summaries against automatically
generated summaries on the training data. Because
in training we used three different metrics (R-1, R-2,
R-SU4) to train weights we report results for each of
these three different ROUGE metrics.

In Table 4 we can see that the scores for wordLimit
and sentenceLimit type summaries are always at
maximum on the metric they were trained on (this
can be observed by following the main diagonal of
the result matrix). This confirms that MERT is max-
imizing the metric for which it was trained. How-
ever, this is not the case for regression results. The
scores obtained with R-SU4 metric trained weights
achieve higher scores on R-1 and R-2 compared to
the scores obtained using weights trained on those
metrics. This is most likely due to SVR being
trained on sentences rather than over entire sum-
maries, and thereby not adequately optimising the
metric used for evaluation.

The results for testing are shown in Tables 5 and
6. As with the training setting we report ROUGE re-
call scores. We use the testing data described in sec-
tion 5.2 for this setting. However, because we have
two different input document sets we report sepa-
rate results for each of these (Table 5 shows result
for in domain data and Table 6 shows result for out
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Type metric R-1 R-2 R-SU4

wordLimit
R-1 0.3733 0.0842 0.1399
R-2 0.3731 0.0842 0.1402

R-SU4 0.3627 0.0794 0.1340

sentenceLimit
R-1 0.3664 0.0774 0.1321
R-2 0.3559 0.0717 0.1251

R-SU4 0.3629 0.0778 0.1312

regression
R-1 0.3431 0.0669 0.1229
R-2 0.2934 0.0560 0.1043

R-SU4 0.3417 0.0668 0.1226

Table 5: ROUGE scores obtained on the testing data. The
automated summaries are generated using the in domain
input documents.

Type metric R-1 R-2 R-SU4

wordLimit
R-1 0.3758 0.0882 0.1421
R-2 0.3755 0.0895 0.1423

R-SU4 0.369 0.0812 0.137

sentenceLimit
R-1 0.3541 0.0693 0.1226
R-2 0.3426 0.0638 0.1157

R-SU4 0.3573 0.073 0.1251

regression
R-1 0.3392 0.0611 0.1179
R-2 0.3422 0.0606 0.1164

R-SU4 0.3413 0.0606 0.1176

Table 6: ROUGE scores obtained on the testing data. The
automated summaries are generated using the out of do-
main input documents.

of domain data). Again as with the training setting
we report results for the different metrics (R-1, R-2,
R-SU4) separately.

From Table 5 we can see that the wordLimit sum-
maries score highest compared to the other two types
of summaries. This is different from the train-
ing results where sentenceLimit summary type sum-
maries are the top scoring ones. As mentioned ear-
lier the sentenceLimit summaries contain exactly 12
sentences, where on average each sentence in the
training data has 17 words. We picked 12 sen-
tences to achieve roughly the same word limit con-
straint (12 × 17 = 204) so they can be compared
to the wordLimit and regression type summaries.
However, these sentenceLimit summaries have an
average of 221 words, which explains the higher
ROUGE recall scores seen in training compared to
testing (where a 200 word limit was imposed).

The wordLimit summaries are significantly better
than the scores from the other summary types ir-
respective of the evaluation metric.10 It should be

10Significance is reported at level p < 0.001. We used
Wilcoxson signed ranked test to perform significance.

noted that these summaries are the only ones where
the training and testing had the same condition in
A* search concerning the summary word limit con-
straint. The scores in sentenceLimit type summaries
are significantly lower than wordLimit summaries,
despite using MERT to learn the weights. This
shows that training the true model is critical for
getting good accuracy. The regression type sum-
maries achieved the worst ROUGE metric scores.
The weights used to generate these summaries were
trained on single sentences using SVR. These results
indicate that if the goal is to generate high scoring
summaries under a length limit in testing, then the
same constraint should also be used in training.

From Table 5 and 6 we can see that the summaries
obtained from VirtualTourist captions (in domain
data) score roughly the same as the summaries gen-
erated using web-documents (out of domain data) as
input. A possible explanation is that in many cases
the VirtualTourist original captions contain text from
Wikipedia articles, which are also returned as results
from the web search. Therefore the web-document
sets included similar content to the VirtualTourist
captions.

6.2 Manual Evaluation

We also evaluated our summaries using a readabil-
ity assessment as in DUC and TAC. DUC and TAC
manually assess the quality of automatically gener-
ated summaries by asking human subjects to score
each summary using five criteria – grammaticality,
redundancy, clarity, focus and coherence criteria.
Each criterion is scored on a five point scale with
high scores indicating a better result (Dang, 2005).

For this evaluation we used the best scoring sum-
maries from the wordLimit summary type (R-1, R-2
and R-SU4) generated using web-documents (out of
domain documents) as input. We also evaluate the
regression summary types generated using the same
input documents to investigate the correlation be-
tween high and low ROUGE metric scores to man-
ual evaluation ones. From the regression summary
type we only use summaries under the R2 and RSU4
trained models.

In total we evaluated five different summary types
(three from wordLimit and two from regression).
For each type we randomly selected 30 place names
and asked three people to assess the summaries for
these place names. Each person was shown all 150
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Criterion wordLimit regression
R1 R2 RSU4 R2 RSU4

clarity 4.03 3.92 3.99 3.00 2.92
coherence 3.31 3.06 2.99 2.12 1.88
focus 3.79 3.56 3.54 2.44 2.29
grammaticality 4.21 4.13 4.13 3.93 3.87
redundancy 4.19 4.33 4.41 4.47 4.44

Table 7: Manual evaluation results for the wordLimit (R1,
R2, RSU4) and regression (R2, RSU4) summary types.
The numbers in the columns are the average scores.

summaries (30 from each summary type) in a ran-
dom way and was asked to assess them according to
the DUC and TAC manual assessment scheme. The
results are shown in Table 7.11

From Table 7 we can see that overall the
wordLimit type summaries perform better than the
regression ones. For each metric in regression sum-
mary types (R-2 and R-SU4) we compute the sig-
nificance of the difference with the same metrics
in wordLimit summary types.12 The results for the
clarity, coherence and focus criteria in wordLimit
summaries are significantly better than in regression
ones (p<0.001) irrespective of the training metric.
These results concur with the automatic evaluation
results as described in section 6.1. However, this
is not the case for the grammaticality and redun-
dancy criteria. Although in regression type sum-
maries the scores for the grammaticality criterion
are lower than those in wordLimit summaries the
difference is not significant. Furthermore, we can
see that the redundancy scores for regression sum-
maries are slightly higher than those for wordLimit
summaries.

One reason for these differences might be the
way we trained feature weights for wordLimit and
regression summaries. As mentioned above, fea-
ture weights for wordLimit summaries are trained
using summaries with a specific word limit con-
straint, whereas the weights for the regression sum-
maries are learned using single sentences. Maxi-
mizing the ROUGE metrics using “final or output

11We computed the agreement between the users using intra
class correlation with Cronbach’s Alpha where the correlation
coefficient ranges between 0 and 1. Numbers close to 1 indicate
high correlation and numbers close to 0 indicate low correlation.
For the clarity criterion the assessors’ correlation coefficient is
0.547, for coherence 0.687, for focus 0.688, for grammaticality
0.232 and for redundancy 0.453.

12We compute significance test for the manual evaluation re-
sults using χ square.

like summaries” will lead to a higher content agree-
ment between the training and the model summaries
whereas this is not guaranteed with single sentences.
With single sentences we have only a guarantee for
high content overlap between single training and
model sentences. However, when these sentences
are combined into summaries it is not guaranteed
that these summaries will also have high content
overlap with the entire model ones. Therefore we
believe if there is a high content agreement between
the training and model summaries this could lead to
more readable summaries. However, as we can see
from Table 7 this hypothesis does not hold for all
criteria. In case of the redundancy criterion we have
compared to wordLimit summary type high scores
in regression summaries although wordLimit sum-
maries are significantly better than regression ones
when it concerns the ROUGE scores. Thus it is
likely that by aggressively optimising the ROUGE
metric the model learns to game the metric, which
does not penalise redundancy in the summaries.
As such it may no longer possible to extrapolate
trends from earlier correlation studies against human
judgements (Lin, 2004).

To minimize redundancy in summaries it is nec-
essary to also take into consideration global features
addressing the linguistic aspects of the summaries.
Furthermore, instead of ROUGE recall scores which
do not take the repetition of information into consid-
eration, ROUGE precision scores could be used as a
metric in order to minimize the redundant content in
the summaries.

7 Conclusion

In this paper we have proposed an A* search ap-
proach for generating a summary from a ranked list
of sentences and learning feature weights for a fea-
ture based extractive multi-document summariza-
tion system. We developed an algorithm to learn
optimize an arbitrary metric and showed that our
approach significantly outperforms state of the art
techniques. Furthermore, we highlighted the impor-
tance of uniformity in training and testing and ar-
gued that if the goal is to generate high scoring sum-
maries under a length limit in testing, then the same
constraint should also be used in training.

In this paper we experimented with sentence-local
features. In the future we plan to expand this fea-
ture set with global features, especially ones mea-
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suring lexical diversity in the summaries to reduce
the redundancy in them. We will investigate vari-
ous ways of incorporating these global features into
our A* search. However this will incur an additional
computational cost over a purely local feature model
and therefore may necessitate using an approximate
beam search. We also plan to investigate using other
metrics in training in order to reduce redundant in-
formation in the summaries. Finally, we have made
our summarizer publicly available as open-source
software.13
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Abstract

Most coreference resolution models determine
if two mentions are coreferent using a single
function over a set of constraints or features.
This approach can lead to incorrect decisions
as lower precision features often overwhelm
the smaller number of high precision ones. To
overcome this problem, we propose a simple
coreference architecture based on a sieve that
applies tiers of deterministic coreference mod-
els one at a time from highest to lowest preci-
sion. Each tier builds on the previous tier’s
entity cluster output. Further, our model prop-
agates global information by sharing attributes
(e.g., gender and number) across mentions in
the same cluster. This cautious sieve guar-
antees that stronger features are given prece-
dence over weaker ones and that each deci-
sion is made using all of the information avail-
able at the time. The framework is highly
modular: new coreference modules can be
plugged in without any change to the other
modules. In spite of its simplicity, our ap-
proach outperforms many state-of-the-art su-
pervised and unsupervised models on several
standard corpora. This suggests that sieve-
based approaches could be applied to other
NLP tasks.

1 Introduction

Recent work on coreference resolution has shown
that a rich feature space that models lexical, syn-
tactic, semantic, and discourse phenomena is cru-
cial to successfully address the task (Bengston and
Roth, 2008; Haghighi and Klein, 2009; Haghighi
and Klein, 2010). When such a rich representation

is available, even a simple deterministic model can
achieve state-of-the-art performance (Haghighi and
Klein, 2009).

By and large most approaches decide if two men-
tions are coreferent using a single function over all
these features and information local to the two men-
tions.1 This is problematic for two reasons: (1)
lower precision features may overwhelm the smaller
number of high precision ones, and (2) local infor-
mation is often insufficient to make an informed de-
cision. Consider this example:

The second attack occurred after some rocket firings
aimed, apparently, toward [the israelis], apparently in
retaliation. [we]’re checking our facts on that one. ...
the president, quoted by ari fleischer, his spokesman, is
saying he’s concerned the strike will undermine efforts
by palestinian authorities to bring an end to terrorist at-
tacks and does not contribute to the security of [israel].

Most state-of-the-art models will incorrectly link
we to the israelis because of their proximity and
compatibility of attributes (both we and the israelis
are plural). In contrast, a more cautious approach is
to first cluster the israelis with israel because the de-
monymy relation is highly precise. This initial clus-
tering step will assign the correct animacy attribute
(inanimate) to the corresponding geo-political
entity, which will prevent the incorrect merging with
the mention we (animate) in later steps.

We propose an unsupervised sieve-like approach
to coreference resolution that addresses these is-

1As we will discuss below, some approaches use an addi-
tional component to infer the overall best mention clusters for a
document, but this is still based on confidence scores assigned
using local information.
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sues. The approach applies tiers of coreference
models one at a time from highest to lowest pre-
cision. Each tier builds on the entity clusters con-
structed by previous models in the sieve, guarantee-
ing that stronger features are given precedence over
weaker ones. Furthermore, each model’s decisions
are richly informed by sharing attributes across the
mentions clustered in earlier tiers. This ensures that
each decision uses all of the information available
at the time. We implemented all components in our
approach using only deterministic models. All our
components are unsupervised, in the sense that they
do not require training on gold coreference links.

The contributions of this work are the following:
• We show that a simple scaffolding framework

that deploys strong features through tiers of
models performs significantly better than a
single-pass model. Additionally, we propose
several simple, yet powerful, new features.
• We demonstrate how far one can get with sim-

ple, deterministic coreference systems that do
not require machine learning or detailed se-
mantic information. Our approach outperforms
most other unsupervised coreference models
and several supervised ones on several datasets.

• Our modular framework can be easily extended
with arbitrary models, including statistical or
supervised models. We believe that our ap-
proach also serves as an ideal platform for the
development of future coreference systems.

2 Related Work

This work builds upon the recent observation that
strong features outweigh complex models for coref-
erence resolution, in both supervised and unsuper-
vised learning setups (Bengston and Roth, 2008;
Haghighi and Klein, 2009). Our work reinforces this
observation, and extends it by proposing a novel ar-
chitecture that: (a) allows easy deployment of such
features, and (b) infuses global information that can
be readily exploited by these features or constraints.

Most coreference resolution approaches perform
the task by aggregating local decisions about pairs
of mentions (Bengston and Roth, 2008; Finkel and
Manning, 2008; Haghighi and Klein, 2009; Stoy-
anov, 2010). Two recent works that diverge from
this pattern are Culotta et al. (2007) and Poon and

Domingos (2008). They perform coreference reso-
lution jointly for all mentions in a document, using
first-order probabilistic models in either supervised
or unsupervised settings. Haghighi and Klein (2010)
propose a generative approach that models entity
clusters explicitly using a mostly-unsupervised gen-
erative model. As previously mentioned, our work
is not constrained by first-order or Bayesian for-
malisms in how it uses cluster information. Ad-
ditionally, the deterministic models in our tiered
model are significantly simpler, yet perform gener-
ally better than the complex inference models pro-
posed in these works.

From a high level perspective, this work falls un-
der the theory of shaping, defined as a “method of
successive approximations” for learning (Skinner,
1938). This theory is known by different names in
many NLP applications: Brown et al. (1993) used
simple models as “stepping stones” for more com-
plex word alignment models; Collins (1999) used
“cautious” decision list learning for named entity
classification; Spitkovsky et al. (2010) used “baby
steps” for unsupervised dependency parsing, etc. To
the best of our knowledge, we are the first to apply
this theory to coreference resolution.

3 Description of the Task
Intra-document coreference resolution clusters to-
gether textual mentions within a single document
based on the underlying referent entity. Mentions
are usually noun phrases (NPs) headed by nominal
or pronominal terminals. To facilitate comparison
with most of the recent previous work, we report re-
sults using gold mention boundaries. However, our
approach does not make any assumptions about the
underlying mentions, so it is trivial to adapt it to pre-
dicted mention boundaries (e.g., see Haghighi and
Klein (2010) for a simple mention detection model).

3.1 Corpora
We used the following corpora for development and
evaluation:
• ACE2004-ROTH-DEV2 – development split

of Bengston and Roth (2008), from the corpus
used in the 2004 Automatic Content Extraction
(ACE) evaluation. It contains 68 documents
and 4,536 mentions.

2We use the same corpus names as (Haghighi and Klein,
2009) to facilitate comparison with previous work.
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• ACE2004-CULOTTA-TEST – partition of
ACE 2004 corpus reserved for testing by sev-
eral previous works (Culotta et al., 2007;
Bengston and Roth, 2008; Haghighi and Klein,
2009). It consists of 107 documents and 5,469
mentions.

• ACE2004-NWIRE – the newswire subset of
the ACE 2004 corpus, utilized by Poon and
Domingos (2008) and Haghighi and Klein
(2009) for testing. It contains 128 documents
and 11,413 mentions.

• MUC6-TEST – test corpus from the sixth
Message Understanding Conference (MUC-6)
evaluation. It contains 30 documents and 2,068
mentions.

We used the first corpus (ACE2004-ROTH-DEV)
for development. The other corpora are reserved for
testing. We parse all documents using the Stanford
parser (Klein and Manning, 2003). The syntactic in-
formation is used to identify the mention head words
and to define the ordering of mentions in a given
sentence (detailed in the next section). For a fair
comparison with previous work, we do not use gold
named entity labels or mention types but, instead,
take the labels provided by the Stanford named en-
tity recognizer (NER) (Finkel et al., 2005).

3.2 Evaluation Metrics
We use three evaluation metrics widely used in the
literature: (a) pairwise F1 (Ghosh, 2003) – com-
puted over mention pairs in the same entity clus-
ter; (b) MUC (Vilain et al., 1995) – which measures
how many predicted clusters need to be merged to
cover the gold clusters; and (c) B3 (Amit and Bald-
win, 1998) – which uses the intersection between
predicted and gold clusters for a given mention to
mark correct mentions and the sizes of the the pre-
dicted and gold clusters as denominators for preci-
sion and recall, respectively. We refer the interested
reader to (X. Luo, 2005; Finkel and Manning, 2008)
for an analysis of these metrics.

4 Description of the Multi-Pass Sieve
Our sieve framework is implemented as a succes-
sion of independent coreference models. We first de-
scribe how each model selects candidate mentions,
and then describe the models themselves.

4.1 Mention Processing
Given a mention mi, each model may either decline
to propose a solution (in the hope that one of the
subsequent models will solve it) or deterministically
select a single best antecedent from a list of pre-
vious mentions m1, . . . , mi−1. We sort candidate
antecedents using syntactic information provided by
the Stanford parser, as follows:

Same Sentence – Candidates in the same sentence
are sorted using left-to-right breadth-first traversal
of syntactic trees (Hobbs, 1977). Figure 1 shows an
example of candidate ordering based on this traver-
sal. The left-to-right ordering favors subjects, which
tend to appear closer to the beginning of the sentence
and are more probable antecedents. The breadth-
first traversal promotes syntactic salience by rank-
ing higher noun phrases that are closer to the top of
the parse tree (Haghighi and Klein, 2009). If the
sentence containing the anaphoric mention contains
multiple clauses, we repeat the above heuristic sep-
arately in each S* constituent, starting with the one
containing the mention.

Previous Sentence – For all nominal mentions we
sort candidates in the previous sentences using right-
to-left breadth-first traversal. This guarantees syn-
tactic salience and also favors document proximity.
For pronominal mentions, we sort candidates in pre-
vious sentences using left-to-right traversal in or-
der to favor subjects. Subjects are more probable
antecedents for pronouns (Kertz et al., 2006). For
example, this ordering favors the correct candidate
(pepsi) for the mention they:

[pepsi] says it expects to double [quaker]’s
snack food growth rate. after a month-long
courtship, [they] agreed to buy quaker oats. . .

In a significant departure from previous work,
each model in our framework gets (possibly incom-
plete) clustering information for each mention from
the earlier coreference models in the multi-pass sys-
tem. In other words, each mention mi may already
be assigned to a cluster Cj containing a set of men-
tions: Cj = {mj

1, . . . ,m
j
k}; mi ∈ Cj . Unassigned

mentions are unique members of their own cluster.
We use this information in several ways:

Attribute sharing – Pronominal coreference reso-
lution (discussed later in this section) is severely af-
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Figure 1: Example of left-to-right breadth-first tree
traversal. The numbers indicate the order in which the
NPs are visited.

fected by missing attributes (which introduce pre-
cision errors because incorrect antecedents are se-
lected due to missing information) and incorrect at-
tributes (which introduce recall errors because cor-
rect links are not generated due to attribute mismatch
between mention and antecedent). To address this
issue, we perform a union of all mention attributes
(e.g., number, gender, animacy) in a given cluster
and share the result with all cluster mentions. If
attributes from different mentions contradict each
other we maintain all variants. For example, our
naive number detection assigns singular to the
mention a group of students and plural to five stu-
dents. When these mentions end up in the same clus-
ter, the resulting number attributes becomes the set
{singular, plural}. Thus this cluster can later
be merged with both singular and plural pronouns.

Mention selection – Traditionally, a coreference
model attempts to resolve every mention in the text,
which increases the likelihood of errors. Instead, in
each of our models, we exploit the cluster informa-
tion received from the previous stages by resolving
only mentions that are currently first in textual order
in their cluster. For example, given the following or-
dered list of mentions, {m1

1, m2
2, m2

3, m3
4, m1

5, m2
6},

where the superscript indicates cluster id, our model
will attempt to resolve only m2

2 and m3
4. These two

are the only mentions that have potential antecedents
and are currently marked as the first mentions in
their clusters. The intuition behind this heuristic
is two-fold. First, early cluster mentions are usu-
ally better defined than subsequent ones, which are
likely to have fewer modifiers or are pronouns (Fox,

1993). Several of our models use this modifier infor-
mation. Second, by definition, first mentions appear
closer to the beginning of the document, hence there
are fewer antecedent candidates to select from, and
fewer opportunities to make a mistake.

Search Pruning – Finally, we prune the search
space using discourse salience. We disable coref-
erence for first cluster mentions that: (a) are or start
with indefinite pronouns (e.g., some, other), or (b)
start with indefinite articles (e.g., a, an). One excep-
tion to this rule is the model deployed in the first
pass; it only links mentions if their entire extents
match exactly. This model is triggered for all nom-
inal mentions regardless of discourse salience, be-
cause it is possible that indefinite mentions are re-
peated in a document when concepts are discussed
but not instantiated, e.g., a sports bar below:

Hanlon, a longtime Broncos fan, thinks it is the perfect
place for [a sports bar] and has put up a blue-and-orange
sign reading, “Wanted Broncos Sports Bar On This Site.”
. . . In a Nov. 28 letter, Proper states “while we have no
objection to your advertising the property as a location
for [a sports bar], using the Broncos’ name and colors
gives the false impression that the bar is or can be affili-
ated with the Broncos.”

4.2 The Modules of the Multi-Pass Sieve

We now describe the coreference models imple-
mented in the sieve. For clarity, we summarize them
in Table 1 and show the cumulative performance as
they are added to the sieve in Table 2.

4.2.1 Pass 1 - Exact Match
This model links two mentions only if they con-

tain exactly the same extent text, including modifiers
and determiners, e.g., the Shahab 3 ground-ground
missile. As expected, this model is extremely pre-
cise, with a pairwise precision over 96%.

4.2.2 Pass 2 - Precise Constructs
This model links two mentions if any of the con-

ditions below are satisfied:

Appositive – the two nominal mentions are in an
appositive construction, e.g., [Israel’s Deputy De-
fense Minister], [Ephraim Sneh] , said . . . We
use the same syntactic rules to detect appositions as
Haghighi and Klein (2009).
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Pass Type Features
1 N exact extent match
2 N,P appositive | predicate nominative | role appositive | relative pronoun | acronym | demonym
3 N cluster head match & word inclusion & compatible modifiers only & not i-within-i
4 N cluster head match & word inclusion & not i-within-i
5 N cluster head match & compatible modifiers only & not i-within-i
6 N relaxed cluster head match & word inclusion & not i-within-i
7 P pronoun match

Table 1: Summary of passes implemented in the sieve. The Type column indicates the type of coreference in each
pass: N – nominal or P – pronominal. & and | indicate conjunction and disjunction of features, respectively.

Predicate nominative – the two mentions (nominal
or pronominal) are in a copulative subject-object re-
lation, e.g., [The New York-based College Board] is
[a nonprofit organization that administers the SATs
and promotes higher education] (Poon and Domin-
gos, 2008).
Role appositive – the candidate antecedent is
headed by a noun and appears as a modifier in an
NP whose head is the current mention, e.g., [[ac-
tress] Rebecca Schaeffer]. This feature is inspired
by Haghighi and Klein (2009), who triggered it only
if the mention is labeled as a person by the NER.
We constrain this heuristic more in our work: we
allow this feature to match only if: (a) the mention
is labeled as a person, (b) the antecedent is animate
(we detail animacy detection in Pass 7), and (c) the
antecedent’s gender is not neutral.
Relative pronoun – the mention is a relative pro-
noun that modifies the head of the antecedent NP,
e.g., [the finance street [which] has already formed
in the Waitan district].
Acronym – both mentions are tagged as NNP and
one of them is an acronym of the other, e.g., [Agence
France Presse] . . . [AFP]. We use a simple acronym
detection algorithm, which marks a mention as an
acronym of another if its text equals the sequence
of upper case characters in the other mention. We
will adopt better solutions for acronym detection in
future work (Schwartz, 2003).
Demonym – one of the mentions is a demonym of
the other, e.g., [Israel] . . . [Israeli]. For demonym
detection we use a static list of countries and their
gentilic forms from Wikipedia.3

All the above features are extremely precise. As
shown in Table 2 the pairwise precision of the sieve

3
http://en.wikipedia.org/wiki/List_of_adjectival_and_

demonymic_forms_of_place_names

after adding these features is over 95% and recall
increases 5 points.

4.2.3 Pass 3 - Strict Head Matching
Linking a mention to an antecedent based on the

naive matching of their head words generates a lot
of spurious links because it completely ignores pos-
sibly incompatible modifiers (Elsner and Charniak,
2010). For example, Yale University and Harvard
University have similar head words, but they are ob-
viously different entities. To address this issue, this
pass implements several features that must all be
matched in order to yield a link:

Cluster head match – the mention head word
matches any head word in the antecedent clus-
ter. Note that this feature is actually more relaxed
than naive head matching between mention and an-
tecedent candidate because it is satisfied when the
mention’s head matches the head of any entity in the
candidate’s cluster. We constrain this feature by en-
forcing a conjunction with the features below.

Word inclusion – all the non-stop4 words in the
mention cluster are included in the set of non-stop
words in the cluster of the antecedent candidate.
This heuristic exploits the property of discourse that
it is uncommon to introduce novel information in
later mentions (Fox, 1993). Typically, mentions
of the same entity become shorter and less infor-
mative as the narrative progresses. For example,
the two mentions in . . . intervene in the [Florida
Supreme Court]’s move . . . does look like very dra-
matic change made by [the Florida court] point to
the same entity, but the two mentions in the text be-
low belong to different clusters:

The pilot had confirmed . . . he had turned onto

4Our stop word list includes person titles as well.
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MUC B3 Pairwise
Passes P R F1 P R F1 P R F1
{1} 95.9 31.8 47.8 99.1 53.4 69.4 96.9 15.4 26.6
{1,2} 95.4 43.7 59.9 98.5 58.4 73.3 95.7 20.6 33.8
{1,2,3} 92.1 51.3 65.9 96.7 62.9 76.3 91.5 26.8 41.5
{1,2,3,4} 91.7 51.9 66.3 96.5 63.5 76.6 91.4 27.8 42.7
{1,2,3,4,5} 91.1 52.6 66.7 96.1 63.9 76.7 90.3 28.4 43.2
{1,2,3,4,5,6} 89.5 53.6 67.1 95.3 64.5 76.9 88.8 29.2 43.9
{1,2,3,4,5,6,7} 83.7 74.1 78.6 88.1 74.2 80.5 80.1 51.0 62.3

Table 2: Cumulative performance on development (ACE2004-ROTH-DEV) as passes are added to the sieve.

[the correct runway] but pilots behind him say
he turned onto [the wrong runway].

Compatible modifiers only – the mention’s mod-
ifiers are all included in the modifiers of the an-
tecedent candidate. This feature models the same
discourse property as the previous feature, but it fo-
cuses on the two individual mentions to be linked,
rather than their entire clusters. For this feature we
only use modifiers that are nouns or adjectives.
Not i-within-i – the two mentions are not in an i-
within-i construct, i.e., one cannot be a child NP
in the other’s NP constituent (Haghighi and Klein,
2009).

This pass continues to maintain high precision
(91% pairwise) while improving recall significantly
(over 6 points pairwise and almost 8 points MUC).

4.2.4 Passes 4 and 5 - Variants of Strict Head
Passes 4 and 5 are different relaxations of the

feature conjunction introduced in Pass 3, i.e.,
Pass 4 removes the compatible modifiers
only feature, while Pass 5 removes the word
inclusion constraint. All in all, these two passes
yield an improvement of 1.7 pairwise F1 points,
due to recall improvements. Table 2 shows that the
word inclusion feature is more precise than
compatible modifiers only, but the latter
has better recall.

4.2.5 Pass 6 - Relaxed Head Matching
This pass relaxes the cluster head match heuris-

tic by allowing the mention head to match any word
in the cluster of the candidate antecedent. For ex-
ample, this heuristic matches the mention Sanders
to a cluster containing the mentions {Sauls, the
judge, Circuit Judge N. Sanders Sauls}. To maintain
high precision, this pass requires that both mention

and antecedent be labeled as named entities and the
types coincide. Furthermore, this pass implements
a conjunction of the above features with word
inclusion and not i-within-i. This pass
yields less than 1 point improvement in most met-
rics.

4.2.6 Pass 7 - Pronouns
With one exception (Pass 2), all the previous

coreference models focus on nominal coreference
resolution. However, it would be incorrect to say
that our framework ignores pronominal coreference
in the first six passes. In fact, the previous mod-
els prepare the stage for pronominal coreference by
constructing precise clusters with shared mention at-
tributes. These are crucial factors for pronominal
coreference.

Like previous work, we implement pronominal
coreference resolution by enforcing agreement con-
straints between the coreferent mentions. We use the
following attributes for these constraints:
Number – we assign number attributes based on:
(a) a static list for pronouns; (b) NER labels: men-
tions marked as a named entity are considered sin-
gular with the exception of organizations, which can
be both singular or plural; (c) part of speech tags:
NN*S tags are plural and all other NN* tags are sin-
gular; and (d) a static dictionary from (Bergsma and
Lin, 2006).
Gender – we assign gender attributes from static
lexicons from (Bergsma and Lin, 2006; Ji and Lin,
2009).
Person – we assign person attributes only to pro-
nouns. However, we do not enforce this constraint
when linking two pronouns if one appears within
quotes. This is a simple heuristic for speaker de-
tection, e.g., I and she point to the same person in
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“[I] voted my conscience,” [she] said.
Animacy – we set animacy attributes using: (a)
a static list for pronouns; (b) NER labels, e.g.,
PERSON is animate whereas LOCATION is not; and
(c) a dictionary boostrapped from the web (Ji and
Lin, 2009).
NER label – from the Stanford NER.
If we cannot detect a value, we set attributes to
unknown and treat them as wildcards, i.e., they can
match any other value.

This final model raises the pairwise recall of our
system almost 22 percentage points, with only an 8
point drop in pairwise precision. Table 2 shows that
similar behavior is measured for all other metrics.
After all passes have run, we take the transitive clo-
sure of the generated clusters as the system output.

5 Experimental Results
We present the results of our approach and other rel-
evant prior work in Table 3. We include in the ta-
ble all recent systems that report results under the
same conditions as our experimental setup (i.e., us-
ing gold mentions) and use the same corpora. We
exclude from this analysis two notable works that
report results only on a version of the task that in-
cludes finding mentions (Haghighi and Klein, 2010;
Stoyanov, 2010). The Haghighi and Klein (2009)
numbers have two variants: with semantics (+S)
and without (−S). To measure the contribution of
our multi-pass system, we also present results from a
single-pass variant of our system that uses all appli-
cable features from the multi-pass system (marked
as “single pass” in the table).

Our sieve model outperforms all systems on
two out of the four evaluation corpora (ACE2004-
ROTH-DEV and ACE2004-NWIRE), on all met-
rics. On the corpora where our model is not best,
it ranks a close second. For example, in ACE2004-
CULOTTA-TEST our system has a B3 F1 score
only .4 points lower than Bengston and Roth (2008)
and it outperforms all unsupervised approaches. In
MUC6-TEST, our sieve’s B3 F1 score is 1.8 points
lower than Haghighi and Klein (2009) +S, but it out-
performs a supervised system that used gold named
entity labels. Finally, the multi-pass architecture al-
ways beats the equivalent single-pass system with
its contribution ranging between 1 and 4 F1 points
depending on the corpus and evaluation metric.

Our approach has the highest precision on all cor-
pora, regardless of evaluation metric. We believe
this is particularly useful for large-scale NLP appli-
cations that use coreference resolution components,
e.g., question answering or information extraction.
These applications can generally function without
coreference information so it is beneficial to provide
such information only when it is highly precise.

6 Discussion

6.1 Comparison to Previous Work

The sieve model outperforms all other systems on
at least two test sets, even though most of the other
models are significantly richer. Amongst the com-
parisons, several are supervised (Bengston and Roth,
2008; Finkel and Manning, 2008; Culotta et al.,
2007). The system of Haghighi and Klein (2009)
+S uses a lexicon of semantically-compatible noun
pairs acquired transductively, i.e., with knowledge
of the mentions in the test set. Our system does
not rely on labeled corpora for training (like super-
vised approaches) nor access to corpora during test-
ing (like Haghighi and Klein (2009)).

The system that is closest to ours is Haghighi and
Klein (2009) −S. Like us, they use a rich set of fea-
tures and deterministic decisions. However, theirs
is a single-pass model with a smaller feature set
(no cluster-level, acronym, demonym, or animacy
information). Table 3 shows that on the two cor-
pora where results for this system are available, we
outperform it considerably on all metrics. To un-
derstand if the difference is due to the multi-pass
architecture or the richer feature set we compared
(Haghighi and Klein, 2009) −S against both our
multi-pass system and its single-pass variant. The
comparison indicates that both these contributions
help: our single-pass system outperforms Haghighi
and Klein (2009) consistently, and the multi-pass ar-
chitecture further improves the performance of our
single-pass system between 1 and 4 F1 points, de-
pending on the corpus and evaluation metric.

6.2 Semantic Head Matching

Recent unsupervised coreference work from
Haghighi and Klein (2009) included a novel
semantic component that matched related head
words (e.g., AOL is a company) learned from select
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MUC B3 Pairwise
P R F1 P R F1 P R F1

ACE2004-ROTH-DEV
This work (sieve) 83.7 74.1 78.6 88.1 74.2 80.5 80.1 51.0 62.3
This work (single pass) 82.2 72.6 77.1 86.8 72.6 79.1 76.0 47.6 58.5
Haghighi and Klein (2009) –S 78.3 70.5 74.2 84.0 71.0 76.9 71.3 45.4 55.5
Haghighi and Klein (2009) +S 77.9 74.1 75.9 81.8 74.3 77.9 68.2 51.2 58.5

ACE2004-CULOTTA-TEST
This work (sieve) 80.4 71.8 75.8 86.3 75.4 80.4 71.6 46.2 56.1
This work (single pass) 78.4 69.2 73.5 85.1 73.9 79.1 69.5 44.1 53.9
Haghighi and Klein (2009) –S 74.3 66.4 70.2 83.6 71.0 76.8 66.4 38.0 48.3
Haghighi and Klein (2009) +S 74.8 77.7 79.6 79.6 78.5 79.0 57.5 57.6 57.5
Culotta et al. (2007) – – – 86.7 73.2 79.3 – – –
Bengston and Roth (2008) 82.7 69.9 75.8 88.3 74.5 80.8 55.4 63.7 59.2

MUC6-TEST
This work (sieve) 90.5 68.0 77.7 91.2 61.2 73.2 90.3 53.3 67.1
This work (single pass) 89.3 65.9 75.8 90.2 58.8 71.1 89.5 50.6 64.7
Haghighi and Klein (2009) +S 87.2 77.3 81.9 84.7 67.3 75.0 80.5 57.8 67.3
Poon and Domingos (2008) 83.0 75.8 79.2 – – – 63.0 57.0 60.0
Finkel and Manning (2008) +G 89.7 55.1 68.3 90.9 49.7 64.3 74.1 37.1 49.5

ACE2004-NWIRE
This work (sieve) 83.8 73.2 78.1 87.5 71.9 78.9 79.6 46.2 58.4
This work (single pass) 82.2 71.5 76.5 86.2 70.0 77.3 76.9 41.9 54.2
Haghighi and Klein (2009) +S 77.0 75.9 76.5 79.4 74.5 76.9 66.9 49.2 56.7
Poon and Domingos (2008) 71.3 70.5 70.9 – – – 62.6 38.9 48.0
Finkel and Manning (2008) +G 78.7 58.5 67.1 86.8 65.2 74.5 76.1 44.2 55.9

Table 3: Results using gold mention boundaries. Where available, we show results for a given corpus grouped in
two blocks: the top block shows results of unsupervised systems and the bottom block contains supervised systems.
Bold numbers indicate best results in a given block. +/-S indicates if the (Haghighi and Klein, 2009) system in-
cludes/excludes their semantic component. +G marks systems that used gold NER labels.

wikipedia articles. They first identified articles
relevant to the entity mentions in the test set, and
then bootstrapped from known syntactic patterns
for apposition and predicate-nominatives in order to
learn a database of related head pairs. They show
impressive gains by using these learned pairs in
coreference decisions. This type of learning using
test set mentions is often described as transductive.

Our work instead focuses on an approach that
does not require access to the dataset beforehand.
We thus did not include a similar semantic compo-
nent in our system, given that running a bootstrap-
ping learner whenever a new data set is encountered
is not practical and, ultimately, reduces the usability
of this NLP component. However, our results show

that our sieve algorithm with minimal semantic in-
formation still performs as well as the Haghighi and
Klein (2009) system with semantics.

6.3 Flexible Architecture

The sieve architecture offers benefits beyond im-
proved accuracy. Its modular design provides a flex-
ibility for features that is not available in most su-
pervised or unsupervised systems. The sieve al-
lows new features to be seamlessly inserted with-
out affecting (or even understanding) the other com-
ponents. For instance, once a new high precision
feature (or group of features) is inserted as its own
stage, it will benefit later stages with more precise
clusters, but it will not interfere with their particu-
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lar algorithmic decisions. This flexibility is in sharp
contrast to supervised classifiers that require their
models to be retrained on labeled data, and unsu-
pervised systems that do not offer a clear insertion
point for new features. It can be difficult to fully
understand how a system makes a single decision,
but the sieve allows for flexible usage with minimal
effort.

6.4 Error Analysis

Pronominal Nominal Proper Total
Pronominal 49 / 237 116 / 317 104 / 595 269 / 1149

Nominal 79 / 351 129 / 913 61 / 986 269 / 2250
Proper 51 / 518 15 / 730 38 / 595 104 / 1843
Total 179 / 1106 260 / 1960 203 / 2176 642 / 5242

Table 4: Number of pair-wise errors produced by the
sieve after transitive closure in the MUC6-TEST corpus.
Rows indicate mention types; columns are types of an-
tecedent. Each cell shows the number of precision/recall
errors for that configuration. The total number of gold
links in MUC6-TEST is 11,236.

Table 4 shows the number of incorrect pair-wise
links generated by our system on the MUC6-TEST
corpus. The table indicates that most of our er-
rors are for nominal mentions. For example, the
combined (precision plus recall) number of errors
for proper or common noun mentions is three times
larger than the number of errors made for pronom-
inal mentions. The table also highlights that most
of our errors are recall errors. There are eight times
more recall errors than precision errors in our output.
This is a consequence of our decision to prioritize
highly precise features in the sieve.

The above analysis illustrates that our next effort
should focus on improving recall. In order to under-
stand the limitations of our current system, we ran-
domly selected 60 recall errors (20 for each mention
type) and investigated their causes. Not surprisingly,
the causes are unique to each type.

For proper nouns, 50% of recall errors are due to
mention lengthening, mentions that are longer than
their earlier mentions. For example, Washington-
based USAir appears after USAir in the text, so our
head matching components skip it because their high
precision depends on disallowing new modifiers as
the discourse proceeds. When the mentions were re-
versed (as is the usual case), they match.

The common noun recall errors are very differ-
ent from proper nouns: 17 of the 20 random exam-
ples can be classified as semantic knowledge. These
errors are roughly evenly split between recognizing
categories of names (e.g., Gitano is an organization
name hence it should match the nominal antecedent
the company), and understanding hypernym rela-
tions like settlements and agreements.

Pronoun errors come in two forms. Roughly 40%
of these errors are attribute mismatches involving
sometimes ambiguous uses of gender and number
(e.g., she with Pat Carney). Another 40% are not se-
mantic or attribute-based, but rather simply arise due
to the order in which we check potential antecedents.
In all these situations, the correct links are missed
because the system chooses a closer (incorrect) an-
tecedent.

These four highlighted errors (lengthening, se-
mantics, attributes, ordering) add up to 77% of all
recall errors in the selected set. In general, each
error type is particular to a specific mention type.
This suggests that recall improvements can be made
by focusing on one mention type without aversely
affecting the others. Our sieve-based approach to
coreference uniquely allows for such new models to
be seamlessly inserted.

7 Conclusion

We presented a simple deterministic approach to
coreference resolution that incorporates document-
level information, which is typically exploited only
by more complex, joint learning models. Our sieve
architecture applies a battery of deterministic coref-
erence models one at a time from highest to low-
est precision, where each model builds on the pre-
vious model’s cluster output. Despite its simplicity,
our approach outperforms or performs comparably
to the state of the art on several corpora.

An additional benefit of the sieve framework is its
modularity: new features or models can be inserted
in the system with limited understanding of the other
features already deployed. Our code is publicly re-
leased5 and can be used both as a stand-alone coref-
erence system and as a platform for the development
of future systems.

5http://nlp.stanford.edu/software/
dcoref.shtml
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The strong performance of our system suggests
the use of sieves in other NLP tasks for which a va-
riety of very high-precision features can be designed
and non-local features can be shared; likely candi-
dates include relation and event extraction, template
slot filling, and author name deduplication.
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Abstract

We present a simple, robust generation system
which performs content selection and surface
realization in a unified, domain-independent
framework. In our approach, we break up
the end-to-end generation process into a se-
quence of local decisions, arranged hierar-
chically and each trained discriminatively.
We deployed our system in three different
domains—Robocup sportscasting, technical
weather forecasts, and common weather fore-
casts, obtaining results comparable to state-of-
the-art domain-specific systems both in terms
of BLEU scores and human evaluation.

1 Introduction

In this paper, we focus on the problem of generat-
ing descriptive text given a world state represented
by a set of database records. While existing gen-
eration systems can be engineered to obtain good
performance on particular domains (e.g., Dale et
al. (2003), Green (2006), Turner et al. (2009), Re-
iter et al. (2005), inter alia), it is often difficult
to adapt them across different domains. Further-
more, content selection (what to say: see Barzilay
and Lee (2004), Foster and White (2004), inter alia)
and surface realization (how to say it: see Ratna-
parkhi (2002), Wong and Mooney (2007), Chen and
Mooney (2008), Lu et al. (2009), etc.) are typically
handled separately. Our goal is to build a simple,
flexible system which is domain-independent and
performs content selection and surface realization in
a unified framework.

We operate in a setting in which we are only given
examples consisting of (i) a set of database records
(input) and (ii) example human-generated text de-
scribing some of those records (output). We use the
model of Liang et al. (2009) to automatically induce
the correspondences between words in the text and
the actual database records mentioned.

We break up the full generation process into a se-
quence of local decisions, training a log-linear clas-
sifier for each type of decision. We use a simple
but expressive set of domain-independent features,
where each decision is allowed to depend on the en-
tire history of previous decisions, as in the model
of Ratnaparkhi (2002). These long-range contextual
dependencies turn out to be critical for accurate gen-
eration.

More specifically, our model is defined in terms
of three types of decisions. The first type
chooses records from the database (macro content
selection)—for example, wind speed, in the case
of generating weather forecasts. The second type
chooses a subset of fields from a record (micro con-
tent selection)—e.g., the minimum and maximum
temperature. The third type chooses a suitable tem-
plate to render the content (surface realization)—
e.g., winds between [min] and [max] mph; templates
are automatically extracted from training data.

We tested our approach in three domains:
ROBOCUP, for sportscasting (Chen and Mooney,
2008); SUMTIME, for technical weather forecast
generation (Reiter et al., 2005); and WEATHERGOV,
for common weather forecast generation (Liang et
al., 2009). We performed both automatic (BLEU)
and human evaluation. On WEATHERGOV, we
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s:
pass(arg1=purple6, arg2=purple3)

kick(arg1=purple3)
badPass(arg1=purple3,arg2=pink9)
turnover(arg1=purple3,arg2=pink9)

w: purple3 made a bad pass
that was picked off by pink9

(a) Robocup

s:
temperature(time=5pm-6am,min=48,mean=53,max=61)

windSpeed(time=5pm-6am,min=3,mean=6,max=11,mode=0-10)
windDir(time=5pm-6am,mode=SSW)

gust(time=5pm-6am,min=0,mean=0,max=0)
skyCover(time=5pm-9pm,mode=0-25)

skyCover(time=2am-6am,mode=75-100)
precipPotential(time=5pm-6am,min=2,mean=14,max=20)

rainChance(time=5pm-6am,mode=someChance)

w: a 20 percent chance of showers after midnight . increasing clouds ,
with a low around 48 southwest wind between 5 and 10 mph

(b) WeatherGov

s:
wind10m(time=6am,dir=SW,min=16,max=20,gust min=0,gust max=-)

wind10m(time=9pm,dir=SSW,min=28,max=32,gust min=40,gust max=-)
wind10m(time=12am,dir=-,min=24,max=28,gust min=36,gust max=-)

w: sw 16 - 20 backing ssw 28 - 32 gusts 40 by mid evening easing 24 - 28 gusts 36 late evening

(c) SumTime

Figure 1: Example scenarios (a scenario is a world state s paired with a text w) for each of the three domains. Each row in the
world state denotes a record. Our generation task is to map a world state s (input) to a text w (output). Note that this mapping
involves both content selection and surface realization.

achieved a BLEU score of 51.5 on the combined task
of content selection and generation, which is more
than a two-fold improvement over a model similar
to that of Liang et al. (2009). On ROBOCUP and
SUMTIME, we achieved results comparable to the
state-of-the-art. most importantly, we obtained these
results with a general-purpose approach that we be-
lieve is simpler than current state-of-the-art systems.

2 Setup and Domains

Our goal is to generate a text given a world state.
The world state, denoted s, is represented by a set
of database records. Define T to be a set of record
types, where each record type t ∈ T is associated
with a set of fields FIELDS(t). Each record r ∈ s
has a record type r.t ∈ T and a field value r.v[f ] for
each field f ∈ FIELDS(t). The text, denoted w, is
represented by a sequence of tokenized words. We
use the term scenario to denote a world state s paired
with a text w.

In this paper, we conducted experiments on three
domains, which are detailed in the following subsec-
tions. Example scenarios for each domain are de-
tailed in Figure 1.

2.1 ROBOCUP: Sportscasting

A world state in the ROBOCUP domain is a set of
event records (meaning representations in the termi-
nology of Chen and Mooney (2008)) generated by
a robot soccer simulator. For example, the record
pass(arg1=pink1,arg2=pink5) denotes a passing
event; records of this type (pass) have two fields:
arg1 (the agent) and arg2 (the recipient). As the
game progresses, human commentators talk about
some of the events in the game, e.g., purple3 made
a bad pass that was picked off by pink9.

We used the dataset created by Chen and Mooney
(2008), which contains 1919 scenarios from the
2001–2004 Robocup finals. Each scenario con-
sists of a single sentence representing a fragment
of a commentary on the game, paired with a set
of candidate records, which were recorded within
five seconds of the commentary. The records in the
ROBOCUP dataset data were aligned by Chen and
Mooney (2008). Each scenario contains on average
|s| = 2.4 records and 5.7 words. See Figure 1(a) for
an example of a scenario. Content selection in this
domain is choosing the single record to talk about,
and surface realization is talking about it.
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2.2 SUMTIME: Technical Weather Forecasts

Reiter et al. (2005) developed a generation system
and created the SUMTIME-METEO corpus, which
consists of marine wind weather forecasts used by
offshore oil rigs, generated by the output of weather
simulators. More specifically, these forecasts de-
scribe various aspects of the wind at different times
during the forecast period.

We used the version of the SUMTIME-METEO

corpus created by Belz (2008). The dataset consists
of 469 scenarios, each containing on average |s| =
2.6 records and 16.2 words. See Figure 1(c) for an
example of a scenario. This task requires no content
selection, only surface realization: The records are
given in some fixed order and the task is to generate
from each of these records in turn; of course, due
to contextual dependencies, these records cannot be
generated independently.

2.3 WEATHERGOV: Common Weather
Forecasts

In the WEATHERGOV domain, the world state con-
tains detailed information about a local weather
forecast (e.g., temperature, rain chance, etc.). The
text is a short forecast report based on this informa-
tion.

We used the dataset created by Liang et al. (2009).
The world state is summarized by records which ag-
gregate measurements over selected time intervals.
The dataset consists of 29,528 scenarios, each con-
taining on average |s| = 36 records and 28.7 words.
See Figure 1(b) for an example of a scenario.

While SUMTIME and WEATHERGOV are both
weather domains, there are significant differences
between the two. SUMTIME forecasts are in-
tended to be read by trained meteorologists, and thus
the text is quite abbreviated. On the other hand,
WEATHERGOV texts are intended to be read by the
general public and thus is more English-like. Fur-
thermore, SUMTIME does not require content selec-
tion, whereas content selection is a major focus of
WEATHERGOV. Indeed, on average, only 5 of 36
records are actually mentioned in a WEATHERGOV

scenario. Also, WEATHERGOV is more complex:
The text is more varied, there are multiple record
types, and there are about ten times as many records
in each world state.

Generation Process

for i = 1, 2, . . . :
−choose a record ri ∈ s
−if ri = STOP: return
−choose a field set Fi ⊂ FIELDS(ri.t)
−choose a template Ti ∈ TEMPLATES(ri.t, Fi)

Figure 2: Pseudocode for the generation process. The generated
text w is a deterministic function of the decisions.

3 The Generation Process

To model the process of generating a text w from a
world state s, we decompose the generation process
into a sequence of local decisions. There are two as-
pects of this decomposition that we need to specify:
(i) how the decisions are structured; and (ii) what
pieces of information govern the decisions.

The decisions are structured hierarchically into
three types of decisions: (i) record decisions, which
determine which records in the world state to talk
about (macro content selection); (ii) field set deci-
sions, which determine which fields of those records
to mention (micro content selection); and (iii) tem-
plate decisions, which determine the actual words
to use to describe the chosen fields (surface realiza-
tion). Figure 2 shows the pseudocode for the gen-
eration process, while Figure 3 depicts an example
of the generation process on a WEATHERGOV sce-
nario.

Each of these decisions is governed by a set of
feature templates (see Figure 4), which are repre-
sented as functions of the current decision and past
decisions. The feature weights are learned from
training data (see Section 4.3).

We chose a set of generic domain-independent
feature templates, described in the sections below.
These features can, in general, depend on the current
decision and all previous decisions. For example, re-
ferring to Figure 4, R2 features on the record choice
depend on all the previous record decisions, and R5
features depend on the most recent template deci-
sion. This is in contrast with most systems for con-
tent selection (Barzilay and Lee, 2004) and surface
realization (Belz, 2008), where decisions must de-
compose locally according to either a graph or tree.
The ability to use global features in this manner is
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World
state

skyCover1: skyCover(time=5pm-6am,mode=50-75)
temperature1: temperature(time=5pm-6am,min=44,mean=49,max=60)
...

Decisions

Record r1 = skyCover1 r2 = temperature1 r3 = stop

Field set F1 = {mode} F2 = {time, min}

Template T1 = 〈mostly cloudy ,〉 T2 = 〈with a low around [min] .〉

Text mostly cloudy , with a low around 45 .

Specific active (nonzero) features for highlighted decisions

r2 = temperature1

(R1) Jr2.t = temperature and (r1.t, r0.t) = (skyCover, start)K
Jr2.t = temperature and (r1.t) = (skyCover)K

(R2) Jr2.t = temperature and {r1.t} = {skyCover}K
(R3) Jr2.t = temperature and rj .t 6= temperature ∀j < 2K
(R4) Jr2.t = temperature and r2.v[time] = 5pm-6amK

Jr2.t = temperature and r2.v[min] = lowK
Jr2.t = temperature and r2.v[mean] = lowK
Jr2.t = temperature and r2.v[max] = mediumK

F2 = {time, min}
(F1) JF2 = {time, min}K
(F2) JF2 = {time, min} and r2.v[time] = 5pm-6amK
(F2) JF2 = {time, min} and r2.v[min] = lowK

T2 = 〈with a low around [min]〉

(W1) JBase(T2) = 〈with a low around [min]〉K
JCoarse(T2) = 〈with a [time] around [min]〉K

(W2) JBase(T2) = 〈with a low around [min]〉 and r2.v[time] = 5pm-6amK
JCoarse(T2) = 〈with a [time] around [min]〉 and r2.v[time] = 5pm-6amK
JBase(T2) = 〈with a low around [min]〉 and r2.v[min] = lowK
JCoarse(T2) = 〈with a [time] around [min]〉 and r2.v[min] = lowK

(W3) log plm(with | cloudy ,)

Figure 3: The generation process on an example WEATHERGOV scenario. The figure is divided into two parts: The upper part of
the figure shows the generation of text from the world state via a sequence of seven decisions (in boxes). Three of these decisions
are highlighted and the features that govern these decisions are shown in the lower part of the figure. Note that different decisions
in the generation process would result in different features being active (nonzero).

Feature Templates
Record R1† list of last k record types Jri.t = ∗ and (ri−1.t, . . . , ri−k.t) = ∗K for k ∈ {1, 2}

R2 set of previous record types Jri.t = ∗ and {rj .t : j < i} = ∗K
R3 record type already generated Jrj .t = ri.t for some j < iK
R4 field values Jri.t = ∗ and ri.v[f ] = ∗K for f ∈ Fields(ri.t)
R5† stop under language model (LM) Jri.t = stopK× log plm(stop | previous two words generated)

Field set F1† field set JFi = ∗K
F2 field values JFi = ∗ and ri.v[f ] = ∗K for f ∈ Fi

Template W1† base/coarse generation template Jh(Ti) = ∗K for h ∈ {Base,Coarse}
W2 field values Jh(Ti) = ∗ and ri.v[f ] = ∗K for f ∈ Fi, h ∈ {Base,Coarse}
W3† first word of template under LM log plm(first word in Ti | previous two words)

Figure 4: Feature templates that govern the record, field set, and template decisions. Each line specifies the name, informal
description, and formal description of a set of features, obtained by ranging ∗ over possible values (for example, for Jri.t = ∗K, ∗
ranges over all record types T ). Notation: JeK returns 1 if the expression e is true and 0 if it is false. These feature templates are
domain-independent; that is, they are used to create features automatically across domains. Feature templates marked with † are
included in our baseline system (Section 5.2).

one of the principal advantages of our approach.

3.1 Record Decisions

Record decisions are responsible for macro content
selection. Each record decision chooses a record ri

from the world state s according to features of the
following types:

R1 captures the discourse coherence aspect of
content selection; for example, we learn that
windSpeed tends to follow windDir (but not al-
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ways). R2 captures an unordered notion of
coherence—simply which sets of record types are
preferable; for example, we learn that rainChance
is not generated if sleetChance already was men-
tioned. R3 is a coarser version of R2, capturing
how likely it is to propose a record of a type that has
already been generated. R4 captures the important
aspect of content selection that the records chosen
depend on their field values;1 for example, we learn
that snowChance is not chosen unless there is snow.
R5 allows the language model to indicate whether a
STOP record is appropriate; this helps prevent sen-
tences from ending abruptly.

3.2 Field Set Decisions

Field set decisions are responsible for micro con-
tent selection, i.e., which fields of a record are men-
tioned. Each field set decision chooses a subset of
fields Fi from the set of fields FIELDS(ri.t) of the
record ri that was just generated. These decisions
are made based on two types of features:

F1 captures which sets of fields are talked
about together; for example, we learn that {mean}
and {min,max} are preferred field sets for the
windSpeed record. By defining features on the en-
tire field set, we can capture any correlation structure
over the fields; in contrast, Liang et al. (2009) gen-
erates a sequence of fields in which a field can only
depend on the previous one.

F2 allows the field set to be chosen based on the
values of the fields, analogously to R4.

3.3 Template Decisions

Template decisions perform surface realization. A
template is a sequence of elements, where each ele-
ment is either a word (e.g., around) or a field (e.g.,
[min]). Given the record ri and field set Fi that we
are generating from, the goal is to choose a template
Ti (Section 4.3.2 describes how we define the set
of possible templates). The features that govern the
choice of Ti are as follows:

W1 captures a priori preferences for generation
templates given field sets. There are two ways
to control this preference, BASE and COARSE.

1We map a numeric field value onto one of five categories
(very-low, low, medium, high, or very-high) based
on its value with respect to the mean and standard deviation of
values of that field in the training data.

BASE(Ti) denotes the template Ti itself, thus allow-
ing us to remember exactly which templates were
useful. To guard against overfitting, we also use
COARSE(Ti), which maps Ti to a coarsened version
of Ti, in which more words are replaced with their
associated fields (see Figure 5 for an example).

W2 captures a dependence on the values of fields
in the field set, and is analogous to R4 and F2. Fi-
nally, W3 contributes a language model probability,
to ensure smooth transitions between templates.

After Ti has been chosen, each field in the tem-
plate is replaced with a word given the correspond-
ing field value in the world state. In particular, a
word is chosen from the parameters learned in the
model of Liang et al. (2009). In the example in Fig-
ure 3, the [min] field in T2 has value 44, which is
rendered to the word 45 (rounding and other noisy
deviations are common in the WEATHERGOV do-
main).

4 Learning a Probabilistic Model

Having described all the features, we now present a
conditional probabilistic model over texts w given
world states s (Section 4.1). Section 4.2 describes
how to use the model for generation, and Section 4.3
describes how to learn the model.

4.1 Model
Recall from Section 3 that the generation process
generates r1, F1, T1, r2, F2, T2, . . . , STOP. To unify
notation, denote this sequence of decisions as d =
(d1, . . . , d|d|).

Our probability model is defined as follows:

p(d | s; θ) =
|d|∏
j=1

p(dj | d<j ; θ), (1)

where d<j = (d1, . . . , dj−1) is the history of de-
cisions and θ are the model parameters (feature
weights). Note that the text w (the output) is a de-
terministic function of the decisions d. We use the
features described in Section 3 to define a log-linear
model for each decision:

p(dj | d<j , s; θ) =
exp{φj(dj ,d<j , s)>θ}∑

d′
j∈Dj

exp{φj(d′j ,d<j , s)>θ}
, (2)

where θ are all the parameters (feature weights), φj
is the feature vector for the j-th decision, and Dj is
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the domain of the j-th decision (either records, field
sets, or templates).

This chaining of log-linear models was used in
Ratnaparkhi (1998) for tagging and parsing, and in
Ratnaparkhi (2002) for surface realization. The abil-
ity to condition on arbitrary histories is a defining
property of these models.

4.2 Using the Model for Generation

Suppose we have learned a model with parameters θ
(how to obtain θ is discussed in Section 4.3). Given
a world state s, we would like to use our model to
generate an output text w via a decision sequence d.

In our experiments, we choose d by sequentially
choosing the best decision in a greedy fashion (until
the STOP record is generated):

dj = argmax
d′

j

p(d′j | d<j , s; θ). (3)

Alternatively, instead of choosing the best decision
at each point, we can sample from the distribution:
dj ∼ p(dj | d<j , s; θ), which provides more diverse
generated texts at the expense of a slight degradation
in quality.

Both greedy search and sampling are very effi-
cient. Another option is to try to find the Viterbi
decision sequence, i.e., the one with the maximum
joint probability: d = argmaxd′ p(d′ | s; θ). How-
ever, this computation is intractable due to features
depending arbitrarily on past decisions, making dy-
namic programming infeasible. We tried using beam
search to approximate this optimization, but we ac-
tually found that beam search performed worse than
greedy. Belz (2008) also found that greedy was more
effective than Viterbi for their model.

4.3 Learning

Now we turn our attention to learning the parame-
ters θ of our model. We are given a set of N sce-
narios {(s(i),w(i))}Ni=1 as training data. Note that
our model is defined over the decision sequence d
which contains information not present in w. In Sec-
tions 4.3.1 and 4.3.2, we show how we fill in this
missing information to obtain d(i) for each training
scenario i.

Assuming this missing information is filled, we
end up with a standard supervised learning problem,

which can be solved by maximize the (conditional)
likelihood of the training data:

max
θ∈Rd

 N∑
i=1

|d(i)|∑
j=1

log p(d(i)
j | d

(i)
<j ; θ)

−λ||θ||2, (4)

where λ > 0 is a regularization parameter. The ob-
jective function in (4) is optimized using the stan-
dard L-BFGS algorithm (Liu and Nocedal, 1989).

4.3.1 Latent Alignments
As mentioned previously, our training data in-

cludes only the world state s and generated text w,
not the full sequence of decisions d needed for train-
ing. Intuitively, we know what was generated but not
why it was generated.

We use the model of Liang et al. (2009) to im-
pute the decisions d. They introduce a generative
model p(a,w|s), where the latent alignment a spec-
ifies (1) the sequence of records that were chosen,
(2) the sequence of fields that were chosen, and (3)
which words in the text were spanned by the chosen
records and fields. The model is learned in an unsu-
pervised manner using EM to produce a observing
only w and s.

An example of an alignment is given in the left
part of Figure 5. This information specifies the
record decisions and a set of fields for each record.
Because the induced alignments can be noisy, we
need to process them to obtain cleaner template de-
cisions. This is the subject of the next section.

4.3.2 Template Extraction
Given an aligned training scenario (Figure 5), we

would like to extract two types of templates.
For each record, an aligned training scenario

specifies a sequence of fields and the text that
is spanned by each field. We create a template
by abstracting fields—that is, replacing the words
spanned by a field by the field itself. We call the
resulting template COARSE. The problem with us-
ing this template directly is that fields can be noisy
due to errors from the unsupervised model.

Therefore, we also create a BASE template which
only abstracts a subset of the fields. In particular,
we define a trigger pattern which specifies a simple
condition under which a field should be abstracted.
For WEATHERGOV, we only abstract fields that
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Records:
Fields:
Text:

skyCover1
mode=50-75
mostly cloudy ,

temperature1

x
with a

time=17-30
low around

min=44
45

mean=49
.

Aligned training scenario

⇒

skyCover temperature
Coarse 〈[mode]〉 〈with a [time] [min] [mean]〉
Base 〈most cloudy ,〉 〈with a low around [min] .〉

Templates extracted

Figure 5: An example of template extraction from an imperfectly aligned training scenario. Note that these alignments are noisy
(e.g., [mean] aligns to a period). Therefore, for each record (skyCover and temperature in this case), we extract two templates:
(1) a COARSE template, which takes the text spanned by the record and abstracts away all fields in the scenario ([mode], [time],
[min], and [mean] in the example); and (2) a BASE template, which only abstracts away fields whose spanned text matches a simple
pattern (e.g., numbers in WEATHERGOV, corresponding to [min] in the example).

span numbers; for SUMTIME, fields that span num-
bers and wind directions; and for ROBOCUP, fields
that span words starting with purple or pink.

For each record ri, we define Ti so that BASE(Ti)
and COARSE(Ti) are the corresponding two ex-
tracted templates. We restrict Fi to the set of ab-
stracted fields in the COARSE template

5 Experiments

We now present an empirical evaluation of our sys-
tem on our three domains—ROBOCUP, SUMTIME,
and WEATHERGOV.

5.1 Evaluation Metrics

Automatic Evaluation To evaluate surface real-
ization (or, combined content selection and surface
realization), we measured the BLEU score (Papineni
et al., 2002) (the precision of 4-grams with a brevity
penalty) of the system-generated output with respect
to the human-generated output.

To evaluate macro content selection, we measured
the F1 score (the harmonic mean of precision and
recall) of the set of records chosen with respect to
the human-annotated set of records.

Human Evaluation We conducted a human eval-
uation using Amazon Mechanical Turk. For each
domain, we chose 100 scenarios randomly from the
test set. We ran each system under consideration on
each of these scenarios, and presented each resulting
output to 10 evaluators.2 Evaluators were given in-
structions to rank an output on the basis of English
fluency and semantic correctness on the following
scale:

2To minimize bias, we evaluated all the systems at once,
randomly shuffling the outputs of the systems. The evaluators
were not necessarily the same 10 evaluators.

Score English Fluency Semantic Correctness
5 Flawless Perfect
4 Good Near Perfect
3 Non-native Minor Errors
2 Disfluent Major Errors
1 Gibberish Completely Wrong

Evaluators were also given additional domain-
specific information: (1) the background of the
domain (e.g., that SUMTIME reports are techni-
cal weather reports); (2) general properties of the
desired output (e.g., that SUMTIME texts should
mention every record whereas WEATHERGOV texts
need not); and (3) peculiarities of the text (e.g., the
suffix ly in SUMTIME should exist as a separate to-
ken from its stem, or that pink goalie and pink1 have
the same meaning in ROBOCUP).

5.2 Systems
We evaluated the following systems on our three do-
mains:

• HUMAN is the human-generated output.
• OURSYSTEM uses all the features in Figure 4

and is trained according to Section 4.3.
• BASELINE is OURSYSTEM using a subset of

the features (those marked with † in Fig-
ure 4). In contrast to OURSYSTEM, the in-
cluded features only depend on a local con-
text of decisions in a manner similar to
the generative model of Liang et al. (2009)
and the pCRU-greedy system of Belz (2008).
BASELINE also excludes features that depend
on values of the world state.
• The existing state-of-the-art domain-specific

system for each domain.

5.3 ROBOCUP Results
Following the evaluation methodology of Chen and
Mooney (2008), we trained our system on three
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System F1 BLEU*
English
Fluency

Semantic
Correctness

BASELINE 78.7 24.8 4.28 ± 0.78 4.15 ± 1.14
OURSYSTEM 79.9 28.8 4.34 ± 0.69 4.17 ± 1.21
WASPER-GEN 72.0 28.7 4.43 ± 0.76 4.27 ± 1.15
HUMAN — — 4.43 ± 0.69 4.30 ± 1.07

Table 1: ROBOCUP results. WASPER-GEN is described in
Chen and Mooney (2008). The BLEU is reported on systems
that use fixed human-annotated records (in other words, we
evaluate surface realization given perfect content selection).

Human

Records:
Fields:
Text:

pass1
arg1=purple10

purple10
x

passes back to
arg2=purple9

purple9

Baseline

Records:
Fields:
Text:

pass1
arg1=purple10

purple10
x

kicks to
arg2=purple9

purple9

OurSystem

Records:
Fields:
Text:

pass1
arg1=purple10

purple10
x

passes to
arg2=purple9

purple9

WASPER-GENRecords:Text: purple10 passes to purple9

Figure 6: Outputs of systems on an example ROBOCUP sce-
nario. There are some minor differences between the outputs.
Recall that OURSYSTEM differs from BASELINE mostly in
the addition of feature W2, which captures dependencies be-
tween field values (e.g., purple10) and the template chosen
(e.g., [arg1] passes to [arg2]). This allows us to capture value-
dependent preferences for different realizations (e.g., passes to
over kicks to). Also, HUMAN uses passes back to, but this word
choice requires knowledge of passing records in previous sce-
narios, which none of the systems have access to. It would nat-
ural, however, to add features that would capture these longer-
range dependencies in our framework.

Robocup games and tested on the fourth, averaging
over the four train/test splits. We report the average
test accuracy weighted by the number of scenarios
in a game. First, we evaluated macro content selec-
tion. Table 1 shows that OURSYSTEM significantly
outperforms BASELINE and WASPER-GEN on F1.

To compare with Chen and Mooney (2008) on
surface realization, we fixed each system’s record
decisions to the ones given by the annotated data
and enforced that all the fields of that record are
chosen. Table 1 shows that OURSYSTEM sig-
nificantly outperforms BASELINE and is compara-
ble to WASPER-GEN on BLEU. On human eval-
uation, OURSYSTEM outperforms BASELINE, but
WASPER-GEN outperforms OURSYSTEM. See
Figure 6 for example outputs from the various sys-
tems.

BLEU
English
Fluency

Semantic
Correctness

BASELINE 32.9 4.23 ± 0.71 4.26 ± 0.85
OURSYSTEM 55.1 4.25 ± 0.69 4.27 ± 0.82
OURSYSTEM-CUSTOM 62.3 4.12 ± 0.78 4.33 ± 0.91
pCRU-greedy 63.6 4.18 ± 0.71 4.49 ± 0.73
SUMTIME-Hybrid 52.7 — —
HUMAN — 4.09 ± 0.83 4.37 ± 0.87

Table 2: SUMTIME results. The SUMTIME-Hybrid system
is described in (Reiter et al., 2005); pCRU-greedy, in (Belz,
2008).

5.4 SUMTIME Results
The SUMTIME task only requires micro content se-
lection and surface realization because the sequence
of records to be generated is fixed; only these as-
pects are evaluated. Following the methodology of
Belz (2008), we used five-fold cross validation.

We found that using the unsupervised model of
Liang et al. (2009) to automatically produce aligned
training scenarios (Section 4.3.1) was less effec-
tive than it was in the other two domains due to
two factors: (i) there are fewer training examples
in SUMTIME and unsupervised learning typically
works better with a large amount of data; and (ii)
the alignment model does not exploit the temporal
structure in the SUMTIME world state. Therefore,
we used a small set of simple regular expressions to
produce aligned training scenarios.

Table 2 shows that OURSYSTEM signif-
icantly outperforms BASELINE as well as
SUMTIME-Hybrid, a hand-crafted system, on
BLEU. Note that OURSYSTEM is domain-
independent and has not been specifically tuned
to SUMTIME. However, OURSYSTEM is outper-
formed by the state-of-the-art statistical system
pCRU-greedy.

Custom Features One of the advantages of our
feature-based approach is that it is straightforward to
incorporate domain-specific features to capture spe-
cific properties of a domain. To this end, we define
the following set of feature templates in place of our
generic feature templates from Figure 4:

• F1′: Value of time

• F2′: Existence of gusts/wind direction/wind
speeds

• W1′: Change in wind direction (clockwise,
counterclockwise, or none)
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Human

Records:
Fields:
Text:

windDir1
dir=nne

nne
min=18

18
x
-

max=22
22

gust-min=30
gusts 30

windDir2
x

gradually decreasing
min=10

10
x
-

max=14
14

time=12am
by late evening

Baseline

Records:
Fields:
Text:

windDir1
dir=nne

nne
min=18

18
x
-

max=22
22

gust-min=30
gusts 30

windDir2
x

increasing
min=10

10
x
-

max=14
14

OurSystem-Custom

Records:
Fields:
Text:

windDir1
dir=nne

nne
min=18

18
x
-

max=22
22

gust-min=30
gusts 30

windDir2
x

gradually decreasing
min=10

10
x
-

max=14
14

time=12am
by late evening

pCRU-greedy Records:Text: nne 18 - 22 gusts 30 easing 10 - 14 by late evening

Figure 7: Outputs of systems on an example SUMTIME scenario. Two notable differences between OURSYSTEM-CUSTOM and
BASELINE arise due to OURSYSTEM-CUSTOM’s value-dependent features. For example, OURSYSTEM-CUSTOM can choose
whether to include the time field (windDir2) or not (windDir1), depending on the value of the time (F1′), thereby improving content
selection. OURSYSTEM-CUSTOM also improves surface realization, choosing gradually decreasing over BASELINE’s increasing.
Interestingly, this improvement comes from the joint effort of two features: W2′ prefers decreasing over increasing in this case,
and W5′ adds the modifier gradually. An important strength of log-linear models is the ability to combine soft preferences from
many features.

• W2′: Change in wind speed
• W3′: Change in wind direction and speed
• W4′: Existence of gust min and/or max
• W5′: Time elapsed since last record
• W6′: Whether wind is a cardinal direction (N,

E, S, W)

The resulting system, which we call
OURSYSTEM-CUSTOM, obtains a BLEU score
which is comparable to pCRU-greedy.

An important aspect of our system that it is flexi-
ble and quick to deploy. According to Belz (2008),
SUMTIME-Hybrid took twelve person-months to
build, while pCRU-greedy took one month. Having
developed OURSYSTEM in a domain-independent
way, we only needed to do simple reformatting upon
receiving the SUMTIME data. Furthermore, it took
only a few days to develop the custom features
above to create OURSYSTEM-CUSTOM, which has
BLEU performance comparable to the state-of-the-
art pCRU-greedy system.

We also conducted human evaluations on the four
systems shown in Table 2. Note that this evalua-
tion is rather difficult for Mechanical Turkers since
SUMTIME texts are rather technical compared to
those in other domains. Interestingly, all systems
outperform HUMAN on English fluency; this result
corroborates the findings of Belz (2008). On se-
mantic correctness, all systems perform comparably
to HUMAN, except pCRU-greedy, which performs
slightly better. See Figure 7 for a comparison of the
outputs generated by the various systems.

F1 BLEU*
English
Fluency

Semantic
Correctness

BASELINE 22.1 22.2 4.07 ± 0.59 3.41 ± 1.16
OURSYSTEM 65.4 51.5 4.12 ± 0.74 4.22 ± 0.89
HUMAN — — 4.14 ± 0.71 3.85 ± 0.99

Table 3: WEATHERGOV results. The BLEU score is on joint
content selection and surface realization and is modified to not
penalize numeric deviations of at most 5.

5.5 WEATHERGOV Results

We evaluate the WEATHERGOV corpus on the joint
task of content selection and surface realization.
We split our corpus into 25,000 scenarios for train-
ing, 1,000 for development, and 3,528 for testing.
In WEATHERGOV, numeric field values are often
rounded or noisily perturbed, so it is difficult to gen-
erate precisely matching numbers. Therefore, we
used a modified BLEU score where numbers dif-
fering by at most five are treated as equal. Fur-
thermore, WEATHERGOV is evaluated on the joint
content selection and surface realization task, un-
like ROBOCUP, where content selection and surface
realization were treated separately, and SUMTIME,
where content selection was not applicable.

Table 3 shows the results. We see that
OURSYSTEM substantially outperforms BASELINE,
especially on BLEU score and semantic correctness.
This difference shows that taking non-local context
into account is very important in this domain. This
result is not surprising, since WEATHERGOV is the
most complicated of the three domains, and this
complexity is exactly where non-locality is neces-
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Human

Records:
Fields:
Text:

skyCover1
cover=50-75
mostly cloudy

x
,

temperature1

x
with a

time=5pm-6am
low

x
around

min=59
57

x
.

windDir1
mode=sse

south
x

wind between

windSpeed1

min=7
5

x
and

max=15
10

x
mph .

Baseline

Records:
Fields:
Text:

rainChance2

x
a chance of showers ,

none
x
,

gust1
x

with gusts as high as
max=21

20
x

mph .

precipPotential1
x

chance of precipitation is
max=10

10
x

% .

OurSystem

Records:
Fields:
Text:

skyCover1
x

mostly cloudy ,

temperature1

x
with a low around

min=59
59

x
.

windDir1
x

south wind between

windSpeed1

min=7
7

x
and

max=15
15

x
mph .

Figure 8: Outputs of systems on an example WEATHERGOV scenario. Most of the gains of OURSYSTEM over BASELINE come
from improved content selection. For example, BASELINE chooses rainChance because it happens to be the most common first
record type in the training data. However, since OURSYSTEM has features that depend on the value of rainChance (noChance
in this case), it has learned to disprefer talking about rain when there is no rain. Also, OURSYSTEM has additional features on the
entire history of chosen records, which enables it to choose a better sequence of records.

sary. Interestingly, OURSYSTEM even outperforms
HUMAN on semantic correctness, perhaps due to
generating more straightforward renderings of the
world state. Figure 8 describes example outputs for
each system.

6 Related Work

There has been a fair amount of work both on con-
tent selection and surface realization. In content se-
lection, Barzilay and Lee (2004) use an approach
based on local classification with edge-wise scores
between local decisions. Our model, on the other
hand, can capture higher-order constraints to enforce
global coherence.

Liang et al. (2009) introduces a generative model
of the text given the world state, and in some ways is
similar in spirit to our model. Although that model
is capable of generation in principle, it was de-
signed for unsupervised induction of hidden align-
ments (which is exactly what we use it for). Even
if combined with a language model, generated text
was much worse than our baseline.

The prominent approach for surface realization
is rendering the text from a grammar. Wong and
Mooney (2007) and Chen and Mooney (2008) use
synchronous grammars that map a logical form, rep-
resented as a tree, into a parse of the text. Soricut
and Marcu (2006) uses tree structures called WIDL-
expressions (the acronym corresponds to four opera-
tions akin to the rewrite rules of a grammar) to repre-
sent the realization process, and, like our approach,
operates in a log-linear framework. Belz (2008) and
Belz and Kow (2009) also perform surface realiza-
tion from a PCFG-like grammar. Lu et al. (2009)

uses a conditional random field model over trees.
Other authors have performed surface realization us-
ing various grammar formalisms, for instance CCG
(White et al., 2007), HPSG (Nakanishi et al., 2005),
and LFG (Cahill and van Genabith, 2006).

In each of the above cases, the decomposable
structure of the tree/grammar enables tractability.
However, we saw that it was important to include
features that captured long-range dependencies. Our
model is also similar in spirit to Ratnaparkhi (2002)
in the use of non-local features, but we operate at
three levels of hierarchy to include both content se-
lection and surface realization.

One issue that arises with long-range dependen-
cies is the lack of efficient algorithms for finding the
optimal text. Koller and Striegnitz (2002) perform
surface realization of a flat semantics, which is NP-
hard, so they recast the problem as non-projective
dependency parsing. Ratnaparkhi (2002) uses beam
search to find an approximate solution. We found
that a greedy approach obtained better results than
beam search; Belz (2008) found greedy approaches
to be effective as well.

7 Conclusion

We have developed a simple yet powerful generation
system that combines both content selection and sur-
face realization in a domain independent way. De-
spite our approach being domain-independent, we
were able to obtain performance comparable to the
state-of-the-art across three domains. Additionally,
the feature-based design of our approach makes it
easy to incorporate domain-specific knowledge to
increase performance even further.
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Abstract
The task of selecting information and render-
ing it appropriately appears in multiple con-
texts in summarization. In this paper we
present a model that simultaneously optimizes
selection and rendering preferences. The
model operates over a phrase-based represen-
tation of the source document which we ob-
tain by merging PCFG parse trees and depen-
dency graphs. Selection preferences for in-
dividual phrases are learned discriminatively,
while a quasi-synchronous grammar (Smith
and Eisner, 2006) captures rendering prefer-
ences such as paraphrases and compressions.
Based on an integer linear programming for-
mulation, the model learns to generate sum-
maries that satisfy both types of preferences,
while ensuring that length, topic coverage and
grammar constraints are met. Experiments on
headline and image caption generation show
that our method obtains state-of-the-art per-
formance using essentially the same model for
both tasks without any major modifications.

1 Introduction

Summarization is the process of condensing a source
text into a shorter version while preserving its infor-
mation content. Humans summarize on a daily ba-
sis and effortlessly, yet the automatic production of
high-quality summaries remains a challenge.

Most work today focuses on extractive summa-
rization, where a summary is created by identifying
and subsequently concatenating the most important
sentences in a document. The advantage of this ap-
proach is that it does not require a great deal of lin-
guistic analysis to generate grammatical sentences,

assuming the source document was well written.
Unfortunately, extracts generated this way are often
documents of low readability and text quality, and
contain much redundant information. The concise-
ness can be improved when sentence extraction is
interfaced with sentence compression, where words
and clauses are deleted based on rules typically op-
erating over parsed input (Jing, 2000; Daumé III
and Marcu, 2002; Lin, 2003; Daumé III, 2006; Zajic
et al., 2007; Martins and Smith, 2009).

An alternative abstractive or “bottom-up” ap-
proach involves identifying high-interest words and
phrases in the source text, and combining them into
new sentences guided by a language model (Banko
et al., 2000; Soricut and Marcu, 2007). This ap-
proach has the potential to work well, breaking out
of the single-sentence paradigm. Unfortunately, the
resulting summaries are not always coherent — indi-
vidual constituent phrases are often combined with-
out any semantic constraints — or grammatical be-
yond the n-gram horizon imposed by the language
model.

Constituent deletion and recombination are
merely two of the many rewrite operations profes-
sional editors and abstractors employ when creating
summaries (Jing, 2002). Additional operations in-
clude truncating sentences, aggregating them, and
paraphrasing at word or syntax level. Furthermore,
professionals write summaries in a task-specific
style. News headlines for example are typically
short (three to six words), written in the present
tense and active voice, and often leave out forms of
the verb be. There are also different ways of writing
a headline either directly by stating what the docu-
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ment is about or indirectly by raising a question in
the reader’s mind, which the document answers.

The automatic generation of summaries similar to
those produced by human abstractors is challenging
because of the many constraints imposed by the task:
the summary must be maximally informative and
minimally redundant, grammatical, coherent, adhere
to a pre-specified length and stylistic conventions.
Importantly, these constraints are conflicting; the
deletion of certain phrases may avoid redundancy
but result in ungrammatical output and information
loss.

In this paper we propose a model for summariza-
tion that attempts to capture and optimize these con-
straints jointly. We learn both how to select the
most important information (the content), and how
to render it appropriately (the style). Selection pref-
erences are learned discriminatively, while a quasi-
synchronous grammar (QG, Smith and Eisner 2006)
captures rendering preferences such as paraphrases
and compressions. The entire solution space of
possible extractions and QG-generated paraphrases
is searched efficiently through use of integer lin-
ear programming. The ILP framework allows us to
model naturally as constraints, additional require-
ments such as sentence length, overall summary
length, topic coverage and, importantly, grammati-
cality.

We argue that QG is attractive for describ-
ing rewrite operations common in summarization.
Rather than assuming a strictly synchronous struc-
ture over the source and target sentences, QG iden-
tifies a “sloppy” alignment of parse trees assuming
that the target tree is in some way “inspired by” the
source tree. A key insight in our approach is to
formulate the summarization problem at the phrase
level: both QG rules and information extraction op-
erate over individual phrases rather than (as is the
norm) sentences. At this smaller unit level, QG
rules become more widely applicable and compres-
sion falls naturally because only phrases deemed im-
portant should appear in the summary.

We evaluate the proposed model on headline gen-
eration and the related task of image caption gen-
eration. However, there is nothing inherent in our
formulation that is specific to those two tasks; it is
possible for the model to generate longer or shorter
summaries, for a single or multiple documents. Ex-

perimental results show that our method obtains
state-of-the-art performance, both in terms of gram-
maticality and informativeness for both tasks using
the same summarization model.

2 Related work

Much effort in automatic summarization has been
devoted to sentence extraction which is often for-
malized as a classification task (Kupiec et al., 1995).
Given appropriately annotated training data, a bi-
nary classifier learns to predict for each document
sentence if it is worth extracting. A few previ-
ous approaches have attempted to interface sentence
compression with summarization. A straightforward
way to achieve this is by adopting a two-stage ar-
chitecture (e.g., Lin 2003) where the sentences are
first extracted and then compressed or the other way
round.

Other work implements a joint model where
words are deleted and sentences selected from a doc-
ument simultaneously (Daumé III and Marcu, 2002;
Martins and Smith, 2009; Woodsend and Lapata,
2010). ILP models have also been developed for
sentence rather than document compression (Clarke
and Lapata, 2008). Dras (1999) discusses the appli-
cation of ILP to reluctant paraphrasing, i.e., the task
of choosing between paraphrases while conforming
to length, readability, or style constraints. Again,
the aim is to rewrite text without, however, con-
tent selection. Rewrite operations other than dele-
tion tend to be hand-crafted and domain specific
(Jing and McKeown, 2000). Notable exceptions are
Cohn and Lapata (2008) and Zhao et al. (2009) who
present a model that can both compress and para-
phrase individual sentences without however gener-
ating document-level summaries.

Headline generation is a well-studied task within
single-document summarization, due to its promi-
nence in the DUC-03 and DUC-04 evaluation com-
petitions.1 Many approaches identify the most infor-
mative sentence in a given document (typically the
first sentence for the news genre) and subsequently
apply a form of sentence compression such that
the headline meets some length requirement (Dorr

1Approaches to headline generation are too numerous to list
in detail; see the proceedings of DUC-03 and DUC-04 for an
overview.
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et al., 2003). The compressed sentence may also be
“padded” with important content words or phrases
to ensure that the topic of the document is covered
(Zajic et al., 2004). Other work generates headlines
in a bottom-up fashion starting from important, indi-
vidual words and phrases, that are glued together to
create a fluent sentence. For example, Banko et al.
(2000) draw inspiration from Machine Translation
and generate headlines using statistical models for
content selection and sentence realization.

Relatively little work has focused on caption gen-
eration, a task related to headline generation. The
aim here is to create a short, title-like description of
an image embedded in a news article. Like head-
lines, captions have to be short and informative. In
addition, a good caption must clearly identify the
subject of the picture and establish its relevance to
the article. Feng and Lapata (2010a) develop ex-
tractive and abstractive caption generation models
that operate over the output of a probabilistic im-
age annotation model that preprocesses the pictures
and suggests keywords to describe their content.
Their best model is an extension of Banko et al.’s
(2000) word-based model for headline generation to
phrases.

Our own work develops an ILP-based summariza-
tion model with rewrite operations that are not lim-
ited to deletion, are defined over phrases, and en-
coded in quasi-synchronous grammar. The QG for-
malism has been previously applied to parser adap-
tation and projection (Smith and Eisner, 2009), para-
phrase identification (Das and Smith, 2009), and
question answering (Wang et al., 2007); however
the use of QG in summarization is novel to our
knowledge. Unlike most synchronous grammar for-
malisms, QG does not posit a strict isomorphism be-
tween a source sentence and its target translation; it
only loosely links the syntactic structure of the two,
and is therefore well suited to describing the rela-
tionship between a document and its abstract. We
propose an ILP formulation which not only allows
to efficiently search through the space of many QG
rules but also to incorporate constraints relating to
content, style, and the task at hand.

3 Modeling

There are three components to our model. Content
selection is performed discriminatively; an SVM
learns which information in the source document
should be in the summary, and gives a real-valued
salience score for each phrase. QG rules are used
to generate compressions and paraphrases of the
source sentences. An ILP model combines the out-
put of these two components into an output sum-
mary, while optimizing content selection and surface
realization preferences jointly.

3.1 Document Representation

Our model operates on documents annotated with
syntactic information which we obtain by parsing
every sentence twice, once with a phrase structure
parser and once with a dependency parser. The out-
put from the two representations is combined into a
single data structure, by mapping the dependencies
to the edges of the phrase structure tree. The proce-
dure is described in detail in Woodsend and Lapata
(2010). However, we do not merge the leaf nodes
into phrases here, but keep the full tree structure,
as we will apply compression to phrases through
the QG. In our experiments, we obtain this com-
bined representation from the output of the Stan-
ford parser (Klein and Manning, 2003) but any other
broadly similar parser could be used instead.

3.2 Quasi-synchronous grammar

Given an input sentence S1 or its parse tree T1, the
QG constructs a monolingual grammar for parsing,
or generating, the possible translation (or here, para-
phrase) trees T2. A grammar node in the target tree
T2 is modeled on a subset of nodes in the source tree,
with a rather loose alignment between the trees.

In our approach, the process of learning the gram-
mar is unsupervised. Each sentence of the source
document is compared to each sentence in the target
document — headline or caption, depending on the
task. Using the combined PCFG-dependency tree
representation described above, we build up a list of
leaf node alignments based on lexical identity, after
stemming and removing stop words. We align direct
parent nodes where more than one child node aligns.
A grammar rule is created if the all the nodes in the
target tree can be explained using nodes from the
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Figure 1: Examples of QG alignments between
source node (left) and target node (right). (a) align-
ment of child nodes, involving compression through
deletion; (b) rewriting involving child and grand-
child nodes; (c) reordering of child nodes (with fur-
ther compression through applying other QG rules
on children). Nodes bear phrase and dependency la-
bels. Dotted lines show alignments in the grammar
between source and target child nodes. Examples
are taken from the QG rules discovered in the DUC-
03 data set of headlines.

source; this helps to improve the quality in what is
inherently a noisy process. Finally, QG rules are cre-
ated from aligned nodes above the leaf node level,
recording the phrase and dependency label of nodes,
and the alignment of child nodes.

Unlike previous work involving QG which has
used dependency graphs exclusively (e.g., Wang
et al. 2007; Das and Smith 2009), our approach op-
erates over a combined PCFG-dependency represen-
tation. As a result, some configurations in Smith and
Eisner (2006) are not so relevant here — instead,
we found that deletions, reorderings, flattening of
nodes, and the addition of text elements were im-
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of
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Timor

Figure 2: Alternative paraphrases are represented as
a CHOICE sub-tree.

portant operations for the grammar.

Figure 1 shows some example alignments that are
captured by the QG, with the source node on the
left and the target node on the right. Leaf nodes
have their original text, while other nodes have a
combined phrase and dependency label that they ob-
tain in the merged representation described in Sec-
tion 3.1 above (e.g., NP/dobj is a noun phrase and a
direct object, NNP/nn is a proper noun and a nomi-
nal modifier, whereas NN/– is a head noun). Align-
ments between the children are shown by dotted
lines. In Figure 1(a), some child nodes are aligned
while others are not present in the target tree. This
type of rule is common in our training data, and typ-
ically arises from the compression of names in noun
phrases. Another frequent compression, shown in
Figure 1(b), is flattening the tree structure by in-
corporating grand-child elements at the child level.
Figure 1(c) shows a rule involving the reordering
of child nodes, and where additional rules are ap-
plied recursively to achieve further compression and
a transformation in the phrase constituency.

Paraphrases are created from source sentence
parse trees by applying suitable rules recursively.
Suitable rules have matching structure in terms of
phrase and dependency label, for both the parent and
child nodes. Additionally, the proposed paraphrase
sub-tree must be suitable for the target tree being
created (i.e., the root node of the paraphrase must
match the phrase and dependency label of the corre-
sponding node in the target tree). Where more than
one paraphrase is possible, the alternatives are incor-
porated into the target parse tree under a CHOICE
node, as is shown in Figure 2. Note that unlike pre-
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vious QG approaches, we do not use the probability
model proposed by Smith and Eisner (2006); instead
the QG is used to represent rewrite operations, and
we simply record a frequency count for how often
each rule is encountered in the training data.

3.3 ILP model

The objective of our model is to create the most in-
formative text possible, subject to constraints which
can be tailored to the specific task. These relate to
sentence length, overall summary length, the inclu-
sion of specific topics, and grammaticality. These
constraints are global in their scope, and cannot be
adequately satisfied by optimizing each one of them
individually. Our approach therefore uses an ILP
formulation which will provide a globally optimal
solution, and which can be efficiently solved using
standard optimization tools. Specifically, the model
selects phrases and paraphrases from which to form
the output sentence. Here, we focus on a single
sentence as this is most appropriate for title gener-
ation. However, multi-sentence output can be easily
generated by setting a summary length constraint.
The model operates over the merged phrase struc-
ture trees described in Section 3.1, augmented with
paraphrase choice nodes such as shown in Figure 2
rather than raw text.

Let S be the set of sentences in a document, P be
the set of phrases, and Ps ⊂ P be the set of phrases
in each sentence s ∈ S . Let the sets Di ⊂ P , ∀i ∈ P
capture the phrase dependency information for each
phrase i, where each set Di contains the phrases that
depend on the presence of i. In a similar fashion,
C ⊂ P is the set of choice nodes throughout the doc-
ument, which represent nodes in the tree where more
than one QG rule can be applied; Ci ⊂ P , i ∈ C are
the sets of phrases that are direct children of each
choice node, in other words they are the individual
alternative paraphrases. Let li be the length of each
phrase i, in tokens.

For caption generation, the model has as addi-
tional input a list of tags (keywords drawn from the
source document) that correspond to the image, and
we refer to this set of tags as T . Pt ⊂ P is the set of
phrases containing the tag t ∈ T . We use the proba-
bilistic image annotation model of Feng and Lapata
(2010a) to generate the list of keywords. The lat-
ter highlight the objects depicted in the image and

should be in all likelihood included in the caption.
The model is cast as an integer linear program:

max
x ∑

i∈P
( fi +λgi)xi (1a)

s.t. ∑
i∈P

lixi ≤ Lmax (1b)

∑
i∈P

lixi ≥ Lmin (1c)

∑
i∈Pt ,t∈T

xi ≥ Tmin (1d)

x j→ xi ∀i ∈ P , j ∈Di (1e)

∑
j∈Ci

x j = xi ∀i ∈ C , j ∈ Ci (1f)

xi→ ys ∀s ∈ S , i ∈ Ps (1g)

∑
s∈S

ys ≤ NS (1h)

xi ∈ {0,1} ∀i ∈ P (1i)

ys ∈ {0,1} ∀s ∈ S . (1j)

A vector of binary variables x∈ {0,1}|P | indicates
if each phrase is to be part of the output. The vector
of auxiliary binary variables y ∈ {0,1}|S | indicates
from which sentences the chosen phrases come, see
Equation (1g).

Our objective function (1a) is the weighted sum of
two components for each phrase: a salience score,
and a measure of how frequently the QG rule was
seen in the training data. Let fi denote the salience
score for phrase i, determined by the machine learn-
ing algorithm. We apply a paraphrase penalty gi to
each phrase,

gi = log
(

nr

Nr

)
,

where nr is a count of the number of times this par-
ticular QG rule r was seen in the training data, and
Nr is the number of times all suitable rules for this
phrase node were seen. If no suitable rules exist,
we set gi = 0. The intuition here is that common
paraphrases should be more trustworthy, and thus
are given a smaller penalty than rare ones. Para-
phrase penalties are weighted by the constant param-
eter λ. which controls the amount of paraphrasing
we allow in the output. The objective function is
the sum of the salience scores and paraphrase penal-
ties of all the phrases chosen to form the output of a
given document, subject to the constraints in Equa-
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tions (1b)–(1j). The latter provide a natural way of
describing the requirements the output must meet.

Constraints (1b) and (1c) ensure that the gener-
ated output stays within the acceptable length range
of (Lmin,Lmax) tokens. Equation (1d) is a set-
covering constraint, requiring that at least Tmin words
in T appear in the output. This is important where
we want to focus on some aspect of the source doc-
ument, for instance on the subject of an image.

Constraint (1e) ensures that the phrase dependen-
cies are respected and thus enforces grammatical
correctness. Phrases that depend on phrase i are con-
tained in the set Di. Variable xi is true, and therefore
phrase i will be included, if any of its dependents
x j ∈Di are true. The phrase dependency constraints,
contained in the set Di and enforced by (1e), are the
result of three principles based on the typed depen-
dency information:

1. Where the QG provides alternative para-
phrases, it makes sense of course to select only
one. This is controlled by constraint (1f), and
by placing all paraphrases in the set Di for the
choice node i.

2. Where there are no applicable QG rules to
guide the model, in general we require all child
nodes j of the current node i to be included in
the summary if node i is included. As excep-
tions, we allow the subtree represented by node
j to be deleted if the dependency label for the
connecting edge i→ j is of type advcl (adver-
bial clause) or some form of conj (conjunction).

3. In general, we force the parent node p of the
current node i to be included in the output if i
is, resulting in all ancestors up to the root node
being included. We allow a break, and the sub-
tree at i to be used as a stand-alone sentence, if
the PCFG parser has marked i with an S (sen-
tence) label.

Constraint (1g) tells the ILP to output a sentence if
one of its constituent phrases is chosen. Finally, (1h)
limits the output to a maximum of NS sentences.

4 Experimental Set-up

As mentioned earlier we evaluated the performance
of our model on two title generation tasks, namely

headline and caption generation. In this section we
give details on the corpora and grammars we used,
model parameters and features. We also describe the
baselines used for comparison with our approach,
and explain how system output was evaluated.

Training We obtained phrase-based salience
scores using a supervised machine learning algo-
rithm. For the headline generation task, the full
DUC-03 (Task 1) corpus was used for training;
it contains 500 documents and 4 headline-style
summaries per document. For the captions, training
data was gathered from the CNN news website.2

We used 200 documents and their corresponding
captions. Sentences were first tokenized to separate
words and punctuation, and then parsed to obtain
phrases and dependencies as described in Section 3
using the Stanford parser (Klein and Manning,
2003). Document phrases were marked as positive
or negative automatically. If there was a unigram
overlap (excluding stop words) between the phrase
and any of the original title or caption, we marked
this phrase with a positive label. Non-overlapping
phrases were given negative labels.

Our feature set comprised surface features such as
sentence and paragraph position information, POS
tags, and whether high-scoring tf.idf words were
present in the phrase. Additionally, the caption train-
ing set contained features for unigram and bigram
overlap with the title. We learned the feature weights
with a linear SVM, using the software SVM-OOPS
(Woodsend and Gondzio, 2009). This tool gave us
directly the feature weights as well as support vec-
tor values, and it allowed different penalties to be
applied to positive and negative misclassifications,
enabling us to compensate for the unbalanced data
set. The penalty hyper-parameters chosen were the
ones that gave the best F-scores, using 10-fold vali-
dation.

For each of the two tasks, QG rules were extracted
from the same data used to train the SVM, resulting
in 2,910 distinct rules for headlines and 2,757 rules
for the captions. Table 1 shows that for both tasks,
the majority of rules apply to PP and NP phrases.
Both tasks involve considerable compression, but
the proportions of the rewrite operations involved in-
dicate differences in style between them. Compared

2See http://edition.cnn.com/.
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Label Prop’n Proportion for Label
of set Unmod Del Ins Re-ord

PP 40% 5% 93% 12% 6%
NP 31% 5% 87% 14% 7%
S 20% 1% 96% 15% 7%
SBAR 6% 4% 95% 28% 6%

(a) Headlines

Label Prop’n Proportion for Label
of set Unmod Del Ins Re-ord

PP 30% 17% 81% 7% 4%
NP 29% 17% 76% 11% 3%
S 27% 10% 84% 16% 6%
SBAR 10% 13% 80% 16% 3%

(b) Captions

Table 1: QG rules generated for (a) headline and
(b) caption tasks (top 4 labels shown). The columns
show label of root node, proportion of the full rule-
set, then the proportions of rules for this label in-
volving no modification, deletions, insertions and
re-orderings.

to headlines, captions involve slightly less deletion
and a higher proportion of the phrases are unmod-
ified. The QG learning mechanism also discovers
more alignments between source sentences and cap-
tions than it does for the headline task.

Title generation For the headline generation task,
we evaluated our model on a testing partition from
the DUC-04 corpus (75 documents, Task 1). For the
caption task, we used the test set (240 documents)
described in Feng and Lapata (2010a). Their corpus
was downloaded from the BBC news site and con-
tains documents, images, and their captions.3

We created and solved an ILP for each docu-
ment. For each phrase, features were extracted and
salience scores calculated from the feature weights
determined through SVM training. The distance
from the SVM hyperplane represents the salience
score. Parameters for the ILP models for the two
tasks are shown in Table 2. The λ parameter was
set to 0.2 to ensure that paraphrases were included;
other parameters were chosen to capture the prop-

3Available from http://homepages.inf.ed.ac.uk/
s0677528/data.html.

Parameter Headlines Captions
Min length Lmin 8 8
Max length Lmax 16 20
Min keywords Tmin 0 2
Max sentences NS 5 1
Paraphrase λ 0.2 0.1

Table 2: ILP model parameters for the two tasks.

erties seen in the majority of the training set. Note
the maximum number of sentences allowed to form
a headline is set to 5 as some of the headlines in the
DUC dataset contained multiple sentences.

To solve the ILP model we used the ZIB Opti-
mization Suite software (Achterberg, 2007; Koch,
2004). The solution was converted into a sentence
by removing nodes not chosen from the tree rep-
resentation, then concatenating the remaining leaf
nodes in order.

Model Comparison For the headline task, we
compared our model to the DUC-04 standard base-
line of the first sentence, truncated at the first word
boundary after 75 characters; and the output of the
Topiary system (Zajic et al., 2004), which came top
in almost all measures in the DUC-04 evaluation.
In order to generate a headline, Topiary first com-
presses the lead sentence using linguistically moti-
vated heuristics and then enhances it with topic key-
words. For the captions, we compared our model
against the highest-scoring document sentence ac-
cording to the SVM and against the probabilistic
model presented in Feng and Lapata (2010a). The
latter estimates the probability of a phrase appear-
ing in the caption given the same phrase appearing
in the corresponding document and uses a language
model to select among many different surface real-
izations. The language model is adapted with prob-
abilities from an image annotation model (Feng and
Lapata, 2010b).

Evaluation We evaluated the quality of the head-
lines using ROUGE (Lin and Hovy, 2003). The
DUC-04 dataset provides four reference head-
lines per document. We report unigram overlap
(ROUGE-1) and bigram overlap (ROUGE-2) as a
means of assessing informativeness, and the longest
common subsequence (ROUGE-L) as a means of as-
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sessing fluency. Original DUC-04 ROUGE parame-
ters were used. We also use ROUGE to evaluate the
automatic captions with the original BBC captions
as reference.

In addition, we evaluated the generated headlines
by eliciting human judgments. Participants were
presented with a news article and its correspond-
ing headline and were asked to rate the latter along
two dimensions: informativeness (does the headline
capture the article’s most important information?),
and grammaticality (is it fluent and easy to under-
stand?). The subjects used a seven point rating scale;
an ideal system would receive high numbers for
both measures. We randomly selected twelve docu-
ments from the test set and generated headlines with
our model. We also included the output of Topiary
and the human written DUC-04 headlines as a gold
standard. We thus obtained ratings for 48 (12 × 4)
document-highlights pairs.

We elicited judgments for the generated captions
in a similar fashion. Participants were presented
with a document, an associated image, and its cap-
tion, and asked to rate the latter (using a 1–7 rating
scale) with respect to grammaticality and informa-
tiveness (does it describe succinctly the content of
the image and document?). Again, we randomly se-
lected 12 document-image pairs from the test set and
generated captions for them using the highest scor-
ing document sentence according to the SVM, our
ILP-based model, and the output of Feng and Lap-
ata’s (2010a) system. We also included the original
BBC captions as an upper bound. Both studies were
conducted over the Internet using WebExp (Keller
et al., 2009). 80 unpaid volunteers rated the head-
lines and 65 the captions, all self reported native En-
glish speakers.

5 Results

We report results on the headline generation task in
Figure 3, with ROUGE-1, ROUGE-2 and ROUGE-
L. In ROUGE-1 and ROUGE-L measures, the best
scores are obtained by the Topiary system, slightly
better than the lead sentence baseline, while for
ROUGE-2 the ordering is reversed. Our model does
not outperform the lead sentence or Topiary. Note
that the 95% confidence level intervals reported by
ROUGE are so large that no results are statistically

Lead The chances for a new, strictly secular government in
Turkey faded Wednesday.

Topiary TURKEY YILMAZ PARTY ECEVIT chances strictly
secular government faded.

ILP Bulent Ecevit needs Turkey’s two-center right parties to
hammer together secular coalition.

DUC Chance for new, secular, Turkish government fades; what
will Ecevit do now?

Source Premier-designate Bulent Ecevit needs Turkey’s two-
center right parties to hammer together a secular coali-
tion, but Tansu Ciller, the ex-premier who commands 99
votes in parliament, rebuffed him Wednesday.

Lead U.S. President Bill Clinton won South Korea’s support
Saturday for confronting.

Topiary NUCLEAR U.S. President Bill Clinton won for con-
fronting North Korea.

ILP North Koreans have denied construction site has nuclear
purpose.

DUC U.S. warns N. Korea not to waste chance for peace over
alleged nuclear site.

Source The North Koreans have denied the underground con-
struction site has any nuclear purpose, and it has de-
manded a dlrs 300 million payment for proving that.

Lead By only one vote, the center-left prime minister of Italy,
Romano Prodi.

Topiary PRODI By only one vote center left prime minister and
toppled from power.

ILP Political system changes, Italy is condemned to political
instability.

DUC Prodi loses confidence vote; will stay as caretaker until
new government.

Source “Unless the Italian political system changes, Italy is con-
demned to political instability,” said Sergio Romano, a
former diplomat and political science professor.

Table 3: Example headline output.

F&L The former paramedic training officer stood at the next
general election.

ILP The majority are now believing that war in Iraq was
wrong.

BBC L/Cpl Thomas Keys was shot 18 times, his inquest heard.
Source The majority of people in this country are now believing

that the war in Iraq was wrong, and I do believe we will
get support.

F&L The state government of Victoria take as those tests for
cannabis.

ILP Police in Victoria have begun randomly testing drivers for
the drug ecstasy.

BBC Police say drugs like Ecstasy can be as dangerous as al-
cohol for drivers.

Source Police in the Australian state of Victoria have begun ran-
domly testing drivers for the drug ecstasy.

F&L The US Government Professor Holdren called for more
than a year.

ILP “We are experiencing dangerous human disruption of
global climate,” Professor Holdren said.

BBC Sea levels could rise by 4m over the coming century, he
warns.

Source “We are experiencing dangerous human disruption of the
global climate and we’re going to experience more,” Pro-
fessor Holdren said.

Table 4: Example caption output.
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Figure 3: ROUGE-1, ROUGE-2 and ROUGE-L re-
sults on the DUC-04 headlines for our ILP model,
the lead sentence baseline and Topiary.
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Figure 4: ROUGE-1, ROUGE-2 and ROUGE-L re-
sults on the BBC captions for our ILP model, the
sentence baseline chosen by the SVM, and Feng and
Lapata’s (2010) model.

significant. We also investigated using an ILP model
with just the QG rules or just dependency label in-
formation (see constraint (1e) in Section 3.3). Both
settings gave less compressed output, and the result-
ing ROUGE scores were lower on all measures. The
ROUGE results for the caption generation task fol-
low a similar pattern (see Figure 4). Our model is
slightly better than the best sentence baseline but
performs worse than Feng and Lapata (2010a). Ta-
bles 3 and 4 show example output for the ILP model
and the baselines on the headline and caption tasks
respectively. In the tables, Source refers to the sen-
tence chosen by the ILP, but before any paraphrasing
is applied. We can see that deletion rules dominate,
and a more compressive style of paraphrasing has
been learned for the headline task.

The results of our human evaluation study for
the DUC-04 headlines are summarized in Table 5.
Means differences were compared using a Post-hoc

Model Grammaticality Importance
Lead-1 4.95 3.30
Topiary 3.03 3.43
ILP 5.36 4.94
Reference 5.12 5.17

Table 5: Average human ratings of DUC-04 head-
lines, for our ILP model, the lead sentence baseline,
the output of Topiary and the human-written refer-
ence.

Model Grammaticality Importance
SVM 5.24 5.01
F&L 4.42 4.74
ILP 5.49 5.25
Reference 5.61 5.18

Table 6: Average human ratings of captions, for
our ILP model, the sentence baseline chosen by the
SVM, Feng and Lapata’s (2010) model and the ref-
erence BBC caption.

Tukey test. The headlines created by our model
were considered significantly more important and
more grammatical than those of the Topiary sys-
tem (α < 0.01), despite the better overlap of Topi-
ary with the reference headlines as indicated in the
Rouge results above. Compared to the lead sentence
of the article (the DUC-04 baseline), our model was
also rated significantly higher in terms of importance
(α < 0.01) but not grammaticality.

Table 6 summarizes the results of our second
judgment elicitation study. The captions generated
by our model are significantly more grammatical
than those of Feng and Lapata (2010a) (α < 0.01).
The SVM, ILP model and reference captions do not
differ significantly in terms of grammaticality. In
terms of importance, the ILP model is significantly
better than the SVM (α < 0.01) and Feng and Lap-
ata (α < 0.01) and comparable to the reference.

The human ratings are more favorable to our
model than ROUGE for both tasks. There are two
reasons for this. Firstly, the model is not bi-
ased towards selecting the lead sentence as a head-
line/caption and is disadvantaged in ROUGE evalua-
tions as professional abstractors often reuse the lead
or parts of it to create a title. Secondly, the model
often generates an appropriate title that is lexically
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distinct from the reference even though it expresses
similar meaning.

6 Conclusions

In this paper we proposed a joint content se-
lection and surface realization model for single-
document summarization. The model operates over
a syntax-rich representation of the source docu-
ment and learns which phrases should be in the
summary. Content selection preferences are cou-
pled with a quasi-synchronous grammar whose rules
encode surface realization preferences (e.g., para-
phrases and compressions). Both types of prefer-
ences are optimized simultaneously in an integer lin-
ear program subject to grammaticality, length and
coverage constraints. Importantly, the QG allows
the model to adapt to the writing and stylistic con-
ventions of different tasks. The results of our hu-
man studies show that our system creates grammati-
cal and informative summaries whilst outperforming
several competitive baselines.

The model itself is relatively simple and achieves
good performance without any task-specific modifi-
cation. One potential stumbling block may be the
availability of parallel data for acquiring the QG.
The Internet provides a large repository of news
documents with headlines, images and captions. In
some cases news articles are even accompanied with
“story highlights” which could be used as training
data for longer summaries.4 For other domains ob-
taining such data may be more difficult. However,
our experiments have shown that relatively small
parallel corpora (in the range of 200–500 pairs) suf-
fice to learn many of the writing conventions for a
given task.

In the future, we plan to explore how to inte-
grate more sophisticated QG rules in the generation
process. Currently we consider deletions, reorder-
ings and insertions. Ideally, we would also like to
model arbitrary substitutions between words but also
larger constituents (e.g., subclauses, sentence aggre-
gation). Beyond summarization, we would also like
to apply our model to other generation tasks, such as
paraphrasing and text simplification.

4On-line CNN news articles are prefaced by story
highlights—three or four short sentences that are written by hu-
mans and give a brief overview of the article.
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Abstract

We employ statistical methods to analyze,
generate, and translate rhythmic poetry. We
first apply unsupervised learning to reveal
word-stress patterns in a corpus of raw poetry.
We then use these word-stress patterns, in ad-
dition to rhyme and discourse models, to gen-
erate English love poetry. Finally, we trans-
late Italian poetry into English, choosing tar-
get realizations that conform to desired rhyth-
mic patterns.

1 Introduction

When it comes to generating creative language (po-
ems, stories, jokes, etc), people have massive advan-
tages over machines:

• people can construct grammatical, sensible ut-
terances,

• people have a wide range of topics to talk
about, and

• people experience joy and heart-break.

On the other hand, machines have some minor ad-
vantages:

• a machine can easily come up with a five-
syllable word that starts withp and rhymes
with early, and

• a machine can analyze very large online text
repositories of human works and maintain
these in memory.

In this paper we concentrate on statistical methods
applied to the analysis, generation, and translation
of poetry. By analysis, we mean extracting patterns

from existing online poetry corpora. We use these
patterns to generate new poems and translate exist-
ing poems. When translating, we render target text
in a rhythmic scheme determined by the user.

Poetry generation has received research attention
in the past (Manurung et al., 2000; Gervas, 2001;
Diaz-Agudo et al., 2002; Manurung, 2003; Wong
and Chun, 2008; Tosa et al., 2008; Jiang and Zhou,
2008; Netzer et al., 2009), including the use of
statistical methods, although there is a long way
to go. One difficulty has been the evaluation of
machine-generated poetry—this continues to be a
difficulty in the present paper. Less research effort
has been spent on poetry analysis and poetry trans-
lation, which we tackle here.

2 Terms

Meter refers to the rhythmic beat of poetic text when
read aloud. Iambic is a common meter that sounds
like da-DUM da-DUM da-DUM, etc. Eachda-
DUM is called a foot. Anapest meter sounds like
da-da-DUM da-da-DUM da-da-DUM, etc.

Trimeter refers to a line with three feet, pentame-
ter to a line with five feet, etc. Examples include:

• a VE-ry NAS-ty CUT (iambic trimeter)

• shall I com-PARE thee TO a SUM-mer’s
DAY? (iambic pentameter)

• twas the NIGHT before CHRIST-mas and
ALL through the HOUSE (anapest tetrame-
ter)

Classical English sonnets are poems most often
composed of 14 lines of iambic pentameter.
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3 Analysis

We focus on English rhythmic poetry. We define
the following analysis task:given poetic lines in
a known meter (such as sonnets written in iambic
pentameter), assign a syllable-stress pattern to each
word in each line. Making such decisions is part of
the larger task of reading poetry aloud. Later in the
paper, we will employ the concrete statistical tables
from analysis to the problems of poetry generation
and translation.

We create a test set consisting of 70 lines from
Shakespeare’s sonnets, which are written in iambic
pentameter. Here is an input line annotated with
gold output.
shall i compare thee to a summers day
| | /\ | | | /\ |
S S* S S* S S* S S* S S*

S refers to an unstressed syllable, and S* refers to
a stressed syllable. One of the authors created gold-
standard output by listening to Internet recordings
of the 70 lines and marking words according to the
speaker’s stress. The task evaluation consists ofper-
word accuracy (how many words are assigned the
correct stress pattern) andper-line accuracy (how
many lines have all words analyzed perfectly).

This would seem simple enough, if we are armed
with something like the CMU pronunciation dictio-
nary: we look up syllable-stress patterns for each
word token and lay these down on top of the se-
quence S S* S S* S S* S S* S S*. However, there
are difficulties:

• The test data contains many words that are un-
known to the CMU dictionary.

• Even when all words are known, many lines
do not seem to contain 10 syllables. Some
lines contain eleven words.

• Spoken recordings include stress reversals,
such as poin-TING instead of POIN-ting.

• Archaic pronunciations abound, such as
PROV-ed (two syllables) instead of PROVED
(one syllable).

• In usage, syllables are often subtracted (PRIS-
ner instead of PRIS-o-ner), added (SOV-e-
reign instead of SOV-reign), or merged.

• Some one-syllable words are mostly stressed,
and others mostly unstressed, but the dictio-

e→ P(m|e) → m

Figure 1: Finite-state transducer (FST) for mapping se-
quences of English words (e) onto sequences of S* and S
symbols (m), representing stressed and unstressed sylla-
bles.

nary provides no guidance. When we gener-
ate rhythmic text, it is important to use one-
syllable words properly. For example, we
would be happy for an iambic generator to
outputbig thoughts are not quite here, but not
quite big thoughts are not here.

Therefore, we take a different tack and apply un-
supervised learning to acquire word-stress patterns
directly from raw poetry, without relying on a dic-
tionary. This method easily ports to other languages,
where dictionaries may not exist and where mor-
phology is a severe complication. It may also be
used for dead languages.

For raw data, we start with all Shakespeare son-
nets (17,134 word tokens). Because our learning is
unsupervised, we do not mind including our 70-line
test set in this data (open testing).

Figures 1 and 2 show a finite-state transducer
(FST) that converts sequences of English words to
sequences of S* and S symbols. The FST’s transi-
tions initially map each English word onto all out-
put sub-sequences of lengths 1 to 4 (i.e., S, S*, S-S,
S-S*, S*-S, S*-S*, S-S-S, . . . ) plus the sequences
S-S*-S-S*-S and S*-S-S*-S-S*. Initial probabilities
are set to 1/32. The FST’s main loop allows it to
process a sequence of word tokens. If the same word
appears twice in a sequence, then it may receive two
different pronunciations, since the mapping is prob-
abilistic. However, a token’s syllable/stress pattern
is chosen independently of other tokens in the se-
quence; we look at relaxing this assumption later.

We next use finite-state EM training1 to train the
machine on input/output sequences such as these:
from fairest creatures we desire increase
S S* S S* S S* S S* S S*

but thou contracted to thine own bright eyes
S S* S S* S S* S S* S S*

1All operations in this paper are carried out with the generic
finite-state toolkit Carmel (Graehl, 1997). For example, the
train-cascade command uses EM to learn probabilities in an ar-
bitrary FST cascade from end-to-end input/output string pairs.
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Figure 2: An efficient FST implementing P(m|e). This machine maps sequences of English words onto sequences of
S* and S symbols, representing stressed and unstressed syllables. Initially every vocabulary word has 32 transitions,
each with probability 1/32. After EM training, far fewer transitions remain.
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Figure 3: An FST that accepts any of four input meters
and deterministically normalizes its input to strict iambic
pentameter. We call this FSTnorm.

e→ P(m|e) → m→ norm → m

Figure 4: FST cascade that encodes a loose interpretation
of iambic pentameter. Thenorm FST accepts any of four
near-iambic-pentameter sequences and normalizes them
into strict iambic pentameter.

Note that the output sequences are all the same,
representing our belief that each line should be read
as iambic pentameter.2 After we train the FST,
we can use Viterbi decoding to recover the highest-
probability alignments, e.g.:
from fairest creatures we desire increase
| | /| \ | /\ /\
S S* S S* S S* S S* S S*

but thou contracted to thine own bright eyes
| | /| \ | | | | |
S S* S S* S S* S S* S S*

Note that the first example contains an error—the
wordsfairest andcreatures should each be read with
two syllables. There are many such errors. We next
improve the system in two ways: more data and bet-
ter modeling.

First, we augment the Shakespeare sonnets with
data from the websitesonnets.org, increasing the
number of word tokens from 17,134 to 235,463. The
sonnets.org data is noisier, because it contains some
non-iambic-pentameter poetry, but overall we find
that alignments improve, e.g.:
from fairest creatures we desire increase
| /\ /\ | /\ /\
S S* S S* S S* S S* S S*

Second, we loosen our model. When we listen to
recordings, we discover that not all lines are read S
S* S S* S S* S S* S S*. Indeed, some lines in our
data contain eleven words—these are unexplainable
by the EM training system. We also observe that

2We can augment the data with lines of poetry written in
meters other than iambic pentameter, so long as we supply the
desired output pattern for each input line.

Training Training Test token Test line
data tokens accuracy accuracy
Shakespeare 17,134 82.3% 55.7%
sonnets.org 235,463 94.2% 81.4%

Figure 5: Analysis task accuracy.

poets often use the wordmother (S* S) at the begin-
nings and ends of lines, where it theoretically should
not appear.

Two well-known variations explain these facts.
One is optionalinversion of the first foot (S S*
→ S* S). Second is the optional addition of an
eleventh unstressed syllable (thefeminine ending).
These variations yield four possible syllable-stress
sequences:

S S* S S* S S* S S* S S*
S* S S S* S S* S S* S S*
S S* S S* S S* S S* S S* S
S* S S S* S S* S S* S S* S

We want to offer EM the freedom to analyze lines
into any of these four variations. We therefore con-
struct a second FST (Figure 3),norm, which maps
all four sequences onto the canonical pattern S S*
S S* S S* S S* S S*. We then arrange both FSTs
in a cascade (Figure 4), and we train the whole
cascade on the same input/output sequences as be-
fore. Becausenorm has no trainable parameters, we
wind up training only the lexical mapping parame-
ters. Viterbi decoding through the two-step cascade
now reveals EM’s proposed internal meter analysis
as well as token mappings, e.g.:

to be or not to be that is the question
| | | | | | | | | /\
S S* S S* S S* S S* S S* S
| | | | | | | | | |
S S* S S* S S* S S* S S*

Figure 5 shows accuracy results on the 70-line test
corpus mentioned at the beginning of this section.
Over 94% of word tokens are assigned a syllable-
stress pattern that matches the pattern transcribed
from audio. Over 81% of whole lines are also
scanned correctly. The upper limit for whole-line
scanning under our constraints is 88.6%, because
11.4% of gold outputs do not match any of the four
patterns we allow.

We further obtain a probabilistic table of word
mappings that we can use for generation and trans-
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P(S* S S* | altitude) = 1.00

P(S* S | creatures) = 1.00

P(S* S | pointed) = 0.95
P(S S* | pointed) = 0.05

P(S* S | prisoner) = 0.74
P(S* S S* | prisoner) = 0.26

P(S* S | mother) = 0.95
P(S* | mother) = 0.03
P(S S* | mother) = 0.02

Figure 6: Sample learned mappings between words and
syllable-stress patterns.

word P(S* | word) P(S| word)
a 0.04 0.96
the 0.06 0.94
their 0.09 0.91
mens 0.10 0.90
thy 0.10 0.90
be 0.48 0.52
me 0.49 0.51
quick 0.50 0.50
split 0.50 0.50
just 0.51 0.49
food 0.90 0.10
near 0.90 0.10
raised 0.91 0.09
dog 0.93 0.07
thought 0.95 0.05

Figure 7: Sample mappings for one-syllable words.

lation tasks. Figure 6 shows a portion of this table.
Note that P(S S*| mother) has a very small proba-
bility of 0.02. We would incorrectly learn a much
higher value if we did not loosen the iambic pen-
tameter model, as manymother tokens occur line-
initial and line-final.

Figure 7 shows which one-syllable words are
more often stressed (or unstressed) in iambic pen-
tameter poetry. Function words and possessives tend
to be unstressed, while content words tend to be
stressed, though many words are used both ways.
This useful information is not available in typical
pronunciation dictionaries.

Alignment errors still occur, especially in noisy

P(m) → m→ P(e|m) → e→ P(e) → e

Figure 8: Finite-state cascade for poetry generation.

portions of the data that are not actually written in
iambic pentameter, but also in clean portions, e.g.:

the perfect ceremony of loves rite
| /\ /|\ | | /\
S S* S S* S S* S S* S S*

The wordceremony only occurs this once in the
data, so it is willing to accept any stress pattern.
While rite is correctly analyzed elsewhere as a one-
syllable word,loves prefers S*, and this overwhelms
the one-syllable preference forrite. We can blame
our tokenizer for this, as it conflatesloves andlove’s,
despite the fact that these words have different stress
probabilities.

4 Generation

Figure 8 shows our concept of generation as a cas-
cade of weighted FSTs.

P(m) is a user-supplied model of desired
meters—normally it deterministically generates a
single string of S* and S symbols. (The user also
supplies a rhyme scheme—see below).

P(e|m) is the reverse of Section 3’s P(m|e), be-
ing a model of word selection. Its generative story
is: (1) probabilistically selectn tokens (n = 1 to 5)
from the input, (2) probabilistically select a wordw
that realizes thatn-token sequence, and (3) recurse
until the input is consumed. Instead of asking how
a given word is likely to be pronounced (e.g., S or
S*), we now ask how a given stress-pattern (e.g., S
or S*) is likely to be realized. This model is trained
with the same method described in Section 3 and is
augmented with the CMU pronunciation dictionary.

Finally, P(e) is a word-trigram model built from a
10,000-line corpus of 105 English love poems.

We select the first line of our poem from the FST
cascade’s 100,000-best list, or by hand. To gener-
ate each subsequent line, we modify the cascade and
run it again. The first modification is to incorporate
a discourse model. From our poetry corpus, we esti-
mate a word’s unigram probability given the words
on the previous line, via IBM Model 1 (Brown et
al., 1993). We modify P(e) by interpolating in these
probabilities. Second, we check if any previous line
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The women of the night
Again and all the way
Like a mouse in the white
Not the heart of the day.

- - -
Of the bed to trust me
Around her twists the string
But i will not tell thee
Fire changes everything.

- - -
A son of the right hand confines
His uncle could have broken in
Towards the high bank and the pines
Upon the eyes and i have been

- - -
Into one of her hundred year old
Or the house in a house in a cold
The first time she met him
Like a mouse in the dim
For me to the moon and when i told

- - -
Into one of them some years before
His own man or the house in a more
The moon and when the day
Into one of the way
With the breath from the first time

she swore

Figure 9: Sample poems generated with a weighted FST
cascade.

w1, w2, ...wn needs to be rhymed with, according to
the user-supplied scheme. If so, we build an addi-
tional FST that accepts only strings whose final word
rhymes withwn. This is a reasonable approach,
though it will not, for example, rhyme...tar me with
...army. We say two non-identical words rhyme if
their phoneme strings share a common suffix that in-
cludes the last stressed vowel.

Figure 9 shows several poems that we automati-
cally generate with this scheme.

5 Translation

Automatically generated poetry can sound good
when read aloud, but it often has a “nonsense” feel to
it. According to (Gervas, 2010), creative-language
researchers interested in realization and surface lan-
guage statistics (“how to say”) have tended to grav-
itate to poetry generation, while researchers inter-
ested in characters, goals, and story-line (“what to
say”) have tended to gravitate to prose story genera-
tion.

Translation provides one way to tie things to-

i → P(e|i) → e→ P(m|e) → m → P(m) → m

Figure 10: Finite-state cascade for poetry translation.

gether. The source language provides the input
(“what to say”), and the target language can be
shaped to desired specifications (“how to say”). For
example, we may want to translate Italian sonnets
into fluent English iambic pentameter. This is cer-
tainly a difficult task for people, and one which is
generally assumed to be impossible for computers.

Here we investigate translating Dante’sDivine
Comedy (DC) from Italian into English by machine.
The poem begins:

nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la via diritta era smarrita.

DC is a long sequence of such three-line stan-
zas (tercets). The meter in Italian is hendecasyl-
labic, which has ten syllables and ensures three
beats. Dante’s Italian rhyme scheme is:ABA, BCB,
CDC, etc, meaning that lines 2, 4, and 6 rhyme with
each other; lines 5, 7, and 9 rhyme with each other,
and so forth. There is also internal rhyme (e.g.,
diritta/smarrita).

Because DC has been translated many times
into English, we have examples of good outputs.
Some translations target iambic pentameter, but even
the most respected translations give up on rhyme,
since English is much harder to rhyme than Italian.
Longfellow’s translation begins:

midway upon the journey of our life
i found myself within a forest dark
for the straightforward pathway had

been lost.

We arrange the translation problem as a cascade
of WFSTs, as shown in Figure 10. We call our Ital-
ian input i. In lieu of the first WFST, we use the
statistical phrase-based machine translation (PBMT)
system Moses (Koehn et al., 2007), which generates
a target-language lattice with paths scored by P(e|i).
We send this lattice through the same P(m|e) device
we trained in Section 3. Finally, we filter the result-
ing syllable sequences with a strict, single-path, de-
terministic iambic pentameter acceptor, P(m).3 Our

3It is also possible to use a looser iambic P(m) model, as
described in Section 3.
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Parallel Italian/English Data
Collection Word count (English)
DC-train 400,670
Il Fiore 25,995
Detto Damare 2,483
Egloghe 3,120
Misc. 557
Europarl 32,780,960

English Language Model Data
Collection Word count (English)
DC-train 400,670
poemhunter.com 686,714
poetry.eserver.org
poetrymountain.com
poetryarchive.org 58,739
everypoet.com 574,322
sonnets.org 166,465
Europarl 32,780,960

Tune and Blind Test Data (4 reference)
Collection Word count (Italian)
DC-tune 7,674
DC-test 2,861

Figure 11: Data for Italian/English statistical translation.

finite-state toolkit’s top-k paths represent the trans-
lations with the highest product of scores P(e|i) ·
P(m|e) · P(m).

In general, the P(e|i) and P(m|e) models fight
each other in ranking candidate outputs. In exper-
iments, we find that the P(e|i) preference is some-
times so strong that the P(m|e) model is pushed
into using a low-probability word-to-stress mapping.
This creates output lines that do not scan easily. We
solve this problem by assigning a higher weight to
the P(m|e) model.4

Figure 11 shows the data we used to train the
PBMT system. The vast majority of parallel Ital-
ian/English poetry is DC itself, for which we have
four English translations. We break DC up into DC-
train, DC-tune, and DC-test. We augment our target
language model with English poetry collected from
many sources. We also add Europarl data, which

4We set this weight manually to 3.0, i.e., we raise all prob-
abilities in the P(m|e) model to the power of 3.0. Setting the
weight too high results in lines that scan very well, but whose
translation quality is low.

Original:

nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la via diritta era smarrita.
Phrase-based translation (PBMT):

midway in the journey of our life
i found myself within a forest dark
for the straight way was lost.
PBMT + meter model:

midway upon the journey of our life
i found myself within a forest dark
for the straightforward pathway had been lost.

Figure 12: Automatic translation of lines from Dante’s
Divine Comedy. In this test-on-train scenario, the ma-
chine reproduces lines from human translations it has
seen.

is out of domain, but which reduces the unknown
word-token rate in DC-test from 9% to 6%, and the
unknown word-type rate from 22% to 13%.

We first experiment in a test-on-train scenario,
where we translate parts of DC that are in our train-
ing set. This is a normal scenario in human poetry
translation, where people have access to previous
translations.

Figure 12 shows how we translate the first lines
of DC, first using only PBMT, then using the full
system. When we use the full system, we not only
get an output string, but also the system’s intended
scan, e.g.:

midway upon the journey of our life
/\ /\ | /\ | | |

S S* S S* S S* S S* S S*

The machine’s translation here is the same as
Longfellow’s, which is in the training data. In other
cases, we observe the machine combining existing
translations, e.g.:
i: bedi la bestia per cu io mi volsi
I5: behold the beast that made me turn aside

H1: BEHOLD THE BEAST for which i have turned back
H2: you see the beast THAT MADE ME TURN ASIDE
H3: see the beast that forced me to turn back
H4: look at the beast that drove me to turn back

I5 refs to the machine’s iambic pentameter transla-
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tion, while H1-4 refer to human translations. The
machine also creates new translations:
i: diro‘ de laltre cose chi vho scorte
I5: i shall explain the other things i saw

H1: speak will i of the other things i saw there
H2: ill also tell THE OTHER THINGS I SAW
H3: i will recount the other things i saw
H4: i here will tell the other things i saw

We can further change the target meter to any-
thing we desire. To obtain iambic tetrameter (4-beat)
translations, we delete the last two transitions of the
P(m) model. We then get:
I4: in our life the journey way

i found myself deep on dark wood
that lost straightforward pathway had.

ah how to say the what is hard
this forest savage rough and stern
the very thought renews the fear.

Translations and scans are uneven, but we have
significant flexibility. We can even request transla-
tions that avoid the English letter A, by adding a fil-
ter to the end of the FST cascade, obtaining:
I5: in midst upon the journey of our life

i found myself within the wood obscure
<fail>

To steer clear of the adjectivedark in the second
line, the system switches fromforest to wood, so
obtain a proper scan. The third line fails because
all paths through the translation lattice contain an A
somewhere.

Translating blind-test data proves to be more dif-
ficult. We hold out Canto XXXI of DC’s Paradiso
section for testing. Figure 13 shows a portion of
the translation results. The MT system handles un-
known Italian words by passing them through to the
output. The P(m|e) meter model cannot process
those words, accounting for the I5 failure rate.

Here, we get a first look at statistical MT trans-
lating poetry into rhythmic structures—as with all
MT, there are successes and problems, and certainly
more to do.

6 Future Work

We plan to release all our of data in useful, processed
form. Below we list directions for future research.
In general, we see many interesting paths to pursue.

Analysis. Proper use of one-syllable words re-
mains tricky. Lines coming out of generation

Original:

in forma dunque di candida rosa
mi si mostrava la milizia santa
che nel suo sangue cristo fece sposa

ma laltra che volando vede e canta
la gloria di colui che la nnamora
e la bonta‘ che la fece cotanta
Human translation:

in fashion then as of a snow white rose
displayed itself to me the saintly host
whom christ in his own blood had made his bride

but the other host that flying sees and sings
the glory of him who doth enamour it
and the goodness that created it so noble
Phrase-based translation (PBMT):

in the form so rose candida
i now was shown the militia holy
that in his blood christ did bride

but the other that flying sees and sings
the glory of him that the nnamora
and the goodness that the made cotanta
PBMT + meter model:

<fail>
i now was shown the holy soldiery
that in his blood he married jesus christ

but flying sees and sings the other which
<fail>
<fail>

Figure 13: Automatic translation of blind-test data from
Dante’sDivine Comedy.

531



and translation do not always scan naturally when
read aloud by a person. We trace such errors to
the fact that our lexical probabilities are context-
independent. For example, we have:

P(S | off) = 0.39
P(S* | off) = 0.61

When we look at Viterbi alignments from the
analysis task, we see that whenoff is preceded by
the wordfar, the probabilities reverse dramatically:

P(S | off, after far) = 0.95
P(S* | off, after far) = 0.05

Similarly, the probability of stressingat is 40%
in general, but this increases to 91% when the next
word is the. Developing a model with context-
dependent probabilities may be useful not only for
improving generation and translation, but also for
improving poetry analysis itself, as measured by an-
laysis task accuracy.

Other potential improvements include the use of
prior knowledge, for example, taking word length
and spelling into account, and exploiting incomplete
pronunciation dictionary information.

Generation. Evaluation is a big open problem for
automatic poetry generation—even evaluating hu-
man poetry is difficult. Previous suggestions for au-
tomatic generation include acceptance for publica-
tion in some established venue, or passing the Tur-
ing test, i.e., confounding judges attempts to distin-
guish machine poetry from human poetry. The Tur-
ing test is currently difficult to pass with medium-
sized Western poetry.

Translation. The advantage of translation over
generation is that the source text provides a coherent
sequence of propositions and images, allowing the
machine to focus on “how to say” instead of “what
to say.” However, translation output lattices offer
limited material to work with, and as we dig deeper
into those lattices, we encounter increasingly disflu-
ent ways to string together renderings of the source
substrings.

An appealing future direction is to combine trans-
lation and generation. Rather than translating
the source text, a program may instead use the
source text for inspiration. Such a hybrid trans-
lation/generation program would not be bound to
translate every word, but rather it could more freely
combine lexical material from its translation tables

with other grammatical and lexical resources. In-
terestingly, human translators sometimes work this
way when they translate poetry—many excellent
works have been produced by people with very little
knowledge of the source language.

Paraphrasing. Recently, e→f translation tables
have been composed with f→e tables, to make
e→e tables that can paraphrase English into English
(Bannard and Callison-Burch, 2005). This makes it
possible to consider statistical translation of English
prose into English poetry.
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Abstract

We address the modeling, parameter estima-
tion and search challenges that arise from the
introduction of reordering models that capture
non-local reordering in alignment modeling.
In particular, we introduce several reordering
models that utilize (pairs of) function words
as contexts for alignment reordering. To ad-
dress the parameter estimation challenge, we
propose to estimate these reordering models
from a relatively small amount of manually-
aligned corpora. To address the search chal-
lenge, we devise an iterative local search al-
gorithm that stochastically explores reorder-
ing possibilities. By capturing non-local re-
ordering phenomena, our proposed alignment
model bears a closer resemblance to state-
of-the-art translation model. Empirical re-
sults show significant improvements in align-
ment quality as well as in translation perfor-
mance over baselines in a large-scale Chinese-
English translation task.

1 Introduction

In many Statistical Machine Translation (SMT) sys-
tems, alignment represents an important piece of in-
formation, from which translation rules are learnt.
However, while translation models have evolved
from word-based to syntax-based modeling, thede
factoalignment model remains word-based (Brown
et al., 1993; Vogel et al., 1996). This gap be-
tween alignment modeling and translation modeling
is clearly undesirable as it often generates tensions
that would prevent the extraction of many useful
translation rules (DeNero and Klein, 2007). Recent
work, e.g. by Blunsom et al. (2009) and Haghihi et

al. (2009) just to name a few, show that alignment
models that bear closer resemblance to state-of-the-
art translation model consistently yields not only a
better alignment quality but also an improved trans-
lation quality.

In this paper, we follow this recent effort to nar-
row the gap between alignment model and trans-
lation model to improve translation quality. More
concretely, we focus on the reordering component
since we observe that the treatment of reordering re-
mains significantly different when comparing align-
ment versus translation: the reordering component
in state-of-the-art translation models has focused
on long-distance reordering, but its counterpart in
alignment models has remained focused on local
reordering, typically modeling distortion based en-
tirely on positional information. This leaves most
alignment decisions to association-based scores.

Why is employing stronger reordering models
more challenging in alignment than in translation?
One answer can be attributed to the fact that align-
ment points are unobserved in parallel text, thus so
are their reorderings. As such, introducing stronger
reordering often further exacerbates the computa-
tional complexity to do inference over the model.
Some recent alignment models appeal to external
linguistic knowledge, mostly by using monolingual
syntactic parses (Cherry and Lin, 2006; Pauls et al.,
2010), which at the same time, provides an approx-
imation of the bilingual syntactic divergences that
drive the reordering. To our knowledge, however,
this approach has been used mainly to constrain re-
ordering possibilities, or to add to the generalization
ability of association-based scores, not to directly
model reordering in the context of alignment.
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In this paper, we introduce a new approach to im-
proving the modeling of reordering in alignment. In-
stead of relying on monolingual parses, we condi-
tion our reordering model on the behavior offunc-
tion words and the phrases that surround them.
Function words are the “syntactic glue” of sen-
tences, and in fact many syntacticians believe that
functional categories, as opposed to substantive cat-
egories like noun and verb, are primarily responsi-
ble for cross-language syntactic variation (Ouhalla,
1991). Our reordering model can be seen as offering
a reasonable approximation to more fully elaborated
bilingual syntactic modeling, and this approxima-
tion is also highly practical, as it demands no exter-
nal knowledge (other than a list of function words)
and avoids the practical issues associated with the
use of monolingual parses, e.g. whether the mono-
lingual parser is robust enough to produce reliable
output for every sentence in training data.

At a glance, our reordering model enumerates
the function words on both source and target sides,
modeling their reordering relative to their neighbor-
ing phrases, their neighboring function words, and
the sentence boundaries. Because the frequency of
function words is high, we find that by predicting the
reordering of function words accurately, the reorder-
ing of the remaining words improves in accuracy as
well. In total, we introduce six sub-models involving
function words, and these serve as features in a log
linear model. We train model weights discrimina-
tively using Minimum Error Rate Training (MERT)
(Och, 2003), optimizing F-measure.

The parameters of our sub-models are estimated
from manually-aligned corpora, leading the reorder-
ing model more directly toward reproducing human
alignments, rather than maximizing the likelihood
of unaligned training data. This use of manual data
for parameter estimation is a reasonable choice be-
cause these models depend on a small, fixed number
of lexical items that occur frequently in language,
hence only small training corpora are required. In
addition, the availability of manually-aligned cor-
pora has been growing steadily.

The remainder of the paper proceeds as follows.
In Section 2, we provide empirical motivation for
our approach. In Section 3, we discuss six sub-
models based on function word relationships and
how their parameters are estimated; these are com-
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Figure 1: An aligned Chinese-English sentence pair.

bined with additional features in Section 4 to pro-
duce a single discriminative alignment model. Sec-
tion 5 describes a simple decoding algorithm to find
the most probable alignment under the combined
model, Section 6 describes the training of our dis-
criminative model and Section 7 presents experi-
mental results for the model using this algorithm.
We wrap up in Sections 8 and 9 with a discussion
of related work and a summary of our conclusions.

2 Empirical Motivation

Fig. 1 shows an example of a Chinese-English sen-
tence pair together with correct alignment points.
Predicting the alignment for this particular Chinese-
English sentence pair is challenging, since the sig-
nificantly different syntactic structures of these two
languages lead to non-monotone reordering. For ex-
ample, an accurate alignment model should account
for the fact that prepositional phrases in Chinese ap-
pear in a different order than in English, as illus-
trated by the movement of the phrase “与北韩/with
North Korea” from the beginning of the Chinese
noun phrase to the end of the corresponding English.

The central question that concerns us here is how
to define and infer regularities that can be useful
to predict alignment reorderings. The approach we
take here is supported by empirical results from a
pilot study, conducted as an inquiry into the idea of
focusing on function words to model alignment re-
ordering, which we briefly describe.

We took a Chinese-English manually-aligned cor-
pus of approximately 21 thousand sentence pairs,
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Figure 2: The all-monotone phrase pairs, indicated as
rectangular areas inbold, that can be extracted from the
Fig. 1 example.

and divided each sentence pair intoall-monotone
phrase pairs. Visually, an all-monotone phrase pair
corresponds to a maximal block in the alignment
matrix for which internal alignment points appear
in monotone order from the top-left corner to the
bottom-right corner. Fig. 2 illustrates seven such
pairs that can be extracted from the example in
Fig. 1. In total, there are 154,517 such phrase pairs
in our manually-aligned corpus.

The alignment configuration internal to all-
monotone phrase pair blocks is, obviously, mono-
tonic, which is a configuration that is effectively
modeled by traditional alignments models. On the
other hand, the reordering between two adjacent
blocks is the focus of our efforts since existing mod-
els are less effective at modeling non-monotonic
alignment configurations. To measure the function
words’ potential to predict non-monotone reorder-
ings, we examined theborderwords where two ad-
jacent blocks meet. In particular, we are interested
in how many adjacent blocks whose border words
are function words.

The results of this pilot study were quite encour-
aging. If we consider only the Chinese side of the
phrase pairs, 88.35% adjacent blocks have function
words as their boundary words. If we consider only
the English side, function words appear at the bor-
ders of 93.91% adjacent blocks. If we consider
both the Chinese and English sides, the percentage
increases to 95.53%. Notice that in Fig. 2, func-

tion words appear at the borders ofall adjacent all-
monotone phrase pairs, if both Chinese and English
sides are considered. Clearly with such high cov-
erage, function words are central in predicting non-
monotone reordering in alignment.

3 Reordering with Function Words

The reordering models we describe follow our previ-
ous work using function word models for translation
(Setiawan et al., 2007; Setiawan et al., 2009). The
core hypothesis in this work is that function words
provide robust clues to the reordering patterns of the
phrases surrounding them. To make this insight use-
ful for alignment, we develop features that score the
alignment configuration of the neighboring phrases
of a function word (which functions as an anchor)
using two kinds of information: 1) the relative order-
ing of the phrases with respect to the function word
anchor; and 2) the span of the phrases. This sec-
tion provides a high level overview of our reordering
model, which attempts to leverage this information.

To facilitate subsequent discussions, we introduce
the notion of monolingual function word phrase
FWi, which consists of the tuple(Yi, Li, Ri), where
Yi is thei-th function word andLi,Ri are its left and
right neighboring phrases, respectively. Note that
this notion of “phrase” is defined only for reorder-
ing purposes in our model, and does not necessar-
ily correspond to a linguistic phrase. We define
such phrases on both sides to cover as many non-
monotone reorderings as possible, as suggested by
the pilot study. To denote the side, we append a sub-
script: FWi,S = (Yi,S , Li,S , Ri,S) refers to a func-
tion word phrase on the source side, andFWi,T =
(Yi,T , Li,T , Ri,T ) to one on the target side. In our
subsequent discussion, we will mainly useFWi,S ,
and we will omit subscriptsS or T if they are clear
from context.

The primary objective of our reordering model
is to predict the projection of monolingual func-
tion word phrases from one language to the
other, inferringbilingual function word phrase pairs
FWi,S→T = (Yi,S→T , Li,S→T , Ri,S→T ), which en-
code the two aforementioned pieces of informa-
tion.1 To infer these phrases, we take a probabilis-

1The subscriptS → T denotes the projection direction from
source to target. The subscript for the other direction isT → S.
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tic approach. For instance, to estimate the spans of
Li,S→T , Ri,S→T , our reordering model assumes that
any span to the left ofYi,S is a possibleLi,S and
any span to the right ofYi,S is a possibleRi,S , de-
ciding which is most probable via features, rather
than committing to particular spans (e.g. as defined
by a monolingual text chunker or parser). We only
enforce one criterion onLi,S→T andRi,S→T : they
have to be themaximalalignment blocks satisfying
the consistent heuristic (Och and Ney, 2004) that end
or start withYi,S→T on the sourceS side respec-
tively.2

To infer these phrases, we decomposeLi,S→T

into (o(Li,S→T ), d(FWi−1,S→T ), b(〈s〉)); sim-
ilarly, Ri,S→T into (o(Ri,S→T ),d(FWi+1,S→T ),
b(〈/s〉) )). Taking the decomposition ofLi,S→T as
a case in point, hereo(Li,S→T ) describes the re-
ordering of the left neighborLi,S→T with respect
to the function wordYi,S→T , while d(FWi−1,S→T )
andb(〈s〉)) probe the span ofLi,S→T , i.e. whether
it goes beyond the preceding function word phrase
pairs FWi−1,S→T and up to the beginning-of-
sentence marker〈s〉 respectively. The same defini-
tion applies to the decomposition ofRi,S→T , where
FWi+1,S→T is the succeeding function word phrase
pair and〈/s〉 is the end-of-sentence marker.

3.1 Six (Sub-)Models

To model o(Li,S→T ), o(Ri,S→T ), i.e. the re-
ordering of the neighboring phrases of a func-
tion word, we employ theorientation model in-
troduced by Setiawan et al. (2007). Formally,
this model takes the form of probability distribution
Pori(o(Li,S→T ), o(Ri,S→T )|Yi,S→T ), which condi-
tions the reordering on the lexical identity of the
function word alignment (but independent of the lex-
ical identity of its neighboring phrases). In particu-
lar, o maps the reordering into one of the following
four orientation values (borrowed from Nagata et al.
(2006)) with respect to the function word: Mono-
tone Adjacent (MA), Monotone Gap (MG), Reverse
Adjacent (RA) and Reverse Gap (RG). The Mono-
tone/Reverse distinction indicates whether the pro-
jected order follows the original order, while the
Adjacent/Gap distinction indicates whether the pro-

2This heuristic is commonly used in learning phrase pairs
from parallel text. The maximality ensures the uniqueness ofL

andR.

jections of the function word and the neighboring
phrase are adjacent or separated by an intervening
phrase.

To modeld(FWi−1,S→T ), d(FWi+1,S→T ), i.e.
whether Li,S→T and Ri,S→T extend beyond the
neighboring function word phrase pairs, we uti-
lize the pairwise dominancemodel of Setiawan
et al. (2009). Taking d(FWi−1,S→T ) as
a case in point, this model takes the form
Pdom(d(FWi−1,S→T )|Yi−1,S→T , Yi,S→T ), whered
takes one of the following four dominance val-
ues: leftFirst, rightFirst, dontCare, or neither.
We will detail the exact formulation of these val-
ues in the next subsection. However, to provide
intuition, the value of eitherleftFirst or neither
for d(FWi−1,S→T ) would suggest that the span of
Li,S→T doesn’t extend toYi−1,S→T ; the further dis-
tinction betweenleftFirst andneither concerns with
whether the span ofRi−1,S→T extends toFWi,S→T .

To modelb(〈s〉), b(〈/s〉), i.e. whether the span of
Li,S→T andRi,S→T extends up to sentence mark-
ers, we introduce theborderwise dominancemodel.
Formally, this model is similar to the pairwise domi-
nance model, except that we use the sentence bound-
aries as the anchors instead of the neighboring
phrase pairs. This model captures longer distance
dependencies compared to the previous two mod-
els; in the Chinese-English case, in particular, it is
useful to discourage word alignments from crossing
clause or sentence boundaries. The sentence bound-
ary issue is especially important in machine trans-
lation (MT) experimentation, since the Chinese side
of English-Chinese parallel text often includes long
sentences that are composed of several independent
clauses joined together; in such cases, words from
one clause should be discouraged from aligning to
words from other clauses. In Fig. 1, this model is
potentially useful to discourage words from cross-
ing the copula “是/is”.

We define each model for all (pairs of) function
word phrase pairs, forming features over a set of
word alignments (A) between source (S) and target
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(T ) sentence pair, as follows:

fori =

N
∏

i=1

Pori(o(Li), o(Ri)|Yi) (1)

fdom =
N
∏

i=2

Pdom(d(FWi−1)|Yi−1, Yi) (2)

fbdom =
N
∏

i=1

Pbdom(b (〈s〉)|〈s〉, Yi) ·

Pbdom(b (〈/s〉)|Yi, 〈/s〉) (3)

whereN is the number of function words (of the
source side, in theS → T case). As the bilingual
function word phrase pairs are uni-directional, we
employ these three models in both directions, i.e.
T → S as well asS → T . As a result, there are
six reordering models based on function words.

3.2 Prediction and Parameter Estimation

Given FWi−1,S→T (and all otherFW∀i′/i,S→T ),
our reordering model has to decomposeLi,S→T into
(o(Li,S→T ), d(FWi−1,S→T ), b(〈s〉)); andRi,S→T

into (o(Ri,S→T ),d(FWi+1,S→T ), b(〈/s〉) )) during
prediction and parameter estimation. In prediction
mode (described in Section 5), it has to make the de-
composition on the current state of alignment, while
during parameter estimation, it has to make the
same decomposition on the manually-aligned cor-
pora. Since the process is identical, we proceed with
the discussion in the context of parameter estima-
tion, where the decomposition is performed to col-
lect counts to estimate the parameters of our models.

Orientation model. Using Li,S→T as a case in
point and given (Yi,S→T =sl

l/tmm, Li,S→T =sl2
l1
/tm2

m1
,

Ri,S→T =sl4
l3
/tm4

m3
)3, the value ofo(Li,S→T ) in terms

of Monotone/Reverse is:

Monotone/Reverse=

{

M, m2 < m,

R, m < m1.
(4)

while its value in terms of Adjacent/Gap values is:

Adjacent/Gap=

{

A, |m−m1| ∨ |m−m2| = 1,

G, otherwise.
(5)

3We use subscripts to indicate the starting index, and super-
scripts the ending index.

By adjusting the indices, the computation of
o(Ri,S→T ) follows similarly to the procedure above.

Suppose we want to estimate the probability of
Li,S→T =MA for a particularYi. Note that here, we
are interested in the lexical identity ofYi, thus the
indexi is irrelevant. We first gather the counts of the
orientation value for allLi,S→T of Yi in the corpus:
c(o(Li,S→T ) ∈ {MA, RA, MG, RG}, Yi). Then
Pori(MA|Yi) is estimated as follows:

Pori(MA|Yi) =
c(MA, Yi)

c(Yi)
(6)

wherec(Yi) is the frequency ofYi in the corpus. The
estimation of other orientation values as well as the
T → S version of the model, follows the same pro-
cedure.

Pairwise and Borderwise dominance models.
Given Ri,S→T = sl2

l1
/tm2

m1
and Li+1,S→T =

sl4
l3
/tm4

m3
, i.e. the spans of the neighbors of a

pair of neighboring function word phrase pairs
(Yi = sl5

l5
/tm5

m5
, Yi+1 = sl6

l6
/tm6

m6
), the value of

d(FWi+1,S→T ) is:

=























leftFirst, l2 ≥ l6
∧

l3 > l5

rightFirst, l2 < l6
∧

l3 ≤ l5

dontCare, l2 ≥ l6
∧

l3 ≤ l5

neither, l2 < l6
∧

l3 > l5

(7)

Note that the neighbors of the sentence markers for
the borderwise models span the whole sentence, thus
value ofneither is impossible for these models.

Suppose we want to estimate the probability ofYi

andYi+1 having adontCare dominance value. Note
that here we are interested in the lexical identity of
Yi andYi+1, thus the models are insensitive to the in-
dices. We first gather the counts of theYi andYi+1

having thedontCare valuec(dontCare, Yi, Yi+1);
thenPdom(dontCare|Yi, Yi+1) is estimated as fol-
lows:

Pdom(dontCare|Yi, Yi+1) =
c(dontCare, Yi, Yi+1)

c(Yi, Yi+1)
(8)

wherec(Yi, Yi+1) is the count ofYi appears after
Yi+1 in the training corpus without any other func-
tion word comes in between.
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4 Alignment Model

To use the function word alignment features de-
scribed in the previous section to predict alignments,
we use a linear model of the following form:

Â = arg max
A∈A(S,T )

θ · f(A, S, T ) (9)

whereA(S, T ) is the set of all possible alignments
of a source sentenceS and target sentenceT , and
f(A, S, T ) is a vector of feature functions onA, S,
andT , andθ is a parameter vector.

In addition to the six reordering models, our
model employs several association-based scores that
look at alignments in isolation. These features in-
clude:

1. Normalized log-likelihood ratio (LLR) . This
feature represents an association score, derived from
statistical testing statistics. LLR (Dunning, 1993)
has been widely used especially to measure lexical
association. Since the values of LLR are unnormal-
ized, we normalize them on a per-sentence basis, so
that the normalized LLRs of, say, a particular source
word to the target words in a particular sentence sum
up to one.

2. Translation table from IBM model 4. This
feature represents another association score, derived
from a generative model, in particular the word-
based IBM model 4. The use of this feature is
widespread in recent alignment models, since it pro-
vides a relatively accurate initial prediction.

3. Translation table from manually-aligned
corpora. This feature represents a gold-standard as-
sociation score, based on human annotation. While
attractive, this feature suffers from data sparse-
ness issues since the lexical coverage of manually-
aligned corpora, especially over content words, is
very low. To overcome this issue, we design this
feature to have two levels of granularity; as such, a
fine-grained one is applied for function words and
the coarse-grained one for content words.

4. Grow-diag-final alignments bonus.This fea-
ture encourages our alignment model to reuse align-
ment points that are part of the alignments created
by the grow-diag-final heuristic, which we used as
the baseline of our machine translation experiments.

5. Fertility model from IBM model 4. This fea-
ture, which is another by-product of IBM model 4,

measures the probability of a certain word aligning
to zero, one, or two or more words.

6. Null-alignment probability. This bino-
mial feature models preference towards not aligning
words, i.e. aligning to the NULL token. The intu-
ition is to penalize NULL alignments depending on
word class, by assigning lower probability mass to
unaligned content words than to unaligned function
words. In our experiment, we assign feature value
10−3 for a function word aligning to NULL, and
10−5 for a content word aligning to NULL.

Note that with the exception of the alignment
bonus feature (4), all features are uni-directional,
and therefore we employ these features in both di-
rections just as was done for the reordering models.

5 Search

To find Â using the model in Eq. 9, it is neces-
sary to search2|S|×|T | different alignment config-
urations, and, because of the non-local dependen-
cies in some of our features, it is not possible to use
dynamic programming to perform this search effi-
ciently. We therefore employ an approximate search
for the best alignment. We use a local search pro-
cedure which starts from some alignment (in our
case, a symmetrized Model 4 alignment) and make
local changes to it. Rather than taking a pure hill-
climbing approach which greedily moves to locally
better configurations (Brown et al., 1993), we use
a stochastic search procedure which can move into
lower-scoring states with some probability, similar
to the Monte Carlo techniques used to draw sam-
ples from analytically intractable probability distri-
butions.

5.1 Algorithm

To find Â, our search algorithm starts with an initial
alignmentA(1) and iteratively draws a new set by
making a few small changes to the current set. For
each stepi = [1, n], with alignmentA(i), a set of
neighboring alignmentsN (A(i)) is induced by ap-
plying small transformations (discussed below) to
the current alignment. The next alignmentA(i+1)
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is sampled from the following distribution:

p(A(i+1)|S, T, A(i)) =
expθ · f(A(i+1), S, T )

Z(A(i), S, T )

whereZ(A(i), S, T ) =
∑

A′∈N (A(i))

expθ · f(A′, S, T )

In addition to the current ‘active’ alignment configu-
rationA(i), the algorithm keeps track of the highest
scoring alignment observed so far,Amax. After n
steps, the algorithm returnsAmax as its approxima-
tion of Â. In the experiments reported below, we
initialized A(1) with the Model 4 alignments sym-
metrized by using thegrow-diag-final-andheuristic
(Koehn et al., 2003).

5.2 Alignment Neighborhoods

We now turn to a discussion of how the alignment
neighborhoods used by our stochastic search algo-
rithm are generated. We define three local transfor-
mation operations that apply to single columns of
the alignment grid (which represent all of the align-
ments to thelth source word), rows, or existing align-
ment points(l, m). Our three neighborhood gener-
ating operators are ALIGN, ALIGNEXCLUSIVE, and
SWAP. The ALIGN operator applies to thelth col-
umn of A and can either add an alignment point
(l, m′) or move an existing one (including tonull,
thus deleting it). ALIGNEXCLUSIVE adds an align-
ment point(l, m) and deletes all other points from
row m. Finally, the SWAP operator swaps(l, m) and
(l′, m′), resulting in new alignment points(l, m′)
and (l′, m). We increase the decoder’s mobility
by traversing the target side and applying the same
steps above for each target word. Fig. 3 illustrates
the three operators. By iterating over all columnsl
and rowsm, the full alignment spaceA(S, T ) can
be explored.4

To further reduce the search space, an alignment
point (l, m) is only admitted into a neighborhood if
it is found in the high-recall alignment setR(S, T ),
which we define to be the model 4 union alignments
(bidirectional model 4 symmetrized via union) plus
the 5 best alignments according to the log-likelihood
ratio.

4Using only the ALIGN operator, it is possible to explore
the full alignment space; however, using all three operators in-
creases mobility.

(a)

(b)

(c)

l l' l l'

m

m'

m

m'

m

m'

Figure 3: Illustrations for (a) ALIGN, (b) ALIGNEXCLU-
SIVE, and (c) SWAP operators, as applied to align the dot-
ted, smaller circle (l,m) to (l,m′). The left hand side rep-
resentsA(i), while the right hand side represents a can-
didate forA(i+1). The solid circles represent the new
alignment points added toA(i+1).

6 Discriminative Training

To set the model parametersθ, we used the min-
imum error rate training (MERT) algorithm (Och,
2003) to maximize the F-measure of the 1-best
alignment of the model on a development set con-
sisting of sentence pairs with manually generated
alignments. The candidate set used by MERT to ap-
proximate the model is simply the set of alignments
{A(1), A(2), . . . , A(n)} encountered in the stochastic
search.

While MERT does not scale to large numbers of
features, the scarcity of manually aligned training
data also means that models with large numbers of
sparse features would be difficult to learn discrimi-
natively, so this limitation is somewhat inherent in
the problem space. Additionally, MERT has sev-
eral advantages that make it particularly useful for
our task. First, we can optimize F-measure of the
alignments directly, which has been shown to corre-
late with translation quality in a downstream system
(Fraser and Marcu, 2007b). Second, we are opti-
mizing the quality of the 1-best alignments under the
model. Since translation pipelines typically use only
a single word alignment, this criterion is appropri-
ate. Finally, and very importantly for us, MERT re-
quires only an approximation of the model’s hypoth-
esis space to carry out optimization. Since we are
using a stochastic search, this is crucial, since sub-
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sequent evaluations of the same sentence pair (even
with the same weights) may result in a different can-
didate set.

Although MERT is a non-probabilistic optimizer,
we explore the alignment space stochastically. This
is necessary to make sure that the weights we use
correspond to a probability distribution that is not
overly peaked (which would result in a greedy hill-
climbing search) or flat (which would explore the
model space without information from the model).
We found that normalizing the weights by the Eu-
clidean norm resulted in a distribution that was well-
balanced between the two extremes.

7 Experiments

We evaluated our proposed alignment model intrin-
sically on an alignment task and extrinsically on a
large-scale translation task, focusing on Chinese-
English as the language pair. Our training data
consists of manually aligned corpora available from
LDC (LDC2006E93 and LDC2008E57) and un-
aligned corpora, which include FBIS, ISI, HKNews
and Xinhua. In total, the manually aligned corpora
consist of more than 21 thousand sentence pairs,
while the unaligned corpora consist of more than
710 thousand sentence pairs. The manually-aligned
corpora are primarily used for training the reorder-
ing models and for discriminative training purposes.
For translation experiments, we used cdec (Dyer
et al., 2010), a fast implementation of hierarchi-
cal phrase-based translation models (Chiang, 2005),
which represents a state-of-the-art translation sys-
tem.

We constructed the list of function words in En-
glish manually and in Chinese from (Howard, 2002).
Punctuation marks were added to the list, result-
ing in 883 and 359 tokens in the Chinese and En-
glish lists, respectively. For the alignment experi-
ments, we took the first 500 sentence pairs from the
newswire genre of the manually-aligned corpora and
used the first 250 sentences as the development set,
with the remaining 250 as the test set. To ensure
blind experimentation, we excluded these sentence
pairs from the training of the features, including the
reordering models.

7.1 Alignment Quality

We used GIZA++, the implementation of thede-
facto standard IBM alignment model, as our base-
line alignment model. In particular, we used
GIZA++ to align the concatenation of the develop-
ment set, the test set, and the unaligned corpora, with
5, 5, 3 and 3 iterations of model 1, HMM, model
3, and model 4 respectively. Since the IBM model
is asymmetric, we followed the standard practice of
running GIZA++ twice, once in each direction, and
combining the resulting outputs heuristically. We
chose to use the grow-diag-final-and heuristic as it
worked well for hierarchical phrase-based transla-
tion in our early experiments. We recorded the align-
ment quality of the test set as our baseline perfor-
mance.

For our alignment model, we used the same set of
training data. To align the test set, we first tuned
the weights of the features in our discriminative
alignment model using minimum error rate training
(MERT) (Och, 2003) withFα=0.1 as the optimiza-
tion criterion. At each iteration, our aligner outputs
k-best alignments under current set of weights, from
which MERT proceeds to compute the next set of
weights. MERT terminates once the improvement
over the previous iteration is lower than a predefined
value. Once tuned, we ran our aligner on the test set
and measured the quality of the resulting alignment
as the performance of our model.

Model P R F0.5 F0.1

gdfa 70.97 63.83 67.21 64.48
association 73.70 76.85 75.24 76.52
+ori 74.09 78.29 76.13 77.85
+dom 75.06 78.98 76.97 78.57
+bdom 75.41 80.53 77.89 79.99

Table 1: Alignment quality results (F0.1) for our discrim-
inative reordering models with various features (lines 2-
5) versus the baseline IBM word-based Model 4 sym-
metrized using the grow-diag-final-and heuristic. The
balancedF0.5 measure is reported for reference. The best
scores arebolded.

Table 1 reports the results of our experiments,
which are conducted in an incremental fashion pri-
marily to highlight the role of reordering model-
ing. The first line (gdfa) reports the baseline perfor-
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mance. In the first experiment (association), we em-
ployed only the association-based features described
in Section 4. As shown, we obtain a significant im-
provement over baseline. This result is consistent
with recent literature (Fraser and Marcu, 2007a) that
shows that a discriminatively trained model outper-
forms baseline unsupervised models like GIZA++.
In the second set of experiments, we added the re-
ordering models into our discriminative model one
by one, starting with the orientation models, then
the pairwise dominance model and finally the bor-
derwise dominance model, reported in lines +ori,
+dom and +bdom respectively. As shown, each ad-
ditional reordering model provides a significant ad-
ditional improvement. The best result is obtained by
employing all reordering models. These results em-
pirically confirm our hypothesis that we can improve
alignment quality by employing reordering models
that capture non-local reordering phenomena.

7.2 Translation Quality

For translation experiments, we used the products
from our intrinsic experiments to learn translation
rules for the hierarchical phrase-based decoder, i.e.
the features weights of the +bdom experiment to
align the MT training data using our discriminative
model. For our translation model, we used the stan-
dard features based on the relative frequency counts,
including a 5-gram language model feature trained
on the English portion of the whole training data
plus portions of the Gigaword v2 corpus. Specif-
ically, we tuned the weights of these features via
MERT on the NIST MT06 set and we report the re-
sult on the NIST MT02, MT03, MT04 and MT05
sets.

MT02 MT03 MT04 MT05

gdfa 25.61 32.05 31.80 29.34
this work 26.56 33.79 32.61 30.47

Table 2: The translation performance (BLEU) of hierar-
chical phrase-based translation trained on training data
aligned by IBM model 4 symmetrized with the grow-
diag-final-and heuristic, versus being trained on align-
ments by our discriminative alignment model.Bolded
scores indicate that the improvement is statistically sig-
nificant.

Table 2 shows the result of our translation exper-

iments. In our alignment model, we employed the
whole set of reordering models, i.e. the one reported
in the +bdom line in Table 1. As shown, our dis-
criminative alignment model produces a consistent
and significant improvement over the baseline IBM
model 4 (p < 0.01), ranging between 0.81 and 1.71
BLEU points.

8 Related Work

The focus of our work is to strengthen the reordering
component of alignment modeling. Although thede
facto standard, the IBM models do not generalize
well in practice: the IBM approach employs a series
of reordering models based on the word’s position,
but reordering depends on syntactic context rather
than absolute position in the sentence. Over the
years, there have been many proposals to improve
these reordering models, most notably Vogel et al.
(1996), which adds a first-order dependency. Never-
theless, the use of these distortion-based models re-
mains widespread (Marcu and Wong, 2002; Moore,
2004).

Alignment modeling is challenging because it
often has to consider a prohibitively large align-
ment space. Efforts to constrain the space gen-
erally comes from the use of Inversion Transduc-
tion Grammar (ITG) (Wu, 1997). Recent propos-
als that use ITG constraints include (Haghighi et
al., 2009; Blunsom et al., 2009) just to name a few.
More recent models have begun to use linguistically-
motivated constraints, often in combination with
ITG, primarily exploiting monolingual syntactic in-
formation (Burkett et al., 2010; Pauls et al., 2010).

Our reordering model is closely related to the
model proposed by Zhang and Gildea (2005; 2006;
2007a), with respect to conditioning the reordering
predictions on lexical items. These related models
treat their lexical items as latent variables to be es-
timated from training data, while our model uses
a fixed set of lexical items that correspond to the
class of function words. With respect to the focus
on function words, our reordering model is closely
related to the UALIGN system (Hermjakob, 2009).
However, UALIGN uses deep syntactic analysis and
hand-crafted heuristics in its model.
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9 Conclusions
Languages exhibit regularities of word order that
are preserved when projected to another language.
We use the notion of function words to infer such
regularities, resulting in several reordering models
that are employed as features in a discriminative
alignment model. In particular, our models pre-
dict the reordering of function words by looking
at their dependencies with respect to their neigh-
boring phrases, their neighboring function words,
and the sentence boundaries. By capturing such
long-distance dependencies, our proposed align-
ment model contributes to the effort to unify align-
ment and translation. Our experiments demonstrate
that our alignment approach achieves both its intrin-
sic and extrinsic goals.
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Abstract

We report on investigations into hierarchi-
cal phrase-based translation grammars based
on rules extracted from posterior distributions
over alignments of the parallel text. Rather
than restrict rule extraction to a single align-
ment, such as Viterbi, we instead extract rules
based on posterior distributions provided by
the HMM word-to-word alignment model. We
define translation grammars progressively by
adding classes of rules to a basic phrase-based
system. We assess these grammars in terms
of their expressive power, measured by their
ability to align the parallel text from which
their rules are extracted, and the quality of the
translations they yield. In Chinese-to-English
translation, we find that rule extraction from
posteriors gives translation improvements. We
also find that grammars with rules with only
one nonterminal, when extracted from posteri-
ors, can outperform more complex grammars
extracted from Viterbi alignments. Finally, we
show that the best way to exploit source-to-
target and target-to-source alignment models
is to build two separate systems and combine
their output translation lattices.

1 Introduction

Current practice in hierarchical phrase-based trans-
lation extracts regular phrases and hierarchical rules
from word-aligned parallel text. Alignment models
estimated over the parallel text are used to generate
these alignments, but these models are then typically
used no further in rule extraction. This is less than
ideal because these alignment models, even if they

are not suitable for direct use in translation, can still
provide a great deal of useful information beyond a
single best estimate of the alignment of the parallel
text. Our aim is to use alignment models to generate
the statistics needed to build translation grammars.
The challenge in doing so is to extend the current
procedures, which are geared towards the use of a
single alignment, to make more of what can be pro-
vided by alignment models. The goal is to extract a
richer and more robust set of translation rules.

There are two aspects to hierarchical phrase-based
translation grammars which concern us. The first
is expressive power, which we take as the ability
to generate known reference translations from sen-
tences in the source language. This is determined
by the degree of phrase movements and the trans-
lations allowed by the rules of the grammar. For a
grammar with given types of rules, larger rule sets
will yield greater expressive power. This motivates
studies of grammars based on the rules which are ex-
tracted and the movement the grammar allows. The
second aspect is of course translation accuracy. If
the expressive power is adequate, then the desire is
that the grammar assigns a high score to a correct
translation.

We use posterior probabilities over parallel data to
address both of these aspects. These posteriors allow
us to build larger rule sets with improved transla-
tion accuracy. Ideally, for a sentence pair we wish to
consider all possible alignments between all possi-
ble source and target phrases within these sentences.
Given a grammar allowing certain types of move-
ment, we would then extract all possible parses that
are consistent with any alignments of these phrases.
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To make this approach feasible, we consider only
phrase-to-phrase alignments with a high posterior
probability under the alignment models. In this way,
the alignment model probabilities guide rule extrac-
tion.

The paper is organized as follows. Section 2 re-
views related work on using posteriors to extract
phrases, as well as other approaches that tightly in-
tegrate word alignment and rule extraction. Sec-
tion 3 describes rule extraction based on word and
phrase posterior distributions provided by the HMM
word-to-word alignment model. In Section 4 we de-
fine translation grammars progressively by adding
classes of rules to a basic phrase-based system, mo-
tivating each rule type by the phrase movement it is
intended to achieve. In Section 5 we assess these
grammars in terms of their expressive power and the
quality of the translations they yield in Chinese-to-
English, showing that rule extraction from posteriors
gives translation improvements. We also find that
the best way to exploit source-to-target and target-
to-source alignment models is to build two sepa-
rate systems and combine their output translation
lattices. Section 6 presents the main conclusions of
this work.

2 Related Work

Some authors have previously addressed the limita-
tion caused by decoupling word alignment models
from grammar extraction. For instance Venugopal
et al. (2008) extract rules from n-best lists of align-
ments for a syntax-augmented hierarchical system.
Alignment n-best lists are also used in Liu et al.
(2009) to create a structure called weighted align-
ment matrices that approximates word-to-word link
posterior probabilities, from which phrases are ex-
tracted for a phrase-based system. Alignment pos-
teriors have been used before for extracting phrases
in non-hierarchical phrase-based translation (Venu-
gopal et al., 2003; Kumar et al., 2007; Deng and
Byrne, 2008).

In order to simplify hierarchical phrase-based
grammars and make translation feasible with rela-
tively large parallel corpora, some authors discuss
the need for various filters during rule extraction
(Chiang, 2007). In particular Lopez (2008) enforces
a minimum span of two words per nonterminal,

Zollmann et al. (2008) use a minimum count thresh-
old for all rules, and Iglesias et al. (2009) propose
a finer-grained filtering strategy based on rule pat-
terns. Other approaches include insisting that target-
side rules are well-formed dependency trees (Shen et
al., 2008).

We also note approaches to tighter coupling be-
tween translation grammars and alignments. Marcu
and Wong (2002) describe a joint-probability
phrase-based model for alignment, but the approach
is limited due to excessive complexity as Viterbi
inference becomes NP-hard (DeNero and Klein,
2008). More recently, Saers et al. (2009) report
improvement on a phrase-based system where word
alignment has been trained with an inversion trans-
duction grammar (ITG) rather than IBM models.
Pauls et al. (2010) also use an ITG to directly align
phrases to nodes in a string-to-tree model. Bayesian
methods have been recently developed to induce a
grammar directly from an unaligned parallel corpus
(Blunsom et al., 2008; Blunsom et al., 2009). Fi-
nally, Cmejrek et al. (2009) extract rules directly
from bilingual chart parses of the parallel corpus
without using word alignments. We take a differ-
ent approach in that we aim to start with very strong
word alignment models and use them to guide gram-
mar extraction.

3 Rule Extraction from Alignment
Posteriors

The goal of rule extraction is to generate a set of
good-quality translation rules from a parallel cor-
pus. Rules are of the formX→〈γ,α,∼〉 , where
γ, α ∈ {X ∪T}+ are the source and target sides of
the rule,T denotes the set of terminals (words) and
∼ is a bijective function1 relating source and target
nonterminalsX of each rule (Chiang, 2007). For
eachγ, the probability over translationsα is set by
relative frequency over the extracted examples from
the corpus.

We take a general approach to rule extraction, as
described by the following procedure. For simplic-
ity we discuss the extraction of regular phrases, that
is, rules of the formX→〈w,w〉, wherew ∈ {T}+.
Section 3.3 extends this procedure to rules with non-

1This function is defined if there are at least two nontermi-
nals, and for clarity of presentation will be omitted in thispaper
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terminal symbols.
Given a sentence pair (fJ

1 , eI
1), the extraction al-

gorithm traverses the source sentence and, for each
sequence of terminalsf j2

j1
, it considers all possible

target-side sequencesei2
i1

as translation candidates.
Each target-side sequence that satisfies the align-
ment constraintsCA is ranked by the functionfR.
For practical reasons, a set of selection criteriaCS is
then applied to these ranked candidates and defines
the set of translations of the source sequence that are
extracted as rules. Each extracted rule is assigned a
countfC .

In this section we will explore variations of this
rule extraction procedure involving alternative def-
initions of the ranking and counting functions,fR

andfC , based on probabilities over alignment mod-
els.

Common practice (Koehn et al., 2003) takes a set
of word alignment linksL and defines the alignment
constraintsCA so that there is aconsistency between
the links in the(f j2

j1
, ei2

i1
) phrase pair. This is ex-

pressed by∀(j, i) ∈ L : (j ∈ [j1, j2]∧ i ∈ [i1, i2])∨
(j 6∈ [j1, j2] ∧ i 6∈ [i1, i2]). If these constraints
are met, then alignment probabilities are ignored and
fR = fC = 1. We call this extraction Viterbi-based,
as the set of alignment links is generally obtained
after applying a symmetrization heuristic to source-
to-target and target-to-source Viterbi alignments.

In the following section we depart from this ap-
proach and apply novel functions to rank and count
target-side translations according to their quality in
the context of each parallel sentence, as defined by
the word alignment models. We also depart from
common practice in that we do not use a set of links
as alignment constraints. We thus find an increase
in the number of extracted rules, and consequently
better relative frequency estimates over translations.

3.1 Ranking and Counting Functions

We describe two alternative approaches to modify
the functionsfR andfC so that they incorporate the
probabilities provided by the alignment models.

3.1.1 Word-to-word Alignment Posterior
Probabilities

Word-to-word alignment posterior probabilities
p(lji|f

J
1 , eI

1) express how likely it is that the words
in source positionj and target positioni are aligned

given a sentence pair. These posteriors can be effi-
ciently computed for Model 1, Model 2 and HMM,
as described in (Brown et al., 1993; Venugopal et al.,
2003; Deng and Byrne, 2008).

We will use these posteriors in functions to
score phrase pairs. For a simple non-disjoint case
(f j2

j1
, ei2

i1
) we use:

fR(f j2
j1

, ei2
i1

) =
j2∏

j=j1

i2∑

i=i1

p(lji|f
J
1 , eI

1)

i2 − i1 + 1
(1)

which is very similar to the score used for lexical
features in many systems (Koehn, 2010), with the
link posteriors for the sentence pair playing the role
of the Model 1 translation table.

For a particular source phrase, Equation 1 is not
a proper conditional probability distribution over all
phrases in the target sentence. Therefore it cannot be
used as such without further normalization. Indeed
we find that this distribution is too sharp and over-
emphasises short phrases, so we usefC = 1. How-
ever, it does allow us to rank target phrases as pos-
sible translations. In contrast to the common extrac-
tion procedure described in the previous section, the
ranking approach described here can lead to a much
more exhaustive extraction unless selection criteria
are applied. These we describe in Section 3.2.

We note that Equation 1 can be computed us-
ing link posteriors provided by alignment models
trained on either source-to-target or target-to-source
translation directions.

3.1.2 Phrase-to-phrase Alignment Posterior
Probabilities

Rather than limit ourselves to word-to-word
link posteriors we can define alignment proba-
bility distributions over phrase alignments. We
do this by defining the set of alignmentsA as
A(j1, j2; i1, i2) = {aJ

1 : aj ∈ [i1, i2] iff j ∈
[j1, j2]}, whereaj is the random process that de-
scribes word-to-word alignments. These are the
alignments from which the phrase pair(f j2

j1
, ei2

i1
)

would be extracted.
The posterior probability of these alignments

given the sentence pair is defined as follows:

p(A|eI
1, f

J
1 ) =

∑
aJ

1
∈A p(fJ

1 , aJ
1 |e

I
1)

∑
aJ

1

p(fJ
1 , aJ

1 |e
I
1)

(2)
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G0 G1 G2 G3

S→〈X,X〉 X→〈w X,X w〉 X→〈w X,X w〉 X→〈w X,X w〉
S→〈S X,S X〉 X→〈X w,w X〉 X→〈X w,w X〉 X→〈X w,w X〉

X→〈w,w〉 X→〈w X,w X〉 X→〈w X,w X〉
X→〈w X w,w X w〉

Table 1: Hierarchical phrase-based grammars containing different types of rules. The grammar expressivity is greater
as more types of rules are included. In addition to the rules shown in the respective columns,G1, G2 andG3 also
contain the rules ofG0.

With IBM models 1 and 2, the numerator and de-
nominator in Equation 2 can be computed in terms
of posterior link probabilities (Deng, 2005). With
the HMM model, the denominator is computed us-
ing the forward algorithm while the numerator can
be computed using a modified forward algorithm
(Deng, 2005).

These phrase posteriors directly define a proba-
bility distribution over the alignments of translation
candidates, so we use them both for ranking and
scoring extracted rules, that isfR = fC = p. This
approach assigns a fractional count to each extracted
rule, which allows finer estimation of the forward
and backward translation probability distributions.

3.2 Alignment Constraints and Selection
Criteria

In order to keep this process computationally
tractable, some extraction constraints are needed. In
order to extract a phrase pair(f j2

j1
, ei2

i1
), we define

the following:

• CA requires at least one pair of positions(j, i) :
(j ∈ [j1, j2] ∧ i ∈ [i1, i2]) with word-to-word
link posterior probabilityp(lji|f

J
1 , eI

1) > 0.5,
and that there is no pair of positions(j, i) : (j ∈
[j1, j2]∧i 6∈ [i1, i2])∨(j 6∈ [j1, j2]∧i ∈ [i1, i2])
with p(lji|f

J
1 , eI

1) > 0.5

• CS allows only thek best translation candidates
to be extracted. We usek = 3 for regular
phrases, andk = 2 for hierarchical rules.

Note that we do not discard rules according to
their scoresfC at this point (unlike Liu et al.
(2009)), since we prefer to add all phrases from
all sentence pairs before carrying out such filtering
steps.

Once all rules over the entire collection of paral-
lel sentences have been extracted, we require each
rule to occur at leastnobs times and with a forward
translation probabilityp(α|γ) > 0.01 to be used for
translation.

3.3 Extraction of Rules with Nonterminals

Extending the procedure previously described to
the case of more complex hierarchical rules includ-
ing one or even two nonterminals is conceptually
straightforward. It merely requires that we traverse
the source and target sentences and consider possi-
bly disjoint phrase pairs. Optionally, the alignment
constraints can also be extended to apply on the non-
terminalX.

Equation 1 is then only modified in the limits
of the product and summation, whereas Equation
2 remains unchanged, as long as the set of valid
alignmentsA is redefined. For example, for a rule
of the form X→〈w X w,w X w〉, we useA ≡
A(j1, j2; j3, j4; i1, i2; i3, i4).

4 Hierarchical Translation Grammar
Definition

In this section we define the hierarchical phrase-
based synchronous grammars we use for translation
experiments. Each grammar is defined by the type of
hierarchical rules it contains. The rule type can be
obtained by replacing every sequence of terminals
by a single symbol ‘w’, thus ignoring the identity of
the words, but capturing its generalized structure and
the kind of reordering it encodes (this was defined as
rule pattern in Iglesias et al. (2009)).

A monotonic phrase-based translation grammar
G0 can be defined as shown in the left-most col-
umn of Table 1; it includes all regular phrases, repre-
sented by the rule typeX→〈w,w〉, and the two glue
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(G0) R1: S→〈X,X〉
(G0) R2: X→〈s2 s3,t2〉
(G1) R3: X→〈s1 X,X t3〉
(G1) R4: X→〈X s4,t1 X〉
(G2) R5: X→〈s1 X,t7 X〉
(G3) R6: X→〈s1 X s4,t5 X t6〉

Figure 1: Example of a hierarchical translation grammar andtwo parsing trees following alternative rule derivations
for the input sentences1s2s3s4.

rules that allow concatenation. Our approach is now
simple: we extend this grammar by successively in-
corporating sets of hierarchical rules. The goal is to
obtain a grammar with few rule types but which is
capable of generating a rich set of translation candi-
dates for a given input sentence.

With this in mind, we define the following three
grammars, also summarized in Table 1:

• G1 := G0

⋃

{ X→〈w X,X w〉 , X→〈X w,w X〉 }. This
incorporates reordering capabilities with two
rule types that place the unique nonterminal
in an opposite position in each language; we
call these ’phrase swap rules’. Since all non-
terminals are of the same categoryX, nested
reordering is possible. However, this needs to
happen consecutively,i.e. a swap must apply
after a swap, or the rule is concatenated with
the glue rule.

• G2 := G1

⋃
{ X→〈w X,w X〉 }. This

adds monotonic concatenation capabilities to
the previous translation grammar. The glue rule
already allows rule concatenation. However, it
does so at theS category, that is, it concate-
nates phrases and rulesafter they have been re-
ordered, in order to complete a sentence. With
this new rule type,G2 allows phrase/rule con-
catenationbefore reordering with another hier-
archical rule. Therefore, nested reordering does
not require successive swaps anymore.

• G3 := G2

⋃
{ X→〈w X w,w X w〉 }. This

adds single nonterminal rules with disjoint ter-
minal sequences, which can encode a mono-

tonic or reordered relationship between them,
depending on what their alignment was in the
parallel corpus. Although one could expect the
movement captured by this phrase-disjoint rule
type to be also present inG2 (via two swaps or
one concatenation plus one swap), the terminal
sequencesw may differ.

Figure 1 shows an example set of rules indicat-
ing to which of the previous grammars each rule be-
longs, and shows three translation candidates as gen-
erated by grammarsG1 (left-most tree),G2 (mid-
dle tree) andG3 (right-most tree). Note that the
middle tree cannot be generated withG1 as it re-
quires monotonic concatenation before reordering
with rule R4.

The more rule types a hierarchical grammar con-
tains, the more different rule derivations and the
greater the search space of alternative translation
candidates. This is also connected to how many
rules are extracted per rule type. Ideally we would
like the grammar to be able to generate the correct
translation of a given input sentence, without over-
generating too many other candidates, as that makes
the translation task more difficult.

We will make use of the parallel data in measuring
the ability of a grammar to generate correct transla-
tions. By extracting rules from a parallel sentence,
we translate them and observe whether the transla-
tion grammar is able to produce the parallel target
translation. In Section 5.1 we evaluate this for a
Chinese-to-English task.
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4.1 Reducing Grammar Redundancy

Let us discuss grammarG2 in more detail. As de-
scribed in the previous section, the motivation for in-
cluding rule typeX→〈w X,w X〉 is that the gram-
mar be able to carry out monotonic concatenation
before applying another hierarchical rule with re-
ordering. This movement is permitted by this rule
type, but the use of a single nonterminal categoryX

also allows the grammar to apply the concatenation
after reordering, that is, immediately before the glue
rule is applied. This creates significant redundancy
in rule derivations, as this rule type is allowed to act
as a glue rule. For example, given an input sentence
s1s2 and the following simple grammar:

R0: S→〈X,X〉
R1: S→〈S X,S X〉
R2: X→〈s1,t1〉
R3: X→〈s2,t2〉
R4: X→〈s1 X,t1 X〉

two derivations are possible: R2,R0,R3,R1 and
R3,R4,R0, and the translation result is identical.

To avoid this situation we introduce a nonterminal
M in the left-hand side of monotonic concatenation
rules ofG2. All rules are allowed to use nontermi-
nalsX andM in their right-hand side, except the
glue rules, which can only takeX. In the context of
our example, R4 is substituted by:

R4a: M→〈s1 X,t1 X〉
R4b: M→〈s1 M ,t1 M〉

so that only the first derivation is possible:
R2,R0,R3,R1, because applying R3,R4a yields a non-
terminalM that cannot be taken by the glue rule R0.

5 Experiments

We report experiments in Chinese-to-English trans-
lation. Our system is trained on a subset of the
GALE 2008 evaluation parallel text;2 this is approx-
imately 50M words per language. We report trans-
lation results on a development settune-nw and a
test settest-nw1. These contain translations pro-
duced by the GALE program and portions of the
newswire sections of MT02 through MT06. They
contain 1,755 sentences and 1,671 sentences respec-
tively. Results are also reported on a smaller held-

2See http://projects.ldc.upenn.edu/gale/data/catalog.html.
We excluded the UN material and the LDC2002E18,
LDC2004T08, LDC2007E08 and CUDonga collections.
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Figure 2: Percentage of parallel sentences successfully
aligned for various extraction methods and grammars.

out test settest-nw2, containing 60% of the NIST
newswire portion of MT06, that is, 369 sentences.

The parallel texts for both language pairs are
aligned using MTTK (Deng and Byrne, 2008). For
decoding we use HiFST, a lattice-based decoder im-
plemented with Weighted Finite State Transducers
(de Gispert et al., 2010). Likelihood-based search
pruning is applied if the number of states in the
lattice associated with each CYK grid cell exceeds
10,000, otherwise the entire search space is ex-
plored. The language model is a 4-gram language
model estimated over the English side of the paral-
lel text and the AFP and Xinhua portions of the En-
glish Gigaword Fourth Edition (LDC2009T13), in-
terpolated with a zero-cutoff stupid-backoff (Brants
et al., 2007) 5-gram estimated using 6.6B words of
English newswire text. In tuning the systems, stan-
dard MERT (Och, 2003) iterative parameter estima-
tion under IBM BLEU3 is performed on the devel-
opment sets.

5.1 Measuring Expressive Power

We measure the expressive power of the grammars
described in the previous section by running the
translation system in alignment mode (de Gispert
et al., 2010) over the parallel corpus. Conceptually,
this is equivalent to replacing the language model by
the target sentence and seeing if the system is able to
find any candidate. Here the weights assigned to the

3See ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13.pl
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Grammar Extraction # Rules tune-nw test-nw1 test-nw2
time prune BLEU BLEU BLEU

GH V-union 979149 3.7 0.3 35.1 35.6 37.6
V-union 613962 0.4 0.0 33.6 34.6 36.4

G1 WP-st 920183 0.9 0.0 34.3 34.8 37.5
PP-st 893542 1.4 0.0 34.4 35.1 37.7
V-union 734994 1.0 0.0 34.5 35.4 37.2

G2 WP-st 1132386 5.8 0.5 35.1 36.0 37.7
PP-st 1238235 7.8 0.7 35.5 36.4 38.2
V-union 966828 1.2 0.0 34.9 35.3 37.0

G3 WP-st 2680712 8.3 1.1 35.1 36.2 37.9
PP-st 5002168 10.7 2.6 35.5 36.4 38.5

Table 2: Chinese-to-English translation results with alternative grammars and extraction methods (lower-cased BLEU
shown). Time (secs/word) and prune (times/word) measurements done ontune-nw set.

rules are irrelevant, as only the ability of the gram-
mar to create a desired hypothesis is important.

We compare the percentage of target sentences
that can be successfully produced by grammarsG0,
G1, G2 andG3 for the following extraction meth-
ods:

• Viterbi (V) . This is the standard extraction
method based on a set of alignment links. We
distinguish four cases, depending on the model
used to obtain the set of links: source-to-
target (V-st), target-to-source (V-ts), and two
common symmetrization strategies: union (V-
union) and grow-diag-final (V-gdf), described
in (Koehn et al., 2003).

• Word Posteriors (WP). The extraction method
is based on word alignment posteriors de-
scribed in Section 3.1.1. These rules can be ob-
tained either from the posteriors of the source-
to-target (WP-st) or the target-to-source (WP-
ts) alignment models. We apply the alignment
constraints and selection criteria described in
Section 3.2. We do not report alignment per-
centages when using phrase posteriors (as de-
scribed in Section 3.1.2) as they are roughly
identical to theWP case.

• Finally, in both cases, we also report results
when merging the extracted rules in both direc-
tions into a single rule set (V-merge andWP-
merge).

Figure 2 shows the results obtained for a random
selection of 10,000 parallel corpus sentences. As ex-
pected, we can see that for any extraction method,
the percentage of aligned sentences increases when
switching fromG0 to G1, G2 and G3. Posterior-
based extraction is shown to outperform standard
methods based on a Viterbi set of alignments for
nearly all grammars. The highest alignment percent-
ages are obtained when merging rules obtained un-
der models trained in each direction (WP-merge),
approximately reaching 80% for grammarG3.

The maximum rule span in alignment was al-
lowed to be 15 words, so as to be similar to transla-
tion, where the maximum rule span is 10 words. Re-
laxing this in alignment to 30 words yields approxi-
mately 90% coverage forWP-mergeunderG3.

We note that if alignment constraintsCA and se-
lection criteriaCS were not applied, that isk = ∞,
then alignment percentages would be 100% even
for G0, but the extracted grammar would include
many noisy rules with poor generalization power
and would suffer from overgeneration.

5.2 Translation Results

In this section we investigate the translation perfor-
mance of each hierarchical grammar, as defined by
rules obtained from three rule extraction methods:

• Viterbi union (V-union) . Standard rule extrac-
tion from the union of the source-to-target and
target-to-source alignment link sets.
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• Word Posteriors (WP-st). Extraction based
on word posteriors as described in Section
3.1.1. The posteriors are provided by the
source-to-target alignment model. Alignment
constraints and selection criteria of Section 3.2
are applied, withnobs = 2.

• Phrase Posteriors (PP-st). Extraction based
on phrase alignment posteriors, as described
in Section 3.1.2, with fractional counts pro-
portional to the phrase probability under the
source-to-target alignment model. Alignment
constraints and selection criteria of Section 3.2
are applied, withnobs = 0.2.

Table 2 reports the translation results, as well as
the number of extracted rules in each case. It also
shows the following decoding statistics as measured
on thetune-nw set: decoding time in seconds per in-
put word, and number of instances of search pruning
(described in Section 5) per input word.

As a contrast, we extract rules according to the
heuristics introduced in (Chiang, 2007) and apply
the filters described in (Iglesias et al., 2009) to gen-
erate a standard hierarchical phrase-based grammar
GH . This uses rules with up to two nonadjacent non-
terminals, but excludes identical rule types such as
X→〈w X,w X〉 or X→〈w X1 w X2,w X1 w X2〉,
which were reported to cause computational difficul-
ties without a clear improvement in translation (Igle-
sias et al., 2009).

Grammar expressivity. As expected, for the stan-
dard extraction method (see rows entitledV-union),
grammarG1 is shown to underperform all other
grammars due to its structural limitations. On the
other hand, grammarG2 obtains much better scores,
nearly generating the same translation quality as
the baseline grammarGH . Finally, G3 does not
prove able to outperformG2, which suggests that
the phrase-disjoint rules with one nonterminal are
redundant for the translation grammar.

Rule extraction method. For all grammars, we
find that the proposed extraction methods based on
alignment posteriors outperform standard Viterbi-
based extraction, with improvements ranging from
0.5 to 1.1 BLEU points fortest-nw1 (depending on
the grammar) and from 1.0 to 1.5 fortest-nw2. In
all cases, the use of phrase posteriorsPP is the best
option. Interestingly, we find thatG2 extracted with

WP andPPmethods outperforms the more complex
GH grammar as obtained from Viterbi alignments.

Rule set statistics. For grammarG2 evaluated
on the tune-nw set, standard Viterbi-based extrac-
tion produces 0.7M rules, whereas the WP and PP
extraction methods yield 1.1M and 1.2M rules re-
spectively. We further analyse the sets of rules
X→〈γ,α,∼〉 in terms of the number of distinct
source and target sequencesγ andα which are ex-
tracted. Viterbi extraction yields 82k distinct source
sequences whereas the WP and PP methods yield
116k and 146k sequences, respectively. In terms
of the average number of target sequences for each
source sequence, Viterbi extraction yields an aver-
age of 8.7 while WP and PP yield 9.7 and 8.4 rules
on average. This shows that methodPPyields wider
coverage but with sharper forward rule translation
probability distributions than methodWP, as the av-
erage number of translations per rule is determined
by thep(α|γ) > 0.01 threshold mentioned in Sec-
tion 3.2.

Decoding time and pruning in search. In connec-
tion to the previous comments, we find an increased
need for search pruning, and subsequently slower
decoding speed, as the search space grows larger
with methodsWP andPP. A larger search space is
created by the larger rule sets, which allows the sys-
tem to generate new hypotheses of better quality.

5.3 Rule Concatenation in GrammarG2

In Section 4.1 we described a strategy to reduce
grammar redundancy by introducing an additional
nonterminalM for monotonic concatenation rules.
We find that without this distinction among nonter-
minals, search pruning and decoding time are in-
creased by a factor of 1.5, and there is a slight degra-
dation in BLEU (∼0.2) as more search errors are in-
troduced.

Another relevant aspect of this grammar is the ac-
tual rule type selected for monotonic concatenation.
We described using typeX→〈w X,w X〉 (con-
catenation on the right), but one could also include
X→〈X w,X w〉 (concatenation on the left), or both,
for the same purpose. We evaluated the three alter-
natives and found that scores are identical when ei-
ther including right or left concatenation types, but
including both is harmful for performance, as the
need to prune and decoding time increase by a fac-
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tor of 5 and 4, respectively, and we observe again a
slight degradation in performance.

Rule Extraction tune-nw test-nw1 test-nw2

V-st 34.7 35.6 37.5
V-ts 34.0 34.8 36.6
V-union 34.5 35.4 37.2
V-gdf 34.4 35.3 37.1
WP-st 35.1 36.0 37.7
WP-ts 34.5 35.0 37.0
PP-st 35.5 36.4 38.2
PP-ts 34.8 35.3 37.2
PP-merge 35.5 36.4 38.4
PP-merge-MERT 35.5 36.4 38.3
LMBR(V-st) 35.0 35.8 38.4
LMBR(V-st,V-ts) 35.5 36.3 38.9
LMBR(PP-st) 36.1 36.8 38.8
LMBR(PP-st,PP-ts) 36.4 36.9 39.3

Table 3: Translation results under grammarG2 with indi-
vidual rule sets, merged rule sets, and rescoring and sys-
tem combination with lattice-based MBR (lower-cased
BLEU shown)

5.4 Symmetrizing Alignments of Parallel Text

In this section we investigate extraction from align-
ments (and posterior distributions) over parallel text
which are generated using alignment models trained
in the source-to-target (st) and target-to-source (ts)
directions. Our motivation is that symmetrization
strategies have been reported to be beneficial for
Viterbi extraction methods (Och and Ney, 2003;
Koehn et al., 2003).

Results are shown in Table 3 for grammarG2. We
find that rules extracted under the source-to-target
alignment models (V-st, WP-st andPP-st) consis-
tently perform better than theV-ts, WP-ts andPP-
ts cases. Also, for Viterbi extraction we find that the
source-to-targetV-st case performs better than any
of the symmetrization strategies, which contradicts
previous findings for non-hierarchical phrase-based
systems(Koehn et al., 2003).

We use thePP rule extraction method to extract
two sets of rules, under thest andts alignment mod-
els respectively. We now investigate two ways of
merging these sets into a single grammar for trans-
lation. The first strategy isPP-mergeand merges

both rule sets by assigning to each rule the maximum
count assigned by either alignment model. We then
extend the previous strategy by adding three binary
feature functions to the system, indicating whether
the rule was extracted under the ’st’ model, the ’ts’
model or both. The motivation is that MERT can
weight rules differently according to the alignment
model they were extracted from. However, we do
not find any improvement with either strategy.

Finally, we use linearised lattice minimum Bayes-
risk decoding (Tromble et al., 2008; Blackwood et
al., 2010) to combine translation lattices (de Gis-
pert et al., 2010) as produced by rules extracted
under each alignment direction (see rows named
LMBR(V-st,V-ts) and LMBR(PP-st,PP-ts)). Gains
are consistent when comparing this to applying
LMBR to each of the best individual systems (rows
named LMBR(V-st) and LMBR(PP-st)). Overall,
the best-performing strategy is to extract two sets of
translation rules under the phrase pair posteriors in
each translation direction, and then to perform trans-
lation twice and merge the results.

6 Conclusion

Rule extraction based on alignment posterior proba-
bilities can generate larger rule sets. This results in
grammars with more expressive power, as measured
by the ability to align parallel sentences. Assign-
ing counts equal to phrase posteriors produces bet-
ter estimation of rule translation probabilities. This
results in improved translation scores as the search
space grows.

This more exhaustive rule extraction method per-
mits a grammar simplification, as expressed by the
phrase movement allowed by its rules. In particular
a simple grammar with rules of only one nontermi-
nal is shown to outperform a more complex gram-
mar built on rules extracted from Viterbi alignments.
Finally, we find that the best way to exploit align-
ment models trained in each translation direction is
to extract two rule sets based on alignment posteri-
ors, translate the input independently with each rule
set and combine translation output lattices.
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Abstract

Hierarchical phrase-based (HPB) translation
provides a powerful mechanism to capture
both short and long distance phrase reorder-
ings. However, the phrase reorderings lack of
contextual information in conventional HPB
systems. This paper proposes a context-
dependent phrase reordering approach that
uses the maximum entropy (MaxEnt) model
to help the HPB decoder select appropriate re-
ordering patterns. We classify translation rules
into several reordering patterns, and build a
MaxEnt model for each pattern based on var-
ious contextual features. We integrate the
MaxEnt models into the HPB model. Ex-
perimental results show that our approach
achieves significant improvements over a stan-
dard HPB system on large-scale translation
tasks. On Chinese-to-English translation,
the absolute improvements in BLEU (case-
insensitive) range from 1.2 to 2.1.

1 Introduction

The hierarchical phrase-based (HPB) model (Chi-
ang, 2005; Chiang, 2007) has been widely adopted
in statistical machine translation (SMT). It utilizes
synchronous context free grammar (SCFG) rules
to perform translation. Typically, there are three
types of rules (see Table 1):phrasal rule, a phrase
pair consisting of consecutive words;hierarchical
rule, a hierarchical phrase pair consisting of both
words and variables; andglue rule, which is used to
merge phrases serially. Phrasal rule captures short
distance reorderings within phrases, while hierar-
chical rule captures long distance reorderings be-

Type
Constituent

Examples
Word Variable

PR
√

- X → 〈��, one of〉
HR

√ √
X → 〈X�, ofX〉

GR -
√

S → 〈SX, SX〉

Table 1: A classification of grammar rules for the HPB
model. PR = phrasal rule, HR = hierarchical rule, GR =
glue rule.

tween phrases. Therefore, the HPB model outper-
forms conventional phrase-based models on phrase
reorderings.

However, HPB translation suffers from a limita-
tion, in that the phrase reorderings lack of contex-
tual information, such as the surrounding words of
a phrase and the content of sub-phrases that rep-
resented by variables. Consider the following two
hierarchical rules in translating a Chinese sentence
into English:

X → 〈X1 � X2, X1 ’s X2〉 (1)

X → 〈X1 � X2, X2X1〉 (2)

Ú �Ûd � !�

with Russia ’s talks
talks with Russia

Both pattern-match the source sentence, but pro-
duce quite different phrase reorderings. The first
rule generates a monotone translation, while the sec-
ond rule swaps the source phrases covered byX1

andX2 on the target side. During decoding, the first
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rule is more likely to be used, as it occurs more fre-
quently in a training corpus. However, the exam-
ple is not a noun possessive case because the sub-
phrase covered byX1 is not a noun but a preposi-
tional phrase. Thus, without considering informa-
tion of sub-phrases, the decoder may make errors on
phrase reordering.

Contextual information has been widely used to
improve translation performance. It is helpful to re-
duce ambiguity, thus guide the decoder to choose
correct translation for a source text. Several re-
searchers observed that word sense disambiguation
improves translation quality on lexical translation
(Carpuat and Wu, 2007; Chan et al., 2007). These
methods utilized contextual features to determine
the correct meaning of a source word, thus help an
SMT system choose an appropriate target transla-
tion.

Zens and Ney (2006) and Xiong et al. (2006)
utilized contextual information to improve phrase
reordering. They addressed phrase reordering as
a two-class classification problem that translating
neighboring phrases serially or inversely. They built
a maximum entropy (MaxEnt) classifier based on
boundary words to predict the order of neighboring
phrases.

He et al. (2008) presented a lexicalized rule selec-
tion model to improve both lexical translation and
phrase reordering for HPB translation. They built
a MaxEnt model for each ambiguous source side
based on contextual features. The method was also
successfully applied to improve syntax-based SMT
translation (Liu et al., 2008), using more sophisti-
cated syntactical features. Shen et al. (2008) inte-
grated various contextual and linguistic features into
an HPB system, using surrounding words and de-
pendency information for building context and de-
pendency language models, respectively.

In this paper, we focus on improving phrase re-
ordering for HPB translation. We classify SCFG
rules into several reordering patterns consisting of
two variablesX andF (or E) 1, such asX1FX2

andX2EX1. We treat phrase reordering as a classi-
fication problem and build a MaxEnt model for each
source reordering pattern based on various contex-

1We useF andE to represent source and target words, re-
spectively.

tual features. We propose a method to integrate the
MaxEnt models into an HPB system. Specifically:

• For hierarchical rules, we classify the source-
side and the target-side into 7 and 17 reordering
patterns, respectively. Target reordering pat-
terns are treated as possible labels. We then
build a classifier for each source pattern to pre-
dict phrase reorderings. This is different from
He et al. (2008), in which they built a clas-
sifier for each ambiguous hierarchical source-
side. Therefore, the training examples for each
MaxEnt model is small and the model maybe
unstable. Here, we classify source hierarchical
phrases into 7 reordering patterns according to
the arrangement of words and variables. We
can obtain sufficient samples for each MaxEnt
model from large-scale bilingual corpus.

• For glue rules, we extend the HPB model by
using bracketing transduction grammar (BTG)
(Wu, 1996) instead of the monotone glue rule.
By doing this, there are two options for the de-
coder to merge phrases: serial or inverse. We
then build a classifier for glue rules to predict
reorderings of neighboring phrases, analogous
to Xiong et al. (2006).

• We integrate the MaxEnt based phrase reorder-
ing models as features into the HPB model
(Chiang, 2005). The feature weights can be
tuned together with other feature functions by
MERT algorithm (Och, 2003).

Experimental results show that the presented method
achieves significant improvement over the baseline.
On Chinese-to-English translation tasks of NIST
evluation, improvements in BLEU (case-insensitive)
are 1.2 on MT06 GALE set, 1.8 on MT06 NIST set,
and 2.1 on MT08.

The rest of the paper is structured as follows: Sec-
tion 2 describes the MaxEnt based phrase reorder-
ing method. Section 3 integrates the MaxEnt mod-
els into the translation model. In Section 4, we re-
port experimental results. We analyze the presented
method and experimental results in Section 5 and
conclude in Section 6.
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Source phrase Target phrase
X and

X Ú with X

betweenX and

Figure 1: A source hierarchical phrase and its corre-
sponding target translation.

2 MaxEnt based Phrase Reordering

We regard phrase reordering as a pattern classifica-
tion problem. A reordering pattern indicates an ar-
rangement of words and variables. Although there
are a large amount of hierarchical rules may be ex-
tracted from bilingual corpus, these rules can be
classified into several reordering patterns (Section
2.1). In addition, we extend the HPB model with
BTG, that adding an inverted glue rule to merge
phrases inversely (Section 2.2). Therefore, the glue
rules are classified into two patterns: serial or in-
verse. We then build a MaxEnt phrase reordering
(MEPR) classifier for each source reordering pattern
(Section 2.3). In Section 2.4, we describe contextual
features.

2.1 Reordering Pattern Classification for
Hierarchical Rule

Hierarchical rule, consisting of both words and vari-
ables, is of great importance for the HPB model.
During decoding, words are used for lexical trans-
lation, and variables capture phrase reordering. We
may learn millions of hierarchical rules from a bilin-
gual corpus. Although these rules are different from
each other, they can be classified into several re-
ordering patterns according to the arrangement of
variables and words.

In this paper, we follow the constraint as de-
scribed in (Chiang, 2005) that a hierarchical rule
can have at most two variables and they cannot be
adjacent on the source side. We use “X” to rep-
resent the variable, and “F ” and “E” to represent
word strings in source and target language, respec-
tively. Therefore, in a hierarchical rule,E is the lex-
ical translation ofF , while the order ofX andE

contains phrase reordering information.
For the hierarchical rule that contains one vari-

able (see Figure 1 for example), both the source and
the target phrases can be classified into three pat-

Source pattern Target pattern
XF XE

FX EX

FXF EXE

Table 2: A classification of the source side and the target
side for the hierarchical rule that contains one variable.

Source pattern Target pattern
X1EX2

X2EX1

X1X2E

X2X1E

EX1X2

X1FX2 EX2X1

X1FX2F X1EX2E

FX1FX2 X2EX1E

FX1FX2F EX1X2E

EX2X1E

EX1EX2

EX2EX1

EX1EX2E

EX2EX1E

Table 3: A classification of the source side and the target
side for the hierarchical rule that contains two variables.

terns (Table 2). To reduce the complexity of clas-
sification, we do not distinguish the order of word
strings. For example, we consider “e1Xe2” and
“e2Xe1” as the same pattern “EXE”, because the
target words are determined by lexical translation of
source words. Our focus is the order betweenX and
E. During decoding the phrases covered byX are
dynamically changed and the contextual information
of these phrases is ignored for pattern-matching of
hierarchical rules.

Analogously, for the hierarchical rule that con-
tains two variables, the source phrases are classified
into 4 patterns, while the target phrases are classified
into 14 patterns, as shown in Table 3. The pattern
number on the source side is less than that on the
target side, because on the source side, “X1” always
appears before “X2”, and they cannot be adjacent.
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2.2 Reordering Pattern Classification for Glue
Rule

The HPB model used glue rule to combine phrases
serially. The reason is that in some cases, there are
no valid translation rules that cover a source span.
Therefore, the glue rule provides a default monotone
combination of phrases in order to complete a trans-
lation. This is not sufficient because in certain cases,
the order of phrases may be inverted on the target-
side.

In this paper, we extend the glue rule with BTG
(Wu, 1996), which consists of three types of rules:

X → 〈f̃ , ẽ〉 (3)

X → 〈X1X2, X1X2〉 (4)

X → 〈X1X2, X2X1〉 (5)

Rule 3 is a phrasal rule that translates a source
phrasef̃ into a target phrasẽe. Rule 4 merges two
consecutive phrases in monotone order, while Rule
5 merges them in inverted order. During decod-
ing, the decoder first uses Rule 3 to produce phrase
translation, and then iteratively uses Rule 4 and 5 to
merge two neighboring phrases into a larger phrase
until the whole sentence is covered.

We replace the original glue rules in the HPB
model with BTG rules (see Table 4). We believe
that the extended HPB model can benefit from BTG
in the following aspects:

• In the HPB model, as we mentioned, hierarchi-
cal rules are constrained in that nonterminals
cannot be adjacent on the source side, i.e., the
source side cannot contain “X1X2”. One rea-
son is that it will heavily increase the rule table
size. The other reason is that it can cause a spu-
rious ambiguity problem (Chiang, 2005). The
inverted glue rule in BTG, however, can solve
this problem.

• In the HPB model, only a monotone glue rule
is provided to merge phrases serially. In the ex-
tended HPB model, the combination of phrases
is classified into two types: monotone and in-
verse.

Analogous to Xiong et al. (2006), to perform
context-dependent phrase reordering, we build a

Glue Rule Extended Glue Rule
S → 〈X, X〉 S → 〈X, X〉

S → 〈SX, SX〉 X → 〈X1X2, X1X2〉
- X → 〈X1X2, X2X1〉

Table 4: Extending the glue rules in the HPB model with
BTG.

MaxEnt based classifier for glue rules to predict the
order of two neighboring phrases. In this paper, we
utilize more contextual features.

2.3 The MaxEnt based Phrase Reordering
Classifier

As described above, we classified phrase reorderings
into several patterns. Therefore, phrase reordering
can be regarded as a classification problem: for each
source reordering pattern, we treat the correspond-
ing target reordering patterns as labels.

We build a general classification model within the
MaxEnt framework:

Pme(Tγ |Tα, α, γ) =

exp(
∑

i λihi(γ, α, f(X), e(X))
∑

Tγ
exp(

∑
i λihi(γ, α, f(X), e(X))

(6)

where,α andγ are the source and target side, re-
spectively. Tα/Tγ is the reordering pattern ofα/γ.
f(X) ande(X) are the phrases that covered byX

one the source and target side, respectively. Given
a source phrase, the model predicts a target reorder-
ing pattern, considering various contextual features
(Section 2.4).

According to the classification of reordering pat-
terns, there are 3 kinds of classifiers:

• P hr1
me includes 3 classifiers for the hierarchical

rules that contain 1 variable. Each of the clas-
sifier has 3 labels;

• P hr2
me includes 4 classifiers for the hierarchical

rules that contain 2 variables. Each of the clas-
sifier has 14 labels;

• P gr
me includes 1 classifier for the glue rules. The

classifier has 2 labels that predict a monotone
or inverse order for two neighboring phrases.
This classifier is analogous to (Xiong et al.,
2006).
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There are 8 classifiers in total. This is much fewer
than the classifiers in He et al. (2008), in which a
classifier was built for each ambiguous hierarchical
source side. In this way, a classifier may face the
risk that there are not enough samples for training a
stable MaxEnt model. While our approach is more
generic, rather than training a MaxEnt model for a
specific hierarchical source side, we train a model
for a source reordering pattern. Thus, we reduce the
number of classifiers and can extract large training
examples for each classifier.

2.4 Feature definition

For a reordering pattern pair〈Tα, Tγ〉, we design
three feature functions for phrase reordering classi-
fiers:

• Source lexical feature, including boundary
words and neighboring words. Boundary
words are the left and right word of the source
phrases covered byf(X), while neighboring
words are the words that immediately to the left
and right of a source phrasef(α);

• Part-of-Speech (POS) feature, POS tags of the
boundary and neighboring words on the source
side.

• Target lexical feature, the boundary words of
the target phrases covered bye(X).

These features can be extracted together with
translation rules from bilingual corpus. However,
since the hierarchical rule does not allow for adja-
cent variables on the source side, we extract features
for P gr

me by using the method described in Xiong et
al. (2006). We train the classifiers with a MaxEnt
trainer (Zhang, 2004).

3 Integrating the MEPR Classifier into the
HPB Model

The HPB model is built within the standard log-
linear framework (Och and Ney, 2002):

Pr(e|f) ∝
∑

i

λihi(α, γ) (7)

wherehi(α, γ) is a feature function andλi is the
weight ofhi. The HPB model has the following fea-
tures: translation probabilitiesp(γ|α) and p(α|γ),

lexical weightspw(γ|α) andpw(α|γ), word penalty,
phrase penalty, glue rule penalty, and a targetn-
gram language model.

To integrate the MEPR classifiers into the transla-
tion model, the features of the log-linear model are
changed as follows:

• We add the MEPR classifier as a feature func-
tion to predict reordering pattern:

hme(Tγ |Tα) =
∑

Pme(Tγ |Tα, α, γ) (8)

During decoding, we first classify each source
phrase into one of the 8 source reordering pat-
terns and then use the corresponding MEPR
classifier to predict the possible target reorder-
ing pattern. Therefore, the contextual informa-
tion guides the decoder to perform phrase re-
ordering.

• We split the “glue rule penalty” into two fea-
tures: monotone glue rule number and inverted
glue rule number. These features reflect pref-
erence of the decoder for using monotone or
inverted glue rules.

The advantage of our extension method is that the
weights of the new features can be tuned together
with the other features by MERT algorithm (Och,
2003).

We utilize a standard CKY algorithm for decod-
ing. Given a source sentence, the decoder searches
the best derivation from the bottom to top. For a
source span[j1, j2], the decoder uses three kinds of
rules: translation rules produce lexical translation
and phrase reordering (for hierarchical rules), mono-
tone rule merges any neighboring sub-spans[j1, k]
and[k + 1, j2] serially, and inverted rule swap them.
Note that when the decoder uses the monotone and
inverted glue rule to combine sub-spans, it merges
phrases that do not contain variables. Because the
CKY algorithm guarantees that the sub spans[j1, k]
and[k + 1, j2] have been translated before[j1, j2].
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4 Experiments

We carried out experiments on four systems:

• HPB: replication of the Hiero system (Chiang,
2005);

• HPB+MEHR: HPB with MaxEnt based classi-
fier for hierarchical rules, as described in Sec-
tion 2.1;

• HPB+MEGR: HPB with MaxEnt based classi-
fier for glue rules, as described in Section 2.2;

• HPB+MER: HPB with MaxEnt based classifier
for both hierarchical and glue rules.

All systems were tuned on NIST MT03 and tested
on MT06 and MT08. The evaluation metric was
BLEU (Papineni et al., 2002) with case-insensitive
matching ofn-grams, wheren = 4.

We evaluated our approach on Chinese-to-
English translation. The training data contained
77M Chinese words and 81M English words.
These data come from 17 corpora: LDC2002E18,
LDC2002L27, LDC2002T01, LDC2003E07,
LDC2003E14, LDC2004T07, LDC2005E83,
LDC2005T06, LDC2005T10, LDC2005T34,
LDC2006E24, LDC2006E26, LDC2006E34,
LDC2006E86, LDC2006E92, LDC2006E93,
LDC2004T08 (HKNews, HK Hansards).

To obtain word alignments, we first ran GIZA++
(Och and Ney, 2000) in both translation directions
and then refined the results using the “grow-diag-
final” method (Koehn et al., 2003). For the lan-
guage model, we used the SRI Language Modeling
Toolkit (Stolcke, 2002) to train two 4-gram models
on the Xinhua portion of the GigaWord corpus and
the English side of the training corpus.

4.1 Statistical Information of Rules

Hierarchical Rules
We extracted 162M translation rules from the train-
ing corpus. Among them, there were 127M hi-
erarchical rules, which contained 85M hierarchical
source phrases. We classified these source phrases
into 7 patterns as described in Section 2.1. Table
5 shows the statistical information. We observed
that the most frequent source pattern is “FXF ”,

Source Pattern Percentage (%)
XF 9.7
FX 9.7

FXF 46.1
X1FX2 3.7

X1FX2F 11.9
FX1FX2 11.8

FX1FX2F 7.1

Table 5: Statistical information of reordering pattern clas-
sification for hierarchical source phrases.

# Source
Target (%) FX XF FXF

EX 82.8 7 4.6
XE 6.4 82.4 2.9

EXE 10.8 10.6 92.5

Table 6: Percentage of target reordering pattern for each
source pattern containing one variable.

which accounted for 46.1% of the total. Interest-
ingly, “X1FX2”, accounting for 3.7%, was the least
frequent pattern. Table 6 and Table 7 show the
distributions of reordering patterns for hierarchical
source phrases that contain one and two variables,
respectively. From both the tables, we observed
that for Chinese-to-English translation, the most fre-
quent “reordering” pattern for a source phrase is
monotone translation (bold font in the tables).

Glue Rules
To train a MaxEnt classifier for glue rules, we ex-
tracted 65.8M reordering (monotone and inverse)
instances from the training data, using the algo-
rithm described in Xiong et al. (2006). There were
63M monotone instances, accounting for 95.7%. Al-
though instances of inverse reordering accounted for
4.3%, they are important for phrase reordering.

4.2 Results

Table 8 shows the BLEU scores and decoding speed
of the four systems on MT06 (GALE set and NIST
set) and MT08. From the table, we made the follow-
ing observations:
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# Source
Target (%) FX1FX2 FX1FX2F X1FX2 X1FX2F

EX1EX2 78.1 3.6 4.6 1.2
EX1EX2E 2.1 75.9 0.1 1.6

EX1X2 6.8 0.1 2.8 0.1
EX1X2E 1.8 11.2 0.1 2
EX2EX1 2.8 1.4 2 1.2

EX2EX1E 1.4 2.3 0.7 1.1
EX2X1 0.9 0.1 2.2 0.2

EX2X1E 1 1.1 0.9 1.0
X1EX2 1.9 0.1 71.2 3.3

X1EX2E 0.7 2.1 6 78.4
X1X2E 0.1 0.1 2.8 5.9
X2EX1 0.9 0.4 1.6 0.7

X2EX1E 1.5 1.5 2.6 2.4
X2X1E 0.1 0.04 2.2 0.8

Table 7: Percentage of target reordering pattern for each source pattern containing two variables.

System
Test Data

Speed
06G 06N 08

HPB 14.19 33.93 25.85 8.7
HPB+MEHR 14.76 34.95 26.56 3.2
HPB+MEGR 15.09 35.72 27.34 2.7
HPB+MER 15.42 35.80 27.94 1.7

Table 8: BLEU percentage scores and translation speed (words/second) on test data. G=GALE set, N=NIST set. All
improvements are statistically significant (p < 0.01). Note that MT06G has one reference for each source sentence,
while the MT06N and MT08 have four references.

• The HPB+MEHR system achieved significant
improvements on all test sets compared to the
HPB system. The absolute increases in BLEU
scores ranging from 0.6 (on 06G) to 1.0 (on
06N) percentage points. This indicates that the
ME based reordering for hierarchical rules im-
proves translation performance.

• The HPB+MEGR system achieved significant
improvements over the HPB system. The ab-
solute increases in BLEU scores ranging from
0.9 (on 06G) to 1.8 (on 06N) percentage points.
The HPB+MEGR system overcomes the short-
coming of the HPB system by using both
monotone glue rule and inverted glue rule,
which merging phrases serially and inversely,
respectively. Furthermore, the HPB+MEGR
system outperformed the HPB+MEHR system.

• The HPB+MER system achieved the best per-
formances on all test sets, with absolute in-
creases of BLEU scores ranging from 1.2 (on
06G) to 2.1 (on 08). The system combin-
ing with ME based reordering for both hier-
archical and glue rules, outperformed both the
HPB+MEHR and HPB+MEGR systems.

• In addition, we found that the decoder takes
more time after adding the MEPR models (the
speed column of Table 8). The average transla-
tion speed of HPB+MER (1.7 words/second) is
about 5 times slower than the HPB system (8.7
words/second). One reason is that the MEPR
models utilized contextual information to com-
pute classification scores. Another reason is
that adding inverted glue rules increases search
space.
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5 Analysis

Experiments showed that the presented approach
achieved significant gains on BLEU scores. Further-
more, we sought to explore what would happen af-
ter integrating the MEPR classifiers into the transla-
tion model. We compared the outputs of HPB and
HPB+MER and observed that the translation perfor-
mance are improved on phrase reordering. For ex-
ample, the translations of a source sentence in MT08
are as follows2:

• Src: ¸I1 �?2 þ��3 .4 m©5 éÄ6

é7 �m8 Jø9 40�10 ë11 ��12 �13 �

Ï14 Oy15

• Ref: At the end4 of last3 month3, the
South1 Korean1 government2 began5 a plan15
to provide9 400,00010 tonnes11 of rice12 as
aid14 to North8 Korea8

• HPB: South Korean government late last
month to start with 400,000 tons of rice aid to
the DPRK

• HPB+MER : Start at the end of last month,
South Korean government plans to provide
400,000 tons of rice in aid to the DPRK

The most obvious error that the baseline system
makes is the order of the time expression “þ��

., the end of last month”, which should be either
at the beginning or the end on target side. However,
the baseline produced a monotone translation by us-
ing the rule “̧ I �? X1, South Korean govern-
ment X1”. The HPB+MER system, however, moved
the time expression to the beginning of the sentence
by using the rule “̧ I �? X1, X1 South Ko-
rean government’. The reason is that the MaxEnt
phrase reordering classifier uses the contextual fea-
tures (e.g. the boundary words) of the phrase cov-
ered byX1 to predict the phrase reordering asX1E

for the source phraseFX1.

2The co-indexes of the words in the source and reference
sentence indicate word alignments.

6 Conclusions and Future Work

In this paper, we have proposed a MaxEnt based
phrase reordering approach to help the HPB decoder
select reordering patterns. We classified hierarchical
rules into 7 reordering patterns on the source side
and 17 reordering patterns on the target side. In ad-
dition, we introduced BTG to enhance the reorder-
ing of neighboring phrases and classified the glue
rules into two patterns. We trained a MaxEnt clas-
sifier for each reordering pattern and integrated it
into a standard HPB system. Experimental results
showed that the proposed approach achieved signif-
icant improvements over the baseline. The absolute
improvements in BLEU range from 1.2 to 2.1.

MaxEnt based phrase reordering provides a mech-
anism to incorporate various features into the trans-
lation model. In this paper, we only use a few fea-
ture sets based on standard contextual word and POS
tags. We believe that additional features will fur-
ther improve translation performance. Such features
could include syntactical features (Chiang et al.,
2009). In the future, we will carry out experiments
on deeper features and evaluate the effects of differ-
ent feature sets.
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Abstract

We present the first evaluation of the utility of
automatic evaluation metrics on surface real-
izations of Penn Treebank data. Using outputs
of the OpenCCG and XLE realizers, along
with ranked WordNet synonym substitutions,
we collected a corpus of generated surface re-
alizations. These outputs were then rated and
post-edited by human annotators. We eval-
uated the realizations using seven automatic
metrics, and analyzed correlations obtained
between the human judgments and the auto-
matic scores. In contrast to previous NLG
meta-evaluations, we find that several of the
metrics correlate moderately well with human
judgments of both adequacy and fluency, with
the TER family performing best overall. We
also find that all of the metrics correctly pre-
dict more than half of the significant system-
level differences, though none are correct in
all cases. We conclude with a discussion of the
implications for the utility of such metrics in
evaluating generation in the presence of varia-
tion. A further result of our research is a cor-
pus of post-edited realizations, which will be
made available to the research community.

1 Introduction and Background

In building surface-realization systems for natural
language generation, there is a need for reliable
automated metrics to evaluate the output. Unlike
in parsing, where there is usually a single gold-
standard parse for a sentence, in surface realization
there are usually many grammatically-acceptable
ways to express the same concept. This parallels
the task of evaluating machine-translation (MT) sys-
tems: for a given segment in the source language,

there are usually several acceptable translations into
the target language. As human evaluation of trans-
lation quality is time-consuming and expensive, a
number of automated metrics have been developed
to evaluate the quality of MT outputs. In this study,
we investigate whether the metrics developed for
MT evaluation tasks can be used to reliably evaluate
the outputs of surface realizers, and which of these
metrics are best suited to this task.

A number of surface realizers have been devel-
oped using the Penn Treebank (PTB), and BLEU

scores are often reported in the evaluations of these
systems. But how useful is BLEU in this con-
text? The original BLEU study (Papineni et al.,
2001) scored MT outputs, which are of generally
lower quality than grammar-based surface realiza-
tions. Furthermore, even for MT systems, the
usefulness of BLEU has been called into question
(Callison-Burch et al., 2006). BLEU is designed to
work with multiple reference sentences, but in tree-
bank realization, there is only a single reference sen-
tence available for comparison.

A few other studies have investigated the use of
such metrics in evaluating the output of NLG sys-
tems, notably (Reiter and Belz, 2009) and (Stent et
al., 2005). The former examined the performance of
BLEU and ROUGE with computer-generated weather
reports, finding a moderate correlation with human
fluency judgments. The latter study applied sev-
eral MT metrics to paraphrase data from Barzilay
and Lee’s corpus-based system (Barzilay and Lee,
2003), and found moderate correlations with human
adequacy judgments, but little correlation with flu-
ency judgments. Cahill (2009) examined the perfor-
mance of six MT metrics (including BLEU) in evalu-
ating the output of a LFG-based surface realizer for
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German, also finding only weak correlations with
the human judgments.

To study the usefulness of evaluation metrics such
as BLEU on the output of grammar-based surface
realizers used with the PTB, we assembled a cor-
pus of surface realizations from three different re-
alizers operating on Section 00 of the PTB. Two
human judges evaluated the adequacy and fluency
of each of the realizations with respect to the ref-
erence sentence. The realizations were then scored
with a number of automated evaluation metrics de-
veloped for machine translation. In order to investi-
gate the correlation of targeted metrics with human
evaluations, and gather other acceptable realizations
for future evaluations, the judges manually repaired
each unacceptable realization during the rating task.
In contrast to previous NLG meta-evaluations, we
found that several of the metrics correlate moder-
ately well with human judgments of both adequacy
and fluency, with the TER family performing best.
However, when looking at statistically significant
system-level differences in human judgments, we
found that some of the metrics get some of the rank-
ings correct, but none get them all correct, with dif-
ferent metrics making different ranking errors. This
suggests that multiple metrics should be routinely
consulted when comparing realizer systems.

Overall, our methodology is similar to that of
previous MT meta-evaluations, in that we collected
human judgments of system outputs, and com-
pared these scores with those assigned by auto-
matic metrics. A recent alternative approach to para-
phrase evaluation is ParaMetric (Callison-Burch et
al., 2008); however, it requires a corpus of annotated
(aligned) paraphrases (which does not yet exist for
PTB data), and is arguably focused more on para-
phrase analysis than paraphrase generation.

The plan of the paper is as follows: Section 2 dis-
cusses the preparation of the corpus of surface real-
izations. Section 3 describes the human evaluation
task and the automated metrics applied. Sections 4
and 5 present and discuss the results of these evalua-
tions. We conclude with some general observations
about automatic evaluation of surface realizers, and
some directions for further research.

2 Data Preparation

We collected realizations of the sentences in Sec-
tion 00 of the WSJ corpus from the following three
sources:

1. OpenCCG, a CCG-based chart realizer (White,
2006)

2. The XLE Generator, a LFG-based system de-
veloped by Xerox PARC (Crouch et al., 2008)

3. WordNet synonym substitutions, to investigate
how differences in lexical choice compare to
grammar-based variation.1

Although all three systems used Section 00 of
the PTB, they were applied with various parame-
ters (e.g., language models, multiple-output versus
single-output) and on different input structures. Ac-
cordingly, our study does not compare OpenCCG to
XLE, or either of these to the WordNet system.

2.1 OpenCCG realizations

OpenCCG is an open source parsing/realization
library with multimodal extensions to CCG
(Baldridge, 2002). The OpenCCG chart realizer
takes logical forms as input and produces strings
by combining signs for lexical items. Alternative
realizations are scored using integrated n-gram
and perceptron models. For robustness, fragments
are greedily assembled when necessary. Realiza-
tions were generated from 1,895 gold standard
logical forms, created by constrained parsing of
development-section derivations. The following
OpenCCG models (which differ essentially in the
way the output is ranked) were used:

1. Baseline 1: Output ranked by a trigram word
model

2. Baseline 2: Output ranked using three language
models (3-gram words + 3-gram words with
named entity class replacement + factored lan-
guage model of words, POS tags and CCG su-
pertags)

1Not strictly surface realizations, since they do not involve
an abstract input specification, but for simplicity we refer to
them as realizations throughout.
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3. Baseline 3: Perceptron with syntax features and
the three LMs mentioned above

4. Perceptron full-model: n-best realizations
ranked using perceptron with syntax features
and the three n-gram models, as well as dis-
criminative n-grams

The perceptron model was trained on sections 02-
21 of the CCGbank, while a grammar extracted from
section 00-21 was used for realization. In addition,
oracle supertags were inserted into the chart during
realization. The purpose of such a non-blind test-
ing strategy was to evaluate the quality of the output
produced by the statistical ranking models in isola-
tion, rather than focusing on grammar coverage, and
avoid the problems associated with lexical smooth-
ing, i.e. lexical categories in the development sec-
tion not being present in the training section.

To enrich the variation in the generated realiza-
tions, dative-alternation was enforced during real-
ization by ensuring alternate lexical categories of the
verb in question, as in the following example:

(1) the executives gave [the chefs] [a stand-
ing ovation]

(2) the executives gave [a standing ovation]
[to the chefs]

2.2 XLE realizations

The corpus of realizations generated by the XLE
system contained 42,527 surface realizations of ap-
proximately 1,421 section 00 sentences (an aver-
age of 30 per sentence), initially unranked. The
LFG f-structures used as input to the XLE genera-
tor were derived from automatic parses, as described
in (Riezler et al., 2002). The realizations were
first tokenized using Penn Treebank conventions,
then ranked using perplexities calculated from the
same trigram word model used with OpenCCG. For
each sentence, the top 4 realizations were selected.
The XLE generator provides an interesting point
of comparison to OpenCCG as it uses a manually-
developed grammar with inputs that are less abstract
but potentially noisier, as they are derived from au-
tomatic parses rather than gold-standard ones.

2.3 WordNet synonymizer

To produce an additional source of variation, the
nouns and verbs of the sentences in section 00 of
the PTB were replaced with all of their WordNet
synonyms. Verb forms were generated using verb
stems, part-of-speech tags, and the morphg tool.2

These substituted outputs were then filtered using
the n-gram data which Google Inc. has made avail-
able.3 Those without any 5-gram matches centered
on the substituted word (or 3-gram matches, in the
case of short sentences) were eliminated.

3 Evaluation

From the data sources described in the previous sec-
tion, a corpus of realizations to be evaluated by the
human judges was constructed by randomly choos-
ing 305 sentences from section 00, then selecting
surface realizations of these sentences using the fol-
lowing algorithm:

1. Add OpenCCG’s best-scored realization.

2. Add other OpenCCG realizations until all four
models are represented, to a maximum of 4.

3. Add up to 4 realizations from either the XLE
system or the WordNet pool, chosen randomly.

The intent was to give reasonable coverage of all
realizer systems discussed in Section 2 without over-
loading the human judges. “System” here means
any instantiation that emits surface realizations, in-
cluding various configurations of OpenCCG (using
different language models or ranking systems), and
these can be multiple-output, such as an n-best list,
or single-output (best-only, worst-only, etc.). Ac-
cordingly, more realizations were selected from the
OpenCCG realizer because 5 different systems were
being represented. Realizations were chosen ran-
domly, rather than according to sentence types or
other criteria, in order to produce a representative
sample of the corpus. In total, 2,114 realizations
were selected for evaluation.

2http://www.informatics.sussex.ac.uk/
research/groups/nlp/carroll/morph.html

3http://www.ldc.upenn.edu/Catalog/docs/
LDC2006T13/readme.txt
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3.1 Human judgments

Two human judges evaluated each surface realiza-
tion on two criteria: adequacy, which represents the
extent to which the output conveys all and only the
meaning of the reference sentence; and fluency, the
extent to which it is grammatically acceptable. The
realizations were presented to the judges in sets con-
taining a reference sentence and the 1-8 outputs se-
lected for that sentence. To aid in the evaluation of
adequacy, one sentence each of leading and trailing
context were displayed. Judges used the guidelines
given in Figure 1, based on the scales developed
by the NIST Machine Translation Evaluation Work-
shop.

In addition to rating each realization on the two
five-point scales, each judge also repaired each out-
put which he or she did not judge to be fully ade-
quate and fluent. An example is shown in Figure 2.
These repairs resulted in new reference sentences for
a substantial number of sentences. These repaired
realizations were later used to calculate targeted ver-
sions of the evaluation metrics, i.e., using the re-
paired sentence as the reference sentence. Although
targeted metrics are not fully automatic, they are of
interest because they allow the evaluation algorithm
to focus on what is actually wrong with the input,
rather than all textual differences. Notably, targeted
TER (HTER) has been shown to be more consistent
with human judgments than human annotators are
with one another (Snover et al., 2006).

3.2 Automatic evaluation

The realizations were also evaluated using seven au-
tomatic metrics:

• IBM’s BLEU, which scores a hypothesis by
counting n-gram matches with the reference
sentence (Papineni et al., 2001), with smooth-
ing as described in (Lin and Och, 2004)

• The NIST n-gram evaluation metric, similar to
BLEU, but rewarding rarer n-gram matches, and
using a different length penalty

• METEOR, which measures the harmonic mean
of unigram precision and recall, with a higher
weight for recall (Banerjee and Lavie, 2005)

• TER (Translation Edit Rate), a measure of the
number of edits required to transform a hy-
pothesis sentence into the reference sentence
(Snover et al., 2006)

• TERP, an augmented version of TER which
performs phrasal substitutions, stemming, and
checks for synonyms, among other improve-
ments (Snover et al., 2009)

• TERPA, an instantiation of TERP with edit
weights optimized for correlation with ade-
quacy in MT evaluations

• GTM (General Text Matcher), a generaliza-
tion of the F-measure that rewards contiguous
matching spans (Turian et al., 2003)

Additionally, targeted versions of BLEU, ME-
TEOR, TER, and GTM were computed by using the
human-repaired outputs as the reference set. The
human repair was different from the reference sen-
tence in 193 cases (about 9% of the total), and we
expected this to result in better scores and correla-
tions with the human judgments overall.

4 Results

4.1 Human judgments

Table 1 summarizes the dataset, as well as the mean
adequacy and fluency scores garnered from the hu-
man evaluation. Overall adequacy and fluency judg-
ments were high (4.16, 3.63) for the realizer sys-
tems on average, and the best-rated realizer systems
achieved mean fluency scores above 4.

4.2 Inter-annotator agreement

Inter-annotator agreement was measured using the
κ-coefficient, which is commonly used to measure
the extent to which annotators agree in category
judgment tasks. κ is defined as P (A)−P (E)

1−P (E) , where
P (A) is the observed agreement between annota-
tors and P (E) is the probability of agreement due
to chance (Carletta, 1996). Chance agreement for
this data is calculated by the method discussed in
Carletta’s squib. However, in previous work in
MT meta-evaluation, Callison-Burch et al. (2007),
assume the less strict criterion of uniform chance
agreement, i.e. 1

5 for a five-point scale. They also
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Score Adequacy Fluency
5 All the meaning of the reference Perfectly grammatical
4 Most of the meaning Awkward or non-native; punctuation errors
3 Much of the meaning Agreement errors or minor syntactic problems
2 Meaning substantially different Major syntactic problems, such as missing words
1 Meaning completely different Completely ungrammatical

Figure 1: Rating scale and guidelines

Ref. It wasn’t clear how NL and Mr. Simmons would respond if Georgia Gulf spurns them again
Realiz. It weren’t clear how NL and Mr. Simmons would respond if Georgia Gulf again spurns them
Repair It wasn’t clear how NL and Mr. Simmons would respond if Georgia Gulf again spurns them

Figure 2: Example of repair

introduce the notion of “relative” κ, which measures
how often two or more judges agreed that A > B,
A = B, or A < B for two outputs A and B, irre-
spective of the specific values given on the five-point
scale; here, uniform chance agreement is taken to be
1
3 . We report both absolute and relative κ in Table 2,
using actual chance agreement rather than uniform
chance agreement.

The κ scores of 0.60 for adequacy and 0.63 for flu-
ency across the entire dataset represent “substantial”
agreement, according to the guidelines discussed in
(Landis and Koch, 1977), better than is typically
reported for machine translation evaluation tasks;
for example, Callison-Burch et al. (2007) reported
“fair” agreement, with κ = 0.281 for fluency and
κ = 0.307 for adequacy (relative). Assuming the
uniform chance agreement that the previously cited
work adopts, our inter-annotator agreements (both
absolute and relative) are still higher. This is likely
due to the generally high quality of the realizations
evaluated, leading to easier judgments.

4.3 Correlation with automatic evaluation

To determine how well the automatic evaluation
methods described in Section 3 correlate with the
human judgments, we averaged the human judg-
ments for adequacy and fluency, respectively, for
each of the rated realizations, and then computed
both Pearson’s correlation coefficient and Spear-
man’s rank correlation coefficient between these
scores and each of the metrics. Spearman’s corre-
lation makes fewer assumptions about the distribu-
tion of the data, but may not reflect a linear rela-

tionship that is actually present. Both are frequently
reported in the literature. Due to space constraints,
we show only Spearman’s correlation, although the
TER family scored slightly better on Pearson’s coef-
ficient, relatively.

The results for Spearman’s correlation are given
in Table 3. Additionally, the average scores for ad-
equacy and fluency were themselves averaged into
a single score, following (Snover et al., 2009), and
the Spearman’s correlation of each of the automatic
metrics with these scores are given in Table 4. All
reported correlations are significant at p < 0.001.

4.4 Bootstrap sampling of correlations

For each of the sub-corpora shown in Table 1, we
computed confidence intervals for the correlations
between adequacy and fluency human scores with
selected automatic metrics (BLEU, HBLEU, TER,
TERP, and HTER) as described in (Koenh, 2004). We
sampled each sub-corpus 1000 times with replace-
ment, and calculated correlations between the rank-
ings induced by the human scores and those induced
by the metrics for each reference sentence. We then
used these coefficients to estimate the confidence in-
terval, after excluding the top 25 and bottom 25 co-
efficients, following (Lin and Och, 2004). The re-
sults of this for the BLEU metric are shown in Table
5. We determined which correlations lay within the
95% confidence interval of the best performing met-
ric in each row of Table Table 3; these figures are
italicized.
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5 Discussion

5.1 Human judgments of systems

The results for the four OpenCCG perceptron mod-
els mostly confirm those reported in (White and Ra-
jkumar, 2009), with one exception: the B-3 model
was below B-2, though the P-B (perceptron-best)
model still scored highest. This may have been due
to differences in the testing scenario. None of the
differences in adequacy scores among the individ-
ual systems are significant, with the exception of the
WordNet system. In this case, the lack of word-
sense disambiguation for the substituted words re-
sults in a poor overall adequacy score (e.g., wage
floor → wage story). Conversely, it scores highest
for fluency, as substituting a noun or verb with a syn-
onym does not usually introduce ungrammaticality.

5.2 Correlations of human judgments with MT
metrics

Of the non-human-targeted metrics evaluated, BLEU

and TER/TERP demonstrate the highest correla-
tions with the human judgments of fluency (r =
0.62, 0.64). The TER family of evaluation metrics
have been observed to perform very well in MT-
evaluation tasks, and although the data evaluated
here differs from typical MT data in some impor-
tant ways, the correlation of TERP with the human
judgments is substantial. In contrast with previous
MT evaluations where TERP performs considerably
better than TER, these scored close to equal on our
data, possibly because TERP’s stem, synonym, and
paraphrase matching are less useful when most of
the variation is syntactic.

The correlations with BLEU and METEOR are
lower than those reported in (Callison-Burch et al.,
2007); in that study, BLEU achieved adequacy and
fluency correlations of 0.690 and 0.722, respec-
tively, and METEOR achieved 0.701 and 0.719. The
correlations for these metrics might be expected to
be lower for our data, since overall quality is higher,
making the metrics’ task more difficult as the out-
puts involve subtler differences between acceptable
and unacceptable variation.

The human-targeted metrics (represented by the
prefixed H in the data tables) correlated even more
strongly with the human judgments, compared to the
non-targeted versions. HTER demonstrated the best

correlation with realizer fluency (r = 0.75).
For several kinds of acceptable variation involv-

ing the rearrangement of constituents (such as da-
tive shift), TERP gives a more reasonable score than
BLEU, due to its ability to directly evaluate phrasal
shifts. The following realization was rated 4.5 for
fluency, and was more correctly ranked by TERP

than BLEU:

(3) Ref: The deal also gave Mitsui access to
a high-tech medical product.

(4) Realiz.: The deal also gave access to a
high-tech medical product to Mitsui.

For each reference sentence, we compared the
ranking of its realizations induced from the human
scores to the ranking induced from the TERP score,
and counted the rank errors by the latter, infor-
mally categorizing them by error type (see Table
7). In the 50 sentences with the highest numbers of
rank errors, 17 were affected by punctuation differ-
ences, typically involving variation in comma place-
ment. Human fluency judgments of outputs with
only punctuation problems were generally high, and
many realizations with commas inserted or removed
were rated fully fluent by the annotators. However,
TERP penalizes such insertions or deletions. Agree-
ment errors are another frequent source of rank-
ing errors for TERP. The human judges tended to
harshly penalize sentences with number-agreement
or tense errors, whereas TERP applies only a single
substitution penalty for each such error. We expect
that with suitable optimization of edit weights to
avoid over-penalizing punctuation shifts and under-
penalizing agreement errors, TERP would exhibit an
even stronger correlation with human fluency judg-
ments.

None of the evaluation metrics can distinguish an
acceptable movement of a word or constituent from
an unacceptable movement, with only one reference
sentence. A substantial source of error for both
TERP and BLEU is variation in adverbial placement,
as shown in (7).

Similar errors are seen with prepositional phrases
and some commonly-occurring temporal adverbs,
which typically admit a number of variations in
placement. Another important example of accept-
able variation which these metrics do not generally
rank correctly is dative alternation:
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(7)

Ref. We need to clarify what exactly is wrong with it.
Realiz. Flu. TERP BLEU

We need to clarify exactly what is wrong with it. 5 0.1 0.5555
We need to clarify exactly what ’s wrong with it. 5 0.2 0.4046
We need to clarify what , exactly , is wrong with it. 5 0.2 0.5452
We need to clarify what is wrong with it exactly. 4.5 0.1 0.6756
We need to clarify what exactly , is wrong with it. 4 0.1 0.7017
We need to clarify what , exactly is wrong with it. 4 0.1 0.7017
We needs to clarify exactly what is wrong with it. 3 0.103 0.346

(5) Ref. When test booklets were passed
out 48 hours ahead of time, she says she
copied questions in the social studies sec-
tion and gave the answers to students.

(6) Realiz. When test booklets were passed
out 48 hours ahead of time , she says she
copied questions in the social studies sec-
tion and gave students the answers.

The correlations of each of the metrics with the
human judgments of fluency for the realizer systems
indicate at least a moderate relationship, in contrast
with the results reported in (Stent et al., 2005) for
paraphrase data, which found an inverse correlation
for fluency, and (Cahill, 2009) for the output of a sur-
face realizer for German, which found only a weak
correlation. However, the former study employed
a corpus-based paraphrase generation system rather
than grammar-driven surface realizers, and the re-
sulting paraphrases exhibited much broader varia-
tion. In Cahill’s study, the outputs of the realizer
were almost always grammatically correct, and the
automated evaluation metrics were ranking marked-
ness instead of grammatical acceptability.

5.3 System-level comparisons
In order to investigate the efficacy of the metrics
in ranking different realizer systems, or competing
realizations from the same system generated using
different ranking models, we considered seven dif-
ferent “systems” from the whole dataset of realiza-
tions. These consisted of five OpenCCG-based re-
alizations (the best realization from three baseline
models, and the best and the worst realization from
the full perceptron model), and two XLE-based sys-
tems (the best and the worst realization, after rank-
ing the outputs of the XLE realizer with an n-gram
model). The mean of the combined adequacy and

fluency scores of each of these seven systems was
compared with that of every other system, result-
ing in 21 pairwise comparisons. Then Tukey’s HSD
test was performed to determine the systems which
differed significantly in terms of the average ade-
quacy and fluency rating they received.4 The test
revealed five pairwise comparisons where the scores
were significantly different.

Subsequently, for each of these systems, an over-
all system-level score for each of the MT metrics
was calculated. For the five pairwise comparisons
where the adequacy-fluency group means differed
significantly, we checked whether the metric ranked
the systems correctly. Table 8 shows the results of
a pairwise comparison between the ranking induced
by each evaluation metric, and the ranking induced
by the human judgments. Five of the seven non-
targeted metrics correctly rank more than half of the
systems. NIST, METEOR, and GTM get the most
comparisons right, but neither NIST nor GTM cor-
rectly rank the OpenCCG-baseline model 1 with re-
spect to the XLE-best model. TER and TERP get two
of the five comparisons correct, and they incorrectly
rank two of the five OpenCCG model comparisons,
as well as the comparison between the XLE-worst
and OpenCCG-best systems.

For the targeted metrics, HNIST is correct for all
five comparisons, while neither HBLEU nor HME-
TEOR correctly rank all the OpenCCG models. On
the other hand, HTER and HGTM incorrectly rank the
XLE-best system versus OpenCCG-based models.

In summary, some of the metrics get some of the
rankings correct, but none of the non-targeted met-
rics get all of them correct. Moreover, different met-
rics make different ranking errors. This argues for

4This particular test was chosen since it corrects for multiple
post-hoc analyses conducted on the same data-set.
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the use of multiple metrics in comparing realizer
systems.

6 Conclusion

Our study suggests that although the task of evalu-
ating the output from realizer systems differs from
the task of evaluating machine translations, the au-
tomatic metrics used to evaluate MT outputs deliver
moderate correlations with combined human fluency
and adequacy scores when used on surface realiza-
tions. We also found that the MT-evaluation met-
rics are useful in evaluating different versions of the
same realizer system (e.g., the various OpenCCG re-
alization ranking models), and finding cases where
a system is performing poorly. As in MT-evaluation
tasks, human-targeted metrics have the highest cor-
relations with human judgments overall. These re-
sults suggest that the MT-evaluation metrics are use-
ful for developing surface realizers. However, the
correlations are lower than those reported for MT
data, suggesting that they should be used with cau-
tion, especially for cross-system evaluation, where
consulting multiple metrics may yield more reliable
comparisons. In our study, the targeted version of
TERP correlated most strongly with human judg-
ments of fluency.

In future work, the performance of the TER family
of metrics on this data might be improved by opti-
mizing the edit weights used in computing its scores,
so as to avoid over-penalizing punctuation move-
ments or under-penalizing agreement errors, both
of which were significant sources of ranking errors.
Multiple reference sentences may also help mitigate
these problems, and the corpus of human-repaired
realizations that has resulted from our study is a step
in this direction, as it provides multiple references
for some cases. We expect the corpus to also prove
useful for feature engineering and error analysis in
developing better realization models.5
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Type System #Refs #Paraphrases Average Paraphrases/Ref #Exact Matches Adq Flu
Single output OpenCCG Baseline 1 296 296 1.0 72 4.17 3.65

OpenCCG Baseline 2 296 296 1.0 82 4.34 3.94
OpenCCG Baseline 3 296 296 1.0 76 4.31 3.86
OpenCCG Perceptron Best 296 1.0 1.0 112 4.37 4.09
OpenCCG Perceptron Worst 117 117 1.0 5 4.34 3.36
XLE Best 154 154 1.0 24 4.41 4.07
XLE Worst 157 157 1.0 13 4.08 3.73

Multiple output OpenCCG-Perceptron All 296 767 2.6 158 4.45 3.91
OpenCCG All 296 1131 3.8 162 4.20 3.61
XLE All 174 557 3.2 54 4.17 3.81
Wordnet Subsitutions 162 486 3.0 0 3.66 4.71
Realizer All 296 1628 5.0 169 4.16 3.63
All 296 2114 7.1 169 4.05 3.88

Table 1: Descriptive statistics

System Adq Flu
p(A) p(E) κ p(A) p(E) κ

OpenCCG-Abs 0.73 0.47 0.48 0.70 0.24 0.61
OpenCCG-Rel 0.76 0.47 0.54 0.76 0.34 0.64
XLE-Abs 0.68 0.42 0.44 0.69 0.27 0.58
XLE-Rel 0.73 0.45 0.50 0.69 0.37 0.50
Wordnet-Abs 0.57 0.25 0.43 0.77 0.66 0.33
Wordnet-Rel 0.74 0.34 0.61 0.73 0.60 0.33
Realizer-Abs 0.70 0.44 0.47 0.69 0.24 0.59
Realizer-Rel 0.74 0.41 0.56 0.73 0.33 0.60
All-Abs 0.67 0.38 0.47 0.71 0.29 0.59
All-Rel 0.74 0.36 0.60 0.75 0.34 0.63

Table 2: Corpora-wise inter-annotator agreement (absolute and relative κ values shown)

Sys N B M G TP TA T HT HN HB HM HG
OpenCCG-Adq 0.27 0.39 0.35 0.18 0.39 0.34 0.4 0.43 0.3 0.43 0.43 0.23
OpenCCG-Flu 0.49 0.55 0.4 0.42 0.6 0.46 0.6 0.72 0.58 0.69 0.57 0.53
XLE-Adq 0.52 0.51 0.55 0.31 0.5 0.5 0.5 0.52 0.47 0.51 0.61 0.4
XLE-Flu 0.56 0.56 0.48 0.37 0.55 0.5 0.55 0.61 0.54 0.61 0.51 0.51
Wordnet-Adq 0.17 0.14 0.24 0.15 0.37 0.26 0.22 0.64 0.52 0.56 0.32 0.6
Wordnet-Flu 0.26 0.21 0.24 0.24 0.22 0.27 0.26 0.34 0.32 0.34 0.3 0.34
Realizer-Adq 0.47 0.6 0.57 0.42 0.59 0.57 0.6 0.62 0.49 0.62 0.65 0.48
Realizer-Flu 0.51 0.62 0.52 0.5 0.63 0.53 0.64 0.75 0.59 0.73 0.65 0.63
All-Adq 0.37 0.37 0.33 0.32 0.42 0.31 0.43 0.53 0.44 0.48 0.44 0.45
All-Flu 0.21 0.62 0.51 0.32 0.61 0.55 0.6 0.7 0.33 0.71 0.62 0.48

Table 3: Spearman’s correlations among NIST (N), BLEU (B), METEOR (M), GTM (G), TERp (TP), TERpa (TA),
TER (T), human variants (HN, HB, HM, HT, HG) and human judgments (-Adq: adequacy and -Flu: Fluency); Scores
which fall within the 95 %CI of the best are italicized.

Sys N B M G TP TA T HT HN HB HM HG
OpenCCG 0.49 0.57 0.42 0.4 0.61 0.46 0.62 0.73 0.58 0.7 0.59 0.51
XLE 0.63 0.64 0.59 0.39 0.62 0.58 0.63 0.69 0.6 0.68 0.63 0.54
Wordnet 0.21 0.14 0.21 0.19 0.38 0.25 0.23 0.65 0.56 0.57 0.31 0.63
Realizer 0.55 0.68 0.57 0.5 0.68 0.58 0.69 0.78 0.61 0.77 0.7 0.63
All 0.34 0.58 0.47 0.38 0.61 0.48 0.61 0.75 0.48 0.73 0.61 0.58

Table 4: Spearman’s correlations among NIST (N), BLEU (B), METEOR (M), GTM (G), TERp (TP), TERpa (TA),
TER (T), human variants (HN, HB, HM, HT, HG) and human judgments (combined adequacy and fluency scores)
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System Adq Flu
Sp 95%L 95%U Sp 95%L 95%U

Realizer 0.60 0.58 0.63 0.62 0.59 0.65
XLE 0.51 0.47 0.56 0.56 0.51 0.61
OpenCCG 0.39 0.35 0.42 0.55 0.52 0.59
All 0.37 0.34 0.4 0.62 0.6 0.64
Wordnet 0.14 0.06 0.21 0.21 0.13 0.28

Table 5: Spearman’s correlation analysis (bootstrap sampling) of the BLEU scores of various systems with human
adequacy and fluency scores

Sys HJ N B M G TP TA T HT HN HB HM HG HJ1-HJ2
OpenCCG HJ-1 0.44 0.52 0.39 0.36 0.56 0.43 0.58 0.75 0.58 0.72 0.62 0.52 0.76

HJ-2 0.5 0.58 0.43 0.4 0.62 0.46 0.63 0.7 0.55 0.68 0.56 0.49
XLE HJ-1 0.6 0.6 0.55 0.37 0.57 0.55 0.58 0.69 0.63 0.68 0.64 0.54 0.75

HJ-2 0.6 0.6 0.56 0.39 0.6 0.55 0.61 0.64 0.54 0.61 0.57 0.51
Wordnet HJ-1 0.2 0.18 0.26 0.16 0.37 0.28 0.24 0.7 0.59 0.64 0.35 0.65 0.72

HJ-2 0.25 0.16 0.23 0.19 0.37 0.25 0.25 0.59 0.52 0.51 0.32 0.56
Realizer HJ-1 0.51 0.65 0.56 0.49 0.64 0.56 0.66 0.8 0.62 0.78 0.72 0.64 0.82

HJ-2 0.55 0.68 0.56 0.5 0.67 0.57 0.68 0.74 0.58 0.73 0.66 0.6
All HJ-1 0.32 0.53 0.45 0.37 0.57 0.44 0.57 0.77 0.5 0.74 0.62 0.59 0.79

HJ-2 0.35 0.58 0.46 0.37 0.61 0.47 0.6 0.71 0.44 0.69 0.57 0.54

Table 6: Spearman’s correlations of NIST (N), BLEU (B), METEOR (M), GTM (G), TERp (TP), TERpa (TA), human
variants (HT, HN, HB, HM, HG), and individual human judgments (combined adq. and flu. scores)

Factor Count
Punctuation 17
Adverbial shift 16
Agreement 14
Other shifts 8
Conjunct rearrangement 8
Complementizer ins/del 5
PP shift 4

Table 7: Factors influencing TERP ranking errors for 50 worst-ranked realization groups

Metric Score Errors
nist 4 C1-XB
bleu 3 XB-PW C1-XB
meteor 4 XW-PB
ter 2 PW-PB XW-PB C1-PB
terp 2 PW-PB XW-PB C1-PB
terpa 3 XW-PB C1-PB
gtm 4 C1-XB
hnist 5
hbleu 3 PW-PB XW-PB
hmeteor 2 PW-PB XW-PB C1-PB
hter 3 XB-PW C1-XB
hgtm 3 XB-PW C1-XB

Table 8: Metric-wise ranking performance in terms of agreement with a ranking induced by combined adequacy and
fluency scores; each metric gets a score out of 5 (i.e. number of system-level comparisons that emerged significant as
per the Tukey’s HSD test)
Legend: Perceptron Best (PB); Perceptron Worst (PW); XLE Best (XB); XLE Worst (XW); OpenCCG baseline mod-
els 1 to 3 (C1 ... C3)
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Abstract

Part-of-speech (POS) induction is one of the
most popular tasks in research on unsuper-
vised NLP. Many different methods have been
proposed, yet comparisons are difficult to
make since there is little consensus on eval-
uation framework, and many papers evalu-
ate against only one or two competitor sys-
tems. Here we evaluate seven different POS
induction systems spanning nearly 20 years of
work, using a variety of measures. We show
that some of the oldest (and simplest) systems
stand up surprisingly well against more recent
approaches. Since most of these systems were
developed and tested using data from the WSJ
corpus, we compare their generalization abil-
ities by testing on both WSJ and the multi-
lingual Multext-East corpus. Finally, we in-
troduce the idea of evaluating systems based
on their ability to produce cluster prototypes
that are useful as input to a prototype-driven
learner. In most cases, the prototype-driven
learner outperforms the unsupervised system
used to initialize it, yielding state-of-the-art
results on WSJ and improvements on non-
English corpora.

1 Introduction

In recent years, unsupervised learning has become
a hot area in NLP, in large part due to the use of
sophisticated machine learning approaches which
promise to deliver better results than more tradi-
tional methods. Often the new approaches are tested
using part-of-speech (POS) tagging as an example
application, and usually they are shown to perform
better than one or another comparison system. How-
ever, it is difficult to draw overall conclusions about

the relative performance of unsupervised POS tag-
ging systems because of differences in evaluation
measures, and the fact that no paper includes di-
rect comparisons against more than a few other sys-
tems. In this paper, we attempt to remedy that
situation by providing a comprehensive evaluation
of seven different POS induction systems spanning
nearly 20 years of research. We focus specifically
on POS induction systems, where no prior knowl-
edge is available, in contrast to POS disambigua-
tion systems (Merialdo, 1994; Toutanova and John-
son, 2007; Naseem et al., 2009; Ravi and Knight,
2009; Smith and Eisner, 2005), which use a dic-
tionary to provide possible tags for some or all of
the words in the corpus, or prototype-driven sys-
tems (Haghighi and Klein, 2006), which use a small
set of prototypes for each tag class, but no dictio-
nary. Our motivation stems from another part of our
own research, in which we are trying to use NLP
systems on over 50 low-density languages (some of
them dead) where both tagged corpora and language
speakers are mostly unavailable. We therefore de-
sire to use these systems straight out of the box and
to know how well we can expect them to work.

One difficulty in evaluating POS induction sys-
tems is that there is no straightforward way to map
the clusters found by the algorithm onto the gold
standard tags; moreover, some systems are designed
to induce the number of clusters as well as their
contents, so the number of found clusters may not
match either the gold standard or that of another sys-
tem. Nevertheless, most recent papers have used
mapping-based performance measures (either one-
to-one or many-to-one accuracy). Here, we argue
that the entropy-based V-Measure (Rosenberg and
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Hirschberg, 2007) is more useful in many cases, be-
ing more stable across different numbers of found
and true clusters, and avoiding several of the prob-
lems with another commonly used entropy-based
measure, Variation of Information (Meilǎ, 2003).

Using V-Measure along with several other evalu-
ation measures, we compare the performance of the
different induction systems on both WSJ (the data on
which most systems were developed and tested) and
Multext East, a corpus of parallel texts in eight dif-
ferent languages. We find that for virtually all mea-
sures and datasets, older systems using relatively
simple models and algorithms (Brown et al., 1992;
Clark, 2003) work as well or better than systems
using newer and often far more sophisticated and
time-consuming machine learning methods (Gold-
water and Griffiths, 2007; Johnson, 2007; Graca et
al., 2009; Berg-Kirkpatrick et al., 2010). Thus, al-
though these newer methods have introduced po-
tentially useful machine learning techniques, they
should not be assumed to provide the best perfor-
mance for unsupervised POS induction.

In addition to our review and comparison, we in-
troduce a new way to both evaluate and potentially
improve a POS induction system. Our method is
based on the prototype-driven learning system of
Haghighi and Klein (2006), which achieves very
good performance by using a hand-selected list of
prototypes for each syntactic cluster. We instead use
the existing POS induction systems to induce proto-
types automatically, and evaluate the systems based
on the quality of their prototypes. We find that the
oldest system tested (Brown et al., 1992) produces
the best prototypes, and that using these prototypes
as input to Haghighi and Klein’s system yields state-
of-the-art performance on WSJ and improvements
on seven of the eight non-English corpora.

2 POS Induction Systems

We describe each system only briefly; for details,
see the respective papers, cited below. Each system
outputs a set of syntactic clusters C; except where
noted, the target number of clusters |C| must be
specified as an input parameter. Since we are in-
terested in out-of-the-box performance, we use the
default parameter settings for each system, except
for |C|, which is varied in some of our experiments.

The systems are as follows:1

[brown]: Class-based n-grams (Brown et al.,
1992). This is the oldest and one of the simplest sys-
tems we tested. It uses a bigram model where each
word type is assigned to a latent class (a hard assign-
ment), and the probability of the corpus w1 . . . wn

is computed as P (w1|c1)
∏n

i=2 P (wi|ci)P (ci|ci−1),
where ci is the class of wi. The goal is to opti-
mize the probability of the corpus under this model.
The authors use an approximate search procedure:
greedy agglomerative hierarchical clustering fol-
lowed by a step in which individual word types are
considered for movement to a different class if this
improves the corpus probability.

[clark]: Class-based n-grams with morphology
(Clark, 2003). This system uses a similar model
to the previous one, and also clusters word types
(rather than tokens, as the rest of the systems do).
The main differences between the systems are that
clark uses a slightly different approximate search
procedure, and that he augments the probabilistic
model with a prior that prefers clusterings where
morphologically similar words are clustered to-
gether. The morphology component is implemented
as a single-order letter HMM.

[cw]: Chinese Whispers graph clustering (Bie-
mann, 2006). Unlike the other systems we consider,
this one induces the value of |C| rather than taking
it as an input parameter.2 The system uses a graph
clustering algorithm called Chinese Whispers that is
based on contextual similarity. The algorithm works
in two stages. The first clusters the most frequent
10,000 words (target words) based on their context
statistics, with contexts formed from the most fre-
quent 150-250 words (feature words) that appear ei-

1Implementations were obtained from:
brown: http://www.cs.berkeley.edu/∼pliang/
software/brown-cluster-1.2.zip (Percy Liang),
clark: http://www.cs.rhul.ac.uk/home/alexc/
pos2.tar.gz (Alex Clark),
cw: http://wortschatz.uni-leipzig.de/%7Ecbiemann/
software/jUnsupos1.0.zip (Chris Biemann),
bhmm, vbhmm, pr, feat: by request from the authors of the
respective papers.

2Another recent model that induces |C| is the Infinite HMM
(Van Gael et al., 2009). Unfortunately, we were unable to ob-
tain code for the IHMM in time to include it in our analysis.
Van Gael et al. (2009) report results of around 59% V-Measure
on WSJ, with 194 induced clusters, which is not as good as the
best system scores in Section 4.
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ther to the left or right of a target word. The second
stage deals with medium and low frequency words
and uses pairwise similarity scores calculated by the
number of shared neighbors between two words in
a 4-word context window. The final clustering is
a combination of the clusters obtained in the two
stages. While the number of target words, feature
words, and window size are in principle parameters
of the algorithm, they are hard-coded in the imple-
mentation we used and we did not change them.

[bhmm]: Bayesian HMM with Gibbs sampling
(Goldwater and Griffiths, 2007). This system is
based on a standard HMM for POS tagging. It dif-
fers from the standard model by placing Dirichlet
priors over the multinomial parameters defining the
state-state and state-emission distributions, and uses
a collapsed Gibbs sampler to infer the hidden tags.
The Dirichlet hyperparameters α (which controls the
sparsity of the transition probabilities) and β (which
controls the sparsity of the emission probabilities)
can be fixed or inferred. We used a bigram version
of this model with hyperparameter inference.

[vbhmm]: Bayesian HMM with variational
Bayes (Johnson, 2007). This system uses the
same bigram model as bhmm, but uses variational
Bayesian EM for inference. We fixed the α and β
parameters to 0.1, values that appeared to be reason-
able based on Johnson (2007), and which were also
used by Graca et al. (2009).

[pr]: Sparsity posterior-regularization HMM
(Graca et al., 2009). The Bayesian approaches de-
scribed above encourage sparse state-state and state-
emission distributions only indirectly through the
Dirichlet priors. This system, while utilizing the
same bigram HMM, encourages sparsity directly
by constraining the posterior distributions using the
posterior regularization framework (Ganchev et al.,
2009). A parameter σ controls the strengths of the
constraints (default = 25). Following Graca et al.
(2009), we set α = β = 0.1.

[feat]: Feature-based HMM (Berg-Kirkpatrick
et al., 2010). This system uses a model that has the
structure of a standard HMM, but assumes that the
state-state and state-emission distributions are logis-
tic, rather than multinomial. The logistic distribu-
tions allow the model to incorporate local features
of the sort often used in discriminative models. The

default features are morphological, such as character
trigrams and capitalization.

3 Evaluation Measures

One difficulty in comparing POS induction meth-
ods is in finding an appropriate evaluation measure.
Many different measures have been proposed over
the years, but there is still no consensus on which is
best. In addition, some measures with supposed the-
oretical advantages, such as Variation of Information
(VI) (Meilǎ, 2003) have had little empirical analy-
sis. Our goal in this section is to determine which
of these measures is most sensible for evaluating
the systems presented above. We first describe each
measure before presenting empirical results. Except
for VI, all measures range from 0 to 1, with higher
scores indicating better performance.

[many-to-1]: Many-to-one mapping accuracy
(also known as cluster purity) maps each cluster to
the gold standard tag that is most common for the
words in that cluster (henceforth, the preferred tag),
and then computes the proportion of words tagged
correctly. More than one cluster may be mapped to
the same gold standard tag. This is the most com-
monly used metric across the literature as it is in-
tuitive and creates a meaningful POS sequence out
of the cluster identifiers. However, it tends to yield
higher scores as |C| increases, making comparisons
difficult when |C| can vary.

[crossval]: Cross-validation accuracy (Gao and
Johnson, 2008) is intended to address the problem
with many-to-one accuracy which is that assigning
each word to its own class yields a perfect score. In
this measure, the first half of the corpus is used to
obtain the many-to-one mapping of clusters to tags,
and this mapping is used to compute the accuracy of
the clustering on the second half of the corpus.

[1-to-1]: One-to-one mapping accuracy
(Haghighi and Klein, 2006) constrains the mapping
from clusters to tags, so that at most one cluster can
be mapped to any tag. The mapping is performed
greedily. In general, as the number of clusters
increases, fewer clusters will be mapped to their
preferred tag and scores will decrease (especially
if the number of clusters is larger than the number
of tags, so that some clusters are unassigned and
receive zero credit). Again, this makes it difficult to
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compare solutions with different values of |C|.

[vi]: Variation of Information (Meilǎ, 2003) is
an information-theoretic measure that regards the
system output C and the gold standard tags T as two
separate clusterings, and evaluates the amount of in-
formation lost in going from C to T and the amount
of information gained, i.e., the sum of the condi-
tional entropy of each clustering conditioned on the
other. More formally, V I(C, T ) = H(T |C) +
H(C|T ) = H(C) + H(T )− 2I(C, T ), where H(.)
is the entropy function and I(.) is the mutual infor-
mation. VI and other entropy-based measures have
been argued to be superior to accuracy-based mea-
sures such as those above, because they consider
not only the majority tag in each cluster, but also
whether the remainder of the cluster is more or less
homogeneous. Unlike the other measures we con-
sider, lower scores are better (since VI measures the
difference between clusterings in bits).

[vm]: V-Measure (Rosenberg and Hirschberg,
2007) is another entropy-based measure that is de-
signed to be analogous to F-measure, in that it is de-
fined as the weighted harmonic mean of two values,
homogeneity (h, the precision analogue) and com-
pleteness (c, the recall analogue):

h = 1− H(T |C)

H(T )
(1)

c = 1− H(C|T )

H(C)
(2)

V M =
(1 + β)hc

(βh) + c
(3)

As with F-measure, β is normally set to 1.

[vmb]: V-beta is an extension to V-Measure, pro-
posed by (Vlachos et al., 2009). They noted that
V-Measure favors clusterings where the number of
clusters |C| is larger than the number of POS tags
|T |. To address this issue the parameter β in equa-
tion 3 is set to |C|/|T | in order adjust the balance
between homogeneity and completeness.

[s-fscore]: Substitutable F-score (Frank et al.,
2009). One potential issue with all of the above mea-
sures is that they require a gold standard tagging to
compute. This is normally available during develop-
ment of a system, but if the system is deployed on a
novel language a gold standard may not be available.

In addition, there is the question of whether the gold
standard itself is “correct”. Recently, Frank et al.
(2009) proposed this novel evaluation measure that
requires no gold standard, instead using the concept
of substitutability to evaluate performance. Instead
of comparing the system’s clusters C to gold stan-
dard clusters T , they are compared to a set of clus-
ters S created from substitutable frames, i.e., clus-
ters of words that occur in the same syntactic en-
vironment. Ideally a substitutable frame would be
created by sentences differing in only one word (e.g.
“I want the blue ball.” and “I want the red ball.”)
and the resulting cluster would contain the words
that change (e.g. [blue, red]). However since it is
almost impossible to find these types of sentences
in real-world corpora, the authors use frames cre-
ated by two words appearing in the corpus with ex-
actly one word between (e.g. the —- ball). Once the
substitutable clusters have been created, they can be
used to calculate the Precision (SP ), Recall (SR)
and F-score (SF ) of the system’s clustering:

SP =

∑
s∈S

∑
c∈C |s ∩ c|(|s ∩ c| − 1)∑
c∈C |c|(|c| − 1)

(4)

SR =

∑
s∈S

∑
c∈C |s ∩ c|(|s ∩ c| − 1)∑
s∈S |s|(|s| − 1)

(5)

SF =
2 · SP · SR

SP + SR
(6)

3.1 Empirical results
We mentioned a few strengths and weaknesses of
each evaluation method above; in this section we
present some empirical results to expand on these
claims. First, we examine the effects of varying |C|
on the behavior of the evaluation measures, while
keeping the number of gold standard tags the same
(|T | = 45). Results were obtained by training and
evaluating each system on the full WSJ portion of
the Penn Treebank corpus (Marcus et al., 1993). Fig-
ure 1 shows the results from the Brown system for
|C| ranging from 1 to 200; the same trends were ob-
served for all other systems.3 In addition, Table 1
provides results for the two extremes of |C| = 1 (all
words assigned to the same cluster) and |C| equal to
the size of the corpus (a single word per cluster), as

3The results reported in this paper are only a fraction
of the total from our experiments; given the number of
parameters, models and measures tested, we obtained over
15000 results. The full set of results can be found at
http://homepages.inf.ed.ac.uk/s0787820/pos/.
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Figure 1: Scores for all evaluation measures as a function of the number of clusters returned [model:brown, corpus:wsj,
|C|:{1-200}, |T |:45]. The right-hand y-axis shows VI scores (lower is better); the left-hand y-axis shows percentage
scores for all other measures. The vertical line indicates |T |. Many-to-1 is invisible as it tracks crossval so closely.

measure super random all single
many-to-1 97.85 13.97 13.97 100

crossval 97.59 13.98 13.98 0
1-to-1 97.86 2.42 13.97 0.01

vi 0.35 9.81 4.33 15.82
vm 95.98 0.02 0 35.42

vmb 95.98 0 0 99.99
s-fscore 7.53 0.50 0 0

Table 1: Baseline scores for the different evaluation mea-
sures on the WSJ corpus. For all measures except VI
higher is better.

well as two other baselines (a supervised tagging4

and a random clustering with |C| = 45).
These empirical results confirm that certain mea-

sures favor solutions with many clusters, while oth-
ers prefer fewer clusters. As expected, many-to-1
correlates positively with |C|, rising to almost 85%
with |C| = 200 and reaching 100% when the num-
ber of clusters is maximal (i.e., single). Recall that
crossval was proposed as a possible solution to this
problem, and it does solve the extreme case of sin-
gle, yielding 0% accuracy rather than 100%. How-
ever, it patterns just like many-to-1 for up to 200
clusters, suggesting that there is very little difference

4We used the Stanford Tagger trained on the WSJ corpus:
http://nlp.stanford.edu/software/tagger.shtml.

between the two for any reasonable number of clus-
ters, and we should be wary of using either one when
|C| may vary.

In contrast to these measures are 1-to-1 and vi: for
the most part, they yield worse performance (lower
1-to-1, higher vi) as |C| increases. However, in this
case the trend is not monotonic: there is an initial
improvement in performance before the decrease be-
gins. One might hope that the peak in performance
would occur when the number of clusters is approx-
imately equal to the number of gold standard tags;
however, the best performance for both 1-to-1 and
vi occurs with approximately 25-30 clusters, many
fewer than the gold standard 45.

Next we consider vm and vmb. Interestingly, al-
though vmb was proposed as a way to correct for the
supposed tendency of vm to increase with increas-
ing |C|, we find that vm is actually more stable than
vmb over different values of |C|. Thus, if the goal
is to compare systems producing different numbers
of clusters (especially important for systems that in-
duce the number of clusters), then vm seems more
appropriate than any of the above measures, which
are more standard in the literature.

Finally, we analyze the behavior of the gold-
standard-independent measure, s-fscore. On the
positive side, this measure assigns scores of 0 to the
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two extreme cases of all and single, and is relatively
stable across different values of |C| after an initial
increase. It assigns a lower score to the supervised
system than to brown, indicating that words in the
supervised clusters (which are very close to the gold
standard) are actually less substitutable than words
in the unsupervised clusters. This is probably due to
the fact that the gold standard encodes “pure” syn-
tactic classes, while substitutability also depends on
semantic characteristics (which tend to be picked up
by unsupervised clustering systems as well). An-
other potential problem with this measure is that it
has a very small dynamic range – while scores as
high as 1 are theoretically possible, in practice they
will never be achieved, and we see that the actual
range of scores observed are all under 20%.

We conclude that there is probably no single eval-
uation measure that is best for all purposes. If a gold
standard is available, then many-to-1 and 1-to-1 are
the most intuitive measures, but should not be used
when |C| is variable, and do not account for differ-
ences in the errors made. While vi has been popular
as an entropy-based alternative to address the latter
problem, its scores are not easy to interpret (being on
a scale of bits) and it still has the problem of incom-
parability across different |C|. Overall, vm seems to
be the best general-purpose measure that combines
an entropy-based score with an intuitive 0-1 scale
and stability over a wide range of |C|.

4 System comparison

Having provided some intuitions about the behav-
ior of different evaluation methods, we move on to
evaluating the various systems presented in Section
2. We first present results for the same WSJ cor-
pus used above. However, because most of the sys-
tems were initially developed on this corpus, and
often evaluated only on it, there is a question of
whether their methods and/or hyperparameters are
overly specific to the domain or to the English lan-
guage. This is a particularly pertinent question since
a primary argument in favor of unsupervised sys-
tems is that they are easier to port to a new language
or domain than supervised systems. To address this
question, we evaluate all the systems as well on the
multilingual Multext East corpus (Erjavec, 2004),
without changing any of the parameter settings. |C|
was set to 45 for all of the experiments reported in
this section. Based on our assessment of evaluation

Figure 2: Performance of the different systems on WSJ,
using three different measures [|C|:45, |T |:45]

system runtime
brown ˜10 min.

clark ˜40 min.
cw ˜10 min.

bhmm ˜4 hrs.
vbhmm ˜10 hrs.

pr ˜10 hrs.*
feat ˜40 hrs.*

Table 2: Runtimes for the different systems on WSJ
[|C|:45]. *pr and feat have multithreading implemen-
tations and ran on 16 cores.

measures above, we report VM scores as the most
reliable measure across different systems and clus-
ter set sizes; to facilitate comparisons with previous
papers, we also report many-to-one and one-to-one
accuracy.

4.1 Results on WSJ

Figure 2 presents results for all seven systems, with
approximate runtimes shown in Table 2. While these
algorithms have not necessarily been optimized for
speed, there is a fairly clear distinction between the
older type-clustering models (brown, clark) and the
graph-based algorithm (cw) on the one hand, and
the newer machine-learning approaches (bhmm,
vbhmm, pr, feat) on the other, with the former be-
ing much faster to run. Despite their faster run-
times and less sophisticated methods, however, these
systems perform surprisingly well in comparison to
the latter group. Even the oldest and perhaps sim-
plest method (brown) outperforms the two BHMMs
and posterior regularization on all measures. Only
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Figure 3: VM scores for the different systems on English
Multext-East and WSJ-S corpora [|C|:45, |T |:{14,17}]

Figure 4: VM scores for the different systems on the eight
Multext-East corpora [|C|:45, |T |:14]

the very latest approach (feat) rivals clark, show-
ing slightly better performance on two of the three
measures (clark: 71.2, 53.8, 65.5 on many-to-one,
one-to-one, VM; feat: 73.9, 53.3, 67.7). The cw
system returns a total of 568 clusters on this data set,
so the many-to-one and one-to-one measures are not
strictly comparable to the other systems; on VM this
system achieves middling performance.

We note that the two best-performing systems,
clark and feat, are also the only two to use mor-
phological information. Since the clustering algo-
rithms used by brown and clark are quite similar,
the difference in performance between the two can
probably be attributed to the extra information pro-
vided by the morphology. This supports the (unsur-
prising) conclusion that incorporating morphologi-
cal features is generally helpful for POS induction.

4.2 Results on other corpora
We now examine whether either the relative or ab-
solute performance of the different systems holds up
when tested on a variety of different languages. For
these experiments, we used the 1984 portion of the
Multext-East corpus (̃ 7k sentences), which contains
parallel translations of Orwell’s 1984 in 8 different
languages: Bulgarian[bg], Czech[cs], Estonian[et],
Hungarian[hu], Romanian[ro], Slovene[sl], Ser-
bian[sr] and English[en]. We also included a 7k
sentence version of the WSJ corpus [wsj-s] to help
differentiate effects of corpus size from those of do-
main/language. For the WSJ corpora we experi-
mented with two standardly used tagsets: the orig-
inal PTB 45-tag gold standard and a coarser set of
17 tags previously used by several researchers work-
ing on unsupervised POS tagging (Smith and Eis-
ner, 2005; Goldwater and Griffiths, 2007; Johnson,
2007). For the Multext-East corpus only a coarse 14-
tag tagset was available.5 Finally, to facilitate direct
comparisons of genre while controlling for the size
of both the corpus and the tag set, we also created a
further collapsed 13-tag set for WSJ.6

Figure 3 illustrates the abilities of the different
systems to generalize across different genres of En-
glish text. Comparing the results for the Multext-
East English corpus and the small WSJ corpus with
13 tags (i.e., controlling as much as possible for cor-
pus size and number of gold standard tags), we see
that despite being developed on WSJ, the systems
actually perform better on Multext-East. This is en-
couraging, since it suggests that the methods and
hyperparameters of the algorithms are not strongly
tied to WSJ. It also suggests that Multext-East is in
some sense an easier corpus than WSJ. Indeed, the
distribution of vocabulary items supports this view:
the 100 most frequent words account for 48% of
the WSJ corpus, but 57% of the 1984 novel. It is
also worth pointing out that, although previous re-
searchers have reduced the 45-tag WSJ set to 17 tags
in order to create an easier task for unsupervised
learning (and to decrease training time), reducing
the tag set further to 13 tags actually decreases per-
formance, since some distinctions found by the sys-

5Out of the 14 tags only 11 are shared across all languages.
For details c.f. Appendix B in (Naseem et al., 2009).

6We tried to make the meanings of the tags as similar as
possible between the two corpora; we had to create 13 rather
than 14 WSJ tags for this reason. Our 13-tag set can be found
at http://homepages.inf.ed.ac.uk/s0787820/pos/.
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tems (e.g., between different types of punctuation)
are collapsed in the gold standard.

Figure 4 gives the results of the different systems
on the various languages.7 Not surprisingly, all the
algorithms perform best on English, often by a wide
margin, suggesting that they are indeed tuned bet-
ter towards English syntax and/or morphology. One
might expect that the two systems with morpho-
logical features (clark and feat) would show less
difference between English and some of the other
languages (all of which have complex morphology)
than the other systems. However, although clark
and feat (along with Brown) are the best perform-
ing systems overall, they don’t show any particular
benefit for the morphologically complex languages.8

One difference between the Multext-East results
and the WSJ results is that on Multext-East, clark
clearly outperforms all the other systems. This is
true for both the English and non-English corpora,
despite the similar performance of clark and feat
on (English) WSJ. This suggests that feat benefits
more from the larger corpus size of WSJ. For the
other languages clark may be benefiting from some-
what more general morphological features; feat cur-
rently contains suffix features but no prefix features
(although these could be added).

Overall, our experiments on multiple languages
support our earlier claim that many of the newer
POS induction systems are not as successful as the
older methods. Moreover, these experiments under-
score the importance of testing unsupervised sys-
tems on multiple languages and domains, since both
the absolute and relative performance of systems
may change on different data sets. Ideally, some of
the corpora should be held out as unseen test data
if an effective argument is to be made regarding the
language- or domain-generality of the system.

5 Learning from induced prototypes

We now introduce a final novel method of evaluat-
ing POS induction systems and potentially improv-
ing their performance as well. Our idea is based

7Some results are missing because not all of the corpora
were successfully processed by all of the systems.

8It can be argued that lemmatization would have given a sig-
nificant gain to the performance of the systems in these lan-
guages. Although lemmatization information was included in
the corpus we chose not to use it, maintaining the fully unsu-
pervised nature of this task.

on the prototype-driven learning model of Haghighi
and Klein (2006). This model is unsupervised, but
requires as input a handful of prototypes (canonical
examples) for each word class. The system uses a
log-linear model with features that include the pro-
totype lists as well as morphological features (the
same ones used in feat). Using the most frequent
words in each gold standard class as prototypes, the
authors report 80.5% accuracy (both many-to-one
and one-to-one) on WSJ, considerably higher than
any of the induction systems seen here. This raises
two questions: If we wish to induce prototypes with-
out a tagged corpus or language-specific knowledge,
which induction system will provide the best pro-
totypes (i.e., most similar to the gold standard pro-
totypes)? And, can we use the induced prototypes
as input to the prototype-driven model (h&k) to
achieve better performance than the system the pro-
totypes were extracted from?

To explore these questions, we implemented a
simple heuristic method for inducing prototypes
from the output C of a POS induction system by
selecting a few frequent words in each cluster that
are the most similar to other words in the cluster and
also the most dissimilar to the words in other clus-
ters. For each cluster ci ∈ C, we retain as candi-
date prototypes the words whose frequency in ci is
at least 90% as high as the word with the highest fre-
quency (in ci). This yields about 20-30 candidates
from each cluster. For each of these, we compute
its average similarity S to the other candidates in its
cluster, and the average dissimilarity D to the candi-
dates in other clusters. Similarity is computed using
the method described by Haghighi and Klein (2006),
which uses SVD on word context vectors and cosine
similarity. Dissimilarity between a pair of words is
computed as one minus the similarity. Finally we
compute the average M = 0.5(S + D), sort the
words by their M scores, and keep as prototypes
the top ten words with M > 0.25 ∗ maxci(M).
The cutoff threshold results in some clusters having
less than ten prototypes, which is appropriate since
some gold standard categories have very few mem-
bers (e.g., punctuation, determiners).

Using this method, we first tested the various
base+proto systems on the WSJ corpus. Results
in Table 3 show that the brown system produces
the best prototypes. Although not as good as
using prototypes from the gold standard (h&k),
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system many-to-1 1-to-1 vm
brown 76.1(8.3) 60.7(10.6) 68.8(5.8)

clark 74.5(3.3) 62.1(8.3) 68.6(3.0)
bhmm 71.8(8.6) 56.5(15.0) 65.7(9.5)

vbhmm 68.1(17.9) 67.2(20.7) 67.5(18.3)
pr 71.6(9.2) 60.2(17.0) 67.2(12.4)

feat 69.8(-4.1) 52.0(-1.3) 63.1(-4.6)
h&k 80.2 80.2 75.2

Table 3: Scores on WSJ for our prototype-based POS in-
duction system, with prototypes extracted from each of
the existing systems [|C|:45,|T |:45]. Numbers in paren-
theses are the improvement over the same system without
using the prototype step. Scores in bold indicate the best
performance (improvement) in each column. h&k uses
gold standard prototypes.

corpus brown clark
wsj 68.8(5.8) 68.5(3.0)

wsj-s 62.3(2.7) 67.5(3.6)
en 58.5(1.6) 57.9(-3.3)
bg 53.7(2.3) 50.2(-7.1)
cs 49.9(5.0) 48.0(-4.0)
et 45.8(4.9) 44.4(-1.9)

hu 45.8(0.1) 47.0(-5.7)
ro 53.2(0.8) 52.7(-3.3)
sl 51.2(2.9) 51.7(-4.6)
sr 48.0(2.8) 46.4(-4.9)

Table 4: VM scores for brown+proto and clark+proto
on all corpora. Numbers in parentheses indicate improve-
ment over the base systems.

brown+proto yields a large improvement over
brown, and the highest performance of any system
tested so far. In fact, the brown+proto scores are, to
our knowledge, the best reported results for an un-
supervised POS induction system on WSJ.

Next, we evaluated the two best-performing
+proto systems on Multext-East, as shown in Ta-
ble 4. We see that brown again yields the best
prototypes, and again yields improvements when
used as brown+proto (although the improvements
are not as large as those on WSJ). Interestingly,
clark+proto actually performs worse than clark on
the multilingual data, showing that although induced
prototypes can in principle improve the performance
of a system, not all systems will benefit in all situ-
ations. This suggests a need for additional investi-
gation to determine what properties of an existing

induction system allow it to produce useful proto-
types with the current method and/or to develop a
specialized system specifically targeted towards in-
ducing useful prototypes.

6 Conclusion

In this paper, we have attempted to provide a more
comprehensive review and comparison of evaluation
measures and systems for POS induction than has
been done before. We pointed out that most of the
commonly used evaluation measures are sensitive to
the number of induced clusters, and suggested that
V-measure (which is less sensitive) should be used
as an alternative or in conjunction with the standard
measures. With regard to the systems themselves,
we found that many of the newer approaches actu-
ally perform worse than older methods that are both
simpler and faster. The newer systems have intro-
duced potentially important machine learning tools,
but are not necessarily better suited to the POS in-
duction task specifically.

Since portability is a distinguishing feature for un-
supervised models, we have stressed the importance
of testing the systems on corpora that were not used
in their development, and especially on different lan-
guages. We found that on non-English languages,
Clark’s (2003) system performed best.

Finally, we introduced the idea of evaluating in-
duction systems based on their ability to produce
useful cluster prototypes. We found that the old-
est system (Brown et al., 1992) yielded the best
prototypes, and that using these prototypes gave
state-of-the-art performance on WSJ, as well as im-
provements on nearly all of the non-English corpora.
These promising results suggest a new direction for
future research: improving POS induction by de-
veloping methods targeted towards extracting better
prototypes, rather than focusing on improving clus-
tering of the entire data set.
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Abstract

Domain adaptation, the problem of adapting
a natural language processing system trained
in one domain to perform well in a differ-
ent domain, has received significant attention.
This paper addresses an important problem for
deployed systems that has received little at-
tention – detecting when such adaptation is
needed by a system operating in the wild,
i.e., performing classification over a stream
of unlabeled examples. Our method uses A-
distance, a metric for detecting shifts in data
streams, combined with classification margins
to detect domain shifts. We empirically show
effective domain shift detection on a variety of
data sets and shift conditions.

1 Introduction

Consider a named entity recognition system trained
on newswire stories. Given annotated documents
containing sentences like “Tony Hayward has faced
fresh criticism for taking time off to go sailing . . .”
we would like to learn a model that will allow us to
recognize that “Obama” and “BP” are named enti-
ties in a sentence like “Obama summoned BP ex-
ecutives . . .”. When all of the documents come
from one data distribution, like newswire articles,
this tends to work well. However, the sentence
“OBAMA SUMMONED BP EXECUTIVES . . .”
from transcribed broadcast news, and others like it,
will probably lead to poor results because the fea-
tures it relies on have changed. For example, capi-
talization patterns are no longer a good indicator of
the presence of a named entity and appositives are

not indicated by punctuation. This problem of do-
main shift is a pervasive problem in NLP in which
any kind of model – a parser, a POS tagger, a senti-
ment classifier – is tested on data that do not match
the training data.

Given a model and a stream of unlabeled in-
stances, we are interested in automatically detecting
changes in the feature distribution that negatively
impact classification accuracy. For example, a senti-
ment classification model trained on book reviews
may heavily weight n-grams features like “uplift-
ing” and “page turner”. Those features may never
occur in reviews of kitchen appliances that get mixed
in at test time, and useful features in this new do-
main like “efficient” and “noisy compressor” will
have never been seen during training and therefore
not be in the model. Furthermore, we do not assume
labeled instances are available to help detect these
harmful changes. Other tasks related to changes
in data distributions, like detecting concept drift in
which the labeling function changes, may require la-
beled instances, but that is not the focus of this paper.

There is significant work on the related problem
of adapting a classifier for a known domain shift.
Versions of this problem include adapting using only
unlabeled target domain data (Blitzer et al., 2006;
Blitzer et al., 2007; Jiang and Zhai, 2007), adapt-
ing using a limited amount of target domain labeled
data (Daumé, 2007; Finkel and Manning, 2009), and
learning across multiple domains simultaneously in
an online setting (Dredze and Crammer, 2008b).
However, in practical settings, we do not know if
the data distribution will change, and certainly not
when. Additionally, we will not know to what do-
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main the shift will happen. A discussion forum de-
voted to science fiction books may change over time
to focus more on fantasy and then narrow to discus-
sions of vampire fiction. Maybe this shift is harm-
less and it is possible to identify the sentiment of the
discussants with the original model with no loss in
accuracy. If not, we seek methods that detect this
shift and trigger the use of an adaptation method.

Our domain shift detection problem can be de-
composed into two subproblems: detecting distribu-
tional changes in streams of real numbers, and rep-
resenting a stream of examples as a stream of real
numbers informative for distribution change detec-
tion. We select the A-distance metric (Kifer et al.,
2004) to solve the first subproblem since it has been
previously used in other domain adaptation work
(Blitzer et al., 2006; Blitzer et al., 2007). Our main
contribution is towards the second problem, repre-
senting examples as real numbers for this task. We
demonstrate that classification margins, which in-
corporate information about features that most im-
pact system accuracy, can effectively solve the sec-
ond subproblem. Furthermore, we show that the pre-
viously proposed Confidence Weighted learning al-
gorithm (Dredze et al., 2008) can provide a more
informative measure than a simple margin for this
task. Our experiments include evaluations on com-
monly used domain adaptation data and false change
scenarios, as well as comparisons to supervised de-
tection methods that observe label values, or have
knowledge of the target domain.

We begin with a description of our task and pre-
vious applications to language data. After describ-
ing the data used in this paper, we discuss the A-
distance metric and how it has previously been used
for adaptation. We then show that margin based
methods effectively capture information to detect
domain shifts, and propose an alternate way of gen-
erating informative margin values. Finally, we com-
pare our results to settings with supervised knowl-
edge, and close with a survey of related work.

2 Domain Shifts in Language Data

The study of domain shifts in language data has been
the purview of domain adaptation and transfer learn-
ing, which seek to adapt or transfer a model learned
on one source domain with labeled data to another

target domain with few or no labeled examples. For-
mally, errors from such transfers have two sources:
differences in feature distributions and changes to la-
beling functions (annotation standards) (Ben-David
et al., 2006; Ben-David et al., 2009). Empirical work
on NLP domain shifts has focused on the former.
For example, Blitzer et al. (2007) learned correspon-
dences between features across domains and Jiang
and Zhai (2007) weighted source domain examples
by their similarity to the target distribution.

We continue in this tradition by making two as-
sumptions about our setting. First, a change in do-
main will be signaled by a change in the feature
distributions. That is, new words, phrases, syntac-
tic structures, etc. signal that the system has shifted
to a new domain. Second, while there may be a
change in the labeling function, i.e., features have a
different meaning in each domain, this will be a sec-
ondary concern. For example, both Daumé (2007)
and Dredze and Crammer (2008b) assume that do-
mains are more similar than different.

A similar problem to the one we consider is that
of concept drift, where a stream of examples are
labeled with a shifting labeling function (concept)
(Nishida and Yamauchi, 2007; Widmer and Kubat,
1996). While concept drift is similar there are two
important differences. First, concept drift can be
measured using a stream of labeled examples, so
system accuracy is directly measured. For exam-
ple, Klinkenberg and Joachims (2000) detect con-
cept drift with support vector machines, using es-
timates of leave-one-out performance to adaptively
adjust and maintain a training window that mini-
mizes estimated generalization error. This is pos-
sible only because class labels arrive with the exam-
ples in the stream. Another concept drift detection
algorithm, STEPD, uses a statistical test to continu-
ally monitor the possibly changing stream, measur-
ing system accuracy directly, again using the labels
it receives for each example (Nishida, 2008). Ob-
viously, no such labels are available in our unsuper-
vised setting. Second, concept drift assumes only
changes in the labeling function, whereas domain
adaptation relies on feature distribution changes.

Several properties of detecting domain shifts in
natural language streams distinguish it from tradi-
tional domain adaptation, concept drift, and other
related tasks:
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• No Target Distribution Examples Blitzer et
al. (2007) estimate the loss in accuracy from
domain shift by discriminating between two
data distributions. In our setting, we have no
knowledge of the target distribution.

• No Labeled Target Data Some approaches to
domain adaptation assume a limited number of
labeled examples (Daumé, 2007; Dredze and
Crammer, 2008b; Finkel and Manning, 2009).
We assume no labels in our setting.

• Online Setting Domain adaptation typically
assumes a batch transfer between two domains.
We consider a purely stream (online) setting.

• Computationally Constrained Our approach
must be fast, as we expect to run our domain
shift detector alongside a deployed NLP sys-
tem. This limits both computation and storage.

• Unknown Adaptation A critical assumption
of previous work is that a domain change has
occurred. We must ascertain this ourselves.

Despite these challenges, we show unsupervised
stream-based methods that effectively identify shifts
in domain in language data. Furthermore, our meth-
ods are tied directly to the learning task so are sen-
sitive to changes in actual task accuracy. Our meth-
ods have low false positive rates of change detection,
which is important since examples within a single
domain display a large amount of variance, which
could be mistaken for a domain change.

Once a change is detected, any number of actions
may be appropriate. The maintainer of the system
may be notified that performance is suffering, la-
bels can be obtained for a sample of instances from
the stream for retraining, or large volumes of unla-
beled instances can be used for instance reweighting
(Jiang and Zhai, 2007).

3 Datasets

We begin the presentation of our methods by de-
scribing the data used in our experiments. We se-
lected three data sets commonly used in domain
adaptation: spam (Jiang and Zhai, 2007), ACE 2005
named entity recognition (Jiang and Zhai, 2007),
and sentiment (Blitzer et al., 2007). Sentiment and

spam are binary and ACE is multi-class. Note that
in all experiments, a shift in the domain yields a de-
crease in system accuracy.

The goal of the spam data is to classify an email
(bag-of-words) as either spam or ham (not-spam).
Each email user may have different preferences and
features. We used unigram and bigram features, fol-
lowing Dredze and Crammer (2008b) for feature ex-
traction, and used the three task A users as three
domains. The ACE 2005 named entity recognition
dataset includes 7 named entity class labels (person,
organization, location, geopolitical entity, facility,
vehicle, weapon) for 5 text genres (newswire, broad-
cast news, broadcast conversations, conversational
telephone speech, weblogs). We use 4000 examples
from each genre and used Jiang and Zhai’s feature-
extracted data.1 The sentiment data contains reviews
from Amazon for four product types: books, dvds,
electronics, and kitchen. We include an additional
two types (music and video from Dredze and Cram-
mer) in our false shift experiments and use unigram
and bigram features, following Blitzer et al.

4 The A-Distance

Our approach to detecting domain shifts in data
streams that negatively impact system accuracy is
based on the ability to (1) detect distributional
changes in streams of real numbers and (2) con-
vert document streams to streams of informative real
numbers. This section describes how we achieve the
former, and the next section describes the latter.

Theoretical work on domain adaptation showed
that the A-distance (Kifer et al., 2004), a stream
based measure of difference between two arbitrary
probability distributions P and P ′, can be used to
evaluate the difference between two domain distri-
butions (Ben-David et al., 2006). In a batch set-
ting this corresponds to learning a linear classi-
fier to discriminate the domains, and Blitzer et al.
(2007) showed correlations with the error from do-
main adaptation. Given our interest in streaming
data we return to the original stream formulation of
A-distance.

The A-distance detects differences between two
arbitrary probability distributions by dividing the
range of a random variable into a set of (possibly

1We thank Jing Jiang for the feature-extracted ACE data.
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Figure 1: The A-distance is computed between two win-
dows (P and P ′ in a stream of real-valued data. The sam-
ples in each window are divided into intervals, and the
A-distance measures the change in the distributions over
these intervals between the two windows.

overlapping) intervals, and then measures changes
in the probability that a value drawn for that variable
falls into any one of the intervals. If such a change is
large, a change in the underlying distribution is de-
clared. LetA be a set of real intervals and letA ∈ A
be one such interval. For that interval, P (A) is the
probability that a value drawn from some unknown
distribution falls in A. The A-distance between P
and P ′, i.e. the difference between two distributions
over the intervals, is defined as follows:

dA(P, P ′) = 2 sup A∈A|P (A)− P ′(A)|.

Two distributions are said to be different when, for
a user-specified threshold ε, dA(P, P ′) > ε. The
A-distance is distribution independent. That is, it
makes no assumptions about the form of the under-
lying distribution nor about the form of the change
that might occur, either algorithmically or in the un-
derlying theory. Unlike the L1 norm, theA-distance
can be shown to require finitely many samples to de-
tect distribution differences, a property that is crucial
for streaming, sample-based approaches.

Since the A-distance processes a stream of real
numbers, we need to represent an example using a
real number, such as the classification margin for
that example. The first n of these numbers in the
stream are a sample from P , and the most recent
n are a sample from P ′. We signal a domain shift
when the A-distance between P and P ′ is large
(greater than ε). Larger values of n result in more
accurate estimates of P (A) and slower detection of
changes.

The two windows of samples of size n are shown
graphically in Fig. 1. Each increment on the hori-
zontal axis represents the arrival of a new document.

The vertical axis is some value computed from each
document, such as its classification margin. To com-
pute P and P ′, one needs to specifyA and n, which
are shown as two stacks of boxes that are identical
except for their position. The width of each box is
n, the number of examples used to estimate P (A)
and P (A′) for A ∈ A, where the real interval A cor-
responds to the vertical span of the box. The value
P (A) is simply the number of documents whose real
value falls inside that interval A divided by n. Note
that the first n documents in the stream are used to
compute P , and as each new document arrives the
location of the stack of boxes used to compute P ′ is
shifted to the right by one.

In Fig. 1, the number of examples whose real
value falls in the top two intervals for P is approxi-
mately the same, with no example’s value falling in
the lower two intervals. For P ′, almost every one
of the n document values falls in the second interval
from the top, virtually assuring that dA(P, P ′) will
be large. Though the intervals in the figure do not
overlap, they typically do.

Given n and intervals A, the value of ε is chosen
by randomization testing. Because theA-distance is
distribution independent, a sample of size m� n is
drawn from any distribution that spansA. This sam-
ple is treated as a stream as described above, and
the largest value of dA(P, P ′) is stored. The sam-
ple is permuted and this process is repeated l times.
Note that any change detection would be a false pos-
itive because all values were sampled from the same
distribution. The values dA(P, P ′) are sorted from
largest to smallest, and ε is chosen to be the bαlcth
such value where parameter α is a user specified
false positive probability.

Both the time and space complexity of our ap-
proach based on the A-distance are small. Given
n and A, n instances must be stored in the sliding
window and 2|A| counters are required to represent
P and P ′. Note that both values are constants based
on user specified parameters, not on the size of the
stream. Processing a new instance involves comput-
ing its margin and updating P and P ′, all of which
can occur in constant time.
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Figure 2: Each column of plots is a representative result using an SVM on a single run over a sentiment data shift:
dvds→ electronics, electronics→ books, and kitchen→ books, from left to right. The horizontal axis is the number
of instances from the stream processed by the classifier. The top plot is the accuracy of the classifier on the last 100
instances. The bottom plot is the absolute value of the SVM classification margin. The vertical line at 500 instances
marks the point of domain shift. Horizontal dotted lines indicate the mean of the accuracy/margin before and after the
domain shift. Note that in all cases, the mean accuracy drops, as do the mean margin values, demonstrating that both
can indicate domain shifts.

5 A-Distance Over Margins

Since shifts in domains correlate with changes in
distributions, it is natural to begin by considering the
observed features in each example. When we shift
from a source domain (e.g., book reviews) to a target
domain (e.g., dvd reviews) we expect a change in the
distribution for common source words (“author” and
“plot” become less common). Since the A-distance
assumes a stream of single values, we can apply an
A-distance detector to each feature (e.g., unigram
and bigram count) individually. However, our exten-
sive experiments with this approach (omitted here)
show that it suffers from a number of flaws, such as
a high false positive rate if all features are tracked,
the difficult problem of identifying an informative
subset of features for tracking, and deciding how
many such features need to change before a shift has
occurred, which turns out to be highly variable be-
tween shifts.

Therefore, our goal is to use a single A-distance
tracker by collapsing each example to a single value.
One way of doing this is to consider the classifica-
tion margin produced by the classifier. The mar-
gin weighs features by their importance in classi-
fication. When more important features disappear,
we expect the magnitude of the margin to decrease.
Additionally, features that change but do not in-
fluence system performance are effectively ignored
since they do not influence the margin. This ap-
proach has the advantage of task sensitivity, only
tracking changes that impact task accuracy. Initial
experiments showed effectiveness with the unsigned
(absolute value of the) margin, which we use in all

experiments.
We begin by examining visually the information

content of the margin with regards to predicting a
domain shift. The caption of Fig. 2 describes the
setup, and the first row of the figure illustrates the
effects of the shift on the source domain classifier’s
empirical accuracy, measured on a window of the
previous 100 examples. The horizontal dashed lines
indicate the average accuracy before and after the
shift. Note that in each case, average classification
accuracy drops after the shift. However, at any one
point the accuracy displays considerable variance.
Thus, while classification accuracy clearly suffers, it
is difficult to measure this even in a supervised set-
ting with labeled examples when considering a small
portion of the stream.

The second row of Fig. 2 shows the average un-
signed margin value of an SVM classifier computed
over the previous 100 examples in the stream. The
two dashed horizontal lines indicate the average
margin value over source and target examples. There
is a clear drop in the average margin value after the
shift. This difference suggests that the margin can
be examined directly to detect a domain shift. How-
ever, these values vary considerably so extracting
useful information is not trivial.

We evaluated the ability of A-distance trackers to
detect such changes in margin values by simulat-
ing domain shifts using each domain pair in a task
(books to dvds, weblogs to newswire, etc.). For
each domain shift setting, we first trained a classi-
fier on 1000 source domain instances. In our ex-
periments, we used three different classification al-
gorithms: Support Vector Machines (SVM) (Chang
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Figure 3: The mean number of instances after a domain change at which theA-distance tracker detects a change. Each
point represents the mean number of instances for CWPM (x-axis) and the SVM, MIRA and CW methods (y-axis).
Datasets are indicated by different markers. The second row zooms each plot to the bottom left corner of the first row.
Points above the diagonal indicate SVM, MIRA or CW took longer to detect a change than CWPM.

and Lin, 2001), MIRA (Crammer et al., 2006) and
Confidence Weighted (CW) learning (Dredze et al.,
2008). We evaluated each trained classifier on 500
test examples to measure accuracy on the source do-
main, and then used it to label examples in a stream.
The first 500 examples in the stream were used for
calibrating our change detection methods. The next
500 examples were from the source domain, fol-
lowed by 1500 examples from the target domain.
Over these 2000 examples we ran each of our de-
tection methods. Experiments were repeated over
10 fixed random data permutations.

We automatically select A-distance intervals as
follows. First, we computed the mean and variance
of the 500 calibration margins and then added inter-
vals for .5 standard deviations away from the mean
in each direction, .5 to 1 standard deviation in each
direction, and intervals for 1 standard deviation to
±∞. We also added three evenly spaced overlap-
ping intervals. To calibrate a FP rate of 0.05 we
sampled from a Gaussian with the above mean and
variance and used n = 200, m = 10000 and l = 50.

The results for each experiment (38 shifts re-
peated averaged over 10 runs each) are shown in

Fig. 3.2 Each plot represents one of the three classi-
fiers (SVM, MIRA, CW) plotted on the vertical axis,
where each point’s y-value indicates the number of
examples observed after a shift occurred before the
A-distance detector registered a change. Smaller
values (lower points) are preferred. The second row
of plots highlights the 0 to 300 region of the first
row. (The x-axis will be discussed in the next sec-
tion.) Notice that in many cases, a change was reg-
istered within 300 examples, showing that domain
shifts can be reasonably detected using the margin
values alone.

Equally important to detecting changes is robust-
ness to false changes. We evaluated the margin de-
tector for false positives in two ways. First, we
logged any incorrectly detected changes before the
shift. For all three algorithms, there were very few
false positives (Table 1). The highest false positive
rate was about 1% (CW), while for the SVM experi-
ments, not a single detector fired prematurely in any
experiment.

2The method plotted on the x-axis will be introduced in
the next section. To evaluate the three methods in this section
(SVM, MIRA, CW) compare the y-values.
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Second, we sought to test the robustness of the
method over a long stream of examples where no
change occurred. In this experiment, we selected 11
domains that had a sufficient number of examples
to consider a long stream of source domain exam-
ples.3 Rather than use 500 source domain examples
followed by 1500 target domain examples, all 2000
examples were from the source domain. All other
settings were the same. For the SVM detector, out
of 110 runs we detected 6 false positives, 3 of which
were for the same data set (kitchen) (see Table 1.)

6 Confidence Weighted Margins

In the previous section, we showed that margin val-
ues could be used to detect domain shifts. We now
explore ways to reduce the number of target domain
examples needed to detect domain shift by improv-
ing the margin values.

Margin values are often taken as a measure of
prediction confidence. From this perspective, the
A-distance margin tracker identifies when predic-
tion confidence drops. Another task that relies on
margins as measures of confidence is active learn-
ing, where uncertainty sampling for margin based
systems is determined based on the magnitude of
the predicted margin. Dredze and Crammer (2008a)
showed how Confidence Weighted (CW) learning
could be used to generate a more informative mea-
sure of confidence for active learning.

CW is an online algorithm inspired by the MIRA
update (Crammer et al., 2006), which ensures a pos-
itive margin while minimizing parameter change.
CW replaces the Euclidean distance used in the
MIRA update with the KL divergence over Gaussian
distributions. CW learning maintains a Gaussian
distribution over linear weight vectors with mean
µ ∈ RN and diagonal covariance Σ ∈ RN×N .

Maintaining a distribution over prediction func-
tions is appropriate for our task where we con-
sider margin values as confidence. We re-
place the margin |w · x|, where w is a stan-
dard linear classifier, with a probabilistic margin
|
(
Prw∼N (µi,Σi) [sign(w · z) = 1]

)
−1

2 | .Dredze and
Crammer showed that this probabilistic margin can
be translated into a corrected geometric margin,

3ACE: bc, bn, cts, nw, wl; Sentiment: books, dvd, electron-
ics, kitchen, music, video

which is computed as the normalized margin as M̄ =
M/
√
V , whereM is the meanM = µ ·x and V the

variance V = x>Σx of a univariate Gaussian dis-
tribution over the unsigned-margin M = w · x. We
call this method CWPM, for Confidence Weighted
Probabilistic Margin.

We compared using CWPM to the standard mar-
gins produced by an SVM, MIRA and CW classifier
in the last section. Fig. 3 shows the results of these
comparisons. In each plot, CWPM (normalized mar-
gin) is plotted on the x-axis, indicating how many
examples from the target domain were observed be-
fore the detector identified a change. The y-axis in
each plot is the number of instances observed for
the SVM, MIRA and CW methods. As before, each
point is the average of the 10 randomized runs used
above (assuming that detectors that did not fire do so
at the end of the stream.) Points above the diagonal
indicate that CWPM detected a change sooner than
the comparative method. Of the 38 shifts, CWPM
detected domain shifts faster than an SVM 34 times,
MIRA 26 times and CW 27 times.

We repeated the experiments to detect false posi-
tives for each margin based method. Table 1 shows
the false positives for the 38 domain shifts consid-
ered as well as the 11 false shift domain shifts. The
false positive rates are among the lowest for CWPM.
This shows that CWPM is a more useful indicator
for detecting domain changes.

7 Gradual Shifts

We have shown detection of sudden shifts between
the source and target domains. However, some shifts
may happen gradually over time. We evaluate this
by modifying the stream as follows: the first 500
instances come from the source domain, and the re-
maining 1500 are sampled randomly from the source
and target domains. The probability of an instance
being drawn from the target domain at time i is
pi(x = target) = i

1500 , where i counts from the start
of the shift at index 500. The probability of sam-
pling target domain data increases uniformly over
the stream. At index 750 after the start of the shift
each domain is equally likely. The ACE and Sen-
timent datasets had sufficient data to be evaluated
in this setting. Fig. 4 shows CWPM still performs
best, but results are close (SVM: 22 of 32, MIRA &
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Figure 4: Gradual shift detection with SVM, MIRA or CW vs. CWPM. There were no false positives.

Domain Shift FPs
Algorithm True Shift False Shift
Sec. 5: SVM 0 6
Sec. 6: MIRA 2 13
Sec. 6: CW 5 10
Sec. 6: CWPM 1 6
Total tests 380 110

Table 1: False positives (FPs) observed in true domain
shift and false domain shift experiments for methods in
corresponding sections. Each setting was run 10 times,
resulting in 380 true domain shifts and 110 false shifts.

CW: 17 of 32). As expected, detections happen later
in the stream. The closer results are likely due to
the increased difficulty of the task. With less clear
information, there it is more difficult for all the al-
gorithms to recognize a change, and performance
across the methods begins to equalize. Even in this
more difficult setting, CWPM is the best performer.

8 Comparison to Supervised Information

So far we have considered applying A-distance
tracking to information freely available in a real
world system: the classification margins. As a use-
ful baseline for comparison, we can measure using
supervised sources of information, where additional
information is provided that is not normally avail-
able. In particular, we investigate two types of su-
pervised knowledge: the labels of examples in the
stream and knowledge of the target domain. In each
case, we compare using the A-distance and CWPM
versus applying the A-distance to supervised infor-
mation.

8.1 Classifier Accuracy

In Sec. 4 we showed that both the margin and recent
classifier accuracy indicate when shifts in domains
occur (Fig. 2). We developed techniques based on
the margin, which is available at test time. We now
consider knowledge of the true labels for these test
examples, which allows for tracking classifier accu-
racy. We can use the A-distance to detect when un-
expected changes in accuracy occur.

For each test example classified by the system,
we evaluated whether the system was correct in its
prediction by examining the label. If the classifier
was correct, we output a 1; otherwise, we output a
0. Over this 1/0 stream produced by checking clas-
sifier accuracy we ran an A-distance detector, with
intervals set for 1s and 0s (10,000 uniform samples
to calibrate the threshold for a false positive rate of
0.05.) If an unusual number of 0s or 1s occur –
more or less mistakes than on the source domain – a
change is detected.4 Results on this accuracy stream
are compared to CWPM (Fig. 5.) Despite this su-
pervised information, CWPM still detects domain
changes faster than with labeled examples. Consider
again Fig. 2, which shows both accuracy and margin
values over time. While the average accuracy drops,
the instantaneous value is very noisy, suggesting that
even this additional information may not yield bet-
ter domain shift detection. This will be interesting
to explore in future work.

4An alternate approach would be to measure accuracy di-
rectly as a real valued number. However, our experiments
showed the discrete approach to be more effective.
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Figure 5: An A-distance accuracy detector, run over a stream of 1s and 0s indicating correct and incorrect predictions
of the classifier on examples in a stream. The bulk of points above the line indicate that CWPM is more effective at
detecting domain change. CWPM had a single false positive and the accuracy detector had no false positives.

8.2 Domain Classification

Next, we consider another source of supervision:
a selection of examples known to be from the tar-
get domain. In this setting, we know that a shift
will occur and we know to which domain it will oc-
cur. This requires a sample of (unlabeled) target do-
main examples when the target domain is not known
ahead of time. Using a common approach to detect-
ing domain differences when data is available from
both domains (Ben-David et al., 2009; Blitzer et al.,
2007; Rai et al., 2010), we train a binary classifier
to differentiate between the source and target do-
main. We learn a CW classifier on 1000 examples
(500 from each domain) that do not appear in the
test stream. We then label each example as either
“source” or “target” and output a 1 or 0 accordingly.
Over this 0/1 stream, we run an A-distance detector
with two intervals, one for 1s and one for 0s. The
remaining setup is identical to theA-distance exper-
iments above.

Fig. 6 shows the detection rate of CWPM versus
A-distance over the domain classifier stream. As ex-
pected, the detection rate for the domain classifier
is very fast, in almost every case (save 1) less than
400 examples after the shift happens. When CWPM
is slow to detect a change (over 400 examples), the
domain classifier is the clear winner. However, in
the majority of experiments, especially for ACE and
spam data, both detectors register a change quickly.
These results suggest that while a sample of target
domain examples is very helpful, our CWPM ap-
proach can also be effective when such samples are
not available.

9 Related Work

Early NLP work in the unsupervised setting moni-
tored classification confidence values, setting a con-
fidence threshold based on a break-even heuristic,
monitoring the rate of (presumed) irrelevant exam-
ples based on this threshold, and signaling a change
when this rate increased (Lanquillon, 1999).

Confidence estimation has been used for specific
NLP components such as information extraction.
The correctness of fields extracted via a conditional
random field extractor has been shown to corre-
late well to an estimate obtained by a constrained
forward-backward technique (Culotta and McCal-
lum, 2004). EM-based confidence estimation has
been used to estimate the confidence of patterns
derived from partially supervised relation extrac-
tion (Agichtein, 2006). Confidence estimation has
also been used to improve the overall effectiveness
of NLP systems. Confidence estimates obtained via
neural networks have shown gains for speech recog-
nition, spoken language understanding, and machine
translation (Gandrabur et al., 2006). Pipeline models
using confidence estimates at one stage as weights
for further downstream stages improve over base-
line dependency parsing and named entity recogni-
tion pipeline models (Bunescu, 2008).

An alternative formulation of domain adaptation
trains on different corpora from many different do-
mains, then uses linear combinations of models
trained on the different corpora(McClosky et al.,
2010).

Work in novelty detection is relevant to the task
of detecting domain shifts (Scholkopf et al., 2000),
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Figure 6: A-distance over a stream of 1s and 0s produced by a supervised classifier trained to differentiate between
the source and target domain. Samples from the unseen target domain is very effective. However, for many shifts, the
margin based A-distance detector is still competitive. CWPM had a single false positive while the domain classifier
stream had 2 false positives in these experiments.

though the rate of occurrence of novel instances is
more informative in our setting than the mere fact
that novel instances are observed.

We are also motivated by the problem of detect-
ing genre shift in addition to domain shift, as in the
ACE 2005 data set shifts from newswire to tran-
scripts and blogs. Different text genres occur in tra-
ditional settings, such as broadcast news transcripts
and newswire, and have begun to proliferate with
the variety of social media technologies now avail-
able including weblogs. Static genre classification
has been explored using a variety of techniques, in-
cluding exploiting punctuation (Kessler et al., 1997;
Dewdney et al., 2001), TF-IDF statistics (Lee and
Myaeng, 2002), and part-of-speech statistics and
histograms (Finn and Kushmerick, 2006; Feldman
et al., 2009).

Finally, statistical estimation in a streaming con-
text has been considered in data mining applica-
tions (Muthukrishnan, 2005). Change detection
via sequential hypothesis testing has been effective
for streaming applications such as network intrusion
detection (Muthukrishnan et al., 2007). Detecting
new events in a stream of Twitter posts can be done
using constant time and space similarity measures
based on a modification of locality sensitive hash-
ing (Petrović et al., 2010).

10 Conclusion

While there are a number of methods for domain
adaptation, a system first needs to determine that a
domain shift has occurred. We have presented meth-

ods for automatically detecting such domain shifts
from a stream of (unlabeled) examples that require
limited computation and memory by virtue of op-
erating on fixed-size windows of data. Our meth-
ods were evaluated empirically on a variety of do-
main shifts using NLP data sets and are shown to
be sensitive to shifts while maintaining a low rate of
false positives. Additionally, we showed improved
detection results using a probabilistic margin based
on Confidence Weighted learning. Comparisons to
detection with supervised information show that our
results are effective even in unlabeled settings. Our
methods are promising as tools to accompany the de-
ployment of domain adaptation algorithms, so that a
complete system can first identify when a domain
shift has occurred before automatically adapting to
the new domain.
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Saša Petrović, Miles Osborne, and Victor Lavrenko.
2010. Streaming first story detection with application
to twitter. In NAACL-HLT, pages 181–189, June.
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Abstract

A word in one language can be translated to
zero, one, or several words in other languages.
Using word fertility features has been shown
to be useful in building word alignment mod-
els for statistical machine translation. We built
a fertility hidden Markov model by adding fer-
tility to the hidden Markov model. This model
not only achieves lower alignment error rate
than the hidden Markov model, but also runs
faster. It is similar in some ways to IBM
Model 4, but is much easier to understand. We
use Gibbs sampling for parameter estimation,
which is more principled than the neighbor-
hood method used in IBM Model 4.

1 Introduction

IBM models and the hidden Markov model (HMM)
for word alignment are the most influential statistical
word alignment models (Brown et al., 1993; Vogel et
al., 1996; Och and Ney, 2003). There are three kinds
of important information for word alignment mod-
els: lexicality, locality andfertility. IBM Model 1
uses only lexical information; IBM Model 2 and the
hidden Markov model take advantage of both lexi-
cal and locality information; IBM Models 4 and 5
use all three kinds of information, and they remain
the state of the art despite the fact that they were de-
veloped almost two decades ago.

Recent experiments on large datasets have shown
that the performance of the hidden Markov model is
very close to IBM Model 4. Nevertheless, we be-
lieve that IBM Model 4 is essentially a better model
because it exploits the fertility of words in the tar-

get language. However, IBM Model 4 is so com-
plex that most researches use the GIZA++ software
package (Och and Ney, 2003), and IBM Model 4 it-
self is treated as a black box. The complexity in IBM
Model 4 makes it hard to understand and to improve.
Our goal is to build a model that includes lexicality,
locality, and fertility; and, at the same time, to make
it easy to understand. We also want it to be accurate
and computationally efficient.

There have been many years of research on word
alignment. Our work is different from others in
essential ways. Most other researchers take either
the HMM alignments (Liang et al., 2006) or IBM
Model 4 alignments (Cherry and Lin, 2003) as in-
put and perform post-processing, whereas our model
is a potential replacement for the HMM and IBM
Model 4. Directly modeling fertility makes our
model fundamentally different from others. Most
models have limited ability to model fertility. Liang
et al. (2006) learn the alignment in both translation
directions jointly, essentially pushing the fertility to-
wards 1. ITG models (Wu, 1997) assume the fer-
tility to be either zero or one. It can model phrases,
but the phrase has to be contiguous. There have been
works that try to simulate fertility using the hidden
Markov model (Toutanova et al., 2002; Deng and
Byrne, 2005), but we prefer to model fertility di-
rectly.

Our model is a coherent generative model that
combines the HMM and IBM Model 4. It is easier to
understand than IBM Model 4 (see Section 3). Our
model also removes several undesired properties in
IBM Model 4. We use Gibbs sampling instead of a
heuristic-based neighborhood method for parameter
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estimation. Our distortion parameters are similar to
IBM Model 2 and the HMM, while IBM Model 4
uses inverse distortion (Brown et al., 1993). Our
model assumes that fertility follows a Poisson distri-
bution, while IBM Model 4 assumes a multinomial
distribution, and has to learn a much larger number
of parameters, which makes it slower and less reli-
able. Our model is much faster than IBM Model 4.
In fact, we will show that it is also faster than the
HMM, and has lower alignment error rate than the
HMM.

Parameter estimation for word alignment models
that model fertility is more difficult than for mod-
els without fertility. Brown et al. (1993) and Och
and Ney (2003) first compute the Viterbi alignments
for simpler models, then consider only some neigh-
bors of the Viterbi alignments for modeling fertil-
ity. If the optimal alignment is not in those neigh-
bors, this method will not be able find the opti-
mal alignment. We use the Markov Chain Monte
Carlo (MCMC) method for training and decoding,
which has nice probabilistic guarantees. DeNero et
al. (2008) applied the Markov Chain Monte Carlo
method to word alignment for machine translation;
they do not model word fertility.

2 Statistical Word Alignment Models

2.1 Alignment and Fertility

Given a source sentencefJ
1 = f1, f2, . . . , fJ and a

target sentenceeI
1 = e1, e2, . . . , eI , we define the

alignments between the two sentences as a subset of
the Cartesian product of the word positions. Fol-
lowing Brown et al. (1993), we assume that each
source word is aligned to exactly one target word.
We denote asaJ

1 = a1, a2, . . . , aJ the alignments
betweenfJ

1 andeI
1. When a wordfj is not aligned

with any worde, aj is 0. For convenience, we add
an empty wordǫ to the target sentence at position0
(i.e., e0 = ǫ). However, as we will see, we have
to add more than one empty word for the HMM.
In order to compute the “jump probability” in the
HMM model, we need to know the position of the
aligned target word for the previous source word. If
the previous source word aligns to an empty word,
we could use the position of the empty word to indi-
cate the nearest previous source word that does not
align to an empty word. For this reason, we use a

total of I + 1 empty words for the HMM model1.
Moore (2004) also suggested adding multiple empty
words to the target sentence for IBM Model 1. After
we addI+1 empty words to the target sentence, the
alignment is a mapping from source to target word
positions:

a : j → i, i = aj

wherej = 1, 2, . . . , J and i = 1, 2, . . . , 2I + 1.
Words from positionI + 1 to 2I + 1 in the target
sentence are all empty words.

We allow each source word to align with exactly
one target word, but each target word may align with
multiple source words.

The fertility φi of a wordei at positioni is defined
as the number of aligned source words:

φi =
J

∑

j=1

δ(aj , i)

whereδ is the Kronecker delta function:

δ(x, y) =

{

1 if x = y

0 otherwise

In particular, the fertility of all empty words in
the target sentence is

∑2I+1
i=I+1 φi. We defineφǫ ≡

∑2I+1
i=I+1 φi. For a bilingual sentence paire2I+1

1 and

f
J
1 , we have

∑I
i=1 φi + φǫ = J .

The inverted alignments for positioni in the tar-
get sentence are a setBi, such that each element in
Bi is aligned withi, and all alignments ofi are in
Bi. Inverted alignments are explicitly used in IBM
Models 3, 4 and 5, but not in our model, which is
one reason that our model is easier to understand.

2.2 IBM Model 1 and HMM

IBM Model 1 and the HMM are both generative
models, and both start by defining the probabil-
ity of alignments and source sentence given the
target sentence:P (aJ

1 , fJ
1 |e

2I+1
1 ); the data likeli-

hood can be computed by summing over alignments:

1If fj−1 does not align with an empty word andfj aligns
with an empty word, we want to record the position of the target
word thatfj−1 aligns with. There areI + 1 possibilities:fj is
the first word in the source sentence, orfj−1 aligns with one of
the target word.
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P (fJ
1 |e

2I+1
1 ) =

∑

aJ
1

P (aJ
1 , fJ

1 |e
2I+1
1 ). The align-

mentsaJ
1 are the hidden variables. The expectation

maximization algorithm is used to learn the parame-
ters such that the data likelihood is maximized.

Without loss of generality,P (aJ
1 , fJ

1 |e
2I+1
1 ) can

be decomposed intolength probabilities, distor-
tion probabilities (also called alignment probabil-
ities), andlexical probabilities (also called transla-
tion probabilities):

P (aJ
1 , fJ

1 |e
2I+1
1 )

= P (J |e2I+1
1 )

J
∏

j=1

P (aj , fj |f
j−1
1 , a

j−1
1 , e2I+1

1 )

= P (J |e2I+1
1 )

J
∏

j=1

(

P (aj |f
j−1
1 , a

j−1
1 , e2I+1

1 ) ×

P (fj |f
j−1
1 , a

j
1, e

2I+1
1 )

)

where P (J |e2I+1
1 ) is a length probability,

P (aj |f
j−1
1 , a

j−1
1 , e2I+1

1 ) is a distortion prob-
ability and P (fj |f

j−1
1 , a

j
1, e

2I+1
1 ) is a lexical

probability.
IBM Model 1 assumes a uniform distortion prob-

ability, a length probability that depends only on the
length of the target sentence, and a lexical probabil-
ity that depends only on the aligned target word:

P (aJ
1 , fJ

1 |e
2I+1
1 ) =

P (J |I)

(2I + 1)J

J
∏

j=1

P (fj |eaj
)

The hidden Markov model assumes a length prob-
ability that depends only on the length of the target
sentence, a distortion probability that depends only
on the previous alignment and the length of the tar-
get sentence, and a lexical probability that depends
only on the aligned target word:

P (aJ
1 , fJ

1 |e
2I+1
1 ) =

P (J |I)

J
∏

j=1

P (aj |aj−1, I)P (fj |eaj
)

In order to make the HMM work correctly, we en-
force the following constraints (Och and Ney, 2003):

P (i + I + 1|i′, I) = p0δ(i, i
′)

P (i + I + 1|i′ + I + 1, I) = p0δ(i, i
′)

P (i|i′ + I + 1, I) = P (i|i′, I)

where the first two equations imply that the proba-
bility of jumping to an empty word is either0 or p0,
and the third equation implies that the probability of
jumping from a non-empty word is the same as the
probability of jumping from the corespondent empty
word.

The absolute position in the HMM is not impor-
tant, because we re-parametrize the distortion prob-
ability in terms of the distance between adjacent
alignment points (Vogel et al., 1996; Och and Ney,
2003):

P (i|i′, I) =
c(i− i′)

∑

i′′ c(i
′′ − i′)

wherec( ) is the count of jumps of a given distance.
In IBM Model 1, the word order does not mat-

ter. The HMM is more likely to align a source
word to a target word that is adjacent to the previ-
ous aligned target word, which is more suitable than
IBM Model 1 because adjacent words tend to form
phrases.

For these two models, in theory, the fertility for
a target word can be as large as the length of the
source sentence. In practice, the fertility for a target
word in IBM Model 1 is not very big except for rare
target words, which can become a garbage collector,
and align to many source words (Brown et al., 1993;
Och and Ney, 2003; Moore, 2004). The HMM is
less likely to have this garbage collector problem be-
cause of the alignment probability constraint. How-
ever, fertility is an inherent cross-language property
and these two models cannot assign consistent fer-
tility to words. This is our motivation for adding fer-
tility to these two models, and we expect that the re-
sulting models will perform better than the baseline
models. Because the HMM performs much better
than IBM Model 1, we expect that the fertility hid-
den Markov model will perform much better than
the fertility IBM Model 1. Throughout the paper,
“our model” refers to the fertility hidden Markov
model.

Due to space constraints, we are unable to pro-
vide details for IBM Models 3, 4 and 5; see Brown
et al. (1993) and Och and Ney (2003). But we want
to point out that the locality property modeled in the
HMM is missing in IBM Model 3, and is modeled
invertedly in IBM Model 4. IBM Model 5 removes
deficiency (Brown et al., 1993; Och and Ney, 2003)

598



from IBM Model 4, but it is computationally very
expensive due to the larger number of parameters
than IBM Model 4, and IBM Model 5 often provides
no improvement on alignment accuracy.

3 Fertility Hidden Markov Model

Our fertility IBM Model 1 and fertility HMM
are both generative models and start by defin-
ing the probability of fertilities (for each
non-empty target word and all empty words),
alignments, and the source sentence given
the target sentence: P (φI

1, φǫ,a
J
1 , fJ

1 |e
2I+1
1 );

the data likelihood can be computed by
summing over fertilities and alignments:
P (fJ

1 |e
2I+1
1 ) =

∑

φI
1
,φǫ,a

J
1

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 ).

The fertility for a non-empty wordei is a random
variableφi, and we assumeφi follows a Poisson dis-
tribution Poisson(φi;λ(ei)). The sum of the fer-
tilities of all the empty words (φǫ) grows with the
length of the target sentence. Therefore, we assume
thatφǫ follows a Poisson distribution with parameter
Iλ(ǫ).

Now P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 ) can be decomposed

in the following way:

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

= P (φI
1|e

2I+1
1 )P (φǫ|φ

I
1, e

2I+1
1 )×

J
∏

j=1

P (aj , fj |f
j−1
1 , a

j−1
1 , e2I+1

1 , φI
1, φǫ)

=
I

∏

i=1

λ(ei)
φie−λ(ei)

φi!
×

(Iλ(ǫ))φǫ e−Iλ(ǫ)

φǫ!
×

J
∏

j=1

(

P (aj |f
j−1
1 , a

j−1
1 , e2I+1

1 , φI
1, φǫ) ×

P (fj |f
j−1
1 , a

j
1, e

2I+1
1 , φI

1, φǫ)
)

Superficially, we only try to model the length
probability more accurately. However, we also en-
force the fertility for the same target word across the
corpus to be consistent. The expected fertility for a
non-empty wordei is λ(ei), and the expected fertil-
ity for all empty words isIλ(ǫ). Any fertility value
has a non-zero probability, but fertility values that

are further away from the mean have low probabil-
ity. IBM Models 3, 4, and 5 use a multinomial distri-
bution for fertility, which has a much larger number
of parameters to learn. Our model has only one pa-
rameter for each target word, which can be learned
more reliably.

In the fertility IBM Model 1, we assume that
the distortion probability is uniform, and the lexical
probability depends only on the aligned target word:

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

=
I

∏

i=1

λ(ei)
φie−λ(ei)

φi!
×

(Iλ(ǫ))φǫ e−(Iλ(ǫ))

φǫ!
×

1

(2I + 1)J

J
∏

j=1

P (fj |eaj
) (1)

In the fertility HMM, we assume that the distor-
tion probability depends only on the previous align-
ment and the length of the target sentence, and that
the lexical probability depends only on the aligned
target word:

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

=
I

∏

i=1

λ(ei)
φie−λ(ei)

φi!
×

(Iλ(ǫ))φǫ e−(Iλ(ǫ))

φǫ!
×

J
∏

j=1

P (aj |aj−1, I)P (fj |eaj
) (2)

When we computeP (fJ
1 |e

2I+1
1 ), we only sum

over fertilities that agree with the alignments:

P (fJ
1 |e

2I+1
1 ) =

∑

aJ
1

P (aJ
1 , fJ

1 |e
2I+1
1 )
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where

P (aJ
1 , fJ

1 |e
2I+1
1 )

=
∑

φI
1
,φǫ

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

≈ P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )×

I
∏

i=1

δ





J
∑

j=1

δ(aj , i), φi



×

δ





2I+1
∑

i=I+1

J
∑

j=1

δ(aj , i), φǫ



 (3)

In the last two lines of Equation 3,φǫ and each
φi are not free variables, but are determined by
the alignments. Because we only sum over fer-
tilities that are consistent with the alignments, we
have

∑

fJ
1

P (fJ
1 |e

2I+1
1 ) < 1, and our model is de-

ficient, similar to IBM Models 3 and 4 (Brown et
al., 1993). We can remove the deficiency for fertil-
ity IBM Model 1 by assuming a different distortion
probability: the distortion probability is0 if fertility
is not consistent with alignments, and uniform oth-
erwise. The total number of consistent fertility and
alignments is J !

φǫ!
∏J

j=1
φi!

. Replacing 1
(2I+1)J

with

φǫ!
∏J

j=1
φi!

J ! , we have:

P (φI
1, φǫ,a

J
1 , fJ

1 |e
2I+1
1 )

=
I

∏

i=1

λ(ei)
φie−λ(ei) ×

(Iλ(ǫ))φǫ e−(Iλ(ǫ)) ×

1

J !

J
∏

j=1

P (fj |eaj
)

In our experiments, we did not find a noticeable
change in terms of alignment accuracy by removing
the deficiency.

4 Expectation Maximization Algorithm

We estimate the parameters by maximizing
P (fJ

1 |e
2I+1
1 ) using the expectation maximization

(EM) algorithm (Dempster et al., 1977). The

auxiliary function is:

L(P (f |e), P (a|a′), λ(e), ξ1(e), ξ2(a
′))

=
∑

aJ
1

P̃ (aJ
1 |e

2I+1
1 , fJ

1 ) logP (aJ
1 , fJ

1 |e
2I+1
1 )

−
∑

e

ξ1(e)(
∑

f

P (f |e)− 1)

−
∑

a′

ξ2(a
′)(

∑

a

P (a|a′)− 1)

BecauseP (aJ
1 , fJ

1 |e
2I+1
1 ) is in the exponential

family, we get a closed form for the parameters from
expected counts:

P (f |e) =

∑

s c(f |e; f (s), e(s))
∑

f

∑

s c(f |e; f (s), e(s))
(4)

P (a|a′) =

∑

s c(a|a′; f (s), e(s))
∑

a

∑

s c(a|a′; f (s), e(s))
(5)

λ(e) =

∑

s c(φ|e; f (s), e(s))
∑

s c(k|e; f (s), e(s))
(6)

wheres is the number of bilingual sentences, and

c(f |e; fJ
1 , e2I+1

1 ) =
∑

aJ
1

P̃ (aJ
1 |f

J
1 , e2I+1

1 )×

∑

j

δ(fj , f)δ(ei, e)

c(a|a′; fJ
1 , e2I+1

1 ) =
∑

aJ
1

P̃ (aJ
1 |f

J
1 , e2I+1

1 )×

∑

j

δ(aj , a)δ(aj−1, a
′)

c(φ|e; fJ
1 , e2I+1

1 ) =
∑

aJ
1

P̃ (aJ
1 |f

J
1 , e2I+1

1 )×

∑

i

φiδ(ei, e)

c(k|e; fJ
1 , e2I+1

1 ) =
∑

i

k(ei)δ(ei, e)

These equations are for the fertility hidden
Markov model. For the fertility IBM Model 1, we
do not need to estimate the distortion probability.

5 Gibbs Sampling for Fertility HMM

Although we can estimate the parameters by using
the EM algorithm, in order to compute the expected
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counts, we have to sum over all possible alignments
a

J
1 , which is, unfortunately, exponential. We devel-

oped a Gibbs sampling algorithm (Geman and Ge-
man, 1984) to compute the expected counts.

For each target sentencee2I+1
1 and source sen-

tence fJ
1 , we initialize the alignmentaj for each

source wordfj using the Viterbi alignments from
IBM Model 1. During the training stage, we try all
2I + 1 possible alignments foraj but fix all other
alignments.2 We choose alignmentaj with probabil-
ity P (aj |a1, · · · aj−1, aj+1 · · · aJ , fJ

1 , e2I+1
1 ), which

can be computed in the following way:

P (aj |a1, · · · , aj−1, aj+1, · · · , aJ , fJ
1 , e2I+1

1 )

=
P (aJ

1 , fJ
1 |e

2I+1
1 )

∑

aj
P (aJ

1 , fJ
1 |e

2I+1
1 )

(7)

For each alignment variableaj , we chooset sam-
ples. We scan through the corpus many times until
we are satisfied with the parameters we learned us-
ing Equations 4, 5, and 6. This Gibbs sampling
method updates parameters constantly, so it is an
“online learning” algorithm. However, this sampling
method needs a large amount of communication be-
tween machines in order to keep the parameters up
to date if we compute the expected counts in parallel.
Instead, we do “batch learning”: we fix the parame-
ters, scan through the entire corpus and compute ex-
pected counts in parallel (E-step); then combine all
the counts together and update the parameters (M-
step). This is analogous to what IBM models and
the HMM do in the EM algorithms. The algorithm
for the E-step on one machine (all machines are in-
dependent) is in Algorithm 1.

For the fertility hidden Markov model, updating
P (aJ

1 , fJ
1 |e

2I+1
1 ) whenever we change the alignment

aj can be done in constant time, so the complexity
of choosingt samples for allaj (j = 1, 2, . . . , J) is
O(tIJ). This is the same complexity as the HMM
if t is O(I), and it has lower complexity ift is a
constant. Surprisingly, we can achieve better results
than the HMM by computing as few as 1 sample
for each alignment, so the fertility hidden Markov
model is much faster than the HMM. Even when
choosing t such that our model is 5 times faster than
the HMM, we achieve better results.

2For fertility IBM Model 1, we only need to computeI + 1

values becausee2I+1

I+1
are identical empty words.

Algorithm 1: One iteration of E-step: draw
t samples for eachaj for each sentence pair
(fJ

1 , e2I+1
1 ) in the corpus

for (fJ
1 , e2I+1

1 ) in the corpus do
Initialize a

J
1 with IBM Model 1;

for t do
for j do

for i do
aj = i;
ComputeP (aJ

1 , fJ
1 |e

2I+1
1 );

end
Draw a sample foraj using
Equation 7;
Update counts;

end
end

end

We also consider initializing the alignments using
the HMM Viterbi algorithm in the E-step. In this
case, the fertility hidden Markov model is not faster
than the HMM. Fortunately, initializing using IBM
Model 1 Viterbi does not decrease the accuracy in
any noticeable way, and reduces the complexity of
the Gibbs sampling algorithm.

In the testing stage, the sampling algorithm is the
same as above except that we keep the alignments
a

J
1 that maximizeP (aJ

1 , fJ
1 |e

2I+1
1 ). We need more

samples in the testing stage because it is unlikely
to get to the optimal alignments by sampling a few
times for each alignment. On the contrary, in the
above training stage, although the samples are not
accurate enough to represent the distribution defined
by Equation 7 for each alignmentaj , it is accurate
enough for computing the expected counts, which
are defined at the corpus level. Interestingly, we
found that throwing away the fertility and using the
HMM Viterbi decoding achieves same results as the
sampling approach (we can ignore the difference be-
cause it is tiny), but is faster. Therefore, we use
Gibbs sampling for learning and the HMM Viterbi
decoder for testing.

Gibbs sampling for the fertility IBM Model 1 is
similar but simpler. We omit the details here.
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Alignment Model P R AER

en→ cn

IBM1 49.6 55.3 47.8
IBM1F 55.4 57.1 43.8
HMM 62.6 59.5 39.0

HMMF-1 65.4 59.1 37.9
HMMF-5 66.8 60.8 36.2
HMMF-30 67.8 62.3 34.9

IBM4 66.8 64.1 34.5

cn→ en

IBM1 52.6 53.7 46.9
IBM1F 55.9 56.4 43.9
HMM 66.1 62.1 35.9

HMMF-1 68.6 60.2 35.7
HMMF-5 71.1 62.2 33.5
HMMF-30 71.1 62.7 33.2

IBM4 69.3 68.5 31.1

Table 1: AER results. IBM1F refers to the fertility IBM1 and HMMF refers to the fertility HMM. We chooset = 1,
5, and30 for the fertility HMM.
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Figure 1: AER comparison (en→cn)
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Figure 3: Training time comparison. The training time for each model is calculated from scratch. For example, the
training time of IBM Model 4 includes the training time of IBMModel 1, the HMM, and IBM Model 3.
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6 Experiments

We evaluated our model by computing the word
alignment and machine translation quality. We use
the alignment error rate (AER) as the word align-
ment evaluation criterion. LetA be the alignments
output by word alignment system,P be a set of pos-
sible alignments, andS be a set of sure alignments
both labeled by human beings.S is a subset ofP .

Precision, recall, and AER are defined as follows:

recall =
|A ∩ S|

|S|

precision =
|A ∩ P |

|A|

AER(S, P, A) = 1−
|A ∩ S|+ |A ∩ P |

|A|+ |S|

AER is an extension to F-score. Lower AER is bet-
ter.

We evaluate our fertility models on a Chinese-
English corpus. The Chinese-English data taken
from FBIS newswire data, and has 380K sentence
pairs, and we use the first 100K sentence pairs as
our training data. We used hand-aligned data as ref-
erence. The Chinese-English data has 491 sentence
pairs.

We initialize IBM Model 1 and the fertility IBM
Model 1 with a uniform distribution. We smooth
all parameters (λ(e) andP (f |e)) by adding a small
value (10−8), so they never become too small. We
run both models for 5 iterations. AER results are
computed using the IBM Model 1 Viterbi align-
ments, and the Viterbi alignments obtained from the
Gibbs sampling algorithm.

We initialize the HMM and the fertility HMM
with the parameters learned in the 5th iteration of
IBM Model 1. We smooth all parameters (λ(e),
P (a|a′) andP (f |e)) by adding a small value (10−8).
We run both models for 5 iterations. AER results are
computed using traditional HMM Viterbi decoding
for both models.

It is always difficult to determine how many sam-
ples are enough for sampling algorithms. However,
both fertility models achieve better results than their
baseline models using a small amount of samples.
For the fertility IBM Model 1, we sample 10 times
for eachaj , and restart 3 times in the training stage;

we sample 100 times and restart 12 times in the test-
ing stage. For the fertility HMM, we sample 30
times for eachaj with no restarting in the training
stage; no sampling in the testing stage because we
use traditional HMM Viterbi decoding for testing.
More samples give no further improvement.

Initially, the fertility IBM Model 1 and fertility
HMM did not perform well. If a target worde
only appeared a few times in the training corpus, our
model cannot reliably estimate the parameterλ(e).
Hence, smoothing is needed. One may try to solve
it by forcing all these words to share a same pa-
rameterλ(einfrequent). Unfortunately, this does not
solve the problem because all infrequent words tend
to have larger fertility than they should. We solve
the problem in the following way: estimate the pa-
rameterλ(enon empty) for all non-empty words, all
infrequent words share this parameter. We consider
words that appear less than 10 times as infrequent
words.

Table 1, Figure 1, and Figure 2 shows the AER
results for different models. We can see that the fer-
tility IBM Model 1 consistently outperforms IBM
Model 1, and the fertility HMM consistently outper-
forms the HMM.

The fertility HMM not only has lower AER than
the HMM, it also runs faster than the HMM. Fig-
ure 3 show the training time for different models.
In fact, with just 1 sample for each alignment, our
model archives lower AER than the HMM, and runs
more than 5 times faster than the HMM. It is pos-
sible to use sampling instead of dynamic program-
ming in the HMM to reduce the training time with
no decrease in AER (often an increase). We con-
clude that the fertility HMM not only has better AER
results, but also runs faster than the hidden Markov
model.

We also evaluate our model by computing the
machine translation BLEU score (Papineni et al.,
2002) using the Moses system (Koehn et al., 2007).
The training data is the same as the above word
alignment evaluation bitexts, with alignments for
each model symmetrized using the grow-diag-final
heuristic. Our test is 633 sentences of up to length
50, with four references. Results are shown in Ta-
ble 2; we see that better word alignment results do
not lead to better translations.
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Model BLEU
HMM 19.55

HMMF-30 19.26
IBM4 18.77

Table 2: BLEU results

7 Conclusion

We developed a fertility hidden Markov model
that runs faster and has lower AER than the
HMM. Our model is thus much faster than IBM
Model 4. Our model is also easier to understand
than IBM Model 4. The Markov Chain Monte Carlo
method used in our model is more principled than
the heuristic-based neighborhood method in IBM
Model 4. While better word alignment results do not
necessarily correspond to better translation quality,
our translation results are comparable in translation
quality to both the HMM and IBM Model 4.
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Abstract

Minimum Error Rate Training is the algo-
rithm for log-linear model parameter train-
ing most used in state-of-the-art Statistical
Machine Translation systems. In its original
formulation, the algorithm uses N-best lists
output by the decoder to grow theTransla-
tion Pool that shapes the surface on which
the actual optimization is performed. Recent
work has been done to extend the algorithm
to use the entire translation lattice built by
the decoder, instead of N-best lists. We pro-
pose here a third, intermediate way, consist-
ing in growing the translation pool using sam-
ples randomly drawn from the translation lat-
tice. We empirically measure a systematic im-
provement in the BLEU scores compared to
training using N-best lists, without suffering
the increase in computational complexity as-
sociated with operating with the whole lattice.

1 Introduction

Most state-of-the-art Statistical Machine Translation
(SMT) systems are based on a log-linear model of
the conditional probability of generating a certain
translation given a specific source sentence. More
specifically, the conditional probability of a transla-
tion e and a word alignmenta given a source sen-
tencef is modeled as:

∗The work behind this paper was done during an intern-
ship at the Xerox Research Centre Europe. The author was par-
tially supported by NSF through Grant CCF-0643593 and the
AFOSR Young Investigator Research Program.

P (e, a|f) ∝ exp

(

K
∑

k=1

λkhk (e,a,f)

)

(1)

where thehk(e,a,f) are feature functionsprovid-
ing complementary sources of information on the
quality of the produced translation (and alignment).
Once such a model is known: thedecoder(i.e. the
actual translation program), which builds a transla-
tion by searching in the space of all possible transla-
tions the one that maximizes the conditional proba-
bility:

(e∗, a∗) = arg max
e,a

K
∑

k=1

λkhK(e,a,f) (2)

where we have taken into account that the exponen-
tial is monotonic.

The parametersλk determine the relative impor-
tance of the different feature functions in the global
score. Best results are typically obtained by search-
ing in the space of all possible parameter vectorsλ̄

for the one that minimizes the error on a held-out
development dataset for which one or more refer-
ence human translations are available, as measured
by some automatic measure. This procedure is re-
ferred to asMinimum Error Rate Training (MERT).

1.1 Minimum Error Rate Training on N-best
Lists

The most widespread MERT algorithm is the one
described in (Och, 2003). This algorithm starts
by initializing the parameter vector̄λ. For each
source sentence in the development set, the decoder
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is used to initialize a translation pool with a list of N-
best scoring candidate translations according to the
model. Using this pool and the corresponding refer-
ence translations then, an optimization procedure is
run to update the parameter vector to aλ̄′ with re-
duced error. The decoder is then invoked again, the
new output N-best list is merged into the translation
pool, and the procedure is iterated. The algorithm
stops either after a predefined number of iterations
or upon convergence, which is reached when no new
element is added to the translation pool of any sen-
tence, or when the size of the update in the parameter
vector is below a threshold.

The error measure minimized at each iteration is
usually BLEU (Papineni et al., 2002). BLEU essen-
tially measures the precision with which the trans-
lation produced by a system recovers n-grams of
different orders from the available reference trans-
lation(s), used as a gold standard.

The optimization procedure that is run within
each iteration on the growing translation pools is
based on the key observation that BLEU only de-
pends on the single translation receiving the highest
score by the translation model (which would be the
one shown to the receipient) in the translation pool.
This in turn means that, for any given sentence, its
contribution to BLEU changes only when the value
of the parameters change in such a way that the sen-
tence ranking first according to the model switches
from one to another. This situation does not change
when one considers all the sentences in a develop-
ment set instead of just one: while varying theλ̄

vector, the BLEU score changes only when there is
a change at the top of the ranking of the alternatives
for at least one sentence in the set. In other words,
BLEU is piece-wise constant in̄λ. MERT then pro-
ceeds by performing an iterative line search by fix-
ing each time the value of all components ofλ̄ but
one1: for such a free parameter a global optimum
can be identified by enumerating all the points that
cause a change in BLEU. The value of the compo-
nent is then fixed at the middle of an interval with
maximum BLEU, and the procedure is iterated un-
til convergence. Since the error function is highly
irregular, and the iterative line search is not guaran-

1More generally, one can select each time a combination of
coordinates identifying a line in the parameter space, and is not
restricted to a coordinate direction.

teed to converge to a global optimum, the procedure
is repeated many times with different initializations,
and the best convergence point is retained.

The MERT algorithm suffers from the following
problem: it assumes at each iteration that the set
of candidates with a chance to make it to the top
(for some value of the parameter vector) is well
represented in the translation pool. If the transla-
tion pool is formed in the standard way by merg-
ing N-best lists, this assumption is easily violated in
practice. Indeed, the N-best list often contains only
candidates displaying minor differences, and repre-
sents only a very small sample of alternative possi-
ble translations, strongly biased by the current pa-
rameter setting.

Recognizing this shortcoming, Macherey et al.
(2008) extended the MERT algorithm so as to use
the whole set of candidate translations compactly
represented in the search lattice produced by the de-
coder, instead of only a N-best list of candidates
extracted from it. This is achieved via an elegant
but relatively heavy dynamic programming algo-
rithm that propagates sufficient statistics (calleden-
velopes) throughout the whole search graph. The re-
ported theoretical worst-case complexity of this al-
gorithm isO(|V ||E| log |E|), whereV andE are the
vertex set and the edge set of the lattice respectively.

We propose here an alternative method consist-
ing in sampling a list of candidate translations from
the probability distribution induced by the transla-
tion lattice. This simple method produces a list of
candidates more representative of the complete dis-
tribution than an N-best list, side-stepping the in-
tricacies of propagating envelopes throughout the
lattice. Computational complexity increases only
marginally over the N-best list approach, while still
yielding significant improvements in final transla-
tion quality.

1.2 The translation lattice

Finding the optimal translation according to Equa-
tion 1 is NP-complete (Knight, 1999). Most phrase-
based SMT systems resort then to beam-search
heuristic algorithms for solving the problem approx-
imately. In their most widespread version, PBSMT
decoders proceed by progressively extending trans-
lation prefixes by adding one new phrase at a time,
and correspondingly “consuming” portions of the
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source sentence. Each prefix is associated with a
node in a graph, and receives a score according to
the model. Whenever two prefixes having exactly
the same possible extensions are detected, the lower-
scoring one ismergedinto the other, thus creating a
re-entrancy in the directed graph, which has then the
characteristics of alattice (Figure 1). Edges in the
lattice are labelled with the phrase-pair that was used
to perform the corresponding extension, the source
word positions that were covered in doing the ex-
tension, and the corresponding increment in model
score.

0
F

I have a
J’ai une
(1,2,3)
−12.24

bleue
(4)
...

blue

voiture
(5)
...

car

J’ai une bleue
I have a blue

(1,2,3,4)
...

2 3

1

a blue car
une voiture bleue
(3,4,5)
...

I have
J’ai
(1,2)
...

Figure 1: A lattice showing some possible translations of
the English sentence:I have a blue car. The state with
ID 0 is the start state and the one withF is the final state.

2 Related Work

Since its introduction, (Och, 2003) there has been
various suggestions for optimizing the MERT cri-
terion. Zens et al. (2007) use the MERT criterion
to optimize the N-best lists using the Downhill
Simplex Algorithm (Press, 2007). But the Down-
hill Simplex Algorithm loses its robustness as the
dimension goes up by more than 10 (Macherey
et al., 2008). Deterministic Annealing was sug-
gested by Smith and Eisner (2006) where the au-
thors propose to minimize theexpected lossor
risk. They define the expectation using a proba-
bility distribution over hypotheses that they gradu-
ally anneal to focus on the 1-best hypothesis. Dif-
ferent search strategies were investigated by Cer
et al. (2008). Work has been done to investigate a
perceptron-like online margin training for statisit-
ical machine translation (Watanabe et al., 2007).

Building on this paper, the most recent work to
our knowledge has been done by Chiang et al.
(2008). They explore the use of the Margin Infused
Relaxed Algorithm (MIRA) (Crammer and Singer,
2003; Crammer et al., 2006) algorithm instead of
MERT. Macherey et al. (2008) propose a new varia-
tion of MERT where the algorithm is tuned to work
on the whole phrase lattice instead of N-best list
only. The new algorithm constructs the error surface
of all translations that are encoded in the phrase lat-
tice. They report significant convergence improve-
ments and BLEU score gains over N-best MERT
when trained on NIST 2008 translation tasks. More
recently, this algorithm was extended to work with
hypergraphs encoding a huge number of translations
produced by MT systems based on Synchronous
Context Free Grammars (Kumar et al., 2009). All
the methods cited here work on either N-best lists or
from whole translation lattices built by the decoder.
To our knowledge, none of them proposes sampling
translations from the lattice.

3 Sampling candidate translations from
the lattice

In this section we first start by providing an intu-
ition of why we believe it is a good idea to sample
from the translation lattice, and then describe in de-
tail how we do it.

3.1 An intuitive explanation

The limited scope of n-best lists rules out many al-
ternative translations that would receive the highest
score for some values of the parameter vector. The
complete set of translations that can be produced us-
ing a fixed phrase table (also calledreachabletrans-
lations) for a given source sentence can be repre-
sented as a set of vectors in the space spanned by
the feature functions (Fig. 2). Not all such transla-
tions stand a chance to receive the highest score for
any value of the parameter vector, though. Indeed, if
translationsh, h’andh” are such thathk ≤ h′

k ≤ h′′

k

for all featurek, then there is no value of̄λ that
will give to h’ a score higher than bothh andh” .
The candidates that would rank first for some value
of the λ̄ parameter vector are those on the convex
envelope of the overall candidate set. We know of
no effective way to generate this convex envelope in
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polynomial time. The set of candidates represented
by the decoder lattice is a subset (enclosed in the
larger dashed polygon in the figure) of this set. This
subset is biased to contain translations ranking high
according to the values of the parameter vector (the
direction labelled withλ) used to produce it, because
of the pruning strategies that guide the construction
of the translation lattice. Both the N-best list and
our proposed random sample are further subsets of
the set of translations encoded in the lattice. The N-
best list is very biased towards translations that score
high with the current choice of parameters: its con-
vex envelope (the smaller dashed polygon) is very
different from the one of the complete set of trans-
lations, and also from that of the translations in the
lattice. The convex envelope of a random sample
from the translation lattice (the dotted polygon in the
figure), will generally be somewhat closer to the en-
velope of the whole lattice itself.

The curves in the figure indicate regions of con-
stant loss (e.g. iso-BLEU score, much more irregu-
larly shaped in reality than in the drawing). For this
sentence, then, the optimal choice of the parameters
would be aroundλ∗. Performing an optimization
step based on the random sample envelope would
result in a more marked update (λ′

sample) in the di-

rection of the best parameter vector than if an N-best
list is used (λ′

N-best).
Notice that Figure 2 portraits a situation with only

two features, for obvious reasons. In practice the
number of features will be substantially larger, with
values between five and twenty being common prac-
tice. In real cases, then, a substantially larger frac-
tion of reachable translations will tend to lie on the
convex envelope of the set, and not inside the convex
hull.

3.2 The sampling procedure

We propose to modify the standard MERT algorithm
and sample N candidates from the translation lattice
according to the probability distribution over paths
induced by the model, given the current setting of
the λ̄ parameters, instead of using an N-best list.
The sampling procedes from the root node of the
lattice, corresponding to an empty translation can-
didate covering no words of the source, by chosing
step by step the next edge to follow. The probability

reference

λ’
λ’

λ’

h1

h2

λ

λ∗

best in lattice

best in random sample

best in N−best list

best reachable

N−best
sample

lattice

Figure 2: Envelope of the set of reachable translations
where the model has two feature functionsh1 and h2.
The envelope of the lattice is the outer dashed polygon,
while the envelope of the N-best list is the inner one. Us-
ing the whole lattice as translation pool will result in a
more marked update towards the optimal parameters. The
random sample from the lattice is enclosed by the dotted
line. If we use it, we can intuitively expect updates to-
wards the optimum of intermediate effectiveness between
those of the N-best list method and those of the lattice
method.

distribution for each possible follow-up is the poste-
rior probability of following the edge given the path
prefix derived from the lattice: it is obtained via a
preliminary backward sweep.

Since feature functions are incremental over the
edges by design, the non-normalized probability of
a path is given by:

P (e1, . . . , em) = e
Pm

i=1
σ(ei) (3)

where

σ(ei) =
K

∑

k=1

λkhk(ei) (4)

is thescoreof edgeei. With a small abuse of no-
tation we will also denote it asσ(nj,k), where it is
intended thatei goes from nodenj to nodenk. Let’s
denote withσ(ni) the score of nodeni, i.e. the loga-
rithm of the cumulative unnormalized probability of
all the paths in the lattice that go from nodeni to a
final node. The unnormalized probability of select-
ing nodenj starting fromni can then be expressed
recursively as follows:
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S(nj |ni) ≈ e(σ(nj)+σ(ni,j)) (5)

The scores required to compute this sampling
probabilities can be obtained by a simple backward
pass in the lattice. LetPi be the set of successors
of ni. So the total unnormalized log-probability of
reaching a final state (i.e. with a complete transla-
tion) fromni is given by the equation below.

σ(ni) = log(
∑

nj∈Pi

e(σ(nj)+σ(ni,j))) (6)

where we setσ(ni) = 0 if Pi = ∅, that is if ni

is a final node. At the end of the backward sweep,
σ(n0) contains the unnormalized cumulative prob-
ability of all paths, i.e. the partition function. No-
tice that this normalising constant cancels out when
computing local sampling probabilities for traversed
nodes in the lattice.

Once we know the transition probability (Eq. 5)
for each node, we sample by starting in the root node
of the lattice and at each step randomly selecting
among its successors, until we end in the final node.
The whole sampling procedure is repeated as many
times as the number of samples sought. After col-
lecting samples for each sentence, the whole list is
used to grow the translation pool.

Notice that when using this sampling method it is
no longer possible to use the stability of the trans-
lation pool as a stopping criterion. The MERT al-
gorithm must thus be run either for a fixed number
of iterations, or until the norm of the update to the
parameter vector goes below a threshold.

3.3 Time Complexity Analysis

For each line search in the inner loop of the MERT
algorithm, all methods considered here need to com-
pute the projection of the convex envelope that can
be scanned by leaving all components unchanged
but one2. If we use either N-best lists or random
samples to form the translation pool, andM is the
size of the translation pool, then computing the en-
velope can be done in timeO(M log M) using the
SweepLinealgorithm reproduced as Algorithm 1 in
(Macherey et al., 2008). As shown in the same ar-
ticle, the lattice method for computing the envelope

2In general, moving along a 1-dimensional subspace of the
parameter space.

is O(|V ||E| log |E|), whereV is the vertex set of the
lattice, andE is its edge set. In standard decoders
there is a maximum limitD to the allowed distor-
tion, and lattice vertices are organized inJ priority
queues3 of size at mosta, whereJ is the length of
the source sentence anda is a parameter of the de-
coder set by the user. Also, there is a limitK to
the maximum number of source words spanned by
a phrase, and only up toc alternative translations
for a same source phrase are kept in the phrase ta-
ble. Under these standard conditions, the number
of outgoing edgesE′ from each lattice vertex can
be bounded by a constant. A way to see this is by
considering that if an hypothesis is extended with a
phrase, then the extended hypothesis must end up in
a stack at mostK stacks to the right of the original
one. There are onlyaK places in these stacks, so it
must be|E′| ≤ aK.
Since the number of edges leaving each node is
bounded by a constant, it is|E| = Θ(|V |), and the
lattice method isO(|V |2 log(|V |)). The maximum
number of vertices in the lattice is limited by the
capacity of the stacks:|V | ≤ aJ . This eventually
leads to a complexity ofO(J2 log J) for the inner
loop of the lattice method.

It is interesting to observe that the complexity is
driven by the length of the source sentence in the
case of the lattice method, and by the size of the
translation pool in the case of both the N-best list
method and the random sampling method. The lat-
ter two methods are asymptotically more effective as
long as the size of the sample/N-best list grows sub-
quadratically in the length of the sentence. In most
of our experiments we keep the size of the sample
constant, independent of the length of the sentence,
but other choices can be considered. Since the num-
ber of reachable translations grows with the length
of the source sentence, length-independent samples
explore a smaller fraction of the reachable space.
Generating samples (or n-best lists) of size increas-
ing with the length of the source sentence could thus
lead to more homogeneous sampling, and possibly a
better use of CPU time.

We have so far compared methods in term of the
complexity of the innermost loop: the search for a
global optimum along a line in the parameter space.

3Traditionally referred to asstacks.
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This is indeed the most important analysis, since
the line search is repeated many times. In order to
complete the analysis, we also compare the differ-
ent methods in terms of the operations that need be
performed as part of the outer iteration, that is upon
redecoding the development set with a new parame-
ter vector.

The N-best list method requires simply construct-
ing an N-best list from the lattice. This can be done
in time linear in the sizeJ of the sentence and inN
with a backward sweep in the lattice.

The sampling method requires samplingN times
the lattice according to the probability distribution
induced by the weights on its edges. We use a
dynamic programming approach for computing the
posterior probabilities of traversing edges. In this
phase we visit each edge of the lattice exactly once,
hence this phase is linear in the number of edges
in the lattice, hence under the standard assumptions
above in the lengthJ of the sentence. Once posterior
probabilities are computed for the lattice, we need
to sampleN paths from it, each of which is com-
posed of at mostJ edges4. Under standard assump-
tions, randomly selecting the next edge to follow at
each lattice node can be done in constant time, so
the whole sampling is alsoO(NJ), like extracting
the N-best list.

No operation at all is required by the lattice
method in the outer loop, since the whole lattice is
passed over for envelope propagation to the inner
loop.

4 Experimental Results

Experiments were conducted on the Europarl corpus
with the split used for the WMT-08 shared task (Eu-
roparl training and test condition) for the language
pairs English-French (En-Fr), English-Spanish (En-
Es) and English-German (En-De), each in both di-
rections. Training corpora contain between 1.2 and
1.3 million sentence pairs each, development and
test datasets are of size 2,000. Detailed token and
type statistics can be found in Callison-Burch et al.
(2008). The Moses decoder (Koehn et al., 2007)
was used for generating lattices and n-best lists. The
maximum number of decoding iterations was set to
twelve. Since Moses was run with its lexicalised dis-

4We assume all phrase pairs cover at least one source word.
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Figure 3: Learning curves (BLEU on the development
set) for different tested conditions for English to French
(top) and French to English (bottom).

tortion model, there were 14 features. Moses L1-
normalises the parameter vector: parameter scaling
only marginally affects n-best list construction (via
threshold pruning during decoding), while it sub-
stantially impacts sampling.

For each of the six configurations, we compared
the BLEU score on the test data when optimizing
feature weights with MERT using n-best and ran-
dom samples of size 100 and 200. In all cases we
used 20 random restarts for MERT. Results are pre-
sented in Table 1. We also ran non systematic ex-
periments on some of the configurations with larger
samples and n-best lists, with results changing very
little from the respective 200 cases: we do not report
them here.

Learning curves (BLEU on the development set)
are shown in Figure 3. Learning curves for the other
tested language pairs follow a similar pattern.
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5 Analysis of results

All differences of the test scores between optimiz-
ing the parameters using nbest-200 lists and from
randomly sampled lists of size 200 were found to
be statisitically significant at 0.05 level at least. We
used Approximate Randomization Test (Riezler and
Maxwell, 2005) for the purpose, random sampling
being done 1000 times.

S-T NB-100 RS-100 NB-200 RS-200
En-Fr 32.47 31.36 32.32 32.76
Fr-En 32.43 31.77 32.46 32.91
En-Es 29.21 28.98 29.65 30.19
Es-En 30.97 30.41 31.22 31.66
En-De 20.36 19.92 20.55 20.93
De-En 27.48 26.98 27.30 27.62

Table 1: Test set BLEU Scores for six different “Source-
Target” Pairs

Somewhat surprisingly, while random sampling
with sample size of 200 yields overall the best re-
sults, random sampling with size 100 give system-
atically worse results than n-best lists of the same
size. We conjectured that n-best lists and random
samples could have complementary advantages. In-
deed, it seems intuitive that a good translation pool
should be sufficiently varied, as argued in Section
3.1. However it should also stand high chances to
contain the best reachable translation, or translations
close to the best. It might thus be that 100-best lists
are unable to provide diversity, and random samples
of size 100 to guarantee sufficient quality.

In order to test this conjecture we repeated our
experiments, but at each iteration we used the union
of a 100 random sample and a 100 n-best list. Re-
sults for this experiments are in Table 2. The cor-
responding results with random samples of size 200
are also repeated to ease comparison. Depending on
the language pair, improvements over random sam-
pling range from 0.17 (En-Es) to 0.44 (Fr-En) BLEU
points. Improvements over 200-best lists range from
0.68 (De-En) to 0.89 (Fr-En) BLEU points. These
results indicate quite clearly that N-best lists and
random samples contribute complementary infor-
mation to the translation pool: indeed, in most cases
there is very little or no overlap between the two.

Convergence curves show that RS-200, NB-100

Source-Target Mixed 100 + 100 RS-200
En-Fr 33.17 32.76
Fr-En 33.35 32.91
En-Es 30.37 30.19
Es-En 32.04 31.66
En-De 21.31 20.93
De-En 27.98 27.62

Table 2: Test set BLEU Scores for the same ’‘Source-
Target” pairs using a mixed strategy combining a 100 N-
best list and a random sample of size 100 after each round
of decoding.

and M-200 (i.e. the hybrid combination) systemati-
cally converge to higher BLEU scores, on the devel-
opment set and on their respective translation pools,
than RS-100 and NB-200. Notice however that it is
misleading to compare scores across different trans-
lation pools, especially if these have substantially
different sizes. On the one hand adding more candi-
dates increases the chances of adding one with high
contribution to the corpus BLEU, and can thus in-
crease the achievable value of the objective function.
On the other hand, adding more candidates reduces
the freedom MERT has to find parameter values se-
lecting high-BLEU candidates for all sentences. To
see this, consider the extreme case when the transla-
tion pools are all of size one and are provided by an
oracle that gives the highest-BLEU reachable trans-
lation for each sentence: the objective surface is un-
informatively flat, all values of the parameters are
equally good, and the BLEU score on the devset is
the highest achievable one. If now we add to each
translation pool the second-best BLEU-scoring can-
didate, BLEU will be maximized in a half-space for
each sentence in the development set: MERT will try
to selectλ in the intersection of all the half-spaces, if
this is not empty, but will have to settle for a lower-
scoring compromise otherwise. The larger the trans-
lation pools, the more difficult it becomes for MERT
to “make all sentences happy”. A special case of this
is when adding more candidates extends the convex
envelopes in such a way that the best candidates fall
in the interior of the convex hull. It is difficult to
tell which of the two opposing effects (the one that
tends to increase the value of the objective function
or the one that tends to depress it) is stronger in any
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given case, but from the convergence curves it would
seem that the first prevails in the case of random
samples, whereas the second wins in the case of n-
best lists. In the case of random samples going from
size 100 to 200 systematically leads to higher BLEU
score on the devsets, as more high-BLEU candidates
are drawn. In the case of n-best lists, conversely,
this leads to lower BLEU scores, as lower-BLEU (in
average) candidates are added to translation pools
providing a sharper representation of the BLEU sur-
face and growing MERT out of the “delusion” that a
given high BLEU score is actually achieveable.

In the light of this discussion, it is interesting
to observe that the value achieved by the objective
function on the development set is only a weak pre-
dictor of performance on the test set, e.g. M-200
never converges to values above those of NB-100,
but is systematically superior on the test data.

In Macherey et al. (2008) the authors observe a
dip in the value of the objective function at the first
iteration when training using n-best lists. We did
not observe this behaviour in our experiments. A
possible explanation for this resides in the larger size
of the n-best lists we use (100 or 200, compared to
50 in the cited work) and in the smaller number of
dimensions (14 instead of 20-30).

We hinted in Section 3.3 that it would seem rea-
sonable to use samples/nbest-list of size increasing
with the length of the source sentence, so as to sam-
ple reachable translations with a more uniform den-
sity across development sentences. We tested this
idea on the French to English condition, making
samples size depend linearly on the length of the
sentence, and in such a way that the average sam-
ple size is either 100 or 200. For average sample
size 100 we obtained a BLEU of 31.55 (compared
to 31.77 with the constant-size 100 random sample)
and for average size 200 31.84 (32.46 in the cor-
responding constant-size condition). While partial,
these results are not particularly encouraging w.r.t.
using variable size samples.

Finally, in order to assess the stability of the pro-
posed training procedure across variations in devel-
opment datasets, we experimented with extracting
five distinct devsets of size 2,000 each for the French
to English RS-200 condition, keeping the test set
fixed: the maximum difference we observed was of
0.33 BLEU points.

6 Conclusions

We introduced a novel variant to the well-known
MERT method for performing parameter estimation
in Statistical Machine Translation systems based on
log-linear models. This method, of straightforward
implementation, is based on sampling candidates
from the posterior distribution as approximated by
an existing translation lattice in order to progres-
sively expand thetranslation poolthat shapes the
optimization surface. This method compares favor-
ably against existing methods on different accounts.
Compared to the standard method by which N-best
lists are used to grow the translation pool, it yields
empirically better results as shown in our experi-
ments, without significant penalties in terms of com-
putational complexity. These results are in agree-
ment with the intuition that the sampling method
introduces more variety in the translation pool, and
thus allows to perform more effective parameter up-
dates towards the optimum. A hybrid strategy, con-
sisting in combining N-best lists and random sam-
ples, brings about further significant improvements,
indicating that both quality and variety are desire-
able in the translation pool that defines the optimiza-
tion surface. A possible direction to investigate in
the future consists in generalizing this hybrid strat-
egy and combining random samples where the prob-
ability distribution induced on the lattice by the cur-
rent parameters is scaled by a further temperature
parameterβ:

P ′(e, a|f) ∝ P (e, a|f)β (7)

where forβ = 1 the random samples used in this pa-
per are obtained, forβ tending to infinite the distri-
bution becomes peaked around the single best path,
thus producing samples similar to N-best lists, and
samples from other real values of the temperature
can be combined.

Compared to the method using the whole lat-
tice, the proposed approaches have a substantially
lower computational complexity under very broad
and common assumptions, and yet yield transla-
tion quality improvements of comparable magnitude
over the baseline N-best list method.

While the method presented in this paper oper-
ates on the translation lattices generated by Phrase-
Based SMT decoders, the extension to translation
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forests generated by hierarchical decoders (Chiang,
2007) seems straightforward. In that case, the back-
ward sweep for propagating unnormalized posterior
probabilities is replaced by a bottom-up sweep, and
the sampling now concerns (binary) trees instead of
paths, but the rest of the procedure is substantially
unchanged. We conjecture however that the exten-
sion to translation forests would be less competitive
compared to working with the whole packed forest
(as in (Kumar et al., 2009)) than lattice sampling is
compared to working with the whole lattice. The
reason we believe this is that hierarchical models
lead to much more spurious ambiguity than phrase-
based models, so that both the N-best method and
the sampling method explore a smaller portion of the
candidate space compared to the compact represen-
tation of all the candidate translations in a beam.
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Abstract

In modern machine translation practice, a sta-
tistical phrasal or hierarchical translation sys-
tem usually relies on a huge set of trans-
lation rules extracted from bi-lingual train-
ing data. This approach not only results in
space and efficiency issues, but also suffers
from the sparse data problem. In this paper,
we propose to use factorized grammars, an
idea widely accepted in the field of linguis-
tic grammar construction, to generalize trans-
lation rules, so as to solve these two prob-
lems. We designed a method to take advantage
of the XTAG English Grammar to facilitate
the extraction of factorized rules. We experi-
mented on various setups of low-resource lan-
guage translation, and showed consistent sig-
nificant improvement in BLEU over state-of-
the-art string-to-dependency baseline systems
with 200K words of bi-lingual training data.

1 Introduction

A statistical phrasal (Koehn et al., 2003; Och and
Ney, 2004) or hierarchical (Chiang, 2005; Marcu
et al., 2006) machine translation system usually re-
lies on a very large set of translation rules extracted
from bi-lingual training data with heuristic methods
on word alignment results. According to our own
experience, we obtain about 200GB of rules from
training data of about 50M words on each side. This
immediately becomes an engineering challenge on
space and search efficiency.

A common practice to circumvent this problem
is to filter the rules based on development sets in the
step of rule extraction or before the decoding phrase,
instead of building a real distributed system. How-
ever, this strategy only works for research systems,

for which the segments for translation are always
fixed.

However, do we really need such a large rule set
to represent information from the training data of
much smaller size? Linguists in the grammar con-
struction field already showed us a perfect solution
to a similar problem. The answer is to use a fac-
torized grammar. Linguists decompose lexicalized
linguistic structures into two parts, (unlexicalized)
templates and lexical items. Templates are further
organized into families. Each family is associated
with a set of lexical items which can be used to lex-
icalize all the templates in this family. For example,
the XTAG English Grammar (XTAG-Group, 2001),
a hand-crafted grammar based on the Tree Adjoin-
ing Grammar (TAG) (Joshi and Schabes, 1997) for-
malism, is a grammar of this kind, which employs
factorization with LTAG e-tree templates and lexical
items.

Factorized grammars not only relieve the burden
on space and search, but also alleviate the sparse
data problem, especially for low-resource language
translation with few training data. With a factored
model, we do not need to observe exact “template
– lexical item” occurrences in training. New rules
can be generated from template families and lexical
items either offline or on the fly, explicitly or im-
plicitly. In fact, the factorization approach has been
successfully applied on the morphological level in
previous study on MT (Koehn and Hoang, 2007). In
this work, we will go further to investigate factoriza-
tion of rule structures by exploiting the rich XTAG
English Grammar.

We evaluate the effect of using factorized trans-
lation grammars on various setups of low-resource
language translation, since low-resource MT suffers
greatly on poor generalization capability of trans-
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lation rules. With the help of high-level linguis-
tic knowledge for generalization, factorized gram-
mars provide consistent significant improvement
in BLEU (Papineni et al., 2001) over string-to-
dependency baseline systems with 200K words of
bi-lingual training data.

This work also closes the gap between compact
hand-crafted translation rules and large-scale unor-
ganized automatic rules. This may lead to a more ef-
fective and efficient statistical translation model that
could better leverage generic linguistic knowledge
in MT.

In the rest of this paper, we will first provide a
short description of our baseline system in Section 2.
Then, we will introduce factorized translation gram-
mars in Section 3. We will illustrate the use of the
XTAG English Grammar to facilitate the extraction
of factorized rules in Section 4. Implementation de-
tails are provided in Section 5. Experimental results
are reported in Section 6.

2 A Baseline String-to-Tree Model

As the baseline of our new algorithm, we use a
string-to-dependency system as described in (Shen
et al., 2008). There are several reasons why we take
this model as our baseline. First, it uses syntactic
tree structures on the target side, which makes it easy
to exploit linguistic information. Second, depen-
dency structures are relatively easier to implement,
as compared to phrase structure grammars. Third,
a string-to-dependency system provides state-of-the-
art performance on translation accuracy, so that im-
provement over such a system will be more convinc-
ing.

Here, we provide a brief description of the base-
line string-to-dependency system, for the sake of
completeness. Readers can refer to (Shen et al.,
2008; Shen et al., 2009) for related information.

In the baseline string-to-dependency model, each
translation rule is composed of two parts, source and
target. The source sides is a string rewriting rule,
and the target side is a tree rewriting rule. Both
sides can contain non-terminals, and source and tar-
get non-terminals are one-to-one aligned. Thus, in
the decoding phase, non-terminal replacement for
both sides are synchronized.

Decoding is solved with a generic chart parsing

algorithm. The source side of a translation rule is
used to detect when this rule can be applied. The tar-
get side of the rule provides a hypothesis tree struc-
ture for the matched span. Mono-lingual parsing can
be viewed as a special case of this generic algorithm,
for which the source string is a projection of the tar-
get tree structure.

Figure 1 shows three examples of string-to-
dependency translation rules. For the sake of con-
venience, we use English for both source and target.
Upper-cased words represent source, while lower-
cased words represent target. X is used for non-
terminals for both sides, and non-terminal alignment
is represented with subscripts.

In Figure 1, the top boxes mean the source side,
and the bottom boxes mean the target side. As for
the third rule, FUN Q stands for a function word in
the source language that represents a question.

3 Translation with a Factorized Grammar

We continue with the example rules in Figure 1.
Suppose, we have “... HATE ... FUN Q” in a given
test segment. There is no rule having both HATE
and FUN Q on its source side. Therefore, we have
to translate these two source words separately. For
example, we may use the second rule in Figure 1.
Thus, HATE will be translated into hates, which is
wrong.

Intuitively, we would like to have translation rule
that tell us how to translate X1 HATE X2 FUN Q
as in Figure 2. It is not available directly from the
training data. However, if we obtain the three rules
in Figure 1, we are able to predict this missing rule.
Furthermore, if we know like and hate are in the
same syntactic/semantic class in the source or target
language, we will be very confident on the validity
of this hypothesis rule.

Now, we propose a factorized grammar to solve
this generalization problem. In addition, translation
rules represented with the new formalism will be
more compact.

3.1 Factorized Rules

We decompose a translation rule into two parts,
a pair of lexical items and an unlexicalized tem-
plate. It is similar to the solution in the XTAG En-
glish Grammar (XTAG-Group, 2001), while here we
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X1  LIKE  X2

likes

X1 X2

X1  HATE  X2

hates

X1 X2

X1  LIKE X2  FUN_Q

like

does X1 X2

Figure 1: Three examples of string-to-dependency translation rules.

X1  V  X2

VBZ

X1 X2

X1  V  X2

VBZ

X1 X2

X1  V  X2  FUN_Q

VB

does X1 X2

Figure 3: Templates for rules in Figure 1.

X1  HATE  X2  FUN_Q

hate

does X1 X2

Figure 2: An example of a missing rule.

work on two languages at the same time.
For each rule, we first detect a pair of aligned head

words. Then, we extract the stems of this word pair
as lexical items, and replace them with their POS
tags in the rule. Thus, the original rule becomes an
unlexicalized rule template.

As for the three example rules in Figure 1, we will

extract lexical items (LIKE, like), (HATE, hate) and
(LIKE, like) respectively. We obtain the same lexical
items from the first and the third rules.

The resultant templates are shown in Figure 3.
Here, V represents a verb on the source side, VB
stands for a verb in the base form, and VBZ means
a verb in the third person singular present form as
in the Penn Treebank representation (Marcus et al.,
1994).

In the XTAG English Grammar, tree templates for
transitive verbs are grouped into a family. All transi-
tive verbs are associated with this family. Here, we
assume that the rule templates representing struc-
tural variations of the same word class can also be
organized into a template family. For example, as
shown in Figure 4, templates and lexical items are
associated with families. It should be noted that
a template or a lexical item can be associated with
more than one family.

Another level of indirection like this provides
more generalization capability. As for the missing
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X1  V  X2

VBZ

X1 X2

Family Transitive_3

X1  V  X2  FUN_Q

VB

does X1 X2

X1  V  FUN_Past

VBD

X1

Family Intransitive_2

( LIKE, like ) ( HATE, hate ) ( OPEN, open ) ( HAPPEN, happen )

Figure 4: Templates and lexical items are associated with families.

rule in Figure 2, we can now generate it by replac-
ing the POS tags in the second template of Figure
4 with lexical items (HATE, hate) with their correct
inflections. Both the template and the lexical items
here are associated with the family Transitive 3..

3.2 Statistical Models

Another level of indirection also leads to a desirable
back-off model. We decompose a rule R into to two
parts, its template PR and its lexical items LR. As-
suming they are independent, then we can compute
Pr(R) as

Pr(R) = Pr(PR)Pr(LR), or

Pr(R) =
∑

F Pr(PR|F )Pr(LR|F )Pr(F ), (1)

if they are conditionally independent for each fam-
ily F . In this way, we can have a good estimate for
rules that do not appear in the training data. The
second generative model will also be useful for un-
supervised learning of families and related probabil-
ities.

In this paper, we approximate families by using
target (English) side linguistic knowledge as what
we will explain in Section 4, so this changes the def-
inition of the task. In short, we will be given a list of
families. We will also be given an association table
B(L,F ) for lexical items L and families F , such

that B(L,F ) = true if and only L is associated
with F , but we do not know the distributions.

Let S be the source side of a rule or a rule tem-
plate, T the target side of a rule of a rule template.
We define Prb, the back-off conditional model of
templates, as follows.

Prb(PS |PT , L) =
∑

F :B(L,F ) #(PS , PT , F )∑
F :B(L,F ) #(PT , F )

, (2)

where # stands for the count of events.
Let P and L be the template and lexical items of

R respectively. Let Prt be the MLE model obtained
from the training data. The smoothed probability is
then defined as follows.

Pr(RS |RT ) = (1 − α)Prt(RS |RT )
+αPrb(PS |PT , L), (3)

where α is a parameter. We fix it to 0.1 in later ex-
periments. Conditional probability Pr(RT |RS) is
defined in a similar way.

3.3 Discussion

The factorized models discussed in the previous sec-
tion can greatly alleviate the sparse data problem,
especially for low-resource translation tasks. How-
ever, when the training data is small, it is not easy to
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learn families. Therefore, to use unsupervised learn-
ing with a model like (1) somehow reduces a hard
translation problem to another one of the same diffi-
culty, when the training data is small.

However, in many cases, we do have extra infor-
mation that we can take advantage of. For example,
if the target language has rich resources, although
the source language is a low-density one, we can ex-
ploit the linguistic knowledge on the target side, and
carry it over to bi-lingual structures of the translation
model. The setup of X-to-English translation tasks
is just like this. This will be the topic of the next
section. We leave unsupervised learning of factor-
ized translation grammars for future research.

4 Using A Mono-Lingual Grammar

In this section, we will focus on X-to-English trans-
lation, and explain how to use English resources to
build a factorized translation grammar. Although we
use English as an example, this approach can be ap-
plied to any language pairs that have certain linguis-
tic resources on one side.

As shown in Figure 4, intuitively, the families
are intersection of the word families of the two lan-
guages involved, which means that they are refine-
ment of the English word families. For example,
a sub-set of the English transitive families may be
translated in the same way, so they share the same
set of templates. This is why we named the two fam-
ilies Transitive 3 and Intransitive 2 in Figure 4.

Therefore, we approximate bi-lingual families
with English families first. In future, we can use
them as the initial values for unsupervised learning.

In order to learn English families, we need to take
away the source side information in Figure 4, and
we end up with a template–family–word graph as
shown in Figure 5. We can learn this model on large
mono-lingual data if necessary.

What is very interesting is that there already exists
a hand-crafted solution for this model. This is the
XTAG English Grammar (XTAG-Group, 2001).

The XTAG English Grammar is a large-scale En-
glish grammar based on the TAG formalism ex-
tended with lexicalization and unification-based fea-
ture structures. It consists of morphological, syn-
tactic, and tree databases. The syntactic database
contains the information that we have represented

in Figure 5 and many other useful linguistic annota-
tions, e.g. features.

The XTAG English grammar contains 1,004 tem-
plates, organized in 53 families, and 221 individual
templates. About 30,000 lexical items are associ-
ated with these families and individual templates 1.
In addition, it also has the richest English morpho-
logical lexicon with 317,000 inflected items derived
from 90,000 stems. We use this resource to predict
POS tags and inflections of lexical items.

In our applications, we select all the verb fami-
lies plus one each for nouns, adjectives and adverbs.
We use the families of the English word as the fam-
ilies of bi-lingual lexical items. Therefore, we have
a list of about 20 families and an association table
as described in Section 3.2. Of course, one can use
other linguistic resources if similar family informa-
tion is provided, e.g. VerbNet (Kipper et al., 2006)
or WordNet (Fellbaum, 1998).

5 Implementation

Nowadays, machine translation systems become
more and more complicated. It takes time to write
a decoder from scratch and hook it with various
modules, so it is not the best solution for research
purpose. A common practice is to reduce a new
translation model to an old one, so that we can use
an existing system, and see the effect of the new
model quickly. For example, the tree-based model
proposed in (Carreras and Collins, 2009) used a
phrasal decoder for sub-clause translation, and re-
cently, DeNeefe and Knight (2009) reduced a TAG-
based translation model to a CFG-based model by
applying all possible adjunction operations offline
and stored the results as rules, which were then used
by an existing syntax-based decoder.

Here, we use a similar method. Instead of build-
ing a new decoder that uses factorized grammars,
we reduce factorized rules to baseline string-to-
dependency rules by performing combination of
templates and lexical items in an offline mode. This
is similar to the rule generation method in (DeNeefe
and Knight, 2009). The procedure is as follows.

In the rule extraction phase, we first extract all the
string-to-dependency rules with the baseline system.

1More information about XTAG is available online at
http://www.cis.upenn.edu/˜xtag .
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VBZ

X1 X2

Family Transitive

VB

does X1 X2

VBD

X1

Family Intransitive

like hate open happen

Figure 5: Templates, families, and words in the XTAG English Grammar.

For each extracted rule, we try to split it into various
“template–lexical item” pairs by choosing different
aligned words for delexicalization, which turns rules
in Figure 1 into lexical items and templates in Fig-
ure 3. Events of templates and lexical items are
counted according to the family of the target En-
glish word. If an English word is associated with
more than one family, the count is distributed uni-
formly among these families. In this way, we collect
sufficient statistics for the back-off model in (2).

For each family, we keep the top 200 most fre-
quent templates. Then, we apply them to all the
lexical items in this families, and save the gener-
ated rules. We merge the new rules with the original
one. The conditional probabilities for the rules in the
combined set is smoothed according to (2) and (3).

Obviously, using only the 200 most frequent tem-
plates for each family is just a rough approxima-
tion. An exact implementation of a new decoder for
factorized grammars can make better use of all the
templates. However, the experiments will show that
even an approximation like this can already provide
significant improvement on small training data sets,
i.e. with no more than 2M words.

Since we implement template application in an of-
fline mode, we can use exactly the same decoding
and optimization algorithms as the baseline. The de-
coder is a generic chart parsing algorithm that gen-
erates target dependency trees from source string in-
put. The optimizer is an L-BFGS algorithm that
maximizes expected BLEU scores on n-best hy-

potheses (Devlin, 2009).

6 Experiments on Low-Resource Setups

We tested the performance of using factorized gram-
mars on low-resource MT setups. As what we noted
above, the sparse data problem is a major issue when
there is not enough training data. This is one of the
cases that a factorized grammar would help.

We did not tested on real low-resource languages.
Instead, we mimic the low-resource setup with two
of the most frequently used language pairs, Arabic-
to-English and Chinese-to-English, on newswire
and web genres. Experiments on these setups will
be reported in Section 6.1. Working on a language
which actually has more resources allows us to study
the effect of training data size. This will be reported
in Section 6.2. In Section 6.3, we will show exam-
ples of templates learned from the Arabic-to-English
training data.

6.1 Languages and Genres
The Arabic-to-English training data contains about
200K (target) words randomly selected from an
LDC corpus, LDC2006G05 A2E set, plus an
Arabic-English dictionary with about 89K items.
We build our development sets from GALE P4 sets.
There are one tune set and two test sets for the MT
systems 2. TEST-1 has about 5000 segments and
TEST-2 has about 3000 segments.

2One of the two test sets will later be used to tune an MT
combination system.
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MODEL TUNE TEST-1 TEST-2
BLEU %BL MET BLEU %BL MET BLEU %BL MET

Arabic-to-English newswire
baseline 21.07 12.41 43.77 19.96 11.42 42.79 21.09 11.03 43.74
factorized 21.70 13.17 44.85 20.52 11.70 43.83 21.36 11.77 44.72

Arabic-to-English web
baseline 10.26 5.02 32.78 9.40 4.87 31.26 14.11 7.34 35.93
factorized 10.67 5.34 33.83 9.74 5.20 32.52 14.66 7.69 37.11

Chinese-to-English newswire
baseline 13.17 8.04 44.70 19.62 9.32 48.60 14.53 6.82 45.34
factorized 13.91 8.09 45.03 20.48 9.70 48.61 15.16 7.37 45.31

Chinese-to-English web
baseline 11.52 5.96 42.18 11.44 6.07 41.90 9.83 4.66 39.71
factorized 11.98 6.31 42.84 11.72 5.88 42.55 10.25 5.34 40.34

Table 1: Experimental results on Arabic-to-English / Chinese-to-English newswire and web data. %BL stands for
BLEU scores for documents whose BLEU scores are in the bottom 75% to 90% range of all documents. MET stands
for METEOR scores.

The Chinese-to-English training data contains
about 200K (target) words randomly selected from
LDC2006G05 C2E set, plus a Chinese-English dic-
tionary (LDC2002L27) with about 68K items. The
development data setup is similar to that of Arabic-
to-English experiments.

Chinese-to-English translation is from a morphol-
ogy poor language to a morphology rich language,
while Arabic-to-English translation is in the oppo-
site direction. It will be interesting to see if factor-
ized grammars help on both cases. Furthermore, we
also test on two genres, newswire and web, for both
languages.

Table 1 lists the experimental results of all the four
conditions. The tuning metric is expected BLEU.
We are also interested in the BLEU scores for doc-
uments whose BLEU scores are in the bottom 75%
to 90% range of all documents. We mark it as %BL
in the table. This metric represents how a system
performances on difficult documents. It is important
to certain percentile evaluations. We also measure
METEOR (Banerjee and Lavie, 2005) scores for all
systems.

The system using factorized grammars shows
BLEU improvement in all conditions. We measure
the significance of BLEU improvement with paired
bootstrap resampling as described by (Koehn, 2004).
All the BLEU improvements are over 95% confi-
dence level. The new system also improves %BL

and METEOR in most of the cases.

6.2 Training Data Size

The experiments to be presented in this section
are designed to measure the effect of training data
size. We select Arabic web for this set of experi-
ments. Since the original Arabic-to-English train-
ing data LDC2006G05 is a small one, we switch to
LDC2006E25, which has about 3.5M target words
in total. We randomly select 125K, 250K, 500K, 1M
and 2M sub-sets from the whole data set. A larger
one always includes a smaller one. We still tune on
expected BLEU, and test on BLEU, %BL and ME-
TEOR.

The average BLEU improvement on test sets is
about 0.6 on the 125K set, but it gradually dimin-
ishes. For better observation, we draw the curves of
BLEU improvement along with significance test re-
sults for each training set. As shown in Figure 6 and
7, more improvement is observed with fewer train-
ing data. This fits well with fact that the baseline MT
model suffers more on the sparse data problem with
smaller training data. The reason why the improve-
ment diminishes on the full data set could be that the
rough approximation with 200 most frequent tem-
plates cannot fully take advantage of this paradigm,
which will be discussed in the next section.
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MODEL SIZE TUNE TEST-1 TEST-2
BLEU %BL MET BLEU %BL MET BLEU %BL MET

Arabic-to-English web
baseline

125K
8.54 2.96 28.87 7.41 2.82 26.95 11.29 5.06 31.37

factorized 8.99 3.44 30.40 7.92 3.57 28.63 12.04 6.06 32.87
baseline

250K
10.18 4.70 32.21 8.94 4.35 30.31 13.71 6.93 35.14

factorized 10.57 4.96 33.22 9.34 4.78 31.51 14.02 7.28 36.25
baseline

500K
12.18 5.84 35.59 10.82 5.77 33.62 16.48 8.30 38.73

factorized 12.40 6.01 36.15 11.14 5.96 34.38 16.76 8.53 39.27
baseline

1M
13.95 7.17 38.49 12.48 7.12 36.56 18.86 10.00 42.18

factorized 14.14 7.41 38.99 12.66 7.34 37.14 19.11 10.29 42.56
baseline

2M
15.74 8.38 41.15 14.18 8.17 39.26 20.96 11.95 45.18

factorized 15.92 8.81 41.51 14.34 8.25 39.68 21.42 12.05 45.51
baseline

3.5M
16.95 9.76 43.03 15.47 9.08 41.28 22.83 13.24 47.05

factorized 17.07 9.99 43.18 15.49 8.77 41.41 22.72 13.10 47.23

Table 2: Experimental results on Arabic web. %BL stands for BLEU scores for documents whose BLEU scores are
in the bottom 75% to 90% range of all documents. MET stands for METEOR scores.
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Figure 6: BLEU Improvement with 95% confidence
range by using factorized grammars on TEST-1.

6.3 Example Templates

Figure 8 lists seven Arabic-to-English templates
randomly selected from the transitive verb family.
TMPL 151 is an interesting one. It helps to alleviate
the pronoun dropping problem in Arabic. However,
we notice that most of the templates in the 200 lists
are rather simple. More sophisticated solutions are
needed to go deep into the list to find out better tem-
plates in future.

It will be interesting to find an automatic or
semi-automatic way to discover source counterparts
of target treelets in the XTAG English Grammar.
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Figure 7: BLEU Improvement with 95% confidence
range by using factorized grammars on TEST-2.

Generic rules like this will be very close to hand-
craft translate rules that people have accumulated for
rule-based MT systems.

7 Conclusions and Future Work

In this paper, we proposed a novel statistical ma-
chine translation model using a factorized structure-
based translation grammar. This model not only al-
leviates the sparse data problem but only relieves the
burden on space and search, both of which are im-
minent issues for the popular phrasal and/or hierar-
chical MT systems.
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Figure 8: Randomly selected Arabic-to-English templates from the transitive verb family.

We took low-resource language translation, espe-
cially X-to-English translation tasks, for case study.
We designed a method to exploit family informa-
tion in the XTAG English Grammar to facilitate the
extraction of factorized rules. We tested the new
model on low-resource translation, and the use of
factorized models showed significant improvement
in BLEU on systems with 200K words of bi-lingual
training data of various language pairs and genres.

The factorized translation grammar proposed here
shows an interesting way of using richer syntactic
resources, with high potential for future research.

In future, we will explore various learning meth-
ods for better estimation of families, templates and
lexical items. The target linguistic knowledge that
we used in this paper will provide a nice starting
point for unsupervised learning algorithms.

We will also try to further exploit the factorized
representation with discriminative learning. Fea-
tures defined on templates and families will have
good generalization capability.
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Abstract

Production of parallel training corpora for the
development of statistical machine translation
(SMT) systems for resource-poor languages
usually requires extensive manual effort. Ac-
tive sample selection aims to reduce the la-
bor, time, and expense incurred in produc-
ing such resources, attaining a given perfor-
mance benchmark with the smallest possible
training corpus by choosing informative, non-
redundant source sentences from an available
candidate pool for manual translation. We
present a novel, discriminative sample selec-
tion strategy that preferentially selects batches
of candidate sentences with constructs that
lead to erroneous translations on a held-out de-
velopment set. The proposed strategy supports
a built-in diversity mechanism that reduces
redundancy in the selected batches. Simu-
lation experiments on English-to-Pashto and
Spanish-to-English translation tasks demon-
strate the superiority of the proposed approach
to a number of competing techniques, such
as random selection, dissimilarity-based se-
lection, as well as a recently proposed semi-
supervised active learning strategy.

1 Introduction

Resource-poor language pairs present a significant
challenge to the development of statistical machine
translation (SMT) systems due to the latter’s depen-
dence on large parallel texts for training. Bilingual
human experts capable of producing the requisite

∗Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited)

data resources are often in short supply, and the task
of preparing high-quality parallel corpora is labori-
ous and expensive. In light of these constraints, an
attractive strategy is to construct the smallest pos-
sible parallel training corpus with which a desired
performance benchmark may be achieved.

Such a corpus may be constructed by selecting the
most informative instances from a large collection
of source sentences for translation by a human ex-
pert, a technique often referred to asactive learn-
ing. A SMT system trained with sentence pairs thus
generated is expected to perform significantly better
than if the source sentences were chosen using, say,
a näıve random sampling strategy.

Previously, Eck et al. (2005) described a selec-
tion strategy that attempts to maximize coverage by
choosing sentences with the highest proportion of
previously unseenn-grams. Depending on the com-
position of the candidate pool with respect to the
domain, this strategy may select irrelevant outliers.
They also described a technique based on TF-IDF to
de-emphasize sentences similar to those that have al-
ready been selected, thereby encouraging diversity.
However, this strategy is bootstrapped by random
initial choices that do not necessarily favor sentences
that are difficult to translate. Finally, they worked
exclusively with the source language and did not use
any SMT-derived features to guide selection.

Haffari et al. (2009) proposed a number of fea-
tures, such as similarity to the seed corpus, transla-
tion probability,n-gram and phrase coverage, etc.,
that drive data selection. They also proposed a
model in which these features combine linearly to
predict a rank for each candidate sentence. The
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top-ranked sentences are chosen for manual transla-
tion. However, this approach requires that the pool
have the same distributional characteristics as the
development sets used to train the ranking model.
Additionally, batches are chosen atomically. Since
similar or identical sentences in the pool will typi-
cally meet the selection criteria simultaneously, this
can have the undesired effect of choosing redundant
batches with low diversity.

The semi-supervised active learning strategy pro-
posed by Ananthakrishnan et al. (2010) uses multi-
layer perceptrons (MLPs) to rank candidate sen-
tences based on various features, including domain
representativeness, translation difficulty, and batch
diversity. A greedy, incremental batch construction
technique encourages diversity. While this strat-
egy was shown to be superior to random as well
asn-gram based dissimilarity selection, its coarse
granularity (reducing a candidate sentence to a low-
dimensional feature vector for ranking) makes it un-
suitable for many situations. In particular, it is seen
to have little or no benefit over random selection
when there is no logical separation of the candidate
pool into “in-domain” and “out-of-domain” subsets.

This paper introduces a novel, active sample se-
lection technique that identifies translation errors on
a held-out development set, and preferentially se-
lects candidate sentences with constructs that are
incorrectly translated in the former. A discrimina-
tive pairwise comparator function, trained on the
ranked development set, is used to order candidate
sentences and pick sentences that provide maximum
potential reduction in translation error. The feature
functions that power the comparator are updated af-
ter each selection to encourage batch diversity. In
the following sections, we provide details of the pro-
posed sample selection approach, and describe sim-
ulation experiments that demonstrate its superiority
over a number of competing strategies.

2 Error-Driven Active Learning

Traditionally, unsupervised selection strategies have
dominated the active learning literature for natural
language processing (Hwa, 2004; Tang et al., 2002;
Shen et al., 2004). Sample selection for SMT has
followed a similar trend. The work of Eck et al.
(2005) and most of the techniques proposed by Haf-

fari et al. (2009) fall in this category. Notable ex-
ceptions include the linear ranking model of Haf-
fari et al. (2009) and the semi-supervised selection
technique of Ananthakrishnan et al. (2010), both of
which use one or more held-out development sets to
train and tune the sample selector. However, while
the former uses the posterior translation probability
and the latter, a sentence-level confidence score as
part of the overall selection strategy, current active
learning techniques for SMT do not explicitly target
the sources of error.

Error-driven active learning attempts to choose
candidate instances that potentially maximize error
reduction on a reference set (Cohn et al., 1996;
Meng and Lee, 2008). In the context of SMT, this
involves decoding a held-out development set with
an existing baseline (seed) SMT system. The selec-
tion algorithm is then trained to choose, from the
candidate pool, sentences containing constructs that
give rise to translation errors on this set. Assum-
ing perfect reference translations and word align-
ment in subsequent SMT training, these sentences
provide maximum potential reduction in translation
error with respect to the seed SMT system. It is asu-
pervisedapproach to sample selection. We assume
the following are available.

• A seed parallel corpusS for training the initial
SMT system.

• A candidate pool of monolingual source sen-
tencesP from which samples must be selected.

• A held-out development setD for training the
selection algorithm and for tuning the SMT.

• A test setT for evaluating SMT performance.

We further make the following reasonable as-
sumptions: (a) the development setD and the test
setT are drawn from the same distribution and (b)
the candidate poolP consists of both in- and out-
of-domain source sentences, as well as an allowable
level of redundancy (similar or identical sentences).

Using translation errors on the development set to
drive sample selection has the following advantages
over previously proposed active learning strategies
for SMT.

• The seed training corpusS need not be derived
from the same distribution asD andT. The seed
SMT system can be trained with any available
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parallel corpus for the specified language pair.
This is very useful if, as is often the case, lit-
tle or no in-domain training data is available to
bootstrap the SMT system. This removes a criti-
cal restriction present in the semi-supervised ap-
proach of Ananthakrishnan et al. (2010).

• Sentences chosen are guaranteed to be relevant
to the domain, because selection is based onn-
grams derived from the development set. This
alleviates potential problems with approaches
suggested by Eck et al. (2005) and several tech-
niques used by Haffari et al. (2009), where ir-
relevant outliers may be chosen simply because
they contain previously unseenn-grams, or are
deemed difficult to translate.

• The proposed technique seeks to minimize
held-out translation error rather than maximize
training-set coverage. This is the more intuitive,
direct approach to sample selection for SMT.

• Diversity can be encouraged by preventingn-
grams that appear in previously selected sen-
tences from playing a role in choosing subse-
quent sentences. This provides an efficient alter-
native to the cumbersome “batch diversity” fea-
ture proposed by Ananthakrishnan et al. (2010).

The proposed implementation of error-driven ac-
tive learning for SMT, discriminative sample selec-
tion, is described in the following section.

3 Discriminative Sample Selection

The goal of active sample selection is to induce an
ordering of the candidate instances that satisfies an
objective criterion. Eck et al. (2005) ordered can-
didate sentences based on the frequency of unseen
n-grams. Haffari et al. (2009) induced a ranking
based on unseenn-grams, translation difficulty, etc.,
as well as one that attempted to incrementally max-
imize BLEU using two held-out development sets.
Ananthakrishnan et al. (2010) attempted to order the
candidate pool to incrementally maximize sourcen-
gram coverage on a held-out development set, sub-
ject to difficulty and diversity constraints.

In the case of error-driven active learning, we at-
tempt to learn an ordering model based on errors
observed on the held-out development setD. We
achieve this in an innovative fashion by casting the

ranking problem as a pairwise sentence compari-
son problem. This approach, inspired by Ailon and
Mohri (2008), involves the construction of a binary
classifier functioning as a relational operator that can
be used to order the candidate sentences. The pair-
wise comparator is trained on an ordering ofD that
ranks constituent sentences in decreasing order of
the number of translation errors. The comparator is
then used to rank the candidate pool in decreasing
order of potential translation error reduction.

3.1 Maximum-Entropy Pairwise Comparator

Given a pair of source sentences(u, v), we define,
adopting the notation of Ailon and Mohri (2008), the
pairwise comparatorh(u, v) as follows:

h(u, v) =

{

1, u < v

0, u >= v
(1)

In Equation 1, the binary comparatorh(u, v)
plays the role of the “less than” (“<”) relational op-
erator, returning1 if u is preferred tov in an or-
dered list, and0 otherwise. As detailed in Ailon and
Mohri (2008), the comparator must satisfy the con-
straint thath(u, v) andh(v, u) be complementary,
i.e. h(u, v) + h(v, u) = 1 to avoid ambiguity. How-
ever, it need not satisfy the triangle inequality.

We implementh(u, v) as a combination of dis-
criminative maximum entropy classifiers triggered
by feature functions drawn fromn-grams ofu andv.
We definep(u, v) as the conditional posterior prob-
ability of the Bernoulli eventu < v given (u, v) as
shown in Equation 2.

p(u, v) = Pr(u < v | u, v) (2)

In our implementation,p(u, v) is the output of
a binary maximum-entropy classifier trained on the
development set. However, this implementation
poses two problems.

First, if we use constituentn-grams ofu and v

as feature functions to trigger the classifier, there is
no way to distinguish between(u, v) and (v, u) as
they will trigger the same feature functions. This
will result in identical values forp(u, v) andp(v, u),
a contradiction. We resolve this issue by intro-
ducing a set of “complementary” feature functions,
which are formed by simply appending a recogniz-
able identifier to the existingn-gram feature func-
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u: how are you
v: i am going

f(u) = {how:1, are:1, you:1, how*are:2, are*you:2, how*are*you:3}
f(v) = {i:1, am:1, going:1, i*am:2, am*going:2, i*am*going:3}

f
′(u) = {!how:1, !are:1, !you:1, !how*are:2, !are*you:2, !how*are*you:3}
f
′(v) = {!i:1, !am:1, !going:1, !i*am:2, !am*going:2, !i*am*going:3}

Table 1: Standard and complementary trigram feature functions for a source pair(u, v).

tions. Then, to evaluatep(u, v), for instance, we
invoke the classifier with standard feature functions
for u and complementary feature functions forv.
Similarly, p(v, u) is evaluated by triggering comple-
mentary feature functions foru and standard feature
functions forv. Table 1 illustrates this with a simple
example.

Note that each feature function is associated with
a real value, whose magnitude is an indicator of its
importance. In our implementation, ann-gram fea-
ture function (standard or complementary) receives
a value equal to its length. This is based on our intu-
ition that longern-grams play a more important role
in dictating SMT performance.

Second, the introduction of complementary trig-
gers implies that evaluation ofp(u, v) and p(v, u)
now involves disjoint sets of feature functions. Thus,
p(u, v) is not guaranteed to satisfy the complemen-
tarity condition imposed onh(u, v), and therefore
cannot directly be used as the binary pairwise com-
parator. We resolve this by normalizing across the
two possible permutations, as follows:

h′(u, v) =
p(u, v)

p(u, v) + p(v, u)
(3)

h′(v, u) =
p(v, u)

p(u, v) + p(v, u)
(4)

Sinceh′(u, v) + h′(v, u) = 1, the complemen-
tarity constraint is now satisfied, andh(u, v) is just
a binarized (thresholded) version ofh′(u, v). Thus,
the binary pairwise comparator can be constructed
from the permuted classifier outputs.

3.2 Training the Pairwise Comparator

Training the maximum-entropy classifier for the
pairwise comparator requires a set of target labels

and input feature functions, both of which are de-
rived from the held-out development setD. We be-
gin by decoding the source sentences inD with the
seed SMT system, followed by error analysis using
the Translation Edit Rate (TER) measure (Snover
et al., 2006). TER measures translation quality by
computing the number of edits (insertions, substitu-
tions, and deletions) and shifts required to transform
a translation hypothesis to its corresponding refer-
ence. We then rankD in decreasing order of the
number of post-shift edits, i.e. the number of in-
sertions, substitutions, and deletions after the shift
operation is completed. Since shifts are often due to
word re-ordering issues within the SMT decoder (es-
pecially for phrase-based systems), we do not con-
sider them as errors for the purpose of rankingD.
Sentences at the top of the ordered listD

′ contain
the maximum number of translation errors.

For each pair of sentences(u, v) : u < v in D
′,

we generate two training entries. The first, signify-
ing thatu appears beforev in D

′, assigns the label
true to a trigger list consisting of standard feature
functions derived fromu, and complementary fea-
ture functions derived fromv. The second, reinforc-
ing this observation, assigns the labelfalseto a trig-
ger list consisting of complementary feature func-
tions fromu, and standard feature functions fromv.
The labeled training set (feature:label pairs) for the
comparator can be expressed as follows:

∀(u, v) ∈ D
′ : u < v,

{f(u) f
′(v)} : true

{f ′(u) f(v)} : false

Thus, if there ared sentences inD′, we obtain a
total ofd(d− 1) labeled examples to train the com-
parator. We use the standard L-BFGS optimization
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algorithm (Liu and Nocedal, 1989) to estimate the
parameters of the maximum entropy model.

3.3 Greedy Discriminative Selection

The discriminatively-trained pairwise comparator
can be used as a relational operator to sort the candi-
date poolP in decreasing order of potential transla-
tion error reduction. A batch of pre-determined size
K can then be selected from the top of this list to
augment the existing SMT training corpus. Assum-
ing the pool containsN candidate sentences, and
given a fast sorting algorithm such as Quicksort, the
complexity of this strategy isO(N logN). Batches
can be selected iteratively until a specified perfor-
mance threshold is achieved.

A potential downside of this approach reveals it-
self when there is redundancy in the candidate pool.
Since the batch is selected in a single atomic opera-
tion from the sorted candidates, and because similar
or identical sentences will typically occupy the same
range in the ordered list, it is likely that this approach
will result in batches with low diversity. Whereas
we desire diverse batches for better coverage and ef-
ficient use of manual translation resources. This is-
sue was previously addressed in Shen et al. (2004) in
the context of named-entity recognition, where they
used a two-step procedure to first select the most in-
formative and representative samples, followed by a
diversity filter. Ananthakrishnan et al. (2010) used a
greedy, incremental batch construction strategy with
an integrated, explicit batch diversity feature as part
of the ranking model. Based on these ideas, we de-
sign a greedy selection strategy using the discrimi-
native relational operator.

Rather than perform a full sort onP, we sim-
ply invoke theminh(u,v)(· · · ) function to find the
sentence that potentially minimizes translation er-
ror. The subscript indicates that our implementation
of this function utilizes the discriminative relational
operator trained on the development setD. The best
choice sentences is then added to our batch at the
current position (we begin with an empty batch). We
then remove the standard and complementary fea-
ture functionsf(s) andf ′(s) triggered bys from the
global pool of feature functions obtained fromD,
so that they do not play a role in the selection of
subsequent sentences for the batch. Subsequently,
a candidate sentence that is similar or identical to

Algorithm 1 Greedy Discriminative Selection
B← ()
for k = 1 toK do
s← minh(u,v)(P)
B(k)← s

P← P− {s}
f(D)← f(D)− f(s)
f
′(D)← f

′(D)− f
′(s)

end for
return B

s will not be preferred, because the feature func-
tions that previously caused it to rank highly will
no longer trigger. Algorithm 1 summarizes our se-
lection strategy in pseudocode. Since each call to
minh(u,v)(· · · ) is O(N), the overall complexity of
greedy discriminative selection isO(K ·N).

4 Experiments and Results

We conduct a variety of simulation experiments
with multiple language pairs (English-Pashto and
Spanish-English) and different data configurations
in order to demonstrate the utility of discrimina-
tive sample selection in the context of resource-poor
SMT. We also compare the performance of the pro-
posed strategy to numerous competing active and
passive selection methods as follows:

• Random: Source sentences are uniformly sam-
pled from the candidate poolP.

• Similarity: Choose sentences fromP with the
highest fraction ofn-gram overlap with the seed
corpusS.

• Dissimilarity: Select sentences fromP with the
highest proportion ofn-grams not seen in the
seed corpusS (Eck et al., 2005; Haffari et al.,
2009).

• Longest: Pick the longest sentences from the
candidate poolP.

• Semi-supervised: Semi-supervised active learn-
ing with greedy incremental selection (Anan-
thakrishnan et al., 2010).

• Discriminative: Choose sentences that po-
tentially minimize translation error using a
maximum-entropy pairwise comparator (pro-
posed method).
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Identical low-resource initial conditions are ap-
plied to each selection strategy so that they may be
objectively compared. A very small seed corpusS is
sampled from the available parallel training data; the
remainder serves as the candidate pool. Following
the literature on active learning for SMT, our simula-
tion experiments are iterative. A fixed-size batch of
source sentences is constructed from the candidate
pool using one of the above selection strategies. We
then look up the corresponding translations from the
candidate targets (simulating an expert human trans-
lator), augment the seed corpus with the selected
data, and update the SMT system with the expanded
training corpus. The selected data are removed from
the candidate pool. This select-update cycle is then
repeated for either a fixed number of iterations or
until a specified performance benchmark is attained.
At each iteration, we decode the unseen test setT

with the most current SMT configuration and eval-
uate translation performance in terms of BLEU as
well as coverage (defined as the fraction of untrans-
latable source words in the target hypotheses).

We use a phrase-based SMT framework similar to
Koehn et al. (2003) for all experiments.

4.1 English-Pashto Simulation

Our English-Pashto (E2P) data originates from a
two-way collection of spoken dialogues, and con-
sists of two parallel sub-corpora: a directional E2P
corpus and a directional Pashto-English (P2E) cor-
pus. Each sub-corpus has its own independent train-
ing, development, and test partitions. The direc-
tional E2P training, development, and test sets con-
sist of 33.9k, 2.4k, and 1.1k sentence pairs, respec-
tively. The directional P2E training set consists of
76.5k sentence pairs. The corpus was used as-is, i.e.
no length-based filtering or redundancy-reduction
(i.e. removal of duplicates, if any) was performed.
The test-set BLEU score with the baseline E2P SMT
system trained from all of the above data was 9.5%.

We obtained a seed training corpus by randomly
sampling 1,000 sentence pairs from the directional
E2P training partition. The remainder of this set, and
the entire reversed P2E training partition were com-
bined to create the pool (109.4k sentence pairs). In
the past, we have observed that the reversed direc-
tional P2E data gives very little performance gain
in the E2P direction even though its vocabulary is

similar, and can be considered “out-of-domain” as
far as the E2P translation task is concerned. Thus,
our pool consists of 30% in-domain and 70% out-
of-domain sentence pairs, making for a challeng-
ing active learning problem. A pool training set of
10k source sentences is sampled from this collection
for the semi-supervised selection strategy, leaving us
with 99.4k candidate sentences, which we use for all
competing techniques. The data configuration used
in this simulation is identical to Ananthakrishnan et
al. (2010), allowing us to compare various strategies
under the same conditions. We simulated a total of
20 iterations with batches of 200 sentences each; the
original 1,000 sample seed corpus grows to 5,000
sentence pairs and the end of our simulation.

Figure 1(a) illustrates the variation in BLEU
scores across iterations for each selection strategy.
The proposed discriminative sample selection tech-
nique performs significantly better at every iteration
than random, similarity, dissimilarity, longest, and
semi-supervised active selection. At the end of 20
iterations, the BLEU score gained 3.21 points, a rel-
ative improvement of 59.3%. This was followed by
semi-supervised active learning, which improved by
2.66 BLEU points, a 49.2% relative improvement.
Table 2 summarizes the total number of words se-
lected by each strategy, as well as the total area
under the BLEU curve with respect to the base-
line. The latter, labeled BLEUareaand expressed in
percent-iterations, is a better measure of the over-
all performance of each strategy across all iterations
than comparing BLEU scores at the final iteration.

Figure 1(b) shows the variation in coverage (per-
centage of untranslatable source words in target
hypotheses) for each selection technique. Here,
discriminative sample selection was better than all
other approaches except longest-sentence selection.

4.2 Spanish-English Simulation

The Spanish-English (S2E) training corpus was
drawn from the Europarl collection (Koehn, 2005).
To prevent length bias in selection, the corpus was
filtered to only retain sentence pairs whose source
ranged between 7 and 15 words (excluding punc-
tuation). Additionally, redundancy was reduced by
removing all duplicate sentence pairs. After these
steps, we obtained approximately 253k sentence
pairs for training. The WMT10 held-out develop-

631



(a) Variation in BLEU (E2P)

(b) Variation in coverage (E2P)

Figure 1: Simulation results for E2P data selection.
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(a) Variation in BLEU (S2E)

(b) Variation in coverage (S2E)

Figure 2: Simulation results for S2E data selection.
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Method E2P size E2P BLEUarea S2E size S2E BLEUarea

Random 58.1k 26.4 26.5k 45.0
Similarity 30.7k 21.9 24.7k 13.2
Dissimilarity 39.2k 12.4 24.2k 54.9
Longest 173.0k 27.5 39.6k 48.3
Semi-supervised 80.0k 34.1 27.6k 45.6
Discriminative 109.1k 49.6 31.0k 64.5

Table 2: Source corpus size (in words) and BLEUareaafter 20 sample selection iterations.

ment and test sets (2k and 2.5k sentence pairs, re-
spectively) were used to tune our system and eval-
uate performance. Note that this data configuration
is different from that of the E2P simulation in that
there is no logical separation of the training data into
“in-domain” and “out-of-domain” sets. The baseline
S2E SMT system trained with all available data gave
a test-set BLEU score of 17.2%.

We randomly sampled 500 sentence pairs from
the S2E training partition to obtain a seed train-
ing corpus. The remainder, after setting aside an-
other 10k source sentences for training the semi-
supervised strategy, serves as the candidate pool. We
again simulated a total of 20 iterations, except in
this case, we used batches of 100 sentences in an at-
tempt to obtain smoother performance trajectories.
The training corpus grows from 500 sentence pairs
to 2,500 as the simulation progresses.

Variation in BLEU scores and coverage for the
S2E simulation are illustrated in Figures 2(a) and
2(b), respectively. Discriminative sample selection
outperformed all other selection techniques across
all iterations of the simulation. After 20 iterations,
we obtained a 4.51 point gain in BLEU, a rela-
tive improvement of 142.3%. The closest com-
petitor was dissimilarity-based selection, which im-
proved by 4.38 BLEU points, a 138.1% relative
improvement. The proposed method also outper-
formed other selection strategies in improving cov-
erage, with significantly better results especially in
the early iterations. Table 2 summarizes the number
of words chosen, and BLEUarea, for each strategy.

5 Conclusion and Future Directions

Building SMT systems for resource-poor language
pairs requires significant investment of labor, time,
and money for the development of parallel training

corpora. We proposed a novel, discriminative sam-
ple selection strategy that can help lower these costs
by choosing batches of source sentences from a large
candidate pool. The chosen sentences, in conjunc-
tion with their manual translations, provide signifi-
cantly better SMT performance than numerous com-
peting active and passive selection techniques.

Our approach hinges on a maximum-entropy pair-
wise comparator that serves as a relational operator
for comparing two source sentences. This allows us
to rank the candidate pool in decreasing order of po-
tential reduction in translation error with respect to
an existing seed SMT system. The discriminative
comparator is coupled with a greedy, incremental se-
lection technique that discourages redundancy in the
chosen batches. The proposed technique diverges
from existing work on active sample selection for
SMT in that it uses machine learning techniques in
an attempt to explicitly reduce translation error by
choosing sentences whose constituents were incor-
rectly translated in a held-out development set.

While the performance of competing strategies
varied across language pairs and data configurations,
discriminative sample selection proved consistently
superior under all test conditions. It provides a pow-
erful, flexible, data selection front-end for rapid de-
velopment of SMT systems. Unlike some selection
techniques, it is also platform-independent, and can
be used as-is with a phrase-based, hierarchical, syn-
tactic, or other SMT framework.

We have so far restricted our experiments to simu-
lations, obtaining expert human translations directly
from the sequestered parallel corpus. We are now
actively exploring the possibility of linking the sam-
ple selection front-end to a crowd-sourcing back-
end, in order to obtain “non-expert” translations us-
ing a platform such as the Amazon Mechanical Turk.
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Abstract

We examine effects that empty categories have
on machine translation. Empty categories are
elements in parse trees that lack corresponding
overt surface forms (words) such as dropped
pronouns and markers for control construc-
tions. We start by training machine trans-
lation systems with manually inserted empty
elements. We find that inclusion of some
empty categories in training data improves the
translation result. We expand the experiment
by automatically inserting these elements into
a larger data set using various methods and
training on the modified corpus. We show that
even when automatic prediction of null ele-
ments is not highly accurate, it nevertheless
improves the end translation result.

1 Introduction

An empty category is an element in a parse tree
that does not have a corresponding surface word.
They include traces such as Wh-traces which indi-
cate movement operations in interrogative sentences
and dropped pronouns which indicate omission of
pronouns in places where pronouns are normally
expected. Many treebanks include empty nodes in
parse trees to represent non-local dependencies or
dropped elements. Examples of the former include
traces such as relative clause markers in the Penn
Treebank (Bies et al., 1995). An example of the lat-
ter include dropped pronouns in the Korean Tree-
bank (Han and Ryu, 2005) and the Chinese Tree-
bank (Xue and Xia, 2000).

In languages such as Chinese, Japanese, and Ko-
rean, pronouns are frequently or regularly dropped

when they are pragmatically inferable. These lan-
guages are called pro-drop languages. Dropped pro-
nouns are quite a common phenomenon in these lan-
guages. In the Chinese Treebank, they occur once
in every four sentences on average. In Korean the
Treebank, they are even more frequent, occurring
in almost every sentence on average. Translating
these pro-drop languages into languages such as En-
glish where pronouns are regularly retained could
be problematic because English pronouns have to be
generated from nothing.

There are several different strategies to counter
this problem. A special NULL word is typically
used when learning word alignment (Brown et al.,
1993). Words that have non-existent counterparts
can be aligned to the NULL word. In phrase-based
translation, the phrase learning system may be able
to learn pronouns as a part of larger phrases. If the
learned phrases include pronouns on the target side
that are dropped from source side, the system may
be able to insert pronouns even when they are miss-
ing from the source language. This is an often ob-
served phenomenon in phrase-based translation sys-
tems. Explicit insertion of missing words can also
be included in syntax-based translation models (Ya-
mada and Knight, 2001). For the closely related
problem of inserting grammatical function particles
in English-to-Korean and English-to-Japanese ma-
chine translation, Hong et al. (2009) and Isozaki et
al. (2010) employ preprocessing techniques to add
special symbols to the English source text.

In this paper, we examine a strategy of automat-
ically inserting two types of empty elements from
the Korean and Chinese treebanks as a preprocess-
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Korean
*T* 0.47 trace of movement
(NP *pro*) 0.88 dropped subject or object
(WHNP *op*) 0.40 empty operator in relative

constructions
*?* 0.006 verb deletion, VP ellipsis,

and others

Chinese
(XP (-NONE- *T*)) 0.54 trace of A’-movement
(NP (-NONE- *)) 0.003 trace of A-movement
(NP (-NONE- *pro*)) 0.27 dropped subject or object
(NP (-NONE- *PRO*)) 0.31 control structures
(WHNP (-NONE- *OP*)) 0.53 empty operator in relative

constructions
(XP (-NONE- *RNR*)) 0.026 right node raising
(XP (-NONE- *?*)) 0 others

Table 1: List of empty categories in the Korean Treebank
(top) and the Chinese Treebank (bottom) and their per-
sentence frequencies in the training data of initial experi-
ments.

ing step. We first describe our experiments with data
that have been annotated with empty categories, fo-
cusing on zero pronouns and traces such as those
used in control constructions. We use these an-
notations to insert empty elements in a corpus and
train a machine translation system to see if they im-
prove translation results. Then, we illustrate differ-
ent methods we have devised to automatically insert
empty elements to corpus. Finally, we describe our
experiments with training machine translation sys-
tems with corpora that are automatically augmented
with empty elements. We conclude this paper by
discussing possible improvements to the different
methods we describe in this paper.

2 Initial experiments

2.1 Setup

We start by testing the plausibility of our idea
of preprocessing corpus to insert empty cate-
gories with ideal datasets. The Chinese Treebank
(LDC2005T01U01) is annotated with null elements
and a portion of the Chinese Treebank has been
translated into English (LDC2007T02). The Korean
Treebank version 1.0 (LDC2002T26) is also anno-
tated with null elements and includes an English
translation. We extract null elements along with
tree terminals (words) and train a simple phrase-

BLEU
Chi-Eng No null elements 19.31

w/ *pro* 19.68
w/ *PRO* 19.54
w/ *pro* and *PRO* 20.20
w/ all null elements 20.48

Kor-Eng No null elements 20.10
w/ *pro* 20.37
w/ all null elements 19.71

Table 2: BLEU score result of initial experiments.
Each experiment has different empty categories added in.
*PRO* stands for the empty category used to mark con-
trol structures and *pro* indicates dropped pronouns for
both Chinese and Korean.

based machine translation system. Both datasets
have about 5K sentences and 80% of the data was
used for training, 10% for development, and 10%
for testing.

We used Moses (Koehn et al., 2007) to train
machine translation systems. Default parameters
were used for all experiments. The same number
of GIZA++ (Och and Ney, 2003) iterations were
used for all experiments. Minimum error rate train-
ing (Och, 2003) was run on each system afterwards,
and the BLEU score (Papineni et al., 2002) was cal-
culated on the test sets.

There are several different empty categories in
the different treebanks. We have experimented with
leaving in and out different empty categories for dif-
ferent experiments to see their effect. We hypoth-
esized that nominal phrasal empty categories such
as dropped pronouns may be more useful than other
ones, since they are the ones that may be missing in
the source language (Chinese and Korean) but have
counterparts in the target (English). Table 1 summa-
rizes empty categories in Chinese and Korean tree-
bank and their frequencies in the training data.

2.2 Results

Table 2 summarizes our findings. It is clear that
not all elements improve translation results when in-
cluded in the training data. For the Chinese to En-
glish experiment, empty categories that mark con-
trol structures (*PRO*), which serve as the sub-
ject of a dependent clause, and dropped pronouns
(*pro*), which mark omission of pragmatically in-
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word P (e | ∗pro∗) word P (e | ∗PRO∗)
the 0.18 to 0.45
i 0.13 NULL 0.10
it 0.08 the 0.02
to 0.08 of 0.02
they 0.05 as 0.02

Table 3: A lexical translation table from the Korean-
English translation system (left) and a lexical transla-
tion from the Chinese-English translation system (right).
For the Korean-English lexical translation table, the left
column is English words that are aligned to a dropped
pronoun (*pro*) and the right column is the conditional
probability of P (e | ∗pro∗). For the Chinese-English
lexical translation table, the left column is English words
that are aligned to a control construction marker (*PRO*)
and the right column is the conditional probability of
P (e | ∗PRO∗).

ferable pronouns, helped to improve translation re-
sults the most. For the Korean to English experi-
ment, the dropped pronoun is the only empty cate-
gory that seems to improve translation.

For the Korean to English experiment, we also
tried annotating whether the dropped pronouns are a
subject, an object, or a complement using informa-
tion from the Treebank’s function tags, since English
pronouns are inflected according to case. However,
this did not yield a very different result and in fact
was slightly worse. This is possibly due to data spar-
sity created when dropped pronouns are annotated.
Dropped pronouns in subject position were the over-
whelming majority (91%), and there were too few
dropped pronouns in object position to learn good
parameters.

2.3 Analysis

Table 3 and Table 4 give us a glimpse of why having
these empty categories may lead to better transla-
tion. Table 3 is the lexical translation table for the
dropped pronoun (*pro*) from the Korean to En-
glish experiment and the marker for control con-
structions (*PRO*) from the Chinese to English ex-
periment. For the dropped pronoun in the Korean
to English experiment, although there are errors,
the table largely reflects expected translations of a
dropped pronoun. It is possible that the system is in-
serting pronouns in right places that would be miss-
ing otherwise. For the control construction marker

in the Chinese to English experiment, the top trans-
lation for *PRO* is the English word to, which is ex-
pected since Chinese clauses that have control con-
struction markers often translate to English as to-
infinitives. However, as we discuss in the next para-
graph, the presence of control construction markers
may affect translation results in more subtle ways
when combined with phrase learning.

Table 4 shows how translations from the system
trained with null elements and the system trained
without null elements differ. The results are taken
from the test set and show extracts from larger sen-
tences. Chinese verbs that follow the empty node for
control constructions (*PRO*) are generally trans-
lated to English as a verb in to-infinitive form, a
gerund, or a nominalized verb. The translation re-
sults show that the system trained with this null el-
ement (*PRO*) translates verbs that follow the null
element largely in such a manner. However, it may
not be always closest to the reference. It is exempli-
fied by the translation of one phrase.

Experiments in this section showed that prepro-
cessing the corpus to include some empty elements
can improve translation results. We also identified
which empty categories maybe helpful for improv-
ing translation for different language pairs. In the
next section, we focus on how we add these ele-
ments automatically to a corpus that is not annotated
with empty elements for the purpose of preprocess-
ing corpus for machine translation.

3 Recovering empty nodes

There are a few previous works that have attempted
restore empty nodes for parse trees using the Penn
English Treebank. Johnson (2002) uses rather sim-
ple pattern matching to restore empty categories as
well as their co-indexed antecedents with surpris-
ingly good accuracy. Gabbard et al. (2006) present
a more sophisticated algorithm that tries to recover
empty categories in several steps. In each step, one
or more empty categories are restored using pat-
terns or classifiers (five maximum-entropy and two
perceptron-based classifiers to be exact).

What we are trying to achieve has obvious simi-
larity to these previous works. However, there are
several differences. First, we deal with different
languages. Second, we are only trying to recover
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Chinese English Reference System trained w/ nulls System trained w/o nulls
*PRO*贯彻 implementing implementation implemented
*PRO*逐步形成 have gradually formed to gradually form gradually formed
*PRO*吸引外资作为 attracting foreign investment attracting foreign investment attract foreign capital

Table 4: The first column is a Chinese word or a phrase that immediately follows empty node marker for Chinese
control constructions. The second column is the English reference translation. The third column is the translation
output from the system that is trained with the empty categories added in. The fourth column is the translation output
from the system trained without the empty categories added, which was given the test set without the empty categories.
Words or phrases and their translations presented in the table are part of larger sentences.

a couple of empty categories that would help ma-
chine translation. Third, we are not interested in re-
covering antecedents. The linguistic differences and
the empty categories we are interested in recovering
made the task much harder than it is for English. We
will discuss this in more detail later.

From this section on, we will discuss only
Chinese-English translation because Chinese
presents a much more interesting case, since we
need to recover two different empty categories that
are very similarly distributed. Data availability
was also a consideration since much larger datasets
(bilingual and monolingual) are available for
Chinese. The Korean Treebank has only about 5K
sentences, whereas the version of Chinese Treebank
we used includes 28K sentences.

The Chinese Treebank was used for all experi-
ments that are mentioned in the rest of this Section.
Roughly 90% of the data was used for the training
set, and the rest was used for the test set. As we have
discussed in Section 2, we are interested in recover-
ing dropped pronouns (*pro*) and control construc-
tion markers (*PRO*). We have tried three different
relatively simple methods so that recovering empty
elements would not require any special infrastruc-
ture.

3.1 Pattern matching
Johnson (2002) defines a pattern for empty node re-
covery to be a minimally connected tree fragment
containing an empty node and all nodes co-indexed
with it. Figure 1 shows an example of a pattern. We
extracted patterns according this definition, and it
became immediately clear that the same definition
that worked for English will not work for Chinese.
Table 5 shows the top five patterns that match con-
trol constructions (*PRO*) and dropped pronouns
(*pro*). The top pattern that matches *pro* and

*PRO* are both exactly the same, since the pat-
tern will be matched against parse trees where empty
nodes have been deleted.

When it became apparent that we cannot use the
same definition of patterns to successfully restore
empty categories, we added more context to the pat-
terns. Patterns needed more context for them to be
able to disambiguate between sites that need to be
inserted with *pro*s and sites that need to be in-
serted with *PRO*s. Instead of using minimal tree
fragments that matched empty categories, we in-
cluded the parent and siblings of the minimal tree
fragment in the pattern (pattern matching method
1). This way, we gained more context. However,
as can be seen in Table 5, there is still a lot of over-
lap between patterns for the two empty categories.
However, it is more apparent that at least we can
choose the pattern that will maximize matches for
one empty category and then discard that pattern for
the other empty category.

We also tried giving patterns even more context
by including terminals if preterminals are present in
the pattern (pattern matching method 2). In this way,
we are able have more context for patterns such as
(VP VV (IP ( NP (-NONE- *PRO*) ) VP)) by know-
ing what the verb that precedes the empty category
is. Instead of the original pattern, we would have
patterns such as (VP (VV决定) ( IP ( NP (-NONE-
*PRO*)) VP)). We are able to gain more context be-
cause some verbs select for a control construction.
The Chinese verb 决定 generally translates to En-
glish as to decide and is more often followed by
a control construction than by a dropped pronoun.
Whereas the pattern (VP (VV 决定) ( IP ( NP (-
NONE- *PRO*)) VP)) occurred 154 times in the
training data, the pattern (VP (VV 决定) (IP (NP
(-NONE- *pro*)) VP)) occurred only 8 times in the
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IP

NP-SBJ

-NONE-

*pro*

VP

VV

谢谢

NP-OBJ

PN

各位

PU

。

→ IP

VP

VV

谢谢

NP-OBJ

PN

各位

PU

。

(IP (NP-SBJ (-NONE- *pro*)) VP PU) (IP VP PU)

Figure 1: An example of a tree with an empty node (left), the tree stripped of an empty node (right), and a pattern that
matches the example. Sentences are parsed without empty nodes and if a tree fragment (IP VP PU) is encountered in
a parse tree, the empty node may be inserted according to the learned pattern (IP (NP-SBJ (-NONE- *pro*)) VP PU).

*PRO* *pro*
Count Pattern Count Pattern
12269 ( IP ( NP (-NONE- *PRO*) ) VP ) 10073 ( IP ( NP (-NONE- *pro*) ) VP )

102 ( IP PU ( NP (-NONE- *PRO*) ) VP PU ) 657 ( IP ( NP (-NONE- *pro*) ) VP PU )
14 ( IP ( NP (-NONE- *PRO*) ) VP PRN ) 415 ( IP ADVP ( NP (-NONE- *pro*) ) VP )
13 ( IP NP ( NP (-NONE- *PRO*) ) VP ) 322 ( IP NP ( NP (-NONE- *pro*) ) VP )
12 ( CP ( NP (-NONE- *PRO*) ) CP ) 164 ( IP PP PU ( NP (-NONE- *pro*) ) VP )

*PRO* *pro*
Count Pattern Count Pattern
2991 ( VP VV NP ( IP ( NP (-NONE- *PRO*) ) VP ) ) 1782 ( CP ( IP ( NP (-NONE- *pro*) ) VP ) DEC )
2955 ( VP VV ( IP ( NP (-NONE- *PRO*) ) VP ) ) 1007 ( VP VV ( IP ( NP (-NONE- *pro*) ) VP ) )
850 ( CP ( IP ( NP (-NONE- *PRO*) ) VP ) DEC ) 702 ( LCP ( IP ( NP (-NONE- *pro*) ) VP ) LC )
765 ( PP P ( IP ( NP (-NONE- *PRO*) ) VP ) ) 684 ( IP IP PU ( IP ( NP (-NONE- *pro*) ) VP ) PU )
654 ( LCP ( IP ( NP (-NONE- *PRO*) ) VP ) LC ) 654 ( TOP ( IP ( NP (-NONE- *pro*) ) VP PU ) )

Table 5: Top five minimally connected patterns that match *pro* and *PRO* (top). Patterns that match both *pro*
and *PRO* are shaded with the same color. The table on the bottom show more refined patterns that are given added
context by including the parent and siblings to minimally connected patterns. Many patterns still match both *pro*
and *PRO* but there is a lesser degree of overlap.
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training data.
After the patterns are extracted, we performed

pruning similar to the pruning that was done by
Johnson (2002). The patterns that have less than
50% chance of matching are discarded. For exam-
ple, if (IP VP) occurs one hundred times in a tree-
bank that is stripped of empty nodes and if pattern
(IP (NP (-NONE- *PRO*)) VP) occurs less than
fifty times in the same treebank that is annotated
with empty nodes, it is discarded.1 We also found
that we can discard patterns that occur very rarely
(that occur only once) without losing much accu-
racy. In cases where there was an overlap between
two empty categories, the pattern was chosen for
either *pro* or *PRO*, whichever that maximized
the number of matchings and then discarded for the
other.

3.2 Conditional random field

We tried building a simple conditional random field
(Lafferty et al., 2001) to predict null elements. The
model examines each and every word boundary and
decides whether to leave it as it is, insert *pro*,
or insert *PRO*. The obvious disadvantage of this
method is that if there are two consecutive null el-
ements, it will miss at least one of them. Although
there were some cases like this in the treebank, they
were rare enough that we decided to ignore them.
We first tried using only differently sized local win-
dows of words as features (CRF model 1). We also
experimented with adding the part-of-speech tags of
words as features (CRF model 2). Finally, we exper-
imented with a variation where the model is given
each word and its part-of-speech tag and its imme-
diate parent node as features (CRF model 3).

We experimented with using different regulariza-
tions and different values for regularizations but it
did not make much difference in the final results.
The numbers we report later used L2 regularization.

3.3 Parsing

In this approach, we annotated nonterminal symbols
in the treebank to include information about empty
categories and then extracted a context free gram-
mar from the modified treebank. We parsed with
the modified grammar, and then deterministically re-

1See Johnson (2002) for more details.

*PRO* *pro*
Cycle Prec. Rec. F1 Prec Rec. F1
1 0.38 0.08 0.13 0.38 0.08 0.12
2 0.52 0.23 0.31 0.37 0.18 0.24
3 0.59 0.46 0.52 0.43 0.24 0.31
4 0.62 0.50 0.56 0.47 0.25 0.33
5 0.61 0.52 0.56 0.47 0.33 0.39
6 0.60 0.53 0.56 0.46 0.39 0.42
7 0.58 0.52 0.55 0.43 0.40 0.41

Table 6: Result using the grammars output by the Berke-
ley state-splitting grammar trainer to predict empty cate-
gories

covered the empty categories from the trees. Fig-
ure 2 illustrates how the trees were modified. For
every empty node, the most immediate ancestor of
the empty node that has more than one child was an-
notated with information about the empty node, and
the empty node was deleted. We annotated whether
the deleted empty node was *pro* or *PRO* and
where it was deleted. Adding where the child was
necessary because, even though most empty nodes
are the first child, there are many exceptions.

We first extracted a plain context free grammar af-
ter modifying the trees and used the modified gram-
mar to parse the test set and then tried to recover the
empty elements. This approach did not work well.
We then applied the latent annotation learning pro-
cedures of Petrov et al. (2006)2 to refine the non-
terminals in the modified grammar. This has been
shown to help parsing in many different situations.
Although the state splitting procedure is designed to
maximize the likelihood of of the parse trees, rather
than specifically to predict the empty nodes, learning
a refined grammar over modified trees was also ef-
fective in helping to predict empty nodes. Table 6
shows the dramatic improvement after each split,
merge, and smoothing cycle. The gains leveled off
after the sixth iteration and the sixth order grammar
was used to run later experiments.

3.4 Results
Table 7 shows the results of our experiments. The
numbers are very low when compared to accuracy
reported in other works that were mentioned in the
beginning of this Section, which dealt with the Penn
English Treebank. Dropped pronouns are especially

2http://code.google.com/p/berkeleyparser/
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。

Figure 2: An example of tree modification

*PRO* *pro*
Prec. Rec. F1 Prec Rec. F1

Pattern 1 0.65 0.61 0.63 0.41 0.23 0.29
Pattern 2 0.67 0.58 0.62 0.46 0.24 0.31
CRF 1 0.66 0.31 0.43 0.53 0.24 0.33
CRF 2 0.68 0.46 0.55 0.58 0.35 0.44
CRF 3 0.63 0.47 0.54 0.54 0.36 0.43
Parsing 0.60 0.53 0.56 0.46 0.39 0.42

Table 7: Result of recovering empty nodes

hard to recover. However, we are dealing with a dif-
ferent language and different kinds of empty cate-
gories. Empty categories recovered this way may
still help translation. In the next section, we take the
best variation of the each method use it to add empty
categories to a training corpus and train machine
translation systems to see whether having empty cat-
egories can help improve translation in more realis-
tic situations.

3.5 Analysis

The results reveal many interesting aspects about re-
covering empty categories. The results suggest that
tree structures are important features for finding sites
where markers for control constructions (*PRO*)
have been deleted. The method utilizing patterns
that have more information about tree structure of
these sites performed better than other methods. The
fact that the method using parsing was better at pre-
dicting *PRO*s than the methods that used the con-
ditional random fields also corroborates this finding.
For predicting dropped pronouns, the method using
the CRFs did better than the others. This suggests
that rather than tree structure, local context of words

and part-of-speech tags maybe more important fea-
tures for predicting dropped pronouns. It may also
suggest that methods using robust machine learning
techniques are better outfitted for predicting dropped
pronouns.

It is interesting to note how effective the parser
was at predicting empty categories. The method us-
ing the parser requires the least amount of supervi-
sion. The method using CRFs requires feature de-
sign, and the method that uses patterns needs hu-
man decisions on what the patterns should be and
pruning criteria. There is also room for improve-
ment. The split-merge cycles learn grammars that
produce better parse trees rather than grammars that
predict empty categories more accurately. By modi-
fying this learning process, we may be able to learn
grammars that are better suited for predicting empty
categories.

4 Experiments

4.1 Setup

For Chinese-English, we used a subset of FBIS
newswire data consisting of about 2M words and
60K sentences on the English side. For our develop-
ment set and test set, we had about 1000 sentences
each with 10 reference translations taken from the
NIST 2002 MT evaluation. All Chinese data was
re-segmented with the CRF-based Stanford Chinese
segmenter (Chang et al., 2008) that is trained on
the segmentation of the Chinese Treebank for con-
sistency. The parser used in Section 3 was used to
parse the training data so that null elements could
be recovered from the trees. The same method for
recovering null elements was applied to the train-
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BLEU BP *PRO* *pro*
Baseline 23.73 1.000
Pattern 23.99 0.998 0.62 0.31
CRF 24.69* 1.000 0.55 0.44
Parsing 23.99 1.000 0.56 0.42

Table 8: Final BLEU score result. The asterisk indicates
statistical significance at p < 0.05 with 1000 iterations
of paired bootstrap resampling. BP stands for the brevity
penalty in BLEU. F1 scores for recovering empty cate-
gories are repeated here for comparison.

ing, development, and test sets to insert empty nodes
for each experiment. The baseline system was also
trained using the raw data.

We used Moses (Koehn et al., 2007) to train
machine translation systems. Default parameters
were used for all experiments. The same number
of GIZA++ (Och and Ney, 2003) iterations were
used for all experiments. Minimum error rate train-
ing (Och, 2003) was run on each system afterwards
and the BLEU score (Papineni et al., 2002) was cal-
culated on the test set.

4.2 Results

Table 8 summarizes our results. Generally, all sys-
tems produced BLEU scores that are better than the
baseline, but the best BLEU score came from the
system that used the CRF for null element insertion.
The machine translation system that used training
data from the method that was overall the best in
predicting empty elements performed the best. The
improvement is 0.96 points in BLEU score, which
represents statistical significance at p < 0.002 based
on 1000 iterations of paired bootstrap resampling
(Koehn, 2004). Brevity penalties applied for cal-
culating BLEU scores are presented to demonstrate
that the baseline system is not penalized for produc-
ing shorter sentences compared other systems.3

The BLEU scores presented in Table 8 represent
the best variations of each method we have tried
for recovering empty elements. Although the dif-
ference was small, when the F1 score were same
for two variations of a method, it seemed that we
could get slightly better BLEU score with the varia-
tion that had higher recall for recovering empty ele-

3We thank an anonymous reviewer for tipping us to examine
the brevity penalty.

ments rather the variation with higher precision.
We tried a variation of the experiment where the

CRF method is used to recover *pro* and the pattern
matching is used to recover *PRO*, since these rep-
resent the best methods for recovering the respective
empty categories. However, it was not as successful
as we thought would be. The resulting BLEU score
from the experiment was 24.24, which is lower than
the one that used the CRF method to recover both
*pro* and *PRO*. The problem was we used a very
naïve method of resolving conflict between two dif-
ferent methods. The CRF method identified 17463
sites in the training data where *pro* should be
added. Of these sites, the pattern matching method
guessed 2695 sites should be inserted with *PRO*
rather than *pro*, which represent more than 15%
of total sites that the CRF method decided to in-
sert *pro*. In the aforementioned experiment, wher-
ever there was a conflict, both *pro* and *PRO*
were inserted. This probably lead the experiment
to have worse result than using only the one best
method. This experiment suggest that more sophisti-
cated methods should be considered when resolving
conflicts created by using heterogeneous methods to
recover different empty categories.

Table 9 shows five example translations of source
sentences in the test set that have one of the empty
categories. Since empty categories have been auto-
matically inserted, they are not always in the cor-
rect places. The table includes the translation results
from the baseline system where the training and test
sets did not have empty categories and the transla-
tion results from the system (the one that used the
CRF) that is trained on an automatically augmented
corpus and given the automatically augmented test
set.

5 Conclusion

In this paper, we have showed that adding some
empty elements can help building machine transla-
tion systems. We showed that we can still benefit
from augmenting the training corpus with empty el-
ements even when empty element prediction is less
than what would be conventionally considered ro-
bust.

We have also shown that there is a lot of room for
improvement. More comprehensive and sophisti-
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source 中国计划 *PRO*投资在基础设施上
reference china plans to invest in the infrastructure
system trained w/ nulls china plans to invest in infrastructure
system trained w/o nulls china ’s investment in infrastructure
source 有利 *PRO*巩固香港的贸易和航运中心
reference good for consolidating the trade and shipping center of hong kong
system trained w/ nulls favorable to the consolidation of the trade and shipping center in hong kong
system trained w/o nulls hong kong will consolidate the trade and shipping center
source 一些大型企业 *PRO*逐步走向破产
reference some large - sized enterprises to gradually go bankrupt
system trained w/ nulls some large enterprises to gradually becoming bankrupt
system trained w/o nulls some large enterprises gradually becoming bankrupt
source *pro*目前还不清楚
reference it is not clear now
system trained w/ nulls it is also not clear
system trained w/o nulls he is not clear
source *pro*现在还不清楚
reference it is not clear yet
system trained w/ nulls it is still not clear
system trained w/o nulls is still not clear

Table 9: Sample translations. The system trained without nulls is the baseline system where the training corpus and
test corpus did not have empty categories. The system trained with nulls is the system trained with the training corpus
and the test corpus that have been automatically augmented with empty categories. All examples are part of longer
sentences.

cated methods, perhaps resembling the work of Gab-
bard et al. (2006) may be necessary for more accu-
rate recovery of empty elements. We can also con-
sider simpler methods where different algorithms
are used for recovering different empty elements, in
which case, we need to be careful about how recov-
ering different empty elements could interact with
each other as exemplified by our discussion of the
pattern matching algorithm in Section 3 and our ex-
periment presented in Section 4.2.

There are several other issues we may consider
when recovering empty categories that are miss-
ing in the target language. We only considered
empty categories that are present in treebanks. How-
ever, there might be some empty elements which are
not annotated but nevertheless helpful for improv-
ing machine translation. As always, preprocessing
the corpus to address a certain problem in machine
translation is less principled than tackling the prob-
lem head on by integrating it into the machine trans-
lation system itself. It may be beneficial to include
consideration for empty elements in the decoding
process, so that it can benefit from interacting with

other elements of the machine translation system.
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Abstract

Conventional wisdom dictates that syn-
chronous context-free grammars (SCFGs)
must be converted to Chomsky Normal Form
(CNF) to ensure cubic time decoding. For ar-
bitrary SCFGs, this is typically accomplished
via the synchronous binarization technique of
(Zhang et al., 2006). A drawback to this ap-
proach is that it inflates the constant factors as-
sociated with decoding, and thus the practical
running time. (DeNero et al., 2009) tackle this
problem by defining a superset of CNF called
Lexical Normal Form (LNF), which also sup-
ports cubic time decoding under certain im-
plicit assumptions. In this paper, we make
these assumptions explicit, and in doing so,
show that LNF can be further expanded to
a broader class of grammars (called “scope-
3”) that also supports cubic-time decoding.
By simply pruning non-scope-3 rules from a
GHKM-extracted grammar, we obtain better
translation performance than synchronous bi-
narization.

1 Introduction

At the heart of bottom-up chart parsing (Younger,
1967) is the following combinatorial problem. We
have a context-free grammar (CFG) rule (for in-
stance, S → NP VP PP) and an input sentence of
length n (for instance, “on the fast jet ski of mr
smith”). During chart parsing, we need to apply the
rule to all relevant subspans of the input sentence.
See Figure 1. For this particular rule, there are

(
n+1

4

)
application contexts, i.e. ways to choose the sub-
spans. Since the asymptotic running time of chart
parsing is at least linear in this quantity, it will take

on the fast jet ski of mr smith

NP VP PP

NP VP PP

NP VP PP

NP VP PP

NP VP PP

choice 
point

choice 
point

choice 
point

choice 
point

…

…

Figure 1: A demonstration of application contexts. There
are
(
n+1

4

)
application contexts for the CFG rule “S→ NP

VP PP”, where n is the length of the input sentence.

at least O(
(
n+1

4

)
) = O(n4) time if we include this

rule in our grammar.
Fortunately, we can take advantage of the fact that

any CFG has an equivalent representation in Chom-
sky Normal Form (CNF). In CNF, all rules have
the form X → Y Z or X → x, where x is a termi-
nal and X, Y, Z are nonterminals. If a rule has the
form X → Y Z, then there are only

(
n+1

3

)
applica-

tion contexts, thus the running time of chart parsing
is O(

(
n+1

3

)
) = O(n3) when applied to CNF gram-

mars.
A disadvantage to CNF conversion is that it in-

creases both the overall number of rules and the
overall number of nonterminals. This inflation of
the “grammar constant” does not affect the asymp-
totic runtime, but can have a significant impact on
the performance in practice. For this reason, (DeN-
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the NPB of NNP

on the fast jet ski of mr smith

the NPB of NNP

on the fast jet ski of mr smith

the JJ NPB of NNP

the JJ NPB of NNP

the JJ NPB of NNP

the JJ NPB of NNP

choice point

choice point choice point

Figure 2: A demonstration of application contexts for
rules with lexical anchors. There are O(n) application
contexts for CFG rule “S → the NPB of NNP”, and
O(n2) application contexts for CFG rule “S → the JJ
NPB of NNP”, if we assume that the input sentence has
length n and contains no repeated words.

ero et al., 2009) provide a relaxation of CNF called
Lexical Normal Form (LNF). LNF is a superclass of
CNF that also allows rules whose right-hand sides
have no consecutive nonterminals. The intuition is
that the terminals provide anchors that limit the ap-
plicability of a given rule. For instance, consider the
rule NP→ the NPB of NNP. See Figure 2. Because
the terminals constrain our choices, there are only
two different application contexts. The implicit as-
sumption is that input sentences will not repeat the
same word more than a small constant number of
times. If we make the explicit assumption that all
words of an input sentence are unique, then there
are O(n2) application contexts for a “no consecu-
tive nonterminals” rule. Thus under this assumption,
the running time of chart parsing is stillO(n3) when
applied to LNF grammars.

But once we make this assumption explicit, it be-
comes clear that we can go even further than LNF
and still maintain the cubic bound on the runtime.
Consider the rule NP → the JJ NPB of NNP. This
rule is not LNF, but there are still only O(n2) ap-
plication contexts, due to the anchoring effect of the
terminals. In general, for a rule of the form X→ γ,
there are at most O(np) application contexts, where
p is the number of consecutive nonterminal pairs in

the string X ·γ· X (where X is an arbitrary nontermi-
nal). We refer to p as the scope of a rule. Thus chart
parsing runs in time O(nscope(G)), where scope(G)
is the maximum scope of any of the rules in CFG G.
Specifically, any scope-3 grammar can be decoded
in cubic time.

Like (DeNero et al., 2009), the target of our in-
terest is synchronous context-free grammar (SCFG)
decoding with rules extracted using the GHKM al-
gorithm (Galley et al., 2004). In practice, it turns out
that only a small percentage of the lexical rules in
our system have scope greater than 3. By simply re-
moving these rules from the grammar, we can main-
tain the cubic running time of chart parsing without
any kind of binarization. This has three advantages.
First, we do not inflate the grammar constant. Sec-
ond, unlike (DeNero et al., 2009), we maintain the
synchronous property of the grammar, and thus can
integrate language model scoring into chart parsing.
Finally, a system without binarized rules is consid-
erably simpler to build and maintain. We show that
this approach gives us better practical performance
than a mature system that binarizes using the tech-
nique of (Zhang et al., 2006).

2 Preliminaries

Assume we have a global vocabulary of symbols,
containing the reserved substitution symbol ♦. De-
fine a sentence as a sequence of symbols. We will
typically use space-delimited quotations to represent
example sentences, e.g. “the fast jet ski” rather than
〈the, fast, jet, ski〉. We will use the dot operator to
represent the concatenation of sentences, e.g. “the
fast” · “jet ski” = “the fast jet ski”.

Define the rank of a sentence as the count
of its ♦ symbols. We will use the no-
tation SUB(s, s1, ..., sk) to denote the substitu-
tion of k sentences s1, ..., sk into a k-rank sen-
tence s. For instance, if s = “the ♦ ♦ of
♦”, then SUB(s, “fast”, “jet ski”, “mr smith”) =
“the fast jet ski of mr smith”.

To refer to a subsentence, define a span as a pair
[a, b] of nonnegative integers such that a < b. For
a sentence s = 〈s1, s2, ..., sn〉 and a span [a, b] such
that b ≤ n, define s[a,b] = 〈sa+1, ..., sb〉.
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NP -> the JJ NN of NNP

PP -> on NP

JJ -> fast NN -> jet ski NNP -> mr smith

NP -> < the JJ1 NN2 of NNP3, le NN2 JJ1 de NNP3 >

PP -> < on NP1, sur NP1>

JJ -> < fast, vite > NN -> < jet ski, jet ski > NNP -> < mr smith, m smith >

Figure 3: An example CFG derivation (above) and an ex-
ample SCFG derivation (below). Both derive the sen-
tence SUB(“on ♦”, SUB( “the ♦ ♦ of ♦”, “fast”, “jet
ski”, “mr smith”) ) = “on the fast jet ski of mr smith”.
The SCFG derivation simultaneously derives the auxil-
iary sentence “sur le jet ski vite de m smith”.

3 Minimum Derivation Cost

Chart parsing solves a problem which we will re-
fer to as Minimum Derivation Cost. Because we
want our results to be applicable to both CFG decod-
ing and SCFG decoding with an integrated language
model, we will provide a somewhat more abstract
formulation of chart parsing than usual.

In Figure 3, we show an example of a CFG deriva-
tion. A derivation is a tree of CFG rules, constructed
so that the preconditions (the RHS nonterminals) of
any rule match the postconditions (the LHS nonter-
minal) of its child rules. The purpose of a derivation
is to derive a sentence, which is obtained through
recursive substitution. In the example, we substitute
“fast”, “jet ski”, and “mr smith” into the lexical pat-
tern “the ♦ ♦ of ♦” to obtain “the fast jet ski of mr
smith”. Then we substitute this result into the lexi-
cal pattern “on ♦” to obtain “on the fast jet ski of mr
smith”.

The cost of a derivation is simply the sum of the
base costs of its rules. Thus the cost of the CFG
derivation in Figure 3 is C1 + C2 + C3 + C4 + C5,
where C1 is the base cost of rule “PP→ on NP”, etc.
Notice that this cost can be distributed locally to the
nodes of the derivation (Figure 4).

An SCFG derivation is similar to a CFG deriva-

NP -> the JJ NN of NNP

PP -> on NP

JJ -> fast NN -> jet ski NNP -> mr smith

C3

C4

C5

C2

C1

Figure 4: The cost of the CFG derivation in Figure 3 is
C1 + C2 + C3 + C4 + C5, where C1 is the base cost
of rule “PP → on NP”, etc. Notice that this cost can be
distributed locally to the nodes of the derivation.

tion, except that it simultaneously derives two sen-
tences. For instance, the SCFG derivation in Fig-
ure 3 derives the sentence pair 〈 “on the fast jet ski
of mr smith”, “sur le jet ski vite de m smith” 〉. In
machine translation, often we want the cost of the
SCFG derivation to include a language model cost
for this second sentence. For example, the cost of the
SCFG derivation in Figure 3 might beC1+C2+C3+
C4+C5+LM(sur le)+LM(le jet)+LM(jet ski)+
LM(ski de) + LM(de m) + LM(m smith), where
LM is the negative log of a 2-gram language model.
This new cost function can also be distributed lo-
cally to the nodes of the derivation, as shown in Fig-
ure 5. However, in order to perform the local com-
putations, we need to pass information (in this case,
the LM boundary words) up the tree. We refer to
this extra information as carries. Formally, define a
carry as a sentence of rank 0.

In order to provide a chart parsing formulation
that applies to both CFG decoding and SCFG de-
coding with an integrated language model, we need
abstract definitions of rule and derivation that cap-
ture the above concepts of pattern, postcondition,
preconditions, cost, and carries.

3.1 Rules

Define a rule as a tuple 〈k, s∗, X, π,Γ, c〉, where k is
a nonnegative integer called the rank, s∗ is a rank-k
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NP -> < the JJ1 NN2 of NNP3, 
le NN2 JJ1 de NNP3 >

PP -> < on NP1, 
sur NP1>

JJ -> < fast, 
vite >

NN -> < jet ski, 
jet ski >

NNP -> < mr smith, 
m smith >

m * smith

C5 + LM(m smith)C4 + LM(jet ski)C3

vite * vite
jet * ski

le * smith

C2 + LM(le jet) 
+ LM(ski vite) 
+ LM(vite de) 
+ LM(de m)C1 + LM(sur le)

Figure 5: The cost of the SCFG derivation in Figure 3
(with an integrated language model score) can also be dis-
tributed to the nodes of the derivation, but to perform the
local computations, information must be passed up the
tree. We refer to this extra information as a carry.

sentence called the pattern 1, X is a symbol called
the postcondition, π is a k-length sentence called the
preconditions, Γ is a function (called the carry func-
tion) that maps a k-length list of carries to a carry,
and c is a function (called the cost function) that
maps a k-length list of carries to a real number. Fig-
ure 6 shows a CFG and an SCFG rule, deconstructed
according to this definition. 2 Note that the CFG rule
has trivial cost and carry functions that map every-
thing to a constant. We refer to such rules as simple.

We will use post(r) to refer to the postcondition
of rule r, and pre(r, i) to refer to the ith precondition
of rule r.

Finally, define a grammar as a finite set of rules.
A grammar is simple if all its rules are simple.

3.2 Derivations

For a grammarR, define deriv(R) as the smallest set
that contains every tuple 〈r, δ1, ..., δk〉 satisfying the
following conditions:

1For simplicity, we also impose the condition that “♦” is not
a valid pattern. This is tantamount to disallowing unary rules.

2One possible point of confusion is why the pattern of the
SCFG rule refers only to the primary sentence, and not the aux-
iliary sentence. To reconstruct the auxiliary sentence from an
SCFG derivation in practice, one would need to augment the
abstract definition of rule with an auxiliary pattern. However
this is not required for our theoretical results.

NP -> < the JJ1 NN2 of NNP3, 
le NN2 JJ1 de NNP3 >

postcondition preconditions rank

pattern the ◊ ◊ of ◊

carry 
function

Γ( “u*v” , ”w*x” , ”y*z” )
= “le * z” 

cost 
function

c( “u*v” , ”w*x” , ”y*z” ) 
= C + LM(w|le) + LM(u|x) 

+ LM(de|v) + LM(y|de)

NP -> the JJ NN of NNP

postcondition preconditions

pattern the ◊ ◊ of ◊

carry 
function

Γ( “” , ”” , ”” ) = “” 

cost 
function

c( “” , ”” , ”” ) = C

rank = 3

Figure 6: Deconstruction of a CFG rule (left) and SCFG
rule (right) according to the definition of rule in Sec-
tion 3.1. The carry function of the SCFG rule computes
boundary words for a 2-gram language model. In the cost
functions, C is a real number and LM returns the negative
log of a language model query.

• r ∈ R is a k-rank rule

• δi ∈ deriv(R) for all 1 ≤ i ≤ k

• pre(r, i) = post(ri) for all 1 ≤ i ≤ k, where ri
is the first element of tuple δi.

An R–derivation is an element of deriv(R). Con-
sider a derivation δ = 〈r, δ1, ..., δk〉, where rule
r = 〈k, s∗, X, π,Γ, c〉. Define the following prop-
erties:

post(δ) = post(r)

sent(δ) = SUB(s∗, sent(δ1), ..., sent(δk))

carry(δ) = Γ(carry(δ1), ..., carry(δk))

cost(δ) = c(carry(δ1), ..., carry(δk)) +

k∑
j=1

cost(δj)

In words, we say that derivation δ derives sen-
tence sent(δ). If for some span σ of a particular sen-
tence s, it holds that sent(δ) = sσ, then we will say
that δ is a derivation over span σ.

3.3 Problem Statement
The Minimum Derivation Cost problem is the fol-
lowing. Given a set R of rules and an input sentence
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on the fast jet ski of mr smith

the ◊ ◊ of ◊

0 1 2 3 4 5 6 7 8

Figure 7: An application context for the pattern “the ♦ ♦
of ♦” and the sentence “on the fast jet ski of mr smith”.

s, find the minimum cost of any R–derivation that
derives s. In other words, compute:

MinDCost(R, s) , min
δ∈deriv(R)|sent(δ)=s

cost(δ)

4 Application Contexts

Chart parsing solves Minimum Derivation Cost via
dynamic programming. It works by building deriva-
tions over increasingly larger spans of the input sen-
tence s. Consider just one of these spans σ. How do
we build a derivation over that span?

Recall that a derivation takes the form
〈r, δ1, ..., δk〉. Given the rule r and its pattern
s∗, we need to choose the subderivations δi such
that SUB(s∗, sent(δ1), ..., sent(δk)) = sσ. To do
so, we must match the pattern to the span, so that
we know which subspans we need to build the
subderivations over. Figure 7 shows a matching
of the pattern “the ♦ ♦ of ♦” to span [1, 8] of the
sentence “on the fast jet ski of mr smith”. It tells
us that we can build a derivation over span [1, 8] by
choosing this rule and subderivations over subspans
[2, 3], [3, 5], and [6, 8].

We refer to these matchings as application con-
texts. Formally, given two sentences s∗ and s
of respective lengths m and n, define an 〈s∗, s〉–
context as an monotonically increasing sequence
〈x0, x1, ..., xm〉 of integers between 0 and n such
that for all i:

s∗[i−1,i] 6= ♦ implies that s∗[i−1,i] = s[xi−1,xi]

The context shown in Figure 7 is 〈1, 2, 3, 5, 6, 8〉.
Use cxt(s∗, s) to denote the set of all 〈s∗, s〉–
contexts.

An 〈s∗, s〉–context x = 〈x0, x1, ..., xm〉 has the
following properties:

span(x; s∗, s) = [x0, xm]

subspans(x; s∗, s) = 〈[x0, x1], ..., [xm−1, xm]〉

Moreover, define varspans(x; s∗, s) as the sub-
sequence of subspans(x; s∗, s) including only
[xi−1, xi] such that s∗[i−1,i] = ♦. For the context
x shown in Figure 7:

span(x; s∗, s) = [1, 8]

subspans(x; s∗, s) = 〈[1, 2], [2, 3], [3, 5], [5, 6], [6, 8]〉
varspans(x; s∗, s) = 〈[2, 3], [3, 5], [6, 8]〉

An application context x ∈ cxt(s∗, s) tells us that
we can build a derivation over span(x) by choosing
a rule with pattern s∗ and subderivations over each
span in varspans(x; s∗, s).

5 Chart Parsing Algorithm

We are now ready to describe the chart parsing al-
gorithm. Consider a span σ of our input sentence
s and assume that we have computed and stored all
derivations over any subspan of σ. A naive way to
compute the minimum cost derivation over span σ is
to consider every possible derivation:

1. Choose a rule r = 〈k, s∗, X, π,Γ, c〉.

2. Choose an application context x ∈ cxt(s∗, s)
such that span(x; s∗, s) = σ.

3. For each subspan σi ∈ varspans(x; s∗, s),
choose a subderivation δi such that post(δi) =
pre(r, i).

The key observation here is the following. In or-
der to score such a derivation, we did not actually
need to know each subderivation in its entirety. We
merely needed to know the following information
about it: (a) the subspan that it derives, (b) its post-
condition, (c) its carry.

650



Chart parsing takes advantage of the above obser-
vation to avoid building all possible derivations. In-
stead it groups together derivations that share a com-
mon subspan, postcondition, and carry, and records
only the minimum cost for each equivalence class.
It records this cost in an associative map referred to
as the chart.

Specifically, assume that we have computed and
stored the minimum cost of every derivation class
〈σ′, X ′, γ′〉, where X ′ is a postcondition, γ′ is a
carry, and σ′ is a proper subspan of σ. Chart pars-
ing computes the minimum cost of every derivation
class 〈σ,X, γ〉 by adapting the above naive method
as follows:

1. Choose a rule r = 〈k, s∗, X, π,Γ, c〉.

2. Choose an application context x ∈ cxt(s∗, s)
such that span(x; s∗, s) = σ.

3. For each subspan σi ∈ varspans(x; s∗, s),
choose a derivation class 〈σi, Xi, γi〉 from the
chart such that Xi = pre(r, i).

4. Update3 the cost of derivation class
〈σ, post(r),Γ(γ1, ..., γk)〉 with:

c(γ1, ..., γk) +
k∑
i=1

chart[σi, Xi, γi]

where chart[σi, Xi, γi] refers to the stored
cost of derivation class 〈σi, Xi, γi〉.

By iteratively applying the above method to all sub-
spans of size 1, 2, etc., chart parsing provides an
efficient solution for the Minimum Derivation Cost
problem.

6 Runtime Analysis

At the heart of chart parsing is a single operation:
the updating of a value in the chart. The running
time is linear in the number of these chart updates.
4 The typical analysis counts the number of chart
updates per span. Here we provide an alternative

3Here, update means “replace the cost associated with the
class if the new cost is lower.”

4This assumes that you can linearly enumerate the relevant
updates. One convenient way to do this is to frame the enumer-
ation problem as a search space, e.g. (Hopkins and Langmead,
2009)

analysis that counts the number of chart updates per
rule. This provides us with a finer bound with prac-
tical implications.

Let r be a rule with rank k and pattern s∗. Con-
sider the chart updates involving rule r. There is
(potentially) an update for every choice of (a) span,
(b) application context, and (c) list of k derivation
classes. If we let C be the set of possible carries,
then this means there are at most |cxt(s∗, s)| · |C|k
updates involving rule r. 5 If we are doing beam de-
coding (i.e. after processing a span, the chart keeps
only the B items of lowest cost), then there are at
most |cxt(s∗, s)| ·Bk updates.

We can simplify the above by providing an upper
bound for |cxt(s∗, s)|. Define an ambiguity as the
sentence “♦ ♦”, and define scope(s∗) as the number
of ambiguities in the sentence “♦” ·s∗· “♦”. The
following bound holds:

Lemma 1. Assume that a zero-rank sentence s does
not contain the same symbol more than once. Then
|cxt(s∗, s)| ≤ |s|scope(s∗).

Proof. Suppose s∗ and s have respective lengths m
and n. Consider 〈x0, x1, ..., xm〉 ∈ cxt(s∗, s). Let
I be the set of integers i between 1 and m such that
s∗i 6= ♦ and let I+ be the set of integers i between
0 and m − 1 such that s∗i+1 6= ♦. If i ∈ I , then we
know the value of xi, namely it is the unique integer
j such that sj = s∗i . Similarly, if i ∈ I+, then the
value of xi must be the unique integer j such that
sj = s∗i+1. Thus the only nondetermined elements
of context xi are those for which i 6∈ I ∪ I+. Hence
|cxt(s∗, s)| ≤ |s|{0,1,...,m}−I−I+ = |s|scope(s∗).

Hence, under the assumption that the input sen-
tence s does not contain the same symbol more than
once, then there are at most |s|scope(s∗) · |C|k chart
updates involving a rule with pattern s∗.

For a rule r with pattern s∗, define scope(r) =
scope(s∗). For a grammar R, define scope(R) =
maxr∈R scope(r) and rank(R) = maxr∈R rank(r).

Given a grammar R and an input sentence s,
the above lemma tells us that chart parsing makes

5For instance, in SCFG decoding with an integrated j-gram
language model, a carry consists of 2(j − 1) boundary words.
Generally it is assumed that there are O(n) possible choices for
a boundary word, and hence O(n2(j−1)) possible carries.
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O(|s|scope(R) · |C|rank(R)) chart updates. If we re-
strict ourselves to beam search, than chart parsing
makes O(|s|scope(R)) chart updates. 6

6.1 On the Uniqueness Assumption
In practice, it will not be true that each input sen-
tence contains only unique symbols, but it is not too
far removed from the practical reality of many use
cases, for which relatively few symbols repeat them-
selves in a given sentence. The above lemma can
also be relaxed to assume only that there is a con-
stant upper bound on the multiplicity of a symbol
in the input sentence. This does not affect the O-
bound on the number of chart updates, as long as we
further assume a constant limit on the length of rule
patterns.

7 Scope Reduction

From this point of view, CNF binarization can be
viewed as a specific example of scope reduction.
Suppose we have a grammar R of scope p. See Fig-
ure 8. If we can find a grammar R̂ of scope p̂ < p
which is “similar” to grammar R, then we can de-
code in O(np̂) rather than O(np) time.

We can frame the problem by assuming the fol-
lowing parameters:

• a grammar R

• a desired scope p

• a loss function Λ that returns a (non-negative
real-valued) score for any two grammars R and
R̂; if Λ(R, R̂) = 0, then the grammars are con-
sidered to be equivalent

A scope reduction method with loss λ finds a gram-
mar R̂ such that scope(R̂) ≤ p and Λ(R, R̂) = λ.
A scope reduction method is lossless when its loss
is 0.

In the following sections, we will use the loss
function:

Λ(R, R̂) = |MinDCost(R, s)−MinDCost(R̂, s)|

where s is a fixed input sentence. Observe that if
Λ(R, R̂) = 0, then the solution to the Minimum

6Assuming rank(R) is bounded by a constant.

CNF LNF

Scope 3

All Grammars

Figure 8: The “scope reduction” problem. Given a gram-
mar of large scope, find a similar grammar of reduced
scope.

Derivation Cost problem is the same for both R and
R̂. 7

7.1 CNF Binarization

A rule r is CNF if its pattern is “♦♦” or “x”, where x
is any non-substitution symbol. A grammar is CNF
if all of its rules are CNF. Note that the maximum
scope of a CNF grammar is 3.

CNF binarization is a deterministic process that
maps a simple grammar to a CNF grammar. Since
binarization takes subcubic time, we can decode
with any grammar R in O(n3) time by converting
R to CNF grammar R̂, and then decoding with R̂.
This is a lossless scope reduction method.

What if grammar R is not simple? For SCFG
grammars, (Zhang et al., 2006) provide a scope
reduction method called synchronous binarization
with quantifiable loss. Synchronous binarization se-
lects a “binarizable” subgrammar R′ of grammar R,
and then converts R′ into a CNF grammar R̂. The
cost and carry functions of these new rules are con-
structed such that the conversion from R′ to R̂ is
a lossless scope reduction. Thus the total loss of
the method is |MinDCost(R, s)−MinDCost(R′, s)|.
Fortunately, they find in practice thatR′ usually con-
tains the great majority of the rules of R, thus they

7Note that if we want the actual derivation and not just its
cost, then we need to specify a more finely grained loss func-
tion. This is omitted for clarity and left as an exercise.
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a ◊ ◊
◊ ◊ a

a ◊ ◊ b
◊ a ◊ ◊
◊ ◊ a ◊
◊ ◊ ◊ a
a ◊ ◊ ◊
a b ◊ ◊
◊ ◊ a b

a ◊ ◊ b ◊
a ◊ ◊ b c

a b ◊ ◊ c
◊ a ◊ ◊ b
a ◊ b ◊ ◊
◊ ◊ a ◊ b
◊ ◊ ◊ a b
a ◊ ◊ ◊ b

a ◊ ◊ b ◊ c
a ◊ ◊ ◊ ◊ b

a ◊ ◊ b c ◊ ◊ d
a ◊ ◊ ◊ ◊ b ◊ c ◊ d
a ◊ ◊ b ◊ ◊ c ◊ ◊ d

Figure 9: A selection of rule patterns that are scope ≤ 3
but not LNF or CNF.

assert that this loss is negligable.
A drawback of their technique is that the resulting

CNF grammar contains many more rules and post-
conditions than the original grammar. These con-
stant factors do not impact asymptotic performance,
but do impact practical performance.

7.2 Lexical Normal Form

Concerned about this inflation of the grammar con-
stant, (DeNero et al., 2009) consider a superset of
CNF called Lexical Normal Form (LNF). A rule is
LNF if its pattern does not contain an ambiguity as
a proper subsentence (recall that an ambiguity was
defined to be the sentence “♦ ♦”). Like CNF, the
maximum scope of an LNF grammar is 3. In the
worst case, the pattern s∗ is “♦ ♦”, in which case
there are three ambiguities in the sentence “♦” ·s∗·
“♦”.

(DeNero et al., 2009) provide a lossless scope
reduction method that maps a simple grammar to
an LNF grammar, thus enabling cubic-time decod-
ing. Their principal objective is to provide a scope
reduction method for SCFG that introduces fewer
postconditions than (Zhang et al., 2006). However
unlike (Zhang et al., 2006), their method only ad-
dresses simple grammars. Thus they cannot inte-
grate LM scoring into their decoding, requiring them
to rescore the decoder output with a variant of cube
growing (Huang and Chiang, 2007).
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Figure 10: Breakdown of rules by scope (average per sen-
tence in our test sets). In practice, most of the lexical rules
applicable to a given sentence (95% for Arabic-English
and 85% for Chinese-English) are scope 3 or less.

7.3 Scope Pruning

To exercise the power of the ideas presented in this
paper, we experimented with a third (and very easy)
scope reduction method called scope pruning. If we
consider the entire space of scope-3 grammars, we
see that it contains a much richer set of rules than
those permitted by CNF or LNF. See Figure 9 for
examples. Scope pruning is a lossy scope reduc-
tion method that simply takes an arbitrary grammar
and prunes all rules with scope greater than 3. By
not modifying any rules, we preserve their cost and
carry functions (enabling integrated LM decoding),
without increasing the grammar constant. The prac-
tical question is: how many rules are we typically
pruning from the original grammar?

We experimented with two pretrained syntax-
based machine translation systems with rules ex-
tracted via the GHKM algorithm (Galley et al.,
2004). The first was an Arabic-English system, with
rules extracted from 200 million words of parallel
data from the NIST 2008 data collection, and with
a 4-gram language model trained on 1 billion words
of monolingual English data from the LDC Giga-
word corpus. We evaluated this system’s perfor-
mance on the NIST 2008 test corpus, which con-
sists of 1357 Arabic sentences from a mixture of
newswire and web domains, with four English refer-
ence translations. The second system was a Chinese-
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Figure 11: Speed-quality tradeoff curves comparing the baseline scope reduction method of synchronous binarization
(dark gray diamonds) with scope-3 pruning (light gray squares).

English system, with rules extracted from 16 million
words of parallel data from the mainland-news do-
main of the LDC corpora, and with a 4-gram lan-
guage model trained on monolingual English data
from the AFP and Xinhua portions of the LDC Gi-
gaword corpus. We evaluated this system’s perfor-
mance on the NIST 2003 test corpus, which con-
sists of 919 Chinese sentences, with four English
reference translations. For both systems, we report
BLEU scores (Papineni et al., 2002) on untokenized,
recapitalized output.

In practice, how many rules have scope greater
than 3? To answer this question, it is useful to dis-
tinguish between lexical rules (i.e. rules whose pat-
terns contain at least one non-substitution symbol)
and non-lexical rules. Only a subset of lexical rules
are potentially applicable to a given input sentence.
Figure 10 shows the scope profile of these applicable

rules (averaged over all sentences in our test sets).
Most of the lexical rules applicable to a given sen-
tence (95% for Arabic-English, 85% for Chinese-
English) are scope 3 or less. 8 Note, however, that
scope pruning also prunes a large percentage of non-
lexical rules.

Figure 11 compares scope pruning with the base-
line technique of synchronous binarization. To gen-
erate these speed-quality tradeoff curves, we de-
coded the test sets with 380 different beam settings.
We then plotted the hull of these 380 points, by elim-
inating any points that were dominated by another
(i.e. had better speed and quality). We found that
this simple approach to scope reduction produced
a better speed-quality tradeoff than the much more
complex synchronous binarization. 9

8For contrast, the corresponding numbers for LNF are 64%
and 53%, respectively.

9We also tried a hybrid approach in which we scope-pruned

654



8 Conclusion

In this paper, we made the following contributions:

• We provided an abstract formulation of chart
parsing that generalizes CFG decoding and
SCFG decoding with an integrated LM.

• We framed scope reduction as a first-class ab-
stract problem, and showed that CNF binariza-
tion and LNF binarization are two specific solu-
tions to this problem, each with their respective
advantages and disadvantages.

• We proposed a third scope reduction technique
called scope pruning, and we showed that it can
outperform synchronous CNF binarization for
particular use cases.

Moreover, this work gives formal expression to the
extraction heuristics of hierarchical phrase-based
translation (Chiang, 2007), whose directive not to
extract SCFG rules with adjacent nonterminals can
be viewed as a preemptive pruning of rules with
scope greater than 2 (more specifically, the prun-
ing of non-LNF lexical rules). In general, this work
provides a framework in which different approaches
to tractability-focused grammar construction can be
compared and discussed.
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Abstract

In this article, an original view on how to
improve phrase translation estimates is pro-
posed. This proposal is grounded on two main
ideas: first, that appropriate examples of a
given phrase should participate more in build-
ing its translation distribution; second, that
paraphrases can be used to better estimate this
distribution. Initial experiments provide ev-
idence of the potential of our approach and
its implementation for effectively improving
translation performance.

1 Introduction

Phrase translation estimation in Statistical Phrase-
based Translation (Koehn et al., 2003) is hampered
by the availability of both too many and too few
training instances. Recent results on tera-scale SMT
(Lopez, 2008) show that access to many training
examples1 can lead to significant improvements in
translation quality. Also, providing indirect train-
ing instances via synonyms or paraphrases for pre-
viously unseen phrases can result in gains in trans-
lation quality, which are more apparent when little
training data is originally available (Callison-Burch
et al., 2006; Marton et al., 2009; Mirkin et al., 2009;
Aziz et al., 2010). Although there is a consensus on
the importance of using more parallel data in SMT,
it has never been formally shown that all additional
training instances are actually useful in predicting
contextually appropriate translation hypotheses.

1To be more accurate, works such as that of (Lopez, 2008)
have recourse to random sampling to build models of a manage-
able size in a reasonable amount of time.

Attempts at limiting training parallel sentences to
those resembling test data through thematic adapta-
tion (Hildebrand et al., 2005) indeed confirm that
large quantities of training data cannot compen-
sate for the requirement for contextually appropriate
training instances. In fact, it is important that phrase
translation models adequatly reflect contextual pref-
erences for each phrase occurrence in a text. A vari-
ety of recent works have used dynamically adapted
translation models, where each phrase occurrence
has its own translation distribution (Carpuat and Wu,
2007; Stroppa et al., 2007; Max et al., 2008; Gim-
pel and Smith, 2008; Haque et al., 2009) derived
from local contextual information in the training ex-
amples.2 These approaches are supported by the
study of (Wisniewski et al., 2010) which shows that
phrase-based SMT systems are expressive enough to
achieve very high translation performance and there-
fore suggests a better scoring of phrases.

The apparent tradeoff between the number of
training examples and their appropriateness in each
indivual context naturally asks for means of increas-
ing the number of appropriate examples. Exploiting
comparable corpora for acquiring translation equiva-
lents (Munteanu and Marcu, 2005; Abdul-Rauf and
Schwenk, 2009) offers interesting prospects to this
issue, but so far focus has not been so much on con-
text appropriateness as on globally increasing the
number of biphrase examples.

2The study of (Carpuat, 2009) shows that the one transla-
tion per discourse hypothesis holds in some cases, but to our
knowledge no SMT systems have attempted to exploit it yet.
However, in our view, this finding does not contradict the need
for estimating translation distributions at the individual phrase
level, but they should be integrated as additional information.
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The approach we take in this article is motivated
by the fact that natural language allows for multiple
text views on a given content, and that if two phrases
are good paraphrases in context, then considering
appropriate training examples of one of the phrases
could provide larger quantities of training data for
translating the other. In other words, we hypothe-
size that there may be more training data to learn a
phrase’s translations in a bilingual corpus than what
SMT approaches typically use.

In contrast to previous attempts at using para-
phrases to improve Statistical Machine Translation,
which require external data in the form of additional
parallel bilingual corpora (Callison-Burch et al.,
2006), monolingual corpora (Marton et al., 2009),
lexico-semantic resources (Mirkin et al., 2009; Aziz
et al., 2010), or sub-sentential (Resnik et al., 2010)
or sentential paraphrases of the input (Schroeder et
al., 2009), the approach we take here can be endoge-
nous with respect to the original training data. It
also significantly departs from previous work in that
paraphrasing is not simply considered as a way of
finding alternative wordings that can be translated
given the original training data for out-of-vocabulary
phrases only (Callison-Burch et al., 2006; Marton
et al., 2009; Mirkin et al., 2009; Aziz et al., 2010),
but as a means to better estimate translations for any
possible phrase. Also, as opposed to the work by
(Schroeder et al., 2009; Onishi et al., 2010; Du et
al., 2010), we do not encode paraphrases into input
lattices to have them compete against each other to
belong to the source sentential paraphrase that will
lead to the highest scoring output sentence3. Instead,
we make use of all contextually appropriate para-
phrases of a source phrase, which collectively eval-
uate the quality of each translation for that phrase.

This work can thus be seen as a contribution to-
wards shifting from global phrase translation dis-
tributions to contextual translation distributions for
contextually equivalent source units. The remainder
of this paper is organized as followed. In section 2
we review relevant previous works and discuss how
they differ from our approach. Section 3 provides a
description of the details of our approach. We de-
scribe an experimental setup in section 4 and com-

3This highly depends on how well estimated translations for
each independent paraphrase are.

ment on our results. Finally, we discuss our future
work in section 5.

2 Relation to previous work

2.1 Contextual estimation of phrase
translations

In standard approaches to phrase-based SMT, evi-
dence of a translation is accumulated uniformely ev-
ery time it is found associated with a source phrase
in the training corpus. In addition to the fact that
errors in automatic word alignment and non literal
translations often produce useless biphrases, this re-
sults in rare but appropriate translations being very
unlikely to be considered during decoding. Some
approaches on source context modelling (Carpuat
and Wu, 2007; Stroppa et al., 2007; Max et al., 2008;
Haque et al., 2009) build classifiers offline for the
phrases in a test set, so that context similarity can
for example reinforce scores associated with rare
but appropriate translations. However, heavy offline
computation makes scaling to larger corpora an is-
sue. Other approaches (Callison-Burch et al., 2005;
Lopez, 2008) instead focus on accessing very large
corpora. Indexing by suffix arrays is used to allow
fast access to phrase instances in the corpus, and ran-
dom sampling to avoid collecting the full set of ex-
amples has been shown to perform well. However,
these approaches consider all instances of a phrase
as equivalent for the estimation of its translations.

These works converge on the need for accessing
a sufficient number of examples that are relevant for
any source phrase in context, fast enough to permit
on-the-fly phrase table building. This paper pro-
poses an intermediate step: the full set of phrase
examples is found efficiently, and a measure of the
adequacy of each example with a phrase in context
provides evidence for its translation that depends on
this value of adequacy. In this way, the translation
associated with an example for a different sense of
a polysemous word would in the best scenario only
be considered marginally when computing the trans-
lation distribution. As in most previous works, ad-
equacy can be approximated by context similarity
between phrase occurrences and training examples.

Ideally, one would stop extracting examples when
enough appropriate examples have been found to es-
timate a reliable translation distribution. (Callison-
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sample size 100 500 1K 5K 10k 50k unlim.
BLEU score 28.8 28.8 28.8 28.9 29.1 28.9 29.0

Figure 1: Effect of number of samples on translation
quality (measured on German to English translation on
Europarl data) reported by (Callison-Burch et al., 2005)

Burch et al., 2005) measured the impact on transla-
tion quality of the sample size in random sampling
of source phrase examples in the training corpus to
estimate a phrase’s translation probabilities. As Ta-
ble 1 shows, quality (in terms of BLEU scores) al-
most remains constant for samples of size 100 or
more. This apparent confirmation of the efficiency
of random sampling is backed up by the authors
with the following possible explanations: 1) the
most probable translations remain the same for dif-
ferent sample sizes; 2) misestimated probabilities
are ruled out by the target language model; and
3) longer or less frequent phrases, which are not
affected by sampling, are preferred. However, as
said previously, random sampling cannot guarantee
that contextually-appropriate examples are selected.
In fact, (Lopez, 2008) points out to using discrimi-
natively trained models with contextual features of
source phrases in conjunction with phrase sampling
as an open problem. This work does not attempt to
directly address it, but instead resorts to complete
analysis of the training data to guarantee that all
contextually-appropriate examples are considered.

2.2 Using paraphrases for translating

For some phrases, not enough examples can be
found in the training corpus to estimate reliable
translation probabilities in context. In such cases,
one might be interested in finding more appropri-
ate examples, which seems at first impossible us-
ing the sole original bilingual corpus. We can in
fact consider the set of source phrases that have
similar translations in context. This set is roughly
made up of a subset of what can be referred to as
paraphrases. One possible approach to extract lo-
cal (i.e. phrasal) paraphrases precisely exploits sim-
ilarity on the target side in another language by ex-
tracting source phrases that share common transla-
tions (Bannard and Callison-Burch, 2005), but re-
cent approaches have combined this approach with

Source phrase Paraphrases
Balkan War Balkan war (0.25) Balkans War

(0.125) Balkans (0.125) Balkans
war (0.125) war in the Balkans
(0.125) Balkan conflict (0.125)

British forces British troops (0.29) British
armed forces (0.19)

Czech president President of the Czech Republic
(0.5)

Dalai Lama’s of the Dalai Lama (0.27)
I don’t see I do not believe (0.18) I do not think

(0.18) I do not see (0.15)

Figure 2: Examples of paraphrases obtained by pivoting
via French; values indicate paraphrase probability as de-
fined in (Bannard and Callison-Burch, 2005).

similarity computation in the “source” (i.e. original)
language (Callison-Burch, 2008; Max, 2008; Kok
and Brockett, 2010). Figure 2 provides examples of
English paraphrases obtained by automatically piv-
oting via French. As can be seen, some examples
would be clearly useful to better estimate transla-
tions of the original source phrase: (Balkan War
↔ war in the Balkans) are syntactic variants that
can generally substitute with each other, (Balkan
War ↔ Balkans war) are character-level variants4.
Other examples, however, clearly illustrate the need
for validation in context: (Dalai Lama’s ↔ of the
Dalai Lama) require different syntactic contexts,
and (I don’t see ↔ I do not believe) are only inter-
changeable in specific semantic contexts.

Previous attempts at exploiting paraphrases in
SMT have first concentrated on obtaining transla-
tions for phrases absent from the training corpus
(Callison-Burch et al., 2006; Marton et al., 2009;
Mirkin et al., 2009)5, with modest gains in trans-
lation performance as measured by automatic met-
rics. (Callison-Burch et al., 2006) obtain para-
phrases by pivoting via additional bilingual corpora
and use the translations of known paraphrases to
translate unseen phrases, which requires that the ad-
ditional bilingual corpora contain the unseen source
phrases and that some of the extracted paraphrases
be present in the original corpus. (Marton et al.,

4To our knowledge, most implementations of SMT decoders
do not integrate flexible matching of phrases.

5The work by (Mirkin et al., 2009) in fact considers both
paraphrases and entailed texts to increase the number of prop-
erly translated texts.
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2009) proceed similarly but obtain their paraphrases
from comparatively much larger monolingual cor-
pora by following the distributionality hypothesis.
In both cases, gains are only obtained in very spe-
cific conditions where very few training data are
available and where useful additional knowledge can
be brought in from external resources. Furthermore,
the described implementations do not consider ac-
ceptability of the paraphrases in context, as their un-
derlying hypothesis is that it might be more desir-
able to translate some paraphrase than not to trans-
late a given phrase.6 In contrast, the work by (Mirkin
et al., 2009) attempts to model context when using
replacements for words (synonyms or hypernyms).

The natural next step that we take here is to
exploit the complementarity of the original bilin-
gual training corpus for finding paraphrases and the
monolingual (source) side of the same corpus for
validating them in context. Furthermore, our fo-
cus here is not on paraphrasing unseen phrases7, but
possibly any phrase, or any phrase seen less than a
given number of times, or any types of difficult-to-
translate phrases (Mohit and Hwa, 2007).

The recent work of (Resnik et al., 2010)
uses crowdsourcing to obtain paraphrases for
source phrases corresponding to mistranslated target
phrases. The spotting of the incorrect target phrases
and the paraphrasing of the source phrases can be
automated. Promising oracle figures are obtained,
validating the claim that some variations of the input
sentence might be more easily translated than oth-
ers by a given system. Paraphrases have also been
used to represent alternative inputs encoded in lat-
tices using existing (Schroeder et al., 2009) or au-
tomatically built paraphrases (Onishi et al., 2010;
Du et al., 2010). In this scenario, paraphrases are in
fact competing with each other, whereas in our pro-
posal paraphrases collectively participate in evalu-
ating the quality of each translation for a source
phrase. We believe that if two phrases are indeed
paraphrases in context, then their respective set of
translations are both relevant to translate the two
phrases. The target language model nevertheless
still has an important role to play to select appro-

6The default strategy for most decoders is to copy out-of-
vocabulary tokens into the final text.

7Doing it in conjunction with our approach for improving
the translation of known phrases is part of our future work.

priate translations among semantically-compatible
translations (i.e., target side paraphrases) in the spe-
cific context of a generated target hypothesis.

Lastly, automatic sentential paraphrasing has also
been used in SMT to build alternative reference
translations for parameter optimization (Madnani
et al., 2008) and to build alternative training cor-
pora (Bond et al., 2008).

3 Towards better exploitation of training
corpora in phrase-based SMT

In typical phrase-based SMT settings (Koehn et al.,
2003), words from the source side of the corpus
are first aligned to words on the target side and
biphrases are extracted from each training sentence
using some heuristics on the word alignments. A
source phrase f in a sentence being translated may
therefore be aligned to a variety of target phrases.
In the example on Figure 3, f is aligned some num-
ber of times in the training corpus to target phrases
e1, e2, e3 and e5. Using the number of times f is
paired with some target phrase ei, count(f, ei), rela-
tive frequency estimation can be used to compute the
probability of translation ei given source phrase f :

prel(ei|f) =
count(f, ei)∑
j count(f, ej)

(1)

This value, together with other estimates of how
appropriate a translation pair (f, ei) is, are recorded
in a phrase table, which typically discards all con-
textual information.8 Therefore, the translation dis-
tribution of some phrase is globally estimated from
a training corpus independently of the actual context
of that phrase.9 On Figure 3, phrase f has at least
two distinct senses: one represented by set E , which
in our example corresponds to the appropriate sense
for a particular occurrence of f in a test sentence;
and one which corresponds to translation e5. A typ-
ical problem, due to the lack of context modeling,

8See (Carpuat and Wu, 2007; Stroppa et al., 2007; Max et
al., 2008; Gimpel and Smith, 2008; Haque et al., 2009) for no-
table exceptions.

9Context is in fact taken into account to some extent by the
target language model, which should score higher translations
that are more appropriate given a target translation hypothesis
being built. In fact, in this work we consider the target language
model as the main source of information for selecting among
acceptable target phrases (target language paraphrases).
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Figure 3: Example of possible source equivalents and
translations for phrase occurrence f “un bon avocat” in
the sentence “L’embauche d’un bon avocat est cruciale
quelle que soit l’activité” (“Hiring a good lawyer is cru-
cial to any business”). Set E represents target phrase
types that are acceptable translations given the particu-
lar context of f , and set F represents source phrase types
that can be in a paraphrasing relation to f depending on
the context they appear in.

is that in situations such as ∀ei ∈ E , count(f, e5)�
count(f, ei), it is very unlikely that a correct trans-
lation will be selected during decoding against the
incorrect but much more frequent one. Taking an
extreme view on this issue, it is in fact desirable that
when estimating phrase translation probabilities for
a phrase f , translations of incompatible senses be
not considered.10 Of course, this raises the diffi-
cult issue of sense clustering of phrases. We propose
here an intermediary solution, which consists in con-
sidering each occurrence in the training corpus as
counting a number of times that depends on its con-
textual similarity with the occurrence of f from the
test file, through the following additional translation
model :

pcont(ei|f) =

∑
〈fk,ei〉 simcont(C(f), C(fk))∑
〈fk,ej〉 simcont(C(f), C(fk))

(2)
where f is some source phrase to translate and fk
an example of f in the training corpus, 〈fk, ei〉 is a

10Put differently, is it more acceptable to copy a source word
in the target hypothesis or to incorrectly translate it when the
confidence about its being incorrect is high?

biphrase from the training corpus, C(f) the context
of some source phrase, C(fk) the context of a par-
ticular example of f in the training corpus, simphr

a function indicating the contextual similarity be-
tween two phrase contexts, and ej is any possible
translation of f .

The problem of modeling phrase translation is
however not limited to inappropriate training exam-
ples. For various reasons, legitimate occurrences of
source phrases may not be considered when building
a phrase’s translation distribution. We describe those
cases by considering the possible source phrases pi
from Figure 3:

• p1’s only translation, e1, is a common transla-
tion with f ; each contextually-appropriate ex-
ample of p1 should reinforce the probability of
e1 being a translation for f .

• Contextually-appropriate examples of p2 can
reinforce e3. Translation e6 should correspond
to contextually-inappropriate examples of p2,
so e6 should not be considered as a new po-
tential translation for f .

• Contrarily to the examples of p2 translating as
e6, examples of p3 translating as e4 are much
more likely of being contextually-appropriate
with f , meaning that f could be substituted
with most p3 examples. Therefore, e4, which
was not initially considered as a possible trans-
lation of f , could now be considered as such.

• p4 shares a translation with f , e2, but this is
due to the polysemous nature of this transla-
tion. Again, all examples of p4 should be found
contextually-inappropriate with f , and their
translations should not be considered when es-
timating the translations of f .

• Lastly, the case of the common translation e5
between f and p5 illustrates a consequence of
the polysemous nature of the source phrase cor-
responding to word sequence f : translations
corresponding to other senses of f should not
get reinforced by paraphrase examples such as
those of p5 as these examples should be found
contextually-inappropriate with f .
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We build a separate translation model for transla-
tions estimated through paraphrases, defined as fol-
lows:

ppara(ei|f) =

∑
〈pk,ei〉 simpara(C(f), C(pk))∑
〈pk,ej〉 simpara(C(f), C(pk))

(3)
where pk is a paraphrase of f , 〈pk, ei〉 is a biphrase
from the training corpus such that ei is also a transla-
tion of f , C(f) the context of a given source phrase
for which we are estimating the translation distribu-
tion, C(pk) the context of a particular example of pk
in the training corpus, simpara a function indicat-
ing the contextual similarity between a phrase con-
text and a paraphrase context, and ej is any possible
translation of f .

Several requirements can be drawn from the pre-
vious description:

1. List of potential paraphrases: some mech-
anism for finding potential paraphrases for
source phrases is required, and several such
mechanisms could be combined. Pivoting via
bilingual corpora, a natural strategy given the
issue at hand, is just one among many different
proposed strategies (Madnani and Dorr, 2010).

2. Contextual similarity measure: a similarity
measure between the contexts of two phrases
or two potential local paraphrases is required.
This automatic measure should ideally be able
to model not only syntactic but also semantic
and pragmatic information.

3. Robust translation evaluation: our ap-
proach is designed to reinforce estimates for
any contextually-appropriate translations of a
phrase, as shown by set E on Figure 3. It is
therefore important to have some means of ac-
cepting them as subparts of valid translations.
Robustness in Machine Translation evaluation
is an active domain, and potential candidates
include using BLEU-like metrics with multiple
references, Human-targeted Translation Error
Rate (Snover et al., 2006) and the use of para-
phrases for reference translations (Kauchak and
Barzilay, 2006).

train dev. test
# sent. # tok. # sent. # tok. # sent. # tok.

en 318K 9.1M 500 14,0K 500 13,6K
fr 318K 10.3M 500 16,1K 500 15,7k

Figure 4: Statistics of the corpora used.

In this paper, we want to evaluate whether an en-
dogenous approach for finding paraphrases can lead
to some improvement in translation performance.
Note that we will not consider in this initial work
the possibility of adding new translations to phrases
(such as e4 for f on Figure 3) as it adds complexity
and should be investigated when the other simpler
cases can be handled successfully.

In the following section, we describe experiments
in which the original bilingual corpus is the only re-
source used to find potential paraphrases and to esti-
mate phrase translations in context. We chose a very
simple measure of similarity, and let to our future
work the task of improving context modeling. As
regards evaluation, we will resort to various ways to
measure the impact of our implementation on trans-
lation performance.

4 Experiments and results

4.1 Data and baseline SMT systems

We have conducted our experiments using the
MOSES11 package to build state-of-the-art phrase-
based SMT systems for phrases of up to 5 tokens,
using standard parameters and MERT for optimizing
model weights. We used a subpart of the Europarl
corpus12 in French and English as our training cor-
pus and built baseline MOSES systems (bsl) in both
directions. The target side of the training corpus
was used to train 3-gram target language model with
modified Kneser-Ney smoothing. Held-out datasets
were used for development and testing. The charac-
teristics of all corpora are described in Figure 4.

4.2 Example-based Paraphrasing SMT systems

We also built systems that exploit phrase and para-
phrase context under the form of two additional
models pcont and ppara described in section 3. These

11http://www.statmt.org/moses
12http://www.statmt.org/europarl
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phrase table size num. entries
en→fr

baseline 240Mb 2.4M
our systems 5.0Gb 37.5M

fr→en
baseline 193Mb 1.9M

our systems 4.0Gb 30.2M

Figure 5: Statistics on the size and the number of entries
of the phrase tables filtered on the development set.

models are added to the list of models used to eval-
uate the various translations of a phrase in the ap-
propriate phrase tables, and are optimized with the
other models by standard MERT.

In order to model context, we modified the source
texts so that each phrase becomes unique in the
phrase table, i.e. it has its own translation distribu-
tion. This is done (as in other works (Carpuat and
Wu, 2007; Stroppa et al., 2007)) by transforming
each token into a unique token, e.g. token → to-
ken@337. This therefore leads to a significant in-
crease in the size of the phrase table, as illustrated
on Figure 5, as all occurrences for the same phrase
are not factored anymore.13

We chose a very simple initial definition of con-
text similarity based on the presence of common
n-grams in the immediate vicinity of two phrases.
Let lengthleft (resp. lengthright) be the length of
the longest common n-gram in the immediate vicin-
ity on the left (resp. right) of two phrases in context
(C(f) and C(fi)). For instance, given the two fol-
lowing contexts (phrases under focus are in bold and
common n-grams are underlined):

1. the commission accepts the substance of the
amendments@11257 proposed@11258
by@11259 the committee on fisheries ...

2. this is why we shall support all of the amend-
ments put forward by the committee on agri-
culture and rural development ...

lengthleft = 2 and lengthright = 3. We further
define length as:

13These volumes of data and our available hardware facilities
for these experiments led us to initially limit the size of our data
sets. We will discuss in section 5 how we intend to address this
limitation in our future work.

length =


lengthleft + lengthright

if lengthleft > 0

and lengthright > 0

0 otherwise

(4)

We can now define the two similarity functions
used in Equations 2 and 3 that we used for our ex-
periments:

simcont(C(f), C(fi)) = (1 + length)α (5)

simpara(C(f), C(pi)) = (length)β (6)

The rationale for these functions is the follow-
ing. Exact phrase examples add at least a transla-
tion count of 1, i.e. their translation is always taken
into account to estimate pcont. Paraphrase exam-
ples add a translation count of 0 if length = 0,
i.e. their translation is not taken into account at all
if surrounding n-gram similarity is too low. We used
α = β = 1.5. Algorithm 1 describes how the two
models are estimated from the training data.

foreach phrase f in training file do
extract C(f);
/* phrase count */
foreach unique phrase fi in test(f)) do

extract C(fi);
compute simcont(C(f), C(fi));

end
/* paraphrase count */
foreach phrase pi in para(f) do

foreach unique phrase fj in test(pi) do
extract C(fj);
compute simpara(C(f), C(fj));

end
end

end
estimate pcont and para;

Algorithm 1: Model estimation for pcont and
ppara. Function test(f) returns all unique
phrases corresponding to phrase f from the test
file. Function para(f) return all phrases for
which f is a known paraphrase.

We implemented the following strategy to find
paraphrases for phrases in the test file. We extract all
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Left context phrase/paraphrase Right context
IS#1 at the moment it is up to each member state to decide, and practice dif-

fers considerably from country to country
PE#1 ... as regards the terminal portion in the

cycle of nuclear fuel, it is
the responsability of each member state to define its own policy .

PT#1 la responsabilité de chaque
IS#2 that is why i find it extremely regrettable that the amendment on harmonising the re-

registration of cars that have been involved
in accidents ...

PE#2 for all these reasons and given your most
excellent statement , i find it

a pity that the new legal base for the daphne pro-
gramme is so restrictive ...

PT#2 dommage que

Figure 6: Examples of paraphrases in context from the development file. The input sentence (IS) contains a source
phrase of interest (in bold), the paraphrase example (PE) contains a paraphrase of that source phrase (in bold) for
which a paraphrase translation (PT) is known.

paraphrases p for a phrase f by pivot: all target lan-
guage phrases e aligned to f are first extracted, and
all source language phrases p aligned to e are ex-
tracted. The following constraints are then applied
to define which paraphrases are kept:

• string p is not included in string f and vice
versa (in order to minimize the impact of align-
ment errors in the training corpus);

• the paraphrasing probability is greater than a
fixed threshold: para(f, p) ≥ 10−2, where
para(f, p) =

∑
e p(e|f)p(p|e) (Bannard and

Callison-Burch, 2005);

• the number of occurrences of phrase f and
paraphrase p are equal or less than indepen-
dent thresholds: numOccs(f) ≤ 100 and
numOccs(p) ≤ 1000.14

Figure 6 shows examples of paraphrases in con-
text with high similarity with some original phrase,
and Figure 7 provides various statistics on the para-
phrases extracted on the test file.

4.3 Results and analysis
Automatic evaluation results are reported in Table 8
for various configurations. We also wanted to focus
our measures on content words, which are known

14The first threshold value was chosen as (Callison-Burch et
al., 2005) report it to be an optimal sample size for estimating
phrase translation probabilities. The relatively low value for the
second threshold was selected to reduce computation time.

phrase # phrases # paraphrased # paraphrases
length en fr en fr en fr

1 13,620 15,707 458 725 1,824 2,684
2 13,120 15,207 4,127 4,481 18,871 19,700
3 12,620 14,707 4,782 5,715 24,111 27,377
4 12,120 14,208 2,859 4,078 15,071 20,345
5 11,623 13,711 1,171 2,275 6,077 12,132

Figure 7: Statistics on numbers of phrases, numbers
of paraphrased phrases and numbers of paraphrases per
phrase length.

to be important as regards information content in
translation. We applied the contrastive lexical eval-
uation (CLE) methodology described in (Max et
al., 2010), which indicates how many times source
words grouped into user-defined classes were cor-
rectly translated or not across systems. These addi-
tional results are reported on Figure 9.

On English to French translation, both additional
features lead to improvements over the baseline
with all metrics, including CLE, and their combi-
nation shows a strong improvement in TER (-1.55).
CLE on content words reveals that the para feature
seems particularly effective in reducing the number
of words in all categories that only the baseline sys-
tem translated correctly.

Results on French to English translation are less
positive: neither cont nor para alone improve over
the baseline with any metrics. However, their com-
bination improves over the baseline with all met-
rics except BLEU, including a reduction of -1.07
in TER. Detailed analysis of CLE results shows
that the translation of adjectives and nouns benefited
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more from using our two additional models. Verbs,
whose translation improved slightly, are strongly in-
flected in French, so finding examples for a given
form is more difficult than for less inflected word
categories, as is finding paraphrases with the appro-
priate inflection. Also, pivoting via English is one
reason why paraphrases obtained via a low-inflected
language can be of varying quality. Furthermore, the
simplicity of our context modeling may have been
ineffective in filtering out some bad examples. Over-
all, para was more effective with the low-inflected
English as the source language, improving over the
baseline with all metrics.

These results confirm that translation perfor-
mance can be improved by exploiting context and
paraphrases in the original training corpus only. We
next attempted to measure whether some improve-
ment in the quality of the paraphrases used would
have some measurable impact on translation perfor-
mance. To this end, we devised a semi-oracle ex-
periment in the following way: the source and target
test files were automatically aligned, and for each
source phrase possible target phrases (i.e., reference
translations) were extracted, and used as pivots to
extract potential paraphrases, which were then fil-
tered with the same constraints as previously. In
this way, we exploit the information that paraphrases
can at least produce the desired translation, but they
may also propose other incorrect translations and/or
be present in very few examples. Results appear
in the inf rows of Tables 8 and 9. We obtain the
most important improvement over the baseline in
BLEU for the two language pairs (resp. +0.99 and
+0.44), though the results for the other metrics for
French to English translation are more difficult to
interpret. For this language pair, possible reasons
include again that the pivot language may not be
appropriate, and also that the limitation to a sin-
gle pivot15 may not have produced more monolin-
gual variation that might have proved useful. CLE
on English to French, however, reveals significant
gains with a relative improvement over the baseline
of +116 content words. Under this condition, this
result shows that the higher the quality of the para-
phrases used, the more translation quality can be im-

15Several pivot phrases may in fact have been automatically
extracted for a given phrase, some of which being possible bad
candidates.

BLEU NIST TER METEOR

en→fr
bsl 30.28 - 6.66 - 57.86 - 54.79 -

+cont 31.11 +0.83 6.77 +0.11 57.24 -0.62 55.22 +0.43

+para 30.97 +0.69 6.74 +0.08 57.38 -0.48 55.39 +0.60

all 30.93 +0.65 6.84 +0.18 56.31 -1.55 55.28 +0.49

inf 31.27 +0.99 6.78 +0.12 57.22 -0.64 55.80 +1.01

fr→en
bsl 29.90 - 6.90 - 54.64 - 61.36 -

+cont 29.56 -0.34 6.89 -0.01 54.95 +0.31 60.98 -0.38

+para 29.70 -0.20 6.92 +0.02 54.64 +0.00 61.10 -0.26

all 29.75 -0.15 7.03 +0.13 53.57 -1.07 61.63 +0.27

inf 30.34 +0.44 6.93 +0.03 54.90 +0.26 60.99 -0.37

Figure 8: Automatic scores for the MOSES baseline sys-
tems (bsl), systems additionnally using the contextual
feature (+cont), systems additionnally using the para-
phrasing feature (+para), systems using both features
(all), and pivot-informed systems (inf).

Adj Adv Noun Verb
∑

en→fr

+cont - 74 28 113 60 275
+ 55 35 114 85 289 +14

+para - 62 12 82 46 202
+ 58 32 111 78 279 +77

all - 72 25 91 72 260
+ 50 37 118 97 302 +42

inf - 58 20 108 56 242
+ 65 43 147 103 358 +116

fr→en

+cont - 30 16 80 69 195
+ 15 21 69 46 151 -44

+para - 32 19 72 60 183
+ 12 18 65 43 138 -45

all - 21 18 67 61 167
+ 30 18 94 48 190 +23

inf - 38 21 83 66 208
+ 31 23 106 57 217 +9

Figure 9: Contrastive lexical evaluation results per part-
of-speech measured on the test file. ’-’ (resp. ’+’) rows
indicate the number of source words that only bsl (resp.
the compared system) correctly translated.

proved, which is in line with works that make use
of human-made paraphrases to improve translation
quality (Schroeder et al., 2009; Resnik et al., 2010).

Table 10 presents a typology of paraphrases found
in our development set and classifies the impact of
using them for phrase translation estimation. As can
be seen, more work is needed to better understand
the characteristics of the phrases that should be para-
phrased and of their paraphrases.
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Type Impact Examples
Morphological variants +/- (yugoslav republic↔ yugoslavian republic), (go far↔ goes far)
Synonymy + (duties↔ obligations), (to look into↔ to study)
Grammatical word substitution ?/- (states in the↔ the states of the), (amendments by↔ amendments to)
Word deletion or insertion ?/- (first reading, the→ first reading the), (amendments by↔ amendments

proposed by)
Syntactic rewritings + (approval of the majority ↔ majority support), (capacity of the euro-

pean union↔ european union’s ability)
Phrasal idiomatic substitutions + (must be said that the↔ goes without saying that the), (is fully in line

↔ is totally coherent), (is amazing↔ strikes me)
Context-dependent substitu-
tions

+/- (is not right↔ is unacceptable), (offer my↔ express my)

Alignment and translation prob-
lems

- (unnecessary if ↔ vital if), (the crime ↔ organized), (ill-advised ↔
wise), (to begin by thanking↔ to begin by congratulating)

Figure 10: Main types of paraphrase pairs found in our dev. and training corpora. Pairs shown have length > 0.

5 Conclusion and future work

We have introduced an original way of exploiting
both context and paraphrasing for the estimation
of phrase translations in phrase-based SMT. To our
knowledge, this is the first time that paraphrases ac-
quired in an endogenous manner have been shown
to improve translation performance, which shows
that bilingual corpora can be better exploited than
they typically are. Our experiments further showed
the promises of our approach when paraphrases of
higher quality are available.

In the light of our results and our initial typology
of paraphrases presented on Figure 10, as well as
previous work on paraphrasing for SMT, the diffi-
cult question of what units should be paraphrased
for what success should be addressed, taking into ac-
count parameters such as language pairs, quantity of
training data and availability of external resources.

Our future work includes three main areas: first,
we want to improve the modeling of context, by no-
tably working on techniques inspired from Informa-
tion Retrieval to quickly access contextually-similar
examples of source phrases in bilingual corpora.
Such contextual sampling on large bilingual corpora
for phrases and their paraphrases, which could inte-
grate more complex linguistic information, will al-
low us to assess our approach on more challenging
conditions. This would also allow us to build con-
textual models on-the-fly, and experiment with us-
ing lattices to encode contextually estimated para-
phrases. Second, we will combine paraphrases ob-
tained via different techniques and resources, which

will allow us to also learn translation distributions
for phrases absent from the original corpus. Lastly,
we want to also exploit paraphrases for the addi-
tional translations that they propose (such as e4 on
Figure 3) and that would be contextually similar in
the target language to other existing translations of
a given phrase or that could even represent a new
sense of the original phrase.
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Abstract

Word alignment plays a central role in statisti-
cal MT (SMT) since almost all SMT systems
extract translation rules from word aligned
parallel training data. While most SMT
systems use unsupervised algorithms (e.g.
GIZA++) for training word alignment, super-
vised methods, which exploit a small amount
of human-aligned data, have become increas-
ingly popular recently. This work empirically
studies the performance of these two classes
of alignment algorithms and explores strate-
gies to combine them to improve overall sys-
tem performance. We used two unsupervised
aligners, GIZA++ and HMM, and one super-
vised aligner, ITG, in this study. To avoid lan-
guage and genre specific conclusions, we ran
experiments on test sets consisting of two lan-
guage pairs (Chinese-to-English and Arabic-
to-English) and two genres (newswire and we-
blog). Results show that the two classes of al-
gorithms achieve the same level of MT perfor-
mance. Modest improvements were achieved
by taking the union of the translation gram-
mars extracted from different alignments. Sig-
nificant improvements (around 1.0 in BLEU)
were achieved by combining outputs of differ-
ent systems trained with different alignments.
The improvements are consistent across lan-
guages and genres.

1 Introduction

Word alignment plays a central role in training sta-
tistical machine translation (SMT) systems since al-
most all SMT systems extract translation rules from
word aligned parallel training data. Until recently,

most SMT systems used GIZA++ (Och and Ney,
2003), an unsupervised algorithm, for aligning par-
allel training data. In recent years, with the availabil-
ity of human aligned training data, supervised meth-
ods (e.g. the ITG aligner (Haghighi et al., 2009))
have become increasingly popular.

The main objective of this work is to show the
two classes (unsupervised and supervised) of al-
gorithms are complementary and combining them
will improve overall system performance. The use
of human aligned training data allows supervised
methods such as ITG to more accurately align fre-
quent words, such as the alignments of Chinese par-
ticles (e.g. “bei”, “de”, etc) to their English equiv-
alents (e.g. “is/are/was/..”, “of”, etc). On the other
hand, supervised methods can be affected by sub-
optimal alignments in hand-aligned data. For exam-
ple, the hand-aligned data used in our experiments
contain some coarse-grained alignments (e.g. “lian-
he guo” to “United Nations”) although fine-grained
alignments (“lian-he” to “United” and “guo” to “Na-
tions”) are usually more appropriate for SMT. Un-
supervised methods are less likely to be affected
by this problem. We used two well studied unsu-
pervised aligners, GIZA++ (Och and Ney, 2003)
and HMM (Liang et al., 2006) and one supervised
aligner, ITG (Haghighi et al., 2009) as representa-
tives in this work.

We explored two techniques to combine different
alignment algorithms. One is to take the union of
the translation rules extracted from alignments pro-
duced by different aligners. This is motivated by
studies that showed that the coverage of translation
rules is critical to SMT (DeNeefe et al., 2007). The

667



other method is to combine the outputs of different
MT systems trained using different aligners. As-
suming different systems make independent errors,
system combination can generate a better transla-
tion than those of individual systems through voting
(Rosti et al., 2007).

Our work differs from previous work in two ways.
Past studies of combining alternative alignments fo-
cused on minimizing alignment errors, usually by
merging alternative alignments for a sentence pair
into a single alignment with the fewest number of
incorrect alignment links (Ayan and Dorr, 2006). In
contrast, our work is based on the assumption that
perfect word alignment is impossible due to the in-
trinsic difficulty of the problem, and it is more effec-
tive to resolve translation ambiguities at later stages
of the MT pipeline. A main focus of much previous
work on word alignments is on theoretical aspects
of the proposed algorithms. In contrast, the nature
of this work is purely empirical. Our system was
trained on a large amount of training data and evalu-
ated on multiple languages (Chinese-to-English and
Arabic-to-English) and multiple genres (newswire
and weblog). Furthermore, we used a state of the art
string-to-tree decoder (Shen et al., 2008) to estab-
lish the strongest possible baseline. In comparison,
experiments in previous studies typically used one
language pair and one genre (usually newswire), a
reduced amount of training data and a phrase based
decoder.

This paper is organized as follows. Section 2 de-
scribes the three alignment algorithms. Section 3
describes the two methods used to combine these
aligners to improve MT. The experimental setup
used to compare these methods is presented in Sec-
tion 4. Section 5 shows the results including a dis-
cussion. Section 6 discusses related work. Section 7
concludes the paper.

2 Alignment Algorithms

We used three aligners in this work: GIZA++ (Och
and Ney, 2003), jointly trained HMM (Liang et al.,
2006), and ITG (Haghighi et al., 2009). GIZA++
is an unsupervised method based on models 1-5 of
Brown et al. (1993). Given a sentence paire − f ,
it seeks the alignmenta that maximizes the proba-
bility P (f, a|e). As in most previous studies using

GIZA++, we ran GIZA++ in both directions, frome
to f and fromf to e, and symmetrized the bidirec-
tional alignments into one, using a method similar
to the grow-diagonal-final method described in Och
and Ney (2003). We ran GIZA++ up to model 4.

The jointly trained HMM aligner, or HMM for
short, is also unsupervised but it uses a small amount
of hand-aligned data to tweak a few high level pa-
rameters. Low level parameters are estimated in an
unsupervised manner like GIZA++.

The ITG aligner is a supervised method whose pa-
rameters are tuned to optimize alignment accuracy
on hand-aligned data. It uses the inversion transduc-
tion grammar (ITG) (Wu, 1997) to narrow the space
of possible alignments. Since the ITG aligner uses
features extracted from HMM alignments, HMM
was run as a prepossessing step in our experiments.
Both the HMM and ITG aligners are publicly avail-
able1.

3 Methods of Combining Alternative
Alignments for MT

We explored two methods of combining alternative
alignments for MT. One is to extract translation rules
from the three alternative alignments and take the
union of the three sets of rules as the single transla-
tion grammar. Procedurally, this is done by concate-
nating the alignment files before extracting transla-
tion rules. We call this methodunioned grammar.
This method greatly increases the coverage of the
rules, as the unioned translation grammar has about
80% more rules than the ones extracted from the in-
dividual alignment in our experiments. As such, de-
coding is also slower.

The other is to use system combination to com-
bine outputs of systems trained using different align-
ers. Due to differences in the alignment algorithms,
these systems would produce different hypotheses
with independent errors. Combining a diverse set
of hypotheses could improve overall system perfor-
mance. While system combination is a well-known
technique, to our knowledge this work is the first to
apply it to explicitly exploit complementary align-
ment algorithms on a large scale.

Since system combination is an established tech-
nique, here we only briefly discuss our system com-

1http://code.google.com/p/berkeleyaligner/

668



bination setup. The basic algorithm was described in
Rosti et al. (2007). In this work, we use incremental
hypothesis alignment with flexible matching (Rosti
et al., 2009) to produce the confusion networks. 10-
best lists from all systems are collected first. All
1-best hypotheses for each segment are used as con-
fusion network skeletons, the remaining hypotheses
are aligned to the confusion networks, and the result-
ing networks are connected in parallel into a joint
lattice with skeleton specific prior probabilities es-
timated from the alignment statistics on the initial
arcs. This lattice is expanded with an unpruned bi-
gram language model and the system combination
weights are tuned directly to maximize the BLEU
score of the 1-best decoding outputs. Given the
tuned system combination weights, a 300-best list
is extracted from the lattice, the hypotheses are re-
scored using an unpruned 5-gram language model,
and a second set of system combination weights is
tuned to maximize the BLEU score of the 1-best hy-
pothesis of the re-scored 300-best list. The same re-
scoring step is also applied to the outputs of individ-
ual systems.

4 Experiment Setup

To establish strong baselines, we used a string-to-
tree SMT system (Shen et al., 2008), one of the top
performing systems in the NIST 2009 MT evalua-
tion, and trained it with very large amounts of par-
allel and language model data. The system used
large sets of discriminatively tuned features (up to
55,000 on Arabic) inspired by the work of Chiang et
al. (2009). To avoid drawing language, genre, and
metric specific conclusions, we experimented with
two language pairs, Arabic-English and Chinese-
English, and two genres, newswire and weblog, and
report both BLEU (Papineni et al., 2002) and TER
(Snover et al., 2006) scores. Systems were tuned to
maximize BLEU on the tuning set using a procedure
described in Devlin (2009).

The sizes of the parallel training corpora are
238M words (target side) for Arabic-English MT
and 265M words for Chinese-English. While the
majority of the data is publicly available from the
Linguistic Data Consortium (LDC), some of the data
is available under the DARPA GALE program. Due
to the size of the parallel corpora, we divided them

into five chunks and aligned them in parallel to save
time. Due to its running complexity, we ran ITG
only on sentences with 60 or fewer words. For
longer sentences, we used HMM alignments instead,
which were conveniently generated in the prepro-
cessing step of ITG aligner. For language model
training, we used about 9 billion words of English
text, most of which are from English Gigaword cor-
pus and GoogleNews. Each system used a 3-gram
LM for decoding and a 5-gram LM for re-scoring.
The same 5-gram LM was also used for re-scoring
system combination results.

For each combination of language pair and genre,
we used three development sets:

• Tune , which was used to tune parameters of
individual MT systems. Each system was tuned
ten iterations based on BLEU.

• SysCombTune, which was used to tune pa-
rameters of system combination. A subset of it
was also used as validation for determining the
best iteration in tuning individual systems.

• Test , which was the blind test corpus for mea-
suring performances of both individual systems
and system combination.

Test materials were drawn from two sources:
NIST MT evaluations 2004 to 2008, and develop-
ment and evaluation data for the DARPA GALE pro-
gram. Due to the mixing of different data sources,
some test sentences have four reference translations
while the rest have only one. The average num-
ber of references per test sentence varies across test
sets. For this reason, MT scores are not comparable
across test sets. Table 1 shows the size and the av-
erage number of references per sentence of the test
sets.

Two hand-aligned corpora were used to train the
ITG aligner: LDC2009E82 (Arabic-English) and
LDC2009E83 (Chinese-English). We re-tokenized
the corpora using our tokenizers and projected the
LDC alignments to our tokenization heuristically.
The projection was not perfect and sometimes cre-
ated very coarse-grained alignments. We used a set
of filters to remove such problematic data. We ended
up with 3,667 Arabic-English and 879 Chinese-
English hand-aligned sentence pairs with sufficient
quality for training automatic aligners.
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language and genre Tune SysCombTune Test
Arabic newswire 2963 (2.9) 3223 (2.7) 2242 (2.7)
Arabic web 4597 (1.5) 4526 (1.4) 2703 (2.7)
Chinese newswire 3085 (2.6) 3001 (2.7) 2055 (1.4)
Chinese web 4221 (1.3) 4285 (1.3) 3092 (1.2)

Table 1: Numbers of sentences and average number of references (in parentheses) of test sets

5 Results

Three baseline systems were trained using the three
different aligners. Case insensitive BLEU and TER
scores for Arabic newswire, Arabic weblog, Chi-
nese newswire, and Chinese weblog are shown in
Tables 2, 3, 4, and 5, respectively2. The BLEU
scores on theTest set are fairly similar but the
ordering between different alignment algorithms is
mixed between different languages and genres. To
compare the two alignment combination strategies,
we trained a system using the union of the rules ex-
tracted from the alternative alignments (union in
the tables) and a combination of the three baseline
system outputs (3 syscomb in the tables). The
system with the unioned grammar was also added
as an additional system in the combination marked
by 4 syscomb .

As seen in the tables, unioned grammar and sys-
tem combination improve MT on both languages
(Arabic and Chinese) and both genres (newswire
and weblog). While there are improvements on
both SysCombTune and Test , the results on
SysCombTune are not totally fair since it was used
for tuning system combination weights and as val-
idation for optimizing weights of the MT systems.
Therefore our discussion will focus on results on
Test . (We did not show scores onTune because
systems were directly tuned on it.) Statistical sig-
nificance is determined at 95% confidence level us-
ing the bootstrap method described in Koehn (2004),
and is only applied on results obtained on the blind
Test set.

For unioned grammar, the overall improvement
in BLEU is modest, ranging from 0.1 to 0.6 point

2Dagger (†) indicates statistically better results than the best
individual alignment system. Double dagger (‡) indicates sta-
tistically better results than both best individual alignment and
unioned grammar. Bold indicates best Test set performance
among individual alignment systems.

compared with the best baseline system, with little
change in TER score. The improvements in BLEU
score are statistically significant for Arabic (both
genres), but not for Chinese. The improvements in
TER are not significant for either language.

System combination produces bigger improve-
ments in performance. Compared with the best base-
line system, the improvement in BLEU ranges from
0.8 to 1.6 point. There are also noticeable improve-
ments in TER, around 1.0 point. The TER improve-
ments are mostly explained by the hypothesis align-
ment algorithm which is closely related to TER scor-
ing (Rosti et al., 2009). The results are interesting
because all three baseline systems (GIZA++, HMM
and ITG) are identical except for the word align-
ments used in rule extraction. The results confirm
that the aligners are indeed complementary, as we
conjectured earlier. Also, the four-system combi-
nation yields consistent gains over the three-system
combination, suggesting that the system using the
unioned grammar is somewhat complementary to
the three baseline systems. The statistical test in-
dicates that both the three and four system combi-
nations are significantly better than the single best
alignment system for all languages and genres in
BLEU and TER. In most cases, they are also sig-
nificantly better than unioned grammar.

Somewhat surprisingly, the GIZA++ trained sys-
tem is slightly better than the ITG trained system on
all genres but Chinese weblog. However, we should
point out that such a comparison is not entirely fair.
First, we only ran ITG on short sentences. (For long
sentences, we had to settle for HMM alignments for
computing reasons.) Second, the hand-aligned data
used for ITG training are not very clean, as we said
before. The ITG results could be improved if these
problems were not present.
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SysCombTune Test
System BLEU TER BLEU TER

GIZA++ 51.31 38.01 50.96 38.38
HMM 50.87 38.49 50.84 38.87
ITG 51.04 38.44 50.69 38.94
union 51.55 37.93 51.53† 38.32
3 syscomb 52.66 37.20 52.43‡ 37.69‡

4 syscomb 52.80 37.05 52.55‡ 37.46‡

Table 2: MT results on Arabic newswire (see footnote 2).

SysCombTune Test
System BLEU TER BLEU TER

GIZA++ 27.49 55.00 38.00 49.55
HMM 27.42 55.53 37.81 50.12
ITG 27.19 55.32 37.77 49.94
union 27.66 54.82 38.43† 49.43
3 syscomb 27.65 53.89 38.70† 48.72‡

4 syscomb 27.83 53.68 38.82‡ 48.53‡

Table 3: MT results on Arabic weblog (see footnote 2).

SysCombTune Test
System BLEU TER BLEU TER

GIZA++ 36.42 54.21 26.77 57.67
HMM 36.12 54.50 26.17 58.22
ITG 36.23 54.11 26.53 57.40
union 36.57 54.07 26.83 57.37
3 syscomb 37.60 53.19 27.46‡ 56.88‡

4 syscomb 37.77 53.11 27.57‡ 56.57‡

Table 4: MT results on Chinese newswire (see footnote
2).

SysCombTune Test
System BLEU TER BLEU TER

GIZA++ 18.71 64.10 16.94 63.46
HMM 18.35 64.66 16.66 64.02
ITG 18.76 63.67 16.97 63.29
union 18.97 63.86 17.22 63.20
3 syscomb 19.66 63.40 17.98‡ 62.47‡

4 syscomb 19.80 63.32 18.05‡ 62.36‡

Table 5: MT results on Chinese weblog (see footnote 2).

5.1 Discussion

Inter-aligner agreements provide additional evi-
dence about the differences between the aligners.
Suppose on a common data set, the sets of align-
ment links produced by two aligners areA and
B, we compute their agreement as(|A

⋂
B|/|A| +

|A
⋂

B|/|B|)/2. (This is the average of recall and
precision of one set by treating the other set as refer-
ence.) The agreement between GIZA++ and ITG
is around 78% on a subset of the Arabic-English
parallel data. The agreements between GIZA++
and HMM, and between HMM and ITG are slightly
higher, around 83%. Since ITG could not align long
sentences, we only used short sentences (at most 60
words in length) in our calculation.

Due to the large differences between the align-
ers, significantly more rules were extracted with
the unioned grammar method in our experiments.
On average, the size of the grammar (number of
rules) was increased by about 80% compared with
the baseline systems. The larger grammar results
in more combinations of partial theories in decod-
ing. However, for computing reasons, we kept the
beam size of the decoder constant despite the in-
crease in grammar size, potentially pruning out good
theories. Performance could be improved further if
larger beam sizes were used. We will leave this to
future work.

6 Related Work

Ayan and Dorr (2006) described a method to min-
imize alignment errors by combining alternative
alignments into a single alignment for each sentence
pair. Deng and Zhou (2009) used the number of ex-
tractable translation pairs as the objective function
for alignment combination. Och and Ney (2003) and
Koehn et al. (2003) used heuristics to merge the bidi-
rectional GIZA++ alignments into a single align-
ment. Despite differences in algorithms and objec-
tive functions in these studies, they all attempted to
produce a single final alignment for each sentence
pair. In comparison, all alternative alignments are
directly used by the translation system in this work.

The unioned grammar method in this work is
very similar to Giḿenez and M̀arquez (2005), which
combined phrase pairs extracted from different
alignments into a single phrase table. The difference
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from that work is that our focus is to leverage com-
plementary alignment algorithms, while theirs was
to leverage alignments of different lexical units pro-
duced by the same aligner.

Some studies leveraged other types of differences
between systems to improve MT. For example, de
Gispert et al. (2009) combined systems trained with
different tokenizations.

The theory behind the GIZA++ aligner was due to
Brown et al. (1993). The theory of Inversion Trans-
duction Grammars (ITG) was due to Wu (1997).
The ITG aligner (Haghighi et al., 2009) used in this
work extended the original ITG to handle blocks of
words in addition to single words. The use of HMM
for word alignment can be traced as far back as to
Vogel et al. (1996). The HMM aligner used in this
work was due to Liang et al. (2006). It refined the
original HMM alignment algorithm by jointly train-
ing two HMMs, one in each direction. Furthermore,
it used a small amount of supervised data to tweak
some high level parameters, although it did not di-
rectly use the supervised data in training.

7 Conclusions

We explored two methods to exploit complementary
alignment algorithms. One is to extract translation
rules from all alternative alignments. The other is to
combine outputs of different MT systems trained us-
ing different aligners. Experiments on two language
pairs and two genres show consistent improvements
over the baseline systems.
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Abstract

We present a new syntactic parser that
works left-to-right and top down, thus
maintaining a fully-connected parse tree
for a few alternative parse hypotheses. All
of the commonly used statistical parsers
use context-free dynamic programming al-
gorithms and as such work bottom up on
the entire sentence. Thus they only find
a complete fully connected parse at the
very end. In contrast, both subjective
and experimental evidence show that peo-
ple understand a sentence word-to-word as
they go along, or close to it. The con-
straint that the parser keeps one or more
fully connected syntactic trees is intended
to operationalize this cognitive fact. Our
parser achieves a new best result for top-
down parsers of 89.4%,a 20% error reduc-
tion over the previous single-parser best
result for parsers of this type of 86.8%
(Roark, 2001). The improved performance
is due to embracing the very large feature
set available in exchange for giving up dy-
namic programming.

1 Introduction

We present a new syntactic parser that works
top-down and left-to-right, maintaining a fully-
connected parse tree for a few alternative parse
hypotheses. It is a Penn treebank (Marcus et al.,
1993) parser in that it is capable of parsing the
Penn treebank test sets, and is trained on the
now standard training set. It achieves a new
best result for this parser type.

All of the commonly used statistical parsers
available on the web such as the Collins(/Bikel)

(Collins, 2003) Charniak-Johnson(Charniak and
Johnson, 2005), and Petrov-Klein (Petrov et
al., 2006), parsers use context-free dynamic pro-
gramming algorithms so they work bottom up
on the entire sentence. Thus they only find a
complete fully-connected parse at the very end.

In contrast human syntactic parsing must be
fully connected (or close to it) as people are
able to apply vast amounts of real-world knowl-
edge to the process as it proceeds from word-to-
word(van Gompel and Pickering, 2007). Thus
any parser claiming cognitive plausibility must,
to a first approximation, work in this left-to-
right top-down fashion.

Our parser obtains a new best result for top-
down parsers of 89.4% (on section 23 of the Penn
Treebank). This is a 20% error reduction over
the previous best single-parser result of 86.8%,
achieved by Rork(Roark, 2001).

Our model is in the tradition of this lat-
ter parser. The current work’s superior per-
formance is not due to any innovation in ar-
chitecture but in how probability distributions
are computed. It differs from Roark in its ex-
plicit recognition that by giving up context-free
dynamic programming we may embrace near
context sensitivity and condition on many di-
verse pieces of information. (It is only “near”
because we still only condition on a finite
amount of information.) This is made possi-
ble by use of random-forests (Amit and Geman,
1997; Breiman, 2004; Xu and Jelinek, 2004) to
choose features, provide smoothing, and finally
do the probability computation. To the best
of our knowledge ours is the first application of
random-forests to parsing.
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Section two describes previous work on this
type of parser, and in particular gives details on
the Roark architecture we use. Section three de-
scribes how random forests allow us to integrate
the diverse information sources that context-
sensitive parsing allows. Section four gives im-
plementation details. Section five is devoted to
the main experimental finding of the paper along
with subsidiary results showing the effects of the
large feature set we now may use. Finally, sec-
tion six suggests that because this parser type is
comparatively little explored one may hope for
further substantial improvements, and proposes
avenues to be explored.

2 Previous Work on Top-Down

Parsing and the Roark Model

We care about top-down incremental parsing be-
cause it automatically satisfies the criteria we
have established for cognitive plausibility. Be-
fore looking at previous work on this type model
we briefly discuss work that does not meet the
criteria we have set out, but which people often
assume does so.

We are using the terms “top-down” and “left-
to-right” following e.g., (Abney and Johnson,
1991; Roark, 2001). In particular

In top-down strategies a node is enu-
merated before any of its descen-
dents.(Abney and Johnson, 1991)

In this era of statistical parsers it is useful to
think in terms of possible conditioning informa-
tion. In typical bottom up CKY parsing when
creating, say, a constituent X from positions i

to j we may not condition on its parent. That
the grammar is “context-free” means that this
constituent may be used anywhere.

Using our definition, the Earley parsing al-
gorithm(Earley, 1970), which is often cited as
“top-down,” is no such thing. In fact, it is long
been noted that the Earley algorithm is “almost
identical”(Graham et al., 1980) to CKY. Again,
when Earley posits an X it may not condition
on the parent.

Similarly, consider the more recent work of
Nivre(Nivre, 2003) and Henderson(Henderson,

parse (w0,n−1)
1 C[0](= h =< q, r, t >)←< 1, 1, ROOT >

2 for i = 0, n

3 do while ABOVE-THRESHOLD (h, C, N)
4 remove h from C

5 for all x such that p(x | t) > 0
6 let h′ =< q′, r′, t′ >

7 where q′ = q ∗ p(x | t),
r′ = LAP(t′, w′),
and t′ = t ◦ x

8 if(x = w) then w′ = wi+1

insert h′ in N

9 else w′ = w

10 insert h′ in C

11 empty C

12 exchange C and N

13 output t(C[0]).

Figure 1: Roark’s Fully-Connected Parsing Algo-
rithm

2003). The reason these are not fully-connected
is the same. While they are incremental parsers,
they are not top down — both are shift-reduce
parsers. Consider a constituency shift-reduce
mechanism. Suppose we have a context-free rule
S→ NP VP. As we go left-to-right various termi-
nal and non-terminals are added to and removed
from the stack until at some point the top two
items are NP and VP. Then a reduce operation
replaces them with S. Note that this means that
none of the words or sub-constituents of either
the NP or VP are integrated into a single overall
tree until the very end. This is clearly not fully
connected. Since Nivre’s parser is a dependency
parser this exact case does not apply (as it does
not use CFG rules), but similar situations arise.
In particular, whenever a word is dependent on
a word that appears later in the string, it re-
mains unconnected on the stack until the sec-
ond word appears. Naturally this is transitive
so that the parser can, and presumably does,
process an unbounded number of words before
connecting them all together.

Here we follow the work of Roark (Roark,
2001) which is fully-connected. The basic al-
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Current hypotheses Prob of next tree element
1 < 1.4 ∗ 10−3, 5 ∗ 10−2,(S (NP (NNS Terms)> p(x=”)” | t)=.64
2 < 7 ∗ 10−5, 5 ∗ 10−2,(S (S (NP (NNS Terms)>

3 < 9 ∗ 10−4, 8 ∗ 10−2,(S (NP (NNS Terms))> p(x=VP | t) =.88
4 p(x=S | t)= 2 ∗ 10−4

5 < 7 ∗ 10−5, 5 ∗ 10−2,(S (S (NP (NNS Terms)>

6 < 9 ∗ 10−4, 9 ∗ 10−2,(S (NP (NNS Terms)) (VP> p(x=AUX | t)= .38
7 < 7 ∗ 10−5, 5 ∗ 10−2,(S (S (NP (NNS Terms)>
8 < 2 ∗ 10−8, 9 ∗ 10−2,(S (NP (NNS Terms)) (S>

9 < 3 ∗ 10−4, 2 ∗ 10−1,(S (NP (NNS Terms)) (VP (AUX > p(x=”were” | t)= .21
10 < 7 ∗ 10−5, 5 ∗ 10−2,(S (S (NP (NNS Terms)>
11 < 2 ∗ 10−8, 9 ∗ 10−2,(S (NP (NNS Terms)) (S>

12 < 7 ∗ 10−5, 3 ∗ 10−1,(S (NP (NNS Terms)) (VP (AUX were)>

Figure 2: Parsing the second word of “Terms were not disclosed.”

gorithm is given in Figure 1. (Note we have
simplified the algorithm in several ways.) The
input to the parser is a string of n words w0,n−1.
We pad the end of the string with an end-of-
sentence marker wn = ⊳. This has the special
property that p(⊳ | t) = 1 for a complete tree t

of w0,n−1, zero otherwise.

There are two priority queues of hypotheses,
C (current), and N (next). A hypothesis h is a
three-tuple < q, r, t > where q is the probabil-
ity assigned to the current tree t. In Figure 1 h

always denotes C[0] the top-most element of C.
While we call t the “tree”, it is a vector represen-
tation of a tree. For example, the tree (ROOT)
would be a vector of two elements, ROOT and
“)”, the latter indicating that the constituent la-
beled root is completed. Thus elements of the
vector are the terminals, non-terminals, and “)”
— the close parenthesis element. Lastly r is the
“look-ahead probability” or LAP. LAP(w,h) is
(a crude estimate of) the probability that the
next word is w given h. We explain its purpose
below.

We go through the words one at a time. At
the start of our processing of wi we have hy-
potheses on C ordered by p ·q — the probability
of the hypothesis so far times an estimate q of
the probability cost we encounter when trying

to now integrate wi. We remove each h from C

and integrate a new tree symbol x. If x = wi

it means that we have successfully added the
new word to the tree and this hypothesis goes
into the queue for the next word N . Other-
wise h does not yet represent an extension to
wi and we put it back on C to compete with the
other hypotheses waiting to be extended. The
look-ahead probability LAP(h) = q is intended
to keep a level playing field. If we put h back
onto C it’s probability p is lowered by the factor
p(x | h). On the other hand, if x is the correct
symbol, q should go up, so the two should offset
and h is still competitive.

We stop processing a word and move onto
the next when ABOVE-THRESHOLD returns
false. Without going into details, we have
adopted exactly the decision criteria and asso-
ciated parameters used by Roark so that the
accuracy numbers presumably reflect the same
amount of search. (The more liberal ABOVE-
THRESHOLD, the more search, and presum-
ably the more accurate results, everything else
being equal.)

Figure 2 shows a few points in the process-
ing of the second word of “Terms were not dis-
closed.” Lines one and two show the current
queue at the start of processing. Line one has
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the ultimately correct partial tree (S (NP (NNS
Terms). Note that the NP is not closed off as
the parser defers closing constituents until nec-
essary. On the right of line 1 we show the pos-
sible next tree pieces that could be added. Here
we simply have one, namely a right parenthesis
to close off the NP. (In reality there would be
many such x’s.) The result is that the hypoth-
esis of line 1 is removed from the queue, and
a new hypothesis is added back on C as this
new hypothesis does not incorporate the second
word.

Lines 3 and 5 now show the new state of C.
Again we remove the top candidate from C. The
right-hand side of lines 3 and 4 show two pos-
sible continuations for the h of line 3, start a
new VP or a new S. With line 3 removed from
the queue, and its two extensions added, we get
the new queue state shown in lines 6,7 and 8.
Line 6 shows the top-most hypothesis extended
by an AUX. This still has not yet incorporated
the next word into the parse, so this extension
is inserted in the current queue giving us the
queue state shown in 9,10,11. Finally line 9 is
extended with the word “were.” This addition
incorporates the current word, and the resulting
extension, shown in line 12 is inserted in N , not
C, ending this example.

3 Random Forests

The Roark model we emulate requires the esti-
mation of two probability distributions: one for
the next tree element (non-terminals,terminals,
and “)”) in the grammar, and one for the look-
ahead probability of the yet-to-be-incorporated
next word. In this section we use the first of
these for illustration.

We first consider how to construct a single
(non-random) decision tree for estimating this
distribution. A tree is a fully-connected directed
acyclic graph where each node has one input arc
(except for the root) and, for reasons we go into
later, either zero or two output arcs — the tree
is binary. A node is a four-tuple < d, s, p, q >,
where d is a set of training instances, p, a prob-
ability distribution of the correct decisions for
all of the examples in d, and q a binary ques-

tion about the conditioning information for the
examples in d. The 0/1 answer to this ques-
tion causes the decision-tree program to follow
the left/right arc out of the node to the children
nodes. If q is null, the node is a leaf node. s

is a strict subset of the domain of the q for the
parent of h.

Decision tree construction starts with the root
node n where d consists of the several million
situations in the training data where the next
tree element needs to be guessed (according to
our probability distribution) based upon previ-
ous words and the analysis so far. At each itera-
tion one node is selected from a queue of unpro-
cessed nodes. A question q is selected, and based
upon its answers two descendents n1 and n2 are
created with d1 and d2 respectively, d1 ∪ d2 = d.
These are inserted in the queue of unprocessed
nodes and the process repeats. Termination can
be handled in multiple ways. We have chosen
to simply pick the number of nodes we create.
Nodes left on the queue are the leaf nodes of
the decision tree. We pick nodes from the heap
based upon how much they increased the prob-
ability of the data.

Still open is the selection of q at each iter-
ation. First pick a query type qt from a user
supplied set. In our case there are 27 types. Ex-
amples include the parent of the non-terminal
to be created, its predecessor, 2 previous, etc.
A complete list is given in Figure 4. Note that
the answers to these queries are not binary.

Secondly we turn our qt into a binary question
by creating two disjoint sets s1 and s2 s1∪s2 = s

where s is the domain of qt. If a particular his-
tory h ∈ d is such that qt(h) = x and x ∈ s1 then
h is put in d1. Similarly for s2. For example, if
qt is the parent relation, and the parent in h is
NP, then h goes in d1 iff NP ∈ s1. We create the
sets si by initializing them randomly, and then
for each x ∈ s try moving x to the opposite set
si. If this results in a higher data probability we
keep it in its new si, otherwise it reverts to it’s
original si. This is repeated until no switch low-
ers probability. (Or were the a’s are individual
words, until no more than two words switch.)

We illustrate with a concrete example. One
important fact quickly impressed on the cre-
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No. Q S p(“of”) p(“in”)
0 1
1 1 NN,IN 0.05 0.03
4 1 NNS,IN 0.09 0.06
12 2 RB,IN 0.17 0.11
16 3 PP,WHPP 0.27 0.18
39 20 NP,NX 0.51 0.16
40 20 S,VP 0.0004 0.19

Figure 3: Some nodes in a decision tree for p(wi | t)

ator of parsers is the propensity of preposi-
tional phrases (PP) headed by “of” to attach
to noun phrases (NP) rather than verb phrases
(VP). Here we illustrate how a decision tree for
p(wi | t) captures this. Some of the top nodes in
this decision tree are shown in Figure 3. Each
line gives a node number, Q — the question
asked at that node, examples of answers, and
probabilities for “of” and “in”. Questions are
specified by the question type numbers given in
Figure 4 in the next section. Looking at node 0
we see that the first question type is 1 — par-
ent of the proposed word. The children trees
are 1 and 2. We see that prepositions (IN) have
been put in node 1. Since this is a binary choice,
about half the preterminals are covered in this
node. To get a feel for who is sharing this node
with prepositions each line gives two examples.
For node 1 this includes a lot of very different
types, including NN (common singular noun).

Node 1 again asks about the preterminal,
leading to node 4. At this point NN has split
off, but NNS (common plural noun) is still there.
Node 4 again asks about the preterminal, lead-
ing to node 12. By this point IN is only grouped
with things that are much closer, e.g. RB (ad-
verb).

Also note that at each node we give the prob-
ability of both “of” and “to” given the questions
and answers leading to that node. We can see
that the probability of “of” goes up from 0.05
at node 1 to 0.27 at node 16. The probabili-
ties for “to” go in lockstep. By node 16 we are
concentrating on prepositions heading preposi-
tional phrases, but nothing has been asked that
would distinguish between these two preposi-
tions. However, at node 16 we ask the ques-

tion “who is the grandparent” leading to nodes
39 and 40. Node 39 is restricted to the answer
“noun phrase” and things that look very much
like noun phrases — e.g., NX, a catchall for ab-
normal noun phrases, while 40 is restricted to
PP’s attaching to VP’s and S’s. At this point
note how the probability of “of” dramatically
increases for node 39, and decreases for 40.

That the tree is binary forces the decision
tree to use information about words and non-
terminals one bit at a time. In particular, we
can now ask for a little information about many
different previous words in the sentence.

We go from a single decision tree to a random
forest by creating many trees, randomly chang-
ing the questions used at every node. First note
that in our greedy selection of si’s the outcome
depends on the initial random assignment of a’s.
Secondly, each qt produces its own binary ver-
sion q. Rather than picking the one that raises
the data probability the most, we choose it with
probability m. With probability 1 − m we re-
peat this procedure on the list of q’s minus the
best. Given a forest of f trees we compute the
final probability by taking the average over all
the trees:

p(x | t) =
1

f

∑

j=1,f

pj(x | t)

where pj denotes the probability computed by
tree j.

4 Implementation Details

We have twenty seven basic query types as
shown in Figure 4. Each entry first gives identi-
fication numbers for the query types followed by
a description of types. The description is from
the point of view of the tree entry x to be added
to the tree. So the first line of Figure 4 speci-
fies six query types, the most local of which is
the label of the parent of x. For example, if we
have the local context “(S (NP (DT the)” and
we are assigning a probability to the pretermi-
nal after DT, (e.g., NN) then the parent of x is
NP. Similarly one of the query types from line
two is one-previous, which is DT. Two previous
is ǫ, signifying nothing in this position.
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1-6 The non-terminal of the parent, grandpar-
ent, parent3, up to parent6

7-10 The previous non-terminal, 2-previous, up
to 4-previous

11-14 The non-terminal just prior to the par-
ent, 2-prior, up to 4 prior

15-16 The non-terminal and terminals of the
head of the previous constituent

17-18 Same, but 2 previous

19-20 Same but previous to the parent

21-22 Same but 2 previous to the parent

23-24 The non-terminal and terminal symbols
just prior to the start of the current parent
constituent

25 The non-terminal prior to the grandparent

26 Depth in tree, binned logarithmically

27 Is a conjoined phrase prior to parent.

Figure 4: Question types

Random forests, at least in obvious imple-
mentations, are somewhat time intensive. Thus
we have restricted their use to the distribution
p(x | t). The forest size we picked is 4400 nodes.
For the look-ahead probability, LAP, we use a
single decision tree with greedy optimal ques-
tions and 1600 nodes.

We smooth our random forest probabilities
by successively backing off to distributions three
earlier in the decision tree. We use linear inter-
polation so

pl(x | t) = λ(cl)∗p̂l(x | t)+(1−λ(cl))∗pl−3(x | t)

Here pl is the smoothed distribution for level l

of the tree and p̂l is the maximum likelihood (un-
smoothed) distribution. We use Chen smooth-
ing so the linear interpolation parameters λ are
functions of the Chen number of the level l node.
See (Chen and Goodman, 1996). We could back
off to l − 1, but this would slow the algorithm,
and seemed unnecessary.

Following (Klein and Manning, 2003) we han-
dle unknown and rare words by replacing them
with one of about twenty unknown word types.
For example, “barricading” would be replaced
by UNK-ING, denoting an unknown word end-
ing in “ing.” Any word that occurs less than
twenty times in the training corpus is consid-
ered rare. The only information that is retained
about it is the parts of speech with which it has
appeared. Future uses are restricted to these
pre-terminals.

Because random forests have so much latitude
in picking combinations of words for specific sit-
uations we have the impression that it can over-
fit the training data, although we have not done
an explicit study to confirm this. As a mild cor-
rective we only allow verbs appearing 75 times or
more, and all other words appearing 250 times or
more, to be conditioned upon in question types
16, 18, 20, 22, and 27. Because the inner loop of
random-forest training involves moving a condi-
tioning event to the other decedent node to see
if this raises training data probability, this also
substantially speeds up training time.

Lastly Roark obtained the results we quote
here with selective use of left-corner transforms
(Demers, 1977; Johnson and Roark, 2000). We
also use this technique but the details differ.
Roark uses left-corner transforms only for im-
mediately recursive NP’s, the most common sit-
uation by far. As it was less trouble to do
so, we use them for any immediately recursive
constituent. However, we are also aware that
in some respects left-corner transforms work
against the fully-connected tree rule as opera-
tionalizing the “understand as you go along”
cognitive constraint. For example, the normal
sentence initial NP serves as the subject of the
sentence. However in Penn-treebank grammar
style an initial NP could also be a possessive
NP as in (S (NP (NP (DT The) (NN dog)
(POS ’s)))) Clearly this NP is not the subject.
Thus using left corner transforms on all NP’s
allows the parser to conflate differing semantic
situations into a single tree. To avoid this we
have added the additional restriction that we
only allow left-corner treatment when the head
words (and thus presumably the meaning) are
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Precision Recall F
Collins 2003 88.3 88.1 88.2
Charniak 2000 89.6 89.5 89.6
C/J 2005 91.2 90.9 91.1
Petrov et.al. 2006 90.3 90.0 90.2

Roark 2001 87.1 86.6 86.8
C/R Perceptron 87.0 86.3 86.6
C/R Combined 89.1 88.4 88.8

This paper 89.8 89.0 89.4

Figure 5: Precision/Recall measurements, Penn
Treebank Section 23, Sentence length ≤ 100

the same. (Generally head-word rules dictate
that the POS is the head of the possessive NP.)

5 Results and Analysis

We trained the parser on the standard sections
2-21 of the Penn Tree-bank, and tested on all
sentences of length ≤ 100 of section 23. We
used section 24 for development.

Figure 5 shows the performance of our model
(last line, in bold) along with the performance
of other parsers. The first group of results show
the performance of standard parsers now in use.
While our performance of 89.4% f-measure needs
improvement before it would be worth-while us-
ing this parser for routine work, it has moved
past the accuracy of the Collins-Bikel (Collins,
2003; Bikel, 2004) parser and is not statistically
distinguishable from (Charniak, 2000).

The middle group of results in Figure 5 show
a very significant improvement over the original
Roark parser, (89.4% vs.86.8%). Although we
have not discussed it to this point, (Collins and
Roark, 2004) present a perceptron algorithm for
use with the Roark architecture. As seen above
(C/R Perceptron), this does not give any im-
provement over the original Roark model. As
is invariably the case, when combined the two
models perform much better than either by it-
self (C/R Combined — 88.8%). However we still
achieve a 0.6% improvement over that result.
Naturally, a new combination using our parser
would almost surely register another significant
gain.

Conditioning Conditioning F-measure
Non-terminals Terminals
8 1 86.6
10 2 88.0
13 3 88.3
17 4 88.8
21 6 89.0

Figure 6: Labeled precision-recall results on section
24 of the Penn Tree-bank. All but one sentence of
length ≤ 100. (Last one not parsed).

In Figure 6 we show results illustrating how
parser performance improves as the probability
distributions are conditioned on more diverse in-
formation from the partial trees. The first line
has results when we condition on only the “clos-
est” eight non-terminal and the previous word.
We successively add more distant conditioning
events. The last line (89.0% F-measure) corre-
sponds to our complete model but since we are
experimenting here on the development set the
result is not the same as in Figure 5. (The result
is consistent with the parsing community’s ob-
servation that the test set is slightly easier than
the development set — e.g., average sentence
length is less.)

One other illustrative result: if we keep all
system settings constant and replace the random
forest mechanism by a single greedy optimal de-
cision tree for probability computation, perfor-
mance is reduced to 86.3% f-measure. While this
almost certainly overstates the performance im-
provement due to many random trees (the sys-
tem parameters could be better adjusted to the
one-tree case), it strongly suggests that nothing
like our performance could have been obtained
without the forests in random forests.

6 Conclusions and Future Work

We have presented a new top-down left-to-right
parsing model. Its performance of 89.4% is a
20% error reduction over the previous single-
parser performance, and indeed is a small im-
provement (0.6%) over the best combination-
parser result. The code is publically available.1

1http://bllip.cs.brown.edu/resources.shtml#software
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PP

IN

than

NP

NNP NNP

General Motors

Figure 7: The start of an incorrect analysis for “than
General Motors is worth”

IN

than NP VP

S

General Motors is NP

worth

SBAR

Figure 8: The correct analysis for “than General Mo-
tors is worth”

Furthermore, as models of this sort have re-
ceived comparatively little attention, it seems
reasonable to think that significant further im-
provements may be found.

One particular topic in need of more study is
search errors. Consider the following example:

The government had to spend more
than General Motors is worth.

which is difficult for our parser. The problem is
integrating the words starting with “than Gen-
eral Motors.” Initially the parser believes that
this is a prepositional phrase as shown in Fig-
ure 7. However, the correct tree-bank parse in-
corporates a subordinate sentential clause“than
General Motors is worth”, as in Figure 8. Un-
fortunately, before it gets to “is” which disam-
biguates the two alternatives, the subordinate
clause version has fallen out of the parser’s beam
(unless, of course, one sets the beam-width to an
unacceptably high level). Furthermore, it does
not seem that there is any information available

IN

than NP VP

S

General Motors

SBAR

-NONE-

Figure 9: Alternative analysis for “than General Mo-
tors”

when one starts working on “than” to allow a
person to immediately pick the correct continu-
ation. It is also the case that the parsing model
gives the correct parse a higher probability if it
is available, showing that this is a search error,
not a model error.

If there is no information that would allow
a person to make the correct decision in time,
perhaps people do not need to make this deci-
sion. Rather the problem could be in the tree-
bank representation itself. Suppose we reana-
lyzed “than General Motors” in this context as
in Figure 9. Here we would not need to guess
anything in advance of the (missing) VP. Fur-
thermore, we can make this change without loos-
ing the great benefit of the treebank for training
and testing. The change is local and determin-
istic. We can tree-transform the training data
and then untransform before scoring. It is our
impression that a few examples like this would
remove a large set of current search errors.

Three other kinds of information are often
added as additional annotations to syntactic
trees: Penn-Treebank form-function tags, trace
elements, and semantic roles. Most research
on such annotation takes the parsing process as
fixed and is solely concerned with improving the
retrieval of the annotation in question. When
they have been integrated with parsing, finding
the parse and the further annotation jointly has
not improved the parse. While it is certainly
possible that this would prove to be the same for
this new model, the use of random forests to in-
tegrate more diverse information sources might
help us to reverse this state of affairs.

Finally there is no reason why we even need
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to stop our collection of features at sentence
boundaries — information from previous sen-
tences is there for our perusal. There are
many known intra-sentence correlations, for ex-
ample “sentences” that are actually fragments
are much more common if the previous sentence
is a question. The tense of sequential sentences
main verbs are correlated. Main clause sub-
jects are more likely to be co-referent. Certainly
the “understanding” humans pick up helps them
assign structure to subsequent phrases. How
much, if any, of this meaning we can glean given
our current (lack-of) understanding of semantics
and pragmatics is an interesting question.
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Abstract

We introduce a novel training algorithm
for unsupervised grammar induction, called
Zoomed Learning. Given a training setT and
a test setS, the goal of our algorithm is to
identify subset pairsTi, Si of T and S such
that when the unsupervised parser is trained
on a training subsetTi its results on its paired
test subsetSi are better than when it is trained
on the entire training setT . A successful ap-
plication of zoomed learning improves overall
performance on the full test setS.
We study our algorithm’s effect on the leading
algorithm for the task of fully unsupervised
parsing (Seginer, 2007) in three different En-
glish domains,WSJ, BROWN andGENIA, and
show that it improves the parser F-score by up
to 4.47%.

1 Introduction

Grammar induction is the task of learning grammati-
cal structure from plain text without human supervi-
sion. The task is of great importance both for the
understanding of human language acquisition and
since its output can be used by NLP applications,
avoiding the costly and error prone creation of man-
ually annotated corpora. Many recent works have
addressed the task (e.g. (Klein and Manning, 2004;
Seginer, 2007; Cohen and Smith, 2009; Headden et
al., 2009)) and its importance has increased due to
the recent availability of huge corpora.

A basic challenge to this research direction is
how to utilize training data in the best possible
way. Klein and Manning (2004) report results for

their dependency model with valence (DMV) for
unsupervised dependency parsing when it is trained
and tested on the same corpus (both when sentence
length restriction is imposed, such as forWSJ10,
and when it is not, such as for the entireWSJ). To-
day’s best unsupervised dependency parsers, which
are rooted in this model, train on short sentences
only: both Headen et al., (2009) and Cohen and
Smith (2009) train onWSJ10 even when the test set
includes longer sentences.

Recently, Spitkovsky et al., (2010) demonstrated
that training the DMV model on sentences of up to
15 words length yields better results on the entire
section 23 ofWSJ (with no sentence length restric-
tion) than training with the entireWSJcorpus.

In contrast to these dependency models, the
Seginer constituency parser achieves its best perfor-
mance when trained on the entireWSJ corpus ei-
ther if sentence length restriction is imposed on the
test corpus or not. The sentence length restriction
training protocol of (Spitkovsky et al., 2010), harms
this parser. When the parser is trained with the
entire WSJ corpus its F-score performance on the
WSJ10, WSJ20 and the entireWSJ corpora are 76,
64.8 and 56.7 respectively. When training is done
with WSJ10 (WSJ20) performance degrades to 60
(72.2), 37.4 (61.9) and 29.7 (48) respectively.

In this paper we introduce theZoomed Learn-
ing (ZL) technique for unsupervised parser training:
given a training setT and a test setS, it identifies
subset pairsTi, Si of T and S such that when the
unsupervised parser is trained on a training subset
Ti its results on its paired test subsetSi are better
than when it is trained on the entire training setT . A
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successful application of zoomed learning improves
performance on the full test setS.

We describe ZL algorithms of increasing sophis-
tication. In the simplest algorithm the subsets are
randomly selected while in the more sophisticated
versions subset selection is done using a fully unsu-
pervised measure of constituency parse tree quality.

We apply ZL to the Seginer parser, the best al-
gorithm for fully unsupervised constituency parsing.
The input is a plain text corpus without any annota-
tion, not even POS tagging1, and the output is an
unlabeled bracketing for each sentence.

We experiment in three different English do-
mains:WSJ (economic newspaper),GENIA (biolog-
ical articles) andBROWN (heterogeneous domains),
and show that ZL improves the parser F-score by as
much as 4.47%.

2 Related Work

Unsupervised parsing has attracted researchers for
over a quarter of a century (see (Clark, 2001; Klein,
2005) for reviews). In recent years efforts have been
made to evaluate the algorithms on manually anno-
tated corpora such as the WSJ PennTreebank. Re-
cent works on unlabeled bracketing or dependencies
induction include (Klein and Manning, 2002; Klein
and Manning, 2004; Dennis, 2005; Bod, 2006a;
Bod, 2006b; Bod, 2007; Smith and Eisner, 2006;
Seginer, 2007; Cohen et al., 2008; Cohen and Smith,
2009; Headden et al., 2009). Most of the works
above use POS tag sequences, created either manu-
ally or by a supervised algorithm, as input. The only
exception is Seginer’s parser, which induces brack-
eting from plain text.

Our confidence-based ZL algorithms use the
PUPA unsupervised parsing quality score (Reichart
and Rappoport, 2009b). As far as we know,PUPA is
the only unsupervised quality assessment algorithm
for syntactic parsers that has been proposed. Com-
bining PUPAwith Seginer’s parser thus preserves the
fully unsupervised nature of the task.

Quality assessment of a learning algorithm’s out-
put has been addressed for supervised algorithms

1For clarity of exposition, we still refer to this corpus as our
training corpus. In the algorithms presented in this paper, the
test set is included in the training set which is a common prac-
tice in unsupervised parsing.

(see (Caruana and Niculescu-Mizil, 2006) for a sur-
vey) and specifically for supervised syntactic pars-
ing (Yates et al., 2006; Reichart and Rappoport,
2007; Ravi et al., 2008; Kawahara and Uchimoto,
2008). All these algorithms are based on manually
annotated data and thus do not preserve the unsuper-
vised nature of the task addressed in this paper.

We experiment with the Seginer parser for two
reasons. First, this is the best algorithm for the task
of fully unsupervised parsing which motivates us to
improve its performance. Second, this is the only
publicly available unsupervised parser that induces
constituency trees. ThePUPA score we use in our
confidence-based algorithms is applicable for con-
stituency trees only. When additional constituency
parsers will be made available, we will test ZL with
them as well. Interestingly, the results reported for
other constituency models (the CCM model (Klein
and Manning, 2002) and the U-DOP model (Bod,
2006a; Bod, 2006b)) are reported when the parser is
trained on its test corpus even if the sentences is that
corpus are of bounded length (e.g.WSJ10). This
raises the question if using more training data (e.g.
the entireWSJ) wisely can enhance these models.

Recently, Spitkovsky et al., (2010) proposed three
approaches for improvement of unsupervised gram-
mar induction by considering the complexity of the
training data. The approaches have been applied
to the DMV unsupervised dependency parser (Klein
and Manning, 2004) and improved its performance.
One of these approaches is to train the model with
sentences whose length is up to 15 words. As noted
above, such a training protocol fails to improve the
performance of the Seginer parser.

The other approaches in that paper, bootstrapping
via iterated learning of increasingly longer sentences
and a combination of the bootstrapping and the short
sentences approaches, are not directly applicable to
the Seginer parser since its training method cannot
be trivially bootstrapped with parses created in for-
mer steps (Seginer, 2007).

Related machine learning methods.ZL is re-
lated to ensemble methods. Both ZL and such meth-
ods produce multiple learners, each of them trained
on a different subset of the training data, and decide
which learner to use for a particular test instance.
Bagging (Breiman, 1996) and boosting (Freund and
Schapire, 1996), where the experts utilize the same
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learning algorithm and differ in the sample of the
training data they use for its training, were applied
to supervised parsing (Henderson and Brill, 2000;
Becker and Osborne, 2005). In Section 3 we discuss
the connection of ZL to boosting.

Owing to the fact that ZL produces different
learners, it is natural to use it in conjunction with
an ensemble method, which is what we do in this
paper with ourEZL model (Section 3).

ZL is also related to active learning (AL) (Cohn
and Ladner, 1994). AL also uses training subset se-
lection, with the goal of obtaining a faster learning
curve for an algorithm. AL is done in supervised
settings, usually in order to minimize human anno-
tation costs. AL algorithms providing faster learning
than random subset selection for parsing have been
proposed (Reichart and Rappoport, 2009a; Hwa,
2004). However, we are not aware of AL applica-
tions in which theoverall performance on the test
set has been improved. In addition, our application
here is to an unsupervised problem.

Algorithms that utilize unsupervised clustering
for class decomposition in order to improve classi-
fiers’ performance (e.g. (Vilalta and Rish, 2003)) are
related to ZL. In such methods, examples that be-
long to the same class are clustered, and the induced
clusters are considered as separate classes. These
methods, however, have been applied only to super-
vised classification in contrast to our work that ad-
dresses unsupervised structured learning. Moreover,
after class decomposition a classifier is trained with
the entire training data while the subsets identified
by a ZL algorithm are parsed by a parser trained only
with the sentences they contain.

3 Zoomed Learning Algorithms

Zoomed Learning proposes that performance on a
particular test instance might improve if training is
done on a propersubset of the training set. The
ZL view is clearly applicable when the training data
is comprised of subsets originating from different
sources having different natures. If the test data is
also similarly composed, performance on any partic-
ular test instance might improve if training is done
on a training subset coming from the same source.
However, even when the training and test data are
from the same source, a ZL algorithm may capture

fine differences between subsets.
The ZL idea is therefore related to the notions of

in-domain and out-of-domain (domain adaptation).
In the former, the training and test data are assumed
to originate from the same domain. In the latter, the
test data comes from a different domain, and there-
fore has different statistics from the training data.
Indeed, the performance of NLP algorithms in do-
main adaptation scenarios is markedly lower than in
in-domain ones (McClosky et al., 2006).

ZL takes this observation to the extreme, assum-
ing that a similar situation might existeven in in-
domain scenarios. After all, a ‘domain’ is only a
coarse qualification of the nature of a data set. In
NLP, a domain is usually specified as the genre of
the text involved (e.g., ‘newspapers’). However,
there are additional axes that might influence the
statistics obtained from training data, e.g., the syn-
tactic nature of sentences.

This section presents our ZL algorithms. We start
with the simplest possible ZL algorithm where the
subsets are randomly selected. We then describe ZL
algorithms based on quality-based parse selection.
We first detail a basic version and then an extended
version consisting of another level of parse selec-
tion. Finally, we briefly discuss thePUPA quality
measure that we use to evaluate the quality of a parse
tree.

In all versions of the algorithm the input consists
of a setT of N training sentences, a setS ⊆ T of
test sentences, and an integer numberNH ≤ N .

Zoomed Learning with Random Selection
(RZL). The simplest ZL algorithm randomly assigns
each of the training sentences to one ofn sets (n = 2
in this paper). More explicitly, the set number is
drawn from a uniform distribution on{1, 2, . . . n}.
Each set is then parsed by a parser that is trained
only with the sentences contained in that set.

The intuition behind this algorithm is that differ-
ent sets of sentences are likely to manifest differ-
ent syntactic patterns. Consequently, the best way to
learn the syntactic patterns of any given set of sen-
tences might be to train the parser on the sentences
contained in the set.

While simple, in Section 5 it is shown to improve
the performance of the Seginer parser.

The Basic Quality-Based Algorithm (BZL). The
idea of the basic ZL algorithm is that sentences for
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which the parser provides low quality parses man-
ifest different syntactic patterns than the sentences
for which the parser provides high quality parses.
The main challenge is therefore to estimate the qual-
ity of the produced parses without supervision.

The algorithm has three stages. In the first, we
create the fully-trained model by training the parser
using all of theN sentences ofT . We then parse
theseN sentences using the fully-trained model.

In the second, we compute a parse confidence
score for each of theN sentences, based on theN

parses produced in the first stage. We divide the
training sentences to two subsets: a high quality sub-
set H consisting of the top scoredNH sentences,
and a lower quality subsetL consisting of the other
NL = N −NH sentences.

As is common practice for this problem (Klein
and Manning, 2004; Seginer, 2007), the test set is
contained in the training set. This methodology is
a valid one because the training set is unannotated.
Our test set is thus naturally divided into two sub-
sets, a high quality subsetHT consisting of the test
set sentences contained inH and a lower quality
subsetLT consisting of the test set sentences con-
tained inL.

In the third stage, each of the test subsets is parsed
by a model trained only on its corresponding train-
ing subset. This stage is motivated by our assump-
tion that the high and low quality subsets manifest
dissimilar syntactic patterns, and consequently the
statistics of the parser’s parameters suitable for one
subset differ from those suitable for another.

We compute the confidence score in the second
stage using the unsupervisedPUPA algorithm (Re-
ichart and Rappoport, 2009b). POS tags for it are
induced using the fully unsupervised algorithm of
Clark (2003). The parser we experiment with is the
incremental parser of Seginer (2007), whose input
consists of raw sentences and does not include any
kind of supervised POS tags (created either manu-
ally or by a supervised algorithm). Consequently,
our algorithm is fully unsupervised. The only pa-
rameter it has isNH but ZL improves parser perfor-
mance for mostNH values.

BZL is related to boosting. In boosting after train-
ing one member of the ensemble, examples are re-
weighted such that examples that are classified cor-
rectly are down-weighted.BZL does something sim-

ilar: it usesPUPA to estimate which sentences are
given high quality parse trees, and down-weights ex-
amples with high (low)PUPA score to 0 when train-
ing theL-trained (H-trained) model. However, in
boosting the entire test set is annotated by the same
learning model, while ZL parses each test subset
with a model trained on its corresponding training
subset.

The Extended Quality-Based Algorithm (EZL).
The basic algorithm produces an ensemble of two
parsing experts: the one trained onH and the one
trained onL. It uses the ensemble to parse the test
set by applying theH-trained expert toHT and the
L-trained expert toLT . Naturally, there are other
ways to utilize the ensemble to parse the test set. In
addition, even if parse trees generated by the experts
are better with high probability than those of the
fully trained parser, they are not guaranteed to be so.
The fully trained parser is therefore also a valuable
member in the ensemble. Consequently, we intro-
duce an extended zoomed learning algorithm (EZL).

The extended version is implemented as a final
fourth stage of the previously described basic algo-
rithm. In this stage, the two test subsets are parsed
by the fully trained parsing model, in addition to be-
ing parsed by the zooming parsing models. We now
have two parses for each test sentences: PZ(s), the
parse created by a parser trained with the sentences
contained in its corresponding training subset, and
PF (s), created by the fully trained parser.

For each of the two parses of each test sentence,
a confidence score is computed byPUPA. As will
be reviewed below,PUPA uses aset of parsed sen-
tences to compute the statistics on which its scores
are based. Therefore, there are two sources for a dif-
ference between the scores of the two parse trees of a
given test sentence: the difference between the trees
themselves, and the difference between the parses of
the other sentences in the set.

The PUPA score forPZ(s) is computed using the
parses created for the sentences contained in the test
subset ofs by a parser trained with the correspond-
ing training subset. ThePUPA score forPF (s) is
computed using the parses created for the entire test
set by the fully trained parser.

The algorithm now outputs a final parse by select-
ing for each sentence the parse tree having the higher
PUPA score.
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The PUPA Confidence Score.In the second and
fourth stages of the confidence-based algorithms, an
unsupervised confidence score is computed for each
of the induced parse trees. The confidence score
algorithm we use is the POS-based Unsupervised
Parse Assessment (PUPA) algorithm (Reichart and
Rappoport, 2009b). We provide here a brief descrip-
tion of this algorithm.

The input toPUPA is a setI of parsed sentences,
and its output consists of a confidence score in[0, 1]
assigned to each sentence inI.

The PUPA algorithm collects statistics of the syn-
tactic structures (parse tree constituents) contained
in the setI of parsed sentences. The constituent rep-
resentation is based on the POS tags of the words in
the yield of the constituent and of the words in the
yields of neighboring constituents. We follow Re-
ichart and Rappoport (2009b) and induce the POS
tags using the fully unsupervised POS induction al-
gorithm of Clark (2003).

The algorithm then goes over each individual tree
in the setI and scores it according to the collected
statistics ThePUPA algorithm is guided by the idea
that syntactic structures that are frequently created
by the parser are more likely to be correct than struc-
tures the parser produces less frequently. Therefore,
constituents that are more frequent in the setI re-
ceive higher scores after proper regularization is ap-
plied to prevent potential biases. The tree score is a
combination of the scores of its constituents.

Full details of thePUPA algorithm are given in
(Reichart and Rappoport, 2009b). The resulting
score was shown to be strongly correlated with the
extrinsic quality of the parse tree, defined to be its F-
score similarity to the manually created (gold stan-
dard) parse tree of the sentence.

4 Experimental Setup

We experimented with three English corpora: the
WSJ Penn Treebank (Marcus et al., 1993) consist-
ing of economic newspaper texts, theBROWN cor-
pus (Francis and Kucera, 1979) consisting of texts
of various English genres (e.g. fiction, humor, ro-
mance, mystery and adventure) and theGENIA cor-
pus (Kim et al., 2003) consisting of abstracts of sci-
entific articles from the biological domain. All cor-
pora were stripped of all annotation (bracketing and

POS tags).
For all corpora we report the parser perfor-

mance on the entire corpus (WSJ: 49206 sentences,
BROWN: 24243 sentences,GENIA: 4661 sentences).
For WSJ we also provide an analysis of the per-
formance of the parser when applied to sentences
of bounded length. These sub-corpora are WSJ10
(7422 sentences), WSJ20 (25522 sentences) and
WSJ40 (47513 sentences) where WSJY denotes
the subset of WSJ containing sentences of length at
most Y (excluding punctuation).

Seginer’s parser achieves its best reported results
when trained on the full WSJ corpus. Consequently,
for all corpora, we compare the performance of the
parser when trained with the ZL algorithms to its
performance when trained with the full corpus.

The POS tags required as input by thePUPA al-
gorithm are induced by the fully unsupervised POS
induction algorithm of Clark (2003)2. Reichart and
Rappoport (2009b) demonstrated an unsupervised
technique for the estimation of the number of in-
duced POS tags with which the correlation between
PUPA’s score and the parse F-score is maximized.
When exploring an experimental setup identical to
our WSJ setup, they set the number of induced tags
to be 5. We therefore induced 5 POS tags for each
corpus, using all its sentences as input for Clark’s al-
gorithm. Our implementation of thePUPA algorithm
will be made available on line.

For each corpus we performedK experiments
with each of the three ZL algorithms, whereK
equals to the number of sentences in the corpus di-
vided by 1000 (rounded upwards). In each experi-
ment the size of the high qualityH and lower quality
L training subsets is different.H consists of theNH

top ranked sentences according toPUPA (or NH ran-
domly selected sentences for RZL), withNH chang-
ing from 1000 upwards in steps of 1000.L consists
of the rest of the sentences in the training corpus
(WSJ). The results reported forRZL are averaged
over 10 runs.

We report the parser performance on the test cor-
pus for each training protocol. Following the un-
supervised parsing literature multiple brackets and
brackets covering a single word are not counted, but
the sentence level bracket is. We exclude punctua-

2www.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html
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WSJ10, F(Full) = 76 WSJ20, F(Full) = 64.82 WSJ40, F(Full) = 57.54 WSJ, F(Full) = 56.7
NH 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%
EZL 76.38 76.80 76.14 65.75 66.14 65.66 58.32 58.75 58.56 57.47 57.90 57.73

+0.38 +0.80 +0.14 +0.93 +1.30 +0.82 +0.78 +1.21 +1.02 +0.77 +1.20 + 1.13
BZL 75.07 75.78 75.02 65.08 65.74 64.79 58.13 58.70 58.21 57.30 57.88 57.66

-0.93 -0.22 -0.98 +0.26 +0.92 -0.03 +0.59 +1.16 +0.67 +0.60 +1.18 +1.06
RZL 75.41 75.00 75.32 64.43 64.66 65.32 57.27 57.63 58.39 56.44 56.84 57.59

-0.59 -1.00 -0.68 -0.39 -0.16 +0.50 -0.27 +0.09 +0.85 -0.26 +0.14 +0.89

WSJ10 WSJ20 WSJ40 WSJ
|LT | 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%
EZL 1.32 0.95 0.61 2.98 3.13 1.76 2.60 2.80 2.62 2.44 2.40 2.50

BZL 0.37 0.80 0.53 2.38 3.12 1.23 2.34 3.20 3.35 2.28 2.50 3.23

RZL -2.10 -1.88 -1.20 -0.91 -0.50 0.72 0.30 0.35 1.50 0.34 0.50 1.60

Table 1: Performance of theEZL, BZL andRZL algorithms in theWSJ experiments (results forBROWN andGENIA

are shown in Table 2). Results are presented for four test corporaWSJ10, WSJ20, WSJ40 and the entireWSJ. Top
table: Results for various values ofNH (the number of sentences in the high quality training subset). Evaluation
is performed for all sentences in the test corpora. For each algorithm, the top line is its F-score performance and
the bottom line is the difference from the F-score of the fully-trained Seginer parser (denoted by F(Full)). TheEZL

algorithm is superior.Bottom table: Results for various lower quality test subsets. Presented are the differences from
the F-score of the fully-trained Seginer parser. The test subsets selected by different algorithms for a specificNH

value are not necessarily identical and for the sub-corporathey are not necessarily of identical size. Reported are the
improvements for theLT ’s of smallest size which is over 10%, 20%, and 30% of the test corpus (the top table reports
results for the entire test set, which is why we can report F-scores there). TheLT set size is denoted with|LT |.

tion and null elements as in (Klein, 2005). To evalu-
ate the quality of a parse tree with respect to its gold
standard, the unlabeled parsing F-score is used.

5 Results

Entire Corpus Results. We start by discussing
the effect of ZL on the performance of the Seginer
parser when no length restriction is imposed on the
test corpus sentences (WSJ, BROWN andGENIA).

Table 1 (top, right section, forWSJ), Figure 1 (top
line, right graph, forWSJ), and Table 2 (the left sec-
tion of each table, top table forBROWN and bot-
tom table forGENIA) present the difference between
the F-score performance of the Seginer parser when
trained with the ZL algorithms and the parser’s per-
formance when trained with the entire corpus.

For all test corpora and sizes of the high quality
training subset (NH ), zoomed learning improves the
parser performance. ZL improves the parser perfor-
mance by 1.13% (WSJ), 1.46% (BROWN, the number
does not appear in the table) and 4.47% (GENIA).

ForWSJ, the most substantial improvement is pro-

vided byEZL, while for BROWN andGENIA the best
results for someNH values are achieved byBZL and
for others byEZL (and for GENIA with small NH

values even byRZL).
Note, that for all three corpora zoomed learning

with random selection (RZL) improves the parser
performance on the entire test corpus, although to a
lesser extent than confidence-based ZL. This is true
for almost allNH values, including those that do not
appear in the tables. See Figure 1 (top line, right-
most graph) forWSJ.

We follow the unsupervised parsing literature and
provide performance analysis for WSJ sentences of
bounded length (WSJ10, WSJ20 andWSJ40). To
prevent clutter, forBROWN and GENIA we report
only entire corpus results.

Table 1 (top, left three sections) and Figure 1
(top line, three leftmost graphs) present results for
WSJ10, WSJ20 andWSJ40.

The result patterns for the sub-corpora are similar
to those reported for the entireWSJcorpus.EZL and
BZL both improve over the fully-trained parser, and
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BROWN ENTIRE CORPUS(F = 57.19) LT HT
NH 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

EZL 0.55 0.69 0.64 0.66 0.65 0.82 1.15 1.31 -1.44 -0.03 0.04 0.30
BZL 1.11 0.80 0.02 -0.10 1.42 1.20 0.76 0.51 -4.80 -1.30 -0.79 -0.37
RZL 0.257 0.755 0.49 0.24 0.23 0.75 0.60 0.53 0.44 0.76 0.42 0.12

GENIA ENTIRE CORPUS(F = 42.71) LT HT
NH 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

EZL 0.01 0.83 1.10 1.66 -0.01 0.76 0.80 3.37 0.34 1.00 1.40 1.55
BZL -0.46 1.40 2.74 4.47 -0.54 0.40 0.96 4.09 0.42 4.29 4.60 5.49
RZL 0.61 1.70 2.09 1.99 0.28 2.08 3.30 3.86 3.04 3.22 2.80 1.85

Table 2: Results for theBROWN (top table) andGENIA (bottom table) corpora. Results are presented for the entire
corpus (left column section), the low quality test subset (middle column section,LT ) and the high quality test subset
(right column section,HT ) of each corpus, as a function of the high quality training set size (NH). Since the tables
present entire corpus results, the training and test subsets are identical.

the improvement of the former is more substantial.

Baselines.A key principle of ZL is the selection
of subsets that are better parsed by a parser trained
only with the sentences they contain than with a
parser trained with the entire training corpus. To
verify the importance of this principle we consid-
ered two alternative training protocols.

In the first, the entire test corpus is parsed with
a parser that was trained with a subset of randomly
selected sentences from the training set. We run this
protocol for all three corpora (and for theWSJ sub-
corpora) with various training set sizes and obtained
substantial degradation in the parser performance.
The performance monotonically increases with the
training set size and reached its maximum when the
entire corpus is used. We conclude that using less
training material harms the parser performance if a
test subset is not carefully selected.

The second protocol is the ‘less is more proto-
col of Spitkovsky et al., (2010) in which we parsed
each test corpus using a parser that was trained with
all training sentences of a bounded length. Unlike
in their paper, in which this protocol improves the
perofrmance of theDMV unsupervised dependency
parser (Klein and Manning, 2004), for the Seginer
parser the protocol harms the results. When pars-
ing the entireWSJ with a WSJ10-trained parser or
with a WSJ20-trained parser, the F-score results are
59.99% and 72.22% compared to 76.00% of the
fully-trained parser. ForGENIA the numbers are
15.61 and 35.87 compared to 42.71 and forBROWN

they are 36.05 and 50.02 compared to 57.193.
It is also interesting that sentence length is gen-

erally not a good subset selection criterion for ZL.
When parsingWSJ10 with aWSJ10-trained parser,
F-score results are 59.29 while the F-score of the
fully-trained parser on this corpus is 76.00. The
same phenomenon is observed withWSJ20 (F-score
of 61.90 with WSJ20 training and of 64.82 with
the entireWSJ training), and for theBROWN corpus
(65.01 vs. 69.43 forBROWN10 and 61.90 vs 62.92
for BROWN20). ForGENIA, however, while parsing
GENIA10 with aGENIA10-trained parser harms the
performance (45.28 vs. 60.23), parsingGENIA20
with a GENIA20-trained parser enhances the perfor-
mance (53.23 vs. 50.00).

These results emphasize the power of random se-
lection for ZL as random selection does provide a
good selection criterion.

LT vs. HT. In what follows we analyze the ZL
algorithms aiming to characterize their strengths and
weaknesses.

Table 1 (bottom), the middle and right sections
of Table 2 (both tables) and Figure 1 (second and
third lines) present the performance of the ZL algo-
rithms on the lower quality and higher quality test
subsets (LT andHT ). The results patterns forWSJ

andBROWN are different than those ofGENIA.
For WSJ (and its sub-corpora) andBROWN,

3We repeated this protocol multiple times for each corpus,
training the parser with sentences of length 5 to 45 in steps of 5.
In all cases we observed performance degradation compared to
the fully-trained parser.
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Figure 1: WSJ results.Top Three Lines: Difference in F-score performance of the Seginer parser between training
with ZL and training with the entireWSJ corpus. Results are presented for the entire corpus (top line), the lower
quality test subset (LT , middle line) and the higher quality test subset (HT , bottom line) as a function of the size of
the high quality training subsetX = NH , measured in sentences. The curve with triangles is for the extended zoomed
learning algorithm (EZL), the solid curve is for the basic zoomed learning algorithm(BZL) and the dashed curve is
for zoomed learning with random selection (RZL). Bottom line: Comparison between the performance of the Seginer
parser with theEZL algorithm (curves with triangles) and when subset selection is performed using the oracle F-score
of the trees (solid curves). F-score differences from the performance of the fully trained parser are presented for the
WSJ test corpus as a function ofNH , the high quality training subset size. Oracle selection issuperior for the lower
quality subset but inferior for the high quality subset.

confidence-based ZL (BZL andEZL) provides a sub-
stantial improvement forLT . For WSJ, F-score im-
provement is up to 1.32% (WSJ10), 3.13% (WSJ20),
3.35% (WSJ40) and 3.23% (the entireWSJ). For
BROWN the improvement is up to 1.42%.

For HT , confidence-based ZL is less effective
when these corpora are considered. As indicated
in the third line of Figure 1, forWSJ and its sub-
corpora,EZL leads to a small improvement onHT ,
while BZL generally leads to a performance degra-
dation on this test subset. ForBROWN (the right sec-
tion of Table 2 (top)), confidence-based ZL gener-

ally leads to a performance degradation onHT .
For GENIA, EZL andBZL improve the parser per-

formance on bothLT andHT for mostNH values.
Understanding this difference is a subject for future
research. Our initial hypothesis is that due to the
relative small size of theGENIA corpus (4661 sen-
tences compared 24243 and 49206 sentences ofWSJ

and BROWN respectively), there is more room for
improvement in the parser performance on this cor-
pus, and consequently ZL improves on both sets.

Oracle Analysis. Confidence-based ZL is based
on the idea that sentences for which the fully-trained
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parser provides parses of similar quality manifest
similar syntactic patterns. Consequently, the parser
performance on a set of such sentences can be im-
proved if it is trained only with the sentences con-
tained in the set. An oracle experiment, where se-
lection is based on the F-score computed using the
gold standard tree instead of on thePUPA score, can
shed light on the validity of this idea.

Figure 1 (bottom line) compares the performance
of EZL with that of the oracle-based zoomed learn-
ing algorithm when the test corpus is the entire WSJ.
For the low quality test subset, oracle selection is
dramatically better than confidence-based selection.
For the high quality test subset the opposite pattern
holds, that is,EZL is superior. These differences lead
to the entire corpus pattern whereEZL is superior for
mostNH values.

Oracle-based and confidence-based zoomed
learning demonstrate the same trend: they improve
over the baseline forLT much more than forHT .
For HT , oracle-based ZL even harms results and
so doesBZL, which does not benefit from the
averaging effect ofEZL. The magnitude of the
effect of oracle-based zoomed learning is much
stronger. These results support our idea that training
the parser on a set selected by a well-designed
confidence test leads to improvement of the parser
performance for the selected sentences when the
fully-trained parser produces parses of mediocre
quality for them.

Integration of the experimental results for zoomed
learning with the three selection methods: random,
confidence-based and oracle-based leads to an im-
portant conclusion that should guide future research.
The more accurate the confidence score used by the
zoomed learning algorithm, the more substantial is
the performance improvement for the low quality
test subset, at the cost of more substantial degrada-
tion in the performance on the high quality subset
(but recall the differentGENIA pattern which should
be further explored).

EZL Variants. For confidence-based ZL we ex-
plored two methods for utilizing the ensemble mem-
bers for generating a final parse tree for each of the
test sentences. InBZL, theL-trained parser and the
H-trained parser generate parse trees forLT and
HT sentences respectively. InEZL, for each sen-
tence the final parse is selected between the parse

created by a parser trained with the sentences con-
tained in its corresponding training subset, and the
parse created by the fully trained parser.

There are other ways to use the ensemble mem-
bers. While for all corpora it is beneficial to use
the L-trained parser for the low quality test subset
(LT ), the results forWSJ andBROWN imply that it
might be better to use the fully-trained parser or the
EZL algorithm to parse the high quality test subset
(HT ). We have experimented with these methods
and got only a minor improvement over the results
reported here (improvement is more substantial for
BROWN than forWSJ but does not exceed 0.5% for
both). This can also be inferred from the relative
minor performance degradation ofBZL andEZL on
HT .

We also explored a ZL scenario in which the en-
tire test set is parsed either by theH-trained parser
or by theL-trained parser. These protocols result in
substantial degradation in parser performance (com-
pared to the fully-trained parser) since the perfor-
mance of theH-trained parser onLT and the per-
formance of theL-trained parser onHT are poor.

6 Conclusions

We introduced zoomed learning – a training algo-
rithm for unsupervised parsers. We applied three
variants of ZL to the best fully unsupervised pars-
ing algorithm (Seginer, 2007) and show an improve-
ment of up to 4.47% in three English domains:WSJ,
BROWN andGENIA.

Future research should focus on the development
of more accurate estimators of parser output qual-
ity, and experimentation with different corpora, lan-
guages and parsers.

Developing a quality assessment algorithm for de-
pendency trees will allow us to apply confidence-
based ZL to unsupervised dependency parsing. Par-
ticularly, it will enable us to explore the combina-
tion of the methods proposed in (Spitkovsky et al.,
2010) with ZL for the DMV model and to integrate
thePUPA score into their bootstrapping algorithm.

Another direction is to apply ZL to other NLP
tasks and ML areas, supervised and unsupervised.
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Abstract

Parser disambiguation with precision gram-
mars generally takes place via statistical rank-
ing of the parse yield of the grammar using
a supervised parse selection model. In the
standard process, the parse selection model is
trained over a hand-disambiguated treebank,
meaning that without a significant investment
of effort to produce the treebank, parse selec-
tion is not possible. Furthermore, as treebank-
ing is generally streamlined with parse selec-
tion models, creating the initial treebank with-
out a model requires more resources than sub-
sequent treebanks. In this work, we show that,
by taking advantage of the constrained nature
of these HPSG grammars, we can learn a dis-
criminative parse selection model from raw
text in a purely unsupervised fashion. This al-
lows us to bootstrap the treebanking process
and provide better parsers faster, and with less
resources.

1 Introduction

Parsing with precision grammars is generally a two-
stage process: (1) the full parse yield of the preci-
sion grammar is calculated for a given item, often
in the form of a packed forest for efficiency (Oepen
and Carroll, 2000; Zhang et al., 2007); and (2) the
individual analyses in the parse forest are ranked us-
ing a statistical model (“parse selection”). In the do-
main of treebank parsing, the Charniak and Johnson
(2005) reranking parser adopts an analogous strat-
egy, except that ranking and pruning are incorpo-
rated into the first stage, and the second stage is
based on only the top-ranked parses from the first

stage. For both styles of parsing, however, parse se-
lection is based on a statistical model learned from a
pre-existing treebank associated with the grammar.
Our interest in this paper is in completely remov-
ing this requirement of parse selection on explicitly
treebanked data, ie the development of fully unsu-
pervised parse selection models.

The particular style of precision grammar we ex-
periment with in this paper is HPSG (Pollard and
Sag, 1994), in the form of the DELPH-IN suite
of grammars (http://www.delph-in.net/).
One of the main focuses of the DELPH-IN collab-
oration effort is multilinguality. To this end, the
Grammar Matrix project (Bender et al., 2002) has
been developed which, through a set of question-
naires, allows grammar engineers to quickly pro-
duce a core grammar for a language of their choice.
Bender (2008) showed that by using and expanding
on this core grammar, she was able to produce a
broad-coverage precision grammar of Wambaya in
a very short amount of time. However, the Gram-
mar Matrix can only help with the first stage of pars-
ing. The statistical model used in the second stage
of parsing (ie parse selection) requires a treebank to
learn the features, but as we explain in Section 2, the
treebanks are created by parsing, preferably with a
statistical model. In this work, we look at methods
for bootstrapping the production of these statistical
models without having an annotated treebank. Since
many of the languages that people are building new
grammars for are under-resourced, we can’t depend
on having any external information or NLP tools,
and so the methods we examine are purely unsuper-
vised, using nothing more than the grammars them-
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selves and raw text. We find that, not only can we
produce models that are suitable for kick-starting the
treebanking process, but the accuracy of these mod-
els is comparable to parsers trained on gold standard
data (Clark and Curran, 2007b; Miyao and Tsujii,
2008), which have been successfully used in appli-
cations (Miyao et al., 2008).

2 The problem

The current method of training a parse selection
model uses the [incr tsdb()] treebanking mechanism
(Oepen, 2001) and works well for updating models
for mature grammars, although even for these gram-
mars, building a new model for a different domain
requires a time-consuming initial treebanking effort.
The treebanks used with DELPH-IN grammars are
dynamic treebanks (Oepen et al., 2004) created by
parsing text and having an annotator select the cor-
rect analysis (or discard all of them). The annotation
process involves making binary decisions based on
so-called parse discriminants (Carter, 1997). When-
ever the grammar is changed, the treebank can be
quickly updated by re-parsing and re-applying the
old annotation decisions. This treebanking process
not only produces gold standard trees, but also a set
of non-gold trees which provides the negative train-
ing data necessary for a discriminative maximum en-
tropy model.

The standard process for creating a parse selection
model is:

1. parse the training set, recording up to 500
highest-ranking parses for each sentence;

2. treebank the training set;

3. extract features from the gold and non-gold
parses;

4. learn feature weights using the TADM toolkit.1

(Malouf, 2002)

The useful training data from this process is the
parses from those sentences for which: more than
one parse was found; and at least one parse has been
annotated as correct. That is, there needs to be both
gold and non-gold trees for any sentence to be used
in training the discriminative model.

1http://tadm.sourceforge.net/

There are two issues with this process for new
grammars. Firstly, treebanking takes many person-
hours, and is hence both time-consuming and ex-
pensive. Complicating that is the second issue: N -
best parsing requires a statistical model. While it is
possible to parse exhaustively with no model, pars-
ing is much slower, since the unpacking of results
is time-consuming. Selective unpacking (Zhang et
al., 2007) speeds this up a great deal, but requires
a parse selection model. Treebanking is also much
slower when the parser must be run exhaustively,
since there are usually many more analyses to man-
ually discard.

This work hopes to alleviate both problems. By
producing a statistical model without requiring hu-
man treebanking, we can have a working and effi-
cient parser with less human effort. Even if the top-
1 parses this parser produces are not as accurate as
those trained on gold standard data, this model can
be used to produce the N -best analyses for the tree-
banker. Since our models are much better than ran-
dom selection, we can afford to reduce N and still
have a reasonable likelihood that the correct parse
is in that top N , making the job of the treebanker
much faster, and potentially leading to even better
parse selection accuracy based on semi-supervised
or fully-supervised parse selection.

3 Data and evaluation

Our ultimate goal is to use these methods for under-
resourced languages but, since there are no pre-
existing treebanks for these languages, we have no
means to measure which method produces the best
results. Hence, in this work, we experiment with
languages and grammars where we have gold stan-
dard data, in order to be able to evaluate the qual-
ity of the parse selection models. Since we have
gold-standard trained models to compare with, this
enables us to fully explore how these unsupervised
methods work, and show which methods are worth
trying in the more time-consuming and resource-
intensive future experiments on other languages. It
is worth reinforcing that the gold-standard data is
used for evaluation only, except in calculating the
supervised parse selection accuracy as an upper-
bound.

The English Resource Grammar (ERG:
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Language Sentences Average Average
words parses

Japanese 6769 10.5 49.6
English 4855 9.0 59.5

Table 1: Initial model training data, showing the average
word length per sentence, and also the ambiguity mea-
sured as the average number of parses found per sentence.

Flickinger (2002)) is an HPSG-based grammar
of English that has been under development for
many person years. In order to examine the
cross-lingual applicability of our methods, we also
use Jacy, an HPSG-based grammar of Japanese
(Siegel and Bender, 2002). In both cases, we use
grammar versions from the “Barcelona” release,
from mid-2009.

3.1 Training Data

Both of our grammars come with statistical models,
and the parsed data and gold standard annotations
used to create these models are freely available. As
we are trying to simulate a fully unsupervised setup,
we didn’t want any influence from these earlier mod-
els. Hence, in our experiments we used the parsed
data from those sentences that received less than 500
parses and ignored any ranking, thus annulling the
effects of the statistical model. This led to a re-
duced data set, both in the number of sentences, and
in the fact that the more ambiguous sentences were
discarded, but it allows clean comparison between
different methods, without incorporating external in-
formation. The details of our training sets are shown
in Table 1,2 indicating that the sentence lengths are
relatively short, and hence the ambiguity (measured
as average parses per sentence) is low for both our
grammars. The ambiguity figures also suggest that
the Japanese grammar is more constrained (less am-
biguous) than the English grammar, since there are,
on average, more parses per sentence for English,
even with a lower average sentence length.

3.2 Test Data

The test data sets used throughout our experiments
are described in Table 2. The tc-006 data set is from

2Any sentences that do not have both gold and non-gold
analyses (ie, had no correct parse, only one parse, or none) are
not included in these figures.

Test Set Language Sentences Average Average
words parses

tc-006 Japanese 904 10.7 383.9
jhpstgt English 748 12.8 4115.1
catb English 534 17.6 9427.3

Table 2: Test data, showing the average word length per
sentence, and also the ambiguity measured as the average
number of parses found per sentence. Note that the ambi-
guity figures for the English test sets are under-estimates,
since some of the longer sentences timed out before giv-
ing an analysis count.

the same Tanaka Corpus (Tanaka, 2001) which was
used for the Japanese training data. There is a wider
variety of treebanked data available for the English
grammar than for the Japanese. We use the jhp-
stgt data set, which consists of text from Norwegian
tourism brochures, from the same LOGON corpus
as the English training data (Oepen et al., 2004). In
order to have some idea of domain effects, we also
use the catb data set, the text of an essay on open-
source development.3 We see here that the sentences
are longer, particularly for the English data. Also,
since we are not artificially limiting the parse am-
biguity by ignoring those with 500 or more parses,
the ambiguity is much higher. This ambiguity figure
gives some indication of the difficulty of the parse
selection task. Again we see that the English sen-
tences are more ambiguous, much more in this case,
making the parse selection task difficult. In fact,
the English ambiguity figures are an under-estimate,
since some of the longer sentences timed out before
producing a parse count. This ambiguity can be a
function of the sentence length or the language it-
self, but also of the grammar. A more detailed and
informative grammar makes more distinctions, not
all of which are relevant for every analysis.

3.3 Evaluation

The exact match metric is the most common accu-
racy metric used in work with the DELPH-IN tool
set, and refers to the percentage of sentences for
which the top parse matched the gold parse in every
way. This is akin to the sentence accuracy that is oc-
casionally reported in the parsing literature, except

3The Cathedral and the Bazaar, by Eric Raymond.
Available from: http://catb.org/esr/writings/
cathedral-bazaar/
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that it also includes fine-grained syntactico-semantic
features that are not often present in other parsing
frameworks. Exact match is a useful metric for parse
selection evaluation, but it is very blunt-edged, and
gives no way of evaluating how close the top parse
was to the gold standard. Since these are very de-
tailed analyses, it is possible to get one detail wrong
and still have a useful analysis. Hence, in addition
to exact match, we also use the EDMNA evalua-
tion defined by Dridan (2009). This is a predicate–
argument style evaluation, based on the semantic
output of the parser (MRS: Minimal Recursion Se-
mantics (Copestake et al., 2005)). This metric is
broadly comparable to the predicate–argument de-
pendencies of CCGBank (Hockenmaier and Steed-
man, 2007) or of the ENJU grammar (Miyao and
Tsujii, 2008), and also somewhat similar to the
grammatical relations (GR) of the Briscoe and Car-
roll (2006) version of DepBank. The EDMNA met-
ric matches triples consisting of predicate names and
the argument type that connects them.4

4 Initial Experiments

All of our experiments are based on the same basic
process: (1) for each sentence in the training data
described in Section 3.1, label a subset of analyses
as correct and the remainder as incorrect; (2) train
a model using the same features and learner as in
the standard process of Section 2; (3) parse the test
data using that model; and (4) evaluate the accuracy
of the top analyses. The differences lay in how the
‘correct’ analyses are selected each time. Each of
the following sections detail different methods for
nominating which of the (up to 500) analyses from
the training data should be considered pseudo-gold
for training the parse selection model.

4.1 Upperbound and baseline models
As a first step we evaluated each data set using an
upperbound and a baseline model. The upperbound
model in this case is the model trained with gold
standard annotations. These accuracy figures are
slightly lower than others found in the literature for
this data, since, to allow for comparison, we lim-
ited the training data to the sets described in Table 1.

4The full EDM metric also includes features such as tense
and aspect, but this is less comparable to the other metrics men-
tioned.

Test Set Exact EDM
Match Precision Recall F-score

tc-006 72.90 0.961 0.957 0.959
jhpstgt 48.07 0.912 0.908 0.910
catb 22.29 0.838 0.839 0.839

Table 3: Accuracy of the gold standard-based parse se-
lection model.

Test Set Exact EDM
Match Precision Recall F-score

tc-006 17.26 0.779 0.839 0.807
jhpstgt 12.48 0.720 0.748 0.734
catb 8.30 0.646 0.698 0.671

Table 4: Accuracy of the baseline model, trained on ran-
domly selected pseudo-gold analyses.

By throwing out those sentences with more than 500
parses, we exclude much of the data that is used in
the standard model and so our exact match figures
are slightly lower than might be expected.

For the baseline model, we used random selection
to select our gold analyses. For this experiment, we
randomly assigned one parse from each sentence in
the training data to be correct (and the remainder of
analyses as incorrect), and then used that ‘gold stan-
dard’ to train the model. Results for the upperbound
and baseline models are shown in Tables 3 and 4.

As expected, the results for Japanese are much
higher, since the lower ambiguity makes this an eas-
ier task. The catb test set results suffer, not only
from being longer, more ambiguous sentences, but
also because it is completely out of the domain of
the training data.

The exact match results from the random baseline
are approximately what one might expect, given the
respective ambiguity levels in Table 2. The EDM
figures are perhaps higher than might be expected
given random selection from the entire parse forest.
This results from using a precision grammar, with
an inbuilt notion of grammaticality, hence constrain-
ing the parser to only produce somewhat reasonable
parses, and creating a reasonably high baseline for
our parse selection experiments.

We also tried a separate baseline, eliminating the
parse selection model altogether, and using random
selection directly to select the top analysis. The ex-
act match and EDM precision results were slightly
lower than using random selection to train a model,
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which may be due to the learner giving weight to
features that are common across the training data,
but the differences weren’t significant. Recall was
significantly lower when using random selection di-
rectly, due to the time outs caused by running with-
out a model. For this reason, we use the random
selection-based model results as our baseline for the
other unsupervised parse selection models, noting
that correctly identifying approximately three quar-
ters of the dependencies in the jhpstgt set, and over
80% when using the Japanese grammar, is a fairly
high baseline.

4.2 First attempts

As a first approach to unsupervised parse selection,
we looked at two heuristics to designate some num-
ber of the analyses as ‘gold’ for training. Both of
these heuristics looked independently at the parses
of each sentence, rather than calculating any num-
bers across the whole training set.

The first method builds on the observation from
the random selection-based model baseline exper-
iment that just giving weight to common features
could improve parser accuracy. In this case, we
looked at the edges of the parsing chart. For each
sentence, we counted the number of times an edge
was present in an analysis, and used that number
(normalised by the total number of times any edge
was used) as the edge weight. We then calculated
an analysis score by summing the edge weights of
all the edges in that analysis, and dividing by the
number of edges, to give an average edge weight for
an analysis. All analyses that had the best analysis
score for a sentence were designated ‘gold’. Since it
was possible for multiple analyses to have the same
score, there could be multiple gold analyses for any
one sentence. If all the analyses had the same score,
this sentence could not be used as part of the train-
ing data. This method has the effect of selecting the
parse(s) most like all the others, by some definitions
the centroid of the parse forest. This has some rela-
tionship to the partial training method described by
Clark and Curran (2006), where the most frequent
dependencies where used to train a model for the
C&C CCG parser. In that case, however, the de-
pendencies were extracted only from analyses that
matched the gold standard supertag sequence, rather
than the whole parse forest.

Test Set Exact Match F-score
Edges Branching Edges Branching

tc-006 17.48 21.35 0.815 0.822
jhpstgt 15.27 17.53 0.766 0.780
catb 9.36 10.86 0.713 0.712

Table 5: Accuracy for each test set, measured both as per-
centage of sentences that exactly matched the gold stan-
dard, and f-score over elementary dependencies.

The second heuristic we tried is one often used as
a baseline method: degree of right (or left) branch-
ing. In this instance, we calculated the degree of
branching as the number of right branches in a parse
divided by the number of left branches (and vice
versa for Japanese, a predominantly left-branching
language). In the same way as above, we designated
all parses with the best branching score as ‘gold’.
Again, this is not fully discriminatory, and it was
common to get multiple gold trees for a given sen-
tence.

Table 5 shows the results for these two methods.
All the results show an improvement over the base-
line, with all but the F-score for the Edges method
of tc-006 being at a level of statistical significance.5

The only statistically significant difference between
the Edges and Branching methods is over the jhp-
stgt data set. While improvement over random is
encouraging, the results were still uninspiring and
so we moved on to slightly more complex methods,
described in the next section.

5 Supertagging Experiments

The term supertags was first used by Bangalore and
Joshi (1999) to describe fine-grained part of speech
tags which include some structural or dependency
information. In that original work, the supertags
were LTAG (Schabes and Joshi, 1991) elementary
trees, and they were used for the purpose of speed-
ing up parsing by restricting the allowable leaf types.
Subsequent work involving supertags has mostly fo-
cussed on this efficiency goal, but they can also be
used to inform parse selection. Dalrymple (2006)
and Blunsom (2007) both look at how discrimina-
tory a tag sequence is in filtering a parse forest. This

5All statistical significance tests in these experiments use the
computationally-intensive randomisation test described in Yeh
(2000), with p < 0.05.
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work has shown that tag sequences can be success-
fully used to restrict the set of parses produced, but
generally are not discriminatory enough to distin-
guish a single best parse. Toutanova et al. (2002)
present a similar exploration but also go on to in-
clude probabilities from a HMM model into the
parse selection model as features. There has also
been some work on using lexical probabilities for
domain adaptation of a model (Hara et al., 2007;
Rimell and Clark, 2008). In Dridan (2009), tag se-
quences from a supertagger are used together with
other factors to re-rank the top 500 parses from the
same parser and English grammar we use in this re-
search, and achieve some improvement in the rank-
ing where tagger accuracy is sufficiently high. We
use a similar method, one level removed, in that we
use the tag sequences to select the ‘gold’ parse(s)
that are then used to train a model, as in the previous
sections.

5.1 Gold Supertags

In order to test the viability of this method, we first
experimented using gold standard tags, extracted
from the gold standard parses. Supertags come in
many forms, depending on both the grammar for-
malism and the implementation. For this work, we
use HPSG lexical types (lextypes), the native word
classes in the grammars. These lextypes encode part
of speech and subcategorisation information, as well
as some more idiosyncratic features of words, such
as restrictions on preposition forms, mass/count dis-
tinctions and comparative versus superlative forms
of adjectives. As a few examples from the En-
glish grammar, v np le represents a basic transi-
tive verb, while n pp c-of le represents a count
noun that optionally takes a prepositional phrase
complement headed by of. The full definition of a
lextype consists of a many-featured AVM (attribute
value matrix), but the type names have been de-
liberately chosen to represent the main features of
each type. In the Dridan (2009) work, parse ranking
showed some improvement when morphological in-
formation was added to the tags. Hence, we also
look at more fine-grained tags constructed by con-
catenating appropriate morphological rules onto the
lextypes, as in v np le:past verb orule (ie a
simple transitive verb with past tense).

We used these tags by extracting the tag sequence

Test Set Exact Match F-score
lextype +morph lextype +morph

tc-006 40.49 41.37 0.903 0.903
jhpstgt 32.93 32.93 0.862 0.858
catb 20.41 19.85 0.798 0.794

Table 6: Accuracy using gold tag sequence compatibility
to select the ‘gold’ parse(s).

from the leaf types of all the parses in the forest,
marking as ‘gold’ any parse that had the same se-
quence as the gold standard parse and then training
the models as before. Table 6 shows the results from
parsing with models based on both the basic lextype
and the lextype with morphology. The results are
promising. They still fall well below training purely
on gold standard data (at least for the in-domain
sets), since the tag sequences are not fully discrimi-
natory and hence noise can creep in, but accuracy is
significantly better than the heuristic methods tried
earlier. This suggested that, at least with a reason-
ably accurate tagger, this was a viable strategy for
training a model. With no significant difference be-
tween the basic and +morph versions of the tag set,
we decided to use the basic lextypes as tags, since
a smaller tag set should be easier to tag with. How-
ever, we first had to train a tagger, without using any
gold standard data.

5.2 Unsupervised Supertagging

Research into unsupervised part-of-speech tagging
with a tag dictionary (sometimes called weakly su-
pervised POS tagging) has been going on for many
years (cf Merialdo (1994), Brill (1995)), but gener-
ally using a fairly small tag set. The only work we
know of on unsupervised tagging for the more com-
plex supertags is from Baldridge (2008), and more
recently, Ravi et al. (2010a). In this work, the con-
straining nature of the (CCG) grammar is used to
mitigate the problem of having a much more am-
biguous tag set. Our method has a similar under-
lying idea, but the implementation differs both in
the way we extract the word-to-tag mappings, and
also how we extract and use the information from
the grammar to initialise the tagger model.

We chose to use a simple first-order Hidden
Markov Model (HMM) tagger, using the implemen-
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tation of Dekang Lin,6 which re-estimates probabil-
ities, given an initial model, using the Baum-Welch
variant of the Expectation-Maximisation (EM) algo-
rithm. One possibility for an initial model was to ex-
tract the word-to-lextype mappings from the gram-
mar lexicon as Baldridge does, and make all starting
probabilities uniform. However, our lexicon maps
between lextypes and lemmas, rather than inflected
word forms, which is what we’d be tagging. That
is to say, from the lexicon we could learn that the
lemma walk can be tagged as v pp* dir le, but
we could not directly extract the fact that therefore
walked should also receive that tag.7 For this rea-
son, we decided it would be simplest to initialise
our probability estimates using the output of the
parser, feeding in only those tag sequences which
are compatible with analyses in the parse forest for
that item. This method takes advantage of the fact
that, because the grammars are heavily constrained,
the parse forest only contains viable tag sequences.
Since parsing without a model is slow, we restricted
the training set to those sentences shorter than a
specific word length (12 for English and 15 for
Japanese, since that was the less ambiguous gram-
mar and hence faster).

Table 7 shows how much parsed data this gave us.
From this parsed data we extracted tag-to-word and
tag-to-tag frequency counts from all parses for all
sentences, and used these frequencies to produce the
emission and transition probabilities, respectively.
The emission probabilities were taken directly from
the normalised frequency counts, but for the tran-
sition probabilities we allow for all possible transi-
tions, and add one to all counts before normalising.
This model we call our initial counts model. The
EM trained model is then produced by starting with
this initial model and running the Baum-Welch al-
gorithm using raw text sentences from the training
corpus.

5.3 Supertagging-based parse selection models

We use both the initial counts and EM trained
models to tag the training data from Table 1 and
then compared this with the extracted tag sequences

6Available from http://webdocs.cs.ualberta.
ca/˜lindek/hmm.htm

7Morphological processing occurs before lexicon lookup in
the PET parser.

Japanese English
Parsed Sentences 9760 3770
Average Length 9.63 6.36
Average Parses 80.77 96.29
Raw Sentences 13500 9410
Raw Total Words 146053 151906

Table 7: Training data for the HMM tagger (both the
parsed data from which the initial probabilities were de-
rived, and the raw data which was used to estimated the
EM trained models).

Test Set
Exact Match F-score

Initial EM Initial EM
counts trained counts trained

tc-006 32.85 40.38 0.888 0.898
jhpstgt 26.29 24.04 0.831 0.827
catb 14.61 14.42 0.782 0.783

Table 8: Accuracy using tag sequences from a HMM tag-
ger to select the ‘correct’ parse(s). The initial counts
model was based on using counts from a parse forest
to approximate the emission and transition probabilities.
The EM trained model used the Baum Welch algorithm to
estimate the probabilities, starting from the initial counts
state.

used in the gold tag experiment. Since we could
no longer assume that our tag sequence would be
present within the extracted tag sequences, we used
the percentage of tokens from a parse whose lextype
matched our tagged sequence as the parse score.
Again, we marked as ‘gold’ any parse that had the
best parse score for each sentence, and trained a new
parse selection model.

Table 8 shows the results of parsing with these
models. The results are impressive, significantly
higher than all our previous unsupervised methods.

Interestingly, we note that there is no significant
difference between the initial count and EM trained
models for the English data. To explore why this
might be so, we looked at the tagger accuracy for
both models over the respective training data sets,
shown in Table 9. The results are not conclusive. For
both languages, the EM trained model is less accu-
rate, though not significantly so for Japanese. How-
ever, this insignificant tagger accuracy decrease for
Japanese produced a significant increase in parser
accuracy, while a more pronounced tagger accuracy
decrease had no significant effect on parser accuracy
in English.
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Language Initial counts EM trained
Japanese 84.4 83.3
English 71.7 64.6

Table 9: Tagger accuracy over the training data, using
both the initial counts and the EM trained models.

There is much potential for further work in this
direction, experimenting with more training data or
more estimation iterations, or even looking at dif-
ferent estimators as suggested in Johnson (2007)
and Ravi et al. (2010b). There is also the issue of
whether tag accuracy is the best measure for indicat-
ing potential parse accuracy. The Japanese parsing
results are already equivalent to those achieved us-
ing gold standard tags. It is possible that parsing ac-
curacy is reasonably insensitive to tagger accuracy,
but it is also possible that there is a better metric to
look at, such as tag accuracy over frequently con-
fused tags.

6 Discussion

The results of Table 8 show that, using no human
annotated data, we can get exact match results that
are almost half way between our random baseline
and our gold-standard-trained upperbound. EDM F-
scores of 90% and 83% over in-domain data com-
pare well with dependency-based scores from other
parsers, although a direct comparison is very diffi-
cult to do (Clark and Curran, 2007a; Miyao et al.,
2007). It still remains to see whether this level of ac-
curacy is good enough to be useful. The main aim of
this work is to bootstrap the treebanking process for
new grammars, but to conclusively show the efficacy
of our methods in that situation requires a long-term
experiment that we are now starting, based on the
results we have here. Another possible use for these
methods was alluded to in Section 2: producing a
new model for a new domain.

Results at every stage have been much worse for
the catb data set, compared to the other jhpstgt En-
glish data set. While sentence length plays some
part, the major reason for this discrepancy was do-
main mismatch between the training and test data.
One method that has been successfully used for do-
main adaption in parsing is self-training (McClosky
et al., 2006). In this process, data from the new do-
main is parsed with the parser trained on the old do-

Source of ‘Gold’ Data Exact Match F-score
Random Selection 8.30 0.671
Supertags (initial counts) 14.61 0.782
Gold Standard 22.29 0.839
Self-training 15.92 0.791

Table 10: Accuracy results over the out-of-domain catb
data set, using the initial counts unsupervised model to
produce in-domain training data in a self-training set up.
The previous results are shown for easy comparison.

main, and then the top analyses of the parsed new
domain data are added to the training data, and the
parser is re-trained. This is generally considered a
semi-supervised method, since the original parser
is trained on gold standard data. In our case, we
wanted to test whether parsing data from the new do-
main using our unsupervised parse selection model
was accurate enough to still get an improvement us-
ing self-training for domain adaptation.

It is not immediately clear what one might con-
sider to be the ‘domain’ of the catb test set, since do-
main is generally very vaguely defined. In this case,
there was a limited amount of text available from
other essays by the same author.8 While the topics
of these essays vary, they all relate to the social side
of technical communities, and so we used this to rep-
resent in-domain data for the catb test set. It is, how-
ever, a fairly small amount of data for self-training,
being only around 1000 sentences. We added the re-
sults of parsing this data to the training set we used
to create the initial counts model and again retrained
and parsed. Table 10 shows the results. Previous re-
sults for the catb data set are given for comparison.

The results show that the completely unsuper-
vised parse selection method produces a top parse
that is at least accurate enough to be used in self-
training, providing a cheap means of domain adapta-
tion. In future work, we hope to explore this avenue
of research further.

7 Conclusions and Further Work

Comparing Tables 8 and 4, we can see that for both
English and Japanese, we are able to achieve parse
selection accuracy well above our baseline of a ran-

8http://www.catb.org/esr/writings/
homesteading/
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dom selection-based model using only the informa-
tion available in the grammar and raw text. This
was in part because it is possible to extract a rea-
sonable tagging model from uncorrected parse data,
due to the constrained nature of these grammars.
These models will hopefully allow grammar engi-
neers to more easily build statistical models for new
languages, using nothing more than their new gram-
mar and raw text.

Since fully evaluating the potential for building
models for new languages is a long-term ongoing
experiment, we looked at a more short-term eval-
uation of our unsupervised parse selection meth-
ods: building models for new domains. A pre-
liminary self-training experiment, using our initial
counts tagger trained model as the starting point,
showed promising results for domain adaptation.

There are plenty of directions for further work
arising from these results. The issues surrounding
what makes a good tagger for this purpose, and how
can we best learn one without gold training data,
would be one possibly fruitful avenue for further
exploration. Another interesting slant would be to
investigate domain effects of the tagger. Previous
work has already found that training just a lexical
model on a new domain can improve parsing results.
Since the optimal tagger ‘training’ we saw here (for
English) was merely to read off frequency counts for
parsed data, it would be easy to retrain the tagger on
different domains. Alternatively, it would be inter-
esting so see how much difference it makes to train
the tagger on one set of data, and use that to tag a
model training set from a different domain. Other
methods of incorporating the tagger output could
also be investigated. Finally, a user study involv-
ing a grammar engineer working on a new language
would be useful to validate the results we found here
and confirm whether they are indeed helpful in boot-
strapping a new grammar.
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Abstract

It is well known that parsing accuracies drop
significantly on out-of-domain data. What is
less known is that some parsers suffer more
from domain shifts than others. We show
that dependency parsers have more difficulty
parsing questions than constituency parsers.
In particular, deterministic shift-reduce depen-
dency parsers, which are of highest interest
for practical applications because of their lin-
ear running time, drop to 60% labeled accu-
racy on a question test set. We propose an
uptraining procedure in which a deterministic
parser is trained on the output of a more ac-
curate, but slower, latent variable constituency
parser (converted to dependencies). Uptrain-
ing with 100K unlabeled questions achieves
results comparable to having 2K labeled ques-
tions for training. With 100K unlabeled and
2K labeled questions, uptraining is able to
improve parsing accuracy to 84%, closing
the gap between in-domain and out-of-domain
performance.

1 Introduction

Parsing accuracies on the popular Section 23 of the
Wall Street Journal (WSJ) portion of the Penn Tree-
bank have been steadily improving over the past
decade. At this point, we have many different pars-
ing models that reach and even surpass 90% depen-
dency or constituency accuracy on this test set (Mc-
Donald et al., 2006; Nivre et al., 2007; Charniak and
Johnson, 2005; Petrov et al., 2006; Carreras et al.,
2008; Koo and Collins, 2010). Quite impressively,
models based on deterministic shift-reduce parsing

algorithms are able to rival the other computation-
ally more expensive models (see Nivre (2008) and
references therein for more details). Their linear
running time makes them ideal candidates for large
scale text processing, and our model of choice for
this paper.

Unfortunately, the parsing accuracies of all mod-
els have been reported to drop significantly on out-
of-domain test sets, due to shifts in vocabulary and
grammar usage (Gildea, 2001; McClosky et al.,
2006b; Foster, 2010). In this paper, we focus our
attention on the task of parsing questions. Questions
pose interesting challenges for WSJ-trained parsers
because they are heavily underrepresented in the
training data (there are only 334 questions among
the 39,832 training sentences). At the same time,
questions are of particular interest for user facing
applications like question answering or web search,
which necessitate parsers that can process questions
in a fast and accurate manner.

We start our investigation in Section 3 by train-
ing several state-of-the-art (dependency and con-
stituency) parsers on the standard WSJ training set.
When evaluated on a question corpus, we observe
dramatic accuracy drops exceeding 20% for the de-
terministic shift-reduce parsers. In general, depen-
dency parsers (McDonald et al., 2006; Nivre et al.,
2007), seem to suffer more from this domain change
than constituency parsers (Charniak and Johnson,
2005; Petrov et al., 2006). Overall, the latent vari-
able approach of Petrov et al. (2006) appears to gen-
eralize best to this new domain, losing only about
5%. Unfortunately, the parsers that generalize better
to this new domain have time complexities that are
cubic in the sentence length (or even higher), render-
ing them impractical for web-scale text processing.
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Figure 1: Example constituency tree from the QuestionBank (a) converted to labeled Stanford dependencies (b).

We therefore propose anuptraining method, in
which a deterministic shift-reduce parser is trained
on the output of a more accurate, but slower parser
(Section 4). This type of domain adaptation is rem-
iniscent of self-training (McClosky et al., 2006a;
Huang and Harper, 2009) and co-training (Blum and
Mitchell, 1998; Sagae and Lavie, 2006), except that
the goal here is not to further improve the perfor-
mance of the very best model. Instead, our aim is
to train a computationally cheaper model (a linear
time dependency parser) to match the performance
of the best model (a cubic time constituency parser),
resulting in a computationally efficient, yet highly
accurate model.

In practice, we parse a large amount of unlabeled
data from the target domain with the constituency
parser of Petrov et al. (2006) and then train a deter-
ministic dependency parser on this noisy, automat-
ically parsed data. The accuracy of the linear time
parser on a question test set goes up from 60.06%
(LAS) to 76.94% after uptraining, which is compa-
rable to adding 2,000 labeled questions to the train-
ing data. Combining uptraining with 2,000 labeled
questions further improves the accuracy to 84.14%,
fully recovering the drop between in-domain and
out-of-domain accuracy.

We also present a detailed error analysis in Sec-
tion 5, showing that the errors of the WSJ-trained
model are primarily caused by sharp changes in syn-
tactic configurations and only secondarily due to
lexical shifts. Uptraining leads to large improve-
ments across all error metrics and especially on im-
portant dependencies like subjects (nsubj).

2 Experimental Setup

We used the following experimental protocol
throughout the paper.

2.1 Data

Our main training set consists of Sections 02-21 of
the Wall Street Journal portion of the Penn Treebank
(Marcus et al., 1993), with Section 22 serving as de-
velopment set for source domain comparisons. For
our target domain experiments, we evaluate on the
QuestionBank (Judge et al., 2006), which includes
a set of manually annotated questions from a TREC
question answering task. The questions in the Ques-
tionBank are very different from our training data in
terms of grammatical constructions and vocabulary
usage, making this a rather extreme case of domain-
adaptation. We split the 4,000 questions contained
in this corpus in three parts: the first 2,000 ques-
tions are reserved as a small target-domain training
set; the remaining 2,000 questions are split in two
equal parts, the first serving as development set and
the second as our final test set. We report accuracies
on the developments sets throughout this paper, and
test only at the very end on the final test set.

We convert the trees in both treebanks from con-
stituencies to labeled dependencies (see Figure 1)
using the Stanford converter, which produces 46
types of labeled dependencies1 (de Marneffe et al.,
2006). We evaluate on both unlabeled (UAS) and
labeled dependency accuracy (LAS).2

Additionally, we use a set of 2 million ques-
tions collected from Internet search queries as unla-
beled target domain data. All user information was
anonymized and only the search query string was re-
tained. The question sample is selected at random
after passing two filters that select queries that are

1We use the Stanford Lexicalized Parser v1.6.2.
2Because the QuestionBank does not contain function tags,

we decided to strip off the function tags from the WSJ be-
fore conversion. The Stanford conversion only uses the -ADV
and -TMP tags, and removing all function tags from the WSJ
changed less than 0.2% of the labels (primarily tmod labels).
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Training on Evaluating on WSJ Section 22 Evaluating on QuestionBank
WSJ Sections 02-21 F1 UAS LAS POS F1 UAS LAS POS

Nivre et al. (2007) — 88.42 84.89 95.00 — 74.14 62.81 88.48
McDonald et al. (2006) — 89.47 86.43 95.00 — 80.01 67.00 88.48

Charniak (2000) 90.27 92.33 89.86 96.71 83.01 85.61 73.59 90.49
Charniak and Johnson (2005) 91.92 93.56 91.24 96.69 84.47 87.13 75.94 90.59
Petrov et al. (2006) 90.70 92.91 90.48 96.27 85.52 88.17 79.10 90.57
Petrov (2010) 92.10 93.85 91.60 96.44 86.62 88.77 79.92 91.08

Our shift-reduce parser — 88.24 84.69 95.00 — 72.23 60.06 88.48
Our shift-reduce parser (gold POS) — 90.51 88.53 100.00 — 78.30 68.92 100.00

Table 1: Parsing accuracies for parsers trained on newswiredata and evaluated on newswire and question test sets.

similar in style to the questions in the QuestionBank:
(i) the queries must start with an English function
word that can be used to start a question (what, who
when, how, why, can, does, etc.), and (ii) the queries
have a maximum length of 160 characters.

2.2 Parsers

We use multiple publicly available parsers, as well
as our own implementation of a deterministic shift-
reduce parser in our experiments. The depen-
dency parsers that we compare are the determinis-
tic shift-reduce MaltParser (Nivre et al., 2007) and
the second-order minimum spanning tree algorithm
based MstParser (McDonald et al., 2006). Our shift-
reduce parser is a re-implementation of the Malt-
Parser, using a standard set of features and a lin-
ear kernel SVM for classification. We also train and
evaluate the generative lexicalized parser of Char-
niak (2000) on its own, as well as in combination
with the discriminative reranker of Charniak and
Johnson (2005). Finally, we run the latent variable
parser (a.k.a. BerkeleyParser) of Petrov et al. (2006),
as well as the recent product of latent variable gram-
mars version (Petrov, 2010). To facilitate compar-
isons between constituency and dependency parsers,
we convert the output of the constituency parsers to
labeled dependencies using the same procedure that
is applied to the treebanks. We also report their F1

scores for completeness.
While the constituency parsers used in our experi-

ments view part-of-speech (POS) tagging as an inte-
gral part of parsing, the dependency parsers require
the input to be tagged with a separate POS tagger.
We use the TnT tagger (Brants, 2000) in our experi-

ments, because of its efficiency and ease of use. Tag-
ger and parser are always trained on the same data.

3 Parsing Questions

We consider two domain adaptation scenarios in this
paper. In the first scenario (sometimes abbreviated
as WSJ), we assume that we do not have any labeled
training data from the target domain. In practice, this
will always be the case when the target domain is
unknown or very diverse. The second scenario (ab-
breviated as WSJ+QB) assumes a small amount of
labeled training data from the target domain. While
this might be expensive to obtain, it is certainly fea-
sible for narrow domains (e.g. questions), or when a
high parsing accuracy is really important.

3.1 No Labeled Target Domain Data

We first trained all parsers on the WSJ training set
and evaluated their performance on the two domain
specific evaluation sets (newswire and questions).
As can be seen in the left columns of Table 1, all
parsers perform very well on the WSJ development
set. While there are differences in the accuracies,
all scores fall within a close range. The table also
confirms the commonly known fact (Yamada and
Matsumoto, 2003; McDonald et al., 2005) that con-
stituency parsers are more accurate at producing de-
pendencies than dependency parsers (at least when
the dependencies were produced by a deterministic
transformation of a constituency treebank, as is the
case here).

This picture changes drastically when the per-
formance is measured on the QuestionBank devel-
opment set (right columns in Table 1). As one
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Evaluating on Training on WSJ + QB Training on QuestionBank
QuestionBank F1 UAS LAS POS F1 UAS LAS POS

Nivre et al. (2007) — 83.54 78.85 91.32 — 79.72 73.44 88.80
McDonald et al. (2006) — 84.95 80.17 91.32 — 82.52 77.20 88.80

Charniak (2000) 89.40 90.30 85.01 94.17 79.70 76.69 69.69 87.84
Petrov et al. (2006) 90.96 90.98 86.90 94.01 86.62 84.09 78.92 87.56
Petrov (2010) 92.81 92.23 88.84 94.48 87.72 85.07 80.08 87.79

Our shift-reduce parser — 83.70 78.27 91.32 — 80.44 74.29 88.80
Our shift-reduce parser (gold POS) — 89.39 86.60 100.00 — 87.31 84.15 100.00

Table 2: Parsing accuracies for parsers trained on newswireand question data and evaluated on a question test set.

might have expected, the accuracies are significantly
lower, however, the drop for some of the parsers
is shocking. Most notably, the deterministic shift-
reduce parsers lose almost 25% (absolute) on la-
beled accuracies, while the latent variable parsers
lose around 12%.3 Note also that even with gold
POS tags, LAS is below 70% for our determinis-
tic shift-reduce parser, suggesting that the drop in
accuracy is primarily due to a syntactic shift rather
than a lexical shift. These low accuracies are espe-
cially disturbing when one considers that the aver-
age question in the evaluation set is only nine words
long and therefore potentially much less ambiguous
than WSJ sentences. We will examine the main error
types more carefully in Section 5.

Overall, the dependency parsers seem to suf-
fer more from the domain change than the con-
stituency parsers. One possible explanation is that
they lack the global constraints that are enforced by
the (context-free) grammars. Even though the Mst-
Parser finds the globally best spanning tree, all con-
straints are local. This means for example, that it
is not possible to require the final parse to contain
a verb (something that can be easily expressed by
a top-level production of the form S→ NP VP in a
context free grammar). This is not a limitation of de-
pendency parsers in general. For example, it would
be easy to enforce such constraints in the Eisner
(1996) algorithm or using Integer Linear Program-
ming approaches (Riedel and Clarke, 2006; Martins
et al., 2009). However, such richer modeling capac-
ity comes with a much higher computational cost.

Looking at the constituency parsers, we observe

3The difference between our shift-reduce parser and the
MaltParser are due to small differences in the feature sets.

that the lexicalized (reranking) parser of Charniak
and Johnson (2005) loses more than the latent vari-
able approach of Petrov et al. (2006). This differ-
ence doesn’t seem to be a difference of generative
vs. discriminative estimation. We suspect that the
latent variable approach is better able to utilize the
little evidence in the training data. Intuitively speak-
ing, some of the latent variables seem to get allo-
cated for modeling the few questions present in the
training data, while the lexicalization contexts are
not able to distinguish between declarative sentences
and questions.

To verify this hypothesis, we conducted two addi-
tional experiments. In the first experiment, we col-
lapsed the question specific phrasal categories SQ
and SBARQ to their declarative sentence equivalents
S and SBAR. When the training and test data are
processed this way, the lexicalized parser loses 1.5%
F1, while the latent variable parser loses only 0.7%.
It is difficult to examine the grammars, but one can
speculate that some of the latent variables were used
to model the question specific constructions and the
model was able to re-learn the distinctions that we
purposefully collapsed. In the second experiment,
we removed all questions from the WSJ training set
and retrained both parsers. This did not make a
significant difference when evaluating on the WSJ
development set, but of course resulted in a large
performance drop when evaluating on the Question-
Bank. The lexicalized parser came out ahead in this
experiment,4 confirming our hypothesis that the la-
tent variable model is better able to pick up the small
amount of relevant evidence that is present in the
WSJ training data (rather than being systematically

4The F1 scores were 52.40% vs. 56.39% respectively.

708



better suited for modeling questions).

3.2 Some Labeled Target Domain Data

In the above experiments, we considered a situation
where we have no labeled training data from the tar-
get domain, as will typically be the case. We now
consider a situation where a small amount of labeled
data (2,000 manually parsed sentences) from the do-
main of interest is available for training.

We experimented with two different ways of uti-
lizing this additional training data. In a first experi-
ment, we trained models on the concatenation of the
WSJ and QuestionBank training sets (we did not at-
tempt to weight the different corpora). As Table 2
shows (left columns), even a modest amount of la-
beled data from the target domain can significantly
boost parsing performance, giving double-digit im-
provements in some cases. While not shown in the
table, the parsing accuracies on the WSJ develop-
ment set where largely unaffected by the additional
training data.

Alternatively, one can also train models exclu-
sively on the QuestionBank data, resulting in ques-
tion specific models. The parsing accuracies of
these domain-specific models are shown in the right
columns of Table 2, and are significantly lower than
those of models trained on the concatenated training
sets. They are often times even lower than the results
of parsers trained exclusively on the WSJ, indicating
that 2,000 sentences are not sufficient to train accu-
rate parsers, even for quite narrow domains.

4 Uptraining for Domain-Adaptation

The results in the previous section suggest that
parsers without global constraints have difficul-
ties dealing with the syntactic differences between
declarative sentences and questions. A possible ex-
planation is that similar word configurations can ap-
pear in both types of sentences, but with very differ-
ent syntactic interpretation. Local models without
global constraints are therefore mislead into dead-
end interpretations from which they cannot recover
(McDonald and Nivre, 2007). Our approach will
therefore be to use a large amount of unlabeled data
to bias the model towards the appropriate distribu-
tion for the target domain. Rather than looking
for feature correspondences between the domains
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Figure 2: Uptraining with large amounts of unlabeled
data gives significant improvements over two different
supervised baselines.

(Blitzer et al., 2006), we propose to use automati-
cally labeled target domain data to learn the target
domain distribution directly.

4.1 Uptraining vs. Self-training

The idea of training parsers on their own output has
been around for as long as there have been statis-
tical parsers, but typically does not work well at
all (Charniak, 1997). Steedman et al. (2003) and
Clark et al. (2003) present co-training procedures
for parsers and taggers respectively, which are ef-
fective when only very little labeled data is avail-
able. McClosky et al. (2006a) were the first to im-
prove a state-of-the-art constituency parsing system
by utilizing unlabeled data for self-training. In sub-
sequent work, they show that the same idea can be
used for domain adaptation if the unlabeled data is
chosen accordingly (McClosky et al., 2006b). Sagae
and Tsujii (2007) co-train two dependency parsers
by adding automatically parsed sentences for which
the parsers agree to the training data. Finally, Suzuki
et al. (2009) present a very effective semi-supervised
approach in which features from multiple generative
models estimated on unlabeled data are combined in
a discriminative system for structured prediction.

All of these approaches have in common that their
ultimate goal is to improve the final performance.
Our work differs in that instead of improving the
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Uptraining with Using only WSJ data Using WSJ + QB data
different base parsers UAS LAS POS UAS LAS POS

Baseline 72.23 60.06 88.48 83.70 78.27 91.32

Self-training 73.62 61.63 89.60 84.26 79.15 92.09

Uptraining on Petrov et al. (2006) 86.02 76.94 90.75 88.38 84.02 93.63
Uptraining on Petrov (2010) 85.21 76.19 90.74 88.63 84.14 93.53

Table 3: Uptraining substantially improves parsing accuracies, while self-training gives only minor improvements.

performance of the best parser, we want to build
a more efficient parser that comes close to the ac-
curacy of the best parser. To do this, we parse
the unlabeled data with our most accurate parser
and generate noisy, but fairly accurate labels (parse
trees) for the unlabeled data. We refer to the parser
used for producing the automatic labels as the base
parser (unless otherwise noted, we used the latent
variable parser of Petrov et al. (2006) as our base
parser). Because the most accurate base parsers are
constituency parsers, we need to convert the parse
trees to dependencies using the Stanford converter
(see Section 2). The automatically parsed sentences
are appended to the labeled training data, and the
shift-reduce parser (and the part-of-speech tagger)
are trained on this new training set. We did not
increase the weight of the WSJ training data, but
weighted the QuestionBank training data by a fac-
tor of ten in the WSJ+QB experiments.

4.2 Varying amounts of unlabeled data

Figure 2 shows the efficacy of uptraining as a func-
tion of the size of the unlabeled data. Both la-
beled (LAS) and unlabeled accuracies (UAS) im-
prove sharply when automatically parsed sentences
from the target domain are added to the training data,
and level off after 100,000 sentences. Comparing
the end-points of the dashed lines (models having
access only to labeled data from the WSJ) and the
starting points of the solid lines (models that have
access to both WSJ and QuestionBank), one can see
that roughly the same improvements (from 72% to
86% UAS and from 60% to 77% LAS) can be ob-
tained by having access to 2,000 labeled sentences
from the target domain or uptraining with a large
amount of unlabeled data from the target domain.
The benefits seem to be complementary and can be
combined to give the best results. The final accu-

racy of 88.63 / 84.14 (UAS / LAS) on the question
evaluation set is comparable to the in-domain per-
formance on newswire data (88.24 / 84.69).

4.3 Varying the base parser

Table 3 then compares uptraining on the output of
different base parsers to pure self-training. In these
experiments, the same set of 500,000 questions was
parsed by different base parsers. The automatic
parses were then added to the labeled training data
and the parser was retrained. As the results show,
self-training provides only modest improvements of
less than 2%, while uptraining gives double-digit
improvements in some cases. Interestingly, there
seems to be no substantial difference between up-
training on the output of a single latent variable
parser (Petrov et al., 2006) and a product of latent
variable grammars (Petrov, 2010). It appears that
the roughly 1% accuracy difference between the two
base parsers is not important for uptraining.

4.4 POS-less parsing

Our uptraining procedure improves parse quality on
out-of-domain data to the level of in-domain ac-
curacy. However, looking closer at Table 3, one
can see that the POS accuracy is still relatively low
(93.53%), potentially limiting the final accuracy.

To remove this limitation (and also the depen-
dence on a separate POS tagger), we experimented
with word cluster features. As shown in Koo et al.
(2008), word cluster features can be used in con-
junction with POS tags to improve parsing accuracy.
Here, we use them instead of POS tags in order to
further reduce the domain-dependence of our model.
Similar to Koo et al. (2008), we use the Brown clus-
tering algorithm (Brown et al., 1992) to produce a
deterministic hierarchical clustering of our input vo-
cabulary. We then extract features based on vary-
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UAS LAS POS

Part-of-Speech Tags 88.35 84.05 93.53
Word Cluster Features 87.92 83.73 —

Table 4: Parsing accuracies of uptrained parsers with and
without part-of-speech tags and word cluster features.

ing cluster granularities (6 and 10 bits in our experi-
ments). Table 4 shows that roughly the same level of
accuracy can be achieved with cluster based features
instead of POS tag features. This change makes our
parser completely deterministic and enables us to
process sentences in a single left-to-right pass.

5 Error Analysis

To provide a better understanding of the challenges
involved in parsing questions, we analyzed the er-
rors made by our WSJ-trained shift-reduce parser
and also compared them to the errors that are left
after uptraining.

5.1 POS errors

Many parsing errors can be traced back to POS tag-
ging errors, which are much more frequent on out-
of-domain data than on in-domain data (88.8% on
the question data compared to above 95.0% on WSJ
data). Part of the reason for the lower POS tagging
accuracy is the higher unknown word ratio (7.3% on
the question evaluation set, compared to 3.4% on the
WSJ evaluation set). Another reason is a change in
the lexical distribution.

For example, wh-determiners (WDT) are quite
rare in the WSJ training data (relative frequency
0.45%), but five times more common in the Ques-
tionBank training data (2.49%). In addition to this
frequency difference, 52.43% of the WDTs in the
WSJ are the word “which” and 46.97% are“that”. In
the QuestionBank on the other hand, “what” is by
far the most common WDT word (81.40%), while
“which” and “that” account only for 13.65% and
4.94% respectively. Not surprisingly the most com-
mon POS error involves wh-determiners (typically
the word “what”) being incorrectly labeled as Wh-
pronouns (WP), resulting in head and label errors
like the one shown in Figure 3(a).

To separate out POS tagging errors from parsing
errors, we also ran experiments with correct (gold)

Dep. Label Frequency WSJ Uptrained

nsubj 934 41.02 88.64
amod 556 78.21 86.00
dobj 555 70.10 83.12
attr 471 8.64 93.49
aux 467 77.31 82.56

Table 5: F1 scores for the most frequent labels in the
QuestionBank development set. Uptraining leads to huge
improvements compared to training only on the WSJ.

POS tags. The parsing accuracies of our shift-reduce
parser using gold POS tags are listed in the last rows
of Tables 1 and 2. Even with gold POS tags, the de-
terministic shift-reduce parser falls short of the ac-
curacies of the constituency parsers (with automatic
tags), presumably because the shift-reduce model is
making only local decisions and is lacking the global
constraints provided by the context-free grammar.

5.2 Dependency errors

To find the main error types, we looked at the most
frequent labels in the QuestionBank development
set, and analyzed the ones that benefited the most
from uptraining. Table 5 has the frequency and F-
scores of the dependency types that we are going to
discuss in the following. We also provide examples
which are illustrated in Figure 3.

nsubj: The WSJ-trained model is often producing
parses that are missing a subject (nsubj). Questions
like “What is the oldest profession?” and “When
was Ozzy Osbourne born?” should have “profes-
sion” and “Osbourne” as nsubjs, but in both cases
the WSJ-trained parser did not label any subj (see
Figures 3(b) and 3(c)). Another common error is to
mislabel nsubj. For example, the nsubj of “What are
liver enzymes?” should be enzymes, but the WSJ-
trained parser labels “What” as the nsubj, which
makes sense in a statement but not in a question.

amod: The model is overpredicting “amod”, re-
sulting in low precision figures for this label. An
example is “How many points make up a perfect
fivepin bowling score?”. The Stanford dependency
uses “How” as the head of “many” in noun phrases
like “How many points”, and the relation is a generic
“dep”. But in the WSJ model prediction, “many’s”
head is “points,” and the relation mislabeled as
amod. Since it’s an adjective preceding the noun,
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What is the oldest profession ?

ROOT

det     amod proot attr nsubj

WP VBZ DT JJS NN .ROOT

det     amod proot   attrdep

WP VBZ DT JJS NN .

What is the oldest profession ?

When was Ozzy Osbourne born ?
ROOT WRB VBZ  NNP NNP VBN .

root padvmod aux nn nsubj

When was Ozzy Osbourne   born ?
ROOT WRB VBZ  NNP NNP   NNP .

   root    nnnn pcompl nsubj

What films featured the character ?
ROOT WDT NNS  VBD DT NN  NNP NNP .

Popeye Doyle

nsubj dep det    nn nn dobj

What films featured the character ?
ROOT WP NNS  VBD DT NN  NNP NNP .

Popeye Doyle

   nsubj    compl det    nn nn   root    ccomp(a)

(b)

(c)

(d)

How many people did Randy ?
ROOT WRB JJ  NNS VBD NNP  NNP VB .

Craft kill

  dobj dep aux    nn nsubj p

?

.

dep

How many people did Randy
ROOT WRB JJ  NNS VBD NNP  NNP VB

Craft kill

compl amod ccomp   nn nsubj pnsubjroot

Figure 3: Example questions from the QuestionBank development set and their correct parses (left), as well as the
predictions of a model trained on the WSJ (right).

the WSJ model often makes this mistake and there-
fore the precision is much lower when it doesn’t see
more questions in the training data.

dobj: The WSJ model doesn’t predict object ex-
traction well. For example, in “How many people
did Randy Craft kill?” (Figure 3(d)), the direct ob-
ject of kill should be “How many people.” In the
Stanford dependencies, the correct labels for this
noun phrase are “dobj dep dep,” but the WSJ model
predicts “compl amod nsubj.” This is a common
error caused by the different word order in ques-
tions. The uptrained model is much better at han-
dling these type of constructions.

attr: An attr (attributive) is a wh-noun phrase
(WHNP) complement of a copular verb. In the WSJ
training data, only 4,641 out of 950,028 dependen-
cies are attr (0.5%); in the QuestionBank training
data, 1,023 out of 17,069 (6.0%) are attr. As a con-
sequence, the WSJ model cannot predict this label
in questions very well.

aux: “What does the abbreviation AIDS stand
for?” should have “stand” as the main head of the
sentence, and “does” as its aux. However, the WSJ
model labeled “does” as the main head. Similar
patterns occur in many questions, and therefore the
WSJ has a very low recall rate.

In contrast, mostly local labels (that are not re-
lated to question/statement structure differences)
have a consistently high accuracy. For example: det
has an accuracy of 98.86% with the WSJ-trained
model, and 99.24% with the uptrained model.

6 Conclusions

We presented a method for domain adaptation of de-
terministic shift-reduce parsers. We evaluated mul-
tiple state-of-the-art parsers on a question corpus
and showed that parsing accuracies degrade substan-
tially on this out-of-domain task. Most notably, de-
terministic shift-reduce parsers have difficulty deal-
ing with the modified word order and lose more
than 20% in accuracy. We then proposed a simple,
yet very effectiveuptraining method for domain-
adaptation. In a nutshell, we trained a deterministic
shift-reduce parser on the output of a more accurate,
but slower parser. Uptraining with large amounts of
unlabeled data gives similar improvements as hav-
ing access to 2,000 labeled sentences from the target
domain. With 2,000 labeled questions and a large
amount of unlabeled questions, uptraining is able to
close the gap between in-domain and out-of-domain
accuracy.
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Abstract 

This paper approaches the scope learning 
problem via simplified shallow semantic pars-
ing. This is done by regarding the cue as the 
predicate and mapping its scope into several 
constituents as the arguments of the cue. 
Evaluation on the BioScope corpus shows that 
the structural information plays a critical role 
in capturing the relationship between a cue 
and its dominated arguments. It also shows 
that our parsing approach significantly outper-
forms the state-of-the-art chunking ones. Al-
though our parsing approach is only evaluated 
on negation and speculation scope learning 
here, it is portable to other kinds of scope 
learning.  

1 Introduction 

Recent years have witnessed an increasing interest 
in the analysis of linguistic scope in natural lan-
guage. The task of scope learning deals with the 
syntactic analysis of what part of a given sentence 
is under user’s special interest. For example, of 
negation assertion concerned, a negation cue (e.g., 
not, no) usually dominates a fragment of the given 
sentence, rather than the whole sentence, especially 
when the sentence is long. Generally, scope learn-
ing involves two subtasks: cue recognition and its 
scope identification. The former decides whether a 
word or phrase in a sentence is a cue of a special 
interest, where the semantic information of the 
word or phrase, rather than the syntactic informa-
tion, plays a critical role. The latter determines the 
sequences of words in the sentence which are 
dominated by the given cue.  

Recognizing the scope of a special interest (e.g., 
negative assertion and speculative assertion) is es-
sential in information extraction (IE), whose aim is 
to derive factual knowledge from free text. For 
example, Vincze et al. (2008) pointed out that the 
extracted information within the scope of a nega-
tion or speculation cue should either be discarded 
or presented separately from factual information. 
This is especially important in the biomedical and 
scientific domains, where various linguistic forms 
are used extensively to express impressions, hy-
pothesized explanations of experimental results or 
negative findings. Besides, Vincez et al. (2008) 
reported that 13.45% and 17.70% of the sentences 
in the abstracts subcorpus of the BioScope corpus 
contain negative and speculative assertions, respec-
tively, while 12.70% and 19.44% of the sentences 
in the full papers subcorpus contain negative and 
speculative assertions, respectively. In addition to 
the IE tasks in the biomedical domain, negation 
scope learning has attracted increasing attention in 
some natural language processing (NLP) tasks, 
such as sentiment classification (Turney, 2002). 
For example, in the sentence “The chair is not 
comfortable but cheap”, although both the polari-
ties of the words “comfortable” and “cheap” are 
positive, the polarity of “the chair” regarding the 
attribute “cheap” keeps positive while the polarity 
of “the chair” regarding the attribute “comfortable” 
is reversed due to the negation cue “not”. Similarly, 
seeing the increasing interest in speculation scope 
learning, the CoNLL’2010 shared task (Farkas et 
al., 2010) aims to detect uncertain information in 
resolving the scopes of speculation cues. 

Most of the initial research in this literature fo-
cused on either recognizing negated terms or iden-
tifying speculative sentences, using some heuristic 
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rules (Chapman et al., 2001; Light et al., 2004), 
and machine learning methods (Goldin and Chap-
man, 2003; Medlock and Briscoe, 2007). However, 
scope learning has been largely ignored until the 
recent release of the BioScope corpus (Szarvas et 
al., 2008), where negation/speculation cues and 
their scopes are annotated explicitly. Morante et al. 
(2008) and Morante and Daelemans (2009a & 
2009b) pioneered the research on scope learning 
by formulating it as a chunking problem, which 
classifies the words of a sentence as being inside or 
outside the scope of a cue. Alternatively, Özgür 
and Radev (2009) and Øvrelid et al. (2010) defined 
heuristic rules for speculation scope learning from 
constituency and dependency parse tree perspec-
tives, respectively. 

Although the chunking approach has been 
evaluated on negation and speculation scope learn-
ing and can be easily ported to other scope learning 
tasks, it ignores syntactic information and suffers 
from low performance. Alternatively, even if the 
rule-based methods may be effective for a special 
scope learning task (e.g., speculation scope learn-
ing), it is not readily adoptable to other scope 
learning tasks (e.g., negation scope learning). In-
stead, this paper explores scope learning from 
parse tree perspective and formulates it as a simpli-
fied shallow semantic parsing problem, which has 
been extensively studied in the past few years 
(Carreras and Màrquez, 2005). In particular, the 
cue is recast as the predicate and the scope is recast 
as the arguments of the cue. The motivation behind 
is that the structured syntactic information plays a 
critical role in scope learning and should be paid 
much more attention, as indicated by previous 
studies in shallow semantic parsing (Gildea and 
Palmer, 2002; Punyakanok et al., 2005). Although 
our approach is evaluated only on negation and 
speculation scope learning here, it is portable to 
other kinds of scope learning. 

The rest of this paper is organized as follows. 
Section 2 reviews related work. Section 3 intro-
duces the Bioscope corpus on which our approach 
is evaluated. Section 4 describes our parsing ap-
proach by formulating scope learning as a simpli-
fied shallow semantic parsing problem. Section 5 
presents the experimental results. Finally, Section 
6 concludes the work. 
 
 

2 Related Work  

Most of the previous research on scope learning 
falls into negation scope learning and speculation 
scope learning.  

Negation Scope Learning 

Morante et al. (2008) pioneered the research on 
negation scope learning, largely due to the avail-
ability of a large-scale annotated corpus, the Bio-
scope corpus. They approached negation cue 
recognition as a classification problem and formu-
lated negation scope identification as a chunking 
problem which predicts whether a word in the sen-
tence is inside or outside of the negation scope, 
with proper post-processing to ensure consecutive-
ness of the negation scope. Morante and Daele-
mans (2009a) further improved the performance by 
combing several classifiers and achieved the accu-
racy of ~98% for negation cue recognition and the 
PCS (Percentage of Correct Scope) of ~74% for 
negation scope identification on the abstracts sub-
corpus. However, this chunking approach suffers 
from low performance, in particular on long sen-
tences. For example, given golden negation cues 
on the Bioscope corpus, Morante and Daelemans 
(2009a) only got the performance of 50.26% in 
PCS on the full papers subcorpus (22.8 words per 
sentence on average), compared to 87.27% in PCS 
on the clinical reports subcorpus (6.6 words per 
sentence on average). 

Speculation Scope Learning 

Similar to Morante and Daelemans (2009a), 
Morante and Daelemans (2009b) formulated 
speculation scope identification as a chunking 
problem which predicts whether a word in the sen-
tence is inside or outside of the speculation scope, 
with proper post-processing to ensure consecutive-
ness of the speculation scope. They concluded that 
their method for negation scope identification is 
portable to speculation scope identification. How-
ever, of speculation scope identification concerned, 
it also suffers from low performance, with only 
60.59% in PCS for the clinical reports subcorpus 
of short sentences. 

Alternatively, Özgür and Radev (2009) em-
ployed some heuristic rules from constituency 
parse tree perspective on speculation scope identi-
fication. Given golden speculation cues, their rule-
based method achieves the accuracies of 79.89% 
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and 61.13% on the abstracts and the full papers 
subcorpora, respectively. The more recent 
CoNLL’2010 shared task was dedicated to the de-
tection of speculation cues and their linguistic 
scope in natural language processing (Farkas et al., 
2010). As a representative, Øvrelid et al. (2010) 
adopted some heuristic rules from dependency 
parse tree perspective to identify their speculation 
scopes. 

3 Cues and Scopes in the BioScope Cor-
pus 

This paper employs the BioScope corpus (Szarvas 
et al., 2008; Vincze et al., 2008) 1 , a freely 
downloadable resource from the biomedical do-
main, as the benchmark corpus. In this corpus, 
every sentence is annotated with negation cues and 
speculation cues (if it has), as well as their linguis-
tic scopes. Figure 1 shows a self-explainable ex-
ample. It is possible that a negation/speculation cue 
consists of multiple words, i.e., “can not”/“indicate 
that” in Figure 1. 

 
The Bioscope corpus consists of three sub-

corpora: biological full papers from FlyBase and 
from BMC Bioinformatics, biological paper ab-
stracts from the GENIA corpus (Collier et al., 
1999), and clinical (radiology) reports. Among 
them, the full papers subcorpus and the abstracts 
subcorpus come from the same genre, and thus 
share some common characteristics in statistics, 
such as the number of words in the nega-
tion/speculation scope to the right (or left) of the 
negation/speculation cue and the average scope 
length. In comparison, the clinical reports subcor-
pus consists of clinical radiology reports with short 
sentences. For detailed statistics and annotation 

                                                           

                                                          

1 http://www.inf.u-szeged.hu/rgai/bioscope 

guidelines about the three subcorpora, please see 
Morante and Daelemans (2009a & 2009b). 

For preprocessing, all the sentences in the Bio-
scope corpus are tokenized and then parsed using 
the Berkeley parser (Petrov and Klein, 2007) 2  
trained on the GENIA TreeBank (GTB) 1.0 
(Tateisi et al., 2005)3, which is a bracketed corpus 
in (almost) PTB style. 10-fold cross-validation on 
GTB1.0 shows that the parser achieves the per-
formance of 86.57 in F1-measure. It is worth not-
ing that the GTB1.0 corpus includes all the 
sentences in the abstracts subcorpus of the Bio-
scope corpus. 

4 Scope Learning via Simplified Shallow 
Semantic Parsing 

In this section, we first formulate the scope learn-
ing task as a simplified shallow semantic parsing 
problem. Then, we deal with it using a simplified 
shallow semantic parsing framework. 

4.1 Formulating Scope Learning as a Simpli-
fied Shallow Semantic Parsing Problem 

<sentence id="S26.8">These findings <xcope 
id="X26.8.2"><cue type="speculation" 
ref="X26.8.2">indicate that</cue> <xcope 
id="X26.8.1">corticosteroid resistance in bron-
chial asthma <cue type="negation" 
ref="X26.8.1">can not</cue> be explained by 
abnormalities in corticosteroid receptor charac-
teristics</xcope></xcope>.</sentence> 

Figure 1: An annotated sentence in the BioScope 
corpus 

Given a parse tree and a predicate in it, shallow 
semantic parsing recognizes and maps all the con-
stituents in the sentence into their corresponding 
semantic arguments (roles) of the predicate or not. 
As far as scope learning considered, the cue can be 
regarded as the predicate4, while its scope can be 
mapped into several constituents dominated by the 
cue and thus can be regarded as the arguments of 
the cue. In particular, given a cue and its scope 
which covers wordm, …, wordn, we adopt the fol-
lowing two heuristic rules to map the scope of the 
cue into several constituents which can be deemed 
as its arguments in the given parse tree. 
1) The cue itself and all of its ancestral constituents 

are non-arguments. 
2) If constituent X is an argument of the given cue, 

then X should be the highest constituent domi-
nated by the scope of wordm, …, wordn. That is 
to say, X’s parent constituent must cross-bracket 
or include the scope of wordm, …, wordn. 

 
2 http://code.google.com/p/berkeleyparser/ 
3 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA 
4 If a speculation cue consists of multiply words (e.g., whether 
or not), the first word (e.g., whether) is chosen to represent the 
speculation signal. However, the last word (e.g., not) is chosen 
to represent the negation cue if it consists of multiple words 
(e.g., can not). 
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Figure 2: Examples of a negation/speculation cue and its arguments in a parse tree 

These findings 

indicate 

that 

corticosteroid resistance

NP0,1

VBP2,2 SBAR3,11

can not

IN3,3

be
explained by abnormalities

NP4,5

MD6,6 RB7,7

VB8,8 VP9,11

VP8,11

VP6,11

S4,11

VP2,11

S0,11

neg-predicate

neg-arguments

spec-predicate
spec-argument

 
The first rule ensures that no argument covers 

the cue while the second rule ensures no overlap 
between any two arguments. These two constraints 
between a cue and its arguments are consistent 
with shallow semantic parsing (Carreras and 
Màrquez, 2005). For example, in the sentence 
“These findings indicate that corticosteroid resis-
tance can not be explained by abnormalities”, the 
negation cue “can not” has the negation scope 
“corticosteroid resistance can not be explained by 
abnormalities” while the speculation cue “indicate 
that” has the speculation scope “indicate that cor-
ticosteroid resistance can not be explained by ab-
normalities”. As shown in Figure 2, the node 
“RB7,7” (i.e., not) represents the negation cue “can 
not” while its arguments include three constituents 
{NP4,5, MD6,6, and VP8,11}. Similarly, the node 
“VBP2,2” (i.e., indicate) represents the  speculation 
cue “indicate that” while its arguments include one 
constituent SBAR3,11. It is worth noting that ac-
cording to the above rules, scope learning via shal-
low semantic parsing, i.e. determining the 
arguments of a given cue, is robust to some varia-
tions in the parse trees. This is also empirically 
justified by our later experiments. For example, if 
the VP6,11 in Figure 2 is incorrectly expanded by 
the rule VP6,11 → MD6,6+RB7,7+VB8,8+VP9,11, the 
negation scope of the negation cue “can not” can 
still be correctly detected as long as {NP4,5, MD6,6, 
VB8,8, and VP9,11} are predicated as the arguments 
of the negation cue “can not”. 

Compared with common shallow semantic pars-
ing which needs to assign an argument with a se-
mantic label, scope identification does not involve 
semantic label classification and thus could be di-
vided into three consequent phases: argument 
pruning, argument identification and post-
processing. 
 

4.2 Argument Pruning 

Similar to the predicate-argument structures in 
common shallow semantic parsing, the cue-scope 
structures in scope learning can be also classified 
into several certain types and argument pruning 
can be done by employing several heuristic rules 
accordingly to filter out constituents, which are 
most likely non-arguments of a given cue. Similar 
to the heuristic algorithm proposed in Xue and 
Palmer (2004) for argument pruning in common 
shallow semantic parsing, the argument pruning 
algorithm adopted here starts from designating the 
cue node as the current node and collects its sib-
lings. It then iteratively moves one level up to the 
parent of the current node and collects its siblings. 
The algorithm ends when it reaches the root of the 
parse tree. To sum up, except the cue node itself 
and its ancestral constituents, any constituent in the 
parse tree whose parent covers the given cue will 
be collected as argument candidates. Taking the 
negation cue node “RB7,7” in Figure 2 as an exam-
ple, constituents {MD6,6, VP8,11, NP4,5, IN3,3,  
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Feature Remarks 
B1 Cue itself: the word of the cue, e.g., not,

rather_than. (can_not) 
B2 Phrase Type: the syntactic category of the

argument candidate. (NP) 
B3 Path: the syntactic path from the argument 

candidate to the cue. (NP<S>VP>RB) 
B4 Position: the positional relationship of the

argument candidate with the cue. “left” or 
“right”. (left) 

Table 1: Basic features and their instantiations for ar-
gument identification in scope learning, with NP4,5 as 
the focus constituent (i.e., the argument candidate) and 
“can not” as the given cue, regarding Figure 2. 

 

 

Feature Remarks 
Argument Candidate (AC) related 
AC1 The headword (AC1H) and its POS

(AC1P). (resistance, NN) 
AC2 The left word (AC2W) and its POS

(AC2P). (that, IN) 
AC3 The right word (AC3W) and its POS

(AC3P). (can, MD) 
AC4 The phrase type of its left sibling (AC4L)

and its right sibling (AC4R). (NULL, VP)
AC5 The phrase type of its parent node. (S) 
AC6 The subcategory. (S:NP+VP) 
Cue/Predicate (CP) related 
CP1 Its POS. (RB) 
CP2 Its left word (CP2L) and right word

(CP2R). (can, be) 
CP3 The subcategory. (VP:MD+RB+VP) 
CP4 The phrase type of its parent node. (VP) 
Combined Features related with the Argument Candi-
date  (CFAC1-CFAC2) 
b2&AC1H, b2&AC1P 
Combined Features related with the given
Cue/Predicate  (CFCP1-CFCP2) 
B1&CP2L, B1&CP2R 
Combined Features related with both the Argument 
Candidate and the given Cue/Predicate (CFACCP1-
CFACCP7) 
B1&B2, B1&B3, B1&CP1, B3&CFCP1, B3&CFCP2, 
B4&CFCP1, B4&CFCP2 

Table 2: Additional features and their instantiations for 
argument identification in scope identification, with 
NP4,5 as the focus constituent (i.e., the argument candi-
date) and “can not” as the given cue, regarding Figure 2. 

 

VBP2,2, and NP0,1} are collected as its argument 
candidates consequently. 

4.3 Argument Identification 

Here, a binary classifier is applied to determine the 
argument candidates as either valid arguments or 
non-arguments. Similar to argument identification 
in common shallow semantic parsing, the struc-
tured syntactic information plays a critical role in 
scope learning. 

Basic Features 

Table 1 lists the basic features for argument identi-
fication. These features are also widely used in 
common shallow semantic parsing for both verbal 
and nominal predicates (Xue, 2008; Li et al., 2009). 

Additional Features 

To capture more useful information in the cue-
scope structures, we also explore various kinds of 
additional features. Table 2 shows the features in 
better capturing the details regarding the argument 
candidate and the cue. In particular, we categorize 
the additional features into three groups according 
to their relationship with the argument candidate 
(AC, in short) and the given cue/predicate (CP, in 
short). 

Some features proposed above may not be effec-
tive in argument identification. Therefore, we 
adopt the greedy feature selection algorithm as de-
scribed in Jiang and Ng (2006) to pick up positive 
features incrementally according to their contribu-
tions on the development data. The algorithm re-
peatedly selects one feature each time, which con-
tributes most, and stops when adding any of the 
remaining features fails to improve the perform-
ance. 

4.4 Post-Processing 

Although a cue in the BioScope corpus always has 
only one continuous block as its scope (including 
the cue itself), the scope identifier may result in 
discontinuous scope due to independent predica-
tion in the argument identification phase. Given the 
golden negation/speculation cues, we observe that 
6.2%/9.1% of the negation/speculation scopes pre-
dicted by our scope identifier are discontinuous. 

718



 
Figure 3 demonstrates the projection of all the 

argument candidates into the word level. Accord-
ing to our argument pruning algorithm in Section 
4.2, except the words presented by the cue, the pro-
jection covers the whole sentence and each con-
stituent (LACi or RACj in Figure 3) receives a 
probability distribution of being an argument of the 
given cue in the argument identification phase. 

Since a cue is deemed inside its scope in the 
BioScope corpus, our post-processing algorithm 
first includes the cue in its scope and then starts to 
identify the left and the right scope boundaries, 
respectively. 

As shown in Figure 3, the left boundary has 
m+1 possibilities, namely the cue itself, the left-
most word of constituent LACi (1<=i<=m). Sup-
posing LACi receives probability of Pi being an 
argument, we use the following formula to deter-
mine LACk* whose leftmost word represents the 
boundary of the left scope. If k*=0, then the cue 
itself represents its left boundary. 

( )*

1 1
arg max 1

k m

i i
k i i k

k P
= = +

= ∗∏ ∏  P−

Similarly, the right boundary of the given cue 
can be decided. 

4.5 Cue Recognition 

Automatic recognition of cues of a special interest 
is the prerequisite for a scope learning system. The 
approaches to recognizing cues of a special interest 
usually fall into two categories: 1) substring 
matching approaches, which require a set of cue 
words or phrases in advance (e.g., Light et al., 
2004); 2) machine learning approaches, which 
train a classifier with either supervised or semi-
supervised learning methods (e.g., Özgür and 
Radev, 2009; Szarvas, 2008). Without loss of gen-
erality, we adopt a machine learning approach and 
train a classifier with supervised learning. In par-
ticular, we make an independent classification for 
each word with a BIO label to indicate whether it 

is the first word of a cue, inside a cue, or outside of 
it, respectively. 

LACm    ….      LAC1 RAC1      ….    RACn

m n 

Figure 3: Projecting the left and the right argument 
candidates into the word level. 

Inspired by previous studies on similar tasks 
such as WSD and nominal predicate recognition in 
shallow semantic parsing (Lee and Ng, 2002; Li et 
al., 2009), where various features on the word it-
self, surrounding words and syntactic information 
have been successfully used, we believe that such 
information is also valuable to automatic recogni-
tion of cues. Table 3 shows the features employed 
for cue recognition. In particular, we categorize 
these features into three groups: 1) features about 
the cue candidate itself (CC in short); 2) features 
about surrounding words (SW in short); and 3) 
structural features derived from the syntactic parse 
tree (SF in short).
 
Feature Remarks 
Cue Candidate (CC) related 
CC1 The cue candidate itself. (indicate) 
CC2 The stem of the cue candidate. (indicate)
CC3 The POS tag of the cue candidate. (VBP)
Surrounding Words (SW) related 
SW1 The left surrounding words with the win-

dow size of 3. (these, findings) 
SW2 The right surrounding words with the 

window size of 3. (that, corticosteroid,
resistance) 

Structural Features (SF) 
SF1 The subcategory of the candidate node.  

(VP-->VBP+SBAR) 
SF2 The subcategory of the candidate node’s 

parent. (S-->NP+VP) 
SF3 POS tag of the candidate node + Phrase 

type of its parent node + Phrase type of its 
grandpa node. (VBP + VP + S) 

Table 3: Features and their instantiations for cue recog-
nition, with VBP2,2 as the cue candidate, regarding Fig-
ure 2. 

5 Experimentation 

We have evaluated our simplified shallow seman-
tic parsing approach to negation and speculation 
scope learning on the BioScope corpus. 

5.1 Experimental Settings 

Following the experimental setting in Morante et al. 
(2008) and Morante and Daelemans (2009a & 
2009b), the abstracts subcorpus is randomly di-
vided into 10 folds so as to perform 10-fold cross-
validation, while the performance on both the pa-
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pers and clinical reports subcorpora is evaluated 
using the system trained on the whole abstracts 
subcorpus. In addition, SVMLight  is selected as 
our classifier. 

5

For cue recognition, we report its performance 
using precision/recall/F1-measure. For scope iden-
tification, we report the accuracy in PCS (Percent-
age of Correct Scopes) when the golden cues are 
given, and report precision/recall/F1-measure 
when the cues are automatically recognized. 

5.2 Experimental Results on Golden Parse 
Trees and Golden Cues 

In order to select beneficial features from the addi-
tional features proposed in Section 4.3, we ran-
domly split the abstracts subcorpus into the 
training data and the development data with pro-
portion of 4:1. After performing the greedy feature 
selection algorithm on the development data, 7 
features {CFACCP5, CP2R, CFCP1, AC1P, CP3, 
CFACCP7, AC4R} are selected consecutively for 
negation scope identification while 11 features 
{CFACCP5, AC2W, CFACCP2, CFACCP4, AC5, 
CFCP1, CFACCP7, CFACCP1, CP4, AC3P, 
CFAC2} are selected for speculation scope identi-
fication. Table 4 gives the contribution of addi-
tional features on the development data. It shows 
that the additional features significantly improve 
the performance by 11.66% in accuracy from 
74.93% to 86.59% ( ) for negation scope 
identification and improve the performance by 
11.07% in accuracy from 77.29% to 88.36% 
( ) for speculation scope identification. 
The feature selection experiments suggest that the 
features (e.g., CFACCP5, AC2W, CFCP1) related 
to neighboring words of the cue play a critical role 
for both negation and speculation scope identifica-
tion. This may be due to the fact that neighboring 
words usually imply important sentential informa-
tion. For example, “can not be” indicates a passive 
clause while “did not” indicates an active clause. 

2; 0.0pχ < 1

1

                                                          

2; 0.0pχ <

Since the additional selected features signifi-
cantly improve the performance for both negation 
and speculation scope identification, we will in-
clude those additional selected features in all the 
remaining experiments. 
 
 

 
5 http://svmlight.joachims.org/ 

Task Features Acc (%) 
Baseline 74.93 Negation scope 

identification +selected features 86.59 
Baseline 77.29 Speculation scope 

identification +selected features 88.36 
Table 4: Contribution of additional selected features on 
the development dataset of the abstracts subcorpus 
 

Since all the sentences in the abstracts subcorpus 
are included in the GTB1.0 corpus while we do not 
have golden parse trees for the sentences in the full 
papers and the clinical reports subcorpora, we only 
evaluate the performance of scope identification on 
the abstracts subcorpus with golden parse trees. 
Table 5 presents the performance on the abstracts 
subcorpus by performing 10-fold cross-validation. 
It shows that given golden parse trees and golden 
cues, speculation scope identification achieves 
higher performance (e.g., ~3.3% higher in accu-
racy) than negation scope identification. This is 
mainly due to the observation on the BioScope 
corpus that the scope of a speculation cue can be 
usually characterized by its POS and the syntactic 
structures of the sentence where it occurs. For ex-
ample, the scope of a verb in active voice usually 
starts at the cue itself and ends at its object (e.g., 
the speculation cue “indicate that” in Figure 2 
scopes the fragment of “indicate that corticoster-
oid resistance can not be explained by abnormali-
ties”). Moreover, the statistics on the abstracts 
subcorpus shows that the number of arguments per 
speculation cue is smaller than that of arguments 
per negation cue (e.g., 1.5 vs. 1.8). 
 
Task Acc (%) 
Negation scope identification 83.10 
Speculation scope identification 86.41 
Table 5: Accuracy (%) of scope identification with 
golden parse trees and golden cues on the abstracts sub-
corpus using 10-fold cross-validation 
 

It is worth nothing that we adopted the post-
processing algorithm proposed in Section 4.4 to 
ensure the continuousness of identified scope. As 
to examine the effectiveness of the algorithm, we 
abandon the proposed algorithm by simply taking 
the left and right-most boundaries of any nodes in 
the tree which are classified as in scope. Experi-
ments on the abstracts subcorpus using 10-fold 
cross-validation shows that the simple post-
processing rule gets the performance of 80.59 and 
86.08 in accuracy for negation and speculation 
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scope identification, respectively, which is lower 
than the performance in Table 5 achieved by our 
post-processing algorithm.  

5.3 Experimental Results on Automatic 
Parse Trees and Golden Cues 

The GTB1.0 corpus contains 18,541 sentences in 
which 11,850 of them (63.91%) overlap with the 
sentences in the abstracts subcorpus6. In order to 
get automatic parse trees, we train the Berkeley 
parser with the remaining 6,691 sentences in 
GTB1.0, which achieves the performance of 85.22 
in F1-measure on the remaining 11,850 sentences 
in GTB1.0. Table 6 shows the performance of 
scope identification on automatic parse trees and 
golden cues. In addition, we also report an oracle 
performance to explore the best possible perform-
ance of our system by assuming that our scope 
finder can always correctly determine whether a 
candidate is an argument or not. That is, if an ar-
gument candidate falls within the golden scope, 
then it is a argument. This is to measure the impact 
of automatic syntactic parsing itself. Table 6 shows 
that: 
1) For both negation and speculaiton scope 

identification, automatic syntactic parsing 
lowers the performance on the abstracts 
subcorpus (e.g., from 83.10% to 81.84% in 
accuracy for negation scope identification and 
from 86.41% to 83.74% in accuracy for 
speculaiton scope identification). However, the 
performance drop shows that both negation and 
speculation scope identification are not as 
senstive to automatic syntactic parsing as 
common shallow semantic parsing, whose 
performance might decrease by about ~10 in F1-
measure (Toutanova et al., 2005). This indicates 
that scope identification via simplified shallow 
semantic parsing is robust to some variations in 
the parse trees.  

2) Although speculation scope identification 
consistently achieves higher performance than 
negaiton scope identification when golden parse 
trees are availabe, speculation scope 
identification achieves comparable performance 
with negation scope identification on the 
abstracts subcorpus and the full papers 

                                                           
6 There are a few cases where two sentences in the abstracts 
subcorpus map into one sentence in GTB1.0. 

subcorpus while speculation scope identification 
even performs ~20% lower in accuracy than 
negation scope identification on the clinical 
report subcorpus. This is largely due to that 
specuaiton scope identification is more sensitive 
to syntactic parsing errors than negation scope 
identification due to the wider scope of a 
speculation cue while the sentences of the 
clinical reports come from a different genre, 
which indicates low performance in syntactic 
parsing.  

3) Given the performance gap between the 
performance of our scope finder and the oracle 
performance, there is still much room for further 
performance improvement. 

 
Task Method Abstracts Papers Clinical

auto 81.84 62.70 85.21 Negation scope 
identification oracle 94.37 83.33 98.39 

auto 83.74 61.29 67.90 Speculation scope
identification oracle 95.69 83.72 83.29 
Table 6: Accuracy (%) of scope identification on the 
three subcorpora using automatic parser trained on 
6,691 sentences in GTB1.0 
 
Task Method Abstracts Papers Clinical

M et al. (2008) 57.33 n/a n/a 
M & D (2009a) 73.36 50.26 87.27 
Our baseline 73.42 53.70 88.42 

Negation 
scope 
identification 

Our final  81.84 64.02 89.79 
M & D (2009b) 77.13 47.94 60.59 
Ö & R (2009) 79.89 61.13 n/a 
Our baseline 77.39 54.55 61.92 

Speculation 
scope 
identification 

Our final  83.74 63.49 68.78 
Table 7: Performance comparison of our system with 
the state-of-the-art ones in accuracy (%). Note that all 
the performances achieved on the full papers subcorpus 
and the clinical subcorpus are achieved using the whole 
GTB1.0 corpus of 18,541 sentences while all the per-
formances achieved on the abstract subcorpus are 
achieved using 6,691 sentences from GTB1.0 due to 
overlap of the abstract subcorpus with GTB1.0. 
 

Table 7 compares our performance with related 
ones. It shows that even our baseline system with 
the four basic features presented in Table 1 
achieves comparable performance with Morante et 
al. (2008) and Morante and Daelemans (2009a & 
2009b). This further indicates the appropriateness 
of our simplified shallow semantic parsing ap-
proach and the effectiveness of structured syntactic 
information on scope identification. It also shows 
that our final system significantly outperforms the 
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state-of-the-art ones using a chunking approach, 
especially on the abstracts and full papers subcor-
pora. However, the improvement on the clinical 
reports subcorpora for negation scope identifica-
tion is much less apparent, partly due to the fact 
that the sentences in this subcorpus are much sim-
pler (with average length of 6.6 words per sentence) 
and thus a chunking approach can achieve high 
performance. Table 7 also shows that our parsing 
approach to speculation scope identification out-
performs the rule-based method in Özgür and 
Radev (2009), where 10-fold cross-validation is 
performed on both the abstracts and the full papers 
subcorpora. 

5.4 Experimental Results with Automatic 
Parse Trees and Automatic Cues 

So far negation/speculation cues are assumed to be 
manually annotated and available. Here we turn to 
a more realistic scenario in which cues are auto-
matically recognized. In the following, we first 
report the results of cue recognition and then the 
results of scope identification with automatic cues. 

Cue Recognition 

Task Features R (%) P (%) F1 
CC + SW 93.80 94.39 94.09Negation cue  

recognition CC+SW+SF 95.50 95.72 95.61
CC + SW 83.77 92.04 87.71Speculation cue  

recognition CC+SW+SF 84.33 93.07 88.49
Table 8: Performance of automatic cue recognition with 
gold parse trees on the abstracts subcorpus using 10-fold 
cross-validation 
 
Table 8 lists the performance of cue recognition on 
the abstracts subcorpus, assuming all words in the 
sentences as candidates. It shows that as a com-
plement to features derived from word/pos infor-
mation (CC+SW features), structural features (SF 
features) derived from the syntactic parse tree sig-
nificantly improve the performance of cue recogni-
tion by about 1.52 and 0.78 in F1-measure for 
negation and speculation cue recognition, respec-
tively, and thus included thereafter. In addition, we 
have also experimented on only these words, 
which happen to be a cue or inside a cue in the 
training data as cue candidates. However, this ex-
perimental setting achieves a lower performance 
than that when all words are considered. 
 

Task Corpus R (%) P (%) F1 
Abstracts 94.99 94.35 94.67 
Papers 90.48 87.47 88.95 

Negation cue 
recognition 

Clinical 86.81 88.54 87.67 
Abstracts 83.74 93.14 88.19 
Papers 73.02 82.31 77.39 

Speculation cue 
recognition 

Clinical 33.33 91.77 48.90 
Table 9: Performance of automatic cue recognition with 
automatic parse trees on the three subcorpora 
 

Table 9 presents the performance of cue recog-
nition achieved with automatic parse trees on the 
three subcorpora. It shows that: 
1) The performance gap of cue recognition 

between golden parse trees and automatic parse 
trees on the abstracts subcorpus is not salient 
(e.g., 95.61 vs. 94.67 in F1-measure for negation 
cues and 88.49 vs. 88.19 for speculation cues), 
largely due to the features defined for cue 
recognition are local and insenstive to syntactic 
variations. 

2) The performance of negation cue recognition is 
higher than that of speculation cue recognition 
on all the three subcorpora. This is prabably due 
to the fact that the collection of negation cue 
words or phrases is limitted while speculation 
cue words or phrases are more open. This is 
illustrated by our statistics that about only 1% 
and 1% of negation cues in the full papers and 
the clinical reports subcorpora are absent from 
the abstracts subcorpus, compared to about 6% 
and 20% for speculation cues. 

3) Unexpected, the recall of speculation cue 
recognition on the clinical reports subcorpus is 
very low (i.e., 33.33% in recall measure). This is 
probably due to the absence of about 20% 
speculation cues from the training data of the 
abstracts subcorpus. Moreover, the speculation 
cue “or”, which accounts for about 24% of 
specuaiton cues in the clinical reports subcorpus, 
only acheives about 2% in recall largely due to 
the errors caused by the classifier trained on the 
abstracts subcorpus, where only about 11% of 
words “or” are annotated as speculation cues. 

Scope Identification with Automatic Cue Rec-
ognition 

Table 10 lists the performance of both negation 
and speculation scope identification with automatic 
cues and automatic parse trees. It shows that auto-
matic cue recognition lowers the performance by 
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3.34, 6.80, and 8.38 in F1-measure for negation 
scope identification on the abstracts, the full papers 
and the clinical reports subcorpora, respectively, 
while it lowers the performance by 6.50, 13.14 and 
31.23 in F1-measures for speculation scope identi-
fication on the three subcorpora, respectively, sug-
gesting the big challenge of cue recognition in the 
two scope learning tasks. 
 
Task Corpus R (%) P (%) F1 

Abstracts 78.77 78.24 78.50
Papers 58.20 56.27 57.22

Negation scope 
identification 

Clinical 80.62 82.22 81.41
Abstracts 73.34 81.58 77.24
Papers 47.51 53.55 50.35

Speculation scope 
identification 

Clinical 25.59 70.46 37.55
Table 10: Performance of both negation and speculation 
scope identification with automatic cues and automatic 
parse trees 

6 Conclusion  

In this paper we have presented a new approach to 
scope learning by formulating it as a simplified 
shallow semantic parsing problem, which has been 
extensively studied in the past few years. In par-
ticular, we regard the cue as the predicate and map 
its scope into several constituents which are 
deemed as arguments of the cue. Evaluation on the 
Bioscope corpus shows the appropriateness of our 
parsing approach and that structured syntactic in-
formation plays a critical role in capturing the 
domination relationship between a cue and its 
dominated arguments. It also shows that our pars-
ing approach outperforms the state-of-the-art 
chunking ones. Although our approach is only 
evaluated on negation and speculation scope learn-
ing here, it is portable to other kinds of scope 
learning. 

For the future work, we will explore tree kernel-
based methods to further improve the performance 
of scope learning in better capturing the structural 
information, and apply our parsing approach to 
other kinds of scope learning. 
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Abstract

We describe a model for the lexical analy-
sis of Arabic text, using the lists of alterna-
tives supplied by a broad-coverage morpho-
logical analyzer, SAMA, which include sta-
ble lemma IDs that correspond to combina-
tions of broad word sense categories and POS
tags. We break down each of the hundreds
of thousands of possible lexical labels into
its constituent elements, including lemma ID
and part-of-speech. Features are computed
for each lexical token based on its local and
document-level context and used in a novel,
simple, and highly efficient two-stage super-
vised machine learning algorithm that over-
comes the extreme sparsity of label distribu-
tion in the training data. The resulting system
achieves accuracy of 90.6% for its first choice,
and 96.2% for its top two choices, in selecting
among the alternatives provided by the SAMA
lexical analyzer. We have successfully used
this system in applications such as an online
reading helper for intermediate learners of the
Arabic language, and a tool for improving the
productivity of Arabic Treebank annotators.

1 Background and Motivation

This paper presents a methodology for generating
high quality lexical analysis of highly inflected lan-
guages, and demonstrates excellent performance ap-
plying our approach to Arabic. Lexical analysis of
the written form of a language involves resolving,
explicitly or implicitly, several different kinds of am-
biguities. Unfortunately, the usual ways of talking
about this process are also ambiguous, and our gen-
eral approach to the problem, though not unprece-
dented, has uncommon aspects. Therefore, in order

to avoid confusion, we begin by describing how we
define the problem.

In an inflected language with an alphabetic writ-
ing system, a central issue is how to interpret strings
of characters as forms of words. For example, the
English letter-string ‘winds’ will normally be in-
terpreted in one of four different ways, all four
of which involve the sequence of two formatives
wind+s. The stem ‘wind’ might be analyzed as (1) a
noun meaning something like “air in motion”, pro-
nounced [wInd] , which we can associate with an ar-
bitrary but stable identifier like wind n1; (2) a verb
wind v1 derived from that noun, and pronounced the
same way; (3) a verb wind v2 meaning something
like “(cause to) twist”, pronounced [waInd]; or (4)
a noun wind n2 derived from that verb, and pro-
nounced the same way. Each of these “lemmas”, or
dictionary entries, will have several distinguishable
senses, which we may also wish to associate with
stable identifiers. The affix ‘-s’ might be analyzed
as the plural inflection, if the stem is a noun; or as
the third-person singular inflection, if the stem is a
verb.

We see this analysis as conceptually divided into
four parts: 1) Morphological analysis, which rec-
ognizes that the letter-string ‘winds’ might be (per-
haps among other things) wind/N + s/PLURAL or
wind/V + s/3SING; 2) Morphological disambigua-
tion, which involves deciding, for example, that in
the phrase “the four winds”, ‘winds’ is probably a
plural noun, i.e. wind/N + s/PLURAL; 3) Lemma
analysis, which involves recognizing that the stem
wind in ‘winds’ might be any of the four lem-
mas listed above – perhaps with a further listing of
senses or other sub-entries for each of them; and 4)
Lemma disambiguation, deciding, for example, that
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the phrase “the four winds” probably involves the
lemma wind n1.

Confusingly, the standard word-analysis tasks in
computational linguistics involve various combina-
tions of pieces of these logically-distinguished op-
erations. Thus, “part of speech (POS) tagging” is
mainly what we’ve called “morphological disam-
biguation”, except that it doesn’t necessarily require
identifying the specific stems and affixes involved.
In some cases, it also may require a small amount of
“lemma disambiguation”, for example to distinguish
a proper noun from a common noun. “Sense disam-
biguation” is basically a form of what we’ve called
“lemma disambiguation”, except that the sense dis-
ambiguation task may assume that the part of speech
is known, and may break down lexical identity more
finely than our system happens to do. “Lemmatiza-
tion” generally refers to a radically simplified form
of “lemma analysis” and “lemma disambiguation”,
where the goal is simply to collapse different in-
flected forms of any similarly-spelled stems, so that
the strings ‘wind’, ‘winds’, ‘winded’, ‘winding’ will
all be treated as instances of the same thing, without
in fact making any attempt to determine the identity
of “lemmas” in the traditional sense of dictionary
entries.

Linguists use the term morphology to include all
aspects of lexical analysis under discussion here.
But in most computational applications, “morpho-
logical analysis” does not include the disambigua-
tion of lemmas, because most morphological ana-
lyzers do not reference a set of stable lemma IDs.
So for the purposes of this paper, we will continue to
discuss lemma analysis and disambiguation as con-
ceptually distinct from morphological analysis and
disambiguation, although, in fact, our system dis-
ambiguates both of these aspects of lexical analysis
at the same time.

The lexical analysis of textual character-strings
is a more complex and consequential problem in
Arabic than it is in English, for several reasons.
First, Arabic inflectional morphology is more com-
plex than English inflectional morphology is. Where
an English verb has five basic forms, for example,
an Arabic verb in principle may have dozens. Sec-
ond, the Arabic orthographic system writes elements
such as prepositions, articles, and possessive pro-
nouns without setting them off by spaces, roughly

as if the English phrase “in a way” were written “in-
away”. This leads to an enormous increase in the
number of distinct “orthographic words”, and a sub-
stantial increase in ambiguity. Third, short vowels
are normally omitted in Arabic text, roughly as if
English “in a way” were written “nway”.

As a result, a whitespace/punctuation-delimited
letter-string in Arabic text typically has many more
alternative analyses than a comparable English
letter-string does, and these analyses have many
more parts, drawn from a much larger vocabulary of
form-classes. While an English “tagger” can spec-
ify the morphosyntactic status of a word by choos-
ing from a few dozen tags, an equivalent level of
detail in Arabic would require thousands of alterna-
tives. Similarly, the number of lemmas that might
play a role in a given letter-sequence is generally
much larger in Arabic than in English.

We start our labeling of Arabic text with the alter-
native analyses provided by SAMA v. 3.1, the Stan-
dard Arabic Morphological Analyzer (Maamouri et
al., 2009). SAMA is an updated version of the ear-
lier Buckwalter analyzers (Buckwalter, 2004), with
a number of significant differences in analysis to
make it compatible with the LDC Arabic Treebank
3-v3.2 (Maamouri et al., 2004). The input to SAMA
is an Arabic orthographic word (a string of letters
delimited by whitespace or punctuation), and the
output of SAMA is a set of alternative analyses, as
shown in Table 1. For a typical word, SAMA pro-
duces approximately a dozen alternative analyses,
but for certain highly ambiguous words it can pro-
duce hundreds of alternatives.

The SAMA analyzer has good coverage; for typ-
ical texts, the correct analysis of an orthographic
word can be found somewhere in SAMA’s list of
alternatives about 95% of the time. However, this
broad coverage comes at a cost; the list of analytic
alternatives must include a long Zipfian tail of rare
or contextually-implausible analyses, which collec-
tively are correct often enough to make a large con-
tribution to the coverage statistics. Furthermore,
SAMA’s long lists of alternative analyses are not
evaluated or ordered in terms of overall or contex-
tual plausibility. This makes the results less useful
in most practical applications.

Our goal is to rank these alternative analyses so
that the correct answer is as near to the top of the list
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Token Lemma Vocalization Segmentation Morphology Gloss
yHlm Halam-u 1 yaHolumu ya + Holum +

u
IV3MS + IV + IV-
SUFF MOOD:I

he / it + dream + [ind.]

yHlm Halam-u 1 yaHoluma ya + Holum +
a

IV3MS + IV + IV-
SUFF MOOD:S

he / it + dream + [sub.]

yHlm Halum-u 1 yaHolumo ya + Holum +
o

IV3MS + IV + IV-
SUFF MOOD:J

he / it + be gentle + [jus.]

qbl qabil-a 1 qabila qabil + a PV + PV-
SUFF SUBJ:3MS

accept/receive/approve +
he/it [verb]

qbl qabol 1 qabol qabol NOUN Before

Table 1: Partial output of SAMA for yHlm and qbl. On average, every token produces more than 10 such analyses

as possible. Despite some risk of confusion, we’ll
refer to SAMA’s list of alternative analyses for an
orthographic word as potential labels for that word.
And despite a greater risk of confusion, we’ll refer to
the assignment of probabilities to the set of SAMA
labels for a particular Arabic word in a particular
textual context as tagging, by analogy to the oper-
ation of a stochastic part-of-speech tagger, which
similarly assigns probabilities to the set of labels
available for a word in textual context.

Although our algorithms have been developed for
the particular case of Arabic and the particular set
of lexical-analysis labels produced by SAMA, they
should be applicable without modification to the sets
of labels produced by any broad-coverage lexical
analyzer for the orthographic words of any highly-
inflected language.

In choosing our approach, we have been moti-
vated by two specific applications. One applica-
tion aims to help learners of Arabic in reading text,
by offering a choice of English glosses with asso-
ciated Arabic morphological analyses and vocaliza-
tions. SAMA’s excellent coverage is an important
basis for this help; but SAMA’s long, unranked list
of alternative analyses for a particular letter-string,
where many analyses may involve rare words or al-
ternatives that are completely implausible in the con-
text, will be confusing at best for a learner. It is
much more helpful for the list to be ranked so that
the correct answer is almost always near the top, and
is usually one of the top two or three alternatives.

In our second application, this same sort of rank-
ing is also helpful for the linguistically expert native
speakers who do Arabic Treebank analysis. These

annotators understand the text without difficulty, but
find it time-consuming and fatiguing to scan a long
list of rare or contextually-implausible alternatives
for the correct SAMA output. Their work is faster
and more accurate if they start with a list that is
ranked accurately in order of contextual plausibility.

Other applications are also possible, such as vo-
calization of Arabic text for text-to-speech synthe-
sis, or lexical analysis for Arabic parsing. However,
our initial goals have been to rank the list of SAMA
outputs for human users.

We note in passing that the existence of set of sta-
ble “lemma IDs” is an unusual feature of SAMA,
which in our opinion ought to be emulated by ap-
proaches to lexical analysis in other languages. The
lack of such stable lemma IDs has helped to disguise
the fact that without lemma analysis and disam-
biguation, morphological analyses and disambigua-
tion is only a partial solution to the problem of lexi-
cal analysis.

In principle, it is obvious that lemma disambigua-
tion and morphological disambiguation are mutually
beneficial. If we know the answer to one of the ques-
tions, the other one is easier to answer. However,
these two tasks require rather different sets of con-
textual features. Lemma disambiguation is similar
to the problem of word-sense disambiguation – on
some definitions, they are identical – and as a re-
sult, it benefits from paragraph-level and document-
level bag-of-words attributes that help to character-
ize what the text is “about” and therefore which lem-
mas are more likely to play a role in it. In contrast,
morphological disambiguation mainly depends on
features of nearby words, which help to character-
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ize how inflected forms of these lemmas might fit
into local phrasal structures.

2 Problem and Methodology

Consider a collection of tokens (observations), ti, re-
ferred to by index i ∈ {1, . . . , n}, where each token
is associated with a set of p features, xij , for the jth

feature, and a label, li, which is a combination of
a lemma and a morphological analysis. We use in-
dicator functions yik to indicate whether or not the
kth label for the ith token is present. We represent
the complete set of features and labels for the en-
tire training data using matrix notation as X and Y ,
respectively. Our goal is to predict the label l (or
equivalently, the vector y for a given feature vector
x.

A standard linear regression model of this prob-
lem would be

y = xβ + ε (1)

The standard linear regression estimate of β (ig-
noring, for simplicity the fact that the ys are 0/1) is:

β̂ = (XT
trainXtrain)−1XT

trainYtrain (2)

where Ytrain is an n×h matrix containing 0s and
1s indicating whether or not each of the h possible
labels is the correct label (li) for each of the n tokens
ti, Xtrain is an n × p matrix of context features for
each of the n tokens, the coefficients β̂ are p× h.

However, this is a large, sparse, multiple label
problem, and the above formulation is neither statis-
tically nor computationally efficient. Each observa-
tion (x,y) consists of thousands of features associ-
ated with thousands of potential labels, almost all of
which are zero. Worse, the matrix of coefficients β,
to be estimated is large (p× h) and one should thus
use some sort of transfer learning to share strength
across the different labels.

We present a novel principled and highly compu-
tationally efficient method of estimating this multi-
label model. We use a two stage procedure, first
using a subset (Xtrain1, Ytrain1) of training data
to give a fast approximate estimate of β; we then
use a second smaller subset of the training data
(Xtrain2, Ytrain2,) to “correct” these estimates in a
way that we will show can be viewed as a spe-
cialized shrinkage. Our first stage estimation ap-
proximates β, but avoids the expensive computa-

tion of (XT
trainXtrain)−1. Our second stage corrects

(shrinks) these initial estimates in a manner special-
ized to this problem. The second stage takes ad-
vantage of the fact that we only need to consider
those candidate labels produced by SAMA. Thus,
only dozens of the thousands of possible labels are
considered for each token.

We now present our algorithm. We start with a
corpus D of documents d of labeled Arabic text. As
described above, each token, ti is associated with a
set of features characterizing its context, computed
from the other words in the same document, and a la-
bel, li = (lemmai,morphologyi), which is a combi-
nation of a lemma and a morphological analysis. As
described below, we introduce a novel factorization
of the morphology into 15 different components.

Our estimation algorithm, shown in Algorithm 1,
has two stages. We partition the training corpus into
two subsets, one of which (Xtrain1) is used to es-
timate the coefficients βs and the other of which
(Xtrain2) is used to optimally “shrink” these coeffi-
cient estimates to reduce variance and prevent over-
fitting due to data sparsity.

For the first stage of our estimation procedure, we
simplify the estimate of the (β) matrix (Equation 2)
to avoid the inversion of the very high dimensional
(p×p) matrix (XTX) by approximating (XTX) by
its diagonal, Var(X), the inverse of which is trivial
to compute; i.e. we estimate β using

β̂ = Var(Xtrain1)
−1XT

train1Ytrain1 (3)

For the second stage, we assume that the coeffi-
cients for each feature can be shrunk differently, but
that coefficients for each feature should be shrunk
the same regardless of what label they are predict-
ing. Thus, for a given observation we predict:

ĝik =
p∑

j=1

wj β̂jkxij (4)

where the weightswj indicate how much to shrink
each of the p features.

In practice, we fold the variance of each of the j
features into the weight, giving a slightly modified
equation:

ĝik =
p∑

j=1

αjβ
∗
jkxij (5)
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where β∗ = XT
train1Ytrain1 is just a matrix of the

counts of how often each context feature shows up
with each label in the first training set. The vec-
tor α, which we will estimate by regression, is just
the shrinkage weightsw rescaled by the feature vari-
ance.

Note that the formation here is different from the
first stage. Instead of having each observation be
a token, we now let each observation be a (token,
label) pair, but only include those labels that were
output by SAMA. For a given token ti and poten-
tial label lk, our goal is to approximate the indica-
tor function g(i, k), which is 1 if the kth label of
token ti is present, and 0 otherwise. We find candi-
date labels using a morphological analyzer (namely
SAMA), which returns a set of possible candidate
labels, say C(t), for each Arabic token t. Our pre-
dicted label for ti is then argmaxk∈C(ti)

g(i, k).
The regression model for learning the weights αj

in the second stage thus has a row for each label
g(i, k) associated with a SAMA candidate for each
token i = ntrain1+1 . . . ntrain2 in the second train-
ing set. The value of g(i, k) is predicted as a func-
tion of the feature vector zijk = β∗jkxij .

The shrinkage coefficients, αj , could be estimated
from theory, using a version of James-Stein shrink-
age (James and Stein, 1961), but in practice, superior
results are obtained by estimating them empirically.
Since there are only p of them (unlike the p ∗ h βs),
a relatively small training set is sufficient. We found
that regression-SVMs work slightly better than lin-
ear regression and significantly better than standard
classification SVMs for this problem.

Prediction is then done in the obvious way by tak-
ing the tokens in a test corpusDtest, generating con-
text features and candidate SAMA labels for each
token ti, and selected the candidate label with the
highest score ĝ(i, k) that we set out to learn. More
formally, The model parameters β∗ and α produced
by the algorithm allow one to estimate the most
likely label for a new token ti out of a set of can-
didate labels C(ti) using

kpred = argmaxk∈C(ti)

p∑
j=1

αjβ
∗
jkxij (6)

The most expensive part of the procedure is es-
timating β∗, which requires for each token in cor-

Algorithm 1 Training algorithm.
Input: A training corpusDtrain of n observations
(Xtrain, Ytrain)
PartitionDtrain into two sets,D1 andD2, of sizes
ntrain1 and ntrain2 = n− ntrain1 observations
// Using D1, estimate β∗

β∗jk =
∑ntrain1

i=1 xijyik for the jth feature and kth

label
// Using D2, estimate αj

// Generate new “features” Z and the true labels
g(i, k) for each of the SAMA candidate labels for
each of the tokens in D2

zijk = β∗jkxij for i in i = ntrain1 + 1 . . . ntrain2

Estimate αj for the above (feature,label) pairs
(zijk, g(i, k)) using Regression SVMs
Output: α and β∗

pus D1, (a subset of D), finding the co-occurrence
frequencies of each label element (a lemma, or a
part of the morphological segmentation) with the
target token and jointly with the token and with
other tokens or characters in the context of the to-
ken of interest. For example, given an Arabic to-
ken, “yHlm”, we count what fraction of the time
it is associated with each lemma (e.g. Halam-
u 1), count(lemma=Halam-u 1, token=yHlm) and
each segment (e.g. “ya”), count(segment=ya, to-
ken=yHlm). (Of course, most tokens never show up
with most lemmas or segments; this is not a prob-
lem.) We also find the base rates of the components
of the labels (e.g., count(lemma=Halam-u 1), and
what fraction of the time the label shows up in vari-
ous contexts, e.g. count(lemma=Halam-u 1, previ-
ous token = yHlm). We describe these features in
more detail below.

3 Features and Labels used for Training

Our approach to tagging Arabic differs from conven-
tional approaches in the two-part shrinkage-based
method used, and in the choice of both features and
labels used in our model. For features, we study
both local context variables, as described above, and
document-level word frequencies. For the labels, the
key question is what labels are included and how
they are factored. Standard “taggers” work by doing
an n-way classification of all the alternatives, which
is not feasible here due to the thousands of possi-
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ble labels. Standard approaches such as Conditional
Random Fields (CRFs) are intractable with so many
labels. Moreover, few if any taggers do any lemma
disambiguation; that is partly because one must start
with some standard inventory of lemmas, which are
not available for most languages, perhaps because
the importance of lemma disambiguation has been
underestimated.

We make a couple of innovations to deal with
these issues. First, we perform lemma disambigua-
tion in addition to “tagging”. As mentioned above,
lemmas and morphological information are not in-
dependent; the choice of lemma often influences
morphology and vice versa. For example, Table 1
contains two analyses for the word qbl. For the first
analysis, where the lemma is qabil-a 1 and the gloss
is accept/receive/approve + he/it [verb], the word is
a verb. However, for the second analysis, where the
lemma is qabol 1 and the gloss is before, the word
is a noun.

Simultaneous lemma disambiguation and tagging
introduces additional complexity: An analysis of
ATB and SAMA shows that there are approximately
2,200 possible morphological analyses (“tags”) and
40,000 possible lemmas; even accounting for the
fact that most combinations of lemmas and morpho-
logical analyses don’t occur, the size of the label
space is still in the order of tens of thousands. To
deal with data sparsity, our second innovation is to
factor the labels. We factor each label l into a set of
16 label elements (LEs). These include lemmas, as
well as morphological elements such as basic part-
of-speech, suffix, gender, number, mood, etc. These
are explained in detail below. Thus, since each la-
bel l is a set of 15 categorical variables, each y in
the first learning stage is actually a vector with 16
nonzero components and thousands of zeros. Since
we do simultaneous estimation of the entire set of
label elements, the value g(i, k) being predicted in
the second learning phase is 1 if the entire label set
is correct, and zero otherwise. We do not learn sep-
arate models for each label.

3.1 Label Elements (LEs)

The fact that there are tens of thousands of possible
labels presents the problem of extreme sparsity of
label distribution in the training data. We find that a
model that estimates coefficients β∗ to predict a sin-

LE Description
lemma Lemma
pre1 Closer prefix
pre2 Farther prefix
det Determiner
pos Basic POS
dpos Additional data on basic pos
suf Suffix

perpos Person (basic pos)
numpos Number (basic pos)
genpos Gender (basic pos)
persuf Person (suffix)
numsuf Number (suffix)
gensuf Gender (suffix)
mood Mood of verb
pron Pronoun suffix

Table 2: Label Elements (LEs). Examples of additional
data on basic POS include whether a noun is proper or
common, whether a verb is transitive or not, etc. Both
the basic POS and its suffix may have person, gender and
number data.

gle label (a label being in the Cartesian product of
the set of label elements) yields poor performance.
Therefore, as just mentioned, we factor each label
l into a set of label elements (LEs), and learn the
correlations β∗ between features and label elements,
rather than features and entire label sets. This re-
duces, but does not come close to eliminating, the
problem sparsity. A complete list of these LEs and
their possible values is detailed in Table 2.

3.2 Features
3.2.1 Local Context Features

We take (t, l) pairs from D2, and for each such
pair generate features Z based on co-occurrence
statistics β∗ in D1, as mentioned in Algorithm 2.
These statistics include unigram co-occurrence fre-
quencies of each label with the target token and bi-
gram co-occurrence of the label with the token and
with other tokens or characters in the context of the
target token. We define them formally in Table 3.
Let Zbaseline denote the set of all such basic features
based on the local context statistics of the target to-
ken, namely the words and letters preceding and fol-
lowing it. We will use this set to create a baseline
model.
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Statistic Description
Freq countD1(t, l)

PrevWord countD1(t, l, t−1)
NextWord countD1(t, l, t+1)
PreviLetter countD1(t, l, first letter(t−1))
NextiLetter countD1(t, l, first letter(t+1)

PrevfLetter countD1(t, l, last letter(t−1)

NextfLetter countD1(t, l, last letter(t+1)

Table 3: Co-occurrence statistics β∗. We use these to
generate feature sets for our regression SVMs.

For each label element (LE) e, we define a set of
features Ze similar to Zbaseline; these features are
based on co-occurrence frequencies of the particular
LE e, not the entire label l.

Finally, we define an aggregate feature set Zaggr

as follows:

Zaggr = Zbaseline

⋃
{Ze} (7)

where e ∈ {lemma, pre1, pre2, det, pos, dpos,
suf, perpos, numpos, genpos, persuf, numsuf, gensuf,
mood, pron}.

3.2.2 Document Level Features

When trying to predict the lemma, it is useful to
include not just the words and characters immedi-
ately adjacent to the target token, but also the all the
words in the document. These words capture the
“topic” of the document, and help to disambiguate
different lemmas, which tend to be used or not used
based on the topic being discussed, similarly to the
way that word sense disambiguation systems in En-
glish sometimes use the “bag of words” the docu-
ment to disambiguate, for example a “bank” for de-
positing money from a “bank” of a river. More pre-
cisely, we augment the features for each target token
with the counts of each word in the document (the
“term frequency” tf) in which the token occurs with
a given label.

Zfull = Zaggr

⋃
Ztf (8)

This setZfull is our final feature set. We useZfull

to train an SVM model Mfull; this is our final pre-
dictive model.

3.3 Corpora used for Training and Testing
We use three modules of the Penn Arabic Tree-
bank (ATB) (Maamouri et al., 2004), namely ATB1,
ATB2 and ATB3 as our corpus of labeled Ara-
bic text, D. Each ATB module is a collection
of newswire data from a particular agency. ATB1
uses the Associated Press as a source, ATB2 uses
Ummah, and ATB3 uses Annahar. D contains a total
of 1,835 documents, accounting for approximately
350,000 words. We construct the training and test-
ing setsDtrain andDtest fromD using 10-fold cross
validation, and we constructD1 andD2 fromDtrain

by randomly performing a 9:1 split.
As mentioned earlier, we use the SAMA mor-

phological analyzer to obtain candidate labels C(t)
for each token t while training and testing an SVM
model on D2 and Dtest respectively. A sample out-
put of SAMA is shown in Table 1. To improve cov-
erage, we also add to C(t) all the labels l seen for t
in D1. We find that doing so improves coverage to
98%. This is an upper bound on the accuracy of our
model.

C(t) = SAMA(t)
⋃

{l|(t, l) ∈ D1} (9)

4 Results

We use two metrics of accuracy: A1, which mea-
sures the percentage of tokens for which the model
assigns the highest score to the correct label or LE
value (or E1= 100−A1, the corresponding percent-
age error), and A2, which measures the percentage
of tokens for which the correct label or LE value
is one of the two highest ranked choices returned
by the model (or E2 = 100 − A2). We test our
modelMfull onDtest and achieve A1 and A2 scores
of 90.6% and 96.2% respectively. The accuracy
achieved by our Mfull model is, to the best of our
knowledge, higher than prior approaches have been
able to achieve so far for the problem of combined
morphological and lemma disambiguation. This is
all the more impressive considering that the upper
bound on accuracy for our model is 98% because,
as described above, our set of candidate labels is in-
complete.

In order to analyze how well different LEs can be
predicted, we train an SVM model Me for each LE
e using the feature set Ze, and test all such models
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on Dtest. The results for all the LEs are reported in
the form of error percentages E1 and E2 in Table 4.

Model E1 E2 Model E1 E2
Mlemma 11.1 4.9 Mpre1 1.9 1.4
Mpre2 0.2 0 Mdet 0.7 0.1
Mpos 23.4 4.0 Mdpos 10.3 1.9
Msuf 7.6 2.5 Mperpos 3.0 0.1
Mnumpos 3.2 0.2 Mgenpos 1.8 0.1
Mpersuf 3.2 0.1 Mnumsuf 8.2 0.5
Mgensuf 11.6 0.4 Mmood 1.6 1.4
Mpron 1.8 0.6 Mcase 14.7 5.9
Mfull 9.4 3.8 - - -

Table 4: Results of Me for each LE e. Note: The results
reported are 10 fold cross validation test accuracies and
no parameters have been tuned on them.

A comparison of the results for Mfull with the
results for Mlemma and Mpos is particularly infor-
mative. We see that Mfull is able to achieve a sub-
stantially lower E1 error score (9.4%) than Mlemma

(11.1%) and Mpos (23.4%); in other words, we find
that our full model is able to predict lemmas and ba-
sic parts-of-speech more accurately than the individ-
ual models for each of these elements.

We examine the effect of varying the size of D2,
i.e. the number of SVM training instances, on the
performance of Mfull on Dtest, and find that with
increasing sizes of D2, E1 reduces only slightly
from 9.5% to 9.4%, and shows no improvement
thereafter. We also find that the use of document-
level features in Mlemma reduces E1 and E2 per-
centages for Mlemma by 5.7% and 3.2% respec-
tively.

4.1 Comparison to Alternate Approaches

4.1.1 Structured Prediction Models
Preliminary experiments showed that knowing the

predicted labels (lemma + morphology) of the sur-
rounding words can slightly improve the predic-
tive accuracy of our model. To further investi-
gate this effect, we tried running experiments us-
ing different structured models, namely CRF (Con-
ditional Random Fields) (Lafferty et al., 2001),
(Structured) MIRA (Margin Infused Relaxation Al-
gorithm) (Crammer et al., 2006) and Structured
Perceptron (Collins, 2002). We used linear chain

CRFs as implemented in MALLET Toolbox (Mc-
Callum, 2001) and for Structured MIRA and Per-
ceptron we used their implementations from EDLIN
Toolbox (Ganchev and Georgiev, 2009). However,
given the vast label space of our problem, running
these methods proved infeasible. The time complex-
ity of these methods scales badly with the number of
labels; It took a week to train a linear chain CRF
for only ∼ 50 labels and though MIRA and Per-
ceptron are online algorithms, they also become in-
tractable beyond a few hundred labels. Since our
label space contains combinations of lemmas and
morphologies, so even after factoring, the dimension
of the label space is in the order of thousands.

We also tried a naı̈ve version (two-pass approxi-
mation) of these structured models. In addition to
the features in Zfull, we include the predicted la-
bels for the tokens preceding and following the tar-
get token as features. This new model is not only
slow to train, but also achieves only slightly lower
error rates (1.2% lower E1 and 1.0% lower E2) than
Mfull. This provides an upper bound on the bene-
fit of using the more complex structured models, and
suggests that given their computational demands our
(unstructured) model Mfull is a better choice.

4.1.2 MADA
(Habash and Rambow, 2005) perform morpho-

logical disambiguation using a morphological ana-
lyzer. (Roth et al., 2008) augment this with lemma
disambiguation; they call their system MADA. Our
work differs from theirs in a number of respects.
Firstly, they don’t use the two step regression proce-
dure that we use. Secondly, they use only “unigram”
features. Also, they do not learn a single model from
a feature set based on labels and LEs; instead, they
combine models for individual elements by using
weighted agreement. We trained and tested MADA
v2.32 using its full feature set on the same Dtrain

andDtest. We should point out that this is not an ex-
act comparison, since MADA uses the older Buck-
walter morphological analyzer.1

4.1.3 Other Alternatives
Unfactored Labels: To illustrate the benefit ob-

tained by breaking down each label l into

1A new version of MADA was released very close to the
submission deadline for this conference.
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LEs, we contrast the performance of our Mfull

model to an SVM model Mbaseline trained us-
ing only the feature set Zbaseline, which only
contains features based on entire labels, those
based on individual LEs.

Independent lemma and morphology prediction:
Another alternative approach is to pre-
dict lemmas and morphological analyses
separately. We construct a feature set
Zlemma′ = Zfull − Zlemma and train an SVM
model Mlemma′ using this feature set. Labels
are then predicted by simply combining the
results predicted independently by Mlemma

and Mlemma′ . Let Mind denote this approach.

Unigram Features: Finally, we also consider a
context-less approach, i.e. using only “uni-
gram” features for labels as well as LEs. We
call this feature set Zuni, and the correspond-
ing SVM model Muni.

The results of these various models, along with
those of Mfull are summarized in Table 5. We see
thatMfull has roughly half the error rate of the state-
of-the-art MADA system.

Model E1 E2
Mbaseline 13.6 9.1
Mind 18.7 6.0
Muni 11.6 6.4
Mcheat 8.2 2.8
MADA 16.9 12.6
Mfull 9.4 3.8

Table 5: Percent error rates of alternative approaches.
Note: The results reported are 10 fold cross validation
test accuracies and no parameters have been tuned on
them. We used same train-test splits for all the datasets.

5 Related Work

(Hajic, 2000) show that for highly inflectional
languages, the use of a morphological analyzer
improves accuracy of disambiguation. (Diab et
al., 2004) perform tokenization, POS tagging
and base phrase chunking using an SVM based
learner. (Ahmed and Nürnberger, 2008) perform
word-sense disambiguation using a Naive Bayesian

model and rely on parallel corpora and match-
ing schemes instead of a morphological ana-
lyzer. (Kulick, 2010) perform simultaneous tok-
enization and part-of-speech tagging for Arabic by
separating closed and open-class items and focus-
ing on the likelihood of possible stems of open-
class words. (Mohamed and Kübler, 2010) present
a hybrid method between word-based and segment-
based POS tagging for Arabic and report good re-
sults. (Toutanova and Cherry, 2009) perform joint
lemmatization and part-of-speech tagging for En-
glish, Bulgarian, Czech and Slovene, but they do
not use the two step estimation-shrinkage model de-
scribed in this paper; nor do they factor labels. The
idea of joint lemmatization and part-of-speech tag-
ging has also been discussed in the context of Hun-
garian in (Kornai, 1994).

A substantial amount of relevant work has been
done previously for Hebrew. (Adler and Elhadad,
2006) perform Hebrew morphological disambigua-
tion using an unsupervised morpheme-based HMM,
but they report lower scores than those achieved by
our model. Moreover, their analysis doesn’t include
lemma IDs, which is a novelty of our model. (Gold-
berg et al., 2008) extend the work of (Adler and El-
hadad, 2006) by using an EM algorithm, and achieve
an accuracy of 88% for full morphological analy-
sis, but again, this does not include lemma IDs. To
the best of our knowledge, there is no existing re-
search for Hebrew that does what we did for Arabic,
namely to use simultaneous lemma and morpholog-
ical disambiguation to improve both. (Dinur et al.,
2009) show that prepositions and function words can
be accurately segmented using unsupervised meth-
ods. However, by using this method as a preprocess-
ing step, we would lose the power of a simultaneous
solution for these problems. Our method is closer in
style to a CRF, giving much of the accuracy gains of
simultaneous solution, while being about 4 orders of
magnitude easier to train.

We believe that our use of factored labels is novel
for the problem of simultaneous lemma and mor-
phological disambiguation; however, (Smith et al.,
2005) and (Hatori et al., 2008) have previously
made use of features based on parts of labels in
CRF models for morphological disambiguation and
word-sense disambiguation respectively. Also, we
note that there is a similarity between our two-stage
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machine learning approach and log-linear models in
machine translation that break the data in two parts,
estimating log-probabilities of generative models
from one part, and discriminatively re-weighting the
models using the second part.

6 Conclusions

We introduced a new approach to accurately predict
labels consisting of both lemmas and morphologi-
cal analyses for Arabic text. We obtained an accu-
racy of over 90% – substantially higher than current
state-of-the-art systems. Key to our success is the
factoring of labels into lemma and a large set of mor-
phosyntactic elements, and the use of an algorithm
that computes a simple initial estimate of the coef-
ficient relating each contextual feature to each la-
bel element (simply by counting co-occurrence) and
then regularizes these features by shrinking each of
the coefficients for each feature by an amount deter-
mined by supervised learning using only the candi-
date label sets produced by SAMA.

We also showed that using features of word n-
grams is preferable to using features of only individ-
ual tokens of data. Finally, we showed that a model
using a full feature set based on labels as well as
factored components of labels, which we call label
elements (LEs) works better than a model created
by combining individual models for each LE. We
believe that the approach we have used to create our
model can be successfully applied not just to Arabic
but also to other languages such as Turkish, Hungar-
ian and Finnish that have highly inflectional mor-
phology. The current accuracy of of our model, get-
ting the correct answer among the top two choices
96.2% of the time is high enough to be highly use-
ful for tasks such as aiding the manual annotation
of Arabic text; a more complete automation would
require that accuracy for the single top choice.
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Abstract

In many NLP systems, there is a unidirectional flow
of information in which a parser supplies input to a
semantic role labeler. In this paper, we build a sys-
tem that allows information to flow in both direc-
tions. We make use of semantic role predictions in
choosing a single-best parse. This process relies on
an averaged perceptron model to distinguish likely
semantic roles from erroneous ones. Our system pe-
nalizes parses that give rise to low-scoring semantic
roles. To explore the consequences of this we per-
form two experiments. First, we use a baseline gen-
erative model to produce n-best parses, which are
then re-ordered by our semantic model. Second, we
use a modified version of our semantic role labeler
to predict semantic roles at parse time. The perfor-
mance of this modified labeler is weaker than that
of our best full SRL, because it is restricted to fea-
tures that can be computed directly from the parser’s
packed chart. For both experiments, the resulting se-
mantic predictions are then used to select parses. Fi-
nally, we feed the selected parses produced by each
experiment to the full version of our semantic role
labeler. We find that SRL performance can be im-
proved over this baseline by selecting parses with
likely semantic roles.

1 Introduction
In the semantic role labeling task, words or groups of
words are described in terms of their relations to a pred-
icate. For example, the sentence Robin admires Leslie
has two semantic role-bearing words: Robin is the agent
or experiencer of the admire predicate, and Leslie is
the patient. These semantic relations are distinct from
syntactic relations like subject and object – the proper
nouns in the sentence Leslie is admired by Robin have
the same semantic relationships as Robin admires Leslie,
even though the syntax differs.
Although syntax and semantics do not always align with
each other, they are correlated. Almost all automatic se-
mantic role labeling systems take a syntactic representa-

tion of a sentence (taken from an automatic parser or a
human annotator), and use the syntactic information to
predict semantic roles. When a semantic role labeler pre-
dicts an incorrect role, it is often due to an error in the
parse tree. Consider the erroneously annotated sentence
from the Penn Treebank corpus shown in Figure 1. If a
semantic role labeling system relies heavily upon syntac-
tic attachment decisions, then it will likely predict that
in 1956 describes the time that asbestos was used, rather
than when it ceased to be used.
Errors of this kind are common in treebanks and in au-
tomatic parses. It is telling, though, that while the hand-
annotated Penn Treebank (Marcus et al., 1993), the Char-
niak parser (Charniak, 2001), and the C&C parser (Clark
and Curran, 2004) all produce the erroneous parse from
Figure 1, the hand-annotated Propbank corpus of verbal
semantic roles (Palmer et al., 2005) correctly identifies in
1956 as a temporal modifier of stopped, rather than using.
This demonstrates that while syntactic attachment deci-
sions like these are difficult for humans and for automatic
parsers, a human reader has little difficulty identifying the
correct semantic relationship between the temporal mod-
ifier and the verbs. This is likely due to the fact that the
meaning suggested by the parse in Figure 1 is unlikely –
the reader instinctively feels that a temporal modifier fits
better with the verb stop than with the verb use.

In this paper, we will use the idea that semantic roles
predicted by correct parses are more natural than seman-
tic roles predicted by erroneous parses. By modifying a
state-of-the-art CCG semantic role labeler to predict se-
mantic roles at parse time, or by using it to select from
an n-best list, we can prefer analyses that yield likely se-
mantic roles. Syntactic analysis is treated not as an au-
tonomous task, but rather as a contributor to the final goal
of semantic role labeling.

2 Related Work

There has been a great deal of work in joint parsing and
semantic role labeling in recent years. Two notable ef-
forts have been the CoNLL 2008 and 2009 shared tasks
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Figure 1: A parse tree based on the treebank parse of wsj 0003.3. Notice that the temporal adjunct is erroneously attached low. In
a syntax-based SRL system, this will likely lead to a role prediction error.

(Surdeanu et al., 2008; Hajič et al., 2009). Many of these
systems perform joint syntactic and semantic analysis by
generating an n-best list of syntactic parses, labeling se-
mantic roles on all of them, then re-ranking these parses
by some means. Our approach differs from this strategy
by abandoning the preliminary ranking and predicting se-
mantic roles at parse time. By doing this, we effectively
open semantic roles in the entire parse forest to exami-
nation by the ranking model, rather than restricting the
model to an n-best list generated by a baseline parser. The
spirit of this work more closely resembles that of Finkel
and Manning (2009) , which improves both parsing and
named entity recognition by combining the two tasks.

3 Why Predicting Semantic Roles in a
Packed Chart is Difficult

Predicting semantic roles in the environment of a packed
chart is difficult when using an atomic CFG. In order to
achieve the polynomial efficiency appropriate for wide-
coverage parsing, it is necessary to “pack” the chart –
that is, to combine distinct analyses of a given span of
words that produce the same category. The only other
widely used option for wide-coverage parsing is to use
beam search with a narrow beam, which runs the risk
of search errors. On methodological grounds we pre-
fer an exhaustive search, since systems that rely heav-
ily on heuristics for their efficiency are difficult to un-
derstand, debug or improve. It is straightforward to read
off the highest scoring parse from a packed chart, and
similarly routine to generate an n-best list containing a
highly-ranked subset of the parses. However, a packed
chart built on an atomic CFG does not make available
all of the features that are important to many CFG-based
SRL systems. In particular, the very useful treepath fea-
ture, which lists the categories touched by walking the
tree from the predicate to the target word, only makes
sense when you have a complete tree, so cannot easily
be computed from the chart (Figure 2). Chart edges can
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Figure 2: In the context of a packed chart, it is meaningless to
speak of a treepath between saw and people because multiple
analyses are “packed” under a single category.

be lexicalized with their headwords, and this information
would be useful in role labeling – but even this misses
vital subcategorization information that would be avail-
able in the complete parse. An ideal formalism for our
purpose would condense into the category label a wide
range of information about combinatory potential, heads,
and syntactic dependencies. At the same time it should
allow the creation of a packed chart, come with labeled
training data, and have a high-quality parser and semantic
role labeler already available. Fortunately, Combinatory
Categorial Grammar offers these desiderata, so this is our
formalism of choice.

4 Combinatory Categorial Grammar

Combinatory Categorial Grammar (Steedman, 2000) is
a grammar formalism that describes words in terms of
their combinatory potential. For example, determiners
belong to the category np/n, or “the category of words
that become noun phrases when combined with a noun
to the right”. The rightmost category indicates the argu-
ment that the category is seeking, the leftmost category
indicates the result of combining this category with its
argument, and the slash (/ or \) indicates the direction of
combination. Categories can be nested within each other:
a transitive verb like devoured belongs to the category
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The man devoured the steak
np/n n (s\np)/npx npx/nx nx

> >np npx
>

s\np
<s

Figure 3: A simple CCG derivation.

The steak that the man devoured
np (npx\npx)/(s/npx) np (s\np)/npx

>T
s/(s\np)

>B
s/npx

>
npx\npx

<npx

Figure 4: An example of CCG’s treatment of relative clauses.
The syntactic dependency between devoured and steak is the
same as it was in figure 3. Co-indexations (the ‘xs’) have been
added here and above to aid the eye in following the relevant
[devoured-steak] dependency.

(s\np)/np, or “the category that would become a sentence
if it could combine with a noun phrase to the right and
another noun phrase to the left”. An example of how cat-
egories combine to make sentences is shown in Figure 3.
CCG has many capabilities that go beyond that of a typ-
ical context-free grammar. First, it has a sophisticated
internal system of managing syntactic heads and depen-
dencies1. These dependencies are used to great effect in
CCG-based semantic role labeling systems (Gildea and
Hockenmaier, 2003; Boxwell et al., 2009), as they do
not suffer the same data-sparsity effects encounted with
treepath features in CFG-based SRL systems. Secondly,
CCG permits these dependencies to be passed through in-
termediary categories in grammatical structures like rel-
ative clauses. In Figure 4, the steak is still in the object
relation to devoured, even though the verb is inside a rel-
ative clause. Finally and most importantly, these depen-
dencies are represented directly on the CCG categories
themselves. This is what makes CCG resistant to the
problem described in Section 3 – because the dependency
is formed when the two heads combine, it is available to
be used as a local feature by the semantic role labeler.

1A complete explanation of CCG predicate-argument dependencies
can be found in the CCGbank user manual (Hockenmaier and Steed-
man, 2005)

5 Semantic Role Labeling

We use a modified version of the Brutus semantic role
labeling system (Boxwell et al., 2009)2. The original ver-
sion of this system takes complete CCG derivations as in-
put, and predicts semantic roles over them. For our pur-
poses, however, it is necessary to modify the system to
make semantic predictions at parse time, inside a packed
chart, before the complete derivation is available. For
this reason, it is necessary to remove the global features
from the system (that is, features that rely on the com-
plete parse), leaving only local features (features that are
known at the moment that the predicate is attached to the
argument). Crucially, dependency features count as “lo-
cal” features, even though they have the potential to con-
nect words that are very far apart in the sentence.
Brutus is arranged in a two-stage pipeline. First, a max-
imum entropy classifier3 predicts, for each predicate in
turn, which words in the sentence are likely headwords of
semantic roles. Then, a second maximum entropy classi-
fier assigns role labels to each of these words. The fea-
tures used in the identification model of the local-only
version of Brutus are as follows:

• Words. A three-word window surrounding the can-
didate word. For example, if we were considering
the word steak in Figure 3, the three features would
be represented as word -1=the, word 0=steak, and
word 1=#, with the last feature representing an out-
of-bounds index.

• Predicate. The predicate whose semantic roles the
system is looking for. For example, the sentence in
figure 3 contains one predicate: devour.

• Syntactic Dependency. As with a previous ap-
proach in CCG semantic role labeling (Gildea and
Hockenmaier, 2003), this feature shows the ex-
act nature of the syntactic dependency between the
predicate and the word we are considering, if any
such dependency exists. This feature is represented
by the category of the predicate, the argument slot
that this word fits into, and whether or not the predi-
cate is the head of the resultant category, represented
with a left or right arrow. In the example from fig-
ure 3, the relationship between devoured and steak
would be represented as (s\np)/np.2.→.

The second maximum entropy classifier uses all of the
features from the identifier, plus several more:

2Found at http://www.ling.ohio-state.edu/

˜boxwell/software/brutus.html
3Brutus uses Zhang Le’s maxent toolkit, available at

http://homepages.inf.ed.ac.uk/s0450736/maxent_
toolkit.html.
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Model P R F
Local 89.8% 80.8% 85.1%
Global 89.8% 84.3% 87.0%

Table 1: SRL results for treebank parses, using the local model
described in Section 5 and the full global model.

• Before / After. A binary indicator feature indicat-
ing whether the candidate word is before or after the
predicate.

• Result Category Detail. This indicates the feature
on the result category of the predicate. Possible
values include dcl (for declarative sentences), pss
(for passive sentences), ng (for present-progressive
phrases like “running the race”), etc. These are read
trivially off of the verbal category.

• Argument Mapping. An argument mapping is a
prediction of a likely set of semantic roles for a
given CCG predicate category. For example, a likely
argument mapping for devoured:(s[dcl]\np)/np is
[Arg0,Arg1]. These are predicted from string-level
features, and are useful for bringing together oth-
erwise independent classification decisions for in-
dividual roles. Boxwell et al. (2009) describe this
feature in detail.

The Maximum-Entropy models were trained to 500 it-
erations. To prevent overfitting, we used Gaussian pri-
ors with global variances of 1 and 5 for the identifier
and the labeler, respectively. Table 1 shows SRL perfor-
mance for the local model described above, and the full
global CCG-system described by Boxwell et al. (2009).
We use the method for calculating the accuracy of Prop-
bank verbal semantic roles described in the CoNLL-2008
shared task on semantic role labeling (Surdeanu et al.,
2008). Because the Brutus SRL system is not designed
to accommodate Nombank roles (Meyers et al., 2004),
we restrict ourselves to predicting Propbank roles in the
present work.

The local system has the same precision as the global
one, but trails it on recall and F-measure. Note that this
performance is achieved with gold standard parses.

6 Performing Semantic Role Predictions at
Parse Time

Recall that the reasoning for using a substantially pared
down version of the Brutus SRL system is to allow it to
predict semantic roles in the context of a packed chart.
Because we predict semantic roles for each constituent
immediately after the constituent is formed and before it
is added to the chart, we can use semantic roles to inform
parsing. We use a CKY parsing algorithm, though this

approach could be easily adapted to other parse strate-
gies.
Whenever two constituents are combined, the SRL sys-
tem checks to see if either of the constituents contains
predicates. The system then attempts to identify seman-
tic roles in the other constituent related to this predicate.
This process repeats at every step, creating a combined
syntax-semantics parse forest. Crucially, this allows us
to use features derived from the semantic roles to rank
parses inside the packed chart. This could result in an
improvement over ranking completed parses, because re-
ranking completed parses requires first generating an n-
best list of parse candidates, potentially preventing the
re-ranker from examining high value parses falling out-
side the n-best list.
In order to train our parse model, it is necessary to first
employ a baseline parse model over the training set. The
baseline model is a PCFG model, where the products of
the probabilities of individual rule applications are used
to rank candidate parses. We use a cross-fold validation
technique to parse the training set (train on sections 02-
20 to parse section 21, train on sections 02-19 and 21 to
parse section 20, and so on). As we parse these sentences,
we use the local SRL model described in Section 5 to
predict semantic roles inside the packed chart. We then
iterate over the packed chart and extract features based
on the semantic roles in it, effectively learning from ev-
ery possible semantic role in the parse forest. Notice that
this does not require enumerating every parse in the for-
est (which would be prohibitively expensive) – the roles
are labeled at parse time and can therefore be read di-
rectly from the packed chart. For each role in the packed
chart, we label it as a “good” semantic role if it appears in
the human-judged Propbank annotation for that sentence,
and a “bad” semantic role if it does not.
The features extracted from the packed chart are as fol-
lows:

• Role. The semantic role itself, concatenated with
the predicate. For example, play.Arg1. This will
represent the intuition described in Section 1 that
certain roles are more semantically appealing than
others.

• Role and Headword. The semantic role concate-
nated with the predicate and the headword of the se-
mantic role. This reflects the idea that certain words
fit with particular roles better than others.

These features are used to train an averaged percep-
tron model to distinguish between likely and unlikely se-
mantic roles. We incorporate the perceptron directly with
the parser using a packed feature forest implementation,
following an approach used by the current state-of-the-
art CCG parser (Clark and Curran, 2004). By prefer-
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ring sentences with good semantic roles, we hope to pro-
duce parses that give better overall semantic role predic-
tions. The parser prefers spans with better semantic roles,
and breaks ties that would have arisen using the base-
line model alone. Similarly the baseline model can break
ties between equivalent semantic roles; this has the added
benefit of encouraging normal-form derivations in cases
of spurious ambiguity. The result is a single-best com-
plete parse with semantic roles already predicted. Once
the single-best parse is selected, we allow the global SRL
model to predict any additional roles over the parse, to
catch those roles that are difficult to predict from local
features alone.

7 Experiment 1: Choosing a Single-Best
Derivation from an N-best List

Our first experiment demonstrates our model’s perfor-
mance in a ranking task. In this task, a list of candidate
parses are generated by our baseline model. This base-
line model treats rule applications as a PCFG – each rule
application (say, np + s\np = s) is given a probability in
the standard way. The rule probabilities are unsmoothed
maximum likelihood estimates derived from rule counts
in the training portion of CCGbank. After n-best deriva-
tions are produced by the baseline model, we use the Bru-
tus semantic role labeler to assign roles to each candi-
date derivation. We vary the size of the n-best list from
1 to 10 (note that an n-best list of size 1 is equivalent to
the single-best baseline parse). We then use the seman-
tic model to re-rank the candidate parses and produce a
single-best parse. The outcomes are shown in Table 2.

n P R F
1 85.1 71.7 77.8
2 85.9 74.8 79.9
5 84.5 76.8 80.5

10 83.7 76.8 80.1
C&C 83.6 76.8 80.0

Table 2: SRL performance on the development set (section 00)
for various values of n. The final row indicates SRL perfor-
mance on section 00 parses from the Clark and Curran CCG
parser.

The availability of even two candidate parses yields
a 2.1% boost to the balanced F-measure. This is be-
cause the semantic role labeler is very sensitive to syn-
tactic attachment decisions, and in many cases the set of
rule applications used in the derivation are very similar or
even the same. Consider the simplified version of a phe-
nomenon found in wsj 0001.1 shown in Figures 5 and 6.
The only difference in rule applications in these deriva-
tions is whether the temporal adjunct attaches to s[b]\np
or s[dcl]\np. Because the s[dcl]\np case is slightly more

He will join Nov. 27th

np (s[dcl]\np)/(s[b]\np) s[b]\np (s\np)\(s\np)
>

s[dcl]\np
>

s[dcl]\np
<

s[dcl]

Figure 5: The single-best analysis for He will join Nov 27th
according to the baseline model. Notice that the temporal ad-
junct is attached high, leading the semantic role labeler to fail
to identify ArgM-TMP.

He will join Nov. 27th

np (s[dcl]\np)/(s[b]\np) s[b]\np (s\np)\(s\np)
<

s[b]\np
>

s[dcl]\np
<

s[dcl]

Figure 6: The second-best analysis of He will join Nov 27th.
This analysis correctly predicts Nov 27th as the ArgM-TMP of
join, and the semantic model correctly re-ranks this analysis to
the single-best position.

common in the treebank, the baseline model identifies it
as the single-best parse, and identifies the derivation in
figure 6 as the second-best parse. The semantic model,
however, correctly recognizes that the semantic roles pre-
dicted by the derivation in Figure 6 are superior to those
predicted by the derivation in figure 5. This demonstrates
how a second or third-best parse according to the baseline
model can be greatly superior to the single-best in terms
of semantics.

8 Experiment 2: Choosing a Single-Best
Derivation Directly from the Packed
Chart

One potential weakness with the n-best list approach de-
scribed in Section 7 is choosing the size of the n-best list.
As the length of the sentence grows, the number of can-
didate analyses grows. Because sentences in the treebank
and in real-world applications are of varying length and
complexity, restricting ourselves to an n-best list of a par-
ticular size opens us to considering some badly mangled
derivations on short, simple sentences, and not enough
derivations on long, complicated ones. One possible so-
lution to this is to simply choose a single best derivation
directly from the packed chart using the semantic model,
eschewing the baseline model entirely except for break-
ing ties. In this approach, we use the local SRL model
described in section 6 to predict semantic roles at parse
time, inside the packed chart. This frees us from the
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need to have a complete derivation (as in the n-best list
approach in Section 7). We use the semantic model to
choose a single-best parse from the packed chart, then we
pass this complete parse through the global SRL model to
give it all the benefits afforded to the parses in the n-best
approach. The results for the semantic model compared
to the baseline model are shown in table 3. Interestingly,

Model P R F
Baseline 85.1 71.7 77.8
Semantic 82.7 70.5 76.1

Table 3: A comparison of the performance of the baseline model
and the semantic model on semantic role labeling. The seman-
tic model, when unrestrained by the baseline model, performs
substantially worse.

the semantic model performs considerably worse than the
baseline model. To understand why, it is necessary to re-
member that the semantic model uses only semantic fea-
tures – probabilities of rule applications are not consid-
ered. Therefore, the semantic model is perfectly happy to
predict derivations with sequences of highly unlikely rule
applications so long as they predict a role that the model
has been trained to prefer.
Apparently, the reckless pursuit of appealing semantic
roles can ultimately harm semantic role labeling accuracy
as well as parse accuracy. Consider the analysis shown
in Figure 7. Because the averaged perceptron semantic
model is not sensitive to the relationships between differ-
ent semantic roles, and because Arg1 of name is a “good”
semantic role, the semantic model predicts as many of
them as it can. The very common np-appositive construc-
tion is particularly vulnerable to this kind of error, as it
can be easily mistaken for a three-way coordination (like
carrots, peas and watermelon). Many of the precision
errors generated by the local model are of this nature,
and the global model is unlikely to remove them, given
the presence of strong dependencies between each of the
“subjects” and the predicate.
Coordination errors are also common when dealing with
relative clause attachment. Consider the analysis in Fig-
ure 8. To a PCFG model, there is little difference be-
tween attaching the relative clause to the researchers or
Lorillard nor the researchers. The semantic model, how-
ever, would rather predict two semantic roles than just
one (because study:Arg0 is a highly appealing semantic
role). Once again, the pursuit of appealing semantic roles
has led the system astray.

We have shown in Section 7 that the semantic model
can improve SRL performance when it is constrained to
the most likely PCFG derivations, but enumerating n-best
lists is costly and cumbersome. We can, however, com-
bine the semantic model with the baseline PCFG. Our

method for doing this is designed to avoid the kinds of er-
ror described above. We first identify the highest-scoring
parse according to the PCFG model. This parse will be
used in later processing unless we are able to identify an-
other parse that satisfies the following criteria:

1. It must be closely related to the parse that has the
best score according to the semantic model. To iden-
tify such parses, we ask the chart unpacking algo-
rithm to generate all the parses that can be reached
by making up to five attachment changes to this se-
mantically preferred parse – no more.

2. It must have a PCFG score that is not much less than
that of the single-best PCFG parse. We do this by
requiring that it has a score that is within a factor of
α of the best available. That is, the single-best parse
from the semantic model must satisfy

logP (sem) > logP (baseline) + log(α)

where the α value is tuned on the development set.

If no semantically preferred parse meets the above cri-
teria, the single-best PCFG parse is used. We find that
the PCFG-preferred parse is used about 35% of the time
and an alternative used instead about 65% of the time.
The SRL performance for this regime, using a range of
cut-off factors, is shown in table 4. On this basis we se-
lect a cut-off of 0.5 as suitable for use for final testing.
On the development set this method gives the best pre-
cision in extracting dependencies, but is slightly inferior
to the method using a 2-best list on recall and balanced
F-measure.

Factor (α) P R F
0.5 86.3 71.9 78.5
0.1 85.4 72.0 78.1

0.05 85.2 72.0 78.0
0.005 84.3 71.3 77.3

Table 4: SRL accuracy when the semantic model is constrained
by the baseline model

9 Results and Discussion
We use the method for calculating SRL performance de-
scribed in the CoNNL 2008 and 2009 shared tasks. How-
ever, because the semantic role labeler we use was not de-
signed to work with Nombank (and it is difficult to sepa-
rate Nombank and Propbank predicates from the publicly
released shared task output), it is not feasible to compare
results with the candidate systems described there. We
can, however, compare our two experimental models with
our baseline parser and the current state-of-the-art CCG
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Arg1 Arg1 Arg1 mod rel Arg2
Rudolph Agnew, 61 and the former chairman, was named a nonexecutive director

np np conj np/n n/n n (s\np)/(s\np) (s\np)/np np/n n/n n
> >

n/n n/n
> >np np

<Φ> >
np s\np

<Φ> >
np s\np

<s

Figure 7: A parse produced by the unrestricted semantic model. Notice that Rudolph Agnew, 61 and the former chairman is
erroneously treated as a three-way conjunction, assigning semantic roles to all three heads.

Arg0 Arg0 rel Arg1
Neither Lorillard nor the researchers who studied the workers were aware
np/np np conj np (np\np)/(s\np) (s\np)/np np (s\np)/(s\np) s\np

<Φ> > >
np s\np s\np

>
np\np

<np
>np

>s

Figure 8: Relative clause attachment poses problems when preceded by a conjunction – the system generally prefers attaching
relative clauses high. In this case, the relative clause should be attached low.

parser (Clark and Curran, 2004). The results on the test
set (WSJ Section 23, <40 words) are shown in Table 5.
There are many areas for potential improvement for the
system. The test set scores of both of our experimental
models are lower than their development set scores,where
the n-best model outperforms even the Clark and Curran
parser in the SRL task. This may be due to vocabulary
issues (we are of course unable to evaluate if the vocab-
ulary of the training set more closely resembles the de-
velopment set or the test set). If there are vocabulary is-
sues, they could be alleviated by experimenting with POS
based lexical features, or perhaps even generalizing a la-
tent semantics over heads of semantic roles (essentially
identifying broad categories of words that appear with
particular semantic roles, rather than counting on having
encountered that particular word in training). Alternately,
this drop in performance could be caused by a mismatch
in the average length of sentences, which would cause our
α factor and the size of our n-best lists (which were tuned
on the development set) to be suboptimal. We anticipate
the opportunity to further explore better ways of deter-
mining n-best list size. We also anticipate the possibility
of integrating the semantic model with a state-of-the-art
CCG parser, potentially freeing the ranker from the limi-
tations of a simple PCFG baseline.
It is also worth noting that the chart-based model seems

heavily skewed towards precision. Because the parser can
dig deeply into the chart, it is capable of choosing a parse
that predicts only semantic roles that it is highly confi-
dent about. By choosing these parses (and not parses with
less attractive semantic roles), the model can maximize
the average score of the semantic roles it predicts. This
tendency towards identifying only the most certain roles
is consistent with high-precision low-recall results. The
n-best parser has a much more restricted set of semantic
roles from parses more closely resembling the single-best
parse, and therefore is less likely to be presented with the
opportunity to choose parses that do away with less likely
(but still reasonable) roles.

10 Conclusions and Future Work

In this paper, we discuss the procedure for identifying se-
mantic roles at parse time, and using these roles to guide
the parse. We demonstrate that using semantic roles to
guide parsing can improve overall SRL performance, but
that these same benefits can be realized by re-ranking an
n-best list with the same model. Regardless, there are
several reasons why it is useful to have the ability to pre-
dict semantic roles inside the chart.
Predicting semantic roles inside the chart could be used
to perform SRL on very long or unstructured passages.
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SRL Labeled Deps
Model P R F P R F

Baseline 84.7 70.7 77.0 80.0 79.8 79.9
Rank n=5 82.0 73.7 77.7 80.1 80.0 80.0

Chart 90.0 68.4 77.7 82.3 80.2 81.2
C&C 83.3 77.6 80.4 84.9 84.6 84.7
Char 77.1 75.5 76.5 - - -

Table 5: The full system results on the test set of the WSJ
corpus (Section 23). Included are the baseline parser, the n-
best reranking model from Section 7, the single-best chart-
unpacking model from Section 8, and the state-of-the-art C&C
parser. The final row shows the SRL performance obtained by
Punyakanok et al. (2008) using the Charniak parser. Unfor-
tunately, their results are evaluated based on spans of words
(rather than headword labels), which interferes with direct com-
parison. The Charniak parser is a CFG-style parser, making la-
beled dependency non-applicable.

Most parsing research on the Penn Treebank (the present
work included) focuses on sentences of 40 words or less,
because parsing longer sentences requires an unaccept-
ably large amount of computing resources. In practice,
however, semantic roles are rarely very distant from their
predicates – generally they are only a few words away;
often they are adjacent. In long sentences, the prediction
of an entire parse may be unnecessary for the purposes of
SRL.
The CKY parsing algorithm works by first predicting all
constituents spanning two words, then all constituents
spanning three words, then four, and so on until it pre-
dicts constituents covering the whole sentence. By setting
a maximum constituent size (say, ten or fifteen), we could
abandon the goal of completing a spanning analysis in fa-
vor of identifying semantic roles in the neighborhood of
their predicates, eliminating the need to unpack the chart
at all. This could be used to efficiently perform SRL on
poorly structured text or even spoken language transcrip-
tions that are not organized into discrete sentences. Doing
so would also eliminate the potentially noisy step of au-
tomatically separating out individual sentences in a larger
text. Alternately, roles predicted in the chart could even
be incorporated into a low-precision-high-recall informa-
tion retrieval system seeking a particular semantic rela-
tionship by scanning the chart for a particular semantic
role.
Another use for the packed forest of semantic roles could
be to predict complete sets of roles for a given sentence
using a constraint based method like integer linear pro-
gramming. Integer linear programming takes a large
number of candidate results (like semantic roles), and ap-
plies a set of constraints over them (like “roles may not
overlap” or “no more than one of each role is allowed in
each sentence”) to find the optimal set. Doing so could

eliminate the need to unpack the chart at all, effectively
producing semantic roles without committing to a single
syntactic analysis.
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J. Hajič, M. Ciaramita, R. Johansson, D. Kawahara, M.A. Martı́,
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Abstract

Graph-based methods have gained attention in
many areas of Natural Language Processing
(NLP) including Word Sense Disambiguation
(WSD), text summarization, keyword extrac-
tion and others. Most of the work in these ar-
eas formulate their problem in a graph-based
setting and apply unsupervised graph cluster-
ing to obtain a set of clusters. Recent studies
suggest that graphs often exhibit a hierarchi-
cal structure that goes beyond simple flat clus-
tering. This paper presents an unsupervised
method for inferring the hierarchical group-
ing of the senses of a polysemous word. The
inferred hierarchical structures are applied to
the problem of word sense disambiguation,
where we show that our method performs sig-
nificantly better than traditional graph-based
methods and agglomerative clustering yield-
ing improvements over state-of-the-art WSD
systems based on sense induction.

1 Introduction

A number of NLP problems can be cast into a graph-
based framework, in which entities are represented
as vertices in a graph and relations between them are
depicted by weighted or unweighted edges. For in-
stance, in unsupervised WSD a number of methods
(Widdows and Dorow, 2002; Véronis, 2004; Agirre
et al., 2006) have constructed word co-occurrence
graphs for a target polysemous word and applied
graph-clustering to obtain the clusters (senses) of
that word.

Similarly in text summarization, Mihalcea (2004)
developed a method, in which sentences are rep-

resented as vertices in a graph and edges between
them are drawn according to their common tokens
or words of a given POS category, e.g. nouns.
Graph-based ranking algorithms, such as PageRank
(Brin and Page, 1998), were then applied in order
to determine the significance of sentences. In the
same vein, graph-based methods have been applied
to other problems such as determining semantic sim-
ilarity of text (Ramage et al., 2009).

Recent studies (Clauset et al., 2006; Clauset et
al., 2008) suggest that graphs exhibit a hierarchi-
cal structure (e.g. a binary tree), in which vertices
are divided into groups that are further subdivided
into groups of groups, and so on, until we reach the
leaves. This hierarchical structure provides addi-
tional information as opposed to flat clustering by
explicitly including organisation at all scales of a
graph (Clauset et al., 2008). In this paper, we present
an unsupervised method for inferring the hierarchi-
cal structure (binary tree) of a graph, in which ver-
tices are the contexts of a polysemous word and
edges represent the similarity between contexts. The
method that we use to infer that hierarchical struc-
ture is the Hierarchical Random Graphs (HRGs) al-
gorithm due to Clauset et al. (2008).

The binary tree produced by our method groups
the contexts of a polysemous word at different
heights of the tree. Thus, it induces the senses of
that word at different levels of sense granularity. To
evaluate our method, we apply it to the problem of
noun sense disambiguation showing that inferring
the hierarchical structure using HRGs provides ad-
ditional information from the observed graph lead-
ing to improved WSD performance compared to: (1)
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Figure 1: Stages of the proposed method.

simple flat clustering, and (2) traditional agglomera-
tive clustering. Finally, we compare our results with
state-of-the-art sense induction systems and show
that our method yields improvements. Figure 1
shows the different stages of the proposed method
that we describe in the following sections.

2 Related work

Typically, graph-based methods, when applied to
unsupervised sense disambiguation represent each
word wi co-occurring with the target word tw as a
vertex. Two vertices are connected via an edge if
they co-occur in one or more contexts of tw. Once
the co-occurrence graph of tw has been constructed,
different graph clustering algorithms are applied to
induce the senses. Each cluster (induced sense) con-
sists of a set of words that are semantically related to
the particular sense. Figure 2 shows an example of
a graph for the target word paper that appears with
two different senses scholarly article and newspa-
per.

Véronis (2004) has shown that co-occurrence
graphs are small-world networks that contain highly
dense subgraphs representing the different clusters
(senses) of the target word (Véronis, 2004). To iden-
tify these dense regions Véronis’s algorithm itera-
tively finds their hubs, where a hub is a vertex with a
very high degree. The degree of a vertex is defined to
be the number of edges incident to that vertex. The
identified hub is then deleted along with its direct
neighbours from the graph producing a new cluster.

For example, in Figure 2 the highest degree ver-
tex, news, is the first hub, which would be deleted
along with its direct neighbours. The deleted re-
gion corresponds to the newspaper sense of the tar-
get word paper. Véronis (2004) further processed
the identified clusters (senses), in order to assign the
rest of graph vertices to the identified clusters by

utilising the minimum spanning tree of the original
graph.

In Agirre et al. (2006), the algorithm of Véronis
(2004) is analysed and assessed on the SensEval-3
dataset (Snyder and Palmer, 2004), after optimis-
ing its parameters on the SensEval-2 dataset (Ed-
monds and Dorow, 2001). The results show that the
WSD F-Score outperforms the Most Frequent Sense
(MFS) baseline by approximately 10%, while induc-
ing a large number of clusters (with averages of 60
to 70).

Another graph-based method is presented in
(Dorow and Widdows, 2003). They extract only
noun neighbours that appear in conjunctions or dis-
junctions with the target word. Additionally, they
extract second-order co-occurrences. Nouns are rep-
resented as vertices, while edges between vertices
are drawn, if their associated nouns co-occur in con-
junctions or disjunctions more than a given num-
ber of times. This co-occurrence frequency is also
used to weight the edges. The resulting graph is
then pruned by removing the target word and ver-
tices with a low degree. Finally, the MCL algorithm
(Dongen, 2000) is used to cluster the graph and pro-
duce a set of clusters (senses) each one consisting of
a set of contextually related words.

Chinese Whispers (CW) (Biemann, 2006) is a
parameter-free1 graph clustering method that has
been applied in sense induction to cluster the co-
occurrence graph of a target word (Biemann, 2006),
as well as a graph of collocations related to the tar-
get word (Klapaftis and Manandhar, 2008). The
evaluation of the collocational-graph method in the
SemEval-2007 sense induction task (Agirre and
Soroa, 2007) showed promising results.

All the described methods for sense induction ap-
1One needs to specify only the number of iterations. The

number of clusters is generated automatically.
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Figure 2: Graph of words for the target word paper.
Numbers inside vertices correspond to their degree.

Figure 3: Running example of graph creation

ply flat graph clustering methods to derive the clus-
ters (senses) of a target word. As a result, they ne-
glect the fact that their constructed graphs often ex-
hibit a hierarchical structure that is useful in several
tasks including word sense disambiguation.

3 Building a graph of contexts

This section describes the process of creating a
graph of contexts for a polysemous target word. Fig-
ure 3 provides a running example of the different
stages of our method. In the example, the target
word paper appears with the scholarly article sense
in the contexts A, B, and with the newspaper sense
in the contexts C and D.

3.1 Corpus preprocessing

Let bc denote the base corpus consisting of the con-
texts containing the target word tw. In our work,

a context is defined as a paragraph2 containing the
target word.

The aim of this stage is to capture nouns contex-
tually related to tw. Initially, the target word is re-
moved from bc and part-of-speech tagging is applied
to each context. Following the work in (Véronis,
2004; Agirre et al., 2006) only nouns are kept and
lemmatised. In the next step, the distribution of each
noun in the base corpus is compared to the distri-
bution of the same noun in a reference corpus3 us-
ing the log-likelihood ratio (G2) (Dunning, 1993).
Nouns with a G2 below a pre-specified threshold
(parameter p1) are removed from each paragraph of
the base corpus. The upper left part of Figure 3
shows the words kept as a result of this stage.

3.2 Graph creation
Graph vertices: To create the graph of vertices, we
represent each context ci as a vertex in a graph G.
Graph edges: Edges between the vertices of the
graph are drawn based on their similarity, defined
in Equation 1, where simcl(ci, cj) is the colloca-
tional weight of contexts ci, cj and simwd(ci, cj)
is their bag-of-words weight. If the edge weight
W (ci, cj) is above a prespecified threshold (param-
eter p3), then an edge is drawn between the corre-
sponding vertices in the graph.

W (ci, cj) =
1
2
(simcl(ci, cj) + simwd(ci, cj)) (1)

Collocational weight: The limited polysemy of col-
locations can be exploited to compute the similarity
between contexts ci and cj . In our setting, a colloca-
tion is a juxtaposition of two nouns within the same
context. Thus, given a context ci, each of its nouns
is combined with any other noun yielding a total of(
N
2

)
collocations for a context with N nouns. Each

collocation, clij is weighted using the log-likelihood
ratio (G2) (Dunning, 1993) and is filtered out if the
G2 is below a prespecified threshold (parameter p2).
At the end of this process, each context ci of tw is
associated with a vector of collocations (vi). The
upper right part of Figure 3 shows the collocations
associated with each context of our example.

2Our definition of context is equivalent to an instance of the
target word in the SemEval-2007 sense induction task dataset
(Agirre and Soroa, 2007).

3The British National Corpus, 2001, Distributed by Oxford
University Computing Services.
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Given two contexts ci and cj , we calculate their
collocational weight using the Jaccard coefficient
on the collocational vectors, i.e. simcl(ci, cj) =
|vi∩vj |
|vi∪vj | . The selection of Jaccard is based on the work
of Weeds et al. (2004), who analyzed the variation
in a word’s distributionally nearest neighbours with
respect to a variety of similarity measures. Their
analysis showed that there are three classes of mea-
sures, i.e. those selecting distributionally more gen-
eral neighbours (e.g. cosine), those selecting distri-
butionally less general neighbours (e.g. AMCRM-
Precision (Weeds et al., 2004)) and those without a
bias towards the distributional generality of a neigh-
bour (e.g. Jaccard). In our setting, we are interested
in calculating the similarity between two contexts
without any bias. We selected Jaccard, since the rest
of that class’s measures are based on pointwise mu-
tual information that assigns high weights to infre-
quent events.
Bag-of-words weight: Estimating context similar-
ity using collocations may provide reliable estimates
regarding the existence of an edge in the graph, how-
ever, it also suffers from data sparsity. For this rea-
son, we also employ a bag-of-words model. Specif-
ically, each context ci is associated with a vector gi
that contains the nouns kept as result of the corpus
preprocessing stage. The upper left part of Figure
3 shows the words associated with each context of
our example. Given two contexts ci and cj , we cal-
culate their bag-of-words weight using the Jaccard
coefficient on the word vectors, i.e. simwd(ci, cj) =
|gi∩gj |
|gi∪gj | .

The collocational weight and bag-of-words
weight are averaged to derive the edge weight be-
tween two contexts as defined in Equation 1. The
resulting graph of our running example is shown on
the bottom of Figure 3. This graph is the input to the
hierarchical random graphs method (Clauset et al.,
2008) described in the next section.

4 Hierarchical Random Graphs for sense
induction

In this section, we describe the process of inferring
the hierarchical structure of the graph of contexts
using hierarchical random graphs (Clauset et al.,
2008).

Figure 4: Two dendrograms for the graph in Figure 3.

4.1 The Hierarchical Random Graph model

A dendrogram is a binary tree with n leaves and
n − 1 parents. Figure 4 shows an example of two
dendrograms with 4 leaves and 3 parents. Given a
set of n contexts that we need to arrange hierarchi-
cally, let us denote by G = (V,E) the graph of con-
texts, where V = {v0, v1 . . . vn} is the set of ver-
tices, E = {e0, e1 . . . em} is the set of edges and
ek = {vi, vj}.

Given an undirected graph G, each of its n ver-
tices is a leaf in a dendrogram, while the internal
nodes of that dendrogram indicate the hierarchical
relationships among the leaves. We denote this or-
ganisation byD = {D1, D2, . . . Dn−1}, where each
Dk is an internal node. Every pair of nodes (vi, vj)
is associated with a unique Dk, which is their low-
est common ancestor in the tree. In this manner D
partitions the edges that exist in G.

The primary assumption in the hierarchical ran-
dom graph model is that edges in G exist indepen-
dently, but with a probability that is not identically
distributed. In particular, the probability that an edge
{vi, vj} exists in G is given by a parameter θk asso-
ciated with Dk, the lowest common ancestor of vi
and vj in D. In this manner, the topological struc-
ture D and the vector of probabilities ~θ define the
HRG given by H(D, ~θ) (Clauset et al., 2008).
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4.2 HRG parameterisation
Assuming a uniform prior over all HRGs, the target
is to identify the parameters of D and ~θ, so that the
chosen HRG is statistically similar to G. Let Dk be
an internal node of dendrogram D and f(Dk) be the
number of edges between the vertices of the subtrees
of the subtree rooted at Dk that actually exist in G.
For example, in Figure 4(A), f(D2) = 1, because
there is one edge in G connecting vertices B and C.
Let l(Dk) be the number of leaves in the left subtree
of Dk, and r(Dk) be the number of leaves in the
right subtree. For example in Figure 4(A), l(D2) =
2 and r(D2) = 2. The likelihood of the hierarchical
random graph (D, ~θ) is defined in Equation 2, where
A(Dk) = l(Dk)r(Dk)− f(Dk).

L(D, ~θ) =
∏
Dk∈D

θ
f(Dk)
k (1− θk)A(Dk) (2)

The probabilities θk that maximise the likelihood
of a dendrogram D can be easily estimated using
the method of MLE i.e θk = f(Dk)

l(Dk)r(Dk) . Substi-
tuting this into Equation 2 yields Equation 3. For
numerical reasons, it is more convenient to work
with the logarithm of the likelihood which is defined
in Equation 4, where h(θk) = −θk log θk − (1 −
θk) log (1− θk).

L(D) =
∏
Dk∈D

[θθk

k (1− θk)1−θk ]l(Dk)r(Dk) (3)

logL(D) = −
∑
Dk∈D

h(θk)l(Dk)r(Dk) (4)

As can be observed, each term −l(Dk)r(Dk)h(θk)
is maximised when θk approaches 0 or 1. This
means that high-likelihood dendrograms partition
vertices into subtrees, such that the connections
among their vertices in the observed graph are either
very rare or very common (Clauset et al., 2008). For
example, consider the two dendrograms in Figures
4(A) and 4(B). We observe that 4(A) is more likely
than 4(B), since it provides a better division of the
network leaves. Particularly, the likelihood of 4(A)
is L(D1) = (11 · (1− 1)1) · (11 · (1− 1)1) · (0.251 ·
(1 − 0.25)3) = 0.105, while the likelihood of 4(B)
is L(D2) = (00 · (1− 0)1) · (11 · (1− 1)1) · (0.52 ·
(1− 0.5)2) = 0.062.

4.2.1 MCMC sampling
Finding the values of θk using the MLE method

is straightforward. However, this is not the case
for maximising the likelihood function over the
space of all possible dendrograms. Given a graph
with n vertices, i.e. n leaves in each dendrogram,
the total number of different dendrograms is super-
exponential ((2n− 3)!! ≈

√
2(2n)n−1e−n) (Clauset

et al., 2006).
To deal with this problem, we use a Markov

Chain Monte Carlo (MCMC) method that samples
dendrograms from the space of dendrogram mod-
els with probability proportional to their likelihood.
Each time MCMC samples a dendrogram with a
new highest likelihood, that dendrogram is stored.
Hence, our goal is to choose the highest likelihood
dendrogram once MCMC has converged.

Following the work in (Clauset et al., 2008),
we pick a set of transitions between dendrograms,
where a transition is a re-arrangement of the sub-
trees of a dendrogram. In particular, given a current
dendrogram Dcurr, each internal node Dk of Dcurr

is associated with three subtrees of Dcurr. For in-
stance, in Figure 5A, the subtrees st1 and st2 are
derived from the two children of Dk and the third
st3 from its sibling. Given a current dendrogram,
Dcurr, the algorithm proceeds as follows:

1. Choose an internal node, Dk ∈ Dcurr uni-
formly.

2. Generate two possible new configurations of
the subtrees of Dk (See Figure 5).

3. Choose one of the configurations uniformly to
generate a new dendrogram, Dnext.

4. Accept or reject Dnext according to
Metropolis-Hastings (MH) rule.

5. If transition is accepted, then Dcurr = Dnext.

6. GOTO 1.

According to MH rule (Newman and Barkema,
1999), a transition is accepted if logL(Dnext) ≥
logL(Dcurr); otherwise the transition is accepted
with probability L(Dnext)

L(Dcurr) . These transitions define
an ergodic Markov chain, hence its stationary distri-
bution can be reached (Clauset et al., 2008).
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Figure 5: (A) current configuration for internal node Dk and its associated subtrees (B) first alternative configuration,
(C) second alternative configuration. Note that swapping st1, st2 in (A) results in an equivalent tree. Hence, this
configuration is excluded.

In our experiments, we noticed that the algorithm
converged relatively quickly. The same behaviour
(roughly O(n2) steps) was also noticed in Clauset et
al. (2008), when considering graphs with thousands
of vertices.

5 HRGs for sense disambiguation

5.1 Sense mapping
The output of HRG learning is a dendrogramD with
n leaves (contexts) and n−1 internal nodes. To per-
form sense disambiguation, we mapped the internal
nodes to gold standard senses using a sense-tagged
corpus. Such a sense-tagged corpus is needed when
induced word senses need to be mapped to a gold
standard sense inventory.

Instead of using a hard mapping from the den-
drogram internal nodes to the Gold Standard (GS)
senses, we use a soft probabilistic mapping and cal-
culateP (sk|Di), i.e the probability of sense sk given
node Di. Let F (Di) be the set of training contexts
grouped by internal node Di. Let F ′(sk) be the set
of training contexts that are tagged with sense sk.
Then the conditional probability, P (sk|Di), is de-
fined in Equation 5.

P (sk|Di) =
|F (Di) ∩ F ′(sk)|
|F (Di)|

(5)

Table 1 provides a sense-tagged corpus for the
running example of Figure 3. Using this corpus
and the tree in Figure 4(A), P (s1|D2) = 2

3 and
P (s2|D2) = 1

3 . In Figure 4(A) the rest of the calcu-
lated conditional probabilities are given.

5.2 Sense tagging
For evaluation we compared the proposed method
against the current state-of-the-art sense induction

GS sense Context ID Context words
s1 A journal, scholar, observation

science, paper
s1 B scholar, scholar, author,

publication, paper
s2 D times, guardian,

journalist, paper

Table 1: Sense-tagged corpus for the example in Figure 3

systems in the WSD task. We followed the setting
of SemEval-2007 sense induction task (Agirre and
Soroa, 2007). In this setting, the base corpus (bc)
(Section 3.1) for a target word consists both of the
training and testing corpus. As a result, a testing
context cj of tw is a leaf in the generated dendro-
gram. The process of disambiguating cj is straight-
forward exploiting the structural information pro-
vided by HRGs.

w(sk, cj) =
∑

Di∈H(cj)

P (sk|Di) · θi (6)

w(s∗, cj) = argmax sk(w(sk, cj)) (7)

Let H(cj) denote the set of parents for context cj .
Then, the weight assigned to sense sk is the sum of
weighted scores provided by each identified parent.
This is shown in Equation 6, where θi is the proba-
bility associated with each internal nodeDi from the
hierarchical random graph (see Figure 4(A)). This
probability reflects the discriminating ability of in-
ternal nodes.

Finally, the highest weight determines the win-
ning sense for context cj (Equation 7). In our ex-
ample (Figure 4(A)), w(s1, C) = (0 ·1+ 2

3 ·0.25) =
0.16 andw(s2, C) = (1·1+ 1

3 ·0.25) = 1.08. Hence,
s2 is the winning sense.
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Parameter Range
G2 word threshold (p1) 15,25,35,45
G2 collocation threshold (p2) 10,15,20
Edge similarity threshold (p3) 0.05,0.09,0.13

Table 2: Parameter values used in the evaluation.

6 Evaluation

6.1 Evaluation setting & baselines
We evaluate our method on the nouns of the
SemEval-2007 word sense induction task (Agirre
and Soroa, 2007) under the second evaluation setting
of that task, i.e. supervised evaluation. Specifically,
we use the standard WSD measures of precision and
recall in order to produce their harmonic mean (F-
Score). The official scoring software of that task has
been used in our evaluation. Note that the unsuper-
vised measures of that task are not directly applica-
ble to our induced hierarchies, since they focus on
assessing flat clustering methods.

The first aim of our evaluation is to test whether
inferring the hierarchical structure of the constructed
graphs improves WSD performance. For that reason
our first baseline, Chinese Whispers Unweighted
version (CWU), takes as input the same unweighted
graph of contexts as HRGs in order to produce a
flat clustering. The set of produced clusters is then
mapped to GS senses using the training dataset and
performance is then measured on the testing dataset.
We followed the same sense mapping method as in
the SemEval-2007 sense induction task (Agirre and
Soroa, 2007).

Our second baseline, Chinese Whispers Weighted
version (CWW), is similar to the previous one, with
the difference that the edges of the input graph
are weighted using Equation 1. For clustering the
graphs of CWU and CWW we employ, Chinese
Whispers4 (Biemann, 2006).

The second aim of our evaluation is to assess
whether the hierarchical structure inferred by HRGs
is more informative than the hierarchical struc-
ture inferred by traditional Hierarchical Clustering
(HAC). Hence, our third baseline, takes as input a
similarity matrix of the graph vertices and performs
bottom-up clustering with average-linkage, which
has already been used in WSI in (Pantel and Lin,

4The number of iterations for CW was set to 200.

2003) and was shown to have superior or similar per-
formance to single-linkage and complete-linkage in
the related problem of learning a taxonomy of senses
(Klapaftis and Manandhar, 2010).

To calculate the similarity matrix of vertices we
follow a process similar to the one used in Sec-
tion 4.2 for calculating the probability of an inter-
nal node. The similarity between two vertices is
calculated according to the degree of connected-
ness among their direct neighbours. Specifically,
we would like to assign high similarity to pairs of
vertices, whose neighbours are close to forming a
clique.

Given two vertices (contexts) ci and cj , let
N(ci, cj) be the set of their neighbours andK(ci, cj)
be the set of edges between the vertices inN(ci, cj).
The maximum number of edges that could exist be-
tween vertices in N(ci, cj) is

(|N(ci,cj)|
2

)
. Thus, the

similarity of ci, cj is set equal to the number of
edges that actually exist in that neighbourhood di-
vided by the total number of edges that could exist
( |K(ci,cj)|
(|N(ci,cj)|

2
)
).

The disambiguation process using the HAC tree
is identical to the one presented in Section 5.2 with
the only difference that the internal probability, θi,
in Equation 6 does not exist for HAC. Hence, we re-
placed it with the factor 1

|H(Di)| , whereH(Di) is the
set of children of internal node Di. This factor pro-
vides lower weights for nodes high in the tree, since
their discriminating ability will possibly be lower.

6.2 Results & discussion

Table 2 shows the parameter values used in the eval-
uation. Figure 6(A) shows the performance of the
proposed method against the baselines for p3 = 0.05
and different p1 and p2 values. Figure 6(B) il-
lustrates the results of the same experiment using
p3 = 0.09. In both figures, we observe that HRGs
outperform the CWU baseline under all parameter
combinations. In particular, all of the 12 perfor-
mance differences for p3 = 0.09 are statistically
significant using McNemar’s test at 95% confidence
level, while for p3 = 0.05 only 2 out of the 12 per-
formance differences were not judged as significant
from the test.

The picture is the same for p3 = 0.13, where
CWU performs significantly worse than for p3 =
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Figure 6: Performance analysis of HRGs, CWU, CWW & HAC for different parameter combinations (Table 2). (A)
All combinations of p1, p2 and p3 = 0.05. (B) All combinations of p1, p2 and p3 = 0.09.

0.05 and p3 = 0.09. Specifically, the largest perfor-
mance difference between HRGs and CWU is 9.4%
at p1 = 25, p2 = 10 and p3 = 0.13. Setting the ver-
tex similarity threshold (p3) equal to 0.13 leads to
more sparse and disconnected graphs, which causes
Chinese Whispers to produce a large number of clus-
ters. This leads to sparsity problems and unreliable
mapping of clusters to GS senses due to the lack of
adequate training data. In contrast, HRGs suffer less
at this high threshold, although their performance
when p3<0.13 is better.

This picture does not change for the weighted ver-
sion of Chinese Whispers (CWW) which performs
worse than CWU. This is because CWW produces
a smaller number of clusters than CWU that con-
flate the target word senses. It seems that using
weighted edges creates a bias towards the MFS, in
effect missing rare senses of a target word. This
means that a number of words in the bag-of-words
context vectors and collocations in the collocational
context vectors (Section 3.2) are associated to more
than one sense of the target word and most strongly
associated to the MFS. As a result, increasing the p1

threshold to 25 and 35 leads to a higher performance
for CWW, since many of these words and colloca-
tions are filtered out.

Overall, the comparison of HRGs against the
CWU and CWW baselines has shown that inferring
the hierarchical structure of observed graphs leads
to improved WSD performance as opposed to using
flat clustering. This is because HRGs are able to in-

fer both the hierarchical structure of the graph and
include the probabilities, θk, associated with each
internal node. These probabilities reflect the dis-
criminating ability of each node, offering informa-
tion missed by flat clustering.

In Figures 6(A) and 6(B) we observe that HRGs
perform significantly better than HAC. In particular,
all of their performance differences are statistically
significant for these parameter values. The largest
performance difference is 6.0% at p1 = 45, p2 = 10
and p3 = 0.05. However, this picture is not the same
when considering a higher context similarity thresh-
old (p3 = 0.13) as Figure 7 shows. In particular,
HRGs and HAC perform similarly for p3 = 0.13,
while the majority of performance differences are
not statistically significant.

The similar behaviour of HRGs and HAC at this
threshold is caused both by the worse performance
of HRGs and the improved performance of HAC as
opposed to lower p3 values. As it has been men-
tioned, setting p3 = 0.13 leads to sparse and dis-
connected graphs. Additionally, the likelihood func-
tion (Equation 3) is maximised when the probabil-
ity, θk, of an internal node, Dk, approaches 0 or 1.
This creates a bias towards dendrograms, in which a
large number of internal nodes have zero probabil-
ity. These dendrograms might be a good-fit to the
observed graph, but not to the GS.

In contrast, HAC is less affected, because it never
considers creating an internal node, when the max-
imum similarity among any pair of two candidate
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Figure 7: Performance of HRGs and HAC for different
parameter combinations (Table 2). All combinations of
p1, p2 and p3 ≥ 0.13.

subtrees is zero. Additionally, our experiments show
that HAC is unable to deal with noise when con-
sidering sparse graphs (p3<0.13). For that reason,
the F-Score of HAC increases as the edge similarity
threshold decreases.

To further investigate this issue and test whether
HAC is able to achieve a higher F-Score than HRGs
in higher p3 values, we executed two more experi-
ments for HAC and HRGs increasing p3 to 0.17 and
0.21 respectively. In the first case we observed that
the performance of HAC remained relatively stable
compared to p3 = 0.13, while in the second case the
performance of HAC decreased as Figure 7 shows.
In both cases, HAC performed significantly better
than HRGs.

Overall, the comparison of HRGs against HAC
has shown that HRGs perform significantly better
than HAC when considering connected or less sparse
graphs (p3<0.13). This is due to the fact that HAC
creates dendrograms, in which connections within
the clusters are dense, while connections between
the clusters are sparse, i.e. it only considers assorta-
tive structures. In contrast, HRGs also consider dis-
assortative dendrograms, i.e. dendrograms in which
vertices are less likely to be connected on small
scales than on large ones, as well as mixtures of
assortative and disassortative (Clauset et al., 2008).
This is achieved by allowing the probability θk of
a node k to vary arbitrarily throughout the dendro-
gram.

HAC performs similarly or better than HRGs for

largely disconnected and sparse graphs, because
HRGs become biased towards disassortative trees
which are not a good fit to the GS (Figure 7). De-
spite that, our evaluation has also shown that the best
performance of HAC (F-Score = 86.0% at p1 = 15,
p2 = 10, p3 = 0.13) is significantly lower than
the best performance of HRGs (F-Score = 87.6% at
p1 = 35, p2 = 10, p3 = 0.09).

6.3 Comparison to state-of-the-art methods
Table 3 compares the best performing parameter
combination of our method against state-of-the-art
methods. Table 3 also includes the best performance
of our baselines, i.e HAC, CWU and CWW.

Brody & Lapata (2009) presented a sense induc-
tion method that is related to Latent Dirichlet Al-
location (Blei et al., 2003). In their work, they
model the target word instances as samples from a
multinomial distribution over senses which are suc-
cessively characterized as distributions over words
(Brody and Lapata, 2009). A significant advantage
of their method is the inclusion of more than one
layer in the LDA setting, where each layer corre-
sponds to a different feature type e.g. dependency
relations, bigrams, etc. The inclusion of different
feature types as separate models in the sense in-
duction process can easily be modeled in our set-
ting, by inferring a different hierarchy of target word
instances according to each feature type, and then
combining all of them to a consensus tree. In this
work, we have focused on extracting a single hierar-
chy combining word co-occurrence and bigram fea-
tures.

Niu et al. (2007) developed a vector-based
method that performs sense induction by group-
ing the contexts of a target word using three types
of features, i.e. POS tags of neighbouring words,
word co-occurrences and local collocations. The se-
quential information bottleneck algorithm (Slonim
et al., 2002) is applied for clustering. HRGs perform
slightly better than the methods of Brody & Lap-
ata (2009) and Niu et al. (2007), although the dif-
ferences are not significant (McNemar’s test at 95%
confidence level).

Klapaftis & Manandhar (2008) developed a
graph-based sense induction method, in which ver-
tices correspond to collocations related to the tar-
get word and edges between vertices are drawn ac-
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System Performance (%)
HRGs 87.6
(Brody and Lapata, 2009) 87.3
(Niu et al., 2007) 86.8
(Klapaftis and Manandhar, 2008) 86.4
HAC 86.0
CWU 85.1
CWW 84.7
(Pedersen, 2007) 84.5
MFS 80.9

Table 3: HRGs against recent methods & baselines.

cording to the co-occurrence frequency of the cor-
responding collocations. The constructed graph is
smoothed to identify more edges between vertices
and then clustered using Chinese Whispers (Bie-
mann, 2006). This method is related to the basic
inputs of our presented method. Despite that, it is
a flat clustering method that ignores the hierarchical
structure exhibited by observed graphs. The previ-
ous section has shown that inferring the hierarchical
structure of graphs leads to superior WSD perfor-
mance.

Pedersen (2007) presented SenseClusters, a
vector-based method that clusters second order co-
occurrence vectors using k-means, where k is auto-
matically determined using the Adapted Gap Statis-
tic (Pedersen and Kulkarni, 2006). As can be ob-
served, HRGs perform significantly better than the
methods of Pedersen (2007) and Klapaftis & Man-
andhar (2008) (McNemar’s test at 95% confidence
level).

Finally, Table 3 shows that the best performing
parameter combination of HRGs achieves a signifi-
cantly higher F-Score than the best performing pa-
rameter combination of HAC, CWU and CWW. Fur-
thermore, HRGs outperform the most frequent sense
baseline by 6.7%.

7 Conclusion & future work

We presented an unsupervised method for inferring
the hierarchical grouping of the senses of a polyse-
mous word. Our method creates a graph, in which
vertices correspond to contexts of a polysemous tar-
get word and edges between them are drawn ac-
cording to their similarity. The hierarchical random
graphs algorithm (Clauset et al., 2008) was applied

to the constructed graph in order to infer its hierar-
chical structure, i.e. binary tree.

The learned tree provides an induction of the
senses of a given word at different levels of sense
granularity and was applied to the problem of WSD.
The WSD process mapped the tree’s internal nodes
to GS senses using a sense tagged corpus, and then
tagged new instances by exploiting the structural in-
formation provided by the tree.

Our experimental results have shown that our
graphs exhibit hierarchical organisation that can
be captured by HRGs, in effect providing im-
proved WSD performance compared to flat cluster-
ing. Additionally, our comparison against hierarchi-
cal agglomerative clustering with average-linkage
has shown that HRGs perform significantly better
than HAC when the graphs do not suffer from spar-
sity (disconnected graphs). The comparison with
state-of-the-art sense induction systems has shown
that our method yields improvements.

Our future work focuses on using different feature
types, e.g. dependency relations, second-order co-
occurrences, named entities and others to construct
our undirected graphs and then applying HRGs, in
order to measure the impact of each feature type
on the induced hierarchical structures within a WSD
setting. Moreover, following the work in (Clauset et
al., 2008), we are also working on using MCMC in
order to sample more than one dendrogram at equi-
librium, and then combine them to a consensus tree.
This consensus tree might be able to express a larger
amount of topological features of the initial undi-
rected graph.

Finally in terms of evaluation, our future work
also focuses on evaluating HRGs using a fine-
grained sense inventory, extending the evaluation on
the SemEval-2010 WSI task dataset (Manandhar et
al., 2010) as well as applying HRGs to other related
tasks such as taxonomy learning.
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Abstract

While a significant amount of research has
been devoted to textual entailment, automated
entailment from conversational scripts has re-
ceived less attention. To address this limi-
tation, this paper investigates the problem of
conversation entailment: automated inference
of hypotheses from conversation scripts. We
examine two levels of semantic representa-
tions: a basic representation based on syntac-
tic parsing from conversation utterances and
an augmented representation taking into con-
sideration of conversation structures. For each
of these levels, we further explore two ways of
capturing long distance relations between lan-
guage constituents: implicit modeling based
on the length of distance and explicit mod-
eling based on actual patterns of relations.
Our empirical findings have shown that the
augmented representation with conversation
structures is important, which achieves the
best performance when combined with ex-
plicit modeling of long distance relations.

1 Introduction

Textual entailment has received increasing attention
in recent years (Dagan et al., 2005; Bar-Haim et al.,
2006; Giampiccolo et al., 2007; Giampiccolo et al.,
2008; Bentivogli et al., 2009). Given a segment from
a textual document, the task of textual entailment is
to automatically determine whether a given hypoth-
esis can be entailed from the segment. The capa-
bility of such kind of inference can benefit many
text-based applications such as information extrac-
tion and question answering.

Textual entailment has mainly focused on infer-
ence from written text in monologue. Recent years
also observed an increasing amount of conversa-
tional data such as conversation scripts of meetings,
call center records, court proceedings, as well as on-
line chatting. Although conversation is a form of
language, it is different from monologue text with
several unique characteristics. The key distinctive
features include turn-taking between participants,
grounding between participants, different linguistic
phenomena of utterances, and conversation impli-
catures. Traditional approaches dealing with tex-
tual entailment were not designed to handle these
unique conversation behaviors and thus to support
automated entailment from conversation scripts.

Example 1:
Conversation Segment:

B: My mother also was very very independent.
She had her own, still had her own little house
and still driving her own car,

A: Yeah.
B: at age eighty-three.

Hypothesis:
(1) B’s mother is eighty-three.
(2) B is eighty-three.

To address this limitation, our previous
work (Zhang and Chai, 2009) has initiated an
investigation on the problem of conversation en-
tailment. The problem was formulated as follows:
given a conversation discourse D and a hypothesis
H concerning its participant, the goal was to identify
whether D entails H. For instance, as in Example
1, the first hypothesis can be entailed from the

756



conversation segment while the second hypothesis
cannot. While our previous work has provided
some interesting preliminary observations, it mostly
focused on data collection and initial experiments
and analysis using a small set of development data.
It is not clear whether the previous results are
generally applicable, how different components in
the entailment framework interact with each other,
and how different representations may influence the
entailment outcome.

To reach a better understanding of conversation
entailment, we conducted a further investigation
based on the larger set of test data collected in our
previous work (Zhang and Chai, 2009). We specifi-
cally examined two levels of representations: a basic
representation based on syntactic parsing from con-
versation utterances and an augmented representa-
tion taking into consideration of conversation struc-
tures. For each of these levels, we further explored
two ways of capturing long distance relations: (1)
implicit modeling based on the length of distance
and (2) explicit modeling based on actual patterns
of relations. Our empirical findings have shown that
augmented representation with conversation struc-
tures is important in conversation entailment. Com-
bining conversation structures with explicit model-
ing of long distance relations results in the best per-
formance.

2 Related Work

Our work here is related to recent advances in tex-
tual entailment, automated processing of conversa-
tion scripts, and our initial investigation on conver-
sation entailment.

There is a large body of work on textual en-
tailment initiated by the Pascal Recognizing Tex-
tual Entailment (RTE) Challenges (Dagan et al.,
2005; Bar-Haim et al., 2006; Giampiccolo et al.,
2007; Giampiccolo et al., 2008; Bentivogli et al.,
2009). Different approaches have been developed,
for example, based on logic proving (Tatu and
Moldovan, 2005; Bos and Markert, 2005; Raina et
al., 2005) and graph match (Haghighi et al., 2005;
de Salvo Braz et al., 2005; MacCartney et al., 2006).
Supervised learning approaches have also been ap-
plied to measure the similarities between training
and testing pairs (Zanzotto and Moschitti, 2006). In

the most recent RTE Challenge (Bentivogli et al.,
2009), the best system achieves 73.5% of accuracy,
while the median performance among all partici-
pants is 60.4%. These results indicate that, while
progress has been made, textual entailment remains
a challenging problem.

As more and more conversation data becomes
available, researchers have investigated automated
processing of conversation data to acquire useful
information, for example, related to opinions (So-
masundaran et al., 2007; Somasundaran et al.,
2008; Somasundaran et al., 2009), biographic at-
tributes (Garera and Yarowsky, 2009), social net-
works (Jing et al., 2007), and agreements and
disagreements between participants (Galley et al.,
2004). Recent studies have also developed ap-
proaches to summarize conversations (Murray and
Carenini, 2008) and to model conversation struc-
tures (dialogue acts) from online Twitter conversa-
tions (Ritter et al., 2010). Here we address a dif-
ferent angle regarding conversation scripts, namely
conversation entailment.

In our previous work (Zhang and Chai, 2009),
we started an initial investigation on conversation
entailment. We have collected a dataset of 875
instances. Each instance consists of a conversa-
tion segment and a hypothesis (as described in Sec-
tion 1). The hypotheses are statements about conver-
sation participants and are further categorized into
four types: about their profile information, their be-
liefs and opinions, their desires, and their commu-
nicative intentions. We developed an approach that
is motivated by previous work on textual entailment.
We use clauses in the logic-based approaches as the
underlying representation of our system. Based on
this representation, we apply a two stage entailment
process similar to MacCartney et al. (2006) devel-
oped for textual entailment: an alignment stage fol-
lowed by an entailment stage.

Building upon our previous work, in this paper,
we systematically examine different representations
of the conversation segment and different modeling
of long distance relations between language con-
stituents. We compare the roles of these different
representations on the performance of entailment
prediction using a larger testing dataset that was not
previously evaluated. This analysis allows better un-
derstanding of the problem and provides insight on
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potential solutions.

3 Overall Framework

In our previous work (Zhang and Chai, 2009), con-
versation entailment is formulated as the follow-
ing: given a conversation segment D which is rep-
resented by a set of clauses D = d1 ∧ . . . ∧ dm,
and a hypothesis H represented by another set of
clauses H = h1 ∧ . . . ∧ hn, the prediction on
whether D entails H is determined by the product
of probabilities that each hypothesis clause hj is
entailed from all the conversation segment clauses
d1 . . . dm as follows. This is based on a simple as-
sumption that whether a clause is entailed from a
conversation segment is conditionally independent
from other clauses.

P (D � H|D,H)
= P (D � h1, . . . , D � hn|D,h1, . . . , hn)

=
n∏

j=1

P (D � hj |D = d1 . . . dm, hj)

=
n∏

j=1

P (d1 . . . dm � hj |d1, . . . , dm, hj) (1)

A clause here is similar to a sentence in first-
order predicate calculus. It is made up by terms
and predicates. A term is either: 1) an entity
described by a noun phrase, e.g., John Lennon,
mother, or she; or 2) an action or event de-
scribed by a verb phrase, e.g., marry in “John
married Eva in 1940”. A predicate represents
either: 1) a property (i.e., unary) for a term,
e.g., Russian(company), or recently(visit);
or 2) a relation (i.e., binary) between two
terms, e.g., subj(visit, Prime Minister) and
obj(visit, Brazil) in “Prime Minister recently vis-
ited Brazil”.

Given the clause representation, we follow the
idea similar to MacCartney et al. (2006), and predict
the entailment decision in two stages of processing:
(1) an alignment model aligns terms in the hypothe-
sis to terms in the conversation segment; and (2) an
inference model predicts the entailment based on the
alignment between the hypothesis and the conversa-
tion segment.

3.1 Alignment Model

An alignment is defined as a mapping function g
between a term x in the conversation segment and a
term y in the hypothesis. g(x, y) = 1 if x and y are
aligned; otherwise g(x, y) = 0. It is possible that
multiple terms from the segment are mapped to one
term in the hypothesis (g(x1, y) = g(x2, y) = 1),
or vice versa (g(x, y1) = g(x, y2) = 1). To predict
these alignments, the problem is formulated as bi-
nary classification: given any two terms x from the
conversation and y from the hypothesis, decide the
value of their alignment function g(x, y).

3.2 Inference Model

Once an alignment between a hypothesis and a con-
versation segment is established, an inference model
is applied to predict whether the conversation seg-
ment entails the hypothesis given such alignment.
More specifically, as shown in Equation 1, given a
clause from the hypothesis hj , a set of clauses from
the conversation segment d1, . . . , dm, and an align-
ment g between them, the goal is to predict whether
d1, . . . , dm entails hj under the alignment g.

The prediction is treated differently according to
different types of clauses. If hj is a property clause
(i.e., takes one argument hj(·)), a property inference
model is applied; otherwise (i.e., relational clauses
with two arguments hj(·, ·)), a relational inference
model is applied.

In this paper we follow the same framework.
However our focus here is on the new question that
how different levels of semantic representation and
different approaches of modeling long distance rela-
tionship affect the alignment and inference models
as well as the overall entailment performance.

4 Semantic Representation

Given the clause representation described earlier,
an important question is what information from the
conversation segment should be captured and repre-
sented. To address this question, we examined two
levels of shallow semantic representation. The first
level is basic representation which only captures the
information from all the utterances in the conversa-
tion segment. The second representation includes
conversation structures (e.g., speakers and dialogue
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acts). Next we use Example 2 to illustrate these rep-
resentations.

Example 2:
Conversation Segment:

B: Have you seen Sleeping with the Enemy?
A: No. I’ve heard that’s really great, though.
B: You have to go see that one.

Hypothesis:
B suggests A to watch Sleeping with the Enemy.

4.1 Basic Representation
The first representation is based on the syntactic
parsing from conversation utterances and we call it
a basic representation. Figure 1(a) shows an exam-
ple of dependency structures for several utterances
that are derived from the Stanford parser (Klein and
Manning, 2003), and Figure 1(b) shows the corre-
sponding clause representation. In the dependency
structure, the vertices represent entities (e.g., x1) and
actions (e.g., x3) within an utterance. They corre-
spond to terms in the clause representation. An edge
between vertices captures a dependency relation and
is represented as predicates in the clause representa-
tion. For example, the edge between x1 and x3 indi-
cates x1 is the subject of x3, which is represented by
the clause representation subj(x3, x1). Similar rep-
resentation also applies to the hypothesis as shown
in Figure 1(c), 1(d).

4.2 Augmented Representation
The second representation is built upon the basic
representation and incorporates conversation struc-
ture across turns and utterances. We call it an aug-
mented representation. Figure 2(a) shows the aug-
mented structures of the conversation segment and
Figure 2(b) shows the corresponding clause repre-
sentation. Compared to the basic representation,
there are two additional types of vertices (i.e., terms)
highlighted in the figures:

• Vertices representing utterances (e.g.,
u1 . . . u4). Their corresponding terms capture
the dialogue acts for the utterances (e.g.
u1 = yes no question). To focus our effort,
currently we only apply annotated dialogue
acts provided in the Switchboard corpus (God-
frey and Holliman, 1997). Two edges are

added to connect different utterances. The
first edge connects each utterance vertex to
the head of the corresponding utterance to
indicate the specific content of the utterance
(e.g., content(u1, x3)). The second edge con-
nects an utterance to its succeeding utterance
to indicate the temporal progression of the
conversation (e.g., follow(u2, u1)).

• Vertices representing speakers or participants
(e.g., sA, sB). One edge is added to
connect each utterance to its speaker (e.g.,
speaker(u1, sB)).

Note that since our clause representations are
mainly based on the dependency relations, they are
mostly syntactic-driven. However, it does capture
some shallow semantics such as who is the agent
(i.e., subject) or the patient (i.e., object) of an event.
The incorporation of speakers and dialogue acts in
our augmented representations provides additional
semantics of conversation discourse.

5 Modeling LDR

A critical part in predicting entailment is to recog-
nize the semantic relationship between two language
constituents, especially when these two constituents
are not directly related. In Figure 2(a), for exam-
ple, we want to recognize that x9 (You) is the (log-
ical) subject of x11 (see). Here we experimented
two ways of modeling such long distance relations
(LDR).

5.1 Implicit Modeling of LDR
The first method characterizes the relationship sim-
ply by the distance between two constituents in the
dependency structure (or augmented structure). For
example, in Figure 2(a) the distance between x11

and x9 is 3. We call this method an implicit mod-
eling of long distance relationship.

The advantage of implicit modeling is that it is
easy to implement based on the dependency struc-
ture. However, its limitation is that the distance mea-
sure does not capture sufficient information of se-
mantic relations between language constituents.

5.2 Explicit Modeling of LDR
The second way of modeling long distance relation-
ship is called explicit modeling. It uses a string to
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Figure 1: The dependency structures and corresponding basic representation of Example 2
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describe the path from one constituent to the other:
v1e1 . . . vl−1el−1vl, where v1, . . . , vl are the vertices
on the path and e1, . . . , el−1 are the edges. Each vi

describes the type of the vertex in the dependency
structure, which is either a noun (N ), a verb (V ),
or an utterance (U ). Each ei describes whether the
edge is forward (→) or backward (←). For ex-
ample, in Figure 2(a), the path from x11 to x9 is
V → V → V ← N .

This kind of string representation of paths in syn-
tactic parse is known as a way of modeling “shal-
low semantics” between any two constituents in a
language structure. It is largely used in other NLP
tasks such as semantic role labeling (Pradhan et al.,
2008). The difference here is our paths are extracted
from dependency parses as opposed to traditional
constituent parses, and our paths also incorporate the
representation of conversation structures (e.g., utter-
ances and speakers).

6 Applications in Entailment Models

In this section we describe how different representa-
tions and modeling of LDR are used in the alignment
and inference models.

6.1 Applications in Alignment Model

Although a noun and a verb can potentially be
aligned, to simplify the problem, we restrict the
problem to the alignment between two nouns or two
verbs. We trained an alignment model for nouns and
one for verbs separately.

Table 1 summarizes a set of features used in the
alignment models. Most of these features are shared
by the model for noun alignment and the model for
verb alignment. These features include whether the
two strings are the same, two terms have the same
stem, the similarity between the two terms either
based on WordNet or distributional statistics (Lin,
1998).

To learn the alignment model for nouns, we anno-
tated the noun alignments for the development data
used in PASCAL RTE-3 Challenge (Giampiccolo et
al., 2007) and trained a logistic regression model
based on the features in Table 1. Cross-validation
on the same dataset shows relatively satisfying per-
formance (96.4% precision and 94.9% recall). In
this paper, we focus on the alignment between verbs

Noun Verb
Align. Align.

Verb be identification X
String equality X X
Stemmed equality X X
Acronym equality X
Named entity equality X
WordNet similarity X X
Distributional similarity X X
Subject consistency X
Object consistency X

Table 1: Features for alignment models

since it appears more difficult.
A major difference between noun alignment and

verb alignment is that, for verb alignment the con-
sistency of their arguments is also important. For
two events (described by two verbs) to be aligned, at
least their subjects (usually denoting the executers of
actions) and objects (usually denoting the receivers
of actions) should match to each other respectively.
Note that, although actions/events also depend on
other arguments or adjuncts, here we only consider
the subjects and objects and leave the consistency
check of other arguments/adjuncts to downstream
processes. Based on two different ways of model-
ing long distance relationship (as described in Sec-
tion 5), we explored two methods for modeling ar-
gument consistency (AC) in verb alignment models.

6.1.1 Implicit Modeling of AC
The first approach models argument consistency

based on implicit modeling of the relationship be-
tween a verb and its aligned subject/object. Specif-
ically, given a pair of verb terms (x, y) where x is
from the conversation segment and y is from the hy-
pothesis, let sy be the subject of y and sx be the
aligned entity of sy in the conversation (in case of
multiple alignments, sx is the one closest to x). The
subject consistency of the verbs (x, y) is then mea-
sured by the distance between sx and x in the de-
pendency structure. Similarly, the distance between
a verb and its aligned object is used as a measure of
the object consistency.

In Example 2, to decide whether the conversa-
tion term see (x11 in Figure 1(a), 1(b), and 2) and
the hypothesis term watch (x4 in Figure 1(c), 1(d))
should be aligned, we first identify the subject of x4

in the hypothesis, which is x2 (A). We then look for
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x2’s alignments in the conversation segment, among
which x9 (You) is the closest to x11 (see). In Fig-
ure 2(a), we find the distance between x11 and x9 is
3.

Using the implicit modeling of argument consis-
tency, we follow the same approach as in our pre-
vious work (Zhang and Chai, 2009) and trained a
logistic regression model to predict verb alignment
based on the features in Table 1.

6.1.2 Explicit Modeling of AC
The second approach captures argument consis-

tency based on explicit modeling of the relationship
between a verb and its aligned subject (or object).
Given a pair of verb terms (x, y), let sy be the sub-
ject of y and sx be the aligned entity of sy in the
conversation closest to x, we use the string describ-
ing the path from x to sx as the feature to capture
subject consistency. For example, in Figure 2(a), the
path from x11 to x9 is V → V → V ← N .

This string representation of paths is used to cap-
ture both the subject consistency and the object con-
sistency. Since they are non-numerical features, and
the variability of their values can be extremely large,
so we applied an instance-based classification model
(e.g., k-nearest neighbor) to determine alignments
between verb terms. We measure the distance be-
tween two path features by their minimal string edit
distance, and then simply use the Euclidean distance
to measure the closeness between any two verbs.
Again this model is trained from our development
data described in Zhang and Chai (2009).

Figure 3 shows an example of alignment between
the conversation terms and hypothesis terms in Ex-
ample 2. Note that in this figure the alignment
between x5 = suggests from the hypothesis and
u4 = opinion from the conversation segment is a
pseudo alignment, which directly maps a verb term
in the hypothesis to an utterance term represented
by its dialogue act. This alignment is obtained by
following the same set of rules learned from the de-
velopment dataset as in (Zhang and Chai, 2009).

6.2 Applications in Inference Model

As mentioned earlier, once an alignment is estab-
lished, the inference model is to predict whether
each clause in the hypothesis is entailed from the
conversation segment. Two separate models were

x4=have
x5=A

x2=Sleeping 
with the Enemy

x1=A

x7=is really great

x10=one

u4=opinion

Conversation Segment

x3=Sleeping 
with the Enemy
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x2=A

x1=B

x4=watch

Hypothesis

x6=that

x11=see
x12=go
x13=have

x8=have heard

u3=statement
u2=no_answer
u1=yes_no_question

x3=seen

x9=A

sB

sA

Figure 3: The alignment result for Example 2

used to handle the inference of property clauses
(hj(x)) and and the inference of relational clauses
(hj(x, y)). Property clauses involve less variables
and are relatively simple, so we used the same prop-
erty inference model as in (Zhang and Chai, 2009).
Here we focus on relational inference model and ex-
amine how different modeling of long distance rela-
tionship may affect relation inference.

For a relation h between x and y to be entailed
from a conversation segment, we need to find a same
or similar relation in the conversation segment be-
tween x’s and y’s counterparts (i.e., aligned entities
of x and y in the conversation segment).

More specifically, given a relational clause from
the hypothesis, hj(x, y), we find the sets of
terms X ′ = {x′|x′ ∈ D, g(x′, x) = 1} and Y ′ =
{y′|y′ ∈ D, g(y′, y) = 1}, which are aligned with x
and y, respectively. We then find the closest re-
lation between these two sets of terms, (x∗, y∗),
such that the distance between x∗ and y∗ is the
smallest for any x∗ ∈ X ′ and y∗ ∈ Y ′. For in-
stance, in the hypothesis of Example 2 there are
terms x5=suggests and x4=watch, and a relational
clause obj(x5, x4) describing an action-object rela-
tion between them. Their counterparts in the con-
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versation segment are X ′ = {u4=viewpoint} and
Y ′ = {x3=seen, x11=see}. So the closest pair of
terms between these two sets is u4 and x11. Conse-
quently, whether the target relational clause hj(x, y)
is entailed is determined by the relationship between
x∗ and y∗. Such relationship can be modeled either
implicitly or explicitly.

6.3 Implicit modeling of relation inference
In this model we follow the simple idea that the
shorter a path is between two terms, the more likely
these two terms have a direct relationship. So we
predefine a threshold, λL. We predict that hj(x, y) is
entailed if the distance between x∗ and y∗ is smaller
than λL. However, as can be seen, this distance does
not reflect whether the type of relationship between
x∗ and y∗ is similar to the relationship that holds be-
tween x and y.

6.4 Explicit modeling of relation inference
In order to capture more semantics from the rela-
tion between two terms, we use explicit modeling
of the relationship between terms x∗ and y∗. In
the previous example, the relationship between u4

and x11 is modeled by the path from u4 to x11,
U ← V ← V ← V .

Given this characterization, the prediction of
whether hj(x, y) is entailed from the conversation
segment is formulated as a binary classification
problem, using a k-nearest neighbor classification
model with following features:

1. Explicit modeling of long distance relationship,
i.e., the path from x∗ to y∗ in the dependency
structure of the conversation segment;

2. The types (N, V, or U) of x, y, x∗, and y∗;
3. The type of relation between x and y, for ex-

ample, obj in obj(x, y);
4. The order (i.e., before or after) between x and
y, and between x∗ and y∗;

5. The specific type of the hypothesis.

7 Evaluation and Analysis

We evaluated different model configurations using
our data1. This dataset consists of 291 development
instances and 584 testing instances. The hypotheses

1The data is available for download at http:
//links.cse.msu.edu:8000/lair/projects/
conversationentailment_data.html.

(a) Based on basic representation

(b) Based on augmented representation

Figure 4: Evaluation of verb alignment

were categorized into four types: (1) fact: profile
and social relations of conversation participants (ac-
counted for 47% of the development data and 49%
of the testing data); (2) belief: participants’ beliefs
and opinions (34% and 35%); (3) desire: partici-
pants’ desire of certain actions or outcomes (11%
and 4%); (4) intent: communicative intent that cap-
tures some perlocutionary force from one participant
to the other (e.g. A stops B from doing something;
A disagreees with B on something, 8% and 12%)

Note that in our original work (Zhang and Chai,
2009), only development data were used to show
some initial observations. Here we trained our mod-
els on the development data and results shown are
from the testing data.

7.1 Evaluation of Alignment Models

The evaluation of alignment models is based on pair-
wise decision. For each pair of terms (x, y), where
x is from a conversation segment and y is from
a hypothesis, we measure whether the model cor-
rectly predicts that the two terms should or should
not be aligned. Because the alignment classification
has extremely unbalanced classes, we use precision-
recall of true alignments as evaluation metrics.

Figure 4(a) and 4(b) shows the comparison (F-
measure) of two alignment models for verb align-
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Figure 5: Evaluation of inference models based on different representations

ment, based on the basic representation and the aug-
mented representation, respectively. Note that we
cannot directly compare the results between these
two figures since they involve different number of
alignment instances2. Nevertheless, we can see the
overall trend within each figure: the explicit model
outperforms the implicit model. This suggests that
the explicit modeling of semantic relationship be-
tween verbs and arguments works better than the im-
plicit modeling used in previous work. Furthermore,
the improvement is most noticeable when hypothe-
ses are facts (24.8% with the basic representation
and 24.1% with the augmented representation), and
least when hypotheses are intents (12.2% with the
basic representation and 6.2% with the augmented
representation).

7.2 Evaluation of Inference Models

In order to compare different inference models, in
this section (and this section only) we use gold-
standard alignment results. They are obtained from
manual annotation in our evaluation. We evaluated
two inference models, one with implicit modeling
of long distance relationship and one with explicit
modeling. Evaluations were conducted based on
both the basic representation and the augmented rep-
resentation. Figure 5 shows the four groups of eval-
uation results.

Overall speaking, the augmented representation
outperforms the basic representation for both im-
plicit modeling and explicit modeling of long dis-
tance relationship (McNemar’s tests, p < 0.05). The
explicit model performs better than implicit model
only based on augmented representation (McNe-
mar’s test, p < 0.05).

2The alignment based on the augmented representation in
Figure 4(b) also includes pseudo alignments.

Clause Rep- Relation modeling Improve-
resentation Implicit Explicit ment
Basic 53.9% 53.9% 0
Augmented 54.8% 58.7% 3.9%

Table 2: Entailment performance with different represen-
tations and LDR modeling

The results were further broken down by different
hypothesis types. For the fact type of hypotheses,
there is no difference between different represen-
tations and modeling of long distance relationship.
This is not surprising since most hypotheses about
partipants’ profiling information can be inferred di-
rectly from the utterances. The augmented repre-
sentation affects the intent type of hypothesis most
significantly, so does the explicit modeling of long
distance relationship.

7.3 Interaction between Clause
Representations and LDR Modeling

It was shown in previous sections that the aug-
mented representation helps entailment prediction
compared to the basic representation. Here we want
to study how they interact with other entailment
components and what is their effect in the enhanced
modeling of long distance relations. Specifically, we
test the performance of implicit and explicit mod-
eling of long distance relations under two different
representation settings: the basic representation and
the augmented representation.

Table 2 compares the performance (accuracy) of
entailment models with different relationship mod-
eling. We can see that the explicit model makes im-
provement over the implicit model for augmented
representation (McNemar’s test, p < 0.05), while
no improvement is made for basic representation.
These evaluation results appear to suggest that there
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is an interaction between clause representations and
semantic modeling of long distance relations: the
modeling of long distance relations between lan-
guage constituents appears only effective when con-
versation structure is incorporated in the representa-
tion.

It is interesting to see the difference in the predic-
tion performances on fact hypotheses and intent hy-
potheses. For fact, the most benefit of incorporating
explicit modeling of long distance relationship ap-
pears at the alignment stage, but not much at the in-
ference stage. However, this situation is different for
intent, where the benefit of explicitly modeling long
distance relationship mostly happened at the infer-
ence stage. This observation suggests that the effects
of different types of modeling may vary for different
types of hypotheses, which indicates that hypothesis
type dependent models may be beneficial.

8 Discussion and Conclusion

This paper presents an empirical investigation on
conversation entailment. We specifically examine
two levels of representation of conversation seg-
ments and two different ways of modeling long dis-
tance relations between language constituents. Our
findings indicate that, although traditional architec-
ture and approaches for textual entailment remain
important, additional representation and processing
that address conversation structures is critical. The
augmented representation with conversation struc-
tures, together with explicit modeling of semantic
relations between language constituents, results in
the best performance (58.7% accuracy).

The work here only represents an initial step to-
wards conversation entailment. Conversation phe-
nomena are rich and complex. Conversation entail-
ment is extremely difficult. Besides the same chal-
lenges faced by textual entailment, it is further com-
plicated by conversation implicature. Although our
current data enables us to start an initial investiga-
tion, its small size poses significant limitations on
technology development and evaluation. For ex-
ample, our studies have indicated hypothesis type-
dependent approaches may be beneficial, however
we do not have sufficient data to yield reasonable
models. A more systematical approach to collect
and create a larger set of data is crucial. Inno-

vative community-based approaches (e.g., through
web) for data collection and annotation can be pur-
sued in the future. As more techniques in semantic
processing (e.g., semantic role) become available,
future work should also capture deeper semantics,
address pragmatics, and incorporate richer world
knowledge.

Finally, as the technology in conversation entail-
ment is developed, its applications in NLP problems
should be explored. Example applications include
information extraction, question answering, summa-
rization from conversation scripts, and modeling of
conversation participants. These applications may
provide new insights on the nature of the conversa-
tion entailment problem and its potential solutions.
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Abstract

Problems stemming from domain adaptation
continue to plague the statistical natural lan-
guage processing community. There has been
continuing work trying to find general purpose
algorithms to alleviate this problem. In this
paper we argue that existing general purpose
approaches usually only focus on one of two
issues related to the difficulties faced by adap-
tation: 1) difference in base feature statistics
or 2) task differences that can be detected with
labeled data.

We argue that it is necessary to combine these
two classes of adaptation algorithms, using
evidence collected through theoretical analy-
sis and simulated and real-world data exper-
iments. We find that the combined approach
often outperforms the individual adaptation
approaches. By combining simple approaches
from each class of adaptation algorithm, we
achieve state-of-the-art results for both Named
Entity Recognition adaptation task and the
Preposition Sense Disambiguation adaptation
task. Second, we also show that applying an
adaptation algorithm that finds shared repre-
sentation between domains often impacts the
choice in adaptation algorithm that makes use
of target labeled data.

1 Introduction

While recent advances in statistical modeling for
natural language processing are exciting, the prob-
lem of domain adaptation remains a big challenge.
It is widely known that a classifier trained on one do-
main (e.g. news domain) usually performs poorly on
a different domain (e.g. medical domain) (Jiang and

Zhai, 2007; Daumé III, 2007). The inability of cur-
rent statistical models to handle multiple domains is
one of the key obstacles hindering the progress of
NLP.

Several general purpose algorithms have been
proposed to address the domain adaptation prob-
lem: (Blitzer et al., 2006; Jiang and Zhai, 2007;
Daumé III, 2007; Finkel and Manning, 2009). It
is widely believed that the drop in performance of
statistical models on new domains is due to the
shift of the joint distribution of labels and examples,
P (Y, X), from domain to domain, where X repre-
sents the input space and Y represents the output
space. In general, we can separate existing adap-
tation algorithms into two categories:

Focuses on P (X) This type of adaptation algo-
rithm attempts to resolve the difference between the
feature space statistics of two domains. While many
different techniques have been proposed, the com-
mon goal of these algorithms is to find a better
shared representation that brings the source domain
and the target domain closer. Often these algorithms
do not use labeled examples in the target domain.
The works (Blitzer et al., 2006; Huang and Yates,
2009) all belong to this category.

Focuses on P (Y |X) These adaptation algorithms
assume that there exists a small amount of labeled
data for the target domain. Instead of training two
weight vectors independently (one for source and
the other for the target domain), these algorithms try
to relate the source and target weight vectors. This is
often achieved by using a special designed regular-
ization term. The works (Chelba and Acero, 2004;
Daumé III, 2007; Finkel and Manning, 2009) belong
to this category.

767



It is important to give the definition of an adapta-
tion framework. An adaptation framework is speci-
fied by the data/resources used and a specific learn-
ing algorithm. For example, a framework that used
only source labeled examples and one that used both
source and target labeled examples should be con-
sidered as two different frameworks, even though
they might use exactly the same training algorithm.
Note that the goal of a good adaptation framework is
to perform well on the target domain and quite often
we only need to change the data/resource used to in-
crease the performance without changing the train-
ing algorithm. We refer to frameworks that do not
use target labeled data and focus on P (X) as Unla-
beled Adaptation Frameworks and refer to frame-
works that use algorithms that focus on P (Y |X) as
Labeled Adaptation Frameworks.

The major difference between unlabeled adapta-
tion frameworks and labeled adaptation frameworks
is the use of target labeled examples. Unlabeled
adaptation frameworks do not use target labeled ex-
amples1, while the labeled adaptation frameworks
make use of target labeled examples. Under this
definition, we consider that a model trained on both
source and target labeled examples (later referred as
S+T) is a labeled adaptation framework.

It is important to combine the labeled and unla-
beled adaptation frameworks for two reasons:

• Mutual Benefit: We analyze these two types
of frameworks and find that they address dif-
ferent adaptation issues. Therefore, it is often
beneficial to apply them together.

• Complex Interaction: Another, probably
more important issue, is that these two types
of frameworks are not independent. Different
representations will impact how much a labeled
adaptation algorithm can transfer information
between domains. Therefore, in order to have a
clear picture of what is the best labeled adapta-
tion framework, it is necessary to analyze these
two domain adaptation frameworks together.

In this paper, we assume we have both a small
amount of target labeled data and a large amount

1Note that we still use labeled data from source domain in
an unlabeled adaptation framework.

of unlabeled data so that we can perform both unla-
beled and labeled adaptation. The goal of our paper
is to point out the necessity of applying these two
adaptation frameworks together. To the best of our
knowledge, this is the first paper that both theoreti-
cally and empirically analyzes the interdependence
between the impact of labeled and unlabeled adap-
tation frameworks.

The contribution of this paper is as follows:

• Propose a theoretical analysis of the “Frustrat-
ingly Easy” (FE) framework (Daumé III, 2007)
(Section 3).

The theoretical analysis shows that for FE to be
effective the domains must already be “close”.
At some threshold of “closeness” it is better to
switch from FE to just pool all training together
as one domain.

• Demonstrate the complex interaction between
unlabeled and labeled approaches (Section 4)

We construct artificial experiments that demon-
strate how applying unlabeled adaptation may
impact the behavior of two labeled adaptation
approaches.

• Empirically analyze the interaction on real
datasets (Section 5).

We show that in general combining both ap-
proaches on the tasks of preposition sense
disambiguation and named entity recognition
works better than either individual method.
Our approach not only achieves state-of-the-
art results on these two tasks but it also re-
veals something surprising – finding a bet-
ter shared representation often makes a sim-
ple source+target approach the best adaptation
framework in practice.

2 Two Adaptation Aspects: A Review

Why do we need two types of adaptation frame-
works? First, unlabeled adaptation frameworks are
necessary since many features only exist in one do-
main. Therefore, it is important to develop algo-
rithms that find features which work across domains.
On the other hand, labeled adaptation frameworks
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are also required because we would like to take ad-
vantages of target labeled data. Even though differ-
ent domains may have different definitions for la-
bels (say in named entity recognition, specific defi-
nition of PER/LOC/ORG may change), labeled data
should still be useful. We summarize these distinc-
tions in Table 1.

While these two aspects of adaptation both saw
significant progress in the past few years, little anal-
ysis has been done on the interaction between these
two types of algorithms2.

In order to have a deep analysis, it is necessary to
choose specific adaptation algorithms for each as-
pect of adaptation framework. While we mainly
conduct analysis on the algorithms we picked, we
would like to point out that the necessity of com-
bining these two types of adaptation algorithms has
been largely ignored in the community.

As our example adaptation algorithms we se-
lected:

Labeled adaptation: FE framework One of the
most popular adaptation frameworks that requires
the use of labeled target data is the “Frustrat-
ingly Easy” (FE) adaptation framework (Daumé III,
2007). However, why and when this framework
works remains unclear in the NLP community. The
FE framework can be viewed as an framework that
extends the feature space, and it requires source and
target labeled data to work. We denote n as the
total number of features3 and m is the number of
the “domains”, where one of the domains is the tar-
get domain. The FE framework creates a global
weight vector in Rn(m+1), an extended space for all
domains. The representation x of the t-th domain
is mapped by Φt(x) ∈ Rn(m+1). In the extended
space, the first n features consist of the “shared”
block, which is always active across all tasks. The
(t+1)-th block (the (nt+1)-th to the (nt+n)-th fea-
tures) is a “specific” block, and is only active when

2Among the previously mentioned work, (Jiang and Zhai,
2007) is a special case given that it discusses both aspects of
adaptation algorithms. However, little analysis on the interac-
tion of the two aspects is discussed in that paper

3We assume that the number of features in each domain is
equal.

extracting examples from the task t. More formally,

Φt(x) =

264 x|{z}
shared

(t−1) blocksz }| {
0 . . .0 x|{z}

specific

(m−t) blocksz }| {
0 . . .0

375 . (1)

A single weight vector w̄ is obtained by training on
the modified labeled data {yt

i ,Φt(xt
i)}m

t=1. Given
that this framework only extends the feature space,
in this paper, we also call it the feature extension
framework (still called FE). We will see in Section 3
that this framework is equivalent to applying a reg-
ularization trick that bridges the source and the tar-
get domains. As it will become clear in Section 3,
in fact, this framework is only effective when there
is target labeled data and hence belongs to labeled
adaptation frameworks.

Although FE framework is quite popular in the
community, there are other even simpler labeled
adaptation frameworks that allow the use of tar-
get labeled data. For example, one of the simplest
frameworks is the S+T framework, which simply
trains a single model on the pooled and unextended
source and target training data.

Unlabeled adaptation: Adding cluster-like fea-
tures Recall that unlabeled adaptation frameworks
find the features that “work” across domain. In this
paper, we find such features in two steps. First,
we use word clusters generated from unlabeled text
and/or third party resources that spans domains.
Then, for every feature template that contains a
word, we append another feature template that uses
the word’s cluster instead of the word itself. This
technique is used in many recent works including
dependency parsing and NER (Koo et al., 2008;
Ratinov and Roth, 2009). Note that the unlabeled
text need not come from the source or target do-
main. In fact, in this paper, we use clusters gen-
erated with the Reuters 1996 dataset, a superset of
the CoNLL03 NER dataset (Koo et al., 2008; Liang,
2005). We adopt the Brown cluster algorithm to find
the word cluster (Brown et al., 1992; Liang, 2005).
We can use other resources to create clusters as well.
For example, in the NER domain, we also include
gazetteers4 as an unlabeled cluster resource, which
can bring the domains together quite effectively.

4Our gazetteers comes from (Ratinov and Roth, 2009).

769



Framework Labeled Data Unlabeled Data Common Approach
Unlabeled Adaptation
(Focus on P (X))

Source Encompasses Source and Target.
May use other third party resources
(dictionaries, gazetteers, etc.).

Generate features that span domains us-
ing unlabeled data and/or third party re-
sources.

Labeled Adaptation
(Focus on P (Y |X))

Source and Target None Train classifier(s) using both source and
target training data, relating the two.

Table 1: Comparison between two general adaptation frameworks discussed in this paper. Each framework is specified by its setting
(data required) and its learning algorithm. Multiple previous adaptation approaches fit in one of either framework.

While other more complex algorithms (Ando and
Zhang, 2005; Blitzer et al., 2006) for finding bet-
ter shared representation (without using labeled tar-
get data) have been proposed, we find that using
straightforward clustering features is quite effective
in general.

3 Analysis of the FE Framework

In this section, we propose a simple yet informative
analysis of the FE algorithm from the perspective of
multi-task learning. Note that we ignore the effect
of unlabeled adaptation in this section, and focus on
the analysis of the FE framework as a representative
labeled adaptation framework.

3.1 Mistake Bound Analysis
While (Daumé III, 2007) proposed this framework
for adaptation, a very similar idea had been proposed
in (Evgeniou and Pontil, 2004) as a novel regular-
ization term for multitask learning with support vec-
tor machines. Assume that w1,w2, . . . ,wm are the
weight vector for the first domain to the m-th do-
main, respectively. The baseline approach is to as-
sume that each weight vector is independent. As-
sume that we adopt a SVM-like optimization prob-
lem that consider all m tasks, the baseline approach
is equivalent to using the following regularization
term in the objective function:

∑m
t=1 ‖wt‖2.

In (Evgeniou and Pontil, 2004; Daumé III, 2007),
they assume that wt = u + vt, for t = 1, . . . m,
where vt is the specific weight vector for t-th do-
main and u is a shared weight vector across all do-
mains. The new regularization term then becomes

‖u‖2 +
m∑

t=1

‖vt‖2. (2)

Note that these two regularization terms are differ-
ent, given that the new regularization term makes

w1,w2, . . . ,wm not independent anymore. It fol-
lows that

wT
t x = (u + vt)Tx = w̄T Φt(x),

where
w̄T =

[
uT vT

1 . . . vT
m

]
.

and ‖w̄‖2 equals to Eq. (2). Therefore, we can think
feature extension framework as a learning frame-
work that adopts Eq. (2) as its regularization term.

The FE framework was in fact originally designed
for the problem of multitask learning so in the fol-
lowing, we propose a simple mistake bound analysis
based on the multitask setting, where we calculate
the mistakes on all domains5. We focus on multi-
task setting for two reasons: 1) the analysis is very
easy and intuitive, and 2) in Section 4.1, we empiri-
cally confirm that the analysis holds for the adapta-
tion setting.

In the following, we assume that the training
algorithm used in the FE framework is the on-
line perceptron learning algorithm (Novikoff, 1963).
This allows us to analyze the mistake bound of the
FE framework with the perceptron algorithm. The
bound can give us an insight on when and why one
should adopt the FE framework. By using the stan-
dard mistake bound theorem (Novikoff, 1963), we
show:

Theorem 1. Let Dt be the labeled data of domain t.
Assume that there exist w1,w2, . . . ,wm such that

ywT
t x ≥ µ,∀(x, y) ∈ Dt,

and assume that max(x,y)∈Dt
‖x‖ ≤ R2,∀t =

1 . . .m. Then, the number of mistakes made with
online perceptron training (Novikoff, 1963) and the

5In the adaptation setting, one generally only cares about the
performance on the target domain.
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FE framework is bounded by

2R2

µ2
(

m∑
t=1

‖wt‖2 −
‖

∑m
t=1 wt‖2

m + 1
). (3)

Proof. Define w̄ as a vector in Rn(m+1). We claim
that there exists a set Sw̄ such that for all w̄ ∈ Sw̄,
w̄T Φt(x) = wT

t x for any domain t = 1 . . .m. Note
that Φt(x) is defined in Eq. (1). We can construct Sw̄

in the following way:

Sw̄ = {
[
s (w1 − s) . . . (wm − s)

]
| s ∈ Rn},

where s is an arbitrary vector with n elements.
In order to obtain the best possible bound, we

would like to find the most compressed weight vec-
tor in Sw̄, w∗ = minw̄∈Sw̄ ‖w̄‖2.

The optimization problem has an analytical solu-
tion:

‖w∗‖2 =
m∑

t=1

‖wt‖2 − ‖
m∑

t=1

wt‖2/(m + 1).

The proof is completed by the standard mis-
take bound theorem and the following fact:
maxx ‖φt(x)‖2 = 2maxx ‖x‖2 ≤ 2R2.

3.2 Mistake Bound Comparison
In the following, we would like to explore under
what circumstances the FE framework can work bet-
ter than individual models and the S+T framework
using Theorem 1. The analysis is done based on the
assumption that all frameworks use the perceptron
algorithm.

Before showing the bound analysis, note that the
framework proposed by (Evgeniou and Pontil, 2004;
Finkel and Manning, 2009) is a generalization over
these three frameworks (FE, S+T, and the base-
line)6. However, our goal in this paper is different:
we try to provide a deep discussion on when and why
one should use a particular framework.

Here, we compare the mistake bounds of the fea-
ture sharing framework to that of the baseline ap-
proach, which learns each task independently7. In

6The framework proposed by (Evgeniou and Pontil, 2004;
Finkel and Manning, 2009) is a generalization of Eq. (1). It
allows the user to weight each block of features. If we put zero
weight on the shared block, it becomes the baseline approach.
On the other hand, if we put zero weight on all task-specific
blocks, the framework becomes the S+T approach.

7Note that mistake bound results can be generalized to gen-
eralization bound results. See (Zhang, 2002).

order to make the comparison easier, we make some
simplifying assumptions. First, we assume that the
problem contains only two tasks, 1 and 2. We also
assume that ‖w1‖ = ‖w2‖ = a. These assump-
tions greatly reduce the complexity of the analysis
and can give us greater insight into the comparisons.

Following the assumptions and Theorem 1, the
mistake bound for the FE frameworks is

4(2− cos(w1,w2))R2a2/(3µ2) (4)

This line of analysis leads to interesting bound com-
parisons for two cases. In the first case, we assume
that task 1 and task 2 are essentially the same. In the
second, more common case, we assume that they are
different.

First, when we know a priori that task 1 and task
2 are essentially the same, we can combine the train-
ing data from the two tasks and train them as a sin-
gle task. Therefore, given that we do not need to
expand the feature space, the number of mistakes is
now bounded by R2a2/µ2. Note that this bound is
in fact better than (4) with cos(w1,w2) = 1. There-
fore, if we know a priori that these two tasks are the
same, training a single model is better than using the
feature shared approach.

In practice, it is often the case that the two tasks
are not the same. In this case, the number of mis-
takes of an independent approach on both task 1 and
2 will be bounded by the summation of the mistake
bounds of task 1 and task 2. Therefore, using the
independent approach, the number of mistakes for
the perceptron algorithm on both tasks is bounded
by 2R2a2/µ2. The following results can be obtained
by directly comparing the two bounds,

Corollary 1. Assume there exists w1 and w2 which
separate D1 and D2 respectively with functional
margin µ, and ‖w1‖ = ‖w2‖ = a. In this case:
(4) will be smaller than the bound of individual ap-
proach, 2R2a2/µ2, if and only if cos(w1,w2) =
(wT

1 w2)/(‖w1‖‖w2‖) > 1
2 .

If we assume that there is no difference in
P (X) between domains and hence we can treat
cos(w1,w2) as the similarity between two tasks, the
above argument suggests:

• If the two tasks are very different, the baseline
approach (building two models) is better than
FE and S+T.
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• If the tasks are similar enough, FE is better than
baseline and S+T.

• If the tasks are almost the same, S+T becomes
better than FE and baseline.

In Section 4.1, we will evaluate whether these claims
can be justified empirically.

4 Artificial Data Experiment Study

In this section we will present artificial experiments.
We have two primary goals: 1) verifying the analysis
proposed in Section 3, and 2) showing that the repre-
sentation shift will impact the behavior of the FE al-
gorithm. The second point will be verified again in
the real world experiments in Section 5.

Data Generation In the following artificial ex-
periments we experiment with domain adaptation
by generating training and test data for two tasks,
source and target, where we can control the differ-
ence between task definitions. The general proce-
dure can be divided into two steps: 1) generating
weight vectors z1 and z2 (for source and target re-
spectively), and 2) randomly generating labeled in-
stances for training and testing using z1 and z2.

The different experiments start with the same ba-
sic z1 and z2, but then may alter these weights to
introduce task dissimilarities or similarities. The ba-
sic z1 and z2 are both generated by a multivariate
Gaussian distribution with mean z and a diagonal
covariance matrix βI:

z1 ∼ N (z, βI), z2 ∼ N (z, βI),

where N is the normal distribution and z is random
vector with zero mean. Note that z is only used to
generate z1 and z2. There is one parameter, β, that
controls the variance of the Gaussian distribution.
Hence we use β to roughly control the “angle” of z1

and z2. When β is close to zero, z1 and z2 will be
very similar. On the other hand, when β is large, z1

and z2 can be very different. In these experiments,
we vary β between 0.01 and 5 so that we are exper-
imenting only with tasks where the weight the task
difference is the “angle” or cosine between z1 and
z2. Once we obtain the z1 and z2, we normalize
them to the unit length.

After selecting z1 and z2, we then generate la-
beled instances (x, y) for the source task in the fol-
lowing way. For each example x, we randomly gen-
erate n binary features, where each feature has 20%
chance to be active. We then label the example by

y = sign(zT
1 x),

The data for the target task is generated similarly
with z2. In these experiments, we fix the number of
features n to be 500 and generate 100 source train-
ing examples and 40 target training examples, along
with 1000 target testing examples. This matches the
reasonable case in NLP where there are more fea-
tures than training examples and each feature vector
is sparse. In all of the experiments, we report the
averaged testing error rate on the target testing data.

4.1 Experiment 1, FE algorithm
Goal The goal here is to verify our theoretical
analysis in Section 3. Note that we do not introduce
representation shift in this experiment and assume
that both source and target domains use exactly the
same features.

Result Figure 1(a) shows the performance of the
three training algorithms as variance decreases and
thus cosine between weight vectors (or measure of
task similarity) goes to 1. Note that FE labeled adap-
tation framework beats TGT once the task cosine
passes approximately 0.6. Initially FE slightly out-
performs S+T until the tasks are close enough to-
gether that it is better to treat all the data as coming
from one task. Note that while the experiments are
based on the adaptation setting, the results match our
analysis based on the multitask setting in Section 3.

4.2 Experiment 2, Unseen Features
Goal So far we have not considered the difference
in P (X) between domains. In the previous exper-
iment, we used only cosine as our task similarity
measurement to decide what is the best framework.
However, task similarity should consider the differ-
ence in both P (X) and P (Y |X), and the cosine
measurement is not sufficient for this. Here we con-
struct a simple example to show that even a simple
representation shift can change the behavior of the
labeled adaptation framework. This case shows that
S+T can be better than FE even when the tasks are
not similar according to the cosine measurement.
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(a) Basic Similarity
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(b) Shared Features

Figure 1: Artificial Experiment comparing labeled adaptation performance vs. cosine between base weight vectors that defines
two tasks, before and after cross-domain shared features are added. Figure (a) shows results from experiment 1. For FE adaptation
algorithm to work the tasks need to be close (cosine > 0.6), and if the tasks are close enough (cosine ≈ 1, dividing line) then
it is better to just pool source and target training data together (the S+T algorithm). Figure (b) shows results for experiment 3
when shared features are added to the base weight vectors as used in experiment 1. Here the cosine similarity measure is between
the base task weight vectors before the shared features have been added. Both labeled adaptation algorithms effectively use the
shared features to improve over just training on target. With shared features added the dividing line where S+T improves over
FE decreases so even for tasks that are initially further apart, once clusters are added the S+T algorithm does better than FE. Each
point represents the average of 2000 training runs with random initial z1 and z2 generating data.

Result The second experiment deals with the case
where features may appear in only one domain but
should be treated like known features in the other
domain. An example of this are out of vocabulary
words that may not exist in a small target train-
ing task, but have synonyms in the source train-
ing data. In this case if we had features grouping
words (say by word meanings) then we would re-
cover this cross-domain information. In this experi-
ment we want to explore which adaptation algorithm
performs best before these features are applied.

To simulate this case we start with similar weight
vectors z1 and z2 (sampled with variance = 0.00001,
cos(z1,z2) ≈ 1), but then shift some set of dimen-
sions so that they represent features that appear only
in one domain.

z1 = (a1,b1) → z′1 = (0,b1,a1)
z2 = (a2,b2) → z′2 = (a2,b2,0)

By changing the ratio of the size of the dissimilar
subset a to the similar subset b we can make the
two weight vectors z′1 and z′2 more or less similar.
Using these two new weight vectors we can proceed
as above, generating training and testing data.

Figure 2 shows the performance of the three algo-
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Figure 2: Artificial Experiment where unknown features are
included in source or target domains, but not the other. The
simple S+T adaptation framework is best able to exploit the
set of shared features so performs best over the whole space of
similarity in this setting.

rithms on this data as the number of unrelated fea-
tures are decreased. Over the entire range the com-
bined algorithm S+T does better since it more ef-
ficiently exploits the shared similar b subset of the
feature space. When the FE algorithm tries to cre-
ate the shared features, it considers both the similar
subset b and dissimilar subset a. However, since
a should not be shared, FE algorithm becomes less
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effective than the S+T algorithm. See the bound
comparison in Section 3.2 for more intuitions. With
this experiment we have demonstrated that there is
a need to consider label and unlabeled adaptation
frameworks together.

4.3 Experiment 3, Shared Features
Goal A good unlabeled adaptation framework
should try to find features that “work” across do-
mains. However, it is not clear how these newly
added features will impact the behavior of the la-
beled adaptation frameworks. In this experiment, we
show that the new shared features will bring the do-
mains together, and hence make S+T a very strong
adaptation framework.

Result For the third experiment we start with the
same setup as in the first experiment, but then aug-
ment the initial weight vector with additional shared
weights. These shared weights correspond to the in-
troduction of features that appear in both domains
and have the same meaning relative to the tasks, the
ideal result of unlabeled adaptation methods.

To generate this case we again start with z1 and
z2 of varying similarity as in section 4.1, then gen-
erate a random weight vector for shared features and
append this to both weight vectors.

zs ∼ N (0, I), z′′1 = (z1, γzs), z′′2 = (z2, γzs),

where γ is used to put increased importance on the
shared weight vectors by increasing the total weight
of that section relative to the base z1 and z2 subsets.
In our experiments we use 100 shared features to the
500 base features and set γ to 2.

Figure 1(b) shows the performance of the labeled
adaptation algorithms once shared features had been
added. Here the x-axis is the cosine between the
original task weight vectors, demonstrating how the
shared features improve performance on potentially
dissimilar tasks. Whereas in the first experiment
FE does not improve over just training on target data
until the cosine is greater than 0.6, once shared fea-
tures have been added then both FE and S+T use
these features to learn with originally dissimilar
tasks. Furthermore the shared features tend to push
the tasks ‘closer’ so that S+T improves over FE ear-
lier. Comparing to Figure 1(a), there are regions
where before shared features are added it is better

to use FE, and after shared features are added it is
better to use S+T. This shows that labeled adapta-
tion and unlabeled are not independent. Therefore,
it is important to combine these two aspects to see
the real contribution of each adaptation framework.

In these three artificial experiments we have
demonstrated cases where both FE or S+T are
the best algorithm before and after representation
changes like those created with unlabeled adaptation
are imposed. This fact points to the perhaps obvi-
ous conclusion that there is not a single best adapta-
tion algorithm, and the determination of specific best
practices depends on task similarity (in both P (X)
and P (Y |X)), especially after being brought closer
together with other adaptation approaches. If there
is one common trend it is that often once two tasks
have been brought close together using a shared rep-
resentation, then the tasks are now close enough
such that the simple S+T algorithm does well.

5 Real World Experiments

In Section 4, we have shown through artificial data
experiments that labeled and unlabeled adaptation
algorithms are not independent. In this section, we
focus on experiments with real datasets.

For the labeled adaptation algorithms, we have the
following options:

• TGT: Only uses target labeled training dataset.

• FE: Uses both labeled datasets.

• FE+: Uses both labeled datasets. A modifica-
tion of the FE algorithm, equivalent to multi-
plying the “shared” part of the FE feature vec-
tor (Eq. (1)) by 10 (Finkel and Manning, 2009).

• S+T: Uses both source and target labeled
datasets to train a single model with all labeled
data directly.

Throughout all of our experiments, we use SVMs
trained with a modified java implementation8 of
LIBLINEAR as our underlying learning classi-
fier (Hsieh et al., 2008). For the tasks that require
structures, we model each individual decision using

8Our code is modified from the version available on http:
//www.bwaldvogel.de/liblinear-java/
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Algorithm TGT FE FE+ S+T
SRC labeled data? no yes
Target labeled data Token F1
(a) MUC7 Dev 58.6 70.5 74.3 73.1
(a) + cluster 77.5 82.5 83.3 83.3
(b) MUC7 Train 73.0 78.2 80.1 78.7
(b) + cluster 85.4 86.4 86.2 86.5

Table 2: NER Experiments. We bold face the best accuracy
in a row and underline the runner up. Both unlabeled adapta-
tion algorithms (adding cluster features) and labeled adaptation
algorithm (using source labeled data) help the performance sig-
nificantly. Moreover, adding cluster-like features also changes
the behavior of the labeled adaptation algorithms. Note that
after adding cluster features, S+T becomes quite competitive
with (or slightly better than) the FE+ approach. The size of
MUC7 develop set is roughly 20% of the size of the MUC7
training set.

a local SVM classifier then make our prediction us-
ing a greedy approach from left to right. While we
could use a more complex model such as Condi-
tional Random Field (Lafferty et al., 2001), as we
will see later, our simple model generates state-of-
the-art results for many tasks. Regarding parameter
selection, we selected the SVM regularization pa-
rameter for the baseline model (TGT) and then fix it
for all algorithms9.

Named Entity Recognition Our first task is
Named Entity Recognition (NER). The source do-
main is from the CoNLL03 shared task (Tjong
Kim Sang and De Meulder, 2003) and the target do-
main is from the MUC7 dataset. The goal of this
adaptation system is to maximize the performance
on the test data of MUC7 dataset with CoNLL train-
ing data and (some) MUC7 labeled data. As an unla-
beled adaptation method to address feature sparsity,
we add cluster-like features based on the gazetteers
and word clustering resources used in (Ratinov and
Roth, 2009) to bridge the source and target domain.
We experiment with both MUC development and
training set as our target labeled sets.

The experimental results are in Table 2. First, no-
tice that addressing the feature sparsity issue helps
the performance significantly. Adding cluster-like

9We use L2-hinge loss for all of the experiments, with
C = 2−4 for NER experiments and C = 2−5 for the PSD
experiments.

features improves the Token-F1 by around 10%. On
the other hand, adding target labeled data also helps
the results significantly. Moreover, using both tar-
get labeled data and cluster-like shared representa-
tion are mutually beneficial in all cases.

Importantly, adding cluster-like features changes
the behavior of the labeled adaptation algorithms.
When the cluster-like features are not added, the
FE+ algorithm is in general the best labeled adap-
tation framework. This result agrees with the re-
sults showed in (Finkel and Manning, 2009), where
the authors show that FE+ is the best labeled adap-
tation framework in their settings. However, after
adding the cluster-like features, the simple S+T ap-
proach becomes very competitive to both FE and
FE+. This matches our analysis in Section 4: re-
solving features sparsity will change the behavior of
labeled adaptation frameworks.

We compare the simple S+T algorithm with
cluster-like features to other published results on
adapting from CoNLL dataset to MUC7 dataset in
table 3. Past works on this setting often only fo-
cus on one class of adaption approach. For example,
(Ratinov and Roth, 2009) only use the cluster-like
features to address the feature sparsity problem, and
(Finkel and Manning, 2009) only use target labeled
data without using gazetteers and word-cluster in-
formation. Notice that because of combining two
classes of adaption algorithms, our approach is sig-
nificantly better than these two systems10.

Preposition Sense Disambiguation We also test
the combination of unlabeled and labeled adaption
on the task of Preposition Sense Disambiguation.
Here the data contains multiple prepositions where
each preposition has many different senses. The
goal is to predict the right sense for a given prepo-
sition in the testing data. The source domain is the
SemEval 2007 preposition WSD Task and the target
domain is from the dataset annotated in (Dahlmeier
et al., 2009). Our feature design mainly comes
from (Tratz and Hovy, 2009) (who do not evalu-
ate their system on our target data). As our un-

10The work (Ratinov and Roth, 2009) also combines their
system with several document-level features. While it is possi-
ble to add these features in our system, we do not include any
global features for the sake of simplicity. Note that our sys-
tem is competitive to (Ratinov and Roth, 2009) even though our
system does not use global features.
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Systems Cluster? TGT? P.F1 T.F1
Our NER y y 84.1 86.5
FM09 n y 79.98 N/A
RR09 y n N/A 83.2
RR09 + global y n N/A 86.2

Table 3: Comparisons between different NER systems. P.F1
and T.F1 represent the phrase-level and token-level F1 score,
respectively. We use “Cluster?” to indicate if cluster features
are used and use “TGT?” to indicate if target labeled data is
used. Previous systems often only use one class of adaptation
algorithms. Using both adaptation aspects makes our system
perform significantly better than FM09 and RR09.

Algorithm TGT FE FE+ S+T
SRC labeled data? no yes
Target labeled data Accuracy
10% Tgt 43.8 48.2 51.3 49.7
10% Tgt + Cluster 44.9 50.5 51.8 52.0
100% Tgt 59.5 60.5 60.3 61.2
100% Tgt + Cluster 61.3 62.0 61.2 62.1

Table 4: Preposition Sense Disambiguation. We mark the best
accuracy in a row using the bold font and underline the runner
up. Note that both adding cluster features and adding source la-
beled data help the performance significantly. Moreover, adding
clusters also changes the behavior of the labeled adaptation al-
gorithms.

labeled adaptation approach we augment all word
based features with cluster information from sepa-
rately generated hierarchical Brown clusters (Brown
et al., 1992).

The experimental results are in Table 4. Note that
we see phenomena similar to what happened in the
NER experiments. First, both labeled and unlabeled
adaptation improves the system. When only 10% of
the target labeled data is used, the inclusion of the
source labeled data helps significantly. When there
is more labeled data, labeled and unlabeled adaption
have similar impact. Again, using unlabeled adap-
tion changes the behavior of the labeled adaption al-
gorithms.

In Table 5, we compare our system to (Dahlmeier
et al., 2009), who do not use the SemEval data but
jointly train their preposition sense disambiguation
system with a semantic role labeling system. With
both labeled and unlabeled adaption, our system is
significantly better.

Systems ACC
Our PSD (S+T and cluster) 62.1
DNS09 56.5
DNS09 + SRL 58.8

Table 5: Comparison between different PSD systems. Note
that after adding cluster features and source labeled data with
S+T approach, our system outperforms the state-of-the-art sys-
tem proposed in (Dahlmeier et al., 2009), even though they
jointly learn a PSD and SRL system together.

6 Conclusion

In this paper, we point out the necessities of com-
bining labeled and unlabeled adaptation algorithms.
We analyzed the FE algorithm both theoretically
and empirically, demonstrating that it requires both
a minimal amount of task similarity to work, and
past a certain level of similarity other, simpler ap-
proaches are better. More importantly, through arti-
ficial data experiments we found that applying unla-
beled adaptation algorithms may change the behav-
ior of labeled adaptation algorithms as representa-
tions change, and hence affect the choice of labeled
adaptation algorithm. Experiments with real-world
datasets confirmed that combinations of both adap-
tation methods provide the best results, often allow-
ing the use of simple labeled adaptation approaches.
In the future, we hope to develop a joint algorithm
which addresses both labeled and unlabeled adapta-
tion at the same time.
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Abstract

Using multi-layer neural networks to esti-
mate the probabilities of word sequences is
a promising research area in statistical lan-
guage modeling, with applications in speech
recognition and statistical machine transla-
tion. However, training such models for large
vocabulary tasks is computationally challeng-
ing which does not scale easily to the huge
corpora that are nowadays available. In this
work, we study the performance and behav-
ior of two neural statistical language models
so as to highlight some important caveats of
the classical training algorithms. The induced
word embeddings for extreme cases are also
analysed, thus providing insight into the con-
vergence issues. A new initialization scheme
and new training techniques are then intro-
duced. These methods are shown to greatly re-
duce the training time and to significantly im-
prove performance, both in terms of perplexity
and on a large-scale translation task.

1 Introduction

Statistical language models play an important role in
many practical applications, such as machine trans-
lation and automatic speech recognition. Let V be
a finite vocabulary, statistical language models de-
fine distributions over sequences of words wL

1 in V?

usually factorized as:

P (wL
1 ) = P (w1)

L∏
l=1

P (wl|wl−1
1 )

Modeling the joint distribution of several discrete
random variables (such as words in a sentence) is

difficult, especially in real-world Natural Language
Processing applications where V typically contains
dozens of thousands words.

Many approaches to this problem have been pro-
posed over the last decades, the most widely used
being back-off n-gram language models. n-gram
models rely on a Markovian assumption, and de-
spite this simplification, the maximum likelihood es-
timate (MLE) remains unreliable and tends to under-
estimate the probability of very rare n-grams, which
are hardly observed even in huge corpora. Con-
ventional smoothing techniques, such as Kneser-
Ney and Witten-Bell back-off schemes (see (Chen
and Goodman, 1996) for an empirical overview,
and (Teh, 2006) for a Bayesian interpretation), per-
form back-off on lower order distributions to pro-
vide an estimate for the probability of these unseen
events. n-gram language models rely on a discrete
space representation of the vocabulary, where each
word is associated with a discrete index. In this
model, the morphological, syntactic and semantic
relationships which structure the lexicon are com-
pletely ignored, which negatively impact the gen-
eralization performance of the model. Various ap-
proaches have proposed to overcome this limita-
tion, notably the use of word-classes (Brown et al.,
1992; Niesler, 1997), of generalized back-off strate-
gies (Bilmes et al., 1997) or the explicit integration
of morphological information in the random-forest
model (Xu and Jelinek, 2004; Oparin et al., 2008).

One of the most successful alternative to date is to
use distributed word representations (Bengio et al.,
2003), where distributionally similar words are rep-
resented as neighbors in a continuous space. This
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turns n-grams distributions into smooth functions
of the word representations. These representations
and the associated probability estimates are jointly
computed in a multi-layer neural network architec-
ture. This approach has showed significant and
consistent improvements when applied to automatic
speech recognition (Schwenk, 2007; Emami and
Mangu, 2007; Kuo et al., 2010) and machine trans-
lation tasks (Schwenk et al., 2006). Hence, contin-
uous space language models are becoming increas-
ingly used. These successes have revitalized the re-
search on neuronal architectures for language mod-
els, and given rise to several new proposals (see, for
instance, (Mnih and Hinton, 2007; Mnih and Hinton,
2008; Collobert and Weston, 2008)). A major diffi-
culty with these approaches remains the complexity
of training, which does not scale well to the mas-
sive corpora that are nowadays available. Practical
solutions to this problem are discussed in (Schwenk,
2007), which introduces a number of optimization
and tricks to make training doable. Even then, train-
ing a neuronal language model typically takes days.

In this paper, we empirically study the conver-
gence behavior of two multi-layer neural networks
for statistical language modeling, comparing the
standard model of (Bengio et al., 2003) with the log-
bilinear (LBL) model of (Mnih and Hinton, 2007).
Our contributions are the following: we first pro-
pose a reformulation of Mnih and Hinton’s model,
which reveals its similarity with extant models, and
allows a direct and fair comparison with the stan-
dard model. For the standard model, these results
highlight the impact of parameter initialization. We
first investigate a re-initialization method which al-
lows to escape from the local extremum the standard
model converges to. While this method yields a sig-
nificative improvement, the underlying assumption
about the structure of the model does not meet the
requirement of very large-scale tasks. We therefore
introduce a different initialization strategy, called
one vector initialization. Experimental results show
that these novel training strategies drastically reduce
the total training time, while delivering significant
improvements both in terms of perplexity and in a
large-scale translation task.

The rest of this paper is organized as follows. We
first describe, in Section 2, the standard and the LBL
language models. By reformulating the latter, we

show that both models are very similar and empha-
size the remaining differences. Section 2.4 discusses
complexity issues and possible solutions to reduce
the training time. We then report, in Section 3, pre-
liminary experimental results that enlighten some
caveats of the standard approach. Based on these
observations, we introduce in Section 4 novel and
more efficient training schemes, yielding improved
performance and a reduced training time both on
small and large scale experiments.

2 Continuous space language models

Learning a language model amounts to estimate the
parameters of the discrete conditional distribution
over words given each possible history, where the
history corresponds to some function of the preced-
ing words. For an n-gram model, the history con-
tains the n − 1 preceding words, and the model
parameters correspond to P (wl|wl−1

l−n+1). Continu-
ous space language models aim at computing these
estimates based on a distributed representation of
words (Bengio et al., 2003), thereby reducing the
sparsity issues that plague conventional maximum
likelihood estimation. In this approach, each word
in the vocabulary is mapped into a real-valued vec-
tor and the conditional probability distributions are
then expressed as a (parameterized) smooth func-
tion of these feature vectors. The formalism of neu-
ral networks allows to express these two steps in a
well-known framework, where, crucially, the map-
ping and the model parameters can be learned in
conjunction. In the next paragraphs, we describe the
two continuous space language models considered
in our study and present the various issues associ-
ated with the training of such models, as well as their
most common remedies.

2.1 The standard model

In the following, we will consider words as indices
in a finite dictionary of size V ; depending on the
context, w will either refer to the word or to its in-
dex in the dictionary. A word w can also be repre-
sented by a 1-of-V coding vector v of RV in which
all elements are null except the wth. In the standard
approach of (Bengio et al., 2003), the feed-forward
network takes as input the n−1 word history and de-
livers an estimate of the probability P (wl|wl−1

l−n+1)
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as its output. It consists of three layers.
The first layer builds a continuous representation

of the history by mapping each word into its real-
valued representation. This mapping is defined by
RT v, where R ∈ RV×m is a projection matrix
and m is the dimension of the continuous projection
word space. The output of this layer is a vector i of
(n − 1)m real numbers obtained by concatenating
the representations of the context words. The pro-
jection matrix R is shared along all positions in the
history vector and is learned automatically.

The second layer introduces a non-linear trans-
form, where the output layer activation values are
defined by h = tanh (Wihi + bih) , where i is the
input vector, Wih ∈ RH×(n−1)m and bih ∈ RH are
the parameters of this layer. The vector h ∈ RH can
be considered as an higher (more abstract) represen-
tation of the context than i.

The third layer is an output layer that estimates the
desired probability, thanks to the softmax function:

P (wl = k|wl−1
l−n+1) =

exp(ok)∑
k′ exp(ok′)

(1)

o = Whoh + bho, (2)

where Who ∈ RV×H and bho ∈ RV are respec-
tively the projection matrix and the bias term associ-
ated with this layer. The wth component in P corre-
sponds to the estimated probability of the wth word
of the vocabulary given the input history vector.

The standard model has two hyper-parameters
(the dimension of projection space m and the size of
hidden layer, H) that define the architecture of the
neural network and a set of free parameters Θ that
need to be learned from data: the projection matrix
R, the weight matrix Wih, the bias vector bih, the
weight matrix Who and the bias vector bho.

In this model, the projection matrices R and Who

play similar roles as they define maps between the
vocabulary and the hidden representation. The fact
that R assigns similar representations to history
words w1 and w2 implies that these words can be
exchanged with little impact on the resulting prob-
ability distribution. Likewise, the similarity of two
lines in Who is an indication that the corresponding
words tend to have a similar behavior, i.e. tend to
have a similar probabilities of occurrence in all con-
texts. In the remainder, we will therefore refer to R

as the matrix representing the context space, and to
Who as the matrix for the prediction space.

2.2 The log-bilinear model

The work reported (Mnih and Hinton, 2007) de-
scribes another parameterization of the architecture
introduced in the previous section. This parameter-
ization is based on Factored Restricted Boltzmann
Machine. According to (Mnih and Hinton, 2007),
this model, termed the log-bilinear language model
(LBL), achieves, for large vocabulary tasks, bet-
ter results in terms of perplexity than the standard
model, even if the reasons beyond this improvement
remain unclear.

In this section, we will describe this model and
show how it relates to the standard model. The LBL
model estimates the n-gram parameters by:

P (wl|wl−1
l−n+1) =

exp(−E(wl; wl−1
l−n+1))∑

w exp(−E(w; wl−1
l−n+1))

(3)

In this equation, E is an energy function defined as:

E(wl; wl−1
1 ) = −

(
l−1∑

k=l−n+1

vk
T RCT

k

)
RT vl

(4)

− br
T RT vl − bv

T vl

= −vT
l R

(
l−1∑

k=l−n+1

CkRT vk + br

)
− vT

l bv (5)

where R is the projection matrix introduced above,
(vk)l−n+1≤k≤l−1 are the 1-of-V coding vectors for
the history words and vl is the coding vector for wl;
Ck ∈ Rm×m is a combination matrix and br and bv

denote bias vectors. All these parameters need to be
learned during training.

Equation (4) can be rewritten using the notations
introduced for the standard model. We then rename
br and bv respectively bih and bho. We also denote
i the concatenation of the (n − 1) vectors RT vk;
likewise Wih denotes the H × (n− 1)m matrix ob-
tained by concatenating row-wise the (n − 1) ma-
trices Ck. With these new notations, equations (4)
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and (3) can be rewritten as:

h = Wihi + bih

o = Rh + bho

P (wl = k|wl−1
l−n+1) =

exp(ok)∑
k′ exp(ok′)

This formulation allows to highlight the similarity of
the LBL model and the standard model. These two
models differ only by the activation function of their
hidden layer (linear for the LBL model and tangent
hyperbolic for the standard model) and by their def-
inition of the prediction space: for the LBL model,
the context space and the prediction space are the
same (R = Who, and thus H = m), while in the
standard model, the prediction space is defined in-
dependently from the context space. This restriction
drastically reduces the number of free parameters of
the LBL model.

It is finally noteworthy to outline the similarity
of this model with standard maximum entropy lan-
guage models (Lau et al., 1993; Rosenfeld, 1996).
Let x denote the binary vector formed by stacking
the (n-1) 1-of-V encodings of the history words;
then the conditional probability distributions esti-
mated in the model are proportional to exp F (x),
where F is an affine transform of x. The main dif-
ference with MaxEnt language models are thus the
restricted form of the feature functions, which only
test one history word, and the particular representa-
tion of F , which is defined as:

F (x) = RWihR′T v + Rbih + bho

where, as before, R′ is formed by concatenating
(n− 1) copies of the projection matrix R.

2.3 Training and inference
Training the two models introduced above can be
achieved by maximizing the log-likelihood L of the
parameters Θ. This optimization is usually per-
formed by stochastic back-propagation as in (Ben-
gio et al., 2003). For all our experiments, the learn-
ing rate is fixed at 5×10−3. The learning weight de-
cay and the the weight decay (respectively 1× 10−9

and 0) seem to have a minor impact on the results.
Learning starts with a random initialization of the

parameters under the uniform distribution and con-
verges to a local maximum of the log-likelihood
function. Moreover, to prevent overfitting, an early
stopping strategy is adopted: after each epoch, train-
ing is stopped when the likelihood of a validation set
stops increasing.

2.4 Complexity issues

The main problem with neural language models is
their computational complexity. For the two mod-
els presented in this section, the number of floating
point operations needed to predict the label of a sin-
gle example is1:

((n− 1) ·m + 1)×H + (H + 1)× V (6)

where the first term of the sum corresponds to the
computation of the hidden layer and the second one
to the computation of the output layer. The projec-
tion of the context words amounts to select one row
of the projection matrix R, as the words are repre-
sented with a 1-of-V coding vector. We can there-
fore assume that the computation complexity of the
first layer is negligible. Most of the computation
time is thus spent in the output layer, which implies
that the computing time grows linearly with the vo-
cabulary size. Training these models for large scale
tasks is therefore challenging, and a number of tricks
have been introduced to make training and inference
tractable (Schwenk and Gauvain, 2002; Schwenk,
2007).

Short list A simple method to reduce the com-
plexity in inference and in learning is to reduce
the size of the output vocabulary (Schwenk, 2007):
rather than estimating the probability P (wl =
w|wl−1

l−n+1) for all words in the vocabulary, we only
estimate it for the N most frequent words of the
training set (the so-called short-list). In this case,
two vocabularies need to be considered, correspond-
ing respectively to the context vocabulary Vc used to
define the history; and the prediction vocabulary Vp.
However, this method fails to deliver any probability
estimate for words outside of the prediction vocab-
ulary, meaning that a fall-back strategy needs to be
defined for those words. In practice, neural network

1Recall that learning requires to repeatedly predict the label
for all the examples in the training set.
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language models are combined with a conventional
n-gram model as described in (Schwenk, 2007).

Batch mode and resampling Additional speed-
ups can be obtained by propagating several exam-
ples at once through the network (Bilmes et al.,
1997). This “batch mode” allows to factorize the
matrix operations and cut down both inference and
training time. In all our experiments, we used a
batch size of 64. Moreover, the training time is lin-
ear in the number of examples in the training data2.
Training on very large corpora, which, nowadays,
comprise billions of word tokens, cannot be per-
formed exhaustively and requires to adopt resam-
pling strategies, whereby, at each epoch, the system
is trained with only a small random subset of the
training data. This approach enables to effectively
estimate neural language models on very large cor-
pora; it has also been observed empirically that sam-
pling the training data can increase the generaliza-
tion performance (Schwenk, 2007).

3 A head-to-head comparison

In this section, we analyze a first experimental
study of the two neural network language models
introduced in Section 2 in order to better under-
stand the differences between these models espe-
cially in terms of the word representations they in-
duce. Based on this study, we will propose, in the
next section, improvements of both the speed and
the prediction capacity of the models. In all our ex-
periments, 4-gram language models are used.

3.1 Corpus

The data we use for training is a large monolingual
corpus, containing all the English texts in the par-
allel data of the Arabic to English NIST 2009 con-
strained task3. It consists of 176 millions word to-
kens with 532, 557 different word types as the size
of vocabulary. The perplexity is computed with re-
spect to the 2006 NIST test data, which is used here
as our development data.

2Equation (6) gives the complexity of inference for a single
example.

3http://www.itl.nist.gov/iad/mig/tests/
mt/2009/MT09_ConstrainedResources.pdf

3.2 Convergence study
In a first experiment, we trained the two models in
the same setting: we choose to consider a small
vocabulary comprising the 10, 000 most frequent
words. The same vocabulary is used to constrain
the words occurring in the history and the words
to be predicted. The size of hidden layer is set to
m = H = 200, the history contains the 3 preceding
words, we use a batch size of 64, a resampling rate
of 5% and no weight decay.

Figure 1 displays the perplexity convergence
curve measured on the development data for the
standard and the LBL models4. The convergence
perplexities after the combination with the standard
back-off model are also provided for all the mod-
els in table 2 (see section 4.3). We can observe
that the LBL model converges faster than the stan-
dard model: the latter needs 13 epochs to reach
the stopping criteria, while the former only needs
6 epochs. However, upon convergence, the stan-
dard model reaches a lower perplexity than the LBL
model.
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Figure 1: Convergence rate of the standard and the LBL
models evaluated by the evolution of the perplexity on a
development set

As described in Section 2.2, the main difference
between the standard and the LBL model is the way
the context and the prediction spaces are defined: in
the standard model, the two spaces are distinct; in

4The use of a back-off 4-model estimated with the modified
Knesser-Ney smoothing on the same training data achieves a
perplexity of 141 on the development data.
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the LBL model, they are bound to be the same. With
a smaller number of parameters, the LBL model can
not capture as many characteristics of the data as the
standard model, but it converges faster5. This differ-
ence in convergence can be explained by the scarcity
of the updates in the projection matrix R in the
standard model: during backpropagation, only those
weights that are associated with words in the history
are updated. By contrast, each training sample up-
dates all the weights in the prediction matrix Who.

3.3 An analysis of the continuous word space

To deepen our understanding, we propose to further
analyze the induced word embeddings by finding,
for some randomly selected words, the five nearest
neighbors (according to the Euclidian distance) in
the context space and in the prediction space of the
two models. Results are presented in Table 1.

If we look first at the standard model, the global
picture is that for frequent words (is, are, and, to
a lesser extend, have), both spaces seem to define
meaningful neighborhood, corresponding to seman-
tic and syntactic similarities; this is less true for rarer
words, where we see a greater discrepancy between
the context and prediction spaces. For instance, the
date 1947 seems to be randomly associated in the
context space, while the 5 nearest words in the pre-
diction space form a consistent set of dates. The
same trend is also observed for the word Castro. Our
interpretation is that for less frequent words, the pro-
jection vectors are hardly ever updated and remain
close to their original random initialization.

By contrast, the similarities in the (unique) pro-
jection space of the LBL remain consistent for all
frequency ranges, and are very similar to the predic-
tion space of the standard model. This seems to val-
idate our hypothesis that in the standard model, the
prediction space is learned much faster than the con-
text space and corroborates our interpretation of the
impact of the scarce updates of rare words. Another
possible explanation is that there is no clear relation

5We could increase the number of parameters of the LBL
model for a fairer comparison with the standard model. How-
ever, this would also increase the size of the vocabulary and
cause two new issues: on one hand, the time complexity would
drastically increase for the LBL model, and on the other hand,
both models would not be comparable in terms of perplexity as
their vocabulary would be different.

between the context space and the target function:
the context space is learned only indirectly by back-
propagation. As a result, due to the random initial-
ization of the parameters and to data sparsity, many
vectors of R might be blocked in some local max-
ima, meaning that similar vectors cannot be grouped
in a consistent way and that the induced similarity is
more “loose”.

4 Improving the standard model

In Section 3.2, we observed that slightly better re-
sults can be obtained with the standard rather than
with the LBL model. The latter is however much
faster to train, and seems to induce better projection
matrices. Both effects can be attributed to the partic-
ular parameterization of this model, which uses the
same projection matrix both for the context and for
the prediction spaces. In this section, we propose
several new learning regimes that allowed us to im-
prove the standard model in terms of both speed and
prediction capacity. All these improvements rely on
the idea of sharing word representations. While this
idea is not new (see for instance (Collobert and We-
ston, 2008)), our analysis enables to better under-
stand its impact on the convergence rate. Finally, the
improvements we propose are evaluated on a real-
word machine translation task.

4.1 Improving performances with
re-initialization

The experiments reported in the previous section
suggest that it is possible to improve the perfor-
mances of the standard model by building a better
context space. Thus, we introduce a new learning
regime, called re-initialization which aims to im-
prove the context space by re-injecting the informa-
tion on word neighborhoods that emerges in the pre-
diction space. One possible implementation of this
idea is as follows:

1. train a standard model until convergence;

2. use the prediction space of this model to ini-
tialize the context space of a new model; the
prediction space is chosen randomly;

3. train this new model.
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Table 1: The 5 closest words in the representation spaces of the standard and LBL language models.
word (frequency) model space 5 most closest words
is standard context was are were be been
900, 350 standard prediction was has would had will

LBL both was reveals proves are ON
are standard context were is was be been
478, 440 standard prediction were could will have can

LBL both were is was FOR ON
have standard context had has of also the
465, 417 standard prediction are were provide remain will

LBL both had has Have were embrace
meeting standard context meetings conference them 10 talks
150, 317 standard prediction undertaking seminar meetings gathering project

LBL both meetings summit gathering festival hearing
Imam standard context PCN rebellion 116. Cuba 49
787 standard prediction Castro Sen Nacional Al- Ross

LBL both Salah Khaled Al- Muhammad Khalid
1947 standard context 36 Mercosur definite 2002-2003 era
774 standard prediction 1965 1945 1968 1964 1975

LBL both 1965 1976 1964 1968 1975
Castro standard context exclusively 12. Boucher Zeng Kelly
768 standard prediction Singh Clark da Obasanjo Ross

LBL both Clark Singh Sabri Rafsanjani Sen

Figure 2: Evolution of the perplexity on a development
set for various initialization regimes.

The evolution of the perplexity with respect to train-
ing epochs for this new method is plotted on Fig-
ure 2, where we only represent the evolution of the
perplexity during the third training step. As can be
seen, at convergence, the perplexity the model esti-
mated with this technique is about 10% smaller than
the perplexity of the standard model.

This result can be explained by considering the re-
initialization as a form of annealing technique: re-
initializing the context space allows to escape from
the local extrema the standard model converges to.
The fact that the prediction space provides a good
initialization of the context space also confirms our
analysis that one difficulty with the standard model
is the estimation of the context space parameters.

4.2 Iterative re-initialization

The re-initialization policy introduced in the previ-
ous section significantly reduces the perplexity, at
the expense of a longer training time, as it requires
to successively train two models. As we now know
that the parameters of the prediction space are faster
to converge, we introduce a second training regime
called iterative re-initialization which aims to take
advantage of this property. We summarize this new
training regime as follows:

1. Train the model for one epoch.

2. Use the prediction space parameters to reini-
tialize the context space.

3. Iterate steps (1) and (2) until convergence.
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Figure 3: Evolution of the perplexity on the training data
for various initialization regimes.

This regimes yields a model that is somewhat in-
between the standard and LBL models as it adds a
relationship between the two representation spaces,
which lacks in the former model. This relationship is
however not expressed through the tying of the cor-
responding parameters; instead we let the prediction
space guide the convergence of the context space.
As a consequence, we hope that it can achieve a con-
vergence speed as fast as the one of the LBL model
without degrading its prediction capacity.

The result plotted on Figure 2 shows that this in-
deed the case: using this training regime, we ob-
tained a perplexity similar to the one of the stan-
dard model, while at the same time reducing the
total training time by more than a half, which is
of great practical interest (each epoch lasts approxi-
mately 8 hours on a 3GHz Xeon processor).

Figure 3 displays the perplexity convergence
curve measured on the training data for the standard
learning regime as well as for the re-initialization
and iterative re-initialization. These results show
the same trend as for the perplexity measured on
the development data, and suggest a regularization
effect of the re-initialization schemes rather than al-
lowing the models to escape local optima.

4.3 One vector initialization

Principle The new training regimes introduced
above outperform the standard training regime both
in terms of perplexity and of training time. However,
exchanging information between the context and

prediction spaces is only possible when the same
vocabulary is used in both spaces. As discussed
in Section 2.4, this configuration is not realistic for
very large-scale tasks. This is because increasing the
number of predicted word types is much more com-
putationally demanding than increasing the number
of types in the context vocabulary. Thus, the former
vocabulary is typically order of magnitudes larger
than the latter, which means that the re-initialization
strategies can no longer be directly used.

It is nonetheless possible to continue drawing in-
spirations from the observations made in Section 3,
and, crucially, to question the random initialization
strategy. As discussed above, this strategy may ex-
plain why the neighborhoods in the induced con-
text space for the less frequent types were diffi-
cult to interpret. As a straightforward alternative,
we consider a different initialization strategy where
all the words in the context vocabulary are initially
projected onto the same (random) point in the con-
text space. The intuition is that it will be easier to
build meaningful neighborhoods, especially for rare
types, if all words are initially considered similar
and only diverge if there is sufficient evidence in the
training data to suggest that they should. This model
is termed the one vector initialization model.

Experimental evaluation To validate this ap-
proach, we compare the convergence of a standard
model trained (with the standard learning regime)
with the one vector initialization regime. The con-
text vocabulary is defined by the 532, 557 words oc-
curring in the training data and the prediction vo-
cabulary by the 10, 000 most frequent words6. All
other parameters are the same as in the previous
experiments. Based on the curves displayed on
Figure 4, we can observe that the model obtained
with the one vector initialization regime outperforms
the model trained with a completely random ini-
tialization. Moreover, the latter reaches conver-
gence in only 14 epochs, while the learning regime
we propose only needs 9 epochs. Convergence is
even faster than when we used the standard training
regime and a small context vocabulary.

6In this case, the distinction between the context and the pre-
diction vocabulary rules out the possibility of a relevant compar-
ison based on perplexity between the continuous space language
model and a standard back-off language model.
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Figure 4: Perplexity with all-10, 000, 200− 200 models

Table 2: Summary of the perplexity (PPX) results mea-
sured on the same development set with the different con-
tinuous space language models. For all of them, the prob-
abilities are combined with the back-off n-gram model
Vc size Model # epochs PPX
10000 log bilinear 6 239

standard 13 227
iterative reinit. 6 223

reinit. 11 211
all standard 14 276

one vector init. 9 260

To illustrate the impact of our initialization
scheme, we also used a principal component anal-
ysis to represent the induced word representations
in a two dimensional space. Figure 5 represents the
vectors associated with numbers7 in red, while all
other words are represented in blue. Two different
models are used: the standard model on the left, and
the one vector initialization model on the right. We
can observe that, for the standard model, most of
the red points are scattered all over a large portion
of the representation space. On the opposite, for
the one vector initialization model, points associated
with numbers are much more concentrated: this is
simply because all the points are originally identi-
cal, and the training aim to spread the point around
this starting point. We also created the closest word
list reported in Table 3, in a manner similar to Ta-
ble 1. Clearly, the new method seems to yield more

7Number are all the words consisting only of digits, with an
optional sign, point or comma such as: 1947; 0,001; -8,2.

(a) with the standard model (b) with the one vector initial-
ization model

Figure 5: Comparison of the word embedding in the con-
text space for numbers (red points).

meaningful neighborhoods in the context space.
It is finally noteworthy to mention that when used

with a small context vocabulary (as in the experi-
mental setting of Section 4.1) this initialization strat-
egy underperforms the standard initialization. This
is simply due to the much greater data sparsity in
the large context vocabulary experiments, where the
rarer word types are really rare (they typically occur
once or twice). By contrast, the rarer words in the
small vocabulary tasks occurred more than several
hundreds times in the training corpus, which was
more than sufficient to guide the model towards sat-
isfactory projection matrices. This finally suggests
that there still exists room for improvement if we
can find more efficient initialization strategies than
starting from one or several random points.

4.4 Statistical machine translation experiments

As a last experiment, we compare the various mod-
els on a large scale machine translation task. Sta-
tistical language models are key component of cur-
rent statistical machine translation systems (Koehn,
2010), where they both help disambiguate lexical
choices in the target language and influence the
choice of the right word ordering. The integration of
a neural network language model in such a system is
far from easy, given the computational cost of com-
puting word probabilities, a task that is performed
repeatedly during the search of the best translation.
We then had to resort to a two pass decoding ap-
proach: the first pass uses a conventional back-off
language model to produce a n-best list (the n most
likely translations and their associated scores); in the
second pass, the probability of the neural language
model is computed for each hypothesis and the n-
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Table 3: The 5 closest words in the context space of the standard and one vector initialization language models
word (freq.) model 5 closest words
is standard was are were been remains
900, 350 1 vector init. was are be were been
conducted standard undertaken launched $270,900 Mufamadi 6.44-km-long
18, 388 1 vector init. pursued conducts commissioned initiated executed
Cambodian standard Shyorongi $3,192,700 Zairian depreciations teachers
2, 381 1 vector init. Danish Latvian Estonian Belarussian Bangladeshi
automatically standard MSSD Sarvodaya $676,603,059 Kissana 2,652,627
1, 528 1 vector init. routinely occasionally invariably inadvertently seldom
Tosevski standard $12.3 Action,3 Kassouma 3536 Applique
34 1 vector init. Shafei Garvalov Dostiev Bourloyannis-Vrailas Grandi
October-12 standard 39,572 anti-Hutu $12,852,200 non-contracting Party’s
8 1 vector init. March-26 April-11 October-1 June-30 August4
3727th standard Raqu Tatsei Ayatallah Mesyats Langlois
1 1 vector init. 4160th 3651st 3487th 3378th 3558th

best list is accordingly reordered to produce the final
translations.

The different language models discussed in this
article are evaluated on the Arabic to English
NIST 2009 constrained task. For the continuous
space language model, the training data consists
in the parallel corpus used to train the translation
model (previously described in section 3.1). The de-
velopment data is again the 2006 NIST test set and
the test data is the official 2008 NIST test set. Our
system is built using the open-source Moses toolkit
(Koehn et al., 2007) with default settings. To set
up our baseline results, we used an extensively op-
timized standard back-off 4-grams language model
using Kneser-Ney smoothing described in (Allauzen
et al., 2009). The weights used during the reranking
are tuned using the Minimum Error Rate Training
algorithm (Och, 2003). Performance is measured
based on the BLEU (Papineni et al., 2002) scores,
which are reported in Table 4.

Table 4: BLEU scores on the NIST MT08 test set with
different language models.
Vc size Model # epochs BLEU

all baseline - 37.8
10000 log bilinear 6 38.2

standard 13 38.3
iterative reinit. 6 38.4

reinit. 11 38.4
all standard 14 38.6

one vector init. 9 38.7

All the experimented neural language models
yield to a significant BLEU increase. The best re-
sult is obtained by the one vector initialization stan-
dard model which achieves a 0.9 BLEU improve-
ment. While this results is similar to the one ob-
tained with the standard model, the training time is
reduced here by a third.

5 Conclusion

In this work, we proposed three new methods
for training neural network language models and
showed their efficiency both in terms of computa-
tional complexity and generalization performance in
a real-word machine translation task. These meth-
ods rely on conclusions drawn from a careful study
of the convergence rate of two state-of-the-art mod-
els and are based on the idea of sharing the dis-
tributed word representations during training.

Our work highlights the impact of the initializa-
tion and the training scheme for neural network lan-
guage models. Both our experimental results and
our new training methods can be closely related to
the pre-training techniques introduced by (Hinton
and Salakhutdinov, 2006). Our future work will thus
aim at studying the connections between our empir-
ical observations and the deep learning framework.
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Abstract 

Almost all Chinese language processing tasks 
involve word segmentation of the language 
input as their first steps, thus robust and reli-
able segmentation techniques are always re-
quired to make sure those tasks well-
performed. In recent years, machine learning 
and sequence labeling models such as Condi-
tional Random Fields (CRFs) are often used in 
segmenting Chinese texts. Compared with 
traditional lexicon-driven models, machine 
learned models achieve higher F-measure 
scores. But machine learned models heavily 
depend on training materials. Although they 
can effectively process texts from the same 
domain as the training texts, they perform 
relatively poorly when texts from new do-
mains are to be processed. In this paper, we 
propose to use χ2 statistics when training an 
SVM-HMM based segmentation model to im-
prove its ability to recall OOV words and then 
use bootstrapping strategies to maintain its 
ability to recall IV words. Experiments show 
the approach proposed in this paper enhances 
the domain portability of the Chinese word 
segmentation model and prevents drastic de-
cline in performance when processing texts 
across domains. 

1 Introduction 

Chinese word segmentation plays a fundamental 
role in Chinese language processing tasks, because 
almost all Chinese language processing tasks are 
assumed to work with segmented input. After in-
tensive research for more than twenty years, the 

performance of Chinese segmentation made con-
siderable progress. The bakeoff series hosted by 
the Chinese Information Processing Society (CIPS) 
and ACL SIGHAN shows that an F measure of 
0.95 can be achieved in the closed test tracks, in 
which only specified training materials can be used 
in learning segmentation models1.    

Traditional word segmentation approaches are 
lexicon-driven (Liang, 1987) and assume prede-
fined lexicons of Chinese words are available. 
Segmentation results are obtained by finding a best 
match between the input texts and the lexicons. 
Such lexicon-driven approaches can be rule-based, 
statistic-based or in some hybrid form. 

Xue (2003) proposed a novel way of segmenting 
Chinese texts, and it views the Chinese word seg-
mentation task as a character tagging task. Accord-
ing to Xue’s approach, no predefined Chinese 
lexicons are required; a tagging model is learned 
by using manually segmented training texts. The 
model is then used to assign each character a tag 
indicating the position of this character within a 
word. Xue’s approach has become the most popu-
lar approach to Chinese word segmentation for its 
high performance and unified way of dealing with 
out-of-vocabulary (OOV) issues. Most segmenta-
tion work began to follow this approach later. Ma-
jor improvements in this line of research include: 1) 
More sophisticated learning models were intro-
duced other than the maximum entropy model that 
Xue used, such as the conditional random fields 
(CRFs) model which fits the sequence tagging 
tasks much better than the maximum entropy 
model (Tseng et al.,2005). 2) More tags were in-

                                                           
1 http://www.sighan.org/bakeoff2005/data/results.php.htm 
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troduced, as Zhao et al. (2006) shows 6 tags are 
superior to 4 tags. 3) New feature templates were 
added, such as the templates that were used in rep-
resenting numbers, dates, letters etc. (Low et al., 
2005)  

Character tagging approaches require manually 
segmented training texts to learn models usually in 
a supervised way. The performance is always eva-
luated on a test set from the same domain as the 
training set. Such evaluation does not reveal its 
ability to deal with domain variation. Actually, 
when test set is from other domains than the do-
main where training set is from, the learned model 
normally underperforms substantially.   

One of the main reasons of such performance 
degradation lies in the model’s ability to cope with 
OOV words. Actually, even when the test set has 
the same domain properties as the training set, the 
ability of the model to recall OOV words is still the 
main obstacle to achieve better performance of 
segmentation. However, when the test set is differ-
ent with the training set in nature, the OOV recall 
normally drops much more substantially, and be-
comes much lower. 

Apart from the supervised approach, Sun et al. 
(2004) proposed an unsupervised way of Chinese 
word segmentation. The approach did not use any 
predefined lexicons or segmented texts. A statistic 
named as md, combining the mutual information 
and t score, was proposed to measure whether a 
string of characters forms word. The unsupervised 
nature of the approach means good ability to deal 
with domain variation. However, the approach did 
not show a segmentation performance as good as 
that of the supervised approach. The approach was 
not evaluated in F measurement, but in accuracy of 
word break prediction. As their experiment showed, 
the approach successfully predicted 85.88% of the 
word breaks, which is much lower than that of the 
character tagging approach if in terms of F meas-
urement.   

Aiming at preventing the OOV recall from 
dropping sharply and still maintaining an overall 
performance as good as that of the state-of-art 
segmenter when working with heterogeneous test 
sets, we propose in this paper to use a semi-
supervised way for Chinese word segmentation 
task. Specifically, we propose to use χ2 statistics 
together with bootstrapping strategies to build Chi-
nese word segmentation model. The experiment 
shows the approach can effectively promote the 

OOV recall and lead to a higher overall perform-
ance. In addition, instead of using the popular CRF 
model, we use another sequence labeling model in 
this paper --- the hidden Markov Support Vector 
Machines (SVM-HMM) Model (Altun et al., 2003). 
We just wish to show that there are alternatives 
other than CRF model to use and comparable re-
sults can be obtained. 

Our work differs from the previous supervised 
work in its ability to cope with domain variation 
and differs from the previous unsupervised work in 
its much better overall segmentation performance.   

The rest of the paper is organized as follows: In 
section 2, we give a brief introduction to the hid-
den Markov Support Vector Machines, on which 
we rely to build the segmentation model. In section 
3, we list the segmentation tags and the basic fea-
ture templates we used in the paper. In section 4 
we show how χ2 statistics can be encoded as fea-
tures to promote OOV recall. In section 5 we give 
the bootstrapping strategy. In section 6, we report 
the experiments and in section 7 we present our 
conclusions. 

2 The hidden Markov support vector ma-
chines  

The hidden Markov support vector machine 
(SVM-HMM) is actually a special case of the 
structural support vector machines proposed by 
Tsochantaridis et al. (2005). It is a powerful model 
to solve the structure predication problem. It dif-
fers from support vector machine in its ability to 
model complex structured problems and shares the 
max-margin training principles with support vector 
machines. The hidden Markov support vector ma-
chine model is inspired by the hidden Markov 
model and is an instance of structural support vec-
tor machine dedicated to solve sequence labeling 
learning, a problem that CRF model is assumed to 
solve. In the SVM-HMM model, the sequence la-
beling problem is modeled by learning a discrimi-
nant function F: X×Y→R over the pairs of input 
sequence and label sequence, thus the prediction of 
the label sequence can be derived by maximizing F 
over all possible label sequences for a specific giv-
en input sequence x. 

);,(maxarg);( wyxwx
y
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In the structural SVMs, F is assumed to be linear 
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in some combined feature representation of the 
input sequence and the label sequence ψ(x,y), i.e. 

),(,);,( yxψwwyx =F  
Where w denotes a parameter vector, for the SVM-
HMMs, the discriminant function is defined as fol-
lows. 
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Here )ˆ,( www =  , Φ(xt) is the vector of features of 
the input sequence. δ (yt, y) is the Kronecker func-
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The first term of the discriminant function is used 
to model the interactions between input features 
and labels, and the second term is used to model 
interactions between nearby labels. η > 0 is a scal-
ing factor which balances the two types of contri-
butions. (Tsochantaridis et al., 2005) 

Like SVMs, parameter vector w is learned with 
the maximum margin principle by using training 
data. To control the complexity of the training 
problem, the cutting plane method is used to solve 
the resulted constrained optimization problem. 
Thus only a small subset of constraints from the 
full-sized optimization is checked to ensure a suf-
ficiently accurate solution. Roughly speaking, 
SVM-HMM differs from CRF in its principle of 
training, and both of them could be used to deal 
with sequence labeling problem like Chinese word 
segmentation. 

3 The tag set and the basic feature tem-
plates 

As in most other work on segmentation, we use a 
4-tag tagset, that is S for the character being a sin-
gle-character-word by itself, B for the character 
beginning a multi-character-word, E for the char-
acter ending a multi-character-word and M for a 
character occurring in the middle of a multi-
character-word. 

We use the following feature templates, as are 
widely used in most segmentation work: 

(a) Cn (n = -2, -1, 0, 1, 2) 
(b) CnCn+1 (n = -2, -1, 0, 1) 
(c) C-1C+1  

Here C refers to a character; n refers to the position 
index relative to the current character. By setting 
the above feature templates, we actually set a 5-
character window to extract features, the current 
character, 2 characters to its left and 2 characters to 
its right.   

In addition, we also use the following feature 
templates to extract features representing the char-
acter type: 

(d) Tn (n = -2, -1, 0, 1, 2) 
(e) TnTn+1 (n = -2, -1, 0, 1) 
(f) T-1T+1 

Here T refers to a character type, and its value can 
be digit, letter, punctuation or Chinese character. 
The type feature is important, for there are two 
versions of Arabic numbers, Latin alphabets and 
punctuations in the Chinese texts. This is because 
all three kinds of characters have their internal 
codes defined in ASCII table, but the Chinese en-
coding standard like GB18030 assigns them with 
other double-byte codes. This causes problems for 
model learning as we encounter in the experiment. 
The training data we adopt in this paper only use 
numbers, letters and punctuation of double-byte 
codes. But the test data use both the double-byte 
and single-byte codes. If the type features are not 
introduced, most of the numbers, letters and punc-
tuation of single-byte can not be segmented cor-
rectly. The type feature establishes links between 
the two versions of codes, for both versions of a 
digit, a letter or punctuation share the same type 
feature value. Actually, the encoding problem 
could be alternatively solved by a character nor-
malization process. That is the mapping all single-
byte versions of digits, letters and punctuations in 
the test sets into their double-byte counterparts as 
in the training set. We use the type features here to 
avoid any changes to the test sets. 

4 The χ2 statistic features 

χ2 test is one of hypothesis test methods, which can 
be used to test if two events co-occur just by 
chance or not. A lower χ2 score normally means 
the two co-occurred events are independent; oth-
erwise they are dependent on each other. χ2 score 
is widely used in computational linguistics to ex-
tract collocations or terminologies. Unsupervised 
segmentation approach also mainly relies on mu-
tual information and t-score to identify words in 
Chinese texts (Sun et al., 2004). Inspired by their 
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work, we believe that χ2 statistics could also be 
incorporated into supervised segmentation models 
to deal with the OOV issue. The idea is very 
straightforward. If two continuous characters in the 
test set have a higher χ2 score, it is highly likely 
they form a word or are part of a word even they 
are not seen in the training set.  

The χ2 score of a character bigram (i.e. two con-
tinuous characters in the text) C1C2 can be com-
puted by the following formula. 
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Here,  
a refers to all counts of bigram C1C2 in the text; 
b refers to all counts of bigrams that C1 oc-curs 

but C2 does not; 
c refers to all counts of bigrams that C1 does not 

occur but C2 occurs; 
d refers to all counts of bigrams that both C1 and 

C2 do not occur.  
n refers to total counts of all bigrams in the text, 

apparently, n= a + b + c + d. 
We do the χ2 statistics computation to the train-

ing set and the test set respectively. To make the χ2 
statistics from the training set and test set compa-
rable, we normalize the χ2 scores by the following 
formula.  

⎥
⎦

⎥
⎢
⎣

⎢
×

−
−

= 10),(),( 2
min

2
max

2
min21

2

21
2

χχ
χχχ CCCCnorm

 

To make the learned model sensitive to the χ2 sta-
tistics, we then add two more feature templates as 
follows: 

(g) XnXn+1 (n = -2, -1, 0, 1) 
(h) X-1X+1 

The value of the feature XnXn+1 is the normalized χ2 
score of the bigram CnCn+1. Note we also compute 
the normalized χ2 score to bigram C-1C+1, which is 
to measure the association strength of two inter-
vened characters. 

By using the χ2 features, statistics from the test 
set are introduced into segmentation model, and it 
makes the resulted model more aware of the test 
set and therefore more robust to test domains other 
than training domains. 

Because the normalized χ2 score is one of 11 
possible values 0, 1, 2, …, 10,  templates (g)-(h) 
generate 55 features in total.   

All features generated from the templates (a)-(f) 
together with the 55 χ2 features form the whole 

feature set. The training set and test set are then 
converted into their feature representations. The 
feature representation of the training set is then 
used to learn the model and the feature representa-
tion of the test set is then used for segmentation 
and evaluated by comparison with gold standard 
segmentation. The whole process is shown in Fig-
ure-1. 
 

 
Figure-1. The workflow 

 
By this way, an OOV word in the test set might be 
found by the segmentation model if the bigrams 
extracted from this word take higher χ2 scores. 

5 the bootstrapping strategy 

The addition of the χ2 features can be also prob-
lematic as we will see in the experiments. Even 
though it could promote the OOV recall signifi-
cantly, it also leads to drops in in-vocabulary (IV) 
recall.  

We are now in a dilemma. If we use χ2 features, 
we get high OOV recall but a lower IV recall. If 
we do not use the χ2 feature, we get a lower OOV 
recall but a high IV recall. To keep the IV recall 
from falling, we propose to use a bootstrapping 
method. Specifically, we choose to use both mod-
els with χ2 features and without χ2 features. We 
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train two models firstly, one is χ2-based and the 
other not. Then we do the segmentation for the test 
set with the two models simultaneously. Two seg-
mentation results can be obtained. One result is 
produced by the χ2-based model and has a high 
OOV recall. The other result is produced by the 
non- χ2-based model and has a higher IV recall. 
Then we compare the two results and extract all 
sentences that have equal segmentations with the 
two models as the intersection of the two results. It 
is not difficult to understand that the intersection of 
the two results has both high OOV recall and high 
IV recall, if we also extract these sentences from 
the gold standard segmentation and perform 
evaluations. We then put the intersection results 
into the training set to form a new training set. By 
this new training set, we train again to get two new 
models, one χ2-based and the other not. Then the 
two new models are used to segment the test set. 
Then we do again intersection to the two results 
and their common parts are again put into the train-
ing set. We repeat this process until a plausible 
result is obtained. 

The whole process can be informally described 
as the following algorithm: 

1. let training set T to be the original training set; 
2. for I = 0 to K 

1) train the χ2-based model by using training 
set T; 

2) train the non- χ2-based model by using 
training set T; 

3) do segmentation by using the χ2-based 
model; 

4) do segmentation by using the non- χ2-
based model; 

5) do intersection to the two segmentation re-
sults 

6) put the intersection results into the training 
set and get the enlarged training set T 

3. train the non- χ2-based model using training 
set T, and take the output of this model as the 
final output; 

4. end. 

6 The experiments and discussions 

6.1  On the training set and test set 

For training the segmentation model, we use the 
training data provided by Peking University for 

bakeoff 20052 . The training set has about 1.1 mil-
lion words in total. The PKU training data is actu-
ally consisted of all texts of the People’s Daily 
newspaper in January of 1998. So the training data 
represents very formal written Chinese and mainly 
are news articles. A characteristic of the PKU data 
is that all Arabic numbers, Latin letters and punc-
tuations in the data are all double-byte GB codes; 
there are no single-byte ASCII versions of these 
characters in the PKU training data. 

We use three different test sets. The first one 
(denoted by A) is all texts of the People’s Daily of 
February in 19983 . Its size and the genre of the 
texts are very similar to the training data. We use 
this test set to show how well the SVM-HMM can 
be used to model segmentation problem and the 
performance that a segmentation model achieves 
when applied to the texts from the same domain. 

The second and the third test sets are set to test 
how well the segmentation model can apply to 
texts from other domains. The second test set (de-
noted by B) is from the literature domain and the 
third (denoted by C) from computer domain. We 
segmented them manually according to the guide-
lines of Peking University4 to use as gold standard 
segmentations. The genres of the two test set are 
very different from the training set. There are even 
typos in the texts. In the computer test set, there are 
many numbers and English words. And most of the 
numbers and letters are single-byte ASCII codes.   

The sizes and the OOV rates of the three test 
sets are shown in Table-1. 
 

Table-1. Test sets statistics 
test set domain word count OOV rate
A Newspaper 1,152,084 0.036 
B Literature 72,438 0.058 
C Computer 69,671 0.159 
 

For all the experiments, we use the same evalua-
tion measure as most of previous work on segmen-
tation, that is the Recall(R), Precision(P), F 
measure (F=2PR/(P+R)), IV word recall and OOV 
word recall. In addition, we also evaluate all the 
test results with sentence accuracies (SA), which is 
the proportion of the correctly segmented sen-
tences in the test set.  

                                                           
2 can be download from http://www.sighan.org/bakeoff2005/ 
3 The corpus can be licensed from Peking University. 
4 See http:// www.sighan.org/bakeoff2005/ 
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6.1 SVM-HMM vs. CRF 

To show how well the SVM-HMM model can be 
used to model segmentation tasks and its perform-
ance compared to that of CRF model, we use the 
training set to train two models, one with SVM-
HMM and the other with CRF.  

The implementations of SVM-HMM and CRF 
model we use in the paper can be found and down-
loaded respectively via Internet. 5 

To make the results comparable, we use the 
same feature templates, that is feature template (a)-
(c). However, SVM-HMM takes interactions be-
tween nearby labels into the model, which means 
there is a label bigram feature template implicitly 
used in the SVM-HMM. So when training the CRF 
model we also use explicitly the label bigram fea-

                                                           
5 http://www.cs.cornell.edu/People/tj/svm_light/ 
svm_hmm.html, and http://sourceforge.net/projects/crfpp/ 

ture template to model interactions between nearby 
labels6.   

For the SVM-HMM model, we set ε to 0.25. 
This is a parameter to control the accuracy of the 
solution of the optimization problem. We set C to 
half of the number of the sentences in the training 
data according to our understanding to the models. 
The C parameter is set to trade off the margin size 
and training error. For CRF model, we use all pa-
rameters to their default value.  We do not do pa-
rameter optimizations to both models with respect 
their performances.   

We use test set A to test both models. For both 
models, we use the same cutoff frequency to fea-
ture extraction. Only those features that are seen 
more than three times in texts are actually used in 
the models. The performances of the two models 
are shown in Table-2, which shows SVM-HMM 
can be used to model Chinese segmentation tasks 

                                                           
6 specified by the B template as the toolkit requires.  

Table-2. Performance of the SVM-HMM  and CRF model 
Models P R F Riv Roov SA 

SVM-HMM 0.9566 0.9528 0.9547 0.9620 0.7041 0.5749 
CRF 0.9541 0.9489 0.9515 0.9570 0.7185 0.5570 

 
Table-3. Performance of the basic model 

test set P R F Riv Roov SA 
A 0.9566 0.9528 0.9547 0.9620 0.7041 0.5749 
B 0.9135 0.9098 0.9116 0.9295 0.5916 0.4698 
C 0.7561 0.8394 0.7956 0.9325 0.3487 0.2530 

 
Table-4. Performance of the type sensitive model 

test set P R F Riv Roov SA 
A 0.9576 0.9522↓ 0.9549 0.9610↓ 0.7161 0.5766 
B 0.9176 0.9095↓ 0.9136 0.9273↓ 0.6228 0.4832 
C 0.9141 0.8975 0.9057 0.9381 0.6839 0.4287 

 
Table-5. Performance of the χ2-based model 

test set P R F Riv Roov SA 
A 0.9585 0.9518↓ 0.9552 0.9602↓ 0.7274 0.5736↓ 
B 0.9211 0.8971↓ 0.9090↓ 0.9104↓ 0.6825 0.4648↓ 
C 0.9180 0.8895↓ 0.9035↓ 0.9209↓ 0.7239 0.4204↓ 

 
Table-6. Performance of the bootstrapping model 

test set P R F Riv Roov SA 
B 0.9260 0.9183 0.9221 0.9329 0.6830 0.5120 
C 0.9113↓ 0.9268 0.9190 0.9482 0.8138 0.5039 

 

794



and comparable results can be achieved like CRF 
model.   

6.2 The baseline model 

To test how well the segmentation model applies to 
other domain texts, we only use the SVM-HMM 
model with the same parameters as in section 6.1 
and the same cutoff frequency.  

For a baseline model, we only use feature tem-
plates (a)-(c), the performances of the basic model 
on the three test sets are shown in Table-3. 

For the test set A, which is from the same do-
main as the training data, an F-score 0.95 is 
achieved. 

For test set B and C, both are from different do-
mains with the training data, the F-scores drop sig-
nificantly. Especially the OOV recalls fall 
drastically, which means the model is very sensi-
tive to the domain variation. Even the IV recalls 
fall significantly. This also shows the domain port-
ability of the segmentation model is still an obsta-
cle for the segmentation model to be used in cross-
domain applications.  

6.3 The type features 

As we noted before, there are different encoding 
types for the Arabic numbers, Latin letters and 
punctuations. Especially, test set C is full of single-
byte version of such numbers, letters and punctua-
tions. The introduction of type features may im-
prove performance of the model to the test set. 
Therefore, we use the feature tem-plates (a)-(f) to 
train a type sensitive model with the training data. 
This gives segmentation results shown in table-4. 
(The symbol ↓ means performance drop compared 
with a previous model) 

As we can see, for test set A, the type features 
almost contribute nothing; the F-score has a very 
slight change. The IV recall even has a slight fall 
while the OOV recall rises a little. 

For test set C, the type features bring about very 
significant improvement. The F-score rises from 
0.7956 to 0.9057, and the OOV recall rises from 
0.3487 to 0.6839. Different with the test set A, 
even the IV recall for test set C rises slightly. The 
reason of such a big improvement lies in that there 
are many single-byte digits, letters and punctua-
tions in the texts.    

 Unlike test set C, there are not so many single-
byte characters in test set B. Even though the OOV 

recall does rise significantly, the change in OOV 
recall for test set B is not as much as that for test 
set B. Type features contribute much to cross do-
main texts. 

6.4 The χ2-based model 

Compared with OOV recall for test set A, the OOV 
recall for test set B and C are still lower. To pro-
mote the OOV recall, we use the feature templates 
(a)-(h) to train a χ2-based model with the training 
data. This gives segmentation results shown in ta-
ble-5.   

  As we see from table-5, the introduction of the 
χ2 features does not improve the overall perform-
ance. Only F-score for test set A improves slightly, 
the other two get bad. But the OOV recall for the 
three test sets does improve, especially for test set 
B and C. The IV recalls for the three test sets drop, 
especially for test set B and C. That's why the F 
scores for test B and C drop.  

6.5 Bootstrapping  

To increase the OOV recall and prevent the IV re-
call from falling, we use the bootstrapping strategy 
in section 5. 

We set K = 3 and run the algorithm shown in 
section 5. We just do the bootstrapping to test set B 
and C, because what we are concerned with in this 
paper is to improve the performance of the model 
to different domains. This gives results shown in 
Table-6. As we see in Table-6, almost all evalua-
tion measurements get improved. Not only the 
OOV recall improves significantly, but also the IV 
recall improves compared with the type-sensitive 
model.  

To illustrate how the bootstrapping strategy 
works, we also present the performance of the in-
termediate models on test set C in each pass of the 
bootstrapping in table-7 and table-8. Table-7 is 
results of the intermediate χ2-based models for test 
set C. Table-8 is results of the intermediate non-
 χ2-based models for test set C. Figure-2 illustrates 
changes in OOV recalls of both non- χ2-based 
models and χ2-based models as the bootstrapping 
algorithm advances for test set C. Figure-3 illus-
trates changes in IV re-calls of both non- χ2-based 
models and χ2-based models for test set C. As we 
can see from Figure-2 and Figure-3, the ability of 
non- χ2-based model gets improved to the OOV 
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recall of the χ2-based model as the bootstrapping 
algorithm advances. The abilities to recall IV 
words of both models improve, and even the final 
IV recall of the χ2-based model surpasses the IV 
recall of the type sensitive model shown in Table-3. 
(0.9412 vs. 0.9381). To save the space of the paper, 
we do not list all the intermediate results for test 
set B. We just show the changes in OOV recalls 
and IV recalls as illustrated in Figure-4 and Figure-
5. One can see from Figure-4 and Figure-5, the 
bootstrapping strategy also works for test set B in a 
similar way as it works for test set C.  
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Figure-2 the Changes in OOV recalls for test set C 
as boot-strapping algorithm advances 
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Figure-3 the Changes in IV recalls for test set C as 
boot-strapping algorithm advances 
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Figure-4 the Changes in OOV recalls for test set B 
as boot-strapping algorithm advances 

 
Table-7. Performance of the intermediate χ2-based models for test set C 

I P R F Riv Roov SA 
0 0.9180 0.8895 0.9035 0.9209 0.7239 0.4204
1 0.9084 0.9186 0.9134 0.9387 0.8126 0.4762
2 0.9083 0.9187 0.9134 0.9386 0.8138 0.4822
3 0.9068 0.9208 0.9137 0.9412 0.8131 0.4816

 
Table-8. Performance of the intermediate non-χ2-based models  

for test set C 
I P R F Riv Roov SA 
0 0.9141 0.8975 0.9057 0.9381 0.6839 0.4287
1 0.9070 0.9249 0.9159 0.9478 0.8044 0.4869
2 0.9093 0.9254 0.9173 0.9476 0.8087 0.4947
3 0.9111 0.9266 0.9188 0.9481 0.8133 0.5030
4 0.9113 0.9268 0.9190 0.9482 0.8138 0.5039

 
Table-9. Performance of the intersection of the intermediate χ2-based 

model and non-χ2-based model for test C 
I P R F Riv Roov SA 
0 0.9431 0.9539 0.9485 0.9664 0.8832 0.6783
1 0.9259 0.9434 0.9345 0.9609 0.8491 0.5992
2 0.9178 0.9379 0.9277 0.9582 0.8316 0.5724
3 0.9143 0.9347 0.9244 0.9559 0.8250 0.5616
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Figure-5 the Changes in IV recalls for test set B 
as boot-strapping algorithm advances 

 
As we mentioned in section 5, the intersection of 
the results produced by χ2-based model and non-
 χ2-based model has both high OOV recall and 
high IV recall, that’s the reason why bootstrapping 
strategy works. This can be seen from Table-9. 
However, as the algorithm progresses, both the 
OOV recall and IV recall of the intersection results 
fall, but are still higher than OOV recall and IV 
recall of the final results on the whole test set. 

As we said before, we give also sentence accu-
racies of all segmentation models. With the χ2 sta-
tistics and bootstrapping strategies, the sentence 
accuracy also rises. 2.8% more sentences on test 
set B and 7.5% more sentences on test set C are 
correctly segmented, compared with the type-
sensitive model.     

7 Conclusions 

Sequence labeling models are widely used in Chi-
nese word segmentation recently. High perform-
ance can be achieved when the test data is from the 
same domain as the training data. However, if the 
test data is assumed to be from other domains than 
the domain of the training data, the segmentation 
models always underperform substantially. To en-
hance the portability of the sequence labeling seg-
mentation models to other domains, this paper 
proposes to use χ2 statistics and bootstrapping 
strategy. The experiment shows the approach sig-
nificantly increases both IV recall and OOV recall 
when processing texts from different domains.  

We also show in this paper that hidden Markov 
support vector machine which is also a sequence 
labeling model like CRF can be used to model the 
Chinese word segmentation problem, by which 

high F-score results can be obtained like those of 
CRF model. 

One concern to the bootstrapping approach in 
this paper is that it takes time to work with, which 
will make it difficult to be incorporated into lan-
guage applications that need to responses in real 
time. However, we believe that such an approach 
can be used in offline contexts. For online use in a 
specified domain, one can first train models by 
using the approach in the paper with prepared raw 
texts from the specified domain and then use the 
final non-χ2-based model to segment new texts of 
the same domain, since statistics of the target do-
main are more or less injected into the model by 
the iteration of bootstrapping.    
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Abstract 

We present a novel approach to distributional-
only, fully unsupervised, POS tagging, based on 
an adaptation of the EM algorithm for the esti-
mation of a Gaussian mixture. In this approach, 
which we call Latent-Descriptor Clustering 
(LDC), word types are clustered using a series 
of progressively more informative descriptor 
vectors. These descriptors, which are computed 
from the immediate left and right context of 
each word in the corpus, are updated based on 
the previous state of the cluster assignments. 
The LDC algorithm is simple and intuitive. Us-
ing standard evaluation criteria for unsupervised 
POS tagging, LDC shows a substantial im-
provement in performance over state-of-the-art 
methods, along with a several-fold reduction in 
computational cost. 

1 Introduction 

Part-of-speech (POS) tagging is a fundamental 
natural-language-processing problem, and POS 
tags are used as input to many important appli-
cations. While state-of-the-art supervised POS 
taggers are more than 97% accurate (Toutanova 
et al., 2003; Tsuruoka and Tsujii, 2005), unsu-
pervised POS taggers continue to lag far behind. 
Several authors addressed this gap using limited 

supervision, such as a dictionary of tags for each 
word (Goldwater and Griffiths, 2007; Ravi and 
Knight, 2009), or a list of word prototypes for 
each tag (Haghighi and Klein, 2006). Even in 
light of all these advancements, there is still in-
terest in a completely unsupervised method for 
POS induction for several reasons. First, most 
languages do not have a tag dictionary. Second, 
the preparation of such resources is error-prone. 
Third, while several widely used tag sets do ex-
ist, researchers do not agree upon any specific 
set of tags across languages or even within one 
language. Since tags are used as basic features 
for many important NLP applications (e.g. 
Headden et al. 2008), exploring new, statistically 
motivated, tag sets may also be useful. For these 
reasons, a fully unsupervised induction algo-
rithm has both a practical and a theoretical val-
ue. 

In the past decade, there has been a steady 
improvement on the completely unsupervised 
version of POS induction (Schütze, 1995; Clark, 
2001; Clark, 2003; Johnson, 2007; Gao and 
Johnson, 2008; Graça et al., 2009; Abend et al., 
2010; Lamar et al., 2010; Reichart et al., 2010; 
Berg-Kirkpatrick et al., 2010). Some of these 
methods use morphological cues (Clark, 2001; 
Clark, 2003; Abend et al., 2010; Reichart et al., 
2010; Berg-Kirkpatrick et al., 2010), but all rely 
heavily on distributional information, i.e., bi-
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gram statistics. Two recent papers advocate non-
disambiguating models (Abend et al., 2010; 
Lamar et al., 2010): these assign the same tag to 
all tokens of a word type, rather than attempting 
to disambiguate words in context. Lamar et al. 
(2010) motivate this choice by showing how 
removing the disambiguation ability from a 
state-of-the-art disambiguating model results in 
increasing its accuracy. 

 
In this paper, we present a novel approach to 
non-disambiguating, distributional-only, fully 
unsupervised, POS tagging. As in all non-
disambiguating distributional approaches, the 
goal, loosely stated, is to assign the same tag to 
words whose contexts in the corpus are similar. 
Our approach, which we call Latent-Descriptor 
Clustering, or LDC, is an iterative algorithm, in 
the spirit of the K-means clustering algorithm 
and of the EM algorithm for the estimation of a 
mixture of Gaussians. 

In conventional K-means clustering, one is 
given a collection of N objects described as N 
data points in an r-dimensional Euclidean space, 
and one seeks a clustering that minimizes the 
sum of intra-cluster squared distances, i.e., the 
sum, over all data points, of the squared distance 
between that point and the centroid of its as-
signed cluster. In LDC, we similarly state our 
goal as one of finding a tagging, i.e., cluster as-
signment, A, that minimizes the sum of intra-
cluster squared distances. However, unlike in 
conventional K-means, the N objects to be clus-
tered are themselves described by vectors—in a 
suitable manifold—that depend on the clustering 
A. We call these vectors latent descriptors. 

Specifically, each object to be clustered, i.e., 
each word type w, is described in terms of its 
left-tag context and right-tag context. These con-
text vectors are the counts of the K different tags 
occurring, under tagging A, to the left and right 
of tokens of word type w in the corpus. We nor-
malize each of these context vectors to unit 
length, producing, for each word type w, two 
points LA(w) and RA(w) on the (K–1)-
dimensional unit sphere. The latent descriptor 
for w consists of the pair (LA(w), RA(w))—more 
details in Section 2. 

A straightforward approach to this latent-
descriptor K-means problem is to adapt the clas-
sical iterative K-means algorithm so as to handle 

the latent descriptors. Specifically, in each itera-
tion, given the assignment A obtained from the 
previous iteration, one first computes the latent 
descriptors for all word types as defined above, 
and then proceeds in the usual way to update 
cluster centroids and to find a new assignment A 
to be used in the next iteration. 

For reasons to be discussed in Section 5, we 
instead prefer a soft-assignment strategy, in-
spired from the EM algorithm for the estimation 
of a mixture of Gaussians. Thus, rather than the 
hard assignment A, we use a soft-assignment 
matrix P. Pwk, interpreted as the probability of 
assigning word w to cluster k, is, essentially, 
proportional to exp{– dwk

2/2σ2}, where dwk is the 
distance between the latent descriptor for w and 
the centroid, i.e., Gaussian mean, for k. Unlike 
the Gaussian-mixture model however, we use 
the same mixture coefficient and the same Gaus-
sian width for all k. Further, we let the Gaussian 
width σdecrease gradually during the iterative 
process. As is well-known, the EM algorithm for 
Gaussian mixtures reduces in the limit of small σ 
to the simpler K-means clustering algorithm. As 
a result, the last few iterations of LDC effec-
tively implement the hard-assignment K-means-
style algorithm outlined in the previous para-
graph. The soft assignment used earlier in the 
process lends robustness to the algorithm. 
 
The LDC approach is shown to yield substantial 
improvement over state-of-the-art methods for 
the problem of fully unsupervised, distributional 
only, POS tagging. The algorithm is conceptu-
ally simple and easy to implement, requiring less 
than 30 lines of Matlab code. It runs in a few 
seconds of computation time, as opposed to 
hours or days for the training of HMMs. 

2 Notations and Statement of Problem 

The LDC algorithm is best understood in the 
context of the latent-descriptor K-means optimi-
zation problem. In this section, we set up our 
notations and define this problem in detail. For 
simplicity, induced tags are henceforth referred 
to as labels, while tags will be reserved for the 
gold-standard tags, to be used later for evalua-
tion. 

Let W denote the set of word types w1,…,wN, 
and let T denote the set of labels, i.e., induced 
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tags. The sizes of these sets are |W| = N and |T| = 
K. In the experiments presented in Section 4, N 
is 43,766 and K is either 50 or 17. For any word 
token t in the corpus, we denote the word type of 
t by w(t). The frequency of word type w in the 

corpus is denoted f(w); thus, w f(w) = 1. 
For a word type w1, the left-word context of 

w1, L(w1), is defined as the N-dimensional vector 
whose n-th component is the number of bigrams, 
i.e., pairs of consecutive tokens (ti–1, ti) in the 
corpus, such that w(ti) = w1 and w(ti–1) = n. Simi-
larly, we define the right-word context of w1, 
R(w1), as the N-dimensional vector whose n-th 
component is the number of bigrams (ti, ti+1) 
such that w(ti) = w1 and w(ti+1) = n. We let L 
(resp. R) be the N×N matrix whose w-th row is 
L(w) (resp. R(w)). 
 
SK–1 is the unit sphere in the K-dimensional 

Euclidean space ℝK. For any xℝK, we denote 
by (x) the projection of x on SK–1, i.e., (x) = 
x/||x||. 
 
A labeling is a map A: W  T. Given a labeling 

A, we define )(
~

1wLA , the left-label context of 
word type w1, as the K-dimensional vector 
whose k-th component is the number of bigrams 
(ti–1, ti) in the corpus such that w(ti) = w1 and 
A(w(ti–1)) = k. We define the left descriptor of 
word type w as: 
 

))(
~

()( wLwL AA  . 
 

We similarly define the right-label context of w1, 

)(
~

1wRA , as the K-dimensional vector whose k-
th component is the number of bigrams (ti, ti+1) 
such that w(ti) = w1 and A(w(ti+1)) = k, and we 
define the right descriptor of word type w as: 
 

))(
~

()( wRwR AA  . 
 

In short, any labeling A defines two maps, LA 
and RA, each from W to SK–1. 
 
For any function g(w) defined on W, g(w) will 
be used to denote the average of g(w) weighted 
by the frequency of word type w in the corpus: 

g(w) w f(w)g(w). 

For any label k, we define: 
 

CL(k) = ( LA(w): A(w) = k ). 
 
Thus, CL(k) is the projection on SK–1 of the 
weighted average of the left descriptors of the 
word types labeled k. We sometimes refer to 
CL(k) as the left centroid of cluster k. Note that 
CL(k) depends on A in two ways, first in that the 
average is taken on words w such that A(w) = k, 
and second through the global dependency of LA 
on A. We similarly define the right centroids: 

 
CR(k)= (RA(w): A(w) = k ). 

 
Informally, we seek a labeling A such that, for 
any two word types w1 and w2 in W, w1 and w2 

are labeled the same if and only if LA(w1) and 
LA(w2) are close to each other on SK–1 and so are 
RA(w1) and RA(w2). Formally, our goal is to find 
a labeling A that minimizes the objective func-
tion: 
 
F(A)=||LA(w)–CL(A(w))||2+||RA(w)–CR(A(w))||2. 
 
Note that, just as in conventional K-means clus-
tering, F(A) is the sum of the intra-cluster 
squared distances. However, unlike conventional 
K-means clustering, the descriptors of the ob-
jects to be clustered depend themselves on the 
clustering. We accordingly refer to LA and RA as 
latent descriptors, and to the method described 
in the next section as Latent-Descriptor Clus-
tering, or LDC.  
 
Note, finally, that we do not seek the global 
minimum of F(A). This global minimum, 0, is 
obtained by the trivial assignment that maps all 
word types to a unique label. Instead, we seek a 
minimum under the constraint that the labeling 
be non-trivial. As we shall see, this constraint 
need not be imposed explicitly: the iterative 
LDC algorithm, when suitably initialized and 
parameterized, converges to non-trivial local 
minima of F(A)—and these are shown to pro-
vide excellent taggers.  

3 Methods 

Recall that a mixture of Gaussians is a genera-
tive model for a random variable taking values 
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in a Euclidean space ℝr. With K Gaussians, the 
model is parameterized by: 
 

 K mixture parameters, i.e., K non-
negative numbers adding up to 1; 

 K means, i.e., K points µ1,…,µK in ℝr; 
 K variance-covariance d×d matrices. 

 
The collection of all parameters defining the 
model is denoted by . EM is an iterative algo-
rithm used to find a (local) maximizer of the 
likelihood of N observed data points x1,…,xN  

ℝr. Each iteration of the algorithm includes an E 
phase and an M phase. The E phase consists of 
computing, based on the current , a probabilis-
tic assignment of each of the N observations to 
the K Gaussian distributions. These probabilistic 
assignments form an NK stochastic matrix P, 
i.e., a matrix of non-negative numbers in which 
each row sums to 1. The M phase consists of 
updating the model parameters θ, based on the 
current assignments P. For more details, see, 
e.g., Bishop (2006). 
 
The structure of the LDC algorithm is very simi-
lar to that of the EM algorithm. Thus, each itera-
tion of LDC consists of an E phase and an M 
phase. As observations are replaced by latent 
descriptors, an iteration of LDC is best viewed 
as starting with the M phase. The M phase first 
starts by building a pair of latent-descriptor ma-
trices LP and RP, from the soft assignments ob-
tained in the previous iteration. Note that these 
descriptors are now indexed by P, the matrix of 
probabilistic assignments, rather than by hard 
assignments A as in the previous section. 

 
LP and RP are obtained by a straightforward ad-
aptation of the definition given in the previous 
section to the case of probabilistic assignments. 
Thus, the latent descriptors consist of the left-
word and right-word contexts (recall that these 
are given by matrices L and R), mapped into 
left-label and right-label contexts through multi-
plication by the assignment matrix P, and scaled 
to unit length: 
 

LP = λ(LP) 
RP = λ(RP). 

 

With these latent descriptors in hand, we pro-
ceed with the M phase of the algorithm as usual. 
Thus, the left mean µL

k for Gaussian k is the 
weighted average of the left latent descriptors 
LP(w), scaled to unit length. The weight used in 
this weighted average is Pwkf(w) (remember 
that f(w) is the frequency of word type w in the 
corpus). Note that the definition of the Gaussian 
mean µL

k parallels the definition of the cluster 
centroid CL(k) given in the previous section; if 
the assignment P happens to be a hard assign-
ment, µL

k is actually identical to CL(k). The right 
Gaussian mean µR

k is computed in a similar 
fashion. As mentioned, we do not estimate any 
mixture coefficients or variance-covariance ma-
trices. 
 
The E phase of the iteration takes the latent de-
scriptors and the Gaussian means, and computes 
a new NK matrix of probabilistic assignments 
P. These new assignments are given by: 
 

}2/]||)(||||)([||exp{
1 222  R

kP
L
kPwk wRwL

Z
P 

 
with Z a normalization constant such that 

k Pwk = 1. σ is a parameter of the model, which, 
as mentioned, is gradually decreased to enforce 
convergence of P to a hard assignment. 
 
The description of the M phase given above 
does not apply to the first iteration, since the M 
phase uses P from the previous iteration. To ini-
tialize the algorithm, i.e., create a set of left and 
right descriptor vectors in the M phase of the 
first iteration, we use the left-word and right-
word contexts L and R. These matrices however 
are of very high dimension (NN), and thus 
sparse and noisy. We therefore reduce their di-
mensionality, using reduced-rank singular-value 
decomposition. This yields two Nr1 matrices, 
L1 and R1. A natural choice for r1 is r1 = K, and 
this was indeed used for K = 17. For K = 50, we 
also use r1 = 17. The left and right descriptors 
for the first iteration are obtained by scaling 
each row of matrices L1 and R1 to unit length. 
The Gaussian centers µL

k and µR
k, k = 1,…,K, are 

set equal to the left and right descriptors of the K 
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most frequent words in the corpus. This com-
pletes the description of the LDC algorithm.1 
 
While this algorithm is intuitive and simple, it 
does not easily lend itself to mathematical 
analysis; indeed there is no a priori guarantee 
that it will behave as desired. Even for the sim-
pler, hard-assignment, K-means-style version of 
LDC outlined in the previous section, there is no 
equivalent to the statement—valid for the con-
ventional K-means algorithm—that each itera-
tion lowers the intra-cluster sum of squared dis-
tances F(A); this is a mere consequence of the 
fact that the descriptors themselves are updated 
on each iteration. The soft-assignment version of 
LDC does not directly attempt to minimize F(A), 
nor can it be viewed as likelihood maximiza-
tion—as is EM for a Gaussian mixture—since 
the use of latent descriptors precludes the defini-
tion of a generative model for the data. This 
theoretical difficulty is compounded by the use 
of a variable σ. 

 
Empirically however, as shown in the next sec-
tion, we find that the LDC algorithm is very well 
behaved. Two simple tools will be used to aid in 
the description of the behavior of LDC. 

The first tool is an objective function G(P) 
that parallels the definition of F(A) for hard as-
signments. For a probabilistic assignment P, we 
define G(P) to be the weighted average, over all 
w and all k, of ||LP(w) – µL

k||
2 + ||RP(w) – µR

k||
2; 

the weight used in this average is Pwkf(w), just 
as in the computation of the Gaussian means. 
Clearly, G is identical to F on any P that hap-
pens to be a hard assignment. Thus, G is actually 
an extension of the objective function F to soft 
assignments. 

The second tool will allow us to compute a 
tagging accuracy for soft assignments. For this 
purpose, we simply create, for any probabilistic 
assignment P, the obvious labeling A = A*(P) 
that maps w to k with highest Pwk. 

4 Results 

In order to evaluate the performance of LDC, we 
apply it to the Wall Street Journal portion of the 

                                                           
                                                          

1 The LDC code, including tagging accuracy evaluation, is 
available at http://www.dam.brown.edu/people/elie/code/. 

Penn Treebank corpus (1,173,766 tokens, all 
lower-case, resulting in N = 43,766 word types). 
We compare the induced labels with two gold-
standard tagsets: 
 

 PTB45, the standard 45-tag PTB tagset. 
When using PTB45 as the gold standard, 
models induce 50 labels, to allow com-
parison with Gao and Johnson (2008) 
and Lamar et al. (2010). 

 
 PTB17, the PTB tagset coarse-grained 

to 17 tags (Smith and Eisner 2005). 
When using PTB17 as the gold standard, 
models induce 17 labels. 

 
In order to compare the labels generated by the 
unsupervised model with the tags of each tagset, 
we use two map-based criteria: 
 

 MTO: many-to-one tagging accuracy, 
i.e., fraction of correctly-tagged tokens 
in the corpus under the so-called many-
to-one mapping, which takes each in-
duced tag to the gold-standard POS tag 
with which it co-occurs most frequently. 
This is the most prevalent metric in use 
for unsupervised POS tagging, and we 
find it the most reliable of all criteria 
currently in use. Accordingly, the study 
presented here emphasizes the use of 
MTO. 

 
 OTO: best tagging accuracy achievable 

under a so-called one-to-one mapping, 
i.e., a mapping such that at most one in-
duced tag is sent to any POS tag. The 
optimal one-to-one mapping is found 
through the Hungarian algorithm2. 

 
2 Code by Markus Beuhren is available at 
http://www.mathworks.com/matlabcentral/fileexchange/65
43-functions-for-the-rectangular-assignment-problem 
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Figures 1 and 2 show the behavior of the LDC 
algorithm for K = 17 and K = 50 respectively. 
From the G curves as well as from the MTO 
scoring curves (using the labeling A*(P) defined 
at the end of Section 3), it is clear that the algo-
rithm converges. The figures show only the first 
15 iterations, as little change is observed after 
that. The schedule of the σ parameter was given 
the simple form (t) = 1exp{–c(t–1)}, t = 
1,2,…, and the parameters 1 and c were ad-
justed so as to get the best MTO accuracy. With 
the -schedules used in these experiments, P 
typically converges to a hard assignment in 
about 45 iterations,  being then 10–5. 

Figure 1: Convergence of LDC with K = 17. Bottom 
curve: σ -schedule, i.e., sequence of Gaussian widths 
employed. Middle curve: Objective function G(P) 
(see Section 3). Top curve: Many-to-one tagging 
accuracy of labeling A*(P), evaluated against 
PTB17. 

While the objective function G(P) mostly de-
creases, it does show a hump for K = 50 around 
iteration 9. This may be due to the use of latent 
descriptors, or of a variable , or both. The 
MTO score sometimes decreases by a small 
fraction of a percent, after having reached its 
peak around the 15th iteration. 

Note that we start  at 0.4 for K = 17, and at 
0.5 for K = 50. Although we chose two slightly 
different σ schedules for the two tagsets in order 
to achieve optimal performance on each tagset, 
an identical sequence of σ can be used for both 
with only a 1% drop in PTB17 score. 

Figure 2: Same as Figure 1 but with K = 50. Top curve 
shows the MTO accuracy of the labeling evaluated 
against PTB45. 

 
As the width of the Gaussians narrows, each 
vector is steadily pushed toward a single choice 
of cluster. This forced choice, in turn, produces 
more coherent descriptor vectors for all word 
types, and yields a steady increase in tagging 
accuracy. 
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Table 1 compares the tagging accuracy of LDC 
with several recent models of Gao and Johnson 
(2008) and Lamar et al. (2010). 

The LDC results shown in the top half of the 
table, which uses the MTO criterion, were ob-
tained with the same -schedules as used in Fig-
ures 1 and 2. Note that the LDC algorithm is 
deterministic. However, the randomness in the 
sparse-matrix implementation of reduced-rank 
SVD used in the initialization step causes a 
small variability in performance (the standard 
deviation of the MTO score is 0.0004 for PTB17 
and 0.003 for PTB45). The LDC results reported 
are averages over 20 runs. Each run was halted 
at iteration 15, and the score reported uses the 
labeling A*(P) defined at the end of Section 3. 

The LDC results shown in the bottom half of 
the table, which uses the OTO criterion, were 
obtained with a variant of the LDC algorithm, in 
which the M phase estimates not only the Gaus-
sian means but also the mixture coefficients. 
Also, different -schedules were used,3 

For both PTB17 and PTB45, and under both 
criteria, LDC's performance nearly matches or 
exceeds (often by a large margin) the results 
achieved by the other models.  We find the large 

                                                           
3 All details are included in the code available at 
http://www.dam.brown.edu/people/elie/code/. 

increase achieved by LDC in the MTO perform-
ance under the PTB45 tagset particularly com-
pelling. It should be noted that Abend et al. 
(2010) report 71.6% MTO accuracy for PTB45, 
but they treat all punctuation tags differently in 
their evaluation and therefore these results can-
not be directly compared. Berg-Kirkpatrick et al. 
(2010) report 75.5% MTO accuracy for PTB45 
by incorporating other features such as mor-
phology; Table 1 is limited to distributional-only 
methods. 

 

 Criterion  Model  PTB17 PTB45 

MTO LDC  0.751 0.708 
  SVD2 0.740 0.658 
  HMM-EM 0.647 0.621 
  HMM-VB 0.637 0.605 

  HMM-GS 0.674 0.660 

OTO LDC 0.593 0.483 
 SVD2 0.541 0.473 
  HMM-EM 0.431 0.405 
  HMM-VB 0.514 0.461 

  HMM-GS 0.466 0.499 
Table 1. Tagging accuracy comparison between 
several models for two tagsets and two mapping 
criteria.  Note that LDC significantly outperforms 
all HMMs (Gao and Johnson, 2008) in every case 
except PTB45 under the OTO mapping.  LDC also 
outperforms SVD2 (Lamar et al., 2010) in all 
cases. 

 

 

Figure 3:  Mislabeled words per tag, using the 
PTB17 tagset. Black bars indicate mislabeled words 
when 17 clusters are used.  Gray bars indicate words 
that continue to be mislabeled even when every word 
type is free to choose its own label, as if each type 
were in its own cluster—which defines the theoreti-
cally best possible non-disambiguating model. Top: 
fraction of the corpus mislabeled, broken down by 
gold tags. Bottom: fraction of tokens of each tag that 
are mislabeled.  Many of the infrequent tags are 
100% mislabeled because no induced label is 
mapped to these tags under MTO.  

Figure 3 demonstrates the mistakes made by 
LDC under the MTO mapping.  From the top 
graph, it is clear that the majority of the missed 
tokens are open-class words – most notably ad-
jectives and adverbs.  Over 8% of the tokens in 
the corpus are mislabeled adjectives – roughly 
one-third of all total mislabeled tokens (25.8%).  
Furthermore, the corresponding bar in the bot-
tom graph indicates that over half of the adjec-
tives are labeled incorrectly.  Similarly, nearly 
4% of the mislabeled tokens are adverbs, but 
every adverb in the corpus is mislabeled because 
no label is mapped to this tag – a common oc-
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currence under MTO, shared by seven of the 
seventeen tags. 

 
Figure 4: The confusion matrix for LDC's labeling under PTB17.  The area of a black square indicates the number 
of tokens in each element of the confusion matrix.  The diamonds indicate the induced tag under the MTO map-
ping.  Several labels are mapped to N (Noun), and one of these labels causes appreciable confusion between nouns 
and adjectives.  Because multiple labels are dedicated to a single tag (N, V and PREP), several tags (in this case 7) 
are left with no label. 

 
To further illuminate the errors made by LDC, 
we construct the confusion matrix (figure 4).  
Element (i,j) of this matrix stores the fraction of 
all tokens of POS tag i that are given label j by 
the model.  In a perfect labeling, exactly one 
element of each row and each column would be 
non-zero.  As illustrated in figure 4, the confu-
sion matrices produced by LDC are far from 
perfect.  LDC consistently splits the Nouns into 
several labels and often confuses Nouns and Ad-
jectives under a single label.  These types of 
mistakes have been observed as well in models 
that use supervision (Haghighi and Klein, 2006).  
 
 
 

5 Discussion 

When devising a model for unsupervised POS 
induction, one challenge is to choose a model of 
adequate complexity, this choice being related to 
the bias-variance dilemma ubiquitous in statisti-
cal estimation problems. While large datasets are 
available, they are typically not large enough to 
allow efficient unsupervised learnability in mod-
els that are powerful enough to capture complex 
features of natural languages. Ambiguity is one 
of these features. Here we propose a new ap-
proach to this set of issues: start with a model 
that explicitly entertains ambiguity, and gradu-
ally constrain it so that it eventually converges 
to an unambiguous tagger.  

Thus, although the algorithm uses probabilis-
tic assignments, of Gaussian-mixture type, the 
goal is the construction of hard assignments. By 
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requiring the Gaussians to be isotropic with uni-
form width and by allowing that width to shrink 
to zero, the algorithm forces the soft assign-
ments to converge to a set of hard assignments. 
Based on its performance, this simulated-
annealing-like approach appears to provide a 
good compromise in the choice of model com-
plexity. 
 
LDC bears some similarities with the algorithm 
of Ney, Essen and Kneser (1994), further im-
plemented, with extensions, by Clark (2003). 
Both models use an iterative approach to mini-
mize an objective function, and both initialize 
with frequent words. However, the model of 
Ney et al. is, in essence, an HMM where each 
word type is constrained to belong to a single 
class (i.e., in HMM terminology, be emitted by a 
single hidden state). Accordingly, the objective 
function is the data likelihood under this con-
strained HMM. This takes into account only the 
rightward transition probabilities. Our approach 
is conceptually rather different from an HMM. It 
is more similar to the approach of Schütze 
(1995) and Lamar et al. (2010), where each 
word type is mapped into a descriptor vector 
derived from its left and right tag contexts. Ac-
cordingly, the objective function is that of the K-
means clustering problem, namely a sum of in-
tra-cluster squared distances. This objective 
function, unlike the likelihood under an HMM, 
takes into account both left and right contexts. It 
also makes use in a crucial way of cluster cen-
troids (or Gaussian means), a notion that has no 
counterpart in the HMM approach. We note that 
LDC achieves much better results (by about 
10%) than a recent implementation of the Ney et 
al. approach (Reichart et al. 2010). 
 
The only parameters in LDC are the two pa-
rameters used to define the σ schedule, and r1 
used in the first iteration. Performance was gen-
erally found to degrade gracefully with changes 
in these parameters away from their optimal val-
ues. When σ was made too large in the first few 
iterations, it was found that the algorithm con-
verges to the trivial minimum of the objective 
function F(A), which maps all word types to a 
unique label (see section 2). An alternative 
would be to estimate the variance for each Gaus-
sian separately, as is usually done in EM for 

Gaussian mixtures. This would not necessarily 
preclude the use of an iteration-dependent scal-
ing factor, which would achieve the goal of 
gradually forcing the tagging to become deter-
ministic. Investigating this and related options is 
left for future work. 
 
Reduced-rank SVD is used in the initialization 
of the descriptor vectors, for the optimization to 
get off the ground. The details of this initializa-
tion step do not seem to be too critical, as wit-
nessed by robustness against many parameter 
changes. For instance, using only the 400 most 
frequent words in the corpus—instead of all 
words—in the construction of the left-word and 
right-word context vectors in iteration 1 causes 
no appreciable change in performance. 
 
The probabilistic-assignment algorithm was 
found to be much more robust against parameter 
changes than the hard-assignment version of 
LDC, which parallels the classical K-means 
clustering algorithm (see Section 1). We ex-
perimented with this hard-assignment latent-
descriptor clustering algorithm (data not shown), 
and found that a number of additional devices 
were necessary in order to make it work prop-
erly. In particular, we found it necessary to use 
reduced-rank SVD on each iteration of the algo-
rithm—as opposed to just the first iteration in 
the version presented here—and to gradually 
increase the rank r. Further, we found it neces-
sary to include only the most frequent words at 
the beginning, and only gradually incorporate 
rare words in the algorithm. Both of these de-
vices require fine tuning. Provided they are in-
deed appropriately tuned, the same level of per-
formance as in the probabilistic-assignment ver-
sion could be achieved. However, as mentioned, 
the behavior is much less robust with hard clus-
tering. 
 
Central to the success of LDC is the dynamic 
interplay between the progressively harder clus-
ter assignments and the updated latent descriptor 
vectors.  We operate under the assumption that if 
all word types were labeled optimally, words 
that share a label should have similar descriptor 
vectors arising from this optimal labeling.  
These similar vectors would continue to be clus-
tered together, producing a stable equilibrium in 
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the dynamic process.  The LDC algorithm dem-
onstrates that, despite starting far from this op-
timal labeling, the alternation between vector 
updates and assignment updates is able to pro-
duce steadily improving clusters, as seen by the 
steady increase of tagging accuracy.   
 
We envision the possibility of extending this 
approach in several ways.  It is a relatively sim-
ple matter to extend the descriptor vectors to 
include context outside the nearest neighbors, 
which may well improve performance. In view 
of the computational efficiency of LDC, which 
runs in under one minute on a desktop PC, the 
added computational burden of working with the 
extended context is not likely to be prohibitive.   
LDC could also be extended to include morpho-
logical or other features, rather than relying ex-
clusively on context.  Again, we would antici-
pate a corresponding increase in accuracy from 
this additional linguistic information.  
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Abstract

We define a probabilistic morphological ana-
lyzer using a data-driven approach for Syriac in
order to facilitate the creation of an annotated
corpus. Syriac is an under-resourced Semitic
language for which there are no available lan-
guage tools such as morphological analyzers.
We introduce novel probabilistic models for
segmentation, dictionary linkage, and morpho-
logical tagging and connect them in a pipeline
to create a probabilistic morphological analyzer
requiring only labeled data. We explore the per-
formance of models with varying amounts of
training data and find that with about 34,500
labeled tokens, we can outperform a reason-
able baseline trained on over 99,000 tokens and
achieve an accuracy of just over 80%. When
trained on all available training data, our joint
model achieves 86.47% accuracy, a 29.7% re-
duction in error rate over the baseline.

1 Introduction

Our objective is to facilitate the annotation of a large
corpus of classical Syriac (referred to simply as “Syr-
iac” throughout the remainder of this work). Syr-
iac is an under-resourced Western Semitic language
of the Christian Near East and a dialect of Aramaic.
It is currently employed almost entirely as a liturgi-
cal language but was a true spoken language up un-
til the eighth century, during which time many pro-
lific authors wrote in Syriac. Even today there are
texts still being composed in or translated into Syr-
iac. By automatically annotating these texts with lin-
guistically useful information, we will facilitate sys-
tematic study by scholars of Syriac, the Near East,
and Eastern Christianity. Furthermore, languages

that are linguistically similar to Syriac (e.g., Arabic
and Hebrew) may benefit from the methodology pre-
sented here.
Our desired annotations include morphological

segmentation, links to dictionary entries, and mor-
phological attributes. Typically, annotations of this
kind are made with the assistance of language tools,
such as morphological analyzers, segmenters, or
part-of-speech (POS) taggers. Such tools do not
exist for Syriac, but some labeled data does exist:
Kiraz (1994) compiled an annotated version of the
Peshitta New Testament (1920) and a concordance
thereof. We aim to replicate this kind of annota-
tion on a much larger scale with more modern tools,
building up from the labeled New Testament data,
our only resource. Motivated by this state of affairs,
our learning and annotation framework requires only
labeled data.
We approach the problem of Syriac morphological

annotation by creating five probabilistic sub-models
that can be trained in a supervised fashion and com-
bined in a joint model of morphological annota-
tion. We introduce novel algorithms for segmenta-
tion, dictionary linkage, and morphological tagging.
We then combine these sub-models into a joint n-
best pipeline. This joint model outperforms a strong,
though naïve, baseline for all amounts of training
data over about 9,900 word tokens.

1.1 Syriac Background
Since Syriac is an abjad, its writing system does
not require vowels. As a dialect of Aramaic, it
is an inflected language with a templatic (non-
concatenative) morphology, based on a system of
triliteral consonantal roots, with prefixes, suffixes,
infixes, and enclitic particles. Syriac is written from
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right to left. For the purposes of this work, all Syr-
iac is transliterated according to the Kiraz (1994)
transliteration1 and is written left-to-right whenever
transliterated; the Syriac appearing in the Serto script
in this paper is shown right-to-left.
Since there is no standardized nomenclature for

the parts of a Syriac word, we define the following
terms to facilitate the definitions of segmentation,
dictionary linkage, and morphological tagging:

• word token - contiguous characters delimited by
whitespace and/or punctuation

• stem - an inflected form of the baseform and
the main part of the word to which prefixes and
suffixes can be attached; the affixes do not in-
flect the stem but include prepositions, object
suffixes, and enclitic pronouns

• baseform - the dictionary citation form; also
known as a lexeme or lemma

• root - the form from which the baseform is de-
rived

To clarify, we will use an example word token
,ŴƄƄƇƊƆܢ LMLCCON, which means “to your (mas-
culine plural) king”. For this word, the stem is ƅƇƉ,
MLC; the baseform is ťƄƇƉ, MLCA “king”; and the
root is ƅƇƉ,MLC. To clarify, note that the word token
(including the stem) can be spoken and written with
vowels as diacritics; however, since the vowels are
not written in common practice and since most text
does not include them, this work omits any indica-
tion of vowels. Furthermore, the stem is an inflected
baseform and does not necessarily form a word on
its own. Also, the (unvocalized) stem and root are
not necessarily identical. In Syriac, the same root
ƅƇƉ, MLC is the foundation for other words such as
promise, counsel, deliberate, reign, queen, kingdom,
and realm.

1.2 Sub-tasks
Segmentation, or tokenization as it is sometimes
called (e.g., Habash and Rambow, 2007), is the pro-
cess of dividing a word token into its prefix(es) (if
any), a stem, and a suffix (if any). For Syriac, each

1According to this transliteration all capital letters including
A ,ܐ) olaph) and O ,ܘ) waw) are consonants. Additionally, the
semi-colon (;), representing ,ܝ) yod), is also a consonant.

word token consists of exactly one stem, from zero
to three prefixes, and zero or one suffix. Each pre-
fix is exactly one character in length. Segmenta-
tion does not include the process of parsing the stem
for its inflectional morphology; that step is handled
separately in subsequent processes described below.
While segmenting a Syriac word, we can handle all
prefixes as a single unit. It is trivial to segment a
prefix cluster into its individual prefixes (one charac-
ter per prefix). Suffixes may be multiple characters
in length and encode the morphological attributes of
the suffix itself (not of the stem); the suffix usually
encodes the object of the stem and has its own gram-
matical attributes, which we list later. As an example
of token segmentation, for the word token ,ŴƄƄƇƊƆܢ
LMLCCON, the prefix is ,ܠ L “to”, the stem is ƅƇƉ,
MLC “king”, and the suffix is ,Ŵƃܢ CON “(masculine
plural) your”.
Dictionary linkage is the process of linking a stem

to its associated baseform and root. In most Syriac
dictionaries, all headwords are either baseforms or
roots, and for a given word these are the only rele-
vant entries in the dictionary. Each Syriac stem is
derived from a baseform, and each baseform is de-
rived from a root. There is ambiguity in this cor-
respondence which can be caused by, among other
things, homographic stems generated from different
roots or even from homographic roots. As such, link-
age may be thought of as two separate processes: (1)
baseform linkage, where the stem is mapped to its
most likely baseform; and (2) root linkage, where
the baseform is mapped to its most likely root. For
our example ,ŴƄƄƇƊƆܢ LMLCCON, baseform linkage
would map stem ƅƇƉ,MLC to baseform ťƄƇƉ,MLCA,
and root linkage would map baseform ťƄƇƉ,MLCA to
root ƅƇƉ, MLC.
Morphological tagging is the process of labeling

each word token with its morphological attributes.
Morphological tagging may be thought of as two
separate tagging tasks: (1) tagging the stem and (2)
tagging the suffix. For Syriac, scholars have defined
for this task a set of morphological attributes con-
sisting of twelve attributes for the stem and four at-
tributes for the suffix. The attributes for the stem
are as follows: grammatical category, verb conju-
gation, aspect, state, number, person, gender, pro-
noun type, demonstrative category, noun type, nu-
meral type, and participle type. The morphological
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Attribute Value
Grammatical Category noun

Verb Conjugation N/A
Aspect N/A
State emphatic

Number singular
Person N/A
Gender masculine

Pronoun Type N/A
Demonstrative Category N/A

Noun Type common
Numeral Type N/A
Participle Type N/A

Table 1: The values for the morphological attributes of
the stem ƅƇƉ, MLC, “king”.

Attribute Value
Gender masculine
Person second
Number plural

Contraction normal suffix

Table 2: The values for the morphological attributes of
the suffix ,Ŵƃܢ CON, “(masculine plural) your”.

attributes for the suffix are gender, person, number,
and contraction. The suffix contraction attribute en-
codes whether the suffix is normal or contracted, a
phonological process involving the attachment of an
enclitic pronoun to a participle. These morphologi-
cal attributes were heavily influenced by those used
by Kiraz (1994), but were streamlined in order to fo-
cus directly on grammatical function. During mor-
phological tagging, each stem is labeled for each of
the stem attributes, and each suffix is labeled for each
of the suffix attributes. For a given grammatical cat-
egory (or POS), only a subset of the morphological
attributes is applicable. For those morphological at-
tributes (both of the stem and of the suffix) that do
not apply, the correct label is “N/A” (not applicable).
Tables 1 and 2 show the correct stem and suffix tags
for the word ,ŴƄƄƇƊƆܢ LMLCCON.
The remainder of the paper will proceed as fol-

lows: Section 3 outlines our approach. In Section 4,
we describe our experimental setup; we present re-
sults in Section 5. Section 6 contrasts previous work

with our approach. Finally, in Section 7 we briefly
conclude and offer directions for future work.

2 The Syromorph Approach

Since lack language tools, we focus on automatically
annotating Syriac text in a data-driven fashion based
on the labeled data we have available. Since seg-
mentation, linkage, and morphological tagging are
not mutually independent tasks, we desire models
for the sub-tasks to influence each other. To accom-
modate these requirements, we use a joint pipeline
model (Finkel et al., 2006). In this section, we will
first discuss this joint pipeline model, which we call
syromorph. We then examine each of the individual
sub-models.

2.1 Joint Pipeline Model

Our approach is to create a joint pipeline model con-
sisting of a segmenter, a baseform linker, a root
linker, a suffix tagger, and a stem tagger. Figure 1
shows the dependencies among the sub-models in
the pipeline for a single word. Each sub-model
(oval) has access to the data and predictions (rect-
angles) indicated by the arrows. For example, for a
given word, the stem tagger has access to the previ-
ously predicted stem, baseform, root, and suffix tag.
The baseform linker has access to the segmentation,
most importantly the stem.
The training of syromorph is straightforward.

Each of the individual sub-models is trained sepa-
rately on the true labeled data. Features are extracted
from the local context in the sentence. The local con-
text consists first of predictions for the entire sen-
tence from earlier sub-tasks (those sub-tasks upon
which the sub-task in question depends). We cre-
ated the dependencies shown in Figure 1 taking into
account the difficulty of the tasks and natural depen-
dencies in the language. In addition to the predic-
tions for the entire sentence from previous sub-tasks,
the local context also includes the previous o tags of
the current sub-task, as the standard order o Markov
model does. For example, when the stem tagger is
being trained on a particular sentence, the local con-
text consists of the words in the sentence, the pre-
dicted segmentation, baseform, root, and suffix tags
for each word in the sentence, and additionally the
labels for the previous o stems. To further elaborate
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Figure 1: The syromorph model. Each rectangle is an
input or output and each oval is a process employing a
sub-model.

on the example, since features are extracted from the
local context, for stem tagging we extract features
such as current stem, previous stem, current base-
form, previous baseform, current root, previous root,
current suffix tags, and previous suffix tags. (Here,
“previous” refers to labels on the immediately pre-
ceding word token.)

2.2 Segmentation

The syromorph segmentation model is a hybrid
word- and consonant-level model, based on the
model of Haertel et al. (2010) for data-driven dia-
critization. Each of our probabilistic sequence mod-
els is a maximum entropy Markov model (MEMM).
Haertel et al. (2010) showed that the distribution
over labels is different for known and words and rare
words. In this work, we only consider words not
seen in training (i.e., “unknown”) to be rare. Follow-
ing Haertel et al.’s (2010) model, a separate model
is trained for each word type seen in training with
the intent of choosing the best segmentation given
that word. This approach is closely related to the
idea of ambiguity classes mentioned in Hajič and

Hladká (1998).
To handle unknown words, we back off to a

consonant-level model. Our consonant-level seg-
mentation model uses the notion of BI (Beginning
and Inside) tags, which have proven successful in
named-entity recognition. Since there are three
labels in which we are interested (prefix, stem, and
suffix), we apply the beginning and inside notion
to each of them to create six tags: BEGINNING-
PREFIX, INSIDE-PREFIX, BEGINNING-STEM,
INSIDE-STEM, BEGINNING-SUFFIX, and
INSIDE-SUFFIX. We train an MEMM to predict
one of these six tags for each consonant. Further-
more, we constrain the decoder to allow only legal
possible transitions given the current prediction,
so that prefixes must come before stems and stems
before suffixes. In order to capture the unknown
word distributions, we train the consonant-level
model on words occurring only once during training.
We call this word- and consonant-level segmenta-

tion model hybrid. As far as we are aware, this is a
novel approach to segmentation.

2.3 Dictionary Linkage
For dictionary linkage, we divide the problem into
two separate tasks: baseform linkage and root link-
age. For both of these tasks, we use a hybrid model
similar to that used for segmentation, consisting of
a collection of separate MEMMs for each word type
(either a stem or baseform, depending on the linker)
and amodel for unknown (or rare) words. For the un-
known words, we compare two distinct approaches.
The first approach for unknown words is based

on the work of Chrupała (2006), including the Mor-
fette system. Instead of predicting a baseform given
a stem, we predict what Chrupała calls a lemma-
class. A lemma-class is the transformation specified
by the minimum edit distance between the baseform
(which he calls a lemma) and the stem. The trans-
formation is a series of tuples, where each tuple in-
cludes (1) whether it was an insertion or deletion,
(2) the letter inserted or deleted, and (3) the position
of the insertion or deletion in the string (positions
begin at zero). All operations are assumed to oc-
cur sequentially, as in Morfette. For example, the
transformation of XE;N to XEA would proceed as
follows: delete ; from position 2, insert A into po-
sition 2, delete N from position 3.
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In hybrid-morfette baseform linkage (respec-
tively, root linkage), we predict a lemma-class (i.e.,
transformation) for each baseform (respectively,
root). The predicted transformation is then applied
to the stem (respectively, baseform) in order to con-
struct the actual target baseform (respectively, root).
The advantage to this method is that common trans-
formations are grouped into a single class, thereby
allowing the model to generalize and adequately
predict baseforms (and roots) that have not been
seen during training, but whose transformations have
been seen. This model is trained on all words in or-
der to capture as many transformations as possible.
The second approach for unknown words, called

hybrid-maxent, uses an MEMM trained on all
words seen in training. Given a stem (respectively,
baseform), this approach predicts only baseforms
(respectively, roots) that were observed in training
data. Thus, this method has a distinct disadvan-
tage when it comes to predicting new forms. This
approach corresponds directly to the approach to
handling unknown -words by Toutanova and Man-
ning (2000) for POS tagging.
With regard to baseform and root linkage, we do

not use the dictionary to constrain possible base-
forms or roots, since we make no initial assumptions
about the completeness of a dictionary.

2.4 Morphological Tagging
For morphological tagging, we break the task into
two separate tasks: tagging the suffix and tagging
the stem. Since there are a number of values that
need to be predicted, we define two ways to ap-
proach the problem. We call the first approach the
monolithic approach, in which the label is the con-
catenation of all the morphological attribute values.
Table 3 illustrates the tagging of an example sen-
tence: the stem tag and suffix tag columns contain
the monolithic tags for stem tagging and suffix tag-
ging. We use an MEMM to predict a monolithic tag
for each stem or suffix and call this model maxent-
mono. No co-occurrence restrictions among related
or complementary morphological tags are directly
enforced. Co-occurrence patterns are observed in
the data, learned, and encoded in the models of the
tagging process. It is worth noting further that con-
straints provided by the baseforms – predicted by
dictionary linkage – on the morphological attributes

are likewise not directly enforced. Enforcement of
such constraints would require an infusion of expert
knowledge into the system.

The second approach is to assume that morpho-
logical attributes are independent of each other. We
call this the independent approach. Here, each tag
is predicted by a tagger for a single morphological
attribute. For example, the gender model is ignorant
of the other 11 sub-tags during stem tagging. Using
its local context (which does not include other stem
sub-tags), the model predicts the best gender for a
given word. The top prediction of each of these tag-
gers (12, for stem tagging) is then combined naïvely
with no notion of what combinations may be valid
or invalid. We use MEMMs for each of the single-
attribute taggers. This model is calledmaxent-ind.

2.5 Decoding

Our per-task decoders are beam decoders, with
beam-size b. In particular, we limit the number of
per-stage back-pointers to b due to the large size of
the tagset for some of our sub-models. Although
Viterbi decoding produces the most probable label
sequence given a sequence of unlabeled words, it is
potentially intractible on our hybrid models due to
the unbounded dependence on previous consonant-
level decisions. Our beam decoders produce a good
approximation when tuned properly.

Decoding in syromorph consists of extending the
per-task decoders to allow transitions from each sub-
model to the next sub-model in the pipe. For exam-
ple, in our pipeline, the first sub-model is segmen-
tation. We predict the top n segmentations for the
sentence (i.e., sequences of segmentations), where n
is the number of transitions tomaintain between each
sub-task. Then, we run the remaining sub-tasks with
each of the n sequences as a possible context. After
each sub-task is completed, we narrow the number
of possible contexts back to n.

We swept b and n for various values, and found
b = 5 and n = 5 to be good values that balanced
between accuracy and time; larger values saw only
minute gains in accuracy.
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Word Transliteration Pre. Stem Suffix Baseform Root Suff. Tags Stem Tags
ܘűũƕܬ OEBDT O EBDT EBD EBD 0000 011012200000
ܐŴƌܢ ANON ANON HO HO 0000 300023222000
ųƆƧܢ LALHN L ALH N ALHA ALH 1011 200310200200
ŦܬŴƄƇƉ MLCOTA MLCOTA MLCOTA MLC 0000 200310300200
ǉų̈ƃܘ OCHNA O CHNA CHNA CHN 0000 200320200200
ťƄƇƉ̈ܘ OMLCA O MLCA MLCA MLC 0000 200320200200

Table 3: Part of a labeled Syriac sentence ťƄƇƉ̈ܘ ǉų̈ƃܘ ŦܬŴƄƇƉ ųƆƧܢ ܐŴƌܢ ,ܘűũƕܬ “And you have made them a kingdom and
priests and kings for our God.” (Revelation 5:10)

3 Experimental Setup

We are using the Syriac Peshitta New Testament in
the form compiled by Kiraz (1994).2 This data is
segmented, annotated with baseform and root, and
labeled with morphological attributes. Kiraz and
others in the Syriac community refined and corrected
the original annotation while preparing a digital and
print concordance of the New Testament. We aug-
mented Kiraz’s version of the data by segmenting
suffixes and by streamlining the tagset. The dataset
consists of 109,640 word tokens.
Table 3 shows part of a tagged Syriac sentence us-

ing this tagset. The suffix and stem tags consist of
indices representing morphological attributes. In the
example sentence, the suffix tag 1011 represents the
values “masculine”, “N/A”, “plural”, “normal suf-
fix” for the suffix attributes of gender, person, num-
ber, and contraction. Each value of 0 for each stem
and suffix attribute represents a value of “N/A”, ex-
cept for that of grammatical category, which always
must have a value other than “N/A”. Therefore, the
suffix tag 0000 means there is no suffix.
For the stem tags, the attribute order is the same

as that shown in Table 1 from top to bottom. The
following describes the interpretation of the stem
values represented in Table 3. Grammatical cate-
gory values 0, 2, and 3 represent “verb”, “noun”,
and “pronoun”, respectively. (Grammatical cate-
gory has no “N/A” value.) The verb conjugation
value 1 represents “peal conjugation”. Aspect value
1 represents “perfect”. State value 3 represents “em-
phatic”. Number values 1 and 2 represent “singular”
and “plural”. Person values 2 and 3 represent “sec-

2The Way International, a Biblical research ministry, anno-
tated this version of the New Testament by hand and required
15 years to do so.

ond” and “third” person. Gender values 2 and 3 rep-
resent “masculine” and “feminine”. Pronoun type
value 2 represents “demonstrative”. Demonstrative
category value 2 represents “far”. Finally, noun type
2 represents “common”. The last two columns of 0
represent “N/A” for numeral type and particle type.
We implement five sub-tasks: segmentation, base-

form linkage, root linkage, suffix tagging, and stem
tagging. We compare each sub-task to a naïve ap-
proach as a baseline. In addition to desiring good
sub-models, we also want a joint pipeline model that
significantly outperforms the naïve joint approach,
which is formed by using each of the following base-
lines in the pipeline framework.
The baseline implementation of segmentation is to

choose the most-frequent label: for a given word,
the baseline predicts the segmentation with which
that word appeared most frequently during training.
For unknown words, it chooses the largest prefix
and largest suffix that is possible for that word from
the list of prefixes and suffixes seen during train-
ing. (This naïve baseline for unknown words does
not take into account the fact that the stem is often at
least three characters in length.)
For dictionary linkage, the baseline is similar:

both baseform linkage and root linkage use the most-
frequent label approach. Given a stem, the baseline
baseform linker predicts the baseform with which
the stem was seen most frequently during training;
likewise, the baseline root linker predicts the root
from the baseform in a similar manner. For the un-
known stem case, the baseline baseform linker pre-
dicts the baseform to be identical to the stem. For
the unknown baseform case, the baseline root linker
predicts a root identical to the first three consonants
of the baseform, since for Syriac the root is exactly
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three consonants in a large majority of the cases.
The baselines for stem and suffix tagging are the

most-frequent label approaches. These baselines
are similar to maxent-mono and maxent-ind, us-
ing the monolithic and independent approaches used
by maxent-mono and maxent-ind. The difference
is that instead of using maximum entropy, the naïve
most-frequent approach is used in its place.
The joint baseline tagger uses each of the compo-

nent baselines in then-best joint pipeline framework.
Because this framework is modular, we can trivially
swap in and out different models for each of the sub-
tasks.

4 Experimental Results

Since we are focusing on under-resourced circum-
stances, we sweep the amount of training data and
produce learning curves to better understand how
our models perform in such circumstances. For each
point in our learning curves and for all other eval-
uations, we employ ten-fold cross-validation. The
learning curves use the chosen percentage of the data
for training and a fixed-size test set from each fold
and report the average accuracy.
The reported task accuracy requires the entire out-

put for that task to be correct in order to be counted as
correct. For example, during stem tagging, if one of
the sub-tags is incorrect, then the entire tag is said to
be incorrect. Furthermore, for syromorph, the out-
puts of every sub-task must be correct in order for
the word token to be counted as correct.
Moving beyond token-level metrics, in order to

understand performance of the system at the level
of individual decisions (including N/A decisions),
we compute decision-level accuracy: we call this
metric total-decisions. For the syromorph method
reported here, there are a total of 20 decisions: 2
for segmentation (prefix and suffix boundaries), 1
for baseform linkage, 1 for root linkage, 4 for suf-
fix tagging, and 12 for stem tagging. This accuracy
helps us to assess the number of decisions a human
annotator would need to correct, if data were pre-
annotated by a given model. Excluding N/A deci-
sions, we compute per-decision coverage and accu-
racy. These metrics are called applicable-coverage
and applicable-accuracy.
We show results on both the individual sub-tasks

and the entire joint task. Since previous sub-
tasks can adversely affect tasks further down in
the pipeline, we evaluate the sub-models by plac-
ing them in the pipeline with other (simulated) sub-
models that correctly predict every instance. For
example, when testing a root linker, we place the
root linker to be evaluated in the pipeline with a
segmenter, baseform linker, and taggers that return
the correct label for every prediction. This gives an
upper-bound for the individual model, removes the
possibility of error propagation, and shows how well
that model performs without the effects of the other
models in the pipeline.
For our results, unknown accuracy is the accuracy

of unknown instances, specific to the task, at training
time. In the case of baseform linkage, for example,
a stem is considered unknown if that stem was not
seen during training. It is therefore possible to have
a known word with an unknown stem and vice versa.
As in other NLP problems, unknown instances are a
manifestation of training data sparsity.

4.1 Baseline Results
Table 4 is grouped by sub-task and reports the results
of each of the baseline sub-tasks in the first row of
each group. Each of the baselines performs surpris-
ingly well. The accuracies of the baselines for most
of the tasks are high because the ambiguity of the
labels given the instance is quite low: the average
ambiguity across word types for segmentation, base-
form linkage, root linkage, suffix tagging, and stem
tagging are 1.01, 1.05, 1.02, 1.35, and 1.47, respec-
tively.
Preliminary experiments indicated that if we had

trained a baseline model using a single prediction (a
monolithic concatenation of the predictions for all
tasks) per token rather than separating the tasks, the
baseline tagging accuracy would have been lower.
Note that the unknown tagging accuracy for the
monolithic suffix tagger is not applicable, because
there were no test suffixes that were not seen during
training.

4.2 Individual Model Results
Table 4 also shows the results for the individual
models. In the table, SEG, BFL, RTL, SUFFIX,
and STEM represent segmentation, baseform link-
age, root linkage, suffix tagging, and stem tagging,
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Model Total Known Unk

SE
G baseline 96.75 99.64 69.11

hybrid 98.87 99.70 90.83
B
FL

baseline 95.64 98.45 22.28
hybrid-morfette 96.19 98.05 78.40
hybrid-maxent 96.19 99.15 67.86

RT
L baseline 98.84 99.56 80.20

hybrid-morfette 99.05 99.44 88.86
hybrid-maxent 98.34 99.45 69.30

SU
FF

IX

mono. baseline 98.75 98.75 N/A
ind. baseline 96.74 98.78 0.01
maxent-mono 98.90 98.90 N/A
maxent-ind 98.90 98.90 N/A

ST
EM

mono. baseline 83.08 86.26 0.01
ind. baseline 53.24 86.90 0.00
maxent-mono 89.48 92.87 57.04
maxent-ind 88.43 90.26 40.59

Table 4: Word-level accuracies for the individual sub-
models used in the syromorph approach.

respectively. Even though the baselines were high,
each individual model outperformed its respective
baseline, with the exception of the root linker. Two
of the most interesting results are the known ac-
curacy of the baseform linkers hybrid-maxent and
hybrid-morfette. As hybrid models, the difference
between them lies only in the treatment of unknown
words; however, the known accuracy of the mor-
fette model drops fairly significantly. This is due
to the unknown words altering the weights for fea-
tures in which those words occur. For instance, if
the previous word is unknown and a baseform that
was never seen was predicted, then the weights on
the next word for all features that contain that un-
known word will be quite different than if that pre-
vious word were a known word.
It is also worth noting that the stem tagger is by

far the worst model in this group of models, but it is
also the most difficult task. The largest gains in im-
proving the entire systemwould come from focusing
attention on that task.

4.3 Joint Model Results
Table 5 shows the accuracies for the joint mod-
els. The joint model incorporating “maxent” vari-
ants performs best overall and on known cases. The

Model Total Known Unk
Baseline 80.76 85.74 28.07

Morfette Monolithic 85.96 89.85 44.86
Maxent Monolithic 86.47 90.77 40.93

Table 5: Word-level accuracies for various joint syro-
morph models.
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Figure 2: The total accuracy of the joint model.

joint model incorporating the “morfette” variants
performs best on unknown cases.
Decision-level metrics for the SEG:hybrid /

BFL and RTL:hybrid-maxent / SUFFIX and
STEM:maxent-mono model are as follows: for
total-decisions, the model achieves an accuracy
of 97.08%, compared to 95.50% accuracy for the
baseline, amounting to a 35.11% reduction in error
rate over the baseline; for applicable-coverage and
applicable-accuracy this model achieved 93.45%
and 93.81%, respectively, compared to the baseline’s
90.03% and 91.44%.
Figures 2, 3, and 4 show learning curves for to-

tal, known, and unknown accuracies for the joint
pipeline model. As can be seen in Figure 2, by the
time we reach 10% of the training data, syromorph
is significantly better than the baseline. In fact, at
35% of the training data, our joint pipeline model
outperforms the baseline trained with all available
training data.
Figure 3 shows the baseline performing quite well

on known words with very low amounts of data.
Since the x-axis varies the amount of training data,
the meaning of “known” and “unknown” evolves as
we move to the right of the graph; consequently, the
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Figure 3: The accuracy of the joint model on known
words.
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Figure 4: The accuracy of the joint model on unknown
words.

left and right sides of the graph are incomparable.
When the percentage of training data is very low,
the percentage of unknown words is high, and the
number of known words is relatively low. On this
dataset, the more frequent words tend to be less am-
biguous, giving the most-frequent taggers an advan-
tage in a small random sample. For this reason, the
baseline performs very well on known accuracy with
lower amounts of training data.
Figure 4 clearly shows that hybrid-morfette link-

ers outperform hybrid-maxent linkers on unknown
words. However, Figures 2- 4 show that hybrid-
morfette’s advantage on unknown words is coun-
teracted by its lower performance on known words;
therefore, it has slightly lower overall accuracy than
hybrid-maxent.

5 Related Work

The most closely related work to our approach is
the Morfette tool for labeling inflectional morphol-
ogy (Chrupała et al., 2008). Chrupała et al. cre-
ated a tool that labels Polish, Romanian, and Span-
ish with morphological information as well as base-
forms. It is a supervised learning approach that
requires data labeled with both morphological tags
and baseforms. This approach creates two separate
models (a morphological tagger and a lemmatizer)
and combines the decoding process in order to cre-
ate a joint model that predicts both morphological
tags and the baseform. Morfette uses MEMMs for
both models and has access to predicted labels in
the feature set. Reported accuracy rates are 96.08%,
93.83%, and 81.19% for joint accuracy on datasets
trained with fewer than 100,000 tokens for Roma-
nian, Spanish, and Polish, respectively. The major
difference between this work and ours is the degree
of morphological analysis required by the languages.
Chrupała et al. neglect segmentation, a task not as
intuitive for their languages as it is for Syriac. These
languages also require only linkage to a baseform, as
no root exists.
Also closely related is the work of Daya, Roth, and

Wintner (2008) on Hebrew. The authors use the no-
tion of patterns into which root consonants are in-
jected to compose Semitic words. They employ lin-
guistic knowledge (specifically, lists of prefixes, suf-
fixes, and “knowledge of word-formation processes”
combined with SNoW, a multi-class classifier that
has been shown to work well in other NLP tasks.
The major difference between this approach and the
method presented in this paper is that this method
does not require the extra knowledge required to en-
code word-formation processes. A further point of
difference is our use of hybrid word- and consonant-
level models, after Haertel et al. (2010). Their work
builds on the work of Shacham and Wintner (2007),
which is also related to that of Habash and Rambow,
described below.
Work by Lee et al. (2003) is themost relevant work

for segmentation, since they segment Arabic, closely
related to Syriac, with a data-driven approach. Lee
et al. use an unsupervised algorithm bootstrapped
with manually segmented data to learn the segmen-
tation for Arabic without any additional language re-
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sources. At the heart of the algorithm is a word-level
trigram language model, which captures the correct
weights for prefixes and suffixes. They report an ac-
curacy of 97%. We opted to use our own segmenter
because we felt we could achieve higher accuracy
with the hybrid segmenter.
Mohamed and Kübler (2010a, 2010b) report on

closely related work for morphological tagging.
They use a data-driven approach to find the POS tags
for Arabic, using both word tokens and segmented
words as inputs for their system. Although their seg-
mentation performance is high, they report that ac-
curacy is lower when first segmenting word tokens.
They employ TiMBL, a memory-based learner, as
their model and report an accuracy of 94.74%.
Habash and Rambow (2005) currently have the

most accurate approach for Arabic morphological
analysis using additional language tools. They focus
on morphological disambiguation (tagging), given
morphological segmentation in the output of the
morphological analyzer. For each word, they first
run it through the morphological analyzer to reduce
the number of possible outputs. They then train a
separate Support Vector Machine (SVM) for each
morphological attribute (ten in all). They look at dif-
ferent ways of combining these outputs to match an
output from the morphological analyzer. For their
best model, they report an overall tag accuracy of
97.6%.
Others have used morphological analyzers and

other language tools for morphological disambigua-
tion coupled with segmentation. The following
works exemplify this approach: Diab et al. (2004)
use a POS tagger to jointly segment, POS tag, and
chunk base-phrases for Arabic with SVMs. Kudo
et al. (2004) use SVMs to morphologically tag
Japanese. Smith et al. (2005) use SVMs for seg-
mentation, lemmatization, and POS tagging for Ara-
bic, Korean, and Czech. Petkevič (2001) use a mor-
phological analyzer and additional simple rules for
morphological disambiguation of Czech. Mansour
et al. (2007) and Bar-haim et al. (2008) both use hid-
denMarkov models to POS tag Hebrew, with the lat-
ter including segmentation as part of the task.
For Syriac, a morphological analyzer is not avail-

able. Kiraz (2000) created a Syriac morphological
analyzer using finite-state methods; however, it was
developed on outdated and now inaccessible equip-

ment and is no longer working or available to us.

6 Conclusions and Future Work

We have shown that we can effectively model seg-
mentation, linkage to headwords in a dictionary, and
morphological tagging using a joint model called sy-
romorph. We have introduced novel approaches for
segmentation, dictionary linkage, and morphologi-
cal tagging, and each of these approaches has out-
performed its corresponding naïve baseline. Further-
more, we have shown that for Syriac, a data-driven
approach seems to be an appropriate way to solve
these problems in an under-resourced setting.
We hope to use this combined model for pre-

annotation in an active learning setting to aid anno-
tators in labeling a large Syriac corpus. This corpus
will contain data spanning multiple centuries and a
variety of authors and genres. Future work will re-
quire addressing issues encountered in this corpus.
In addition, there is much to do in getting the over-
all tag accuracy closer to the accuracy of individual
decisions. We leave further feature engineering for
the stem tagger and the exploration of possible new
morphological tagging techniques for future work.
Finally, future work includes the application of the

syromorph methodology to other under-resourced
Semitic languages.
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Abstract

This paper examines tagging models for spon-
taneous English speech transcripts. We ana-
lyze the performance of state-of-the-art tag-
ging models, either generative or discrimi-
native, left-to-right or bidirectional, with or
without latent annotations, together with the
use of ToBI break indexes and several meth-
ods for segmenting the speech transcripts (i.e.,
conversation side, speaker turn, or human-
annotated sentence). Based on these studies,
we observe that: (1) bidirectional models tend
to achieve better accuracy levels than left-to-
right models, (2) generative models seem to
perform somewhat better than discriminative
models on this task, and (3) prosody improves
tagging performance of models on conversa-
tion sides, but has much less impact on smaller
segments. We conclude that, although the use
of break indexes can indeed significantly im-
prove performance over baseline models with-
out them on conversation sides, tagging ac-
curacy improves more by using smaller seg-
ments, for which the impact of the break in-
dexes is marginal.

1 Introduction

Natural language processing technologies, such as
parsing and tagging, often require reconfiguration
when they are applied to challenging domains that
differ significantly from newswire, e.g., blogs, twit-
ter text (Foster, 2010), or speech. In contrast to
text, conversational speech represents a significant
challenge because the transcripts are not segmented
into sentences. Furthermore, the transcripts are of-

ten disfluent and lack punctuation and case informa-
tion. On the other hand, speech provides additional
information, beyond simply the sequence of words,
which could be exploited to more accurately assign
each word in the transcript a part-of-speech (POS)
tag. One potentially beneficial type of information
is prosody (Cutler et al., 1997).

Prosody provides cues for lexical disambigua-
tion, sentence segmentation and classification,
phrase structure and attachment, discourse struc-
ture, speaker affect, etc. Prosody has been found
to play an important role in speech synthesis sys-
tems (Batliner et al., 2001; Taylor and Black, 1998),
as well as in speech recognition (Gallwitz et al.,
2002; Hasegawa-Johnson et al., 2005; Ostendorf et
al., 2003). Additionally, prosodic features such as
pause length, duration of words and phones, pitch
contours, energy contours, and their normalized val-
ues have been used for speech processing tasks like
sentence boundary detection (Liu et al., 2005).

Linguistic encoding schemes like ToBI (Silver-
man et al., 1992) have also been used for sentence
boundary detection (Roark et al., 2006; Harper et al.,
2005), as well as for parsing (Dreyer and Shafran,
2007; Gregory et al., 2004; Kahn et al., 2005). In
the ToBI scheme, aspects of prosody such as tone,
prominence, and degree of juncture between words
are represented symbolically. For instance, Dreyer
and Shafran (2007) use three classes of automati-
cally detected ToBI break indexes, indicating major
intonational breaks with a 4, hesitation with a p, and
all other breaks with a 1.

Recently, Huang and Harper (2010) found that
they could effectively integrate prosodic informa-
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tion in the form of this simplified three class ToBI
encoding when parsing spontaneous speech by us-
ing a prosodically enriched PCFG model with latent
annotations (PCFG-LA) (Matsuzaki et al., 2005;
Petrov and Klein, 2007) to rescore n-best parses
produced by a baseline PCFG-LA model without
prosodic enrichment. However, the prosodically en-
riched models by themselves did not perform sig-
nificantly better than the baseline PCFG-LA model
without enrichment, due to the negative effect that
misalignments between automatic prosodic breaks
and true phrase boundaries have on the model.

This paper investigates methods for using state-
of-the-art taggers on conversational speech tran-
scriptions and the effect that prosody has on tagging
accuracy. Improving POS tagging performance of
speech transcriptions has implications for improving
downstream applications that rely on accurate POS
tags, including sentence boundary detection (Liu
et al., 2005), automatic punctuation (Hillard et al.,
2006), information extraction from speech, parsing,
and syntactic language modeling (Heeman, 1999;
Filimonov and Harper, 2009). While there have
been several attempts to integrate prosodic informa-
tion to improve parse accuracy of speech transcripts,
to the best of our knowledge there has been little
work on using this type of information for POS tag-
ging. Furthermore, most of the parsing work has
involved generative models and rescoring/reranking
of hypotheses from the generative models. In this
work, we will analyze several factors related to ef-
fective POS tagging of conversational speech:

• discriminative versus generative POS tagging
models (Section 2)

• prosodic features in the form of simplified ToBI
break indexes (Section 4)

• type of speech segmentation (Section 5)

2 Models

In order to fully evaluate the difficulties inherent in
tagging conversational speech, as well as the possi-
ble benefits of prosodic information, we conducted
experiments with six different POS tagging mod-
els. The models can be broadly separated into two
classes: generative and discriminative. As the first
of our generative models, we used a Hidden Markov

Model (HMM) trigram tagger (Thede and Harper,
1999), which serves to establish a baseline and to
gauge the difficulty of the task at hand. Our sec-
ond model, HMM-LA, was the latent variable bi-
gram HMM tagger of Huang et al. (2009), which
achieved state-of-the-art tagging performance by in-
troducing latent tags to weaken the stringent Markov
independence assumptions that generally hinder tag-
ging performance in generative models.

For the third model, we implemented a bidirec-
tional variant of the HMM-LA (HMM-LA-Bidir)
that combines evidence from two HMM-LA tag-
gers, one trained left-to-right and the other right-to-
left. For decoding, we use a product model (Petrov,
2010). The intuition is that the context information
from the left and the right of the current position
is complementary for predicting the current tag and
thus, the combination should serve to improve per-
formance over the HMM-LA tagger.

Since prior work on parsing speech with prosody
has relied on generative models, it was necessary
to modify equations of the model in order to incor-
porate the prosodic information, and then perform
rescoring in order to achieve gains. However, it is
far simpler to directly integrate prosody as features
into the model by using a discriminative approach.
Hence, we also investigate several log-linear mod-
els, which allow us to easily include an arbitrary
number and varying kinds of possibly overlapping
and non-independent features.

First, we implemented a Conditional Random
Field (CRF) tagger, which is an attractive choice due
to its ability to learn the globally optimal labeling
for a sequence and proven excellent performance on
sequence labeling tasks (Lafferty et al., 2001). In
contrast to an HMM which optimizes the joint like-
lihood of the word sequence and tags, a CRF opti-
mizes the conditional likelihood, given by:

pλ(t|w) =
exp

∑
j λjFj(t, w)∑

t exp
∑

j λjFj(t, w)
(1)

where the λ’s are the parameters of the model to es-
timate and F indicates the feature functions used.
The denominator in (1) is Zλ(x), the normalization
factor, with:

Fj(t, w) =
∑
i

fj(t, w, i)
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Class Model Name Latent Variable Bidirectional N-best-Extraction Markov Order

Generative
Trigram HMM

√
2nd

HMM-LA
√ √

1st
HMM-LA-Bidir

√ √
1st

Discriminative
Stanford Bidir

√
2nd

Stanford Left5 2nd
CRF 2nd

Table 1: Description of tagging models

The objective we need to maximize then becomes :

L =
∑
n

∑
j

λjFj(tn, wn)− logZλ(xn)

−‖λ‖2
2σ2

where we use a spherical Gaussian prior to pre-
vent overfitting of the model (Chen and Rosen-
feld, 1999) and the wide-spread quasi-Newtonian
L-BFGS method to optimize the model parame-
ters (Liu and Nocedal, 1989). Decoding is per-
formed with the Viterbi algorithm.

We also evaluate state-of-the-art Maximum En-
tropy taggers: the Stanford Left5 tagger (Toutanova
and Manning, 2000) and the Stanford bidirectional
tagger (Toutanova et al., 2003), with the former us-
ing only left context and the latter bidirectional de-
pendencies.

Table 1 summarizes the major differences be-
tween the models along several dimensions: (1) gen-
erative versus discriminative, (2) directionality of
decoding, (3) the presence or absence of latent anno-
tations, (4) the availability of n-best extraction, and
(5) the model order.

In order to assess the quality of our models, we
evaluate them on the section 23 test set of the stan-
dard newswire WSJ tagging task after training all
models on sections 0-22. Results appear in Ta-
ble 2. Clearly, all the models have high accuracy
on newswire data, but the Stanford bidirectional tag-
ger significantly outperforms the other models with
the exception of the HMM-LA-Bidir model on this
task.1

1Statistically significant improvements are calculated using
the sign test (p < 0.05).

Model Accuracy
Trigram HMM 96.58
HMM-LA 97.05
HMM-LA-Bidir 97.16
Stanford Bidir 97.28
Stanford Left5 97.07
CRF 96.81

Table 2: Tagging accuracy on WSJ

3 Experimental Setup

In the rest of this paper, we evaluate the tag-
ging models described in Section 2 on conver-
sational speech. We chose to utilize the Penn
Switchboard (Godfrey et al., 1992) and Fisher tree-
banks (Harper et al., 2005; Bies et al., 2006) because
they provide gold standard tags for conversational
speech and we have access to corresponding auto-
matically generated ToBI break indexes provided by
(Dreyer and Shafran, 2007; Harper et al., 2005)2.

We utilized the Fisher dev1 and dev2 sets contain-
ing 16,519 sentences (112,717 words) as the primary
training data and the entire Penn Switchboard tree-
bank containing 110,504 sentences (837,863 words)
as an additional training source3. The treebanks
were preprocessed as follows: the tags of auxiliary
verbs were replaced with the AUX tag, empty nodes

2A small fraction of words in the Switchboard treebank do
not align with the break indexes because they were produced
based on a later refinement of the transcripts used to produce
the treebank. For these cases, we heuristically added break *1*
to words in the middle of a sentence and *4* to words that end
a sentence.

3Preliminary experiments evaluating the effect of training
data size on performance indicated using the additional Switch-
board data leads to more accurate models, and so we use the
combined training set.
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and function tags were removed, words were down-
cased, punctuation was deleted, and the words and
their tags were extracted. Because the Fisher tree-
bank was developed using the lessons learned when
developing Switchboard, we chose to use its eval
portion for development (the first 1,020 tagged sen-
tences containing 7,184 words) and evaluation (the
remaining 3,917 sentences with 29,173 words).

We utilize the development set differently for the
generative and discriminative models. Since the EM
algorithm used for estimating the parameters in the
latent variable models introduces a lot of variabil-
ity, we train five models with a different seed and
then choose the best one based on dev set perfor-
mance. For the discriminative models, we tuned
their respective regularization parameters on the dev
set. All results reported in the rest of this paper are
on the test set.

4 Integration of Prosodic Information

In this work, we use three classes of automatically
generated ToBI break indexes to represent prosodic
information (Kahn et al., 2005; Dreyer and Shafran,
2007; Huang and Harper, 2010): 4, 1, and p.
Consider the following speech transcription exam-
ple, which is enriched with ToBI break indexes in
parentheses and tags: i(1)/PRP did(1)/VBD
n’t(1)/RB you(1)/PRP know(4)/VBP
i(1)/PRP did(1)/AUX n’t(1)/RB...
The speaker begins an utterance, and then restarts
the utterance. The automatically predicted break 4
associated with know in the utterance compellingly
indicates an intonational phrase boundary and could
provide useful information for tagging if we can
model it appropriately.

To integrate prosody into our generative models,
we utilize the method from (Dreyer and Shafran,
2007) to add prosodic breaks. As Figure 1 shows,
ToBI breaks provide a secondary sequence of ob-
servations that is parallel to the sequence of words
that comprise the sentence. Each break bi in the sec-
ondary sequence is generated by the same tag ti as
that which generates the corresponding wordwi, and
so it is conditionally independent of its correspond-
ing word given the tag:

P (w, b|t) = P (w|t)P (b|t)

PRP

i 1

VBD

did 1

RB

n’t 1

VBP

know 4

Figure 1: Parallel generation of words and breaks for the
HMM models

The HMM-LA taggers are then able to split tags to
capture implicit higher order interactions among the
sequence of tags, words, and breaks.

The discriminative models are able to utilize
prosodic features directly, enabling the use of con-
textual interactions with other features to further im-
prove tagging accuracy. Specifically, in addition to
the standard set of features used in the tagging lit-
erature, we use the feature templates presented in
Table 3, where each feature associates the break bi,
word wi, or some combination of the two with the
current tag ti4.

Break and/or word values Tag value
bi=B ti = T
bi=B & bi−1=C ti = T
wi=W & bi=B ti = T
wi+1=W & bi=B ti = T
wi+2=W & bi=B ti = T
wi−1=W & bi=B ti = T
wi−2=W & bi=B ti = T
wi=W & bi=B & bi−1=C ti = T

Table 3: Prosodic feature templates

5 Experiments

5.1 Conversation side segmentation

When working with raw speech transcripts, we ini-
tially have a long stream of unpunctuated words,
which is called a conversation side. As the average
length of conversation side segments in our data is
approximately 630 words, it poses quite a challeng-
ing tagging task. Thus, we hypothesize that it is on
these large segments that we should achieve the most

4We modified the Stanford taggers to handle these prosodic
features.
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94.2

94.5

HMM-LA HMM-LA Bidir Stanford Bidir Stanford Left5 CRF

Baseline Prosody OracleBreak OracleBreak+Sent OracleSent OracleBreak-Sent Rescoring

Figure 2: Tagging accuracy on conversation sides

improvement from the addition of prosodic informa-
tion.

In fact, as the baseline results in Figure 2 show,
the accuracies achieved on this task are much lower
than those on the newswire task. The trigram HMM
tagger accuracy drops to 92.43%, while all the other
models fall to within the range of 93.3%-94.12%,
a significant departure from the 96-97.3% range on
newswire sentences. Note that the Stanford bidi-
rectional and HMM-LA tagger perform very simi-
larly, although the HMM-LA-Bidir tagger performs
significantly better than both. In contrast to the
newswire task on which the Stanford bidirectional
tagger performed the best, on this genre, it is slightly
worse than the HMM-LA tagger, albeit the differ-
ence is not statistically significant.

With the direct integration of prosody into the
generative models (see Figure 2), there is a slight but
statistically insignificant shift in performance. How-
ever, integrating prosody directly into the discrimi-
native models leads to significant improvements in
the CRF and Stanford Left5 taggers. The gain in
the Stanford bidirectional tagger is not statistically
significant, however, which suggests that the left-
to-right models benefit more from the addition of
prosody than bidirectional models.

5.2 Human-annotated sentences

Given the lack-luster performance of the tagging
models on conversation side segments, even with the
direct addition of prosody, we chose to determine the
performance levels that could be achieved on this
task using human-annotated sentences, which we

will refer to as sentence segmentation. Figure 3 re-
ports the baseline tagging accuracy on sentence seg-
ments, and we see significant improvements across
all models. The HMM Trigram tagger performance
increases to 93.00%, while the increase in accuracy
for the other models ranges from around 0.2-0.3%.
The HMM-LA taggers once again achieve the best
performance, with the Stanford bidirectional close
behind. Although the addition of prosody has very
little impact on either the generative or discrimina-
tive models when applied to sentences, the base-
line tagging models (i.e., not prosodically enriched)
significantly outperform all of the prosodically en-
riched models operating on conversation sides.

At this point, it would be apt to suggest us-
ing automatic sentence boundary detection to cre-
ate shorter segments. Table 4 presents the results
of using baseline models without prosodic enrich-
ment trained on the human-annotated sentences to
tag automatically segmented speech5. As can be
seen, the results are quite similar to the conversation
side segmentation performances, and thus signifi-
cantly lower than when tagging human-annotated
sentences. A caveat to consider here is that we break
the standard assumption that the training and test set
be drawn from the same distribution, since the train-
ing data is human-annotated and the test is automat-
ically segmented. However, it can be quite challeng-
ing to create a corpus to train on that represents the
biases of the systems that perform automatic sen-
tence segmentation. Instead, we will examine an-

5We used the Baseline Structural Metadata System de-
scribed in Harper et al. (2005) to predict sentence boundaries.
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94.2

94.5
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Baseline Prosody OracleBreak Rescoring

Figure 3: Tagging accuracy on human-annotated segments

other segmentation method to shorten the segments
automatically, i.e., by training and testing on speaker
turns, which preserves the train-test match, in Sec-
tion 5.5.

Model Accuracy
HMM-LA 93.95
HMM-LA-Bidir 94.07
Stanford Bidir 93.77
Stanford Left5 93.35
CRF 93.29

Table 4: Baseline tagging accuracy on automatically de-
tected sentence boundaries

5.3 Oracle Break Insertion

As we believe one of the major roles that prosodic
cues serve for tagging conversation sides is as a
proxy for sentence boundaries, perhaps the efficacy
of the prosodic breaks can, at least partially, be at-
tributed to errors in the automatically induced break
indexes themselves, as they can misalign with syn-
tactic phrase boundaries, as discussed in Huang and
Harper (2010). This may degrade the performance
of our models more than the improvement achieved
from correctly placed breaks. Hence, we conduct
a series of experiments in which we systematically
eliminate noisy phrase and disfluency breaks and
show that under these improved conditions, prosodi-
cally enriched models can indeed be more effective.

To investigate to what extent noisy breaks are im-
peding the possible improvements from prosodically
enriched models, we replaced all 4 and p breaks in

the training and evaluation sets that did not align
to the correct phrase boundaries as indicated by the
treebank with break 1 for both the conversation sides
and human-annotated sentences. The results from
using Oracle Breaks on conversation sides can be
seen in Figure 2. All models except Stanford Left5
and HMM-LA-Bidir significantly improve in accu-
racy when trained and tested on the Oracle Break
modified data. On human-annotated sentences, Fig-
ure 3 shows improvements in accuracies across all
models, however, they are statistically insignificant.

To further analyze why prosodically enriched
models achieve more improvement on conversation
sides than on sentences, we conducted three more
Oracle experiments on conversation sides. For the
first, OracleBreak-Sent, we further modified the data
such that all breaks corresponding to a sentence
ending in the human-annotated segments were con-
verted to break 1, thus effectively only leaving in-
side sentence phrasal boundaries. This modification
results in a significant drop in performance, as can
be seen in Figure 2.

For the second, OracleSent, we converted all
the breaks corresponding to a sentence end in the
human-annotated segmentations to break 4, and all
the others to break 1, thus effectively only leaving
sentence boundary breaks. This performed largely
on par with OracleBreak, suggesting that the phrase-
aligned prosodic breaks seem to be a stand-in for
sentence boundaries.

Finally, in the last condition, OracleBreak+Sent,
we modified the OracleBreak data such that all
breaks corresponding to a sentence ending in the
human-annotated sentences were converted to break
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Figure 4: Tagging accuracy on speaker turns

4 (essentially combining OracleBreak and Oracle-
Sent). As Figure 2 indicates, this modification re-
sults in the best tagging accuracies for all the mod-
els. All models were able to match or even improve
upon the baseline accuracies achieved on the human
segmented data. This suggests that when we have
breaks that align with phrasal and sentence bound-
aries, prosodically enriched models are highly effec-
tive.

5.4 N-best Rescoring

Based on the findings in the previous section and the
findings of (Huang and Harper, 2010), we next ap-
ply a rescoring strategy in which the search space
of the prosodically enriched generative models is re-
stricted to the n-best list generated from the base-
line model (without prosodic enrichment). In this
manner, the prosodically enriched model can avoid
poor tag sequences produced due to the misaligned
break indexes. As Figure 2 shows, using the base-
line conversation side model to produce an n-best
list for the prosodically enriched model to rescore
results in significant improvements in performance
for the HMM-LA model, similar to the parsing re-
sults of (Huang and Harper, 2010). The size of the
n-best list directly impacts performance, as reducing
to n = 1 is akin to tagging with the baseline model,
and increasing n → ∞ amounts to tagging with the
prosodically enriched model. We experimented with
a number of different sizes for n and chose the best
one using the dev set. Figure 3 presents the results
for this method applied to human-annotated sen-
tences, where it produces only marginal improve-

ments6.

5.5 Speaker turn segmentation

The results presented thus far indicate that if we
have access to close to perfect break indexes, we
can use them effectively, but this is not likely to be
true in practice. We have also observed that tagging
accuracy on shorter conversation sides is greater
than longer conversation sides, suggesting that post-
processing the conversation sides to produce shorter
segments would be desirable.

We thus devised a scheme by which we could
automatically extract shorter speaker turn segments
from conversation sides. For this study, speaker
turns, which effectively indicate speaker alterna-
tions, were obtained by using the metadata in the
treebank to split the sentences into chunks based on
speaker change. Every time a speaker begins talk-
ing after the other speaker was talking, we start a
new segment for that speaker. In practice, this would
need to be done based on audio cues and automatic
transcriptions, so these results represent an upper
bound.

Figure 4 presents tagging results on speaker turn
segments. For most models, the difference in accu-
racy achieved on these segments and that of human-
annotated sentences is statistically insignificant. The
only exception is the Stanford bidirectional tagger,

6Rescoring using the CRF model was also performed, but
led to a performance degradation. We believe this is due to
the fact that the prosodically enriched CRF model was able to
directly use the break index information, and so restricting it to
the baseline CRF model search space limits the performance to
that of the baseline model.
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Figure 5: Error reduction for prosodically enriched HMM-LA (a) and CRF (b) models

which performs worse on these slightly longer seg-
ments. With the addition of break indexes, we see
marginal changes in most of the models; only the
CRF tagger receives a significant boost. Thus, mod-
els achieve performance gains from tagging shorter
segments, but at the cost of limited usefulness of the
prosodic breaks. Overall, speaker turn segmenta-
tion is an attractive compromise between the original
conversation sides and human-annotated sentences.

6 Discussion

Across the different models, we have found that tag-
gers applied to shorter segments, either sentences or
speaker turns, do not tend to benefit significantly
from prosodic enrichment, in contrast to conversa-
tion sides. To analyze this further we broke down
the results by part of speech for the two models
for which break indexes improved performance the
most: the CRF and HMM-LA rescoring models,
which achieved an overall error reduction of 2.8%
and 2.1%, respectively. We present those categories
that obtained the greatest benefit from prosody in
Figure 5 (a) and (b). For both models, the UH cate-
gory had a dramatic improvement from the addition
of prosody, achieving up to a 10% reduction in error.

For the CRF model, other categories that saw im-
pressive error reductions were NN and VB, with
10% and 5%, respectively. Table 5 lists the prosodic

features that received the highest weight in the CRF
model. These are quite intuitive, as they seem to rep-
resent places where the prosody indicates sentence
or clausal boundaries. For the HMM-LA model,
the VB and DT tags had major reductions in error
of 13% and 10%, respectively. For almost all cat-
egories, the number of errors is reduced by the ad-
dition of breaks, and further reduced by using the
OracleBreak processing described above.

Weight Feature
2.2212 wi=um & bi=4 & t=UH
1.9464 wi=uh & bi=4 & t=UH
1.7965 wi=yes & bi=4 & t=UH
1.7751 wi=and & bi=4 & t=CC
1.7554 wi=so & bi=4 & t=RB
1.7373 wi=but & bi=4 & t=CC

Table 5: Top break 4 prosody features in CRF prosody
model

To determine more precisely the effect that the
segment size has on tagging accuracy, we extracted
the oracle tag sequences from the HMM-LA and
CRF baseline and prosodically enriched models
across conversation sides, sentences, and speaker
turn segments. As the plot in Figure 6 shows, as
we increase the n-best list size to 500, the ora-
cle accuracy of the models trained on sentences in-
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creases rapidly to 99%; whereas, the oracle accu-
racy of models on conversation sides grow slowly
to between 94% and 95%. The speaker turn trained
models, however, behave closely to those using sen-
tences, climbing rapidly to accuracies of around
98%. This difference is directly attributable to the
length of the segments. As can be seen in Table 6,
the speaker turn segments are more comparable in
length to sentences.

Train Eval
Conv 627.87 ± 281.57 502.98 ± 151.22
Sent 7.52± 7.86 7.45 ± 8.29

Speaker 15.60± 29.66 15.27± 21.01

Table 6: Length statistics of different data segmentations

Next, we return to the large performance degrada-
tion when tagging speech rather than newswire text
to examine the major differences among the mod-
els. Using two of our best performing models, the
Stanford bidirectional and HMM-LA, in Figure 7
we present the categories for which performance
degradation was the greatest when comparing per-
formance of a tagger trained on WSJ to a tagger
trained on spoken sentences and conversation sides.
The performance decrease is quite similar across
both models, with the greatest degradation on the
NNP, RP, VBN, and RBS categories.

Unsurprisingly, both the discriminative and gen-
erative bidirectional models achieve the most im-

pressive results. However, the generative HMM-
LA and HMM-LA-Bidir models achieved the best
results across all three segmentations, and the best
overall result, of 94.35%, on prosodically enriched
sentence-segmented data. Since the Stanford bidi-
rectional model incorporates all of the features that
produced its state-of-the-art performance on WSJ,
we believe the fact that the HMM-LA outperforms
it, despite the discriminative model’s more expres-
sive feature set, is indicative of the HMM-LA’s abil-
ity to more effectively adapt to novel domains during
training. Another challenge for the discriminative
models is the need for regularization tuning, requir-
ing additional time and effort to train several mod-
els and select the most appropriate parameter each
time the domain changes. Whereas for the HMM-
LA models, although we also train several models,
they can be combined into a product model, such as
that described by Petrov (2010), in order to further
improve performance.

Since the prosodic breaks are noisier features than
the others incorporated in the discriminative models,
it may be useful to set their regularization param-
eter separately from the rest of the features, how-
ever, we have not explored this alternative. Our ex-
periments used human transcriptions of the conver-
sational speech; however, realistically our models
would be applied to speech recognition transcripts.
In such a case, word error will introduce noise in ad-
dition to the prosodic breaks. In future work, we will
evaluate the use of break indexes for tagging when
there is lexical error. We would also apply the n-
best rescoring method to exploit break indexes in the
HMM-LA bidirectional model, as this would likely
produce further improvements.

7 Conclusion

In this work, we have evaluated factors that are im-
portant for developing accurate tagging models for
speech. Given that prosodic breaks were effective
knowledge sources for parsing, an important goal
of this work was to evaluate their impact on vari-
ous tagging model configurations. Specifically, we
have examined the use of prosodic information for
tagging conversational speech with several different
discriminative and generative models across three
different speech transcript segmentations. Our find-
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ings suggest that generative models with latent an-
notations achieve the best performance in this chal-
lenging domain. In terms of transcript segmenta-
tion, if sentences are available, it is preferable to use
them. In the case that no such annotation is avail-
able, then using automatic sentence boundary detec-
tion does not serve as an appropriate replacement,
but if automatic speaker turn segments can be ob-
tained, then this is a good alternative, despite the fact
that prosodic enrichment is less effective.

Our investigation also shows that in the event that
conversation sides must be used, prosodic enrich-
ment of the discriminative and generative models
produces significant improvements in tagging accu-
racy (by direct integration of prosody features for
the former and by restricting the search space and
rescoring with the latter). For tagging, the most im-
portant role of the break indexes appears to be as a
stand in for sentence boundaries. The oracle break
experiments suggest that if the accuracy of the au-
tomatically induced break indexes can be improved,
then the prosodically enriched models will perform
as well, or even better, than their human-annotated
sentence counterparts.
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Abstract

This paper proposes a fast and simple unsuper-
vised word segmentation algorithm that uti-
lizes the local predictability of adjacent char-
acter sequences, while searching for a least-
effort representation of the data. The model
uses branching entropy as a means of con-
straining the hypothesis space, in order to ef-
ficiently obtain a solution that minimizes the
length of a two-part MDL code. An evaluation
with corpora in Japanese, Thai, English, and
the ”CHILDES” corpus for research in lan-
guage development reveals that the algorithm
achieves an accuracy, comparable to that of
the state-of-the-art methods in unsupervised
word segmentation, in a significantly reduced
computational time.

1 Introduction

As an inherent preprocessing step to nearly all NLP
tasks for writing systems without orthographical
marking of word boundaries, such as Japanese and
Chinese, the importance of word segmentation has
lead to the emergence of a micro-genre in NLP fo-
cused exclusively on this problem.

Supervised probabilistic models such as Condi-
tional Random Fields (CRF) (Lafferty et al., 2001)
have a wide application to the morphological anal-
ysis of these languages. However, the development
of the annotated training corpora necessary for their

functioning is a labor-intensive task, which involves
multiple stages of manual tagging. Because of the
scarcity of labeled data, the domain adaptation of
morphological analyzers is also problematic, and
semi-supervised algorithms that address this issue
have also been proposed (e.g. Liang, 2005; Tsuboi
et al., 2008).

Recent advances in unsupervised word segmen-
tation have been promoted by human cognition re-
search, where it is involved in the modeling of the
mechanisms that underlie language acquisition. An-
other motivation to study unsupervised approaches
is their potential to support the domain adaptation of
morphological analyzers through the incorporation
of unannotated training data, thus reducing the de-
pendency on costly manual work. Apart from the
considerable difficulties in discovering reliable cri-
teria for word induction, the practical application
of such approaches is impeded by their prohibitive
computational cost.

In this paper, we address the issue of achiev-
ing high accuracy in a practical computational time
through an efficient method that relies on a combina-
tion of evidences: the local predictability of charac-
ter patterns, and the reduction of effort achieved by
a given representation of the language data. Both of
these criteria are assumed to play a key role in native
language acquisition. The proposed model allows
experimentation in a more realistic setting, where
the learner is able to apply them simultaneously. The
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method shows a high performance in terms of accu-
racy and speed, can be applied to language samples
of substantial length, and generalizes well to corpora
in different languages.

2 Related Work

The principle of least effort (Zipf, 1949) postulates
that the path of minimum resistance underlies all
human behavior. Recent research has recognized
its importance in the process of language acquisi-
tion (Kit, 2003). Compression-based word induc-
tion models comply to this principle, as they reor-
ganize the data into a more compact representation
while identifying the vocabulary of a text. The min-
imum description length framework (MDL) (Ris-
sanen, 1978) is an appealing means of formalizing
such models, as it provides a robust foundation for
learning and inference, based solely on compres-
sion.

The major problem in MDL-based word segmen-
tation is the lack of standardized search algorithms
for the exponential hypothesis space (Goldwater,
2006). The representative MDL models compare
favorably to the current state-of-the-art models in
terms of accuracy. Brent and Cartwright (1996) car-
ried out an exhaustive search through the possible
segmentations of a limited subset of the data. Yu
(2000) proposed an EM optimization routine, which
achieved a high accuracy, in spite of a lower com-
pression than the gold standard segmentation.

As a solution to the aforementioned issue, the pro-
posed method incorporates the local predictability of
character sequences into the inference process. Nu-
merous studies have shown that local distributional
cues can serve well the purpose of inducing word
boundaries. Behavioral science has confirmed that
infants are sensitive to the transitional probabilities
found in speech (Saffran et al., 1996). The increase
in uncertainty following a given word prefix is a
well studied criterion for morpheme boundary pre-
diction (Harris, 1955). A good deal of research has
been conducted on methods through which such lo-
cal statistics can be applied to the word induction
problem (e.g. Kempe, 1999; Huang and Powers,
2003; Jin and Tanaka-Ishii, 2006). Hutchens and
Adler (1998) noticed that entropic chunking has the
effect of reducing the perplexity of a text.

Most methods for unsupervised word segmenta-
tion based solely on local statistics presume a cer-
tain – albeit minimum – level of acquaintance with
the target language. For instance, the model of
Huang and Powers (2003) involves some parame-
ters (Markov chain order, numerous threshold val-
ues) that allow its adaptation to the individuality of
written Chinese. In comparison, the method pro-
posed in this paper generalizes easily to a variety of
languages and domains, and is less dependent on an-
notated development data.

The state-of-the-art in unsupervised word seg-
mentation is represented by Bayesian models. Gold-
water et al. (2006) justified the importance of
context as a means of avoiding undersegmentation,
through a method based on hierarchical Dirichlet
processes. Mochihashi et al. (2009) proposed ex-
tensions to this method, which included a nested
character model and an optimized inference proce-
dure. Johnson and Goldwater (2009) have proposed
a novel method based on adaptor grammars, whose
accuracy surpasses the aforementioned methods by
a large margin, when appropriate assumptions are
made regarding the structural units of a language.

3 Proposed Method

3.1 Word segmentation with MDL
The proposed two-part code incorporates some ex-
tensions of models presented in related work, aimed
at achieving a more precise estimation of the repre-
sentation length. We first introduce the general two-
part code, which consists of:

• the model, embodied by a codebook, i.e., a lexi-
con of unique word typesM = {w1, ..., w|M |},

• the source text D, obtained through encoding
the corpus using the lexicon.

The total description length amounts to the num-
ber of bits necessary for simultaneous transmission
of the codebook and the source text. Therefore, our
objective is to minimize the combined description
length of both terms:

L(D,M) = L(M) + L(D|M).

The description length of the data given M is cal-
culated using the Shannon-Fano code:
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L(D|M) = −
|M |∑
j=1

#wj log2 P (wj),

where #wj stands for the frequency of the word wj
in the text.

Different strategies have been proposed in the lit-
erature for the calculation of the codebook cost. A
common technique in segmentation and morphology
induction models is to calculate the product of the
total length in characters of the lexicon and an esti-
mate of the per-character entropy. In this way, both
the probabilities and lengths of words are taken into
consideration. The use of a constant value is an ef-
fective and easily computable approach, but it is far
from precise. For instance, in Yu (2000) the average
entropy per character is measured against the orig-
inal corpus, but this model does not capture the ef-
fects of the word distributions on the observed char-
acter probabilities. For this reason, we propose a
different method: the codebook is modeled as a sep-
arate Markov chain of characters.

A lexicon of characters M ′ is defined. The de-
scription length of the lexicon data D′ given M ′ is
then calculated as:

L(D′|M ′) = −
|C|∑
i=1

#ci log2 P (ci),

where #ci denotes the frequency of a character ci
in the lexicon of hypothesis M . The term L(M ′)
is constant for any choice of hypothesis, as is repre-
sents the character set of a corpus.

The total description length under the proposed
model is thus calculated as:

L(M) + L(D|M) = L(M ′) + L(D′|M ′) + L(D|M) =

−
|C|∑
i=1

#ci log2 P (ci)−
|M |∑
j=1

#wj log2 P (wj) +O(1).

A rigorous definition should include two addi-
tional terms, L(θ|M) and L(θ′|M ′), which give the
representation cost of the parameters of both mod-
els. The L(θ|M) can be calculated as:

L(θ|M) =
|M | − 1

2
∗ log2 S,

where |M | − 1 gives the number of parameters (de-
grees of freedom), and S is the size of the dataset

(the total length of the text in characters). The para-
metric complexity term is calculated in the same
way for the lexicon. For a derivation of the above
formula, refer to e.g. Li (1998).

MDL is closely related to Bayesian inference. De-
pending on the choice of a universal code, the two
approaches can overlap, as is the case with the two-
part code discussed in this paper. It can be shown
that the model selection in our method is equiva-
lent to a MAP inference, conducted under the as-
sumption that the prior probability of a model de-
creases exponentially with its length (Goldwater,
2006). Thus, the task that we are trying to accom-
plish is to conduct a focused search through the hy-
pothesis space that will allow us to obtain an approx-
imation of the MAP solution in a reasonable time.

The MDL framework does not provide standard
search algorithms for obtaining the hypotheses that
minimize the description length. In the rest of this
section, we will describe an efficient technique suit-
able for the word segmentation task.

3.2 Obtaining an initial hypothesis

First, a rough initial hypothesis is built by an algo-
rithm that combines the branching entropy and MDL
criteria.

Given a setX , comprising all the characters found
in a text, the entropy of branching at position k of the
text is defined as:

H(Xk|xk−1, ..., xk−n) =

−
∑
x∈X

P (x|xk−1, ..., xk−n) log2 P (x|xk−1, ..., xk−n),

where xk represents the character found at position
k, and n is the order of the Markov model over char-
acters. For brevity, hereafter we shall denote the ob-
served sequence {xk−1, ..., xk−n} as {xk−1:k−n} .

The above definition is extended to combine the
entropy estimates in the left-to-right and right-to-
left directions, as this factor has reportedly improved
performance figures for models based on branching
entropy (Jin and Tanaka-Ishii, 2006). The estimates
in both directions are summed up, yielding a single
value per position:
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H ′(Xk;k−1|xk−1:k−n;xk:k+n−1) =

−
∑
x∈X

P (x|xk−1:k−n) log2 P (x|xk−1:k−n)

−
∑
x∈X

P (x|xk:k+n−1) log2 P (x|xk:k+n−1).

Suffix arrays are employed during the collection
of frequency statistics. For a character model of or-
der n over a testing corpus of size t and a training
corpus of size m, suffix arrays allow these to be
acquired in O(tn logm) time. Faster implementa-
tions reduce the complexity toO(t(n+logm)). For
further discussion, see Manber and Myers (1991).
During the experiments, we did not use the caching
functionality provided by the suffix array library, but
instead kept the statistics for the current iterative
pass (n-gram order and direction) in a local table.

The chunking technique we adopt is to insert a
boundary when the branching entropy measured in
sequences of length n exceeds a certain threshold
value (H(X|xk−1:k−n) > β). Both n and β are fixed.

Within the described framework, the increase in
context length n promotes precision and recall at
first, but causes a performance degradation when the
entropy estimates become unreliable due to the re-
duced frequencies of long strings. High threshold
values produce a combination of high precision and
low recall, while low values result in low precision
and high recall.

Since the F-score curve obtained as decreasing
values are assigned to the threshold is typically uni-
modal as in many applications of MDL, we employ
a bisection search routine for the estimation of the
threshold (Algorithm 1).

All positions of the dataset are sorted by their en-
tropy values. At each iteration, at most two new
hypotheses are built, and their description lengths
are calculated in time linear to the data size. The
computational complexity of the described routine
is O(t log t), where t is the corpus length in charac-
ters.

The order of the Markov chain n used during the
entropy calculation is the only input variable of the
proposed model. Since different values perform the
best across the various languages, the most appro-
priate settings can be obtained with the help of a
small annotated corpus. However, the MDL objec-
tive also enables unsupervised optimization against

Algorithm 1 Generates an initial hypothesis.
thresholds[] := sorted H(Xk) values;
threshold := median of thresholds[];
step := length of thresholds[]/4;
direction := ascending;
minimum := +∞;
while step > 0 do

nextThreshold := thresholds[] value one step in last
direction;
DL = calculateDL(nextThreshold);
if DL < minimum then

minimum:= DL; threshold := nextThreshold;
step := step/2; continue;

end if
reverse direction;
nextThreshold := thresholds[] value one step in last
direction;
if DL < minimum then

minimum:= DL; threshold := nextThreshold;
step := step/2; continue;

end if
reverse direction;
step := step/2;

end while

Corpus [1] [2] [3] [4]
CHILDES 394655.52 367711.66 368056.10 405264.53
Kyoto 1.291E+07 1.289E+07 1.398E+07 1.837E+07

Table 1: Length in bits of the solutions proposed by Al-
gorithm 1 with respect to the character n-gram order.

a sufficiently large unlabeled dataset. The order that
minimizes the description length of the data can be
discovered in a few iterations of Algorithm 1 with
increasing values of n, and it typically matches the
optimal value of the parameter (Table 1).

Although an acceptable initial segmentation can
be built using the described approach, it is possible
to obtain higher accuracy with an extended model
that takes into account the statistics of Markov
chains from several orders during the entropy calcu-
lation. This can be done by summing up the entropy
estimates, in the way introduced earlier for combin-
ing the values in both directions:

H ′′(Xk;k−1|xk−1:k−n;xk:k+n−1) =

−
nmax∑
n=1

(
∑
x∈X

P (x|xk−1:k−n) log2 P (x|xk−1:k−n)

+
∑
x∈X

P (x|xk:k+n−1) log2 P (x|xk:k+n−1)),
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where nmax is the index of the highest order to be
taken into consideration.

3.3 Refining the initial hypothesis
In the second phase of the proposed method, we will
refine the initial hypothesis through the reorganiza-
tion of local co-occurrences which produce redun-
dant description length. We opt for greedy optimiza-
tion, as our primary interest is to further explore the
impact that description length minimization has on
accuracy. Of course, such an approach is unlikely
to obtain global minima, but it is a feasible means of
conducting the optimization process, and guarantees
a certain increase in compression.

Since a preliminary segmentation is available, it
is convenient to proceed by inserting or removing
boundaries in the text, thus splitting or merging the
already discovered tokens. The ranked positions in-
volved in the previous step can be reused here, as
this is a way to bias the search towards areas of
the text where boundaries are more likely to occur.
Boundary insertion should start in regions where the
branching entropy is high, and removal should first
occur in regions where the entropy is close to zero.
A drawback of this approach is that it omits loca-
tions where the gains are not immediately obvious,
as it cannot assess the cumulative gains arising from
the merging or splitting of all occurrences of a cer-
tain pair (Algorithm 2).

A clean-up routine, which compensates for this
shortage, is also implemented (Algorithm 3). It op-
erates directly on the types found in the lexicon pro-
duced by Algorithm 2, and is capable of modify-
ing a large number of occurrences of a given pair
in a single step. The lexicon types are sorted by
their contribution to the total description length of
the corpus. For each word type, splitting or merg-
ing is attempted at every letter, beginning from the
center. The algorithm eliminates unlikely types with
low contribution, which represent mostly noise, and
redistributes their cost among more likely ones. The
design of the merging routine makes it impossible to
produce types longer than the ones already found in
the lexicon, as an exhaustive search would be pro-
hibitive.

The evaluation of each hypothetical change in
the segmentation requires that the description length
of the two-part code is recalculated. In order to

Algorithm 2 Compresses local token co-occurrences.
path[][]:= positions sorted by H(Xk) values;
minimum := DL of model produced at initialization;
repeat

for i = max H(Xk) to min H(Xk) do
pos:= path[i][k];
if no boundary exists at pos then

leftToken := token to the left;
rightToken := token to the right;
longToken := leftToken + rightToken;
calculate DL after splitting;
if DL < minimum then

accept split, update model, update DP vari-
ables;

end if
end if

end for
for i = min H(Xk) to max H(Xk) do

merge leftToken and rightToken into longToken
if DL will decrease (analogous to splitting)

end for
until no change is evident in model

Algorithm 3 A lexicon clean-up procedure.
types[] := lexicon types sorted by cost;
minimum := DL of model produced by Algorithm 2;
repeat

for i = min cost to max cost do
for pos = middle to both ends of types[i] do

longType := types[i];
leftType := sequence from first character to
pos;
rightType:= sequence from pos to last charac-
ter;
calculate DL after splitting longType into left-
Type and rightType;
if DL < minimum then

accept split, update model, update DP vari-
ables;
break out of inner loop;

end if
end for

end for
types[] := lexicon types sorted by cost;
for i = max cost to min cost do

for pos = middle to both ends of types[i] do
merge leftType and rightType into longType if
DL will decrease (analogous to splitting)
break out of inner loop;

end for
end for

until no change is evident in model
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make this optimization phase computationally fea-
sible, dynamic programming is employed in Algo-
rithms 2 and 3. The approach adopted for the re-
calculation of the source text term L(D|M) is ex-
plained below. The estimation of the lexicon cost is
analogous. The term L(D|M) can be rewritten as:

L(D|M) = −
|M |∑
j=1

#wj log2

#wj

N
=

−
|M |∑
j=1

#wj log2 #wj +N log2N = T1 + T2,

where #wj is the frequency of wj in the segmented
corpus, and N =

∑|M |
j=1 #wj is the cumulative to-

ken count. In order to calculate the new length, we
keep the values of the terms T1 and T2 obtained at
the last change of the model. Their new values are
computed for each hypothetical split or merge on the
basis of the last values, and the expected description
length is calculated as their sum. If the produced es-
timate is lower, the model is modified and the new
values of T1 and T2 are stored for future use.

In order to maintain precise token counts, Algo-
rithms 2 and 3 recognize the fact that recurring se-
quences (”byebye” etc.) appear in the corpora, and
handle them accordingly. Known boundaries, such
as the sentence boundaries in the CHILDES corpus,
are also taken into consideration.

4 Experimental Settings

We evaluated the proposed model against four
datasets. The first one is the Bernstein-Ratner cor-
pus for language acquisition based on transcripts
from the CHILDES database (Bernstein-Ratner,
1987). It comprises phonetically transcribed utter-
ances of adult speech directed to 13 through 21-
month-old children. We evaluated the performance
of our learner in the cases when the few boundaries
among the individual sentences are available to it
(B), and when it starts from a blank state (N). The
Kyoto University Corpus (Kurohashi and Nagao,
1998) is a standard dataset for Japanese morpho-
logical and dependency structure analysis, which
comprises newspaper articles and editorials from the
Mainichi Shimbun. The BEST corpus for word seg-
mentation and named entity recognition in Thai lan-
guage combines text from a variety of sources in-

Corpus Language Size
(MB)

Chars
(K)

Tokens
(K)

Types
(K)

CHILDES-
B/N

English 0.1 95.8 33.3 1.3

Kyoto Japanese 5.02 1674.9 972.9 39.5
WSJ English 5.22 5220.0 1174.2 49.1
BEST-E Thai 12.64 4360.2 1163.2 26.2
BEST-N Thai 18.37 6422.7 1659.4 36.3
BEST-A Thai 4.59 1619.9 438.7 13.9
BEST-F Thai 16.18 5568.0 1670.8 22.6
Wikipedia Japanese 425.0 169069.3 / /
Asahi Japanese 337.2 112401.1 / /
BEST-All Thai 51.2 17424.0 4371.8 73.4

Table 2: Corpora used during the evaluation. Precise to-
ken and type counts have been omitted for Wikipedia and
Asahi, as no gold standard segmentations are available.

cluding encyclopedias (E), newspaper articles (N),
scientific articles (A), and novels (F). The WSJ sub-
set of the Penn Treebank II Corpus incorporates
selected stories from the Wall Street Journal, year
1989 (Marcus et al., 1994). Both the original text
(O), and a version in which all characters were con-
verted to lower case (L) were used.

The datasets listed above were built by remov-
ing the tags and blank spaces found in the corpora,
and concatenating the remaining text. We added
two more training datasets for Japanese, which were
used in a separate experiment solely for the acqui-
sition of frequency statistics. One of them was
created from 200,000 randomly chosen Wikipedia
articles, stripped from structural elements. The
other one contains text from the year 2005 issues of
Asahi Newspaper. Statistics regarding all described
datasets are presented in Table 2.

One whole corpus is segmented in each experi-
ment, in order to avoid the statement of an extended
model that would allow the separation of training
and test data. This setting is also necessary for the
direct comparison between the proposed model and
other recent methods evaluated against the entire
CHILDES corpus.

We report the obtained precision, recall and F-
score values calculated using boundary, token and
type counts. Precision (P) and recall (R) are defined
as:

P =
#correct units

# output units
, R =

#correct units

#gold standard units
.

Boundary, token and lexicon F-scores, denoted
as B-F and T -F and L-F , are calculated as the
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Model Corpus & Settings B-Prec B-Rec B-F T-Prec T-Rec T-F DL
(bits)

Ref.DL
(bits)

Time
(ms)

1 CHILDES, α = 1.2, n = [1-6] 0.8667 0.8898 0.8781 0.6808 0.6990 0.6898 344781.74 1060.2
2a (H′) CHILDES, n = 2 0.7636 0.9109 0.8308 0.5352 0.6384 0.5823 367711.66 300490.52 753.1
2b (H′′) CHILDES, nmax = 3 0.8692 0.8865 0.8777 0.6792 0.6927 0.6859 347633.07 885.3
1 Kyoto, α = 0, n = [1-6] 0.8208 0.8208 0.8208 0.5784 0.5784 0.5784 1.325E+07 54958.8
2a (H′) Kyoto, n = 2 0.8100 0.8621 0.8353 0.5934 0.6316 0.6119 1.289E+07 1.120E+07 22909.7
2b (H′′) Kyoto, nmax = 2 0.8024 0.9177 0.8562 0.6093 0.6969 0.6501 1.248+E07 23212.8

Table 3: Comparison of the proposed method (2a, 2b) with the model of Jin and Tanaka-Ishii (2006) (1). Execution
times include the obtaining of frequency statistics, and are represented by averages over 10 runs.

harmonic averages of the corresponding precision
and recall values (F = 2PR/(P + R)). As a
rule, boundary-based evaluation produces the high-
est scores among the three evaluation modes, as it
only considers the correspondence between the pro-
posed and the gold standard boundaries at the indi-
vidual positions of the corpora. Token-based evalua-
tion is more strict – it accepts a word as correct only
if its beginning and end are identified accurately, and
no additional boundaries lie in between. Lexicon-
based evaluation reflects the extent to which the vo-
cabulary of the original text has been recovered.
It provides another useful perspective for the error
analysis, which in combination with token scores
can give a better idea of the relationship between the
accuracy of induction and item frequency.

The system was implemented in Java, however it
handled the suffix arrays through an external C li-
brary called Sary.1 All experiments were conducted
on a 2 GHz Core2Duo T7200 machine with 2 GB
RAM.

5 Results and Discussion

The scores we obtained using the described instan-
tiations of the branching entropy criterion at the ini-
tialization phase are presented in Table 3, along with
those generated by our own implementation of the
method presented in Jin and Tanaka-Ishii (2006),
where the threshold parameter α was adjusted man-
ually for optimal performance.

The heuristic of Jin and Tanaka-Ishii takes advan-
tage of the trend that branching entropy decreases
as the observed character sequences become longer;
sudden rises can thus be regarded as an indication of
locations where a boundary is likely to exist. Their
method uses a common value for thresholding the

1http://sary.sourceforge.net

entropy change throughout all n-gram orders, and
combines the boundaries discovered in both direc-
tions in a separate step. These properties of the
method would lead to complications if we tried to
employ it in the first phase of our method (i.e. a step
parameter for iterative adjustment of the threshold
value, rules for combining the boundaries, etc.).

The proposed criterion with an automatically de-
termined threshold value produced slightly worse
results than that of Jin and Tanaka-Ishii at the
CHILDES corpus. However, we found out that our
approach achieves approximately 1% higher score
when the best performing threshold value is selected
from the candidate list. There are two observations
that account for the suboptimal threshold choice by
our algorithm. On one hand, the correspondence
between description length and F-score is not abso-
lutely perfect, and this may pose an obstacle to the
optimization process for relatively small language
samples. Another issue lies in the bisection search
routine, which suggests approximations of the de-
scription length minima. The edge that our method
has on the Kyoto corpus can be attributed to a better
estimation of the optimal treshold value due to the
larger amount of data.

The experimental results obtained at the comple-
tion of Algorithm 3 are summarized in Tables 4 and
5. Presented durations include the obtaining of fre-
quency statistics. The nmax parameter is set to the
value which maximizes the compression during the
initial phase, in order to make the results representa-
tive of the case in which no annotated development
corpora are accessible to the algorithm.

It is evident that after the optimization carried out
in the second phase, the description length is re-
duced to levels significantly lower than the ground
truth. In this aspect, the algorithm outperforms the
EM-based method of Yu (2000).
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Corpus & Settings B-F T-F L-F Time
(ms)

CHILDES-B, nmax=3 0.9092 0.7542 0.5890 2597.2
CHILDES-N, nmax=3 0.9070 0.7499 0.5578 2949.3
Kyoto, nmax=2 0.8855 0.7131 0.3725 70164.6
BEST-E, nmax=5 0.9081 0.7793 0.3549 738055.0
BEST-N, nmax=5 0.8811 0.7339 0.2807 505327.0
BEST-A, nmax=5 0.9045 0.7632 0.4246 250863.0
BEST-F, nmax=5 0.9343 0.8216 0.4820 305522.0
WSJ-O, nmax=6 0.8405 0.6059 0.3338 658214.0
WSJ-L, nmax=6 0.8515 0.6373 0.3233 582382.0

Table 4: Results obtained after the termination of Algo-
rithm 3.

Corpus & Settings Description
Length (Proposed)

Description
Length (Total)

CHILDES-B, nmax=3 290592.30 300490.52
CHILDES-N, nmax=3 290666.12 300490.52
Kyoto, nmax=2 1.078E+07 1.120E+07
BEST-E, nmax=5 1.180E+07 1.252E+07
BEST-N, nmax=5 1.670E+07 1.809E+07
BEST-A, nmax=5 4438600.32 4711363.62
BEST-F, nmax=5 1.562E+07 1.634E+07
WSJ-O, nmax=6 1.358E+07 1.460E+07
WSJ-L, nmax=6 1.317E+07 1.399E+07

Table 5: Description length - proposed versus reference
segmentation.

We conducted experiments involving various ini-
tialization strategies: scattering boundaries at ran-
dom throughout the text, starting from entirely un-
segmented state, or considering each symbol of the
text to be a separate token. The results obtained
with random initialization confirm the strong rela-
tionship between compression and segmentation ac-
curacy, evident in the increase of token F-score be-
tween the random initialization and the termination
of the algorithm, where description length is lower
(Table 6). They also reveal the importance of the
branching entropy criterion to the generation of hy-
potheses that maximize the evaluation scores and
compression, as well as the role it plays in the re-
duction of computational time.

T-F-Score Description Time
Random Init Refinement Length (ms)
0.0441 (0.25) 0.3833 387603.02 6660.4
0.0713 (0.50) 0.3721 383279.86 4975.1
0.0596 (0.75) 0.2777 412743.67 3753.3

Table 6: Experimental results for CHILDES-N with ran-
domized initialization and search path. The numbers in
brackets represent the seed boundaries/character ratios.

The greedy algorithms fail to suggest any opti-
mizations that improve the compression in the ex-
treme cases when the boundaries/character ratio is
either 0 or 1. When no boundaries are given, split-
ting operations produce unique types with a low
frequency that increase the cost of both parts of
the MDL code, and are rejected. The algorithm
runs slowly, as each evaluation operates on candi-
date strings of enormous length. Similarly, when the
corpus is broken down into single-character tokens,
merging individual pairs does not produce any in-
crease in compression. This could be achieved by an
algorithm that estimates the total effect from merg-
ing all instances of a given pair, but such an algo-
rithm would be computationally infeasible for large
corpora.

Finally, we tried randomizing the search path for
Algorithm 2 after an entropy-guided initialization, to
observe a small deterioration in accuracy in the final
segmentation (less than 1% on average).

Figure 1a illustrates the effect that training data
size has on the accuracy of segmentation for the Ky-
oto corpus. The learning curves are similar through-
out the different corpora. For the CHILDES cor-
pus, which has a rather limited vocabulary, token
F-score above 70% can be achieved for datasets as
small as 5000 characters of training data, provided
that reasonable values are set for the nmax parameter
(we used the values presented in Table 4 throughout
these experiments).

Figure 1b shows the evolution of token F-score by
stage for all corpora. The initialization phase seems
to have the highest contribution to the formation of
the final segmentation, and the refinement phase is
highly dependent on the output it produces. As a
consequence, results improve when a more adequate
language sample is provided during the learning of
local dependencies at initialization. This is evident
in the experiments with the larger unlabeled Thai
and Japanese corpora.

For Japanese language with the setting for the
nmax parameter that maximized compression, we
observed an almost 4% increase in the token F-score
produced at the end of the first phase with the Asahi
corpus as training data. Only a small (less than 1%)
rise was observed in the overall performance. The
quite larger dataset of randomly chosen Wikipedia
articles achieved no improvement. We attributed this
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Figure 1: a) corpus size / accuracy relationship (Kyoto); b) accuracy levels by phase; c) accuracy levels by phase
with various corpora for frequency statistics (Kyoto); d) accuracy levels by phase with different corpora for frequency
statistics (BEST).

to the higher degree of correspondence between the
domains of the Asahi and Kyoto corpora (Figure 1c).

Experiments with the BEST corpus reveal bet-
ter the influence of domain-specific data on the ac-
curacy of segmentation. Performance deteriorates
significantly when out-of-domain training data is
used. In spite of its size, the assorted composite cor-
pus, in which in-domain and out-of-domain training
data are mixed, produces worse results than the cor-
pora which include only domain-specific data (Fig-
ure 1d).

Finally, a comparison of the proposed method
with Bayesian n-gram models is presented in Ta-
ble 7. Through the increase of compression in the
refinement phase of the algorithm, accuracy is im-
proved by around 3%, and the scores approach those
of the explicit probabilistic models of Goldwater et
al. (2009) and Mochihashi et al. (2009). The pro-
posed learner surpasses the other unsupervised word
induction models in terms of processing speed. It
should be noticed that a direct comparison of accu-

racy is not possible with Mochihashi et al. (2009),
as they evaluated their system with separate datasets
for training and testing. Furthermore, different seg-
mentation standards exist for Japanese, and there-
fore the ”ground truth” provided by the Kyoto cor-
pus cannot be considered an ideal measure of accu-
racy.

6 Conclusions and Future Work

This paper has presented an efficient algorithm for
unsupervised word induction, which relies on a
combination of evidences. New instantiations of the
branching entropy and MDL criteria have been pro-
posed and evaluated against corpora in different lan-
guages. The MDL-based optimization eliminates
the discretion in the choice of the context length
and threshold parameters, common in segmenta-
tion models based on local statistics. At the same
time, the branching entropy criterion enables a con-
strained search through the hypothesis space, allow-
ing the proposed method to demonstrate a very high
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Model Corpus T-Prec T-Rec T-F L-Prec L-Rec L-F Time
NPY(3) CHILDES 0.7480 0.7520 0.7500 0.4780 0.5970 0.5310 17 min
NPY(2) CHILDES 0.7480 0.7670 0.7570 0.5730 0.5660 0.5700 17 min
HDP(2) CHILDES 0.7520 0.6960 0.7230 0.6350 0.5520 0.5910 -
Ent-MDL CHILDES 0.7634 0.7453 0.7542 0.6844 0.5170 0.5890 2.60 sec
NPY(2) Kyoto - - 0.6210 - - - -
NPY(3) Kyoto - - 0.6660 - - - -
Ent-MDL Kyoto 0.6912 0.7365 0.7131 0.5908 0.2720 0.3725 70.16 sec

Table 7: Comparison of the proposed method (Ent-MDL) with the methods of Mochihashi et al., 2009 (NPY) and
Goldwater et al., 2009 (HDP).

performance in terms of both accuracy and speed.
Possible improvements of the proposed method

include modeling the dependencies among neigh-
boring tokens, which would allow the evaluation
of the context to be reflected in the cost func-
tion. Mechanisms for stochastic optimization imple-
mented in the place of the greedy algorithms could
provide an additional flexibility of search for such
more complex models. As the proposed approach
provides significant performance improvements, it
could be utilized in the development of more so-
phisticated novel word induction schemes, e.g. en-
semble models trained independently with different
data. Of course, we are also going to explore the
model’s potential in the setting of semi-supervised
morphological analysis.
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Abstract

We show that the standard beam-search al-
gorithm can be used as an efficient decoder
for the global linear model of Zhang and
Clark (2008) for joint word segmentation and
POS-tagging, achieving a significant speed im-
provement. Such decoding is enabled by:
(1) separating full word features from par-
tial word features so that feature templates
can be instantiated incrementally, according to
whether the current character is separated or
appended; (2) deciding thePOS-tag of a poten-
tial word when its first character is processed.
Early-update is used with perceptron training
so that the linear model gives a high score to a
correct partial candidate as well as a full out-
put. Effective scoring of partial structures al-
lows the decoder to give high accuracy with a
small beam-size of 16. In our 10-fold cross-
validation experiments with the Chinese Tree-
bank, our system performed over 10 times as
fast as Zhang and Clark (2008) with little ac-
curacy loss. The accuracy of our system on
the standardCTB 5 test was competitive with
the best in the literature.

1 Introduction and Motivation

Several approaches have been proposed to solve
word segmentation andPOS-tagging jointly, includ-
ing the reranking approach (Shi and Wang, 2007;
Jiang et al., 2008b), the hybrid approach (Nakagawa
and Uchimoto, 2007; Jiang et al., 2008a), and the
single-model approach (Ng and Low, 2004; Zhang
and Clark, 2008; Kruengkrai et al., 2009). These
methods led to accuracy improvements over the tra-
ditional, pipelined segmentation andPOS-tagging

baseline by avoiding segmentation error propagation
and making use of part-of-speech information to im-
prove segmentation.

The single-model approach to joint segmentation
andPOS-tagging offers consistent training of all in-
formation, concerning words, characters and parts-
of-speech. However, exact inference with dynamic
programming can be infeasible if features are de-
fined over a large enough range of the output, such
as over a two-word history. In our previous work
(Zhang and Clark, 2008), which we refer to as
Z&C08 from now on, we used an approximate de-
coding algorithm that keeps track of a set of partially
built structures for each character, which can be seen
as a dynamic programming chart which is greatly re-
duced by pruning.

In this paper we follow the line of single-model
research, in particular the global linear model of
Z&C08. We show that effective decoding can be
achieved with standard beam-search, which gives
significant speed improvements compared to the de-
coding algorithm of Z&C08, and achieves accura-
cies that are competitive with the state-of-the-art.
Our research is also in line with recent research on
improving the speed ofNLP systems with little or
no accuracy loss (Charniak et al., 2006; Roark and
Hollingshead, 2008).

Our speed improvement is achieved by the use
of a single-beam decoder. Given an input sentence,
candidate outputs are built incrementally, one char-
acter at a time. When each character is processed,
it is combined with existing candidates in all possi-
ble ways to generate new candidates, and an agenda
is used to keep theN -best candidate outputs from
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the begining of the sentence to the current character.
Compared to the multiple-beam search algorithm of
Z&C08, the use of a single beam can lead to an order
of magnitude faster decoding speed.

1.1 The processing of partial words

An important problem that we solve in this paper
is the handling of partial words with a single beam
decoder for the global model. As we pointed out
in Z&C08, it is very difficult to score partial words
properly when they are compared with full words,
although such comparison is necessary for incre-
mental decoding with a single-beam. To allow com-
parisons with full words, partial words can either be
treated as full words, or handled differently.

We showed in Z&C08 that a naive single-beam
decoder which treats partial words in the same way
as full words failed to give a competitive accu-
racy. An important reason for the low accuracy is
over-segmentation during beam-search. Consider
the three characters “自来水 (tap water)”. The first
two characters do not make sense when put together
as a single word. Rather, when treated as two single-
character words, they can make sense in a sentence
such as “请 (please)自 (self)来 (come)取 (take)”.
Therefore, when using single-beam search to pro-
cess “自来水 (tap water)”, the two-character word
candidate “自来” is likely to have been thrown off
the agenda before the third character “水” is con-
sidered, leading to an unrecoverable segmentation
error.

This problem is even more severe for a joint seg-
mentor andPOS-tagger than for a pure word seg-
mentor, since thePOS-tags andPOS-tag bigram of
“自” and “来” further supports them being separated
when ”来” is considered. The multiple-beam search
decoder we proposed in Z&C08 can be seen as a
means to ensure that the three characters “自来水”
always have a chance to be considered as a single
word. It explores candidate segmentations from the
beginning of the sentence until each character, and
avoids the problem of processing partial words by
considering only full words. However, since it ex-
plores a larger part of the search space than a single-
beam decoder, its time complexity is correspond-
ingly higher.

In this paper, we treat partial words differently
from full words, so that in the previous example,

the decoder can take the first two characters in “自

来水 (tap water)” as a partial word, and keep it
in the beam before the third character is processed.
One challenge is the representation ofPOS-tags for
partial words. ThePOS of a partial word is unde-
fined without the corresponding full word informa-
tion. Though a partial word can make sense with
a particularPOS-tag when it is treated as a com-
plete word, thisPOS-tag is not necessarily thePOSof
the full word which contains the partial word. Take
the three-character sequence “下雨天” as an exam-
ple. The first character “下” represents a single-
character word “below”, for which thePOS can be
LC or VV . The first two characters “下雨” repre-
sent a two-character word “rain”, for which thePOS

can beVV . Moreover, all three characters when put
together make the word “rainy day”, for which the
POS is NN. As discussed above, assigningPOS tags
to partial words as if they were full words leads to
low accuracy.

An obvious solution to the above problem is not to
assign aPOSto a partial word until it becomes a full
word. However, lack ofPOS information for partial
words makes them less competitive compared to full
words in the beam, since the scores of full words are
futher supported byPOS and POS ngram informa-
tion. Therefore, not assigningPOS to partial words
potentially leads to over segmentation. In our exper-
iments, this method did not give comparable accura-
cies to our Z&C08 system.

In this paper, we take a different approach, and
assign aPOS-tag to a partial word when its first char-
acter is separated from the final character of the pre-
vious word. When more characters are appended to
a partial word, thePOS is not changed. The idea is
to use thePOSof a partial word as the predictedPOS

of the full word it will become. Possible predictions
are made with the first character of the word, and the
likely ones will be kept in the beam for the next pro-
cessing steps. For example, with the three characters
“下雨天”, we try to keep two partial words (besides
full words) in the beam when the first word “下” is
processed, with thePOSbeingVV andNN, respec-
tively. The firstPOSpredicts the two-character word
“下雨”，and the second the three-character word
“下雨天”. Now when the second character is pro-
cessed, we still need to maintain the possiblePOS

NN in the agenda, which predicts the three-character
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word “下雨天”.
As a main contribution of this paper, we show that

the mechanism of predicting thePOSat the first char-
acter gives competitive accuracy. This mechanism
can be justified theoretically. Unlike alphabetical
languages, each Chinese character represents some
specific meanings. Given a character, it is natural for
a human speaker to know immediately what types
of words it can start. The allows the knowledge of
possiblePOS-tags of words that a character can start,
using information about the character from the train-
ing data. Moreover, thePOSof the previous words to
the current word are also useful in deciding possible
POSfor the word.1

The mechanism of first-character decision ofPOS

also boosts the efficiency, since the enumeration of
POS is unecessary when a character is appended to
the end of an existing word. As a result, the com-
plexity of each processing step is reduce by half
compared to a method withoutPOSprediction.

Finally, an intuitive way to represent the status of
a partial word is using a flag explicitly, which means
an early decision of the segmentation of the next in-
coming character. We take a simpler alternative ap-
proach, and treat every word as a partial word un-
til the next incoming character is separated from the
last character of this word. Before a word is con-
firmed as a full word, we only apply to it features
that represent its current partial status, such as char-
acter bigrams, its starting character and its part-of-
speech, etc. Full word features, including the first
and last characters of a word, are applied immedi-
ately after a word is confirmed as complete.

An important component for our proposed system
is the training process, which needs to ensure that
the model scores a partial word with predictedPOS

properly. We use the averaged perceptron (Collins,
2002) for training, together with the “early update”
mechanism of Collins and Roark (2004). Rather
than updating the parameters after decoding is com-
plete, the modified algorithm updates parameters at
any processing step if the correct partial candidate
falls out of the beam.

In our experiments using the Chinese Treebank

1The next incoming characters are also a useful source
of information for predicting thePOS. However, our system
achieved competitive accuracy with Z&C08 without such char-
acter lookahead features.

data, our system ran an order of magnitude faster
than our Z&C08 system with little loss of accuracy.
The accuracy of our system was competitive with
other recent models.

2 Model and Feature Templates

We use a linear model to score both partial and full
candidate outputs. Given an inputx, the score of a
candidate outputy is computed as:

Score(y) = Φ(y) · ~w,

whereΦ(y) is the global feature vector extracted
from y, and~w is the parameter vector of the model.

Figure 1 shows the feature templates for the
model, where templates 1 – 14 contain only seg-
mentation information and templates 15 – 29 contain
both segmentation andPOS information. Each tem-
plate is instantiated according to the current charac-
ter in the decoding process. Row “For” shows the
conditions for template instantiation, where “s” in-
dicates that the corresponding template is instanti-
ated when the current character starts a new word,
and “a” indicates that the corresponding template is
instantiated when the current character does not start
a new word. In the row for feature templates,w, t
and c are used to represent a word, aPOS-tag and
a character, respectively. The subscripts are based
on the current character, wherew

−1 represents the
first word to the left of the current character, and
p
−2 represents thePOS-tag on the second word to

the left of the current character, and so on. As an
example, feature template 1 is instantiated when the
current character starts a new word, and the resulting
feature value is the word to the left of this charac-
ter. start(w), end(w) andlen(w) represent the first
character, the last character and the length of word
w, respectively. The length of a word is normalized
to 16 if it is larger than 16.cat(c) represents thePOS

category of characterc, which is the set ofPOS-tags
seen on characterc, as we used in Z&C08.

Given a partial or complete candidatey, its global
feature vectorΦ(y) is computed by instantiating all
applicable feature templates from Table 1 for each
character iny, according to whether or not the char-
acter is separated from the previous character.

The feature templates are mostly taken from, or
inspired by, the feature templates of Z&C08. Tem-
plates 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 15, 19, 20,
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Feature template For

1 w
−1 s

2 w
−1w−2 s

3 w
−1, wherelen(w

−1) = 1 s
4 start(w

−1)len(w
−1) s

5 end(w
−1)len(w

−1) s
6 end(w

−1)c0 s
7 c

−1c0 a
8 begin(w

−1)end(w
−1) s

9 w
−1c0 s

10 end(w
−2)w−1 s

11 start(w
−1)c0 s

12 end(w
−2)end(w

−1) s
13 w

−2len(w
−1) s

14 len(w
−2)w−1 s

15 w
−1t−1 s

16 t
−1t0 s

17 t
−2t−1t0 s

18 w
−1t0 s

19 t
−2w−1 s

20 w
−1t−1end(w

−2) s
21 w

−1t−1c0 s
22 c

−2c−1c0t−1, s
wherelen(w

−1) = 1
23 start(w0)t0 s
24 t

−1start(w
−1) s

25 t0c0 s, a
26 c0t0start(w0) a
27 ct

−1end(w
−1), s

wherec ∈ w
−1 andc 6= end(w

−1)
28 c0t0cat(start(w0)) s
29 ct

−1cat(end(w
−1)), s

wherec ∈ w
−1 andc 6= end(w

−1)
30 c0t0c−1t−1 s
31 c0t0c−1 a

Table 1: Feature templates.

24, 27 and 29 concern complete word information,
and they are used in the model to differentiate cor-
rect and incorrect output structures in the same way
as our Z&C08 model. Templates 6, 7, 9, 16, 17,
18, 21, 22, 23, 25, 26 and 28 concern partial word
information, whose role in the model is to indicate
the likelihood that the partial word including the cur-
rent character will become a correct full word. They
act as guidance for the action to take for the cur-

function DECODE(sent, agenda):
CLEAR(agenda)
ADDITEM(agenda, “”)
for index in [0..LEN(sent)]:

for cand in agenda:
new← APPEND(cand, sent[index])
ADDITEM(agenda, new)
for pos in TAGSET():

new← SEP(cand, sent[index], pos)
ADDITEM(agenda, new)

agenda← N-BEST(agenda)
return BEST(agenda)

Figure 1: The incremental beam-search decoder.

rent character according to the context, and are the
crucial reason for the effectiveness of the algorithm
with a small beam-size.

2.1 Decoding

The decoding algorithm builds an output candidate
incrementally, one character at a time. Each char-
acter can either be attached to the current word or
separated as the start a new word. When the current
character starts a new word, aPOS-tag is assigned to
the new word. An agenda is used by the decoder to
keep theN -best candidates during the incremental
process. Before decoding starts, the agenda is ini-
tialized with an empty sentence. When a character is
processed, existing candidates are removed from the
agenda and extended with the current character in all
possible ways, and theN -best newly generated can-
didates are put back onto the agenda. After all input
characters have been processed, the highest-scored
candidate from the agenda is taken as the output.

Pseudo code for the decoder is shown in Figure
1. CLEAR removes all items from the agenda, AD-
DITEM adds a new item onto the agenda, N-BEST

returns theN highest-scored items from the agenda,
and BEST returns the highest-scored item from the
agenda. LEN returns the number of characters in a
sentence, andsent[i] returns theith character from
the sentence. APPEND appends a character to the
last word in a candidate, and SEP joins a character
as the start of a new word in a candidate, assigning
a POS-tag to the new word.
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Both our decoding algorithm and the decoding al-
gorithm of Z&C08 run in linear time. However, in
order to generate possible candidates for each char-
acter, Z&C08 uses an extra loop to search for pos-
sible words that end with the current character. A
restriction to the maximum word length is applied
to limit the number of iterations in this loop, with-
out which the algorithm would have quadratic time
complexity. In contrast, our decoder does not search
backword for the possible starting character of any
word. Segmentation ambiguities are resolved by bi-
nary choices between the actions append or sepa-
rate for each character, and noPOS enumeration is
required when the character is appended. This im-
proves the speed by a significant factor.

2.2 Training

The learning algorithm is based on the generalized
perceptron (Collins, 2002), but parameter adjust-
ments can be performed at any character during the
decoding process, using the “early update” mecha-
nism of Collins and Roark (2004).

The parameter vector of the model is initialized as
all zeros before training, and used to decode training
examples. Each training example is turned into the
raw input format, and processed in the same way as
decoding. After each character is processed, partial
candidates in the agenda are compared to the cor-
responding gold-standard output for the same char-
acters. If none of the candidates in the agenda are
correct, the decoding is stopped and the parameter
vector is updated by adding the global feature vector
of the gold-standard partial output and subtracting
the global feature vector of the highest-scored par-
tial candidate in the agenda. The training process
then moves on to the next example. However, if any
item in the agenda is the same as the correspond-
ing gold-standard, the decoding process moves to
the next character, without any change to the pa-
rameter values. After all characters are processed,
the decoder prediction is compared with the training
example. If the prediction is correct, the parame-
ter vector is not changed; otherwise it is updated by
adding the global feature vector of the training ex-
ample and subtracting the global feature vector of
the decoder prediction, just as the perceptron algo-
rithm does. The same training examples can be used
to train the model for multiple iterations. We use

the averaged parameter vector (Collins, 2002) as the
final model.

Pseudocode for the training algorithm is shown in
Figure 2. It is based on the decoding algorithm in
Figure 1, and the main differences are: (1) the train-
ing algorithm takes the gold-standard output and the
parameter vector as two additional arguments; (2)
the training algorithm does not return a prediction,
but modifies the parameter vector when necessary;
(3) lines 11 to 20 are additional lines of code for pa-
rameter updates.

Without lines 11 to 16, the training algorithm is
exactly the same as the generalized perceptron al-
gorithm. These lines are added to ensure that the
agenda contains highly probable candidates during
the whole beam-search process, and they are crucial
to the high accuracy of the system. As stated earlier,
the decoder relies on proper scoring of partial words
to maintain a set of high quality candidates in the
agenda. Updating the value of the parameter vector
for partial outputs can be seen as a means to ensure
correct scoring of partial candidates at any character.

2.3 Pruning

We follow Z&C08 and use several pruning methods,
most of which serve to to improve the accuracy by
removing irrelevant candidates from the beam. First,
the system records the maximum number of charac-
ters that a word with a particularPOS-tag can have.
For example, from the Chinese Treebank that we
used for our experiments, mostPOS are associated
with only with one- or two-character words. The
only POS-tags that are seen with words over ten char-
acters long are NN (noun), NR (proper noun) and
CD (numbers). The maximum word length informa-
tion is initialized as all ones, and updated according
to each training example before it is processed.

Second, a tag dictionary is used to recordPOS-
tags associated with each word. During decoding,
frequent words and words with “closed set” tags2

are only allowedPOS-tags according to the tag dic-
tionary, while other words are allowed everyPOS-tag
to make candidate outputs. Whether a word is a fre-
quent word is decided by the number of times it has
been seen in the training process. Denoting the num-

2“Closed set” tags are the set ofPOS-tags which are only
associated with a fixed set of words, according to the Penn Chi-
nese Treebank specifications (Xia, 2000).
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function TRAIN(sent, agenda, gold-standard, ~w):
01: CLEAR(agenda)
02: ADDITEM(agenda, “”)
03: for index in [0..LEN(sent)]:
04: for cand in agenda:
05: new← APPEND(cand, sent[index])
06: ADDITEM(agenda, new)
07: for pos in TAGSET():
08: new← SEP(cand, sent[index], pos)
09: ADDITEM(agenda, new)
10: agenda← N-BEST(agenda)
11: for cand in agenda:
12: if cand = gold-standard[0:index]:
13: CONTINUE

14: ~w← ~w + Φ(gold-standard[0:index])
15: ~w← ~w - Φ(BEST(agenda))
16: return
17: if BEST(agenda) 6= gold-standard:
18: ~w← ~w + Φ(gold-standard)
19: ~w← ~w - Φ(BEST(agenda))
20: return
21: return

Figure 2: The incremental learning function.

ber of times the most frequent word has been seen
with M , a word is a frequent word if it has been
seen more thanM/5000 + 5 times. The threshold
value is taken from Z&C08, and we did not adjust
it during development. Word frequencies are initial-
ized as zeros and updated according to each training
example before it is processed; the tag dictionary is
initialized as empty and updated according to each
training example before it is processed.

Third, we make an additional record of the initial
characters for words with “closed set” tags. During
decoding, when the current character is added as the
start of a new word, “closed set” tags are only as-
signed to the word if it is consistent with the record.
This type of pruning is used in addition to the tag
dictionary to prune invalid partial words, while the
tag dictionary is used to prune complete words. The
record for initial character andPOSis initially empty,
and udpated according to each training example be-
fore it is processed.

Finally, at any decoding step, we group partial

candidates that are generated by separating the cur-
rent character as the start of a new word by the sig-
naturep0p−1w−1, and keep only the best among
those having the samep0p−1w−1. The signature
p0p−1w−1 is decided by the feature templates we
use: it can be shown that if two candidatescand1
andcand2 generated at the same step have the same
signature, and the score ofcand1 is higher than the
score ofcand2, then at any future step, the highest
scored candidate generated fromcand1 will always
have a higher score than the highest scored candidate
generated fromcand2.

From the above pruning methods, only the third
was not used by Z&C08. It can be seen as an extra
mechanism to help keep likely partial words in the
agenda and improve the accuracy, but which does
not give our system a speed advantage over Z&C08.

3 Experiments

We used the Chinese Treebank (CTB) data to per-
form one set of development tests and two sets of fi-
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Figure 3: The influence of beam-sizes, and the conver-
gence of the perceptron.

nal tests. TheCTB 4 was split into two parts, with the
CTB 3 being used for a 10-fold cross validation test
to compare speed and accuracies with Z&C08, and
the rest being used for development. TheCTB 5 was
used to perform the additional set of experiments to
compare accuracies with other recent work.

We use the standard F-measure to evaluate output
accuracies. For word segmentation, precision is de-
fined as the number of correctly segmented words
divided by the total number of words in the output,
and recall is defined as the number of correctly seg-
mented words divided by the total number of words
in the gold-standard output. For joint segmentation
and POS-tagging, precision is defined as the num-
ber of correctly segmented andPOS-tagged words
divided by the total number of words from the out-
put, and recall is defined as the correctly segmented
andPOS-tagged words divided by the total number
of words in the gold-standard output.

All our experiments were performed on a Linux
platform, and a single 2.66GHz Intel Core 2 CPU.

3.1 Development tests

Our development data consists of150K words in
4798 sentences.80% of the data were randomly
chosen as the development training data, while the
rest were used as the development test data. Our de-
velopment tests were mainly used to decide the size
of the beam, the number of training iterations, the ef-
fect of partial features in beam-search decoding, and
the effect of incremental learning (i.e. early update).

Figure 3 shows the accuracy curves for joint seg-
mentation andPOS-tagging by the number of train-
ing iterations, using different beam sizes. With the
size of the beam increasing from 1 to 32, the accura-
cies generally increase, while the amount of increase
becomes small when the size of the beam becomes
16. After the 10th iteration, a beam size of 32 does
not always give better accuracies than a beam size
of 16. We therefore chose 16 as the size of the beam
for our system.

The testing times for each beam size between 1
and 32 are 7.16s, 11.90s, 18.42s, 27.82s, 46.77s
and 89.21s, respectively. The corresponding speeds
in the number of sentences per second are 111.45,
67.06, 43.32, 28.68, 17.06 and 8.95, respectively.

Figure 3 also shows that the accuracy increases
with an increased number of training iterations, but
the amount of increase becomes small after the 25th
iteration. We chose 29 as the number of iterations to
train our system.

The effect of incremental training: We compare
the accuracies by incremental training using early
update and normal perceptron training. In the nor-
mal perceptron training case, lines 11 to 16 are taken
out of the training algorithm in Figure 2. The algo-
rithm reached the best performance at the 22nd iter-
ation, with the segmentation F-score being90.58%
and joint F-score being83.38%. In the incremental
training case, the algorithm reached the best accu-
racy at the 30th training iteration, obtaining a seg-
mentation F-score of91.14% and a joint F-score of
84.06%.

3.2 Final tests using CTB 3

CTB 3 consists of150K words in 10364 sentences.
We follow Z&C08 and split it into 10 equal-sized
parts. In each test, one part is taken as the test
data and the other nine are combined together as
the training data. We compare the speed and accu-
racy with the joint segmentor and tagger of Z&C08,
which is publicly available as the ZPar system, ver-
sion 0.23.

The results are shown in Table 2, where each row
shows one cross validation test. The column head-
ings “sf”, “jf”, “time” and “speed” refer to segmen-
tation F-measure, joint F-measure, testing time (in

3http://www.sourceforge.net/projects/zpar
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Z&C08 this paper
# sf jf time speed sf jf time speed

1 97.18 93.27 557.97 1.86 97.25 93.51 44.20 23.44
2 97.65 93.81 521.63 1.99 97.66 93.97 42.07 24.26
3 96.08 91.04 444.69 2.33 95.55 90.65 39.23 26.41
4 96.31 91.93 431.04 2.40 96.37 92.15 39.54 26.20
5 96.35 91.94 508.39 2.04 95.84 91.51 43.30 23.93
6 94.48 88.63 482.78 2.15 94.25 88.53 43.77 23.67
7 95.27 90.52 361.95 2.86 95.10 90.42 41.76 24.81
8 94.98 90.01 418.54 2.47 94.87 90.30 39.81 26.02
9 95.23 90.84 471.3 2.20 95.21 90.55 42.03 26.65
10 96.49 92.11 500.72 2.08 96.33 92.12 43.12 24.03
average 96.00 91.41 469.90 2.24 95.84 91.37 41.88 24.94

Table 2: Speed and acccuracy comparisons with Z&C08 by10-fold cross validation.

seconds) and testing speed (in the number of sen-
tences per second), respectively.

Our system gave a joint segmentation andPOS-
tagging F-score of91.37%, which is only 0.04%
lower than that of ZPar 0.2. The speed of our system
was over 10 times as fast as ZPar 0.2.

3.3 Final tests using CTB 5

We follow Kruengkrai et al. (2009) and split theCTB

5 into training, development testing and testing sets,
as shown in Table 3. We ignored the development
test data since our system had been developed in pre-
vious experiments.

Kruengkrai et al. (2009) made use of character
type knowledge for spaces, numerals, symbols, al-
phabets, Chinese and other characters. In the previ-
ous experiments, our system did not use any knowl-
edge beyond the training data. To make the compar-
ison fairer, we included knowledge of English let-
ters and Arabic numbers in this experiment. During
both training and decoding, English letters and Ara-
bic numbers are segmented using simple rules, treat-
ing consecutive English letters or Arabic numbers as
a single word.

The results are shown in Table 4, where row
“N07” refers to the model of Nakagawa and Uchi-
moto (2007), rows “J08a” and “b” refer to the mod-
els of Jiang et al. (2008a) and Jiang et al. (2008b),
and row “K09” refers to the models of Kruengkrai et
al. (2009). Columns “sf” and “jf” refer to segmen-
tation and joint accuracies, respectively. Our system

Sections Sentences Words

Training 1–270 18,085 493,892
400–931
1001–1151

Dev 301–325 350 6,821
Test 271–300 348 8,008

Table 3: Training, development and test data onCTB 5.

sf jf

K09 (error-driven) 97.87 93.67
our system 97.78 93.67
K09 (baseline) 97.79 93.60
J08a 97.85 93.41
J08b 97.74 93.37
N07 97.83 93.32

Table 4: Accuracy comparisons with recent studies on
CTB 5.

gave comparable accuracies to these recent works,
obtaining the best (same as the error-driven version
of K09) joint F-score.

4 Related Work

The effectiveness of our beam-search decoder
showed that the joint segmentation and tagging
problem may be less complex than previously per-
ceived (Zhang and Clark, 2008; Jiang et al., 2008a).
At the very least, the single model approach with a
simple decoder achieved competitive accuracies to
what has been achieved so far by the reranking (Shi
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and Wang, 2007; Jiang et al., 2008b) models and
an ensemble model using machine-translation tech-
niques (Jiang et al., 2008a). This may shed new light
on joint segmentation andPOS-tagging methods.

Kruengkrai et al. (2009) and Zhang and Clark
(2008) are the most similar to our system among
related work. Both systems use a discriminatively
trained linear model to score candidate outputs. The
work of Kruengkrai et al. (2009) is based on Nak-
agawa and Uchimoto (2007), which separates the
processing of known words and unknown words,
and uses a set of segmentation tags to represent the
segmentation of characters. In contrast, our model
is conceptually simpler, and does not differentiate
known words and unknown words. Moreover, our
model is based on our previous work, in line with
Zhang and Clark (2007), which does not treat word
segmentation as character sequence labeling.

Our learning and decoding algorithms are also
different from Kruengkrai et al. (2009). While Kru-
engkrai et al. (2009) perform dynamic programming
andMIRA learning, we use beam-search to perform
incremental decoding, and the early-update version
of the perceptron algorithm to train the model. Dy-
namic programming is exact inference, for which
the time complexity is decided by the locality of
feature templates. In contrast, beam-search is ap-
proximate and can run in linear time. The param-
eter updating for our algorithm is conceptually and
computationally simpler thanMIRA , though its per-
formance can be slightly lower. However, the early-
update mechanism we use is consistent with our in-
cremental approach, and improves the learning of
the beam-search process.

5 Conclusion

We showed that a simple beam-search decoding al-
gorithm can be effectively applied to the decoding
problem for a global linear model for joint word
segmentation andPOS-tagging. By guiding search
with partial word information and performing learn-
ing for partial candidates, our system achieved sig-
nificantly faster speed with little accuracy loss com-
pared to the system of Z&C08.

The source code of our joint segmentor andPOS-
tagger can be found at:
www.sourceforge.net/projects/zpar, version 0.4.

Acknowledgements

We thank Canasai Kruengkrai for discussion on effi-
ciency issues, and the anonymous reviewers for their
suggestions. Yue Zhang and Stephen Clark are sup-
ported by the European Union Seventh Framework
Programme (FP7-ICT-2009-4) under grant agree-
ment no. 247762.

References

Eugene Charniak, Mark Johnson, Micha Elsner, Joseph
Austerweil, David Ellis, Isaac Haxton, Catherine Hill,
R. Shrivaths, Jeremy Moore, Michael Pozar, and
Theresa Vu. 2006. Multilevel coarse-to-fine PCFG
parsing. InProceedings of HLT/NAACL, pages 168–
175, New York City, USA, June. Association for Com-
putational Linguistics.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. InProceedings
of ACL, pages 111–118, Barcelona, Spain, July.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and experi-
ments with perceptron algorithms. InProceedings of
EMNLP, pages 1–8, Philadelphia, USA, July.

Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lü.
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Abstract

Part-of-speech (POS) tag distributions are
known to exhibit sparsity — a word is likely
to take a single predominant tag in a corpus.
Recent research has demonstrated that incor-
porating this sparsity constraint improves tag-
ging accuracy. However, in existing systems,
this expansion come with a steep increase in
model complexity. This paper proposes a sim-
ple and effective tagging method that directly
models tag sparsity and other distributional
properties of valid POS tag assignments. In
addition, this formulation results in a dramatic
reduction in the number of model parame-
ters thereby, enabling unusually rapid training.
Our experiments consistently demonstrate that
this model architecture yields substantial per-
formance gains over more complex tagging
counterparts. On several languages, we report
performance exceeding that of more complex
state-of-the art systems.1

1 Introduction

Since the early days of statistical NLP, researchers
have observed that a part-of-speech tag distribution
exhibits “one tag per discourse” sparsity — words
are likely to select a single predominant tag in a cor-
pus, even when several tags are possible. Simply
assigning to each word its most frequent associated
tag in a corpus achieves 94.6% accuracy on the WSJ
portion of the Penn Treebank. This distributional
sparsity of syntactic tags is not unique to English

1The source code for the work presented in this paper is
available at http://groups.csail.mit.edu/rbg/code/typetagging/.

— similar results have been observed across multi-
ple languages. Clearly, explicitly modeling such a
powerful constraint on tagging assignment has a po-
tential to significantly improve the accuracy of an
unsupervised part-of-speech tagger learned without
a tagging dictionary.

In practice, this sparsity constraint is difficult
to incorporate in a traditional POS induction sys-
tem (Mérialdo, 1994; Johnson, 2007; Gao and John-
son, 2008; Graça et al., 2009; Berg-Kirkpatrick
et al., 2010). These sequence models-based ap-
proaches commonly treat token-level tag assignment
as the primary latent variable. By design, they read-
ily capture regularities at the token-level. However,
these approaches are ill-equipped to directly repre-
sent type-based constraints such as sparsity. Pre-
vious work has attempted to incorporate such con-
straints into token-level models via heavy-handed
modifications to inference procedure and objective
function (e.g., posterior regularization and ILP de-
coding) (Graça et al., 2009; Ravi and Knight, 2009).
In most cases, however, these expansions come with
a steep increase in model complexity, with respect
to training procedure and inference time.

In this work, we take a more direct approach and
treat a word type and its allowed POS tags as a pri-
mary element of the model. The model starts by gen-
erating a tag assignment for each word type in a vo-
cabulary, assuming one tag per word. Then, token-
level HMM emission parameters are drawn condi-
tioned on these assignments such that each word is
only allowed probability mass on a single assigned
tag. In this way we restrict the parameterization of a
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Language Original case
English 94.6
Danish 96.3
Dutch 96.6
German 95.5
Spanish 95.4
Swedish 93.3
Portuguese 95.6

Table 1: Upper bound on tagging accuracy assuming each
word type is assigned to majority POS tag. Across all
languages, high performance can be attained by selecting
a single tag per word type.

token-level HMM to reflect lexicon sparsity. This
model admits a simple Gibbs sampling algorithm
where the number of latent variables is proportional
to the number of word types, rather than the size of
a corpus as for a standard HMM sampler (Johnson,
2007).

There are two key benefits of this model architec-
ture. First, it directly encodes linguistic intuitions
about POS tag assignments: the model structure
reflects the one-tag-per-word property, and a type-
level tag prior captures the skew on tag assignments
(e.g., there are fewer unique determiners than unique
nouns). Second, the reduced number of hidden vari-
ables and parameters dramatically speeds up learn-
ing and inference.

We evaluate our model on seven languages ex-
hibiting substantial syntactic variation. On several
languages, we report performance exceeding that of
state-of-the art systems. Our analysis identifies three
key factors driving our performance gain: 1) select-
ing a model structure which directly encodes tag
sparsity, 2) a type-level prior on tag assignments,
and 3) a straightforward naı̈ve-Bayes approach to
incorporate features. The observed performance
gains, coupled with the simplicity of model imple-
mentation, makes it a compelling alternative to ex-
isting more complex counterparts.

2 Related Work

Recent work has made significant progress on unsu-
pervised POS tagging (Mérialdo, 1994; Smith and
Eisner, 2005; Haghighi and Klein, 2006; Johnson,
2007; Goldwater and Griffiths, 2007; Gao and John-

son, 2008; Ravi and Knight, 2009). Our work is
closely related to recent approaches that incorporate
the sparsity constraint into the POS induction pro-
cess. This line of work has been motivated by em-
pirical findings that the standard EM-learned unsu-
pervised HMM does not exhibit sufficient word tag
sparsity.

The extent to which this constraint is enforced
varies greatly across existing methods. On one end
of the spectrum are clustering approaches that assign
a single POS tag to each word type (Schutze, 1995;
Lamar et al., 2010). These clusters are computed us-
ing an SVD variant without relying on transitional
structure. While our method also enforces a singe
tag per word constraint, it leverages the transition
distribution encoded in an HMM, thereby benefiting
from a richer representation of context.

Other approaches encode sparsity as a soft con-
straint. For instance, by altering the emission distri-
bution parameters, Johnson (2007) encourages the
model to put most of the probability mass on few
tags. This design does not guarantee “structural ze-
ros,” but biases towards sparsity. A more force-
ful approach for encoding sparsity is posterior reg-
ularization, which constrains the posterior to have
a small number of expected tag assignments (Graça
et al., 2009). This approach makes the training ob-
jective more complex by adding linear constraints
proportional to the number of word types, which
is rather prohibitive. A more rigid mechanism for
modeling sparsity is proposed by Ravi and Knight
(2009), who minimize the size of tagging grammar
as measured by the number of transition types. The
use of ILP in learning the desired grammar signif-
icantly increases the computational complexity of
this method.

In contrast to these approaches, our method di-
rectly incorporates these constraints into the struc-
ture of the model. This design leads to a significant
reduction in the computational complexity of train-
ing and inference.

Another thread of relevant research has explored
the use of features in unsupervised POS induc-
tion (Smith and Eisner, 2005; Berg-Kirkpatrick et
al., 2010; Hasan and Ng, 2009). These methods
demonstrated the benefits of incorporating linguis-
tic features using a log-linear parameterization, but
requires elaborate machinery for training. In our
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work, we demonstrate that using a simple naı̈ve-
Bayes approach also yields substantial performance
gains, without the associated training complexity.

3 Generative Story

We consider the unsupervised POS induction prob-
lem without the use of a tagging dictionary. A graph-
ical depiction of our model as well as a summary
of random variables and parameters can be found in
Figure 1. As is standard, we use a fixed constant K
for the number of tagging states.

Model Overview The model starts by generating
a tag assignment T for each word type in a vocab-
ulary, assuming one tag per word. Conditioned on
T , features of word types W are drawn. We refer
to (T ,W ) as the lexicon of a language and ψ for
the parameters for their generation; ψ depends on a
single hyperparameter β.

Once the lexicon has been drawn, the model pro-
ceeds similarly to the standard token-level HMM:
Emission parameters θ are generated conditioned on
tag assignments T . We also draw transition param-
eters φ. Both parameters depend on a single hy-
perparameter α. Once HMM parameters (θ, φ) are
drawn, a token-level tag and word sequence, (t, w),
is generated in the standard HMM fashion: a tag se-
quence t is generated from φ. The corresponding
token words w are drawn conditioned on t and θ.2

Our full generative model is given by:

P (T ,W , θ, ψ, φ, t,w|α, β) =
P (T ,W , ψ|β) [Lexicon]

P (φ, θ|T , α, β) [Parameter]

P (w, t|φ, θ) [Token]

We refer to the components on the right hand side
as the lexicon, parameter, and token component re-
spectively. Since the parameter and token compo-
nents will remain fixed throughout experiments, we
briefly describe each.

Parameter Component As in the standard
Bayesian HMM (Goldwater and Griffiths, 2007),
all distributions are independently drawn from
symmetric Dirichlet distributions:

2Note that t and w denote tag and word sequences respec-
tively, rather than individual tokens or tags.

P (φ, θ|T , α, β) =
K∏

t=1

(P (φt|α)P (θt|T , α))

The transition distribution φt for each tag t is drawn
according to DIRICHLET(α,K), where α is the
shared transition and emission distribution hyperpa-
rameter. In total there are O(K2) parameters asso-
ciated with the transition parameters.

In contrast to the Bayesian HMM, θt is not
drawn from a distribution which has support for
each of the n word types. Instead, we condition
on the type-level tag assignments T . Specifically,
let St = {i|Ti = t} denote the indices of the
word types which have been assigned tag t accord-
ing to the tag assignments T . Then θt is drawn from
DIRICHLET(α, St), a symmetric Dirichlet which
only places mass on word types indicated by St.
This ensures that each word will only be assigned
a single tag at inference time (see Section 4).

Note that while the standard HMM, has O(Kn)
emission parameters, our model has O(n) effective
parameters.3

Token Component Once HMM parameters (φ, θ)
have been drawn, the HMM generates a token-level
corpus w in the standard way:

P (w, t|φ, θ) =∏
(w,t)∈(w,t)

∏
j

P (tj |φtj−1)P (wj |tj , θtj )


Note that in our model, conditioned on T , there is
precisely one t which has non-zero probability for
the token component, since for each word, exactly
one θt has support.

3.1 Lexicon Component
We present several variations for the lexical com-
ponent P (T ,W |ψ), each adding more complex pa-
rameterizations.

Uniform Tag Prior (1TW) Our initial lexicon
component will be uniform over possible tag assign-
ments as well as word types. Its only purpose is

3This follows since each θt has St − 1 parameters andP
t St = n.
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Figure 1: Graphical depiction of our model and summary of latent variables and parameters. The type-level tag
assignments T generate features associated with word types W . The tag assignments constrain the HMM emission
parameters θ. The tokens w are generated by token-level tags t from an HMM parameterized by the lexicon structure.
The hyperparameters α and β represent the concentration parameters of the token- and type-level components of the
model respectively. They are set to fixed constants.

to explore how well we can induce POS tags using
only the one-tag-per-word constraint. Specifically,
the lexicon is generated as:

P (T ,W |ψ) =P (T )P (W |T )

=
n∏

i=1

P (Ti)P (Wi|Ti) =
(

1
Kn

)n

This model is equivalent to the standard HMM ex-
cept that it enforces the one-word-per-tag constraint.

Learned Tag Prior (PRIOR) We next assume
there exists a single prior distribution ψ over tag as-
signments drawn from DIRICHLET(β,K). This al-
ters generation of T as follows:

P (T |ψ) =
n∏

i=1

P (Ti|ψ)

Note that this distribution captures the frequency of
a tag across word types, as opposed to tokens. The
P (T |ψ) distribution, in English for instance, should
have very low mass for the DT (determiner) tag,
since determiners are a very small portion of the vo-
cabulary. In contrast, NNP (proper nouns) form a
large portion of vocabulary. Note that these observa-
tions are not modeled by the standard HMM, which
instead can model token-level frequency.

Word Type Features (FEATS): Past unsuper-
vised POS work have derived benefits from features
on word types, such as suffix and capitalization fea-
tures (Hasan and Ng, 2009; Berg-Kirkpatrick et al.,
2010). Past work however, has typically associ-
ated these features with token occurrences, typically
in an HMM. In our model, we associate these fea-
tures at the type-level in the lexicon. Here, we con-
sider suffix features, capitalization features, punctu-
ation, and digit features. While possible to utilize
the feature-based log-linear approach described in
Berg-Kirkpatrick et al. (2010), we adopt a simpler
naı̈ve Bayes strategy, where all features are emitted
independently. Specifically, we assume each word
type W consists of feature-value pairs (f, v). For
each feature type f and tag t, a multinomial ψtf is
drawn from a symmetric Dirichlet distribution with
concentration parameter β. The P (W |T , ψ) term
in the lexicon component now decomposes as:

P (W |T , ψ) =
n∏

i=1

P (Wi|Ti, ψ)

=
n∏

i=1

 ∏
(f,v)∈Wi

P (v|ψTif )


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4 Learning and Inference

For inference, we are interested in the posterior
probability over the latent variables in our model.
During training, we treat as observed the language
word types W as well as the token-level corpus w.
We utilize Gibbs sampling to approximate our col-
lapsed model posterior:

P (T ,t|W ,w, α, β) ∝ P (T , t,W ,w|α, β)

=
∫
P (T , t,W ,w, ψ, θ, φ,w|α, β)dψdθdφ

Note that given tag assignments T , there is only one
setting of token-level tags t which has mass in the
above posterior. Specifically, for the ith word type,
the set of token-level tags associated with token oc-
currences of this word, denoted t(i), must all take
the value Ti to have non-zero mass. Thus in the con-
text of Gibbs sampling, if we want to block sample
Ti with t(i), we only need sample values for Ti and
consider this setting of t(i).

The equation for sampling a single type-level as-
signment Ti is given by,

P (Ti, t
(i)|T−i,W , t(−i),w, α, β) =

P (Ti|W ,T−i, β)P (t(i)|Ti, t
(−i),w, α)

where T−i denotes all type-level tag assignment ex-
cept Ti and t(−i) denotes all token-level tags except
t(i). The terms on the right-hand-side denote the
type-level and token-level probability terms respec-
tively. The type-level posterior term can be com-
puted according to,

P (Ti|W ,T−i, β) ∝

P (Ti|T−i, β)
∏

(f,v)∈Wi

P (v|Ti, f,W−i,T−i, β)

All of the probabilities on the right-hand-side are
Dirichlet, distributions which can be computed an-
alytically given counts.

The token-level term is similar to the standard
HMM sampling equations found in Johnson (2007).
The relevant variables are the set of token-level tags
that appear before and after each instance of the ith
word type; we denote these context pairs with the set
{(tb, ta)} and they are contained in t(−i). We use w
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Figure 2: Graph of the one-to-one accuracy of our full
model (+FEATS) under the best hyperparameter setting
by iteration (see Section 5). Performance typically stabi-
lizes across languages after only a few number of itera-
tions.

to represent the ith word type emitted by the HMM:

P (t(i)|Ti, t
(−i),w, α) ∝∏

(tb,ta)

P (w|Ti, t
(−i),w(−i), α)

P (Ti|tb, t(−i), α)P (ta|Ti, t
(−i), α)

All terms are Dirichlet distributions and parameters
can be analytically computed from counts in t(−i)

and w(−i) (Johnson, 2007).
Note that each round of sampling Ti variables

takes time proportional to the size of the corpus, as
with the standard token-level HMM. A crucial dif-
ference is that the number of parameters is greatly
reduced as is the number of variables that are sam-
pled during each iteration. In contrast to results re-
ported in Johnson (2007), we found that the per-
formance of our Gibbs sampler on the basic 1TW
model stabilized very quickly after about 10 full it-
erations of sampling (see Figure 2 for a depiction).

5 Experiments

We evaluate our approach on seven languages: En-
glish, Danish, Dutch, German, Portuguese, Spanish,
and Swedish. On each language we investigate the
contribution of each component of our model. For
all languages we do not make use of a tagging dic-
tionary.
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Model
Hyper- English Danish Dutch German Portuguese Spanish Swedish
param. 1-1 m-1 1-1 m-1 1-1 m-1 1-1 m-1 1-1 m-1 1-1 m-1 1-1 m-1

1TW
best 45.2 62.6 37.2 56.2 47.4 53.7 44.2 62.2 49.0 68.4 34.3 54.4 36.0 55.3
median 45.1 61.7 32.1 53.8 43.9 61.0 39.3 68.4 48.5 68.1 33.6 54.3 34.9 50.2

+PRIOR
best 47.9 65.5 42.3 58.3 51.4 65.9 50.7 62.2 56.2 70.7 42.8 54.8 38.9 58.0
median 46.5 64.7 40.0 57.3 48.3 60.7 41.7 68.3 52.0 70.9 37.1 55.8 36.8 57.3

+FEATS
best 50.9 66.4 52.1 61.2 56.4 69.0 55.4 70.4 64.1 74.5 58.3 68.9 43.3 61.7
median 47.8 66.4 43.2 60.7 51.5 67.3 46.2 61.7 56.5 70.1 50.0 57.2 38.5 60.6

Table 3: Multi-lingual Results: We report token-level one-to-one and many-to-one accuracy on a variety of languages
under several experimental settings (Section 5). For each language and setting, we report one-to-one (1-1) and many-
to-one (m-1) accuracies. For each cell, the first row corresponds to the result using the best hyperparameter choice,
where best is defined by the 1-1 metric. The second row represents the performance of the median hyperparameter
setting. Model components cascade, so the row corresponding to +FEATS also includes the PRIOR component (see
Section 3).

Language # Tokens # Word Types # Tags
English 1173766 49206 45
Danish 94386 18356 25
Dutch 203568 28393 12
German 699605 72325 54
Portuguese 206678 28931 22
Spanish 89334 16458 47
Swedish 191467 20057 41

Table 2: Statistics for various corpora utilized in exper-
iments. See Section 5. The English data comes from
the WSJ portion of the Penn Treebank and the other lan-
guages from the training set of the CoNLL-X multilin-
gual dependency parsing shared task.

5.1 Data Sets
Following the set-up of Johnson (2007), we use
the whole of the Penn Treebank corpus for train-
ing and evaluation on English. For other languages,
we use the CoNLL-X multilingual dependency pars-
ing shared task corpora (Buchholz and Marsi, 2006)
which include gold POS tags (used for evaluation).
We train and test on the CoNLL-X training set.
Statistics for all data sets are shown in Table 2.

5.2 Setup
Models To assess the marginal utility of each com-
ponent of the model (see Section 3), we incremen-
tally increase its sophistication. Specifically, we
evaluate three variants: The first model (1TW) only
encodes the one tag per word constraint and is uni-
form over type-level tag assignments. The second
model (+PRIOR) utilizes the independent prior over
type-level tag assignments P (T |ψ). The final model

(+FEATS) utilizes the tag prior as well as features
(e.g., suffixes and orthographic features), discussed
in Section 3, for the P (W |T , ψ) component.

Hyperparameters Our model has two Dirichlet
concentration hyperparameters: α is the shared hy-
perparameter for the token-level HMM emission and
transition distributions. β is the shared hyperparam-
eter for the tag assignment prior and word feature
multinomials. We experiment with four values for
each hyperparameter resulting in 16 (α, β) combi-
nations:

α β

0.001, 0.01, 0.1, 1.0 0.01, 0.1, 1.0, 10

Iterations In each run, we performed 30 iterations
of Gibbs sampling for the type assignment variables
W .4 We use the final sample for evaluation.

Evaluation Metrics We report three metrics to
evaluate tagging performance. As is standard, we
report the greedy one-to-one (Haghighi and Klein,
2006) and the many-to-one token-level accuracy ob-
tained from mapping model states to gold POS tags.
We also report word type level accuracy, the fraction
of word types assigned their majority tag (where the
mapping between model state and tag is determined
by greedy one-to-one mapping discussed above).5

For each language, we aggregate results in the fol-
lowing way: First, for each hyperparameter setting,

4Typically, the performance stabilizes after only 10 itera-
tions.

5We choose these two metrics over the Variation Informa-
tion measure due to the deficiencies discussed in Gao and John-
son (2008).
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we perform five runs with different random initial-
ization of sampling state. Hyperparameter settings
are sorted according to the median one-to-one met-
ric over runs. We report results for the best and me-
dian hyperparameter settings obtained in this way.
Specifically, for both settings we report results on
the median run for each setting.

Tag set As is standard, for all experiments, we set
the number of latent model tag states to the size of
the annotated tag set. The original tag set for the
CoNLL-X Dutch data set consists of compounded
tags that are used to tag multi-word units (MWUs)
resulting in a tag set of over 300 tags. We tokenize
MWUs and their POS tags; this reduces the tag set
size to 12. See Table 2 for the tag set size of other
languages. With the exception of the Dutch data set,
no other processing is performed on the annotated
tags.

6 Results and Analysis

We report token- and type-level accuracy in Table 3
and 6 for all languages and system settings. Our
analysis and comparison focuses primarily on the
one-to-one accuracy since it is a stricter metric than
many-to-one accuracy, but also report many-to-one
for completeness.

Comparison with state-of-the-art taggers For
comparison we consider two unsupervised tag-
gers: the HMM with log-linear features of Berg-
Kirkpatrick et al. (2010) and the posterior regular-
ization HMM of Graça et al. (2009). The system
of Berg-Kirkpatrick et al. (2010) reports the best
unsupervised results for English. We consider two
variants of Berg-Kirkpatrick et al. (2010)’s richest
model: optimized via either EM or LBFGS, as their
relative performance depends on the language. Our
model outperforms theirs on four out of five lan-
guages on the best hyperparameter setting and three
out of five on the median setting, yielding an aver-
age absolute difference across languages of 12.9%
and 3.9% for best and median settings respectively
compared to their best EM or LBFGS performance.
While Berg-Kirkpatrick et al. (2010) consistently
outperforms ours on English, we obtain substantial
gains across other languages. For instance, on Span-
ish, the absolute gap on median performance is 10%.

Top 5 Bottom 5
Gold NNP NN JJ CD NNS RBS PDT # ” ,
1TW CD WRB NNS VBN NN PRP$ WDT : MD .
+PRIOR CD JJ NNS WP$ NN -RRB- , $ ” .
+FEATS JJ NNS CD NNP UH , PRP$ # . “

Table 5: Type-level English POS Tag Ranking: We list
the top 5 and bottom 5 POS tags in the lexicon and the
predictions of our models under the best hyperparameter
setting.

Our second point of comparison is with Graça
et al. (2009), who also incorporate a sparsity con-
straint, but does via altering the model objective us-
ing posterior regularization. We can only compare
with Graça et al. (2009) on Portuguese (Graça et al.
(2009) also report results on English, but on the re-
duced 17 tag set, which is not comparable to ours).
Their best model yields 44.5% one-to-one accuracy,
compared to our best median 56.5% result. How-
ever, our full model takes advantage of word features
not present in Graça et al. (2009). Even without fea-
tures, but still using the tag prior, our median result
is 52.0%, still significantly outperforming Graça et
al. (2009).

Ablation Analysis We evaluate the impact of
incorporating various linguistic features into our
model in Table 3. A novel element of our model is
the ability to capture type-level tag frequencies. For
this experiment, we compare our model with the uni-
form tag assignment prior (1TW) with the learned
prior (+PRIOR). Across all languages, +PRIOR
consistently outperforms 1TW, reducing error on av-
erage by 9.1% and 5.9% on best and median settings
respectively. Similar behavior is observed when
adding features. The difference between the feature-
less model (+PRIOR) and our full model (+FEATS)
is 13.6% and 7.7% average error reduction on best
and median settings respectively. Overall, the differ-
ence between our most basic model (1TW) and our
full model (+FEATS) is 21.2% and 13.1% for the
best and median settings respectively. One striking
example is the error reduction for Spanish, which
reduces error by 36.5% and 24.7% for the best and
median settings respectively. We observe similar
trends when using another measure – type-level ac-
curacy (defined as the fraction of words correctly
assigned their majority tag), according to which
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Language Metric BK10 EM BK10 LBFGS G10 FEATS Best FEATS Median

English
1-1 48.3 56.0 – 50.9 47.8
m-1 68.1 75.5 – 66.4 66.4

Danish
1-1 42.3 42.6 – 52.1 43.2
m-1 66.7 58.0 – 61.2 60.7

Dutch
1-1 53.7 55.1 – 56.4 51.5
m-1 67.0 64.7 – 69.0 67.3

Portuguese
1-1 50.8 43.2 44.5 64.1 56.5
m-1 75.3 74.8 69.2 74.5 70.1

Spanish
1-1 – 40.6 – 58.3 50.0
m-1 – 73.2 – 68.9 57.2

Table 4: Comparison of our method (FEATS) to state-of-the-art methods. Feature-based HMM Model (Berg-
Kirkpatrick et al., 2010): The KM model uses a variety of orthographic features and employs the EM or LBFGS
optimization algorithm; Posterior regulariation model (Graça et al., 2009): The G10 model uses the posterior regular-
ization approach to ensure tag sparsity constraint.

Language 1TW +PRIOR +FEATS
English 21.1 28.8 42.8
Danish 10.1 20.7 45.9
Dutch 23.8 32.3 44.3
German 12.8 35.2 60.6
Portuguese 18.4 29.6 61.5
Spanish 7.3 27.6 49.9
Swedish 8.9 14.2 33.9

Table 6: Type-level Results: Each cell report the type-
level accuracy computed against the most frequent tag of
each word type. The state-to-tag mapping is obtained
from the best hyperparameter setting for 1-1 mapping
shown in Table 3.

our full model yields 39.3% average error reduction
across languages when compared to the basic con-
figuration (1TW).

Table 5 provides insight into the behavior of dif-
ferent models in terms of the tagging lexicon they
generate. The table shows that the lexicon tag fre-
quency predicated by our full model are the closest
to the gold standard.

7 Conclusion and Future Work

We have presented a method for unsupervised part-
of-speech tagging that considers a word type and its
allowed POS tags as a primary element of the model.
This departure from the traditional token-based tag-
ging approach allows us to explicitly capture type-
level distributional properties of valid POS tag as-

signments as part of the model. The resulting model
is compact, efficiently learnable and linguistically
expressive. Our empirical results demonstrate that
the type-based tagger rivals state-of-the-art tag-level
taggers which employ more sophisticated learning
mechanisms to exploit similar constraints.

In this paper, we make a simplifying assump-
tion of one-tag-per-word. This assumption, how-
ever, is not inherent to type-based tagging models.
A promising direction for future work is to explicitly
model a distribution over tags for each word type.
We hypothesize that modeling morphological infor-
mation will greatly constrain the set of possible tags,
thereby further refining the representation of the tag
lexicon.
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Abstract

We explore the task of automatically classify-
ing dialogue acts in 1-on-1 online chat forums,
an increasingly popular means of providing
customer service. In particular, we investi-
gate the effectiveness of various features and
machine learners for this task. While a sim-
ple bag-of-words approach provides a solid
baseline, we find that adding information from
dialogue structure and inter-utterance depen-
dency provides some increase in performance;
learners that account for sequential dependen-
cies (CRFs) show the best performance. We
report our results from testing using a corpus
of chat dialogues derived from online shop-
ping customer-feedback data.

1 Introduction

Recently, live chats have received attention due to
the growing popularity of chat services and the in-
creasing body of applications. For example, large
organizations are increasingly providing support or
information services through live chat. One advan-
tage of chat-based customer service over conven-
tional telephone-based customer service is that it
becomes possible to semi-automate aspects of the
interaction (e.g. conventional openings or canned
responses to standard questions) without the cus-
tomer being aware of it taking place, something that
is not possible with speech-based dialogue systems
(as synthesised speech is still easily distinguishable
from natural speech). Potentially huge savings can
be made by organisations providing customer help
services if we can increase the degree of automation
of live chat.

Given the increasing impact of live chat services,
there is surprisingly little published computational

linguistic research on the topic. There has been sub-
stantially more work done on dialogue and dialogue
corpora, mostly in spoken dialogue (e.g. Stolcke et
al. (2000)) but also multimodal dialogue systems in
application areas such as telephone support service
(Bangalore et al., 2006) and tutoring systems (Lit-
man and Silliman, 2004). Spoken dialogue analysis
introduces many complications related to the error
inherent in current speech recognition technologies.
As an instance of written dialogue, an advantage of
live chats is that recognition errors are not such an is-
sue, although the nature of language used in chat is
typically ill-formed and turn-taking is complicated
by the semi-asynchronous nature of the interaction
(e.g. Werry (1996)).

In this paper, we investigate the task of automatic
classification of dialogue acts in 1-on-1 live chats,
focusing on “information delivery” chats since these
are proving increasingly popular as part of enter-
prise customer-service solutions. Our main chal-
lenge is to develop effective features and classifiers
for classifying aspects of 1-on-1 live chat. Much of
the work on analysing dialogue acts in spoken di-
alogues has relied on non-lexical features, such as
prosody and acoustic features (Stolcke et al., 2000;
Julia and Iftekharuddin, 2008; Sridhar et al., 2009),
which are not available for written dialogues. Pre-
vious dialogue-act detection for chat systems has
used bags-of-words (hereafter, BoW) as features
for dialogue-act detection; this simple approach
has shown some promise (e.g. Bangalore et al.
(2006), Louwerse and Crossley (2006) and Ivanovic
(2008)). Other features such as keywords/ontologies
(Purver et al., 2005; Forsyth, 2007) and lexical cues
(Ang et al., 2005) have also been used for dialogue
act classification.
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In this paper, we first re-examine BoW features
for dialogue act classification. As a baseline, we
use the work of Ivanovic (2008), which explored 1-
grams and 2-grams with Boolean values in 1-on-1
live chats in the MSN Online Shopping domain (this
dataset is described in Section 5). Although this
work achieved reasonably high performance (up to
a micro-averaged F-score of around 80%), we be-
lieve that there is still room for improvement using
BoW only. We extend this work by using ideas from
related research such as text categorization (Debole
and Sebastiani, 2003), and explore variants of BoW
based on analysis of live chats, along with feature
weighting. Finally, our main aim is to explore new
features based on dialogue structure and dependen-
cies between utterances1 that can enhance the use of
BoW for dialogue act classification. Our hypothesis
is that, for task-oriented 1-on-1 live chats, the struc-
ture and interactions among utterances are useful in
predicting future dialogue acts: for example, conver-
sations typically start with a greeting, and questions
and answers typically appear as adjacency pairs in
a conversation. Therefore, we propose new features
based on structural and dependency information de-
rived from utterances (Sections 4.2 and 4.3).

2 Related Work

While there has been significant work on classify-
ing dialogue acts, the bulk of this has been for spo-
ken dialogue. Most such work has considered: (1)
defining taxonomies of dialogue acts; (2) discover-
ing useful features for the classification task; and (3)
experimenting with different machine learning tech-
niques. We focus here on (2) and (3); we return to
(1) in Section 3.

For classifying dialogue acts in spoken dialogue,
various features such as dialogue cues, speech char-
acteristics, and n-grams have been proposed. For
example, Samuel et al. (1998) utilized the charac-
teristics of spoken dialogues and examined speaker
direction, punctuation marks, cue phrases and n-
grams for classifying spoken dialogues. Jurafsky et
al. (1998) used prosodic, lexical and syntactic fea-
tures for spoken dialogue classification. More re-
cently, Julia and Iftekharuddin (2008) and Sridhar et

1An utterance is the smallest unit to deliver a participant’s
message(s) in a turn.

al. (2009) achieved high performance using acous-
tic and prosodic features. Louwerse and Cross-
ley (2006), on the other hand, used various n-gram
features—which could be adapted to both spoken
and written dialogue—and tested them using the
Map Task Corpus (Anderson et al., 1991). Extend-
ing the discourse model used in previous work, Ban-
galore et al. (2006) used n-grams from the previous
1–3 utterances in order to classify dialogue acts for
the target utterance.

There has been substantially less effort on clas-
sifying dialogue acts in written dialogue: Wu et al.
(2002) and Forsyth (2007) have used keyword-based
approaches for classifying online chats; Ivanovic
(2008) tested the use of n-gram features for 1-on-1
live chats with MSN Online Shopping assistants.

Various machine learning techniques have been
investigated for the dialogue classification task.
Samuel et al. (1998) used transformation-based
learning to classify spoken dialogues, incorporat-
ing Monte Carlo sampling for training efficiency.
Stolcke et al. (2000) used Hidden Markov Mod-
els (HMMs) to account for the structure of spo-
ken dialogues, while Wu et al. (2002) also used
transformation- and rule-based approaches plus
HMMs for written dialogues. Other researchers
have used Bayesian based approaches, such as
naive Bayes (e.g. (Grau et al., 2004; Forsyth,
2007; Ivanovic, 2008)) and Bayesian networks (e.g.
(Keizer, 2001; Forsyth, 2007)). Maximum entropy
(e.g. (Ivanovic, 2008)), support vector machines
(e.g. (Ivanovic, 2008)), and hidden Markov models
(e.g. (Bui, 2003)) have also all been applied to auto-
matic dialogue act classification.

3 Dialogue Acts

A number of dialogue act taxonomies have been pro-
posed, designed mainly for spoken dialogue. Many
of these use the Dialogue Act Markup in Several
Layers (DAMSL) scheme (Allen and Core, 1997).
DAMSL was originally applied to the TRAINS cor-
pus of (transcribed) spoken task-oriented dialogues,
but various adaptations of it have since been pro-
posed for specific types of dialogue. The Switch-
board corpus (Godfrey et al., 1992) defines 42 types
of dialogue acts from human-to-human telephone
conversations. The HCRC Map Task corpus (Ander-
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son et al., 1991) defines a set of 128 dialogue acts to
model task-based spoken conversations.

For casual online chat dialogues, Wu et al. (2002)
define 15 dialogue act tags based on previously-
defined dialogue act sets (Samuel et al., 1998;
Shriberg et al., 1998; Jurafsky et al., 1998; Stolcke
et al., 2000). Forsyth (2007) defines 15 dialogue acts
for casual online conversations, based on 16 conver-
sations with 10,567 utterances. Ivanovic (2008) pro-
poses 12 dialogue acts based on DAMSL for 1-on-1
online customer service chats.

Ivanovic’s set of dialogue acts for chat dia-
logues has significant overlap with the dialogue act
sets of Wu et al. (2002) and Forsyth (2007) (e.g.
GREETING, EMOTION/EXPRESSION, STATEMENT,
QUESTION). In our work, we re-use the set of dia-
logue acts proposed in Ivanovic (2008), due to our
targeting the same task of 1-on-1 IM chats, and in-
deed experimenting over the same dataset. The def-
initions of the dialogue acts are provided in Table 1,
along with examples.

4 Feature Selection

In this section, we describe our initial dialogue-act
classification experiments using simple BoW fea-
tures, and then introduce two groups of new fea-
tures based on structural information and dependen-
cies between utterances.

4.1 Bag-of-Words

n-gram-based BoW features are simple yet effec-
tive for identifying similarities between two utter-
ances, and have been used widely in previous work
on dialogue act classification for online chat di-
alogues (Louwerse and Crossley, 2006; Ivanovic,
2008). However, chats containing large amounts of
noise such as typos and emoticons pose a greater
challenge for simple BoW approaches. On the other
hand, keyword-based features (Forsyth, 2007) have
achieved high performance; however, keyword-
based approaches are more domain-dependent. In
this work, we chose to start with a BoW approach
based on our observation that commercial live chat
services contain relatively less noise; in particular,
the commercial agent tends to use well-formed, for-
mulaic prose.

Previously, Ivanovic (2008) explored Boolean 1-

gram and 2-gram features to classify MSN Online
Shopping live chats, where a user requests assis-
tance in purchasing an item, in response to which the
commercial agent asks the customer questions and
makes suggestions. Ivanovic (2008) achieved solid
performance over this data (around 80% F-score).
While 1-grams performed well (as live chat utter-
ances are generally shorter than, e.g., sentences in
news articles), we expect 2- and 3-grams are needed
to detect formulaic expressions, such as No problem
and You are welcome. We would also expect a pos-
itive effect from combining n-grams due to increas-
ing the coverage of feature words. We thus test 1-,
2- and 3-grams individually, as well as the combi-
nation of 1- and 2-grams together (i.e. 1+2-grams)
and 1-, 2- and 3-grams (i.e. 1+2+3-grams); this re-
sults in five BoW sets. Also, unlike Ivanovic (2008),
we test both raw words and lemmas; we expect the
use of lemmas to perform better than raw words as
our data is less noisy. As the feature weight, in addi-
tion to simple Boolean, we also experiment with TF,
TF·IDF and Information Gain (IG).

4.2 Structural Information

Our motivation for using structural information as
a feature is that the location of an utterance can be
a strong predictor of the dialogue act. That is, dia-
logues are sequenced, comprising turns (i.e. a given
user is sending text), each of which is made up of
one or more messages (i.e. strings sent by the user).
Structured classification methods which make use of
this sequential information have been applied to re-
lated tasks such as tagging semantic labels of key
sentences in biomedical domains (Chung, 2009) and
post labels in web forums (Kim et al., 2010).

Based on the nature of live chats, we observed that
the utterance position in the chat, as well as in a turn,
plays an important role when identifying its dialogue
act. For example, an utterance such as Hello will oc-
cur at the beginning of a chat while an utterance such
as Have a nice day will typically appear at the end.
The position of utterances in a turn can also help
identify the dialogue act; i.e. when there are several
utterances in a turn, utterances are related to each
other, and thus examining the previous utterances in
the same turn can help correctly predict the target
utterance. For example, the greeting (Welcome to ..)
and question (How may I help you?) could occur in
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Dialogue Act, Definition and Examples
CONVENTIONAL CLOSING: Various ways of ending a conversation e.g. Bye Bye
CONVENTIONAL OPENING: Greeting and other ways of starting a conversation e.g. Hello Customer
DOWNPLAYER: A backwards-linking label often used after THANKS to down play the contribution
e.g. You are welcome, my pleasure
EXPRESSIVE: An acknowledgement of a previous utterance or an indication of the speaker’s mood.
e.g. haha, : −) wow
NO ANSWER: A backward-linking label in the form of a negative response to a YESNO-QUESTION e.g. no, nope
OPEN QUESTION: A question that cannot be answered with only a yes or no. The answer is usually
some form of explanation or statement. e.g. how do I use the international version?
REQUEST: Used to express a speaker’s desire that the learner do something – either performing some action
or simply waiting. e.g. Please let me know how I can assist you on MSN Shopping today.
RESPONSE ACK: A backward-linking acknowledgement of the previous utterance. Used to confirm
that the previous utterance was received/accepted. e.g. Sure
STATEMENT: Used for assertions that may state a belief or commit the speaker to doing something
e.g. I am sending you the page which will pop up in a new window on your screen.
THANKS: Conventional thanks e.g. Thank you for contacting us.
YES ANSWER: A backward-linking label in the form of an affirmative response to a YESNO-QUESTION e.g. yes, yeah
YESNO QUESTION: A closed question which can be answered in the affirmative or negative.
e.g. Did you receive the page, Customer?

Table 1: The set of dialogue acts used in this research, taken from Ivanovic (2008)

the same turn. We also noticed that identifying the
utterance author can help classify the dialogue act
(previously used in Ivanovic (2008)).

Based on these observations, we tested the follow-
ing four structural features:

• Author information,

• Relative position in the chat,

• Author + Relative position,

• Author + Turn-relative position among utter-
ances in a given turn.

We illustrate our structural features in Table 2,
which shows an example of a 1-on-1 live chat. The
participants are the agent (A) and customer (C); Uxx
indicates an utterance (U) with ID number xx. This
conversation has 42 utterances in total. The relative
position is calculated by dividing the utterance num-
ber by the total number of utterances in the dialogue;
the turn-relative position is calculated by dividing
the utterance position by the number of utterances
in that turn. For example, for utterance 4 (U4), the
relative position is 4

42 , while its turn-relative position
is 2

3 since U4 is the second utterance among U3,4,5
that the customer makes in a single turn.

4.3 Utterance Dependency

In recent work, Kim et al. (2010) demonstrated the
importance of dependencies between post labels in
web forums. The authors introduced series of fea-
tures based on structural dependencies among posts.
They used relative position, author information and
automatically predicted labels from previous post(s)
as dependency features for assigning a semantic la-
bel to the current target post.

Similarly, by examining our chat corpus, we ob-
served significant dependencies between utterances.
First, 1-on-1 (i.e. agent-to-user) dialogues often con-
tain dependencies between adjacent utterances by
different authors. For example, in Table 2, when the
agent asks Is that correct?, the expected response
from the user is a Yes or No. Another example is
that when the agent makes a greeting, such as Have
a nice day, then the customer will typically respond
with a greeting or closing remark, and not a Yes or
No. Second, the flow of dialogues is in general co-
hesive, unless the topic of utterances changes dra-
matically (e.g. U5: Are you still there?, U22: brb
in 1 min in Table 2). Third, we observed that be-
tween utterances made by the same author (either
agent or user), the target utterance relies on previous
utterances made by the same author, especially when
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ID Utterance
A:U1 Hello Customer, welcome to MSN Shopping.
A:U2 My name is Krishna and I am your

online Shopping assistant today.
C:U3 Hello!
C:U4 I’m trying to find a sports watch.
C:U5 are you still there?
A:U6 I understand that you are looking for sports

watch.
A:U7 Is that correct?
C:U8 yes, that is correct.
..
C:U22 brb in 1 min
C:U23 Thank you for waiting
..
A:U37 Thank you for allowing us to assist

you regarding wrist watch.
A:U38 I hope you found our session today helpful.
A:U39 If you have any additional questions or

you need additional information,
please log in again to chat with us.
We are available 24 hours a day, 7 days a
week for your help.

A:U40 Thank you for contacting MSN Shopping.
A:U41 Have a nice day! Good Bye and Take Care.
C:U42 You too.

Table 2: An example of a 1-on-1 live chat, with turn and
utterance structure

the agent and user repeatedly question and answer.
With these observations, we checked the likelihood
of dialogue act pairings between two adjacent utter-
ances, as well as between two adjacent utterances
made by the same author. Overall, we found strong
co-occurrence (as measured by number of occur-
rences of labels across adjacency pairs) between cer-
tain pairs of dialogue acts (e.g. (YESNO QUESTION

→YES ANSWER/NO ANSWER) and (REQUEST

→YES ANSWER)). STATEMENT, on the other
hand, can associate with most other dialogue acts.

Based on this, we designed the following five ut-
terance dependency features; by combining these,
we obtain 31 feature sets.

1. Dependency of utterances regardless of author

(a) Dialogue act of previous utterance
(b) Accumulated dialogue act(s) of previous

utterances
(c) Accumulated dialogue acts of previous ut-

terances in a given turn

2. Dependency of utterances made by a single au-
thor

(a) Dialogue act of previous utterance
by same author; a dialogue act can be in
the same turn or in the previous turn

(b) Accumulated dialogue acts of previous
utterances by same author; dialogue acts
can be in the same turn or in the previous
turn

To capture utterance dependency, Bangalore et al.
(2006) previously used n-gram BoW features from
the previous 1–3 utterances. In contrast, instead of
using utterances which indirectly encode dialogue
acts, we directly use the dialogue act classifications,
as done in Stolcke et al. (2000). The motivation is
that, due to the high performance of simple BoW
features, using dialogue acts directly would cap-
ture the dependency better than indirect information
from utterances, despite introducing some noise. We
do not build a probabilistic model of dialogue tran-
sitions the way Stolcke et al. (2000) does, but follow
an approach similar to that used in Kim et al. (2010)
in using predicted dialogue act(s) labels learned in
previous step(s) as a feature.

5 Experiment Setup

As stated earlier, we use the data set from Ivanovic
(2008) for our experiments; it contains 1-on-1 live
chats from an information delivery task. This dataset
contains 8 live chats, including 542 manually-
segmented utterances. The maximum and minimum
number of utterances in a dialogue are 84 and 42,
respectively; the maximum number of utterances in
a turn is 14. The live chats were manually tagged
with the 12 dialogue acts described in Section 3.
The utterance distribution over the dialogue acts is
described in Table 3.

For our experiments, we calculated TF, TF·IDF
and IG (Information Gain) over the utterances,
which were optionally lemmatized with the morph
tool (Minnen et al., 2000). We then built a dialogue
act classifier using three different machine learn-
ers: SVM-HMM (Joachims, 1998),2 naive Bayes

2http://www.cs.cornell.edu/People/tj/svm light/svm hmm.html
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Dialogue Act Utterance number
CONVENTIONAL CLOSING 15
CONVENTIONAL OPENING 12

DOWNPLAYER 15
EXPRESSIVE 5
NO ANSWER 12

OPEN QUESTION 17
REQUEST 28

RESPONSE ACK 27
STATEMENT 198

THANKS 79
YES ANSWER 35

YESNO QUESTION 99

Table 3: Dialogue act distribution in the corpus

Index Learner Ours Ivanovic
Feature Acc. Feature Acc.

Word SVM 1+2+3/B .790 1/B .751
NB 1/B .673 1/B .673

CRF 1/IG .839 1/B .825
Lemma SVM 1+2+3/IG .777 N/A N/A

NB 1/B .672 N/A N/A
CRF 1/B .862 N/A N/A

Table 4: Best accuracy achieved by the different learn-
ers over different feature sets and weighting methods (1
= 1-gram; 1+2+3 = 1/2/3-grams; B = Boolean; IG = in-
formation gain)

from the WEKA machine learning toolkit (Wit-
ten and Frank, 2005), and Conditional Random
Fields (CRF) using CRF++.3 Note that we chose
to test CRF and SVM-HMM as previous work (e.g.
(Samuel et al., 1998; Stolcke et al., 2000; Chung,
2009)) has shown the effectiveness of structured
classification models on sequential dependencies.
Thus, we expect similar effects with CRF and SVM-
HMM. Finally, we ran 8-fold cross-validation using
the feature sets described above (partitioning across
the 8 sessions). All results are presented in terms
of classification accuracy. The accuracy of a zero-R
(i.e. majority vote) baseline is 0.36.

6 Evaluation

6.1 Testing Bag-of-Words Features

Table 4 shows the best accuracy achieved by the dif-
ferent learners, in combination with BoW represen-

3http://crfpp.sourceforge.net/

n-gram Boolean TF TF·IDF IG
1 .731 .511 .517 .766
2 .603 .530 .601 .614
3 .474 .463 .472 .482
1+2 .756 .511 .522 .777
1+2+3 .773 .511 .528 .777

Table 5: Accuracy of different feature representations and
weighting methods for SVM-HMM

tations and feature weighting methods. Note that the
CRF learner ran using 1-grams only, as CRF++ does
not accept large numbers of features. As a bench-
mark, we also tested the method in Ivanovic (2008)
and present the best performance over words (rather
than lemmas). Overall, we found using just 1-grams
produced the best performance for all learners, al-
though SVM achieved the best performance when
using all three n-gram orders (i.e. 1+2+3). Since the
utterances are very short, 2-grams or 3-grams alone
are too sparse to be effective. Among the feature
weighting methods, Boolean and IG achieved higher
accuracy than TF and TF·IDF. Likewise, due to the
short utterances, simple Boolean values were often
the most effective. However, as IG was computed
using the training data, it also achieved high perfor-
mance. When comparing the learners, we found that
CRF produced the best performance, due to its abil-
ity to capture inter-utterance dependencies. Finally,
we confirmed that using lemmas results in higher ac-
curacy.

Table 5 shows the accuracy over all feature sets;
for brevity, we show this for SVM only since the
pattern is similar across all learners.

6.2 Using Structural Information

In this section, we describe experiments using struc-
tural information—i.e. author and/or position—with
BoWs. As with the base BoW technique, we used
1-gram lemmas with Boolean values, based on the
results from Section 6.1. Table 6 shows the results:
Pos indicates the relative position of an utterance in
the whole dialogue, Author means author informa-
tion, and Posturn indicates the relative position of
the utterance in a turn. All methods outperformed
the baseline; methods that surpassed the results for
the simple BoW method (for the given learner) at a
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Feature Learners
CRF SVM NB

BoW .862 .731 .672
BoW+Author .860 .655 .649
BoW+Pos .862 .721 .655
BoW+Posabsolute .863 .631 .524
BoW+Author+Pos .875 .700 .642
BoW+Author+Posturn .871 .651 .631

Table 6: Accuracy with structural information

level of statistical significance (based on randomised
estimation, p < 0.05) are boldfaced.

Overall, using CRFs with Author and Position in-
formation produced better performance than using
BoW alone. Clearly, the ability of CRFs to natively
optimise over structural dependencies provides an
advantage over other learners.

Relative position cannot of course be measured
directly in an actual online application; hence Ta-
ble 6 also includes the use of “absolute position” as
a feature. We see that, for CRF, the absolute posi-
tion feature shows an insignificant drop in accuracy
as compared to the use of relative position. (How-
ever, we do see a significant drop in performance
when using this feature with SVM and NB.)

6.3 Using Utterance Dependency

We next combined the inter-utterance dependency
features with the BoW features. Since we use the
dialogue acts directly in utterance dependency, we
first experimented using gold-standard dialogue act
labels. We also tested using the dialogue acts which
were automatically learned in previous steps.

Table 7 shows performance using both the gold-
standard and learned dialogue acts. The differ-
ent features listed are as follows: LabelList/L in-
dicates those corresponding to all utterances in
a dialogue preceding the target utterance; Label-
Prev/P indicates a dialogue act from a previous
utterance; LabelAuthor/A indicates a dialogue act
from a previous utterance by the same author;
and LabelPrevt/LabelAuthort indicates the previ-
ous utterance(s) and previously same-authored ut-
terance(s) in a turn, respectively. Since the accuracy
for SVM and NB using learned labels is similar to
that using gold standard labels, for brevity we report

Features Dialogue Acts
Goldstandard Learned

CRF HMM NB CRF
BoW .862 .731 .672 .862
BoW+LabelList(L) .795 .435 .225 .803
BoW+LabelPrev(P) .875 .661 .364 .876
BoW+LabelAuthor(A) .865 .633 .559 .865
BoW+LabelPrevt(Pt) .873 .603 .557 .873
BoW+LabelAuthort(At) .862 .587 .535 .851
BoW+L+P .804 .428 .227 .808
BoW+L+A .799 .404 .225 .804
BoW+L+Pt .803 .413 .229 .804
BoW+L+At .808 .408 .216 .801
BoW+P+A .873 .631 .517 .869
BoW+P+Pt .878 .579 .539 .875
BoW+P+At .871 .603 .519 .867
BoW+A+Pt .847 .594 .519 .849
BoW+A+At .869 .594 .530 .871
BoW+Pt+At .871 .592 .519 .867
BoW+L+P+A .812 .419 .231 .804
BoW+L+P+Pt .816 .423 .229 .812
BoW+L+P+At .808 .397 .225 .806
BoW+L+A+Pt .810 .388 .225 .810
BoW+L+A+At .812 .415 .216 .801
BoW+L+Pt+At .810 .375 .205 .816
BoW+P+A+Pt .875 .602 .522 .876
BoW+P+A+At .862 .609 .511 .864
BoW+P+Pt+At .873 .594 .515 .867
BoW+A+Pt+At .865 .594 .517 .864
BoW+L+P+A+Pt .817 .410 .231 .810
BoW+L+P+A+At .814 .411 .223 .810
BoW+L+P+Pt+At .816 .382 .205 .806
BoW+L+A+Pt+At .812 .406 .203 .808
BoW+P+A+Pt+At .865 .583 .513 .865
BoW+L+P+A+Pt+At .816 .399 .205 .803

Table 7: Accuracy for the different learners with depen-
dency features

the performance for CRF using learned labels only.
Results that exceed the BoW accuracy at a level of
statistical significance (p < 0.05) are boldfaced.

Utterance dependency features worked well in
combination with CRF only. Individually, Prev and
Prevt (i.e. BoW+P+Pt) helped to achieve higher ac-
curacies, and the Author feature was also benefi-
cial. However, List decreased the performance, as
the flow of dialogues can change, and when a larger
history of dialogue acts is included, it tends to in-
troduce noise. Comparing use of gold-standard and
learned dialogue acts, the reduction in accuracy was
not statistically significant, indicating that we can
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Feature CRF SVM NB
C+LabelList .9557 .4613 .2565
C+LabelPrev .9649 .6365 .5720
C+LabelAuthor .9686 .6310 .5424
C+LabelPrevt .9686 .5738 .5738
C+LabelAuthort .9561 .6125 .5332

Table 8: Accuracy with Structural and Dependency Infor-
mation: C means lemmatized Unigram+Position+Author

achieve high performance on dialogue act classifi-
cation even with interactively-learned dialogue acts.
We believe this demonstrates the robustness of the
proposed techniques.

Finally, we tested the combination of features
from structural and dependency information. That
is, we used a base feature (unigrams with Boolean
value), relative position, author information, com-
bined with each of the different dependency features
– LabelList, LabelPrev, LabelAuthor, LabelPrevt

and LabelAuthort.
Table 8 shows the performance when using these

combinations, for each dependency feature. As we
would expect, CRFs performed well with the com-
bined features since CRFs can incorporate the struc-
tural and dependency information; the achieved the
highest accuracy of 96.86%.

6.4 Error Analysis and Future Work

Finally, we analyzed the errors of
the best-performing feature set (i.e.
BoW+Position+Author+LabelAuthor). In Ta-
ble 9, we present a confusion matrix of errors,
for CONVENTIONAL CLOSING (Cl), CON-
VENTIONAL OPENING (Op), DOWNPLAYER

(Dp), EXPRESSIVE (Ex), NO ANSWER (No),
OPEN QUESTION (Qu), REQUEST (Rq), RE-
SPONSE ACK (Ack), STATEMENT (St), THANKS

(Ta), YES ANSWER (Yes), and YESNO QUESTION

(YN). Rows indicate the correct dialogue acts and
columns indicate misclassified dialogue acts.

Looking over the data, STATEMENT is a common
source of misclassification, as it is the majority class
in the data. In particularly, a large number of RE-
QUEST and RESPONSE ACK utterances were tagged
as STATEMENT. We did not include punctuation
such as question marks in our feature sets; includ-
ing this would likely improve results further.

In future work, we plan to investigate methods for
automatically cleansing the data to remove typos,
and taking account of temporal gaps that can some-
times arise in online chats (e.g. in Table 2, there is
a time gap between C:U22 brb in 1 min and C:U23
Thank you for waiting).

7 Conclusion

We have explored an automated approach for classi-
fying dialogue acts in 1-on-1 live chats in the shop-
ping domain, using bag-of-words (BoW), structural
information and utterance dependency features. We
found that the BoW features perform remarkably
well, with slight improvements when using lemmas
rather than words. Including structural and inter-
utterance dependency information further improved
performance. Of the learners we experimented with,
CRFs performed best, due to their ability to natively
capture sequential dialogue act dependencies.
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Abstract 

This paper proposes a unified framework for 
zero anaphora resolution, which can be di-
vided into three sub-tasks: zero anaphor detec-
tion, anaphoricity determination and 
antecedent identification. In particular, all the 
three sub-tasks are addressed using tree ker-
nel-based methods with appropriate syntactic 
parse tree structures. Experimental results on a 
Chinese zero anaphora corpus show that the 
proposed tree kernel-based methods signifi-
cantly outperform the feature-based ones. This 
indicates the critical role of the structural in-
formation in zero anaphora resolution and the 
necessity of tree kernel-based methods in 
modeling such structural information. To our 
best knowledge, this is the first systematic 
work dealing with all the three sub-tasks in 
Chinese zero anaphora resolution via a unified 
framework. Moreover, we release a Chinese 
zero anaphora corpus of 100 documents, 
which adds a layer of annotation to the manu-
ally-parsed sentences in the Chinese Treebank 
(CTB) 6.0.  

1 Introduction 

As one of the most important techniques in dis-
course analysis, anaphora resolution has been a 
focus of research in Natural Language Processing 
(NLP) for decades and achieved much success in 
English recently (e.g. Soon et al. 2001; Ng and 
Cardie 2002; Yang et al. 2003, 2008; Kong et al. 
2009).  

However, there is little work on anaphora reso-
lution in Chinese. A major reason for this phe-

nomenon is that Chinese, unlike English, is a pro-
drop language, whereas in English, definite noun 
phrases (e.g. the company) and overt pronouns (e.g. 
he) are frequently employed as referring expres-
sions, which refer to preceding entities. Kim (2000) 
compared the use of overt subjects in English and 
Chinese. He found that overt subjects occupy over 
96% in English, while this percentage drops to 
only 64% in Chinese. This indicates the prevalence 
of zero anaphors in Chinese and the necessity of 
zero anaphora resolution in Chinese anaphora reso-
lution. Since zero anaphors give little hints (e.g. 
number or gender) about their possible antecedents, 
zero anaphora resolution is much more challenging 
than traditional anaphora resolution. 

Although Chinese zero anaphora has been 
widely studied in the linguistics research (Li and 
Thompson 1979; Li 2004), only a small body of 
prior work in computational linguistics deals with 
Chinese zero anaphora resolution (Converse 2006; 
Zhao and Ng 2007). Moreover, zero anaphor de-
tection, as a critical component for real applica-
tions of zero anaphora resolution, has been largely 
ignored.  

This paper proposes a unified framework for 
Chinese zero anaphora resolution, which can be 
divided into three sub-tasks: zero anaphor detec-
tion, which detects zero anaphors from a text, ana-
phoricity determination, which determines whether 
a zero anaphor is anaphoric or not, and antecedent 
identification, which finds the antecedent for an 
anaphoric zero anaphor. To our best knowledge, 
this is the first systematic work dealing with all the 
three sub-tasks via a unified framework. Moreover, 
we release a Chinese zero anaphora corpus of 100 
documents, which adds a layer of annotation to the 
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manually-parsed sentences in the Chinese Tree-
bank (CTB) 6.0. This is done by assigning ana-
phoric/non-anaphoric zero anaphora labels to the 
null constituents in a parse tree. Finally, this paper 
illustrates the critical role of the structural informa-
tion in zero anaphora resolution and the necessity 
of tree kernel-based methods in modeling such 
structural information. 

The rest of this paper is organized as follows. 
Section 2 briefly describes the related work on 
both zero anaphora resolution and tree kernel-
based anaphora resolution. Section 3 introduces the 
overwhelming problem of zero anaphora in Chi-
nese and our developed Chinese zero anaphora 
corpus, which is available for research purpose. 
Section 4 presents our tree kernel-based unified 
framework in zero anaphora resolution. Section 5 
reports the experimental results. Finally, we con-
clude our work in Section 6. 

2 Related Work 

This section briefly overviews the related work on 
both zero anaphora resolution and tree kernel-
based anaphora resolution. 

2.1 Zero anaphora resolution 

Although zero anaphors are prevalent in many lan-
guages, such as Chinese, Japanese and Spanish, 
there only have a few works on zero anaphora 
resolution. 

Zero anaphora resolution in Chinese 
Converse (2006) developed a Chinese zero anaph-
ora corpus which only deals with zero anaphora 
category “-NONE- *pro*” for dropped sub-
jects/objects and ignores other categories, such as 
“-NONE- *PRO*” for non-overt subjects in non-
finite clauses. Besides, Converse (2006) proposed 
a rule-based method to resolve the anaphoric zero 
anaphors only. The method did not consider zero 
anaphor detection and anaphoric identification, and 
performed zero anaphora resolution using the 
Hobbs algorithm (Hobbs, 1978), assuming the 
availability of golden anaphoric zero anaphors and 
golden parse trees.  

Instead, Zhao and Ng (2007) proposed feature-
based methods to zero anaphora resolution on the 
same corpus from Convese (2006). However, they 
only considered zero anaphors with explicit noun 
phrase referents and discarded those with split an-

tecedents or referring to events. Moreover, they 
focused on the sub-tasks of anaphoricity determi-
nation and antecedent identification. For zero ana-
phor detection, a simple heuristic rule was 
employed. Although this rule can recover almost 
all the zero anaphors, it suffers from very low pre-
cision by introducing too many false zero anaphors 
and thus leads to low performance in anaphoricity 
determination, much due to the imbalance between 
positive and negative training examples. 

Zero anaphora resolution in Japanese 
Seki et al. (2002) proposed a probabilistic model 
for the sub-tasks of anaphoric identification and 
antecedent identification with the help of a verb 
dictionary. They did not perform zero anaphor de-
tection, assuming the availability of golden zero 
anaphors. Besides, their model needed a large-
scale corpus to estimate the probabilities to prevent 
them from the data sparseness problem.  

Isozaki and Hirao (2003) explored some ranking 
rules and a machine learning method on zero 
anaphora resolution. However, they assumed that 
zero anaphors were already detected and each zero 
anaphor’s grammatical case was already deter-
mined by a zero anaphor detector.  

Iida et al. (2006) explored a machine learning 
method for the sub-task of antecedent identifica-
tion using rich syntactic pattern features, assuming 
the availability of golden anaphoric zero anaphors. 

Sasano et al. (2008) proposed a fully-lexicalized 
probabilistic model for zero anaphora resolution, 
which estimated case assignments for the overt 
case components and the antecedents of zero ana-
phors simultaneously. However, this model needed 
case frames to detect zero anaphors and a large-
scale corpus to construct these case frames auto-
matically.  

For Japanese zero anaphora, we do not see any 
reports about zero anaphora categories. Moreover, 
all the above related works we can find on Japa-
nese zero anaphora resolution ignore zero anaphor 
detection, focusing on either anaphoricity determi-
nation or antecedent identification. Maybe, it is 
easy to detect zero anaphors in Japanese. However, 
it is out of the scope of our knowledge and this 
paper.  

Zero anaphora resolution in Spanish 
As the only work we can find, Ferrandez and Peral 
(2000) proposed a hand-engineered rule-based 
method for both anaphoricity determination and 
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antecedent identification. That is, they ignored zero 
anaphor detection. Besides, they only dealt with 
zero anaphors that were in the subject position. 

2.2 Tree kernel-based anaphora resolution 

Although there is no research on tree kernel-based 
zero anaphora resolution in the literature, tree ker-
nel-based methods have been explored in tradi-
tional anaphora resolution to certain extent and 
achieved comparable performance with the domi-
nated feature-based ones. One main advantage of 
kernel-based methods is that they are very effec-
tive at reducing the burden of feature engineering 
for structured objects. Indeed, the kernel-based 
methods have been successfully applied to mine 
structural information in various NLP techniques 
and applications, such as syntactic parsing (Collins 
and Duffy 2001; Moschitti 2004), semantic rela-
tion extraction (Zelenko et al. 2003; Zhao and 
Grishman 2005; Zhou et al. 2007; Qian et al. 2008), 
and semantic role labeling (Moschitti 2004).  

Representative works in tree kernel-based 
anaphora resolution include Yang et al. (2006) and 
Zhou et al (2008). Yang et al. (2006) employed a 
convolution tree kernel on anaphora resolution of 
pronouns. In particular, a document-level syntactic 
parse tree for an entire text was constructed by at-
taching the parse trees of all its sentences to a new-
added upper node. Examination of three parse tree 
structures using different construction schemes 
(Min-Expansion, Simple-Expansion and Full-
Expansion) on the ACE 2003 corpus showed 
promising results. However, among the three con-
structed parse tree structures, there exists no obvi-
ous overwhelming one, which can well cover 
structured syntactic information. One problem with 
this tree kernel-based method is that all the con-
structed parse tree structures are context-free and 
do not consider the information outside the sub-
trees. To overcome this problem, Zhou et al. (2008) 
proposed a dynamic-expansion scheme to auto-
matically construct a proper parse tree structure for 
anaphora resolution of pronouns by taking predi-
cate- and antecedent competitor-related informa-
tion into consideration. Besides, they proposed a 
context-sensitive convolution tree kernel to com-
pute the similarity between the parse tree structures. 
Evaluation on the ACE 2003 corpus showed that 
the dynamic-expansion scheme can well cover 

necessary structural information in the parse tree 
for anaphora resolution of pronouns and the con-
text-sensitive convolution tree kernel much outper-
formed other tree kernels. 

3 Task Definition 

This section introduces the phenomenon of zero 
anaphora in Chinese and our developed Chinese 
zero anaphora corpus. 

3.1 Zero anaphora in Chinese 

A zero anaphor is a gap in a sentence, which refers 
to an entity that supplies the necessary information 
for interpreting the gap. Figure 1 illustrates an ex-
ample sentence from Chinese TreeBank (CTB) 6.0 
(File ID=001, Sentence ID=8). In this example, 
there are four zero anaphors denoted as Фi (i=1, 
2, …4). Generally, zero anaphors can be under-
stood from the context and do not need to be speci-
fied. 

A zero anaphor can be classified into either ana-
phoric or non-anaphoric, depending on whether it 
has an antecedent in the discourse. Typically, a 
zero anaphor is non-anaphoric when it refers to an 
extra linguistic entity (e.g. the first or second per-
son in a conversion) or its referent is unspecified in 
the context. Among the four anaphors in Figure 1, 
zero anaphors Ф 1 and Ф 4 are non-anaphoric 
while zero anaphors Ф2 and Ф3 are anaphoric, 
referring to noun phrase “建筑行为/building ac-
tion” and noun phrase “新区管委会/new district 
managing committee” respectively. 

Chinese zero anaphora resolution is very diffi-
cult due to following reasons: 1) Zero anaphors 
give little hints (e.g. number or gender) about their 
possible antecedents. This makes antecedent iden-
tification much more difficult than traditional 
anaphora resolution. 2) A zero anaphor can be ei-
ther anaphoric or non-anaphoric. In our corpus de-
scribed in Section 3.2, about 60% of zero anaphors 
are non-anaphoric. This indicates the importance 
of anaphoricity determination. 3) Zero anaphors 
are not explicitly marked in a text. This indicates 
the necessity of zero anaphor detection, which has 
been largely ignored in previous research and has 
proved to be difficult in our later experiments. 
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Figure 1: An example sentence from CTB 6.0, which contains four zero anaphors 

(the example is : 为规范建筑行为，防止出现无序现象，新区管委会根据国家和上海市的有关规定，结合浦

东开发实际，及时出台了一系列规范建设市场的文件/ In order to standardize the building action and prevent the 
inorder phenomenon, the standing committee of new zone annouced a series of files to standardize building market 
based on the related provisions of China and Shanghai in time, and the realities of the development of Pudong are 

considered. ) 

3.2 Zero anaphora corpus in Chinese 

Due to lack of an available zero anaphora corpus 
for research purpose, we develop a Chinese zero 
anaphora corpus of 100 documents from CTB 6.0, 
which adds a layer of annotation to the manually-
parsed sentences. Hoping the public availability of 
this corpus can push the research of zero anaphora 
resolution in Chinese and other languages.  

  
Figure 2: An example sentence annotated in CTB 6.0 

ID
Cate-
gory 

Description 
AZ
As

ZAs

1
-NONE-  

*T* 

Used in topicalization and 
object preposing con-
structions 

6 742

2
-NONE-  

* 
Used in raising and pas-
sive constructions 

1 2 

3
-NONE-  
*PRO*

Used in control structures. 
The *PRO* cannot be 
substituted by an overt 
constituent. 

219 399

4
-NONE-  

*pro* 
for dropped subject or 
object. 

394 449

5
-NONE-  
*RNR*

Used for right node rais-
ing (Cataphora) 

0 36 

6 Others
Other unknown empty 
categories 

92 92 

Total (100 documents, 35089 words) 712 1720
Table 1: Statistics on different categories of  zero 

anaphora (AZA and ZA indicates anaphoric zero ana-
phor and zero anaphor respectively) 
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Figure 2 illustrates an example sentence anno-
tated in CTB 6.0, where the special tag “-NONE-” 
represents a null constituent and thus the occur-
rence of a zero anaphor. In our developed corpus, 
we need to annotate anaphoric zero anaphors using 
those null constituents with the special tag of “-
NONE-”. 

Table 1 gives the statistics on all the six catego-
ries of zero anaphora. Since we do not consider 
zero cataphora in the current version, we simply 
redeem them non-anaphoric. It shows that among 
1720 zero anaphors, only 712 (about 40%) are 
anaphoric. This suggests the importance of ana-
phoricity determination in zero anaphora resolution. 
Table 3 further shows that, among 712 anaphoric 
zero anaphors, 598 (84%) are intra-sentential and 
no anaphoric zero anaphors have their antecedents 
occurring two sentences before. 

Sentence distance AZAs
0 598 
1 114 

>=2 0 
Table 3 Distribution of anaphoric zero anaphors over 

sentence distances 

Figure 3 shows an example in our corpus corre-
sponding to Figure 2. For a non-anaphoric zero 
anaphor, we replace the null constituent with “E-i 
NZA”, where i indicates the category of zero 
anaphora, with “1” referring to “-NONE *T*” 
etc. For an anaphoric zero anaphor, we replace it 
with “E-x-y-z-i AZA”, where x indicates the sen-
tence id of its antecedent, y indicates the position 
of the first word of its antecedent in the sentence, z 
indicates the position of the last word of its antece-
dent in the sentence, and i indicates the category id 
of the null constituent. 

 
Figure 3: an example sentence annotated in our corpus 

4 Tree Kernel-based Framework 

This section presents the tree kernel-based unified 
framework for all the three sub-tasks in zero 
anaphora resolution. For each sub-task, different 
parse tree structures are constructed. In particular, 
the context-sensitive convolution tree kernel, as 
proposed in Zhou et al. (2008), is employed to 
compute the similarity between two parse trees via 
the SVM toolkit SVMLight. 

In the tree kernel-based framework, we perform 
the three sub-tasks, zero anaphor detection, ana-
phoricity determination and antecedent identifica-
tion in a pipeline manner. That is, given a zero 
anaphor candidate Z, the zero anaphor detector is 
first called to determine whether Z is a zero ana-
phor or not. If yes, the anaphoricity determiner is 
then invoked to determine whether Z is an ana-
phoric zero anaphor. If yes, the antecedent identi-
fier is finally awaked to determine its antecedent. 
In the future work, we will explore better ways of 
integrating the three sub-tasks (e.g. joint learning). 

4.1 Zero anaphor detection 

At the first glance, it seems that a zero anaphor can 
occur between any two constituents in a parse tree. 
Fortunately, an exploration of our corpus shows 
that a zero anaphor always occurs just before a 
predicate1 phrase node (e.g. VP). This phenome-
non has also been employed in Zhao and Ng (2007) 
in generating zero anaphor candidates. In particular, 
if the predicate phrase node occurs in a coordinate 
structure or is modified by an adverbial node, we 
only need to consider its parent. As shown in Fig-
ure 1, zero anaphors may occur immediately to the 
left of规范/guide, 防止/avoid, 出现/appear, 根据

/according to, 结合 /combine, 出台 /promulgate, 
which cover the four true zero anaphors. Therefore, 
it is simple but reliable in applying above heuristic 
rules to generate zero anaphor candidates. 

Given a zero anaphor candidate, it is critical to 
construct a proper parse tree structure for tree ker-
nel-based zero anaphor detection. The intuition 
behind our parser tree structure for zero anaphor 
detection is to keep the competitive information 

                                                           
1 The predicate in Chinese can be categorized into verb predi-
cate, noun predicate and preposition predicate. In our corpus, 
about 93% of the zero anaphors are driven by verb predicates. 
In this paper, we only explore zero anaphors driven by verb 
predicates. 
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about the predicate phrase node and the zero ana-
phor candidate as much as possible. In particular, 
the parse tree structure is constructed by first keep-
ing the path from the root node to the predicate 
phrase node and then attaching all the immediate 
verbal phrase nodes and nominal phrase nodes. 
Besides, for the sub-tree rooted by the predicate 
phrase node, we only keep those paths ended with 
verbal leaf nodes and the immediate verbal and 
nominal nodes attached to these paths. Figure 4 
shows an example of the parse tree structure corre-
sponding to Figure 1 with the zero anaphor candi-
date Φ2 in consideration. 

During training, if a zero anaphor candidate has 
a counterpart in the same position in the golden 
standard corpus (either anaphoric or non-
anaphoric), a positive instance is generated. Oth-
erwise, a negative instance is generated. During 
testing, each zero anaphor candidate is presented to 
the learned zero anaphor detector to determine 
whether it is a zero anaphor or not. Besides, since a 
zero anaphor candidate is generated when a predi-
cate phrase node appears, there may be two or 
more zero anaphor candidates in the same position. 
However, there is normally one zero anaphor in the 
same position. Therefore, we just select the one 
with maximal confidence as the zero anaphor in 
the position and ignore others, if multiple zero 
anaphor candidates occur in the same position. 

 
Figure 4: An example parse tree structure for zero ana-
phor detection with the predicate phrase node and the 

zero anaphor candidate Φ2  in black 

4.2 Anaphoricity determination 

To determine whether a zero anaphor is anaphoric 
or not, we limit the parse tree structure between the 

previous predicate phrase node and the following 
predicate phrase node. Besides, we only keep those 
verbal phrase nodes and nominal phrase nodes. 
Figure 5 illustrates an example of the parse tree 
structure for anaphoricity determination, corre-
sponding to Figure 1 with the zero anaphor Φ2 in 
consideration.   

VP

IPVV

防止 NP-SBJ VP

NN

NP-OBJ

出现 NP

现象

VV
prevent

appear

phenomenon  

Figure 5: An example parse tree structure for anaphoric-
ity determination with the zero anaphor Φ2 in consid-

eration 

4.3 Antecedent identification 

To identify an antecedent for an anaphoric zero 
anaphor, we adopt the Dynamic Expansion Tree, 
as proposed in Zhou et al. (2008), which takes 
predicate- and antecedent competitor-related in-
formation into consideration. Figure 6 illustrates an 
example parse tree structure for antecedent identi-
fication, corresponding to Figure 1 with the ana-
phoric zero anaphor Φ 2 and the antecedent 
candidate “建筑行为/building action” in consid-
eration.  

 
Figure 6: An example parse tree structure for antecedent 
identification with the anaphoric zero anaphor Φ2 and 
the antecedent candidate “建筑行为/building action” in 

consideration 

In this paper, we adopt a similar procedure as 
Soon et al. (2001) in antecedent identification. Be-

887



sides, since all the anaphoric zero anaphors have 
their antecedents at most one sentence away, we 
only consider antecedent candidates which are at 
most one sentence away. In particular, a document-
level parse tree for an entire document is con-
structed by attaching the parse trees of all its sen-
tences to a new-added upper node, as done in Yang 
et al. (2006), to deal with inter-sentential ones. 

5 Experimentation and Discussion 

We have systematically evaluated our tree kernel-
based unified framework on our developed Chi-
nese zero anaphora corpus, as described in Section 
3.2. Besides, in order to focus on zero anaphor 
resolution itself and compare with related work, all 
the experiments are done on golden parse trees 
provided by CTB 6.0. Finally, all the performances 
are achieved using 5-fold cross validation. 

5.1 Experimental results 

Zero anaphor detection 
Table 4 gives the performance of zero anaphor de-
tection, which achieves 70.05%, 83.24% and 76.08 
in precision, recall and F-measure, respectively. 
Here, the lower precision is much due to the simple 
heuristic rules used to generate zero anaphors can-
didates. In fact, the ratio of positive and negative 
instances reaches about 1:12. However, this ratio is 
much better than that (1:30) using the heuristic rule 
as described in Zhao and Ng (2007). It is also 
worth to point out that lower precision higher re-
call is much beneficial than higher precision lower 
recall as higher recall means less filtering of true 
zero anaphors and we can still rely on anaphoricity 
determination to filter out those false zero ana-
phors introduced by lower precision in zero ana-
phor detection. 

P% R% F 
70.05 83.24 76.08 

Table 4: Performance of zero anaphor detection 

Anaphoricity determination 
Table 5 gives the performance of anaphoricity de-
termination. It shows that anaphoricity determina-
tion on golden zero anaphors achieves very good 
performance of 89.83%, 84.21% and 86.93 in pre-
cision, recall and F-measure, respectively, although 
useful information, such as gender and number, is 
not available in anaphoricity determination. This 

indicates the critical role of the structural informa-
tion in anaphoricity determination of zero anaphors. 
It also shows that anaphoricity determination on 
automatic zero anaphor detection achieves 77.96%, 
53.97% and 63.78 in precision, recall and F-
measure, respectively. In comparison with ana-
phoricity determination on golden zero anaphors, 
anaphoricity determination on automatic zero ana-
phor detection lowers the performance by about 23 
in F-measure. This indicates the importance and 
the necessity for further research in zero anaphor 
detection. 

 P% R% F 
golden zero anaphors 89.83 84.21 86.93

zero anaphor detection 77.96 53.97 63.78
Table 5: Performance of anaphoricity determination 

Antecedent identification 
Table 6 gives the performance of antecedent iden-
tification given golden zero anaphors. It shows that 
antecedent identification on golden anaphoric zero 
anaphors achieves 88.93%, 68.36% and 77.29 in 
precision, recall and F-measure, respectively. It 
also shows that antecedent identification on auto-
matic anaphoricity determination achieves 80.38%, 
47.28% and 59.24 in precision, recall and F-
measure, respectively, with a decrease of about 8% 
in precision, about 21% in recall and about 18% in 
F-measure, in comparison with antecedent identifi-
cation on golden anaphoric zero anaphors. This 
indicates the critical role of anaphoricity determi-
nation in antecedent identification.  
 

 P% R% F 
golden anaphoric zero ana-

phors 
88.90 68.36 77.29

anaphoricity determination 80.38 47.28 59.54
Table 6: Performance of antecedent identification given 

golden zero anaphors 

Overall: zero anaphora resolution 
Table 7 gives the performance of overall zero 
anaphora resolution with automatic zero anaphor 
detection, anaphoricity determination and antece-
dent identification. It shows that our tree kernel-
based framework achieves 77.66%, 31.74% and 
45.06 in precision, recall and F-measure. In com-
parison with Table 6, it shows that the errors 
caused by automatic zero anaphor detection de-
crease the performance of overall zero anaphora 
resolution by about 14 in F-measure, in compari-
son with golden zero anaphors. 
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P% R% F 

77.66 31.74 45.06 
Table 7: Performance of zero anaphora resolution 

Figure 7 shows the learning curve of zero 
anaphora resolution with the increase of the num-
ber of the documents in experimentation, with the 
horizontal axis the number of the documents used 
and the vertical axis the F-measure. It shows that 
the F-measure is about 42.5 when 20 documents 
are used in experimentation. This figure increases 
very fast to about 45 when 50 documents are used 
while further increase of documents only slightly 
improves the performance.  

auto ZA and AZA

41

42

43

44

45

46

20 30 40 50 60 70 80 90 100

 
Figure 7: Learning curve of zero anaphora resolution 
over the number of the documents in experimentation 

Table 8 shows the detailed performance of zero 
anaphora resolution over different sentence dis-
tance between a zero anaphor and its antecedent. It 
is expected that both the precision and the recall of 
intra-sentential resolution are much higher than 
those of inter-sentential resolution, largely due to 
the much more dependency of intra-sentential an-
tecedent identification on the parse tree structures.  

Sentence distance P% R% F 
0 85.12 33.28 47.85
1 46.55 23.64 31.36
2 - - - 

Table 8: Performance of zero anaphora resolution over 
sentence distances 

Table 9 shows the detailed performance of zero 
anaphora resolution over the two major zero 
anaphora categories, “-NONE- *PRO*” and “-
NONE- *pro*”. It shows that our tree kernel-based 
framework achieves comparable performance on 
them, both with high precision and low recall. This 
is in agreement with the overall performance. 

ID Category P% R% F 
3 -NONE-  *PRO* 79.37 34.23 47.83
4 -NONE-  *pro* 77.03 30.82 44.03

Table 9: Performance of zero anaphora resolution over 
major zero anaphora categories 

5.2 Comparison with previous work 

As a representative in Chinese zero anaphora reso-
lution, Zhao and Ng (2007) focused on anaphoric-
ity determination and antecedent identification 
using feature-based methods. In this subsection, we 
will compare our tree kernel-based framework with 
theirs in details. 

Corpus 
Zhao and Ng (2007) used a private corpus from 
Converse (2006). Although their corpus contains 
205 documents from CBT 3.0, it only deals with 
the zero anaphors under the zero anaphora cate-
gory of “-NONE- *pro*” for dropped sub-
jects/objects. Furthermore, Zhao and Ng (2007) 
only considered zero anaphors with explicit noun 
phrase referents and discarded zero anaphors with 
split antecedents (i.e. split into two separate noun 
phrases) or referring to entities. As a result, their 
corpus is only about half of our corpus in the num-
ber of zero anaphors and anaphoric zero anaphors. 
Besides, our corpus deals with all the types of zero 
anaphors and all the categories of zero anaphora 
except zero cataphora. 

Method 
Zhao and Ng (2007) applied feature-based methods 
on anaphoricity determination and antecedent iden-
tification with most of features structural in nature. 
For zero anaphor detection, they used a very sim-
ple heuristic rule to generate zero anaphor candi-
dates. Although this rule can recover almost all the 
zero anaphors, it suffers from very low precision 
by introducing too many false zero anaphors and 
thus may lead to low performance in anaphoricity 
determination, much due to the imbalance between 
positive and negative training examples with the 
ratio up to about 1:30.  

In comparison, we propose a tree kernel-based 
unified framework for all the three sub-tasks in 
zero anaphora resolution. In particular, different 
parse tree structures are constructed for different 
sub-tasks. Besides, a context sensitive convolution 
tree kernel is employed to directly compute the 
similarity between the parse trees. 

For fair comparison with Zhao and Ng (2007), 
we duplicate their system and evaluate it on our 
developed Chinese zero anaphora corpus, using the 
same J48 decision tree learning algorithm in Weka 
and the same feature sets for anaphoricity determi-
nation and antecedent identification.  
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Table 10 gives the performance of the feature-
based method, as described in Zhao and Ng (2007), 
in anaphoricity determination on our developed 
corpus. In comparison with the tree kernel-based 
method in this paper, the feature-based method 
performs about 16 lower in F-measure, largely due 
to the difference in precision (63.61% vs 89.83%), 
when golden zero anaphors are given. It also 
shows that, when our tree kernel-based zero ana-
phor detector is employed 2 , the feature-based 
method gets much lower precision with a gap of 
about 31%, although it achieves slightly higher 
recall.  

 P% R% F 
golden zero anaphors 63.61 79.71 70.76
zero anaphor detection 46.17 57.69 51.29
Table 10: Performance of the feature-based method 

(Zhao and Ng 2007) in anaphoricity determination on 
our developed corpus 

 P% R% F 
golden anaphoric zero ana-
phors 

77.45 51.97 62.20 

golden zero anaphpors and 
feature-based anaphoricity 
determination 

75.17 29.69 42.57 

overall: tree kernel-based 
zero anaphor detection and 
feature-based anaphoricity 
determination 

70.67 23.64 35.43 

Table 11: Performance of the feature-based method 
(Zhao and Ng 2007) in antecedent identification on our 

developed corpus  

Table 11 gives the performance of the feature-
based method, as described in Zhao and Ng (2007), 
in antecedent identification on our developed cor-
pus. In comparison with our tree kernel-based 
method, it shows that 1) when using golden ana-
phoric zero anaphors, the feature-based method 
performs about 11%, 17% and 15 lower in preci-
sion, recall and F-measure, respectively; 2) when 
golden zero anaphors are given and feature-based 
anaphoricity determination is applied, the feature-
based method performs about 5%, 18% and 17 
lower in precision, recall and F-measure, respec-
tively; and 3) when tree kernel-based zero anaphor 
detection and feature-based anaphoricity determi-
nation are applied, the feature-based method per-

                                                           
2 We do not apply the simple heuristic rule, as adopted in Zhao 
and Ng (2007), in zero anaphor detection, due to its much 
lower performance, for fair comparison on the other two sub-
tsaks.. 

forms about 7%, 8% and 10 lower in precision, 
recall and F-measure, respectively.  

In summary, above comparison indicates the 
critical role of the structural information in zero 
anaphora resolution, given the fact that most of 
features in the feature-based methods in Zhao and 
Ng (2007) are also structural, and the necessity of 
tree kernel methods in modeling such structural 
information, even if more feature engineering in 
the feature-based methods may improve the per-
formance to a certain extent. 

6 Conclusion and Further Work 

This paper proposes a tree kernel-based unified 
framework for zero anaphora resolution, which can 
be divided into three sub-tasks: zero anaphor de-
tection, anaphoricity determination and antecedent 
identification. 

The major contributions of this paper include: 1) 
We release a wide-coverage Chinese zero anaphora 
corpus of 100 documents, which adds a layer of 
annotation to the manually-parsed sentences in the 
Chinese Treebank (CTB) 6.0. 2) To our best 
knowledge, this is the first systematic work dealing 
with all the three sub-tasks in Chinese zero anaph-
ora resolution via a unified framework. 3) Em-
ployment of tree kernel-based methods indicates 
the critical role of the structural information in zero 
anaphora resolution and the necessity of tree kernel 
methods in modeling such structural information.  

In the future work, we will systematically evalu-
ate our framework on automatically-generated 
parse trees, construct more effective parse tree 
structures for different sub-tasks of zero anaphora 
resolution, and explore joint learning among the 
three sub-tasks.  

Besides, we only consider zero anaphors driven 
by a verb predicate phrase node in this paper. In 
the future work, we will consider other situations. 
Actually, among the remaining 7% zero anaphors, 
about 5% are driven by a preposition phrase (PP) 
node, and 2% are driven by a noun phrase (NP) 
node.  However, our preliminary experiments show 
that simple inclusion of those PP-driven and NP-
driven zero anaphors will largely increase the im-
balance between positive and negative instances, 
which significantly decrease the performance.  

Finally, we will devote more on further develop-
ing our corpus, with the ultimate mission of anno-
tating all the documents in CBT 6.0.    
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Abstract

This paper proposes a method for automat-
ically inserting commas into Japanese texts.
In Japanese sentences, commas play an im-
portant role in explicitly separating the con-
stituents, such as words and phrases, of a sen-
tence. The method can be used as an ele-
mental technology for natural language gen-
eration such as speech recognition and ma-
chine translation, or in writing-support tools
for non-native speakers. We categorized the
usages of commas and investigated the ap-
pearance tendency of each category. In this
method, the positions where commas should
be inserted are decided based on a machine
learning approach. We conducted a comma
insertion experiment using a text corpus and
confirmed the effectiveness of our method.

1 Introduction

In Japanese sentences, commas are inserted to mark
word boundaries that might be otherwise unclear be-
cause Japanese is a non-segmented language. They
are also inserted at sharp semantic boundaries to im-
prove the readability of a sentence. While there is a
tendency about the positions where commas should
be inserted in a Japanese sentence, there is no clear
standard for these positions. Therefore, it is hard
for non-natives of Japanese such as foreign students
to insert commas properly, and the method for au-
tomatic comma insertion is required to support sen-
tence generation by such people. In addition, this
method is expected to be useful for improving read-
ability of texts generated by automatic speech recog-
nition or machine translation.

This paper proposes a method for automatically
inserting commas into Japanese texts. There are

several usages of commas, and the positions to in-
sert commas depend on these usages. Therefore,
we grouped the usages of commas into nine cate-
gories, and investigated the appearance tendency for
each category to find the effective features of ma-
chine learning by using Japanese newspaper arti-
cles. Based on the analysis of comma positions, our
method decides whether or not to insert a comma
at each bunsetsu1 boundary in an input sentence by
machine learning.

We conducted an experiment on comma insertion
using the Kyoto Text Corpus (Kurohashi and Nagao,
1998), and obtained higher recall and precision than
those of the baseline, leading us to confirm the ef-
fectiveness of our method.

This paper is organized as follows: The next sec-
tion presents related works. Section 3 gives prelim-
inary analyses. Section 4 explains how our comma
insertion method works. An experiment and discus-
sions are presented in Sections 5 and 6, respectively.

2 Related Works

There have been many investigations on comma in-
sertion into output texts of speech recognition sys-
tems to improve the readability (Christensen et al.,
2001; Kim and Woodland, 2001; Liu et al., 2006;
Shimizu et al., 2008). Their methods insert commas
using pause information of speakers, based on the
idea that a point at which a speaker takes a breath
partly corresponds to a point where a comma is in-
serted. However, since pause information cannot be
obtained from texts, we cannot use this approach be-
cause our targets are written texts.

In addition, there have been some investigations
1Bunsetsu is a linguistic unit in Japanese that roughly corre-

sponds to a basic phrase in English. A bunsetsu consists of one
independent word and zero or more ancillary words.
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on comma insertion into non-Japanese written texts
(White and Rajkumar, 2008; Guo et al., 2010). In
Japanese, there are several usages of commas, and
some usages are specific to Japanese due to its lin-
guistic nature. Therefore, just adopting the above
mentioned methods, which have been developed
to process non-Japanese texts, is not sufficient to
enable high-quality comma insertion into Japanese
sentences. Development of a method based on the
detailed analysis of Japanese commas is required.

Furthermore, there have been some investiga-
tions on comma insertion into Japanese written texts
(Hayashi, 1992; Suzuki et al., 1995). These investi-
gations have adopted rule-based methods. However,
the number of their rules is not necessarily sufficient,
and no quantitative evaluation has been performed.

3 Analyses on Comma Usages

There have been several discussions on commas,
including the draft of “Kutou-hou (punctuation)”
made by Archives Division, Minister’s Secretariat,
Japanese Ministry of Education, Science and Cul-
ture in 1906. There are several usages of commas,
and depending on the usage, the types of positions
where commas are inserted are different. First, we
examined some previous publications on commas
(Honda, 1982; Inukai, 2002; Shogakukan’s editior-
ial department, 2007). Based on the results of the ex-
amination, we classified the usages of commas into
nine categories shown in Table 1. Here, commas
in Japanese sentences and commas in English sen-
tences have some common roles. In Japanese sen-
tences, some commas have the same roles as com-
mas in English sentences, but some commas have
roles specific to Japanese due to its linguistic nature
such as “Japanese is a non-segmented language” or
“Japanese has kanji characters and katakana charac-
ters.”

In our study, positions where a comma should
be inserted are detected by using machine learning.
We investigated the Kyoto Text Corpus version 4.0
(Kurohashi and Nagao, 1998) to find the effective
features. The Kyoto Text Corpus is a collection of
Japanese articles of Mainichi newspaper. We used
the articles on January 1st and from January 3rd to
11th in 1995 as the analysis data. Table 2 shows
the size of the data. The data had been manually

Table 1: Categorization of usages of commas
# usage of comma
1 commas between clauses
2 commas indicating clear dependency relations
3 commas for avoiding reading mistakes and

reading difficulty
4 commas indicating the subject
5 commas inserted after a conjunction or

adverb at the beginning of a sentence
6 commas inserted between parallel words or

phrases
7 commas inserted after an adverbial phrase to

indicate time
8 commas emphasizing the adjacent word
9 other

Table 2: Size of the analysis data
sentences 11,821
bunsetsus 117,501
characters 503,970
commas 16,595
characters per sentence 42.63

annotated with information on morphological anal-
ysis, bunsetsu segmentation and dependency2 anal-
ysis. Clause boundaries were detected by the clause
boundary detection program CBAP (Kashioka and
Maruyama, 2004).

Out of all the inserted commas, only 1.43%
were inserted at positions which were not bunsetsu
boundaries. Therefore, we analyzed only commas
inserted at bunsetsu boundaries. Of 105,680 bun-
setsu boundaries, commas were inserted at 16,357
bunsetsu boundaries, that is, the rate of comma
insertion was 15.48%. In the following sections,
we focus on morphemes, clause boundaries, depen-
dency relation and the number of characters between
commas, and investigate their relations with com-
mas.

3.1 Commas between Clauses
If a sentence consists of several clauses, inserting
a comma between clauses makes clear the sentence

2A dependency in a Japanese sentence is a modification re-
lation in which a modifier bunsetsu depends on a modified bun-
setsu. That is, the modifier bunsetsu and the modified bunsetsu
work as a modifier and a modifyee, respectively.
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Table 3: Rates of comma insertion according to the clause
boundary type

type of clause boundary ratio of comma
insertion (%)

topicalized element-wa 16.94 (1,446/8,536)
adnominal clause 0.72 (43/5,960)
continuous clause 84.57 (2,685/3,175)
compound clause-te 23.31 (394/1,690)
quotational clause 4.40 (74/1,680)
supplement clause 17.53 (245/1,398)
discourse marker 60.13 (650/1,081)
compound clause-ga 93.85 (946/1,008)
compound clause-de 84.52 (606/717)
condition clause-to 81.66 (423/518)

structure. Therefore, a clause boundary is consid-
ered to be a strong candidate of a position where a
comma is inserted. For example, in the following
sentence3:

• !"#$%&'()*+,-#./012345
6#7839:;<=%3>?5@ABC%D

(Toward lifting the sanctions imposed on Iraq by
United Nations, the aim seems to be to request fur-
ther cooperation from France, which has close ties
to Iraq.)

a comma is inserted at the clause boundary right af-
ter the continuous clause “!"#$%&'()*
+,-#./ (Toward lifting the sanctions imposed
on Iraq by United Nations).” Like this example, the
same usage of commas is seen in English as well.

In the analysis data, there existed 29,278 clause
boundaries excluding sentence breaks. Among
them, commas were inserted at 8,805 positions
(30.01%). The rate is higher than that of bunsetsu
boundaries. This indicates that commas tend to be
inserted at clause boundaries.

We investigated the rate of comma insertion about
114 types4 of clause boundaries. Table 3 shows the
top 10 clause boundary types according to the oc-
currence frequency, and the rates of comma inser-

3We underlined commas which we mentioned in the exam-
ple and the corresponding positions in the translation of the ex-
ample.

4In our research, we used the types of clause boundaries de-
fined by the Clause Boundary Annotation Program (Kashioka
and Maruyama, 2004).
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Figure 1: Commas making clear dependency relations

tion. In cases of “continuous clause” and “com-
pound clause-de,” the rates were higher than 84%.
On the other hand, in cases of “adnominal clause”
and “quotational clause,” the rates were lower than
5%. This means that the likelihoods of comma inser-
tion are different according to the clause boundary
type.

3.2 Commas and Dependency Structure

Commas have a role to make dependency relations
clearer. Commas tend to be inserted right after a
bunsetsu that depends on a distant bunsetsu. In Fig-
ure 1, although the bunsetsu “EFEG (in Asia)”
depends on the bunsetsu “HIJK5% (causes),”
if the comma right after the bunsetsu “EFEG (in
Asia)” is not inserted, the readers might mistakenly
understand that the bunsetsu “EFEG (in Asia)”
depends on the next bunsetsu “LMNO% (strong).”
To avoid the mistake, the comma is inserted.

In the analysis data, there existed 66,984 bunset-
sus which depend on the next bunsetsu. Among the
bunsetsu boundaries right after them, 2,302 (3.44%)
were the positions where a comma was inserted. On
the other hand, in the case of a bunsetsu bound-
ary right after a bunsetsu which does not depend on
the next bunsetsu, the rate of comma insertion was
36.32% (14,055/38,696).

In addition, when the modifyee of a bunsetsu is
located outside the clause containing the bunsetsu,
i.e. to the right of the clause end, commas are con-
sidered to be more frequently inserted right after the
bunsetsu because such bunsetsu causes more com-
plex dependency structure. The rate of comma in-
sertion right after such bunsetsu is 54.24%.
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3.3 Commas for Avoiding Reading Mistakes
and Reading Difficulty

Although, unlike English, Japanese is a non-
segmented language, word boundaries are easy to
detect because Japanese has three types of charac-
ters; hiragana characters, katakana characters, and
kanji characters. However, if the same types of char-
acters appear sequentially, readers may make a read-
ing mistake or feel difficulty in reading them. To
avoid such mistakes and difficulty, there is a usage
of commas specific to Japanese.

In the following example, a comma is inserted
between two sequentially appearing words “PQ
(burned)” and “R (ashes)” both of which consist of
only kanji characters.

• STUV3WX;YZ[\]^_`abc3d
ef#gVGPQ0R;ha3Hi#jKkl@

;m=%no@5pD(He seemed to acknowledge
that he had carried the corpse of Mr. Kawasaki to an
acquaintance in Hanasaki, Katashina-mura, Tone-
gun, Gunma Prefecture, burned it and abandoned
its ashes in the mountain forest in Katashina-mura.)

The comma was inserted because if there was no
comma, the word boundary would become unclear
and reading difficulty would be caused. Among
2,409 bunsetsu boundaries over which kanji charac-
ters appeared sequentially, commas were inserted at
2,188 (90.83%) bunsetsu boundaries. In the case of
katakana characters, the rate was 97.69% (211/216).
Commas tend to be inserted at most bunsetsu bound-
aries if kanji characters or katakana characters se-
quentially appear over a boundary.

3.4 Commas Indicating the Subject
Commas are considered to be inserted right after a
bunsetsu that represents the subject of a sentence.
For example, in Figure 2, a comma is inserted right
after the bunsetsu “qrs (war)” to indicate that the
bunsetsu is the subject of the sentence. Here, we pay
attention to the clause boundary of the type “topi-
calized element-wa.” The rate that commas were in-
serted at the clause boundaries “topicalized element-
wa” was 16.94% (1,446/8,536). This rate is almost
the same as that of bunsetsu boundaries. On the
other hand, the commas inserted at the clause bound-
aries “topicalized element-wa” accounted for 8.84%
(1,446/16,357) of all the inserted commas.
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Figure 2: Comma insertion at the clause boundary “topi-
calized element-wa”

In the case of the clause boundary “topicalized
element-wa” right after a bunsetsu which does not
depend on the next bunsetsu (e.g., the bunsetsu “q
rs (war)” in Figure 2), the rate of comma inser-
tion was 20.71% (1,426/6,886). The rate is higher
than that of all the clause boundaries “topicalized
element-wa.” This shows that commas tend to be
especially inserted at the “topicalized element-wa”
right after bunsetsus which do not depend on the
next bunsetsu.

3.5 Commas after Conjunction or Adverb

Commas tend to be inserted right after a conjunc-
tion or an adverb located at the beginning of a sen-
tence. These commas correspond to English com-
mas which are inserted right after a word such as
“however” and “furthermore” located at the begin-
ning of a sentence.

• JtJ0usvC#hwO%xyz#{C{5D
(However, I do not feel like agreeing on it.)

In the analysis data, there existed 695 bunset-
sus whose rightmost morpheme is a conjunction
and which are located at the beginning of a sen-
tence. Among them, commas were inserted right
after 498 (71.65%) bunsetsus. In the case of bun-
setsus whose rightmost morpheme is an adverb, the
rate was 30.97% (140/452).

3.6 Commas Inserted between Parallel Words
or Phrases

Commas have a function which makes clear sepa-
ration between parallel words or phrases. The fol-
lowing example shows commas separating parallel
nouns.
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• |J}~���3��0e�0��{���#!
"3�kU{/C�{B{5��s��5D(The
United Nations should play a lot of roles in a broad
range of fields, such as the global environment,
population, and food.)

In this example, commas are inserted to separate
parallel nouns “�� (environment),” “e� (popula-
tion)” and “�� (food)”. In English, there are com-
mas which perform the same role. In fact, commas
were inserted between “environment” and “popula-
tion” and between “population” and “food” in the
translation of the above example. When bunsetsus
whose rightmost morpheme is a noun appear se-
quentially, the rate of comma insertion between such
bunsetsus is 59.39% (3,330/5,607).

Also, commas are inserted to separate parallel
phrases. In the following example,

• ����s��0��>�;��kt;��Kh
���;�/k�0 �@¡�3¢(£¤;¥¦

k�JK§=%D(The menu is decided by avoid-
ing the menu the Prime Minister ate on the previous
night, and by considering the balance between the
Japanese food and the European food.)

a comma is inserted right after the bunsetsu “�/k
� (avoiding)” to make clear separation between the
parallel phrases “h���;�/k� (by avoid-
ing the menu)” and “ �@¡�3¢(£¤;¥¦
k�JK (by considering the balance between the
Japanese food and the European food).” The rate
of comma insertion between two parallel phrases is
79.89% (751/940). This is much higher than that of
bunsetsu boundaries, indicating that commas tend to
be inserted when phrases are paralleled.

3.7 Number of Characters between Commas

If there are too many commas at a short distance,
the sentence becomes hard to read. Therefore, the
number of characters between commas is expected
to be not too small. Also, because a long sequence
of characters without a comma is generated if the
distance between commas is very long, the occur-
rence frequency of such sequences of characters is
considered to be low.

We investigated the number of characters between
commas and its occurrence frequency. Figure 3
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Figure 3: Number of characters between commas and its
occurrence frequency

shows the results of investigation. When the num-
ber of characters between commas is either large or
small, the occurrence frequency is low.

4 Comma Insertion Method

In our method, a sentence, on which morphologi-
cal analysis, bunsetsu segmentation, clause bound-
ary analysis and dependency analysis have been per-
formed, is considered the input. Our method de-
cides whether or not to insert a comma at each bun-
setsu boundary in an input sentence. Based on the
analysis results in Section 3, our method adopts the
bunsetsu boundaries as candidate positions where a
comma is inserted. Our method identifies the most
appropriate combination among all combinations of
positions where a comma can be inserted, by using
the probabilistic model. In this paper, input sen-
tences which consist of n bunsetsus are represented
by B = b1 · · · bn, and the results of comma inser-
tion by R = r1 · · · rn. Here, ri is 1 if a comma
is inserted right after bunsetsu bi, and 0 otherwise.
We indicate the j-th sequence of bunsetsus created
by dividing an input sentence into m sequences as
Lj = bj

1 · · · bj
nj

(1 ≤ j ≤ m), and then, rj
k = 0 if

1 ≤ k < nj , and rj
k = 1 if k = nj .

4.1 Probabilistic Model for Comma Insertion

When an input sentence B is provided, our method
identifies the comma insertion R that maximizes
the conditional probability P (R|B). Assuming that
whether or not to insert a comma right after a bun-
setsu is independent of other commas except the
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Table 4: Features used for the maximum entropy method
morphological the rightmost independent morpheme, i.e. head word, (part-of-speech and inflected form) and
information rightmost morpheme (part-of-speech) of a bunsetsu bj

k

the rightmost morpheme (a surface form) of bj
k if the rightmost morpheme is a particle

the first morpheme (part-of-speech) of bj
k+1

commas inserted whether or not a clause boundary exists right after bj
k

between clauses type of a clause boundary right after bj
k if there exists a clause boundary

commas indicating whether or not bj
k depends on the next bunsetsu

clear dependency whether or not bj
k depends on a bunsetsu located after the final bunsetsu of the clause including

relations the next bunsetsu of bj
k

whether or not bj
k is depended on by the bunsetsu located right before it

whether or not the dependency structure of a sequence of bunsetsus between bj
k and bj

1 is closed
commas avoiding whether or not both the rightmost morpheme of bj

k and first morpheme of bj
k+1 are kanji

reading mistakes and characters
reading difficulty whether or not both the rightmost morpheme of bj

k and first morpheme of bj
k+1 are katakana

characters
commas indicating whether or not there exists a clause boundary “topicalized element-wa” right after bj

k and bj
k

the subject depends on the next bunsetsu
whether or not there exists a clause boundary “topicalized element-wa” right after bj

k and the
string of characters right before bj

k is “Gs (dewa)”
the number of characters in a phrase indicating the subject5 if there exists a clause boundary
“topicalized element-wa” right after bj

k

whether or not a clause boundary “topicalized element-wa” exists right after bj
k and a bunsetsu

whose rightmost morpheme is a verb depends on the modified bunsetsu of bj
k

commas inserted whether or not bj
k appears at the beginning of a sentence and its rightmost morpheme is a

after a conjunction conjunction
or adverb at the be-
ginning of a sentence

whether or not bj
k appears at the beginning of a sentence and its rightmost morpheme is an

adverb
commas inserted whether or not both the rightmost morphemes of bj

k and bj
k+1 are nouns

between parallel whether or not a predicate at the sentence end is depended on by bj
k whose rightmost

words or phrases independent morpheme is a verb and by any of the bunsetsus which are located after bj
k and of

which the rightmost independent morpheme is a verb
number of characters one of the following 4 categories if the number of characters from bj

1 to bj
k is found there

from bj
1 to bj

k ([num = 1], [2 ≤ num ≤ 3], [4 ≤ num ≤ 21], [22 ≤ num])

one appearing immediately before that bunsetsu,
P (R|B) can be calculated as follows:

P (R|B) (1)
=P (r1

1 = 0, · · · , r1
n1−1 = 0, r1

n1
= 1, · · · ,

rm
1 = 0, · · · , rm

nm−1 = 0, rm
nm

= 1|B)

∼=P (r1
1 = 0|B)× · · ·

×P (r1
n1−1 = 0|r1

n1−2 = 0, · · · , r1
1 = 0, B)

×P (r1
n1

= 1|r1
n1−1 = 0, · · · , r1

1 = 0, B)× · · ·
×P (rm

1 = 0|rm−1
nm−1

= 1, B)× · · ·
×P (rm

nm−1 = 0|rm
nm−2 = 0,· · ·, rm

1 = 0, rm−1
nm−1

= 1, B)

×P (rm
nm

= 1|rm
nm−1 = 0, · · · , rm

1 = 0, rm−1
nm−1

= 1, B)

where P (rj
k = 1|rj

k−1 = 0, · · · , rj
1 = 0, rj−1

nj−1
=

1, B) is the probability that a comma is inserted right
after a bunsetsu bj

k when the sequence of bunset-
sus B is provided and the position of j-th comma is
identified. Similarly, P (rj

k = 0|rj
k−1 = 0, · · · , rj

1 =
0, rj−1

nj−1
= 1, B) is the probability that a comma

is not inserted right after a bunsetsu bj
k. These

probabilities are estimated by the maximum entropy
method. The result R which maximizes the condi-
tional probability P (R|B) is regarded as the most
appropriate result of comma insertion, and calcu-
lated by dynamic programming.
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4.2 Features on Maximum Entropy Method
To estimate P (rj

k = 1|rj
k−1 = 0, · · · , rj

1 =

0, rj−1
nj−1

= 1, B) and P (rj
k = 0|rj

k−1 = 0, · · · , rj
1 =

0, rj−1
nj−1

= 1, B) by the maximum entropy method,
we used the features in Table 4 based on the analysis
described in Section 3.

5 Experiment

To evaluate the effectiveness of our method, we con-
ducted an experiment using a Japanese text corpus.

5.1 Outline of Experiment
As the experimental data, we used the newspaper ar-
ticles in the Kyoto Text Corpus version 4.0 (Kuro-
hashi and Nagao, 1998). We used the articles from
January 14th to 17th as the test data. The training
data is same as the analysis data. Table 5 shows the
size of the test data. Here, we used the maximum
entropy method tool (Le, 2008) with the default op-
tions except “-i 2000.”

In the evaluation, we obtained the recall, the pre-
cision and their harmonic mean, i.e., F-measure.
The recall and precision are respectively defined as
follows.

recall=
# of correctly inserted commas

# of commas in the correct data

precision=
# of correctly inserted commas

# of inserted commas

In our research, to realize automatic comma in-
sertion with high quality, we analyzed each usage of
commas and decided the features for the ME method
based on the analysis. To confirm the effectiveness
of our features, we established the baseline method
as a comparative method whereby commas are in-
serted by the ME method in which only simple mor-
phological information is used. The baseline method
uses the morphological information in Table 4 and
the information of the rightmost morpheme (a sur-
face form) of a bunsetsu as features.

5.2 Experimental Results
Table 6 shows the experimental results of the base-
line and our method. The recall and precision
were 69.13% and 84.13% respectively, and we con-
firmed that our method had higher performance than

Table 5: Size of test data
sentences 4,659
bunsetsus 46,511
characters 198,899
commas 6,549
characters per sentence 42.69

Table 6: Experimental results
recall precision F-measure

our 69.13% 84.13% 75.90
method (4,527/6,549) (4,527/5,381)
baseline 51.38% 70.90% 59.58

(3,365/6,549) (3,365/4,746)

the baseline method. The percentage of sentences
wherein all commas were correctly inserted was
55.81%.

Figure 4 shows the comparison between the re-
sults of our method and the baseline method. The
baseline method was not able to insert commas right
after the bunsetsu “MtVG5%> (are floated)” or
“§¨B{5k= (not decided)” but inserted com-
mas at unnatural positions such as between “©ª%
(calling himself)” and “«¬­®> (the vice com-
mander).” On the other hand, our method was able
to insert commas properly at such bunsetsu bound-
aries.

6 Discussion

6.1 Error Analysis

Among positions where commas existed in the test
data, there existed 2,022 positions where our method
did not insert commas. Among them, 862 were
clause boundaries, and the clause boundary “topical-
ized element-wa” accounted for 53.36% (460/862)
of them. There were a lot of clause boundaries of
the type “topicalized element-wa,” and the number
of commas inserted at such boundaries was large.
But, the rate of comma insertion itself was not very
high. We can say that the four features about “topi-
calized element-wa” did not always work well. Ta-

5Phrases indicating the subject is a sequence of bunsetsus
consisting of bj

k and all bunsetsus that are connected to bj
k when

we trace their dependency relationship in modifier-to-modifyee
direction.
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Figure 4: Comparison of the results of our method and
baseline method

ble 7 shows the results of comma insertion at the
clause boundaries “topicalized element-wa.” While
there existed 601 commas at such boundaries in the
test data, only 141 commas were inserted correctly.
We need to consider more effective features about
“topicalized element-wa.”

As for other cases, there existed 130 bunsetsu
boundaries between parallel words where commas
were not inserted. One example of such case is
shown below.

• correct data:
¯°±#²3³´0�£�)0µ¶°·0¸¹3

A�Vº�;»C0¼�3½¾�¿£ÀÁ¦¨

OD(Put pork backfat, garlic, ginger and shredded
green onion in a bowl, and add red bell peppers for
color.)

Table 7: Result of comma insertion at the clause bound-
aries “topicalized element-wa.”

recall precision F-measure
23.46% 59.49% 33.65

(141/601) (141/237)

• our method:
¯°±#²3³´�£�)0µ¶°·0¸¹3A

�Vº�;»C0¼�3½¾�¿£ÀÁ¦¨OD

(Put pork backfat garlic, ginger and shredded green
onion in a bowl, and add red bell peppers for color.)

In the correct data, a comma was inserted between
the bunsetsu “³´ (backfat)” and “�£�) (gar-
lic).”

If a comma should be inserted right after the bun-
setsu ‘‘³´ (backfat),” the number of characters be-
tween commas would become too small to be judged
as appropriate by the proposed method. So, the fea-
ture about the number of characters between com-
mas may have had harmful effects there. On the
other hand, a comma was inserted properly between
the bunsetsu “�£�) (garlic)” and “µ¶°·
(ginger).” This is because katakana characters ap-
peared sequentially in addition to appearing as par-
allel nouns.

6.2 Unnatural Comma Insertion

When commas are inserted at obviously unnatural
positions, they have a major impact on the under-
standing of a sentence by readers. Here, we inves-
tigated how many commas had been inserted at ob-
viously unnatural positions by our method. For the
article on January 14th (217 sentences, 2,349 bun-
setsus) in the test data, we examined 47 commas in-
serted incorrectly. Three persons decided whether
or not the inserted commas were obviously unnat-
ural through consultations. Concretely, when all of
the three persons felt that an inserted comma would
make readers understand wrongly the meaning of
the sentence, the comma was judged to be obviously
unnatural.

Among 47 commas, 4 commas were judged obvi-
ously unnatural. This result shows that our method
is capable of inserting commas at natural positions
on some level.
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Table 8: Comparison with human judgement
recall precision F-measure

by human 78.30% 80.58% 79.42
(249/318) (249/309)

our method 71.07% 82.78% 76.48
(226/318) (226/273)

6.3 Comparison with Human Judgement

In our experiment, we evaluated the results of
comma insertion of our method by comparing them
with the correct data. However, the sufficient level
to be reached by automatic comma insertion is un-
certain. Here, we evaluated our method by com-
paring them with the results of comma insertion by
another person. By using the same data as used in
the subsection 6.2, we conducted an experiment on
comma insertion by an annotator who was familiar
with writing Japanese documents. Table 8 shows the
recall, the precision and the F-measure. The second
row shows the results of our method for the same
data. As the F-measure of the annotator was 79.42,
it turned out that comma insertion task was diffi-
cult even for humans. For F-measure, our method
achieved 96.30% (76.48/79.42) of the annotator’s re-
sult. Also, the precision of our method was 82.78%.
Although the comma insertion task is difficult, our
method was able to properly insert commas.

7 Conclusion

This paper proposed a method for inserting commas
into Japanese texts. Our method appropriately in-
serts commas based on the machine learning method
using such features as morphemes, dependencies
and clause boundaries. An experiment by using the
Kyoto Text Corpus (Kurohashi and Nagao, 1998)
showed an F-measure of 75.90, and we confirmed
the effectiveness of our method.

The analysis of the experimental results showed
that our method cannot insert commas of the par-
ticular usage. As a future work, it is necessary to
find more useful features for commas of this usage
and improve the recall of our method. Also, we will
examine “commas emphasizing the adjacent word”
which were not included in our targets.
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Abstract

Unknown words are a hindrance to the perfor-
mance of hand-crafted computational gram-
mars of natural language. However, words
with incomplete and incorrect lexical entries
pose an even bigger problem because they can
be the cause of a parsing failure despite being
listed in the lexicon of the grammar. Such lex-
ical entries are hard to detect and even harder
to correct.

We employ an error miner to pinpoint words
with problematic lexical entries. An auto-
mated lexical acquisition technique is then
used to learn new entries for those words
which allows the grammar to parse previously
uncovered sentences successfully.

We test our method on a large-scale grammar
of Dutch and a set of sentences for which this
grammar fails to produce a parse. The appli-
cation of the method enables the grammar to
cover 83.76% of those sentences with an ac-
curacy of 86.15%.

1 Introduction

In this paper, we present an automated two-phase
method for treating incomplete or incorrect lexical
entries in the lexicons of large-scale computational
grammars. The performance of our approach is
tested in a case study with the wide-coverage Alpino
grammar (van Noord, 2006) of Dutch. When ap-
plied to real test sentences previously not covered
by Alpino, the method causes a parsing coverage of
83.76% and the accuracy of the delivered analyses
is 86.15%.

The main advantage of our approach is the suc-
cessful combination of efficient error mining and

lexical acquisition techniques. In the first phase, er-
ror mining pinpoints words which are listed in the
lexicon of a given grammar but which nevertheless
often lead to a parsing failure. This indicates that the
current lexical entry for such a word is either wrong
or incomplete and that one or more correct entries
for this word are missing from the lexicon. Our idea
is to treat the word as if it was unknown and, in the
second phase, to employ lexical acquisition (LA) to
learn the missing correct entries.

In the case study presented here, we employ the
iterative error miner of de Kok et al. (2009). Since
it has to be run on a large parsed corpus, we have
parsed the Flemish Mediargus corpus (∼1.5 billion
words) with Alpino. The reason for this choice is
the relatively large lexical difference between stan-
dard Dutch and Flemish. This increases the chance
to encounter words which are used in Flemish in a
way not handled by Alpino yet.

For example, the word afwater (to drain) is listed
as a first person singular present verb in the Alpino
lexicon. However, the error miner identifies this
word as the reason for the parsing failure of 9 sen-
tences. A manual examination reveals that the word
is used as a neuter noun in these cases– het afwater
(the drainage). Since there is no noun entry in the
lexicon, Alpino was not able to produce full-span
analyses.

After the error miner identifies afwater as a prob-
lematic word, we employ our machine learning
based LA method presented in Cholakov and van
Noord (2010) to learn new entries for this word.
This method has already been successfully applied
to the task of learning lexical entries for unknown
words and, as the error miner, it can be used ‘out of
the box’. LA correctly predicts a neuter noun en-
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try for afwater and the addition of this entry to the
lexicon enables Alpino to cover the 9 problematic
sentences from the Mediargus corpus.

It should be noted that since our approach cannot
differentiate between incomplete and incorrect en-
tries, no entry in the lexicon is modified. We simply
add the lexical entries which, according to the LA
method, are most suitable for a given problematic
word and assume that, if these entries are correct,
the grammar should be able to cover previously un-
parsable sentences in which the word occurs.

The remainder of the paper is organised as fol-
lows. Section 2 describes the error miner. Section
3 presents the Alpino grammar and parser and the
LA technique we employ. Section 4 describes an
experiment where error mining is performed on the
Mediargus corpus and then, LA is applied to learn
new lexical entries for problematic words. Section
5 discusses the effect which the addition of the new
entries to the lexicon has on the parsing coverage
and accuracy. Section 6 provides a comparison be-
tween our approach and previous work similar in na-
ture. This section also discusses the application of
our method to other systems and languages as well
as some ideas for future research.

2 Error Mining

The error miner of de Kok et al. (2009) combines the
strengths of the error mining methods of van Noord
(2004) and Sagot and de la Clergerie (2006). The
idea behind these methods is that grammar errors
lead to the parsing failure of some grammatical sen-
tences. By running the grammar over a large corpus,
the corpus can be split into two subsets– the set of
sentences which received a full-span parse and the
set of sentences failed to parse. Words or n-grams
which occur in the latter set have a suspicion of be-
ing the cause of parsing failures.

van Noord (2004) defines the suspicion of a word
sequence as:

(1) S(wi...wj) = C(wi...wj |error)
C(wi...wj)

where C(wi...wj) is the number of sentences
which the sequence wi...wj occurs in and
C(wi...wj |error) is the number of occurrences of
the sequence in unparsable sentences.

While this method performs well in identifying
words and n-grams that are unambiguously suspi-
cious, it also assigns incorrectly a high suspicion
to forms which happen to occur often in unparsable
sentences by ‘bad luck’. The iterative error mining
algorithm of Sagot and de la Clergerie (2006) tackles
this problem by taking the following into account:

• If a form occurs within parsable sentences, it
becomes less likely for it to be the cause of a
parsing failure.

• The suspicion of a form depends on the suspi-
cions of the other forms in the unparsable sen-
tences it occurs in.

• A form observed in a shorter sentence is ini-
tially more suspicious than a form observed in
a longer one.

However, because of data sparseness problems, this
method is only able to handle unigrams and bigrams.
Another potential problem is the absence of criteria
to determine when to use unigrams and when bi-
grams to represent forms within a given sentence.
Consider the trigram w1, w2, w3 where w2 is the
cause of a parsing failure. In this case, the whole
trigram as well as the bigrams w1, w2 and w2, w3

will become suspicious which would prevent the un-
igram w2 from ‘manifesting’ itself.

To avoid this problem, de Kok et al. (2009) uses
a preprocessor to the iterative miner of Sagot and
de la Clergerie (2006) which iterates through a sen-
tence of unigrams and expands unigrams to longer
n-grams when there is evidence that this is useful. A
unigram w1 is expanded to a bigram w1, w2 if this
bigram is more suspicious than both of its unigrams.
The general algorithm is that the expansion to an n-
gram i...j is allowed when the following two condi-
tions are fulfilled:

(2) S(i...j) > S(i...j − 1) · expFactor
S(i...j) > S(i + 1...j) · expFactor

Within the preprocessor, suspicion is defined as
shown in (1) and the expFactor is a parameter spe-
cially designed to deal with data sparseness.

As the error mining technique of de Kok et al.
(2009) successfully overcomes the problems which
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the other error mining methods we discussed en-
counter, we have chosen to employ this technique
in our experiment.

3 Automated Lexical Acquisition

3.1 The Alpino Grammar and Parser

Since we employ Alpino for the purposes of our case
study, it is convenient to explain the LA method we
have chosen to use in the context of this system.

The Alpino wide-coverage parser is based on a
large stochastic attribute value grammar. The gram-
mar takes a ‘constructional’ approach, with rich
lexical representations stored in the lexicon and a
large number of detailed, construction specific rules
(about 800).

Currently, the lexicon contains over 100K lexical
entries and a list of about 200K named entities. Each
word is assigned one or more lexical types. For
example, the verb amuseert (to amuse) is assigned
two lexical types– verb(hebben,sg3,intransitive) and
verb(hebben,sg3,transitive)– because it can be used
either transitively or intransitively. The other type
features indicate that it is a present third person sin-
gular verb and it forms perfect tense with the auxil-
iary verb hebben.

3.2 Learning Algorithm

The goal of the LA method we describe Cholakov
and van Noord (2010) is to assign correct lexical
type(s) to a given unknown word.

It takes into account only open-class lexical types:
nouns, adjectives and verbs. The types considered in
the learning process are called universal types1.

For a given word, a maximum entropy (ME)
based classifier takes various morphological and
syntactic features as input and outputs a ranked list
of lexical types. The probability of a lexical type t,
given an unknown word and its context c is:

(3) p(t|c) =
exp(

∑
i
Θifi(t,c))∑

t′∈T
exp(

∑
i
Θifi(t′,c))

where fi(t, c) may encode arbitrary characteristics
of the context and < Θ1, Θ2, ... > is a weighting
parameter which maximises the entropy and can be

1The adjectives can be used as adverbs in Dutch and thus,
the latter are not considered to be an open class.

Features
i) a, af, afw, afwa
ii) r, er, ter, ater
iii) particle yes #in this case af
iv) hyphen no
v) noun〈het,sg〉, verb〈sg1〉
vi) noun(het,count,sg), noun(de,count,pl)
vii) noun(het), noun(count), noun(sg), noun(de)
noun(pl)

Table 1: Features for afwater

evaluated by maximising the pseudo-likelihood on a
training corpus (Malouf, 2002).

Table 1 shows the features for afwater, the word
we discussed in Section 1. Row (i) contains 4 sepa-
rate features derived from the prefix of the word and
4 other suffix features are given in row (ii). The two
features in rows (iii) and (iv) indicate whether the
word starts with a particle and if it contains a hy-
phen, respectively.

Further, the method we describe in Cholakov
and van Noord (2009) is applied to generate the
paradigm(s) of each word in question. This method
uses a finite state morphology to generate possible
paradigm(s) for a given word. The morphology does
not have access to any additional linguistic infor-
mation and thus, it generates all possible paradigms
allowed by the word orthography. Then, the num-
ber of search hits Yahoo returns for each form in
a given paradigm is combined with some simple
heuristics to determine the correct paradigm(s). The
web search heuristics are also able to determine the
correct definite article (de or het) for words with
noun paradigms.

One verb and one noun paradigm are generated
for afwater. In these paradigms, afwater is listed as
a first person singular present verb form and a sin-
gular het noun form, respectively. This information
is explicitly used as features in the classifier which
is shown in row (v) of Table 1.

Next, syntactic features for afwater are obtained
by extracting a number of sentences which it oc-
curs in from large corpora or Internet. These sen-
tences are parsed with a different ‘mode’ of Alpino
where this word is assigned all universal types, i.e. it
is treated as being maximally ambiguous. For each
sentence only the parse which is considered to be the
best by the Alpino statistical disambiguation model
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is preserved. Then, the lexical type that has been
assigned to afwater in this parse is stored. During
parsing, Alpino’s POS tagger (Prins and van Noord,
2001) keeps filtering implausible type combinations.
For example, if a determiner occurs before the un-
known word, all verb types are typically not taken
into consideration. This heavily reduces the compu-
tational overload and makes parsing with universal
types computationally feasible.

When all sentences have been parsed, a list can
be drawn up with the types that have been used and
their frequency:

(4) noun(het,count,sg) 54
noun(de,count,pl) 7
tmp noun(het,count,sg) 4
adjective(no e(adv)) 4
proper name(sg,’ORG’) 1

The lexical types assigned to afwater in at least 80%
of the parses are used as features in the classifier.
These are the two features in row (vi) of Table 1.
Further, as illustrated in row (vii), each attribute of
the considered types is also taken as a separate fea-
ture.

After the classifier predicts lexical types for each
word, these predictions are subject to two additional
steps of processing. In the first one, the generated
word paradigms are explicitly used as a filtering
mechanism. When a word is assigned a verb or an
adjective type by the classifier but there is no verb or
adjective paradigm generated for it, all verb or ad-
jective predictions for this word are discarded.

The output of this ‘filtering’ is further processed
in the second step which deals with the correct
prediction of subcategorization frames for verbs.
Following the observations made in Korhonen et
al. (2000), Lapata (1999) and Messiant (2008),
Cholakov and van Noord (2010) employ a maximum
likelihood estimate (MLE) from observed relative
frequencies with an empirical threshold to filter out
low probability frames.

Since some frames could be very infrequent and
the MLE method may not capture them, the gener-
ated word paradigms are used to increase the num-
ber of contexts observed for a given verb. Addi-
tional sentences are extracted for each form in the
paradigm of a given word predicted to be a verb.

These sentences are again parsed with the universal
types. Then we look up the assigned universal verb
types, calculate the MLE for each subcategorization
frame and filter out frames with MLE below some
empirical threshold.

4 Learning New Lexical Entries

Before we start with the description of the exper-
iment, it is important to note that Alpino is very
robust– essentially, it always produces a parse. If
there is no analysis spanning the whole sentence,
the parser finds all parses for each substring and re-
turns what it considers to be the best sequence of
non-overlapping parses. However, in the context of
this experiment, a sentence will be considered suc-
cessfully parsed only if it receives a full-span anal-
ysis. For the sake of clarity, from now on we shall
use the terms coverage and cover only with regard
to such sentences. The term parsing failure shall re-
fer to a sentence for which Alpino fails to produce a
full-span analysis.

4.1 Error Mining on Mediargus

The first step in our experiment is to perform er-
ror mining on the Mediargus corpus. The corpus
consists of texts from Flemish newspapers from the
period between 1998 and 2007. It contains about
1.5 billion words (∼78M sentences). The corpus
has been parsed with Alpino and the parsing results
are fed into the error miner of de Kok et al. (2009).
The parser has not produced a full-span analysis for
7.28% of the sentences (∼5.7M sentences).

When finished, the error miner stores the results
in a data base containing potentially problematic n-
grams. Each n-gram is linked to its suspicion score
and the sentences which it occurs in and which were
not covered by Alpino.

Before proceeding with LA, however, we should
identify the n-grams which are indicative for a prob-
lem in the lexicon. The first step in this direction
is to extract all unigrams from the data base which
have a suspicion equal to or greater than 0.7 together
with the uncovered sentences they occur in. This
resulted in a list containing 4179 unique unigrams.
Further, we select from this list only those unigrams
which have lexical entries in the Alpino lexicon and
occur in more than 5 sentences with no full-span
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parse. Sometimes, the error miner might be wrong
about the exact word which causes the parsing fail-
ure for a given sentence. The 5 sentences empiri-
cal threshold is meant to guarantee that the selected
words are systematically causing problems for the
parser.

The result of this selection is 36 unigrams (words)
which occur in a total of 388 uncovered sentences–
an average of 10.78 sentences per word. The small
number of selected words is due to the fact that
most of the problematic 4179 unigrams represent to-
kenization errors (two or more words written as one)
and spelling mistakes which, naturally, are not listed
in the Alpino lexicon. Very few of the 4179 uni-
grams are actual unknown words. Table 2 shows
some of the problematic unigrams and their suspi-
cions.

opVorig 0.898989
GentHoewel 0.89759
Nieuwpoortl 0.897414
SportTijdens 0.897016
DirvenDe 0.896428
mistrap 0.896038
Dwoeurp 0.896013
passerde 0.89568
doorHugo 0.893901
goedkmaken 0.892407
ManneN 0.891539
toegnag 0.891523

Table 2: Problematic unigrams and their suspicions

It can be seen immediately that most of the uni-
grams presented in the table are tokenization errors.
There are also some typos. The unigram passerde
should be written as passeerde, the past singular
verb form of the verb ‘to pass’ and toegnag is the
misspelled noun toegang (access). The only prob-
lematic unigram with a lexical entry in the Alpino
lexicon is mistrap (misstep, to misstep).

Although the experiment setup yields a small test
set, we employ it because the words in this set repre-
sent ‘clear-cut’ cases. This allows us to demonstrate
better the effect of our technique.

4.2 Applying Lexical Acquisition
Our assumption is that incomplete or incorrect lex-
ical entries prevented the production of full-span
parses for the 388 sentences in which the 36 prob-
lematic words pinpointed by the error miner oc-

cur. That is why, in the second step of the exper-
iment, these words are temporarily removed from
the Alpino lexicon, i.e. they are treated as unknown
words, and we employ the LA method presented in
the previous section to learn offline new lexical en-
tries for them.

The setup for the learning process is exactly the
same as in Cholakov and van Noord (2010). The set
of universal types consists of 611 types and the ME-
based classifier has been trained on the same set of
2000 words as in Cholakov and van Noord (2010).
Those types predicted by the classifier which ac-
count together for less than 5% of probability mass
are discarded.

In order to increase the number of observed con-
texts for a given word when parsing with the univer-
sal types, up to 100 additional sentences in which the
word occurs are extracted from Internet. However,
when predicting new lexical entries for this word,
we want to take into account only sentences where
it causes a parsing failure. It is in such sentences
where a new lexical entry can be learnt through LA.
For example, the LA method would be able to pre-
dict a noun entry for afwater if it focuses only on
contexts where it has a noun reading, i.e. on sen-
tences not covered by Alpino.

That is why, the sentences we extracted from In-
ternet are first parsed with the standard Alpino con-
figuration. When averaging over the 36 sentence
sets, it turns out that Alpino has been able to cover
10.05% of the sentences. Although we cannot be
sure that the 36 words are the cause of a parsing
failure in each of the uncovered sentences, this low
coverage indicates once more that Alpino has sys-
tematic problems with sentences containing these
words.

Then, the uncovered sentences from Internet to-
gether with the 388 problematic sentences from the
Mediargus corpus are parsed with Alpino and the
universal types. For example, the list of univer-
sal types assigned to afwater in (4) contains mostly
noun types, i.e. the kind of types which are currently
not in the lexicon for this word and which we want
to learn.

The result of the LA process is the prediction of
a total of 102 lexical types, or 2.83 types per word.
This high number is due to the fact that 25 words
receive verb predictions. Since a verb can have vari-
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ous subcategorization frames, there is one type as-
signed for each frame. For example, inscheppen
(to spoon in(to)) receives 3 types which differ only
in the subcategorization frame– verb(hebben,inf,tr.),
verb(hebben,inf,intr.) and verb(hebben,inf,np np).
However, the infinitive in Dutch is also the
form for plural present and inscheppen correctly
receives 3 more predictions– verb(hebben,pl,tr.),
verb(hebben,pl,intr.) and verb(hebben,pl,np np).

Let us examine the most frequent types of lexicon
errors for the 36 problematic words by looking at
the current Alpino lexical entries for some of these
words and the predictions they receive from the LA
method. The original Alpino entries for 19 of the
25 words predicted to be verbs are a product of a
specific lexical rule in the grammar. Consider the
following sentences:

(5) a. Ik
I

schep
spoon

de
the

soep
soup

in
in

de
the

kom.
bowl

‘I spoon the soup into the bowl.’
b. dat

that
ik
I

de
the

soep
soup

de
the

kom
bowl

in
in

schep
spoon

‘that I spoon the soup into the bowl’
c. dat

that
ik
I

de
the

soep
soup

de
the

kom
bowl

inschep
in spoon

‘that I spoon the soup into the bowl’

We see in (5-b) that the preposition in is used as a
postposition in the relative clause. However, in such
cases, there is linguistic evidence that in behaves as
a separate verb particle. That is why, as shown in
(5-c), people sometimes write in and the verb to-
gether when they occur next to each other in the sen-
tence. To account for this, Alpino employs a special
lexical rule. This rule assigns a certain type of sub-
categorization frame to verbs like inscheppen where
a postposition can be interpreted as a separable par-
ticle. That subcategorization frame requires a noun
phrase (‘the soup’ in (5-c)) and a locative NP (‘the
bowl’ in (5-c)).

However, in some cases, the entries generated by
this lexical rule cannot account for other possible us-
ages of the verbs in question. For example,

(6) U
you

moet
must

deze
this

zelf
yourself

inscheppen.
spoon in.INF

‘You have to spoon this in yourself.’

Alpino fails to parse this sentence because inschep-
pen is used without a locative NP. Now, when the

LA method has predicted a transitive verb type for
inscheppen, the parser should be able to cover the
sentence. Other such examples from our data in-
clude wegwist (to erase.3PER.SG), onderligt (to lie
under.3PER.SG), etc.

Further, there are 10 words, including afwater,
which represent cases of nominalisation currently
not accounted for in the Alpino lexicon. The
LA process correctly predicts noun types for these
words. This should enable the parser to cover sen-
tences like:

(7) Die
this

moet
must

een
a

deel
part

van
from

het
the

afwater
drainage

vervoeren.
transport/move

‘This has to move a part of the drainage.’

where afwater is used as a noun.
There are also 3 words which correctly receive

adjective predictions. Currently, their lexical en-
tries are incomplete because they are assigned only
past participle types in the lexicon. However, past
participles in Dutch can also act as adjectives. For
historical reasons, this systematic ambiguity is not
treated as such in Alpino. Each participle should
also have a separate adjective lexical entry but, as
we see, this is not always the case.

5 Results

After LA is finished, we restore the original lexical
entries for the 36 words but, additionally, each word
is also assigned the types which have been predicted
for it by the LA method. The 388 problematic sen-
tences from the Mediargus corpus are then re-parsed
with Alpino. We are interested in observing:

1. how many sentences receive a full-span analy-
sis

2. how the parsing accuracy of Alpino changes

Table 3 shows that when the Alpino lexicon is ex-
tended with the lexical entries we learnt through LA,
the parser is able to cover nearly 84% of the sen-
tences, including the ones given in (6) and (7). Since
there is no suitable baseline which this result can
be compared to, we developed an additional model
which indicates what is likely to be the maximum
coverage that Alpino can achieve for those sentences
by adding new lexical entries only.
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In this second model, for each of the 36 words, we
add to the lexicon all types which were successfully
used for the respective word during the parsing with
universal types. In this way, Alpino is free to choose
from all types it has considered suitable for a given
word, i.e. the parser is not limited by the outcome
of the LA process but rather by the overall quality of
the grammar.

The ‘universal types’ model performs better than
ours– it achieves 87.9% coverage. Still, the perfor-
mance of our model is close to this result, i.e. close
to what we consider to be the maximal possible cov-
erage of Alpino for these 388 sentences when only
LA is used.

Model Coverage (%)
Our model (Alpino + LA) 83.76
Universal types 87.89

Table 3: Coverage results for the re-parsed 388 problem-
atic sentences

Some of the sentences which cannot be covered
by both models are actually not proper sentences
but fragments which were wrongly identified as sen-
tences during tokenization. Many other cases in-
clude sentences like:

(8) Een
a

gele
yellow

frommel
crease

papier,
paper

Arabische
Arabic

lettertekens.
characters

‘A yellow paper crease, Arabic characters.’

which is probably the caption of a photo or an illus-
tration. However, because of the absence of a verb,
Alpino splits the analysis into two parts– the part be-
fore the comma and the part after the comma.

Here is a more interesting case:

(9) Als
when

we
we

ons
us

naar
to

de
the

buffettafel
buffet

begeven,
proceed

mistrap
misstep

ik
I

me.
myself
‘When we proceed to the buffet I misstep.’

The LA method does not predict a reflexive verb
type for mistrap which prevents the production of
a full-span analysis because Alpino cannot connect
the reflexive pronoun me to mistrap. In this case,
however, the universal type model outperforms ours.
A reflexive verb type is among the universal types
and thus, Alpino is able to use that type to deliver a
full-span parse. We should note though, that LA cor-

rectly predicts a noun type for mistrap which enables
Alpino to parse successfully the other 14 sentences
which this word occurs in.

Let us now look at the correctness of the deliv-
ered parses. To estimate the accuracy of the parser,
we have randomly selected 100 sentences out of the
388 sentences in the test set and we have manually
annotated them in order to create a gold standard for
evaluation.

Accuracy in Alpino is measured in terms of de-
pendency relations. The accuracy for sentences
which are not assigned a full-span analysis but a se-
quence of non-overlapping parses can still be larger
than zero because, within these parses, some cor-
rect dependency relations could have been produced.
That is why, though the coverage of Alpino for the
selected 100 sentences is zero, we can still obtain
a number for accuracy and use it as a baseline for
comparison. Clearly, this baseline is expected to per-
form worse than both our model and the universal
types one since those are able to cover most of the
sentences and thus, they are likely to produce more
correct dependency relations. However, it gives us
an idea how much extra quality is gained when cov-
erage improves.

The accuracy results for the 100 annotated sen-
tences are given in Table 4. The average sentence
length is 18.9 tokens.

Model Accuracy (%) msec/sentence
Alpino 63.35 803
Our model 86.15 718
Universal types 85.12 721

Table 4: Accuracy results for the 100 annotated sentences

Our model achieves the highest accuracy without
increasing the parse times. Further, the baseline has
a much lower result which shows that coverage is
not gained on the expense of accuracy.

Our model and the universal types one achieve the
same accuracy for most of the sentences. However,
the universal types model has an important disad-
vantage which, in some cases, leads to the produc-
tion of wrong dependency relations. The model pre-
dicts a large number of lexical types which, in turn,
leads to large lexical ambiguity. This lexical am-
biguity increases the number of possible analyses
Alpino chooses from, thus making it harder for the
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parser to produce the correct analysis. Let us con-
sider the following example where a sentence is cov-
ered by both models but the universal types model
has lower accuracy:

(10) Dat
that

wij
we

het
it

rechttrokken,
straighten.PAST.PL.

pleit
plead

voor
for

onze
our

huidige
current

conditie.
condition

‘It pleads for our condition that we straightened it.’

Here, het is the object of the verb rechttrokken.
However, although there are transitive verb types
among the universal types assigned to rechttrokken,
Alpino chooses to use a verb type which subcate-
gorizes for a measure NP. This causes for het to be
analysed not as an object but as a measure comple-
ment, i.e. the produced dependency relation is incor-
rect.

The LA method, on the other hand, is much more
restrictive but its predictions are also much more ac-
curate. Since it considers sentences containing other
forms of the paradigm of rechttrokken when predict-
ing subcategorization frames, the LA method cor-
rectly assigns only one transitive and one intransitive
verb type to this word. This allows Alpino to recog-
nize het as the object of the verb and to produce the
correct dependency relation.

The few cases where the universal types model
outperforms ours include sentences like the one
given in (9) where the application of our model
could not enable Alpino to assign a full-span analy-
sis. Sometimes, the LA method is too restrictive and
does not output some of the correct types. These
types, on the other hand, could be provided by the
universal types model and could enable Alpino to
cover a given sentence and thus, to produce more
correct dependency relations. Allowing for the LA
method to predict more types, however, has proven
to be a bad solution because, due to the increased
lexical ambiguity, this leads to lower parsing accu-
racy.

6 Discussion

6.1 Comparison to Previous Work

The performance of the technique we presented in
this paper can be compared to the performance of a
number of other approaches applied to similar tasks.

Zhang et al. (2006) and Villavicencio et al. (2007)
use error mining to semi-automatically detect En-
glish multiword expressions (MWEs). Then, they
employ LA to learn proper lexical entries for these
MWEs and add them to the lexicon of a large-scale
HPSG grammar of English (ERG; (Copestake and
Flickinger, 2000)). This increases parsing coverage
by 15% to 22.7% for a test set of 674 sentences
containing MWEs and parsed with the PET parser
(Callmeier, 2000). In both studies, however, the
combination of error mining and LA is applied to
a very specific task whereas our method is a general
one.

Nicolas et al. (2008) employ a semi-automatic
method to improve a large-scale morphosyntactic
lexicon of French (Lefff ; (Sagot et al., 2006)).
The lexicon is used in two grammars– the FRMG
(Thomasset and de la Clergerie, 2005), a hybrid Tree
Adjoining/Tree Insertion Grammar, and the SxLFG-
FR LFG grammar (Boullier and Sagot, 2006). The
first step in this approach is also the application of an
error miner (Sagot and de la Clergerie, 2006) which
uses a parsed newspaper corpus (about 4.3M words)
to pinpoint problematic unigrams.

The crucial difference with our method is in the
second step. Nicolas et al. (2008) assign underspec-
ified lexical entries to a given problematic unigram
to allow the grammar to parse the uncovered sen-
tences associated with this unigram. Then, these en-
tries are ranked based on the number of successful
parses they have been used in.

The use of underspecification, however, causes
large ambiguity and severe parse overgeneration
(observed also in Fouvry (2003)). As a consequence
of that, the ranked list of lexical entries for each un-
igram is manually validated to filter out the wrong
entries. The employment of LA in our approach, on
the other hand, makes it fully automatic. The rank-
ing of the predictions is done by the classifier and
the predicted entries are good enough to improve the
parsing coverage and accuracy without any manual
work involved. Generally, recent studies (Baldwin,
2005; Zhang and Kordoni, 2006; Cholakov et al.,
2008; Cholakov and van Noord, 2010) have clearly
shown that when it comes to learning new lexical
entries, elaborate LA techniques perform better and
are more suitable for large-scale grammars than un-
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derspecification2.
Further, the naive ranking system used in Nicolas

et al. (2008) puts a correctly generated entry for an
infrequent usage of a given word (e.g., a verb with
a rare subcat frame) in the bottom of the ranked list
because of the low number of sentences in which
this entry is used. The LA method we employ is
more sensitive to rare usages of words because it
considers occurrences of the word in question out-
side the parsed corpus (very important if the corpus
is domain-specific) and it also takes into account all
forms in the paradigm(s) of the word. This increases
the chances of a rare usage of this word to ‘manifest’
itself.

Nicolas et al. (2008) uses the lexical entries which
remain after the manual validation to re-parse the
newspaper corpus. 254 words (mostly verbs) are
corrected and the parse coverage increases by 3.4%
and 1.7% for the FRMG and the SxLFG, respec-
tively. However, the authors do not mention how
many of the original uncovered sentences they are
able to cover and therefore, we cannot compare our
coverage result. Nothing is said about the parsing
accuracy. Even with manually validated lexical en-
tries, it is still possible for the grammar to produce
full-span but wrong analyses.

6.2 Application to Other Systems and
Languages

It is important to note that this paper should be
viewed as a case study where we illustrate the re-
sults of the application of what we believe to be a
good algorithm for dealing with incomplete or in-
correct lexical entries– namely, the combination of
error mining and LA. However, our method is gen-
eral enough to be applied to other large-scale gram-
mars and languages.

The error mining is directly usable as soon as
there is a large parsed corpus available. The LA
technique we employed is also quite general pro-
vided that certain requirements are fulfilled. First,
words have to be mapped onto some finite set of la-
bels of which a subset of open-class (universal) la-
bels has to be selected. This subset represents the
labels which can be predicted for unknown words.

2In Nicolas et al. (2008) the authors also admit that an elab-
orate LA technique will produce better results.

Second, we need a parser to analyse sentences
in which a given unknown word occurs. Finally,
the ME-based classifier allows for arbitrary com-
binations of features and therefore, any (language-
specific) features considered useful can be included.
As for the paradigm generation method, the idea of
combining a finite state morphology and web heuris-
tics is general enough to be implemented for differ-
ent languages.

We have already started investigating the applica-
bility of our method to the FRMG and a large-scale
grammar of German and the initial experiment and
results we have obtained are promising.

6.3 Future Research
Currently, our algorithm handles only unigrams
(words). However, it would be useful to extend it,
so it can work with longer n-grams. For example,
a given word could have some reading which is not
yet handled in the lexicon only within a particular
bi- or trigram.

Consider the bigram ‘schampte af ’ which has
been identified as problematic by the error miner.
It represents the particle verb ‘afschampte’ (to
glance.PAST.SG). Although the lexicon contains a
verb entry for ‘schampte’, there is no entry handling
the case when this verb combines with the particle
‘af ’. Another example is the bigram ‘de slachtoffer’
(the victim). In standard Dutch, the noun ‘slachtof-
fer’ goes with the ‘het’ definite article which is
marked in its lexical entry. However, in Flemish it is
used with the ‘de’ article.

Our method is currently not able to capture these
two cases since they can be identified as problem-
atic on bigram level and not when only unigrams are
considered.

Further, the definition of what the error miner
considers to be a successful parse is a rather crude
one. As we saw, even if the grammar is able to pro-
duce a full-span analysis for a given sentence, this
analysis could still not be the correct one. There-
fore, it is possible that a word could have a prob-
lematic lexical entry even if it only occurs in sen-
tences which are assigned a full-span parse. Cur-
rently, such a word will not be identified as prob-
lematic by the error miner. That is why, some (sta-
tistical) model which is capable of judging the plau-
sibility of a parse should be developed and incorpo-
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rated in the calculation of the suspicions during error
mining.
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Abstract

The reliable extraction of knowledge from text
requires an appropriate treatment of the time
at which reported events take place. Unfortu-
nately, there are very few annotated data sets
that support the development of techniques for
event time-stamping and tracking the progres-
sion of time through a narrative. In this paper,
we present a new corpus of temporally-rich
documents sourced from English Wikipedia,
which we have annotated with TIMEX2 tags.
The corpus contains around 120000 tokens,
and 2600 TIMEX2 expressions, thus compar-
ing favourably in size to other existing corpora
used in these areas. We describe the prepa-
ration of the corpus, and compare the profile
of the data with other existing temporally an-
notated corpora. We also report the results
obtained when we use DANTE, our temporal
expression tagger, to process this corpus, and
point to where further work is required. The
corpus is publicly available for research pur-
poses.

1 Introduction

The reliable processing of temporal information is
an important step in many NLP applications, such
as information extraction, question answering, and
document summarisation. Consequently, the tasks
of identifying and assigning values to temporal ex-
pressions have recently received significant attention,
resulting in the creation of mature corpus annotation
guidelines (e.g. TIMEX21 and TimeML2), publicly

1See http://fofoca.mitre.org.
2See http://timeml.org.

available annotated corpora (ACE,3 TimeBank4) and
a number of automatic taggers (see, for example,
(Mani and Wilson, 2000; Schilder, 2004; Hacioglu et
al., 2005; Negri and Marseglia, 2005; Saquete, 2005;
Han et al., 2006; Ahn et al., 2007)).

However, existing corpora have their limitations.
In particular, the documents in these corpora tend to
be limited in length and, in consequence, discourse
structure. This impacts on the number, range and
variety of temporal expressions they contain. Ex-
isting research carried out on the interpretation of
temporal expressions, e.g. by (Baldwin, 2002; Ahn
et al., 2005; Mazur and Dale, 2008), suggests that
many temporal expressions in documents, especially
news stories, can be interpreted fairly simply as be-
ing relative to a reference date that is typically the
document creation date. This phenomenon does not
carry over to longer, more narrative-style documents
that describe extended sequences of events, as found,
for example, in biographies or descriptions of pro-
tracted geo-political events. Consequently, existing
corpora are not ideal as development data for systems
intended to work on such historical narrations.

In this paper we introduce a new annotated corpus
of temporal expressions that is intended to address
this shortfall. The corpus, which we call WikiWars,
consists of 22 documents from English Wikipedia
that describe the historical course of wars. Despite
the small number of documents, their length means
that the corpus yields a large number of temporal
expressions, and poses new challenges for tracking

3See corpora LDC2005T07 and LDC2006T06 in the LDC
catalogue (http://www.ldc.upenn.edu).

4See corpus LDC2006T08 in the LDC catalogue.
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temporal focus through extended texts. The corpus
has been made available for others to use;5 to give
an indication of the difficulty of processing the tem-
poral phenomena in the texts, we also report on the
performance of DANTE, our temporal expression
tagger, on detecting and interpreting the temporal
expressions in the corpus.

The rest of this paper is organised as follows. In
Section 2 we describe related work, focusing on the
TIMEX2 annotation scheme, and existing corpora
that contain annotations of temporal expressions us-
ing this scheme. Section 3 describes the process of
creation of the WikiWars corpus. In Section 4 we
comment on some artefacts of Wikipedia articles that
impact on the annotation process and the use of this
corpus. Then, in Section 5 we analyse the differences
between the WikiWars corpus and the widely-used
ACE corpora. In Section 6 we report on the perfor-
mance of our temporal expression tagger on this data
set. Finally, in Section 7, we conclude.

2 Related Work

At the time of writing, there are two mature, wide-
coverage schemes for the annotation of temporal in-
formation in texts: TIMEX2 (Ferro et al., 2005) and
TimeML (Pustejovsky et al., 2003; Boguraev et al.,
2005), which is soon to become an ISO standard
(Pustejovsky et al., 2010).

These schemes were used to annotate corpora that
are often used in research on temporal expression
recognition and normalisation: the series of corpora
used for training and evaluation in the Automatic
Content Extraction (ACE) program6 run in 2004,
2005 and 2007, and the TimeBank Corpus.

The ACE corpora were prepared for the devel-
opment and evaluation of systems participating in
the ACE program. However, the evaluation corpora
have never been publicly released, and thus are cur-
rently, for all practical purposes, unavailable. The
ACE 2004 corpus contains news data only (broad-
cast news, newspaper and newswire), while the ACE
2005 and 2007 corpora contain news (broadcast and
newswire), conversations (broadcast and telephone),
UseNet discussions and web blogs. The 2005 and
2007 ACE corpora are annotated with the latest ver-

5See www.TimexPortal.info/WikiWars.
6See www.itl.nist.gov/iad/mig/tests/ace.

sion of TIMEX2 (2005), while the 2004 corpus is
annotated with the older 2003 version of TIMEX2;
however, the differences are not very significant.

Apart from the unavailability of the evaluation
data, there are two issues with the ACE corpora. One
is that most of the documents are relatively short, so
that the average number of temporal expressions per
document is low (typically between seven and nine
per document, including the document time stamp
as a metadata element). This results in very lim-
ited temporal discourse structure, and relatively few
underspecified and relative temporal expressions. Un-
fortunately, these are the more difficult temporal ex-
pressions to handle, and so the ACE corpora may
not serve as a good baseline for performance more
generally.

A second problem is that the ACE corpora appear
to contain a significant number of errors in the gold
standard annotations, with respect to both the anno-
tated extents and the semantic values assigned, which
do not always follow the TIMEX2 guidelines.

TimeBank v1.2 is a revised and improved version
of TimeBank 1.1 resulting in a number of errors fixed
and inconsistencies removed (see (Boguraev et al.,
2007)). Unfortunely, this corpus has the same lim-
itations as the ACE corpora in regard to document
length and complexity of discourse structure. Fur-
ther, TimeBank is annotated with TimeML, a scheme
more complex than TIMEX2 since it also encom-
passes the tagging of events and temporal relations.
However, TIMEX2 is sufficiently sophisticated for
the annotation of most types of temporal expressions,
and our review of the literature reveals that the ma-
jority of existing temporal taggers output TIMEX2
annotations. Since automatic conversion between
TIMEX2 and TimeML annotations is not straightfor-
ward, TimeBank is of limited use for those who work
specifically with TIMEX2.

3 Creating WikiWars

Given the above concerns, we were particularly inter-
ested in developing a corpus that would allow more
rigorous testing of techniques for tracking time across
extended narratives, since these give rise to more
complex temporal phenomena than are found in sim-
pler documents. To avoid copyright issues that might
arise in the development and distribution of such a
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corpus, we decided to use Wikipedia as a source. Af-
ter considering various types of historical narrative,
we settled on descriptions of the course of wars and
conflicts as being particularly rich in the kinds of
phenomena we wanted to explore.

3.1 Selecting Data

We queried Google with two phrases, ‘most famous
wars in history’ and ‘the biggest wars’, and in each
case chose the top-ranked result. One of the pages
found proposed a list of the 10 most famous wars
in history, and the other listed the names of the 20
biggest wars that happened in the 20th century, mea-
sured in terms of the number of military deaths. We
combined the two lists, eliminated duplicates, and
searched Wikipedia for articles describing these wars.
Wikipedia did not contain an article for one war, and
we considered two articles as inappropriate for our
purposes since they did not describe the course of the
wars, but rather some general information about the
conflicts. This resulted in a final set of 22 articles.
More details of the selection process and the URLs
of the chosen Wikipedia articles are provided in the
documentation distributed with the corpus.

3.2 Text Extraction and Preprocessing

To prepare the corpus, we first manually copied text
from those sections of the webpages that described
the course of the wars. This involved manual re-
moval of picture captions and cross-page links. We
then ran a script over the results of this extraction pro-
cess to convert some Unicode characters into ASCII
(ligatures, spaces, apostrophes, hyphens and other
punctuation marks), and to remove citation links and
a variety of other Wikipedia annotations.

Finally, we converted each of the text files into
an SGML file: each document was wrapped in one
DOC tag, inside which there are DOCID, DOCTYPE
and DATETIME tags. The document time stamp is the
date and time at which we downloaded the page from
Wikipedia to our local repository. The proper content
of the article is wrapped in a TEXT tag. This docu-
ment structure intentionally follows that of the ACE
2005 and 2007 documents, so as to make the pro-
cessing and evaluation of the WikiWars data highly
compatible with the tools used to process the ACE
corpora.

3.3 Creating Gold Standard Annotations

Having prepared the input SGML documents, we
then processed them with the DANTE temporal
expression tagger (see Mazur and Dale (2007)).
DANTE outputs the original SGML documents aug-
mented with an inline TIMEX2 annotation for each
temporal expression found. These output files can
be imported to Callisto,7 an annotation tool that sup-
ports TIMEX2 annotations. Using a temporal ex-
pression tagger as a first-pass annotation tool not
only significantly reduces the amount of human an-
notation effort required (creating a tag from scratch
requires a number of clicks in the annotation tool),
but also helps to minimize the number of errors that
arise from overlooking markable expressions through
‘annotator blindness’. The annotations produced by
DANTE were then manually corrected in Callisto
via the following process. First, Annotator 1 (the
first author) corrected all the annotations produced
by DANTE, both in terms of extent and the values
provided for TIMEX2 attributes. This process also
included the annotation of any temporal expression
missed by the automatic tagger, and the removal of
spurious matches. Then, Annotator 2 (the second au-
thor) checked all the revised annotations and prepared
a list of errors found and doubts or queries in regard
to potentially problematic annotations. Annotator 1
then verified and fixed the errors, after discussion in
the case of disagreements.

The final SGML files containing inline annotations
were then transformed into ACE APF XML annota-
tion files, this being the stand-off markup format
developed for ACE evaluations. This transformation
was carried out using the tern2apf tool developed
by NIST for the ACE 2004 evaluations, with some
modifications introduced by us to adjust the tool to
support ACE 2005 documents and to add a document
ID as part of the ID of a TIMEX2 annotation (so that
all annotations would have corpus-wide unique IDs).

The resulting corpus is thus available in two for-
mats: one contains the original documents enriched
with inline annotations, and the other consists of
stand-off annotations in the ACE APF format.

7See http://callisto.mitre.org.
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3.4 Some Deficiencies of TIMEX2

The annotation process described above revealed
some issues with the use of TIMEX2 in practice.
First, the flexibility of the TIMEX2 scheme, which
can be at first seen as an advantage, actually makes
it ambiguous. One instance of this phenomenon re-
lates to the fact that the TIMEX2 guidelines state that
the provision of some attribute values for what are
called event-based expressions (such as three weeks
after the siege of Boston began or the first year of the
American invasion) is optional. Since our corpus has
a significant number of such expressions, the deci-
sion as to whether or not to provide semantic values
in such cases has a potentially large impact on the
perceived performance of a tagger. In such cases,
we decided only to provide the value when it is very
clear from the article itself what the value should be.

Another area where TIMEX2 is not ideal is in
regard to the annotation of time zones. First, only
whole-hour time differences are supported, which
eliminates some time zones (e.g. Afghanistan lies
in UTC+04:30). Second, time zone information is
supposed to be marked only for expressions which
have it explicitly stated. However, it can often be
inferred from the context that subsequent unadorned
time references should inherit the same time zone as
an earlier time reference.

We also found that, in a not insignificant number
of cases, it is impossible to provide a precise and
correct value for a temporal expression. For example,
the TIMEX2 guidelines stipulate that the anchors
of durations cannot have a MOD attribute, so if the
anchor is mid-August, the value of the anchor must
refer to August, which is not entirely correct as the
semantics of mid- is lost.

TIMEX2 only supports nonspecific expressions
which have explicit information about granularity.
Expressions such as a very short time or a short
period of time therefore cannot be provided with any
value, since the context does not indicate whether the
period involved should be measured in days, weeks,
or months. One might consider using the typical
durations of events of the corresponding types in
such cases, but this solution also has problems (see
(Pan et al., 2006)).

As is acknowledged in the TIMEX2 guidelines,
the treatment of set expressions (i.e. recurring times

and durations and frequencies, e.g. twice a month) is
underdeveloped. One rule states that set expressions
should not be anchored (Ferro et al., 2005, p. 42);
this has the consequence that the full semantics of the
expression annually since 1955 cannot be provided,
and the expression is therefore treated as two separate
expressions, annually and 1955.

Finally, alternative calendars are not supported, so
an expression like February in the pre-revolutionary
Russian calendar cannot receive a value unless it ap-
pears in an appositive construction which provides
an alternative description. Similarly, consider Exam-
ple (1):

(1) On 9 November 1799 (18 Brumaire of the Year VIII)
Napoleon Bonaparte staged the coup of 18 Brumaire
which installed the Consulate.

Here, 18 Brumaire of the Year VIII is a date in an
alternative calendar used in France, but we annotated
only the Year VIII based on the trigger year. Note
that 18 Brumaire also occurs later in the sentence,
but is not annotated.

3.5 Corpus Statistics

The corpus contains 22 documents with a total of
almost 120,000 tokens8 and 2,671 temporal expres-
sions annotated in TIMEX2 format. In Table 1 we
compare the WikiWars corpus with the other exist-
ing corpora. While the ACE 2005 Training corpus
remains the largest corpus, WikiWars is larger than
the ACE 2005 and 2007 evaluation corpora and the
TimeBank v1.2 corpus, both in terms of number of
tokens and TIMEX2 annotations. WikiWars has an
order of magnitude more temporal expressions in
each document, and a slightly higher density of tem-
poral expressions than the other corpora.

Table 2 presents statistics on the individual doc-
uments that make up the corpus. The documents
vary considerably in size, the smallest consisting of
only 1,455 tokens, and the largest being eight times
larger at 11,640 tokens. The density of TIMEX2 an-
notations varies from 1 in 23.1 tokens to 1 in 72.1
tokens, but for the majority of documents the ratio
lies between 30 and 60.

8All token counts presented in Tables 1 and 2 were obtained
using GATE’s default English tokeniser; hyphenated words, e.g.
British-held and co-operation, were treated as single tokens. For
more information on GATE see (Cunningham et al., 2002).
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Corpus Docs KB Tokens
Temp.
Expr.

Tokens
TIMEX

TIMEX
Doc

ACE05 Train. 599 1,733 318,785 5,469 58.3 9.13
ACE05 Eval. 155 350 63,217 1,154 54.8 7.45
ACE07 Eval. 254 561 104,779 2,028 51.7 7.98
WikiWars 22 631 119,468 2,671 44.7 121.41
TimeBank1.2 183 816 78,444 1,414 55.5 7.73

Table 1: Statistics of the Wikipedia War corpus compared
to those of other corpora.

4 The Nature of Wikipedia Articles

Wikipedia articles may be edited by a large number
of people over a significant number of revisions. We
checked how often the articles constituting WikiWars
were modified in the period from January 2008 to
February 2010. On average, each article was changed
almost 52 times per month, with the monthly number
of changes for a single article ranging from 1 to 372.9

The minimum average for an individual document
was 13.08 (17 AlgerianWar), and the maximum was
171.77 (07 IraqWar).

The nature of the revision process in Wikipedia
leads to some artefacts that may be not typical
of other document sources, such as news, where
the text is usually carefully prepared by its author
and checked by an editor. This is not to say that
Wikipedia content is necessarily of low quality; this
is an encyclopedia with many people and bots con-
trolling its quality, and there exist manuals of style
for authors to help them avoid errors and ambigu-
ity and to ensure maximum consistency.10 However,
given the large number of editors with various de-
grees of fluency and experience in writing and edit-
ing, it would not be surprising if some parts of the
texts are not perfect. In the process of preparing the
gold standard annotations for the WikiWars corpus,
we have made the following observations.

9Note that these numbers are for the articles as a whole,
and not just the sections which we extracted (although these
are usually the major part of the article). Additionally, these
edits include both major changes (e.g. adding a new section),
minor changes (e.g. correcting a grammar error or adding a
comma), vandalism (deletion of the page content or the on-
purpose provision of false information) and restoring the page
after an act of vandalism has been detected.

10See, for example, the manual of style concerning format-
ing dates and numbers, located at http://en.wikipedia.
org/wiki/Wikipedia:DATE.

Document ID Tokens TIMEX2 Tokens
TIMEX2

01 WW2 5,593 169 33.1
02 WW1 10,370 264 39.3
03 AmCivWar 3,529 75 47.1
04 AmRevWar 5,695 146 39.0
05 VietnamWar 11,640 243 47.9
06 KoreanWar 5,992 147 40.8
07 IraqWar 8,404 247 34.0
08 FrenchRev 9,631 174 55.4
09 GrecoPersian 7,393 129 57.3
10 PunicWars 3,475 57 61.0
11 ChineseCivWar 3,905 103 37.9
12 IranIraq 4,508 98 46.0
13 RussianCivWar 3,924 103 38.1
14 FirstIndochinaWar 3,085 70 44.1
15 MexicanRev 3,910 77 50.8
16 SpanishCivilWar 1,455 63 23.1
17 AlgerianWar 7,716 130 59.4
18 SovietsInAfghanistan 5,306 110 48.2
19 RussoJap 2,760 62 44.5
20 PolishSoviet 5,137 106 48.5
21 NigerianCivilWar 2,091 29 72.1
22 2ndItaloAbyssinianWar 3,949 69 57.2
Total for the whole corpus 119,468 2,671 44.7
Average per document 5,430 121 –
Standard deviation 2,663 63 –

Table 2: Statistics of the Wikipedia War corpus.

4.1 Broken Narratives
In some articles we have found situations where a
sentence does not appear to cohere with those on
either side of it. This may be the result of a num-
ber of modifications made by different authors, or
it may be due to a lack of writing skill on the part
of the person who wrote the paragraph in question.
Example (2) below provides an example of this phe-
nomenon: the sentence about de Gaulle being elected
president contains a temporal expression which pro-
gresses the temporal focus in the narrative to 1959,
but the later context of the article strongly suggests
that the subsequent reference to October is in fact
October 1958.

(2) ALN commandos committed numer-
ous acts of sabotage in France in
August[1958], and the FLN mounted a desper-
ate campaign of terror in Algeria to intimidate
Muslims into boycotting the referendum. Despite
threats of reprisal, however, 80 percent of the Muslim
electorate turned out to vote in September[1958], and
of these 96 percent approved the constitution. In
February 1959, de Gaulle was elected president of
the new Fifth Republic. He visited Constantine in
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October[1958] to announce a program to end the war
and create an Algeria closely linked to France.

It would appear that the reference to February 1959 is
a later addition to the text which has been made with-
out the surrounding text being appropriately revised
to accommodate this change. Clearly such instances
of incoherence will cause problems for any process
that attempts to track the temporal focus.

4.2 Ambiguous Writing
We have also found cases of a lack of precision in
writing, which leads to ambiguous statements. Con-
sider the following example:

(3) The Afghan government, having secured a treaty in
December 1978 that allowed them to call on Soviet
forces, repeatedly requested the introduction of troops
in Afghanistan in the spring and summer of 1979.
They requested Soviet troops to provide security and
to assist in the fight against the mujahideen rebels.
On April 14, 1979, the Afghan government requested
that the USSR send 15 to 20 helicopters with their
crews to Afghanistan, and on June 16, the Soviet gov-
ernment responded and sent a detachment of tanks,
BMPs, and crews to guard the government in Kabul
and to secure the Bagram and Shindand airfields. In
response to this request, an airborne battalion, com-
manded by Lieutenant Colonel A. Lomakin, arrived
at the Bagram Air Base on July 7. [. . . ]
After a month, the Afghan requests were no longer
for individual crews and subunits, but for regiments
and larger units. In July, the Afghan government
requested that two motorized rifle divisions be sent
to Afghanistan. The following day, they requested an
airborne division in addition to the earlier requests.

Here, in the first paragraph there are four temporal
expressions related to the Afghan government asking
for troops and equipment. There is also one date
related to the Soviets’ reply to these requests and
sending of tanks, and one date related to the arrival
of an airborne battalion. The second paragraph starts
with after a month; the first possible interpretation is
that this is a month after the 7th July mentioned in
the previous paragraph; i.e. the month would end on
the 6th of August. But the following sentence reveals
that this is not the case, as it mentions some requests
for larger units that were made in July. Usually a
narrative progresses forwards in time, not backwards,
so the month must start either on 14th April or 16th
June: if the second sentence elaborates the first one,
then it is a month from 16th June; if it just mentions

one of the requests for larger units, then it is probably
a month from 14th April.

It is also unclear whether the second paragraph
talks about the same request for airborne forces which
was mentioned in the first paragraph: both these
events are dated July. The phrase In response to
this request is in fact placed very oddly, as its pre-
ceding sentence does not mention any request, but
rather talks about the Soviets’ response to requests.
This may suggest that what at first looks just like a
careless and ambiguous use of the expression after a
month is in fact a larger problem of lack of coherency
in these two paragraphs.

4.3 Use of Deictic Expressions

One of the articles, 07 IraqWar, contained a num-
ber of deictic temporal expressions, indicative of the
fact that the events described were happening con-
temporaneously to the time of writing (as is often the
case in news stories); for example:

(4) a. Democrats plan to push legislation this spring
that would force the Iraqi government to spend
its own surplus to rebuild.

b. A protester said that despite the approval of the
Interim Security pact, the Iraqi people would
break it in a referendum next year.

Obviously, after some time these expressions will no
longer make sense, since there is no ‘at-the-time-of-
writing’ time stamp associated with these sentences:
for the reader of a Wikipedia article, the reference
date is the time of reading. In the case of the above
example, these sentences were written in April and
December 2008, respectively.11 Arguably, these sen-
tences should be corrected, making the temporal ex-
pressions fully-specified (e.g. in spring of 2009 and
in 2009), or context-dependent (e.g. in spring of
that year and the following year) if there is a context
in the article which supports their correct interpreta-
tion. Of course, not only the temporal expressions
need to be revised, but also the tense and aspect of
the verbs used in the sentences. In the gold stan-
dard annotations, however, we provided the values
by interpreting these expressions with respect to the
document time stamp (i.e. 2010-SP and 2010), as
the text itself does not provide any evidence that other
dates were intended.

11Somewhat laborious document archaeology allows this in-
formation to be extracted from Wikipedia’s archive.
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Pos Count Token class or lexical form
1 4650 NUMBER DIGIT 2
2 1942 :
3 1499 -
4 1329 NUMBER DIGIT 4
5 828 ARTICLE
6 765 TEMPORALUNIT
7 634 TEMPORALUNIT PLURAL
8 555 PREPOSITION
9 528 now

10 411 t
11 403 WEEKDAYNAME
12 335 NUMBER WORD
13 329 MONTHNAME
14 242 MONTHNAME ABBR
15 240 DAYPART
16 233 DEMONSTRATIVE
17 224 ,

Pos Count Token class or lexical form
18 222 today
19 202 NUMBER DIGIT 1
20 191 last
21 171 WEEKDAYNAME ABBR
22 145 NUMBER DIGIT 8
23 113 ago
24 108 former
25 96 time
26 79 right
27 69 new
28 69 future
29 67 gmt
30 65 next
31 63 past
32 61 yesterday
33 59 few
34 50 every

Pos Count Token class or lexical form
35 49 AMPM
36 48 ORDINAL DIGIT
37 48 ?
38 45 recently
39 43 year-old
40 42 later
41 41 tonight
42 39 christmas
43 36 tomorrow
44 36 current
45 35 couple
46 34 recent
47 33 earlier
48 32 and
49 31 early
50 31 DIRECT FREQ
51 31 ’s

Table 3: The most frequent tokens in TEs in the ACE 2005 Training corpus.

Pos Count Token class or lexical form
1 1181 MONTHNAME
2 1157 NUMBER DIGIT 4
3 674 NUMBER DIGIT 2
4 490 ARTICLE
5 288 PREPOSITION
6 221 NUMBER DIGIT 1
7 211 TEMPORALUNIT
8 206 TEMPORALUNIT PLURAL
9 165 ,

10 133 NUMBER WORD
11 99 SEASON
12 98 NUMBER DIGIT 3
13 82 bc
14 76 now
15 70 time
16 67 early
17 63 DEMONSTRATIVE

Pos Count Token class or lexical form
18 59 :
19 51 end
20 49 -
21 47 late
22 37 DAYPART
23 36 later
24 36 former
25 32 next
26 27 same
27 25 period
28 22 t
29 20 mid-
30 18 war
31 18 few
32 14 following
33 14 ORDINAL DIGIT
34 13 s

Pos Count Token class or lexical form
35 13 first
36 11 future
37 11 earlier
38 11 .
39 11 ’s
40 9 previous
41 9 christmas
42 8 last
43 8 AMPM
44 7 battle
45 7 DIRECT FREQ
46 6 short
47 6 several
48 6 season
49 6 recent
50 6 past
51 6 ”

Table 4: The most frequent tokens in TEs in the WikiWars corpus.

4.4 Use of Time Zone Information
Consider the following example, which comes from
the article 01 WW2:
(5) On December 7 (December 8 in Asian time zones),

1941, Japan attacked British and American holdings
with near simultaneous offensives against Southeast
Asia and the Central Pacific.

The italicized temporal expression is difficult to de-
tect, and it is not clear how it should be annotated.
But it is also imprecise with respect to which time
zone is intended: Asia encompasses 10 time zones.
Therefore it is impossible to fully interpret the ex-
pression. Note also that the expression combines a

time zone with a date, rather than with a time. While
uncommon, this is not incorrect; but the TIMEX2
guidelines do not explicitly allow for this circum-
stance.

4.5 Quotes Missing a Time Stamp
Occasionally it happens that an article contains a
quoted utterance, but there is no indication of when
the utterance was made. For example, in the docu-
ment 05 VietnamWar we find the following:

(6) Nixon said in an announcement, “I am tonight an-
nouncing plans for the withdrawal of an additional
150,000 American troops to be completed during the
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spring of next year. This will bring a total reduction
of 265,500 men in our armed forces in Vietnam below
the level that existed when we took office 15 months
ago.”

It is impossible to determine what dates are meant
by the three temporal expressions present in the an-
nouncement. In some cases this information may be
provided in citation footnotes, but this is not always
the case; when this is absent, such expressions can
only be annotated at the level of textual extent and a
localised, context-dependent semantics.

5 Comparing WikiWars to the ACE Data
A comparison of WikiWars with the ACE corpora
reveals some interesting differences.

5.1 Vocabulary Differences
First, we found differences on the level of the lexical
triggers that signal the presence of temporal expres-
sions. Because of space limitations, we provide here
only the main findings.

Tables 3 and 4 present the 51 most frequent to-
kens, including punctuation, in the ACE 2005 Train-
ing and WikiWars corpus, respectively. Some to-
kens are combined into what we call trigger classes;
for example, all weekday names belong to the class
WEEKDAYNAME.12

We can see that there are many classes that fall
into the top 51 positions for both corpora, e.g. the
names of temporal units (such as month and year).
But there are also clear differences. Month names
are the most frequent class in WikiWars, while they
are not so frequent in ACE. Similarly, year seasons
ranked very highly in WikiWars, but do not figure
in the rankings shown for ACE. On the other hand,
weekday names are quite frequent in the ACE corpus,
but do not occur in the table for WikiWars. This
suggests that these corpora make different use of
temporal expressions: in WikiWars we find many
references to the more distant past, thus the high use
of month names, but ACE documents tend to discuss

12The entries in the table correspond to the lexical and punctu-
ation clues that drive detection of temporal expressions: the high
rank of colons and dashes comes from their use in document
time stamps, which are considered markable by the TIMEX2
guidelines. The T token is a separator that often occurs in times-
tamps, e.g. 2005-01-25T11:08:00; the question mark appears
very often because some of the ACE timestamps are of the form
????-??-??T19:33:00.

temporally local issues, so they are more likely to
refer to days in the weeks preceding and following
the reference date.

Looking at individual tokens, we can see that de-
ictic expressions such as today, tonight, yesterday
and tomorrow are in the top 51 positions for ACE,
but almost never occur in WikiWars: there are only
three instances of today, two of tomorrow and one
of tonight in the corpus, and all of these appear only
in quoted speech. Similarly, ago occurred 113 times
in ACE, but only twice in WikiWars: once in quoted
speech, and once used incorrectly instead of earlier in
a context-dependent expression. Other tokens which
are frequent in ACE but rare in WikiWars are recent,
recently, current and currently.

5.2 Temporal Discourse Structure
A more interesting property that WikiWars exhibits,
and which is noticeably absent from the simpler ACE
data, is what we might think of as a discourse mech-
anism for resetting the temporal focus. This is a
feature of complex texts in general, rather than some-
thing that is specific to Wikipedia as a source. In
these cases, the discourse does not follow a single
global timeline from the beginning to the end of the
document, but is rather divided into subdiscourses
which describe separate chains of events that often
have common temporal starting points. This is typi-
cal in the description of big, often international, con-
flicts, where one can distinguish several theaters of
the war, i.e. the eastern and western theaters.

In most cases the switch to a different ‘part of the
story’ can be determined not only by analysing the
events and their geographic locations, but by recog-
nizing that the first date appearing in the new subdis-
course is generally fully specified. This is, however,
not always the case, as shown in the following exam-
ple extracted from the article 01 WW2:

(7) In northern Serbia, the Red Army, with limited sup-
port from Bulgarian forces, assisted the partisans in a
joint liberation of the capital city of Belgrade on Oc-
tober 20[1944]. A few days later, the Soviets launched
a massive assault against German-occupied Hungary
that lasted until the fall of Budapest in February 1945.
[. . . ]

By the start of July[1944], Commonwealth forces in
Southeast Asia had repelled the Japanese sieges in As-
sam, pushing the Japanese back to the Chindwin River
while the Chinese captured Myitkyina. In China, the
Japanese were having greater successes, having fi-
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nally captured Changsha in mid-June[1944] and the
city of Hengyang by early August[1944]. Soon after,
they [. . . ] by the end of November[1944] and success-
fully linking up their forces in China and Indochina
by the middle of December[1944].

Clearly, quite sophisticated processing is required to
handle this phenomenon adequately.

6 Automated Processing of WikiWars
After we developed the WikiWars corpus, we used it
to evaluate our temporal expression tagger, DANTE,
which had been developed for participation in ACE.
Performance at finding temporal expressions in text is
traditionally reported, for example by (Mani and Wil-
son, 2000; Negri and Marseglia, 2005; Teissèdre et
al., 2010), in terms of precision, recall and F-measure.
These can, however, be calculated in two ways, le-
nient and strict, corresponding to two tasks: detec-
tion (where a single character overlap between the
gold standard and system annotation counts as a cor-
rect answer) and recognition (where an exact overlap
is required).

Table 5 shows our tagger’s initial performance on
the data. While the lenient F-measure for extent
recognition was comparable to that obtained for the
ACE 2005 Training corpus (0.82 vs 0.78), the recall
was much lower: 0.75 vs 0.87. The difference in
strict results was even larger, where both precision
and recall were lower for WikiWars than for ACE,
resulting in an F-measure of 0.38. When evaluating
also the VAL attribute, the strict F-measure was quite
low for both corpora, but significantly lower for Wiki-
Wars: 0.17 vs 0.33. This illustrates how illusive it
may be to trust the performance of a tagger measured
on a single, possibly biased, data set.

In the light of the results of our comparison in Sec-
tion 5, it is clear that at some of the performance loss
here is simply due to domain differences with respect
to lexical triggers. So, we extended DANTE’s cov-
erage with approximately 20 temporal triggers and
modifiers to include the more common vocabulary
that appeared in the WikiWars data; we also modified
the recognition grammar to reduce the number of
spurious matches and extent errors. These changes
resulted in the improvements shown in Table 6. The
performance on extent recognition improves signif-
icantly for both sets of data, but the gap between
extent recognition and evaluation of the VAL attribute

Lenient Strict
Corpus and Task Prec Rec F Prec Rec F

WW - Extent only 0.90 0.75 0.82 0.42 0.35 0.38
WW - Extent + VAL 0.22 0.18 0.20 0.19 0.16 0.17
ACE - Extent only 0.71 0.87 0.78 0.53 0.65 0.58
ACE - Extent +VAL 0.34 0.42 0.37 0.30 0.36 0.33

Table 5: Initial performance of DANTE on WikiWars and
the ACE 2005 Training corpus.

Lenient Strict
Corpus and Task Prec Rec F Prec Rec F

WW - Extent only 0.98 0.99 0.99 0.95 0.95 0.95
WW - Extent + VAL 0.59 0.60 0.59 0.58 0.59 0.58
ACE - Extent only 0.88 0.93 0.90 0.75 0.79 0.77
ACE - Extent +VAL 0.63 0.67 0.65 0.57 0.60 0.58

Table 6: Current performance of DANTE on WikiWars
and the ACE 2005 Training corpus.

is much larger on WikiWars. This is most likely be-
cause the strategy of using the document time stamp
for the interpretation of context-dependent expres-
sions does not work at all for WikiWars documents,
whereas it works well for ACE documents, in line
with our earlier comments in regard to the genres of
the documents. This emphasises the need to develop
sophisticated methods for temporal focus tracking if
we are to extend current time-stamping technologies
beyond the relatively simplistic temporal structures
found in currently available corpora.

7 Conclusions and Future Work
We have presented a new corpus based on the his-
torical descriptions of 22 wars sourced from En-
glish Wikipedia, and we have described in detail
the methodology adopted to construct the corpus; the
corpus can be easily extended in the same way. We
annotated temporal expressions in these documents
with TIMEX2 tags, which provide both the textual
extents and the semantics of the expressions in the
context of whole article.

Following an analysis of the differences between
our new corpus and existing data sets, we then pre-
sented the results of automatic processing of the cor-
pus. This demonstrates that differences in the vo-
cabulary used for temporal expressions can be fairly
straightforwardly incorporated in a tagging tool, but
that appropriate processing of temporal structure in
complex documents requires more sophisticated tech-
niques than those required to handle existing corpora.
The WikiWars Corpus provides data that tests these
capabilities.
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Abstract

We present PEM, the first fully automatic met-
ric to evaluate the quality of paraphrases, and
consequently, that of paraphrase generation
systems. Our metric is based on three crite-
ria: adequacy, fluency, and lexical dissimilar-
ity. The key component in our metric is a ro-
bust and shallow semantic similarity measure
based on pivot language N-grams that allows
us to approximate adequacy independently of
lexical similarity. Human evaluation shows
that PEM achieves high correlation with hu-
man judgments.

1 Introduction

In recent years, there has been an increasing inter-
est in the task of paraphrase generation (PG) (Barzi-
lay and Lee, 2003; Pang et al., 2003; Quirk et al.,
2004; Bannard and Callison-Burch, 2005; Kauchak
and Barzilay, 2006; Zhao et al., 2008; Zhao et al.,
2009). At the same time, the task has seen appli-
cations such as machine translation (MT) (Callison-
Burch et al., 2006; Madnani et al., 2007; Madnani
et al., 2008), MT evaluation (Kauchak and Barzilay,
2006; Zhou et al., 2006a; Owczarzak et al., 2006),
summary evaluation (Zhou et al., 2006b), and ques-
tion answering (Duboue and Chu-Carroll, 2006).

Despite the research activities, we see two major
problems in the field. First, there is currently no con-
sensus on what attributes characterize a good para-
phrase. As a result, works on the application of para-
phrases tend to build their own PG system in view
of the immediate needs instead of using an existing
system.

Second, and as a consequence, no automatic eval-
uation metric exists for paraphrases. Most works in

this area resort to ad hoc manual evaluations, such as
the percentage of “yes” judgments to the question of
“is the meaning preserved”. This type of evaluation
is incomprehensive, expensive, and non-comparable
between different studies, making progress hard to
judge.

In this work we address both problems. We pro-
pose a set of three criteria for good paraphrases: ad-
equacy, fluency, and lexical dissimilarity. Consid-
ering that paraphrase evaluation is a very subjec-
tive task with no rigid definition, we conduct ex-
periments with human judges to show that humans
generally have a consistent intuition for good para-
phrases, and that the three criteria are good indica-
tors.

Based on these criteria, we construct PEM (Para-
phrase Evaluation Metric), a fully automatic evalua-
tion metric for PG systems. PEM takes as input the
original sentence R and its paraphrase candidate P ,
and outputs a single numeric score b estimating the
quality of P as a paraphrase of R. PG systems can
be compared based on the average scores of their
output paraphrases. To the best of our knowledge,
this is the first automatic metric that gives an objec-
tive and unambiguous ranking of different PG sys-
tems, which serves as a benchmark of progress in
the field of PG.

The main difficulty of deriving PEM is to measure
semantic closeness without relying on lexical level
similarity. To this end, we propose bag of pivot lan-
guage N-grams (BPNG) as a robust, broad-coverage,
and knowledge-lean semantic representation for nat-
ural language sentences. Most importantly, BPNG
does not depend on lexical or syntactic similarity,
allowing us to address the conflicting requirements
of paraphrase evaluation. The only linguistic re-
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source required to evaluate BPNG is a parallel text
of the target language and an arbitrary other lan-
guage, known as the pivot language.

We highlight that paraphrase evaluation and para-
phrase recognition (Heilman and Smith, 2010; Das
and Smith, 2009; Wan et al., 2006; Qiu et al., 2006)
are related yet distinct tasks. Consider two sentences
S1 and S2 that are the same except for the substitu-
tion of a single synonym. A paraphrase recognition
system should assign them a very high score, but a
paraphrase evaluation system would assign a rela-
tively low one. Indeed, the latter is often a better
indicator of how useful a PG system potentially is
for the applications of PG described earlier.

The rest of the paper is organized as follows. We
survey other automatic evaluation metrics in natural
language processing (NLP) in Section 2. We define
the task of paraphrase evaluation in Section 3 and
develop our metric in Section 4. We conduct a hu-
man evaluation and analyze the results in Section 5.
The correlation of PEM with human judgments is
studied in Section 6. Finally, we discuss our find-
ings and future work in Section 7 and conclude in
Section 8.

2 Related work

The most well-known automatic evaluation metric in
NLP is BLEU (Papineni et al., 2002) for MT, based
on N-gram matching precisions. The simplicity of
BLEU lends well to MT techniques that directly op-
timize the evaluation metric.

The weakness of BLEU is that it operates purely
at the lexical surface level. Later works attempt to
take more syntactic and semantic features into con-
sideration (see (Callison-Burch et al., 2009) for an
overview). The whole spectrum of NLP resources
has found application in machine translation eval-
uation, including POS tags, constituent and depen-
dency parses, WordNet (Fellbaum, 1998), semantic
roles, textual entailment features, and more. Many
of these metrics have been shown to correlate bet-
ter with human judges than BLEU (Chan and Ng,
2008; Liu et al., 2010). Interestingly, few MT eval-
uation metrics exploit parallel texts as a source of
information, when statistical MT is centered almost
entirely around mining parallel texts.

Compared to these MT evaluation metrics, our

method focuses on addressing the unique require-
ment of paraphrase evaluation: that lexical closeness
does not necessarily entail goodness, contrary to the
basis of MT evaluation.

Inspired by the success of automatic MT evalua-
tion, Lin (2004) and Hovy et al. (2006) propose au-
tomatic metrics for summary evaluation. The for-
mer is entirely lexical based, whereas the latter also
exploits constituent and dependency parses, and se-
mantic features derived from WordNet.

The only prior attempt to devise an automatic
evaluation metric for paraphrases that we are aware
of is ParaMetric (Callison-Burch et al., 2008), which
compares the collection of paraphrases discovered
by automatic paraphrasing algorithms against a
manual gold standard collected over the same sen-
tences. The recall and precision of several current
paraphrase generation systems are evaluated. Para-
Metric does not attempt to propose a single metric
to correlate well with human judgments. Rather, it
consists of a few indirect and partial measures of the
quality of PG systems.

3 Task definition

The first step in defining a paraphrase evaluation
metric is to define a good paraphrase. Merriam-
Webster dictionary gives the following definition:
a restatement of a text, passage, or work giving
the meaning in another form. We identify two key
points in this definition: (1) that the meaning is pre-
served, and (2) that the lexical form is different. To
which we add a third, that the paraphrase must be
fluent.

The first and last point are similar to MT evalua-
tion, where adequacy and fluency have been estab-
lished as the standard criteria. In paraphrase evalu-
ation, we have one more: lexical dissimilarity. Al-
though lexical dissimilarity is seemingly the easiest
to judge automatically among the three, it poses an
interesting challenge to automatic evaluation met-
rics, as overlap with the reference has been the basis
of almost all evaluation metrics. That is, while MT
evaluation and paraphrase evaluation are conceptu-
ally closely related, the latter actually highlights the
deficiencies of the former, namely that in most au-
tomatic evaluations, semantic equivalence is under-
represented and substituted by lexical and syntactic
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equivalence.
The task of paraphrase evaluation is then defined

as follows: Given an original sentence R and a para-
phrase candidate P , output a numeric score b esti-
mating the quality of P as a paraphrase of R by con-
sidering adequacy, fluency, and lexical dissimilarity.
In this study, we use a scale of 1 to 5 (inclusive) for
b, although that can be transformed linearly into any
range desired.

We observe here that the overall assessment b is
not a linear combination of the three measures. In
particular, a high dissimilarity score is meaningless
by itself. It could simply be that the paraphrase is
unrelated to the source sentence, or is incoherent.
However, when accompanied by high adequacy and
fluency scores, it differentiates the mediocre para-
phrases from the good ones.

4 Paraphrase Evaluation Metric (PEM)

In this section we devise our metric according to the
three proposed evaluation criteria, namely adequacy,
fluency, and dissimilarity. The main challenge is to
measure the adequacy, or semantic similarity, com-
pletely independent of any lexical similarity. We ad-
dress this problem in Sections 4.1 to 4.3. The re-
maining two criteria are addressed in Section 4.4,
and we describe the final combined metric PEM in
Section 4.5.

4.1 Phrase-level semantic representation

Without loss of generality, suppose we are to eval-
uate English paraphrases, and have been supplied
many sentence-aligned parallel texts of French and
English as an additional resource. We can then align
the parallel texts at word level automatically using
well-known algorithms such as GIZA++ (Och and
Ney, 2003) or the Berkeley aligner (Liang et al.,
2006; Haghighi et al., 2009).

To measure adequacy without relying on lexical
similarity, we make the key observation that the
aligned French texts can act as a proxy of the se-
mantics to a fragment of an English text. If two En-
glish phrases are often mapped to the same French
phrase, they can be considered similar in mean-
ing. Similar observations have been made by previ-
ous researchers (Wu and Zhou, 2003; Bannard and
Callison-Burch, 2005; Callison-Burch et al., 2006;

Snover et al., 2009). We can treat the distribution
of aligned French phrases as a semantic representa-
tion of the English phrase. The semantic distance
between two English phrases can then be measured
by their degree of overlap in this representation.

In this work, we use the widely-used phrase ex-
traction heuristic in (Koehn et al., 2003) to extract
phrase pairs from parallel texts into a phrase table1.
The phrases extracted do not necessarily correspond
to the speakers’ intuition. Rather, they are units
whose boundaries are preserved during translation.
However, the distinction does not affect our work.

4.2 Segmenting a sentence into phrases
Having established a way to measure the similarity
of two English phrases, we now extend the concept
to sentences. Here we discuss how to segment an
English sentence (the original or the paraphrase) into
phrases.

From the phrase table, we know the frequencies of
all the phrases and we approximate the probability
of a phrase p by:

Pr(p) =
N(p)∑
p′ N(p′)

(1)

N(·) is the count of a phrase in the phrase table, and
the denominator is a constant for all p. We define
the likelihood of segmenting a sentence S into a se-
quence of phrases (p1, p2, . . . , pn) by:

Pr(p1, p2, . . . , pn|S) =
1

Z(S)

n∏
i=1

Pr(pi) (2)

where Z(S) is a normalizing constant. The best seg-
mentation of S according to Equation 2 can be cal-
culated efficiently using a dynamic programming al-
gorithm. Note that Z(S) does not need to be calcu-
lated, as it is the same for all different segmentations
of S. The formula has a strong preference for longer
phrases, since every Pr(pi) has a large denominator.

Many sentences are impossible to segment into
known phrases, including all those containing out-
of-vocabulary words. We therefore allow any sin-
gle word w to be considered as a phrase, and if
N(w) = 0, we use N(w) = 0.5 instead.

1The same heuristic is used in the popular MT package
Moses.
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Bonjour , / 0.9

Salut , / 0.1

Querrien / 1.0 . / 1.0

Figure 1: A confusion network in the pivot language

Bonjour , monsieur . / 1.0

Figure 2: A degenerated confusion network in the pivot
language

4.3 Sentence-level semantic representation

Simply merging the phrase-level semantic represen-
tations is insufficient to produce a sensible sentence-
level semantic representation. For example, assume
the English sentence Morning , sir . is segmented as
a single phrase, because the following phrase pair is
found in the phrase table:

En: Morning , sir .
Fr: Bonjour , monsieur .
However, another English sentence Hello , Quer-

rien . has an out-of-vocabulary word Querrien
and consequently the most probable segmentation is
found to be “Hello , ||| Querrien ||| .”:

En: Hello ,
Fr: Bonjour , (Pr(Bonjour ,|Hello ,) = 0.9)
Fr: Salut , (Pr(Salut ,|Hello ,) = 0.1)
En: Querrien
Fr: Querrien
En: .
Fr: .
A naive comparison of the bags of French phrases

aligned to Morning , sir . and Hello , Querrien . de-
picted above would conclude that the two sentences
are completely unrelated, as their bags of aligned
French phrases are completely disjoint. We tackle
this problem by constructing a confusion network
representation of the French phrases, as shown in
Figures 1 and 2. The confusion network is formed
by first joining the different French translations of
every English phrase in parallel, and then joining
these segments in series.

The confusion network is a compact representa-
tion of an exponentially large number of (likely mal-
formed) weighted French sentences. We can easily
enumerate the N-grams from the confusion network

representation and collect the statistics for this en-
semble of French sentences efficiently. In this work,
we consider N up to 4. The N-grams for Hello ,
Querrien . are:

1-grams: Bonjour (0.9), Salut (0.1), comma
(1.0), Querrien (1.0), period (1.0).

2-grams: Bonjour comma (0.9), Salut comma
(0.1), comma Querrien (1.0), Querrien period (1.0).

3-grams: Bonjour comma Querrien (0.9), Salut
comma Querrien (0.1), comma Querrien period
(1.0).

4-grams: Bonjour comma Querrien period (0.9),
Salut comma Querrien period (0.1).

We call this representation of an English sentence
a bag of pivot language N-grams (BPNG), where
French is the pivot language in our illustrating ex-
ample. We can extract the BPNG of Morning , sir .
analogously:

1-grams: Bonjour (1.0), comma (1.0), monsieur
(1.0), period (1.0).

2-grams: Bonjour comma (1.0), comma mon-
sieur (1.0), monsieur period (1.0).

3-grams: Bonjour comma monsieur (1.0),
comma monsieur period (1.0).

4-grams: Bonjour comma monsieur period (1.0).
The BPNG of Hello , Querrien. can now be com-

pared sensibly with that of the sentence Morning ,
sir . We use the F1 agreement between the two BP-
NGs as a measure of the semantic similarity. The F1

agreement is defined as

F1 =
2× Precision × Recall

Precision + Recall

The precision and the recall for an original sen-
tence R and a paraphrase P is defined as follows.
Let French N-gram g ∈ BPNG(R)∪BPNG(P ), and
WR(g) and WP (g) be the weights of g in the BPNG
of R and P respectively, then

Precision =
∑

g min(WR(g),WP (g))∑
g WP (g)

Recall =
∑

g min(WR(g),WP (g))∑
g WR(g)

In our example, the numerators for both the preci-
sion and the recall are 0.9 + 1 + 1 + 0.9, for the N-
grams Bonjour, comma, period, and Bonjour comma
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respectively. The denominators for both terms are
10.0. Consequently, F1 = Precision = Recall =
0.38, and we conclude that the two sentences are
38% similar. We call the resulting metric the pivot
language F1. Note that since F1 is symmetric with
respect to the precision and the recall, our metric is
unaffected whether we consider Morning, sir. as the
paraphrase of Hello, Querrien . or the other way
round.

An actual example from our corpus is:

Reference sihanouk ||| put forth ||| this proposal |||
in ||| a statement ||| made ||| yesterday ||| .

Paraphrase shihanuk ||| put forward ||| this pro-
posal ||| in his ||| yesterday ||| ’s statement ||| .

The ||| sign denotes phrase segmentation as de-
scribed earlier. Our semantic representation suc-
cessfully recognizes that put forth and put forward
are paraphrases of each other, based on their similar
Chinese translation statistics (ti2 chu1 in Chinese).

4.4 Fluency and dissimilarity

We measure the fluency of a paraphrase by a nor-
malized language model score Pn, defined by

Pn =
log Pr(S)
length(S)

where Pr(S) is the sentence probability predicted
by a standard 4-gram language model.

We measure dissimilarity between two English
sentences using the target language F1, where we
collect the bag of all N-grams up to 4-grams from
each English (referred to as the target language) sen-
tence. The target language F1 is then defined as the
F1 agreement of the two bags of N-grams, analogous
to the definition of the pivot language F1. The target
language F1 correlates positively with the similar-
ity of the two sentences, or equivalently, negatively
with the dissimilarity of the two sentences.

4.5 The metric

To produce the final PEM metric, we combine the
three component automatic metrics, pivot language
F1, normalized language model, and target language
F1, which measure adequacy, fluency, and dissimi-
larity respectively.

As discussed previously, a linear combination of
the three component metrics is insufficient. We turn
to support vector machine (SVM) regression with
the radial basis function (RBF) kernel. The RBF is
a simple and expressive function, commonly used to
introduce non-linearity into large margin classifica-
tions and regressions.

RBF(xi, xj) = e−γ‖xi−xj‖2

We use the implementation in SVM light

(Joachims, 1999). The SVM is to be trained on a set
of human-judged paraphrase pairs, where the three
component automatic metrics are fit to the human
overall assessment. After training, the model can
then be used to evaluate new paraphrase pairs in a
fully automatic fashion.

5 Human evaluation

To validate our definition of paraphrase evaluation
and the PEM method, we conduct an experiment
to evaluate paraphrase qualities manually, which al-
lows us to judge whether paraphrase evaluation ac-
cording to our definition is an inherently coherent
and well-defined problem. The evaluation also al-
lows us to establish an upper bound for the para-
phrase evaluation task, and to validate the contribu-
tion of the three proposed criteria to the overall para-
phrase score.

5.1 Evaluation setup

We use the Multiple-Translation Chinese Corpus
(MTC)2 as a source of paraphrases. The MTC
corpus consists of Chinese news articles (993 sen-
tences in total) and multiple sentence-aligned En-
glish translations. We select one human transla-
tion as the original text. Two other human transla-
tions and two automatic machine translations serve
as paraphrases of the original sentences. We refer to
the two human translations and the two MT systems
as paraphrase systems human1, human2, machine1,
and machine2.

We employ three human judges to manually as-
sess the quality of 300 original sentences paired
with each of the four paraphrases. Therefore, each
judge assesses 1,200 paraphrase pairs in total. The

2LDC Catalog No.: LDC2002T01
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judgment for each paraphrase pair consists of four
scores, each given on a five-point scale:

• Adequacy (Is the meaning preserved ade-
quately?)

• Fluency (Is the paraphrase fluent English?)

• Lexical Dissimilarity (How much has the para-
phrase changed the original sentence?)

• Overall score

The instructions given to the judges for the overall
score were as follows.

A good paraphrase should convey the
same meaning as the original sentence,
while being as different as possible on the
surface form and being fluent and gram-
matical English. With respect to this defi-
nition, give an overall score from 5 (per-
fect) to 1 (unacceptable) for this para-
phrase.

The paraphrases are presented to the judges in a ran-
dom order and without any information as to which
paraphrase system produced the paraphrase.

In addition to the four paraphrase systems men-
tioned above, for each original English sentence, we
add three more artificially constructed paraphrases
with pre-determined “human” judgment scores: (1)
the original sentence itself, with adequacy 5, fluency
5, dissimilarity 1, and overall score 2; (2) a random
sentence drawn from the same domain, with ade-
quacy 1, fluency 5, dissimilarity 5, and overall score
1; and (3) a random sentence generated by a uni-
gram language model, with adequacy 1, fluency 1,
dissimilarity 5, and overall score 1. These artificial
paraphrases serve as controls in our evaluation. Our
final data set therefore consists of 2,100 paraphrase
pairs with judgments on 4 different criteria.

5.2 Inter-judge correlation
The first step in our evaluation is to investigate the
correlation between the human judges. We use Pear-
son’s correlation coefficient, a common measure of
the linear dependence between two random vari-
ables.

We investigate inter-judge correlation at the sen-
tence and at the system level. At the sentence
level, we construct three vectors, each containing
the 1,200 sentence level judgments from one judge

Sentence Level System Level
Judge A Judge B Judge A Judge B

Judge B 0.6406 - 0.9962 -
Judge C 0.6717 0.5993 0.9995 0.9943

Table 1: Inter-judge correlation for overall paraphrase
score

Sentence Level System Level
Adequacy 0.7635 0.7616
Fluency 0.3736 0.3351

Dissimilarity -0.3737 -0.3937
Dissimilarity (A,F≥4) 0.8881 0.9956

Table 2: Correlation of paraphrase criteria with overall
score

for the overall score. The pair-wise correlations be-
tween these three vectors are then taken. Note that
we exclude the three artificial control paraphrase
systems from consideration, as that would inflate the
correlation. At the system level, we construct three
vectors each of size four, containing the average
scores given by one judge to each of the four para-
phrase systems human1, human2, machine1, and
machine2. The correlations are then taken in the
same fashion.

The results are listed in Table 1. The inter-judge
correlation is between 0.60 and 0.67 at the sentence
level and above 0.99 at the system level. These cor-
relation scores can be considered very high when
compared to similar results reported in MT evalu-
ations, e.g., Blatz et al. (2003). The high correlation
confirms that our evaluation task is well defined.

Having confirmed that human judgments corre-
late strongly, we combine the scores of the three
judges by taking their arithmetic mean. Together
with the three artificial control paraphrase systems,
they form the human reference evaluation which we
use for the remainder of the experiments.

5.3 Adequacy, fluency, and dissimilarity
In this section, we empirically validate the impor-
tance of our three proposed criteria: adequacy, flu-
ency, and lexical dissimilarity. This can be done by
measuring the correlation of each criterion with the
overall score. The system and sentence level corre-
lations are shown in Table 2.

We can see a positive correlation of adequacy and
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Figure 3: Scatter plot of dissimilarity vs. overall score
for paraphrases with high adequacy and fluency.

fluency with the overall score, and the correlation
with adequacy is particularly strong. Thus, higher
adequacy and to a lesser degree higher fluency indi-
cate higher paraphrase quality to the human judges.

On the other hand, dissimilarity is found to have a
negative correlation with the overall score. This can
be explained by the fact that the two human trans-
lations usually have much higher similarity with the
reference translation, and at the same time are scored
as better paraphrases. This effect dominates a sim-
ple linear fitting of the paraphrase score vs. the dis-
similarity, resulting in the counter intuitive negative
correlation. We note that a high dissimilarity alone
tells us little about the quality of the paraphrase.
Rather, we expect dissimilarity to be a differentia-
tor between the mediocre and good paraphrases.

To test this hypothesis, we select the subset of
paraphrase pairs that receive adequacy and fluency
scores of at least four and again measure the cor-
relation of the dissimilarity and the overall score.
The result is tabulated in the last row of Table 2 and
shows a strong correlation. Figure 3 shows a scatter
plot of the same result3.

The empirical results presented so far confirm that
paraphrase evaluation is a well-defined task permit-
ting consistent subjective judgments, and that ade-
quacy, fluency, and dissimilarity are suitable criteria
for paraphrase quality.

3We automatically add jitter (small amounts of noise) for
ease of presentation.

6 PEM vs. human evaluation

In the last section, we have shown that the three
proposed criteria are good indicators of paraphrase
quality. In this section, we investigate how well
PEM can predict the overall paraphrase quality from
the three automatic metrics (pivot language F1, nor-
malized language model, and target language F1),
designed to match the three evaluation criteria. We
describe the experimental setup in Section 6.1, be-
fore we show the results in Section 6.2.

6.1 Experimental setup

We build the phrase table used to evaluate the pivot
language F1 from the FBIS Chinese-English corpus,
consisting of about 250,000 Chinese sentences, each
with a single English translation. The paraphrases
are taken from the MTC corpus in the same way
as the human experiment described in Section 5.1.
Both FBIS and MTC are in the Chinese newswire
domain.

We stem all English words in both data sets with
the Porter stemmer (Porter, 1980). We use the maxi-
mum entropy segmenter of (Low et al., 2005) to seg-
ment the Chinese part of the FBIS corpus. Subse-
quently, word level Chinese-English alignments are
generated using the Berkeley aligner (Liang et al.,
2006; Haghighi et al., 2009) with five iterations of
training. Phrases are then extracted with the widely-
used heuristic in Koehn et al. (2003). We extract
phrases of up to four words in length.

Bags of Chinese pivot language N-grams are ex-
tracted for all paraphrase pairs as described in Sec-
tion 4.3. For computational efficiency, we consider
only edges of the confusion network with probabil-
ities higher than 0.1, and only N-grams with proba-
bilities higher than 0.01 in the bag of N-grams. We
collect N-grams up to length four.

The language model used to judge fluency is
trained on the English side of the FBIS parallel text.
We use SRILM (Stolcke, 2002) to build a 4-gram
model with the default parameters.

The PEM SVM regression is trained on the para-
phrase pairs for the first 200 original English sen-
tences and tested on the paraphrase pairs of the re-
maining 100 original English sentences. Thus, there
are 1,400 instances for training and 700 instances for
testing. For each instance, we calculate the values
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Figure 4: Scatter plot of PEM vs. human judgment (over-
all score) at the sentence level

Figure 5: Scatter plot of PEM vs. human judgment (over-
all score) at the system level

of pivot language F1, normalized language model
score, and target language F1. These values serve
as the input features to the SVM regression and the
target value is the human assessment of the overall
score, on a scale of 1 to 5.

6.2 Results

As in the human evaluation, we investigate the cor-
relation of the PEM scores with the human judg-
ments at the sentence and at the system level. Fig-
ure 4 shows the sentence level PEM scores plotted
against the human overall scores, where each human
overall score is the arithmetic mean of the scores
given by the three judges. The Pearson correlation
between the automatic PEM scores and the human
judgments is 0.8073. This is substantially higher
than the sentence level correlation of MT metrics

Sentence Level System Level
PEM vs. Human Avg. 0.8073 0.9867
PEM vs. Judge A 0.5777 0.9757
PEM vs. Judge B 0.5281 0.9892
PEM vs. Judge C 0.5231 0.9718

Table 3: Correlation of PEM with human judgment (over-
all score)

like BLEU. For example, the highest sentence level
Pearson correlation by any metric in the Metrics-
MATR 2008 competition (Przybocki et al., 2009)
was 0.6855 by METEOR-v0.6; BLEU achieved a
correlation of 0.4513.

Figure 5 shows the system level PEM scores plot-
ted against the human scores. The Pearson correla-
tion between PEM scores and the human scores at
the system level is 0.9867.

We also calculate the Pearson correlation between
PEM and each individual human judge. Here, we
exclude the three artificial control paraphrase sys-
tems from the data, to make the results compara-
ble to the inter-judge correlation presented in Sec-
tion 5.2. The correlation is between 0.52 and 0.57
at the sentence level and between 0.97 and 0.98 at
the system level. As we would expect, the correla-
tion between PEM and a human judge is not as high
as the correlation between two human judges, but
PEM still shows a strong and consistent correlation
with all three judges. The results are summarized in
Table 3.

7 Discussion and future work

The paraphrases that we use in this study are not
actual machine generated paraphrases. Instead, the
English paraphrases are multiple translations of the
same Chinese source sentence. Our seven “para-
phrase systems” are two human translators, two ma-
chine translation systems, and three artificially cre-
ated extreme scenarios. The reason for using multi-
ple translations is that we could not find any PG sys-
tem that can paraphrase a whole input sentence and
is publicly available. We intend to obtain and evalu-
ate paraphrases generated from real PG systems and
compare their performances in a follow-up study.

Our method models paraphrasing up to the phrase
level. Unfortunately, it makes no provisions for syn-
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tactic paraphrasing at the sentence level, which is
probably a much greater challenge, and the literature
offers few successes to draw inspirations from. We
hope to be able to partially address this deficiency in
future work.

The only external linguistic resource required by
PEM is a parallel text of the target language and
another arbitrary language. While we only use
Chinese-English parallel text in this study, other lan-
guage pairs need to be explored too. Another alter-
native is to collect parallel texts against multiple for-
eign languages, e.g., using Europarl (Koehn, 2005).
We leave this for future work.

Our evaluation method does not require human-
generated references like in MT evaluation. There-
fore, we can easily formulate a paraphrase genera-
tor by directly optimizing the PEM metric, although
solving it is not trivial:

paraphrase(R) = arg max
P

PEM(P,R)

where R is the original sentence and P is the para-
phrase.

Finally, the PEM metric, in particular the seman-
tic representation BPNG, can be useful in many
other contexts, such as MT evaluation, summary
evaluation, and paraphrase recognition. To facil-
itate future research, we will package and release
PEM under an open source license at http://
nlp.comp.nus.edu.sg/software.

8 Conclusion

We proposed PEM, a novel automatic metric for
paraphrase evaluation based on adequacy, fluency,
and lexical dissimilarity. The key component in our
metric is a novel technique to measure the seman-
tic similarity of two sentences through their N-gram
overlap in an aligned foreign language text. We
conducted an extensive human evaluation of para-
phrase quality which shows that our proposed met-
ric achieves high correlation with human judgments.
To the best of our knowledge, PEM is the first auto-
matic metric for paraphrase evaluation.
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Abstract

Extant Statistical Machine Translation (SMT) sys-
tems are very complex softwares, which embed mul-
tiple layers of heuristics and embark very large num-
bers of numerical parameters. As a result, it is diffi-
cult to analyze output translations and there is a real
need for tools that could help developers to better
understand the various causes of errors.

In this study, we make a step in that direction and
present an attempt to evaluate the quality of the
phrase-based translation model. In order to identify
those translation errors that stem from deficiencies
in the phrase table (PT), we propose to compute the
oracle BLEU-4 score, that is the best score that a
system based on this PT can achieve on a reference
corpus. By casting the computation of the oracle
BLEU-1 as an Integer Linear Programming (ILP)
problem, we show that it is possible to efficiently
compute accurate lower-bounds of this score, and re-
port measures performed on several standard bench-
marks. Various other applications of these oracle de-
coding techniques are also reported and discussed.

1 Phrase-Based Machine Translation
1.1 Principle
A Phrase-Based Translation System (PBTS) consists of a
ruleset and a scoring function (Lopez, 2009). The ruleset,
represented in the phrase table, is a set of phrase1pairs
{(f, e)}, each pair expressing that the source phrase f
can be rewritten (translated) into a target phrase e. Trans-
lation hypotheses are generated by iteratively rewriting
portions of the source sentence as prescribed by the rule-
set, until each source word has been consumed by exactly
one rule. The order of target words in an hypothesis is
uniquely determined by the order in which the rewrite op-
eration are performed. The search space of the translation
model corresponds to the set of all possible sequences of

1Following the usage in statistical machine translation literature, we
use “phrase” to denote a subsequence of consecutive words.

rules applications. The scoring function aims to rank all
possible translation hypotheses in such a way that the best
one has the highest score.

A PBTS is learned from a parallel corpus in two inde-
pendent steps. In a first step, the corpus is aligned at the
word level, by using alignment tools such as Giza++
(Och and Ney, 2003) and some symmetrisation heuris-
tics; phrases are then extracted by other heuristics (Koehn
et al., 2003) and assigned numerical weights. In the
second step, the parameters of the scoring function are
estimated, typically through Minimum Error Rate train-
ing (Och, 2003).

Translating a sentence amounts to finding the best scor-
ing translation hypothesis in the search space. Because
of the combinatorial nature of this problem, translation
has to rely on heuristic search techniques such as greedy
hill-climbing (Germann, 2003) or variants of best-first
search like multi-stack decoding (Koehn, 2004). More-
over, to reduce the overall complexity of decoding, the
search space is typically pruned using simple heuristics.
For instance, the state-of-the-art phrase-based decoder
Moses (Koehn et al., 2007) considers only a restricted
number of translations for each source sequence2 and en-
forces a distortion limit3 over which phrases can be re-
ordered. As a consequence, the best translation hypothe-
sis returned by the decoder is not always the one with the
highest score.

1.2 Typology of PBTS Errors

Analyzing the errors of a SMT system is not an easy task,
because of the number of models that are combined, the
size of these models, and the high complexity of the vari-
ous decision making processes. For a SMT system, three
different kinds of errors can be distinguished (Germann
et al., 2004; Auli et al., 2009): search errors, induction
errors and model errors. The former corresponds to cases
where the hypothesis with the best score is missed by
the search procedure, either because of the use of an ap-

2the ttl option of Moses, defaulting to 20.
3the dl option of Moses, whose default value is 7.
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proximate search method or because of the restrictions of
the search space. Induction errors correspond to cases
where, given the model, the search space does not contain
the reference. Finally, model errors correspond to cases
where the hypothesis with the highest score is not the best
translation according to the evaluation metric.

Model errors encompass several types of errors that oc-
cur during learning (Bottou and Bousquet, 2008)4. Ap-
proximation errors are errors caused by the use of a re-
stricted and oversimplistic class of functions (here, finite-
state transducers to model the generation of hypotheses
and a linear scoring function to discriminate them) to
model the translation process. Estimation errors corre-
spond to the use of sub-optimal values for both the phrase
pairs weights and the parameters of the scoring function.
The reasons behind these errors are twofold: first, train-
ing only considers a finite sample of data; second, it re-
lies on error prone alignments. As a result, some “good”
phrases are extracted with a small weight, or, in the limit,
are not extracted at all; and conversely that some “poor”
phrases are inserted into the phrase table, sometimes with
a really optimistic score.

Sorting out and assessing the impact of these various
causes of errors is of primary interest for SMT system
developers: for lack of such diagnoses, it is difficult to
figure out which components of the system require the
most urgent attention. Diagnoses are however, given the
tight intertwining among the various component of a sys-
tem, very difficult to obtain: most evaluations are limited
to the computation of global scores and usually do not
imply any kind of failure analysis.

1.3 Contribution and organization

To systematically assess the impact of the multiple
heuristic decisions made during training and decoding,
we propose, following (Dreyer et al., 2007; Auli et al.,
2009), to work out oracle scores, that is to evaluate the
best achievable performances of a PBTS. We aim at both
studying the expressive power of PBTS and at providing
tools for identifying and quantifying causes of failure.

Under standard metrics such as BLEU (Papineni et al.,
2002), oracle scores are difficult (if not impossible) to
compute, but, by casting the computation of the oracle
unigram recall and precision as an Integer Linear Pro-
gramming (ILP) problem, we show that it is possible to
efficiently compute accurate lower-bounds of the oracle
BLEU-4 scores and report measurements performed on
several standard benchmarks.

The main contributions of this paper are twofold. We
first introduce an ILP program able to efficiently find
the best hypothesis a PBTS can achieve. This program
can be easily extended to test various improvements to

4We omit here optimization errors.

phrase-base systems or to evaluate the impact of differ-
ent parameter settings. Second, we present a number of
complementary results illustrating the usage of our or-
acle decoder for identifying and analyzing PBTS errors.
Our experimental results confirm the main conclusions of
(Turchi et al., 2008), showing that extant PBTs have the
potential to generate hypotheses having very high BLEU-
4 score and that their main bottleneck is their scoring
function.

The rest of this paper is organized as follows: in Sec-
tion 2, we introduce and formalize the oracle decoding
problem, and present a series of ILP problems of increas-
ing complexity designed so as to deliver accurate lower-
bounds of oracle score. This section closes with various
extensions allowing to model supplementary constraints,
most notably reordering constraints (Section 2.5). Our
experiments are reported in Section 3, where we first in-
troduce the training and test corpora, along with a de-
scription of our system building pipeline (Section 3.1).
We then discuss the baseline oracle BLEU scores (Sec-
tion 3.2), analyze the non-reachable parts of the reference
translations, and comment several complementary results
which allow to identify causes of failures. Section 4 dis-
cuss our approach and findings with respect to the exist-
ing literature on error analysis and oracle decoding. We
conclude and discuss further prospects in Section 5.

2 Oracle Decoder

2.1 The Oracle Decoding Problem

Definition To get some insights on the errors of phrase-
based systems and better understand their limits, we pro-
pose to consider the oracle decoding problem defined as
follows: given a source sentence, its reference transla-
tion5 and a phrase table, what is the “best” translation
hypothesis a system can generate? As usual, the quality
of an hypothesis is evaluated by the similarity between
the reference and the hypothesis. Note that in the ora-
cle decoding problem, we are only assessing the ability
of PBT systems to generate good candidate translations,
irrespective of their ability to score them properly.

We believe that studying this problem is interesting for
various reasons. First, as described in Section 3.4, com-
paring the best hypothesis a system could have gener-
ated and the hypothesis it actually generates allows us to
carry on both quantitative and qualitative failure analysis.
The oracle decoding problem can also be used to assess
the expressive power of phrase-based systems (Auli et
al., 2009). Other applications include computing accept-
able pseudo-references for discriminative training (Till-
mann and Zhang, 2006; Liang et al., 2006; Arun and

5The oracle decoding problem can be extended to the case of multi-
ple references. For the sake of simplicity, we only describe the case of
a single reference.
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Koehn, 2007) or combining machine translation systems
in a multi-source setting (Li and Khudanpur, 2009). We
have also used oracle decoding to identify erroneous or
difficult to translate references (Section 3.3).

Evaluation Measure To fully define the oracle de-
coding problem, a measure of the similarity between a
translation hypothesis and its reference translation has
to be chosen. The most obvious choice is the BLEU-4
score (Papineni et al., 2002) used in most machine trans-
lation evaluations.

However, using this metric in the oracle decoding
problem raises several issues. First, BLEU-4 is a met-
ric defined at the corpus level and is hard to interpret at
the sentence level. More importantly, BLEU-4 is not de-
composable6: as it relies on 4-grams statistics, the con-
tribution of each phrase pair to the global score depends
on the translation of the previous and following phrases
and can not be evaluated in isolation. Because of its non-
decomposability, maximizing BLEU-4 is hard; in partic-
ular, the phrase-level decomposability of the evaluation
metric is necessary in our approach.

To circumvent this difficulty, we propose to evaluate
the similarity between a translation hypothesis and a ref-
erence by the number of their common words. This
amounts to evaluating translation quality in terms of un-
igram precision and recall, which are highly correlated
with human judgements (Lavie et al., ). This measure
is closely related to the BLEU-1 evaluation metric and
the Meteor (Banerjee and Lavie, 2005) metric (when it is
evaluated without considering near-matches and the dis-
tortion penalty). We also believe that hypotheses that
maximize the unigram precision and recall at the sen-
tence level yield corpus level BLEU-4 scores close the
maximal achievable. Indeed, in the setting we will intro-
duce in the next section, BLEU-1 and BLEU-4 are highly
correlated: as all correct words of the hypothesis will be
compelled to be at their correct position, any hypothesis
with a high 1-gram precision is also bound to have a high
2-gram precision, etc.

2.2 Formalizing the Oracle Decoding Problem

The oracle decoding problem has already been consid-
ered in the case of word-based models, in which all trans-
lation units are bound to contain only one word. The
problem can then be solved by a bipartite graph matching
algorithm (Leusch et al., 2008): given a n×m binary ma-
trix describing possible translation links between source
words and target words7, this algorithm finds the subset
of links maximizing the number of words of the reference
that have been translated, while ensuring that each word

6Neither at the sentence (Chiang et al., 2008), nor at the phrase level.
7The (i, j) entry of the matrix is 1 if the ith word of the source can

be translated by the jth word of the reference, 0 otherwise.

is translated only once.
Generalizing this approach to phrase-based systems

amounts to solving the following problem: given a set
of possible translation links between potential phrases of
the source and of the target, find the subset of links so that
the unigram precision and recall are the highest possible.
The corresponding oracle hypothesis can then be easily
generated by selecting the target phrases that are aligned
with one source phrase, disregarding the others. In ad-
dition, to mimic the way OOVs are usually handled, we
match identical OOV tokens appearing both in the source
and target sentences. In this approach, the unigram pre-
cision is always one (every word generated in the oracle
hypothesis matches exactly one word in the reference).
As a consequence, to find the oracle hypothesis, we just
have to maximize the recall, that is the number of words
appearing both in the hypothesis and in the reference.

Considering phrases instead of isolated words has a
major impact on the computational complexity: in this
new setting, the optimal segmentations in phrases of both
the source and of the target have to be worked out in ad-
dition to links selection. Moreover, constraints have to
be taken into account so as to enforce a proper segmenta-
tion of the source and target sentences. These constraints
make it impossible to use the approach of (Leusch et al.,
2008) and concur in making the oracle decoding prob-
lem for phrase-based models more complex than it is for
word-based models: it can be proven, using arguments
borrowed from (De Nero and Klein, 2008), that this prob-
lem is NP-hard even for the simple unigram precision
measure.

2.3 An Integer Program for Oracle Decoding

To solve the combinatorial problem introduced in the pre-
vious section, we propose to cast it into an Integer Lin-
ear Programming (ILP) problem, for which many generic
solvers exist. ILP has already been used in SMT to find
the optimal translation for word-based (Germann et al.,
2001) and to study the complexity of learning phrase
alignments (De Nero and Klein, 2008) models. Follow-
ing the latter reference, we introduce the following vari-
ables: fi,j (resp. ek,l) is a binary indicator variable that
is true when the phrase contains all spans from between-
word position i to j (resp. k to l) of the source (resp.
target) sentence. We also introduce a binary variable, de-
noted ai,j,k,l, to describe a possible link between source
phrase fi,j and target phrase ek,l. These variables are
built from the entries of the phrase table according to se-
lection strategies introduced in Section 2.4. In the fol-
lowing, index variables are so that:

0 ≤ i < j ≤ n, in the source sentence and
0 ≤ k < l ≤ m, in the target sentence,
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where n (resp. m) is the length of the source (resp. target)
sentence.

Solving the oracle decoding problem then amounts to
optimizing the following objective function:

max
i,j,k,l

∑
i,j,k,l

ai,j,k,l · (l − k) , (1)

under the constraints:

∀x ∈ J1,mK :
∑

k,l s.t. k≤x≤l

ek,l ≤ 1 (2)

∀y ∈ J1, nK :
∑

i,j s.t. i≤y≤j

fi,j = 1 (3)

∀k, l :
∑
i,j

ai,j,k,l = fk,l (4)

∀i, j :
∑
k,l

ai,j,k,l = ei,j (5)

The objective function (1) corresponds to the number
of target words that are generated. The first set of con-
straints (2) ensures that each word in the reference e ap-
pears in no more than one phrase. Maximizing the objec-
tive under these constraints amounts to maximizing the
unigram recall. The second set of constraints (3) ensures
that each word in the source f is translated exactly once,
which guarantees that the search space of the ILP prob-
lem is the same as the search space of a phrase-based sys-
tem. Constraints (4) bind the fk,l and ai,j,k,l variables,
ensuring that whenever a link ai,j,k,l is active, the corre-
sponding phrase fk,l is also active. Constraints (5) play a
similar role for the reference.

The Relaxed Problem Even though it accurately
models the search space of a phrase-based decoder,
this programs is not really useful as is: due to out-of-
vocabulary words or missing entries in the phrase table,
the constraint that all source words should be translated
yields infeasible problems8. We propose to relax this
problem and allow some source words to remain untrans-
lated. This is done by replacing constraints (3) by:

∀y ∈ J1, nK :
∑

i,j s.t. i≤y≤j

fi,j ≤ 1

To better reflect the behavior of phrase-based decoders,
which attempt to translate all source words, we also need
to modify the objective function as follows:∑

i,j,k,l

ai,j,k,l · (l − k) +
∑
i,j

fi,j · (j − i) (6)

The second term in this new objective ensures that opti-
mal solutions translate as many source words as possible.

8An ILP problem is said to be infeasible when every possible solu-
tion violates at least one constraint.

The Relaxed-Distortion Problem A last caveat
with the Relaxed optimization program is caused by
frequently occurring source tokens, such as function
words or punctuation signs, which can often align with
more than one target word. For lack of taking distor-
tion information into account in our objective function,
all these alignments are deemed equivalent, even if some
of them are clearly more satisfactory than others. This
situation is illustrated on Figure 1.

le chat et le chien

the cat and the dog

Figure 1: Equivalent alignments between “le” and “the”. The
dashed lines corresponds to a less interpretable solution.

To overcome this difficulty, we propose a last change
to the objective function:∑

i,j,k,l

ai,j,k,l · (l − k) +
∑
i,j

fi,j · (j − i)

−α
∑

i,j,k,l

ai,j,k,l|k − i| (7)

Compared to the objective function of the relaxed prob-
lem (6), we introduce here a supplementary penalty factor
which favors monotonous alignments. For each phrase
pair, the higher the difference between source and target
positions, the higher this penalty. If α is small enough,
this extra term allows us to select, among all the opti-
mal alignments of the relaxed problem, the one with
the lowest distortion. In our experiments, we set α to
min {n, m} to ensure that the penalty factor is always
smaller than the reward for aligning two single words.

2.4 Selecting Indicator Variables
In the approach introduced in the previous sections, the
oracle decoding problem is solved by selecting, among
a set of possible translation links, the ones that yield the
solution with the highest unigram recall.

We propose two strategies to build this set of possible
translation links. In the first one, denoted exact match,
an indicator ai,j,k,l is created if there is an entry (f, e) so
that f spans from word position i to j in the source and
e from word position k to l in the target. In this strat-
egy, the ILP program considers exactly the same ruleset
as conventional phrase-based decoders.

We also consider an alternative strategy, which could
help us to identify errors made during the phrase extrac-
tion process. In this strategy, denoted inside match, an
indicator ai,j,k,l is created when the following three cri-
teria are met: i) f spans from position i to j of the source;
ii) a substring of e, denoted ē, spans from position k to l
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of the reference; iii) (f, ē) is not an entry of the phrase ta-
ble. The resulting set of indicator variables thus contains,
at least, all the variables used in the exact match strategy.
In addition, we license here the use of phrases containing
words that do not occur in the reference. In fact, using
such solutions can yield higher BLEU scores when the
reward for additional correct matches exceeds the cost
incurred by wrong predictions. These cases are symp-
toms of situations where the extraction heuristic failed to
extract potentially useful subphrases.

2.5 Oracle Decoding with Reordering Constraints
The ILP problem introduced in the previous section can
be extended in several ways to describe and test various
improvements to phrase-based systems or to evaluate the
impact of different parameter settings. This flexibility
mainly stems from the possibility offered by our frame-
work to express arbitrary constraints over variables. In
this section, we illustrate these possibilities by describing
how reordering constraints can easily be considered.

As a first example, the Moses decoder uses a distortion
limit to constrain the set of possible reorderings. This
constraint “enforces (...) that the last word of a phrase
chosen for translation cannot be more than d9 words from
the leftmost untranslated word in the source” (Lopez,
2009) and is expressed as:

∀aijkl, ai′j′k′l′ s.t. k > k′,

aijkl · ai′j′k′l′ · |j − i′ + 1| ≤ d,

The maximum distortion limit strategy (Lopez, 2009) is
also easily expressed and take the following form (assum-
ing this constraint is parameterized by d):

∀l < m− 1,

ai,j,k,l·ai′,j′,l+1,l′ · |i′ − j − 1| < d

Implementing the “local” or MJ-d (Kumar and Byrne,
2005) reordering strategy is also straightforward, and im-
plies using the following constraints:

∀i, k,

∣∣∣∣∣∣
∑
i′≤i

ai′,j′,k′,l′ −
∑
k′≤k

ai′,j′,k′,l′

∣∣∣∣∣∣ ≤ d

Similarly, It is possible to simulate decoding under the
so-called IBM(d) reordering constraints10 by considering
the following constraints:

∀µ ≤ m, max
i,k,l
j≤µ

ai,j,k,l · j −
∑

i,j,k,l

ai,j,k,l · (j − i) ≤ d

9This corresponds to the dl parameter of Moses
10Under IBM(d) constraints, the translation is done, phrase by phrase,

from the beginning of the sentence until the end and only one of the first
d untranslated phrase can be selected for translation.

In these constraints, the first factor corresponds to the
rightmost translated word of the source and the second
one to the number of translated source words. The con-
straints simply enforce that, at each step of the decoding,
there are no more than d source words that were skipped.

Note that the constraints introduced above are not all
linear in the problem variables; however they can eas-
ily be linearized using standard ILP techniques (Roth and
Yih, 2005).

3 Oracle Decoding for Failure Analysis

3.1 Experimental Setting

We propose to use our oracle decoder to study the ability
of a PBTS to translate from English to French and from
German to English. These two languages pairs present
different challenges: English to French translation is con-
sidered a relatively easy pair, notwithstanding the diffi-
culties of generating the right inflection marks in French.
Translating from German into English is more difficult,
notably due to the productivity of inflectional and com-
pounding processes in German, and also to significant
differences in word ordering between these languages.

Our experiments are based on the corpora distributed
for the WMT’09 constrained tasks (Callison-Burch et
al., 2009). All data are tokenized, cleaned and con-
verted to lowercase letters using the tools provided
by the organizers. We then used a standard training
pipeline to construct the translation model: the bitexts
were aligned using Giza++11, symmetrized using the
grow-diag-final-and heuristic; the phrase table
was extracted and scored using the tools distributed with
Moses.12 Finally, baseline systems were optimized using
WMT’08 test set as development using MERT. Note that,
for all these steps, we used the default value of the var-
ious parameters. The extracted phrase table is then used
to find the oracle alignment on the task test set. Recall
that oracle decoding do not use the scores estimated by
Moses in any way.

In the experiments reported below, two settings are
considered. In the first one, denoted NEWSCO, Moses
was trained only on a small data set taken from the News
Commentary corpus. Using a small sized corpus reduces
both training time and decoding time, which allows us to
quickly test different configurations of the decoder. In a
second setting, denoted EUROPARL, Moses was trained
on a larger corpora containing the entirety of the Europarl
Corpus, but no in-domain data, to provide results on more
realistic conditions. Statistics regarding the different cor-
pora used are reported in Table 1. These statistics are
computed on the lowercase cleaned corpora.

11http://www.fjoch.com/GIZA++.html
12http://statmt.org/moses
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en → fr de → en
NEWSCO EUROPARL NEWSCO EUROPARL

#words 1, 023, 401 21, 616, 114 1, 530, 693 22, 898, 644
#sentences 51, 375 1, 050, 398 71, 691 1, 118, 399

#vocabulary 31, 416 78, 071 78, 140 242, 219
#phrase table 3, 061, 701 46, 003, 525 4, 133, 190 44, 402, 367

% OOV 5.3% 3.1% 8.0% 5.2%

Table 1: Statistics regarding the training corpora: number of words, number of sentences, vocabulary and phrase table size and
percentage of test words not appearing in the train set (OOV).

Finding the oracle alignment amounts to solving the
ILP problems introduced above. Even though ILP prob-
lems are NP-hard in general, there exist several off-the-
shelf ILP solvers able to efficiently find an optimal solu-
tion or decide that the problem is infeasible. In our exper-
iments, we used the free solver SCIP (Achterberg, 2007).
An optimal solution was found for all problems we con-
sidered. Decoding the 3, 027 sentences of WMT’09 test
set takes about 10 minutes (wall time) for the NEWSCO
setting, and several hours for the EUROPARL setting13.

3.2 Oracle BLEU Score
Table 2 reports, for all considered settings, the BLEU-4
scores14 achieved by our oracle decoder, as well as the
number of source words used to generate the oracle hy-
pothesis and the number of target words that are reach-
able. In these experiments, two objective functions were
considered: first, we only consider the objective function
corresponding to the relaxed problem defined by Eq. (6);
second, we introduced an extra term in the objective to
penalize distortion, as described by Eq. (7). Unless ex-
plicitly stated otherwise, we always used the exact match
strategy.

The main result in 2 is that, for the two language pairs
considered, the expressive power of PBTS is not the lim-
iting factor to achieve high translation performance. In
fact, for most sentences in the test set, excellent oracle
hypotheses, which contain a very high proportion of ref-
erence words, are found. This remains true even when the
phrase table is extracted from a small corpus. Given that
the best BLEU-4 scores achieved during the WMT’09
evaluation are about 28 for the English to French task
and 24 for the German to English task ((Callison-Burch
et al., 2009), Tables 26 and 25), these results strongly
suggest that the main bottleneck of current phrase-based
translation systems is their scoring function rather than
their expressive power. As we will discuss in Section 4,
similar conclusions were drawn by (Auli et al., 2009) and
(Turchi et al., 2008).

Several additional comments on these numbers are in
13All our experiments are run on a 8 cores computer, each core being

a 2.2GHz Intel Processor; the decoder is multi-threaded.
14These are computed on lowercase with the default tokenization.

order. Despite these very high BLEU scores, in most
cases, the reference is only partly translated. In the most
favorable case, for the English to French EUROPARL set-
ting, only 26% of the references could be fully gener-
ated15. These numbers are consistent with the results re-
ported in (Auli et al., 2009). Similarly, only about 31%
of the source sentences are completely translated by the
oracle decoder, which supports our choice to consider a
relaxed version of the ILP problem. Finally, Table 2 also
shows that introducing the distortion penalty does not af-
fect the oracle performance of the decoder.

Considering the inside match strategy improves the
performance of the oracle decoder: for instance, for the
English to French NEWSCO setting, oracle decoder with
the inside match strategy achieves a BLEU-4 score of
70.15 (a 2.5 points improvement over the baseline). To
achieve this score, 21.45% of the phrases used during de-
coding were phrases that are not considered by the exact
match strategy. Similar results can be observed for other
settings, which highlights the significance of one kind of
failure of the extraction heuristic: useful “subphrases” of
actual phrase pairs are not always extracted.

The numbers in Table 2, no matter how good they may
look, should be considered with caution: they only imply
that, for most test sentences, all the information necessary
to produce a good translation is available in the phrase ta-
ble. However, the alignment decisions underlying these
oracle hypotheses are sometimes hard to justify, and one
has to accept that part of these good hypotheses transla-
tions are due to a series of lucky alignment errors. This
is illustrated on Figure 2, which displays one such lucky
oracle alignment based on the misalignment, during train-
ing, of the French preposition “des” (of the) with the En-
glish noun “stock”. Such lucky errors are naturally also
observed in the outputs of conventional decoders, even
though phrase table filtering heuristics probably makes
them somewhat more rare.

3.3 Analyzing Non-Reachable Parts of a Reference
Table 3 contains typical examples of sentence pairs that
could not be fully generated by our oracle decoder. They

15Similar numbers were obtained, albeit much more slowly, with the
--constraint option of Moses.
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training set objective function % source translated % target generated 4-BLEU

en → fr
NEWSCO

RELAXED 86.04% 84.74% 67.65
RELAXED-DISTORTION 85.99% 84.77% 67.77

EUROPARL
RELAXED 93.66% 93.06% 85.05

RELAXED-DISTORTION 93.65% 93.06% 85.08

de → en
NEWSCO

RELAXED 82.57% 82.33% 64.60
RELAXED-DISTORTION 82.59% 82.30% 64.65

EUROPARL
RELAXED 90.34% 91.16% 81.77

RELAXED-DISTORTION 90.36% 91.12% 81.77

Table 2: Translation score of the ILP oracle decoder for the various settings described in Section 3.1

stock fall in asia

chute des actions en asie

Figure 2: Example of alignment obtained by our oracle decoder

illustrate the three main reasons which cause some parts
of the reference to remain unreachable:

• phrases are missing from the phrase table, either
because they do not occur in the training corpus
(OOVs) or because they failed to be extracted. In
Table 3, OOV errors are mainly due to past tense
forms translated into verbs conjugated in passé sim-
ple (“rejeta”, “rencontrèrent”, “renoua”) a French
literary tense, mostly used in formal writings.

• obvious errors (misspelled words, misinterpretation
or mistranslation, ...) in the reference. The refer-
ence of the fifth example contains one such error:
the state name “Nevada” is translated to “n’évadiez”
(literally “have not escaped”), yielding a very poor
reference sentence.

• parts of the reference have no translation equiva-
lence in the source. This can be either because ref-
erences are produced in “context” and some pieces
of information are moved across sentence bound-
aries or because these references are non-literal. The
fourth example, which seems to be the translation of
a title, falls into this category: the French part con-
tains a reference to the context (“les SA” is referring
to the bacteria the text is talking about) which is not
in the source text. Non-literal translation are illus-
trated by the third example, where English “Mon-
day” is translated into French “la veille” (the day
before).

While the first kind of errors is inherent to the use of
a statistical approach, the last two kinds result from the
quality of the data used in the evaluation and directly im-
pact both training and evaluation of automatic translation

systems: if they should not distort too much comparisons
of MT systems, these errors prevent us from assessing
the “global” quality of automatic translation and, if sim-
ilar errors are found in the train set, they make learning
harder as some probability mass is wasted to model them.

To provide a more quantitative analysis, we manually
looked at all the non-aligned parts of some WMT’09 ref-
erences and found that out of 800 references, more than
133 contain either an obvious translation error or can not
be achieved by a PBTS16. Note that, while identifying
these errors could be done in many ways, our oracle de-
coder makes it far easier.

3.4 Identifying Causes of Failure

By comparing the hypotheses found by the oracle de-
coder and the ones found by the phrase-based decoder,
causes of failure can be easily identified. In this section,
we will present several measures that allow us to identify
and quantify several causes of failure.

Errors Caused by Search Space Pruning Recall from
Section 1.1 that Moses uses several heuristics to prune the
search space. In particular, there is a distortion limit and
a limit on the number of target phrases considered for one
source phrase. In this paragraph, we evaluate the impact
of these two heuristics on translation quality.

Table 4 presents the average distortion computed on
the oracle hypotheses, as well as the percentage of
phrases used that have a distortion strictly greater than
6 (the default distortion limit of Moses). All these num-
bers are obtained by solving the RELAXED-DISTORTION
problem. Surprisingly enough, the average distortion of
oracle hypotheses is quite small, even for the German to
English task, and the distortion constraint seems to be vi-
olated only in a few cases. It also appears that the distor-
tion of the hypotheses generated in the NEWSCO setting
is significantly larger than in the EUROPARL setting. This
can be explained by the extra degrees of freedom in the

16Annotation at a finer level is an on-going effort; the annotated
corpus is available from http://www.limsi.fr/Individu/
wisniews/oracle decoding.
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À – On Monday the American House of Representatives rejected the plan to support the financial
system, into which up to 700 billion dollars (nearly 12 billion Czech crowns) was to be invested.
– Lundi, la chambre des représentants américaine rejeta le projet de soutient du système financier,
auquel elle aurait dû consacrer jusqu’à 700 milliards de dollars (près de 12 bilions de kč).

Á – Representatives of the legislators met with American Finance Minister Henry Paulson Saturday
night in order to give the government fund a final form.
– Dans la nuit de samedi à dimanche, des représentants des législateurs rencontrèrent le ministre
des finances américain Henry Paulson, afin de donner au fond du gouvernement une forme finale.

Â – The Prague Stock Market immediately continued its fall from Monday at the beginning of
Tuesday’s trading , when it dropped by nearly six percent.
– Mardi, dès le début des échanges, la bourse de prague renoua avec sa chute de la veille,
lorsqu’elle perdait presque six pour cent.

Ã – Antibiotic Resistance
– Les SA résistent aux antibiotiques.

Ä – According to Nevada Democratic senator Harry Reid, that is how that legislators are trying to
have Congress to reach a definitive agreement as early as on Sunday.
– D’après le sénateur dèmocrate n’évadiez Harry Reid, les législateurs font de sorte que le Congrès
aboutisse à un accord définitif dès dimanche.

Table 3: Output examples of our oracle decoder on the English to French task. Words in bold are non-aligned words and words in
italic are non-aligned out-of-vocabulary words. For clarity the examples have been detokenized and recased.

training set avg.
distortion

%phrases
with a dist.

> 6

en → fr NEWSCO 4.57 22.02%
EUROPARL 3.21 13.32%

de → en NEWSCO 5.16 25.37%
EUROPARL 3.81 17.21%

Table 4: Average distortion and percentage of phrases with a
distortion greater that Moses default distortion limit.

alignment decisions enabled by the use of larger training
corpora and phrase table.

To evaluate the impact of the second heuristic, we com-
puted the number of phrases discarded by Moses (be-
cause of the default ttl limit) but used in the oracle hy-
potheses. In the English to French NEWSCO setting,
they account for 34.11% of the total number of phrases
used in the oracle hypotheses. When the oracle decoder
is constrained to use the same phrase table as Moses, its
BLEU-4 score drops to 42.78. This shows that filtering
the phrase table prior to decoding discards many useful
phrase pairs and is seriously limiting the best achievable
performance, a conclusion shared with (Auli et al., 2009).

Search Errors Search errors can be identified by com-
paring the score of the best hypothesis found by Moses
and the score of the oracle hypothesis. If the score of the
oracle hypothesis is higher, then there has been a search
error; on the contrary, there has been an estimation error
when the score of the oracle hypothesis is lower than the
score of the best hypothesis found by Moses.

Based on the comparison of the score of Moses hy-
potheses and of oracle hypotheses for the English to
French NEWSCO setting, our preliminary conclusion is
that the number of search errors is quite limited: only
about 5% of the hypotheses of our oracle decoder are ac-
tually getting a better score than Moses solutions. Again,
this shows that the scoring function (model error) is
one of the main bottleneck of current PBTS. Compar-
ing these hypotheses is nonetheless quite revealing: while
Moses mostly selects phrase pairs with high translation
scores and generates monotonous alignments, our ILP de-
coder uses larger reorderings and less probable phrases
to achieve better solutions: on average, the reordering
score of oracle solutions is −5.74, compared to −76.78
for Moses outputs. Given the weight assigned through
MERT training to the distortion score, no wonder that
these hypotheses are severely penalized.

The Impact of Phrase Length The observed outputs
do not only depend on decisions made during the search,
but also on decisions made during training. One such
decision is the specification of maximal length for the
source and target phrases. In our framework, evaluating
the impact of this decision is simple: it suffices to change
the definition of indicator variables so as to consider only
alignments between phrases of a given length.

In the English-French NEWSCO setting, the most re-
strictive choice, when only alignments between single
words are authorized, yields an oracle BLEU-4 of 48.68;
however, authorizing phrases up to length 2 allows to
achieve an oracle value of 66.57, very close to the score
achieved when considering all extracted phrases (67.77).
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This is corroborated with a further analysis of our ora-
cle alignments, which use phrases whose average source
length is 1.21 words (respectively 1.31 for target words).
If many studies have already acknowledged the predomi-
nance of “small” phrases in actual translations, our oracle
scores suggest that, for this language pair, increasing the
phrase length limit beyond 2 or 3 might be a waste of
computational resources.

4 Related Work
To the best of our knowledge, there are only a few works
that try to study the expressive power of phrase-based ma-
chine translation systems or to provide tools for analyzing
potential causes of failure.

The approach described in (Auli et al., 2009) is very
similar to ours: in this study, the authors propose to find
and analyze the limits of machine translation systems by
studying the reference reachability. A reference is reach-
able for a given system if it can be exactly generated
by this system. Reference reachability is assessed using
Moses in forced decoding mode: during search, all hy-
potheses that deviate from the reference are simply dis-
carded. Even though the main goal of this study was to
compare the search space of phrase-based and hierarchi-
cal systems, it also provides some insights on the impact
of various search parameters in Moses, delivering con-
clusions that are consistent with our main results. As de-
scribed in Section 1.2, these authors also propose a typol-
ogy of the errors of a statistical translation systems, but
do not attempt to provide methods for identifying them.

The authors of (Turchi et al., 2008) study the learn-
ing capabilities of Moses by extensively analyzing learn-
ing curves representing the translation performances as a
function of the number of examples, and by corrupting
the model parameters. Even though their focus is more
on assessing the scoring function, they reach conclusions
similar to ours: the current bottleneck of translation per-
formances is not the representation power of the PBTS
but rather in their scoring functions.

Oracle decoding is useful to compute reachable
pseudo-references in the context of discriminative train-
ing. This is the main motivation of (Tillmann and Zhang,
2006), where the authors compute high BLEU hypothe-
ses by running a conventional decoder so as to maximize
a per-sentence approximation of BLEU-4, under a simple
(local) reordering model.

Oracle decoding has also been used to assess the
limitations induced by various reordering constraints in
(Dreyer et al., 2007). To this end, the authors propose
to use a beam-search based oracle decoder, which com-
putes lower bounds of the best achievable BLEU-4 us-
ing dynamic programming techniques over finite-state
(for so-called local and IBM constraints) or hierarchically
structured (for ITG constraints) sets of hypotheses. Even

though the numbers reported in this study are not directly
comparable with ours17, it seems that our decoder is not
only conceptually much simpler, but also achieves much
more optimistic lower-bounds of the oracle BLEU score.
The approach described in (Li and Khudanpur, 2009) em-
ploys a similar technique, which is to guide a heuristic
search in an hypergraph representing possible translation
hypotheses with n-gram counts matches, which amounts
to decoding with a n-gram model trained on the sole ref-
erence translation. Additional tricks are presented in this
article to speed-up decoding.

Computing oracle BLEU scores is also the subject of
(Zens and Ney, 2005; Leusch et al., 2008), yet with a
different emphasis. These studies are concerned with
finding the best hypotheses in a word graph or in a con-
sensus network, a problem that has various implications
for multi-pass decoding and/or system combination tech-
niques. The former reference describes an exponential
approximate algorithm, while the latter proves the NP-
completeness of this problem and discuss various heuris-
tic approaches. Our problem is somewhat more complex
and using their techniques would require us to built word
graphs containing all the translations induced by arbitrary
segmentations and permutations of the source sentence.

5 Conclusions
In this paper, we have presented a methodology for ana-
lyzing the errors of PBTS, based on the computation of
an approximation of the BLEU-4 oracle score. We have
shown that this approximation could be computed fairly
accurately and efficiently using Integer Linear Program-
ming techniques. Our main result is a confirmation of
the fact that extant PBTS systems are expressive enough
to achieve very high translation performance with respect
to conventional quality measurements. The main efforts
should therefore strive to improve on the way phrases and
hypotheses are scored during training. This gives further
support to attempts aimed at designing context-dependent
scoring functions as in (Stroppa et al., 2007; Gimpel and
Smith, 2008), or at attempts to perform discriminative
training of feature-rich models. (Bangalore et al., 2007).

We have shown that the examination of difficult-to-
translate sentences was an effective way to detect errors
or inconsistencies in the reference translations, making
our approach a potential aid for controlling the quality or
assessing the difficulty of test data. Our experiments have
also highlighted the impact of various parameters.

Various extensions of the baseline ILP program have
been suggested and/or evaluated. In particular, the ILP
formalism lends itself well to expressing various con-
straints that are typically used in conventional PBTS. In

17The best BLEU-4 oracle they achieve on Europarl German to En-
glish is approximately 48; but they considered a smaller version of the
training corpus and the WMT’06 test set.
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our future work, we aim at using this ILP framework to
systematically assess various search configurations. We
plan to explore how replacing non-reachable references
with high-score pseudo-references can improve discrim-
inative training of PBTS. We are also concerned by de-
termining how tight is our approximation of the BLEU-
4 score is: to this end, we intend to compute the best
BLEU-4 score within the n-best solutions of the oracle
decoding problem.
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Abstract

Automatic evaluation of Machine Translation
(MT) quality is essential to developing high-
quality MT systems. Various evaluation met-
rics have been proposed, and BLEU is now
used as the de facto standard metric. How-
ever, when we consider translation between
distant language pairs such as Japanese and
English, most popular metrics (e.g., BLEU,
NIST, PER, and TER) do not work well. It
is well known that Japanese and English have
completely different word orders, and special
care must be paid to word order in transla-
tion. Otherwise, translations with wrong word
order often lead to misunderstanding and in-
comprehensibility. For instance, SMT-based
Japanese-to-English translators tend to trans-
late ‘A because B’ as ‘B because A.’ Thus,
word order is the most important problem
for distant language translation. However,
conventional evaluation metrics do not sig-
nificantly penalize such word order mistakes.
Therefore, locally optimizing these metrics
leads to inadequate translations. In this pa-
per, we propose an automatic evaluation met-
ric based on rank correlation coefficients mod-
ified with precision. Our meta-evaluation of
the NTCIR-7 PATMT JE task data shows that
this metric outperforms conventional metrics.

1 Introduction

Automatic evaluation of machine translation (MT)
quality is essential to developing high-quality ma-
chine translation systems because human evaluation
is time consuming, expensive, and irreproducible. If
we have a perfect automatic evaluation metric, we
can tune our translation system for the metric.

BLEU (Papineni et al., 2002b; Papineni et al.,
2002a) showed high correlation with human judg-
ments and is still used as the de facto standard au-
tomatic evaluation metric. However, Callison-Burch
et al. (2006) argued that the MT community is overly
reliant on BLEU by showing examples of poor per-
formance. For Japanese-to-English (JE) translation,
Echizen-ya et al. (2009) showed that the popular
BLEU and NIST do not work well by using the sys-
tem outputs of the NTCIR-7 PATMT (patent transla-
tion) JE task (Fujii et al., 2008). On the other hand,
ROUGE-L (Lin and Hovy, 2003), Word Error Rate
(WER), and IMPACT (Echizen-ya and Araki, 2007)
worked better.

In these studies, Pearson’s correlation coefficient
and Spearman’s rank correlation ρ with human eval-
uation scores are used to measure how closely an
automatic evaluation method correlates with human
evaluation. This evaluation of automatic evaluation
methods is called meta-evaluation. In human eval-
uation, people judge the adequacy and the fluency of
each translation.

Denoual and Lepage (2005) pointed out that
BLEU assumes word boundaries, which is ambigu-
ous in Japanese and Chinese. Here, we assume
the word boundaries given by ChaSen, one of the
standard morphological analyzers (http://chasen-
legacy.sourceforge.jp/) following Fujii et al.
(2008)

In JE translation, most Statistical Machine Trans-
lation (SMT) systems translate the Japanese sen-
tence

(J0) kare wa sono hon wo yonda node
sekaishi ni kyoumi ga atta

which means
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(R0) he was interested in world
history because he read the book

into an English sentence such as

(H0) he read the book because he was
interested in world history

in which the cause and the effect are swapped. Why
does this happen? The former half of (J0) means “He
read the book,” and the latter half means “(he) was

interested in world history.” The middle word
“node” between them corresponds to “because.”
Therefore, SMT systems output sentences like (H0).
On the other hand, Rule-based Machine Translation
(RBMT) systems correctly give (R0).

In order to find (R0), SMT systems have to search
a very large space because we cannot restrict its
search space with a small distortion limit. Most
SMT systems thus fail to find (R0).

Consequently, the global word order is essential
for translation between distant language pairs, and
wrong word order can easily lead to misunderstand-
ing or incomprehensibility. Perhaps, some readers
do not understand why we emphasize word order
from this example alone. A few more examples
will clarify what happens when SMT is applied to
Japanese-to-English translation. Even the most fa-
mous SMT service available on the web failed to
translate the following very simple sentence at the
time of writing this paper.

Japanese: meari wa jon wo koroshita.
Reference: Mary killed John.

SMT output: John killed Mary.

Since it cannot translate such a simple sentence, it
obviously cannot translate more complex sentences
correctly.

Japanese: bobu ga katta hon wo jon wa yonda.
Reference: John read a book that Bob bought.

SMT output: Bob read the book John bought.

Another example is:

Japanese: bobu wa meari ni yubiwa wo kau
tameni, jon no mise ni itta.

Reference: Bob went to John’s store to buy a

ring for Mary.

SMT output: Bob Mary to buy the ring, John

went to the store.

In this way, this SMT service usually gives incom-
prehensible or misleading translations, and thus peo-
ple prefer RBMT services. Other SMT systems also
tend to make similar word order mistakes, and spe-
cial care should be paid to the translation between
distant language pairs such as Japanese and English.

Even Japanese people cannot solve this word or-
der problem easily: It is well known that Japanese
people are not good at speaking English.

From this point of view, conventional automatic
evaluation metrics of translation quality disregard
word order mistakes too much. Single-reference
BLEU is defined by a geometrical mean of n-gram
precisions pn and is modified by Brevity Penalty
(BP) min(1, exp(1− r/h)), where r is the length of
the reference and h is the length of the hypothesis.

BLEU = BP× (p1p2p3p4)
1/4.

Its range is [0, 1]. The BLEU score of (H0) with ref-
erence (R0) is 1.0×(11/11×9/10×6/9×4/8)1/4 =
0.740. Therefore, BLEU gives a very good score to
this inadequate translation because it checks only n-
grams and does not regard global word order.

Since (R0) and (H0) look similar in terms of flu-
ency, adequacy is more important than fluency in
the translation between distant language pairs.

Similarly, other popular scores such as NIST,
PER, and TER (Snover et al., 2006) also give
relatively good scores to this translation. NIST
also considers only local word orders (n-grams).
PER (Position-Independent Word Error Rate) was
designed to disregard word order completely.
TER (Snover et al., 2006) was designed to allow
phrase movements without large penalties. There-
fore, these standard metrics are not optimal for eval-
uating translation between distant language pairs.

In this paper, we propose an alternative automatic
evaluation metric appropriate for distant language
pairs. Our method is based on rank correlation co-
efficients. We use them to compare the word ranks
in the reference with those in the hypothesis.

There are two popular rank correlation coeffi-
cients: Spearman’s ρ and Kendall’s τ (Kendall,
1975). In Isozaki et al. (2010), we used Kendall’s τ
to measure the effectiveness of our Head Finaliza-
tion rule as a preprocessor for English-to-Japanese
translation, but we measured the quality of transla-
tion by using conventional metrics.
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It is not clear how well τ works as an automatic
evaluation metric of translation quality. Moreover,
Spearman’s ρ might work better than Kendall’s τ .
As we discuss later, τ considers only the direction
of the rank change, whereas ρ considers the distance
of the change.

The first objective of this paper is to examine
which is the better metric for distant language pairs.
The second objective is to find improvements of
these rank correlation-metrics.

Spearman’s ρ is based on Pearson’s correlation
coefficients. Suppose we have two lists of numbers

x = [0.1, 0.4, 0.2, 0.6],

y = [0.9, 0.6, 0.2, 0.7].

To obtain Pearson’s coefficients between x and y,
we use the raw values in these lists. If we substitute
their ranks for their raw values, we get

x′ = [1, 3, 2, 4] and y′ = [4, 2, 1, 3].

Then, Spearman’s ρ between x and y is given by
Pearson’s coefficients between x′ and y′. This ρ
can be rewritten as follows when there is no tie:

ρ = 1−
∑
i d

2
i

n+1C3
.

Here, di indicates the difference in the ranks of the
i-th element. Rank distances are squared in this
formula. Because of this square, we expect that ρ
decreases drastically when there is an element that
significantly changes in rank. But we are also afraid
that ρ may be too severe for alternative good trans-
lations.

Since Pearson’s correlation metric assumes lin-
earity, nonlinear monotonic functions can change
its score. On the other hand, Spearman’s ρ and
Kendall’s τ uses ranks instead of raw evaluation
scores, and simple application of monotonic func-
tions cannot change them (use of other operations
such as averaging sentence scores can change them).

2 Methodology

2.1 Word alignment for rank correlations

We have to determine word ranks to obtain rank cor-
relation coefficients. Suppose we have:

(R1) John hit Bob yesterday

(H1) Bob hit John yesterday

The 1st word “John” in R1 becomes the 3rd word
in H1. The 2nd word “hit” in R1 becomes the 2nd
word in H1. The 3rd word “Bob” in R1 becomes the
1st word in H1. The 4th word “yesterday” in R1 be-
comes the 4th word in H1. Thus, we get H1’s word
order list [3, 2, 1, 4]. The number of all pairs of in-
tegers in this list is 4C2 = 6. It has three increasing
pairs: (3,4), (2,4), and (1,4). Since Kendall’s τ is
given by:

τ = 2× the number of increasing pairs
the number of all pairs

− 1,

H1’s τ is 2× 3/6− 1 = 0.0.
In this case, we can obtain Spearman’s ρ as fol-

lows: “John” moved by d1 = 2 words, “hit” moved
by d2 = 0 words, “Bob” moved by d3 = 2 words,
and “yesterday” moved by d4 = 0 words. Therefore,
H1’s ρ is 1− (22 + 02 + 22 + 02)/5C3 = 0.2.

Thus, τ considers only the direction of the move-
ment, whereas ρ considers the distance of the move-
ment. Both ρ and τ have the same range [−1, 1]. The
main objective of this paper is to clarify which rank
correlation is closer to human evaluation scores.

We have to consider the limitation of the rank cor-
relation metrics. They are defined only when there
is one-to-one correspondence. However, a refer-
ence sentence and a hypothesis sentence may have
different numbers of words. They may have two or
more occurrences of the same word in one sentence.
Sometimes, a word in the reference does not appear
in the hypothesis, or a word in the hypothesis does
not appear in the reference. Therefore, we cannot
calculate τ and ρ following the above definitions in
general.

Here, we determine the correspondence of words
between hypotheses and references as follows. First,
we find one-to-one corresponding words. That is,
we find words that appear in both sentences and only
once in each sentence. Suppose we have:

(R2) the boy read the book

(H2) the book was read by the boy

By removing non-aligned words by one-to-one cor-
respondence, we get:
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(R3) boy read book

(H3) book read boy

Thus, we lost “the.” We relax this one-to-one cor-
respondence constraint by using one-to-one corre-
sponding bigrams. (R2) and (H2) share “the boy”
and “the book,” and we can align these instances of
“the” correctly.

(R4) the1 boy2 read3 the4 book5

(H4) the4 book5 read3 the1 boy2

Now, we have five aligned words, and H4’s word
order is represented by [4, 5, 3, 1, 2].

In returning to H0 and R0, we find that each of
these sentences has eleven words. Almost all words
are aligned by one-to-one correspondence but “he”
is not aligned because it appears twice in each sen-
tence. By considering one-to-one corresponding bi-
grams (“he was” and “he read”), “he” is aligned as
follows.

(R5) he1 was2 interested3 in4 world5

history6 because7 he8 read9 the10

book11

(H5) he8 read9 the10 book11 because7

he1 was2 interested3 in4 world5

history6

H5’s word order is [8, 9, 10, 11, 7, 1, 2, 3, 4, 5, 6].
The number of increasing pairs is: 4C2 = 6 pairs in
[8, 9, 10, 11] and 6C2 = 15 pairs in [1, 2, 3, 4, 5,
6]. Then we obtain τ = 2 × (6 + 15)/11C2 − 1 =
−0.236. On the other hand,

∑
i d

2
i = 52 × 6 + 22 +

72 × 4 = 350, and we obtain ρ = 1 − 350/12C3 =
−0.591.

Therefore, both Spearman’s ρ and Kendall’s τ
give very bad scores to the misleading translation
H0. This fact implies they are much better metrics
than BLEU, which gave a good score to it. ρ is much
lower than τ as we expected.

In general, we can use higher-order n-grams for
this alignment, but here we use only unigrams and
bigrams for simplicity. This algnment algorithm is
given in Figure 1. Since some hypothesis words do
not have corresponding reference words, the output
integer list worder is sometimes shorter than the
evaluated sentence. Therefore, we should not use
worder[i] − i as di directly. We have to renumber
the list by rank as we did in Section 1.

Read a hypothesis sentence h = h1h2 . . . hm
and its reference sentence r = r1r2 . . . rn.

Initialize worder with an empty list.

For each word hi in h:

• If hi appears only once each in h and r, append j
s.t. rj = hi to worder.

• Otherwise, if the bigram hihi+1 appears only once
each in h and r, append j s.t. rjrj+1 = hihi+1 to
worder.

• Otherwise, if the bigram hi−1hi appears only once
each in h and r, append j s.t. rj−1rj = hi−1hi to
worder.

Return worder.

Figure 1: Word alignment algorithm for rank correlation

2.2 Word order metrics and meta-evaluation
metrics

These rank correlation metrics sometimes have neg-
ative values. In order to make them just like other
automatic evaluation metrics, we normalize them as
follows.

• Normalized Kendall’s τ : NKT = (τ + 1)/2.

• Normalized Spearman’s ρ: NSR = (ρ+ 1)/2.

Accordingly, NKT is 0.382 and NSR is 0.205.
These metrics are defined only when the number

of aligned words is two or more. We define both
NKT and NSR as zero when the number is one or
less. Consequently, these normalized metrics have
the same range [0, 1].

In order to avoid confusion, we use these abbre-
viations (NKT and NSR) when we use rank corre-
lations as word order metrics, because these cor-
relation metrics are also used in the machine trans-
lation community for meta-evaluation. For meta-
evaluation, we use Spearman’s ρ and Pearson’s cor-
relation coefficient and call them “Spearman” and
“Pearson,” respectively.

2.3 Overestimation problem
Since we measure the rank correlation of only cor-
responding words, these metrics will overestimate
the correlation. For instance, a hypothesis sentence
might have only two corresponding words among
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Figure 2: Scatter plots of normalized average adequacy with brevity penalty (left) and precision (right).
(Each ? corresponds to one sentence generated by one MT system)

dozens of words. In this case, these two words
determine the score of the whole sentence. If the
two words appear in their order in the reference,
the whole sentence obtains the best score, NSR =
NKT = 1.0, in spite of the fact that only two words
matched.

Solving this overestimation problem is the second
objective of this paper. BLEU uses “Brevity Penalty
(BP)” (Section 1) to reduce the scores of too-short
sentences. We can combine the above word order
metrics with BP, e.g., NKT× BP and NSR× BP.

However, we cannot very much expect from this
solution because BP scores do not correlate with
human judgments well. The left graph of Figure
2 shows a scatter plot of BP and “normalized av-
erage adequacy.” This graph has 15 (systems) ×
100 (sentences) dots. Each dot (?) corresponds to
one sentence from one translation system.

In the NTCIR-7 data, three human judges gave
five-point scores (1, 2, 3, 4, 5) for “adequacy” and
“fluency” of each translated sentence. Although
each system translated 1,381 sentences, only 100
sentences were evaluated by the judges.

For each translated sentence, we averaged three
judges’ adequacy scores and normalized this aver-
age x by (x−1)/4. This is our “normalized average
adequacy,” and the dots appears only at multiples of
1/3× 1/4.

This graph shows that BP has very little correla-
tion with adequacy, and we cannot expect BP to im-
prove the meta-evaluation performance very much.
Perhaps, BP’s poor performance was caused by the

fact that most MT systems output almost the same
number of words, and if the number exceeds the
length of the reference, BP=1.0 holds.

Therefore, we have to consider other modifiers
for this overestimation problem. We can use other
common metrics such as precision, recall, and F-
measure to reduce the overestimation of NSR and
NKT.

• Precision: P = c/|h|, where c is the number of
corresponding words and |h| is the number of
words in the hypothesis sentence h.

• Recall: R = c/r, where |r| is the number of
words in the reference sentence r.

• F-measure: Fβ = (1 + β2)PR/(β2P + R),
where β is a parameter.

In (R2)&(H2)’s case, precision is 5/7 = 0.714 and
recall is 5/5 = 1.000.

Which metric should we use? Our preliminary
experiments with NTCIR-7 data showed that preci-
sion correlated best with adequacy among these
three metrics (P , R, and Fβ=1). In addition, BLEU
is essentially made for precision. Therefore, preci-
sion seems the most promising modifier.

The right graph of Figure 2 shows a scatter plot
of precision and normalized average adequacy. The
graph shows that precision has more correlation with
adequacy than BP. We can observe that sentences
with very small P values usually obtain very low
adequacy scores but those with mediocre P values
often obtain good adequacy scores.
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If we multiply P directly by NSR or NKT, those
sentences with mediocre P values will lose too
much of their scores. The use of

√
x will miti-

gate this problem. Since
√
P is closer to 1.0 than

P itself, multiplication of
√
P instead of P itself

will save these sentences. If we apply
√
x twice

(
√√

P = 4
√
P ), it will further save them. There-

fore, we expect×
√
P and× 4

√
P to work better than

×P . Now, we propose two new metrics:

NSRPα and NKTPα,

where α is a parameter (0 ≤ α ≤ 1).

3 Experiments

3.1 Meta-evaluation with NTCIR-7 data
In order to compare automatic translation evalua-
tion methods, we use submissions to the NTCIR-7
Patent Translation (PATMT) task (Fujii et al., 2008).
Fourteen MT systems participated in the Japanese-
English intrinsic evaluation. There were two Rule-
Based MT (RMBT) systems and one Example-
based MT (EBMT) system. All other systems were
Statistical MT (SMT) systems. The task organiz-
ers provided a baseline SMT system. These 15 sys-
tems translated 1,381 Japanese sentences into En-
glish. The organizers evaluated these translations by
using BLEU and human judgments. In the human
judgements, three experts independently evaluated
100 selected sentences in terms of ‘adequacy’ and
‘fluency.’

For automatic evaluation, we used a single refer-
ence sentence for each of these 100 manually evalu-
ated sentences. Echizen-ya et al. (2009) used multi-
reference data, but their data is not publicly available
yet.

For this meta-evaluation, we measured the
corpus-level correlation between the human evalua-
tion scores and the automatic evaluation scores. We
simply averaged scores of 100 sentences for the pro-
posed metrics. For existing metrics such as BLEU,
we followed their definitions for corpus-level eval-
uation instead of simple averages of sentence-level
scores. We used default settings for conventional
metrics, but we tuned GTM (Melamed et al., 2007)
with -e option. This option controls preferences
on longer word runs. We also used the para-
phrase database TERp (http://www.umiacs.umd.

edu/˜snover/terp) for METEOR (Banerjee and
Lavie, 2005).

3.2 Meta-evaluation with WMT-07 data

We developed our metric mainly for automatic eval-
uation of translation quality for distant language
pairs such as Japanese-English, but we also want
to know how well the metric works for similar lan-
guage pairs. Therefore, we also use the WMT-
07 data (Callison-Burch et al., 2007) that covers
only European language pairs. Callison-Burch et al.
(2007) tried different human evaluation methods and
showed detailed evaluation scores. The Europarl test
set has 2,000 sentences, and The News Commentary
test set has 2,007 sentences.

This data has different language pairs: Spanish,
French, German ⇒ English. We exclude Czech-
English because there were so few systems (See the
footnote of p. 146 in their paper).

4 Results

4.1 Meta-evaluation with NTCIR-7 data

Table 1 shows the main results of this paper. The
left part has corpus-level meta-evaluation with ade-
quacy. Error metrics, WER, PER, and TER, have
negative correlation coefficients, but we did not
show their minus signs here.

Both NSR-based metrics and NKT-based metrics
perform better than conventional metrics for this NT-
CIR PATMT JE translation data. As we expected,
×BP and ×P (1/1) performed badly. Spearman of
BP itself is zero.

NKT performed slightly better than NSR. Per-
haps, NSR penalized alternative good translations
too much. However, one of the NSR-based metrics,
NSRP 1/4, gave the best Spearman score of 0.947,
and the difference between NSRPα and NKTPα

was small. Modification with P led to this improve-
ment.

NKT gave the best Pearson score of 0.922. How-
ever, Pearson measures linearity and we can change
its score through a nonlinear monotonic function
without changing Spearman very much. For in-
stance, (NSRP 1/4)1.5 also has Spearman of 0.947
but its Pearson is 0.931, which is better than NKT’s
0.922. Thus, we think Spearman is a better meta-
evaluation metric than Pearson.
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Table 1: NTCIR-7 Meta-evaluation: correlation with hu-
man judgments (Spm = Spearman, Prs = Pearson)

human judge Adequacy Fluency
eval\ meta-eval Spm Prs Spm Prs
P 0.615 0.704 0.672 0.876
R 0.436 0.669 0.461 0.854
Fβ=1 0.525 0.692 0.543 0.871
BP 0.000 0.515 -0.007 0.742
NSR 0.904 0.906 0.869 0.910
NSRP 1/8 0.937 0.905 0.890 0.934
NSRP 1/4 0.947 0.900 0.901 0.944
NSRP 1/2 0.937 0.890 0.926 0.949
NSRP 1/1 0.883 0.872 0.883 0.939
NSR × BP 0.851 0.874 0.769 0.910
NKT 0.940 0.922 0.887 0.931
NKTP 1/8 0.940 0.913 0.908 0.944
NKTP 1/4 0.940 0.904 0.908 0.949
NKTP 1/2 0.929 0.890 0.897 0.949
NKTP 1/1 0.897 0.869 0.879 0.936
NKT × BP 0.829 0.878 0.726 0.918
ROUGE-L 0.903 0.874 0.889 0.932
ROUGE-S(4) 0.593 0.757 0.640 0.869
IMPACT 0.797 0.813 0.751 0.932
WER 0.894 0.822 0.836 0.926
TER 0.854 0.806 0.372 0.856
PER 0.375 0.642 0.393 0.842
METEOR(TERp) 0.490 0.708 0.508 0.878
GTM(-e 12) 0.618 0.723 0.601 0.850
NIST 0.343 0.661 0.372 0.856
BLEU 0.515 0.653 0.500 0.795

The right part of Table 1 shows correlation with
fluency, but adequacy is more important, because
our motivation is to provide a metric that is useful to
reduce incomprehensible or misunderstanding out-
puts of MT systems. Again, the correlation-based
metrics gave better scores than conventional metrics,
and BP performed badly. NSR-based metrics proved
to be as good as NKT-based metrics.

Meta-evaluation scores of the de facto standard
BLEU is much lower than those of other metrics.
Echizen-ya et al. (2009) reported that IMPACT per-
formed very well for sentence-level evaluation of
NTCIR-7 PATMT JE data. This corpus-level result
also shows that IMPACT works better than BLEU,
but ROUGE-L, WER, and our methods give better
scores than IMPACT.

Table 2: WMT-07 meta-evaluation: Each source lan-
guage has two columns: the left one is News Corpus and
the right one is Europarl.

Spearman’s ρ with human “rank”
source French Spanish German
NSR 0.775 0.837 0.523 0.766 0.700 0.593
NSRP 1/8 0.821 0.857 0.786 0.595 0.400 0.685
NSRP 1/4 0.821 0.857 0.786 0.455 0.400 0.714
NSRP 1/2 0.821 0.857 0.786 0.347 0.400 0.714
NKT 0.845 0.857 0.607 0.838 0.700 0.630
NKTP 1/8 0.793 0.857 0.786 0.595 0.400 0.714
NKTP 1/4 0.793 0.857 0.786 0.524 0.400 0.714
NKTP 1/2 0.793 0.857 0.786 0.347 0.400 0.714

BLEU 0.786 0.679 0.750 0.595 0.400 0.821
WER 0.607 0.857 0.750 0.429 0.000 0.500
ROUGEL 0.893 0.739 0.786 0.707 0.700 0.857
ROUGES 0.883 0.679 0.786 0.690 0.400 0.929

4.2 Meta-evaluation with WMT-07 data

Callison-Burch et al. (2007) have performed differ-
ent human evaluation methods for different language
pairs and different corpora. Their Table 5 shows
inter-annotator agreements for the human evaluation
methods. According to their table, the “sentence
ranking” (or “rank”) method obtained better agree-
ment than “adequacy.” Therefore, we show Spear-
man’s ρ for “rank.” We used the scores given in
their Tables 9, 10, and 11. (The “constituent” meth-
ods obtained the best inter-annotator agreement, but
these methods focus on local translation quality and
have nothing to do with global word order, which we
are discussing here.)

Table 2 shows that our metrics designed for
distant language pairs are comparable to conven-
tional methods even for similar language pairs, but
ROUGE-L and ROUGE-S performed better than
ours for French News Corpus and German Europarl.
BLEU scores in this table agree with those in Table
17 of Callison-Burch et al. (2007) within rounding
errors.

After some experiments, we noticed that the use
ofR instead of P often gives better scores for WMT-
07, but it degrades NTCIR-7 scores. We can extend
our metric by Fβ , weighted harmonic mean of P and
R, or any other interpolation, but the introduction
of new parameters into our metric makes it difficult
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to control. Improvement without new parameters is
beyond the scope of this paper.

5 Discussion

It has come to our attention that Birch et al. (2010)
has independently proposed an automatic evaluation
method based on Kendall’s τ . First, they started
with Kendall’s τ distance, which can be written as
“1−NKT” in our terminology, and then subtracted
it from one. Thus, their metric is nothing but NKT.

Then, they proposed application of the square root
to get better Pearson by improving “the sensitivity
to small reorderings.” Since they used “Kendall’s τ”
and “Kendall’s τ distance” interchangeably, it is not
clear what they mean by “

√
Kendall’s τ ,” but per-

haps they mean 1 −
√

1−NKT because
√

NKT is
more insensitive to small reorderings. Table 3 shows
the performance of these metrics for NTCIR-7 data.
Pearson’s correlation coefficient with adequacy was
improved by 1 −

√
1− NKT, but other scores were

degraded in this experiment.
The difference between our method and Birch et

al. (2010)’s method comes from the fact that we
used Japanese-English translation data and Spear-
man’s correlation for meta-evaluation, whereas they
used Chinese-English translation data and only Pear-
son’s correlation for meta-evaluation. Chinese word
order is different from English, but Chinese is a
Subject-Verb-Object (SVO) language and thus is
much closer to English word order than Japanese,
a typical SOV language.

We preferred NSR because it penalizes global
word order mistakes much more than does NKT, and
as discussed above, global word order mistakes of-
ten lead to incomprehensibility and misunderstand-
ing.

On the other hand, they also tried Hamming dis-
tance, and summarized their experiments as follows:

However, the Hamming distance seems to
be more informative than Kendall’s tau for
small amounts of reordering.

This sentence and the introduction of the square root
to NKT imply that Chinese word order is close to
that of English, and they have to measure subtle
word order mistakes.

Table 3: NTCIR-7 meta-evaluation: Effects of square
root (b(x) = 1−

√
1− x)

NKT
√

NKT b(NKT)
Spearman w/ adequacy 0.940 0.940 0.922
Pearson w/ adequacy 0.922 0.817 0.941
Spearman w/ fluency 0.887 0.865 0.858
Pearson w/ fluency 0.931 0.917 0.833

In spite of these differences, the two groups inde-
pendently recognized the usefulness of rank correla-
tions for automatic evaluation of translation quality
for distant language pairs.

In their WMT-2010 paper (Birch and Osborne,
2010), they multiplied NKT with the brevity penalty
and interpolated it with BLEU for the WMT-2010
shared task. This fact implies that incomprehensible
or misleading word order mistakes are rare in trans-
lation among European languages.

6 Conclusions

When Statistical Machine Translation is applied to
distant language pairs such as Japanese and English,
word order becomes an important problem. SMT
systems often fail to find an appropriate translation
because of a large search space. Therefore, they
often output misleading or incomprehensible sen-
tences such as “A because B” vs. “B because A.” To
penalize such inadequate translations, we presented
an automatic evaluation method based on rank corre-
lation. There were two questions for this approach.
First, which correlation coefficient should we use:
Spearman’s ρ or Kendall’s τ? Second, how should
we solve the overestimation problem caused by the
nature of one-to-one correspondence?

We answered these questions through our exper-
iments using the NTCIR-7 PATMT JE translation
data. For the first question, τ was slightly better
than ρ, but ρ was improved by precision. For the
second question, it turned out that BLEU’s Brevity
Penalty was counter-productive. A precision-based
penalty gave a better solution. With this precision-
based penalty, both ρ and τ worked well and they
outperformed conventional methods for NTCIR-7
data. For similar language pairs, our method was
comparable to conventional evaluation methods. Fu-
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ture work includes extension of the method so that it
can outperform conventional methods even for sim-
ilar language pairs.
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Abstract 

Electronic dictionaries covering all natural 

language levels are very relevant for the hu-
man use as well as for the automatic 

processing use, namely those constructed 

with respect to international standards. Such 

dictionaries are characterized by a complex 

structure and an important access time when 

using a querying system. However, the need 

of a user is generally limited to a part of such 

a dictionary according to his domain and ex-

pertise level which corresponds to a specia-

lized dictionary. Given the importance of 

managing a unified dictionary and consider-

ing the personalized needs of users, we pro-

pose an approach for generating personalized 

views starting from a normalized dictionary 

with respect to Lexical Markup Framework 

LMF-ISO 24613 norm. This approach pro-

vides the re-use of already defined views for 
a community of users by managing their pro-

files information and promoting the materia-

lization of the generated views. It is com-

posed of four main steps: (i) the projection of 

data categories controlled by a set of con-

straints (related to the user‟s profiles), (ii) the 

selection of values with consistency check-

ing, (iii) the automatic generation of the 

query‟s model and finally, (iv) the refinement 

of the view. The proposed approach was con-

solidated by carrying out an experiment on an 

LMF normalized Arabic dictionary. 

1 Introduction 

Electronic dictionaries are very useful in nowa-
days society, with the globalization and the in-

crease of world communication and exchanges. 
There are clearly identified needs of dictionaries 

for human use as well as for automatic processing 
use.  

Given the importance of having recourse to 
standards when constructing such lexical re-
sources in order to promote the reuse and the fu-
sion, the standardization committee ISO 
TC37/SC4 has recently validated the Lexical 
Markup Framework norm (LMF) project under 

the standard ISO 24 613 (Francopoulo and George 
2008). LMF provides a common and shared repre-
sentation of lexical objects that allows for the en-
coding of rich linguistic information, including 
among others morphological, syntactic, and se-
mantic aspects. The LMF proposal is distin-
guished by the separate management of the hierar-

chical data structure (meta-model) and elementary 
linguistic descriptors (data categories) which pro-
motes to cover several languages. 

A normalized dictionary covers wide areas that 
include all lexical information of a given language 
and which are useful both for human use and for 
Natural Language Processing use in accordance 

with the kind of the user (linguist, lexicographer, 
developer,  etc.),  the level of the user (learner, 
expert, etc.) and the domain of the use (linguistic, 
medicine, biology, etc.).  These dictionaries are 
characterized by a complex structure that supports 
the richness of natural languages. Therefore, deal-
ing with a unique and complete dictionary is well 
for the manage task.  However, such dictionaries 

are large and can be time consuming when query-
ing their contents especially on the web.  Moreo-
ver, displaying all details when some of which are 
not useful for the field of the query research is a 
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nuisance for the user. So, it will be interesting to 
reduce the displayed details according to the do-
main or to the expertise level of the user by gene-
rating personalized views (virtual or materialized) 
in order to appropriate the use of such dictionaries 

to the user needs. 
The idea of creating document views is not a 

new concept but applying it on LMF normalized 
dictionaries is a new one. Indeed, it has been some 
attempts for dictionary creating in accordance to 
the TEI consortium (Véronis and Ide 1996) but the 
problem was the fact that created textual views 

(corresponding to the surface structure) or data 
base views (corresponding to the deep structure) 
were not customized. Others propositions are very 
interesting but they concern the ontology domain 
when dealing with the concept of point of view 
(Corby and al 2005).   

In this paper, we propose an approach that favors 

the use of normalized dictionaries by generating 
virtual/materialized personalized views. This ap-
proach is based on the profiles information asso-
ciated to user‟s community which helps to retrieve 
already defined views stored in a library of views. 
For the illustration, we use an Arabic LMF norma-
lized dictionary (Baccar and al. 2008, Khemak-
hem and al., 2009) developed in the framework of 

an Arabic project supervised by the ALECSO 
(The Arab League Educational, Cultural and 
Scientific Organization) and founded by the Uni-
versity of King Abdul-Aziz in the Kingdom of 
Saudi Arabia1 . An environment supporting the 
proposed approach was implemented. At present, 
it concerns the Arabic language.   

The present paper is outlined as follows. We will 
start by giving an overview of projects that use 
LMF notably for the construction and the exploi-
tation of electronic dictionaries. Then, we will 
present the foundation of the proposed approach 
related to the profile and the view concepts. After 
that, we will explain the different steps of the 

view‟s generating approach. Finally, we will bring 
back the experimentation that we carried out on a 
normalized Arabic dictionary using the proposed 
approach. 

2 State of the art of projects using LMF 

After the emergence of LMF, some projects were 

launched in order to construct or exploit electronic 

                                                   
1
 www.almuajam.org 

dictionaries in accordance with this norm. Among 
others we note LEXUS (Kirsch 2005) (Kemps-
Snijders and al 2006), LIRICS (LIRICS 2005) and 
LMF-QL (Ben Abderrahmen and al 2007). All 
these labors have been recourse to Web service 

technology that favors to invoke, locally or afar, 
appropriate services for the management or the 
exploitation of a normalized dictionary. 
LEXUS offers an interface permitting to the user 
to define formats of lexical bases with a perspec-
tive to enable the construction of lexical bases ac-
cording to the LMF model. However, it does not 

allow the verification of the compliance between 
the model and the norm. 

LIRICS proposes some APIs that focus especial-
ly on the management of lexical data base. These 
APIs offer the possibility to work on the structure 
of the LMF base by adding, modifying or deleting 
components of LMF model. However, there is no 

interface which facilitates the use of these APIs. 
LMF-QL provides Web services to be used 

while developing lingware systems. These servic-
es offer the exploitation of a normalized lexical 
base without having any piece of information 
about its content and its structure. The results of 
these services may be personalized dictionaries 
given in an XML format. However, it covers only 

the morphological level.   
Concerning the construction of personalized dic-

tionaries using the works mentioned above, we 
can notice that the user must have an idea about 
the content of the desired dictionary and its struc-
ture. He must also have acquaintances with que-
ries generation to satisfy his requirements. 

Finally, we note an absence of works dealing 
with the generation of views starting from LMF 
standardized dictionary. 

3 Foundation of the approach 

An electronic dictionary can be used by many us-
ers who have different requirements. Indeed, by 

being a language learner, a researcher in linguis-
tics or a teacher‟s, needs and uses are not the 
same. Therefore, it will be better to have a tool 
(editor) allowing generating a suitable view. The 
making of a view of the dictionary might be diffi-
cult for some kinds of users, so the recourse to 
user profiles may facilitate this task. One can note 

that the user profile is very important to guide the 
user through the retrieval and the reuse of existent 
views corresponding to his profile. 
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3.1 A user profile definition 

Generally, all features characterizing a user or a 
group of users can be grouped under the term of a 
user profile. For electronic dictionaries, a user 
profile is a dataset that concerns a community of 
users of the dictionary. 
Every profile is characterized by a category, a lev-

el of expertise and a field. Indeed, we classify the 
views of the dictionary according to a profile that 
is based on a selection of these three criteria. The 
formal representation of a profile is the following: 
       P : < K, L, F> 

K: the kind of user: lexicographer, linguist, ling-

ware system developer, etc. 

L: the level of the expertise: beginner, student, 

expert, etc. 

F: the field of user: medicine, sport, biology, gen-

eral, etc.   

3.2 A View definition 

A view of a dictionary is a synthesis of a dictio-
nary interrogation query. We can consider it as a 
specialized or lexical dictionary, supported by a 
query. 
A dictionary view allows to filter some lexico-
graphic information and to hide others that are 

useless for some users. 
The formal representation of a view: 
       View : < D, P, C > 

D: dictionary: each view is specific to a norma-

lized dictionary.  

P: profile of the view (see previous section). 

C: it is a set of properties which characterizes the 

model of the view. Each property has the follow-
ing representation:  
            C : <A, V, W> 

A: attribute is a simple representation of a charac-

teristic model. This characteristic may be a class 
(Lemma, Sense…), a feature (definition, pos, ge-
nre,…) or a relationship (RelatedForm, SenseRe-
lation…) as indicated in Figure 3. 

V: value: each attribute can have a set of values. 

For example, the values verb and noun for the 
attribute POS (Part Of Speech). 

W: weight of a property. It may take the values 0 

or 1. 

 If the weight equals to 0, then this proper-

ty is mandatory only for part of the lexical 
entry. 

 If the weight equals to 1, then this proper-

ty is mandatory for each lexical entry of this 
view. 

3.3 Different types of views 

There are two types of views: 

 Virtual view: the results of this view are 
calculated upon request. In this case, inter-
rogating queries of this view might generate 

a composed query that interrogates directly 
the principal dictionary (underlying). 

 Materialized view (physical): a physical 
copy faithful to the view definition which is 
stored and maintained. 

4 Proposed approach 

In this section we describe the proposed approach 
through the detail that we will give for each one of 
its four steps. These steps are illustrated in Figure 
1.   

 Projection of the view model: includes the 

specification of data categories (linguistic in-
formation), controlled by constraints in order 
to build a suitable normalized and valid mod-
el. It can be started by already existing pro-
files. 

 Selection and checkout of the coherence: 

concerns the specification of some values for 
data categories (DC) already specified. We 
use coherence rules to check the constancy 
knowing that there are strong dependencies 
between some DCs and values of other DCs 
(see section 4.2). 

 Automatic generation of the model and the 

query: includes the model refinement and the 
checking of constraints by priority. 

 Refinement of the view: involves the valida-
tion of a new view of dictionary, by adding 

the elements that are related to the lexical en-
tries of this view. 
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Figure 1.The approach for generating personalized dictionary views. 

4.1 Projection of the view model 

The UML model of the dictionary is difficult to 
understand. So, we suggest a simpler represen-
tation which is more abstract. The choice can be 
started by already existing profiles in order to 
avoid views redundancy by the reuse of the pre-
vious ones and help users. 

a.   The specification of a profile  

A user profile is a description that corresponds 
to a user community. We use the features of 
profile to filter the DCs. Indeed, we offer to the 
user only DCs that correspond to its field and its 

level based on the weight assigned to each DC. 
We assigned these weights according to a study 
on the needs of each user level. This study is 
based on the specific documents and dictiona-

ries for each user level. By example for begin-
ner level, we studied the school books to extract 

the information (root, schema,…) needed at this 
level. 

It also facilitates and accelerates the task of 
needs specification and permits to avoid views 
redundancy. The projection phase is started by 
the specification of the user profile that requires 
the choice of its category, its level and its field. 

Then, if the user wants to consult the previous 
views of his profile, we display all the views 
associated to this profile. Otherwise, we offer 
the DCs specific to its field and its level. 

b.   Constraints    

The abstraction of the model can hides relations 
between DCs. Indeed, during their specification 
there is a risk of having views with a non valid 
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model. So, the DC specification must be con-
trolled by constraints rules such as: 

 If we select the field, the semantic class or 

the nature then the definition must be se-
lected. 

 If the relation between syntactic behaviors 
and senses is selected then the definition 
must be selected.  

4.2 Selection and checkout of the cohe-

rence 

Most of data categories use a list of values such 
as part-of-speech (pos), scheme, field, etc. Val-
ues specification of some DCs might influence 
the presence or the absence of the other DCs. 
For example, if the user has chosen DCs: pos, 
root, scheme, gender and number; then, he has 
fixed the value du pos =”particle” (it means that 

he needs only particles) and the value of the 
number =”singular”. In this case, we note an 
incoherence problem since the DC “number” is 
among particles characteristics but it concerns 
nouns. In this case, we must request the user to 
rectify the specifications. The selection must 
contain a checkout phase of coherence of DCs 
specified with the already existing data in the 

dictionary. This phase is based on coherence 
rules which ensure consistency between DCs 
and the specified values. 

4.3 Automatic generation of the DTD and 
the query 

We use the Document Type Definition (DTD) 
of the LMF norm and DC specifications of the 
model to automatically generate the DTD of the 

view. We use algorithms to generate DTD ele-
ments, respecting the order of the participating 
classes and ensuring classes relations.   

The automatic generation of the query (i.e. us-
ing XQuery) involves two steps: the first one 
concern the specification of conditions for the 
selection of a lexical entry and its related infor-

mation (i.e., semantic, syntactic). The second 
step permits the definition of an XML represen-
tation of a lexical entry. This step is based on 
the projection specified by the user and the 
priority order of DCs. There are DCs that influ-
ence the presence of the lexical entry and others 
that only influence the presence of the sense. 

4.4 Refinement of the view 

The steps of this phase depend on the type of 
the view. If it‟s a virtual one, then it‟s necessary 
to save the query already generated. This query 
will be used during the operation of this view. If 
it‟s a materialized one, then query results are a 
part of the dictionary and must be saved for the 

operation of the view. The second case may 
give us a non valid XML base, especially when 
there are two lexical entries in relation and our 
query will select one of them that have an iden-
tifier of the other entry that is not selected. We 
recall that the lexical entries may have morpho-
logical links with other lexical entries and se-

mantic links with other senses.  
Indeed, after recording query„s results, we 

move to the step of refinement. This step con-
sists to valid the new personalized dictionary, 
adding lexical entries, senses and syntactic 
frame in relation with these results. 

5 Experimentation 

5.1 The normalized Arabic dictionary 

In order to experiment our approach, we are 

going to use the normalized Arabic interactive 
dictionary containing more than 38000 lexical 
entries and developed in the framework of an 
Arabic project 2  supervised by the ALECSO. 
This dictionary is modeled according to the me-
ta-model proposed by LMF3 (ISO 24613) and 
uses data categories generated by the DCR 4 

norm (ISO 12620). The dictionary pattern is 
composed of classes selected from the kernel or 
from one of its extensions (morphological, se-
mantic, syntactic, MRD) in order to see a dic-
tionary covering most of new dictionary‟s needs 
(Baccar and al 2008). Since there are many in-
formation that can be classified in multi exten-

sions in the same time, the norm‟s editor have 
chosen to put them in one of these extensions. 
For this reason, we did not use only Machine 
Readable Dictionary (MRD) extension. This 
pattern valorizes derivation phenomenon in 
Arabic language and neutralizes the differences 
between lexicographical schools, ensuring lan-
guage evolution. In fact, we have considered 

                                                   
2
 www.almuajam.org/ 

3
 www.lexicalmarkupframework.org/ 

4
 www.isocat.org/ 
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roots (ك ت ب “k t b”), derived forms ( -kata“ كَتَةَ 
ba” (write), كَاتِة ”kâtib” (writer)), invariable 
words (  إن ”inna” (indeed), حَت ى “hattâ” (in order)) 
and non-Arab origin words (َكَمْبْيوُتر “computer”, 
 internet”) as lexical entries that can have“ أَنْتَرْناَت

morphological relations (i.e., RelatedForm rela-
tion). 

In addition, this dictionary is rich with seman-
tic information (i.e., definitions, examples, sub-

ject field, semantic class) and syntactic informa-
tion (i.e., subcategorisation frame). It ensures 
the link between senses and their possible syn-
tactic behaviors. 

The Figure 2, given below, shows a part of the 

lexical entry “ َكَتَة” ”kataba” (write) which gives 
an idea about the structure of this dictionary.

 

 

Figure 2. Example of a lexical entry of the normalized Arabic dictionary.  

In this Figure, we highlight some properties of 
the used dictionary such as: 

 The diversity of information: morphology, 
semantics, syntax, image, video, etc.  

 The sense relations (i.e., synonym) link two 
senses and not two lexical entries 

 The precision of the syntactic behavior. In-
deed, each syntactic behavior has a type; the 
particles needed an example and its defini-
tion. 

 The structure of a lexical entry varies ac-

cording to its part of speech 

5.2 Experiment of the approach 

We illustrate in this section the generation 

process of a personalized dictionary view. We 
have setup a computing system online, that al-
lows the user to make his view of the dictionary 
in the format of an interactive Web page (so 
independent of all material or software owner) 
in which he will be able to define, create and 
enhance his personal view.  

Before starting the generation of the view, the 

user must specify his profile. If the views are 
associated with this profile, we will display their 
description to reuse the existing views and to 
avoid redundancy. 

pos : part of speech 

nat : nature      inf Morp : Morphlogical piece of information 

class : class      def : definition     

field : field       expSyn : example of using a type 

exp : example for a sense    type : type of a syntactic frame 
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root pos inf Morp scheme 
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exp 

type 

expSyn 

 

particule 

 

lemma 
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Figure 3. Specification of the user profile.  

 

The user must set its category, its level and its 
field.  

He can select an existing view corresponding 
to its needs or he can specify its purpose with-
out using the existing. Then, he chooses the cat-
egories of data needed. Next, he can set their 
values. 

                                         

Figure 4. Representation of some categories of data and the list of values for selected DCs 

In the following Figure 5, we present the key 
information in the dictionary. We give an ex-
ample of view that includes only the schema, 
the derivational relations, sense, examples of all 

the Arabic verbs (pos = verb). Then from 38000 
lexical entries, our view has 7000 verbs and 
3000 roots i.e. only 10,000 entries. 

 

 

Figure 5. Interface for creating a view. 

In the Figure 5, the user has selected the lem-
ma, pos, schema, the derivational relations, 
etymology, sense, definition and example. For 

pos, he fixed the value of “فعِْل” (verb). Accord-
ing to the specification of requirements, the user 
clicks the save button. The system checks the 

 

category level field 

 lemma 

 pos 

 scheme 

 related form     

 etymology 

 phonetic 

 list of pos 

 scheme 

 types of related form 

 language list  
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consistency of the chosen data categories and 
values, then, it generates a query in the XQuery 
language (see Figure 6). 
 
 

 
 
 
 
 
 
 

 

Figure 6. Example of a generated query   

 

If the user chooses a materialized view, the 
system must save the query result in the user's 
computer after refinement (add missing infor-
mation to validate the XML document). 

For the verification of results, the user must 
choose the view before starting the search in the 
dictionary. In the following Figure 7, we present 

the results of research in the view already speci-
fied in Figure 5. 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 7. Displayed results of query applied 

on a generated view. 

6 Conclusion 

The construction of specialized dictionaries is 
an old concept. However, it has not been used 
after the publication of LMF standard in spite of 
the complexity and the richness of normalized 

dictionaries. In this paper, we proposed an ap-
proach allowing the generation of specialized 
and personalized views of dictionaries accord-
ing to users‟ profiles in order to benefit from the 
management of a unique dictionary and give 
appropriate services.  

A Practical experiment was carried out on a 
normalized Arabic dictionary using an appro-
priate tool that permits to manage users‟ profiles 
and views‟ generation. We successfully per-
formed some empirical illustrations starting 

from the normalized dictionary.   
In the future, we will consider the experimen-

tation of the developed tool in the generation of 
various personalized views both in virtual and 
materialized versions. Also, we plan to put up 
our system on the Web. Also, we plan to expe-
riment our approach on others languages.   
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Abstract

In this paper, we consider the problem of gen-
erating candidate corrections for the task of
correcting errors in text. We focus on the
task of correcting errors in preposition usage
made by non-native English speakers, using
discriminative classifiers. The standard ap-
proach to the problem assumes that the set of
candidate corrections for a preposition con-
sists of all preposition choices participating
in the task. We determine likely preposition
confusions using an annotated corpus of non-
native text and use this knowledge to produce
smaller sets of candidates.

We propose several methods of restricting
candidate sets. These methods exclude candi-
date prepositions that are not observed as valid
corrections in the annotated corpus and take
into account the likelihood of each preposi-
tion confusion in the non-native text. We find
that restricting candidates to those that are ob-
served in the non-native data improves both
the precision and the recall compared to the
approach that views all prepositions as pos-
sible candidates. Furthermore, the approach
that takes into account the likelihood of each
preposition confusion is shown to be the most
effective.

1 Introduction

We address the problem of generating candidate cor-
rections for the task of correcting context-dependent
mistakes in text, mistakes that involve confusing
valid words in a language. A well-studied instance
of this problem – context-sensitive spelling errors –

has received a lot of attention in natural language
research (Golding and Roth, 1999; Carlson et al.,
2001; Carlson and Fette, 2007; Banko and Brill,
2001). The context-sensitive spelling correction task
addresses the problem of correcting spelling mis-
takes that result in legitimate words, such as confus-
ing their and there or your and you’re. In this task, a
candidate set or a confusion set is defined that spec-
ifies a list of confusable words, e.g., {their, there}
or {cite, site, sight}. Each occurrence of a confus-
able word in text is represented as a vector of fea-
tures derived from a small context window around
the target. A classifier is trained on text assumed
to be error-free, replacing each target word occur-
rence (e.g. their) with a confusion set consisting of
{their, there}, thus generating both positive and neg-
ative examples, respectively, from the same context.
Given a text to correct, for each word in text that be-
longs to the confusion set the classifier predicts the
most likely candidate in the confusion set.

More recently, work in error correction has taken
an interesting turn and focused on correcting errors
made by English as a Second Language (ESL) learn-
ers, with a special interest given to errors in article
and preposition usage. These mistakes are some of
the most common mistakes for non-native English
speakers of all proficiency levels (Dalgish, 1985;
Bitchener et al., 2005; Leacock et al., 2010). Ap-
proaches to correcting these mistakes have adopted
the methods of the context-sensitive spelling cor-
rection task. A system is usually trained on well-
formed native English text (Izumi et al., 2003; Eeg-
Olofsson and Knuttson, 2003; Han et al., 2006; Fe-
lice and Pulman, 2008; Gamon et al., 2008; Tetreault
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and Chodorow, 2008; Elghaari et al., 2010; Tetreault
et al., 2010), but several works incorporate into
training error-tagged data (Gamon, 2010; Han et
al., 2010) or error statistics (Rozovskaya and Roth,
2010b). The classifier is then applied to non-native
text to predict the correct article/preposition in con-
text. The possible candidate selections include the
set of all articles or all prepositions.

While in the article correction task the candidate
set is small (a, the, no article), systems for correct-
ing preposition errors, even when they consider the
most common prepositions, may include between 9
to 34 preposition classes. For each preposition in
the non-native text, every other candidate in the con-
fusion set is viewed as a potential correction. This
approach, however, does not take into account that
writers do not make mistakes randomly: Not all can-
didates are equally likely given the preposition cho-
sen by the author and errors may depend on the first
language (L1) of the writer. In this paper, we de-
fine L1-dependent candidate sets for the preposition
correction task (Section 4.1). L1-dependent can-
didate sets reflect preposition confusions observed
with the speakers of the first language L1. We pro-
pose methods of enforcing L1-dependent candidate
sets in training and testing.

We consider mistakes involving the top ten En-
glish prepositions. As our baseline system, we train
a multi-class classifier in one-vs-all approach, which
is a standard approach to multi-class classification.
In this approach, a separate binary classifier for each
preposition pi, 1 ≤ i ≤ 10, is trained, s.t. all pi

examples are positive examples for the classifier and
all other nine classes act as negative examples. Thus,
for each preposition pi in non-native text there are
ten1 possible prepositions that the classifier can pro-
pose as corrections for pi.

We contrast this baseline method to two methods
that enforce L1-dependent candidate sets in train-
ing. First, we train a separate classifier for each
preposition pi on the prepositions that belong to L1-
dependent candidate set of pi. In this setting, the
negative examples for pi are those that belong to L1-
dependent candidate set of pi.

The second method of enforcing L1-dependent

1This includes the preposition pi itself. If proposed by the
classifier, it would not be flagged as an error.

candidate sets in training is to train on native data
with artificial preposition errors in the spirit of Ro-
zovskaya and Roth (2010b), where the errors mimic
the error rates and error patterns of the non-native
text. This method requires more knowledge, since
it uses a distribution of errors from an error-tagged
corpus.

We also propose a method of enforcing L1-
dependent candidate sets in testing, through the use
of a confidence threshold. We consider two ways of
applying a threshold: (1) the standard way, when a
correction is proposed only if the classifier’s con-
fidence is sufficiently high and (2) L1-dependent
threshold, when a correction is proposed only if it
belongs to L1-dependent candidate set.

We show that the methods of restricting candidate
sets to L1-dependent confusions improve the prepo-
sition correction system. We demonstrate that re-
stricting candidate sets to those prepositions that are
confusable in the data by L1 writers is beneficial,
when compared to a system that assumes an unre-
stricted candidate set by considering as valid correc-
tions all prepositions participating in the task. Fur-
thermore, we find that the most effective method is
the one that uses knowledge about the likelihoods of
preposition confusions in the non-native text intro-
duced through artificial errors in training.

The rest of the paper is organized as follows.
First, we describe related work on error correction.
Section 3 presents the ESL data and statistics on
preposition errors. Section 4 describes the meth-
ods of restricting candidate sets in training and test-
ing. Section 5 describes the experimental setup. We
present and discuss the results in Section 6. The key
findings are summarized in Table 5 and Fig. 1 in
Section 6. We conclude with a brief discussion of
directions for future work.

2 Related Work

Work in text correction has focused primarily on
correcting context-sensitive spelling errors (Golding
and Roth, 1999; Banko and Brill, 2001; Carlson et
al., 2001; Carlson and Fette, 2007) and mistakes
made by ESL learners, especially errors in article
and preposition usage.

Roth (1998) takes a unified approach to resolving
semantic and syntactic ambiguities in natural lan-
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guage by treating several related problems, includ-
ing word sense disambiguation, word selection, and
context-sensitive spelling correction as instances of
the disambiguation task. Given a candidate set or a
confusion set of confusable words, the task is to se-
lect the most likely candidate in context. Examples
of confusion sets are {sight, site, cite} for context-
sensitive spelling correction, {among, between} for
word selection, or a set of prepositions for the prepo-
sition correction problem.

Each occurrence of a candidate word in text is
represented as a vector of features. A classifier is
trained on a large corpus of error-free text. Given
text to correct, for each word in text that belongs to
the confusion set the classifier is used to predict the
most likely candidate in the confusion set given the
word’s context.

In the same spirit, models for correcting ESL er-
rors are generally trained on well-formed native text.
Han et al. (2006) train a maximum entropy model to
correct article mistakes. Chodorow et. al (2007),
Tetreault and Chodorow (2008), and De Felice and
Pulman (2008) train a maximum entropy model and
De Felice and Pulman (2007) train a voted percep-
tron algorithm to correct preposition errors. Gamon
et al. (2008) train a decision tree model and a lan-
guage model to correct errors in article and preposi-
tion usage. Bergsma et al. (2009) propose a Naı̈ve
Bayes algorithm with web-scale N-grams as fea-
tures, for preposition selection and context-sensitive
spelling correction.

The set of valid candidate corrections for a target
word includes all words in the confusion set. For the
preposition correction task, the entire set of prepo-
sitions considered for the task is viewed as the set
of possible corrections for each preposition in non-
native text. Given a preposition with its surround-
ing context, the model selects the most likely prepo-
sition from the set of all candidates, where the set
of candidates consists of nine (Felice and Pulman,
2008), 12 (Gamon, 2010), or 34 (Tetreault et al.,
2010; Tetreault and Chodorow, 2008) prepositions.

2.1 Using Error-tagged Data in Training
Several recent works explore ways of using anno-
tated non-native text when training error correction
models.

One way to incorporate knowledge about which

confusions are likely with ESL learners into the error
correction system is to train a model on error-tagged
data. Preposition confusions observed in the non-
native text can then be included in training, by us-
ing the preposition chosen by the author (the source
preposition) as a feature. This is not possible with a
system trained on native data, because each source
preposition is always the correct preposition.

Han et al. (2010) train a model on partially anno-
tated Korean learner data. The error-tagged model
trained on one million prepositions obtains a slightly
higher recall and a significant improvement in preci-
sion (from 0.484 to 0.817) over a model fives times
larger trained on well-formed text.

Gamon (2010) proposes a hybrid system for
preposition and article correction, by incorporating
the scores of a language model and class probabil-
ities of a maximum entropy model, both trained on
native data, into a meta-classifier that is trained on
a smaller amount of annotated ESL data. The meta-
classifier outperforms by a large margin both of the
native models, but it requires large amounts of ex-
pensive annotated data, especially in order to correct
preposition errors, where the problem complexity is
much larger.

Rozovskaya and Roth (2010b) show that by intro-
ducing into native training data artificial article er-
rors it is possible to improve the performance of the
article correction system, when compared to a clas-
sifier trained on native data. In contrast to Gamon
(2010) and Han et al. (2010) that use annotated data
for training, the system is trained on native data, but
the native data are transformed to be more like L1
data through artificial article errors that mimic the
error rates and error patterns of non-native writers.
This method is cheaper, since obtaining error statis-
tics requires much less annotated data than training.
Moreover, the training data size is not restricted by
the amount of the error-tagged data available. Fi-
nally, the source article of the writer can be used in
training as a feature, in the exact same way as with
the models trained on error-tagged data, providing
knowledge about which confusions are likely. Un-
like article errors, preposition errors lend themselves
very well to a study of confusion sets because the set
of prepositions participating in the task is a lot big-
ger than the set of article choices.
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3 ESL Data

3.1 Preposition Errors in Learner Data

Preposition errors are one of the most common mis-
takes that non-native speakers make. In the Cam-
bridge Learner Corpus2 (CLC), which contains data
by learners of different first language backgrounds
and different proficiency levels, preposition errors
account for about 13.5% of all errors and occur on
average in 10% of all sentences (Leacock et al.,
2010). Similar error rates have been reported for
other annotated ESL corpora, e.g. (Izumi et al.,
2003; Rozovskaya and Roth, 2010a; Tetreault et al.,
2010). Learning correct preposition usage in En-
glish is challenging for learners of all first language
backgrounds (Dalgish, 1985; Bitchener et al., 2005;
Gamon, 2010; Leacock et al., 2010).

3.2 The Annotated Corpus

We use data from an annotated corpus of essays
written by ESL students. The essays were fully cor-
rected and error-tagged by native English speakers.
For each preposition used incorrectly by the author,
the annotator also indicated the correct preposition
choice. Rozovskaya and Roth (2010a) provide a de-
tailed description of the annotation of the data.

The annotated data include sentences by speakers
of five first language backgrounds: Chinese, Czech,
Italian, Russian, and Spanish. The Czech, Italian,
Russian and Spanish data come from the Interna-
tional Corpus of Learner English (ICLE, (Granger
et al., 2002)), which is a collection of essays writ-
ten by advanced learners of English. The Chinese
data is a part of the Chinese Learners of English cor-
pus (CLEC, (Gui and Yang, 2003)) that contains es-
says by students of all levels of proficiency. Table 1
shows preposition statistics based on the annotated
data.

The combined data include 4185 prepositions,
8.4% of which were judged to be incorrect by the
annotators. Table 1 demonstrates that the error rates
in the Chinese speaker data, for which different pro-
ficiency levels are available, are 2 or 3 times higher
than the error rates in other language groups. The
data for other languages come from very advanced
learners and, while there are also proficiency differ-

2http://www.cambridge.org/elt

Source Total Incorrect Error
language preps. preps. rate
Chinese 953 144 15.1%
Czech 627 28 4.5%
Italian 687 43 6.3%
Russian 1210 85 7.0%
Spanish 708 52 7.3%
All 4185 352 8.4%

Table 1: Statistics on prepositions in the ESL data.
Column Incorrect denotes the number of prepositions
judged to be incorrect by the native annotators. Column
Error rate denotes the proportion of prepositions used in-
correctly.

ences among advanced speakers, their error rates are
much lower.

We would also like to point out that we take as
the baseline3 for the task the accuracy of the non-
native data, or the proportion of prepositions used
correctly. Using the error rate numbers shown in
Table 1, the baseline for Chinese speakers is thus
84.9%, and for all the data combined it is 91.6%.

3.3 Preposition Errors and L1

We focus on preposition confusion errors, mistakes
that involve an incorrectly selected preposition4. We
consider ten most frequent prepositions in English:
on, from, for, of, about, to, at, in, with, and by5.

We mentioned in Section 2 that not all preposition
confusions are equally likely to occur and preposi-
tion errors may depend on the first language of the
writer. Han et al. (2010) show that preposition er-
rors in the annotated corpus by Korean learners are
not evenly distributed, some confusions occurring
more often than others. We also observe that con-
fusion frequencies differ by L1. This is consistent
with other studies, which show that learners’ errors
are influenced by their first language (Lee and Sen-
eff, 2008; Leacock et al., 2010).

3It is argued in Rozovskaya and Roth (2010b) that the most
frequent class baselines are not relevant for error correction
tasks. Instead, the error rate in the data need to be considered,
when determining the baseline.

4We do not address errors of missing or extraneous preposi-
tions.

5It is common to restrict the systems that detect errors in
preposition usage to the top prepositions. In the CLC corpus,
the usage of the ten most frequent prepositions accounts for
82% of all preposition errors (Leacock et al., 2010).
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4 Methods of Improving Candidate Sets

In this section, we describe methods of restricting
candidate sets according to the first language of the
writer. For the preposition correction task, the stan-
dard approach considers all prepositions participat-
ing in the task as valid corrections for every prepo-
sition in the non-native data.

In Section 3.3, we pointed out that (1) not all
preposition confusions are equally likely to occur
and (2) preposition errors may depend on the first
language of the writer. The methods of restricting
confusion sets proposed in this work use knowledge
about which prepositions are confusable based on
the data by speakers of language L1.

We refer to the preposition originally chosen by
the author in the non-native text as the source prepo-
sition, and label denotes the correct preposition
choice, as chosen by the annotator. Consider, for ex-
ample, the following sentences from the annotated
corpus.

1. We ate by*/with our hands .

2. To tell the truth , time spent in jail often changes prisoners to*/for
the worse.

3. And the problem that immediately appeared was that men were
unable to cope with the new woman image .

In example 1, the annotator replaced by with with;
by is the source preposition and with is the label. In
example 2, to is the source and for is the label. In
example 3, the preposition with is judged as correct.
Thus, with is both the source and the label.

4.1 L1-Dependent Confusion Sets

Let source preposition pi denote a preposition that
appears in the data by speakers of L1. Let Conf-
Set denote the set of all prepositions that the sys-
tem can propose as a correction for source preposi-
tion pi. We define two types of confusion sets Con-
fSet. An unrestricted confusion set AllConfSet in-
cludes all ten prepositions. L1-dependent confusion
set L1ConfSet(pi) is defined as follows:

Definition L1ConfSet(pi) = {pj |∃ a sentence in
which an L1 writer replaced preposition pj with pi }

For example, in the Spanish speaker data, from
is used incorrectly in place of of and for. Then for
Spanish speakers, L1ConfSet(from)={from, of, for}.

Source L1ConfSet(pi)
prep. pi

on {on, about, of, to, at, in, with, by}
by {with, by, in}
from {of, from, for}

Table 2: L1-dependent confusion sets for three preposi-
tions based on data by Chinese speakers.

Table 2 shows for Chinese speakers three preposi-
tions and their L1-dependent confusion sets.

We now describe methods of enforcing L1-
dependent confusion sets in training and testing.

4.2 Enforcing L1-dependent Confusion Sets in
Training

We propose two methods of enforcing L1-dependent
confusion sets in training. They are contrasted to
the typical method of training a multi-class 10-way
classifier, where each class corresponds to one of the
ten participating prepositions.

First, we describe the typical training setting.

NegAll Training proceeds in a standard way of
training a multi-class classifier (one-vs-all ap-
proach) on all ten prepositions using well-
formed native English data. For each prepo-
sition pi, pi examples are positive and the other
nine prepositions are negative examples.

We now describe two methods of enforcing L1-
dependent confusion sets in training.

NegL1 This method explores the difference be-
tween training with nine types as negative ex-
amples and (fewer than nine) L1-dependent
negative examples.

For every preposition pi, we train a classifier
using only examples that are in L1ConfSet(pi).
In contrast to NegAll, for each source prepo-
sition, the negative examples are not all other
nine types, but only those that belong in
L1ConfSet(pi). For each language L1, we train
ten classifiers, one for each source preposition.
For source preposition pi in test, we consult
the classifier for pi. In this model, the con-
fusion set for source pi is restricted through
training, since for source pi, the possible can-
didate replacements are only those that the
classifier sees in training, and they are all in
L1ConfSet(pi).
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Training Negative examples
data NegAll NegL1
Clean NegAll-Clean NegL1-Clean
ErrorL1 NegAll-ErrorL1 -

Table 3: Training conditions that result in unrestricted
(All) and L1-dependent training paradigms.

ErrorL1 This method restricts the candidate set to
L1ConfSet(pi) by generating artificial preposi-
tion errors in the spirit of Rozovskaya and Roth
(2010b). The training data are thus no longer
well-formed or clean, but augmented with L1
error statistics. Specifically, each preposition
pi in training is replaced with a different prepo-
sition pj with probability probConf, s.t.

probConf = prob(pi|pj) (1)

Suppose 10% of all source prepositions to in
the Russian speaker data correspond to label
for. Then for is replaced with to with proba-
bility 0.1.

The classifier uses in training the source prepo-
sition as a feature, which cannot be done when
training on well-formed text, as discussed in
Section 2.1. By providing the source prepo-
sition as a feature, we enforce L1-dependent
confusion sets in training, because the system
learns which candidate corrections occur with
source preposition pi. An important distinction
of this approach is that it does not simply pro-
vide L1-dependent confusion sets in training:
Because errors are generated using L1 writers’
error statistics, the likelihood of each candidate
correction is also provided. This approach is
also more knowledge-intensive, as it requires
annotated data to obtain error statistics.

It should be noted that this method is orthogo-
nal to the NegAll and NegL1 methods of train-
ing described above and can be used in con-
junction with each of them, only that it trans-
forms the training data to account in a more
natural way for ESL writing.

We combine the proposed methods NegAll,
NegL1 with the Clean or ErrorL1 methods and cre-
ate three training approaches shown in Table 3.

4.3 Restricting Confusion Sets in Testing

To reduce the number of false alarms, correction
systems generally use a threshold on the confidence
of the classifier, following (Carlson et al., 2001), and
propose a correction only when the confidence of the
classifier is above the threshold. We show in Section
5 that the system trained on data with artificial er-
rors performs competitively even without a thresh-
old. The other systems use a threshold. We consider
two ways of applying a threshold6:

1. ThreshAll A correction for source preposition
pi is proposed only when the confidence of
the classifier exceeds the threshold. For each
preposition in the non-native data, this method
considers all candidates as valid corrections.

2. ThreshL1Conf A correction for source prepo-
sition pi is proposed only when the confi-
dence of the classifier exceeds the empirically
found threshold and the preposition proposed
as a correction for pi is in the confusion set
L1ConfSet(pi).

5 Experimental Setup

In this section, we describe experiments with L1-
dependent confusion sets. Combining the three
training conditions shown in Table 3 with the two
ways of thresholding described in Section 4.3, we
build four systems7:

1. NegAll-Clean-ThreshAll This system assumes
both in training and in testing stages that all
preposition confusions are possible. The sys-
tem is trained as a multi-class 10-way classifier,
where for each preposition pi, all other nine
prepositions are negative examples. In testing,
when applying the threshold, all prepositions
are considered as valid corrections.

2. NegAll-Clean-ThreshL1 This system is
trained exactly as NegAll-Clean-ThreshAll
but in testing only corrections that belong

6Thresholds are found empirically: We divide the evaluation
data into three equal parts and to each part apply the threshold,
which is optimized on the other two parts of the data.

7In testing, it is not possible to consider a confusion set
larger than the one used in training. Therefore, ThreshAll is
only possible with NegAll training condition.
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to L1ConfSet(pi) are considered as valid
corrections for pi.

3. NegL1-Clean-ThreshL1 For each preposition
pi, a separate classifier is trained on the prepo-
sitions that are in L1ConfSet(pi), where pi ex-
amples are positive and a set of (fewer than
nine) pi-dependent prepositions are negative.
Only corrections that belong to L1ConfSet(pi)
are considered as valid corrections for pi.8 Ten
pi-dependent classifiers for each L1 are trained.

4. NegAll-ErrorL1-NoThresh A system is trained
as a multi-class 10-way classifier with artifi-
cial preposition errors that mimic the errors
rates and confusion patterns of the non-native
text. For each L1, an L1-dependent system is
trained. This system does not use a threshold.
We discuss this in more detail below.

The system NegAll-Clean-ThreshAll is our base-
line system. It assumes both in training and in test-
ing that all preposition confusions are possible.

All of the systems are trained on the same set of
word and part-of-speech features using the same set
of training examples. Features are extracted from a
window of eight words around the preposition and
include words, part-of-speech tags and conjunctions
of words and tags of lengths two, three, and four.
Training data are extracted from English Wikipedia
and the New York Times section of the Gigaword
corpus (Linguistic Data Consortium, 2003).

In each training paradigm, we follow a discrimi-
native approach, using an online learning paradigm
and making use of the Averaged Perceptron Algo-
rithm (Freund and Schapire, 1999) – we use the
regularized version in Learning Based Java9 (LBJ,
(Rizzolo and Roth, 2007)). While classical Per-
ceptron comes with generalization bound related to
the margin of the data, Averaged Perceptron also
comes with a PAC-like generalization bound (Fre-
und and Schapire, 1999). This linear learning al-
gorithm is known, both theoretically and experi-
mentally, to be among the best linear learning ap-
proaches and is competitive with SVM and Logistic

8ThreshAll is not possible with this training option, as the
system never proposes a correction that is not in L1ConfSet(pi).

9LBJ code is available at http://cogcomp.cs.
illinois.edu/page/software

Regression, while being more efficient in training.
It also has been shown to produce state-of-the-art
results on many natural language applications (Pun-
yakanok et al., 2008).

6 Results and Discussion

Table 4 shows performance of the four systems
by the source language. For each source lan-
guage, the methods that restrict candidate sets in
training or testing outperform the baseline system
NegAll-Clean-ThreshAll that does not restrict can-
didate sets. The NegAll-ErrorL1-NoThresh system
performs better than the other three systems for all
languages, except for Italian. In fact, for the Czech
speaker data, all systems other than NegAll-ErrorL1-
NoThresh, have a precision and a recall of 0, since
no errors are detected10.

Source System Acc. P R
lang.

CH

NegAll-Clean-ThreshAll 84.78 47.58 11.46
NegAll-Clean-ThreshL1 84.84 48.05 15.28
NegL1-Clean-ThreshL1 84.94 50.87 11.46
NegAll-ErrorL1-NoThresh 86.36 55.27 27.43
Baseline 84.89

CZ

NegAll-Clean-ThreshAll 94.74 0.00 0.00
NegAll-Clean-ThreshL1 94.98 0.00 0.00
NegL1-Clean-ThreshL1 94.66 0.00 0.00
NegAll-ErrorL1-NoThresh 95.85 75.00 10.71
Baseline 95.53

IT

NegAll-Clean-ThreshAll 93.23 26.14 8.14
NegAll-Clean-ThreshL1 94.03 51.59 18.60
NegL1-Clean-ThreshL1 93.16 35.00 16.28
NegAll-ErrorL1-NoThresh 93.60 44.95 10.47
Baseline 93.74

RU

NegAll-Clean-ThreshAll 92.73 31.11 3.53
NegAll-Clean-ThreshL1 93.02 48.81 8.24
NegL1-Clean-ThreshL1 92.44 34.42 8.82
NegAll-ErrorL1-NoThresh 93.14 52.38 12.94
Baseline 92.98

SP

NegAll-Clean-ThreshAll 91.95 26.14 5.77
NegAll-Clean-ThreshL1 92.02 28.64 5.77
NegL1-Clean-ThreshL1 92.44 40.00 7.69
NegAll-ErrorL1-NoThresh 93.71 77.50 19.23
Baseline 92.66

Table 4: Performance results for the 4 systems. All sys-
tems, except for NegAll-ErrorL1-NoThresh, use a thresh-
old, which is optimized for accuracy on the development
set. Baseline denotes the percentage of prepositions used
correctly in the data. The baseline allows us to evaluate
the systems with respect to accuracy, the percentage of
prepositions, on which the prediction of the system is the
same as the label. Averaged results over 2 runs.

10The Czech data set is the smallest and contains a total of
627 prepositions and only 28 errors.
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The NegAll-ErrorL1-NoThresh system does not
use a threshold. However, as shown in Fig. 1, it
is possible to increase the precision of the NegAll-
ErrorL1-NoThresh system by applying a threshold,
at the expense of a lower recall.

While the ordering of the systems with respect to
quality is not consistent from Table 4, due to modest
test data sizes, Table 5 and Fig. 1 show results for the
models on all data combined and thus give a better
idea of how the systems compare against each other.

Table 5 shows performance results for all
data combined. Both NegAll-Clean-ThreshL1 and
NegL1-Clean-ThreshL1 achieve a better precision
and recall over the system with an unrestricted can-
didate set NegAll-Clean-ThreshAll. Recall that both
of the systems restrict candidate sets, the former at
testing stage, the latter by training a separate clas-
sifier for each source preposition. NegAll-Clean-
ThreshL1 performs slightly better than NegL1-
Clean-ThreshL1. We hypothesize that the NegAll-
Clean-ThreshAll performance may be affected be-
cause the classifiers for different source preposi-
tions contain different number of classes, depend-
ing on the size of L1ConfSet confusion sets, which
makes it more difficult to find a unified thresh-
old. The best performing system overall is NegAll-
ErrorL1-NoThresh. While NegAll-Clean-ThreshL1
and NegL1-Clean-ThreshL1 restrict candidate sets,
NegAll-ErrorL1-NoThresh also provides informa-
tion about the likelihood of each confusion, which
benefits the classifier. The differences between
NegAll-ErrorL1-ThreshL1 and each of the other
three systems are statistically significant11 (McNe-
mar’s test, p < 0.01). The table also demon-
strates that the results on the correction task may
vary widely. For example, the recall varies by lan-
guage between 10.47% and 27.43% for the NegAll-
ErrorL1-NoThresh system. The highest recall num-
bers are obtained for Chinese speakers. These
speakers also have the highest error rate, as we noted
in Section 3.

11Tests of statistical significance compare the combined re-
sults from all language groups for each model. For example, to
compare the model NegAll-Clean-ThreshAll to NegAll-ErrorL1-
NoThresh, we combine the results from the five language-
specific models NegAll-ErrorL1-NoThresh and compare them
to the results on the combined data from the five language
groups achieved by the model NegAll-Clean-ThreshAll.

System Acc. P R
NegAll-Clean-ThreshAll 90.90 31.11 7.95
NegAll-Clean-ThreshL1 91.11 37.82 12.78
NegL1-Clean-ThreshL1 90.97 34.34 9.66
NegAll-ErrorL1-NoThresh 92.23 58.47 19.60

Table 5: Comparison of the performance of the 4 sys-
tems on all data combined. All systems, except for
NegAll-ErrorL1-NoThresh, use a threshold, which is op-
timized for accuracy on the development set. The dif-
ferences between NegAll-ErrorL1-ThreshL1 and each of
the other three systems are statistically significant (Mc-
Nemar’s test, p < 0.01).

Finally, Fig. 1 shows precision/recall curves for
the systems12. The curves are obtained by varying
a decision threshold for each system. Before we ex-
amine the differences between the models, it should
be noted that in error correction tasks precision is
favored over recall due to the low level of error.
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Figure 1: Precision and recall (%) for three mod-
els: NegAll-Clean-ThreshAll, NegAll-Clean-ThreshL1,
and NegAll-ErrorL1-ThreshL1.

The curves demonstrate that NegAll-Clean-
ThreshL1 and NegAll-ErrorL1-ThreshL1 are supe-
rior to the baseline system NegAll-Clean-ThreshAll:
on the same recall points, the precision for both
systems is consistently better than for the base-

12NegL1-Clean-ThreshL1 is not shown, since it is similar in
its behavior to NegAll-Clean-ThreshL1.
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line model13. Moreover, while restricting candi-
date sets improves the results, providing informa-
tion to the classifier about the likelihoods of differ-
ent confusions is more helpful, which is reflected
in the precision differences between NegAll-Clean-
ThreshL1 and NegAll-ErrorL1-ThreshL1. In fact,
NegAll-ErrorL1-ThreshL1 achieves a higher preci-
sion compared to the other systems, even when no
threshold is used (Tables 4 and 5). This is because,
unlike the other models, this system does not tend to
propose too many false alarms.

6.1 Comparison to Other Systems

It is difficult to compare performance to other sys-
tems, since training and evaluation are not per-
formed on the same data, and results may vary
widely depending on the first language and profi-
ciency level of the writer. However, in Table 6 we
list several systems and their performance on the
task. Tetreault et al. (2010) train on native data and
obtain a precision of 48.6% and a recall of 22.5%
with top 34 prepositions on essays from the Test
of English as a Foreign Language exams. Han et
al. (2010) obtain a precision of 81.7% and a recall
of 13.2% using a model trained on partially error-
tagged data by Korean speakers on top ten preposi-
tions. A model trained on 2 million examples from
clean text achieved on the same data set a precision
of 46.3% and a recall of 11.6%.

Gamon (2010) shows precision/recall curves on
the combined task of detecting missing, extrane-
ous and confused prepositions. For recall points
10% and 20%, precisions of 55% and 40%, respec-
tively, are obtained. For our data, a recall of 10%
corresponds to a precision of 46% for the worst-
performing model and 78% for the best-performing
model. For 20% recall, we obtain a precision of
33% for the worst-performing model and 58% for
the best-performing model. We would like to em-
phasize that these comparisons should be interpreted
with caution.

13While significance tests did not show differences between
NegAll-Clean-ThreshAll and NegAll-Clean-ThreshL1, perhaps
due to a modest test set size, the curves demonstrate that the lat-
ter system indeed provides a stable advantage over the baseline
unrestricted approach.

7 Conclusion and Future Work

In this paper, we proposed methods for improving
candidate sets for the task of detecting and correct-
ing errors in text. To correct errors in preposition
usage made by non-native speakers of English, we
proposed L1-dependent confusion sets that deter-
mine valid candidate corrections using knowledge
about preposition confusions observed in the non-
native text. We found that restricting candidates to

System Training Data P R
Tetreault et al., 2010 native; 34 preps. 48.6 22.5
Han et al., 2010 partially error-tagged; 81.7 13.2

10 preps.
Han et al., 2010 native; 10 preps. 46.3 11.6
Gamon, 2010 native; 12 preps.+ 33.0 10.0

extraneous+missing
Gamon, 2010 native+error-tagged; 55.0 10.0

12 preps.+
extraneous+missing

NegAll-Clean-ThreshAll native; 10 preps. 46.0 10.0
NegAll-ErrorL1-ThreshL1 native with 78.0 10.0

L1 error statistics;
10 preps.

Table 6: Comparison to other systems. Please note
that a direct comparison is not possible, since the systems
are trained and evaluated on different data sets. Gamon
(2010) also considers missing and extraneous preposition
errors.

those that are observed in the non-native data im-
proves both the precision and the recall compared to
a classifier that considers as possible candidates the
set of all prepositions. Furthermore, the approach
that takes into account the likelihood of each prepo-
sition confusion is shown to be the most effective.

The methods proposed in this paper make use of
select characteristics that the error-tagged data can
provide. We would also like to compare the pro-
posed methods to the quality of a model trained on
error-tagged data. Improving the system is also in
our future work, but orthogonal to the current con-
tribution.
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Abstract

Confidence-Weighted linear classifiers (CW)
and its successors were shown to perform
well on binary and multiclass NLP prob-
lems. In this paper we extend the CW ap-
proach for sequence learning and show that it
achieves state-of-the-art performance on four
noun phrase chucking and named entity recog-
nition tasks. We then derive few algorith-
mic approaches to estimate the prediction’s
correctness of each label in the output se-
quence. We show that our approach provides
a reliable relative correctness information as
it outperforms other alternatives in ranking
label-predictions according to their error. We
also show empirically that our methods output
close to absolute estimation of error. Finally,
we show how to use this information to im-
prove active learning.

1 Introduction

In the past decade structured classification has seen
much interest by the machine learning community.
After the introduction of conditional random fields
(CRFs) (Lafferty et al., 2001), and maximum mar-
gin Markov networks (Taskar et al., 2003), which
are batch algorithms, new online method were in-
troduced. For example the passive-aggressive algo-
rithm was adapted to chunking (Shimizu and Haas,
2006), parsing (McDonald et al., 2005b), learning
preferences (Wick et al., 2009) and text segmenta-
tion (McDonald et al., 2005a). These new online
algorithms are fast to train and simple to implement,
yet they generate models that output merely a pre-

diction with no additional information, as opposed
to probabilistic models like CRFs or HMMs.

In this work we fill this gap proposing few al-
ternatives to compute confidence in the output of
discriminative non-probabilistic algorithms. As be-
fore, our algorithms output the highest-scoring la-
beling. However, they also compute additional la-
belings, that are used to compute the per word con-
fidence in its labelings. We build on the recently
introduced confidence-weighted learning (Dredze et
al., 2008; Crammer et al., 2009b) and induce a dis-
tribution over labelings from the distribution main-
tained over weight-vectors.

We show how to compute confidence estimates
in the label predicted per word, such that the con-
fidence reflects the probability that the label is not
correct. We then use this confidence information
to rank all labeled words (in all sentences). This
can be thought of as a retrieval of the erroneous
words, which can than be passed to human anno-
tator for an examination, either to correct these mis-
takes or as a quality control component. Next, we
show how to apply our techniques to active learning
over sequences. We evaluate our methods on four
NP chunking and NER datasets and demonstrate the
usefulness of our methods. Finally, we report the
performance of obtained by CW-like adapted to se-
quence prediction, which are comparable with cur-
rent state-of-the-art algorithms.

2 Confidence-Weighted Learning

Consider the following online binary classification
problem that proceeds in rounds. On the ith round
the online algorithm receives an input xi ∈ Rd and
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applies its current rule to make a prediction ŷi ∈ Y ,
for the binary set Y = {−1,+1}. It then receives
the correct label yi ∈ Y and suffers a loss `(yi, ŷi).
At this point, the algorithm updates its prediction
rule with the pair (xi, yi) and proceeds to the next
round. A summary of online algorithms can be
found in (Cesa-Bianchi and Lugosi, 2006).

Online confidence-weighted (CW) learning
(Dredze et al., 2008; Crammer et al., 2008),
generalized the passive-aggressive (PA) update
principle to multivariate Gaussian distributions
over the weight vectors - N (µ,Σ) - for binary
classification. The mean µ ∈ Rd contains the
current estimate for the best weight vector, whereas
the Gaussian covariance matrix Σ ∈ Rd×d captures
the confidence in this estimate. More precisely,
the diagonal elements Σp,p, capture the confidence
in the value of the corresponding weight µp ; the
smaller the value of Σp,p, is, the more confident
is the model in the value of µp. The off-diagonal
elements Σp,q for p 6= q capture the correlation
between the values of µp and µq. When the data
is of large dimension, such as in natural language
processing, a model that maintains a full covariance
matrix is not feasible and we back-off to diagonal
covariance matrices.

CW classifiers are trained according to a PA rule
that is modified to track differences in Gaussian dis-
tributions. At each round, the new mean and co-
variance of the weight vector distribution is chosen
to be the solucion of an optimization problem (see
(Crammer et al., 2008) for details). This particu-
lar CW rule may over-fit by construction. A more
recent alternative scheme called AROW (adaptive
regularization of weight-vectors) (Crammer et al.,
2009b) replaces the guaranteed prediction at each
round with the a more relaxed objective (see (Cram-
mer et al., 2009b)). AROW has been shown to
perform well in practice, especially for noisy data
where CW severely overfits.

The solution for the updates of CW and AROW
share the same general form,

µi+1 =µi+αiΣiyixi ; Σ−1
i+1 =Σ−1

i+1+βixix
>
i , (1)

where the difference between CW and AROW is the
specific instance-dependent rule used to set the val-
ues of αi and βi.

Algorithm 1 Sequence Labeling CW/AROW
Input: Joint feature mapping Φ(x,y) ∈ Rd

Initial variance a > 0
Tradeoff Parameter r > 0 (AROW)

or Confidence parameter φ (CW)
Initialize: µ0 = 0 , Σ0 = aI
for i = 1, 2 . . . do

Get xi ∈ X
Predict best labeling

ŷi = arg maxz µi−1 ·Φ(xi, z)
Get correct labeling yi ∈ Y |xi|

Define ∆i,y,ŷ = Φ(x,yi)−Φ(x, ŷi)
Compute αi and βi (Eq. (3) for CW ;
Eqs. (4),βi = 1/r) for AROW)
Set µi = µi−1 + αiΣi−1∆i,y,ŷ

Set Σ−1
i = Σ−1

i−1 + βi∆i,y,ŷ∆>i,y,ŷ

end for

3 Sequence Labeling

In the sequence labeling setting, instances x be-
long to a general input space X and conceptually are
composed of a finite number n of components, such
as words of a sentence. The number of components
n = |x| varies between instances. Each part of an
instance is labelled from a finite set Y , |Y| = K.
That is, a labeling of an entire instance belongs to
the product set y ∈ Y × Y . . .Y (n times).

We employ a general approach (Collins, 2002;
Crammer et al., 2009a) to generalize binary clas-
sification and use a joined feature mapping of an
instance x and a labeling y into a common vector
space, Φ(x,y) ∈ Rd.

Given an input instance x and a model µ ∈ Rd

we predict the labeling with the highest score, ŷ =
arg maxz µ ·Φ(x, z). A brute-force approach eval-
uates the value of the score µ ·Φ(x, z) for each pos-
sible labeling z ∈ Yn, which is not feasible for large
values of n. Instead, we follow standard factoriza-
tion and restrict the joint mapping to be of the form,
Φ(x,y) =

∑n
p=1 Φ(x, yp)+

∑n
q=2 Φ(x, yq, yq−1).

That is, the mapping is a sum of mappings, each tak-
ing into consideration only a label of a single part, or
two consecutive parts. The time required to compute
the max operator is linear in n and quadratic in K
using the dynamic-programming Viterbi algorithm.

After the algorithm made a prediction, it uses
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the current labeled instance (xi,yi) to update the
model. We now define the update rule both for a
version of CW and for AROW for strucutred learn-
ing, staring with CW. Given the input parameter φ
of CW we denote by φ′ = 1 + φ2/2, φ′′ = 1 + φ2.
We follow a similar argument as in the single up-
date of (Crammer et al., 2009a, sec. 5.1) to se-
quence labeling by a reduction to binary classifica-
tion. We first define the difference between the fea-
ture vector associated with the current labeling yi

and the feature vector associated with some label-
ing z to be, ∆i,y,z = Φ(x,yi) − Φ(x, z) , and
in particular, when we use the prediction ŷi we get,
∆i,y,ŷ = Φ(x,yi)−Φ(x, ŷi) . The CW update is,

µi = µi−1 + αiΣi−1∆i,y,ŷ

Σ−1
i = Σ−1

i−1 + βi∆i,y,ŷ∆>i,y,ŷ , (2)

where the two scalars αi and βi are set using the
update rule defined by (Crammer et al., 2008) for
binary classification,

vi = ∆>i,y,ŷΣi−1∆i,y,ŷ , mi = µi−1 ·∆i,y,ŷ (3)

αi = max

{
0,

1
viφ′′

(
−miφ

′ +

√
m2

i

φ4

4
+ viφ2φ′′

)}

βi =
αiφ√
v+

i

, v+
i =

1
4

(
−αiviφ+

√
α2

i v
2
i φ

2 + 4vi

)2

We turn our attention and describe a mod-
ification of AROW for sequence prediction.
Replacing the binary-hinge loss in (Crammer
et al., 2009b, Eqs. (1,2)) the first one with the
corresponding multi-class hinge loss for structured
problems we obtain, 1

2 (µi−µ)>Σ−1
i (µi−µ) +

1
2r (max {0,maxz 6=y {d(y, z)− µ · (∆i,y,z)}})2,

where, d(y, z) =
∑|x|

q=1 1yq 6=zq , is the hamming
distance between the two label sequences y and z.
The last equation is hard to optimize since the max
operator is enumerating over exponential number of
possible labellings z. We thus approximate the enu-
meration over all possible z with the predicted label
sequence ŷi and get, 1

2 (µi−µ)>Σ−1
i (µi−µ) +

1
2r

(
max

{
0, d(yi, ŷi)− µ ·

(
∆i,y,ŷ

)})2
. Com-

puting the optimal value of the last equation we get
an update of the form of the first equation of Eq. (2)
where

αi =
max

{
0, d(yi, ŷi)− µi−1 ·

(
∆i,y,ŷ

)}
r + ∆>i,y,ŷΣi−1∆i,y,ŷ

. (4)

Dataset Sentences Words Features
NP chunking 11K 259K 1.35M
NER English 17.5K 250K 1.76M
NER Spanish 10.2K 317.6K 1.85M
NER Dutch 21K 271.5K 1.76M

Table 1: Properties of datasets.
AROW CW 5-best PA Perceptron

NP chunking 0.946 0.947 0.946 **0.944
NER English 0.878 0.877 * 0.870 * 0.862
NER Dutch 0.791 0.787 0.784 * 0.761
NER Spanish 0.775 0.774 0.773 * 0.756

Table 2: Averaged F-measure of methods. Statistical sig-
nificance (t-test) are with respect to AROW, where * in-
dicates 0.001 and ** indicates 0.01

We proceed with the confidence paramters in
(Crammer et al., 2009b, Eqs. (1,2)), which takes into
considiration the change of confidence due to the up-
date. The effective features vector that is used to
update the mean parameters is ∆i,y,ŷ, and thus the

structured update is, 1
2 log

(
det Σi
det Σ

)
+1

2Tr
(
Σ−1

i−1Σ
)
+

1
2r∆>i,y,ŷΣ∆i,y,ŷ . Solving the above equation we
get an update of the form of the second term of
Eq. (2) where βi = 1

r . The pseudo-code of CW and
AROW for sequence problems appears in Alg. 1.

4 Evaluation

For the experiments described in this paper we used
four large sequential classification datasets taken
from the CoNLL-2000, 2002 and 2003 shared tasks:
noun-phrase (NP) chunking (Kim et al., 2000),
and named-entity recognition (NER) in Spanish,
Dutch (Tjong and Sang, 2002) and English (Tjong
et al., 2003). The properties of the four datasets
are summarized in Table 1. We followed the feature
generation process of (Sha and Pereira, 2003).

Although our primary goal is estimating confi-
dence in prediction and not the actual performance
itself, we first report the results of using AROW and
CW for sequence learning. We compared the perfor-
mance CW and AROW of Alg. 1 with two standard
online baseline algorithms: Averaged-Perceptron al-
gorithm and 5-best PA (the value of five was shown
to be optimal for various tasks (Crammer et al.,
2005)). The update rule described in Alg. 1 assumes
a full covariance matrix, which is not feasible in our
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Figure 1: Precision and Recall on four datasets (four panels). Each connected set of ten points corresponds to the performance of
a specific algorithm after each of the 10 iterations, increasing from bottom-left to top-right.

Prec Recall F-meas % Err
CW 0.945 0.942 0.943 2.34%NP chunking
CRF 0.938 0.934 0.936 2.66%

CW 0.838 0.826 0.832 3.38%NER English
CRF 0.823 0.820 0.822 3.53%

CW 0.803 0.755 0.778 2.05%NER Dutch
CRF 0.775 0.753 0.764 2.09%

CW 0.738 0.720 0.729 4.09%NER Spanish
CRF 0.751 0.730 0.740 2.05%

Table 3: Precision, Recall, F-measure and percentage of
mislabeled words results of CW vs. CRF

setting. Three options are possible: compute a full Σ
and then take its diagonal elements; compute a full
inverse Σ, take its diagonal elements and then com-
pute its inverse; assume that Σ is diagonal and com-
pute the optimal update for this choice. We found
the first method to work best, and thus employ it
from now on.

The hyper parameters (r for AROW, φ for CW, C
for PA) were tuned for each task by a single run over
a random split of the data into a three-fourths train-
ing set and a one-fourth test set. We used parameter
averaging with all methods.

For each of the four datasets we used 10-fold
cross validation. All algorithms (Perceptron, PA,
CW and AROW) are online, and as mentioned above
work in rounds. For each of the ten folds, each of the
four algorithm performed ten (10) iterations over the
training set and the performance (Recall, Precision
and F-measure) was evaluated on the test set after
each iteration.

The F-measure of the four algorithms after 10 it-
erations over the four datasets is summarized in Ta-
ble 2. The general trend is that AROW slightly out-
performs CW, which is better than PA that is bet-

ter than the Perceptron. The difference between
AROW and the Perceptron is significant, and be-
tween AROW and PA is significant in two datasets.
The difference between AROW and CW is not sig-
nificant although it is consistent.

We further investigate the convergence properties
of the algorithms in Fig. 1. The figure shows the re-
call and precision results after each training round
averaged across the 10 folds. Each panel summa-
rizes the results on a single dataset, and in each panel
a single set of connected points corresponds to one
algorithm. Points in the left-bottom of the plot cor-
respond to early iterations and points in the right-top
correspond to later iterations. Long segments indi-
cate a big improvement in performance between two
consecutive iterations.

Few points are in order. First, high (in the y-axis)
values indicate better precision and right (in the x-
axis) values indicate better recall. Second, the per-
formance of all algorithms is converging in about 10
iterations as indicated by the fact the points in the
top-right of the plot are close to each other. Third,
the long segments in the bottom-left for the Percep-
tron algorithm indicate that this algorithm benefits
more from more than one pass compared with the
other. Fourth, on the three NER datasets after 10 it-
erations AROW gets slightly higher precision values
than CW, while CW gets slightly higher recall val-
ues than AROW. This is indicated by the fact that
the top-right red square is left and above to the top-
right blue circle. Finally, in two datasets, PA get
slightly better recall than CW and AROW, but pay-
ing in terms of precision and overall F-measure per-
formance.

In addition to online algorithms we also com-
pared the performance of CW with the CRF algo-

974



NP chunking NER English NER Spanish NER Dutch
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

 

 

CRF
KD−Fixed (K=50)
KD−PC (K=50)
Delta
WKBV (K=30)
KBV (K=30)
Random

(a) AvgP CW & CRF

NP chunking NER English NER Spanish NER Dutch
0

0.02

0.04

0.06

0.08

0.1

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

 in
 C

on
fid

en
ce

 

 

CRF
KD−Fixed (K=50)
KD−PC (K=50)
WKBV (K=30)

(b) RMSE CW & CRF

NP chunking NER English NER Spanish NER Dutch
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

 

 

KD−Fixed (K=50)
Delta
WKBV (K=30)
KBV (K=30)
Random

(c) AvgP PA

NP chunking NER English NER Spanish NER Dutch
0

0.02

0.04

0.06

0.08

0.1

R
oo

t M
ea

n 
S

qu
ar

ed
 E

rr
or

 in
 C

on
fid

en
ce

 

 

KD−Fixed (K=50)
WKBV (K=30)

(d) RMSE PA

Figure 2: Two left panels: average precision of rankings of
the words of the test-set according to confidence in the predic-
tion of seven methods (left to right bars in each group): CRF,
KD-Fixed, KD-PC, Delta, WKBV, KBV and random ordering,
when training with the CW algorithm (top) and the PA algo-
rithm (bottom). Two right panels: The root-mean-squared-error
of four methods that output absolute valued confidence: CRF,
KD-Fixed, KD-PC and WKBV.

rithm which is a batch algorithm. We used Mal-
let toolkit (McCallum, 2002) for CRF implementa-
tion. For feature generation we used a combination
of standard methods provided with Mallet toolkit
(called pipes). We chose a combination yielding a
feature set that is close as possible to the feature
set we used in our system but it was not a perfect
match, CRF generated about 20% fewer features in
all datasets. Nevertheless, any other combination of
pipes we tried only hurt CRF performance. The pre-
cision, recall, F-measure and percentage of misla-
beled words of CW algorithm compared with CRF
measured over a single split of the data into a three-
fourths training set and a one-fourth test set is sum-
marized in Table 3. We see that in three of the four
datasets CW outperforms CRF and in one dataset
CRF performs better. Some of the performance dif-
ferences may be due to the differences in features.

5 Confidence in the Prediction

Most large-margin-based training algorithms output
models that their prediction is a single labeling of
the input, with no additional confidence information
about the correctness of that prediction. This situ-

ation is acceptable when the output of the system
is used anyway, irrespectively of its quality. This
situation is not acceptable when the output of the
system is used as an input of another system that is
sensitive to correctness of the specific prediction or
that integrates various input sources. In such cases,
additional confidence information about the correct-
ness of these feeds for specific input can be used
to improve the total output quality. Another case
where such information is useful, is when there is
additional agent that is validating the output of the
system. The confidence information can be used
to direct the check into small number of suspected
predictions as opposed to random check, which may
miss errors if their rate is small.

Some methods only provide relative confidence
information. This information can be used to rank
all predictions according to their confidence score,
which can be used to direct a quality control com-
ponent to detect errors in the prediction. Note,
the confidence score is meaningless by itself and
in fact, any monotonic transformation of the con-
fidence scores yield equivalent confidence informa-
tion. Other methods are providing confidence in the
predicted output as an absolute information, that is,
the probability of a prediction to be correct. We re-
fer to these probabilistic outputs in a frequentists ap-
proach. When taking a large set of events (predic-
tions) with similar probability confidence value ν of
being correct, we expect that about ν fraction of the
predictions in the group will be correct.

Algorithms: All of our methods to evaluate confi-
dence, except two (Delta and CRF below), share the
same conceptual approach and work in two stages.
First, a method generates a set of K possible label-
ings for the input sentence (instead of a single pre-
diction). Then, the confidence in a predicted label-
ing for a specific word is defined to be the proportion
of labelings which are consistent with the predicted
label. Formally, let z(i) for i = 1 . . .K be the K
labelings for some input x, and let ŷ be the actual
prediction for the input. (We do not assume that
ŷ = z(i) for some i). The confidence in the label
ŷp of word p = 1 . . . |x| is defined to be

νp = |{i : ŷp = z(i)
p }|/K . (5)
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(d) NER Spanish
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Figure 3: Total number of detected erroneous words vs. the number of ranked words (top panels), and relative to the Delta method
(bottom panels). In other words, the lines in the bottom panels are the number of additional erroneous words detected compared to
Delta method. All methods builds on the same weight-vector except CRF (see text).

We tried four approaches to generate the set of K
possible labelings. The first method is valid only
for methods that induce a probability distribution
over predicted labels. In this case, we draw K la-
belings from this distribution. Specifically, we ex-
ploit the Gaussian distribution over weight vectors
w ∼ N (µ,Σ) maintained by AROW and CW, by
inducing a distribution over labelings given an in-
put. The algorithm samples K weight vectors ac-
cording to this Gaussian distribution and outputs the
best labeling with respect to each weight vector. For-
mally, we define the set Z = {z(i) : z(i) =
arg maxzw ·Φ(x, z) where w ∼ N (µ,Σ)}

The predictions of algorithms that use the mean
weight vector ŷ = arg maxz µ ·Φ(x, z) are invari-
ant to the value of the input Σ (as noted by (Cram-
mer et al., 2008)). However for the purpose of con-
fidence estimation the specific value of Σ has a huge
affect. Small eigenvalue of Σ yield that all the ele-
ments of Z will be the same, while large values yield
random elements in the set, ignoring the input.

One possible simple option is to run the algorithm
few times, with few possible initializations of Σ and
choose one using the training set. However since the
actual predictions of all these versions is the same
(invariance to scaling, see (Crammer et al., 2008))
in practice we run the algorithm once initializing
Σ = I . Then, after the training is completed, we

try few scalings of the final covariance sΣ for some
positive scalar s, and choose the best value s using
the training set. We refer to this method as KD-PC
for K-Draws by Parameters Confidence.

The second method to estimate confidence fol-
lows the same conceptual steps, except that we used
an isotropic covariance matrix, Σ = sI for some
positive scale information s. As before, the value
of s was tuned on the training set. We denote this
method KD-Fixed for K Draws by Fixed Stan-
dard Deviation. This method is especially appeal-
ing, since it can be used in combination with training
algorithms that do not maintain confidence informa-
tion, such as the Perceptron or PA.

Our third and fourth methods are deterministic
and do not involve a stochastic process. We mod-
ified the Viterbi algorithm to output the K distinct
labelings with highest score (computed using the
mean weight vector in case of CW or AROW). The
third method assigns uniform importance to each
of the K labelings ignoring the actual score val-
ues. We call this method KBV, for K-best Viterbi.
We thus propose the fourth method in which we de-
fine an importance weight ωi to each labeling z(i)

and evaluate confidence using the weights, νp =(∑
i s.t. ŷp=z

(i)
p
ωi

)
/ (
∑

i ωi) , where we set the
weights to be their score value clipped at zero from
below ωi = max{0,µ · Φ(x, z(i))}. (In practice,
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top score was always positive.) We call this method
WKBV for weighted K-best Viterbi.

In addition to these four methods we propose a
fifth method that is based on the margin and does
not share the same conceptual structure of the previ-
ous methods. This method provide confidence score
that is only relative and not absolute, namely its out-
put can be used to compare the confidence in two
labelings, yet there is no semantics defined over the
scores. Given an input sentence to be labeledx and a
model we define the confidence in the prediction as-
sociated with the pthword to be the difference in the
highest score and the closest score, where we set the
label of that word to anything but the label with the
highest score. Formally, as before we define the best
labeling ŷ = arg maxz µ · Φ(x, z), then the score
of word p is defined to be, µ·Φ(x, ŷ)−maxu6=ŷp µ·
Φ(x, z|zp=u) , where we define the labeling z|zp=u

to be the labeling that agrees with z on all words,
except the pth word, where we define its label to
be u. We refer to this method as Delta where the
confidence information is a difference, aka as delta,
between two score values.

Finally, as an additional baseline, we used a sixth
method based on the confidence values for single
words produced by CRF model. We considered the
marginal probability of the word p to be assigned the
predicted label ŷp to be the confide value, this prob-
ability is calculated using the forward-backwards al-
gorithm. This method is close in spirit to the Delta
method as the later can be thought of computing
marginals (in score, rather than probability). It also
close to the K-Draws methods, as both CRF and K-
Draws induce a distribution over labels. For CRF we
can compute the marginals explicitly, while for the
Gaussian models generated by CW (or AROW) the
marginals can not be computed expliclity, and thus a
sample based estimation (K-Draws) is used.

Experimental Setting: We evaluate the above
methods as follows. We trained a classifier using
the CW algorithm running for ten (10) iterations on
three-fourth of the data and applied it to the remain-
ing one-fourth to get a labeling of the test set. There
are between 49K − 54K words to be labeled in
all tasks, except NER Dutch where there are about
74K words. The fraction of words for which the
trained model makes a mistake ranges between 2%

(for NER Dutch) to 4.1% for NER Spanish.
We set the value of the hyper parameter φ to its

optimal value obtained in the experiments reported
in the previous section. The size ofK of the number
of labelings used in the four first methods (KD-PC,
KD-Fixed, KBV, WKBV) and the weighting scalar
s used in KD-PC and KD-Fixed were tuned for each
dataset on a single evaluation on subset of the train-
ing set according to the best measured average pre-
cision. For the parameter s we tried about 20 values
in the range 0.01 to 1.0, and for the number of labels
K we tried the values in 10, 20 . . . 80. The optimal
values are K = 50 for KD-PC and KD-Fixed, and
K = 30 for KBV and WKBV. We noticed that KD-
PC and KD-Fixed were robust to larger values of K,
while the performance of KBV and WKBV was de-
graded significantly for large values of K.

We also trained CRF on the same training sets and
applied it to label and assign confidence values to
all the words in the test sets. The fraction of mis-
labeled words produced by the CRF model and the
CW model is summarized in Table 3.

Relative Confidence: For each of the datasets,
we first trained a model using the CW algorithm and
applied each of the confidence methods on the out-
put, ranking from low to high all the words of the
test set according to the confidence in the prediction
associated with them. Ideally, the top ranked words
are the ones for which the classifier made a mistake
on. This task can be thought of as a retrieval task of
the erroneous words.

The average precision is the average of the pre-
cision values computed at all ranks of erroneous
words. The average precision for ranking the words
of the test-set according the confidence in the predic-
tion of seven methods appears in the top-left panel of
Fig. 2. (left to right bars in each group : CRF, KD-
Fixed, KD-PC, Delta, WKBV, KBV and random or-
dering.) We see that when ordering the words ran-
domly, the average precision is about the frequency
of erroneous word, which is the lowest average pre-
cision. Next are the two methods based on the best
Viterbi labelings, where the weighted approach out-
performing the non-weighted version. Thus, taking
the actual score value into consideration improves
the ability to detect erroneous words. Next in per-
formance is Delta, the margin-induced method. The
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Figure 4: Predicted error in each bin vs. the actual frequency of mistakes in each bin. Best performance is obtained by methods
close to the line y = x (black line) for four tasks. Four methods are compared: weighted K-Viterbi (WKBV), K-draws PC
(KD-PC) and K-draws fixed covariance (KD-Fixed) and CRF.

two best performing among the CW based methods
are KD-Fixed and KD-PC, where the former is bet-
ter in three out of four datasets. When compared
to CRF we see that in two cases CRF outperforms
the K-Draws based methods and in the other two
cases it performs equally. We found the relative suc-
cess of KD-Fixed compared to KD-PC surprising,
as KD-Fixed does not take into consideration the ac-
tual uncertainty in the parameters learned by CW,
and in fact replaced it with a fixed value across all
features. Since this method does not need to as-
sume a confidence-based learning approach we re-
peated the experiment, training a model with the
passive-aggressive algorithm, rather than CW. All
confidence estimation methods can be used except
the KD-PC, which does take the confidence infor-
mation into consideration. The results appear in
the bottom-left panel of Fig. 2, and basically tell
the same story, KD-Fixed outperform the margin
based method (Delta), and the Viterbi based meth-
ods (KBV, WKBV).

To better understand the behavior of the various
methods we plot the total number of detected erro-
neous words vs. the number of ranked words (first
5, 000 ranked words) in the top panels of Fig. 3. The
bottom panels show the relative additional number
of words each methods detects on top of the margin-
based Delta method. Clearly, KD-Fixed and KD-
PC detect erroneous words better than the other CW
based methods, finding about 100 more words than
Delta (when ranking 5, 000 words) which is about
8% of the total number of erroneous words.

Regarding CRF, it outperforms the K-Draws
methods in NER English and NP chunking datasets,
finding about 150 more words, CRF performed
equally for NER Dutch, and performed worse for

NER Spanish finding about 80 less words. We em-
phasize that all methods except CRF were based on
the same exact weight vector, ranking the same pre-
dations, while CRF used an alternative weight vector
that yields different number of erroneous words.

In details, we observe some correlation between
the percentage or erroneous words in the entire set
and the number of erroneous words detected among
the first 5, 000 ranked words. For NP chunking
and NER English datasets, CRF has more erroneous
words compared to CW and it detects more erro-
neous words compared to K-Draws. For NER Dutch
dataset CRF and CW have almost same number of
erroneous words and almost same number of erro-
neous words detected, and finally in NER Spanish
dataset CRF has fewer erroneous words and it de-
tected less erroneous words. In other words, where
there are more erroneous words to find (e.g. CRF in
NP chunking), the task of ranking erroneous words
is easier, and vice-versa.

We hypothesize that part of the performance dif-
ferences we see between the K-Draws and CRF
methods is due to the difference in the number of
erroneous words in the ranked set.

This ranking view can be thought of marking sus-
pected words to be evaluated manually by a human
annotator. Although in general it may be hard for a
human to annotate a single word with no need to an-
notate its close neighbor, this is not the case here. As
the neighbor words are already labeled, and pretty
reliably, as mentioned above.

Absolute Confidence: Our next goal is to eval-
uate how reliable are the absolute confidence val-
ues output by the proposed methods. As before, the
confidence estimation methods (KD-PC, KD-Fixed,
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KBV, WKBV and CRF) were applied on the entire
set of predicted labels. (Delta method is omitted as
the confidence score it produces is not in [0, 1]).

For each of the four datasets and the five algo-
rithms we grouped the words according to the value
of their confidence. Specifically, we used twenty
(20) bins dividing uniformly the confidence range
into intervals of size 0.05. For each bin, we com-
puted the fraction of words predicted correctly from
the words assigned to that bin. Ultimately, the value
of the computed frequency should be about the cen-
ter value of the interval of the bin. Formally, bin
indexed j contains words with confidence value in
the range [(j − 1)/20, j/20) for j = 1 . . . 20. Let bj
be the center value of bin j, that is bj = j/20−1/40.
The frequency of correct words in bin j, denoted
by cj is the fraction of words with confidence ν ∈
[(j−1)/20, j/20) that their assigned label is correct.
Ultimately, these two values should be the same,
bj = cj , meaning that the confidence information
is a good estimator of the frequency of correct la-
bels. Methods for which cj > bj are too pessimistic,
predicting too high frequency of erroneous labels,
while methods for which cj < bj are too optimistic,
predicting too low frequency of erroneous words.

The results are summarized in Fig 4, one panel
per dataset, where we plot the value of the center-
of-bin bj vs. the frequency of correct prediction cj ,
connecting the points associated with a single algo-
rithm. Four algorithms are shown: KD-PC, KD-
Fixed, WKBV and CRF. We omit the results of the
KBV approach - they were substantially inferior to
all other methods. Best performance is obtained
when the resulting line is close to the line y = x.

From the plots we observe that WKBV is too pes-
simistic as its corresponding line (blue square) is
above the line y = x. CRF method is too optimistic,
its corresponding line is below the line y = x.
The KD-Fixed method is too pessimistic on NER-
Dutch and too optimistic on NER-English. The best
method is KD-PC which, surprisingly, tracks the line
x = y pretty closely. We hypothesis that its superi-
ority is because it makes use of the uncertainty infor-
mation captured in the covariance matrix Σ which is
part of the Gaussian distribution.

Finally, these bins plots does not reflect the fact
that different bins were not populated uniformly, the
bins with higher values were more heavily popu-

lated. We thus plot in the top-right of Fig. 2 the
root mean-square error in predicting the bin center

value given by
√(∑

j nj(bj − cj)2
)
/
(∑

j nj

)
,

where nj is the number of words in the jth bin.
We observed a similar trend to the one appeared in
the previous figure. WKBV is the least-performing
method, then KD-Fixed and CRF, and then KD-PC
which achieved lowest RMSE in all four datasets.
Similar plot but when using PA for training appear
in the bottom-right panel of Fig. 2. In this case we
also see that KD-Fixed is better than WKBV, even
though both methods were not trained with an algo-
rithm that takes uncertainty information into consid-
eration, like CW.

The success of KD-PC and KD-Fixed in evaluat-
ing confidence led us to experiment with using sim-
ilar techniques for inference. Given an input sen-
tence, the inference algorithm samplesK times from
the Gaussian distribution and output the best label-
ing according to each sampled weight vector. Then
the algorithm predicts for each word the most fre-
quent label. We found this method inferior to infer-
ence with the mean parameters. This approach dif-
fers from the one used by (Crammer et al., 2009a),
as they output the most frequent labeling in a set,
while the predicted label of our algorithm may not
even belong to the set of predictions.

6 Active Learning

Encouraged by the success of the KD-PC and KD-
Fixed algorithms in estimating the confidence in the
prediction we apply these methods to the task of ac-
tive learning. In active learning, the algorithm is
given a large set of unlabeled data and a small set
of labeled data and works in iterations. On each it-
eration, the overall labeled data at this point is used
to build a model, which is then used to choose new
subset of examples to be annotated.

In our setting, we have a large set of unlabeled
sentences and start with a small set of 50 annotated
sentences. The active learning algorithm is then us-
ing the CW algorithm to build a model, which in turn
is used to rank sentences. The new data items are
then annotated and accumulated to the set of labeled
data points, ready for the next round. Many active
learning algorithms are first computing a prediction
for each of the unlabeled-data examples, which is
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then used to choose new examples to be labeled. In
our case the goal is to label sentences, which are
expensive to label. We thus applied the following
setting. First, we chose a subset of 9K sentences
as unlabeled training set, and another subset of size
3K for evaluation. After obtaining a model, the al-
gorithm labels random 1, 000 sentences and chose a
subset of 10 sentences using the active learning rule,
which we will define shortly. After repeating this
process 10 times we then evaluate the current model
using the test data and proceed to choose new un-
labeled examples to be labeled. Each method was
applied to pick 5, 000 sentences to be labeled.

In the previous section, we used the confidence
estimation algorithms to choose individual words to
be annotated by a human. This setting is realistic
since most words in each sentence were already clas-
sified (correctly). However, when moving to active
learning, the situation changes. Now, all the words
in a sentence are not labeled, thus a human may need
to label additional words than the one in target, in or-
der to label the target word. We thus experimented
with the following protocol. On each iteration, the
algorithm defines the score of an entire sentence to
be the score of the least confident word in the sen-
tence. Then the algorithm chooses the least confi-
dent sentence, breaking ties by favoring shorter sen-
tences (assuming they contain relatively more infor-
mative words to be labeled than long sentences).

We evaluated five methods, KD-PC and KD-
Fixed mentioned above. The method that ranks
a sentence by the difference in score between the
top- and second-best labeling, averaged over the
length of sentence, denoted by MinMargin (Tong
and Koller, 2001). A similar approach, motivated
by (Dredze and Crammer, 2008), normalizes Min-
Margin score using the confidence information ex-
tracted from the Gaussian covariance matrix, we call
this method MinConfMargin. Finally, We also eval-
uated an approach that picks random sentences to be
labeled, denoted by RandAvg (averaged 5 times).

The averaged cumulative F-measure vs. num-
ber of words labeled is presented in Figs. 5,6. We
can see that for short horizon (small number of sen-
tences) the MinMargin is worse (in three out of four
data sets), while MinConfMargin is worse in NP
Chunking. Then there is no clear winner, but the
KD-Fixed seems to be the best most of the time. The
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Figure 5: Averaged cumulative F-score vs. total number of
words labeled. The top panels show the results for up to 10, 000
labeled words, while the bottom panels show the results for
more than 10k labeled words.

bottom panels show the results for more than 10k
training words. Here, the random method perform-
ing the worst, while KD-PC and KD-Fixed are the
best, and as shown in (Dredze and Crammer, 2008),
MinConfMargin outperforming MinMargin.

Related Work: Most previous work has fo-
cused on confidence estimation for an entire exam-
ple or some fields of an entry (Culotta and McCal-
lum, 2004) using CRFs. (Kristjansson et al., 2004)
show the utility of confidence estimation is extracted
fields of an interactive information extraction system
by high-lighting low confidence fields for the user.
(Scheffer et al., 2001) estimate confidence of sin-
gle token label in HMM based information extrac-
tion system by a method similar to the Delta method
we used. (Ueffing and Ney, 2007) propose several
methods for word level confidence estimation for the
task of machine translation. One of the methods they
use is very similar to the weighted and non-weighted
K-best Viterbi methods we used with the proper ad-
justments to the machine translation task.
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Abstract

In state-of-the-art approaches to information
extraction (IE), dependency graphs constitute
the fundamental data structure for syntactic
structuring and subsequent knowledge elicita-
tion from natural language documents. The
top-performing systems in the BioNLP 2009
Shared Task on Event Extraction all shared the
idea to use dependency structures generated
by a variety of parsers — either directly or
in some converted manner — and optionally
modified their output to fit the special needs
of IE. As there are systematic differences be-
tween various dependency representations be-
ing used in this competition, we scrutinize on
different encoding styles for dependency in-
formation and their possible impact on solv-
ing several IE tasks. After assessing more
or less established dependency representations
such as theStanfordandCoNLL-Xdependen-
cies, we will then focus on trimming opera-
tions that pave the way to more effective IE.
Our evaluation study covers data from a num-
ber of constituency- and dependency-based
parsers and provides experimental evidence
which dependency representations are partic-
ularly beneficial for the event extraction task.
Based on empirical findings from our study
we were able to achieve the performance of
57.2% F-score on the development data set of
the BioNLP Shared Task 2009.

1 Introduction

Relation and event extraction are among the most
demanding semantics-oriented NLP challenge tasks

(both in the newspaper domain such as for ACE1, as
well as in the biological domain such as for BioCre-
ative2 or the BioNLP Shared Task3), comparable in
terms of analytical complexity with recent efforts di-
rected at opinion mining (e.g., NTCIR-74 or TREC
Blog tracks5) or the recognition of textual entail-
ment.6 The most recentBioNLP 2009 Shared Task
on Event Extraction(Kim et al., 2009) required, for
a sample of 260 MEDLINE abstracts, to determine
all mentioned events — to be chosen from a given
set of nine event types, including“Localization” ,
“Binding” , “Gene Expression”, “Transcription” ,
“Protein Catabolism”, “Phosphorylation”, “Posi-
tive Regulation”, “Negative Regulation”, and (un-
specified)“Regulation” — and link them appropri-
ately witha priori supplied protein annotations. The
demands on text analytics to deal with the complex-
ity of this Shared Task in terms of relation diversity
and specificity are unmatched by former challenges.

For relation extraction in the biomedical domain
(the focus of our work), a stunning convergence
towards dependency-based syntactic representation
structures is witnessed by the performance results
of the top-performing systems in theBioNLP’09

1http://papers.ldc.upenn.edu/LREC2004/
ACE.pdf

2http://biocreative.sourceforge.net/
3www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

SharedTask/
4http://research.nii.ac.jp/ntcir/

workshop/OnlineProceedings7/pdf/revise/
01-NTCIR-OV-MOAT-SekiY-revised-20081216.
pdf

5http://trec.nist.gov/data/blog08.html
6http://pascallin.ecs.soton.ac.uk/

Challenges/RTE/
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Shared Task on Event Extraction.7 Regarding the
fact that dependency representations were always
viewed as a vehicle to represent fundamental seman-
tic relationships already at the syntactic level, this
is not a great surprise. Yet, dependency grammar
is not a monolithic, consensually shaped and well-
defined linguistic theory. Accordingly, associated
parsers tend to vary in terms of dependency pairing
or structuring (which pairs of words join in a depen-
dency relation?) and dependency typing (how are
dependency relations for a particular pair labelled?).

Depending on the type of dependency theory or
parser being used, various representations emerge
(Miyao et al., 2007). In this paper, we explore these
different representations of the dependency graphs
and try, first, to pinpoint their effects on solving the
overall event extraction task and, second, to further
enhance the potential of JREX, a high-performance
relation and event extractor developed at the JULIE

Lab (Buyko et al., 2009).

2 Related Work

In the biomedical domain, the focus has largely been
on binary relations, in particular protein-protein
interactions (PPIs). Accordingly, the biomedi-
cal NLP community has developed various PPI-
annotated corpora (e.g., LLL (Ńedellec, 2005),
AIM ED (Bunescu et al., 2005), BIOINFER (Pyysalo
et al., 2007)). PPI extraction does clearly not count
as a solved problem, and a deeper look at its bio-
logical and representational intricacies is certainly
worthwhile. The GENIA event corpus (Kim et al.,
2008) and the BioNLP 2009 Shared Task data (Kim
et al., 2009) contain such detailed annotations of
PPIs (amongst others).

The BioNLP Shared Task was a first step towards
the extraction of specific pathways with precise in-
formation about the molecular events involved. In
that task, 42 teams participated and 24 of them sub-
mitted final results. The winner system, TURKU

(Björne et al., 2009), achieved with 51.95% F-score
the milestone result in that competition followed by
the JULIELab system (Buyko et al., 2009) which
peaked at 46.7% F-score. Only recently, an ex-
tension of the TURKU system, the TOKYO system,

7www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
SharedTask/results/results-master.html

has been realized (Miwa et al., 2010). TOKYO sys-
tem’s event extraction capabilities are based on the
TURKU system, yet TURKU’s manually crafted rule
system for post-processing and the combination of
extracted trigger-argument relations is replaced by
a machine learning approach in which rich features
collected from classification steps for triggers and
arguments are re-combined. TOKYO achieves an
overall F-score of 53.29% on the test data, thus out-
performing TURKU by 1.34 percentage points.

The three now top-performing systems, TOKYO,
TURKU and JULIELab, all rely on dependency
graphs for solving the event extraction tasks. While
the TURKU system exploits the Stanford dependen-
cies from the McClosky-Charniak parser (Charniak
and Johnson, 2005), and the JULIELab system uses
the CoNLL-like dependencies from the GDep parser
(Sagae and Tsujii, 2007),8 the TOKYO system over-
lays the Shared Task data with two parsing represen-
tations,viz. Enju PAS structure (Miyao and Tsujii,
2002) and GDep parser dependencies. Obviously,
one might raise the question as to what extent the
performance of these systems depends on the choice
of the parser and its output representations. Miyao
et al. (2008) already assessed the impact of different
parsers for the task of biomedical relation extraction
(PPI). Here we perform a similar study for the task
of event extraction and focus, in particular, on the
impact of various dependency representations such
as Stanford and CoNLL’X dependencies and addi-
tional trimming procedures.

For the experiments on which we report here, we
performed experiments with the JULIELab system.
Our main goal is to investigate into the crucial role
of proper representation structures for dependency
graphs so that the performance gap from Shared
Task results between the best-performing TOKYO

system and the JULIELab system be narrowed.

3 Event Extraction

3.1 Objective

Event extraction is a complex task that can be sub-
divided into a number of subtasks depending on

8The GDep parser has been trained on the GENIA Tree-
bank pre-official version of the version 1.0 converted with the
script available fromhttp://w3.msi.vxu.se/ ˜ nivre/
research/Penn2Malt.html
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whether the focus is on the event itself or on the ar-
guments involved:

Event trigger identification deals with the large
variety of alternative verbalizations of the same
event type, e.g., whether the event is expressed in a
verbal or in a nominalized form (“A is expressed”
as well as “the expression of A” both refer to the
same event type,viz. Expression(A)). Since the
same trigger may stand for more than one event type,
event trigger ambiguity has to be resolved as well.

Event trigger disambiguation selects the correct
event name from the set of alternative event triggers.

Argument identification is concerned with find-
ing all necessary participants in an event, i.e., the
arguments of the relation.

Argument ordering assigns each identified par-
ticipant its functional role within the event, mostly
Agent andPatient.

3.2 JULIE Lab System

The JULIELab solution can best be characterized as
a single-step learning approach for event detection
as the system does not separate the overall learn-
ing task into independent event trigger and event
argument learning subtasks.9 The JULIELab sys-
tem incorporates manually curated dictionaries and
machine learning (ML) methodologies to sort out
associated event triggers and arguments on depen-
dency graph structures. For argument extraction, the
JULIELab system uses two ML-based approaches,
a feature-based and a kernel-based one. Given
that methodological framework, the JULIELab team
scored on 2nd rank among 24 competing teams, with
45.8% precision, 47.5% recall and 46.7% F-score on
all 3,182 events. After the competition, this system
was updated and achieved 57.6% precision, 45.7%
recall and 51.0% F-score (Buyko et al., 2010) using
modified dependency representations from the MST
parser (McDonald et al., 2005). In this study, we
perform event extraction experiments with various
dependency representations that allow us to measure
their effects on the event extraction task and to in-
crease the overall JULIELab system performance in
terms of F-score.

9The JULIELab system considers all relevant lexical items as
potential event triggers which might represent an event. Only
those event triggers that can eventually be connected to argu-
ments, finally, represent a true event.

4 Dependency Graph Representations

In this section, we focus on representation formats
of dependency graphs. In Section 4.1, we introduce
fundamental notions underlying dependency pars-
ing and consider established representation formats
for dependency structures as generated by various
parsers. In Section 4.2, we account for selected trim-
ming operations for dependency graphs to ease IE.

4.1 Dependency Structures: Representation
Issues

Dependency parsing, in the past years, has increas-
ingly been recognized as an alternative to long-
prevailing constituency-based parsing approaches,
particularly in semantically-oriented application
scenarios such as information extraction. Yet even
under purely methodologically premises, it has
gained wide-spread attention as witnessed by recent
activities performed as part of the “CoNLL Shared
Tasks on Multilingual Dependency Parsing” (Buch-
holz and Marsi, 2006).

In a nutshell, in dependency graphs of sentences,
nodes represent single words and edges account for
head-modifier relations between single words. De-
spite this common understanding, concrete syntactic
representations often differ markedly from one de-
pendency theory/parser to the other. The differences
fall into two main categories: dependency pairing or
structuring (which pairs of words join in a depen-
dency relation?) and dependency typing (how are
dependency relations for a particular pair labelled?).

The CoNLL’X dependencies, for example, are
defined by 54 relation types,10 while the Stanford
scheme (de Marneffe et al., 2006) incorporates 48
types (so called grammatical relations or Stanford
dependencies). The Link Grammar Parser (Sleator
and Temperley, 1991) employs a particularly fine-
grained repertoire of dependency relations adding
up to 106 types, whereas the well-known MINI PAR

parser (Lin, 1998) relies on 59 types. Differences in
dependency structure are at least as common as dif-
ferences in dependency relation typing (see below).

10Computed by using the conversion script on WSJ
data (accessible via http://nlp.cs.lth.se/
pennconverter/ ; see also Johansson and Nugues (2007)
for additional information). From the GENIA corpus, using this
script, we could only extract 29 CoNLL dependency relations.

984



Figure 1: Example of CoNLL 2008 dependencies, as used in mostof the native dependency parsers.

Figure 2: Stanford dependencies,basicconversion from Penn Treebank.

In general, dependency graphs can be generated
by syntactic parsers in two ways. First, native de-
pendency parsers output CoNLL’X or Stanford de-
pendencies dependent on which representation for-
mat they have been trained on.11 Second, in a deriva-
tive dependency mode, the output of constituency-
based parsers, e.g., phrase structure representations,
is subsequently converted either into CoNLL’X or
Stanford dependencies using Treebank conversion
scripts (see below). In the following, we provide
a short description of these two established depen-
dency graph representations:

• CoNLL’X dependencies (CD). This depen-
dency tree format was used in the CoNLL’X
Shared Tasks on multi-lingual dependency
parsing (see Figure 1). It has been adopted
by most native dependency parsers and was
originally obtained from Penn Treebank (PTB)
trees using constituent-to-dependency conver-
sion (Johansson and Nugues, 2007). It differs
slightly in the number and types of dependen-
cies being used from various CoNLL rounds
(e.g., CoNLL’08 provided a dependency type
for representing appositions).12

• Stanford dependencies (SD).This format was
proposed by de Marneffe et al. (2006) for

11We disregard in this study other dependency representa-
tions such as MINI PAR and LINK GRAMMAR representations.

12For the differences between CoNLL’07 and CoNLL’08 rep-
resentations, cf.http://nlp.cs.lth.se/software/
treebank_converter/

semantics-sensitive applications using depen-
dency representations, and can be obtained us-
ing the Stanford tools13 from PTB trees. The
Stanford format is widely used in the biomed-
ical domain (e.g., by Miyao et al. (2008) or
Clegg and Shepherd (2005)).

There are systematic differences between
CoNLL’X and Stanford dependencies, e.g., as far
as the representation of passive constructions, the
position of auxiliary and modal verbs, or coordi-
nation representation is concerned. In particular,
the representation of thepassiveconstruction and
the role of the auxiliary verb therein may have
considerable effects for semantics-sensitive tasks.
While in SD the subject of the passive construction
is represented by a specialnsubj dependency
label, in CD we find the same subject label as for
active constructionsSUB(J) . On CoNLL’08 data,
the logical subject is marked by theLGS depen-
dency edge that connects the passive-indicating
preposition “by” with the logical subject of the
sentence.

The representation ofactive constructions are
similar in CD and SD though besides the role of
auxiliary and modal verbs. In the Stanford de-
pendency representation scheme, rather than taking
auxiliaries to be the heads in passive or tense con-
structions, main verbs are assigned this grammatical
function (see Figure 2). The CoNLL’X represen-

13Available from nlp.stanford.edu/software/
lex-parser.shtml
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Figure 3: Noun phrase representation in
CoNLL’X dependency trees.

Figure 4: Trimming procedurenoun phraseon
CoNLL’X dependency trees.

tation scheme is completely different in that auxil-
iaries – much in common with standard dependency
theory – are chosen to occupy the role of the gov-
ernor (see Figure 1). From the perspective of rela-
tion extraction, however, the Stanford scheme is cer-
tainly closer to the desired predicate-argument struc-
ture representations than the CoNLL scheme.

4.2 Dependency Graph Modifications in Detail

Linguistic intuition suggests that the closer a depen-
dency representation is to the format of the targeted
semantic representation, the more likely will it sup-
port the semantic application. This idea is directly
reflected in the Stanford dependencies which narrow
the distance between nodes in the dependency graph
by collapsing procedures (the so-calledcollapsed
mode of phrase structure conversion). An example

of collapsing is the conversion of “expression
nmod
−−−→

in
pmod
−−−→ cells” to “ expression

prep in
−−−−→ cells”. An ex-

tension of collapsing is the re-structuring of coor-
dinations with sharing the dependency relations of
conjuncts (the so-calledccprocessedmode of phrase
structure conversion).

According to the Stanford scheme, Buyko et al.
(2009) proposed collapsing scenarios on CoNLL’X
dependency graphs. Their so-calledtrimming op-
erations treat three syntactic phenomena,viz. coor-
dinations (coords), auxiliaries/modals (auxiliaries),
and prepositions (preps). For coordinations, they
propagate the dependency relation of the first con-
junct to all the other conjuncts within the coordi-
nation. For auxiliaries/modals, they prune the aux-
iliaries/modals as governors from the dependency
graph and propagate the dependency relations of
these nodes to the main verbs. Finally, for preposi-
tions, they collapse a pair of typed dependencies into
a single typed dependency (as illustrated above).

For the following experiments, we extended the
trimming procedures and propose the re-structuring

of noun phrases with action adjectives to make the
dependency representation even more compact for
semantic interpretation. The original dependency
representation of the noun phrase selects the right-
most noun as the head of the NP and thus all re-
maining elements are its dependents (see Figure 3).
For the noun phrases containing action adjectives
(mostly verb derivations) this representation does
not reflect the true semantic relations between the
elements. For example, in“IL-10 mediated expres-
sion” it is “IL-10” that mediates the expression.
Therefore, we re-structure the dependency graph by
changing the head of“IL-10” from “expression”
to “mediated”. Our re-coding heuristics selects,
first, all the noun phrases containing action adjec-
tives ending with“-ed” , “-ing” , “-ible” suffixes and
with words such as“dependent”, “specific” , “like” .
In the second step, we re-structure the noun phrase
by encoding the adjective as the head of all the nouns
preceding this adjective in the noun phrase under
scrutiny (see Figure 4).

5 Experiments and Results

In this section, we describe the experiments and
results related to event extraction tasks based on
alternative dependency graph representations. For
our experiments, we selected the following top-
performing parsers — the first three phrase structure
based and thus the origin of derivative dependency
structures, the last three fully dependency based for
making native dependency structures available:

• C+J, Charniak and Johnson’s reranking parser
(Charniak and Johnson, 2005), with the WSJ-
trained parsing model.

• M+C , Charniak and Johnson’s reranking parser
(Charniak and Johnson, 2005), with the self-
trained biomedical parsing model from Mc-
Closky (2010).
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• Bikel, Bikel’s parser (Bikel, 2004) with the
WSJ-trained parsing model.

• GDep(Sagae and Tsujii, 2007), a native depen-
dency parser.

• MST (McDonald et al., 2005), another native
dependency parser.

• MALT (Nivre et al., 2007), yet another native
dependency parser.

The native dependency parsers were re-trained on
the GENIA Treebank (Tateisi et al., 2005) conver-
sions.14 These conversions,15 i.e., Stanfordbasic,
CoNLL’07 and CoNLL’08 were produced with the
currently available conversion scripts. For the Stan-
ford dependency conversion, we used the Stanford
parser tool,16 for CoNLL’07 and CoNLL’08 we used
the treebank-to-CoNLL conversion scripts17 avail-
able from the CoNLL’X Shared Task organizers.

The phrase structure based parsers were applied
with already available models, i.e., the Bikel and
C+J parsers as trained on the WSJ corpus, and
M+C as trained on the GENIA Treebank corpus.
For our experiments, we converted the prediction
results of the phrase structure based parsers into
five dependency graph representations,viz.Stanford
basic, Stanford collapsed, Stanford ccprocessed,
CoNLL’07 and CoNLL’08, using the same scripts
as for the conversion of the GENIA Treebank.

The JULIELab event extraction system was re-
trained on the Shared Task data enriched with differ-
ent outputs of syntactic parsers as described above.
The results for the event extraction task are repre-
sented in Table 1. Due to the space limitation of
this paper we provide the summarized results of im-
portant event extraction sub-tasks only, i.e., results
for basic events (Gene Expression, Transcription,
Localization, Protein Catabolism) are summarized

14For the training of dependency parsers, we used from the
available Stanford conversion variants only Stanfordbasic. The
collapsedandccprocessedvariants do not provide dependency
trees and are not recommended for training native dependency
parsers.

15We used the GENIA Treebank version 1.0, available from
www-tsujii.is.s.u-tokyo.ac.jp

16http://nlp.stanford.edu/software/
lex-parser.shtml

17http://nlp.cs.lth.se/software/treebank_
converter/

under SVT-TOTAL; regulatory events are summa-
rized under REG-TOTAL; the overall extraction re-
sults are listed in ALL-TOTAL (see Table 1).

Obviously, the event extraction system trained on
various dependency representations indeed produces
truly different results. The differences in terms of F-
score come up to 2.4 percentage points for the SVT-
TOTAL events (cf. the MALT parser, difference
between SDbasic (75.6% F-score) and CoNLL’07
(78.0% F-score)), up to 3.6 points for REG-TOTAL
(cf. the M+C parser, difference between SDccpro-
cessed(40.9% F-score) and CoNLL’07 (44.5% F-
score)) and up to 2.5 points for ALL-TOTAL (cf.
the M+C parser, difference between SDccprocessed
(52.8% F-score) and CoNLL’07 (55.3% F-score)).

The top three event extraction results on the de-
velopment data based on different syntactic parsers
results are achieved with M+C parser – CoNLL’07
representation (55.3% F-score), MST parser –
CoNLL’08 representation (54.6% F-score) and
MALT parser – CoNLL’08 representation (53.8%
F-score) (see Table 1, ALL-TOTAL). Surprisingly,
both the CoNLL’08 and CoNLL’07 formats clearly
outperform Stanford representations on all event ex-
traction tasks. Stanford dependencies seem to be
useful here only in thebasicmode. Thecollapsed
andccprocessedmodes produce even worse results
for the event extraction tasks.

Our second experiment focused on trimming op-
erations on CoNLL’X dependency graphs. Here
we performed event extraction after the trimming of
the dependency trees as described in Section 4.2 in
different modes:coords– re-structuring coordina-
tions;preps– collapsing of prepositions;auxiliaries
– propagating dependency relations of auxiliars and
modals to main verbs;noun phrase– re-structuring
noun phrases containing action adjectives. Our sec-
ond experiment showed that the extraction of se-
lected events can profit in particular from the trim-
ming procedurescoordsandauxiliaries, but there is
no evidence for a general trimming configuration for
the overall event extraction task.

In Table 2 we summarize the best configurations
we found for the events in focus. It is quite evi-
dent that the CoNLL’08 and CoNLL’07 dependen-
cies modified for auxiliaries and coordinations are
the best configurations for four events (out of nine).
For three events no modifications are necessary and
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Parser SD basic SD collapsed SD ccprocessed CoNLL’07 CoNLL’08
SVT-TOTAL

R P F R P F R P F R P F R P F
Bikel 70.5 75.5 72.9 70.7 74.5 72.5 71.6 73.5 72.5 69.4 75.9 72.5 69.7 75.7 72.6
C+J 73.0 77.4 75.1 73.2 77.3 75.2 72.8 77.2 75.0 73.5 78.3 75.8 73.0 77.9 75.4
M+C 76.4 78.0 77.2 76.4 77.6 77.0 76.4 77.2 76.8 76.4 79.0 77.7 76.6 79.3 77.9
GDEP 77.1 77.5 77.3 N/A N/A N/A N/A N/A N/A 72.5 80.2 76.1 72.6 77.2 74.8
MALT 73.1 78.2 75.6 N/A N/A N/A N/A N/A N/A 75.9 80.3 78.0 73.7 78.2 75.9
MST 76.4 78.5 77.4 N/A N/A N/A N/A N/A N/A 74.8 78.4 76.6 76.7 80.8 78.7

REG-TOTAL
R P F R P F R P F R P F R P F

Bikel 35.3 40.6 37.8 33.8 40.3 36.8 34.3 39.6 36.8 33.9 39.2 36.3 34.0 41.0 37.2
C+J 36.2 41.8 38.8 37.3 41.8 39.4 36.5 41.9 39.0 38.1 43.9 40.8 37.4 44.0 40.4
M+C 39.4 45.5 42.3 38.8 45.3 41.8 38.5 43.7 40.9 41.9 47.4 44.5 40.1 47.9 43.7
GDEP 39.6 42.8 41.6 N/A N/A N/A N/A N/A N/A 38.4 43.7 40.9 39.8 44.4 42.0
MALT 38.8 44.3 41.4 N/A N/A N/A N/A N/A N/A 39.0 44.3 41.5 39.2 46.4 42.5
MST 39.5 43.6 41.4 N/A N/A N/A N/A N/A N/A 39.6 45.6 42.4 40.6 45.8 43.0

ALL-TOTAL
R P F R P F R P F R P F R P F

Bikel 47.4 51.5 49.4 46.3 50.8 48.5 46.9 50.2 48.5 44.8 50.7 47.6 44.7 51.8 48.0
C+J 49.3 53.8 51.5 49.6 52.8 51.2 49.0 53.0 50.9 50.3 54.4 52.3 49.5 54.3 51.8
M+C 52.3 56.4 54.3 51.8 55.7 53.7 51.3 54.3 52.8 53.2 57.5 55.3 52.2 58.2 55.0
GDEP 52.7 54.5 53.6 N/A N/A N/A N/A N/A N/A 50.6 55.2 52.8 51.3 55.0 53.1
MALT 50.4 54.7 52.4 N/A N/A N/A N/A N/A N/A 51.5 56.0 53.7 51.2 56.8 53.8
MST 52.3 54.8 53.5 N/A N/A N/A N/A N/A N/A 51.7 56.4 53.9 52.4 56.9 54.6

Table 1: Results on the Shared Task development data for Event Extraction Task. Approximate Span Match-
ing/Approximate Recursive Matching.

Event Class Best Parser Best Configuration R P F
Gene Expression MST CoNLL’08, auxiliaries, coords 79.5 81.8 80.6
Transcription MALT CoNLL’07, auxiliaries, coords 67.1 75.3 71.0
Protein Catabolism MST CoNLL’08, preps 85.7 100 92.3
Phosphorylation MALT CoNLL’08 80.9 88.4 84.4
Localization MST CoNLL’08, auxiliaries 81.1 87.8 84.3
Binding MST CoNLL’07, auxiliaries, coords, noun phrase51.2 51.0 51.1
Regulation MALT CoNLL’07, auxiliaries, coords 30.8 49.5 38.0
Positive Regulation M+C CoNLL’07 43.0 49.9 46.1
Negative Regulation M+C CoNLL’07 49.5 45.3 47.3

Table 2: Best Configurations for Dependency Representations for Event Extraction Task on the development data.

Binding R P F
CoNLL’07 47.3 46.8 47.0
CoNLL’07 auxiliaries, coords 46.8 48.1 47.4
CoNLL’07 auxiliaries, coords, noun phrase 51.2 51.0 51.1

Table 3: Effects of trimming ofCoNLLdependencies on the Shared Task development data forBindingevents. Ap-
proximate Span Matching/Approximate Recursive Matching.The data was processed by the MST parser.
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JULIELab JULIELab TOKYO System
(M+C, CoNLL’08) Final Configuration

Event Class gold R P F R P F R P F
Gene Expression 356 79.2 80.3 79.8 79.5 81.8 80.6 78.7 79.5 79.1
Transcription 82 59.8 72.0 65.3 67.1 75.3 71.0 65.9 71.1 68.4
Protein Catabolism 21 76.2 88.9 82.0 85.7 100 92.3 95.2 90.9 93.0
Phosphorylation 47 83.0 81.2 82.1 80.9 88.4 84.4 85.1 69.0 76.2
Localization 53 77.4 74.6 75.9 81.1 87.8 84.3 71.7 82.6 76.8
SVT-TOTAL 559 76.4 79.0 77.7 78.2 82.6 80.3 77.3 77.9 77.6
Binding 248 45.6 45.9 45.8 51.2 51.0 51.1 50.8 47.6 49.1
EVT-TOTAL 807 66.9 68.7 67.8 69.9 72.5 71.2 69.1 68.1 68.6
Regulation 169 32.5 46.2 38.2 30.8 49.5 38.0 36.7 46.6 41.1
Positiveregulation 617 42.3 49.0 45.4 43.0 49.9 46.1 43.9 51.9 47.6
Negativeregulation 196 48.5 44.0 46.1 49.5 45.3 47.3 38.8 43.9 41.2
REG-TOTAL 982 41.9 47.4 44.5 42.2 48.7 45.2 41.7 49.4 45.2
ALL-TOTAL 1789 53.2 57.5 55.3 54.7 60.0 57.2 54.1 58.7 56.3

Table 4: Results on the Shared Task development data. Approximate Span Matching/Approximate Recursive Match-
ing.

JULIELab JULIELab TOKYO system
(Buyko et al., 2010) Final Configuration

Event Class gold R P F R P F R P F
Gene Expression 722 66.3 79.6 72.4 67.0 77.2 71.8 68.7 79.9 73.9
Transcription 137 33.6 61.3 43.4 35.0 60.8 44.4 54.0 60.7 57.1
Protein Catabolism 14 71.4 90.9 80.0 71.4 90.9 80.0 42.9 75.0 54.6
Phosphorylation 135 80.0 85.0 82.4 80.7 84.5 82.6 84.4 69.5 76.3
Localization 174 47.7 93.3 63.1 45.4 90.8 60.5 47.1 86.3 61.0
SVT-TOTAL 1182 61.4 80.3 69.6 61.8 78.2 69.0 65.3 76.4 70.4
Binding 347 47.3 52.4 49.7 47.3 52.2 49.6 52.2 53.1 52.6
EVT-TOTAL 1529 58.2 73.1 64.8 58.5 71.7 64.4 62.3 70.5 66.2
Regulation 291 24.7 40.5 30.7 26.8 38.2 31.5 28.9 39.8 33.5
Positive Regulation 983 35.8 45.4 40.0 34.8 45.8 39.5 38.0 48.3 42.6
Negative Regulation 379 37.2 39.7 38.4 37.5 40.9 39.1 35.9 47.2 40.8
REG-TOTAL 1653 34.2 43.2 38.2 34.0 43.3 38.0 35.9 46.7 40.6
ALL-TOTAL 3182 45.7 57.6 51.0 45.8 57.2 50.9 48.6 59.0 53.3

Table 5: Results on the Shared Task test data. Approximate Span Matching/Approximate Recursive Matching.
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only one event profits from trimming of prepositions
(Protein Catabolism). Only theBindingevent prof-
its significantly from noun phrase modifications (see
Table 3). The increase in F-score for trimming pro-
cedures is 4.1 percentage points forBindingevents.

In our final experiment we connected the best con-
figurations for each of the BioNLP’09 events as pre-
sented in Table 2. The overall event extraction re-
sults of this final configuration are presented in Ta-
bles 4 and 5. We achieved an increase of 1.9 per-
centage points F-score in the overall event extrac-
tion compared to the best-performing single parser
configuration (M+C, CoNLL’07) (see Table 4, ALL-
TOTAL). The reported results on the development
data outperform the results of the TOKYO system by
2.6 percentage points F-score for all basic events in-
cluding Binding events (see Table 4, EVT-TOTAL)
and by 0.9 percentage points in the overall event ex-
traction task (see Table 4, ALL-TOTAL).

On the test data we achieved an F-score similar
to the current JULIELab system trained on modified
CoNLL’07 dependencies from the MST parser (see
Table 5, ALL-TOTAL).18 The results on the offi-
cial test data reveal that the performance differences
between various parsers may play a much smaller
role than the proper choice of dependency represen-
tations.19 Our empirical findings that the best per-
formance results could only be achieved by event-
specific dependency graph configurations reveal that
the syntactic representations of different semantic
events vary considerably at the level of dependency
graph complexity and that the automatic prediction
of such syntactic structures can vary from one de-
pendency parser to the other.

6 Discussion

The evaluation results from Table 1 show that an in-
creased F-score is basically due to a better perfor-
mance in terms of precision. For example, the M+C
evaluation results in the Stanfordbasic mode pro-
vide an increased precision by 2 percentage points
compared to the Stanfordccprocessedmode. There-
fore, we focus here on the analysis of false positives

18The current JULIELab system uses event-specific trimming
procedures on CoNLL’07 dependencies determined on the de-
velopment data set (see Buyko et al. (2010)).

19Trimmed CoNLL dependencies are used in both system
configurations.

that the JULIELab system extracts in various modes.
For the first analysis we took the outputs of the

systems based on the M+C parsing results. We
scrutinized on the Stanfordbasic and ccprocessed
false positives (fps) and we compared the occur-
rences of dependency labels in two data sets, namely
the intersection of false positives from both sys-
tem modes (setA) and the false positives produced
only by the system with a worse performance (set
B, ccprocessedmode). About 70% of all fps are
contained in setA. Our analysis revealed that some
dependency labels have a higher occurrence in set
B, e.g.,nsubjpass, prep on, prep with,
prep in, prep for, prep as . Some depen-
dency labels occur only in setB such asagent ,
prep unlike, prep upon . It seems that col-
lapsing some prepositions, such as“with”, “in”,
“for”, “as”, “on”, “unlike”, “upon” , does not have
a positive effect on the extraction of argument struc-
tures. In a second step, we compared the Stan-
ford basic and CoNLL’07 false positive sets. The
fps of both systems have an intersection of about
70%. We also compared the intersection of fps
between two outputs (setA) and the set of addi-
tional fps of the system with worse results (Stan-
ford basicmode, setB). The dependency labels such
asabbrev, dep, nsubj, nsubjpass have
a higher occurrence in setB than in setA. This anal-
ysis renders evidence that the distinction ofnsubj
andnsubjpass does not seem to have been prop-
erly learned for event extraction.

For the second analysis round we took the out-
puts of the MST parsing results. As in the previ-
ous experiments, we compared false positives from
two mode outputs, here the CoNLL’07 mode and
the CoNLL’07 modified forauxiliaries and coor-
dinations mode. The fps have an intersection of
75%. The dependency labels such asVC, SUBJ,
COORD, andIOBJ occur more frequently in the ad-
ditional false positives from the CoNLL’07 mode
than in the intersection of false positives from both
system outputs. Obviously, the trimming of auxil-
iary and coordination structures has a direct positive
effect on the argument extraction reducing false pos-
itive numbers especially with corresponding depen-
dency labels in shortest dependency paths.

Our analysis of false positives shows that the dis-
tinction between active and passive subject labels,
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abbreviation labels, as well as collapsing preposi-
tions in the Stanford dependencies, could not have
been properly learned, which consequently leads to
an increased rate of false positives. The trimming
of auxiliary structures and the subsequent coordina-
tion collapsing on CoNLL’07 dependencies has in-
deed event-specific positive effects on the event ex-
traction.

The main focus of this work has been on the eval-
uation of effects of different dependency graph rep-
resentations on the IE task achievement (here the
task of event extraction). But we also targeted the
task-oriented evaluation of top-performing syntactic
parsers. The results of this work indicate that the
GENIA-trained parsers, i.e., M+C parser, the MST,
MALT and GDep, are a reasonable basis for achiev-
ing state-of-the art performance in biomedical event
extraction.

But the choice of the most suitable parser should
also take into account its performance in terms of
parsing time. Cer et al. (2010) and Miyao et al.
(2008) showed in their experiments that native de-
pendency parsers are faster than constituency-based
parsers. When it comes to scaling event extraction
to huge biomedical document collections, such as
MEDLINE, the selection of a parser is mainly in-
fluenced by its run-time performance. MST, MALT
and GDep parsers or the M+C parser with reduced
reranking (Cer et al., 2010) would thus be an appro-
priate choice for large-scale event extraction under
these constraints.20

7 Conclusion

In this paper, we investigated the role different de-
pendency representations may have on the accom-
plishment of the event extraction task as exemplified
by biological events. Different representation for-
mats (mainly, Stanfordvs. CoNLL) were then ex-
perimentally compared employing different parsers
(Bikel, Charniak+Johnson, GDep, MST, MALT),
both constituency based (for the derivative depen-
dency mode) as well as dependency based (for
the native dependency mode), considering different
training scenarios (newspapervs.biology domain).

From our experiments we draw the conclusion

20For large-scale experiments an evaluation of the M+C with
reduced reranking should be provided.

that the dependency graph representation has a cru-
cial impact on the level of achievement of IE task
requirements. Surprisingly, the CoNLL’X depen-
dencies outperform the Stanford dependencies for
four from six parsers. With additionally trimmed
CoNLL’X dependencies we could achieve an F-
score of 50.9% on the official test data and an F-
score of 57.2% on the official development data of
the BioNLP Shared Task on Event Extraction (see
Table 5, ALL-TOTAL).
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Claire Ńedellec. 2005. Learning Language in Logic:
Genic interaction extraction challenge. InProceedings
LLL-2005 – 4th Learning Language in Logic Work-
shop, pages 31–37. Bonn, Germany, August 7, 2005.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2007.
MALT PARSER: A language-independent system for
data-driven dependency parsing.Natural Language
Engineering, 13(2):95–135.

Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari
Björne, Jorma Boberg, Jouni Jarvinen, and Tapio
Salakoski. 2007. BIOINFER: A corpus for informa-
tion extraction in the biomedical domain.BMC Bioin-
formatics, 8(50).

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency pars-
ing and domain adaptation with LR models and parser
ensembles. InEMNLP-CoNLL 2007 – Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing and the Conference on Computa-
tional Natural Language Learning, pages 1044–1050,
Prague, Czech Republic, June 28-30, 2007.

Daniel Sleator and Davy Temperley. 1991. Parsing En-
glish with a link grammar. Technical report, Depart-
ment of Computer Science, CMU.

Yuka Tateisi, Akane Yakushiji, and Jun’ichi Tsujii. 2005.
Syntax annotation for the GENIA corpus. In IJC-
NLP 2005 – Proceedings of the 2nd International Joint
Conference on Natural Language Processing, pages
222–227. Jeju Island, Korea, October 11-13, 2005.

992



Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 993–1001,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

Enhancing Mention Detection
using Projection via Aligned Corpora

Yassine Benajiba
Center for Computational Learning Systems

Columbia University, NY
ybenajiba@ccls.columbia.edu

Imed Zitouni
IBM T.J. Watson Research Center

Yorktown Heights, NY
izitouni@us.ibm.com

Abstract

The research question treated in this paper
is centered on the idea of exploiting rich re-
sources of one language to enhance the per-
formance of a mention detection system of an-
other one. We successfully achieve this goal
by projecting information from one language
to another via a parallel corpus. We exam-
ine the potential improvement using various
degrees of linguistic information in a statisti-
cal framework and we show that the proposed
technique is effective even when the target
language model has access to a significantly
rich feature set. Experimental results show
up to 2.4F improvement in performance when
the system has access to information obtained
by projecting mentions from a resource-rich-
language mention detection system via a par-
allel corpus.

1 Introduction
The task of identifying and classifying entity textual
references in open-domain texts, i.e. the Mention
Detection (MD) task, has become one of the most
important subtasks of Information Extraction (IE).
It might intervene both as one step to structure nat-
ural language texts or as a text enrichment prepro-
cessing step to help other Natural Language Process-
ing (NLP) applications reach higher accuracy. Simi-
larly to the Automatic Content Extraction (ACE) 1

nomenclature, we consider that a mention can be
either named (e.g., John, Chicago), nominal (e.g.,
president, activist) or pronominal (e.g., he, she). It
has also a specific class which describes the type of
the entity it refers to. For instance, in the sentence:

1http://www.itl.nist.gov/iad/mig/tests/ace/2007/doc/ace07-
evalplan.v1.3a.pdf

Michael Bloomberg, the Mayor of NYC, declared
his war on tobacco and sugary drinks in the city.

we find the mentions ‘Michael Bloomberg’, ‘Mayor’
and ‘his’ of the same person entity. Their types
are named, nominal and pronominal, respectively.
‘NYC’ and ‘city’, on the other hand, are mentions
of the same geopolitical (GPE) entity of type named
and nominal, respectively. Consequently, MD is a
more general and complex task than the well known
Named Entity Recognition (NER) task which aims
solely at the identification and classification of the
named mentions.
The difficulty of the MD task is directly related
to the nature of the language and the linguistic re-
sources available, i.e. it is easier to build accu-
rate MD systems for languages with a simple mor-
phology and a high amount of linguistic resources.
For this reason, we explore the idea of using an
MD system, which has been designed and built for
a resource-rich language (RRL), to help enhance
the performance of an MD system in a target lan-
guage (TL). More specifically, the goal of the re-
search work we present in this paper is to employ
the richness of English, in terms of natural lan-
guage resources, to raise the accuracy of MD sys-
tems in other languages. For instance, an English
MD system might achieve a performance of Fβ=1-
measure=82.7 (Zitouni and Florian, 2009) when it
resorts to a rich set of features extracted from di-
verse resources, namely: part-of-speech, chunk in-
formation, syntactic parse trees, word sense infor-
mation, WordNet information and information from
the output of other mention detection classifiers. In
this paper, our research question revolves around in-
vestigating an adequate approach to use such a sys-
tem to the benefit of other languages such as Arabic,
Chinese, French or Spanish MD systems, which also
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have annotated resources but not of the same quan-
tity and/or quality as English.
In this paper, we have targeted English and Arabic
as the RRL and TL, respectively, because:
1. We have a very competitive English MD system;
2. The linguistic resources available for the Arabic
language allow a simulation of different TL richness
levels; and
3. The use of two languages of an utterly different
nature makes the extrapolation of the results to other
languages possible.
Our hypothesis might be expressed as follows: us-
ing an MD system resorting to a rich feature set (i.e.
the RRL MD system) to boost a MD system perfor-
mance in a TL can be very beneficial if the “donor”
system surpasses its TL counterpart in terms of re-
sources. To test this hypothesis, we have projected
MD tags from RRL to TL via a parallel corpus, and
then extracted several linguistic features about the
automatically tagged words. Thereafter, we have
conducted experiments adding these new features to
the TL baseline MD system. In order to have a com-
plete picture on the impact of these new features, we
have used TL baseline systems resorting to a varied
amount of features, starting with a case employing
only lexical information to a case where we use all
the resources we could gather for the TL. Experi-
ments show that the gain is always statistically sig-
nificant and it reaches its maximum when only very
basic features are used in the baseline TL MD sys-
tem.

2 Mention Detection
Similarly to classical NLP tasks, such as Base
Phrase Chunking (Ramshaw and Marcus, 1999)
(BPC) or NER (Tjong Kim Sang, 2002), we formu-
late the MD task as a sequence classification prob-
lem, i.e. the classifier assigns to each token in the
text a label indicating whether it starts a specific
mention, is inside a specific mention, or is outside
any mentions. It also assigns to every non outside
mention a class to specify its type: e.g., person, or-
ganization, location, etc. In this study, we chose the
Maximum Entropy Markov Model (MEMM hence-
forth) approach because it can easily integrate arbi-
trary types of information in order to make a clas-
sification decision. To train our models, we have
used the Sequential Conditional Generalized Itera-
tive Scaling (SCGIS) technique (Goodman, 2002).
This techniques uses a Gaussian prior for regular-
ization (Chen and Rosenfeld, 2000). The features
used by our MD systems can be divided into the fol-

lowing categories:
1- Lexical: these are token n-grams directly neigh-
boring the current token on both sides, i.e. left and
right. Empirical results have shown that the optimal
span is n = 3.
2- Syntactic: they consist of the outcomes of several
Part-Of-Speech (POS) taggers and BPCs trained on
different corpora and different tag-sets in order to
provide the MD system with a wider variety of in-
formation. Our model uses the POS and BPC in-
formation appearing in window of 5 (current, two
previous, and two next) jointly with the tokens.
Both the English and the Arabic MD systems have
access to lexical and syntactic features. The former
one, however, also employs a set of features ob-
tained from the output of other MD classifiers. In
order to provide the MD system with complemen-
tary information, these classifiers are trained on dif-
ferent datasets annotated for different mention types,
e.g. dates or occupation references (not used in our
task).

3 Annotation, Projection and Feature
Extraction

We remind the reader that our main goal is to use
an RRL MD system to enhance the performance of
an MD system in another language, i.e. the TL. In
order to achieve this goal, we propose an approach
that uses an RRL-to-TL parallel corpus to bridge be-
tween these two languages. This approach performs
in three main steps, namely: annotation, projection
and feature extraction. In this section, we describe
in details each of these steps.

3.1 Annotation
This first step consists of MD tagging of the RRL
side of the parallel corpus. Because in our case study
we have chosen English as the RRL, we have used
an accurate English MD system to perform the an-
notation step. Our English MD system achieves an
F-measure of 82.7 (Zitouni and Florian, 2009) and
has achieved significantly competitive results at the
ACE evaluation campaign.

3.2 Projection
Once the RRL side of the parallel corpus is accu-
rately augmented with MD tags, the projection step
comes to transfer those tags to the TL side, Arabic
in our case study, using the word alignment informa-
tion. We illustrate the projection step with a relevant
example. Let consider the following MD tagged En-
glish sentence:
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Bill/B-PER-NAM Clinton/I-PER-NAM is visiting
North/B-GPE-NAM Korea/I-GPE-NAM today

where “Bill Clinton” is a named person mention and
“North Korea” is a named geopolitical entity (GPE)
one. A potential Arabic translation of this sentence
would be:

ÐñJ
Ë @
�
éJ
ËAÒ

�
�Ë@ AK
Pñ» Pð 	QK


	
àñ

�
J
	
�J
Ê¿ ÉJ
K.

which might be transliterated as:

byl klyntwn yzwr kwryA Al$mAlyA Alywm

After projecting the English mentions to the Ara-
bic text, we obtain the following:

byl/B-PER-NAM klyntwn/I-PER-NAM yzwr
kwryA/B-GPE-NAM Al$mAlyp/I-GPE-NAM

Alywm

This tagged version of the Arabic text is provided to
the third module of the process responsible on fea-
ture extraction (see Subsection 3.3). It is, however,
pertinent to point out that the example we have used
for illustration is relatively simple in the sense that
almost all English and Arabic words have a 1-to-1
mapping. In real world translation (both human and
automatic), one should expect to see 1-to-n, n-to-1
mappings as well as unmapped words on both sides
of the parallel corpus rather frequently.
As stated by (Klementiev and Roth, 2006), the pro-
jection of NER tags is easier in comparison to pro-
jecting other types of annotations such as POS-tags
and BPC2, mainly because:
1. Not all the words are mentions: once we have pro-
jected the tags of the mentions from the RRL to TL
side, the rest of tokens are simply considered as out-
side any mentions. This is different from the POS-
tag and BPC where all the words are assigned a tag
and thus when a word is unmapped, further process-
ing is required (Yarowsky et al., 2001);
2. In case of a 1-to-n mapping, the target n
words are assigned the same class: for instance, let
consider the English GPE named mention “North-
Korea”. The segmented version of its Arabic transla-
tion would be “ �

éJ
ËAÖÞ
�
� È@ AK
Pñ»” (kwrya Al $mAlyp).

The projection process consists in simply assigning
the same class, i.e. GPE, to all Arabic tokens. The
problem takes another dimension, however, in the
case of propagating the POS-tags, because “North”
is a NNP aligned with the determinant (DET) “Al”
and the NNP “$mAlyp”. Additional processing is
needed to handle this difference of tags on the two

2The claim is also valid for MD because it is the same type
of annotation.

sides.
3. In case of n-to-1 mapping, the TL side word is
simply assigned the class propagated from the RRL
side. For instance, if on the English side we have the
named person multi-word mention “Ben Moussa”,
translated into the one-word mention úæ�ñÒ

	
JK. (bn-

mwsY) on the Arabic side, then projection consists
of simply assigning the person named tag to the Ara-
bic word.
However, in our research study, new challenges
arose because our RRL data are automatically an-
notated, which is different from what has been re-
ported in the research works we have mentioned be-
fore, i.e. (Yarowsky et al., 2001) and (Klementiev
and Roth, 2006), where gold annotated data were
used. In order to relax the impact of the noise intro-
duced by the English MD system, we :
1. use mention “splits” to filter annotation errors:
We assume that when a sequence of tokens is tagged
as a mention on the RRL side, its TL counterpart
should be an uninterrupted sequence of tokens as
well. When the RRL MD system captures incor-
rectly the span of a mention, e.g. in the sentence
“Dona Karan international reputation of ...”, the
RRL MD system might mistakenly tag “Dona Karan
international” as an organization mention instead of
tagging “Dona Karan” as a person mention. It is pos-
sible to detect this type of errors on the TL side be-
cause “dwnA kArAn” (Dona Karan) is distant from
“Al EAlmyp” (international), i.e. they do not form
an uninterrupted token sequence. We use this “split”
in the mentions as information in order to not use
these mentions in the feature extraction step (see
Subsection 3.3).
2. do not use the projected mentions directly for
training: Instead, we use these tags as additional
features to our TL baseline model and allow our
MEMM classifier to weigh them according to their
relevance to each mention type.

3.3 Feature Extraction
At this point, the parallel corpus should be anno-
tated with mentions on both of its sides. Where
the RRL side is tagged using the English MD
system during the annotation step (c.f section 3.1)
while the TL side is annotated by the propagation
of these MD tags via the parallel corpus in the
projection step (c.f. section 3.2). In this third step,
the goal is to extract pertinent linguistic features
of the automatically tagged TL corpus to enhance
MD model in the TL. The explored features are as
follows:
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1. Gazetteers: we group mentions by class in
different dictionaries. During both training and
decoding, when we encounter a token or a sequence
of tokens that is part of a dictionary, we fire its
corresponding class; the feature is fired only when
we find a complete match between sequence of
tokens in the text and in the dictionary.
2. Model-based features: it consists of building a
model on the automatically tagged TL side of the
parallel corpus. The output of this model is used
as a feature to enhance MD model in the target
language. However, it is also possible to use this
model to directly tag text in the TL. This would
be useful in cases where we do not have any TL
annotated data.
3. n-gram context features: it consists of using
the annotated corpus in the TL to collect n-gram
tokens surrounding a mention. We organize those
contexts by mention type and we use them to
tag tokens which appear in the same context
in both the training and decoding sets. These
tags will be used as additional feature in the
MD model. For instance, if we consider that
the person mention 	á�
�k Ð@Y� (SdAm Hsyn -
Sadam Husein) appears in the following sentence:
C

�
�A

	
¯ AÓA

	
¢

	
� �



@Q

�
�K


	á�
�k Ð@Y�
	
à



@ �Ó



@ hQå�

which might be transliterated as: SrH Ams An SdAm
Hsyn ytrAs nZAmA fA$lA and translated to English
as: declared yesterday that Sadam Husein governs
a failed system
the context n-grams that would be extracted are:

. Left n-grams: W−1= 	
à



@ (An - that),

W−2= 	
à



@ �Ó



@ (Ams An - yesterday that), etc.

. Right n-grams: W+1=�


@Q

�
�K
 (ystrAs - governs),

W+2= AÓA
	

¢
	
� �



@Q

�
�K
 (ytrAs nZAmA - governs a sys-

tem), etc.
. Left and right n-grams: a joint of the two previ-
ous features, W−i and W+i.

For both training and test data we create a new
feature stream where we indicate that a token se-
quence is a mention if it appears in the same n-gram
context.
4. Head-word based features: it considers that
the lexical context in which the mention appeared
is the sequence of the parent sub-trees head words
in a parse-tree. For instance, if we consider the sen-
tence which we have used in the previous example,
the corresponding parse tree is shown in Figure 1.

The parent sub-tree heads of ‘SdAm Hsyn’ are

S

VPp3hhhhhhh
����
(((((((

SrHh3 NP

Ams

SBARp2hhhhhhhh
((((((((

Anh2 Sp1PPPP
����

NP
aaa

!!!
SdAm Hsyn

VP
Q
Q

�
�

ytrAsh1 NP
TT��
· · ·

Figure 1: Parse tree

marked with hi on the tree. Similarly to the other
features, in both training and decoding sets, we
create a new feature stream where we tag those
token sequences which appear with the same n first
parent sub-tree head words as a person mention in
the annotated TL data.

5. Parser-based features: it attempts to use the
syntactic environment in which a mention might ap-
pear. In order to do so, for each mention in the tar-
get language corpus we consider only labels of the
parent non-terminals .We mark parent non-terminal
labels of ‘SdAm Hsyn’ on the tree with pi. Simi-
larly to the features described above, we create dur-
ing both training and test a new feature stream where
we indicate the token sequences which appear in the
same parent non-terminal labels.
Gazetteers and model-based features are the most
natural and expected kind of features that one would
extract from the automatically MD tagged version of
the TL text. Our motivation of using n-gram context
features, on one hand, and the head-word based and
parse-based features on the other is to: (i) contrast
the impact of local and global context features; and
(ii) experiment the possibility of employing both of
them jointly in order to test their complementarity.

4 The Target Language Mention Detection
System

- The Arabic language: In our research study, we
have intentionally chosen a TL which is differs from
English in its strategy in forming words and sen-
tences. By doing so, we are seeking to avoid ob-
taining results which are biased by the similarity of
the employed languages. For this reason, we have
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chosen Arabic as a TL.
Due to its Semitic origins, the Arabic language is
both derivational, i.e. it uses a templatic strategy
to form a word, and highly inflectional, i.e. addi-
tional affixes might be added to a word in order to
obtain further meaning. Whereas the former char-
acteristic is common in most languages, the latter,
however, results in increasing sparseness in data
and consequently forming an obstacle to achieve a
high performance for most of the NLP tasks (Diab
et al., 2004; Benajiba et al., 2008; Zitouni et al.,
2005; Zitouni and Florian, 2008). From a NLP
viewpoint, especially the supervised tasks such as
the one we are dealing with in this paper, this im-
plies that a huge amount of training data is nec-
essary in order to build a robust model. In our
study, to tackle the data sparseness problem, we have
performed the word segmentation. This segmenta-
tion pre-processing step consists of separating the
normal white-space delimited words into prefixes,
stems, and suffixes. Thus, from a modeling view-
point, the unit of analysis becomes the segments. We
use a technique similar to the one introduced in (Lee
et al., 2003) for segmentation with an accuracy of
98%.
- The Arabic MD system: Our Arabic MD system
employs the same technique presented in Section 2.
Compared to English MD model, Arabic MD sys-
tem has access to morphological information (Stem)
as we will explain next. Features used by the Arabic
MD system are divided in three categories:
1. Lexical: Similar to the lexical features used by
our English MD system (c.f. section 2);
2. Stem: This feature has been introduced in (Zitouni
et al., 2005) as stem n-grams spanning the current
stem; both preceding and following it. If the current
token xi is a stem, stem n-gram features contain the
previous n− 1 stems and the following n− 1 stems.
Stem n-gram features represent a lexical generaliza-
tion that reduce data sparseness;
3. Syntactic: it consists of the output of POS taggers
and the BPCs.
As we describe with more details in the experiments
section (see Section 6), once we have extracted the
new features from the parallel corpus, we contrast
their impact with the level of richness in features of
the TL MD system, i.e. we measure the impact of
each feature fi when the TL MD system uses: (i)
only lexical features; (ii) both lexical and stem fea-
tures; and (iii) lexical, stem and syntactic features.

5 Evaluation Data
Experiments are conducted on the Arabic ACE 2007
data. There are 379 Arabic documents and al-
most 98, 000 words. We find seven classes of men-
tions: Person (PER), Organization (ORG), Geo-
Political Entity (GPE), Location (LOC), Facility
(FAC), Vehicle (VEH) and Weapon (WEA). Since
the evaluation test sets are not publicly available,
we have split the publicly available training cor-
pus into an 85%/15% data split. We use 323 doc-
uments (80, 000 words) for training and 56 docu-
ments (18, 000 words) as a test set. This results
in 17, 634 mentions (7, 816 named, 8, 831 nominal
and 987 pronominal) for training and 3, 566 for test
(1, 673 named, 1, 682 nominal and 211 pronominal).
To facilitate future comparisons with work presented
here, and to simulate a realistic scenario, the splits
are created based on article dates: the test data is se-
lected as the latest 15% of the data in chronological
order, in each of the covered genres (newswire and
webblog). Performance on the ACE data is usually
evaluated using a special-purpose measure, i.e. the
ACE value metric. However, given that we are inter-
ested in the mention detection task only, we decided
to use the more intuitive and popular (un-weighted)
F-measure, the harmonic mean of precision and re-
call.

6 Experiments and Results
As we have stated earlier, our main goal is to in-
vestigate how an MD model of a TL might bene-
fit from additional information about the mentions
obtained by propagation from an RRL. In our re-
search study we have chosen Arabic as the TL and
English as the RRL. The English MD system we use
has access to a large set of information (Zitouni and
Florian, 2009) and has achieved a performance of
82.7F on ACE’07 data. In order to simulate differ-
ent levels of resource-richness for the TL, we have
employed four baseline systems which use different
feature-sets. Following we present these feature-sets
ranked from the resource-poorest to the resource-
richest one: 1- Lex.: lexical features; 2- Stem.:
Lex. + stem features; and 3- Syntac.: Stem. + syn-
tactic features.
For each of these baseline systems, we study the im-
pact of features extracted from the parallel corpus
(c.f. Section 3) separately. We report the following
results:
1- Base.: baseline system without the use of
parallel-data extracted features;
2- n− Lex.: Base. + n-gram context features;
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Lex. Stem Syntac
Base. 74.14 74.47 75.53
n− Lex. 74.71 75.25 76.20
n−Head 74.63 75.29 75.93
n− Pars. 75.32 75.19 75.74
Gaz 74.90 74.79 75.66
Model 74.60 75.50 76.22
Comb. 76.01 76.74 77.18

Table 1: Obtained results when the features were ex-
tracted from a hand-aligned parallel corpus

3- n−Head: Base. + head-word based features;
4- n− Pars.: Base. + parser-related features;
5- Gaz.: Base. + automatically extracted
gazetteers from the parallel corpus;
6- Model: Base. + output of model trained on the
Arabic part of the parallel corpus;
7- Comb.: combination of all the above.
In the rest of the paper, to measure whether the im-
provement in performance of a system using fea-
tures from parallel data over baseline is statistically
significant or not, we use the stratified bootstrap re-
sampling significance test (Noreen, 1989) used in
the NER shared task of CoNLL-20023. We consider
results as statistically significant when p < 0.02.

6.1 Hand-aligned Data

In our first experiment-set, we use a hand-aligned
English-to-Arabic parallel corpus of approximately
one million words. After tagging the Arabic side
by projection we obtain 86.5K mentions. As we
have previously mentioned, in order to generate
the model-based feature, Model, we have trained a
model on the Arabic side of the parallel corpus. This
model achieved an F-measure of 57.7F. This shows
the performance that might be achieved when no hu-
man annotated data is available in the TL.

Results in Table 1 show that a significant improve-
ment is obtained when the TL is poor in resources;
for instance an improvement of ∼1.9 points was
achieved when the TL used only lexical features.
The use of n − Pars. features alone yielded 1.2
points of improvement. when the TL model uses a
rich feature-set, we still can obtain ∼1.7 points im-
provement. When the TL baseline model employs
the Syntac feature-set, the greatest improvement
is obtained when we add the model-based feature.
Improvement obtained by the system using Comb.

3http://www.cnts.ua.ac.be/conll2002/ner/

features is statistically significant compared to the
baseline model. This system also outperforms sys-
tems using the new feature set separately across the
board. According to our error-analysis, the signif-
icant amount of Arabic mentions observed in the
parallel corpus, where many of them do not appear
in the training corpus, has significantly helped the
Lex., Stem and SyntacMD models to capture new
mentions and/or correct the type assigned. Some of
the relevant examples in our data are: (i) the facility
mention Pñ

	
®ÊK. ú

	
æJ.Ó (mbnY blfwr - Belvoir Build-

ing); (ii) the GPE mention ÈñK. A¿ (kAbwl - Kabul);
and (iii) the person mention 	á

�
�

�
JªJ. Ë @ (AlbEvyyn - the

Baathists). These mentions have only been tagged
correctly when we have added the new extracted fea-
tures to our model.
In other words, the error-analysis clearly points out
that one possible way to get further improvement is
to increase the parallel data in order to increase the
number of matches between (1) the number of men-
tions which are wrongly tagged by the TL MD model
and (2) the number of mentions in the TL side of the
parallel corpus. The second parameter can be, indi-
rectly, increased by increasing the size of the paral-
lel data. Getting 10 or 20 times more of parallel data
that is hand-aligned is expensive and requires sev-
eral months of human/hours work. For this reason
we opted for using an unsupervised approach by se-
lecting a parallel corpus that is automatically aligned
as we discuss in the next section.

6.2 Automatically-aligned Data

We have used for this experiment-set an Arabic-to-
English parallel data of 22 million words. The data
in this corpus is automatically aligned using a tech-
nique presented in (Ittycheriah and Roukos, 2005).
The alignment is one-to-many with a performance
around 87 F-measure.

Because we are dealing with a large amount of
data and the word alignment is done automatically,
meaning more noise, we have used the English MD
model confidence for additional filtering. Such fil-
tering consists in keeping, from the parallel corpus,
only sentences which have all tokens tagged with a
confidence greater than α. In this paper, we use a
value of α = 0.94, which results in a corpus of 17
million words. We notice that a lower value of α re-
sults in a radical increase in noise. Because of space
limitation, we will report results only with this value
of α.

Table 2 shows the obtained results for parallel-
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Lex. Stem Syntac
Base. 74.14 74.47 75.53
n− Lex. 74.27 74.74 75.24
n−Head. 74.07 74.95 75.33
n− Pars. 75.62 75.22 76.02
Gaz 73.96 74.11 74.94
Model 74.87 75.12 75.76
Comb. 75.56 75.93 76.46

Table 2: Obtained results when the features were ex-
tracted from a automatically-aligned parallel corpus

data based features using the 17M subset. Differ-
ently from experiments using hand-aligned data, the
best results have been obtained when we have used
the parser-based feature, i.e. n − Pars. On one
hand, the overall behavior is comparable to the one
obtained when using the 1M hand-aligned parallel
data (see Table 1), i.e. (i) the greatest improve-
ment has been obtained when the TL uses a poor
feature-set; and (ii) when the TL baseline model is
rich in resources, we still obtain 0.45 points absolute
improvement when using n − Pars. On the other
hand, features extracted from automatically-aligned
data, in comparison with the ones extracted from the
hand aligned data, have helped the MD model to cor-
rect many of the TL baseline model false negatives.
This has been observed when the TL baseline sys-
tem uses a rich feature set as well. A side effect of
the noisy word alignment, however, was an increase
in the number of false positives. For instance, the
word �

H@Qå
	
�j

�
J�Ó (mstHDrAt - preparations) which

appeared in the following sentence:

øQ
	

k


@

�
H@Qå

	
�j

�
J�ÖÏ hAÒ�Ë@ ÐY«

which might be transliterated as:

Edm AlsmAH lmstHDrAt AxrY

and translated to English as:

not to allow other preparations

has been tagged as an organization mention because
it has been mistakenly aligned, in the parallel cor-
pus, with the word ðA¿, KO, in the sentence:

�
éJ
ÊJ
Òj.

�
JË @

�
H@Qå

	
�j

�
J�Ò

�
ÊË øQ�.ºË@ ðA¿

�
é»Qå

�
�

meaning:

The big cosmetics company KO.

In order to validate our results, we run our exper-
iments on a blind test-set. We have selected the
latest 5% of each genre of the hand-aligned data

Class Num. of mentions
FAC 285
GPE 2,145
LOC 239
ORG 1,135
PER 2,474
VEH 65
WEA 138

Table 3: Distribution over the classes of the blind test
mentions

Lex. Stem Syntac
Base. 74.26 73.54 73.61
n− Lex. 74.04 73.72 73.83
n−Head 74.14 73.64 73.83
n− Pars. 74.32 74.18 74.32
Gaz 71.49 72.13 73.39
Model 75.01 74.66 74.78

Table 4: Obtained results on blind test

and they have been manually annotated by a hu-
man. The blind test-set consists of 51,781 tokens of
which 6,481 are mentions. Table 3 shows the distri-
bution of these mentions over the different classes.
The results are shown in Table 4. These results con-
firm the conclusions we have deduced from the ones
previously presented in Table 2, i.e.: (i) the highest
improvement is obtained when the TL is resource-
scarce.

6.3 Combining Hand-aligned and
Automatically-aligned Data

Table 5 shows that combining both features
extracted from hand-aligned and automatically-
aligned corpora has led to better results. The im-

Lex. Stem Syntac
Base. 74.14 74.47 75.53
n− Lex. 74.60 75.08 75.58
n−Head 74.51 75.32 75.56
n− Pars. 75.46 75.90 76.22
Gaz 74.85 74.83 75.92
Model 74.83 75.59 75.40
Comb. 76.39 76.85 77.23

Table 5: Obtained results when the features were
extracted from both hand-aligned and automatically-
aligned parallel corpora
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provement of using Comb. compared to baseline is
statistically significant. We notice again that when
the TL baseline MD model uses a richer feature set,
the obtained improvement from using RRL becomes
smaller. We also observed that automatically aligned
data helped capture most of the unseen mentions
whereas the hand-aligned features helped decrease
the number of false-alarms. It is important to notice
that when features Comb. is used with Stem base-
line model, the obtained F-measure (76.85) is 1.3
higher than the baseline model which uses lexical,
stem and syntactic features – Syntac (75.53). The
type of errors which mostly occur and has not been
fixed neither by using hand-aligned data, automati-
cally aligned data nor the combination of both are
the nominal mentions whose class depends fully on
the context. For instance, the word 	

­
	

£ñÓ (mwZf -
employee) which was considered as O by the MD
model because it has not been seen in any of the par-
allel data in a context such as the following:

. . . 	
àA¿ ø



Qå�ÖÏ @

	
­

	
£ñÖÏ @ É¾

�
�

	
­K
Qª

�
K

transliterated as:
tEryf $kl AlmwZf AlmSry ...

and translated as: “defining the life of the Egyptian
employee ...”

7 Previous Works
Several research works, in different NLP tasks, have
shown that the use of an RRL to achieve a better
performance in a resource-challenged language
yields to successful results. In (Rogati et al., 2003),
authors used a statistical machine translation (MT)
system to build an Arabic stemmer. The obtained
stemmer has a performance of 87.5%. In (Ide et al.,
2002), authors use the aligned versions of George
Orwell’s Nineteen Eighty-Four in seven languages
in order to determine sense distinctions which can
be used in the Word Sense Disambiguation (WSD)
task. They report that the automatically obtained
tags are at least as reliable as the one made by hu-
man annotators. Similarly, (Ng et al., 2003) report a
research study which uses an English-Chinese par-
allel corpus in order to extract sense-tagged training
data. In (Hwa et al., 2002), authors report promising
results of inducing Chinese dependency trees from
English. The obtained model outperformed the
baseline.

One of the significant differences between these
works and the one we present in this paper is that
instead of using the propagated annotation directly

as training data we use it as an additional feature and
thus allow the MEMM model to weigh each one of
them. By doing so, the model is able to distinguish
between the relevant and the irrelevant information
propagated from the RRL.

Authors in (Zitouni and Florian, 2008) attempt to
enhance an MD model of a foreign language by us-
ing an English MD system. They have used an MT
system to (i) translate the text to English; (ii) run the
English model on the translated text; (iii) and prop-
agate outcome to the original text. The approach
in (Zitouni and Florian, 2008) requires a MT system
that needs more effort and resources to build when
compared to a parallel corpus (used in our experi-
ments); not all institutions may have access to MT
and MD systems in plenty of language pairs.

8 Conclusions and Future Works
In this paper, we presented a novel approach that al-
lows to exploit the richness, in terms of resources, of
one language (English) to the benefit of a target lan-
guage (Arabic). We achieved successful results by
adopting a novel approach performing in three main
steps, namely: (i) Annotate the English side of an
English-to-Arabic parallel corpus automatically; (ii)
Project the obtained annotation from English to Ara-
bic via the parallel corpus; and (iii) Extract features
of different linguistic motivations of the automati-
cally tagged Arabic tokens. Thereafter, each of the
extracted features is used to bootstrap Arabic MD
system. We use different Arabic baseline MD mod-
els which employ different feature sets representing
different levels of richness in resources. We also use
both a one million word hand-aligned parallel cor-
pus and a 22 million word automatically aligned one
in order to study size vs. noise trade-off.
Results show that a statistically significant improve-
ment is always observed even when the Arabic base-
line MD model uses all the available resources.
When we use the hand-aligned parallel corpus, we
obtain up to 2.2 points improvement when the Ara-
bic MD model has access to very limited resources.
It decreases to 1.7 points when we use all the re-
sources we could gather for the Arabic language.
When no human-annotated data is available in the
TL, we show that we can obtain a performance of
57.6 using only mention propagation from RRL.
The results also show that a greater improvement
is achieved when using a small hand-aligned corpus
than using a 20 times bigger automatically aligned
data. However, in case both of them are available,
combining them leads to even higher results.
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Abstract

Named-entity recognition (NER) is an impor-
tant task required in a wide variety of ap-
plications. While rule-based systems are ap-
pealing due to their well-known “explainabil-
ity,” most, if not all, state-of-the-art results
for NER tasks are based on machine learning
techniques. Motivated by these results, we ex-
plore the following natural question in this pa-
per: Are rule-based systems still a viable ap-
proach to named-entity recognition? Specif-
ically, we have designed and implemented
a high-level language NERL on top of Sys-
temT, a general-purpose algebraic informa-
tion extraction system. NERL is tuned to the
needs of NER tasks and simplifies the pro-
cess of building, understanding, and customiz-
ing complex rule-based named-entity annota-
tors. We show that these customized annota-
tors match or outperform the best published
results achieved with machine learning tech-
niques. These results confirm that we can
reap the benefits of rule-based extractors’ ex-
plainability without sacrificing accuracy. We
conclude by discussing lessons learned while
building and customizing complex rule-based
annotators and outlining several research di-
rections towards facilitating rule development.

1 Introduction

Named-entity recognition (NER) is the task of iden-
tifying mentions of rigid designators from text be-
longing to named-entity types such as persons, orga-
nizations and locations (Nadeau and Sekine, 2007).
While NER over formal text such as news articles
and webpages is a well-studied problem (Bikel et

al., 1999; McCallum and Li, 2003; Etzioni et al.,
2005), there has been recent work on NER over in-
formal text such as emails and blogs (Huang et al.,
2001; Poibeau and Kosseim, 2001; Jansche and Ab-
ney, 2002; Minkov et al., 2005; Gruhl et al., 2009).
The techniques proposed in the literature fall under
three categories: rule-based (Krupka and Hausman,
2001; Sekine and Nobata, 2004), machine learning-
based (O. Bender and Ney, 2003; Florian et al.,
2003; McCallum and Li, 2003; Finkel and Manning,
2009; Singh et al., 2010) and hybrid solutions (Sri-
hari et al., 2001; Jansche and Abney, 2002).

1.1 Motivation
Although there are well-established rule-based sys-
tems to perform NER tasks, most, if not all, state-of-
the-art results for NER tasks are based on machine
learning techniques. However, the rule-based ap-
proach is still extremely appealing due to the associ-
ated transparency of the internal system state, which
leads to better explainability of errors (Siniakov,
2010). Ideally, one would like to benefit from the
transparency and explainability of rule-based tech-
niques, while achieving state-of-the-art accuracy.

A particularly challenging aspect of rule-based
NER in practice is domain customization — cus-
tomizing existing annotators to produce accurate re-
sults in new domains. In machine learning-based
systems, adapting to a new domain has tradition-
ally involved acquiring additional labeled data and
learning a new model from scratch. However, recent
work has proposed more sophisticated approaches
that learn a domain-independent base model, which
can later be adapted to specific domains (Florian et
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BASEBALL - MAJOR LEAGUE 
STANDINGS AFTER TUESDAY 'S GAMES 
NEW YORK 1996-08-28…
…
AMERICAN LEAGUE 
EASTERN DIVISION 
W L PCT GB 
NEW YORK 74 57 .565 -
BALTIMORE 70 61 .534 4 
BOSTON 68 65 .511 7 
…
TEXAS AT KANSAS CITY
BOSTON AT CALIFORNIA
NEW YORK AT SEATTLE
…

BASEBALL - ORIOLES WIN , YANKEES
LOSE . 
BALTIMORE 1996-08-27
…
In Seattle , Jay Buhner 's eighth-inning single 
snapped a tie as the Seattle Mariners edged 
the New York Yankees 2-1 in the opener of a 
three-game series .
New York starter Jimmy Key left the game in 
the first inning after Seattle shortstop Alex 
Rodriguez lined a shot off his left elbow .
…

Document d1 Document d2

Customization Requirement : City, County or State names within sports articles 
may refer to a sports team  or to the location itself.

Customization Solution (CS) :
Within sports articles, 

Identify all occurrences of city/county/state as Organizations, 
Except when a contextual clue indicates that the reference is to the location

Organization Location

Figure 1: Example Customization Requirement

al., 2004; Blitzer et al., 2006; Jiang and Zhai, 2006;
Arnold et al., 2008; Wu et al., 2009). Implement-
ing a similar approach for rule-based NER typically
requires a significant amount of manual effort to (a)
identify the explicit semantic changes required for
the new domain (e.g., differences in entity type def-
inition), (b) identify the portions of the (complex)
core annotator that should be modified for each dif-
ference and (c) implement the required customiza-
tion rules without compromising the extraction qual-
ity of the core annotator. Domain customization of
rule-based NER has not received much attention in
the recent literature with a few exceptions (Petasis et
al., 2001; Maynard et al., 2003; Zhu et al., 2005).

1.2 Problem Statement
In this paper, we explore the following natural ques-
tion: Are rule-based systems still a viable approach
to named-entity recognition? Specifically, (a) Is it
possible to build, maintain and customize rule-based
NER annotators that match the state-of-the-art re-
sults obtained using machine-learning techniques?
and (b) Can this be achieved with a reasonable
amount of manual effort?

1.3 Contributions
In this paper, we address the challenges mentioned
above by (i) defining a taxonomy of the different
types of customizations that a rule developer may
perform when adapting to a new domain (Sec. 2), (ii)
identifying a set of high-level operations required
for building and customizing NER annotators, and
(iii) exposing these operations in a domain-specific
NER rule language, NERL, developed on top of Sys-

// Core rules identify Organization and Location can didates

// Begin customization
// Identify articles covering sports event from art icle title 
CR1 <SportsArticle> ���� Evaluate Regular Expressions <R1>

// Identify locations in sports articles
CR2 Retain <Location> As <LocationMaybeOrg> If ContainedWithin <SportsArticle>

// City/County/State references (e.g., New York) ma y refer to the sports team in that city
CR3 Retain <LocationMaybeOrg> If Matches Dictionaries

<‘cities.dict’,’counties.dict’,’states.dict’>

// Some city references in sports articles may refe r to the city (e.g., In Seattle )
// These references should not be reclassified as O rganization
CR4 Discard <LocationMaybeOrg> If Matches Regular Expression <R2>

on Left Context 2 Tokens

// City references to sports teams are added to Org anization and removed from Location
CR5 Augment <Organization> With <LocationMaybeOrg>
// End customization

// Continuation of core rules
// Remove Locations that overlap with Organizations

Discard <Location> If Overlaps Concepts <Organization>

Figure 2: Example Customization Rules in NERL

temT (Chiticariu et al., 2010), a general-purpose
algebraic information extraction system (Sec. 3).
NERL is specifically geared towards building and
customizing complex NER annotators and makes it
easy to understand a complex annotator that may
comprise hundreds of rules. It simplifies the iden-
tification of what portions need to be modified for
a given customization requirement. It also makes
individual customizations easier to implement, as il-
lustrated by the following example.

Suppose we have to customize a domain-
independent rule-based NER annotator for the
CoNLL corpus (Tjong et al., 2003). Consider the
two sports-related news articles in Fig. 1 from the
corpus, where city names such as ‘New York’ or
‘Seattle’ can refer to either a Location or an Orga-
nization (the sports team based in that city). In the
domain-independent annotator, city names were al-
ways identified as Location, as this subtle require-
ment was not considered during rule development.
A customization to address this issue is shown in
Fig. 1, which can be implemented in NERL with five
rules (Fig. 2). This customization (explained in de-
tail in Sec. 3) improved the Fβ=1 score for Organi-
zation and Location by approximately 9% and 3%,
respectively (Sec. 4).

We used NERL to customize a domain-
independent rule-based NER annotator for three
different domains – CoNLL03 (Tjong et al., 2003),
Enron (Minkov et al., 2005) and ACE05 (NIST,
2005). Our experimental results (Sec. 4.3) demon-
strate that the customized annotators have extraction
quality better than the best-known results for
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Affects Single Affects Multiple
Entity Type Entity Types

Identify New Instances CS , CDD , CDSD BR

Modify Existing instances CEB , CDD CATA, CG

Table 1: Categorizing NER Customizations

individual domains, which were achieved with
machine learning techniques. The fact that we are
able to achieve such results across multiple domains
answers our earlier question and confirms that
we can reap the benefits of rule-based extractors’
explainability without sacrificing accuracy.

However, we found that even using NERL, the
amount of manual effort and expertise required in
rule-based NER may still be significant. In Sec. 5,
we report on the lessons learned and outline several
interesting research directions towards simplifying
rule development and facilitating the adoption of the
rule-based approach towards NER.

2 Domain Customization for NER

We consider NER tasks following the broad defini-
tion put forth by (Nadeau and Sekine, 2007), for-
mally defined as follows:

Definition 1 Named entity recognition is the task of
identifying and classifying mentions of entities with
one or more rigid designators, as defined by (Kripke,
1982).

For instance, the identification of proper nouns
representing persons, organizations, locations, prod-
uct names, proteins, drugs and chemicals are consid-
ered as NER tasks.

Based on our experience of customizing NER an-
notators for multiple domains, we categorize the
customizations involved into two main categories as
listed below. This categorization motivates the de-
sign of NERL (Sec. 3).
Data-driven (CDD): The most common NER cus-
tomization is data-driven, where the customizations
mostly involve the addition of new patterns and
dictionary entries, driven by observations from the
training data in the new domain. An example is
the addition of a new rule to identify locations from
the beginning of news articles (e.g., “BALTIMORE
1995-08-27” and “MURCIA , Spain 1996-09-10”).
Application-driven: What is considered a valid
named entity and its corresponding type can vary

across application domains. The most common di-
mensions on which the definition of a named entity
can vary are:
Entity Boundary (CEB): Different application do-
mains may have different definitions of where the
same entity starts or ends. For example, a Person
may (CoNLL03) or may not (Enron) include gener-
ational markers (e.g. “Jr.” in “Bush Jr.” or “IV” in
“Henry IV”).
Ambiguous Type Assignment (CATA): The exact
type of a given named entity can be ambiguous.
Different applications may assign different types
for the same named entity. For instance, all in-
stances of “White House” may be considered as Lo-
cation (CoNLL03), or be assigned as Facility or Or-
ganization based on their context (ACE05). In fact,
even within the same application domain, entities
typically considered as of the same type may be as-
signed differently. For example, given “New York
beat Seattle” and “Ethiopia beat Uganda”, both
‘New York’ and ‘Ethiopia’ are teams referred by their
locations. However, (Tjong et al., 2003) considers
the former, which corresponds to a city, as an Orga-
nization, and the latter, which corresponds to a coun-
try, as a Location.
Domain-Specific Definition (CDSD): Whether a
given term is even considered a named entity may
depend on the specific domain. As an example, con-
sider the text “Commercialization Meeting - SBeck,
BHall, BSuperty, TBusby, SGandhi-Gupta”. Infor-
mal names such as ‘SBeck’ and ‘BHall’ may be con-
sidered as valid person names (Enron).
Scope(CS): Each type of named entity usually con-
tains several subtypes. For the same named en-
tity task, different applications may choose to in-
clude different sets of subtypes. For instance,
roads and buildings are considered part of Location
in CoNLL03, while they are not included in ACE05.
Granularity(CG): Name entity types are hierarchi-
cal. Different applications may define NER tasks
at different granularities. For instance, in ACE05,
Organization and Location entity types were split
into four entity types (Organization, Location, Geo-
Political Entity and Facility).

The different customizations are summarized as
shown in Tab. 1, based on the following criteria: (i)
whether the customization identifies new instances
or modifies existing instances; and (ii) whether the
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customization affects single or multiple entities. For
instance, CS identifies new instances for a single en-
tity type, as it adds instances of a new subtype for an
existing entity type. Note that BR in the table de-
notes the rules used to build the core annotator.

3 Named Entity Rule Language

3.1 Grammar vs. Algebraic NER
Traditionally, rule-based NER systems were based
on the popular CPSL cascading grammar specifi-
cation (Appelt and Onyshkevych, 1998). CPSL is
designed so that rules that adhere to the standard
can be executed efficiently with finite state transduc-
ers. Accordingly, the standard defines a rigid left-to-
right execution model where a region of text can be
matched by at most one rule according to a fixed rule
priority, and where overlapping annotations are dis-
allowed in the output of each grammar phase.

While it simplifies the design of CPSL engines,
the rigidity of the rule matching semantics makes
it difficult to express operations frequently used in
rule-based information extraction. These limitations
have been recognized in the literature, and several
extensions have been proposed to allow more flex-
ible matching semantics, and to allow overlapping
annotations (Cunningham et al., 2000; Boguraev,
2003; Drozdzynski et al., 2004). However, even
with these extensions, common operations such as
filtering annotations (e.g. CR4 in Fig. 2), are dif-
ficult to express in grammars and often require an
escape to custom procedural code.

Recently, several declarative algebraic languages
have been proposed for rule-based IE systems, no-
tably AQL (Chiticariu et al., 2010) and Xlog (Shen
et al., 2007). These languages are not constrained
by the requirement that all rules map onto finite state
transducers, and therefore can express a significantly
richer semantics than grammar-based languages. In
particular, the AQL rule language as implemented in
SystemT (Chiticariu et al., 2010) can express many
common operations used in rule-based information
extraction without requiring custom code. In addi-
tion, the separation of extraction semantics from ex-
ecution enables SystemT’s rule optimizer and effi-
cient runtime engine. Indeed, as shown in (Chiti-
cariu et al., 2010), SystemT can deliver an order of
magitude higher annotation throughput compared to

a state-of-the-art CPSL-based IE system.
Since AQL is a general purpose information ex-

traction rule language, similar to CPSL and JAPE,
it exposes an expressive set of capabilities that go
beyond what is required for NER tasks. These ad-
ditional capabilities can make AQL rules more ver-
bose than is necessary for implementing rules in the
NER domain. For example, Fig. 3 shows how the
same customization rule CR4 from Fig. 2 can be
implemented in JAPE or in AQL. Notice how im-
plementing even a single customization may lead to
defining complex rules (e.g. JAPE-R1, AQL-R1)
and sometimes even using custom code (e.g. JAPE-
R2). As illustrated by this example, the rules in AQL
and JAPE tend to be complex since some operations
— e.g., filtering the outputs of one rule based on the
outputs of another rule — that are common in NER
rule sets require multiple rules in AQL or multiple
grammar phases in JAPE.

To make NER rules easier to develop and to
understand, we designed and implemented Named
Entity Rule Language (NERL) on top of SystemT.
NERL is a declarative rule language designed specif-
ically for named entity recognition. The design of
NERL draws on our experience with building and
customizing multiple complex NER annotators. In
particular, we have identified the operations required
in practice for such tasks, and expose these opera-
tions as built-in constructs in NERL. In doing so, we
ensure that frequently performed operations can be
expressed succinctly, so as not to complicate the rule
set unnecessarily. As a result, NERL rules for named
entity recognition tasks are significantly more com-
pact and easy to understand than the equivalent AQL
rules. At the same time, NERL rules can easily be
compiled to AQL, allowing our NER rule develop-
ment framework to take advantage of the capabilities
of the SystemT rule optimizer and efficient runtime
execution engine.

3.2 NERL
For the rest of this section, we focus on describ-
ing the types of rules supported in NERL. In Sec. 4,
we shall demonstrate empirically that NERL can be
successfully employed in building and customizing
complex NER annotators.

A NERL rule has the following form:
IntConcept ← RuleBody(IntConcept1, IntConcept2, . . .)
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// Some city references in sports articles may refer to the city (e.g., In Seattle )
// These references should not be reclassified as Organization
CR4 Discard <LocationMaybeOrg> If Matches Regular Expression <R2> on Left Context 2 Tokens

Rule in NERL

JAPE Phase 1
Rule : AmbiguousLocationContext

({Token}[2]):context({AmbiguousLoc}): annot�
:annot.AmbiguousLoc = {lc = context.string}

JAPE Phase 2
Rule : RetainValidLocation

({AmbiguousLoc.lc =~ R2}):ambiguousloc -->
{  // rule to discard ambiguous locations

AnnotationSet loc = bindings.get(“ambiguousloc");
outputAS.removeAll(loc); 

}

Rule : RetainValidLocation
({Token}[2]):context({AmbiguousLoc}):loc    -->
{   // Action part in Java to test R2 on left context 

// and delete annotation
AnnotationSet loc = bindings.get(“loc");
AnnotationSet context = bindings.get(“context");
int begOffset = context.firstNode().getOffset().intValue(); 
int endOffset = context.lastNode().getOffset().intValue(); 
String mydocContent = doc.getContent().toString(); 
String contextString =

mydocContent.substring(begOffset, endOffset);
if (Pattern.matches(“R2”, contextString)) {

outputAS.removeAll(loc); 
}

}

create view LocationMaybeOrgInvalid as
select LMO.value as value
from LocationMaybeOrg LMO 
where MatchesRegex(/R2/,

LeftContextTok(LMO.value,2));

create view LocationMaybeOrgValid as
(select LMO.value as value 
from LocationMaybeOrg LMO)

minus
(select LMOI.value as value 
from LocationMaybeOrgInvalid LMOI);

Two Alternative Rule sets in JAPE Equivalent Rule set in AQL

JAPE-R1 JAPE-R2 AQL-R1

Figure 3: Single Customization Rule expressed in NERL, JAPE and AQL

Intuitively, a NERL rule creates an intermediate con-
cept or named entity (IntConcept for short) by ap-
plying a NERL rule on the input text and zero or
more previously defined intermediate concepts.
NERL Rule Types The types of rules supported in
NERL are summarized in Tab. 2. In what follows,
we illustrate these types by means of examples.

Feature definition (FD): FD rules identify basic
features from text (e.g., FirstName, LastName and
CapsWord features for identifying person names).
Candidate definition (CD): CD rules identify com-
plete occurrences of the target entity. For instance,
the Sequence rule “LastName followed by ‘,’ fol-
lowed by FirstName” identifies person annotations
as a sequence of three tokens, where the first and
third tokens occur in dictionaries containing last and
first names.
Candidate Refinement (CR): CR rules are used to
refine candidates generated for different annotation
types. E.g., the Filter rule CR3 in Fig. 2 retains Loca-
tionMaybeOrg annotations that appear in one of sev-
eral dictionaries.
Consolidation (CO): CO rules are used to resolve
overlapping candidates generated by multiple CD
rules. For instance, consider the text “Please see
the following request from Dr. Kenneth Lim of the
BAAQMD.”. A CD rule may identify ‘Dr. Kenneth
Lim’ as a person, while another CD rule may identify
‘Kenneth Lim’ as a candidate person. A consolidation
rule is then used to merge these two annotations to
produce a single annotation for ‘Dr. Kenneth Lim’.
NERL Examples Within these categories, three
types of rules deserve special attention, as they cor-

respond to frequently used operations and are specif-
ically designed to ensure compactness of the rule-
set. In contrast, as discussed earlier (Fig. 3), each of
these operations require several rules and possibly
custom code in existing rule-based IE systems.
DynamicDict: The DynamicDict rule is used to create
customized gazetteers on the fly. The following ex-
ample shows the need for such a rule: While ‘Clin-
ton’ does not always refer to a person’s last name
(Clinton is the name of several cities in USA), in
documents containing a full person name with ‘Clin-
ton’ as a last name (e.g., ‘Hillary Clinton’) it is rea-
sonable to annotate all references to the (possibly)
ambiguous word ‘Clinton’ as a person. This goal
can be accomplished using the rule <Create Dynamic
Dictionary using Person with length 1 to 2 tokens>,
which creates a gazetteer on a per-document basis.
Filter: The Filter rule is used to discard/retain cer-
tain intermediate annotations based on predicates on
the annotation text and its local context. Example
filtering predicates include
• Discard C If Matches Regular Expression R

• Retain C If Contains Dictionary D on Local Context LC

• Discard C If Overlaps Concepts C1, C2, . . .

ModifySpan: The ModifySpan rule is used to expand
or trim the span of a candidate annotation. For
instance, an Entity Boundary customization to in-
clude generational markers as part of a Person anno-
tation can be implemented using a ModifySpan rule
<Expand Person Using Dictionary ‘generation.dict’ on
RightContext 2 Tokens>.
Using NERL Tab. 2 shows how different types of
rules are used during rule building and customiza-
tions. Since BR and CS involve identifying one
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Rule Category Syntax BR CDD CG

CS CDSD CEB CATA

Dictionary FD Evaluate Dictionaries < D1, D2, . . . > with flags? X X
Regex FD Evaluate Regular Expressions < R1, R2, . . . > with flags? X X
PoS FD Evaluate Part of Speech < P1, P2, . . . > with language < L >? X X
DynamicDict FD Create Dynamic Dictionary using IntConcept with flags? X X
Sequence CD IntConceptorString multiplicity?

(followed by IntConceptorString multiplicity?)+ X X
Filter CR Discard/Retain IntConcept(As IntConcept)?

If SatisfiesPredicate on LocalContext X X X
ModifySpan CR Trim/Expand IntConcept Using Dictionary < D >

on LocalContext X X
Augment CO Augment IntConcept With IntConcept X X
Consolidate CO Consolidate IntConcept using ConsolidationPolicy X X

Table 2: Description of rules supported in NERL

or more entity (sub)types from scratch, all types
of rules are used. CDD and CDSD identify addi-
tional instances for an existing type and therefore
mainly rely on FD and CD rules. On the other hand,
the customizations that modify existing instances
(CEB ,CATA,CG) require CR and CO rules.

Revisiting the example in Fig. 2, CR rules were
used to implement a fairly sophisticated customiza-
tion in a compact fashion, as follows. Rule CR1

first identifies sports articles using a regular expres-
sion based on the article title. Rule CR2 marks
Locations within these articles as LocationMaybeOrg
and Rule CR3 only retains those occurrences that
match a city, county or state name (e.g., ‘Seattle’).
Rule CR4 identifies occurrences that have a contex-
tual clue confirming that the mention was to a lo-
cation (e.g., ‘In’ or ‘At’). These occurrences are al-
ready classified correctly as Location and do not need
to be changed. Finally, CR5 adds the remaining am-
biguous mentions to Organization, which would be
deleted from Location by a subsequent core rule.

4 Development and Customization of NER
extractors with NERL

Using NERL, we have developed CoreNER, a
domain-independent generic library for multiple
NER extraction tasks commonly encountered in
practice, including Person, Organization, Location,
EmailAddress, PhoneNumber, URL, and DateTime, but
we shall focus the discussion on the first three tasks
(see Tab. 3 for entity definitions), since they are the
most challenging. In this section, we first overview
the process of developing CoreNER (Sec. 4.1). We

then describe how we have customized CoreNER
for three different domains (Sec. 4.2), and present
a quality comparison with best published results ob-
tained with state-of-the-art machine learning tech-
niques (Sec. 4.3). The tasks we consider are not re-
stricted to documents in a particular language, but
due to limited availability of non-English corpora
and extractors for comparison, our evaluation uses
English-language text. In Sec. 5 we shall elaborate
on the difficulties encountered while building and
customizing CoreNER using NERL and the lessons
we learned in the process.

4.1 Developing CoreNER

We have built our domain independent CoreNER li-
brary using a variety of formal and informal text
(e.g. web pages, emails, blogs, etc.), and informa-
tion from public data sources such as the US Census
Bureau (Census, 2007) and Wikipedia.

The development process proceeded as follows.
We first collected dictionaries for each entity
type from different resources, followed by man-
ual cleanup when needed to categorize entries col-
lected into “strong” and “weak” dictionaries. For
instance, we used US Census data to create several
name dictionaries, placing ambiguous entries such
as ‘White’ and ‘Price’ in a dictionary of ambigu-
ous last names, while unambiguous entries such as
‘Johnson’ and ‘Williams’ went to the dictionary for
strict last names. Second, we developed FD and
CD rules to identify candidate entities based on the
way named entities generally occur in text. E.g.,
<Salutation CapsWord CapsWord> and <FirstName
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Type Subtypes
PER individual

LOC

Address, Boundary, Land-Region-Natural, Region-General,
Region-International, Airport, Buildings-Grounds, Path, Plant,

Subarea-Facility, Continent, Country-or-District, Nation,
Population-Center, State-or-Province

ORG Commercial, Educational, Government, Media, Medical-Science
Non-Governmental

Table 3: NER Task Types and Subtypes

LastName> for Person, and <CapsWord{1,3} OrgSuf-
fix> and <CapsWord{1,2} Industry> for Organization.
We then added CR and CO rules to account for
contextual clues and overlapping annotations (e.g.,
Delete Person annotations appearing within an Orga-
nization annotation).

The final CoreNER library consists of 104 FD (in-
volving 68 dictionaries, 33 regexes and 3 dynamic
dictionaries), 74 CD, 123 CR and 102 CO rules.

4.2 Customizing CoreNER

In this section we describe the process of customiz-
ing our domain-independent CoreNER library for
several different datasets. We start by discussing our
choice of datasets to use for customization.
Datasets For a rigorous evaluation of CoreNER’s
customizability, we require multiple datasets satis-
fying the following criteria: First, the datasets must
cover diverse sources and styles of text. Second,
the set of the most challenging NER tasks Person,
Organization and Location (see Tab. 3) considered
in CoreNER should be applicable to them. Finally,
they should be publicly available and preferably
have associated published results, against which we
can compare our experimental results. Towards this
end, we chose the following public datasets.
• CoNLL03 (Tjong et al., 2003): a collection of

Reuters news stories. Consists of formal text.
• Enron (Minkov et al., 2005): a collection of

emails with meeting information from the Enron
dataset. Contains predominantly informal text.

• ACE05 (NIST, 2005)1 a collection of broadcast
news, broadcast conversations and newswire re-
ports. Consists of both formal and informal text.

Customization Process The goal of customization
1The evaluation test set is not publicly available. Thus, fol-

lowing the example of (Florian et al., 2006), the publicly avail-
able set is split into a 80%/20% data split, with the last 20% of
the data in chronological order selected as test data.

is to refine the original CoreNER (hence referred
to as CoreNERorig) in order to improve its extrac-
tion quality on the training set (in terms of Fβ=1)
for each dataset individually. In addition, a devel-
opment set is available for CoNLL03 (referred to as
CoNLL03dev), therefore we seek to improve Fβ=1 on
CoNLL03dev as well.

The customization process for each dataset pro-
ceeded as follows. First, we studied the entity defini-
tions and identified their differences when compared
with the definitions used for CoreNERorig (Tab. 3).
We then added rules to account for the differences.
For example, the definition of Organization in the
CoNLL03 dataset contained a sports organization
subtype, which was not considered when develop-
ing CoreNER. Therefore, we have used public data
sources (e.g., Wikipedia) to collect and curate dic-
tionaries of major sports associations and sport clubs
from around the world. The new dictionaries, along
with regular expressions identifying sports teams in
sports articles were used for defining FD and CD
rules such as CR1 (Fig. 2). Finally, CR and CO rules
were added to filter invalid candidates and augment
the Organization type with the new sports subtype
(similar in spirit to rules CR4 and CR5 in Fig. 2).

In addition to the train and development sets, the
customization process for CoNLL03 also involved
unlabeled data from the corpus as follows. 1) Since
data-driven rules (CDD) are often created based on a
few instances from the training data, testing them on
the unlabeled data helped fine tune the rules for pre-
cision. 2) CoNLL03 is largely dominated by sports
news, but only a subset of all sports were represented
in the train dataset. Using the unlabeled data, we
were able to add CDD rules for five additional types
of sports, resulting in 0.31% improvement in Fβ=1

score on CoNLL03dev. 3) Unlabeled data was also
useful in identifying domain-specific gazetteers by
using simple extraction rules followed by a man-
ual cleanup phase. For instance, for CoNLL03 we
collected five gazetteers of organization and person
names from the unlabeled data, resulting in 0.45%
improvement in recall for CoNLL03dev.

The quality of the customization on the train col-
lections is shown in Tab. 5. The total number of
rules added during customization for each of the
three domains is listed in Tab. 4. Notice how rules
of all four types are used both in the development
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FD CD CR CO
CoreNERorig 104 74 123 102
CoreNERconll 179 56 284 71
CoreNERenron 13 10 9 1
CoreNERace 83 35 117 26

Table 4: Rules added during customization

Precision Recall Fβ=1

CoreNERconll 97.64 95.60 96.61

CoreNERenron 91.15 92.58 91.86

CoreNERace 92.32 91.22 91.77

Table 5: Quality of customization on train datasets (%)

of the domain independent NER annotator, and dur-
ing customizations for different domains. A total of
8 person weeks were spent on customizations, and
we believe this effort is quite reasonable by rule-
based extraction standards. For example, (Maynard
et al., 2003) reports that customizing the ANNIE
domain independent NER annotator developed us-
ing the JAPE grammar-based rule language for the
ACE05 dataset required 6 weeks (and subsequent
tuning over the next 6 months), resulting in im-
proving the quality to 82% for this dataset. As we
shall discuss shortly, with similar manual effort, we
were able to achieve results outperforming state-of-
art published results on three different datasets, in-
cluding ACE05. However, one may rightfully ar-
gue that the process is still too lengthy impeding the
widespread deployment of rule-based NER extrac-
tion. We elaborate on the effort involved and the
lessons learned in the process in Sec. 5.

4.3 Evaluation of Customization
We now present an experimental evaluation of the
customizability of CoreNER. The main goals are
to investigate: (i) the feasibility of CoreNER cus-
tomization for different application domains; (ii)
the effectiveness of such customization compared to
state-of-the-art results; (iii) the impact of different
types of customization (Tab. 1); and (iv) how often
different categories of NERL rules (Tab. 2) are used
during customization.

We measured the effectiveness of customization
using the improvement in extraction quality of the
customized CoreNER over CoreNERorig. As shown
in Tab. 6, customization significantly improved

Precision Recall Fβ=1

CoNLL03dev

CoreNERorig 83.81 61.77 71.12
CoreNERconll 96.49 93.76 95.11

Improvement 12.68 31.99 13.99

CoNLL03test

CoreNERorig 77.21 54.87 64.15
CoreNERconll 93.89 89.75 91.77

Improvement 15.68 34.88 27.62

Enron
CoreNERorig 85.06 69.55 76.53
CoreNERenron 88.41 82.39 85.29

Improvement 3.35 12.84 8.76

ACE2005
CoreNERorig 57.23 57.41 57.32
CoreNERace 90.11 87.82 88.95

Improvement 32.88 30.41 31.63

Table 6: Overall Improvement due to Customization (%)

Precision Recall Fβ=1

LOC CoreNERconll 97.17 95.37 96.26

CoNLL03dev

Florian 96.59 95.65 96.12

ORG CoreNERconll 93.70 88.67 91.11
Florian 90.85 89.63 90.24

PER CoreNERconll 97.79 95.87 96.82
Florian 96.08 97.12 96.60

LOC CoreNERconll 93.11 91.61 92.35

CoNLL03test

Florian 90.59 91.73 91.15

ORG CoreNERconll 92.25 85.31 88.65
Florian 85.93 83.44 84.67

PER CoreNERconll 96.32 92.39 94.32
Florian 92.49 95.24 93.85

Enron PER CoreNERenron 87.27 81.82 84.46
Minkov 81.1 74.9 77.9

Table 7: Comparison with state-of-the-art results(%)

Fβ=1 score for CoreNERorig across all datasets. 2

We note that the extraction quality of
CoreNERorig was low on CoNLL03 and ACE05
mainly due to differences in entity type definitions.
In particular, sports organizations, which occurred
frequently in the CoNLL03 collection, were not
considered during the development of CoreNERorig,
while in ACE05, ORG and LOC entity types were
split into four entity types (Organization, Location,
Geo-Political Entity and Facility). Customizations
such as CS and CG address the above changes
in named-entity type definition and substantially
improve the extraction quality of CoreNERorig.

Next, we compare the extraction quality of the
2CoNLL03dev and CoNLL03test correspond to the develop-

ment and test sets for CoNLL03 respectively.
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customized CoreNER for CoNLL03 and Enron3 with
the corresponding best published results by (Florian
et al., 2003) and (Minkov et al., 2005). Tab. 7 shows
that our customized CoreNER outperforms the cor-
responding state-of-the-art numbers for all the NER
tasks on both CoNLL03 and Enron. 4 These results
demonstrate that high-quality annotators can be built
by customizing CoreNERorig using NERL, with the
final extraction quality matching that of state-of-the-
art machine learning-based extractors.

It is worthwhile noting that the best pub-
lished results for CoNLL03 (Florian et al., 2003)
were obtained by using four different classifiers
(Robust Risk Minimization, Maximum Entropy,
Transformation-based learning, and Hidden Markov
Model) and trying six different classifier combi-
nation methods. Compared to the best published
result obtained by combining the four classifiers,
the individual classifiers performed between 2.5-
7.6% worse for Location, 5.6-15.2% for Organiza-
tion and 3.9-14.0% for Person5. Taking this into
account, the extraction quality advantage of cus-
tomized CoreNER is significant when compared
with the individual state-of-the-art classifiers.
Impact of Customizations by Type. While cus-
tomizing CoreNER for the three datasets, all types
of changes described in Sec. 2 were performed. We
measured the impact of each type of customization
by comparing the extraction quality of CoreNERorig

with CoreNERorig enhanced with all the customiza-
tions of that type. From the results for CoNLL03
(Tab. 8), we make the following observations.
• Customizations that identify additional subtypes

of entities (CS) or modify existing instances for
multiple types (CATA) have significant impact.
This effect can be especially high when the miss-
ing subtype appears very often in the new do-
main (E.g., over 50% of the organizations in
CoNLL03 are sports teams).

• Data-driven customizations (CDD) rely on the
aggregated impact of many rules. While individ-
ual rules may have considerable impact on their

3We cannot meaningfully compare our results against previ-
ously published results for ACE05, which is originally used for
mention detection while CoreNER considers only NER tasks.

4For Enron the comparison is reported only for Person, as
labeled data is available only for that type.

5Extended version obtained via private communication.

# rules added Precision Recall Fβ=1

CEB 3

CoNLL03dev

LOC ↑0.21 ↑0.22 ↑0.22
ORG ↑1.35 ↑0.38 ↑0.59
PER - - -

CoNLL03test

LOC ↑0.30 ↑0.36 ↑0.33
ORG ↑0.54 ↑0.12 ↑0.20
PER - - -

CATA 5

CoNLL03dev

LOC ↑7.18 ↓0.87 ↑3.19
ORG ↑1.37 ↑10.67 ↑9.04
PER ↓0.04 - ↓0.01

CoNLL03test

LOC ↑7.73 ↓1.20 ↑3.77
ORG ↑1.37 ↑11.62 ↑14.18
PER - - -

CDSD 2

CoNLL03dev

LOC ↑0.85 - ↑0.45
ORG ↑1.00 ↓0.07 ↑0.01
PER - - -

CoNLL03test

LOC ↑0.04 ↓0.12 ↓0.12
ORG ↑0.64 - ↑0.04
PER - - -

CS 149

CoNLL03dev

LOC ↑1.63 ↓0.21 ↑0.85
ORG ↑11.44 ↑40.79 ↑39.73
PER ↑0.13 - ↑0.05

CoNLL03test

LOC ↑3.71 ↓0.18 ↑2.05
ORG ↑9.2 ↑36.24 ↑37.96
PER ↑0.58 - ↑0.2

CDD 431

CoNLL03dev

LOC ↓0.94 ↑10.18 ↑3.99
ORG ↑9.63 ↑11.93 ↑14.71
PER ↑6.12 ↑28.5 ↑18.84

CoNLL03test

LOC ↓1.66 ↑6.72 ↑1.64
ORG ↑8.84 ↑12.40 ↑15.90
PER ↑9.15 ↑31.48 ↑22.21

Table 8: Impact by customization type on CoNLL03(%)

own (e.g., identifying all names that appear as
part of a player list increases the recall of PER by
over 6% on both CoNLL03dev and CoNLL03test),
the overall impact relies on the accumulative ef-
fect of many small improvements.

• Certain customizations (CEB and CDSD) pro-
vide smaller quality improvements, both per rule
and in aggregate.

5 Lessons Learned

Our experimental evaluation shows that rule-based
annotators can achieve quality comparable to that of
state-of-the-art machine learning techniques. In this
section we discuss three important lessons learned
regarding the human effort involved in developing
such rule-based extractors.
Usefulness of NERL We found NERL very helpful
in that it provided a higher-level abstraction catered
specifically towards NER tasks, thus hiding the com-
plexity inherent in a general-purpose IE rule lan-
guage. In doing so, NERL restricts the large space
of operations possible within a general-purpose lan-
guage to the small number of predefined “templates”
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listed in Tab. 2. (We have shown empirically that our
choice of NERL rules is sufficient to achieve high
accuracy for NER tasks.) Therefore, NERL simpli-
fies development and maintenance of complex NER
extractors, since one does not need to worry about
multiple AQL statements or JAPE grammar phases
for implementing a single conceptual operation such
as filtering (see Fig. 3).
Is NERL Sufficient? Even using NERL, building
and customizing NER rules remains a labor inten-
sive process. Consider the example of designing the
filter rule CR4 from Fig. 3. First, one must exam-
ine multiple false positive Location entities to even
decide that a filter rule is appropriate. Second, one
must understand how those false positives were pro-
duced, and decide accordingly on the particular con-
cept to be used as filter (LocationMaybeOrg in this
case). Finally, one needs to decide how to build the
filter. Tab. 9 lists all the attributes that need to be
specified for a Filter rule, along with examples of
the search space for each rule attribute.

Rule Attributes Examples of Search Space
Location Intermediate Concept to filter
Predicate Type Matches Regex, Contains Dictionary, . . .
Predicate Parameter Regular Expressions, Dictionary Entries, . . .
Context Type Entity text, Left or Right context
Context Parameter k tokens, l characters

Table 9: Search space explored while adding a Filter rule

This search space problem is not unique to filter
rules. In fact, most rules in Tab. 2 have two or more
rule attributes. Therefore, designing an individual
NERL rule remains a time-consuming “trial and er-
ror” process, in which multiple “promising” combi-
nations are implemented and evaluated individually
before deciding on a satisfactory final rule.
Tooling for NERL The fact that NERL is a high-
level language exposing a restricted set of operators
can be exploited to reduce the human effort involved
in building NER annotators by enabling the follow-
ing tools:
Annotation Provenance Tools tracking prove-
nance (Cheney et al., 2009) for NERL rules can
help in explaining exactly which sequence of rules
is responsible for producing a given false positive,
thereby enabling one to quickly identify “misbe-
haved” rules. For instance, one can quickly narrow
down the choices for the location where the filter

rule CR4 (Fig. 2) should be applied based on the
provenance of the false positives. Similarly, tools
for explaining false positives in the spirit of (Huang
et al., 2008), are also conceivable.
Automatic Parameter Learning The most time-

consuming part in building a rule often is to decide
the value of its parameters, especially for FD and
CR rules. For instance, while defining a CR rule,
one has to choose values for the Predicate parame-
ter and the Context parameter (see Tab. 9). Some
parameter values can be learned – for example, dic-
tionaries (Riloff, 1993) and regular expressions (Li
et al., 2008).
Automatic Rule Refinement Tools automatically
suggesting entire customization rules to a complex
NERL program in the spirit of (Liu et al., 2010) can
further reduce human effort in building NER anno-
tators. With the help of such tools, one only needs
to consider good candidate NERL rules suggested
by the system without having to go through the
conventional manual “trial and error” process.

6 Conclusion

In this paper, we described NERL, a high-level rule
language for building and customizing NER annota-
tors. We demonstrated that a complex NER annota-
tor built using NERL can be effectively customized
for different domains, achieving extraction quality
superior to the state-of-the-art numbers. However,
our experience also indicates that the process of de-
signing the rules themselves is still manual and time-
consuming. Finally, we discuss how NERL opens
up several interesting research directions towards the
development of sophisticated tooling for automating
some of the rule development tasks.
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Abstract

We present a novel approach to relation ex-
traction that integrates information across doc-
uments, performs global inference and re-
quires no labelled text. In particular, we
tackle relation extraction and entity identifi-
cation jointly. We use distant supervision to
train a factor graph model for relation ex-
traction based on an existing knowledge base
(Freebase, derived in parts from Wikipedia).
For inference we run an efficient Gibbs sam-
pler that leads to linear time joint inference.
We evaluate our approach both for an in-
domain (Wikipedia) and a more realistic out-
of-domain (New York Times Corpus) setting.
For the in-domain setting, our joint model
leads to 4% higher precision than an isolated
local approach, but has no advantage over a
pipeline. For the out-of-domain data, we ben-
efit strongly from joint modelling, and observe
improvements in precision of 13% over the
pipeline, and 15% over the isolated baseline.

1 Introduction

Relation Extraction is the task of predicting seman-
tic relations over entities expressed in structured or
semi-structured text. This includes, for example,
the extraction of employer-employee relations men-
tioned in newswire, or protein-protein interactions
expressed in biomedical papers. It also includes the
prediction of entity types such as country, citytown
or person, if we consider entity types as unary rela-
tions.

A particularly attractive approach to relation ex-
traction is based on distant supervision.1 Here in

1Also called self training, or weak supervision.

place of annotated text, only an existing knowl-
edge base (KB) is needed to train a relation extrac-
tor (Mintz et al., 2009; Bunescu and Mooney, 2007;
Riedel et al., 2010). The facts in the KB are heuris-
tically aligned to an unlabelled training corpus, and
the resulting alignment is the basis for learning the
extractor.

Naturally, the predictions of a distantly supervised
relation extractor will be less accurate than those of
a supervised one. While facts of existing knowledge
bases are inexpensive to come by, the heuristic align-
ment to text will often lead to noisy patterns in learn-
ing. When applied to unseen text, these patterns will
produce noisy facts. Indeed, we find that extraction
precision still leaves much room for improvement.
This room is not as large as in previous work (Mintz
et al., 2009) where target text and training KB are
closely related. However, when we use the knowl-
edge base Freebase (Bollacker et al., 2008) and the
New York Times corpus (Sandhaus, 2008), we ob-
serve very low precision. For example, the preci-
sion of the top-ranked 50 nationality relation
instances is only 28%.

On inspection, it turns out that many of the errors
can be easily identified: they amount to violations
of basic compatibility constraints between facts. In
particular, we observe unsatisfied selectional pref-
erences of relations towards particular entity types
as types of their arguments. An example is the fact
that the first argument of nationality is always
a person while the second is a country. A sim-
ple way to address this is a pipeline: first predict
entity types, and then condition on these when pre-
dicting relations. However, this neglects the fact that
relations could as well be used to help entity type
prediction.
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While there is some existing work on enforcing
such constraints in a joint fashion (Roth and Yih,
2007; Kate and Mooney, 2010; Riedel et al., 2009),
they are not directly applicable here. The difference
is the amount of facts they take into account at the
same time. They focus on single sentence extrac-
tions, and only consider very few interacting facts.
This allows them to work with exact optimization
techniques such as (Integer) Linear Programs and
still remain efficient.2 However, when working on
a sentence level they fail to exploit the redundancy
present in a corpus. Moreover, the fewer facts they
consider at the same time, the lower the chance that
some of these will be incompatible, and that mod-
elling compatibility will make a difference.

In this work we present a novel approach that
performs relation extraction across documents, en-
forces selectional preferences, and needs no labelled
data. It is based on an undirected graphical model
in which variables correspond to facts, and factors
between them measure compatibility. In order to
scale up, we run an efficient Gibbs-Sampler at in-
ference time, and train our model using SampleR-
ank (Wick et al., 2009). In practice this leads to a
runtime behaviour that is linear in the size of the cor-
pus. For example, 200,000 documents take less than
three hours for training and testing.

For evaluation we consider two scenarios. First
we follow Mintz et al. (2009), use Freebase as
source of distant supervision, and employ Wikipedia
as source of unlabelled text—we will call this an
in-domain setting. This scenario is somewhat arti-
ficial in that Freebase itself is partially derived from
Wikipedia, and in practice we cannot expect text and
training knowledge base to be so close. Hence we
also evaluate our approach on the New York Times
corpus (out-of-domain setting).

For in-domain data we make the following find-
ing. When we compare to an isolated baseline that
makes no use of entity types, our joint model im-
proves average precision by 4%. However, it does
not outperform a pipelined system. In the out-of-
domain setting, our collective model substantially
outperforms both other approaches. Compared to
the isolated baseline, we achieve a 15% increase in

2The pyramid algorithm of Kate and Mooney (2010) may
scale well, but it is not clear how to apply their scheme to cross-
document extraction.

precision. With respect to the pipeline approach, the
increase is 13%.

In the following we will first give some back-
ground information on relation extraction with dis-
tant supervision. Then we will present our graphi-
cal model as well as the inference and learning tech-
niques we apply. After discussing related work, we
present our empirical results and conclude.

2 Background

In this section we will introduce the terminology and
concepts we use throughout the paper. We will also
give a brief introduction to relation extraction, in
particular in the context of distant supervision.

2.1 Relations

We seek to extract facts about entities. Example en-
tities would be the company founder BILL GATES,
the company MICROSOFT, and the country USA.
A relation R is a set of tuples c over entities. We
will follow (Mintz et al., 2009) and call the term
R (c1, . . . cn) with c ∈ R a relation instance.3 It
denotes the membership of the tuple c in the re-
lation R. For example, founded (BILL GATES,
MICROSOFT) is a relation instance denoting that
BILL GATES and MICROSOFT are related in the
founded relation.

In the following we will always consider some set
of candidate tuples C that may or may not be re-
lated. We define Cn ⊂ C to be set of all n-ary tu-
ples in C. Note that while our definition considers
general n-nary relations, in practice we will restrict
us to unary and binary relations C1 and C2.

Following previous work (Mintz et al., 2009; Ze-
lenko et al., 2003; Culotta and Sorensen, 2004) we
make one more simplifying assumption: every can-
didate tuple can be member of at most one relation.

2.2 Entity Types

An entity can be of one or several entity types. For
example, BILL GATES is a person, and a company
founder. Entity types correspond to the special
case of relations with arity one, and will be treated
as such in the following.

3Other commonly used terms are relational facts, ground
facts, ground atoms, and assertions.
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We care about entity types for two reasons. First,
they can be important for downstream applications:
if consumers of our extracted facts know the type
of entities, they can find them more easily, visu-
alize them more adequately, and perform opera-
tions specific to these types (write emails to persons,
book a hotel in a city, etc.). Second, they are use-
ful for extracting binary relations due to selectional
preferences—see section 2.6.

2.3 Mentions
In natural language text spans of tokens are used to
refer to entities. We call such spans entity mentions.
Consider, for example, the following sentence snip-
pet:

(1) Political opponents of President Evo Morales
of Bolivia have in recent days stepped up...

Here “Evo Morales” is an entity mention of pres-
ident EVO MORALES, and “Bolivia” a mention of
the country BOLIVIA he is the president of.

People often express relations between entities in
natural language texts by mentioning the participat-
ing entities in specific syntactic and lexical patterns.
We will refer to any tuple of mentions of entities
(e1, . . . en) in a sentence as candidate mention tu-
ple. If such a candidate expresses the relation R,
then it is a relation mention of the relation instance
R (e1, . . . , en).

Consider again example 1. Here the pair of en-
tity mentions (“Evo Morales”, “Bolivia”) is a candi-
date mention tuple. In fact, in this case the candidate
is indeed a relation mention of the relation instance
nationality (EVO MORALES, BOLIVIA).

2.4 Relation Extraction
We define the task of relation extraction as follows.
We are given a corpus of documents and a set of
target relations. Then we are asked to predict all re-
lation instances I so that for each R (c) ∈ I there
exists at least one relation mention in the given cor-
pus.

The above definition covers a range of existing
approaches by varying over what we define as tar-
get corpus. On one end, we have extractors that
process text on a per sentence basis (Zelenko et al.,
2003; Culotta and Sorensen, 2004). On the other
end, we have methods that take relation mentions

from several documents and use these as input fea-
tures (Mintz et al., 2009; Bunescu and Mooney,
2007).

There is a compelling reason for performing re-
lation extraction within a larger scope that consid-
ers mentions across documents: redundancy. Often
facts are mentioned in several sentences and doc-
uments. Some of these mentions may be difficult
to parse, or they use unseen patterns. But the more
mentions we consider, the higher the probability that
one does parse, and fits a pattern we have seen in the
training data.

Note that for relation extraction that considers
more than a single mention we have to solve the
coreference problem in order to determine which
mentions refer to the same entity. In the follow-
ing we will assume that coreference clusters are pro-
vided by a preprocessing step.

2.5 Distant Supervision

In relation extraction we often encounter a lack of
explicitly annotated text, but an abundance of struc-
tured data sources such as company databases or col-
laborative knowledge bases like Freebase. In order
to exploit this, many approaches use simple but ef-
fective heuristics to align existing facts with unla-
belled text. This labelled text can then be used as
training material of a supervised learner.

One heuristic is to assume that each candidate
mention tuple of a training fact is indeed expressing
the corresponding relation (Bunescu and Mooney,
2007). Mintz et al. (2009) refer to this as the dis-
tant supervision assumption.

Clearly, this heuristic can fail. Let us again
consider the nationality relation between EVO

MORALES and BOLIVIA. In an 2007 article of the
New York Times we find this relation mention can-
didate:

(2) ...the troubles faced by Evo Morales in
Bolivia...

This sentence does not directly express that EVO

MORALES is a citizen of BOLIVIA, and hence vi-
olates the distant supervision assumption. The prob-
lem with this observation is that at training time
we may learn a relatively large weight for the
feature “<Entity1> in <Entity2>” associated with
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nationality. When testing our model we then
encounter a sentence such as

(3) Arrest Warrant Issued for Richard Gere in
India.

that leads us to extract that RICHARD GERE is a cit-
izen of INDIA.

2.6 Global Consistency of Facts
As discussed above, distant supervision can lead to
noisy extractions. However, such noise can often be
easily identified by testing how compatible the ex-
tracted facts are to each other. In this work we are
concerned with a particular type of compatibility:
selectional preferences.

Relations require, or prefer, their arguments to be
of certain types. For example, the nationality
relation requires the first argument to be a person,
and the second to be a country. On inspection,
we find that these preferences are often not satis-
fied in a baseline distant supervision system akin to
Mintz et al. (2009). This often results from patterns
such as “<Entity1> in <Entity2>” that fire in many
cases where <Entity2> is a location, but not a
country.

3 Model

Our observations in the previous section suggest
that we should (a) explicitly model compatibil-
ity between extracted facts, and (b) integrate ev-
idence from several documents to exploit redun-
dancy. In this work we choose a Conditional Ran-
dom Field (CRF) to achieve this. CRFs are a natural
fit for this task: They allow us to capture correlations
in an explicit fashion, and to incorporate overlapping
input features from multiple documents.

The hidden output variables of our model are Y =
(Yc)c∈C . That is, we have one variable Yc for each
candidate tuple c ∈ C . This variable can take as
value any relation in C with the same arity as c. See
example relation variables in figure 1.

The observed input variables X consists of a fam-
ily of variables Xc =

(
X1

c, . . .X
m
c

)
m∈M

for each
candidate tuple c. Here Xi

c stores relevant observa-
tions we make for the i-th candidate mention tuple of
c in the corpus. For example, X1

BILL GATES,MICROSOFT

in figure 1 would contain, among others, the pattern
“[M2] was founded by [M1]”.

3.1 Factor Templates

Our conditional probability distribution over vari-
ables X and Y is defined using using a set T of
factor templates. Each template Tj ∈ T defines
a set of factors {(yi,xi)}, a set Kj of feature in-

dices, parameters
{

θj
k

}
k∈Kj

and feature functions{
f j

k

}
k∈Kj

. Together they define the following con-

ditional distribution:

p (y|x) =
1

Zx

∏
Tj∈T

∏
(yi,xi)∈Tj

e
P

k∈Kj
θj
kfj

k(yi,xi)

(4)
In our case the set T consists of four templates

we will describe below. We construct this graphical
model using FACTORIE (McCallum et al., 2009), a
probabilistic programming language that simplifies
the construction process, as well as inference and
learning.

3.1.1 Bias Template
We use a bias template TBias that prefers certain

relations a priori over others. When the template
is unrolled, it creates one factor per variable Yc for
candidate tuple c ∈ C. The template also consists of
one weight θBias

r and feature function fBias
r for each

possible relation r. fBias
r fires if the relation associ-

ated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need

to model the correlation between relation instances
and their mentions in text. For this purpose we de-
fine the template TMen that connects each relation
instance variable Yc with its observed mention vari-
ables Xc. Crucially, this template gathers mentions
from multiple documents, and enables us to exploit
redundancy.

The feature functions of this template are taken
from Mintz et al. (2009). This includes features that
inspect the lexical content between entity mentions
in the same sentence, and the syntactic path between
them. One example is

fMen
101 (yc,xc)

def=


1 yc = founded ∧ ∃i with

"M2 was founded by M1" ∈ xi
c

0 otherwise

.
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founder

Microsoft was 
founded by Bill Gates...

personcompany

nationality

country

With Microsoft chairman 
Bill Gates soon relinquishing...

Bill Gates was 
born in the USA  in 1955

1

nationof
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founded by Roger McNamee ...

Roger McNamee,USA
Yrel

Z1

person
R McNamee

countryUSA

worksfor
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1
Z1

1
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Roger McNamee,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors
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founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identification.
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we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simplifies the construction process, as well as
inference and learning.
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relations a priori over others. When the template is
unrolled, it creates one factor per variable Ycfor can-
didate tuple c and one weight θBias

r and feature func-
tion fBias

r for each possible relation r. fBias
r fires if

the relation associated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need to

model the correlation between relation instances and
their mentions in text. For this purpose we define
the mention template TMen that connects each rela-
tion instance variable Yc with its observed variables
mention variables XMc .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modifica-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

fMen
101 (yc,xMc)

def=






1 yc = founder∧
m1", director of "m2 ∈ xMc

0 otherwise
.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuple c and extract features from all of these.

3.1.3 Selectional Preference Templates
To capture the correlations between entity types

and the relations the entities participate in, we in-
troduce the joint template TJoint. It connects a re-
lation instance variable Ye1,...,ea to the entity type
variables Ye1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one feature f Joint

r,t1...ta (and weight θJoint
r,t1...ta) for each

combination of relation and entity types r, t1 . . . ta.
The feature fires when the variables are in the
state r, t1 . . . ta. After training we would expect
a weight θJoint

founder,person,company to be larger than
θJoint
founder,person,country.

We also add a template TPair that measures the
compability between Ye1,...,ea and each Yei in iso-
lation. Here we use features fPair

i,r,t that fire if ei is

1

nationof

Elevation Partners, was 
founded by Roger McNamee ...

Roger McNamee,USA
Yrel

Z1

person
R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners, was 
founded by Roger McNamee ...

Elevation Partners, was 
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identification.

fine the following conditional distribution:

p (y|x) =
1

Zx

�

Tj∈T

�

(yi,xi)∈Tj

e
PKj

k=1 θj
kfj

k(yi,xi) (3)

In our case the set T consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simplifies the construction process, as well as
inference and learning.

3.1.1 Bias Template
We use a bias template TBias that prefers certain

relations a priori over others. When the template is
unrolled, it creates one factor per variable Ycfor can-
didate tuple c and one weight θBias

r and feature func-
tion fBias

r for each possible relation r. fBias
r fires if

the relation associated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need to

model the correlation between relation instances and
their mentions in text. For this purpose we define
the mention template TMen that connects each rela-
tion instance variable Yc with its observed variables
mention variables XMc .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modifica-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

fMen
101 (yc,xMc)

def=






1 yc = founder∧
m1", director of "m2 ∈ xMc

0 otherwise
.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuple c and extract features from all of these.

3.1.3 Selectional Preference Templates
To capture the correlations between entity types

and the relations the entities participate in, we in-
troduce the joint template TJoint. It connects a re-
lation instance variable Ye1,...,ea to the entity type
variables Ye1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one feature f Joint

r,t1...ta (and weight θJoint
r,t1...ta) for each

combination of relation and entity types r, t1 . . . ta.
The feature fires when the variables are in the
state r, t1 . . . ta. After training we would expect
a weight θJoint

founder,person,company to be larger than
θJoint
founder,person,country.

We also add a template TPair that measures the
compability between Ye1,...,ea and each Yei in iso-
lation. Here we use features fPair

i,r,t that fire if ei is

1

nationof

Elevation Partners, was 
founded by Roger McNamee ...

Roger McNamee,USA
Yrel

Z1

person
R McNamee

countryUSA

worksfor

comp. Microsoft

1
Z1

1
Z1

Roger McNamee,Microsoft

functionality-factor

ner-relation-factors

relation-mention factors

Ytypel

mention factors

Elevation Partners, was 
founded by Roger McNamee ...

Elevation Partners, was 
founded by Roger McNamee ...

Figure 1: Factor Graph for joint relation mention prediction and relation type identification.

fine the following conditional distribution:

p (y|x) =
1

Zx

�

Tj∈T

�

(yi,xi)∈Tj

e
PKj

k=1 θj
kfj

k(yi,xi) (3)

In our case the set T consist of four templates
we will describe below. Note that to construct this
graphical model we use FACTORIE (McCallum et
al., 2009), a probabilistic programming language
that simplifies the construction process, as well as
inference and learning.

3.1.1 Bias Template
We use a bias template TBias that prefers certain

relations a priori over others. When the template is
unrolled, it creates one factor per variable Ycfor can-
didate tuple c and one weight θBias

r and feature func-
tion fBias

r for each possible relation r. fBias
r fires if

the relation associated with tuple c is r.

3.1.2 Mention Template
In order to extract relations from text, we need to

model the correlation between relation instances and
their mentions in text. For this purpose we define
the mention template TMen that connects each rela-
tion instance variable Yc with its observed variables
mention variables XMc .

The feature functions of this template are taken
from (Mintz et al., 2009b) (with minor modifica-
tions). This includes features that inspect the lexical

context between entity mentions in the same sen-
tence, and the syntactic path between these. One
example is

fMen
101 (yc,xMc)

def=






1 yc = founder∧
m1", director of "m2 ∈ xMc

0 otherwise
.

It tests whether for any of the mentions of the can-
didate tuple the sequence ", director of " appears be-
tween the mentions of the argument entites.

Crucially, these templates function on a cross-
document level. They gather all mentions of the can-
didate tuple c and extract features from all of these.

3.1.3 Selectional Preference Templates
To capture the correlations between entity types

and the relations the entities participate in, we in-
troduce the joint template TJoint. It connects a re-
lation instance variable Ye1,...,ea to the entity type
variables Ye1 , . . . , Yen . To measure the compabil-
ity between relation and entity variables, we use
one feature f Joint

r,t1...ta (and weight θJoint
r,t1...ta) for each

combination of relation and entity types r, t1 . . . ta.
The feature fires when the variables are in the
state r, t1 . . . ta. After training we would expect
a weight θJoint

founder,person,company to be larger than
θJoint
founder,person,country.

We also add a template TPair that measures the
compability between Ye1,...,ea and each Yei in iso-
lation. Here we use features fPair

i,r,t that fire if ei is

g ( , ) � DKL ( || )

g ( ) = log
�
1− µi + µie

θi
�
− µie

θi

. . . + wφfφ (y , y , y ) + . . .

> 0

= max
y� ,y� ,y�

fφ

�
y� , y� , y� �

< max
y� ,y� ,y�

fφ

�
y� , y� , y� �

Φ1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

Φ (yi,j ;x) = exp

�
�

k

wkfk (yi,j ;x)

�

p (y;x) =
1

Zx
Ψ1 (y;x) · . . . · Ψn (y;x)

log E [Ψi]− µi

Ψi (y;x) = exp (θiφi (y;x))

µi = E [φi]

Y

Y

X1

X2

g ( , ) � DKL ( || )

g ( ) = log
�
1− µi + µie

θi
�
− µie

θi

. . . + wφfφ (y , y , y ) + . . .

> 0

= max
y� ,y� ,y�

fφ

�
y� , y� , y� �

< max
y� ,y� ,y�

fφ

�
y� , y� , y� �

Φ1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

Φ (yi,j ;x) = exp

�
�

k

wkfk (yi,j ;x)

�

p (y;x) =
1

Zx
Ψ1 (y;x) · . . . · Ψn (y;x)

log E [Ψi]− µi

Ψi (y;x) = exp (θiφi (y;x))

µi = E [φi]

Y

Y

Y

Y

Y

X1

X2

g ( , ) � DKL ( || )

g ( ) = log
�
1− µi + µie

θi
�
− µie

θi

. . . + wφfφ (y , y , y ) + . . .

> 0

= max
y� ,y� ,y�

fφ

�
y� , y� , y� �

< max
y� ,y� ,y�

fφ

�
y� , y� , y� �

Φ1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

Φ (yi,j ;x) = exp

�
�

k

wkfk (yi,j ;x)

�

p (y;x) =
1

Zx
Ψ1 (y;x) · . . . · Ψn (y;x)

log E [Ψi]− µi

Ψi (y;x) = exp (θiφi (y;x))

µi = E [φi]

Y

Y

Y

Y

Y

X1

X2

g ( , ) � DKL ( || )

g ( ) = log
�
1− µi + µie

θi
�
− µie

θi

. . . + wφfφ (y , y , y ) + . . .

> 0

= max
y� ,y� ,y�

fφ

�
y� , y� , y� �

< max
y� ,y� ,y�

fφ

�
y� , y� , y� �

Φ1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

Φ (yi,j ;x) = exp

�
�

k

wkfk (yi,j ;x)

�

p (y;x) =
1

Zx
Ψ1 (y;x) · . . . · Ψn (y;x)

log E [Ψi]− µi

Ψi (y;x) = exp (θiφi (y;x))

µi = E [φi]

Y

Y

Y

Y

Y

X1

X2

g ( , ) � DKL ( || )

g ( ) = log
�
1− µi + µie

θi
�
− µie

θi

. . . + wφfφ (y , y , y ) + . . .

> 0

= max
y� ,y� ,y�

fφ

�
y� , y� , y� �

< max
y� ,y� ,y�

fφ

�
y� , y� , y� �

Φ1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

Φ (yi,j ;x) = exp

�
�

k

wkfk (yi,j ;x)

�

p (y;x) =
1

Zx
Ψ1 (y;x) · . . . · Ψn (y;x)

log E [Ψi]− µi

Ψi (y;x) = exp (θiφi (y;x))

µi = E [φi]

Y

Y

Y

Y

Y

X1

X2

g ( , ) � DKL ( || )

g ( ) = log
�
1− µi + µie

θi
�
− µie

θi

. . . + wφfφ (y , y , y ) + . . .

> 0

= max
y� ,y� ,y�

fφ

�
y� , y� , y� �

< max
y� ,y� ,y�

fφ

�
y� , y� , y� �

Φ1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

Φ (yi,j ;x) = exp

�
�

k

wkfk (yi,j ;x)

�

p (y;x) =
1

Zx
Ψ1 (y;x) · . . . · Ψn (y;x)

log E [Ψi]− µi

Ψi (y;x) = exp (θiφi (y;x))

µi = E [φi]

Y

Y

Y

Y

Y

X1

X2

g ( , ) � DKL ( || )

g ( ) = log
�
1− µi + µie

θi
�
− µie

θi

. . . + wφfφ (y , y , y ) + . . .

> 0

= max
y� ,y� ,y�

fφ

�
y� , y� , y� �

< max
y� ,y� ,y�

fφ

�
y� , y� , y� �

Φ1 (y5,7,;x) = exp (. . . + w f (y;x) + . . .)

Φ (yi,j ;x) = exp

�
�

k

wkfk (yi,j ;x)

�

p (y;x) =
1

Zx
Ψ1 (y;x) · . . . · Ψn (y;x)

log E [Ψi]− µi

Ψi (y;x) = exp (θiφi (y;x))

µi = E [φi]

Y

Y

Y

Y

Y

X1

X2

Figure 1: Factor Graph of our model that captures selectional preferences and functionality constraints. For
readability we only label a subsets of equivalent variables and factors. Note that the graph shows an example
assignment to variables.

It tests whether for any mentions of the candidate
tuple the phrase "founded by" appears between the
mentions of the argument entities.

3.1.3 Selectional Preferences Templates

To capture the correlations between entity types
and relations the entities participate in, we introduce
the template TJoint. It connects a relation instance
variable Ye1,...,en to the individual entity type vari-
ables Ye1 , . . . , Yen . To measure the compatibility
between relation and entity variables, we use one
feature f Joint

r,t1...ta (and weight θJoint
r,t1...ta) for each com-

bination of relation and entity types r, t1 . . . ta.

f Joint
r,t1...ta fires when the factor variables are in the

state r, t1 . . . ta. For example, f Joint
founded,person,company

fires if Ye1 is in state person, Ye2 in state company,
and Ye1,e2 in state founded.

We also add a template TPair that measures the
pairwise compatibility between the relation variable
Ye1,...,ea and each entity variable Yei in isolation.
Here we use features fPair

i,r,t that fire if ei is the i-th ar-
gument of c, has the entity type t and the candidate
tuple c is labelled as instance of relation r. For ex-
ample, fPair

1,founded,person fires if Ye1(argument i = 1)
is in state person, and Ye1,e2 in state founded, re-
gardless of the state of Ye2 .

3.2 Inference

There are two types of inference we have to perform:
sampling from the posterior during training (see sec-
tion 3.3), and finding the most likely configuration
(aka MAP inference). In both settings we employ a
Gibbs sampler (Geman and Geman, 1990) that ran-
domly picks a variable Yc and samples its relation
value conditioned on its Markov Blanket. At test
time we decrease the temperature of our sampler in
order to find an approximation of the MAP solution.

3.3 Training

Most learning methods need to calculate the model
expectations (Lafferty et al., 2001) or the MAP con-
figuration (Collins, 2002) before making an update
to the parameters. This step of inference is usually
the bottleneck for learning, even when performed
approximately.

SampleRank (Wick et al., 2009) is a rank-based
learning framework that alleviates this problem by
performing parameter updates within MCMC infer-
ence. Every pair of consecutive samples in the
MCMC chain is ranked according to the model and
the ground truth, and the parameters are updated
when the rankings disagree. This update can fol-
low different schemes, here we use MIRA (Cram-
mer and Singer, 2003). This allows the learner to
acquire more supervision per instance, and has led
to efficient training for models in which inference
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is expensive and generally intractable (Singh et al.,
2009).

4 Related Work

Distant Supervision Learning to extract relations
by using distant supervision has raised much interest
in recent years. Our work is inspired by Mintz et al.
(2009) who also use Freebase as distant supervision
source. We also heuristically align our knowledge
base to text by making the distant supervision as-
sumption (Bunescu and Mooney, 2007; Mintz et al.,
2009). However, in contrast to these previous ap-
proaches, and other related distant supervision meth-
ods (Craven and Kumlien, 1999; Weld et al., 2009;
Hoffmann et al., 2010), we perform relation extrac-
tion collectively with entity type prediction.

Schoenmackers et al. (2008) use entailment rules
on assertion extracted by TextRunner to increase re-
call. They also perform cross-document probabilis-
tic inference based on Markov Networks. However,
they do not infer the types of entities and work in an
open IE setting.

Selectional Preferences In the context of super-
vised relation extraction, selectional preferences
have been applied. For example, Roth and Yih
(2007) have used Linear Programming to enforce
consistency between entity types and extracted re-
lations. Kate and Mooney (2010) use a pyramid
parsing scheme to achieve the same. Riedel et al.
(2009) use Markov Logic to model interactions be-
tween event-argument relations for biomedical event
extraction. However, their work is (a) supervised,
and (b) performs extraction on a per-sentence basis.

Carlson et al. (2010) also use selectional prefer-
ences. However, instead of exploiting them for train-
ing a graphical model using distant supervision, they
use selectional preferences to improve a bootstrap-
ping process. Here in each iteration of bootstrap-
ping, extracted facts that violate compatibility con-
straints will not be used to generate additional pat-
terns in the next iteration.

5 Experiments

We set up experiments to answer the following ques-
tions: (i) Does the explicit modelling of selectional
preferences improve accuracy? (ii) Can we also per-
form joint entity and relation extraction in a pipeline

and achieve similar results? (iii) How does our
cross-document approach scale?

To answer these questions we carry out experi-
ments on two data sets, Wikipedia and New York
Times articles, and use Freebase as distant supervi-
sion source for both.

5.1 Experimental Setup
We follow Mintz et al. (2009) and perform two types
of evaluation: held-out and manual. In both cases
we have a training and a test corpus of documents,
and training and test sets of entities. For held-out
evaluation we split the set of entities in Freebase into
training and test sets. For manual evaluation we use
all Freebase entities during training. For testing we
use all entities that appear in the test document cor-
pus.

For both training and testing we then choose the
candidate tuples C that may or may not be relation
instances. To pick the entities C1 we want to predict
entity types for, we choose all entities that are men-
tioned at least once in the train/test corpus. To pick
the entity pairs C2 that we want to predict the rela-
tions of, we choose those that appear at least once
together in a sentence.

The set of candidates C will contain many tuples
which are not related in any Freebase relations. For
efficiency, we filter out a large fraction of these neg-
ative candidates for training. The number of neg-
ative examples we keep is chosen to be about 10
times the number of positive candidates. This num-
ber stems from trading-off the accuracy it leads to
and the increased training time it requires.

For both manual and held-out evaluation we rank
extracted test relation instances in the MAP state of
the network. This state is found by sampling 20 iter-
ations with a low temperature of 0.00001. The rank-
ing is done according to the log linear score that the
assigned relation for a candidate tuple gets from the
factors in its Markov Blanket. For optimal perfor-
mance, the score is normalized by the number of re-
lation mentions.

For manual evaluation we pick the top ranked 50
relation instances for the most frequent relations.
We ask three annotators to inspect the mentions of
these relation instances to decide whether they are
correct. Upon disagreement, we use majority vote.
To summarize precisions across relations, we take
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their average, and their average weighted by the pro-
portion of predicted instances for the given relation.

5.1.1 Data preprocessing

We preprocess our textual data as follows:
We first use the Stanford named entity recog-
nizer (Finkel et al., 2005) to find entity mentions in
the corpus. The NER tagger segments each docu-
ment into sentences and classifies each token into
four categories: PERSON, ORGANIZATION, LO-
CATION and NONE. We treat consecutive tokens
which share the same category as single entity men-
tion. Then we associate these mentions with Free-
base entities. This is achieved by performing a
string match between entity mention phrases and the
canonical names of entities as present in Freebase.

For each candidate tuple c with arity 2 and each
of its mention tuples i we extract a set of features Xi

c

similar to those used in (Mintz et al., 2009): lexical,
Part-Of-Speech (POS), named entity and syntactic
features, i.e. features obtained from the dependency
parsing tree of a sentence. We use the openNLP POS
tagger4 to obtain POS tags and employ the Malt-
Parser (Nivre et al., 2004) for dependency parsing.
For candidate tuples with arity 1 (entity types) we
use the following features: the entity’s word form,
the POS sequence, the head of the entity in the de-
pendency parse tree, the Stanford named entity tag,
and the left and right words to the current entity
mention phrase.

5.1.2 Configurations

We apply the following configurations of our fac-
tor graphs. As our baseline, and roughly equivalent
to previous work (Mintz et al., 2009), we pick the
templates TBias and TMen. These describe a fully dis-
connected graph, and we will refer to this configu-
ration as isolated. Next, we add the templates TJoint
and TPair to model selectional preferences, and refer
to this setting as joint.

In addition, we evaluate how well selectional pref-
erences can be captured with a simple pipeline. For
this pipeline we first train an isolated system for en-
tity type prediction. Then we use the output of the
entity type prediction system as input for the relation
extraction system.

4available at http://opennlp.sourceforge.net/

5.1.3 Entity types and Relation types
Freebase contains many relation types and only

a subset of those relation types occur frequently
in the corpus. Since classes with very few
training instances are generally hard to learn,
we restrict ourselves to the 54 most frequently
mentioned relations. These include, for ex-
ample, nationality, contains, founded
and place_of_birth. Note that we con-
vert two Freebase non-binary temporal relations
to binary relations: employment_tenure and
place_lived. In both cases we simply disregard
the temporal information in the Freebase data.

As our main focus is relation extraction, we re-
strict ourselves to entity types compatible with our
selected relations. To this end we inspect the Free-
base schema information provided for each relation,
and include those entity types that are declared as
arguments of our relations. This leads to 10 entity
types including person, citytown, country,
and company.

Note that a Freebase entity can have several types.
We pick one of these by choosing the most specific
one that is a member of our entity type subset, or
MISC if no such member exists.

5.2 Wikipedia

In our first set of experiments we train and test using
Wikipedia as the text corpus. This is a comparatively
easy scenario because the facts in Freebase are partly
derived from Wikipedia, hence there is an increased
chance of properly aligning training facts and text.
This is similar to the setting of Mintz et al. (2009).

5.2.1 Held Out Evaluation
We split 1,300,000 Wikipedia articles into train-

ing and test sets. Table 1 shows the statistics for this
split. The last row provides the number of negative
relation instances (candidates which are not related
according to Freebase) associated with each data set.

Figure 2 shows the precision-recall curves of re-
lation extraction for held-out data of various config-
urations. We notice a slight advantage of the joint
approach in the low recall area. Moreover, the joint
model predicts more relation instances, as can be
seen by its longer line in the graph.

For higher recall, the joint model performs
slightly worse. On closer inspection, we find that
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Wikipedia NYT
Train Test Train Test

#Documents 900K 400K 177K 39K
#Entities 213K 137K 56K 27K
#Positive 36K 24K 5K 2K
#Negative 219K 590K 64K 94K

Table 1: The statistics of held-out evaluation on
Wikipedia and New York Times.
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Figure 2: Precision-recall curves for various setups
in Wikipedia held-out setting.

this observation is somewhat misleading. Many of
the predictions of the joint model are not in the
held-out test set derived from Freebase, but never-
theless correct. Hence, to understand if one system
really outperforms another, we need to rely on man-
ual evaluation.

Note that the figure only considers binary
relations—for entity types all configurations per-
form similarly.

5.2.2 Manual Evaluation
As mentioned above, held-out evaluation in this

context suffers from false negatives in Freebase. Ta-
ble 2 therefore shows the results of our manual eval-
uation. They are based on the average, and weighted
average, of the precisions for the relation instances
of the most frequent relations. We notice that here

Isolated Pipeline Joint
Wikipedia 0.82 0.87 0.86
Wikipedia (w) 0.95 0.94 0.95
NYT 0.63 0.65 0.78
NYT (w) 0.78 0.82 0.94

Table 2: Average and weighted (w) average preci-
sion over frequent relations for New York Times and
Wikipedia data, based on manual evaluation.

all systems perform comparably for weighted aver-
age precision. For average precision we see an ad-
vantage for both the pipeline and the joint model
over the isolated system.

One reason for similar weighted average preci-
sions is the fact that all approaches accurately pre-
dict a large number of contains instances. This is
due to very regular and simple patterns in Wikipedia.
For example, most articles on towns start with “A is
a municipality in the district of B in C, D.” For these
sentences, the relative position of two location men-
tions is a very good predictor of contains. When
used as a feature, it leads to high precision for all
models. And since contains instances are most
frequent, and we take the weighted average, results
are generally close to each other.

To summarize: in this in-domain setting, mod-
elling compatibility between entity types and rela-
tions helps to improve average precision, but not
weighted average precision. This holds for both the
joint and the pipeline model. However, we will see
how this changes substantially when moving to an
out-of-domain scenario.

5.3 New York Times
For our second set of experiments we use New
York Times data as training and test corpora. As
we argued before, this is expected to be the more
difficult—and more realistic—scenario.

5.3.1 Held-out Evaluation
We choose all articles of the New York times dur-

ing 2005 and 2006 as training corpus. As test corpus
we use the first 6 months of 2007.

Figure 3 shows precision-recall curves for our var-
ious setups. We see that jointly modelling entity
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Figure 3: Precision-recall curves for various setups
in New York Times held-out setting.

types and relations helps to improve precision.

Due to the smaller overlap between Freebase and
NYT data, figure 3 also has to be taken with more
caution. The systems may predict correct relation
instances that just do not appear in Freebase. Hence
manual evaluation is even more important.

When evaluating entity precision we find that for
both models it is about 84%. This raises the ques-
tion why the joint entity type and relation extrac-
tion model outperforms the pipeline on relations.
We take a close look at the entities which partici-
pate in relations and find that joint model performs
better on most entity types, for example, country
and citytown. We also look at the relation in-
stances which are predicted by both systems and find
that the joint model does predict correct entity types
when the pipeline mis-predicts. And exactly these
mis-predictions lead the pipeline astray. Consider-
ing binary relation instances where the pipeline fails
but the joint model does not, we observe an entity
precision of 76% for the pipeline and 86% for our
joint approach. The joint model fails to correctly
predict some entity types that the pipeline gets right,
but these tend to appear in contexts where relation
instances are easy to extract without considering en-

Relation Type Iso. Pipe Joint
contains 0.92 0.98 0.96

nationality 0.28 0.64 0.82
plc_lived 0.88 0.70 0.96

plc_of_birth 0.32 0.20 0.25
works_for 0.96 0.98 0.98

plc_of_death 0.24 0.40 0.42
children 1.00 0.92 0.98
founded 0.42 0.34 0.71

Table 3: Precision at 50 for the most frequent rela-
tions on New York Times

tity types.5

5.3.2 Manual Evaluation
Manually evaluated precision for New York

Times data can be seen in table 2. In contrast to the
Wiki setting, here modelling entity types and rela-
tions jointly makes a substantial difference. For av-
erage precision, our joint model improves over the
isolated baseline by 15%, and over the pipeline by
13%. Similar improvements can be observed for
weighted average precision.

Let us look at a break-down of precisions with
respect to different relations shown in table 3. We
see dramatic improvements for nationality and
founded when applying the joint model. Note that
the nationality relation takes a larger part in
the predicted relation instances of the joint model
and hence contributes significantly to the weighted
average precision.

5.4 Scalability
We propose to perform joint inference for large scale
information extraction. An obvious concern in this
scenario is scalability. In practice we find that infer-
ence (and hence learning) in our model scales lin-
early with the number of candidate tuples. This can
be seen in figure 4a. It is to be expected since the
number of candidates equals the number of variables
the sampler has to process in each iteration.

The above observation also means that our ap-
proach scales linearly with corpus size. To illustrate

5Note that our learned preferences are soft, and hence can
be violated in case of wrong entity type predictions.
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Figure 4: CPU time for one iteration per candidate
tuple, and candidate tuples per document.

this, figure 4b shows how the number of candidates
scales with the number of documents. Again we ob-
serve a linear behavior. Since both are linear, we can
say that our joint approach is linear in the number of
documents.

Total training and test times are moderate, too.
For example, the held-out experiments with 200,000
NYT documents finish within three hours.

6 Conclusion

This paper presents a novel approach to extracting
relational facts from text. Akin to previous work in
relation extraction with distant supervision, we re-
quire no annotated text. However, instead extract-
ing facts in isolation, we model interactions between
facts in order to improve precision. In particular, we
capture selectional preferences of relations. These
preferences are modelled in a cross-document fash-
ion using a large scale factor graph. We show in-
ference and learning can be efficiently performed
in linear time by Gibbs Sampling and SampleRank.
When applied to out-of-domain text, this approach
leads to a 15% increase in precision over an isolated
baseline, and a 13% improvement over a pipelined
system.

A crucial aspect of our approach is its extensibil-
ity. Since it is exclusively framed in terms of an
undirected graphical model, it is conceptually easy
to extend it to other types of compatibilities, such
as functionality constraints. It could also be ex-
tended to tackle coreference resolution. Eventually
we seek to model the complete process of the au-

tomatic construction of KB within this framework,
and capture dependencies between extractions in a
joint and principled fashion. As we have seen here,
in particular when learning is less supervised and
extractions are noisy, capturing such interactions is
paramount.
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Abstract

In this paper we introduce the new task of
social event extraction from text. We distin-
guish two broad types of social events depend-
ing on whether only one or both parties are
aware of the social contact. We annotate part
of Automatic Content Extraction (ACE) data,
and perform experiments using Support Vec-
tor Machines with Kernel methods. We use a
combination of structures derived from phrase
structure trees and dependency trees. A char-
acteristic of our events (which distinguishes
them from ACE events) is that the participat-
ing entities can be spread far across the parse
trees. We use syntactic and semantic insights
to devise a new structure derived from depen-
dency trees and show that this plays a role in
achieving the best performing system for both
social event detection and classification tasks.
We also use three data sampling approaches
to solve the problem of data skewness. Sam-
pling methods improve the F1-measure for the
task of relation detection by over 20% abso-
lute over the baseline.

1 Introduction

This paper introduces a novel natural language pro-
cessing (NLP) task, social event extraction. We are
interested in this task because it contributes to our
overall research goal, which is to extract a social
network from written text. The extracted social net-
work can be used for various applications such as
summarization, question-answering, or the detection
of main characters in a story. For example, we man-
ually extracted the social network of characters in

Alice in Wonderland and ran standard social network
analysis algorithms on the network. The most influ-
ential characters in the story were correctly detected.
Moreover, characters occurring in a scene together
were given same social roles and positions. Social
network extraction has recently been applied to lit-
erary theory (Elson et al., 2010) and has the potential
to help organize novels that are becoming machine
readable.

We take a “social network” to be a network con-
sisting of individual human beings and groups of hu-
man beings who are connected to each other by the
virtue of participating in social events. We define
social events to be events that occur between peo-
ple where at least one person is aware of the other
and of the event taking place. For example, in the
sentence John talks to Mary, entities John and Mary
are aware of each other and the talking event. In
the sentence John thinks Mary is great, only John is
aware of Mary and the event is the thinking event.
In the sentence Rabbit ran by Alice there is no evi-
dence about the cognitive states of Rabbit and Alice
(because the Rabbit could have run by Alice without
any one of them noticing each other). A text can de-
scribe a social network in two ways: explicitly, by
stating the type of relationship between two individ-
uals (e.g. husband-wife), or implicitly, by describing
an event which creates or perpetuates a social rela-
tionship (e.g. John talked to Mary). We will call
these types of events social events. We define two
types of social events: interaction, in which both
parties are aware of the social event (e.g., a conver-
sation), and observation, in which only one party
is aware of the interaction (e.g., thinking about or

1024



spying on someone). Note that the notion of cogni-
tive state is crucial to our definition. This paper is
the first attempt to detect and classify social events
present in text.

Our task is different from related tasks, notably
from the Automated Content Extraction (ACE) rela-
tion and event extraction tasks because the events are
different (they are a class of events defined through
the effect on participants’ cognitive state), and the
linguistic realization is different. Mentions of enti-
ties1 engaged in a social event are often quite distant
from each other in the sentence (unlike in ACE rela-
tions where about 70% of relations are local, in our
social event annotation, only 25% of the events are
local. In fact, the average number of words between
entities participating in any social event is 9.)

We use tree kernel methods (on structures derived
from phrase structure trees and dependency trees) in
conjunction with Support Vector Machines (SVMs)
to solve our tasks. For the design of structures and
type of kernel, we take motivation from a system
proposed by Nguyen et al. (2009) which is a state-
of-the-art system for relation extraction. Data skew-
ness turns out to be a big challenge for the task of
relation detection since there are many more pairs
of entities without a relation as compared to pairs of
entities that have a relation. In this paper we dis-
cuss three data sampling techniques that deal with
this skewness and allow us to gain over 20% in F1-
measure over our baseline system. Moreover, we
introduce a new sequence kernel that outperforms
previously proposed sequence kernels for the task of
social event detection and plays a role to achieve the
best performing system for the task of social event
detection and classification.

The paper is structured as follows. In Section 2,
we compare our work to existing work, notably the
ACE extraction literature. In Section 3, we present
our task in detail, and explain how we annotated our
corpus. We also show why this is a novel task, and
how it is different from the ACE extraction tasks.
We then discuss kernel methods and the structures
we use, and introduce our new structure in Section 4.
In Section 5, we present the sampling methods used
for experiments. In Section 6 we present our exper-

1An entity mention is a reference of an entity in text. Also,
we use entities and people interchangeably since the only enti-
ties we are interested in are people or groups of people.

iments and results for social event detection and so-
cial event classification tasks. We conclude in Sec-
tion 7 and mention our future direction of research.

2 Literature Survey

There has not been much work in developing tech-
niques for ACE event extraction as compared to
ACE relation extraction. The most salient work for
event extraction is Grishman et al. (2005) and Ji and
Grishman (2008). To solve the task for event ex-
traction, Grishman et al. (2005) mainly use a combi-
nation of pattern matching and statistical modeling
techniques. They extract two kinds of patterns: 1)
the sequence of constituent heads separating anchor
and its arguments and 2) a predicate argument sub-
graph of the sentence connecting anchor to all the
event arguments. In conjunction they use a set of
Maximum Entropy based classifiers for 1) Trigger
labeling, 2) Argument classification and 3) Event
classification. Ji and Grishman (2008) further ex-
ploit a correlation between senses of verbs (that are
triggers for events) and topics of documents.

Our work shares some similarities. However, in-
stead of building different classifiers, we use kernel
methods with SVMs that “naturally” combine vari-
ous patterns. The structures we use for kernel meth-
ods are a super-set of the patterns used by Grishman
et al. (2005). Moreover, in our work, we take gold
annotation for entity mentions, and do not deal with
the task of named entity detection or resolution. Fi-
nally, our social events are a broad class of event
types, and they involve linguistic expressions for ex-
pressing interactions and cognition that do not seem
to have a correlation with the topics of documents.

There has been much work in extracting ACE re-
lations. The supervised approaches used for relation
extraction can broadly be divided into three main
categories: 1) feature-based approaches 2) kernel-
based approaches and 3) a combination of feature
and kernel based approaches. The state-of-the-art
feature based approach is that of GuoDong et al.
(2005). They use diverse lexical, syntactic and se-
mantic knowledge for the task. The lexical fea-
tures they use are words between, before, and af-
ter target entity mentions, the type of entity (Per-
son, Organization etc.), the type of mention (named,
nominal or pronominal) and a feature called overlap

1025



that counts the number of other entity mentions and
words between the target entities. To incorporate
syntactic features they use features extracted from
base phrase chunking, dependency trees and phrase
structure trees. To incorporate semantic features,
their approach uses resources like a country list and
WordNet. GuoDong et al. (2005) report that 70% of
the entities are embedded within each other or sep-
arated by just one word. This is a major difference
to our task because most of our relations span over a
long distance in a sentence.

Collins and Duffy (2002) are among the earliest
researchers to propose the use of tree kernels for
various NLP tasks. Since then kernels have been
used for the task of relation extraction (Zelenko et
al., 2002; Zhao and Grishman, 2005; Zhang et al.,
2006; Moschitti, 2006b; Nguyen et al., 2009). For
an excellent review of these techniques, see Nguyen
et al. (2009). In addition, there has been some work
that combines feature and kernel based methods
(Harabagiu et al., 2005; Culotta and Jeffrey, 2004;
Zhou et al., 2007). Apart from using kernels over de-
pendency trees, Culotta and Jeffrey (2004) incorpo-
rate features like words, part of speech (POS) tags,
syntactic chunk tag, entity type, entity level, rela-
tion argument and WordNet hypernym. Harabagiu
et al. (2005) leverage this approach by adding more
semantic feature derived from semantic parsers for
FrameNet and PropBank. Zhou et al. (2007) use a
context sensitive kernel in conjunction with features
they used in their earlier publication (GuoDong et
al., 2005). However, we take an approach similar
to Nguyen et al. (2009). This is because it incorpo-
rates many of the features suggested in feature-based
approaches by using combinations of various struc-
tures derived from phrase structure trees and depen-
dency trees. In addition we use data sampling tech-
niques to deal with the problem of data skewness.
We not only try the structures suggested by Nguyen
et al. (2009) but also introduce a new sequence struc-
ture on dependency trees. We discuss their struc-
tures and kernel method in detail in Section 4.

3 Social Event Annotation Data

3.1 Social Event Annotation

There has been much work in the past on annotat-
ing entities, relations and events in free text, most

notably the ACE effort (Doddington et al., 2004).
We leverage this work by annotating social events on
the English part of ACE 2005 Multilingual Training
Data2 that has already been annotated for entities,
relations and events. In Agarwal et al. (2010), we in-
troduce a comprehensive set of social events which
are conceptually different from the event annotation
that already exists for ACE. Since our annotation
task is complex and layered, in Agarwal et al. (2010)
we present confusion matrices, Cohen’s Kappa, and
F-measure values for each of the decision points that
the annotators go through in the process of select-
ing a type and subtype for an event. Our annota-
tion scheme is reliable, achieving a moderate kappa
for relation detection (0.68) and a high kappa for re-
lation classification (0.86). We also achieve a high
global agreement of 69.7% using a measure which
is inspired by Automated Content Extraction (ACE)
inter-annotator agreement measure. This compares
favorably to the ACE annotation effort.

Following are the two broad types of social events
that were annotated:

Interaction event (INR): When both entities par-
ticipating in an event are aware of each other and of
the social event, we say they have an INR relation.
Consider the following Example (1).

(1) [Toujan Faisal], 54, {said} [she] was
{informed} of the refusal by an [Interior
Ministry committee] overseeing election
preparations. INR

As is intuitive, if one person informs the other
about something, both have to be cognizant of each
other and of the informing event in which they are
both participating.

Observation event (OBS): When only one person
(out of the two people that are participating in an
event) is aware of the other and of the social event,
we say they have an OBS relation. Of the type OBS,
there are three subtypes: Physical Proximity (PPR),
Perception (PCR) and Cognition (COG). PPR re-
quires that one entity can observe the other entity in
real time not through a broadcast medium, in con-
trast to the subtype PCR, where one entity observes
the other through media (TV, radio, magazines etc.)
Any other observation event that is not PPR or PCR

2Version: 6.0, Catalog number: LDC2005E18
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is COG. Consider the aforementioned Example (1).
In this sentence, the event said marks a COG re-
lation between Toujan Faisal and the committee.
This is because, when one person talks about another
person, the other person must be present in the first
person’s cognitive state without any requirement on
physical proximity or external medium.

As the annotations revealed, PPR and PCR oc-
curred only twice and once, respectively, in the part
of ACE corpus we annotated. (They occur more fre-
quently in another genre we are investigating such
as literary texts.) We omit these extremely low-
frequency categories from our current study; in this
paper we build classifiers to detect and classify only
INR and COG events.

3.2 Comparison Between Social Events and
ACE Annotations

The ACE effort is about entity, relation and event
annotation. We use their annotations for entity types
PER.Individual and PER.Group and add our social
event annotations. Our event annotations are dif-
ferent from ACE event annotations because we an-
notate text that expresses the cognitive states of the
people involved, or allows the annotator to infer it.
Therefore, at the top level of classification we dif-
ferentiate between events in which only one entity
is cognizant of the other (observation) versus events
when both entities are cognizant of each other (in-
teraction). This distinction is, we believe, novel in
event or relation annotation.

Now we present statistics and examples to make
clear how our annotations are different from ACE
event annotations. The statistics are based on 62
documents from the ACE corpus. These files con-
tain a total of 212 social events. We found a total of
63 candidate ACE events that had at least two Person
entities involved. Out of these 63 candidate events,
54 match our annotations. The majority of social
events that match the ACE events are of type INR.
On analysis, we found that most of these correspond
to the ACE event type CONTACT. Specifically, the
“meeting” event, which is an ACE CONTACT event
and an INR event according to our definition, is the
major cause of overlap. However, our type INR has
a broader definition than ACE type CONTACT. For
example, in Example 1, we recorded an INR event
between Toujan Faisal and committee (event span:

informed). ACE does not record any event between
these two entities because informed does not entail
a CONTACT event for ACE event annotations. An-
other example that will clarify the difference is the
following:

(2) In central Baghdad, [a Reuters cameraman] and
[a cameraman for Spain’s Telecinco] died when
an American tank fired on the Palestine Hotel

ACE has annotated the above example as an event
of type CONFLICT in which there are two entities
that are of type person: the Reuters cameraman
and the cameraman for Spain’s Telecinco, both of
which are arguments of type “Victim”. Being an
event that has two person entities involved makes
the above sentence a potential social event. How-
ever, we do not record any event between these enti-
ties since the text does not reveal the cognitive states
of the two entities; we do not know whether one was
aware of the other.

ACE defines a class of social relations (PER-
SOC) that records named relations like friendship,
co-worker, long lasting etc. Also, there already exist
systems that detect and classify these relations well.
Therefore, even though these relations are directly
relevant to our overall goal of social event extrac-
tion, we do not annotate, detect or classify these re-
lations in this paper.

4 Tree Kernels, Discrete Structures, and
Language

In this section, we give details of the structures and
kernel we use for our classification tasks. We also
discuss our motivation behind using these methods.
Linear learning machines are one of the most popu-
lar machines used for classification problems. The
objective of a typical classification problem is to
learn a function that separates the data into differ-
ent classes. The data is usually in the form of fea-
tures extracted from abstract objects like strings,
trees, etc. A drawback of learning by using com-
plex functions is that complex functions do not gen-
eralize well and thus tend to over-fit. The research
community therefore prefers linear classifiers over
other complex classifiers. But more often than not,
the data is not linearly separable. It can be made
linearly separable by increasing the dimensionality
of data but then learning suffers from the curse of
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dimensionality and classification becomes computa-
tionally intractable. This is where kernels come to
the rescue. The well-known kernel trick aids us in
finding similarity between feature vectors in a high
dimensional space without having to write down the
expanded feature space. The essence of kernel meth-
ods is that they compare two feature vectors in high
dimensional space by using a dot product that is a
function of the dot product of feature vectors in the
lower dimensional space. Moreover, Convolution
Kernels (first introduced by Haussler (1999)) can
be used to compare abstract objects instead of fea-
ture vectors. This is because these kernels involve
a recursive calculation over the “parts” of a discrete
structure. This calculation is usually made computa-
tionally efficient using Dynamic Programming tech-
niques. Therefore, Convolution Kernels alleviate the
need of feature extraction (which usually requires
domain knowledge, results in extraction of incom-
plete information and introduces noise in the data).
Therefore, we use convolution kernels with a linear
learning machine (Support Vector Machines) for our
classification task.

Now we present the “discrete” structures followed
by the kernel we used. We use the structures pre-
viously used by Nguyen et al. (2009), and propose
one new structure. Although we experimented with
all of their structures,3 here we only present the ones
that perform best for our classification task. All the
structures and their combinations are derived from a
variation of the underlying structures, Phrase Struc-
ture Trees (PST) and Dependency Trees (DT). For
all trees we first extract their Path Enclosed Tree,
which is the smallest common subtree that contains
the two target entities (Moschitti, 2004). We use the
Stanford parser (Klein and Manning, 2003) to get
the basic PSTs and DTs. Following are the struc-
tures that we refer to in our experiments and results
section:
PET: This refers to the smallest common phrase
structure tree that contains the two target entities.
Dependency Words (DW) tree: This is the smallest
common dependency tree that contains the two tar-
get entities. In Figure 1, since the target entities are
at the leftmost and rightmost branch of the depen-

3We omitted SK6, which is the worst performing sequence
kernel in (Nguyen et al., 2009).
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pobj

Individual
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prepprep

was

auxpass
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Figure 1: Dependency parse tree for the sentence (in
the ACE corpus): “[Toujan Faisal], 54, {said} [she]
was {informed} of the refusal by an [Interior Min-
istry committee] overseeing election preparations.”

dency tree, this is in fact a DW (ignoring the gram-
matical relations on the arcs).
Grammatical Relation (GR) tree: If we replace the
words at the nodes by their relation to their corre-
sponding parent in DW, we get a GR tree. For exam-
ple, in Figure 1, replacing Toujan Faisal by nsubj,
54 by appos, she by nsubjpass and so on.
Grammatical Relation Word (GRW) tree: We get
this tree by adding the grammatical relations as sep-
arate nodes between a node and its parent. For ex-
ample, in Figure 1, adding nsubj as a node between
T1-Individual and Toujan Faisal, appos as a node
between 54 and Toujan Faisal, and so on.
Sequence Kernel of words (SK1): This is the se-
quence of words between the two entities, including
their tags. For our example in Figure 1, it would
be T1-Individual Toujan Faisal 54 said she was in-
formed of the refusal by an T2-Group Interior Min-
istry committee.
Sequence in GRW tree (SqGRW): This is the new
structure that we introduce which, to the best of
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our knowledge, has not been used before for sim-
ilar tasks. It is the sequence of nodes from one
target to the other in the GRW tree. For example,
in Figure 1, this would be Toujan Faisal nsubj T1-
Individual said ccomp informed prep by T2-Group
pobj committee.

We also use combinations of these structures
(which we refer to as “combined-structures”). For
example, PET GR SqGRW means we used the three
structures (PET, GR and SqGRW) together with a
kernel that calculates similarity between forests.

We use the Partial Tree (PT) kernel, first proposed
by Moschitti (2006a), for structures derived from de-
pendency trees and Subset Tree (SST) kernel, pro-
posed by Collins and Duffy (2002), for structures
derived from phrase structure trees. PT is a relaxed
version of the SST; SST measures the similarity be-
tween two PSTs by counting all subtrees common to
the two PSTs. However, there is one constraint: all
daughter nodes of a node must be included. In PTs
this constraint is removed. Therefore, in contrast
to SSTs, PT kernels compare many more substruc-
tures. They have been used successfully by (Mos-
chitti, 2004) for the task of semantic role labeling.

The choices we have made are motivated by
the following considerations. We are interested
in modeling classes of events which are charac-
terized by the cognitive states of participants–who
is aware of whom. The predicate-argument struc-
ture of verbs can encode much of this information
very efficiently, and classes of verbs express their
predicate-argument structure in similar ways. For
example, many verbs of communication can ex-
press their arguments using the same pattern: John
talked/spoke/lectured/ranted/testified to Mary about
Percy. Independently of the verb, John is in a COG
relation with Percy and in an INR relation with
Mary. All these verbs allow us to drop either or
both of the prepositional phrases, without altering
the interpretation of the remaining constituents. And
even more strikingly, any verb that can be put in that
position is likely to have this interpretation; for ex-
ample, we are likely to interpret the neologistic John
gazooked to Mary about Percy as a similarly struc-
tured social event.

The regular relation between verb alternations and
meaning components has been extensively studied
(Levin, 1993; Schuler, 2005). This regularity in

the syntactic predicate-argument structure allows us
to overcome lexical sparseness. However, in or-
der to exploit such regularities, we need to have ac-
cess to a representation which makes the predicate-
argument structure clear. Dependency representa-
tions do this. Phrase structure representations also
represent predicate-argument structure, but in an in-
direct way through the structural configurations, and
we expect this to increase the burden on the learner.
(In some phrase structure representations, some ar-
guments and adjuncts are not disambiguated.) When
using dependency structures, the SST kernel is far
less appealing, since it forces us to always consider
all daughter nodes of a node. However, as we have
seen, it is certain daughter nodes, such as the pres-
ence of a to PP and a about PP, which are important,
while other daughters, such as temporal or locative
adjuncts, should be disregarded. The PT kernel al-
lows us to do this.

5 Sampling Methods

In this section we present the data sampling meth-
ods we use to deal with data skewness. We em-
ploy two well-known data sampling methods on the
training data before creating a model for test data;
random under-sampling and random over-sampling
(Kotsiantis et al., 2006; Japkowicz, 2000; Weiss and
Provost, 2001). These techniques are non-heuristic
sampling methods that aim at balancing the class
proportions by removing examples of the major-
ity class and by duplicating instances of the minor-
ity class respectively. The reason for using these
techniques is that learning is usually optimized to
achieve high accuracy. Therefore, when presented
with skewed training data, a classifier may learn the
target concept with a high accuracy by only predict-
ing the majority class. But if one looks at the preci-
sion, recall, and F-measure, of such a classifier, they
will be very low for the minority class. Since, like
other researchers, we are evaluating the goodness of
a model based on its precision, recall and F-measure
and not on the accuracy on the test set, either we
should change the optimization function of the clas-
sifier or employ data sampling techniques. We em-
ploy the latter because by balancing the class ratio,
we are presenting the classifier with a more chal-
lenging task of achieving a good accuracy when the
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majority base class is about 50%. The major draw-
backs of the two techniques is that under-sampling
throws away important information whereas over-
sampling is prone to over-fitting (due to data dupli-
cation). As our results show, throwing away infor-
mation about the majority class is much better than
the system that tries to learn in an unbalanced sce-
nario, but it performs worse than an approach using
data duplication. Since we are using SVMs as a clas-
sifier, over-fitting is unlikely as reported by Kolcz et
al. (2003).

In order to be sure that we are not over-fitting,
we tried another sampling method proposed by Ha
and Bunke (1997), which is shown to be good so-
lution to avoid over-fitting by Chawla et al. (2002).
This sampling technique proposes to generate syn-
thetic examples of the minority class by “perturb-
ing” the training data. Specifically, Ha and Bunke
(1997) produced new synthetic examples for the task
of handwritten character recognition by doing op-
erations like rotation and skew on characters. The
basic idea is to produce synthetic examples that are
“close” to the real example from which these syn-
thetic points are generated. Analogously, we tried
two transformations on our dependency tree struc-
tures to produce synthetic examples. The first trans-
formation is based on the observation that in con-
trol verb constructions, the matrix verb typically
does not contribute to the interpretation as a social
event or not. In this transformation, we lower the
subject to an argument verb if it does not have a
subject, and repeat this procedure iteratively. As
it turned out, this transformation only occurred 15
times, and therefore it does not serve the purpose
of over-sampling. We tried a more relaxed trans-
formation on the rightmost target in the tree. Here,
the observation is that for the COG social events,
the second target may be very deeply embedded in
the tree. For example, in Example 1, Toujan Faisal
and the Interior Ministry Committee participate in a
COG event (because Faisal is aware of the Commit-
tee during the saying event). However, the contents
of what Faisal said is only relevant to the extent that
it pertains to the committee. The depth of the em-
bedding of the second target creates issues of data
sparseness, as the path-enclosed trees become very
large and very diverse. Our transformation, there-
fore, is to move the second target to its grandmother

node, attaching it on the left, and to recalculate the
path-enclosed tree, which is now smaller. This is re-
peated iteratively, so that a sentence with a deeply
embedded second target can yield a large number of
synthesized structures.

6 Experiments And Results

In this section we present experiments and results for
our two tasks: social event detection and classifica-
tion. For the social event detection task, we wish to
validate the following research hypotheses. First, we
aim to show the importance of using data sampling
when evaluating on F-measure; specifically, we ex-
pect under-sampling to outperform no sampling,
over-sampling to outperform under-sampling, and
over-sampling with transformations to out perform
over-sampling without transformations. In contrast,
the social event classification task does not suffer
from data skewness because the INR and COG rela-
tions; both occur almost the same number of times.
Therefore, sampling methods may not be applied for
this task. Second, for both tasks, we expect that a
combination of kernels will out-perform individual
kernels. Moreover, we expect that dependency trees
will have a crucial role in achieving the best perfor-
mance.

6.1 Experimental Set-up

We use part of ACE data that we annotated for social
events. In all, we annotated 138 ACE documents.
We retained the ACE entity annotations. We con-
sider all entity mention pairs in a sentence. If our
annotators recorded a relation between a pair of en-
tity mentions, we say there is a relation between the
corresponding entities. If there are any other pairs of
entity mentions for the same pair of entity, we dis-
card those. For all other pairs of entity mentions,
we say there is no relation. Out of 138 files, four
files did not have any positive or negative examples
(because there were very few and sparse entity men-
tions in these four files). We found a total of 1291
negative examples, 172 examples belonging to class
INR and 174 belonging to class COG.

We use Jet’s sentence splitter4 and the Stanford
Parser (Klein and Manning, 2003) for phrase struc-
ture trees and dependency parses. For classifica-

4http://cs.nyu.edu/grishman/jet/jetDownload.html
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tion, we used Alessandro Moschitti’s SVM-Light-
TK package (Moschitti, 2006b) which is built on
the SVM-Light implementation of Joakhims (1999).
For all our experiments, we perform 5-fold cross-
validation. We randomly divide the whole corpus
into 5 equal parts, such that no news story (or docu-
ment) gets divided among two parts. For each fold,
we then merge 4 parts to create a training corpus and
treat the remaining part as a test corpus. By keep-
ing individual news stories intact, we make sure that
vocabulary specific to one story does not unrealisti-
cally improve the performance.

6.2 Social Event Detection
Social event detection is the task of detecting if any
social event exists between a pair of entities in a sen-
tence. We formulate the problem as a binary classi-
fication task by labeling an example that does not
have a social event as class -1 and by labeling an ex-
ample that either has an INR or COG social event
as class 1. First we present results for our baseline
system. Our baseline system uses various structures
and their combinations but without any data balanc-
ing. 5

Kernel P R F1
PET 70.28 21.46 32.38
GR 87.79 15.21 25.55

GRW 76.42 8.26 14.8
SqGRW 48.78 6.08 10.38
PET GR 70.21 27.76 38.89

PET GR SqGRW 71.06 26.74 38.02
GR SqGRW 82.0 24.47 36.12

GRW SqGRW 68.19 17.01 25.06
GR GRW SqGRW 79.81 21.99 32.57

Table 1: Baseline System for the task of social event
detection. The proportion of positive data in training
and test set is 21.1% and 20.6% respectively.

Table 1 presents results for our baseline system.
Grammatical relation tree structure (GR), a struc-
ture derived from dependency tree by replacing the
words by their grammatical relations achieves the
best precision. This is probably because the clas-

5Although we experimented with many more structures and
their combinations, due to space restrictions we mention only
the top results.

sifier learns that if both the arguments of a predi-
cate contain target entities then it is a social event.
Among kernels for single structures, the path en-
closed tree for PSTs (PET) achieves the best re-
call. Furthermore, a combination of structures de-
rived from PSTs and DTs performs best. The se-
quence kernels, perform much worse than SqGRW
(F1-measure as low as 0.45). Since it is the same
case for all subsequent experiments, we omit them
from the discussion.

Kernel P R F1
PET 28.89 77.06 41.96
GR 35.68 72.47 47.37

GRW 29.7 83.6 43.6
SqGRW 34.31 84.15 48.61
PET GR 34.38 83.94 48.52

PET GR SqGRW 34.34 83.66 48.52
GR SqGRW 33.45 81.73 47.27

GRW SqGRW 32.87 84.44 47.11
GR GRW SqGRW 32.73 83.26 46.82

Table 2: Under-sampled system for the task of rela-
tion detection. The proportion of positive examples
in the training and test corpus is 50.0% and 20.6%
respectively.

We now turn to experiments involving sampling.
Table 2 presents results for under-sampling, i.e. ran-
domly removing examples belonging to the negative
class until its size matches the positive class. Table 2
shows a large gain in F1-measure of 9.72% abso-
lute over the baseline system (Table 1). We found
that worst performing kernel with under-sampling
is SK1 with an F1-measure of 39.2% which is
better than the best performance without under-
sampling. These results make it clear that doing
under-sampling greatly improves the performance of
the classifier, despite the fact that we are using less
training data (fewer negative examples). This is as
expected because we are evaluating on F1-measure
and the classifier is optimizing for accuracy.

Table 3 presents results for over-sampling i.e.
replicating positive examples to achieve an equal
number of examples belonging to the positive and
negative class. Table 3 shows that the gain over
the baseline system now is 22.2% absolute. Also,
the gain over the under-sampled system is 12.5%
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Kernel P R F1
PET 50.9 57.21 53.62
GR 43.57 67.21 52.59

GRW 46.05 64.15 53.31
SqGRW 42.4 72.75 53.5
PET GR 56.42 66.2 60.63

PET GR SqGRW 57.28 66.26 61.11
GR SqGRW 44.35 71.17 54.52

GRW SqGRW 44.77 68.79 54.12
GR GRW SqGRW 46.79 71.54 56.45

Table 3: Over-sampled system for the task of rela-
tion detection. The proportion of positive examples
in the training and test corpus is 50.0% and 20.6%
respectively.

absolute. As in the baseline system, a combina-
tion of structures performs best. As in the under-
sampled system, when the data is balanced, SqGRW
(sequence kernel on dependency tree in which gram-
matical relations are inserted as intermediate nodes)
achieves the best recall. Here, the PET and GR ker-
nel perform similar: this is different from the results
of (Nguyen et al., 2009) where GR performed much
worse than PET for ACE data. This exemplifies
the difference in the nature of our event annotations
from that of ACE relations. Since the average dis-
tance between target entities in the surface word or-
der is higher for our events, the phrase structure trees
are bigger. This means that implicit feature space is
much sparser and thus not the best representation.

PET 37.04 66.49 47.28
GR 40.39 71.14 51.27

GRW 45.16 66.82 53.47
SqGRW 42.88 70.67 53.22
PET GR 45.33 70.26 54.71

PET GR SqGRW 45.26 72.97 55.67
GR SqGRW 43.73 71.47 54.06

GRW SqGRW 45.70 71.30 55.32
GR GRW SqGRW 45.91 71.90 55.70

Table 4: Over-sampled System with transformation
for relation detection. The proportion of positive ex-
amples in the training and test corpus is 51.7% and
20.6% respectively.

Table 4 presents results for using the over-
sampling method with transformation that produces
synthetic positive examples by using a transforma-
tion on dependency trees such that the new syn-
thetic examples are “close” to the original exam-
ples. This method achieves a gain 16.78% over the
baseline system. We expected this system to per-
form better than the over-sampled system but it does
not. This suggests that our over-sampled system is
not over-fitting; a concern with using oversampling
techniques.

6.3 Social Event Classification
For the social event classification task, we only con-
sider pairs of entities that have an event. Since these
events could only be INR or COG, this is a binary
classification problem. However, now we are inter-
ested in both outcomes of the classification, while
earlier we were only interested in knowing how well
we were finding relations (and not in how well we
were finding “non-relations”). Therefore, accuracy
is the relevant metric (Table 5).

Kernel Acc
PET 76.85
GR 71.04

GRW 76.22
SqGRW 75.78
PET GR 76.34

PET GR SqGRW 78.72
GR SqGRW 75.60

GRW SqGRW 76.96
GR GRW SqGRW 77.29

Table 5: System for the task of relation classifica-
tion. The two classes are INR and COG, and we
evaluate using accuracy (Acc.). The proportion of
INR relations in training and test set is 49.7% and
49.63% respectively.

Even though the task of reasoning if an event
is about one-way or mutual cognition seems hard,
our system beats the chance baseline by 28.72%.
These results show that there are significant clues
in the lexical and syntactic structures that help in
differentiating between interaction and cognition so-
cial events. Once again we notice that the combi-
nation of kernels works better than single kernels
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alone, though the difference here is less pronounced.
Among the combined-structure approaches, com-
binations with dependency-derived structures con-
tinue to outperform those not including dependency
(the best all-phrase structure performer is PET SK1
with 75.7% accuracy, not shown in Table 5).

7 Conclusion And Future Work

In this paper, we have introduced the novel tasks of
social event detection and classification. We show
that data sampling techniques play a crucial role
for the task of relation detection. Through over-
sampling we achieve an increase in F1-measure of
22.2% absolute over a baseline system. Our exper-
iments show that as a result of how language ex-
presses the relevant information, dependency-based
structures are best suited for encoding this informa-
tion. Furthermore, because of the complexity of
the task, a combination of phrase based structures
and dependency-based structures perform the best.
This revalidates the observation of Nguyen et al.
(2009) that phrase structure representations and de-
pendency representations add complimentary value
to the learning task. We also introduced a new se-
quence structure (SqGRW) which plays a role in
achieving the best accuracy for both, social event de-
tection and social event classification tasks.

In the future, we will use other parsers (such as
semantic parsers) and explore new types of linguis-
tically motivated structures and transformations. We
will also investigate the relation between classes of
social events and their syntactic realization.
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Abstract

In this paper, we focus on the opinion tar-
get extraction as part of the opinion min-
ing task. We model the problem as an in-
formation extraction task, which we address
based on Conditional Random Fields (CRF).
As a baseline we employ the supervised al-
gorithm by Zhuang et al. (2006), which rep-
resents the state-of-the-art on the employed
data. We evaluate the algorithms comprehen-
sively on datasets from four different domains
annotated with individual opinion target in-
stances on a sentence level. Furthermore, we
investigate the performance of our CRF-based
approach and the baseline in a single- and
cross-domain opinion target extraction setting.
Our CRF-based approach improves the perfor-
mance by 0.077, 0.126, 0.071 and 0.178 re-
garding F-Measure in the single-domain ex-
traction in the four domains. In the cross-
domain setting our approach improves the per-
formance by 0.409, 0.242, 0.294 and 0.343 re-
garding F-Measure over the baseline.

1 Introduction

The automatic extraction and analysis of opinions
has been approached on several levels of granular-
ity throughout the last years. As opinion mining is
typically an enabling technology for another task,
this overlaying system defines requirements regard-
ing the level of granularity. Some tasks only require
an analysis of the opinions on a document or sen-
tence level, while others require an extraction and
analysis on a term or phrase level. Amongst the
tasks which require the finest level of granularity

are: a) Opinion question answering - i.e. with ques-
tions regarding an entity as in “What do the people
like / dislike about X?”. b) Recommender systems
- i.e. if the system shall only recommend entities
which have received good reviews regarding a cer-
tain aspect. c) Opinion summarization - i.e. if one
wants to create an overview of all positive / negative
opinions regarding aspect Y of entity X and cluster
them accordingly. All of these tasks have in com-
mon that in order to fulfill them, the opinion min-
ing system must be capable of identifying what the
opinions in the individual sentences are about, hence
extract the opinion targets.

Our goal in this work is to extract opinion tar-
gets from user-generated discourse, a discourse type
which is quite frequently encountered today, due to
the explosive growth of Web 2.0 community web-
sites. Typical sentences which we encounter in this
discourse type are shown in the following examples.
The opinion targets which we aim to extract are un-
derlined in the sentences, the corresponding opinion
expressions are shown in italics.

(1) While none of the features are
earth-shattering, eCircles does provide a great
place to keep in touch.

(2) Hyundai’s more-than-modest refresh has
largely addressed all the original car’s
weaknesses while maintaining its price
competitiveness.

The extraction of opinion targets can be consid-
ered as an instance of an information extraction
(IE) task (Cowie and Lehnert, 1996). Conditional
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Random Fields (CRF) (Lafferty et al., 2001) have
been successfully applied to several IE tasks in
the past (Peng and McCallum, 2006). A recur-
ring problem, which arises when working with su-
pervised approaches, concerns the domain portabil-
ity. In the opinion mining context this question has
been prominently investigated with respect to opin-
ion polarity analysis (sentiment analysis) in previ-
ous research (Aue and Gamon, 2005; Blitzer et al.,
2007). Terms as “unpredictable” can express a pos-
itive opinion when uttered about the storyline of a
movie but a negative opinion when the handling of
a car is described. Hence the effects of training and
testing a machine learning algorithm for sentiment
analysis on data from different domains have been
analyzed in previous research. However to the best
of our knowledge, these effects have not been inves-
tigated regarding the extraction of opinion targets.

The contribution of this paper is a CRF-based ap-
proach for opinion targets extraction which tackles
the problem of domain portability. We first evalu-
ate our approach in three different domains against
a state-of-the art baseline system and then evaluate
the performance of both systems in a cross-domain
setting. We show that our CRF-based approach out-
performs the baseline in both settings, and how the
diffrerent combinations of features we introduce in-
fluence the results of our CRF-based approach. The
remainder of this paper is structured as follows: In
Section 2 we discuss the related work, and in Sec-
tion 3 we describe our CRF-based approach. Sec-
tion 4 comprises our experimental setup including
the description of the dataset we employ in our ex-
periments in Section 4.1 and the baseline system in
Section 4.2. The results of our experiments and their
discussion follow in Section 5. Finally we draw our
conclusions in Section 6.

2 Related Work

In the following we will discuss the related work re-
garding opinion target extraction and domain adap-
tation in opinion mining. The discussion of the re-
lated work on opinion target extraction is separated
in supervised and unsupervised approaches. We
conclude with a discussion of the related work on
domain adaptation in opinion mining.

2.1 Unsupervised Opinion Target Extraction
The first work on opinion target extraction was done
on customer reviews of consumer electronics. Hu
and Liu (2004) introduce the task of feature based
summarization, which aims at creating an overview
of the product features commented on in the re-
views. Their approach relies on a statistical analysis
of the review terms based on association mining. A
dataset of customer reviews from five domains was
annotated by the authors regarding mentioned prod-
uct features with respective opinion polarities. The
association mining based algorithm yields a preci-
sion of 0.72 and a recall of 0.80 in the extraction
of a manually selected subset of product features.
The same dataset of product reviews was used in the
work of Yi et al. (2003). They present and evalu-
ate a complete system for opinion extraction which
is based on a statistical analysis based on the Like-
lihood Ratio Test for opinion target extraction. The
Likelihood Ratio Test yields a precision of 0.97 and
1.00 in the task of opinion target (product feature)
extraction, recall values are not reported.

Popescu and Etzioni (2005) present the OPINE
system for opinion mining on product reviews.
Their algorithm is based on an information extrac-
tion system, which uses the pointwise mutual infor-
mation based on the hitcounts of a web-search en-
gine as an input. They evaluate the opinion target
extraction separately on the dataset by Hu and Liu
(2004). OPINE’s precision is on average 22% higher
than the association mining based approach, while
having an average 3% lower recall.

Bloom et al. (2007) manually create taxonomies
of opinion targets for two datasets. With a hand-
crafted set of dependency tree paths their algorithm
identifies related opinion expressions and targets.
Due to the lack of a dataset annotated with opinion
expressions and targets, they just evaluate the accu-
racy of several aspects of their algorithm by man-
ually assessing an output sample. Their algorithm
yields an accuracy of 0.75 in the identification of
opinion targets.

Kim and Hovy (2006) aim at extracting opinion
holders and opinion targets in newswire with se-
mantic role labeling. They define a mapping of the
semantic roles identified with FrameNet to the re-
spective opinion elements. As a baseline, they im-
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plement an approach based on a dependency parser,
which identifies the targets following the dependen-
cies of opinion expressions. They measure the over-
lap between two human annotators and their algo-
rithm as well as the baseline system. The algorithm
based on semantic role labeling yields an F-Measure
of 0.315 with annotator1 and 0.127 with annotator2,
while the baseline yields an F-Measure of 0.107 and
0.109 regarding opinion target extraction

2.2 Supervised Opinion Target Extraction
Zhuang et al. (2006) present a supervised algorithm
for the extraction of opinion expression - opinion
target pairs. Their algorithm learns the opinion tar-
get candidates and a combination of dependency and
part-of-speech paths connecting such pairs from an
annotated dataset. They evaluate their system in a
cross validation setup on a dataset of user-generated
movie reviews and compare it to the results of the Hu
and Liu (2004) system as a baseline. Thereby, the
system by Zhuang et al. (2006) yields an F-Measure
of 0.529 and outperforms the baseline which yields
an F-Measure of 0.488 in the task of extracting opin-
ion target - opinion expression pairs.

Kessler and Nicolov (2009) solely focus on iden-
tifying which opinion expression is linked to which
opinion target in a sentence. They present a dataset
of car and camera reviews in which opinion expres-
sions and opinion targets are annotated. Starting
with this information, they train a machine learn-
ing classifier for identifying related opinion expres-
sions and targets. Their algorithm receives the opin-
ion expression and opinion target annotations as in-
put during runtime. The classifier is evaluated us-
ing the algorithm by Bloom et al. (2007) as a base-
line. The support vector machine based approach
by Kessler and Nicolov (2009) yields an F-Measure
of 0.698, outperforming the baseline which yields an
F-Measure of 0.445.

2.3 Domain Adaptation in Opinion Mining
The task of creating a supervised algorithm, which
when trained on data from domain A, also performs
well on data from another domain B, is a domain
adaptation problem (Daumé III and Marcu, 2006;
Jiang and Zhai, 2007). Aue and Gamon (2005) have
investigated this challenge very early in the task of
document level sentiment classification (positive /

negative). They observe that increasing the amount
of training data raises the classification accuracy, but
only if the training data is from one source domain.
Increasing the training data by mixing domains does
not yield any consistent improvements. Blitzer et
al. (2007) introduce an extension to a structural cor-
respondence learning algorithm, which was specifi-
cally designed to address the task of domain adap-
tation. Their enhancement aims at identifying pivot
features, which are stable across domains. In a series
of experiments in document level sentiment classi-
fication they show that their extension outperforms
the original structural correspondence learning ap-
proach. In their error analysis, the authors observe
the best results were reached when the training - test-
ing combinations were Books - DVDs or Electronics
- Kitchen appliances. They conclude that the topi-
cal relatedness of the domains is an important factor.
Furthermore they observe that training the algorithm
on a smaller amount of data from a similar domain is
more effective than increasing the amount of train-
ing data by mixing domains.

3 CRF-based Approach for Opinion
Target Extraction

In the following we will describe the features we
employ as input for our CRF-based approach. As the
development data, we used 29 documents from the
movies dataset, 23 documents from the web-services
dataset and 15 documents from the cars & cameras
datasets.

Token
This feature represents the string of the current token
as a feature. Even though this feature is rather ob-
vious, it can have considerable impact on the target
extraction performance. If the vocabulary of targets
is rather compact for a certain domain (correspond-
ing to a low target type / target ratio), the training
data is likely to contain the majority of the target
types, which should hence be a good indicator. We
will refer to this feature as tk in our result tables.

POS
This feature represents the part-of-speech tag of the
current token as identified by the Stanford POS Tag-
ger1. It can provide some means of lexical disam-

1http://nlp.stanford.edu/software/tagger.shtml
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biguation, e.g. indicate that the token “sounds” is
a noun and not a verb in a certain context. At the
same time, the CRF algorithm is provided with ad-
ditional information to extract opinion targets which
are multiword expressions, i.e. noun combinations.
We will refer to this feature as pos in our result ta-
bles.

Short Dependency Path
Previous research has successfully employed paths
in the dependency parse tree to link opinion expres-
sions and the corresponding targets (Zhuang et al.,
2006; Kessler and Nicolov, 2009). Both works iden-
tify direct dependency relations such as “amod” and
“nsubj” as the most frequent and at the same time
highly accurate connections between a target and an
opinion expression. We hence label all tokens which
have a direct dependency relation to an opinion ex-
pression in a sentence. The Stanford Parser2 is em-
ployed for the constituent and dependency parsing.
We will refer to this feature as dLn in our result ta-
bles.

Word Distance
From the work of Zhuang et al. (2006) we can infer
that opinion expressions and their target(s) are not
always connected via short paths in the dependency
parse tree. Since we cannot capture such paths with
the abovementioned feature we introduce another
feature which acts as heuristic for identifying the
target to a given opinion expression. Hu and Liu
(2004) and Yi et al. (2003) have shown that (base)
noun phrases are good candidates for opinion targets
in the datasets of product reviews. We therefore la-
bel the token(s) in the closest noun phrase regarding
word distance to each opinion expression in a sen-
tence. We will refer to this feature as wrdDist in our
result tables.

Opinion Sentence
With this feature, we simply label all tokens occur-
ring in a sentence containing an opinion expression.
This feature shall enable the CRF algorithm to
distinguish between the occurence of a certain
token in a sentence which contains an opinion vs. a
sentence without an opinion. We will refer to this
feature as sSn in our result tables.

2http://nlp.stanford.edu/software/lex-parser.shtml

Our goal is to extract individual instances of opinion
targets from sentences which contain an opinion
expression. This can be modeled as a sequence
segmentation and labeling task. The CRF algorithm
receives a sequence of tokens t1...tn for which
it has to predict a sequence of labels l1...ln. We
represent the possible labels following the IOB
scheme: B-Target, identifying the beginning of an
opinion target, I-Target identifying the continuation
of a target, and O for other (non-target) tokens. We
model the sentences as a linear chain CRF, which
is based on an undirected graph. In the graph, each
node corresponds to a token in the sentence and
edges connect the adjacent tokens as they appear in
the sentence. In our experiments, we use the CRF
implementation from the Mallet toolkit3.

4 Experimental Setup

4.1 Datasets
In our experiments, we employ datasets from three
different sources, which span four domains in total
(see Table 1). All of them consist of reviews col-
lected from Web 2.0 sites. The first dataset con-
sists of reviews for 20 different movies collected
from the Internet Movie Database. It was presented
in Zhuang et al. (2006) and annotated regarding
opinion target - opinion expression pairs. The sec-
ond dataset consists of 234 reviews for two different
web-services collected from epinions.com, as de-
scribed in Toprak et al. (2010). The third dataset is
an extended version of the data presented in Kessler
and Nicolov (2009). The authors have provided us
with additional documents, which have been anno-
tated in the meantime. The version of the dataset
used in our experiments consists of 179 blog post-
ings regarding different digital cameras and 336 re-
views of different cars. In the description of their
annotation guidelines, Kessler and Nicolov (2009)
refer to opinion targets as mentions. Mentions are
all aspects of the review topic, which can be targets
of expressed opinions. However, not only mentions
which occur as opinion targets were originally anno-
tated, but also mentions which occur in non-opinion
sentences. In our experiments, we only use the men-
tions which occur as targets of opinion expressions.

3http://mallet.cs.umass.edu/
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All three datasets contain annotations regarding
the antecedents of anaphoric opinion targets. In our
experimental setup, we do not require the algorithms
to also correctly resolve the antecedent of an opin-
ion target representy by a pronoun, as we are solely
interested in evaluating the opinion target extraction
not any anaphora resolution.

As shown in rows 4 and 5 of Table 1, the docu-
ments from the cars and the cameras datasets exhibit
a much higher density of opinions per document.
53.5% of the sentences from the cars dataset contain
an opinion and in the cameras dataset even 56.1%
of the sentences contain an opinion, while in the
movies and the web-services reviews just 22.1% and
22.4% of the sentences contain an opinion. Further-
more in the cars and the cameras datasets the lexical
variability regarding the opinion targets is substan-
tially larger than in the other two datasets: We calcu-
late target types by counting the number of distinct
opinion targets in a dataset. We divide this by the
sum of all opinion target instances in the dataset. For
the cars dataset this ratio is 0.440 and for the cam-
eras dataset it is 0.433, while for the web-services
dataset it is 0.306 and for the movies dataset only
0.122. In terms of reviews this means, that in the
movie reviews the same movie aspects are repeat-
edly commented on, while in the cars and the cam-
eras datasets many different aspects of these entities
are discussed, which in turn each occur infrequently.

Table 1: Dataset Statistics
movies web- cars camerasservices

Documents 1829 234 336 179
Sentences 24555 6091 10969 5261
Tokens /

20.3 17.5 20.3 20.4
sentence

Sentences with
21.4% 22.4% 51.1% 54.0%

target(s)
Sentences with

21.4% 22.4% 53.5% 56.1%
opinion(s)

Targets 7045 1875 8451 4369
Target types 865 574 3722 1893

Tokens / target 1.21 1.35 1.29 1.42
Avg. targets /

1.33 1.37 1.51 1.53
opinion sent.

4.2 Baseline System
In the task of opinion target extraction the super-
vised algorithm by Zhuang et al. (2006) represents
the state-of-the-art on the movies dataset we also
employ in our experiments. We therefore use it as
a baseline. The algorithm learns two aspects from
the labeled training data:

1. A set of opinion target candidates

2. A set of paths in a dependency tree which iden-
tify valid opinion target - opinion expression
pairs

In our experiments, we learn the full set of opin-
ion targets from the labeled training data in the first
step. This is slightly different from the approach
in (Zhuang et al., 2006), but we expect that this mod-
ification should be beneficial for the overall perfor-
mance in terms of recall, as we do not remove any
learned opinion targets from the candidate list. In
the second step, the annotated sentences are parsed
and a graph containing the words of a sentence is
created, which are connected by the dependency re-
lations between them. For each opinion target -
opinion expression pair from the gold standard, the
shortest path connecting them is extracted from the
dependency graph. A path consists of the part-of-
speech tags of the nodes and the dependency types
of the edges. Example 3 shows a typical dependency
path.

(3) NN - nsubj - NP - amod - JJ

During runtime, the algorithm identifies opinion tar-
gets from the candidate list in the training data. The
opinion expressions are directly taken from the gold
standard, as we focus on the opinion target extrac-
tion aspect in this work. The sentences are then
parsed and if a valid path between a target and
an opinion expression is found in the list of possi-
ble paths, then the pair is extracted. Since the de-
pendency paths only identify pairs of single word
target and opinion expression candidates, we em-
ploy a merging step. Extracted target candidates are
merged into a multiword target if they are adjacent
in a sentence. Thereby, the baseline system is also
capable of extracting multiword opinion targets.
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4.3 Metrics
We employ the following requirements in our eval-
uation of the opinion target extraction: An opin-
ion target must be extracted with exactly the span
boundaries as annotated in the gold standard. This
is especially important regarding multiword tar-
gets. Extracted targets which partially overlap with
the annotated gold standard are counted as errors.
Hence a target extracted by the algorithm which
does not exactly match the boundaries of a target
in the gold standard is counted as a false positive
(FP), e.g. if “battery life” is annotated as the tar-
get in the gold standard, only “battery” or “life”
extracted as targets will be counted as FPs. Exact
matches between the targets extracted by the algo-
rithm and the gold standard are true positives (TP).
We refer to the number of annotated targets in the
gold standard as TGS . Precision is calculated as
Precision = TP

TP+FP , and recall is calculated as
Recall = TP

TGS
. F-Measure is the harmonic mean of

precision and recall.

5 Results and Discussion

We investigate the performance of the baseline and
the CRF-based approach for opinion target extrac-
tion in a single- and cross-domain setting. The
single-domain approach assumes that there is a set
of training data available for the same domain as
the domain the algorithm is being tested on. In this
setup, we will both run the baseline and our CRF
based system in a 10-fold cross-validation and report
results macro averaged over all runs. In the cross-
domain approach, we will investigate how the algo-
rithm performs if given training data from domain A
while being tested on another domain B. In this set-
ting, we will train the algorithm on the entire dataset
A, and test it on the entire dataset B, we hence report
one micro averaged result set. In Subsection 5.1 we
present the results of both the baseline system and
our CRF-based approach in the single-domain set-
ting, in Subsection 5.2 we present the results of the
two systems in the cross-domain opinion target ex-
traction.

Table 2: Single-Domain Extraction with Zhuang Baseline
Dataset Precision Recall F-Measure
movies 0.663 0.592 0.625

web-services 0.624 0.394 0.483
cars 0.259 0.426 0.322

cameras 0.423 0.431 0.426

5.1 Single-Domain Results
5.1.1 Zhuang Baseline

As shown in Table 2, the state-of-the-art algo-
rithm of Zhuang et al. (2006) performs best on the
movie review dataset and worst on the cars dataset.
The results on the movie dataset are higher than
originally reported in (Zhuang et al., 2006) (Preci-
sion 0.483, Recall 0.585, F-Measure 0.529). We as-
sume that this is due to two reasons: 1. In our task,
the algorithm uses the opinion expression annotation
from the gold standard. 2. We do not remove any
learned opinion target candidates from the training
data (See Section 4.2).

During training we observed that for each dataset
the lists of possible dependency paths (see Exam-
ple 3) contained several hundred entries, many of
them only occurring once. We assume that the re-
call of the algorithm is limited by a large variety
of possible dependency paths between opinion tar-
gets and opinion expressions, since the algorithm
cannot link targets and opinion expressions in the
testing data if there is no valid candidate depen-
dency path. Furthermore, we observe that for the
cars dataset the size of the dependency path candi-
date list (6642 entries) was approximately five times
larger than the dependency graph candidate list for
the web-services dataset (1237 entries), which has a
comparable size regarding documents. At the same
time, the list of target candidates of the cars dataset
was approximately eight times larger than the tar-
get candidate list for the web-services dataset. We
assume that a large number of both the target can-
didates as well as the dependency path candidates
introduces many false positives during the target ex-
traction, hence lowering the precision of the algo-
rithm on the cars dataset considerably.
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Table 3: Single-Domain Extraction with our CRF-based Approach
movies web-services cars cameras

Features Prec Rec F-Me Prec Rec F-Me Prec Rec F-Me Prec Rec F-Me
tk, pos 0.639 0.133 0.220 0.500 0.051 0.093 0.438 0.110 0.175 0.300 0.085 0.127
tk, pos, wDs 0.542 0.181 0.271 0.451 0.272 0.339 0.570 0.354 0.436 0.549 0.375 0.446
tk, pos, dLn 0.777 0.481 0.595 0.634 0.380 0.475 0.603 0.372 0.460 0.569 0.376 0.453
tk, pos, sSn 0.673 0.637 0.653 0.604 0.397 0.476 0.453 0.180 0.257 0.398 0.172 0.238
tk, pos, dLn, wDs 0.792 0.481 0.598 0.620 0.354 0.450 0.603 0.389 0.473 0.596 0.425 0.496
tk, pos, sSn, wDs 0.662 0.656 0.659 0.664 0.461 0.544 0.564 0.370 0.446 0.544 0.381 0.447
tk, pos, sSn, dLn 0.791 0.477 0.594 0.654 0.501 0.568 0.598 0.384 0.467 0.586 0.391 0.468
tk, pos, sSn, dLn, wDs 0.749 0.661 0.702 0.722 0.526 0.609 0.622 0.414 0.497 0.614 0.423 0.500
pos, sSn, dLn, wDs 0.672 0.441 0.532 0.612 0.322 0.422 0.612 0.369 0.460 0.674 0.398 0.500

5.1.2 Our CRF-based Approach
Table 3 shows the results of the opinion target ex-

traction using the CRF algorithm. Row 8 contains
the results of the feature configuration, which yields
the best performance regarding F-Measure across all
datasets. We observe that our aproach outperforms
the Zhuang baseline on all datasets. The gain in F-
Measure is between 0.077 in the movies domain and
0.175 in the cars domain. Although the CRF-based
approach clearly outperforms the baseline system
on all four datasets, we also observe the same gen-
eral trend regarding the individual results: The CRF
yields the best results on the movies dataset and the
worst results on the cars & cameras dataset.

As shown in the first row, the results when using
just the token string and part-of-speech tags as fea-
tures are very low, especially regarding recall. We
observe that the higher the lexical variability of the
opinion targets is in a dataset, the lower the results
are. If we add the feature based on word distance
(row 2), the recall is improved on all datasets, while
the precision is slightly lowered on the movies and
web-services datasets. The dependency path based
feature performs better compared to the word dis-
tance heuristic as shown in row 3. The precision is
considerably increased on all datasets, on the movies
and cars & cameras datasets even reaching the over-
all highest value. At the same time, we observe
an increase of recall on all datasets. The obser-
vation made in previous research that short paths
in the dependency graph are a high precision indi-
cator of related opinion expressions - opinion tar-
gets (Kessler and Nicolov, 2009) is confirmed on all
datasets. Adding the information regarding opinion
sentences to the basic features of the token string and

the part-of-speech tag (row 4) yields the biggest im-
provements regarding F-Measure on the movies and
web-services dataset (+0.433 / +0.383). On the cars
& cameras dataset the recall is relatively low again.
We assume that this is again due to the high lexical
variability, so that the CRF algorithm will encounter
many actual opinion targets in the testing data which
have not occurred in the training data and will hence
not be extracted.

As shown in row 5, if we combine the dependency
graph based feature with the word distance heuris-
tic, the results regarding F-Measure are consistently
higher than the results of these features in isolation
(rows 2 - 4) on all datasets. We conclude that these
two features are complementary, as they apparently
indicate different kinds of opinion targets which are
then correctly extracted by the CRF. If we combine
each of the opinion expression related features with
the label which identifies opinion sentences in gen-
eral (rows 6 & 7), we observe that this feature is
also complementary to the others. On all datasets the
results regarding F-Measure are consistently higher
compared to the features in isolation (rows 2 - 4).
Row 8 shows the results of all features in combina-
tion. Again, we observe the complementarity of the
features, as the results of this feature combination
are the best regarding F-Measure across all datasets.

In row 9 of the results, we exclude the token
string as a feature. In comparison to the full fea-
ture combination of row 8 we observe a significant
decrease of F-Measure on the movies and the web-
services dataset. On the cars dataset we only observe
a slight decrease of recall. Interestingly on the cam-
eras dataset we even observe a slight increase of pre-
cision which compensates a slight decrease of recall,
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in turn resulting in stable F-Measure of 0.500 as in
the full feature set of row 8.

We have run some additional experiments in
which we did not rely on the annotated opinion ex-
pressions, but employed a general pupose subjectiv-
ity lexicon4. Already in the single-domain extrac-
tion, we observed that the results declined substan-
tially (e.g. web-services F-Measure: 0.243, movies
F-Measure: 0.309, cars F-Measure: 0.192 and cam-
eras F-Measure: 0.198).

We performed a quantitative error analysis on the
results of the CRF-based approach in the single-
domain setting. In doing so, we focused on misclas-
sifications of B-Target and I-Target instances, as the
recall is consistently lower than the precision across
all datasets. We observe that most of the recall errors
result from one-word opinion targets or the begin-
ning of opinion targets (B-Targets) being missclassi-
fied as non-targets (movies 83%, web-services 73%,
cars 68%, cameras 64%). For the majority of these
missclassifications neither the dLn nor the wDs fea-
tures were present (movies 82%, web-services 56%,
cars 64%, cameras 61%). We assume that our fea-
tures cannot capture the structure of more complex
sentences very well. Our results indicate that the
dLn and wDs features are complementary, but appar-
ently there are quite a few cases in which the opin-
ion target is neither directly related to the opinion
expression in the dependency graph nor close to it
in the sentence. One of these sentences, in this case
from a camera review, in shown in Example 4.

(4) A lens cap and a strap may not sound very
important, but it makes a huge difference in the
speed and usability of the camera.

In this sentence, the dLn and wDs features both la-
beled “speed” which was incorrectly extracted as the
target of the opinion. None of the actual targets “lens
cap”, “strap” and “camera” have a short dependency
path to the opinion expression and “speed” is sim-
ply the closest noun to it. Note that although both
“speed” and “usability” are attributes of a camera,
the opinion in this sentence is about the “lens cap”
and “strap”, hence only these attributes are anno-
tated as targets.

4http://www.cs.pitt.edu/mpqa/

5.2 Cross-Domain Results
5.2.1 Zhuang Baseline

Table 4 shows the results of the opinion target ex-
traction with the state-of-the-art system in the cross-
domain setting. We observe that the results on all
domain combinations are very low. A quantitative
error analysis has revealed that there is hardly any
overlap in the opinion target candidates between do-
mains, as reflected by the low recall in all config-
urations. The vocabularies of the opinion targets
are too different, hence the performance of the algo-
rithm by Zhuang et al. (2006) is so low. The overlap
regarding the dependency paths between domains
was however higher. Especially identical short paths
could be found across domains which at the same
time typically occured quite often. For future work
it might be interesting to investigate how the algo-
rithm by Zhuang et al. (2006) performs in the cross-
domain setting if the target candidate learning is per-
formed differently, e.g. with a statistical approach as
outlined in Section 2.1.

5.2.2 CRF-based Approach
The results of the cross-domain target extraction

with the CRF-based algorithm are shown in Table 5.
Due to the increase of system configurations intro-
duced by the training - testing data combinations,
we had to limit results of the feature combinations
reported in the Table. The feature combination pos,
sSn, wDs, dLn yielded the best results regarding F-
Measure. Hence, we report its result as the basic fea-
ture set. When comparing the results of the best per-
forming feature / training data combination of our
CRF-based approach with the baseline, we observe
that our approach outperforms the baseline on all
four domains. The gain in F-Measure is 0.409 in the
movies domain, 0.242 in the web-services domain,
0.294 in the cars domain and 0.343 in the cameras
domain.

Effects of Features
Interestingly with the best performing feature com-
bination from the single-domain extraction, the re-
sults regarding recall in the cross-domain extraction
are very low5. This is due to the fact that the CRF at-
tributed a relatively large weight to the token string

5Not shown in any result table due to limited space.
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Table 4: Cross-Domain Extraction with Zhuang Baseline
Training Testing Precision Recall F-Measure

web-services movies 0.194 0.032 0.055
cars movies 0.032 0.034 0.033

cameras movies 0.155 0.084 0.109
cars + cameras movies 0.071 0.104 0.084

web-services + cars + cameras movies 0.070 0.103 0.083
movies web-services 0.311 0.073 0.118

cars web-services 0.086 0.091 0.089
cameras web-services 0.164 0.081 0.108

cars + cameras web-services 0.086 0.104 0.094
movies + cars + cameras web-services 0.074 0.100 0.080

movies cars 0.182 0.014 0.026
web-services cars 0.218 0.028 0.049

cameras cars 0.250 0.121 0.163
cameras + web-services cars 0.247 0.131 0.171
movies + web-services cars 0.246 0.045 0.076

movies cameras 0.108 0.012 0.022
web-services cameras 0.268 0.048 0.082

cars cameras 0.125 0.160 0.140
cars + web-services cameras 0.119 0.157 0.136

movies + web-services cameras 0.245 0.063 0.100

feature. As we also observed in the analysis of the
baseline results, the overlap of the opinion target vo-
cabularies between domains is low, which resulted
in a very small number of targets extracted by the
CRF. As shown in Table 5 the results are promising
regarding F-Measure if we just leave the token fea-
ture out of the configuration.

Effects of Training Data
When analyzing the results of the different training
- testing domain configurations we observe the fol-
lowing: In isolation training data from the cameras
domain consistently yields the best results regarding
F-Measure when the algorithm is run on the datasets
from the other three domains. This is particularly
interesting since the cameras dataset is the smallest
of the four (see Table 1). We investigated whether
the CRF algorithm was overfitting to the training
datasets by reducing their size to the size of the cam-
eras dataset. However, the reduction of the train-
ing data sizes never improved the extraction results
regarding F-Measure for the movies, web-serviecs
and cars datasets. The good results when training
on the cameras dataset are in line with our obser-
vations from Section 5.1.2. We noticed that on the
cameras dataset the results regarding F-Measure re-
mained stable if the token feature is not used in the
training.

In isolation, training only on the cars data yields
the second highest results on the movies and web-
services datasets and the highest results regarding
F-Measure on the cameras data. However, the re-
sults of the cars + cameras training data combination
indicate that the cameras data does not contribute
any additional information during the learning, since
the results on both the movies and the web-services
datasets are lower than when training only on the
cameras data.

Our results also confirm the insights gained
by Blitzer et al. (2007), who observed that in cross-
domain polarity analysis adding more training data
is not always beneficial. Apparently even the small-
est training dataset (cameras) contain enough feature
instances to learn a model which performs well on
the testing data.

We observe that the results of the cross-domain
extraction regarding F-Measure come relatively
close to the results of the single-domain setting, es-
pecially if the token string feature is removed there
(see Table 3 row 9). On the cars and the cameras
dataset the cross-domain results are even closer to
the single-domain results. The features we employ
seem to scale well across domains and compensate
the difference between training and testing data and
the lack of information regarding the target vocabu-
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Table 5: Cross-Domain Extraction with our CRF-based Approach
Testing

web-services movies
Pre Rec F-Me Pre Rec F-Me

Tr
ai

ni
ng

web-services - - - 0.560 0.339 0.422
movies 0.565 0.219 0.316 - - -

cars 0.538 0.248 0.340 0.642 0.382 0.479
cameras 0.529 0.256 0.345 0.642 0.408 0.499

movies + cars 0.554 0.249 0.344 - - -
movies + cameras 0.530 0.273 0.360 - - -

movies + cars + cameras 0.562 0.250 0.346 - - -
cars + cameras 0.538 0.254 0.345 0.641 0.395 0.489

web-services + cars - - - 0.651 0.396 0.492
web-services + cameras - - - 0.642 0.435 0.518

web-services + cars + cameras - - - 0.639 0.405 0.496
cars cameras

Pre Rec F-Me Pre Rec F-Me
web-services 0.391 0.277 0.324 0.505 0.330 0.399

movies 0.512 0.307 0.384 0.550 0.303 0.391
cars - - - 0.665 0.369 0.475

cameras 0.589 0.384 0.465 - - -
cameras + movies 0.567 0.394 0.465 - - -

cameras + web-services 0.572 0.381 0.457 - - -
movies + web-services 0.489 0.327 0.392 0.553 0.339 0.421

movies + cars - - - 0.634 0.376 0.472
web-services + cars - - - 0.678 0.376 0.483

web-services + movies + cars - - - 0.635 0.378 0.474
movies + web-services + cameras 0.549 0.381 0.450 - - -

lary.

6 Conclusions

In this paper, we have shown how a CRF-based
approach for opinion target extraction performs in
a single- and cross-domain setting. We have pre-
sented a comparative evaluation of our approach
on datasets from four different domains. In the
single-domain setting, our CRF-based approach out-
performs a supervised baseline on all four datasets.
Our error analysis indicates that additional features,
which can capture opinions in more complex sen-
tences, are required to improve the performance of
the opinion target extraction. Our CRF-based ap-
proach also yields promising results in the cross-
domain setting. The features we employ scale well
across domains, given that the opinion target vocab-
ularies are substantially different. For future work,
we might investigate how machine learning algo-
rithms, which are specifically designed for the prob-
lem of domain adaptation (Blitzer et al., 2007; Jiang
and Zhai, 2007), perform in comparison to our ap-
proach. Since three of the features we employed in

our CRF-based approach are based on the respec-
tive opinion expressions, it is to investigate how to
mitigate the possible negative effects introduced by
errors in the opinion expression identification if they
are not annotated in the gold standard. We observe
similar challenges as Choi et al. (2005) regarding the
analysis of complex sentences. Although our data is
user-generated from Web 2.0 communities, a man-
ual inspection has shown that the documents were
of relatively high textual quality. It is to investigate
to which extent the approaches taken in the analysis
of newswire, such as identifying targets with coref-
erence resolution, can also be applied to our task on
user-generated discourse.
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Abstract

In this paper, we investigate structured mod-
els for document-level sentiment classifica-
tion. When predicting the sentiment of a sub-
jective document (e.g., as positive or nega-
tive), it is well known that not all sentences
are equally discriminative or informative. But
identifying the useful sentences automatically
is itself a difficult learning problem. This pa-
per proposes a joint two-level approach for
document-level sentiment classification that
simultaneously extracts useful (i.e., subjec-
tive) sentences and predicts document-level
sentiment based on the extracted sentences.
Unlike previous joint learning methods for
the task, our approach (1) does not rely on
gold standard sentence-level subjectivity an-
notations (which may be expensive to obtain),
and (2) optimizes directly for document-level
performance. Empirical evaluations on movie
reviews and U.S. Congressional floor debates
show improved performance over previous ap-
proaches.

1 Introduction

Sentiment classification is a well-studied and active
research area (Pang and Lee, 2008). One of the main
challenges for document-level sentiment categoriza-
tion is that not every part of the document is equally
informative for inferring the sentiment of the whole
document. Objective statements interleaved with the
subjective statements can be confusing for learning
methods, and subjective statements with conflicting
sentiment further complicate the document catego-
rization task. For example, authors of movie reviews

often devote large sections to (largely objective) de-
scriptions of the plot (Pang and Lee, 2004). In ad-
dition, an overall positive review might still include
some negative opinions about an actor or the plot.

Early research on document-level sentiment clas-
sification employed conventional machine learning
techniques for text categorization (Pang et al., 2002).
These methods, however, assume that documents are
represented via a flat feature vector (e.g., a bag-of-
words). As a result, their ability to identify and ex-
ploit subjectivity (or other useful) information at the
sentence-level is limited.

And although researchers subsequently proposed
methods for incorporating sentence-level subjectiv-
ity information, existing techniques have some un-
desirable properties. First, they typically require
gold standard sentence-level annotations (McDon-
ald et al. (2007), Mao and Lebanon (2006)). But
the cost of acquiring such labels can be prohibitive.
Second, some solutions for incorporating sentence-
level information lack mechanisms for controlling
how errors propagate from the subjective sentence
identification subtask to the main document classifi-
cation task (Pang and Lee, 2004). Finally, solutions
that attempt to handle the error propagation problem
have done so by explicitly optimizing for the best
combinationof document- and sentence-level clas-
sification accuracy (McDonald et al., 2007). Opti-
mizing for this compromise, when the real goal is
to maximize only the document-level accuracy, can
potentially hurt document-level performance.

In this paper, we propose a joint two-level model
to address the aforementioned concerns. We formu-
late our training objective to directly optimize for
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document-level accuracy. Further, we do not require
gold standard sentence-level labels for training. In-
stead, our training method treats sentence-level la-
bels as hidden variables andjointly learnsto predict
the document label and those (subjective) sentences
that best “explain” it, thus controlling the propaga-
tion of incorrect sentence labels. And by directly
optimizing for document-level accuracy, our model
learns to solve the sentence extraction subtask only
to the extent required for accurately classifying doc-
ument sentiment. A software implementation of our
method is also publicly available.1

For the rest of the paper, we will discuss re-
lated work, motivate and describe our model, present
an empirical evaluation on movie reviews and U.S.
Congressional floor debates datasets and close with
discussion and conclusions.

2 Related Work

Pang and Lee (2004) first showed that sentence-
level extraction can improve document-level per-
formance. They used a cascaded approach by
first filtering out objective sentences and perform-
ing subjectivity extractions using a global min-cut
inference. Afterward, the subjective extracts were
converted into inputs for the document-level senti-
ment classifier. One advantage of their approach
is that it avoids the need for explicit subjectiv-
ity annotations. However, like other cascaded ap-
proaches (e.g., Thomas et al. (2006), Mao and
Lebanon (2006)), it can be difficult to control how
errors propagate from the sentence-level subtask to
the main document classification task.

Instead of taking a cascaded approach, one can
directly modify the training of flat document clas-
sifiers using lower level information. For instance,
Zaidan et al. (2007) used human annotators to mark
the “annotator rationales”, which are text spans that
support the document’s sentiment label. These an-
notator rationales are then used to formulate addi-
tional constraints during SVM training to ensure that
the resulting document classifier is less confident in
classifying a document that does not contain the ra-
tionale versus the original document. Yessenalina et
al. (2010) extended this approach to use automati-
cally generated rationales.

1http://projects.yisongyue.com/svmsle/

A natural approach to avoid the pitfalls associ-
ated with cascaded methods is to use joint two-
level models that simultaneously solve the sentence-
level and document-level tasks (e.g., McDonald et
al. (2007), Zaidan and Eisner (2008)). Since these
models are trained jointly, the sentence-level pre-
dictions affect the document-level predictions and
vice-versa. However, such approaches typically
require sentence-level annotations during training,
which can be expensive to acquire. Furthermore,
the training objectives are usually formulated as a
compromise between sentence-level and document-
level performance. If the goal is to predict well at the
document-level, then these approaches are solving a
much harder problem that is not exactly aligned with
maximizing document-level accuracy.

Recently, researchers within both Natural Lan-
guage Processing (e.g., Petrov and Klein (2007),
Chang et al. (2010), Clarke et al. (2010)) and
other fields (e.g., Felzenszwalb et al. (2008), Yu
and Joachims (2009)) have analyzed joint multi-
level models (i.e., models that simultaneously solve
the main prediction task along with important sub-
tasks) that are trained using limited or no explicit
lower level annotations. Similar to our approach, the
lower level labels are treated as hidden or latent vari-
ables during training. Although the training process
is non-trivial (and in particular requires a good ini-
tialization of the hidden variables), it avoids the need
for human annotations for the lower level subtasks.
Some researchers have also recently applied hidden
variable models to sentiment analysis, but they were
focused on classifying either phrase-level (Choi and
Cardie, 2008) or sentence-level polarity (Nakagawa
et al., 2010).

3 Extracting Hidden Explanations

In this paper, we take the view that each document
has a subset of sentences that best explains its sen-
timent. Consider the “annotator rationales” gener-
ated by human judges for the movie reviews dataset
(Zaidan et al., 2007). Each rationale is a text span
that was identified to support (or explain) its parent
document’s sentiment. Thus, these rationales can be
interpreted as (something close to) a ground truth la-
beling of the explanatory segments. Using a dataset
where each document contains only its rationales,
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Algorithm 1 Inference Algorithm for (2)
1: Input: x
2: Output:(y, s)
3: s+ ← argmaxs∈S(x) ~w

T Ψ(x,+1, s)
4: s− ← argmaxs∈S(x) ~w

T Ψ(x,−1, s)
5: if ~wT Ψ(x,+1, s+) > ~wT Ψ(x,−1, s−) then
6: Return(+1, s+)
7: else
8: Return(−1, s−)
9: end if

cross validation experiments using an SVM classi-
fier yields 97.44% accuracy – as opposed to 86.33%
accuracy when using the full text of the original doc-
uments. Clearly, extracting the best supporting seg-
ments can offer a tremendous performance boost.

We are interested in settings where human-
extracted explanations such as annotator rationales
might not be readily available, or are imperfect. As
such, we will formulate the set of extracted sen-
tences as latent or hidden variables in our model.
Viewing the extracted sentences as latent variables
will pose no new challenges during prediction, since
the model is expected to predict all labels at test
time. We will leverage recent advances in training
latent variable SVMs (Yu and Joachims, 2009) to ar-
rive at an effective training procedure.

4 Model

In this section, we present a two-level document
classification model. Although our model makes
predictions at both the document and sentence lev-
els, it will be trained (and evaluated) only with re-
spect to document-level performance. We begin
by presenting the feature structure and inference
method. We will then describe a supervised train-
ing algorithm based on structural SVMs, and finally
discuss some extensions and design decisions.

Let x denote a document,y = ±1 denote the sen-
timent (for us, a binary positive or negative polarity)
of a document, ands denote a subset of explanatory
sentences inx. Let Ψ(x, y, s) denote a joint fea-
ture map that outputs features describing the qual-
ity of predicting sentimenty using explanations for
documentx. We focus on linear models, so given a
(learned) weight vector~w, we can write the quality

of predictingy (with explanations) as

F (x, y, s; ~w) = ~wT Ψ(x, y, s), (1)

and a document-level sentiment classifier as

h(x; ~w) = argmax
y=±1

max
s∈S(x)

F (x, y, s; ~w), (2)

whereS(x) denotes the collection of feasible expla-
nations (e.g., subsets of sentences) forx.

Let xj denote thej-th sentence ofx. We propose
the following instantiation of (1),

~wT Ψ(x, y, s) =
1

N(x)

∑
j∈s

y · ~wT
polψpol(xj) + ~wT

subjψsubj(xj), (3)

where the first term in the summation captures the
quality of predicting polarityy on sentences ins,
the second term captures the quality of predictings
as the subjective sentences, andN(x) is a normaliz-
ing factor (which will be discussed in more detail in
Section 4.3). We represent the weight vector as

~w =
[

~wpol

~wsubj

]
, (4)

andψpol(xj) andψsubj(xj) denote the polarity and
subjectivity features of sentencexj , respectively.
Note thatψpol andψsubj are disjoint by construc-
tion, i.e.,ψT

polψsubj = 0. We will present extensions
in Section 4.5.

For example, supposeψpol andψsubj were both
bag-of-words feature vectors. Then we might learn
a high weight for the feature corresponding to the
word “think” in ψsubj since that word is indicative
of the sentence being subjective (but not necessarily
indicating positive or negative polarity).

4.1 Making Predictions

Algorithm 1 describes our inference procedure. Re-
call from (2) that our hypothesis function predicts
the sentiment label that maximizes (3). To do this,
we compare the best set of sentences that explains
a positive polarity prediction with the best set that
explains a negative polarity prediction.

We now specify the structure ofS(x). In this pa-
per, we use a cardinality constraint,

S(x) = {s ⊆ {1, . . . , |x|} : |s| ≤ f(|x|)}, (5)
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Algorithm 2 Training Algorithm for OP 1
1: Input: {(x1, y1), . . . , (xN , yN )} //training data
2: Input:C //regularization parameter
3: Input: (s1, . . . , sN ) //initial guess
4: ~w ← SSVMSolve(C, {(xi, yi, si)}Ni=1)
5: while ~w not convergeddo
6: for i = 1, . . . , N do
7: si ← argmaxs∈S(xi) ~w

T Ψ(xi, yi, s)
8: end for
9: ~w ← SSVMSolve(C, {(xi, yi, si)}Ni=1)

10: end while
11: Return~w

wheref(|x|) is a function that depends only on the
number of sentences inx. For example, a simple
function isf(|x|) = |x| · 0.3, indicating that at most
30% of the sentences inx can be subjective.

Using this definition ofS(x), we can then com-
pute the best set of subjective sentences for each
possibley by computing the joint subjectivity and
polarity score of each sentencexj in isolation,

y · ~wT
polψpol(xj) + ~wT

subjψsubj(xj),

and selecting the topf(|x|) ass (or fewer, if there
are fewer thanf(|x|) that have positive joint score).

4.2 Training

For training, we will use an approach based on latent
variable structural SVMs (Yu and Joachims, 2009).

Optimization Problem 1.

min
~w,ξ≥0

1
2
‖~w‖2 +

C

N

N∑
i=1

ξi (6)

s.t.∀i :

max
s∈Si

~wT Ψ(xi, yi, s) ≥

max
s′∈S(xi)

~wT Ψ(xi,−yi, s
′) + 1− ξi (7)

OP 1 optimizes the standard SVM training objec-
tive for binary classification. Each training example
has a corresponding constraint (7), which is quanti-
fied over the best possible explanation of the train-
ing polarity label. Note that we never observe the
true explanation for the training labels; they are the
hidden or latent variables. The hidden variables are
also ignored in the objective function.

As a result, one can interpret OP 1 to be directly
optimizing a trade-off between model complexity
(as measured using the 2-norm) and document-level
classification error in the training set. This has two
main advantages over related training approaches.
First, it solves the multi-level problem jointly as op-
posed to separately, which avoids introducing diffi-
cult to control propagation errors. Second, it does
not require solving the sentence-level task perfectly,
and also does not require precise sentence-level
training labels. In other words, our goal is to learn to
identify the informative (subjective) sentences that
best explain the training labels to the extent required
for good document classification performance.

OP 1 is non-convex because of the constraints (7).
To solve OP 1, we use the combination of the CCCP
algorithm (Yuille and Rangarajan, 2003) with cut-
ting plane training of structural SVMs (Joachims et
al., 2009), as proposed in Yu and Joachims (2009).
Suppose each constraint (7) is replaced by

~wT Ψ(xi, yi, si) ≥ max
s′∈S(xi)

~wT Ψ(xi,−yi, s
′)+1−ξi,

wheresi is some fixed explanation (e.g., an initial
guess of the best explanation). Then OP 1 reduces
to a standard structural SVM, which can be solved
efficiently (Joachims et al., 2009). Algorithm 2 de-
scribes our training procedure. Starting with an ini-
tial guesssi for each training example, the training
procedure alternates between solving an instance of
the resulting structural SVM (calledSSVMSolvein
Algorithm 2) using the currently best known expla-
nationssi (Line 9), and making a new guess of the
best explanations (Line 7). Yu and Joachims (2009)
showed that this alternating procedure for training
latent variable structural SVMs is an instance of the
CCCP procedure (Yuille and Rangarajan, 2003), and
so is guaranteed to converge to a local optimum.

For our experiments, we do not train until conver-
gence, but instead use performance on a validation
set to choose the halting iteration. Since OP 1 is non-
convex, a good initialization is necessary. To gener-
ate the initial explanations, one can use an off-the-
shelf sentiment classifier such as OpinionFinder2

(Wilson et al., 2005). For some datasets, there ex-
ist documents with annotated sentences, which we

2http://www.cs.pitt.edu/mpqa/
opinionfinderrelease/
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can treat either as the ground truth or another (very
good) initial guess of the explanatory sentences.

4.3 Feature Representation

Like any machine learning approach, we must spec-
ify a useful set of features for theψ vectors described
above. We will consider two types of features.

Bag-of-words. Perhaps the simplest approach is
to defineψ using a bag-of-words feature representa-
tion, with one feature corresponding to each word in
the active lexicon of the corpus. Using such a feature
representation might allow us to learn which words
have high polarity (e.g., “great”) and which are in-
dicative of subjective sentences (e.g., “opinion”).

Sentence properties. We can incorporate many
useful features to describe sentence subjectivity. For
example, subjective sentences might densely popu-
late the end of a document, or exhibit spatial co-
herence (so features describing previous sentences
might be useful for classifying the current sentence).
Such features cannot be compactly incorporated into
flat models that ignore the document structure.

For our experiments, we normalize eachψsubj

andψpol to have unit 2-norm.
Joint Feature Normalization. Another design

decision is the choice of normalizationN(x) in (3).
Two straightforward choices areN(x) = f(|x|) and
N(x) =

√
f(|x|), wheref(|x|) is the size con-

straint as described in (5). In our experiments we
tried both and found the square root normalization
to work better in practice; therefore all the experi-
mental results are reported usingN(x) =

√
f(|x|).

The appendix contains an analysis that sheds light
on when square root normalization can be useful.

4.4 Incorporating Proximity Information

As mentioned in Section 4.3, it is possible (and
likely) for subjective sentences to exhibit spatial co-
herence (e.g., they might tend to group together).
To exploit this structure, we will expand the feature
space ofψsubj to include both the words of the cur-
rent and previous sentence as follows,

ψsubj(x, j) =
[

ψsubj(xj)
ψsubj(xj−1)

]
.

The corresponding weight vector can be written as

~w′subj =
[

~wsubj

~wprevSubj

]
.

By adding these features, we are essentially assum-
ing that the words of the previous sentence are pre-
dictive of the subjectivity of the current sentence.

Alternative approaches include explicitly ac-
counting for this structure by treating subjective
sentence extraction as a sequence-labeling problem,
such as in McDonald et al. (2007). Such struc-
ture formulations can be naturally encoded in the
joint feature map. Note that the inference procedure
in Algorthm 1 is still tractable, since it reduces to
comparing the best sequence of subjective/objective
sentences that explains a positive sentiment versus
the best sequence that explains a negative sentiment.
For this study, we chose not to examine this more
expressive yet more complex structure.

4.5 Extensions

Though our initial model (3) is simple and intuitive,
performance can depend heavily on the quality of
latent variable initialization and the quality of the
feature structure design. Consider the case where
the initialization contains only objective sentences
that do not convey any sentiment. Then all the fea-
tures initially available during training are gener-
ated from these objective sentences and are thus use-
less for sentiment classification. In other words, too
much useful information has been suppressed for
the model to make effective decisions. To hedge
against learning poor models due to using a poor
initialization and/or a suboptimal feature structure,
we now propose extensions that incorporate infor-
mation from the entire document.

We identify the following desirable properties that
any such extended model should satisfy:

(A) The model should be linear.

(B) The model should be trained jointly.

(C) The component that models the entire docu-
ment should influence which sentences are ex-
tracted.

The first property stems from the fact that our ap-
proach relies on linear models. The second property
is desirable since joint training avoids error propaga-
tion that can be difficult to control. The third prop-
erty deals with the information suppression issue.
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4.5.1 Regularizing Relative to a Prior

We first consider a model that satisfies properties
(A) and (C). Using the representation in (4), we pro-
pose a training procedure that regularize~wpol rela-
tive to a prior model. Suppose we have a weight
vector ~w0 which indicated the a priori guess of the
contribution of each corresponding feature, then we
can train our model using OP 2,

Optimization Problem 2.

min
~w,ξ≥0

1
2
‖~w − ~w0‖2 +

C

N

N∑
i=1

ξi

s.t.∀i :

max
s∈Si

~wT Ψ(xi, yi, s) ≥

max
s′∈S(xi)

~wT Ψ(xi,−yi, s
′) + 1− ξi

For our experiments, we use

~w0 =
[
~wdoc

0

]
,

where~wdoc denotes a weight vector trained to clas-
sify the polarity of entire documents. Then one can
interpret OP 2 as enforcing that the polarity weights
~wpol not be too far from~wdoc. Note that~w0 must be
available before training. Therefore this approach
does not satisfy property (B).

4.5.2 Extended Feature Space

One simple way to satisfy all three aforemen-
tioned properties is to jointly model not only po-
larity and subjectivity of the extracted sentences,
but also polarity of the entire document. Let~wdoc

denote the weight vector used to model the polar-
ity of entire documentx (so the document polarity
score is then~wT

docψpol(x)). We can also incorporate
this weight vector into our structured model to com-
pute a smoothed polarity score of each sentence via
~wT

docψpol(xj). Following this intuition, we propose
the following structured model,

~wT Ψ(x, y, s) =

y

N(x)

∑
j∈s

(
~wT

polψpol(xj) + ~wT
docψpol(xj)

)
+

1
N(x)

∑
j∈s

~wT
subjψsubj(xj)

 + y · ~wT
docψpol(x)

where the weight vector is now

~w =

 ~wpol

~wsubj

~wdoc

 .
Training this model via OP 1 achieves that~wdoc is
(1) used to model the polarity of the entire docu-
ment, and (2) used to compute a smoothed estimate
of the polarity of the extracted sentences. This sat-
isfies all three properties (A), (B), and (C), although
other approaches are also possible.

5 Experiments

5.1 Experimental Setup

We evaluate our methods using the Movie Reviews
and U.S. Congressional Floor Debates datasets, fol-
lowing the setup used in previous work for compar-
ison purposes.3

Movie Reviews. We use the movie reviews
dataset from Zaidan et al. (2007) that was originally
released by Pang and Lee (2004). This version con-
tains annotated rationales for each review, which we
use to generate an additional initialization during
training (described below). We follow exactly the
experimental setup used in Zaidan et al. (2007).4

U.S. Congressional Floor Debates. We also
use the U.S. Congressional floor debates transcripts
from Thomas et al. (2006). The data was extracted
from GovTrack (http://govtrack.us), which has all
available transcripts of U.S. floor debates in the
House of Representatives in 2005. As in previ-
ous work, only debates with discussions of “con-
troversial” bills were considered (where the los-
ing side had at least 20% of the speeches). The
goal is to predict the vote (“yea” or “nay”) for the
speaker of each speech segment. For our experi-
ments, we evaluate our methods using the speaker-
based speech-segment classification setting as de-
scribed in Thomas et al. (2006).5

3Datasets in the required format forSVMsle are available at
http://www.cs.cornell.edu/ ˜ ainur/data.html

4Since the rationale annotations are available for nine out of
10 folds, we used the 10-th fold as the blind test set. We trained
nine different models on subsets of size eight, used the remain-
ing fold as the validation set, and then measured the average
performance on the final test set.

5In the other setting described in Thomas et al. (2006)
(segment-based speech-segment classification), around 39% of
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Table 1: Summary of the experimental results for the Movie Reviews (top) and U.S. Congressional Floor Debates
(bottom) datasets usingSVMsle, SVMsle w/ Prior andSVMsle

fs with and without proximity features.

INITIALIZATION SVMsle + Prox.Feat.
SVMsle

+ Prox.Feat. SVMsle
fs + Prox.Feat.

w/ Prior
Random 30% 87.22 85.44 87.61 87.56 89.50 88.22
Last 30% 89.72∗ 88.83 90.50∗ 90.00∗ 91.06? 91.22?
OpinionFinder 91.28? 90.89? 91.72? 93.22? 92.50? 92.39?
Annot.Rationales 91.61? 92.00? 92.67? 92.00? 92.28? 93.22?

INITIALIZATION SVMsle + Prox.Feat.
SVMsle

+ Prox.Feat. SVMsle
fs + Prox.Feat.

w/ Prior
Random 30% 78.84 73.14 78.49 76.40 77.33 73.84
Last 30% 73.26 73.95 71.51 73.60 67.79 73.37
OpinionFinder 77.33 79.53 77.09 78.60 77.67 77.09

– For Movie Reviews, the SVM baseline accuracy is 88.56%. A? (or ∗) indicates statically significantly better performance than
baseline according to the paired t-test withp < 0.001 (or p < 0.05).
– For U.S. Congressional Floor Debates, the SVM baseline accuracy is 70.00%. Statistical significance cannot be calculated because
the data comes in a single split.

Since our training procedure solves a non-convex
optimization problem, it requires an initial guess of
the explanatory sentences. We use an explanatory
set size (5) of 30% of the number of sentences in
each document,L = d0.3 · |x|e, with a lower cap of
1. We generate initializations using OpinionFinder
(Wilson et al., 2005), which were shown to be a
reasonable substitute for human annotations in the
Movie Reviews dataset (Yessenalina et al., 2010).6

We consider two additional (baseline) methods
for initialization: using a random set of sentences,
and using the last 30% of sentence in the document.
In the Movie Reviews dataset, we also use sentences
containing human-annotator rationales as a final ini-
tialization option. No such manual annotations are
available for the Congressional Debates.

5.2 Experimental Results

We evaluate three versions of our model: the ini-
tial model (3) which we callSVMsle (SVMs for
Sentiment classification withLatentExplanations),
SVMsle regularized relative to a prior as described in

the documents in the whole dataset contain only 1-3 sentences,
making it an uninteresting setting to analyze with our model.

6We select all sentences whose majority vote of Opinion-
Finder word-level polarities matches the document’s sentiment.
If there are fewer thanL sentences, we add sentences starting
from the end of the document. If there are more, we remove
sentences starting from the beginning of the document.

Section 4.5.1 which we refer to asSVMsle w/ Prior,7

and the feature smoothing model described in Sec-
tion 4.5.2 which we callSVMsle

fs . Due to the diffi-

culty of selecting a good prior, we expectSVMsle
fs to

exhibit the most robust performance.
Table 1 shows a comparison of our proposed

methods on the two datasets. We observe that
SVMsle

fs provides both strong and robust perfor-

mance. The performance ofSVMsle is generally bet-
ter when trained using a prior than not in the Movie
Reviews dataset. Both extensions appear to hurt
performance in the U.S. Congressional Floor De-
bates dataset. Using OpinionFinder to initialize our
training procedure offers good performance across
both datasets, whereas the baseline initializations
exhibit more erratic performance behavior.8 Unsur-
prisingly, initializing using human annotations (in
the Movie Reviews dataset) can offer further im-
provement. Adding proximity features (as described
in Section 4.4) in general seems to improve perfor-
mance when using a good initialization, and hurts
performance otherwise.

7We either used the same value ofC to train both standard
SVM model andSVMsle w/ Prior or used the best standard
SVM model on the validation set to trainSVMsle w/ Prior. We
chose the combination that works the best on the validation set.

8Using the random initialization on the U.S. Congressional
Floor Debates dataset offers surprisingly good performance.
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Table 2: Comparison ofSVMsle
fs with previous work on

the Movie Reviews dataset. We considered two settings:
when human annotations are available (Annot. Labels),
and when they are unavailable (No Annot. Labels).

METHOD ACC

Baseline SVM 88.56
Annot. Zaidan et al. (2007) 92.20
Labels SVMsle

fs 92.28
SVMsle

fs + Prox.Feat. 93.22
No Annot. Yessenalina et al. (2010)91.78
Labels SVMsle

fs 92.50
SVMsle

fs +Prox.Feat. 92.39

Table 3: Comparison ofSVMsle
fs with previous work on

the U.S. Congressional Floor Debates dataset for the
speaker-based segment classification task.

METHOD ACC

Baseline SVM 70.00

Prior work
Thomas et al. (2006) 71.28
Bansal et al. (2008) 75.00

Our work
SVMsle

fs 77.67
SVMsle

fs + Prox.Feat. 77.09

Tables 2 and 3 show a comparison ofSVMsle
fs with

previous work on the Movie Reviews and U.S. Con-
gressional Floor Debates datasets, respectively. For
the Movie Reviews dataset, we considered two set-
tings: when human annotations are available, and
when they are not (in which case we initialized using
OpinionFinder). For the U.S. Congressional Floor
Debates dataset we used only the latter setting, since
there are no annotations available for this dataset. In
all cases we observeSVMsle

fs showing improved per-
formance compared to previous results.

Training details. We tried around 10 different
values forC parameter, and selected the final model
based on the validation set. The training proce-
dure alternates between training a standard struc-
tural SVM model and using the subsequent model
to re-label the latent variables. We selected the halt-
ing iteration of the training procedure using the val-
idation set. When initializing using human annota-
tions for the Movie Reviews dataset, the halting iter-
ation is typically the first iteration, whereas the halt-
ing iteration is typically chosen from a later iteration

Figure 1: Overlap of extracted sentences from different
SVMsle

fs models on the Movie Reviews training set.

Figure 2: Test accuracy on the Movie Reviews dataset for
SVMsle

fs while varying extraction size.

when initializing using OpinionFinder.
Figure 1 shows the per-iteration overlap of ex-

tracted sentences fromSVMsle
fs models initialized us-

ing OpinionFinder and human annotations on the
Movie Reviews training set. We can see that train-
ing has approximately converged after about 10 it-
erations.9 We can also see that both models itera-
tively learn to extract sentences that are more similar
to each other than their respective initializations (the
overlap between the two initializations is 57%). This
is an indicator that our learning problem, despite be-
ing non-convex and having multiple local optima,
has a reasonably large “good” region that can be ap-
proached using different initialization methods.

Varying the extraction size.Figure 2 shows how
accuracy on the test set ofSVMsle

fs changes on the
Movie Reviews dataset as a function of varying the
extraction sizef(|x|) from (5). We can see that per-
formance changes smoothly10 (and so is robust), and
that one might see further improvement from more

9The number of iterations required to converge is an upper
bound on the number of iterations from which to choose the
halting iteration (based on a validation set).

10The smoothness will depend on the initialization.
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Table 4: Example ”yea” speech withLatent Explanationsfrom the U.S. Congressional Floor Debates dataset predicted
by SVMsle

fs with OpinionFinder initialization. Latent Explanations are preceded by solid circles with numbers denoting
their preference order (1 being most preferred bySVMsle

fs ). The five least subjective sentences are preceded by circles
with numbers denoting the subjectivity order (1 being least subjective according toSVMsle

fs ).

➋ Mr. Speaker, I am proud to stand
on the house floor today to speak in
favor of the Stem Cell Research En-
hancement Act, legislation which will
bring hope to millions of people suffer-
ing from disease in this nation. ➌ I
want to thank Congresswoman Degette
and Congressman Castle for their tire-
less work in bringing this bill to the
house floor for a vote.

➀ The discovery of embryonic stem
cells is a major scientific breakthrough.
➄ Embryonic stem cells have the po-
tential to form any cell type in the
human body. This could have pro-
found implications for diseases such as
Alzheimer’s, Parkinson’s, various forms
of brain and spinal cord disorders, dia-
betes, and many types of cancer.➁ Ac-

cording to the Coalition for the Ad-
vancement of Medical Research, there
are at least 58 diseases which could po-
tentially be cured through stem cell re-
search.

That is why more than 200 major
patient groups, scientists, and medical
research groups and 80 Nobel Laure-
ates support the Stem Cell Research En-
hancement Act.➂ They know that this
legislation will give us a chance to find
cures to diseases affecting 100 million
Americans.

I want to make clear that I oppose re-
productive cloning, as we all do. I have
voted against it in the past.➍ However,
that is vastly different from stem cell re-
search and as an ovarian cancer sur-
vivor, I am not going to stand in the way

of science.
Permitting peer-reviewed Federal

funds to be used for this research,
combined with public oversight of these
activities, is our best assurance that
research will be of the highest quality
and performed with the greatest dignity
and moral responsibility. The policy
President Bush announced in August
2001 has limited access to stem cell
lines and has stalled scientific progress.

As a cancer survivor, I know the des-
peration these families feel as they wait
for a cure. ➃ This congress must not
stand in the way of that progress.➎ We
have an opportunity to change the lives
of millions, and I hope we take it.➊ I
urge my colleagues to support this leg-
islation.

careful tuning of the size constraint.
Examining an example prediction. Our pro-

posed methods are not designed to extract inter-
pretable explanations, but examining the extracted
explanations might still yield meaningful informa-
tion. Table 4 contains an example speech from the
U.S. Congressional Floor Debates test set, with La-
tent Explanations found bySVMsle

fs highlighted in
boldface. This speech was made in support of the
Stem Cell Research Enhancement Act. For com-
parison, Table 4 also shows the five least subjective
sentences according toSVMsle

fs . Notice that most of
these “objective” sentences can plausibly belong to
speeches made in opposition to bills that limit stem
cell research funding. That is, they do not clearly in-
dicate the speaker’s stance towards the specific bill
in question. We can thus see that our approach can
indeed learn to infer sentences that are essential to
understanding the document-level sentiment.

6 Discussion

Making good structural assumptions simplifies the
development process. Compared to methods that
modify the training of flat document classifiers (e.g.,
Zaidan et al. (2007)), our approach uses fewer pa-
rameters, leading to a more compact and faster train-

ing stage. Compared to methods that use a cascaded
approach (e.g., Pang and Lee (2004)), our approach
is more robust to errors in the lower-level subtask
due to being a joint model.

Introducing latent variables makes the training
procedure more flexible by not requiring lower-level
labels, but does require a good initialization (i.e., a
reasonable substitute for the lower-level labels). We
believe that the widespread availability of off-the-
shelf sentiment lexicons and software, despite being
developed for a different domain, makes this issue
less of a concern, and in fact creates an opportunity
for approaches like ours to have real impact.

One can incorporate many types of sentence-level
information that cannot be directly incorporated into
a flat model. Examples include scores from another
sentence-level classifier (e.g., from Nakagawa et. al
(2010)) or combining phrase-level polarity scores
(e.g., from Choi and Cardie (2008)) for each sen-
tence, or features that describe the position of the
sentence in the document.

Most prior work on the U.S. Congressional Floor
Debates dataset focused on using relationships be-
tween speakers such as agreement (Thomas et al.,
2006; Bansal et al., 2008), and used a global min-
cut inference procedure. However, they require all
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test instances to be known in advance (i.e., their for-
mulations are transductive). Our method is not lim-
ited to the transductive setting, and instead exploits
a different and complementary structure: the latent
explanation (i.e., only some sentences in the speech
are indicative of the speaker’s vote).

In a sense, the joint feature structure used in
our model is the simplest that could be used. Our
model makes no explicit structural dependencies be-
tween sentences, so the choice of whether to extract
each sentence is essentially made independently of
other sentences in the document. More sophisticated
structures can be used if appropriate. For instance,
one can formulate the sentence extraction task as
a sequence labeling problem similar to (McDonald
et al., 2007), or use a more expressive graphical
model such as in (Pang and Lee, 2004; Thomas et
al., 2006). So long as the global inference proce-
dure is tractable or has a good approximation al-
gorithm, then the training procedure is guaranteed
to converge with rigorous generalization guarantees
(Finley and Joachims, 2008). Since any formulation
of the extraction subtask will suppress information
for the main document-level task, one must take care
to properly incorporate smoothing if necessary.

Another interesting direction is training models to
predict not only sentiment polarity, but also whether
a document is objective. For example, one can pose
a three class problem (“positive”, “negative”, “ob-
jective”), where objective documents might not nec-
essarily have a good set of (subjective) explanatory
sentences, similar to (Chang et al., 2010).

7 Conclusion

We have presented latent variable structured mod-
els for the document sentiment classification task.
These models do not rely on sentence-level an-
notations, and are trained jointly (over both the
document and sentence levels) to directly optimize
document-level accuracy. Experiments on two stan-
dard sentiment analysis datasets showed improved
performance over previous results.

Our approach can, in principle, be applied to any
classification task that is well modeled by jointly
solving an extraction subtask. However, as evi-
denced by our experiments, proper training does re-
quire a reasonable initial guess of the extracted ex-

planations, as well as ways to mitigate the risk of
the extraction subtask suppressing too much infor-
mation (such as via feature smoothing).
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Appendix

Recall that all theψsubj andψpol vectors have unit 2-
norm, which is assumed here to be desirable. We now
show that usingN(x) =

√
f(|x|) achieves a similar

property forΨ(x, y, s). We can write the squared 2-norm
of Ψ(x, y, s) as

|Ψ(x, y, s)|2 =
1

N(x)2

∑
j∈s

y · ψpol(xj) + ψsubj(xj)

2

=
1

f(|x|)


∑

j∈s

ψpol(xj)

2

+

∑
j∈s

ψsubj(xj)

2
 ,

where the last equality follows from the fact that

ψpol(xj)Tψsubj(xj) = 0,

due to the two vectors using disjoint feature spaces by
construction. The summation of theψpol(xj) terms is
written as∑

j∈s

ψpol(xj)

2

=
∑
j∈s

∑
i∈s

ψpol(xj)Tψpol(xi)

≈
∑
j∈s

ψpol(xj)Tψpol(xj) (8)

=
∑
j∈s

1 ≤ f(|x|),

where (8) follows from the sparsity assumption that

∀i 6= j : ψpol(xj)Tψpol(xi) ≈ 0.

A similar argument applies for theψsubj(xj) terms.
Thus, by choosingN(x) =

√
f(|x|) the joint feature

vectorsΨ(x, y, s) will have approximately equal magni-
tude as measured using the 2-norm.
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Abstract

In this paper, we introduce a method that au-
tomatically builds text classifiers in a new lan-
guage by training on already labeled data in
another language. Our method transfers the
classification knowledge across languages by
translating the model features and by using
an Expectation Maximization (EM) algorithm
that naturally takes into account the ambigu-
ity associated with the translation of a word.
We further exploit the readily available un-
labeled data in the target language via semi-
supervised learning, and adapt the translated
model to better fit the data distribution of the
target language.

1 Introduction

Given the accelerated growth of the number of mul-
tilingual documents on the Web and elsewhere, the
need for effective multilingual and cross-lingual text
processing techniques is becoming increasingly im-
portant. There is a growing number of methods that
use data available in one language to build text pro-
cessing tools for another language, for diverse tasks
such as word sense disambiguation (Ng et al., 2003),
syntactic parsing (Hwa et al., 2005), information re-
trieval (Monz and Dorr, 2005), subjectivity analysis
(Mihalcea et al., 2007), and others.

In this paper, we address the task of cross-lingual
text classification (CLTC), which builds text classi-
fiers for multiple languages by using training data in
one language, thereby avoiding the costly and time-
consuming process of labeling training data for each
individual language. The main idea underlying our
approach to CLTC is that although content can be
expressed in different forms in different languages,

there is a significant amount of knowledge that is
shared for similar topics that can be effectively used
to port topic classifiers across languages.

Previous methods for CLTC relied mainly on ma-
chine translation, by translating the training data into
the language of the test data or vice versa, so that
both training and test data belong to the same lan-
guage. Monolingual text classification algorithms
can then be applied on these translated data. Al-
though intuitive, these methods suffer from two ma-
jor drawbacks.

First, most off-the-shelf machine translation sys-
tems typically generate only their best translation for
a given text. Since machine translation is known
to be a notoriously hard problem, applying mono-
lingual text classification algorithms directly on the
erroneous translation of training or test data may
severely deteriorate the classification accuracy.

Second, similar to domain adaptation in statisti-
cal machine learning, due to the discrepancy of data
distribution between the training domain and test do-
main, data distribution across languages may vary
because of the difference of culture, people’s inter-
ests, linguistic expression in different language re-
gions. So even if the translation of training or test
data is perfectly correct, the cross language classi-
fier may not perform as well as the monolingual one
trained and tested on the data from the same lan-
guage.

In this paper, we propose a new approach to
CLTC, which trains a classification model in the
source language and ports the model to the target
language, with the translation knowledge learned us-
ing the EM algorithm. Unlike previous methods
based on machine translation (Fortuna and Shawe-
Taylor, 2005), our method takes into account dif-
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ferent possible translations for model features. The
translated model serves as an initial classifier for a
semi-supervised process, by which the model is fur-
ther adjusted to fit the distribution of the target lan-
guage. Our method does not require any labeled
data in the target language, nor a machine transla-
tion system. Instead, the only requirement is a rea-
sonable amount of unlabeled data in the target lan-
guage, which is often easy to obtain.

In the following sections, we first review related
work. In section 3, we introduce our method that
translates the classification model with the trans-
lation knowledge learned using the EM algorithm.
Section 4 describes model adaptation by training the
translated model with unlabeled documents in the
target language. Experiments and evaluations are
presented in section 5 and finally we conclude the
paper in section 6.

2 Related Work

Text classification has rightfully received a lot of at-
tention from both the academic and industry com-
munities, being one of the areas in natural language
processing that has a very large number of practi-
cal applications. Text classification techniques have
been applied to many diverse problems, ranging
from topic classification (Joachims, 1997), to genre
detection (Argamon et al., 1998), opinion identifica-
tion (Pang and Lee, 2004), spam detection (Sahami
et al., 1998), gender and age classification (Schler et
al., 2006).

Text classification is typically formulated as a
learning task, where a classifier learns how to distin-
guish between categories in a given set, using fea-
tures automatically extracted from a collection of
documents. In addition to the learning methodol-
ogy itself, the accuracy of the text classifier also de-
pends to a large extent upon the amount of training
data available at hand. For instance, distinguish-
ing between two categories for which thousands of
manually annotated examples are already available
is expected to perform better than trying to separate
categories that have only a handful of labeled docu-
ments.

Some of the most successful approaches to date
for text classification involve the use of machine
learning methods, which assume that enough an-

notated data is available such that a classification
model can be automatically learned. These include
algorithms such as Naive Bayes (Joachims, 1997;
McCallum and Nigam, 1998), Rocchio classifiers
(Joachims, 1997; Moschitti, 2003), Maximum En-
tropy (Nigam et al., 1999) or Support Vector Ma-
chines (Vapnik, 1995; Joachims, 1998). If only
a small amount of annotated data is available, the
alternative is to use semi-supervised bootstrapping
methods such as co-training or self-training, which
can also integrate raw unlabeled data into the learn-
ing model (Blum and Mitchell, 1998; Nigam and
Ghani, 2000).

Despite the attention that monolingual text clas-
sification has received from the research commu-
nity, there is only very little work that was done
on cross-lingual text classification. The work that
is most closely related to ours is (Gliozzo and Strap-
parava, 2006), where a multilingual domain kernel is
learned from comparable corpora, and subsequently
used for the cross-lingual classification of texts. In
experiments run on Italian and English, Gliozzo and
Strapparava showed that the multilingual domain
kernel exceeds by a large margin a bag-of-words ap-
proach. Moreover, they demonstrated that the use
of a bilingual dictionary can drastically improve the
performance of the models learned from corpora.

(Fortuna and Shawe-Taylor, 2005; Olsson et al.,
2005) studied the use of machine translation tools
for the purpose of cross language text classification
and mining. These approaches typically translate
the training data or test data into the same language,
followed by the application of a monolingual classi-
fier. The performance of such classifiers very much
depends on the quality of the machine translation
tools. Unfortunately, the development of statistical
machine translation systems (Brown et al., 1993) is
hindered by the lack of availability of parallel cor-
pora and the quality of their output is often erro-
neous. Several methods were proposed (Shi et al.,
2006; Nie et al., 1999) to automatically acquire a
large quantity of parallel sentences from the web,
but such web data is however predominantly con-
fined to a limited number of domains and language
pairs.

(Dai et al., 2007) experimented with the use of
transfer learning for text classification. Although in
this method the transfer learning is performed across
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different domains in the same language, the under-
lying principle is similar to CLTC in the sense that
different domains or languages may share a signif-
icant amount of knowledge in similar classification
tasks. (Blum and Mitchell, 1998) employed semi-
supervised learning for training text classifiers. This
method bootstraps text classifiers with only unla-
beled data or a small amount of labeled training data,
which is close to our setting that tries to leverage la-
beled data and unlabeled data in different languages
to build text classifiers.

Finally, also closely related is the work carried out
in the field of sentiment and subjectivity analysis
for cross-lingual classification of opinions. For in-
stance, (Mihalcea et al., 2007) use an English corpus
annotated for subjectivity along with parallel text to
build a subjectivity classifier for Romanian. Sim-
ilarly, (Banea et al., 2008) propose a method based
on machine translation to generate parallel texts, fol-
lowed by a cross-lingual projection of subjectivity
labels, which are used to train subjectivity annota-
tion tools for Romanian and Spanish. A related, yet
more sophisticated technique is proposed in (Wan,
2009), where a co-training approach is used to lever-
age resources from both a source and a target lan-
guage. The technique is tested on the automatic sen-
timent classification of product reviews in Chinese,
and showed to successfully make use of both cross-
language and within-language knowledge.

3 Cross Language Model Translation

To make the classifier applicable to documents in
a foreign language, we introduce a method where
model features that are learned from the training
data are translated from the source language into
the target language. Using this translation process,
a feature associated with a word in the source lan-
guage is transferred to a word in the target language
so that the feature is triggered when the word occurs
in the target language test document.

In a typical translation process, the features would
be translated by making use of a bilingual dictio-
nary. However, this translation method has a major
drawback, due to the ambiguity usually associated
with the entries in a bilingual dictionary: a word in
one language can have multiple translations in an-
other language, with possibly disparate meanings.

If an incorrect translation is selected, it can distort
the classification accuracy, by introducing erroneous
features into the learning model. Therefore, our goal
is to minimize the distortion during the model trans-
lation process, in order to maximize the classifica-
tion accuracy in the target language.

In this paper, we introduce a method that em-
ploys the EM algorithm to automatically learn fea-
ture translation probabilities from labeled text in the
source language and unlabeled text in the target lan-
guage. Using the feature translation probabilities,
we can derive a classification model for the target
language from a mixture model with feature transla-
tions.

3.1 Learning Feature Translation Probabilities
with EM Algorithm

Given a document d from the document collection D
in the target language, the probability of generating
the document P (d) is the mixture of generating d
with different classes c ∈ C:

P (d) =
∑

c

P (d|c)P (c)

In our cross-lingual setting, we view the generation
of d given a class c as a two step process. In the
first step, a pseudo-document d′ is generated in the
source language, followed by a second step, where
d′ is translated into the observed document d in the
target language. In this generative model, d′ is a la-
tent variable that cannot be directly observed. Since
d could have multiple translations d′ in the source
language, the probability of generating d can then
be reformulated as a mixture of probabilities as in
the following equation.

P (d) =
∑

c

P (c)
∑
d′

P (d|d′, c)P (d′|c)

According to the bag-of-words assumption,
the document translation probability P (d|d′, c) is
the product of the word translation probabilities
P (wi|w′

i, c) , where w′
i in d′ is the source language

word that wi is translated from. P (d′|c) is the prod-
uct of P (w′

i|c). The formula is rewritten as:

P (d) =
∑

c

P (c)
∑
d′

l∏
i=1

P (wi|w′
i, c)P (w′

i|c)
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where wi is the ith word of the document d with l
words. The prior probability P (c) and the proba-
bility of the source language word w′ given class c
are estimated using the labeled training data in the
source language, so we use them as known parame-
ters. P (wi|w′

i, c) is the probability of translating the
word w′

i in the source language to the word wi in
the target language given class c, and these are the
parameters we want to learn from the corpus in the
target language.

Using the Maximum Likelihood Estimation
(MLE) framework, we learn the model parameters θ
– the translation probability P (wi|w′

i, c) – by max-
imizing the log likelihood of a collection of docu-
ments in the target language:

θ̂ = argmaxθ

m∑
j=1

log(P (dj , θ))

= argmaxθ

m∑
j=1

log(
∑

c

P (c)
∑
d′

lj∏
i=1

P (wi|w′
i, c)P (w′

i|c))

where m is the number of documents in the corpus
in the target language and lj is the number of words
in the document dj .

In order to estimate the optimal values of the pa-
rameters, we use the EM algorithm (Dempster et al.,
1977). At each iteration of EM we determine those
values by maximizing the expectation using the pa-
rameters from the previous iteration and this itera-
tive process stops when the change in the parameters
is smaller than a given threshold. We can repeat the
following two steps for the purpose above.

• E-step

P (w′c|w) ← P (cw′w)

P (w)

=
P (w|w′c)P (w′c)∑

c

∑
w′ P (w|w′c)P (w′c)

(1)

• M-step

P (w|w′c)← f(w)P (w′c|w)∑
w∈K f(w)P (w′c|w)

(2)

Algorithm 1 EM algorithm for learning translation
probabilities
Dl ← labeled data in the source language
Du ← unlabeled data in the target language
L← bilingual lexicon

1: Initialize P0(w|w′c) = 1
nw′

, where (w,w′) ∈ L,
otherwise P0(w|w′c) = 0;

2: Compute P (w′c) with Dl according to equa-
tion 3

3: repeat
4: Calculate Pt(w

′c|w) with Du based on
Pt−1(w|w′c) according to equation 1

5: Calculate Pt(w|w′c) based on Pt−1(w
′c|w)

according to equation 2
6: until change of P (w|w′c) is smaller than the

threshold
7: return P (w|w′c)

Here f(w) is the occurrence frequency of the word
w in the corpus. K is the set of translation candi-
dates in the target language for the source language
word w′ according to the bilingual lexicon. P(w’c) is
the probability of occurrence of the source language
word w′ under the class c. It can be estimated from
the labeled source language training data available
as follows and it is regarded as a known parameter
of the model.

P (w′c) =
f(w′c)∑

w′∈V f(w′c)
(3)

where V is the vocabulary of the source language.
Algorithm 1 illustrates the EM learning process,
where nw′ denotes the number of translation candi-
dates for w′ according to the bilingual lexicon.

Our method requires no labeled training data
in the target language. Many statistical machine
translation systems such as IBM models (Brown
et al., 1993) learn word translation probabilities
from millions of parallel sentences which are mu-
tual translations. However, large scale parallel cor-
pora rarely exist for most language pairs. (Koehn
and Knight, 2000) proposed to use the EM algo-
rithm to learn word translation probabilities from
non-parallel monolingual corpora. However, this
method estimates only class independent transla-
tion probabilities P (wi|w′

i), while our approach is
able to learn class specific translation probabilities
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P (wi|w′
i, c) by leveraging available labeled training

data in the source language. For example, the prob-
ability of translating “bush” as “树丛” (small trees)
is higher than translating as “布什” (U.S. president)
when the category of the text is “botany.”

3.2 Model Translation

In order to classify documents in the target language,
a straightforward approach to transferring the classi-
fication model learned from the labeled source lan-
guage training data is to translate each feature from
the bag-of-words model according to the bilingual
lexicon. However, because of the translation ambi-
guity of each word, a model in the source language
could be potentially translated into many different
models in the target language. Thus, we think of
the probability of the class of a target language doc-
ument as the mixture of the probabilities by each
translated model from the source language model,
weighed by their translation probabilities.

P (c|d,mt) ≈
∑

m′
t
P (m′

t|ms, c)P (c|d,m′
t)

where mt is the target language classification model
and m′

t is a candidate model translated from the
model ms trained on the labeled training data in
the source language. This is a very generic rep-
resentation for model translation and the model m
could be any type of text classification. Specifically
in this paper, we take the Maximum Entropy (ME)
model(Berger et al., 1996) as an example for the
model translation across languages, since the ME
model is one of the most widely used text classifica-
tion models. The maximum entropy classifier takes
the form

P (c|d) =
1

Z(d)

∏
w∈V

eλwf(w,c)

where: V is the vocabulary of the language; f(w, c)
is the feature function associated with the word w
and class c and its value is set to 1 when w occurs in
d and the class is c or otherwise 0. λw is the feature
weight for f(wi, c) indicating the importance of the
feature in the model. During model translation, the
feature weight for f(wi, c) is transferred to f(w′

i, c)
in the target language model, where w′

i is the trans-
lation of wi. Z(d) is the normalization factor which

is invariant to c and hence we can omit it for classi-
fication since our objective is to find the best c. Ac-
cording to the formulation of the Maximum Entropy
model, the document can be classified as follows.

ĉ = argmaxc∈C

∑
m′

t

P (m′
t|ms, c)

v∏
i=1

e
λ

wi
s
f(wi

t,c)

The model translation probability P (m′
t|ms, c) can

be modeled as the product of the translation proba-
bilities of each of its individual bag-of-words fea-
tures P (m′

t|ms, c) ≈
∏l

i=1 P (wi
t|wi

s, c) and the
classification model can be further written as

ĉ = argmaxc∈C

∑
m′

t

v∏
i=1

P (wi
t|wi

s, c)e
λ

wi
s
f(wi

t,c)

where feature translation probabilities P (wi
t|wi

s, c)
are estimated with the EM algorithm described in
the previous section. Note that if the average number
of translations for a word w is n and v is the num-
ber of words in the vocabulary there are nv possible
models m′

t translated from ms. However, we can
do the following mathematical transformation on the
equation which leads to a polynomial time complex-
ity algorithm. The idea is that instead of enumerat-
ing the exponential number of different translations
of the entire model, we will instead handle one fea-
ture at a time.

∑
m′

t

v∏
i=1

P (wi
t|wi

s, c)e
λ

wi
s
f(wi

t,c) =

n1∑
j=1

P (w1j
t |w1

s , c)e
λ1f(w1j

t ,c)
∑
m2,v

t

v∏
i=2

P (wi
t|wi

s, c)e
λif(wi

t,c)

Here w1 is the first word in the vocabulary of the
source language and w1j is a translation of w1 in the
target language with n denoting the number its trans-
lations according to the bilingual lexicon.

∑
m2,v

t

are all the target language models translated from
the model consisting of the rest of the words w2 ...
wv in the source language. This process is recur-
sive until the last word wv

s of the vocabulary and this
transforms the equation into a polynomial form as
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follows. ∑
m′

t

v∏
i=1

P (wi
t|wi

s, c)e
λ

wi
s
f(wi

t,c)

=

v∏
i=1

ni∑
j=1

P (wij
t |wi

s, c)e
λ

wi
s
f(wij

t ,c)

Based on the above transformation, the class ĉ for
the target language document d is then calculated
with the following equation.

ĉ = argmaxc∈C

v∏
i=1

ni∑
j=1

P (wij
t |wi

s, c)e
λ

wi
s
f(wij

t ,c)

The time complexity of computing the above equa-
tion is n× v.

4 Model Adaptation with Semi-
Supervised Learning

In addition to translation ambiguity, another chal-
lenge in building a classifier using training data in
a foreign language is the discrepancy of data distri-
bution in different languages. Direct application of a
classifier translated from a foreign model may not fit
well the distribution of the current language. For ex-
ample, a text about “sports” in (American) English
may talk about “American football,” “baseball,” and
“basketball,” whereas Chinese tend to discuss about
“soccer” or “table tennis.”

To alleviate this problem, we employ semi-
supervised learning in order to adapt the model to
the target language. Specifically, we first start by us-
ing the translated classifier from English as an initial
classifier to label a set of Chinese documents. The
initial classifier is able to correctly classify a num-
ber of unlabeled Chinese documents with the knowl-
edge transferred from English training data. For
instance, words like “game(比赛),” “score(比分),”
“athlete(运动员),” learned from English can still ef-
fectively classify Chinese documents. We then pick
a set of labeled Chinese documents with high con-
fidence to train a new Chinese classifier. The new
classifier can then learn new knowledge from these
Chinese documents. E.g. it can discover that words
like “soccer(足球)” or “badminton(羽毛球)” occur
frequently in the Chinese “sports” documents, while
words that are frequently occurring in English doc-
uments such as “superbowl(超级碗)” and “NHL(全

Algorithm 2 Semi-supervised learning for cross-
lingual text classification
Ls ← labeled data in the source language
Ut ← unlabeled data in the target lan-
guage

1: Cs = train(Ls)
2: Ct = translate(Cs)
3: repeat
4: Label(U,Ct)
5: L← select(confidence(U,Ct))
6: Ct ← train(L)
7: until stopping criterion is met
8: return Ct

美冰球联盟)” do not occur as often. Re-training the
classifier with the Chinese documents can adjust the
feature weights for these words so that the model fits
better the data distribution of Chinese documents,
and thus it improves the classification accuracy. The
new classifier then re-labels the Chinese documents
and the process is repeated for several iterations. Al-
gorithm 2 illustrates this semi-supervised learning
process.

The confidence score associated with the docu-
ments is calculated based on the probabilities of the
class. For a binary classifier the confidence of clas-
sifying the document d is calculated as:

confidence(d) =

∣∣∣∣log(
P (c|d)

P (c|d)
)

∣∣∣∣
An unlabeled document is selected as training

data for a new classifier when its confidence score
is above a threshold.

5 Experiments and Evaluation

To evaluate the effectiveness of our method, we
carry out several experiments. First, we compare the
performance of our method on five different cate-
gories, from five different domains, in order to see
its generality and applicability on different domains.
We also run experiments with two different language
pairs - English-Chinese and English-French - to see
if the distance between language families influences
the effectiveness of our method.

To determine the performance of the method with
respect to other approaches, we compare the classi-
fication accuracy with that of a machine translation
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approach that translates the training (test) data from
the source language to the target language, as well
as with a classifier trained on monolingual training
data in the target language.

Finally, we evaluate the performance of each of
the two steps of our proposed method. First, we
evaluate the model translated with the parameters
learned with EM, and then the model after the semi-
supervised learning for data distribution adaptation
with different parameters, including the number of
iterations and different amounts of unlabeled data.

5.1 Data Set

Since a standard evaluation benchmark for cross-
lingual text classification is not available, we built
our own data set from Yahoo! RSS news feeds. The
news feed contains news articles from October 1st
2009 to December 31st 2009. We collected a total
of 615731 news articles, categorized by their edi-
tors into topics such as “sports” or “business”. We
selected five categories for our experiments, namely
“sports”, “health”, “business”, “entertainment”, “ed-
ucation”. The Yahoo! RSS news feed includes
news in many languages, including English, Chi-
nese, French, Spanish, and others.

We experimented on two language pairs, English-
Chinese and English-French, selected for their diver-
sity: English and Chinese are disparate languages
with very little common vocabulary and syntax,
whereas English and French are regarded as more
similar. We expect to evaluate the impact of the
distance of languages on the effectiveness of our
method. In both cases, English is regarded as the
source language, where training data are available,
and Chinese and French are the target languages
for which we want to build text classifiers. Note
that regardless of the language, the documents are
assigned with one of the five category labels men-
tioned above. Table 1 shows the distribution of doc-
uments across categories and across languages.

Category English Chinese French
sports 23764 14674 18398
health 15627 11769 12745
business 34619 23692 28740
entertainment 26876 21470 23756
education 16488 14353 15753

Table 1: number of documents in each class

Before building the classification model, several
preprocessing steps are applied an all the docu-
ments. First, the HTML tags are removed, and ad-
vertisements and navigational information are also
eliminated. For the Chinese corpus, all the Chinese
characters with BIG5 encoding are converted into
GB2312 and the Chinese texts are segmented into
words. For the translation, we use the LDC bilin-
gual dictionary1 for Chinese English and “stardict”
2 for Spanish English.

5.2 Model Translation

To transfer a model learned in one language to an-
other, we can translate all the bag-of-word features
according to a bilingual lexicon. Due to the trans-
lation ambiguity of each feature word, we com-
pare three different ways of model translation. One
method is to equally assign probabilities to all the
translations for a given source language word, and
to translate a word we randomly pick a translation
from all of its translation candidates. We denote this
as “EQUAL” and it is our baseline method. Another
way is to calculate the translation probability based
on the frequencies of the translation words in the tar-
get language itself. For instance, the English word
“bush” can be translated into “布什” , “树丛” or “套
管” . We can obtain the following unigram counts
of these translation words in our Yahoo! RSS news
corpus.

count translation sense
582 布什 Goerge W. Bush
43 树丛 small trees
2 套管 canula

We can estimate that P (布什|bush) = 582/(582 +
43+2) = 92.8% and so forth. This method often al-
lows us to estimate reasonable translation probabili-
ties and we use “UNIGRAM” to denote this method.
And finally the third model translation approach is
to use the translation probability learned with the
EM algorithm proposed in this paper. The initial
parameters of the EM algorithm are set to the prob-
abilities calculated with the “UNIGRAM” method
and we use 4000 unlabeled documents in Chinese

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2002L27

2http://stardict.sourceforge.net/Dictionaries.php
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to learn translation probabilities with EM. We first
train an English classification model for the topic of
“sport” and then translate the model into Chinese us-
ing translation probabilities estimated by the above
three different methods. The three translated models
are applied to Chinese test data and we measure the
precision, recall and F-score as shown in Table 2.

Method P R F
EQUAL 71.1 70.6 70.8
UNIGRAM 79.5 77.8 78.6
EM 83.1 84.7 83.9

Table 2: Comparison of different methods for model
translation

From this table we can see that the baseline method
has lowest classification accuracy due to the fact that
it is unable to handle translation ambiguity since
picking any one of the translation word is equally
likely. “UNIGRAM” shows significant improve-
ment over “EQUAL” as the occurrence count of the
translation words in the target language can help
disambiguate the translations. However occurrence
count in a monolingual corpus may not always be
the true translation probability. For instance, the
English word “work” can be translated into “工
作(labor)” and “工厂(factory)” in Chinese. How-
ever, in our Chinese monolingual news corpus, the
count for “工厂(factory)” is more than that of “工
作(labor)” even though “工作(labor)” should be a
more likely translation for “work”. The “EM” algo-
rithm has the best performance as it is able to learn
translation probabilities by looking at documents in
both source language and target language instead of
just a single language corpus.

5.3 Cross Language Text Classification

To evaluate the effectiveness of our method on cross
language text classification, we implement several
methods for comparison. In each experiment, we
run a separate classification for each class, using a
one-versus-all binary classification.

ML (Monolingual). We build a monolingual
text classifier by training and testing the text classi-
fication system on documents in the same language.
This method plays the role of an upper-bound, since
the best classification results are expected when

monolingual training data is available.

MT (Machine Translation). We use the Sys-
tran 5.0 machine translation system to translate
the documents from one language into the other
in two directions. The first direction translates the
training data from the source language into the
target language, and then trains a model in the target
language. This direction is denoted as MTS. The
second direction trains a classifier in the source
language and translates the test data into the source
language. This direction is denoted as MTT. In
our experiments, Systran generates the single best
translation of the text as most off-the-shelf machine
translation tools do.

EM (Model Translation with EM). This is the
first step of our proposed method. We used 4,000
unlabeled documents to learn translation proba-
bilities with the EM algorithm and the translation
probabilities are leveraged to translate the model.
The rest of the unlabeled documents are used for
other experimental purpose.

SEMI (Adapted Model after Semi-Supervised
Learning). This is our proposed method, after both
model translation and semi-supervised learning.
In the semi-supervised learning, we use 6,000
unlabeled target language documents with three
training iterations.

In each experiment, the data consists of 4,000 la-
beled documents and 1,000 test documents (e.g., in
the cross-lingual experiments, we use 4,000 English
annotated documents and 1,000 Chinese or French
test documents). For a given language, the same test
data is used across all experiments.

Table 3 shows the performance of the various
classification methods. The ML (Monolingual)
classifier has the best performance, as it is trained
on labeled data in the target language, so that there
is no information loss and no distribution discrep-
ancy due to a model translation. The MT (ma-
chine translation) based approach scores the lowest
accuracy, probably because the machine translation
software produces only its best translation, which
is often error-prone, thus leading to poor classifi-
cation accuracy. In addition, the direct application
of a classification model from one language to an-
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English→ Chinese
Category ML MTS MTT EM SEMI

P R F P R F P R F P R F P R F
sports 96.1 94.3 95.2 80.6 81.7 81.2 81.7 83.8 82.7 83.1 84.7 83.9 92.1 91.8 91.9
health 95.1 93.1 94.1 80.8 81.5 81.2 81.6 83.5 82.6 84.5 85.8 85.2 90.2 91.7 90.9
business 91.6 93.1 92.4 81.3 81.9 81.6 80.7 81.0 80.9 81.6 82.0 81.8 87.3 89.3 88.3
entertainment 88.1 88.3 88.2 76.1 78.8 77.5 75.3 78.9 77.1 76.8 79.7 78.2 83.2 83.8 83.5
education 79.1 82.2 80.6 70.2 72.5 71.8 71.1 72.0 71.6 71.2 73.7 72.5 76.2 79.8 78.0

English→ French
sports 95.8 95.0 95.4 82.8 83.6 83.2 82.1 83.0 82.5 85.3 87.1 86.2 92.5 92.1 92.3
health 94.2 94.5 94.3 82.6 83.9 83.2 81.8 83.0 82.4 86.2 87.2 86.6 92.0 92.2 92.1
business 90.1 92.2 91.1 81.4 82.1 81.7 81.3 81.8 81.8 84.4 84.3 84.4 88.3 89.2 88.8
entertainment 87.4 87.2 87.3 76.6 79.1 77.8 76.0 78.8 77.4 78.9 81.0 80.0 84.3 85.5 84.9
education 78.8 81.8 80.3 72.1 74.8 73.5 72.3 72.7 72.5 73.8 76.2 75.0 76.3 80.1 78.2

Table 3: Comparison of different methods and different language pairs

other does not adapt to the distribution of the sec-
ond language, even if the documents belong to the
same domain. Comparing the two MT alternatives,
we can see that translating the training data (MTS)
has better performance than translating the test data
(MTT). The reason is that when the model is trained
on the translated training data, the model parame-
ters are learned over an entire collection of translated
documents, which is less sensitive to translation er-
rors than translating a test document on which the
classification is performed individually.

Our EM method for translating model features
outperforms the machine translation approach, since
it does not only rely on the best translation by the
machine translation system, but instead takes into
account all possible translations with knowledge
learned specifically from the target language. Ad-
ditionally, the SEMI (semi-supervised) learning is
shown to further improve the classification accuracy.
The semi-supervised learning is able to not only help
adapt the translated model to fit the words distribu-
tion in the target language, but it also compensates
the distortion or information loss during the model
translation process as it can down-weigh the incor-
rectly translated features.

The improvement in performance for both the
EM and the SEMI methods is consistent across
the five different domains, which indicates that the
methods are robust and they are insensitive to the
domain of the data.

The performance of the two language pairs
English-Chinese and English-French shows a dif-
ference as initially hypothesized. In both the EM

and the SEMI models, the classification accuracy
of English-French exceeds that of English-Chinese,
which is probably explained by the fact that there is
less translation ambiguity in similar languages, and
they have more similar distributions. Note that the
monolingual models in French and Chinese perform
comparably, which means the difficulty of the test
data is similar between the two target languages.

5.4 Model Adaptation with Semi-Supervised
Learning

Finally, to gain further insights into our proposed
adaptation method, we run several experiments with
different parameters for the semi-supervised learn-
ing stage. As these experiments are very time con-
suming, we run them only on Chinese.

For each of the five categories, we train a classi-
fication model using the 4,000 training documents
in English and then translate the model into Chinese
with the translation parameters learned with EM on
20,000 unlabeled Chinese documents. Then we fur-
ther train the translated model on a set of unlabeled
Chinese documents using a different number of it-
erations and a different amount of unlabeled docu-
ments. Figures 1 and 2 show the results of these
evaluations.

As the plots show, the use of unlabeled data in
the target language can improve the cross-language
classification by learning new knowledge in the
target language. Larger amounts of unlabeled
data in general help, although the marginal bene-
fit drops with increasing amounts of data. Regard-
ing the number of iterations, the best performance is
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Figure 1: Change in classification F-score for an increas-
ing amount of unlabeled data in the target language
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Figure 2: Change in classification F-score for a different
number of iterations

achieved after 3-4 iterations.

6 Conclusions

In this paper, we proposed a novel method for cross-
lingual text classification. Our method ports a clas-
sification model trained in a source language to a tar-
get language, with the translation knowledge being
learned using the EM algorithm. The model is fur-
ther tuned to fit the distribution in the target language
via semi-supervised learning. Experiments on dif-
ferent datasets covering different languages and dif-
ferent domains show significant improvement over
previous methods that rely on machine translation.
Moreover, the cross-lingual classification accuracy
obtained with our method was found to be close to
the one achieved using monolingual text classifica-

tion.
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Abstract 

In this paper we develop an approach to tackle 

the problem of verb selection for learners of 

English as a second language (ESL) by using 

features from the output of Semantic Role La-

beling (SRL). Unlike existing approaches to 

verb selection that use local features such as 

n-grams, our approach exploits semantic fea-

tures which explicitly model the usage context 

of the verb. The verb choice highly depends 

on its usage context which is not consistently 

captured by local features. We then combine 

these semantic features with other local fea-

tures under the generalized perceptron learn-

ing framework. Experiments on both in-

domain and out-of-domain corpora show that 

our approach outperforms the baseline and 

achieves state-of-the-art performance.
1
 

1 Introduction 

Verbs in English convey actions or states of being. 

In addition, they also communicate sentiments and 

imply circumstances, e.g., in “He got [gained] the 

scholarship after three interviews.”, the verb 

“gained” may indicate that the “scholarship” was 

competitive and required the agent’s efforts; in 

contrast, “got” sounds neutral and less descriptive. 

                                                           
* This work has been done while the author was visiting Mi-

crosoft Research Asia. 

Since verbs carry multiple important functions, 

misusing them can be misleading, e.g., the native 

speaker could be confused when reading “I like 

looking [reading] books”. Unfortunately, accord-

ing to (Gui and Yang, 2002; Yi et al., 2008), more 

than 30% of the errors in the Chinese Learner Eng-

lish Corpus (CLEC) are verb choice errors. Hence, 

it is useful to develop an approach to automatically 

detect and correct verb selection errors made by 

ESL learners. 

However, verb selection is a challenging task 

because verbs often exhibit a variety of usages and 

each usage depends on a particular context, which 

can hardly be adequately described by convention-

al n-gram features. For instance, both “made” and 

“received” can complete “I have __ a telephone 

call.”, where the usage context can be represented 

as “made/received a telephone call”; however, in 

“I have __ a telephone call from my boss”, the 

prepositional phrase “from my boss” becomes a 

critical part of the context, which now cannot be 

described by n-gram features, resulting in only 

“received” being suitable. 

Some researchers (Tetreault and Chodorow, 

2008) exploited syntactic information and n-gram 

features to represent verb usage context. Yi et al. 

(2008) introduced an unsupervised web-based 

proofing method for correcting verb-noun colloca-

tion errors. Brockett et al. (2006) employed phrasal 

Statistical Machine Translation (SMT) techniques 

to correct countability errors. None of their meth-

ods incorporated semantic information. 

SRL-based Verb Selection for ESL 
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Unlike the other papers, we derive features from 

the output of an SRL (Màrquez, 2009) system to 

explicitly model verb usage context. SRL is gener-

ally understood as the task of identifying the argu-

ments of a given verb and assigning them semantic 

labels describing the roles they play. For example, 

given a sentence “I want to watch TV tonight” and 

the target predicate “watch”, the output of SRL 

will be something like “I [A0] want to watch [tar-

get predicate] TV [A1] tonight [AM-TMP].”, 

meaning that the action “watch” is conducted by 

the agent “I”, on the patient “TV”, and the action 

happens “tonight”. 

We believe that SRL results are excellent fea-

tures for characterizing verb usage context for 

three reasons: (i) Intuitively, the predicate-

argument structures generated by SRL systems 

capture major relationships between a verb and its 

contextual participants and consequently largely 

determine whether or not the verb usage is proper. 

For example, in “I want to watch a match tonight.”, 

“match” is the patient of “watch”, and “watch … 

match” forms a collocation, suggesting “watch” is 

appropriately used. (ii) Predicate-argument struc-

tures abstract away syntactic differences in sen-

tences with similar meanings, and therefore can 

potentially filter out lots of noise from the usage 

context. For example, consider “I want to watch a 

football match on TV tonight”: if “match” is suc-

cessfully identified as the agent of “watch”, 

“watch … football”, which is unrelated to the us-

age of “watch” in this case, can be easily excluded 

from the usage context. (iii) Research on SRL has 

made great achievements, including human-

annotated training corpora and state-of-the-art sys-

tems, which can be directly leveraged. 

Taking an English sentence as input, our method 

first generates correction candidates by replacing 

each verb with verbs in its pre-defined confusion 

set; then for every candidate, it extracts SRL-

derived features; finally our method scores every 

candidate using a linear function trained by the 

generalized perceptron learning algorithm (Collins, 

2002) and selects the best candidate as output. 

Experimental results show that SRL-derived fea-

tures are effective in verb selection, but we also 

observe that noise in SRL output adversely in-

creases feature space dimensions and the number 

of false suggestions. To alleviate this issue, we use 

local features, e.g., n-gram-related features, and 

achieve state-of-the-art performance when all fea-

tures are integrated. 

Our contributions can be summarized as follows: 

1. We propose to exploit SRL-derived fea-

tures to explicitly model verb usage con-

text. 

2. We propose to use the generalized percep-

tron framework to integrate SRL-derived 

(and other) features  and achieve state-of-

the-art performance on both in-domain and 

out-of-domain test sets. 

Our paper is organized as follows: In the next 

section, we introduce related work. In Section 3, 

we describe our method. Experimental results and 

analysis on both in-domain and out-of-domain cor-

pora are presented in Section 4. Finally, we con-

clude our paper with a discussion of future work in 

Section 5. 

2 Related Work 

SRL results are used in various tasks. Moldovan et 

al. (2004) classify the semantic relations of noun 

phrases based on SRL. Ye and Baldwin (2006) 

apply semantic role–related information to verb 

sense disambiguation. Narayanan and Harabagiu 

(2004) use semantic role structures for question 

answering. Surdeanu et al. (2003) employ predi-

cate-argument structures for information extrac-

tion. 

However, in the context of ESL error detection 

and correction, little study has been carried out on 

clearly exploiting semantic information. Brockett 

et al. (2006) propose the use of the phrasal statisti-

cal machine translation (SMT) technique to identi-

fy and correct ESL errors. They devise several 

heuristic rules to generate synthetic data from a 

high-quality newswire corpus and then use the syn-

thetic data together with their original counterparts 

for SMT training. The SMT approach on the artifi-

cial data set achieves encouraging results for cor-

recting countability errors. Yi et al. (2008) use web 

frequency counts to identify and correct determiner 

and verb-noun collocation errors. Compared with 

these methods, our approach explicitly models 

verb usage context by leveraging the SRL output. 

The SRL-based semantic features are integrated, 

along with the local features, into the generalized 

perceptron model. 
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3 Our Approach 

Our method can be regarded as a pipeline consist-

ing of three steps. Given as input an English sen-

tence written by ESL learners, the system first 

checks every verb and generates correction candi-

dates by replacing each verb with its confusion set. 

Then a feature vector that represents verb usage 

context is derived from the outputs of an SRL sys-

tem and then multiplied with the feature weight 

vector trained by the generalized perceptron. Final-

ly, the candidate with the highest score is selected 

as the output. 

3.1 Formulation 

We formulate the task as a process of generating 

and then selecting correction candidates: 

           
 

 sScores
sGENs '

maxarg*



                      (1) 

Here 
's  denotes the input sentence for proofing, 

 'sGEN  is the set of correction candidates, and 

 sScore  is the linear model trained by the percep-

tron learning algorithm, which will be discussed in 

section 3.4. 

We call every target verb in 
's  a checkpoint. 

For example, “sees” is a checkpoint in “Jane sees 

TV every day.”. Correction candidates are generat-

ed by replacing each checkpoint with its confu-

sions. Table 1 shows a sentence with one 

checkpoint and the corresponding correction can-

didates. 
 

Input Jane sees TV every day. 

Candidates Jane watches TV every day. 

Jane looks TV every day. 

… 

Table 1. Correction candidate list. 

One state-of-the-art SRL system (Riedel and 

Meza-Ruiz, 2008) is then utilized to extract predi-

cate-argument structures for each verb in the input, 

as illustrated in Table 2. 

Semantic features are generated by combining 

the predicate with each of its arguments; e.g., 

“watches_A0_Jane”, “sees_A0_Jane”, “watch-

es_A1_TV” and “sees_A1_TV” are semantic fea-

tures derived from the semantic roles listed in Ta-

ble 2. 

 

Sentence Semantic roles 

Jane sees TV every day Predicate: sees; 

A0: Jane; 

A1: TV; 

Jane watches TV every 

day 

Predicate: watches; 

A0: Jane; 

A1: TV; 

Table 2. Examples of SRL outputs. 

At the training stage, each sentence is labeled by 

the SRL system. Each correction candidate s  is 

represented as a feature vector 
dRs  )( , where 

d  is the total number of features. The feature 

weight vector is denoted as 
dRw


, and  sScore  

is computed as follows: 

               wssScore


 )(                        (2) 

Finally,  sScore  is applied to each candidate, 

and *s , the one with the highest score, is selected 

as the output, as shown in Table 3. 
 

 Correction candidate Score 
*s  Jane watches TV every day. 10.8 

 Jane looks TV every day. 0.8 

 Jane reads TV every day. 0.2 

 … … 

Table 3.  Correction candidate scoring. 

In the above framework, the basic idea is to 

generate correction candidates with the help of pre-

defined confusion sets and apply the global linear 

model to each candidate to compute the degree of 

its fitness to the usage context that is represented 

as features derived from SRL results. 

To make our idea practical, we need to solve the 

following three subtasks: (i) generating the confu-

sion set that includes possible replacements for a 

given verb; (ii) representing the context with se-

mantic features and other complementary features; 

and (iii) training the feature weight. We will de-

scribe our solutions to those subtasks in the rest of 

this section. 
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3.2 Generation of Verb Confusion Sets 

Verb confusion sets are used to generate correction 

candidates. Due to the great number of verbs and 

their diversified usages, manually collecting all 

verb confusions in all scenarios is prohibitively 

time-consuming. To focus on the study of the ef-

fectiveness of semantic role features, we restrict 

our research scope to correcting verb selection er-

rors made by Chinese ESL learners and select fifty 

representative verbs which are among the most 

frequent ones and account for more than 50% of 

ESL verb errors in the CLEC data set. For every 

selected verb we manually compile a confusion set 

using the following data sources: 

1. Encarta treasures. We extract all the syno-

nyms of verbs from the Microsoft Encarta Diction-

ary, and this forms the major source for our 

confusion sets. 

2. English-Chinese Dictionaries. ESL learners 

may get interference from their mother tongue (Liu 

et al., 2000). For example, some Chinese people 

mistakenly say “see newspaper”, partially because 

the translation of “see” co-occurs with “newspa-

per” in Chinese. Therefore English verbs in the 

dictionary sharing more than two Chinese mean-

ings are collected. For example, “see” and “read” 

are in a confusion set because they share the mean-

ings of both “看” (“to see”, “to read”) and “领会” 

(“to grasp”) in Chinese. 

3. An SMT translation table. We extract para-

phrasing verb expressions from a phrasal SMT 

translation table learnt from parallel corpora (Och 

and Ney, 2004). This may help us use the implicit 

semantics of verbs that SMT can capture but a dic-

tionary cannot, such as the fact that the verb  

Note that verbs in any confusion set that we are 

not interested in are dropped, and that the verb it-

self is included in its own confusion set. We leave 

it to our future work to automatically construct 

verb confusions. 

3.3 Verb Usage Context Features 

The verb usage context
1
 refers to its surrounding 

text, which influences the way one understands the 

expression. Intuitively, verb usage context can take 

the form of a collocation, e.g., “watch … TV” in “I 

saw [watched] TV yesterday.” ; it can also simply 

be idioms, e.g., we say “kick one’s habit” instead 

of “remove one’s habit”.  

We use features derived from the SRL output to 

represent verb usage context. The SRL system ac-

cepts a sentence as input and outputs all arguments 

and the semantic roles they play for every verb in 

the sentence. For instance, given the sentence “I 

have opened an American bank account in Bos-

ton.” and the predicate “opened”, the output of 

SRL is listed in Table 4, where A0 and A1 are two 

core roles, representing the agent and patient of an 

action, respectively, and other roles starting with 

“AM-”are adjunct roles, e.g., AM-LOC indicates 

the location of an action. Predicate-argument struc-

tures keep the key participants of a given verb 

while dropping other unrelated words from its us-

age context. For instance, in “My teacher said Chi-

nese is not easy to learn.”, the SRL system 

recognizes that “Chinese” is not the A1-argument 

of “said”. So “say _ Chinese”, which is irrelevant 

to the usage of said, is not extracted as a feature. 

The SRL system, however, may output 

erroneous predicate-argument structures, which 

negatively affect the performance of verb 

selection.  For instance,  for the sentence “He 

hasn’t done anything but take [make] a lot of 

money”, “lot” is incorrectly identified as the patient 

of “take”, making it hard to select “make” as the 

proper verb even though “make money” forms a 

sound collocation. To tackle this issue, we use 

local textual features, namely features related to n-

gram, chunk and chunk headword, as shown in 

Table 5.  Back-off features are generated by 

replacing the word with its POS tag to alleviate 

data sparseness. 

 

                                                           
1 http://en.wikipedia.org/wiki/Context_(language_use) 

I have made[opened] an American bank account in Boston . 

[A0] 
 

[Predicate] 
 

 
 

[A1] [AM-LOC] 

 
 

Table 4. An example of SRL output. 
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Table 5. An example of feature set. 

3.4 Perceptron Learning 

We choose the generalized perceptron algorithm as 

our training method because of its easy implemen-

tation and its capability of incorporating various 

features. However, there are still two concerns 

about this perceptron learning approach: its inef-

fectiveness in dealing with inseparable samples 

and its ignorance of weight normalization that po-

tentially limits its ability to generalize. In section 

4.4 we show that the training error rate drops sig-

nificantly to a very low level after several rounds 

of training, suggesting that the correct candidates 

can almost be separated from others. We also ob-

serve that our method performs well on an out-of-

domain test corpus, indicating the good generaliza-

tion ability of this method. We leave it to our fu-

ture work to replace perceptron learning with other 

models like Support Vector Machines (Vapnik, 

1995). 

In Figure 1, is  is the ith correct sentence within 

the training data. T and N represent the number of 

training iterations and training examples, respec-

tively. )( isGEN  is the function that outputs all the 

possible corrections for the input sentence is  with 

each checkpoint substituted by one of its confu-

sions, as described in Section 3.1. We observe that 

the generated candidates sometimes contain rea-

sonable outputs for the verb selection task, which 

should be removed. For instance, in “… reporters 

could not take [make] notes or tape the conversa-

tion”, both “take” and “make” are suitable verbs in 

this context. To fix this issue, we trained a trigram 

language model using SRILM (Stolcke, 2002) on 

LDC data
21

, and calculated the logarithms of the 

language model score for the original sentence and 

its artificial manipulations. We only kept manipu-

lations with a language model score that is t lower 

than that of the original sentence. We experimen-

tally set t = 5. 
 

Inputs: training examples is , i=1…N 

Initialization: 0w


 

Algorithm: 

   For r= 1.. T, i= 1..N    

   Calculate wso isGens





)(maxarg

)(
 

   If os i   

         )()( osww o 


 

Outputs: w


 

Figure 1. The perceptron algorithm, adapted from Co-

lins (2002). 

  in Figure 1 is the feature extraction function. 

)(o and )( is are vectors extracted from the out-

put and oracle, respectively. A vector field is filled 

with 1 if the corresponding feature exists, or 0 oth-

erwise; w


 is the feature weight vector, where posi-

tive elements suggest that the corresponding 

features support the hypothesis that the candidate 

is correct. 

The training process is to update w


, when the 

output differs from the oracle. For example, when 

o is “I want to look TV” and is  is “I want to watch 

TV”, w


 will be updated. 

We use the averaged Perceptron algorithm (Col-

lins, 2002) to alleviate overfitting on the training 

data. The averaged perceptron weight vector is 

defined as 

                 



TrN

riw
TN ..1,..1i

,1 
                     (3) 

where 
riw ,
is the weight vector immediately af-

ter the ith sentence in the  rth iteration. 
 

                                                           
2 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp ?cata-

logId=LDC2005T12 

Local: trigrams 

   have_opened 

   have_opened_a 

   opened_an_American 

   PRP_VBP_opened 

   VBP_opened_DT 

   opened_DT_JJ 

Local: chunk 

   have_opened 

   opened_an_American_investment_bank 

_account 

   PRP_opened 

   opened_NN 

Semantic: SRL derived features 

   A0_I_opened 

   opened_A1_account 

   opened_AM-LOC_in 

   ... 
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4 Experiments 

In this section, we compare our approach with the 

SMT-based approach. Furthermore, we study the 

contribution of predicate-argument-related 

features, and the performances on verbs with 

varying distance to their arguments. 

4.1 Experiment Preparation 

The training corpus for perceptron learning was 

taken from LDC2005T12. We randomly selected 

newswires containing target verbs from the New 

York Times as the training data. We then used the 

OpenNLP package
31

to extract sentences from the 

newswire text and to parse them into the corre-

sponding tokens, POS tags, and chunks. The SRL 

system is built according to Riedel and Meza-Ruiz 

(2008), using the CoNLL-2008 shared task data for 

training. We assume that the newswire data is of 

high quality and free of linguistic errors, and final-

ly we gathered 20000 sentences that contain any of 

the target verbs we were focusing on.  We experi-

mentally set the number of training rounds to T = 

50. 

We constructed two sets of testing data for in-

domain and out-of-domain test purposes, respec-

tively. To construct the in-domain test data, we 

first collected all the sentences that contain any of 

the verbs we were interested in from the previous 

unused LDC dataset; then we replaced any target 

verb in our list with a verb in its confusion set; 

next, we used the language-model-based pruning 

strategy described in 3.4 to drop possibly correct 

manipulations from the test data; and finally we 

randomly sampled 5000 sentences for testing. 

To build the out-of-domain test dataset, we 

gathered 186 samples that contained errors related 

to the verbs we were interested in from English 

blogs written by Chinese and from the CLEC cor-

pus, which were then corrected by an English na-

tive speaker. Furthermore, for every error 

involving the verbs in our target list, both the verb 

and the word that determines the error are marked 

by the English native speaker. 

4.2 Baseline 

We built up a phrasal SMT system with the word 

re-ordering feature disabled, since our task only 

concerns the substitution of the target verb. To 

                                                           
3 http://opennlp.sourceforge.net/ 

construct the training corpus, we followed the idea 

in Brockett et al. (2006), and applied a similar 

strategy described in section 3.4 to the SRL sys-

tem’s training data to generate aligned pairs. 

4.3 Evaluation Metric 

We employed the following metrics adapted from 

(Yi et al., 2008): revised precision (RP), recall of 

the correction (RC) and false alarm (FA). 

         
 sCheckpoint All of #

Proofings Correct of #
RP                        (4)      

RP reflects how many outputs are correct usag-

es. The output is regarded as a correct suggestion if 

and only if it is exactly the same as the answer. 

Paraphrasing scenarios, for example, the case that 

the output is “take notes” and the answer is “make 

notes”, are counted as errors. 

Errors Total of# 

Proofings Modified Correct of# 
RC                  (5) 

RC indicates how many erroneous sentences are 

corrected among all the errors. It measures the sys-

tem’s coverage of verb selection errors. 

     
sCheckpoint All of# 

sCheckpoint Modified Incorrect of# 
FA          (6) 

FA is related to the cases where a correct verb is 

mistakenly replaced by an inappropriate one. The-

se false suggestions are likely to disturb or even 

annoy users, and thus should be avoided as much 

as possible. 

4.4 Results and Analysis 

The training error curves of perceptron learning 

with different feature sets are shown in Figure 2. 

They drop to a low error rate and then stabilize 

after a few number of training rounds, indicating 

that most of the cases are linearly separable and 

that perceptron learning is applicable to the verb 

selection task. 

We conducted feature selection by dropping fea-

tures that occur less than N times. Here N was ex-

perimentally set to 5. We observe that, after feature 

selection, some useful features such as 

“watch_A1_TV” and “see_A1_TV” were kept, but 

some noisy features like “Jane_A0_sees” and 

“Jane_A0_watches” were removed, suggesting the 

effectiveness of this feature selection approach. 
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Figure 2. Training error curves of the perceptron. 

We tested the baseline and our approach on the 

in-domain and out-of-domain corpora. The results 

are shown in Table 7 and 8, respectively. 

In the in-domain test, the SMT-based approach 

has the highest false alarm rate, though its output 

with word insertions or deletions is not considered 

wrong if the substituted verb is correct. Our ap-

proach, regardless of what feature sets are used, 

outperforms the SMT-based approach in terms of 

all metrics, showing the effectiveness of percep-

tron learning for the verb selection task. Under the 

perceptron learning framework, we can see that the 

system using only SRL-related features has higher 

revised precision and recall of correction, but also 

a slightly higher false alarm rate than the system 

based on only local features. When local features 

and SRL-derived features are integrated together, 

the state-of-the-art performance is achieved with a 

5% increase in recall, and minor changes in preci-

sion and false alarm. 

In the out-of-domain test, the SMT-based ap-

proach performs much better than in the in-domain 

test, especially in terms of false alarm rate, indicat-

ing the SMT-based approach may favor short sen-

tences. However, its recall drops greatly. We ob-

serve similar performance differences between the 

systems with different feature sets under the same 

perceptron learning framework, reaffirming the 

usefulness of the SRL-based features for verb se-

lection. 

We also conducted significance test. The results 

confirm that the improvements (SRL+Local vs. 

SMT-based) are statistically significant (p-value < 

0.001) for both the open-domain and the in-domain 

experiments. 

Furthermore, we studied the performance of our 

system on verbs with varying distance to their ar-

guments on the out-of-domain test corpus. 

 

Local d<=2 2<d<=4 d>4 

RP 64.3% 60.3% 59.4% 

RC 34.6% 33.1% 28.9% 

FA 3.0% 6.3% 5.0% 

SRL d<=2 2<d<=4 d>4 

RP 65.1% 60.1% 62.1% 

RC 40.3% 34.0% 36.9% 

FA 5.0% 6.7% 6.3% 

Table 9. Performance on verbs with different distance to 

their arguments on out-of-domain test data. 

Table 9 shows that the system with only SRL-

derived features performs significantly better than 

the system with only local features on the verb 

whose usage depends on a distant argument, i.e., 

one where the number of words between the predi-

cate and the argument is larger than 4. To under-

stand the reason, consider the following sentence: 

“It's raining outside. Please wear[take] the 

black raincoat with you.” 

 SMT-based Our method 
SRL Local SRL + Local 

RP 48.4% 64.5% 62.2% 66.4% 

RC 23.5% 40.2% 32.9% 46.4% 

FA 13.3% 5.6% 4.2% 6.8% 

Table 7. In-domain test results. 

 SMT-based Our method 

SRL Local SRL + Local 

RP 50.7% 64.0% 62.6% 65.5% 

RC 13.5% 39.0% 33.3% 44.0% 

FA 6.1% 5.5% 4.0% 6.5% 

Table 8. Out-of-domain test results. 
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Intuitively, “wear” and “take” seem to fill the 

blank well, since they both form a collocation with 

“raincoat”; however, when “with [AM-MNR] you” 

is considered as part of the context, “wear” no 

longer fits it and “take” wins. In this case, the long-

distance feature devised from AM-MNR helps se-

lect the suitable verb, while the trigram features 

cannot because they cannot represent the long dis-

tance verb usage context. 

We also find some typical cases that are beyond 

the reach of the SRL-derived features. For instance, 

consider “Everyone doubts [suspects] that Tom is 

a spy.”. Both of the verbs can be followed by a 

clause. However, the SRL system regards “is”, the 

predicate of the clause, as the patient, resulting in 

features like “doubt_A1_is” and “suspect_A1_is”, 

which capture nothing about verb usage context. 

However, if we consider the whole clause “sus-

pect_Tom is a spy” as the patient, this could result 

in a very sparse feature that would be filtered. In 

the future, we will combine word-level and phrase-

level SRL systems to address this problem. 

Besides its incapability of handling verb selec-

tion errors involving clauses, the SRL-derived fea-

tures fail to work when verb selection depends on 

deep meanings that cannot be captured by current 

shallow predicate-argument structures. For exam-

ple, in “He was wandering in the park, spending 

[killing] his time watching the children playing.”, 

though “spending” and “killing” fit the syntactic 

structure and collocation agreement, and express 

the meaning “to allocate some time doing some-

thing”, the word “wandering” suggests that “kill-

ing” may be more appropriate. Current SRL 

systems cannot represent the semantic connection 

between two predicates and thus are helpless for 

this case. We argue that the performance of our 

system can be improved along with the progress of 

SRL. 

5 Conclusions and Future Work 

Verb selection is challenging because verb usage 

highly depends on the usage context, which is hard 

to capture and represent. In this paper, we propose 

to utilize the output of an SRL system to explicitly 

model verb usage context. We also propose to use 

the generalized perceptron learning framework to 

integrate SRL-derived features with other features. 

Experimental results show that our method outper-

forms the SMT-based system and achieves state-

of-the-art performance when SRL-related features 

and other local features are integrated. We also 

show that, for cases where the particular verb us-

age mainly depends on its distant arguments, a sys-

tem with only SRL-derived features performs 

much better than the system with only local fea-

tures. 

In the future, we plan to automatically construct 

confusion sets, expand our approach to more verbs 

and test our approach on a larger size of real data. 

We will try to combine the outputs of several SRL 

systems to make our system more robust. We also 

plan to further validate the effectiveness of the 

SRL-derived features under other learning methods 

like SVMs. 
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Abstract

In this paper, we conducted a systematic com-
parative analysis of language in different con-
texts of bursty topics, including web search,
news media, blogging, and social bookmark-
ing. We analyze (1) the content similarity and
predictability between contexts, (2) the cov-
erage of search content by each context, and
(3) the intrinsic coherence of information in
each context. Our experiments show that so-
cial bookmarking is a better predictor to the
bursty search queries, but news media and so-
cial blogging media have a much more com-
pelling coverage. This comparison provides
insights on how the search behaviors and so-
cial information sharing behaviors of users are
correlated to the professional news media in
the context of bursty events.

1 Introduction

Search is easy. Every day people are repeating the
queries they have used before, trying to access the
same web pages. A smart search engine tracks the
preference and returns it next time when it sees the
same query. When I search for “msr” I always try to
access Microsoft research; and even if I misspelled
it, a smart search engine could suggest a correct
query based on my query history, the current ses-
sion of queries, and/or the queries that other people
have been using.

Search is hard. I search for “social computing”
because there was such a new program in NSF; but
the search engine might have not yet noticed that.
People use “msg” to access monosodium glutamate
in most of the cases, but tonight there is a big game
in Madison square garden. H1N1 suddenly became

a hot topic, followed by a burst of the rumor that
it was a hoax, and then the vaccine. The informa-
tion need of users changed dramatically during such
a period. When a new event happens, the burst of
new contents and new interests make it hard to pre-
dict what people would search and to suggest what
queries they should use.

Web search is easy when the information need of
the users is stable and when we have enough histor-
ical clicks. It becomes much more difficult when a
new information need knocks the door or when there
is a sudden change of the information need. Such a
shift of the information need is usually caused by a
burst of new events or new interests.

When we are lack of enough historical observa-
tions, why don’t we seek help from other sources?
A bursting event will not only influence what we
search, but hopefully also affect what we read, what
we write, and what we tag. Indeed, there is al-
ready considerable effort in seeking help from these
sources, by the integration of news and blogs into
search results or the use of social bookmarks to
enhance search. These conclusions, however, are
mostly drawn in a general context (e.g., with gen-
eral search queries). To what extent are they use-
ful when dealing with busty events? How is the
bursting content in web search, news media, social
media, and social bookmarks correlating and dif-
ferent from each other? Prior to the development
of desirable applications (e.g. enhancing search re-
sults, query suggestion, keyword bidding on adver-
tisement, etc) by integrating the information from all
these sources, it is appealing to have an investigation
of feasibility.

In this work, we conduct a systematic compara-
tive study of what we search, what we read, what
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we write, and what we tag in the scenarios of bursty
events. Specifically, we analyze the language used
in different contexts of bursty events, including two
different query log contexts, two news media con-
texts, two blog contexts, and an additional con-
text of social bookmarks. A variety of experiments
have been conducted, including the content similar-
ity and cross-entropy between sources, the coverage
of search queries in online media, and an in-depth
semantic comparison of sources based on language
networks.

In the rest of this paper, a summary of related
work is briefly described in Section 2. We then
present the experiments setup in Section 3, The re-
sults of the experiments is presented in Section 4. Fi-
nally, our major findings from the comparative anal-
ysis are drawn in Section 5.

2 Related Work

Recently, a rich body of work has focused on how
to find the bursting patterns from time-series data
using various approaches such as time-graph analy-
sis (Kleinberg, 2003; Kuman et al., 2003), context-
based analysis (Gabrilovich et al., 2004), moving-
average analysis (Vlachos et al., 2004), and fre-
quency analysis (Gruhl et al., 2005), etc. These
methods are all related to the preprocessing step of
our analysis: detecting bursty queries from the query
log effectively.

The comparison of two web sources at a time is
widely studied recently. (Sood et al., 2007) dis-
cussed how to leverage the relation between social
tags and web blogs. (Lloyd et al., 2006; Gamon et
al., 2008; Cointet et al., 2008) investigated the rela-
tions between news and blogs. Also some work has
aimed to utilize one external web source to help web
search. For example, (Diaz, 2009) integrated the
news results into general search. (Bao et al., 2007;
Heymann et al., 2008; Krause et al., 2008; Bischoff
et al., 2008) focused on improving search by the so-
cial tags. Compared with the above, our comparison
analysis tries to explore the interactions among mul-
tiple web sources including the search logs.

Similar to our work, some recent work (Adar et
al., 2007; Sun et al., 2008) has addressed the com-
parison among multiple web sources. For exam-
ple, (Adar et al., 2007) did a comprehensive corre-

lation study among queries, blogs, news and TV re-
sults. However, different from the content-free anal-
ysis above, our work compares the sources based on
the content.

Our work can lead to many useful search applica-
tions, such as query suggestion which takes as in-
put a specific query and returns as output one or
several suggested queries. The approaches include
query term cooccurrence (Jones et al., 2006), query
sessions (Radlinski and Joachims, 2005), and click-
through (Mei et al., 2008), respectively.

3 Analysis Setup

Tasks of web information retrieval such as web
search generally perform very well on frequent
and navigational queries (Broder, 2002) such like
“chicago” or “yahoo movies.” A considerable chal-
lenge in web search remains in how to handle infor-
mational queries, especially queries that reflect new
information need and suddenly changed information
need of users. Many such scenarios are caused by
the emergence of bursty events (e.g., “van gogh” be-
came a hot query in May 2006 since a Van Goghs
portrait was sold for 40.3 million in New York dur-
ing that time). The focus of this paper is to analyze
how other online media sources react to those bursty
events and how those reactions compare to the re-
action in web search. This analysis thus serves as
an primitive investigation of the feasibility of lever-
aging other sources to enhance the search of bursty
topics.

Therefore, we focus on the “event-related” topics
which present as bursty queries submitted to a search
engine. These queries not only reflect the suddenly
changed information need of users, but also trigger
the correlated reactions in other online sources, such
as news media, blog media, social bookmarks, etc.
We begin with the extraction of bursty topics from
the query log.

3.1 Bursty Topic Extraction

Search engine logs (or query logs) store the history
of users’ search behaviors, which reflect users’ in-
terests and information need. The query log of a
commercial search engine consists of a huge amount
of search records, each of which typically contains
the following information: the query submitted by
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a user, the time at which the query was submitted,
and/or the URL which the user clicked on after the
query was submitted, etc. It is common practice
to segment query log into search sessions, each of
which represents one user’s searching activities in a
short period of time.

We explore a sample of the log of the Microsoft
Live search engine1, which contains 14.9M search
records over 1 month (May 2006).

3.1.1 Find bursty queries from query log
How to extract the queries that represent bursty

events? We believe that bursty queries present the
pattern that its day-by-day search volume shows a
significant spike – that is, the frequency that the user
submit this query should suddenly increase at one
specific time and drop down after a while. This as-
sumption is consistent with existing work of finding
bursty patterns in emails, scientific literature (Klein-
berg, 2003), and blogs (Gruhl et al., 2005).

Following (Gruhl et al., 2005), we utilize a simple
but effective method to collect bursty topics in the
query log data as follows:
• We choose bigrams as the basic presentation of

bursty topics since bigrams present the information
need of users more clearly and completely than un-
igrams and also have a larger coverage in the query
log comparing to n-grams (n ≥ 3).
• We only consider the bigram queries which ap-

pear more frequently than a threshold s per month.
This is reasonable since a bursty event usually
causes a large volume of search activities.
• Let fmax(q) be the maximum search volume of

a query q in one day (i.e., day d). Let f̂−5(q) be the
upper bound of the daily search volume of q out-
side a time window of 5 days centered at day d. If
fmax(q) is “significantly higher” than f̂−5(q) (i.e.,
rm = f̂max(q)/f−5(q) > m), we consider q as a
query with a spike pattern (m is an empirical thresh-
old).
• The ratio above may be vulnerable to the query

that has more than one spike. To solve this, we de-
fine f̄−5(q) as the average of daily search volume
of q outside the same time window. This gives us
an alternative ratio ra = fmax(q)/f̄−5(q). We fur-
ther balance these two ratios by ranking the bursty

1Now known as Bing: www.bing.com

queries using

score(q) = α · rm(q) + (1− α) · ra(q) (1)

By setting s = 20, m = 2.5, α = 0.8 (based on
several tests), we select the top 130 bigram queries
which form the pool of bursty topics for our anal-
ysis. Table 1 shows some of these topics, covering
multiple domains: politics, science, art, sports, en-
tertainment, etc.

ID Topic ID Topic
1 kentucky election 66 orlando hernandez
2 indiana election 75 daniel biechele
8 van goph 81 hurricane forecast
24 north korea 92 93 memorial
34 pacific quake 113 holloway case
52 florida fires 128 stephen colbert
63 hunger strike 130 bear attack

Table 1: Examples of News Topics

3.2 Context extraction from multiple sources

Once we select the pool of bursty topics, we gather
the contexts of each topic from multiple sources:
query log, news media, blog media, and social book-
marks. We assume that the language in these con-
texts will reflect the reactions of the bursty events in
corresponding online media.

3.2.1 Super query context
The most straightforward context of bursty events

in web search is the query string, which directly
reflects the users’ interests and perspectives in the
topic. We therefore define the first type of context of
a bursty topic in query log as the set of surrounding
terms of that bursty bigram in the (longer) queries.
For example, the word aftermath in the query “haiti
earthquake aftermath” is a term in the context of the
bursty topic haiti earthquake.

Formally, we define a Super Query of a bursty
topic t, sq(t), as the query which contains the bi-
gram query t lexically as a substring. For each
bursty topic t, we scan the whole query log Q and
retrieve all the super queries of t to form the context
which is represented by SQ(t).

SQ(t) = {q|q ∈ Q and q = sq(t)}
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SQ(t) is defined as the super query context of t.
For example, the super query context of ”kentucky
election” contains terms such as “2006,” “results,”
“christian county,” etc. These terms indicate what
aspects the users are most interested in Kentucky
Election during May 2006.

The super query context is widely explored by
search engines to provide query expansion and
query completion (Jones et al., 2006).

3.2.2 Query session context
Another interesting context of a bursty topic in

query log is the sequence of queries that a user
searches after he submitted the bursty query q. This
context usually reflects how a user reformulates the
representation of his information need and implicitly
clarifies his interests in the topic.

We define a Query Session containing a bursty
topic t, qs(t), as the queries which are issued by the
same user after he issued t, within 30 minutes. For
each bursty topic t, we collect all the qs(t) to form
the query session context of t, QS(t):

QS(t) = {q|q ∈ Q and q ∈ qs(t)}

In web search, the query session context is usu-
ally utilized to provide query suggestion and query
reformulation (Radlinski and Joachims, 2005).

3.2.3 News contexts
News articles written by critics and journalists re-

flect the reactions and perspectives of such profes-
sional group of people to a bursty event. We col-
lect news articles about these 130 bursty topics from
Google News2, by finding the most relevant news
articles which (1) match the bursty topic t, (2) were
published in May, 2006, and (3) were published by
any of the five major news medias: CNN, NBC,
ABC, New York Times and Washington Post.

We then retrieve the title and body of each news
article. This provides us two contexts of each bursty
topic t: the set of relevant news titles, NT (t), and
the set of relevant news bodies, NB(t).

3.2.4 Blog contexts
Compared with news articles, blog articles are

written by common users in the online communi-
ties, which are supposed to reflect the reactions and

2http://news.google.com/

opinions of the public to the bursty events. We col-
lect blog articles about these 130 topics from Google
Blog3, by finding the most relevant blog articles
which (1) match the bursty topic t, (2) were pub-
lished in May, 2006 (3) were published in the most
popular blog community, Blogspot4. We then re-
trieve the title and body of each relevant blog post re-
spectively. This provides another two contexts: the
set of relevant blog titles, BT (t), and the set of rel-
evant blog bodies, BB(t).

3.2.5 Social bookmarking context
Social bookmarks form a new source of social

media that allows the users to tag the webpages they
are interested in and share their tags with others. The
tags are supposed to reflect how the users describe
the content of the pages and their perspectives of the
content in a concise way.

We use a sample of Delicious5 bookmarks in May,
2006, which contains around 1.37M unique URLs.
We observe that the bursty bigram queries are also
frequently used as tags in Delicious. We thus con-
struct another context of bursty events by collecting
all the tags that are used to tag the same URLs as the
bursty topic.

Formally, we define DT (t) as the context of so-
cial tags of a topic t,

DT (t) = {tag|∃url, s.t. tag, t ∈ B(url)},
where url is a URL and B(url) stands for the set of
all bookmarks of url.

3.3 Context Statistics
Now we have constructed the set of 130 bursty
topics and 7 corresponding contexts from various
sources. We believe that these contexts well repre-
sent the various types of online media and sources.

For each context, we then clean the data by re-
moving stopwords and the bursty topic keywords
themselves. We then represent it as either the set
of unigrams or bigrams from this context. Table 2
shows the basic statistics of each context:

From Table 2 we observe the following facts:
• The query session context covers more terms

(both unigrams and bigrams) than the super query
3http://blogsearch.google.com/
4http://www.blogspot.com/
5http://delicious.com/
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N T S M S A U M U A B M B
SQ 130 76k 5.3k 32.7 390 24.3 235
QS 126 108k 5.8k 224 1.5k 150 1062
NT 118 4.7k 411 105 627 102 722
NB 118 4.7k 411 4.7k 22k 22k 257k
BT 128 5.8k 99 184 459 169 451
BB 128 5.8k 99 4.1k 15k 12k 69k
DT 71 2.3k 475 137 2.0k N/A N/A
N: The number of topics covered
T S: The total number of records/documents
M S: The max number of records/documents per topic
A U: The avg number of unique unigrams per topic
M U: The max number of unique unigrams
A B: The avg number of unique bigrams
M B: The max number of unique bigrams

Table 2: Basic statistics of collections

context. In both contexts, the average number of
unique bigrams is smaller than unigrams. This is
because queries in search are usually very short. Af-
ter removing stopwords and topic keywords, quite a
few queries have no bigram in these contexts.
•News articles and blog articles cover most of the

bursty topics and contain a rich set of unigrams and
bigrams in the corresponding contexts.
• The Delicious context only covers less than 60%

of bursty topics. We couldn’t extract bigrams from
bookmarks since delicious provides a “bag-of-tags”
interface.

In Section 4, we present a comprehensive analy-
sis of these different contexts of bursty topics, with
three different types of comparison.

4 Experiment

In this section, we present a comprehensive compar-
ative analysis of the different contexts, which repre-
sent the reactions to the bursty topics in correspond-
ing sources.

4.1 Similarity & Predictability analysis

Our first task is to compare the content similarity
of these sources. This will help us to understand
how well the language usage in one context can be
leveraged to predict the language usage in another
context. This is especially useful to predict the con-
tent in web search. By representing each context
of a bursty topic as a vector space model of uni-
grams/bigrams, we first compute and compare the

average cosine similarity between contexts. We only
include contexts with more than 5 unigram/bigrams
into this comparison. The results are shown in Table
A and Table B, respectively. Each table is followed
by a heat map to visualize the pattern.

To investigate how well one source can predict
the content of another, we also represent each con-
text of a bursty topic as a unigram/bigram language
model and compute the Cross Entropy (Kullback
and Leibler, 1951) between every pairs of contexts.
Cross Entropy measures how certain one probabil-
ity distribution predicts another. We calculate such
measure based on the following definition:

HCE(m||n) = H(m) + DKL(m||n)

We smooth the unigram language models using
Laplace smoothing (Field, 1988) and the bigram lan-
guage models using Katz back-off model (Katz,
1987).

The results are shown in Table C and Table D,
followed by the corresponding heat maps. For each
value HCE(m||n) in the table cell, m stands for the
context in the row and n stands for the context in
the column. Please note that in Figure 3, 4, a larger
HCE value corresponds to a lighter cell.

4.1.1 Results
From the results shown in Table A-D, or in Fig-

ure 1- 4 more visually, some interesting phenomena
can be observed:
• Compared with other contexts, query session

is much more similar to the super query. This
makes sense because many super queries would be
included in the query session.
• Compared with news and blog, the delicious

context is closer to the query log context. In fact, de-
licious is reasonably close to all the other contexts.
This means social tags could be an effective source
to enhance bursty topics in web search in terms of
query suggestion. However, as Table 2 shows, only
less than 60% of topics can be covered by delicious
tag. We have to explore other sources to make a
comprehensive prediction.
• In the news and blog contexts, the title contexts

are more similar to the query contexts than the body
contexts. This may be because titles usually con-
cisely describe the topic while bodies contain much
more details and irrelevant contents.
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Context SQ QS NT NB BT BB DT
SQ 1.0 0.405 0.122 0.072 0.119 0.061 0.188
QS 0.405 1.0 0.049 0.062 0.066 0.054 0.112
NT 0.122 0.049 1.0 0.257 0.186 0.152 0.120
NB 0.072 0.062 0.257 1.0 0.191 0.362 0.114
BT 0.119 0.066 0.186 0.191 1.0 0.242 0.141
BB 0.061 0.054 0.152 0.362 0.242 1.0 0.107
DT 0.188 0.112 0.120 0.114 0.141 0.107 1.0

Table A: Cosine similarity for unigram vectors

 

Figure 1: Heat map of table A

Source SQ QS NT NB BT BB
SQ 1.0 0.290 0.028 0.024 0.047 0.027
QS 0.290 1.0 0.004 0.010 0.011 0.009
NT 0.028 0.004 1.0 0.041 0.026 0.011
NB 0.024 0.010 0.041 1.0 0.023 0.040
BT 0.047 0.011 0.026 0.023 1.0 0.044
BB 0.027 0.009 0.011 0.040 0.044 1.0

We do not build bigram vector for DT

Table B: Cosine similarity for bigram vectors

 

Figure 2: Heat map of table B

Source SQ QS NT NB BT BB DT
SQ 1.698 4.911 7.538 8.901 7.948 9.050 7.498
QS 7.569 3.842 9.487 11.130 9.997 11.546 8.972
NT 8.957 10.868 3.718 7.946 9.006 9.605 8.825
NB 11.217 12.897 11.317 7.241 12.282 11.582 11.739
BT 9.277 11.084 9.085 10.295 4.637 9.365 9.180
BB 11.053 12.842 11.593 11.742 12.001 7.232 11.525
DT 8.457 9.794 8.521 9.511 8.831 9.473 2.990

Table C: Cross entropy for unigram distribution

 

Figure 3: Heat map of table C

Source SQ QS NT NB BT BB
SQ 1.891 2.685 4.290 4.540 4.319 4.607
QS 6.800 3.430 8.144 9.049 8.528 9.304
NT 5.444 5.499 3.652 4.733 5.106 5.218
NB 11.572 11.797 11.254 8.731 11.544 11.073
BT 5.664 5.674 5.503 5.495 4.597 5.301
BB 10.745 10.796 10.517 10.455 10.526 8.518

We do not build bigram distribution for DT
Table D: Cross Entropy for bigram distribution

 

Figure 4: Heat map of table D
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HCE(SQ||n)
n: NT BT NB BB

Uni: 7.538 7.948 8.901 9.050
Bi: 4.290 4.319 4.540 4.607
HCE(m||SQ)
m: NT BT NB BB

Uni: 8.927 9.277 11.217 11.053
Bi: 5.445 5.664 11.572 10.745

Table 3: Cross-entropy among three sources

• News would be a better predictor of the query
than blog in general. This is interesting, which indi-
cates that many search activities may be initialized
by reading the news.
• News and blogs are much more similar to each

other than query logs. We hypothesize that this re-
sult reflects the behavior how people write blogs
about bursty events – typically they may have read
several news articles before writing their own blog.
In the blog, they may directly quote or retell a part
of the news article and then add their opinion.
• Table 3 reveals the generation relations among

three sources: query, news and blog. From the
upper table, we can observe that queries are more
likely to be generated by news articles, rather than
blog articles. From the lower table, we can observe
that queries are more likely to generate blog arti-
cles(body), rather than news articles(body). This re-
sult is quite interesting, which indicates the users’
actual behaviors: when a bursty event happens, users
would search them from web after they read it from
some news articles. And users would write their
own blogs to discuss the event after they retrieve and
digest information from the web.
• From Table 3 we also find that queries are more

likely to generate news title, rather than blog title. It
is natural since blogs are written by kinds of people.
The content especially the title part contains more
uncertainty.

4.1.2 Case study

We then conduct the analysis to the level of indi-
vidual topics. Table 4 shows the correlation of each
pair of contexts, computed based on the similarity
between topics in SQ and corresponding topics in
these contexts. We can observe that News and Blog
are correlated with each other tightly. If one is a

good predictor of bursty queries, the other one also
tends to be.

QS NT NB BT BB DT
QS 0.46 0.59 0.58 0.75 0.46
NT 0.73 0.79 0.59 0.61
NB 0.71 0.68 0.61
BT 0.78 0.59
BB 0.48

Table 4: Correlations of the similarity with SQ

For some topics like “stephen colbert,” and “three
gorges,” both News and Blog are quite similar to
the queries, which implies some intrinsic properties
(coherence) of these topics: users would refer to the
same content when using the topic terms in different
sources.

We also find that a few topics like “hot
dogs,” “bear attack,” for which the similarity of
(SQ, News) and (SQ, Blog) are both low. It is
probably because these topics are too diverse and
carries a lot of ambiguity.

Although in most cases they are correlated, some-
times News and Blog show different trends in the
similarity to the queries. For example, News is
quite similar to the queries on the topics such as
“holloway case” and “jazz fest” while Blog is dis-
similar. For these unfamiliar topics, users possi-
bly search the web “after” they read the news arti-
cles and express their diverse opinions in the blog.
In contrast, on the topics like “insurance rate” or
“consolidation loans,” Blog is similar to the queries
while News is not. For these daily-life-related
queries, users would express the similar opinions
when they search or write blogs, while news articles
typically report such “professional” viewpoints.

4.2 Coverage analysis

Are social bookmarks the best source to predict
bursty content in search? It looks so from the sim-
ilarity comparison, if they have a good coverage of
search contents. In this experiment, we analyze the
coverage of query contexts in other contexts in a sys-
tematic way. If the majority of terms in the super
query context would be covered by a small propor-
tion of top words from another source, this source
has the potential.
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4.2.1 Unigram coverage
We first analyze the coverage of unigrams from

the super query context in four other contexts: QS,
DT , News (the combination of NT and NB) and
Blog (the combination of BT and BB) to compare
with SQ. For each source, we rank the unigrams by
frequency. Figure 5(a) shows the average trend of
SQ-unigram coverage in different sources. The x-
coordinate refers to the ratio of top unigrams in one
source to the number of unigrams in SQ. For ex-
ample, if SQ contains n unigrams, the ratio 2 stands
for the top 2n unigrams in the other source. The y-
coordinate refers to the coverage rate of SQ. We can
observe that:
• Query Session naturally covers most of the su-

per query terms (over 70%).
• Though delicious tags are more similar to

queries than news and blog, as well as a relatively
higher coverage rate than the other two while size
ratio is small, the overall coverage rate is quite low:
only 21.28%. Note that this is contradict to existing
comparative studies between social bookmarks and
search logs (Bischoff et al., 2008). Clearly, when
considering bursty queries, the coverage and effec-
tiveness of social bookmarks is much lower than
considering all queries. Handling bursty queries is
much more difficult; only using social bookmarks to
predict queries is not a good choice. Other useful
sources should be enrolled.
• As the growth of the size ratio, the coverage

rate of news and blogs are both gradually increased.
When stable, both of them arrive at a relatively high
level (news: 66.36%, blog: 63.80%), which means
news and blogs have a higher potential to predict the
bursty topics in search. Moreover, in most cases,
news is still prior to blog – not only the overall rate,
but also the size ratio comparison while the coverage
rate reaches 50% (news:109 < blog:183).

4.2.2 Bigram Coverage
Also we analyze the bigram coverage. This time

we only have 3 sources (no DT ). We rank the bi-
grams by the pointwise mutual information instead
of frequency, since not all the bigrams are “real” col-
locations. Figure 5(b) shows the results.

Different from the unigram coverage, except that
the query session can naturally keep a high coverage
rate (66.07%), both news and blog cover poorly. For

this issue, we should re-consider the behavior that
users search and write articles. News or blog arti-
cles consist of completed sentences and paragraphs
which would contain plenty of meaningful bigrams.
However search queries consist of keywords – rel-
atively discrete and regardless of order. Therefore,
except some proper nouns such as person’s name, a
lot of bigrams in the query log are formed in an ad-
hoc way. Since the different expressions of search
and writing, detecting unigrams is more informa-
tional than bigrams.

4.3 Coherence analysis

The above two experiments discuss the inter-
relations among different contexts. In this section
we will discuss the inner-relation within each par-
ticular context – when it comes to a particular bursty
topic, how coherent is the information in each con-
text? Does the discussion keep consistent, or slip
into ambiguity?

We represent all the terms forming each context of
a bursty topic as a weighted graph: G = (V, E, W ),
where each v ∈ V stands for each term, wv stands
for the weight of vertex v in G, and each e ∈ E
stands for the semantic closeness between a pair of
terms (u, v) measured by sim(u, v). We define the
density of such a semantic graph as follows:

Den(G) =
Σu,v∈V,u 6=vsim(u, v)wuwv

Σu,v∈V,u 6=vwuwv
(2)

If sim(u, v) values the semantic similarity between
u and v, a high value of Den(G) implies that the
whole context is semantically consistent. Otherwise,
it may be diverse or ambiguous.

We build the graph of each context based on
WordNet6. For a pair of words, WordNet provides a
series of measures of the semantic similarity (Peder-
sen et al., 2004). We use the Path Distance Similar-
ity (path for short) and Lin Similarity (lin for short)
to measure sim(u, v). Both measures range in [0, 1].

For the convenience of computation, we choose
the top 1100 unigrams ranked by term frequency in
each source (if any) to represent the whole context
on one specific topic.

6http://wordnet.princeton.edu/
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(a) Unigram (b) Bigram

Figure 5: Coverage results

4.3.1 Overall

Table 5 shows the average overall density of each
sources over all the topics. From the table we can

Source path lin
SQ 0.098 0.128
QS 0.071 0.082
NT 0.103 0.129
NB 0.109 0.139
BT 0.099 0.109
BB 0.116 0.147
DT 0.102 0.127

Table 5: Overall Density

observe that QS has the lowest density in both of
the measures. It is because the queries in one user
session can easily shift to other (irrelevant) topics
even in a short time.

Another interesting phenomenon comes out that
for either news or blog, the body is denser than the
title, even if the body context contains much more
terms. It can be explained by the roles of the title
and the body in one article: the title contains a series
of words which briefly summarize a topic while the
body part would describe and discuss the title in de-
tails. When it maps to the semantic word network,
the title tends to contain the vertices scattered in the
graph, while the context of the body part would add
more semantically related vertices around the origi-
nal vertices to strength the relations. Thus, the body
part has a higher density than the title part.

4.3.2 The trend analysis
Figure 6 shows the tendency of the density in each

source. The x-coordinate refers to the TopN uni-
grams ranked by the term frequency in each source.
From Figure 6 we can find that in most cases, the av-
erage density will gradually decrease while less im-
portant terms are added, which implies that the most
important terms are denser, and other terms would
disperse the topic.

To better evaluate this tendency of each source,
Table 6 shows the change rate of the highest density
to the overall density measured by lin. We can easily
find the following facts:
• The highest density is achieved when a small

proportion of top terms are counted (6 sources for
Top5 and one for Top20), which also supports our
hypothesis: the more important, the more coherent.
• BB’s density drops the fastest of all (15.1%),

following by DT (10.6%). It may be because both
blog and delicious tag are generated by many users.
And the diversity of the users leads to different
prospectives, which dilutes the context significantly.
• Both NT and NB drop quite slowly (5.8%,

6.8%), which means the professional journalists
would have the relatively similar prospectives on the
same topic. Thus the topic does not disperse too
much. BT also keeps a high stability.
• Compared with news, blog is easier to disperse,

which can be reflected by the density comparison
between NT and BT . Although the density of BB
is still higher than NT , we should notice that these
two sources are not completely covered – about 3/4
unigrams in these two contexts are not included in
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(a) path (b) lin

Figure 6: Trend of Density

the semantic networks. The curves clearly shows
BB dropped faster than NB. One can expect that
NB becomes denser than BB if all the unigrams in
both sources are included in the network.

Source Highest Den. Overall Den. Change
SQ 0.140(Top5) 0.128 -8.6%
QS 0.091(Top5) 0.082 -9.9%
NT 0.137(Top5) 0.129 -5.8%
NB 0.148(Top5) 0.139 -6.8%
BT 0.114(Top20) 0.109 -4.4%
BB 0.172(Top5) 0.147 -15.1%
DT 0.142(Top5) 0.127 -10.6%

Table 6: Tendency analysis of Density (Lin)

4.3.3 Case Study
From these 130 news topics, some of them shows

a special tendency of coherence. For example,
when more words are included, the density of the
topic“three gorge” drops rapidly in most of the
sources. The topic “florida fires” has the same
trend. These topics are typically “focus” topics,
which means users clearly pursue the unique event
while they use these terms. Thus, the density in top
unigrams is very high. It drops rapidly since users’
personal interests and opinions toward to this event
will be enrolled gradually.

In contrast, some topics like “heather mills,”, “in-
surance rate” express differently: their densities
gradually increase with the growth of the terms. By
observing these topics we find they are usually di-
verse topics (e.g: famous person name or entity
name), which may lead to diverse search intentions

of users. So the density of top unigrams is low and
gradually increased since one main aspect is proba-
bly strengthened.

5 Conclusion and Future work

In this paper, we have studied and compared how
the web content reacts to bursty events in multi-
ple contexts of web search and online media. Af-
ter a series of comprehensive experiments including
content similarity and predictability, the coverage
of search content, and semantic diversity, we found
that social bookmarks are not enough to predict the
queries because of a low coverage. Other sources
like news and blogs need to be added. Furthermore,
news can be seen as a consistent source which would
not only trigger the discussion of bursty events in
blogs but also in search queries.

When the target is to diversify the search results
and query suggestions, blogs and social bookmarks
are potentially useful accessory sources because of
the high diversity of content.

Our work serves as a feasibility investigation of
query suggestion for bursty events. Future work
would address on how to systematically predict and
recommend the bursty queries using online media,
as well as a reasonable evaluation metrics upon it.
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Abstract

Even the entire Web corpus does not explic-
itly answer all questions, yet inference can un-
cover many implicit answers. But where do
inference rules come from?

This paper investigates the problem of learn-
ing inference rules from Web text in an un-
supervised, domain-independent manner. The
SHERLOCK system, described herein, is a
first-order learner that acquires over 30,000
Horn clauses from Web text. SHERLOCK em-
bodies several innovations, including a novel
rule scoring function based on Statistical Rel-
evance (Salmon et al., 1971) which is effec-
tive on ambiguous, noisy and incomplete Web
extractions. Our experiments show that in-
ference over the learned rules discovers three
times as many facts (at precision 0.8) as the
TEXTRUNNER system which merely extracts
facts explicitly stated in Web text.

1 Introduction

Today’s Web search engines locate pages that match
keyword queries. Even sophisticated Web-based
Q/A systems merely locate pages that contain an ex-
plicit answer to a question. These systems are help-
less if the answer has to be inferred from multiple
sentences, possibly on different pages. To solve this
problem, Schoenmackers et al.(2008) introduced the
HOLMES system, which infers answers from tuples
extracted from text.

HOLMES’s distinction is that it is domain inde-
pendent and that its inference time is linear in the
size of its input corpus, which enables it to scale to
the Web. However, HOLMES’s Achilles heel is that
it requires hand-coded, first-order, Horn clauses as

input. Thus, while HOLMES’s inference run time
is highly scalable, it requires substantial labor and
expertise to hand-craft the appropriate set of Horn
clauses for each new domain.

Is it possible to learn effective first-order Horn
clauses automatically from Web text in a domain-
independent and scalable manner? We refer to the
set of ground facts derived from Web text as open-
domain theories. Learning Horn clauses has been
studied extensively in the Inductive Logic Program-
ming (ILP) literature (Quinlan, 1990; Muggleton,
1995). However, learning Horn clauses from open-
domain theories is particularly challenging for sev-
eral reasons. First, the theories denote instances of
an unbounded and unknown set of relations. Sec-
ond, the ground facts in the theories are noisy, and
incomplete. Negative examples are mostly absent,
and certainly we cannot make the closed-world as-
sumption typically made by ILP systems. Finally,
the names used to denote both entities and relations
are rife with both synonyms and polysymes making
their referents ambiguous and resulting in a particu-
larly noisy and ambiguous set of ground facts.

This paper presents a new ILP method, which is
optimized to operate on open-domain theories de-
rived from massive and diverse corpora such as the
Web, and experimentally confirms both its effective-
ness and superiority over traditional ILP algorithms
in this context. Table 1 shows some example rules
that were learned by SHERLOCK.

This work makes the following contributions:

1. We describe the design and implementation of
the SHERLOCK system, which utilizes a novel,
unsupervised ILP method to learn first-order
Horn clauses from open-domain Web text.
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IsHeadquarteredIn(Company, State) :-

IsBasedIn(Company, City) ∧ IsLocatedIn(City, State);

Contains(Food, Chemical) :-

IsMadeFrom(Food, Ingredient) ∧ Contains(Ingredient, Chemical);

Reduce(Medication, Factor) :-

KnownGenericallyAs(Medication, Drug) ∧ Reduce(Drug, Factor);

ReturnTo(Writer, Place) :- BornIn(Writer, City) ∧ CapitalOf(City, Place);

Make(Company1, Device) :- Buy(Company1, Company2) ∧ Make(Company2, Device);

Table 1: Example rules learned by SHERLOCK from Web extractions. Note that the italicized rules are unsound.

2. We derive an innovative scoring function that is
particularly well-suited to unsupervised learn-
ing from noisy text. For Web text, the scoring
function yields more accurate rules than several
functions from the ILP literature.

3. We demonstrate the utility of SHERLOCK’s
automatically learned inference rules. Infer-
ence using SHERLOCK’s learned rules identi-
fies three times as many high quality facts (e.g.,
precision ≥ 0.8) as were originally extracted
from the Web text corpus.

The remainder of this paper is organized as fol-
lows. We start by describing previous work. Sec-
tion 3 introduces the SHERLOCK rule learning sys-
tem, with Section 3.4 describing how it estimates
rule quality. We empirically evaluate SHERLOCK in
Section 4, and conclude.

2 Previous Work

SHERLOCK is one of the first systems to learn first-
order Horn clauses from open-domain Web extrac-
tions. The learning method in SHERLOCK belongs
to the Inductive logic programming (ILP) subfield
of machine learning (Lavrac and Dzeroski, 2001).
However, classical ILP systems (e.g., FOIL (Quin-
lan, 1990) and Progol (Muggleton, 1995)) make
strong assumptions that are inappropriate for open
domains. First, ILP systems assume high-quality,
hand-labeled training examples for each relation of
interest. Second, ILP systems assume that constants
uniquely denote individuals; however, in Web text
strings such as “dad” or “John Smith” are highly
ambiguous. Third, ILP system typically assume
complete, largely noise-free data whereas tuples ex-
tracted from Web text are both noisy and radically

incomplete. Finally, ILP systems typically utilize
negative examples, which are not available when
learning from open-domain facts. One system that
does not require negative examples is LIME (Mc-
Creath and Sharma, 1997); We compare SHERLOCK

with LIME’s methods in Section 4.3. Most prior ILP
and Markov logic structure learning systems (e.g.,
(Kok and Domingos, 2005)) are not designed to han-
dle the noise and incompleteness of open-domain,
extracted facts.

NELL (Carlson et al., 2010) performs coupled
semi-supervised learning to extract a large knowl-
edge base of instances, relations, and inference
rules, bootstrapping from a few seed examples of
each class and relation of interest and a few con-
straints among them. In contrast, SHERLOCK fo-
cuses mainly on learning inference rules, but does so
without any manually specified seeds or constraints.

Craven et al.(1998) also used ILP to help infor-
mation extraction on the Web, but required training
examples and focused on a single domain.

Two other notable systems that learn inference
rules from text are DIRT (Lin and Pantel, 2001)
and RESOLVER (Yates and Etzioni, 2007). How-
ever, both DIRT and RESOLVER learn only a lim-
ited set of rules capturing synonyms, paraphrases,
and simple entailments, not more expressive multi-
part Horn clauses. For example, these systems may
learn the rule X acquired Y =⇒ X bought Y ,
which captures different ways of describing a pur-
chase. Applications of these rules often depend on
context (e.g., if a person acquires a skill, that does
not mean they bought the skill). To add the neces-
sary context, ISP (Pantel et al., 2007) learned selec-
tional preferences (Resnik, 1997) for DIRT’s rules.
The selectional preferences act as type restrictions
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Figure 1: Architecture of SHERLOCK. SHERLOCK learns
inference rules offline and provides them to the HOLMES
inference engine, which uses the rules to answer queries.

on the arguments, and attempt to filter out incorrect
inferences. While these approaches are useful, they
are strictly more limited than the rules learned by
SHERLOCK.

The Recognizing Textual Entailment (RTE)
task (Dagan et al., 2005) is to determine whether
one sentence entails another. Approaches to RTE
include those of Tatu and Moldovan (2007), which
generates inference rules from WordNet lexical
chains and a set of axiom templates, and Pennac-
chiotti and Zanzotto (2007), which learns inference
rules based on similarity across entailment pairs. In
contrast with this work, RTE systems reason over
full sentences, but benefit by being given the sen-
tences and training data. SHERLOCK operates over
simpler Web extractions, but is not given guidance
about which facts may interact.

3 System Description

SHERLOCK takes as input a large set of open domain
facts, and returns a set of weighted Horn-clause in-
ference rules. Other systems (e.g., HOLMES) use the
rules to answer questions, infer additional facts, etc.

SHERLOCK’s basic architecture is depicted in
Figure 1. To learn inference rules, SHERLOCK per-
forms the following steps:

1. Identify a “productive” set of classes and in-
stances of those classes

2. Discover relations between classes
3. Learn inference rules using the discovered rela-

tions and determine the confidence in each rule

The first two steps help deal with the synonyms,
homonyms, and noise present in open-domain the-
ories by identifying a smaller, cleaner, and more co-
hesive set of facts to learn rules over.

SHERLOCK learns inference rules from a collec-
tion of open-domain extractions produced by TEX-
TRUNNER (Banko et al., 2007). The rules learned
by SHERLOCK are input to an inference engine and
used to find answers to a user’s query. In this paper,
SHERLOCK utilizes HOLMES as its inference engine
when answering queries, and uses extracted facts
of the form R(arg1, arg2) provided by the authors
of TEXTRUNNER, but the techniques presented are
more broadly applicable.

3.1 Finding Classes and Instances
SHERLOCK first searches for a set of well-defined
classes and class instances. Instances of the same
class tend to behave similarly, so identifying a good
set of instances will make it easier to discover the
general properties of the entire class.

Options for identifying interesting classes include
manually created methods (WordNet (Miller et al.,
1990)), textual patterns (Hearst, 1992), automated
clustering (Lin and Pantel, 2002), and combina-
tions (Snow et al., 2006). We use Hearst patterns
because they are simple, capture how classes and in-
stances are mentioned in Web text, and yield intu-
itive, explainable groups.

Hearst (1992) identified a set of textual patterns
which indicate hyponymy (e.g., ‘Class such as In-
stance’). Using these patterns, we extracted 29 mil-
lion (instance, class) pairs from a large Web crawl.
We then cleaned them using word stemming, nor-
malization, and by dropping modifiers.

Unfortunately, the patterns make systematic er-
rors (e.g., extracting Canada as the name of a city
from the phrase ‘Toronto, Canada and other cities.’)
To address this issue, we discard the low frequency
classes of each instance. This heuristic reduces the
noise due to systematic error while still capturing the
important senses of each word. Additionally, we use
the extraction frequency to estimate the probability
that a particular mention of an instance refers to each
of its potential classes (e.g., New York appears as a
city 40% of the time, a state 35% of the time, and a
place, area, or center the rest of the time).
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Ambiguity presents a significant obstacle when
learning inference rules. For example, the corpus
contains the sentences ‘broccoli contains this vita-
min’ and ‘this vitamin prevents scurvy,’ but it is un-
clear if the sentences refer to the same vitamin. The
two main sources of ambiguity we observed are ref-
erences to a more general class instead of a specific
instance (e.g., ‘vitamin’), and references to a person
by only their first or last name. We eliminate the
first by removing terms that frequently appear as the
class name with other instances, and the second by
removing common first and last names.

The 250 most frequently mentioned class names
include a large number of interesting classes (e.g.,
companies, cities, foods, nutrients, locations) as
well as ambiguous concepts (e.g., ideas, things). We
focus on the less ambiguous classes by eliminating
any class not appearing as a descendant of physical
entity, social group, physical condition, or event in
WordNet. Beyond this filtering we make no use of a
type hierarchy and treat classes independently.

In our corpus, we identify 1.1 million distinct,
cleaned (instance, class) pairs for 156 classes.

3.2 Discovering Relations between Classes
Next, SHERLOCK discovers how classes relate to
and interact with each other. Prior work in relation
discovery (Shinyama and Sekine, 2006) has investi-
gated the problem of finding relationships between
different classes. However, the goal of this work is
to learn rules on top of the discovered typed rela-
tions. We use a few simple heuristics to automati-
cally identify interesting relations.

For every pair of classes (C1, C2), we find a set
of typed, candidate relations from the 100 most fre-
quent relations in the corpus where the first argu-
ment is an instance of C1 and the second argument
is an instance of C2. For extraction terms with mul-
tiple senses (e.g., New York), we split their weight
based on how frequently they appear with each class
in the Hearst patterns.

However, many discovered relations are rare and
meaningless, arising from either an extraction error
or word-sense ambiguity. For example, the extrac-
tion ‘Apple is based in Cupertino’ gives some evi-
dence that a fruit may possibly be based in a city.
We attempt to filter out incorrectly-typed relations
using two heuristics. We first discard any relation

whose weighted frequency falls below a threshold,
since rare relations are more likely to arise due to
extraction errors or word-sense ambiguity. We also
remove relations whose pointwise mutual informa-
tion (PMI) is below a threshold T=exp(2) ≈ 7.4:

PMI(R(C1, C2)) =
p(R,C1, C2)

p(R, ·, ·) ∗ p(·, C1, ·) ∗ p(·, ·, C2)

where p(R, ·, ·) is the probability a random extrac-
tion has relation R, p(·, C1, ·) is the probability a
random extraction has an instance of C1 as its first
argument, p(·, ·, C2) is similar for the second argu-
ment, and p(R,C1, C2) is the probability that a ran-
dom extraction has relation R and instances of C1

and C2 as its first and second arguments, respec-
tively. A low PMI indicates the relation occurred by
random chance, which is typically due to ambiguous
terms or extraction errors.

Finally, we use two TEXTRUNNER specific clean-
ing heuristics: we ignore a small set of stop-relations
(‘be’, ‘have’, and ‘be preposition’) and extractions
whose arguments are more than four tokens apart.
This process identifies 10,000 typed relations.

3.3 Learning Inference Rules

SHERLOCK attempts to learn inference rules for
each typed relation in turn. SHERLOCK receives a
target relation, R, a set of observed examples of the
relation, E+, a maximum clause length k, a mini-
mum support, s, and an acceptance threshold, t, as
input. SHERLOCK generates all first-order, definite
clauses up to length k, where R appears as the head
of the clause. It retains each clause that:

1. Contains no unbound variables
2. Infers at least s examples from E+

3. Scores at least t according to the score function

We now propose a novel score function, and empir-
ically validate our choice in Sections 4.3 and 4.4.

3.4 Evaluating Rules by Statistical Relevance

The problem of evaluating candidate rules has been
studied by many researchers, but typically in either a
supervised or propositional context whereas we are
learning first-order Horn-clauses from a noisy set of
positive examples. Moreover, due to the incomplete
nature of the input corpus and the imperfect yield of
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extraction—many true facts are not stated explicitly
in the set of ground assertions used by the learner to
evaluate rules.

The absence of negative examples, coupled with
noise, means that standard ILP evaluation functions
(e.g., (Quinlan, 1990) and (Dzeroski and Bratko,
1992)) are not appropriate. Furthermore, when eval-
uating a particular rule with consequent C and an-
tecedent A, it is natural to consider p(C|A) but, due
to missing data, this absolute probability estimate is
often misleading: in many cases C will hold given
A but the fact C is not mentioned in the corpus.

Thus to evaluate rules over extractions, we need
to consider relative probability estimates. I.e., is
p(C|A) � p(C)? If so, then A is said to be sta-
tistically relevant to C (Salmon et al., 1971).

Statistical relevance tries to infer the simplest set
of factors which explain an observation. It can be
viewed as searching for the simplest propositional
Horn-clause which increases the likelihood of a goal
proposition g. The two key ideas in determining sta-
tistical relevance are discovering factors which sub-
stantially increase the likelihood of g (even if the
probabilities are small in an absolute sense), and dis-
missing irrelevant factors.

To illustrate these concepts, consider the follow-
ing example. Suppose our goal is to predict if New
York City will have a storm (S). On an arbitrary
day, the probability of having a storm is fairly low
(p(S) � 1). However, if we know that the atmo-
spheric pressure on that day is low, this substantially
increases the probability of having a storm (although
that absolute probability may still be small). Ac-
cording to the principle of statistical relevance, low
atmospheric pressure (LP ) is a factor which predicts
storms (S :- LP ), since p(S|LP )� p(S) .

The principle of statistical relevance also identi-
fies and removes irrelevant factors. For example, let
M denote the gender of New York’s mayor. Since
p(S|LP,M)� p(S), it naı̈vely appears that storms
in New York depend on the gender of the mayor in
addition to the air pressure. The statistical relevance
principle sidesteps this trap by removing any fac-
tors which are conditionally independent of the goal,
given the remaining factors. For example, we ob-
serve p(S|LP )=p(S|LP,M), and so we say that M
is not statistically relevant to S. This test applies Oc-
cam’s razor by searching for the simplest rule which

explains the goal.
Statistical relevance appears useful in the open-

domain context, since all the necessary probabilities
can be estimated from only positive examples. Fur-
thermore, approximating relative probabilities in the
presence of missing data is much more reliable than
determining absolute probabilities.

Unfortunately, Salmon defined statistical rele-
vance in a propositional context. One technical
contribution of our work is to lift statistical rele-
vance to first order Horn-clauses as follows. For
the Horn-clause Head(v1, ..., vn):-Body(v1, ..., vm)
(where Body(v1, ..., vm) is a conjunction of function-
free, non-negated, first-order relations, and vi ∈ V
is the set of typed variables used in the rule), we say
the body helps explain the head if:

1. Observing an instance of the body substantially
increases the probability of observing the head.

2. The body contains no irrelevant (conditionally
independent) terms.

We evaluate conditional independence of terms
using ILP’s technique of Θ-subsumption, ensuring
there is no more general clause that is similarly
predictive of the head. Formally, clause C1 Θ-
subsumes clause C2 if and only if there exists a sub-
stitution Θ such thatC1Θ ⊆ C2 where each clause is
treated as the set of its literals. For example, R(x, y)
Θ-subsumes R(x, x), since {R(x, y)}Θ ⊆ {R(x, x)}
when Θ={y/x}. Intuitively, if C1 Θ-subsumes C2,
it means that C1 is more general than C2.

Definition 1 A first-order Horn-clause
Head(...):-Body(...) is statistically relevant if
p(Head(...)|Body(...)) � p(Head(...)) and if there
is no clause body B′(...)Θ ⊆ Body(...) such that
p(Head(...)|Body(...)) ≈ p(Head(...)|B′(...))

In practice it is difficult to determine the proba-
bilities exactly, so when checking for statistical rele-
vance we ensure that the probability of the rule is at
least a factor t greater than the probability of any
subsuming rule, that is, p(Head(...)|Body(...)) ≥
t ∗ p(Head(...)|B′(...))

We estimate p(Head(...)|B(...)) from the observed
facts by assuming values of Head(...) are generated
by sampling values of B(...) as follows: for variables
vs shared between Head(...) and B(...), we sample
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values of vs uniformly from all observed ground-
ings of B(...). For variables vi, if any, that appear
in Head(...) but not in B(...), we sample their values
according to a distribution p(vi|classi). We estimate
p(vi|classi) based on the relative frequency that vi

was extracted using a Hearst pattern with classi.
Finally, we ensure the differences are statistically

significant using the likelihood ratio statistic:

2Nr

X
H(...)∈

{Head(...),¬Head(...)}

p(H(...)|Body(...)) ∗ log
p(H(...)|Body(...))
p(H(...)|B′(...))

where p(¬Head(...)|B(...)) = 1−p(Head(...)|B(...))
and Nr is the number of results inferred by the
rule Head(...):-Body(...). This test is distributed ap-
proximately as χ2 with one degree of freedom. It
is similar to the statistical significance test used in
mFOIL (Dzeroski and Bratko, 1992), but has two
modifications since SHERLOCK doesn’t have train-
ing data. In lieu of positive and negative examples,
we use whether or not the inferred head value was
observed, and compare against the distribution of a
subsuming clause B′(...) rather than a known prior.

This method of evaluating rules has two impor-
tant differences from ILP under a closed world as-
sumption. First, our probability estimates consider
the fact that examples provide varying amounts of
information. Second, statistical relevance finds rules
with large increases in relative probability, not nec-
essarily a large absolute probability. This is crucial
in an open domain setting where most facts are false,
which means the trivial rule that everything is false
will have high accuracy. Even for true rules, the ob-
served estimates p(Head(...)|Body(...)) � 1 due to
missing data and noise.

3.5 Making Inferences
In order to benefit from learned rules, we need
an inference engine; with its linear-time scalabil-
ity, HOLMES is a natural choice (Schoenmackers
et al., 2008). As input HOLMES requires a target
atom H(...), an evidence set E and weighted rule
set R as input. It performs a form of knowledge
based model construction (Wellman et al., 1992),
first finding facts using logical inference, then esti-
mating the confidence of each using a Markov Logic
Network (Richardson and Domingos, 2006).

Prior to running inference, it is necessary to assign
a weight to each rule learned by SHERLOCK. Since

the rules and inferences are based on a set of noisy
and incomplete extractions, the algorithms used for
both weight learning and inference should capture
the following characteristics of our problem:

C1. Any arbitrary unknown fact is highly unlikely
to be true.

C2. The more frequently a fact is extracted from the
Web, the more likely it is to be true. However,
facts in E should have a confidence bounded
by a threshold pmax < 1. E contains system-
atic extraction errors, so we want uncertainty in
even the most frequently extracted facts.

C3. An inference that combines uncertain facts
should be less likely than each fact it uses.

Next, we describe the needed modifications to the
weight learning and inference algorithm to achieve
the desired behavior.

3.5.1 Weight Learning
We use the discriminative weight learning proce-

dure described by Huynh and Mooney (2008). Set-
ting the weights involves counting the number of
true groundings for each rule in the data (Richard-
son and Domingos, 2006). However, the noisy na-
ture of Web extractions will make this an overesti-
mate. Consequently, we compute ni(E), the number
of true groundings of rule i, as follows:

ni(E) =
∑

j

max
k

∏
B(...)∈Bodyijk

p(B(...)) (1)

where E is the evidence, j ranges over heads of the
rule, Bodyijk is the body of the kth grounding for
jth head of rule i, and p(B(...)) is approximated us-
ing a logistic function of the number of times B(...)
was extracted,1 scaled to be in the range [0,0.75].
This models C2 by giving increasing but bounded
confidence for more frequently extracted facts. In
practice, this also helps address C3 by giving longer
rules smaller values of ni, which reflects that infer-
ences arrived at through a combination of multiple,
noisy facts should have lower confidence. Longer
rules are also more likely to have multiple ground-
ings that infer a particular head, so keeping only the
most likely grounding prevents a head from receiv-
ing undue weight from any single rule.

1We note that this approximation is equivalent to an MLN
which uses only the two rules defined in 3.5.2
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Finally, we place a very strong Gaussian prior
(i.e., L2 penalty) on the weights. Longer rules have a
higher prior to capture the notion that they are more
likely to make incorrect inferences. Without a high
prior, each rule would receive an unduly high weight
as we have no negative examples.

3.5.2 Probabilistic Inference

After learning the weights, we add the following
two rules to our rule set:

1. H(...) with negative weight wprior

2. H(...):-ExtractedFrom(H(...),sentencei)
with weight 1

The first rule models C1, by saying that most facts
are false. The second rule models C2, by stating the
probability of fact depends on the number of times it
was extracted. The weights of these rules are fixed.
We do not include these rules during weight learning
as doing so swamps the effects of the other inference
rules (i.e., forces them to zero).

HOLMES attempts to infer the truth value of each
ground atom H(...) in turn by treating all other ex-
tractionsE in our corpus as evidence. Inference also
requires computing ni(E) which we do according to
Equation 1 as in weight learning.

4 Experiments

One can attempt to evaluate a rule learner by esti-
mating the quality of learned rules, or by measuring
their impact on a system that uses the learned rules.
Since the notion of ‘rule quality’ is vague except
in the context of an application, we evaluate SHER-
LOCK in the context of the HOLMES inference-based
question answering system.

Our evaluation focuses on three main questions:

1. Does inference utilizing learned Horn rules im-
prove the precision/recall of question answer-
ing and by how much?

2. How do different rule-scoring functions affect
the performance of learning?

3. What role does each of SHERLOCK’s compo-
nents have in the resulting performance?

4.1 Methodology

Our objective with rule learning was to improve the
system’s ability to answer questions such as ‘What
foods prevent disease?’ So we focus our evaluation
on the task of computing as many instances as pos-
sible of an atomic pattern Rel(x, y). In this exam-
ple, Rel would be bound to ‘Prevents’, xwould have
type ‘Food’ and y would have type ‘Disease.’

But which relations should be used in the test?
There is a large variance in behavior across relations,
so examining any particular relation may give mis-
leading results. Instead, we examine the global per-
formance of the system by querying HOLMES for
all open-domain relations identified in Section 3.2
as follows:

1. Score all candidate rules according to the rule
scoring metric M , accept all rules with a score
at least tM (tuned on a small development set of
rules), and learn weights for all accepted rules.

2. Find all facts inferred by the rules and use the
rule weights to estimate the fact probabilities.

3. Reduce type information. For each fact, (e.g.,
BasedIn(Diebold, Ohio)) which has been de-
duced with multiple type signatures (e.g., Ohio
is both a state and a geographic location), keep
only the one with maximum probability (i.e.,
conservatively assuming dependence).

4. Place all results into bins based on their proba-
bilities, and estimate the precision and the num-
ber of correct facts in the bin using a random
sample.

In these experiments we consider rules with up to
k = 2 relations in the body. We use a corpus of
1 million raw extractions, corresponding to 250,000
distinct facts. SHERLOCK found 5 million candidate
rules that infer at least two of the observed facts. Un-
less otherwise noted, we use SHERLOCK’s rule scor-
ing function to evaluate the rules (Section 3.4).

The results represent a wide variety of domains,
covering a total of 10,672 typed relations. We ob-
serve between a dozen and 2,375 distinct, ground
facts for each relation. SHERLOCK learned a total
of 31,000 inference rules.2 Learning all rules, rule

2The learned rules are available at:
http://www.cs.washington.edu/research/sherlock-hornclauses/
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Figure 2: Inference discovers many facts which are not
explicitly extracted, identifying 3x as many high quality
facts (precision 0.8) and more than 5x as many facts over-
all. Horn-clauses with multiple relations in the body in-
fer 30% more correct facts than are identified by simpler
entailment rules, inferring many facts not present in the
corpus in any form.

weights, and performing the inference took 50 min-
utes on a 72 core cluster. However, we note that for
half of the relations SHERLOCK accepts no inference
rules, and remind the reader that the performance on
any particular relation may be substantially differ-
ent, and depends on the facts observed in the corpus
and on the rules learned.

4.2 Benefits of Inference

We first evaluate the utility of the learned Horn rules
by contrasting the precision and number of correct
and incorrect facts identified with and without infer-
ence over learned rules. We compare against two
simpler variants of SHERLOCK. The first is a no-
inference baseline that uses no rules, returning only
facts that are explicitly extracted. The second base-
line only accepts rules of length k = 1, allowing it to
make simple entailments but not more complicated
inferences using multiple facts.

Figure 2 compares the precision and estimated
number of correct facts with and without inference.
As is apparent, the learned inference rules substan-
tially increase the number of known facts, quadru-
pling the number of correct facts beyond what are
explicitly extracted.

The Horn rules having a body-length of two iden-
tify 30% more facts than the simpler length-one
rules. Furthermore, we find the Horn rules yield

slightly increased precision at comparable levels of
recall, although the increase is not statistically sig-
nificant. This behavior can be attributed to learn-
ing smaller weights for the length-two rules than
the length-one rules, allowing the length-two rules
provide a small amount of additional evidence as
to which facts are true, but typically not enough to
overcome the confidence of a more reliable length-
one rule.

Analyzing the errors, we found that about
one third of SHERLOCK’s mistakes are due
to metonymy and word sense ambiguity (e.g.,
confusing Vancouver, British Columbia with
Vancouver, Washington), one third are due to
inferences based on incorrectly-extracted facts
(e.g., inferences based on the incorrect fact
IsLocatedIn(New York, Suffolk County),
which was extracted from sentences like ‘Deer
Park, New York is located in Suffolk County’),
and the rest are due to unsound or incorrect
inference rules (e.g., BasedIn(Company, City):-
BasedIn(Company, Country)∧ CapitalOf(City,
Country)). Without negative examples it is difficult
to distinguish correct rules from these unsound
rules, since the unsound rules are correct more often
than expected by chance.

Finally, we note that although simple, length-one
rules capture many of the results, in some respects
they are just rephrasing facts that are extracted in
another form. However, the more complex, length-
two rules synthesize facts extracted from multiple
pages, and infer results that are not stated anywhere
in the corpus.

4.3 Effect of Scoring Function

We now examine how SHERLOCK’s rule scoring
function affects its results, by comparing it with
three rule scoring functions used in prior work:

LIME. The LIME ILP system (McCreath and
Sharma, 1997) proposed a metric that generalized
Muggleton’s (1997) positive-only score function
by modeling noise and limited sample sizes.

M-Estimate of rule precision. This is a common
approach for handling noise in ILP (Dzeroski and
Bratko, 1992). It requires negative examples,
which we generated by randomly swapping argu-
ments between positive examples.
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Figure 3: SHERLOCK identifies rules that lead to more
accurate inferences over a large set of open-domain ex-
tracted facts, deducing 2x as many facts at precision 0.8.

L1 Regularization. As proposed in (Huynh and
Mooney, 2008), this learns weights for all can-
didate rules using L1-regularization (encouraging
sparsity) instead of L2-regularization, and retains
only those with non-zero weight.

Figure 3 compares the precision and estimated
number of correct facts inferred by the rules of
each scoring function. SHERLOCK has consistently
higher precision, and finds twice as many correct
facts at precision 0.8.

M-Estimate accepted eight times as many rules as
SHERLOCK, increasing the number of inferred facts
at the cost of precision and longer inference times.
Most of the errors in M-Estimate and L1 Regulariza-
tion come from incorrect or unsound rules, whereas
most of the errors for LIME stem from systematic
extraction errors.

4.4 Scoring Function Design Decisions

SHERLOCK requires a rule to have statistical rele-
vance and statistical significance. We perform an
ablation study to understand how each of these con-
tribute to SHERLOCK’s results.

Figure 4 compares the precision and estimated
number of correct facts obtained when requiring
rules to be only statistically relevant, only statisti-
cally significant, or both. As is expected, there is
a precision/recall tradeoff. SHERLOCK has higher
precision, finding more than twice as many results at
precision 0.8 and reducing the error by 39% at a re-
call of 1 million correct facts. Statistical significance
finds twice as many correct facts as SHERLOCK, but
the extra facts it discovers have precision < 0.4.
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Figure 4: By requiring rules to have both statistical rel-
evance and statistical significance, SHERLOCK rejects
many error-prone rules that are accepted by the metrics
individually. The better rule set yields more accurate in-
ferences, but identifies fewer correct facts.

Comparing the rules accepted in each case, we
found that statistical relevance and statistical signifi-
cance each accepted about 180,000 rules, compared
to about 31,000 for SHERLOCK. The smaller set
of rules accepted by SHERLOCK not only leads to
higher precision inferences, but also speeds up in-
ference time by a factor of seven.

In a qualitative analysis, we found the statisti-
cal relevance metric overestimates probabilities for
sparse rules, which leads to a number of very high
scoring but meaningless rules. The statistical signif-
icance metric handles sparse rules better, but is still
overconfident in the case of many unsound rules.

4.5 Analysis of Weight Learning
Finally, we empirically validate the modifications of
the weight learning algorithm from Section 3.5.1.

The learned-rule weights only affect the probabil-
ities of the inferred facts, not the inferred facts them-
selves, so to measure the influence of the weight
learning algorithm we examine the recall at preci-
sion 0.8 and the area under the precision-recall curve
(AuC). We build a test set by holding SHERLOCK’s
inference rules constant and randomly sampling 700
inferred facts. We test the effects of:

• Fixed vs. Variable Penalty - Do we use the
same L2 penalty on the weights for all rules or
a stronger L2 penalty for longer rules?
• Full vs. Weighted Grounding Counts - Do we

count all unweighted rule groundings (as in
(Huynh and Mooney, 2008)), or only the best
weighted one (as in Equation 1)?

1096



Recall
(p=0.8) AuC

Variable Penalty, Weighted 0.35 0.735
Counts (used by SHERLOCK)
Variable Penalty, Full Counts 0.28 0.726
Fixed Penalty, Weighted Counts 0.27 0.675
Fixed Penalty, Full Counts 0.17 0.488

Table 2: SHERLOCK’s modified weight learning algo-
rithm gives better probability estimates over noisy and in-
complete Web extractions. Most of the gains come from
penalizing longer rules more, but using weighted ground-
ing counts further improves recall by 0.07, which corre-
sponds to almost 100,000 additional facts at precision 0.8.

We vary each of these independently, and give the
performance of all 4 combinations in Table 2.

The modifications from Section 3.5.1 improve
both the AuC and the recall at precision 0.8. Most
of the improvement is due to using stronger penal-
ties on longer rules, but using the weighted counts
in Equation 1 improves recall by a factor of 1.25 at
precision 0.8. While this may not seem like much,
the scale is such that it leads to almost 100,000 ad-
ditional correct facts at precision 0.8.

5 Conclusion

This paper addressed the problem of learning first-
order Horn clauses from the noisy and heteroge-
neous corpus of open-domain facts extracted from
Web text. We showed that SHERLOCK is able
to learn Horn clauses in a large-scale, domain-
independent manner. Furthermore, the learned rules
are valuable, because they infer a substantial number
of facts which were not extracted from the corpus.

While SHERLOCK belongs to the broad category
of ILP learners, it has a number of novel features that
enable it to succeed in the challenging, open-domain
context. First, SHERLOCK automatically identifies
a set of high-quality extracted facts, using several
simple but effective heuristics to defeat noise and
ambiguity. Second, SHERLOCK is unsupervised and
does not require negative examples; this enables it to
scale to an unbounded number of relations. Third, it
utilizes a novel rule-scoring function, which is toler-
ant of the noise, ambiguity, and missing data issues
prevalent in facts extracted from Web text. The ex-
periments in Figure 3 show that, for open-domain

facts, SHERLOCK’s method represents a substantial
improvement over traditional ILP scoring functions.

Directions for future work include inducing
longer inference rules, investigating better methods
for combining the rules, allowing deeper inferences
across multiple rules, evaluating our system on other
corpora and devising better techniques for handling
word sense ambiguity.
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Abstract

Determining whether two terms in text have
an ancestor relation (e.g. Toyota and car) or
a sibling relation (e.g. Toyota and Honda) is
an essential component of textual inference in
NLP applications such as Question Answer-
ing, Summarization, and Recognizing Textual
Entailment. Significant work has been done
on developing stationary knowledge sources
that could potentially support these tasks, but
these resources often suffer from low cover-
age, noise, and are inflexible when needed to
support terms that are not identical to those
placed in them, making their use as general
purpose background knowledge resources dif-
ficult. In this paper, rather than building a sta-
tionary hierarchical structure of terms and re-
lations, we describe a system that, given two
terms, determines the taxonomic relation be-
tween them using a machine learning-based
approach that makes use of existing resources.
Moreover, we develop a global constraint opti-
mization inference process and use it to lever-
age an existing knowledge base also to enforce
relational constraints among terms and thus
improve the classifier predictions. Our exper-
imental evaluation shows that our approach
significantly outperforms other systems built
upon existing well-known knowledge sources.

1 Introduction

Taxonomic relations that are read off of structured
ontological knowledge bases have been shown to
play important roles in many computational linguis-
tics tasks, such as document clustering (Hotho et
al., 2003), navigating text databases (Chakrabarti et

al., 1997), Question Answering (QA) (Saxena et al.,
2007) and summarization (Vikas et al., 2008). It
is clear that the recognition of taxonomic relation
between terms in sentences is essential to support
textual inference tasks such as Recognizing Textual
Entailment (RTE) (Dagan et al., 2006). For exam-
ple, it may be important to know that a blue Toy-
ota is neither a red Toyota nor a blue Honda, but
that all are cars, and even Japanese cars. Work in
Textual Entailment has argued quite convincingly
(MacCartney and Manning, 2008; MacCartney and
Manning, 2009) that many such textual inferences
are largely compositional and depend on the ability
to recognize some basic taxonomic relations such
as the ancestor or sibling relations between terms.
To date, these taxonomic relations can be read off
manually generated ontologies such as Wordnet that
explicitly represent these, and there has also been
some work trying to extend the manually built re-
sources using automatic acquisition methods result-
ing in structured knowledge bases such as the Ex-
tended WordNet (Snow et al., 2006) and the YAGO
ontology (Suchanek et al., 2007).

However, identifying when these relations hold
using fixed stationary hierarchical structures may
be impaired by noise in the resource and by uncer-
tainty in mapping targeted terms to concepts in the
structures. In addition, for knowledge sources de-
rived using bootstrapping algorithms and distribu-
tional semantic models such as (Pantel and Pen-
nacchiotti, 2006; Kozareva et al., 2008; Baroni and
Lenci, 2010), there is typically a trade-off between
precision and recall, resulting either in a relatively
accurate resource with low coverage or a noisy re-
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source with broader coverage. In the current work,
we take a different approach, identifying directly
whether a pair of terms hold a taxonomic relation.

Fixed resources, as we observe, are inflexible
when dealing with targeted terms not being cov-
ered. This often happens when targeted terms have
the same meaning, but different surface forms, than
the terms used in the resources (e.g. Toyota Camry
and Camry). We argue that it is essential to have a
classifier that, given two terms, can build a semantic
representation of the terms and determines the tax-
onomic relations between them. This classifier will
make use of existing knowledge bases in multiple
ways, but will provide significantly larger coverage
and more precise results. We make use of a dynamic
resource such as Wikipedia to guarantee increased
coverage without changing our model and also per-
form normalization-to-Wikipedia to find appropri-
ate Wikipedia replacements for outside-Wikipedia
terms. Moreover, stationary resources are usually
brittle because of the way most of them are built:
using local relational patterns (e.g. (Hearst, 1992;
Snow et al., 2005)). Infrequent terms are less likely
to be covered, and some relations may not be sup-
ported well by these methods because their cor-
responding terms rarely appear in close proximity
(e.g., an Israeli tennis player Dudi Sela and Roger
Federrer). Our approach uses search techniques to
gather relevant Wikipedia pages of input terms and
performs a learning-based classification w.r.t. to the
features extracted from these pages as a way to get
around this brittleness.

Motivated by the needs of NLP applications such
as RTE, QA, Summarization, and the composition-
ality argument alluded to above, we focus on identi-
fying two fundamental types of taxonomic relations
- ancestor and sibling. An ancestor relation and its
directionality can help us infer that a statement with
respect to the child (e.g. cannabis) holds for an
ancestor (e.g. drugs) as in the following example,
taken from a textual entailment challenge dataset:

T: Nigeria’s NDLEA has seized 80 metric
tonnes of cannabis in one of its largest ever
hauls, officials say.

H: Nigeria seizes 80 tonnes of drugs.

Similarly, it is important to know of a sibling re-
lation to infer that a statement about Taiwan may

(without additional information) contradict a simi-
lar statement with respect to Japan since these are
different countries, as in the following:

T: A strong earthquake struck off the southern
tip of Taiwan at 12:26 UTC, triggering a warn-
ing from Japan’s Meteorological Agency that
a 3.3 foot tsunami could be heading towards
Basco, in the Philippines.

H: An earthquake strikes Japan.

Several recent TE studies (Abad et al., 2010; Sam-
mons et al., 2010) suggest to isolate TE phenomena,
such as recognizing taxonomic relations, and study
them separately; they discuss some of characteristics
of phenomena such as contradiction from a similar
perspective to ours, but do not provide a solution.

In this paper, we present TAxonomic RElation
Classifier (TAREC), a system that classifies taxo-
nomic relations between a given pair of terms us-
ing a machine learning based classifier. An inte-
gral part of TAREC is also our inference model that
makes use of relational constraints to enforce co-
herency among several related predictions. TAREC
does not aim at building or extracting a hierarchi-
cal structure of concepts and relations, but rather to
directly recognize taxonomic relations given a pair
of terms. Target terms are represented using vector
of features that are extracted from retrieved corre-
sponding Wikipedia pages. In addition, we make
use of existing stationary ontologies to find related
terms to the target terms, and classify those too. This
allows us to make use of a constraint-based infer-
ence model (following (Roth and Yih, 2004; Roth
and Yih, 2007) that enforces coherency of decisions
across related pairs (e.g., if x is-a y and y is-a z, it
cannot be that x is a sibling of z).

In the rest of the paper, after discussing re-
lated work in Section 2, we present an overview of
TAREC in Section 3. The learning component and
the inference model of TAREC are described in Sec-
tions 4 and 5. We experimentally evaluate TAREC
in Section 6 and conclude our paper in Section 7.

2 Related Work

There are several works that aim at building tax-
onomies and ontologies which organize concepts
and their taxonomic relations into hierarchical struc-
tures. (Snow et al., 2005; Snow et al., 2006) con-
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structed classifiers to identify hypernym relation-
ship between terms from dependency trees of large
corpora. Terms with recognized hypernym rela-
tion are extracted and incorporated into a man-made
lexical database, WordNet (Fellbaum, 1998), re-
sulting in the extended WordNet, which has been
augmented with over 400, 000 synsets. (Ponzetto
and Strube, 2007) and (Suchanek et al., 2007) both
mined Wikipedia to construct hierarchical structures
of concepts and relations. While the former ex-
ploited Wikipedia category system as a conceptual
network and extracted a taxonomy consisting of sub-
sumption relations, the latter presented the YAGO

ontology, which was automatically constructed by
mining and combining Wikipedia and WordNet. A
natural way to use these hierarchical structures to
support taxonomic relation classification is to map
targeted terms onto the hierarchies and check if
they subsume each other or share a common sub-
sumer. However, this approach is limited because
constructed hierarchies may suffer from noise and
require exact mapping (Section 6). TAREC over-
comes these limitations by searching and selecting
the top relevant articles in Wikipedia for each input
term; taxonomic relations are then recognized based
on the features extracted from these articles.

On the other hand, information extraction boot-
strapping algorithms, such as (Pantel and Pennac-
chiotti, 2006; Kozareva et al., 2008), automatically
harvest related terms on large corpora by starting
with a few seeds of pre-specified relations (e.g. is-
a, part-of). Bootstrapping algorithms rely on some
scoring function to assess the quality of terms and
additional patterns extracted during bootstrapping it-
erations. Similarly, but with a different focus, Open
IE, (Banko and Etzioni, 2008; Davidov and Rap-
poport, 2008), deals with a large number of relations
which are not pre-specified. Either way, the out-
put of these algorithms is usually limited to a small
number of high-quality terms while sacrificing cov-
erage (or vice versa). Moreover, an Open IE sys-
tem cannot control the extracted relations and this is
essential when identifying taxonomic relations. Re-
cently, (Baroni and Lenci, 2010) described a gen-
eral framework of distributional semantic models
that extracts significant contexts of given terms from
large corpora. Consequently, a term can be repre-
sented by a vector of contexts in which it frequently

appears. Any vector space model could then use the
terms’ vectors to cluster terms into categories. Sib-
ling terms (e.g. Honda, Toyota), therefore, have very
high chance to be clustered together. Nevertheless,
this approach cannot recognize ancestor relations.
In this paper, we compare TAREC with this frame-
work only on recognizing sibling vs. no relation, in
a strict experimental setting which pre-specifies the
categories to which the terms belong.

3 An Overview of the TAREC Algorithm

3.1 Preliminaries

In the TAREC algorithm, a term refers to any men-
tion in text, such as mountain, George W. Bush, bat-
tle of Normandy. TAREC does not aim at extracting
terms and building a stationary hierarchical structure
of terms, but rather recognize the taxonomic relation
between any two given terms. TAREC focuses on
classifying two fundamental types of taxonomic re-
lations: ancestor and sibling. Determining whether
two terms hold a taxonomic relation depends on a
pragmatic decision of how far one wants to climb up
a taxonomy to find a common subsumer. For exam-
ple, George W. Bush is a child of Presidents of the
United States as well as people, even more, that term
could also be considered as a child of mammals or
organisms w.r.t. the Wikipedia category system; in
that sense, George W. Bush may be considered as a
sibling of oak because they have organisms as a least
common subsumer. TAREC makes use of a hierar-
chical structure as background knowledge and con-
siders two terms to hold a taxonomic relation only
if the relation can be recognized from information
acquired by climbing up at most K levels from the
representation of the target terms in the structure. It
is also possible that the sibling relation can be rec-
ognized by clustering terms together by using vector
space models. If so, two terms are siblings if they
belong to the same cluster.

To cast the problem of identifying taxonomic rela-
tions between two terms x and y in a machine learn-
ing perspective, we model it as a multi-class classi-
fication problem. Table 1 defines four relations with
some examples in our experiment data sets.

This paper focuses on studying a fundamental
problem of recognizing taxonomic relations (given
well-segmented terms) and leaves the orthogonal is-
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Examples
Relation Meaning Term x Term y

x← y x is an ancestor actor Mel Gibson
of y food rice

x→ y x is a child Makalu mountain
of y Monopoly game

x↔ y x and y are Paris London
siblings copper oxygen

x = y x and y have Roja C++
no relation egg Vega

Table 1: Taxonomic relations and some examples in our
data sets.

sues of how to take contexts into account and how it
should be used in applications to a future work.

3.2 The Overview of TAREC

Assume that we already have a learned local clas-
sifier that can classify taxonomic relations between
any two terms. Given two terms, TAREC uses
Wikipedia and the local classifier in an inference
model to make a final prediction on the taxonomic
relation between these two. To motivate the need for
an inference model, beyond the local classifier itself,
we observe that the presence of other terms in addi-
tion to the two input terms, can provide some natural
constraints on the possible taxonomic relations and
thus can be used to make the final prediction (which
we also refer as global prediction) more coherent. In
practice, we first train a local classifier (Section 4),
then incorporate it into an inference model (Section
5) to classify taxonomic relations between terms.
The TAREC algorithm consists of three steps and
is summarized in Figure 1 and explained below.

1. Normalizing input terms to Wikipedia: Al-
though most commonly used terms have corre-
sponding Wikipedia articles, there are still a lot of
terms with no corresponding Wikipedia articles. For
a non-Wikipedia term, we make an attempt to find
a replacement by using Web search. We wish to
find a replacement such that the taxonomic relation
is unchanged. For example, for input pair (Lojze
Kovačič, Rudi Šeligo), there is no English Wikipedia
page for Lojze Kovačič, but if we can find Marjan
Rožanc and use it as a replacement of Lojze Kovačič
(two terms are siblings and refer to two writers), we
can continue classifying the taxonomic relation of
the pair (Marjan Rožanc, Rudi Šeligo). This part
of the algorithm was motivated by (Sarmento et al.,

TAxonomic RElation Classifier (TAREC)

INPUT: A pair of terms (x, y)
A learned local classifierR (Sec. 4)
WikipediaW

OUTPUT: Taxonomic relation r∗ between x and y
1. (x, y)← NormalizeToWikipedia(x, y,W)
2. Z ← GetAddionalTerms(x, y) (Sec. 5.2)
3. r∗ = ClassifyAndInference(x, y,Z,R,W) (Sec. 5.1)
RETURN: r∗;

Figure 1: The TAREC algorithm.

2007). We first make a query with the two input
terms (e.g. “Lojze Kovačič” AND “Rudi Šeligo”)
to search for list-structure snippets in Web docu-
ments1 such as “... 〈delimiter〉 ca 〈delimiter〉 cb

〈delimiter〉 cc 〈delimiter〉 ...” (the two input terms
should be among ca, cb, cc, ...). The delimiter could
be commas, periods, or asterisks2. For snippets that
contain the patterns of interest, we extract ca, cb, cc
etc. as replacement candidates. To reduce noise,
we empirically constrain the list to contain at least
4 terms that are no longer than 20 characters each.
The candidates are ranked based on their occurrence
frequency. The top candidate with Wikipedia pages
is used as a replacement.

2. Getting additional terms (Section 5.2): TAREC
leverage an existing knowledge base to extract addi-
tional terms related to the input terms, to be used in
the inference model in step 3.

3. Making global prediction with relational con-
straints (Section 5.1): TAREC performs several lo-
cal predictions using the local classifier R (Section
4) on the two input terms and these terms with the
additional ones. The global prediction is then in-
ferred by enforcing relational constraints among the
terms’ relations.

4 Learning Taxonomic Relations

The local classifier of TAREC is trained on the
pairs of terms with correct taxonomic relation labels
(some examples are showed in Table 1). The trained
classifier when applied on a new input pair of terms
will return a real valued number which can be inter-
preted as the probability of the predicted label. In
this section, we describe the learning features used

1We use http://developer.yahoo.com/search/web/
2Periods and asterisks capture enumerations.
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Title/Term Text Categories
President of
the United
States

The President of the United States is the head of state and head of government of the United States and is the
highest political official in the United States by influence and recognition. The President leads the executive
branch of the federal government and is one of only two elected members of the executive branch...

Presidents of the United States, Presidency of
the United States

George W.
Bush

George Walker Bush; born July 6, 1946) served as the 43rd President of the United States from 2001 to 2009.
He was the 46th Governor of Texas from 1995 to 2000 before being sworn in as President on January 20, 2001...

Children of Presidents of the United States, Gov-
ernors of Texas, Presidents of the United States,
Texas Republicans...

Gerald Ford Gerald Rudolff Ford (born Leslie Lynch King, Jr.) (July 14, 1913 December 26, 2006) was the 38th President
of the United States, serving from 1974 to 1977, and the 40th Vice President of the United States serving from
1973 to 1974.

Presidents of the United States, Vice Presidents
of the United States, Republican Party (United
States) presidential nominees...

Table 2: Examples of texts and categories of Wikipedia articles.

by our local taxonomic relation classifier.
Given two input terms, we first build a semantic

representation for each term by using a local search
engine3 to retrieve a list of top articles in Wikipedia
that are relevant to the term. To do this, we use the
following procedure: (1) Using both terms to make a
query (e.g. “George W. Bush” AND “Bill Clinton”)
to search in Wikipedia ; (2) Extracting important
keywords in the titles and categories of the retrieved
articles using TF-IDF (e.g. president, politician); (3)
Combining each input term with the extracted key-
words (e.g. “George W. Bush” AND “president”
AND “politician”) to create a final query used to
search for the term’s relevant articles in Wikipedia.
This is motivated by the assumption that the real
world applications calling TAREC typically does so
with two terms that are related in some sense, so our
procedure is designed to exploit that. For example,
it’s more likely that term Ford in the pair (George
W. Bush, Ford) refers to the former president of the
United States, Gerald Ford, than the founder of Ford
Motor Company, Henry Ford.

Once we have a semantic representation of each
term, in the form of the extracted articles, we extract
from it features that we use as the representation of
the two input terms in our learning algorithm. It is
worth noting that a Wikipedia page usually consists
of a title (i.e. the term), a body text, and a list of
categories to which the page belongs. Table 2 shows
some Wikipedia articles. From now on, we use the
titles of x, the texts of x, and the categories of x to
refer to the titles, texts, and categories of the asso-
ciated articles in the representation of x. Below are
the learning features extracted for input pair (x,y).

Bags-of-words Similarity: We use cosine simi-
larity metric to measure the degree of similarity be-
tween bags of words. We define four bags-of-words
features as the degree of similarity between the texts

3E.g. http://lucene.apache.org/

Degree of similarity
texts(x) vs. categories(y)
categories(x) vs. texts(y)

texts(x) vs. texts(y)
categories(x) vs. categories(y)

Table 3: Bag-of-word features of the pair of terms (x,y);
texts(.) and categories(.) are two functions that extract
associated texts and categories from the semantic repre-
sentation of x and y.

and categories associated with two input terms x and
y in Table 3. To collect categories of a term, we take
the categories of its associated articles and go up K
levels in the Wikipedia category system. In our ex-
periments, we use abstracts of Wikipedia articles in-
stead of whole texts.

Association Information: This features repre-
sents a measure of association between the terms
by considering their information overlap. We cap-
ture this feature by the pointwise mutual informa-
tion (pmi) which quantifies the discrepancy between
the probability of two terms appearing together ver-
sus the probability of each term appearing indepen-
dently4. The pmi of two terms x and y is estimated
as follows:

pmi(x, y) = log
p(x, y)
p(x)p(y)

= log
Nf(x, y)
f(x)f(y)

,

where N is the total number of Wikipedia articles,
and f(.) is the function which counts the number of
appearances of its argument.

Overlap Ratios: The overlap ratio features cap-
ture the fact that the titles of a term usually overlap
with the categories of its descendants. We measure
this overlap as the ratio of the number of common
phrases used in the titles of one term and the cate-
gories of the other term. In our context, a phrase is

4pmi is different than mutual information. The former ap-
plies to specific outcomes, while the latter is to measure the
mutual dependence of two random variables.
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considered to be a common phrase if it appears in the
titles of one term and the categories of the other term
and it is also of the following types: (1) the whole
string of a category, or (2) the head in the root form
of a category, or (3) the post-modifier of a category.
We use the Noun Group Parser from (Suchanek et
al., 2007) to extract the head and post-modifier from
a category. For example, one of the categories of an
article about Chicago is Cities in Illinois. This cate-
gory can be parsed into a head in its root form City,
and a post-modifier Illinois. Given term pair (City,
Chicago), we observe that City matches the head of
the category Cities in Illinois of term Chicago. This
is a strong indication that Chicago is a child of City.

We also use a feature that captures the overlap
ratio of common phrases between the categories of
two input terms. For this feature, we do not use the
post-modifier of the categories. We use Jaccard sim-
ilarity coefficient to measure these overlaps ratios.

5 Inference with Relational Constraints

Once we have a local multi-class classifier that maps
a given pair of terms to one of the four possible rela-
tions, we use a constraint-based optimization algo-
rithm to improve this prediction. The key insight
behind the way we model the inference model is
that if we consider more than two terms, there are
logical constraints that restrict the possible relations
among them. For instance, George W. Bush can-
not be an ancestor or sibling of president if we are
confident that president is an ancestor of Bill Clin-
ton, and Bill Clinton is a sibling of George W. Bush.
We call the combination of terms and their relations
a term network. Figure 2 shows some n-term net-
works consisting of two input terms (x, y), and ad-
ditional terms z, w, v.

The aforementioned observations show that if we
can obtain additional terms that are related to the
two target terms, we can enforce such coherency
relational constraints and make a global prediction
that would improve the prediction of the taxonomic
relation between the two given terms. Our infer-
ence model follows constraint-based formulations
that were introduced in the NLP community and
were shown to be very effective in exploiting declar-
ative background knowledge (Roth and Yih, 2004;
Denis and Baldridge, 2007; Punyakanok et al., 2008;
Chang et al., 2008).

George W.
Bush

President

Bill Clinton

x y

z

Red Green

Blue

x y

z

(a) (b)

Honda Toyota

car
manufacturer

x y

z w
BMW

Celcius meter

temperature

x y

z w

length

(d)(c)

v

physical
quantities

Figure 2: Examples of n-term networks with two input
term x and y. (a) and (c) show valid combinations of
edges, whereas (b) and (d) are two relational constraints.
For simplicity, we do not draw no relation edges in (d).

5.1 Enforcing Coherency through Inference
Let x, y be two input terms, and Z =
{z1, z2, ..., zm} be a set of additional terms. For a
subset Z ∈ Z , we construct a set of term networks
whose nodes are x, y and all elements in Z, and the
edge, e, between every two nodes is one of four tax-
onomic relations whose weight, w(e), is given by
a local classifier (Section 4). If l = |Z|, there are
n = 2 + l nodes in each network, and 4[ 1

2
n(n−1)]

term networks can be constructed. In our experi-
ments we only use 3-term networks (i.e. l = 1).
For example, for the input pair (red, green) and
Z = {blue, yellow}, we can construct 64 networks
for the triple 〈red, green, Z = {blue}〉 and 64 net-
works for 〈red, green, Z = {yellow}〉 by trying all
possible relations between the terms.

A relational constraint is defined as a term net-
work consisting of only its “illegitimate” edge set-
tings, those that belongs to a pre-defined list of in-
valid edge combinations. For example, Figure 2b
shows an invalid network where red is a sibling of
both green and blue, and green is an ancestor of blue.
In Figure 2d, Celcius and meter cannot be siblings
because they are children of two sibling terms tem-
perature and length. The relational constraints used
in our experiments are manually constructed.

Let C be a list of relational constraints. Equation
(1) defines the network scoring function, which is a
linear combination of the edge weights, w(e), and
the penalties, ρk, of term networks matching con-
straint Ck ∈ C.

score(t) =
∑
e∈t

w(e)−
|C|∑

k=1

ρkdCk
(t) (1)

function dCk
(t) indicates if t matches Ck. In our

work, we use relational constraints as hard con-
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YAGO Query Patterns
INPUT: term “x”
OUTPUT: lists of ancestors, siblings, and children of “x”

Pattern 1 Pattern 2 Pattern 3
“x” MEANS ?A “x” MEANS ?A “x” MEANS ?D
?A SUBCLASSOF ?B ?A TYPE ?B ?E TYPE ?D
?C SUBCLASSOF ?B ?C TYPE ?B

RETURN: ?B, ?C, ?E as
lists of ancestors, siblings, and children, respectively.

Figure 3: Our YAGO query patterns used to obtain related
terms for “x”.

straints and set their penalty ρk to ∞. For a set of
term networks formed by 〈x, y, Z〉 and all possible
relations between the terms, we select the best net-
work, t∗ = argmaxtscore(t).

After picking the best term network t∗ for every
Z ∈ Z , we make the final decision on the taxonomic
relation between x and y. Let r denote the relation
between x and y in a particular t∗ (e.g. r = x↔ y.)
The set of all t∗ is divided into 4 groups with respect
to r (e.g. a group of all t∗ having r = x ↔ y, a
group of all t∗ having r = x ← y.) We denote a
group with term networks holding r as the relation
between x and y by Tr. To choose the best taxo-
nomic relation, r∗, of x and y, we solve the objective
function defined in Equation 2.

r∗ = argmaxr

1
|Tr|

∑
t∗∈Tr

λt∗score(t∗) (2)

where λt is the weight of term network t, defined
as the occurrence probability of t (regarding only its
edges’ setting) in the training data, which is aug-
mented with additional terms. Equation (2) finds the
best taxonomic relation of two input terms by com-
puting the average score of every group of the best
term networks representing a particular relation of
two input terms.

5.2 Extracting Related Terms
In the inference model, we need to obtain other
terms that are related to the two input terms. Here-
after, we refer to additional terms as related terms.
The related term space is a space of direct ancestors,
siblings and children in a particular resource.

We propose an approach that uses the YAGO on-
tology (Suchanek et al., 2007) to provide related

terms. It is worth noting that YAGO is chosen over
the Wikipedia category system used in our work be-
cause YAGO is a clean ontology built by carefully
combining Wikipedia and WordNet.5

In YAGO model, all objects (e.g. cities, people,
etc.) are represented as entities. To map our input
terms to entities in YAGO, we use the MEANS re-
lation defined in the YAGO ontology. Furthermore,
similar entities are grouped into classes. This allows
us to obtain direct ancestors of an entity by using
the TYPE relation which gives the entity’s classes.
Furthermore, we can get ancestors of a class with
the SUBCLASSOF relation6. By using three relations
MEANS, TYPE and SUBCLASSOF in YAGO model,
we can obtain Proposals for direct ancestors, sib-
lings, and children, if any, for any input term. We
then evaluate our classifier on all pairs, and run the
inference to improve the prediction using the co-
herency constraints. Figure 3 presents three patterns
that we used to query related terms from YAGO.

6 Experimental Study

In this section, we evaluate TAREC against several
systems built upon existing well-known knowledge
sources. The resources are either hierarchical struc-
tures or extracted by using distributional semantic
models. We also perform several experimental anal-
yses to understand TAREC’s behavior in details.

6.1 Comparison to Hierarchical Structures
We create and use two main data sets in our ex-
periments. Dataset-I is generated from 40 seman-
tic classes of about 11,000 instances. The orig-
inal semantic classes and instances were manu-
ally constructed with a limited amount of manual
post-filtering and were used to evaluate informa-
tion extraction tasks in (Paşca, 2007; Paşca and
Van Durme, 2008) (we refer to this original data as
OrgData-I). This dataset contains both terms with
Wikipedia pages (e.g. George W. Bush) and non-
Wikipedia terms (e.g. hindu mysticism). Pairs of
terms are generated by randomly pairing seman-
tic class names and instances. We generate dis-
joint training and test sets of 8,000 and 12,000 pairs
of terms, respectively. We call the test set of this

5However, YAGO by itself is weaker than our approach in
identifying taxonomic relations (see Section 6.)

6These relations are defined in the YAGO ontology.
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dataset Test-I. Dataset-II is generated from 44 se-
mantic classes of more than 10,000 instances used
in (Vyas and Pantel, 2009)7. The original semantic
classes and instances were extracted from Wikipedia
lists. This data, therefore, only contains terms with
corresponding Wikipedia pages. We also generate
disjoint training and test sets of 8,000 and 12,000
pairs of terms, respectively, and call the test set of
this dataset Test-II.8

Several semantic class names in the original data
are written in short forms (e.g. chemicalelem,
proglanguage). We expand these names to some
meaningful names which are used by all systems in
our experiments. For example, terroristgroup is ex-
panded to terrorist group, terrorism. Table 1 shows
some pairs of terms which are generated. Four types
of taxonomic relations are covered with balanced
numbers of examples in all data sets. To evaluate our
systems, we use a snapshot of Wikipedia from July,
2008. After cleaning and removing articles without
categories (except redirect pages), 5,503,763 articles
remain. We index these articles using Lucene9. As
a learning algorithm, we use a regularized averaged
Perceptron (Freund and Schapire, 1999).

We compare TAREC with three systems that we
built using recently developed large-scale hierarchi-
cal structures. Strube07 is built on the latest ver-
sion of a taxonomy, TStrube, which was derived from
Wikipedia (Ponzetto and Strube, 2007). It is worth
noting that the structure of TStrube is similar to the
page structure of Wikipedia. For a fair comparison,
we first generate a semantic representation for each
input term by following the same procedure used in
TAREC described in Section 4. The titles and cat-
egories of the articles in the representation of each
input term are then extracted. Only titles and their
corresponding categories that are in TStrube are con-
sidered. A term is an ancestor of the other if at
least one of its titles is in the categories of the other
term. If two terms share a common category, they
are considered siblings; and no relation, otherwise.
The ancestor relation is checked first, then sibling,
and finally no relation. Snow06 uses the extended

7There were 50 semantic classes in the original dataset. We
grouped some semantically similar classes for the purpose of
classifying taxonomic relations.

8Published at http://cogcomp.cs.illinois.edu/page/software
9http://lucene.apache.org, version 2.3.2

Test-I Test-II
Strube07 24.32 25.63
Snow06 41.97 36.26
Yago07 65.93 70.63
TAREC (local) 81.89 84.7
TAREC 85.34 86.98

Table 4: Evaluating and comparing performances, in ac-
curacy, of the systems on Test-I and Test-II. TAREC (lo-
cal) uses only our local classifier to identify taxonomic re-
lations by choosing the relation with highest confidence.

WordNet (Snow et al., 2006). Words in the extended
WordNet can be common nouns or proper nouns.
Given two input terms, we first map them onto the
hierarchical structure of the extended WordNet by
exact string matching. A term is an ancestor of the
other if it can be found as an hypernym after going
up K levels in the hierarchy from the other term. If
two terms share a common subsumer within some
levels, then they are considered as siblings. Oth-
erwise, there is no relation between the two input
terms. Similar to Strube07, we first check ancestor,
then sibling, and finally no relation. Yago07 uses
the YAGO ontology (Suchanek et al., 2007) as its
main source of background knowledge. Because the
YAGO ontology is a combination of Wikipedia and
WordNet, this system is expected to perform well at
recognizing taxonomic relations. To access a term’s
ancestors and siblings, we use patterns 1 and 2 in
Figure 3 to map a term to the ontology and move up
on the ontology. The relation identification process
is then similar to those of Snow06 and Strube07. If
an input term is not recognized by these systems,
they return no relation.

Our overall algorithm, TAREC, is described in
Figure 1. We manually construct a pre-defined list
of 35 relational constraints to use in the inference
model. We also evaluate our local classifier (Section
4), which is referred as TAREC (local). To make
classification decision with TAREC (local), for a
pair of terms, we choose the predicted relation with
highest confidence returned by the classifier.

In all systems compared, we vary the value ofK10

from 1 to 4. The best result of each system is re-
ported. Table 4 shows the comparison of all sys-
tems evaluated on both Test-I and Test-II. Our sys-
tems, as shown, significantly outperform the other

10See Section 3.1 for the meaning of K.
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systems. In Table 4, the improvement of TAREC
over TAREC (local) on Test-I shows the contribu-
tion of both the normalization procedure (that is, go-
ing outside Wikipedia terms) and the global infer-
ence model to the classification decisions, whereas
the improvement on Test-II shows only the contribu-
tion of the inference model, because Test-II contains
only terms with corresponding Wikipedia articles.

Observing the results we see that our algorithms
is doing significantly better that fixed taxonomies
based algorithms. This is true both for TAREC (lo-
cal) and for TAREC. We believe that our machine
learning based classifier is very flexible in extract-
ing features of the two input terms and thus in pre-
dicting their taxonomic Relation. On the other hand,
other system rely heavily on string matching tech-
niques to map input terms to their respective ontolo-
gies, and these are very inflexible and brittle. This
clearly shows one limitation of using existing struc-
tured resources to classify taxonomic relations.

We do not use special tactics to handle polyse-
mous terms. However, our procedure of building se-
mantic representations for input terms described in
Section 4 ties the senses of the two input terms and
thus, implicitly, may get some sense information.
We do not use this procedure in Snow06 because
WordNet and Wikipedia are two different knowl-
edge bases. We also do not use this procedure in
Yago07 because in YAGO, a term is mapped onto the
ontology by using the MEANS operator (in Pattern 1,
Figure 3). This cannot follow our procedure.

6.2 Comparison to Harvested Knowledge

As we discussed in Section 2, the output of
bootstrapping-based algorithms is usually limited to
a small number of high-quality terms while sacri-
ficing coverage (or vice versa). For example, the
full Espresso algorithm in (Pantel and Pennacchiotti,
2006) extracted 69,156 instances of is-a relation
with 36.2% precision. Similarly, (Kozareva et al.,
2008) evaluated only a small number (a few hun-
dreds) of harvested instances. Recently, (Baroni
and Lenci, 2010) proposed a general framework to
extract properties of input terms. Their TypeDM
model harvested 5,000 significant properties for
each term out of 20,410 noun terms. For exam-
ple, the properties of marine include 〈own, bomb〉,
〈use, gun〉. Using vector space models we could

measure the similarity between terms using their
property vectors. However, since the information
available in TypeDM does not support predicting the
ancestor relation between terms, we only evaluate
TypeDM in classifying sibling vs. no relation. We
do this by giving a list of semantic classes using the
following procedure: (1) For each semantic class,
use some seeds to compute a centroid vector from
the seeds’ vectors in TypeDM, (2) each term in an
input pair is classified into its best semantic class
based on the cosine similarity between its vector and
the centroid vector of the category, (3) two terms are
siblings if they are classified into the same category;
and have no relation, otherwise. Out of 20,410 noun
terms in TypeDM, there are only 345 terms overlap-
ping with the instances in OrgData-I and belonging
to 10 significant semantic classes. For each seman-
tic class, we randomly pick 5 instances as its seeds to
make a centroid vector. The rest of the overlapping
instances are randomly paired to make a dataset of
4,000 pairs of terms balanced in the number of sib-
ling and no relation pairs. On this dataset, TypeDM
achieves the accuracy of 79.75%. TAREC (local),
with the local classifier trained on the training set
(with 4 relation classes) of Dataset-I, gives 78.35%
of accuracy. The full TAREC system with relational
constraints achieves 82.65%. We also re-train and
evaluate the local classifier of TAREC on the same
training set but without ancestor relation pairs. This
local classifier has an accuracy of 81.08%.

These results show that although the full TAREC
system gives better performance, TypeDM is very
competitive in recognizing sibling vs. no relation.
However, TypeDM can only work in a limited set-
ting where semantic classes are given in advance,
which is not practical in real-world applications; and
of course, TypeDM does not help to recognize an-
cestor relations between two terms.

6.3 Experimental Analysis

In this section, we discuss some experimental anal-
yses to better understand our systems.

Precision and Recall: We want to study TAREC
on individual taxonomic relations using Precision
and Recall. Table 5 shows that TAREC performs
very well on ancestor relation. Sibling and no rela-
tion are the most difficult relations to classify. In
the same experimental setting on Test-I, Yago07

1107



TAREC
Test-I Test-II

Prec Rec Prec Rec
x← y 95.82 88.01 96.46 88.48
x→ y 94.61 89.29 96.15 88.86
x↔ y 79.23 84.01 83.15 81.87
x = y 73.94 79.9 75.54 88.27
Average 85.9 85.3 87.83 86.87

Table 5: Performance of TAREC on individual taxo-
nomic relation.

Wiki WordNet non-Wiki
Strube07 24.59 24.13 21.18
Snow06 41.23 46.91 34.46
Yago07 69.95 70.42 34.26
TAREC (local) 89.37 89.72 31.22
TAREC 91.03 91.2 45.21

Table 6: Performance of the systems on special data sets,
in accuracy. On the non-Wikipedia test set, TAREC (lo-
cal) simply returns sibling relation.

achieves 79.34% and 66.03% of average Precision
and Recall, respectively. These numbers on Test-II
are 81.33% and 70.44%.

Special Data Sets: We evaluate all systems that
use hierarchical structures as background knowl-
edge on three special data sets derived from Test-I.
From 12,000 pairs in Test-I, we created a test set,
Wiki, consisting of 10, 456 pairs with all terms in
Wikipedia. We use the rest of 1, 544 pairs with at
least one non-Wikipedia term to build a non-Wiki
test set. The third dataset, WordNet, contains 8, 625
pairs with all terms in WordNet and Wikipedia. Ta-
ble 6 shows the performance of the systems on these
data sets. Unsurprisingly, Yago07 gets better results
on Wiki than on Test-I. Snow06, as expected, gives
better performance on the WordNet test set. TAREC
still significantly outperforms these systems. The
improvement of TAREC over TAREC (local) on the
Wiki and WordNet test sets shows the contribution
of the inference model, whereas the improvement on
the non-Wikipedia test set shows the contribution of
normalizing input terms to Wikipedia.

Contribution of Related Terms in Inference:
We evaluate TAREC when the inference procedure
is fed by related terms that are generated using a
“gold standard” source instead of YAGO. To do this,
we use the original data which was used to generate
Test-I. For each term in the examples of Test-I, we
get its ancestors, siblings, and children, if any, from

K=1 K=2 K=3 K=4
TAREC 82.93 85.34 85.23 83.95
TAREC (Gold Infer.) 83.46 86.18 85.9 84.93

Table 7: Evaluating TAREC with different sources pro-
viding related terms to do inference.

the original data and use them as related terms in the
inference model. This system is referred as TAREC
(Gold Infer.). Table 7 shows the results of the two
systems on different K as the number of levels to
go up on the Wikipedia category system. We see
that TAREC gets better results when doing inference
with better related terms. In this experiment, the two
systems use the same number of related terms.

7 Conclusions

We studied an important component of many com-
putational linguistics tasks: given two target terms,
determine that taxonomic relation between them.
We have argued that static structured knowledge
bases cannot support this task well enough, and pro-
vided empirical support for this claim. We have de-
veloped TAREC, a novel algorithm that leverages in-
formation from existing knowledge sources and uses
machine learning and a constraint-based inference
model to mitigate the noise and the level of uncer-
tainty inherent in these resources. Our evaluations
show that TAREC significantly outperforms other
systems built upon existing well-known knowledge
sources. Our approach generalizes and handles non-
Wikipedia term well across semantic classes. Our
future work will include an evaluation of TAREC in
the context of textual inference applications.

Acknowledgments

The authors thank Mark Sammons, Vivek Srikumar, James

Clarke and the anonymous reviewers for their insightful com-

ments and suggestions. University of Illinois at Urbana-

Champaign gratefully acknowledges the support of Defense

Advanced Research Projects Agency (DARPA) Machine Read-

ing Program under Air Force Research Laboratory (AFRL)

prime contract No. FA8750-09-C-0181. The first author also

thanks the Vietnam Education Foundation (VEF) for its spon-

sorship. Any opinions, findings, and conclusion or recommen-

dations expressed in this material are those of the authors and

do not necessarily reflect the view of the VEF, DARPA, AFRL,

or the US government.

1108



References

A. Abad, L. Bentivogli, I. Dagan, D. Giampiccolo,
S. Mirkin, E. Pianta, and A. Stern. 2010. A resource
for investigating the impact of anaphora and corefer-
ence on inference. In LREC.

M. Banko and O. Etzioni. 2008. The tradeoffs between
open and traditional relation extraction. In ACL-HLT.

M. Baroni and A. Lenci. 2010. Distributional mem-
ory: A general framework for corpus-based semantics.
Computational Linguistics, 36.

S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan.
1997. Using taxonomy, discriminants, and signatures
for navigating in text databases. In VLDB.

M. Chang, L. Ratinov, and D. Roth. 2008. Constraints as
prior knowledge. In ICML Workshop on Prior Knowl-
edge for Text and Language Processing.

D. Davidov and A. Rappoport. 2008. Unsupervised dis-
covery of generic relationships using pattern clusters
and its evaluation by automatically generated sat anal-
ogy questions. In ACL.

P. Denis and J. Baldridge. 2007. Joint determination of
anaphoricity and coreference resolution using integer
programming. In NAACL.

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database. MIT Press.

Y. Freund and R. E. Schapire. 1999. Large margin clas-
sification using the perceptron algorithm. Machine
Learning.

M. A. Hearst. 1992. Acquisition of hyponyms from large
text corpora. In COLING.

A. Hotho, S. Staab, and G. Stumme. 2003. Ontologies
improve text document clustering. In ICDM.

Z. Kozareva, E. Riloff, and E. Hovy. 2008. Seman-
tic class learning from the web with hyponym pattern
linkage graphs. In ACL-HLT.

B. MacCartney and C. D. Manning. 2008. Modeling se-
mantic containment and exclusion in natural language
inference. In COLING.

B. MacCartney and C. D. Manning. 2009. An extended
model of natural logic. In IWCS-8.
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Abstract

Although many algorithms have been devel-
oped to harvest lexical resources, few organize
the mined terms into taxonomies. We pro-
pose (1) a semi-supervised algorithm that uses
a root concept, a basic level concept, and re-
cursive surface patterns to learn automatically
from the Web hyponym-hypernym pairs sub-
ordinated to the root; (2) a Web based concept
positioning procedure to validate the learned
pairs’ is-a relations; and (3) a graph algorithm
that derives from scratch the integrated tax-
onomy structure of all the terms. Comparing
results with WordNet, we find that the algo-
rithm misses some concepts and links, but also
that it discovers many additional ones lacking
in WordNet. We evaluate the taxonomization
power of our method on reconstructing parts
of the WordNet taxonomy. Experiments show
that starting from scratch, the algorithm can
reconstruct 62% of the WordNet taxonomy for
the regions tested.

1 Introduction

A variety of NLP tasks, including inference, tex-
tual entailment (Glickman et al., 2005; Szpektor
et al., 2008), and question answering (Moldovan
et al., 1999), rely on semantic knowledge derived
from term taxonomies and thesauri such as Word-
Net. However, the coverage of WordNet is still lim-
ited in many regions (even well-studied ones such as
the concepts and instances below Animals and Peo-
ple), as noted by researchers such as (Pennacchiotti
and Pantel, 2006) and (Hovy et al., 2009) who per-
form automated semantic class learning. This hap-

pens because WordNet and most other existing tax-
onomies are manually created, which makes them
difficult to maintain in rapidly changing domains,
and (in the face of taxonomic complexity) makes
them hard to build with consistency. To surmount
these problems, it would be advantageous to have
an automatic procedure that can not only augment
existing resources but can also produce taxonomies
for existing and new domains and tasks starting from
scratch.

The main stages of automatic taxonomy induc-
tion are term extraction and term organization. In
recent years there has been a substantial amount of
work on term extraction, including semantic class
learning (Hearst, 1992; Riloff and Shepherd, 1997;
Etzioni et al., 2005; Pasca, 2004; Kozareva et al.,
2008), relation acquisition between entities (Girju
et al., 2003; Pantel and Pennacchiotti, 2006; Davi-
dov et al., 2007), and creation of concept lists (Katz
and Lin, 2003). Various attempts have been made to
learn the taxonomic organization of concepts (Wid-
dows, 2003; Snow et al., 2006; Yang and Callan,
2009). Among the most common is to start with a
good ontology and then to try to position the miss-
ing concepts into it. (Snow et al., 2006) maximize
the conditional probability of hyponym-hypernym
relations given certain evidence, while (Yang and
Callan, 2009) combines heterogenous features like
context, co-occurrence, and surface patterns to pro-
duce a more-inclusive inclusion ranking formula.
The obtained results are promising, but the problem
of how to organize the gathered knowledge when
there is no initial taxonomy, or when the initial tax-
onomy is grossly impoverished, still remains.
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The major problem in performing taxonomy con-
struction from scratch is that overall concept po-
sitioning is not trivial. It is difficult to discover
whether concepts are unrelated, subordinated, or
parallel to each other. In this paper, we address the
following question: How can one induce the taxo-
nomic organization of concepts in a given domain
starting from scratch?

The contributions of this paper are as follows:

• An automatic procedure for harvesting
hyponym-hypernym pairs given a domain of
interest.

• A ranking mechanism for validating the learned
is-a relations between the pairs.

• A graph-based approach for inducing the taxo-
nomic organization of the harvested terms start-
ing from scratch.

• An experiment on reconstructing WordNet’s
taxonomy for given domains.

Before focusing on the harvesting and taxonomy
induction algorithms, we are going to describe some
basic terminology following (Hovy et al., 2009). A
term is an English word (for our current purposes,
a noun or a proper name). A concept is an item in
the classification taxonomy we are building. A root
concept is a fairly general concept which is located
on the high level of the taxonomy. A basic-level
concept corresponds to the Basic Level categories
defined in Prototype Theory in Psychology (Rosch,
1978). For example, a dog, not a mammal or a col-
lie. An instance is an item in the classification tax-
onomy that is more specific than a concept. For ex-
ample, Lassie, not a dog or collie .

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 describes the
taxonomization framework. Section 4 discusses the
experiments. We conclude in Section 5.

2 Related Work

The first stage of automatic taxonomy induction,
term and relation extraction, is relatively well-
understood. Methods have matured to the point of
achieving high accuracy (Girju et al., 2003; Pantel
and Pennacchiotti, 2006; Kozareva et al., 2008). The
produced output typically contains flat lists of terms

and/or ground instance facts (lion is-a mammal)
and general relation types (mammal is-a animal).

Most approaches use either clustering or patterns
to mine knowledge from structured and unstructured
text. Clustering approaches (Lin, 1998; Lin and Pan-
tel, 2002; Davidov and Rappoport, 2006) are fully
unsupervised and discover relations that are not di-
rectly expressed in text. Their main drawback is that
they may or may not produce the term types and
granularities useful to the user. In contrast, pattern-
based approaches harvest information with high ac-
curacy, but they require a set of seeds and surface
patterns to initiate the learning process. These meth-
ods are successfully used to collect semantic lex-
icons (Riloff and Shepherd, 1997; Etzioni et al.,
2005; Pasca, 2004; Kozareva et al., 2008), encyclo-
pedic knowledge (Suchanek et al., 2007), concept
lists (Katz and Lin, 2003), and relations between
terms, such as hypernyms (Ritter et al., 2009; Hovy
et al., 2009) and part-of (Girju et al., 2003; Pantel
and Pennacchiotti, 2006).

However, simple term lists are not enough to solve
many problems involving natural language. Terms
may be augmented with information that is required
for knowledge-intensive tasks such as textual entail-
ment (Glickman et al., 2005; Szpektor et al., 2008)
and question answering (Moldovan et al., 1999). To
support inference, (Ritter et al., 2010) learn the se-
lectional restrictions of semantic relations, and (Pen-
nacchiotti and Pantel, 2006) ontologize the learned
arguments using WordNet.

Taxonomizing the terms is a very powerful
method to leverage added information. Subordi-
nated terms (hyponyms) inherit information from
their superordinates (hypernyms), making it unnec-
essary to learn all relevant information over and over
for every term in the language. But despite many at-
tempts, no ‘correct’ taxonomization has ever been
constructed for the terms of, say, English. Typically,
people build term taxonomies (and/or richer struc-
tures like ontologies) for particular purposes, using
specific taxonomization criteria. Different tasks and
criteria produce different taxonomies, even when us-
ing the same basic level concepts. This is because
most basic level concepts admit to multiple perspec-
tives, while each task focuses on one, or at most two,
perspectives at a time. For example, a dolphin is a
Mammal (and not a Fish) to a biologist, but is a Fish
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(and hence not a Mammal) to a fisherman or anyone
building or visiting an aquarium. More confusingly,
a tiger and a puppy are both Mammals and hence
belong close together in a typical taxonomy, but a
tiger is a WildAnimal (in the perspective of Animal-
Function) and a JungleDweller (in the perspective of
Habitat), while a puppy is a Pet (as function) and a
HouseAnimal (as habitat), which would place them
relatively far from one another. Attempts at pro-
ducing a single multi-perspective taxonomy fail due
to the complexity of interaction among perspectives,
and people are notoriously bad at constructing tax-
onomies adherent to a single perspective when given
terms from multiple perspectives. This issue and the
major alternative principles for taxonomization are
discussed in (Hovy, 2002).

It is therefore not surprising that the second
stage of automated taxonomy induction is harder to
achieve. As mentioned, most attempts to learn tax-
onomy structures start with a reasonably complete
taxonomy and then insert the newly learned terms
into it, one term at a time (Widdows, 2003; Pasca,
2004; Snow et al., 2006; Yang and Callan, 2009).
(Snow et al., 2006) guide the incremental approach
by maximizing the conditional probability over a
set of relations. (Yang and Callan, 2009) introduce
a taxonomy induction framework which combines
the power of surface patterns and clustering through
combining numerous heterogeneous features.

Still, one would like a procedure to organize the
harvested terms into a taxonomic structure starting
fresh (i.e., without using an initial taxonomic struc-
ture). We propose an approach that bridges the gap
between the term extraction algorithms that focus
mainly on harvesting but do not taxonomize, and
those that accept a new term and seek to enrich an al-
ready existing taxonomy. Our aim is to perform both
stages: to extract the terms of a given domain and to
induce their taxonomic organization without any ini-
tial taxonomic structure and information. This task
is challenging because it is not trivial to discover
both the hierarchically related and the parallel (per-
spectival) organizations of concepts. Achieving this
goal can provide the research community with the
ability to produce taxonomies for domains for which
currently there are no existing or manually created
ontologies.

3 Building Taxonomies from Scratch

3.1 Problem Formulation

We define our task as:

Task Definition: Given a root concept, a basic level
concept or an instance, and recursive lexico-syntactic
patterns, (1) harvest in bootstrapping fashion hy-
ponyms and hypernyms subordinated to the root; (2)
filter out erroneous information (extracted concepts
and isa relations); (3) organize the harvested con-
cepts into a taxonomy structure.
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Figure 1: Taxonomy Induction from Scratch.

Figure 1 shows an example of the task. Start-
ing with the root concept animal and the basic
level concept lion, the algorithm learns new
terms like tiger, puma, deer, donkey of class
animal. Next for each basic level concept, the
algorithm harvests hypernyms and learns that a
lion is-a vertebrate, chordate, feline and mammal.
Finally, the taxonomic structure of each basic
level concept and its hypernyms is induced: ani-
mal→chordate→vertebrate→mammal→feline→lion.

3.2 Knowledge Harvesting

The main objective of our work is not the creation
of a new harvesting algorithm, but rather the or-
ganization of the harvested information in a tax-
onomy structure starting from scratch. There are
many algorithms for hyponym and hypernym har-
vesting from the Web. In our experiments, we use
the doubly-anchored lexico-syntactic patterns and
bootstrapping algorithm introduced by (Kozareva et
al., 2008) and (Hovy et al., 2009).
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We are interested in using this approach, because
it is: (1) simple and easy to implement; (2) requires
minimal supervision using only one root concept
and a term to learn new hyponyms and hypernyms
associated to the root; (3) reports higher precision
than current semantic class algorithms (Etzioni et
al., 2005; Pasca, 2004); and (4) adapts easily to dif-
ferent domains.

The general framework of the knowledge harvest-
ing algorithm is shown in Figure 2.

1. Given:
a hyponym pattern Pi={concept such as seed
and *}
a hypernym pattern Pc={* such as term1 and
term2}
a root concept root
a term called seed for Pi

2. build a query using Pi

3. submit Pi to Yahoo! or other search engine
4. extract terms occupying the * position
5. take terms from step 4 and go to step 2.
6. repeat steps 2–5 until no new terms are found
7. rank terms by outDegree
8. for ∀ terms with outDegree>0, build a query

using Pc

9. submit Pc to Yahoo! or other search engine
10. extract concepts (hypernyms) occupying the *

position
11. rank concepts by inDegree

Figure 2: Knowledge Harvesting Framework.

The algorithm starts with a root concept, seed
term1 of type root and a doubly-anchored pattern
(DAP) such as ‘<root> such as <seed> and *’
which learns on the * position new terms of type
root. The newly learned terms, which can be either
instances, basic level or intermediate concepts, are
placed into the position of the seed in the DAP pat-
tern, and the bootstrapping process is repeated. The
process ceases when no new terms are found.

To separate the true from incorrect terms, we use
a graph-based algorithm in which each vertex u is
a term, and an each edge (u, v) ∈ E corresponds
to the direction in which the term u discovered the
term v. The graph is weighted w(u, v) according

1The input term can be an instance, a basic level or an in-
termediate concept. An intermediate concept is the one that is
located between the basic level and root concepts.

to the number of times the term pair u-v is seen
in unique web snippets. The terms are ranked by

outDegree(u)=
∑

∀(u,v)∈E
w(u,v)

|V |−1 which counts the
number of outgoing links of node u normalized by
the total number of nodes in the graph excluding the
current. The algorithm considers as true terms with
outDegree>0.

All harvested terms are automatically fed into the
hypernym extraction phase. We use the natural or-
der in which the terms discovered each other and
place them into an inverse doubly-anchored pattern
(DAP−1) ‘* such as <term1> and <term2>’ to
learn hypernyms on the * position. Similarly we
build a graph with nodes h denoting the hypernyms
and nodes t1-t2 denoting the term pairs. The edges
(h, t1 − t2) ∈ E′ show the direction in which the
term pair discovered the hypernym. The hypernyms
are ranked by inDegree(h)=

∑
∀(t1−t2,h)∈E′ w(t1−

t2, h) which rewards hypernyms that are frequently
discovered by various term pairs. The output of
the algorithm is a list of is-a relations between the
learned terms (instances, basic level or intermediate
concepts) and their corresponding hypernyms. For
example, deer is-a herbivore, deer is-a ruminant,
deer is-a mammal.

3.3 Graph-Based Taxonomy Induction

In the final stage of our algorithm, we induce the
overall taxonomic structure using information about
the pairwise positioning of the terms. In the knowl-
edge harvesting and filtering phases, the algorithm
learned is-a relations between the root and the terms
(instances, basic level or intermediate concepts), as
well as the harvested hypernyms and the terms. The
only missing information is the positioning of the in-
termediate concepts located between the basic level
and the root such as mammals, vertibrates, felines,
chordates, among others.

We introduce a concept positioning (CP) proce-
dure that uses a set of surface patterns: “X such as
Y”, “X are Y that”, “X including Y”, “X like Y”,
“such X as Y” to learn the hierarchical relations for
all possible concept pairs. For each concept pair,
say chordates and vertebrates, we issue the two
following queries:

(a) chordates such as vertebrates
(b) vertebrates such as chordates
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If (a) returns more web hits than (b), then chordates
subsumes (or is broader than) vertebrates, other-
wise vertebrates subsumes chordates. For this
pair the such as pattern returned 7 hits for (a) and
0 hits for (b), so that the overall magnitude of the
direction of the relation is weak. To accumulate
stronger evidence, we issue web queries with the
remaining patterns. For the same concept pair, the
overall magnitude of “X including Y” is 5820 hits
for (a) and 0 for (b).

As shown in Figure 3, the concept positioning pat-
terns cannot always determine the direct taxonomic
organization between two concepts as in the case
of felines and chordates, felines and vertebrates.
One reason is that the concepts are located on dis-
tant taxonomic levels. We humans typically exem-
plify concepts using more proximate ones. There-
fore, the concept positioning procedure can find ev-
idence for the relation “mammals→felines”, but not
for “chordates→felines”.
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Figure 3: Concept Positioning and Induced Taxonomy.

After the concept positioning procedure has ex-
plored all concept pairs, we encounter two phenom-
ena: (1) direct links between some concepts are
missing and (2) multiple paths can be taken to reach
from one concept to another.

To surmount these problems, we employ a
graph based algorithm that finds the longest
path in the graph G′′=(V ′′, E′′). The nodes
V ′′={it1, h1, h2, .., hn, r} represent the input term,
its hypernyms, and the root. An edge (tm, tn) ∈ E′′

indicates that there is a path between the terms tm
and tn. The direction tm → tn indicates the term
subordination discovered during the CP procedure.
The objective is to find the longest path in G′′ be-
tween the root and the input term. Intuitively, find-
ing the longest paths is equivalent to finding the tax-

onomic organization of all concepts.
First, if present, we eliminate all cycles from the

graph. Then, we find all nodes that have no prede-
cessor and those that have no successor. Intuitively,
a node with no predecessors p is likely to be posi-
tioned on the top of the taxonomy (e.g. animal),
while a node with no successor s is likely to be lo-
cated at the bottom (e.g. terms like lion, tiger, puma,
or concepts like krill predators that could not be re-
lated to an instance or a basic level concept during
the CP procedure). We represent the directed graph
as an adjacency matrix A = [am,n], where am,n is
1 if (tm, tn) is an edge of G′′, and 0 otherwise. For
each (p, s) pair, we find the list of all paths connect-
ing p with s. In the end, from all discovered can-
didate paths, the algorithm returns the longest one.
The same graph-based taxonomization procedure is
repeated for the rest of the basic level concepts and
their hypernyms.

4 Experiments and Results

To evaluate the performance of a taxonomy induc-
tion algorithm, one can compare against a simple
taxonomy composed of 2–3 levels. However, one
cannot guarantee that the algorithm can learn larger
hierarchies completely or correctly.

Animals provide a good example of the true com-
plexity of concept organization: there are many
types, they are of numerous kinds, people take nu-
merous perspectives over them, and they are rela-
tively well-known to human annotators. In addition,
WordNet has a very rich and deep taxonomic struc-
ture for animals that can be used for direct compar-
ison. We further evaluate our algorithm on the do-
mains of Plants and Vehicles, which share some of
these properties.

4.1 Data Collection

We have run the knowledge harvesting algorithm on
the semantic classes Animals, Plants and Vehicles
starting with only one seed example such as lions,
cucumbers and cars respectively.

First, we formed and submitted the DAP pattern
as web queries to Yahoo!Boss. We retrieved the
top 1000 web snippets for each query. We kept
all unique terms and term pairs. Second, we used
the learned term pairs to form and submit new web

1114



queries DAP−1. In this step, the algorithm harvested
the hypernyms associated with each term. We kept
all unique triples composed of a hypernym and the
term pairs that extracted it. The algorithm ran until
complete exhaustion for 8 iterations for Animals, 10
iterations for Plants and 18 iterations of Vehicles.

Table 1 shows the total number of terms extracted
by the Web harvesting algorithm during the first
stage. In addition, we show the number of terms that
passed the outDegree threshold. We found that the
majority of the learned terms for Animals are basic
level concepts, while for Plants and Vehicles they are
a mixture of basic level and intermediate concepts.

Animals Plants Vehicles
#Extracted Terms 1855 2801 1425

#outDegree(Term)> 0 858 1262 581

Table 1: Learned Terms.

Since human based evaluation of all harvested
terms is time consuming and costly, we have se-
lected 90 terms located at the beginning, in the mid-
dle and in the end of the outDegree ranking. Table
2 summarizes the results.

Plants #CorrectByHand #inWN PrecByHand
rank[1-30] 29 28 .97

rank[420-450] 29 21 .97
rank[1232-1262] 27 19 .90

Vehicles #CorrectByHand #inWN PrecByHand
rank[1-30] 29 27 .97

rank[193-223] 22 18 .73
rank[551-581] 25 19 .83

Table 2: Term Evaluation.

Independently, we can say that the precision of the
harvesting algorithm is from 73 to 90%. In the case
of Vehicles, we found that the learned terms in the
middle ranking do not refer to the meaning of vehi-
cle as a transportation devise, but to the meaning of
vehicle as media (i.e. seminar, newspapers), com-
munication and marketing. For the same category,
the algorithm learned many terms which are missing
from WordNet such as BMW, bakkies, two-wheeler,
all-terrain-vehicle among others.

The second stage of the harvesting algorithm con-
cerns hypernym extraction. Table 3 shows the total
number of hypernyms harvested for all term pairs.
The top 20 highly ranked concepts by inDegree are
the most descriptive terms for the domain. However,

if we are interested in learning a larger set of hy-
pernyms, we found that inDegree is not sufficient
by itself. For example, highly frequent but irrele-
vant hypernyms such as meats, others are ranked
at the top of the list, while low frequent but rele-
vant ones such as protochordates, hooved-mammals,
homeotherms are discarded. This shows that we
need to develop additional and more sensitive mea-
sures for hypernym ranking.

Animals Plants Vehicles
#Extracted Hypernyms 1904 8947 2554

#inDegree(Hypernyms)> 10 110 294 100

Table 3: Learned Hypernyms.

Table 4 shows some examples of the learned an-
imal hypernyms which were annotated by humans
as: correct but not present in WordNet; borderline
which depending on the application could be valu-
able to have or exclude; and incorrect.

CorrectNotInWN {colony|social} insects, grazers, monogastrics
camelid, {mammalian|land|areal} predators
{australian|african} wildlife, filter feeders
hard shelled invertebrates, pelagics
bottom dwellers

Borderline prehistoric animals, large herbivores
pocket pets, farm raised fish, roaring cats
endangered mammals, mysterious hunters
top predators, modern-snakes, heavy game

Incorrect frozen foods, native mammals, red meats
furry predators, others, resources, sorts
products, items, protein

Table 4: Examples of Learned Animal Hypernyms.

The annotators found that 9% of the harvested is-
a relations are missing from WordNet. For example,
cartilaginous fish → shark; colony insects→ bees;
filter feeders→ tube anemones among others. This
shows that despite its completeness, WordNet has
still room for improvement.

4.2 A Test: Reconstructing WordNet

As previously discussed in (Hovy et al., 2009), it is
extremely difficult even for expert to manually con-
struct and evaluate the correctness of the harvested
taxonomies. Therefore, we decided to evaluate the
performance of our taxonomization approach recon-
structing WordNet Animals, Plants and Vehicles tax-
onomies.
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Given a domain, we select from 140 to 170 of
the harvested terms. For each term, we retrieve all
WordNet hypernyms located on the path between the
input term and the root that is animal, plant or ve-
hicle depending on the domain of interest. We have
found that 98% of the WordNet terms are also har-
vested by our knowledge acquisition algorithm. This
means that being able to reconstruct WordNet’s tax-
onomy is equivalent to evaluating the performance
of our taxonomy induction approach.

Table 5 summarizes the characteristics of the tax-
onomies for the regions tested. For each domain,
we show the total number of terms that must be or-
ganized, and the total number of is-a relations that
must be induced.

Animals Plants Vehicles
#terms 684 554 140
#is-a 4327 2294 412

average depth 6.23 4.12 3.91
max depth 12 8 7
min depth 1 1 1

Table 5: Data for WordNet reconstruction.

Among the three domains we have tested, An-
imals is the most complex and richest one. The
maximum number of levels our algorithm must in-
fer is 11, the minimum is 1 and the average taxo-
nomic depth is 6.2. In total there are three basic level
concepts (longhorns, gaur and bullock) with maxi-
mum depth, twenty terms (basic level and intermedi-
ate concepts) with minimum depth and ninety-eight
terms (wombat, viper, rat, limpkin) with depth 6.

Plants is also a very challenging domain, because
it contains a mixture of scientific and general terms
such as magnoliopsida and flowering plant.

4.3 Evaluation
To evaluate the performance of our taxonomy induc-
tion approach, we use the following measures:

Precision = #is−a found in WordNet and by system
#is−a found by system

Recall = #is−a found in WordNet and by system
#is−a found in WordNet

Table 6 shows results of the taxonomy induction
of the Vehicles domain using different concept po-
sitioning patterns. The most productive ones are:
“X are Y that” and “X including Y”. However, the

highest yield is obtained when we combine evidence
from all patterns.

Vehicles Precision Recall
X such as Y .99 (174/175) .42 (174/410)
X are Y that .99 (206/208) .50 (206/410)

X including Y .96 (165/171) .40 (165/410)
X like Y .96 (137/142) .33 (137/410)

such X as Y .98 (44/45) .11 (44/410)
AllPatterns .99 (246/249) .60 ( 246/410)

Table 6: Evaluation of the Induced Vehicle Taxonomy.

Table 7 shows results of the taxonomization of
the Animals and Plants domains. Overall, the ob-
tained results are very encouraging given the fact
that we started from scratch without the usage of
any taxonomic structure. Precision is robust, but we
must further improve recall. Our observation for the
lower recall is that some intermediate concepts re-
late mostly to the high level ones, but not to the basic
level concepts.

Precision Recall
Animals .98 (1643/1688) .38 (1643/4327)
Plants .97 (905/931) .39 (905/2294)

Table 7: Evaluation of the Induced Animal and Plant Tax-
onomies.

Figure 4 shows an example of the taxonomy in-
duced by our algorithm for the vipers, rats, wom-
bats, ducks, emus, moths and penguins basic level
concepts and their WordNet hypernyms.

animals

aquatic_vertebrates chordates invertebrates

vertebrates arthropods

aquatic_birds

duckspenguins

insects

moths

birds

emus

mammalsreptiles

marsupials placentalsrodents

wombats rats

metatherians

snakes

vipers

Figure 4: Induced Taxonomy for Animals.

The biggest challenge of the taxonomization pro-
cess is the merging of independent taxonomic per-
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spectives (a deer is a grazer in BehaviorByFeeding,
a wildlife in BehaviorByHabitat, a herd in Behavior-
SocialGroup and an even-toed ungulate in Morpho-
logicalType) into a single hierarchy.

5 Conclusions and Future Work

We are encouraged by the ability of the taxonomiza-
tion algorithm to reconstruct WordNet’s Animal hi-
erarchy, which is one of its most complete and elab-
orated. In addition, we have also evaluated the per-
formance of our algorithm with the Plant and Vehi-
cle WordNet hierarchies.

Currently, our automated taxonomization algo-
rithm is able to build some of the quasi-independent
perspectival taxonomies (Hovy et al., 2009). How-
ever, further research is required to develop methods
that reliably (a) identify the number of independent
perspectives a concept can take (or seems to take in
the domain text), and (b) classify any harvested term
into one or more of them. The result would greatly
simplify the task of the taxonomization stage.

We note that despite this richness, WordNet has
many concepts like camelid, filter feeder, mono-
gastrics among others which are missing, but the
harvesting algorithm can provide. Another promis-
ing line of research would investigate the combina-
tion of the two styles of taxonomization algorithms:
first, the one described here to produce an initial (set
of) taxonomies, and second, the term-insertion algo-
rithms developed in prior work.
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Abstract

In contrast with the booming increase of inter-
net data, state-of-art QA (question answering)
systems, otherwise, concerned data from spe-
cific domains or resources such as search en-
gine snippets, online forums and Wikipedia in
a somewhat isolated way. Users may welcome
a more general QA system for its capability
to answer questions of various sources, inte-
grated from existed specialized sub-QA en-
gines. In this framework, question classifica-
tion is the primary task.

However, the current paradigms of question
classification were focused on some speci-
fied type of questions, i.e. factoid questions,
which are inappropriate for the general QA.
In this paper, we propose a new question clas-
sification paradigm, which includes a ques-
tion taxonomy suitable to the general QA and
a question classifier based on MLN (Markov
logic network), where rule-based methods and
statistical methods are unified into a single
framework in a fuzzy discriminative learning
approach. Experiments show that our method
outperforms traditional question classification
approaches.

1 Introduction

During a long period of time, researches on question
answering are mainly focused on finding short and
concise answers from plain text for factoid questions
driven by annual trackes such as CLEF, TREC and
NTCIR. However, people usually ask more complex
questions in real world which cannot be handled by
these QA systems tailored to factoid questions.

During recent years, social collaborative applica-
tions begin to flourish, such as Wikipedia, Facebook,
Yahoo! Answers and etc. A large amount of semi-
structured data, which has been accumulated from
these services, becomes new sources for question
answering. Previous researches show that different
sources are suitable for answering different ques-
tions. For example, the answers for factoid questions
can be extracted from webpages with high accuracy,
definition questions can be answered by correspond-
ing articles in wikipedia(Ye et al., 2009) while com-
munity question answering services provide com-
prehensive answers for complex questions(Jeon et
al., 2005). It will greatly enhance the overall per-
formance if we can classify questions into several
types, distribute each type of questions to suitable
sources and trigger corresponding strategy to sum-
marize returned answers.

Question classification (QC) in factoid QA is to
provide constraints on answer types that allows fur-
ther processing to pinpoint and verify the answer
(Li and Roth, 2004). Usually, questions are classi-
fied into a fine grained content-based taxonomy(e.g.
UIUC taxonomy (Li and Roth, 2002)). We can-
not use these taxonomies directly. To guide ques-
tion distribution and answer summarization, ques-
tions are classified according to their functions in-
stead of contents.

Motivated by related work on user goal classi-
fication(Broder, 2002; Rose and Levinson, 2004) ,
we propose a function-based question classification
category tailored to general QA. The category con-
tain six types, namely Fact, List, Reason, Solution,
Definition and Navigation. We will introduced this
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category in detail in Section 2.
To classify questions effectively, we unify rule-

based methods and statistical methods into a single
framework. Each question is splited into functional
words and content words. We generate strict pat-
terns from functional words and soft patterns from
content words. Each strict pattern is a regular ex-
pression while each soft pattern is a bi-gram clus-
ter. Given a question, we will evaluate its matching
degree to each patterns. The matching degree is ei-
ther 0 or 1 for strict pattern and between 0 and 1 for
soft pattern. Finally, Markov logic network (MLN)
(Richardson and Domingos, 2006) is used to com-
bine and evaluate all the patterns.

The classical MLN maximize the probability of
an assignment of truth values by evaluating the
weights of each formula. However, the real world
is full of uncertainty and is unnatural to be repre-
sented by a set of boolean values. In this paper,
we propose fuzzy discriminative weight learning of
Markov logic network. This method takes degrees
of confidence of each evidence predicates into ac-
count thus can model the matching degrees between
questions and soft patterns.

The remainder of this paper is organized as fol-
lows: In the next section we review related work
on question classification, query classification and
Markov logic network. Section 2 gives a detailed
introduction to our new taxonomy for general QA.
Section 4 introduces fuzzy discriminative weight
learning of MLN and our methodology to extract
strict and soft patterns. In Section 5 we compare our
method with previous methods on Chinese question
data from Baidu Zhidao and Sina iAsk. In the last
section we conclude this work.

Although we build patterns and do experiments
on Chinese questions, our method does not take ad-
vantage of the particularity of Chinese language and
thus can be easily implemented on other languages.

2 Related Work

Many question taxonomies have been proposed in
QA community. Lehnert (1977) developed the sys-
tem QUALM based on thirteen conceptual cate-
gories which are based on a theory of memory repre-
sentation. On the contrary, the taxonomy proposed
by Graesser et al. (1992) has foundations both in the-

ory and in empirical research. Both of these tax-
onomies are for open-domain question answering.

With the booming of internet, researches on
question answering are becoming more practical.
Most taxonomies proposed are focused on factoid
questions, such as UIUC taxonomy (Li and Roth,
2002). UIUC taxonomy contains 6 coarse classes
(Abbreviation, Entity, Description, Human, Lo-
cation and Numeric Value) and 50 fine classes.
All coarse classes are factoid oriented except De-
scription. To classify questions effectively, Re-
searchers have proposed features of different levels,
such as lexical features, syntactic features (Nguyen
et al., 2007; Moschitti et al., 2007) and semantic fea-
tures (Moschitti et al., 2007; Li and Roth, 2004).
Zhang and Lee (2003) compared five machine learn-
ing methods and found SVM outperformed the oth-
ers.

In information retrieval community, researchers
have described frameworks for understanding goals
of user searches. Generally, web queries are classi-
fied into four types: Navigational, Informational,
Transactional (Broder, 2002) and Resource (Rose
and Levinson, 2004). Lee et al. (2005) automatically
classify Navigational and Informational queries
based on past user-click behavior and anchor-link
distribution. Jansen and Booth (2010) investigate
the correspondence between three user intents and
eighteen topics. The result shows that user intents
distributed unevenly among different topics.

Inspired by Rose and Levinson (2004)’s work in
user goals classification, Liu et al. (2008) describe
a three-layers cQA oriented question taxonomy and
use it to determine the expected best answer types
and summarize answers. Other than Navigational,
Informational and Transactional, the first layer
contains a new Social category which represents the
questions that do not intend to get an answer but to
elicit interaction with other people. Informational
contains two subcategories Constant and Dynamic.
Dynamic is further divided into Opinion, Context-
Dependent and Open.

Markov logic network (MLN) (Richardson and
Domingos, 2006) is a general model combining
first-order logic and probabilistic graphical models
in a single representation. Illustratively, MLN is a
first-order knowledge base with a weight attached
to each formula. The weights can be learnt ei-
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TYPE DESCRIPTION EXAMPLES
1. Fact People ask these questions for general facts.

The expected answer will be a short phrase.
Who is the president
of United States?

2. List People ask these questions for a list of an-
swers. Each answer will be a single phrase
or a phrase with explanations or comments.

List Nobel price
winners in 1990s.
Which movie star do
you like best?

3. Reason People ask these questions for opinions or ex-
planations. A good answer summary should
contain a variety of opinions or comprehen-
sive explanations. Sentence-level summariza-
tion can be employed.

Is it good to drink
milk while fasting?
What do you think of
Avatar?

4. Solution People ask these questions for problem shoot-
ing. The sentences in an answer usually have
logical order thus the summary task cannot be
performed on sentence level.

What should I do
during an earthquake?
How to make pizzas?

5. Definition People ask these questions for description of
concepts. Usually these information can be
found in Wikipedia. If the answer is a too
long, we should summarize it into a shorter
one.

Who is Lady Gaga?
What does the Matrix
tell about?

6. Navigation People ask these questions for finding web-
sites or resources. Sometimes the websites are
given by name and the resources are given di-
rectly.

Where can I download
the beta version of
StarCraft 2?

Table 1: Question Taxonomy for general QA

ther generatively (Richardson and Domingos, 2006)
or discriminatively (Singla and Domingos, 2005).
Huynh and Mooney (2008) applies 𝐿1-norm regu-
larized MLE to select candidate formulas generated
by a first-order logic induction system and prevent
overfitting. MLN has been introduced to NLP and
IE tasks such as semantic parsing (Poon et al., 2009)
and entity relation extraction (Zhu et al., 2009).

3 A Question Taxonomy

We suggest a function-based taxonomy tailored to
general QA systems by two principles. First, ques-
tions can be distributed into suitable QA subsys-
tems according to their types. Second, we can
employ suitable answer summarization strategy for
each question type. The taxonomy is shown in Tab.
1.

At first glance, classifying questions onto this tax-
onomy seems a solved problem for English ques-

tions because of interrogative words. In most cases,
a question starting with “Why” is for reason and
“How” is for solution. But it is not always the case
for other languages. From table 2 we can see two
questions in Chinese share same function word “怎
么样” but have different types.

In fact, even in English, only using interroga-
tive words is not enough for function-based ques-
tion classification. Sometimes the question content
is crucial. For example, for question “Who is the
current president of U.S. ?”, the answer is “Barak
Obama” and the type is Fact. But for question “Who
is Barak Obama?”, it will be better if we return the
first paragraph from the corresponding Wiki article
instead of a short phrase “current president of U.S.”.
Therefore the question type will be Definition.

Compared to Wendy Lehnert’s or Arthur
Graesser’s taxonomy, our taxonomy is more prac-
tical on providing useful information for question
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Question 怎么样做宫保鸡丁？
How to cook Kung Pao Chicken?

Type Solution
Question 大家觉得阿凡达怎么样？

What do you think of Avatar?
Type Reason

Table 2: Two Chinese questions share same function
words but have different types

extraction and summarization. Compared to ours,
The UIUC taxonomy is too much focused on factoid
questions. Apart from Description, all coarse types
in UIUC can be mapped into Fact. The cQA
taxonomy proposed in Liu et al. (2008) has similar
goal with ours. But it is hard to automatically
classify questions into that taxonomy, especially for
types Constant, Dynamic and Social. Actually the
author did not give implementation in the paper as
well. To examine reasonableness of our taxonomy,
we select and manually annotate 5800 frequent
asked questions from Baidu Zhidao (see Section
5.1). The distribution of six types is shown in Fig.
1. 98.5 percent of questions can be categorized
into our taxonomy. The proportion of each type is
between 7.5% and 23.8%.

The type Navigation was originally proposed in
IR community and did not cause too much concerns
in previous QA researches. But from Fig. 1 we
can see that navigational questions take a substan-
tial proportion in cQA data.

Moreover, we can further develop subtypes for
each type. For example, most categories in UIUC

Reason

18.1%

Fact

14.4%Solution

19.7%

Navigation

14.8%

List

23.8%

Definition

7.5%

Other

1.5%

Figure 1: Distribution of six types in Baidu Zhidao data

taxonomy can be regarded as refinement to Fact and
Navigation can be refined into Resource and Web-
site. We will not have further discussion on this is-
sue.

4 Methodology

Many efforts have been made to take advantage of
grammatical , semantic and lexical features in ques-
tion classification. Zhang and Lee (2003) proposed
a SVM based system which used tree kernel to in-
corporate syntactic features.

In this section, we propose a new question clas-
sification methodology which combines rule-based
methods and statistical methods by Markov logic
network. We do not use semantic and syntactic fea-
tures for two reasons. First, the questions posted on
online communities are casually written which can-
not be accurately parsed by NLP tools, especially for
Chinese. Second, the semantic and syntactic pars-
ing are time consuming thus unpractical to be used
in real systems.

We will briefly introduce MLN and fuzzy dis-
criminative learning in section 4.1. The construction
of strict patterns and soft patterns will be shown in
4.2 and 4.3. In section 4.4 we will give details on
MLN construction, inference and learning.

4.1 Markov Logic Network

A first-order knowledge base contains a set of for-
mulas constructed from logic operators and symbols
for predicates, constants, variables and functions.
An atomic formula or atom is a predicate symbol.
Formulas are recursively constructed from atomic
formulas using logical operators. The grounding
of a predicate (formula) is a replacement of all of
its arguments (variables) by constants. A possible
world is an assignment of truth values to all possible
groundings of all predicates.

In first-order KB, if a possible world violates
even one formula, it has zero probability. Markov
logic is a probabilistic extension and softens the hard
constraints by assigning a weight to each formula.
When a possible world violates one formula in the
KB, it is less probable. The higher the weight, the
greater the difference in log probability between a
world that satisfies the formula and a world does
not. Formally, Markov logic network is defined as
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follows:

Definition 1 (Richardson & Domingos 2004) A
Markov logic network L is a set of pairs (𝐹𝑖, 𝑤𝑖),
where 𝐹𝑖 is a formula in first-order logic and 𝑤𝑖 is a
real number. Together with a finite set of constants
C = {𝑐1, 𝑐2, ..., 𝑐∣𝐶∣}, it defines a Markov network
𝑀𝐿,𝐶 as follows:

1. 𝑀𝐿,𝐶 contains one binary node for each pos-
sible grounding of each predicate appearing in
L. The value of the node is 1 if the ground pred-
icate is true, and 0 otherwise.

2. 𝑀𝐿,𝐶 contains one feature for each possible
grounding of each formula 𝐹𝑖 in L. The value
of this feature is 1 if the ground formula is true,
and 0 otherwise. The weight of the feature is
the 𝑤𝑖 associated with 𝐹𝑖 in L.

There is an edge between two nodes of 𝑀𝐿,𝐶 iff
the corresponding grounding predicates appear to-
gether in at least one grounding of one formula in
𝐿. An MLN can be regarded as a template for con-
structing Markov networks. From Definition 1 and
the definition of Markov networks, the probability
distribution over possible worlds 𝑥 specified by the
ground Markov network 𝑀𝐿,𝐶 is given by

𝑃 (𝑋 = 𝑥) =
1

𝑍
exp

(
𝐹∑

𝑖=1

𝑤𝑖𝑛𝑖(𝑥)

)
MLN weights can be learnt genera-

tively(Richardson and Domingos, 2006) or
discriminatively(Singla and Domingos, 2005). In
discriminative weight learning, ground atom set 𝐴
is partitioned into a set of evidence atoms 𝑋 and
a set of query atoms 𝑌 . The goal is to correctly
predict the latter given the former. In this paper, we
propose fuzzy discriminative weight learning which
can take the prior confidence of each evidence atom
into account.

Formally, we denote the ground formula set by
𝐹 . Suppose each evidence atom 𝑥 is given with a
prior confidence 𝑐𝑥 ∈ [0, 1], we define a confidence
function 𝜙 : 𝐹 → [0, 1] as follows. For each ground
atom 𝑎, if 𝑎 ∈ 𝑋 then we have 𝜙(𝑎) = 𝑐𝑎, else
𝜙(𝑎) = 1. For each ground non-atomic formulas, 𝜙
is defined on standard fuzzy operators, which are

𝜙(¬𝑓) = 1− 𝜙(𝑓)

𝜙(𝑓1 ∧ 𝑓2) = min(𝜙(𝑓1), 𝜙(𝑓2))

𝜙(𝑓1 ∨ 𝑓2) = max(𝜙(𝑓1), 𝜙(𝑓2))

We redefined the conditional likelihood of 𝑌
given 𝑋 as

𝑃 (𝑦∣𝑥) =
1

𝑍𝑥
exp

⎛⎝ ∑
𝑗∈𝐺𝑌

𝑤𝑗𝜙𝑗(𝑥, 𝑦)

⎞⎠
=

1

𝑍𝑥
exp

⎛⎝ ∑
𝑖∈𝐹𝑌

𝑤𝑖𝑛
′
𝑖(𝑥, 𝑦)

⎞⎠
Where 𝐺𝑌 is the set of ground formulas involving
query atoms, 𝐹𝑌 is the set of formulas with at least
one grounding involving a query atom and 𝑛

′
𝑖(𝑥, 𝑦)

is the sum of confidence of the groundings of the i th
formula involving query atoms. The gradient of the
conditional log-likelihood (CLL) is

∂

∂𝑤𝑖
log 𝑃𝑤(𝑦∣𝑥)

= 𝑛′
𝑖(𝑥, 𝑦)−

∑
𝑦′

𝑃𝑤(𝑦′∣𝑥)𝑛′
𝑖(𝑥, 𝑦′)

= 𝑛′
𝑖(𝑥, 𝑦)− 𝐸𝑤[𝑛′

𝑖(𝑥, 𝑦)] (1)

By fuzzy discriminative learning we can incorpo-
rate evidences of different confidence levels into one
learning framework. Fuzzy discriminative learn-
ing will reduce to traditional discriminative learning
when all prior confidences equal to 1.

4.2 Strict Patterns
In our question classification task, we find function
words are much more discriminative and less sparse
than content words. Therefore, we extract strict pat-
terns from function words and soft patterns from
content words. The definition of content and func-
tion words may vary with languages. In this paper,
nouns, verbs, adjectives, adverbs, numerals and pro-
nouns are regarded as content words and the rest are
function words.

The outline of strict pattern extraction is shown
in Alg. 1. In line 3, we build template 𝑡𝑚𝑝 by re-
moving punctuations and replacing each character
in each content word by a single dot. In line 4, we
generate patterns from the template as follows. First
we generate n-grams(n is between 2 and 𝑁 ) from
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Algorithm 1: Strict Pattern Extraction
Input: Question Set 𝑄 = {𝑞1, 𝑞2...𝑞𝑛},

Parameters 𝑀 and 𝑁
Output: Pattern Set 𝑃
Initialize Pattern Set 𝑃 ;1

for each Question 𝑞𝑖 do2

String 𝑡𝑚𝑝=ReplaceContentWords(𝑞𝑖,′.′);3

Pattern Set 𝑃𝑞𝑖=GeneratePatterns(𝑡𝑚𝑝,𝑁 );4

for each Pattern 𝑝 in 𝑃𝑞𝑖 do5

if 𝑝 in 𝑃 then6

UpdateTypeFreq(𝑝,𝑃 );7

else8

Add 𝑝 to 𝑃 ;9

Merge similar patterns in 𝑃 ;10

Sort 𝑃 by Information Gain on type11

frequencies;
return top 𝑀 Patterns in 𝑃 ;12

𝑡𝑚𝑝 during which each dot is treated as a character
of zero length. For coverage concern, if a gener-
ated n-gram 𝑔 is not start(end) with dot, we build
another n-gram 𝑔′ by adding a dot before(behind) 𝑔
and add both 𝑔 and 𝑔′ into n-gram set. Then for each
n-gram, we replace each consecutive dot sequence
by ’.*’ and the n-gram is transformed into a regular
expression. A example is shown in Tab. 3. Although
generated without exhaustively enumerating all pos-
sible word combinations, these regular expressions
can capture most long range dependencies between
function words.

Each pattern consists of a regular expression as
well as its frequency in each type of questions. Still

Question 在网上可以开通网银吗？
Can I launch online banking services

on internet?
Template 在..可以....吗
Patterns .*以.*吗 .*以.*吗.*
(𝑁=4) .*可以.* .*可以.*吗

.*可以.*吗.* .*在.*可以.*
.*在.*可以.*吗.* 在.*可.*
在.*可以.* 在.*可以.*吗
.*在.*可.*

Table 3: Strict patterns generated from a question

from Alg. 1, in line 5-9, if a pattern 𝑝 in question 𝑞𝑖

with type 𝑡 is found in 𝑃 , we just update the fre-
quency of 𝑡 in 𝑝, else 𝑝 is added to 𝑃 with only
freq. 𝑡 equals to 1. In line 10, we merge similar
patterns in 𝑃 . two patterns 𝑝1 and 𝑝2 are similar iff
∀q∈QmatchP(q,p1) ⇔ matchP(q,p2), in which
matchP is defined in Section 4.4.

Since a large number of patterns are generated,
it is unpractical to evaluate all of them by Markov
logic network. We sort patterns by information gain
and only choose top 𝑀 “good” patterns in line 11-12
of Alg. 1. A “good” pattern should be discriminative
and of wide coverage. The information gain IG of a
pattern 𝑝 is defined as

IG(𝑝) = 𝑃 (𝑝)
𝑚∑

𝑖=1

𝑃 (𝑡𝑖∣𝑝) log 𝑃 (𝑡𝑖∣𝑝)+

𝑃 (𝑝)
𝑚∑

𝑖=1

𝑃 (𝑡𝑖∣𝑝) log 𝑃 (𝑡𝑖∣𝑝)−
𝑚∑

𝑖=1

𝑃 (𝑡𝑖) log 𝑃 (𝑡𝑖)

in which 𝑚 is the number of question types, 𝑃 (𝑡𝑖) is
the probability of a question having type 𝑡𝑖, 𝑃 (𝑝)(or
𝑃 (𝑝)) is the probability of a question matching(or
not matching) pattern 𝑝. 𝑃 (𝑡𝑖∣𝑝)(or 𝑃 (𝑡𝑖∣𝑝)) is
the probability of a question having type 𝑡𝑖 given
the condition that the question matches(or does not
match) pattern 𝑝. These probabilities can be approx-
imately calculated by type and pattern frequencies
on training data. From the definition we can see
that information gain is suitable for pattern selec-
tion. The more questions a pattern 𝑝 matches and
the more unevenly the matched questions distribute
among questions types, the higher IG(𝑝) will be.

4.3 Soft Patterns

Apart from function words, content words are also
important in function-based question classification.
Content words usually contain topic information
which can be a good complement to function words.
Previous research on query classification(Jansen and
Booth, 2010) shows that user intents distribute un-
evenly among topics. Moreover, questions given by
users may be incomplete and contain not function
words. For these questions, we can only predict the
question types from topic information.

Compared with function words, content words
distribute much more sparsely among questions.
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When we represent topic information by content
words (or bi-grams), since the training set are small
and less frequent words (or bi-grams) are filtered
to prevent over-fitting, those features would be too
sparse to predict further unseen questions.

To solve this problem, we build soft patterns on
question set. Each question is represented by a
weighted vector of content bi-grams in which the
weight is bi-gram frequency. Cosine similarity is
used to compute the similarity between vectors.
Then we cluster question vectors using a simple
single-pass clustering algorithm(Frakes and Yates,
1992). That is, for each question, we compute its
similarity with each centroid of existing cluster. If
the similarity with nearest cluster is greater than
a minimum similarity threshold 𝜏1, we assign this
question to that cluster, else a new cluster is created
for this question.

Each cluster is defined as a soft pattern. Unlike
strict patterns, a question can match a soft pattern
to some extent. In this paper, the degree of match-
ing is defined as the cosine similarity between ques-
tion and centroid of cluster. Soft patterns are flexible
and could alleviate the sparseness of content words.
Also, soft patterns can be pre-filtered by information
gain described in 4.2 if necessary.

4.4 Implementation
Currently, we model patterns into MLN as follows.
The main query predicate is Type(q,t), which
is true iff question q has type t. For strict pat-
terns, the evidence predicate MatchP(q,p) is true
iff question q is matched by strict pattern p. The
confidence of MatchP(q,p) is 1 for each pair of
(q,p). For soft patterns, the evidence predicate
MatchC(q,c) is true iff the similarity of question
q and the cluster c is greater than a minimum simi-
larity requirement 𝜏2. If MatchC(q,c) is false, its
confidence is 1, else is the similarity between q and
c.

We represent the relationship between patterns
and types by a group of formulas below.

MatchP(q,+p)∧Type(q,+t) ∧
𝑡′ ∕=𝑡

¬Type(q,t’)

The “+p, +t” notation signifies that the MLN con-
tains an instance of this formula for each (pattern,
type) pair. For the sake of efficacy, for each pattern-

type pair (p,t), if the proportion of type t in ques-
tions matching p is less than a minimum require-
ment 𝜃, we remove corresponding formula from
MLN.

Similarly, we incorporate soft patterns by

MatchC(q,+c)∧Type(q,+t) ∧
𝑡′ ∕=𝑡

¬Type(q,t’)

Our weight learner use 𝑙1-regularization (Huynh
and Mooney, 2008) to select formulas and prevent
overfitting. A good property of 𝑙1-regularization is
its tendency to force parameters to exact zero by
strongly penalizing small terms (Lee et al., 2006).
After training, we can simply remove the formulas
with zero weights.

Formally, to learn weight for each formula, we
iteratively solve 𝑙1-norm regularized optimization
problem:

𝑃 : 𝑤∗ = arg max
𝑤

log 𝑃𝑤(𝑦∣𝑥)− 𝜆∥𝑤∥1

where ∥.∥1 is 𝑙1-norm and parameter 𝜆 controls the
penalization of non-zero weights. We implement the
Orthant-Wise Limited-memory Quasi-Newton algo-
rithm(Andrew and Gao, 2007) to solve this opti-
mization.

Since we do not model relations among questions,
the derived markov network 𝑀𝐿,𝐶 can be broken up
into separated subgraphs by questions and the gradi-
ent of CLL(Eq. 1) can be computed locally on each
subgraph as

∂

∂𝑤𝑖
log 𝑃𝑤(𝑦∣𝑥)

=
∑
𝑞

(
𝑛′

𝑖(𝑥𝑞, 𝑦𝑞)−𝐸𝑤[𝑛′
𝑖(𝑥𝑞, 𝑦𝑞)]

)
(2)

in which 𝑥𝑞 and 𝑦𝑞 are the evidence and query atoms
involving question 𝑞. Eq. 2 can be computed fast
without approximation.

We initialize formula weights to the same posi-
tive value 𝑤. Iteration started from uniform prior
can always converge to a better local maximum than
gaussian prior in our task.

5 Experiments

5.1 Data Preparation
To the best of our knowledge, there is not general
QA system(the system which can potentially answer
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all kinds of questions utilizing data from heteroge-
neous sources) released at present. Alteratively, we
test our methodology on cQA data based on obser-
vation that questions on cQA services are of var-
ious length, domain independent and wrote infor-
mally(even with grammar mistakes). General QA
systems will meet these challenges as well.

In our experiments, both training and test data
are from Chinese cQA services Baidu Zhidao and
Sina iAsk. To build training set, we randomly select
5800 frequent-asked questions from Baidu Zhidao.
A question is frequent-asked if it is lexically simi-
lar to at least five other questions. Then we ask 10
native-speakers to annotate these questions accord-
ing to question title and question description. If an
annotator cannot judge type from question title, he
can view the question description. If type can be
judged from the description, the question title will
be replaced by a sentence selected from it. If not,
this question will be labeled as Other.

Each question is annotated by two people. If a
question is labeled different types, another annotator
will judge it and make final decision. If this annota-
tor cannot judge the type, this question will also be
labeled as Other. As a result, disagreements show
up on eighteen percents of questions. After the third
annotator’s judgment, the distribution of each type
is shown in Fig. 1.

To examine the generalization capabilities, the
test data is composed of 700 questions randomly se-
lected from Baidu Zhidao and 700 questions from
Sina iAsk. The annotation process on test data is as
same as the one on training data.

5.2 Methods Compared and Results
We compare four methods listed as follows.

SVM with bi-grams. We extract bi-grams from
questions on training data as features. After filtering
the ones appearing only once, we collect 5700 bi-
grams. LIBSVM(Chang and Lin, 2001)is used as
the multi-class SVM classifier. All parameters are
adjusted to maximize the accuracy on test data. We
denote this method as “SB”;

MLN with bi-grams. To compare MLN and
SVM, we treat bi-grams as strict patterns. If a ques-
tion contain a bi-gram, it matches the corresponding
pattern. We set 𝑤 = 0.01, 𝜃 = 0.3 and 𝜆 = 0.3.
As a result, 5700 bi-grams are represented by 10485

formulas. We denote this method as “MB”;
MLN with strict patterns and bi-grams. We ask

two native-speakers to write strict patterns for each
type. The pattern writers can view training data for
reference and write any Java-style regular expres-
sions. Then we carefully choose 50 most reliable
patterns. To overcome the low coverage, We also
use the method described in Sec. 4.2 to automati-
cally extract strict patterns from training set. We first
select top 3000 patterns by information gain, merge
these patterns with hand-crafted ones and combine
similar patterns. Then we represent these patterns
by formulas and learn the weight of each formula by
MLN. After removing the formula with low weights,
we finally retain 2462 patterns represented by 3879
formulas. To incorporate content information, we
extract bi-grams from questions with function words
removed and remove the ones with frequency lower
than two. With bi-grams added, we get 8173 formu-
las in total. All parameters here are the same as in
“MB”. We denote this method as “MSB”;

MLN with strict patterns and soft patterns. To
incorporate content information, We cluster ques-
tions on training data with similarity threshold 𝜏1 =
0.4 and get 2588 clusters(soft patterns) which are
represented by 3491 formulas. We these soft pat-
terns with strict patterns extracted in “MSB”, which
add up to 7370 formulas. We set 𝜏2 = 0.02 and the
other parameters as same as in “MB”. We denote
this method as “MSS”;

We separate test set into easy set and difficult set.
A question is classified into easy set iff it contains
function-words. As a result, the easy set contains
1253 questions. We measure the accuracy of these
four methods on easy data and the whole test data.
The results are shown in Tab 4. From the results we
can see that all methods perform better on easy ques-
tions and MLN outperforms SVM using same bi-
gram features. Although MSS is inferior to MSB on

F. num Easy data All data
SB NA 0.724 0.685
MB 10485 0.722 0.692

MSB 8173 0.754 0.714
MSS 7370 0.752 0.717

Table 4: Experimental results on Chinese cQA data
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F L S R D N
Prec. 0.63 0.65 0.83 0.76 0.69 0.55

Recall 0.55 0.74 0.86 0.76 0.44 0.58
F1 0.59 0.69 0.84 0.76 0.54 0.56

Table 5: Precision, recall and F-score on each type

easy questions, it shows better overall performance
and uses less formulas.

We further investigate the performance on each
type. The precision, recall and F1-score of each type
by method MSS are shown in Tab. 5. From the re-
sults we can see that the performance on Solution
and Reason are significantly better than the others.
It is because the strict patterns for this two types are
simple and effective. A handful of patterns could
cover a wide range of questions with high precision.
It is difficult to distinguish Fact from List because
strict patterns for these two types are partly overlap
each other. Sometimes we need content information
to determine whether the answer is unique. Since
List appears more frequently than Fact on training
set, MLN tend to misclassify Fact to List which lead
to low recall of the former and low precision of the
latter. The recall of Definition is very low because
many definition questions on test set are short and
only consists of content words(e.g. a noun phrase).
This shortage could be remedied by building strict
patterns on POStagging sequence.

fraction lines, college entrance exam
分数，数线，高考，考分，录取，...

Fact: 56.4% List: 33.3% Solu.: 5.5%
lose weight, summer, fast

减肥，夏天，快速，速减，方法，...
Reas.: 53.8% Solu.: 42.3% List: 3.8%

TV series, interesting, recent
电视，视剧，好看，最近，最新，...

List: 84.0% Fact: 8.0% Navi.: 2.0%
converter, format, 3gp

转换，换器，3gp，mp4，格式，...
Navi.: 75% List: 18.8% Solu.: 6.2%

Table 6: Selected soft patterns on training data

5.3 Case Study on Soft Patterns

To give an intuitive illustration of soft patterns, we
show some of them clustered on training data in Tab.
6. For each soft pattern, we list five most frequent
bi-grams and its distribution on each type(only top 3
frequent types are listed).

From the results we can see that soft patterns are
consistent with our ordinary intuitions. For exam-
ple, if user ask a questions about “TV series”, he is
likely to ask for recommendation of recent TV series
and the question have a great chance to be List. If
user ask questions about “lose weight”, he probably
ask something like “How can I lose weight fast?” or
“Why my diet does not work?” . Thus the type is
likely to be Solution or Reason.

6 Conclusion and Future Work

We have proposed a new question taxonomy tai-
lored to general QA on heterogeneous sources.
This taxonomy provide indispensable information
for question distribution and answer summarization.
We build strict patterns and soft patterns to repre-
sent the information in function words and content
words. Also, fuzzy discriminative weight learning
is proposed for unifying strict and soft patterns into
Markov logic network.

Currently, we have not done anything fancy on the
structure of MLN. We just showed that under uni-
form prior and L1 regularization, the performance
of MLN is comparable to SVM. To give full play
to the advantages of MLN, future work will focus
on fast structure learning. Also, since questions on
online communities are classified into categories by
topic, we plan to perform joint question type infer-
ence on function-based taxonomy as well as topic-
based taxonomy by Markov logic. The model will
not only capture the relation between patterns and
types but also the relation between types in different
taxonomy.
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Abstract

Recurrent event queries (REQ) constitute a
special class of search queries occurring at
regular, predictable time intervals. The fresh-
ness of documents ranked for such queries is
generally of critical importance. REQ forms a
significant volume, as much as 6% of query
traffic received by search engines. In this
work, we develop an improved REQ classi-
fier that could provide significant improve-
ments in addressing this problem. We ana-
lyze REQ queries, and develop novel features
from multiple sources, and evaluate them us-
ing machine learning techniques. From histor-
ical query logs, we develop features utilizing
query frequency, click information, and user
intent dynamics within a search session. We
also develop temporal features by time series
analysis from query frequency. Other gener-
ated features include word matching with re-
current event seed words and time sensitiv-
ity of search result set. We use Naive Bayes,
SVM and decision tree based logistic regres-
sion model to train REQ classifier. The re-
sults on test data show that our models outper-
formed baseline approach significantly. Ex-
periments on a commercial Web search en-
gine also show significant gains in overall rel-
evance, and thus overall user experience.

1 Introduction

REQ pertains to queries about events which oc-
cur at regular, predictable time intervals, most often
weekly, monthly, annually, bi-annually, etc. Natu-
rally, users issue REQ periodically. REQ usually re-
fer to:

Organized public events such as festivals, confer-
ences, expos, sports competitions, elections: winter
olympics, boston marathon, the International Ocean
Research Conference, oscar night.

Public holidays and other noteworthy dates: labor day,
date of Good Friday, Thanksgiving, black friday.

Products with annual model releases, such as car models:
ford explorer, prius.

Lottery drawings: California lotto results.
TV shows and programs which are currently running:

American idol, Inside Edition.
Cultural related activities: presidential election, tax re-

turn, 1040 form.
Our interest in studying REQ arises from the chal-
lenge imposed on Web search ranking. To illustrate
this, we show an example in Fig. 1 that snapshots
the real ranking results of the query,EMNLP, is-
sued in 2010 when the authors composed this pa-
per, on Google search engine. It is obvious the
ranking is not satisfactory because the page about
EMNLP2008is on the first position in 2010. Ide-
ally, the page aboutEMNLP2010on the 6th position
should be on the first position even if users don’t
explicitly issue the query,EMNLP 2010, because
EMNLP is a REQ. The query, “EMNLP”, implic-
itly, without a year qualifier, needs to be served the
most recent pages about “EMNLP”.

A better search ranking result cannot be achieved
if we do not categorize “EMNLP” as a REQ, and
provide special ranking treatment to such queries.
Existing search engines adopt a fairly involved rank-
ing algorithm to order Web search results by con-
sidering many factors. Time is an important fac-
tor but not the most critical. The page’s rank-
ing score mostly depends on other features such
as tf-idf (Salton and McGill, 1983), BM25 (Jones
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Figure 1: A real problematic ranking result by Google for
a REQ query, “EMNLP”. The EMNLP2010 page should
be on the 1st position.

et al., 2000), anchor text, historical clicks, pager-
ank (Brin and Page, 1998), and overall page qual-
ity. New pages about EMNLP2010 obtain less fa-
vorable feature values than the pages of 2009 earlier
in terms of anchor text, click or pagerank because
they have existed for a shorter time and haven’t ac-
cumulated sufficient popularity to make them stand
out. Without special treatment, the new pages about
“EMNLP2010” will typically not be ranked appro-
priately for the users.

Typically, a recurrent event is associated with a
root, and spawns a large set of queries. Oscar,
for instance, is a recurrent event about the annual
Academy Award. Based on this, queries like “oscar
best actress”, “oscar best dress”, “oscar best movie
award”, are all recurrent event queries. As such,
REQ is a highly frequent category of query in Web
search. By Web search query log analysis, we ob-
serve that there about 5-6% queries of total query
volume belongs to this category.

In this work, we learn if a query is in the REQ
class, by effectively combining multiple features.
Our features are developed through analysis of his-
torical query logs. We discuss our approaches in de-

tail in Section 3. We then develop a REQ classi-
fier where all the features are integrated by machine
learning models. We use Naive Bayes, SVM and de-
cision tree based logistic regression models. These
models are described in Section 4. Our experiments
for REQ classifier and Web search ranking are de-
tailed in Section 5 and 6.

2 Related Work

We found our work were related to two other prob-
lems: general query classification and time-sensitive
query classification. For general query classifica-
tion, the task is to assign a Web search query to
one or more predefined categories based on its top-
ics. In the query classification contest in KDD-
CUP 2005 (Li et al., 2005), seven categories and
67 sub-categories were defined. The winning so-
lution (Shen et al., 2005) used multiple classifiers
integrated by ensemble method. The difficulties for
query classification are from short queries, lack of
labeled data, and query sense ambiguity. Most pop-
ular studies use query log, web search results, unla-
beled data to enrich query classification (Shen et al.,
2006; Beitzel et al., 2005), or use document classifi-
cation to predict query classification (Broder et al., ).
General query classification is also studied for query
intent detection by (Li et al., 2008).

There are many prior works to study the time sen-
sitivity issue in web search. For example, Baeza-
Yateset al. (Baeza-Yates et al., 2002) studied the re-
lation between the web dynamics, structure and page
quality, and demonstrated that PageRank is biased
against new pages. In T-Rank Light and T-Rank al-
gorithms (Berberich et al., 2005), both activity (i.e.,
update rates) and freshness (i.e., timestamps of most
recent updates) of pages and links are taken into ac-
count for link analysis. Choet al. (Cho et al., 2005)
proposed a page quality ranking function in order to
alleviate the problem of popularity-based ranking,
and they used the derivatives of PageRank to fore-
cast future PageRank values for new pages. Pandey
et al. (Pandey et al., 2005) studied the tradeoff be-
tween new page exploration and high-quality page
exploitation, which is based on a ranking method to
randomly promote some new pages so that they can
accumulate links quickly.

More recently, Donget al. (Dong et al., 2010a)
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proposed a machine-learned framework to improve
ranking result freshness, in which novel features,
modeling algorithms and editorial guideline are used
to deal with time sensitivities of queries and doc-
uments. In another work (Dong et al., 2010b), they
use micro-blogging data (e.g., Twitter data) to detect
fresh URLs. Novel and effective features are also
extracted for fresh URLs so that ranking recency in
web search is improved.

Perhaps the most related work to this paper is
the query classification approach used in (Zhang
et al., 2009) and (Metzler et al., 2009), in which
year qualified queries (YQQs) are detected based
on heuristic rules. For example, a query contain-
ing a year stamp is an explicit YQQ; if the year
stamp is removed from this YQQ, the remaining part
of this query is also a YQQ, which is called im-
plicit YQQ. Different ranking approaches were used
in (Zhang et al., 2009) and (Metzler et al., 2009)
where (Zhang et al., 2009) boosted pages of the most
latest year while (Metzler et al., 2009) promoted
pages of the most influential years. Similarly, Nunes
et al. (Nunes, 2007) applied information extraction
techniques to identify temporal expression in web
search queries, and found 1.5% of queries contain-
ing temporal expression.

Dong et al. (Dong et al., 2010a) proposed a
breaking-news query classifier with high accuracy
and reasonable coverage, which works not by mod-
eling each individual topic and tracking it over time,
but by modeling each discrete time slot, and compar-
ing the models representing different time slots. The
buzziness of a query is computed as the language
model likelihood difference between different time
slots. In this approach, both query log and news
contents are exploited to compute language model
likelihood.

Diaz (Diaz, 2009) determined the newsworthiness
of a query by predicting the probability of a user
clicks on the news display of a query. In this frame-
work, the data sources of both query log and news
corpus are leveraged to compute contextual features.
Furthermore, the online click feedback also plays a
critical role for future click prediction.

Konig et al. (Knig et al., 2009) estimated the
click-through rate for dedicated news search result
with a supervised model, which is to satisfy the
requirement of adapting quickly to emerging news

event. Some additional corpora such as blog crawl
and Wikipedia is used for buzziness inference. Com-
pared with (Diaz, 2009), different feature and learn-
ing algorithms are used.

Elsaset al. (Elsas and Dumais, 2010) studied
improving relevance ranking by detecting document
content change to leverage temporal information.

3 Feature Generation

To better understand our work, we first introduce
three terms. We subdivide all raw queries in query
log into three categories: Explicit Timestamp, Im-
plicit Timestamp, and No Timestamp. An Explicit
Timestamp query contains at least one token being a
time indicator. For example,emnlp 2010, 2007 De-
cember holiday calendar, amsterdam weather sum-
mer 2009, Google Q1 reports 2010. These queries
are considered to conatin time indicators, because
we can regard{2010, 2007, 2009} as year indica-
tor, decemberasmonthindicator,{summer, Q1(first
quarter)} as seasonalindicator. To simplify our
work, we only consider theyear indicators,2010,
2007, 2009. Suchyear indicators are also the most
important and most popular indicators, as noted in
(Zhang et al., 2009). Any query containing at least
oneyear indicator is an Explicit Timestamp query.
Due to word sense ambiguity, some queries labeled
as Explicit Timestamp by this method may have no
connection with time such asWindows Office 2007,
2010 Sunset Boulevard, or call number 2008. In this
work, we tolerate this type of error because word
sense disambiguation is a peripheral problem for this
task.

Implicit Timestamp queries are resulted by re-
moving all year indicators from the corresponding
Explicit Timestamp queries. For example, the Im-
plicit Timestamp query ofemnlp 2010is emnlp.
All other queries are No Timestamp queries because
they have never been found together with ayear in-
dicator.

Classifying queries into the above three cate-
gories depends on the used query log. A search
engine company partner provided us a query log
from 08/01/2009 to 02/29/2010 for this research.
We found the proportions of the three categories
in this query log are 13.8% (Explicit), 17.1% (Im-
plicit) and 69.1% (No Timestamp). These numbers
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could be slightly different depending on the source
of query logs. Note that 17.1% of Implicit Times-
tamp queries in the query log is a significant num-
ber. However, not all Implicit Timestamp queries
are REQ. Many Implicit Timestamp queries have no
time sense. They belong to Implicit Timestamp just
because users issued the query with ayear indica-
tor through varied intents. For example, “google” is
found to be an Implicit Timestamp query since there
were many “google 2008” or “google 2009” in the
query log.

The next few sections introduce our work in rec-
ognizing recurrent event time sense for Implicit
Timestamp queries. We first focus on features.
There are many features that were exploited in REQ
classifier. We extract these features from query log,
query session log, click log, search results, time se-
ries and NLP morphological analysis.

3.1 Query log analysis

The following features are extracted from query log
analysis:
QueryDailyFrequency: the total counts of the
query divided by the number of the days in the pe-
riod.
ExplicitQueryRatio: Ratio of number of counts
query was issued with year and number of counts
query was issued with or without year. This feature
is the method used by (Zhang et al., 2009).
UniqExplicitQueryCount: Number of uniq Ex-
plicit Timestamp queries associated with query. For
example, if a query was issued with query+2009 and
query+2008, this feature’s value is two.
ChiSquareYearDist: this feature is the distance be-
tween two distributions: one is frequency distribu-
tion over years for all REQ queries. The other is
that for single REQ query. It is calculated through
following steps: (a) Aggregate the frequencies for
all queries for all years. Suppose we observe all
years from 2001 to 2010. So we can get vector,
E = ( a f10

sum1 ,
a f09
sum1 , ...,

a f01
sum1) wherea fi is the frequency

sum of year 20i for all REQ queries. sum1 =
a f10 + a f09 + ... + a f01, the sum of all year fre-
quency. (b) Given a query, suppose we observe
this query’s yearly frequency distribution is ,Oq

=

(q f10, q f09, , ..., q f01). q fi is this query’s frequency
for the year 20i. Pad the slot with zeros if no fre-
quency found. The expected distribution for this

query is, Eq
= ( sum2∗a f10

sum1 ,
sum2∗a f09

sum1 , ...,
sum2∗a f01

sum1 ),
where sum2 = q f10 + q f09 + ... + q f01 is sum of
all year frequency for the query. (d) Calculate CHI-
squared value to represent the different yearly fre-
quency distribution betweenEq andOq according to

χ2
=
∑N

i=1
(Oq

i −Eq
i )2

Eq
i

. Using CHI square distance as a

method is widely used for statistical hypothesis test.
We found it to be a useful feature for REQ classifier.

3.2 Query reformulation

If users cannot find the newest page by issuing Im-
plicit Timestamp query, they may re-issue the query
using an Explicit Timestamp query. We can detect
this change in a search session (a 30 minutes period
for each query). By finding this kind of behavior
from users, we next extract three features.
UserSwitch: Number of unique users that switched
from Implicit Timestamp queries to Explicit Times-
tamp queries.
YearSwitch: Number of unique year-like tokens
switched by users in a query session.
NormalizedUserSwitch: Feature UserSwitch di-
vided by QueryDailyFrequency.

3.3 Click log analysis

If a query is time sensitive, users may click a
page that displays the year indicator on title or
url. An example that shows year indicator on
url is www.lsi.upc.edu/events/emnlp2010/call.html.
Search engine click log saves all users’ click infor-
mation. We used click log to derive the following
features.
YearUrlTop5CTR: Aggregated click through rate
(CTR) of all top five URLs containing a year in-
dicator. CTR of an URL is defined as the number
of clicks of an URL divided by the number of page
views.
YearUrlFPCTR: Aggregated click through rate
(CTR) of all first page URLs containing a year in-
dicator.

3.4 Search engine result set

For each Implicited Timestamp query, we can scrape
the search engine to get search results. We count the
number of titles and urls that contain year indicator.
We use this number as a feature, and generate 6 fea-
tures.
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TitleYearTop5: the number of titles containing a
year indication on the top 5 results. This value is
4 in Fig. 1.
TitleYearTop10: the number of titles containing a
year indication on the top 10 results. This value is 6
in Fig. 1.
TitleYearTop30: the number of titles containing a
year indication on the top 30 results.
UrlYearTop5: the number of urls containing a year
indication on the top 5 results. This value is 1 in
Fig. 1.
UrlYearTop10: the number of urls containing a year
indication on the top 10 results.
UrlYearTop30: the number of titles containing a
year indication on the top 30 results.

3.5 Time series analysis

Recurrent event query has periodic occurrence pat-
tern in time series. Top graph of Figure 2 shows the
frequency change of the query, “Oscar”. The annual
event usually starts from Oscar nomination as ear-
lier as last year December to award announcement
of February this year. So a small spike and a big
spike are observed in the graph to indicate nomina-
tion period and ceremony period. There are a period
of silence between the two periods. The frequency
pattern keeps unchanged each year. We show three
years (2007,8,9) in the graph. By making use of re-
current event queries’ periodic properties, we calcu-
lated the query period as a new feature.

We use autocorrelation to calculate the period.

R(τ) =

∑N−τ
t=1 (xt − µ)(xt+τ − µ)

{
∑N−τ

t=1 (xt − µ)2(xt+τ − µ)2}1/2

wherex(t) is query daily frequency.N is the num-
ber of days used for this query. We can get maxi-
mum of 3 years data for some queries but only a few
months for others.R(τ) is autocorrelation function.
Peaks (the local biggestR(τ) given a time window)
can be detected fromR(τ) plot. The periodT is cal-
culated as the duration between two neighbor peaks.
T = 365 for the query, “Oscar”. The bottom graph
of Fig. 2 shows the autocorrelation function plot for
the query Oscar.

3.6 Recurrent event seed word list

Many recurrent event queries share some common
words that have recurrent time sense. We list most

new results top schedule
football festival movie world
show day best tax
result calendar honda ford

download exam nfl miss
awards toyota tour sale

american fair list pictures
election game basketball cup

Table 1: Top recurrent event seed words

frequently used recurrent seeds in Table 1. Those
seeds are likely combined with other words to form
new recurrent event queries. For example, the seed,
“new”, can be used by queries “new bmw cars”,
“whitney houston new songs”, “apple new iphone”,
or “hairstyle new”.

To generate the seed list, we tokenized all the
queries from Implicit Timestamp queries and split
all the tokens. We then sort and unique all the to-
kens, and submit top tokens to professional editors
who are asked to pick 8,000 seeds from the top fre-
quent tokens. Some top tokens were removed if they
are not qualified to form recurrent event queries. The
editors took about four days to do the judgment ac-
cording to the token’s time sense and examples of
recurrent event queries. However, this is a one-time
effort. A token will be in the seed if there are many
recurrent event examples formed by this token, by
editors’ judgment.

Table 1 shows 32 top seeds. Some seeds connect
with time such as, “new, schedule, day, best, calen-
dar”; some relate to sports, “football, game, nfl, tour,
basketball, cup”; some about cars, “honda, ford, toy-
ota”. The reason why “miss” is in the seeds is that
there are many annual events about beauty contest
such as “miss america, miss california, miss korea”.

We use the seed list to generate the following
three features:
AveNumberTokensSeeds: number of tokens that is
in the seed list divided by number of tokens in the
query.
AveNumberTokensNotSeeds: number of tokens
that is not in the seed list divided by number of to-
kens in the query.
DiffNumberTokensSeeds: The difference of the
above two values.
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Figure 2: Frequency waveform(top) and corresponding autocorrelation curve (bottom) for queryOscar.

4 Learning Approach for REQ

The REQ classification is a typical machine learn-
ing task. GivenM observed samples used for train-
ing data,{(x0, y0), (x1, y1), · · · , (xM, yM)} wherexi is
a feature vector we developed in last section for a
given query. yi is the observation value,{+1,−1},
indicating the class of REQ and non-REQ. The task
is to find the class probability given an unknown fea-
ture vector,x′, that is,

p(y = c|x′), c = +1,−1. (1)

There are a lot of machine learning methods ap-
plicable to implement Eq. 1. In this work, we
adopted three representative methods.

The first method is Naive Bayes method. This
method treats features independent. Ifx is enx-
tended into feature vector,x = {x0, x1, · · · , xN} then,

p(y = c|x) =
1
Z

p(c)
i=N∏

i=0

p(xi |c)

The second method is SVM. In this work we used
the tool for our experiments, LIBSVM (Chang and
Lin, 2001). Because SVM is a well known approach
and widely used in many classification task, we skip
to describe how to use this tool. Readers can turn to
the reference for more details.

The third method is based on decision tree based
logistic regression model. The probability is given
by the formula below,

p(y = c|x) =
1

1+ e− f (x)
(2)

We employ Gradient Boosted Decision Tree algo-
rithm (Friedman, 2001) to learn the functionf (X).
Gradient Boosted Decision Tree is an additive re-
gression algorithm consisting of an ensemble of
trees, fitted to current residuals, gradients of the loss
function, in a forward step-wise manner. It itera-
tively fits an additive model as

ft(x) = Tt(x;Θ) + λ
T∑

t=1

βtTt(x;Θt)

such that certain loss functionL(yi , fT(x + i)) is
minimized, whereTt(x;Θt) is a tree at iterationt,
weighted by parameterβt, with a finite number of
parameters,Θt andλ is the learning rate. At iteration
t, treeTt(x; β) is induced to fit the negative gradient
by least squares.
The optimal weights of treesβt are determined by

βt = argminβ

N∑

i

L(yi , ft−1(xi) + βT(xi , θ))

Each node in the trees represents a split on a fea-
ture. The tuneable parameters in such a machine-
learnt model include the number of leaf nodes in
each tree, the relative contribution of score from
each tree called the shrinkage, and total number of
shallow decision trees.

The relative importance of a featureSi , in such
forests of decision trees, is aggregated over all the
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m shallow decision trees (Breiman et al., 1984) as
follows:

S2
i =

1
M

M∑

m=1

L−1∑

n=1

wl ∗ wr

wl + wr
(ylyr )

2I (vt = i) (3)

wherevt is the feature on which a split occurs,yl

andyr are the mean regression responses from the
right, and left sub-tree, andwl andwr are the corre-
sponding weights to the means, as measured by the
number of training examples traversing the left and
right sub-trees.

5 REQ Learner Evaluation

We collected 6,000 queries labeled as either Recur-
rent or Non-recurrent by professional human edi-
tors. The 6,000 queries were sampled from Implicit
Timestamp queries according to frequency distribu-
tion to be representative. We split the queries into
5,000 for training and 1,000 for test. For each query,
we calculated features’ values as described in Sec-
tion 3.

The Naive Bayes method used single Gaussian
function for each independent feature. Mean and
variance were calculated from the training data.

As for LIBSVM, we used C-SVC, linear function
as kernel and 1.0 of shrinkage.

The parameters used in the regression model were
20 of trees, 20 of nodes and 0.8 of learning rate
(shrinkage).

The test results are shown in Fig. 3, recall-
precision curve. We set a series of threshold to the
probability of c = +1 calculated by Eq. 1 so that
we can get the point values of recall and precision in
Fig. 3. For example, if we set a threshold of 0.6, a
query with a probability larger than 0.6 is classified
as REQ. Otherwise, it is non-REQ. The precision
is a measure of correctly classified REQ queries di-
vided by all classified REQ queries. The recall is a
measure of correctly classified REQ queries divided
by all REQ queries in test data.

In addition to the three plots, we also show the
results using only one feature, ExplicitQueryRatio,
for comparison with the classification method used
by (Zhang et al., 2009).All the three models us-
ing all features performed better than the existing
method using ExplicitQueryRatio. The highest im-
provement was achieved by GBDT regression tree
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Figure 3: Comparison of precision and recall rate be-
tween our method and the existing method.

model. The results of Naive Bayes were lower than
SVM and GBDTree. This model is weaker because
it treats features independently. Typically SVMs and
GBDT gives comparable results on a large class of
problems. Since for this task we use features from
different sources, the feature values are designed to
have larger dynamic range, which is better handled
by GBDT.

The features’ importance ranked by Equation 3
is shown in Table 2. We list the top 10 features.
The No.1 important feature is ExplicitQueryRatio.
The second and seventh features are from search ses-
sion analysis by counting users who changed queries
from Implicit Timestamp to Explicit Timestamp.
This is a strong source of features. The time se-
ries analysis feature is ranked No.3. Calculation of
this feature needs two years query log to be much
more effective, but we didn’t get so large data for
many queries. One of the features from recurrent
event seed list is ranked No.4. This is also an impor-
tant feature source. The ChiSquareYearDist feature
is ranked 5th, that proves the recurrent event query
frequency has a statistical distribution pattern over
years. TitleYearTop30 and TitleYearTop10 that are
derived from scraping results are ranked the 9th and
10th important.

Fig. 4 shows the distribution of feature values for
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Feature Rank Score
ExplicitQueryRatio 1 100
NormalizedUserSwitch 2 71.7
AutoCorrelation 3 54.0
AveNumberTokenSeeds 4 48.7
ChiSquareYearDist 5 36.3
YearUrlFPCTR 6 19.1
UserSwitch 7 11.7
QueryDailyFreq 8 10.7
TitleYearTop30 9 10.6
TitleYearTop10 10 5.8

Table 2: Top 10 most important features: rank and im-
portance score (100 is maximum)
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Figure 4: Feature value distribution of all data
(blue=REQ, red=non-REQ)

each sample of the 6,000 data, where each point rep-
resents a query and each line represents a feature’s
value for all queries. One point is a query. The fea-
tures are ordered according to feature importance of
Table 2. The “blue” points indicate REQ queries and
the “red” points, non-REQ queries. Some features
are continuous like the 1st and 2nd. Some feature
values are discrete like the last two indicating Ti-
tleYearTop30 and TitleYearTop10. There are “red”
samples in the 4th feature but overlapped with and
covered by “blue” samples visually.

In the Table 3, we show F-Measure values as we
gradually added features from the feature, Explicit-
QueryRatio, according to feature importance in Ta-
ble 2. We listed the F-Measure values under three
threshold, 0.6, 0.7 and 0.8. Higher threshold will in-
crease classifier precision rate but reduce recall rate.
F-Measure is a metric combining precision rate and
recall rate. It is clearly observed that the classifier
performance is improved as more features are used.

Threshold
Feature 0.6 0.7 0.8
ExplicitQueryRatio 0.833 0.833 0.752
+NormalizedUserSwitch 0.840 0.837 0.791
+AutoCorrelation 0.850 0.839 0.823
+AveNumberTokenSeeds 0.857 0.854 0.834
+ChiSquareYearDist 0.857 0.864 0.839
+YearUrlFPCTR 0.869 0.867 0.837
+UserSwitch 0.862 0.862 0.846
+QueryDailyFreq 0.860 0.852 0.847
+TitleYearTop30 0.854 0.853 0.843
+TitleYearTop10 0.858 0.861 0.852
+All 0.876 0.867 0.862

Table 3: F-Measures as varying thresholds by adding top
features.

Query Probability
ncaa men’s basketball tournament 0.999
bmw 328i sedan reviews 0.999
new apple iphone release 0.932
sigir 0.920
new york weather in april 0.717
academy awards reviews 0.404
google ipo 0.120
adidas jp 0.082

Table 4: Probabilities of example queries by GBDT tree
classifier

Some query examples, and their scores from our
model are listed in Table 4. The last two exam-
ples,google ipoandadidas jp, have very low values,
and are not REQs. The first four queries are typical
REQs. They have higher values of features Explicit-
QueryRatio,Normalized UserSwitch and YearUrlF-
PCTR. Although bothnew apple iphone release re-
views and academy awards reviewsare about re-
views, academy awards reviewshas lower value
of NormalizedUserSwitch and ChiSquareYearDist
could be the reason for a lower score.

6 Web Search Ranking

In this section, we use the approach proposed
by (Zhang et al., 2009) to test the REQ classifier
for Web search ranking. In their approach, search
ranking is altered by boosting pages with most re-
cent year if the query is a REQ. The year indicator
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DCG@5 DCG@1
bucket #(query) Organic Our’s % over Organic Organic Ours % over Organic

[0.0,0.1] 59 6.87 6.96 1.48(-2.3) 4.08 4.19 2.69(-1.07)
[0.1,0.2] 76 5.86 6.01 2.52(0.98) 2.88 2.91 1.14(1.69)
[0.2,0.3] 85 6.33 6.41 1.24(2.12) 3.7 3.7 0.0(0.8)
[0.3,0.4] 75 5.18 5.24 1.18(-0.7) 2.92 2.95 1.14(1.37)
[0.4,0.5] 78 4.96 4.82 -2.84(-1.35) 2.5 2.42 -3.06(0)
[0.5,0.6] 84 5.4 5.37 -0.45(-0.3) 2.82 2.85 1.05(-1.5)
[0.6,0.7] 78 4.78) 5.19) 8.42(3.64) 2.56 2.83 10.75(4.1)
[0.7,0.8] 80 4.45 4.60 3.41(3.19) 2.21 2.26 1.98(2.8)
[0.8,0.9] 78 4.81 4.96 3.15(4.79) 2.32 2.33 0.55(0.65)
[0.9,1.0] 107 5.08 5.50 8.41*(4.41) 2.64 3.09 16.78*(1.36)

[0.0,1.0] 800 5.33 5.47 2.74*(2.17) 2.83 2.93 3.6*(1.26)

Table 5: REQ learner improves search engine organic results. The numbers in the brackets are by Zhang’s methods.
Direct comparison with Zhang’s method is valid only in the last line, using all queries. A sign “∗” indicates statistical
significance (p-value<0.05)

can be detected either from title or URL of the re-
sult. For clarity, we re-write their ranking function
as below,

F(q, d) = R(q, d) + [e(do, dn) + k]eλα(q)

where the ranking function,F(q, d), consists of
two parts: the base functionR(q, d) plus boosting.
If the queryq is not a REQ, boosting is set to zero.
Otherwise, boosting is decided bye(do, dn), k, λ and
α(q). e(do, dn) is the difference of base ranking score
between the oldest page and the newest page. If the
newest page has a lower ranking score than the old-
est page, then the difference is added to the newest
page to promote the ranking of the newest page.
α(q) is the confidence score of a REQ query. It is

the value of Eq. 1.λ andk are two empirical param-
eters. (Zhang et al., 2009)’s work has experimented
the effects of using different value ofλ andk (λ = 0
equals to no discounts for ranking adjustment). We
usedλ = 0.4 andk = 0.3 which were the best con-
figuration in (Zhang et al., 2009).

For evaluating our methods, we randomly ex-
tracted 800 queries from the Implicit Timestamp
queries. We scraped a commercial search engine us-
ing the 800 queries. We extracted the top five search
results for each query under three configures: or-
ganic search engine results, (Zhang et al., 2009)’s
method and ours using REQ classifier. We asked

human editors to judge all the scraped (query, url)
pairs. Editors assign five grades according to rel-
evance between query and articles: Perfect, Excel-
lent, Good, Fair, and Bad. For example, a “Perfect”
grade means the content of the url match exactly the
query intent.

We use Discounted Cumulative Gain
(DCG) (Jarvelin and Kekalainen, 2002) at rankk as
our primary evaluation metrics to measure retrieval
performance. DCG is defined as,

DCG@k =
k∑

i=1

2r(i) − 1
log2(1+ i)

wherer(i) ∈ {0 . . . 4} is the relevance grade of theith
ranked document.

The Web search ranking results are shown in Ta-
ble 5. We used GBDT tree learning methods be-
cause it achieved the best results. We divided 800
test queries into 10 buckets according to the classi-
fier probability. The bucket, [0.0,0.1], contains the
query with a classifier probability greater than 0 but
less than 0.1. Our results are compared with organic
search results, but we also show the improvements
over search organic by (Zhang et al., 2009) in the
brackets. Because Zhang’s approach output differ-
ent classifier values from Ours for the same query,
buckets of the same range in the Table contain dif-
ferent queries. Hence, it is inappropriate to compare
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Zhang’s with Ours for the same buckets except the
last row where we used all the queries.

Our classifier’s overall performance is much bet-
ter than the organic search results. We achieved
2.74% DCG@5 gain and 3.6% DCG@1 gain over
organic search for all queries. The gains are higher
than (Zhang et al., 2009)’s results with regards to
improvement over organic results. By direct com-
parison, Ours was 2.7% better than Zhangs signif-
icantly in terms of DCG@1 by Wilcoxon signifi-
cant test. DCG@5 is 1.1% better, but not signifi-
cant. The table also show that the higher buckets
with higher probability achieved higher DCG gain
than the lower buckets overall. Our approach ob-
served 16.78% DCG@1 gain for bucket [0.9,1.0].
This shows that our methods are very effective.

7 Conclusions

We found most of REQ are long tail queries that
pose a major challenge to Web search. We have
demonstrated learning REQ is important for Web
search. this type of queries can’t be solved in tra-
ditional ranking method. We found building a REQ
classifier was a good solution. Our work described
using machine learning method to build REQ clas-
sifier. Our proposed methods are novel compar-
ing with traditional query classification methods.
We identified and developed features from query
log, search session, click and time series analysis.
We applied several ML approaches including Naive
Bayes, SVM and GBDT tree to implement REQ
learner. Finally, we show through ranking experi-
ments that the methods we proposed are very effec-
tive and beneficial for search engine ranking.
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Abstract

With the proliferation of user-generated arti-
cles over the web, it becomes imperative to de-
velop automated methods that are aware of the
ideological-bias implicit in a document col-
lection. While there exist methods that can
classify the ideological bias of a given docu-
ment, little has been done toward understand-
ing the nature of this bias on a topical-level. In
this paper we address the problem of modeling
ideological perspective on a topical level using
a factored topic model. We develop efficient
inference algorithms using Collapsed Gibbs
sampling for posterior inference, and give var-
ious evaluations and illustrations of the util-
ity of our model on various document collec-
tions with promising results. Finally we give a
Metropolis-Hasting inference algorithm for a
semi-supervised extension with decent results.

1 Introduction

With the avalanche of user-generated articles over
the web, it is quite important to develop models that
can recognize the ideological bias behind a given
document, summarize where this bias is manifested
on a topical level, and provide the user with alter-
nate views that would help him/her staying informed
about different perspectives. In this paper, we fol-
low the notion of ideology as defines by Van Dijk
in (Dijk, 1998) as “a set of general abstract beliefs
commonly shared by a group of people.” In other
words, an ideology is a set of ideas that directs one’s
goals, expectations, and actions. For instance, free-
dom of choice is a general aim that directs the ac-
tions of“liberals”, whereas conservation of values is
the parallel for “conservatives”.

We can attribute the lexical variations of the word
content of a document to three factors:

• Writer Ideological Belief. A liberal writer
might use words like freedom and choice re-
gardless of the topical content of the document.
These words define the abstract notion of be-
lief held by the writer and its frequency in the
document largely depends on the writer’s style.

• Topical Content. This constitutes the main
source of the lexical variations in a given docu-
ment. For instance, a document about abortion
is more likely to have facts related to abortion,
health, marriage and relationships.

• Topic-Ideology Interaction. When a liberal
thinker writes about abortion, his/her abstract
beliefs are materialized into a set of concrete
opinions and stances, therefore, we might find
words like: pro-choice and feminism. On the
contrary, a conservative writer might stress is-
sues like pro-life, God and faith.

Given a collection of ideologically-labeled docu-
ments, our goal is to develop a computer model that
factors the document collection into a representation
that reflects the aforementioned three sources of lex-
ical variations. This representation can then be used
for:

• Visualization. By visualizing the abstract no-
tion of belief in each ideology, and the way
each ideology approaches and views main-
stream topics, the user can view and contrast
each ideology side-by-side and build the right
mental landscape that acts as the basis for
his/her future decision making.
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• Classification or Ideology Identification.
Given a document, we would like to tell the
user from which side it was written, and ex-
plain the ideological bias in the document at a
topical level.

• Staying Informed: Getting alternative
views1. Given a document written from per-
spective A, we would like the model to provide
the user with other documents that represent al-
ternative views about the same topic addressed
in the original document.

In this paper, we approach this problem using
Topic Models (Blei et al., 2003). We introduce a
factored topic model that we call multi-view Latent
Dirichlet Allocation or mview-LDA for short. Our
model views the word content of each document as
the result of the interaction between the document’s
idealogical and topical dimensions. The rest of this
paper is organized as follows. First, in Section 2,
we review related work, and then present our model
in Section 3. Then in Section 4, we detail a col-
lapsed Gibbs sampling algorithm for posterior infer-
ence. Sections 5 and 6 give details about the dataset
used in the evaluation and illustrate the capabilities
of our model using both qualitative and quantitative
measures. Section 7 describes and evaluates the ef-
ficacy of a semi-supervised extension, and finally in
Section 8 we conclude and list several directions for
future research.

2 Related Work

Ideological text is inherently subjective, thus our
work is related to the growing area of subjectiv-
ity analysis(Wiebe et al., 2004; Riloff et al., 2003).
The goal of this area of research is to learn to dis-
criminate between subjective and objective text. In
contrast,in modeling ideology, we aim toward con-
trasting two or more ideological perspectives each of
which is subjective in nature. Further more, subjec-
tive text can be classified into sentiments which gave
rise to a surge of work in automatic opinion min-
ing (Wiebe et al., 2004; Yu and Hatzivassiloglou,
2003; Pang et al., 2002; Turney and Littman, 2003;
Popescu and Etzioni, 2005) as well as sentiment

1In this paper, we use the words ideology, view, perspective
interchangeably to denote the same concept

analysis and product review mining (Nasukawa and
Yi, 2003; Hu and Liu, 2004; Pang and Lee, 2008;
Branavan et al., 2008; Titov and McDonald, 2008;
Titov and McDonald, 2008; Mei et al., 2007; Ling
et al., 2008). The research goal of sentiment anal-
ysis and classification is to identify language used
to convey positive and negative opinions, which dif-
fers from contrasting two ideological perspectives.
While ideology can be expressed in the form of a
sentiment toward a given topic,like abortion, ideo-
logical perspectives are reflected in many ways other
than sentiments as we will illustrate later in the pa-
per. Perhaps more related to this paper is the work
of (Fortuna et al., 2008; Lin et al., 2008) whose
goal is to detect bias in news articles via discrimina-
tive and generative approaches, respectively. How-
ever, this work still addresses ideology at an abstract
level as opposed to our approach of modeling ideol-
ogy at a topical level. Finally, independently, (Paul
and Girju, 2009) gives a construction similar to ours
however for a different task 2.

3 Multi-View Topic Models

In this section we introduce multi-view topic mod-
els, or mview-LDA for short. Our model, mview-
LDA, views each document as the result of the in-
teraction between its topical and idealogical dimen-
sions. The model seeks to explain lexical variabili-
ties in the document by attributing this variabilities
to one of those dimensions or to their interactions.
Topic models, like LDA, define a generative process
for a document collection based on a set of parame-
ters. LDA employs a semantic entity known as topic
to drive the generation of the document in question.
Each topic is represented by a topic-specific word
distribution which is modeled as a multinomial dis-
tribution over words, denoted by Multi(β). The
generative process of LDA proceeds as follows:

1. Draw topic proportions θd|α ∼ Dir(α).
2. For each word

(a) Draw a topic zn|θd ∼ Mult(θd).
(b) Draw a word wn|zn, β ∼ Multi(βzn

).

In step 1 each document d samples a topic-mixing
vector θd from a Dirichlet prior. The component θd,k

2In fact, we only get to know about this related work after
our paper was accepted
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Figure 1: A plate diagram of the graphical model.

of this vector defines how likely topic k will appear
in document d. For each word in the document wn,
a topic indicator zn is sampled from θd, and then
the word itself is sampled from a topic-specific word
distribution specified by this indicator. Thus LDA
can capture and represent lexical variabilities via the
components of θd which represents the topical con-
tent of the document. In the next section we will ex-
plain how our new model mview-LDA can capture
other sources of lexical variabilities beyond topical
content.

3.1 Multi-View LDA

As we noted earlier, LDA captures lexical variabili-
ties due to topical content via θd and the set of top-
ics β1:K . In mview-LDA each document d is tagged
with the ideological view it represents via the ob-
served variable vd which takes values in the discrete
range: {1, 2, · · · , V } as shown in Fig. 1. For sim-
plicity, lets first assume that V = 2. The topics β1:K

retain the same meaning: a set of K multinomial
distributions each of which represents a given theme
or factual topic. In addition, we utilize an ideology-
specific topic Ωv which is again a multinomial dis-
tribution over the same vocabulary. Ωv models the
abstract belief shared by all the documents written
from view v. In other words, if v denotes the liberal
perspective, then Ωv gives high probability to words
like progressive, choice, etc. Moreover, we defined
a set of K × V topics that we refer to as ideology-
specific topics. For example, topic φv,k represents
how ideology v addresses topic k. The generative
process of a document d with ideological view vd

proceeds as follows:

1. Draw ξd ∼ Beta(a1, b1)

2. Draw topic proportions θd|α ∼ Dir(α2).

3. For each word wn

(a) Draw xn,1 ∼ Bernoulli(ξd)

(b) If(xn,1 = 1)
i. Draw wn|xn,1 = 1 ∼ Multi(Ωvd

)

(c) If(xn,1 = 0)
i. Draw zn|θd ∼ Mult(θd).

ii. Draw xn,2|vd, zn ∼ Bernoulli(λzn
)

iii. If(xn,2 = 1)
A. Draw wn|zn, β ∼ Multi(βzn

).
iv. If(xn,2 = 0)

A. Draw wn|vd, zn ∼ Multi(φvd,zn).

In step 1, we draw a document-specific biased
coin,ξd. The bias of this coin determines the pro-
portions of words in the document that are gener-
ated from its ideology background topic Ωvd

. As in
LDA, we draw the document-specific topic propor-
tion θd from a Dirichlet prior. θd thus controls the
lexical variabilities due to topical content inside the
document.

To generate a word wn, we first generate a coin
flip xn,1 from the coin ξd. If it turns head, then
we proceed to generate this word from the ideology-
specific topic associated with the document’s ideo-
logical view vd. In this case, the word is drawn in-
dependently of the topical content of the document,
and thus accounts for the lexical variation due to the
ideology associated with the document. The propor-
tion of such words is document-specific by design
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and depends on the writer’s style to a large degree.
If xn,1 turns to be tail,we proceed to the next step
and draw a topic-indicator zn. Now, we have two
choices: either to generate this word directly from
the ideology-independent portion of the topic βzn ,
or to draw the word from the ideology-specific por-
tion φvd,zn . The choice here is not document spe-
cific, but rather depends on the interaction between
the ideology and the specific topic in question. If
the ideology associated with the document holds a
strong opinion or view with regard to this topic,
then we expect that most of the time we will take
the second choice, and generate wn from φvd,zn ;
and vice versa. This decision is controlled by the
Bernoulli variable λzn . Therefore, in step c.ii, we
first generate a coin flip xn,2 from λzn . Based on
xn,2 we either generate the word from the ideology-
independent portion of the topic βzn , and this con-
stitutes how the model accounts for lexical variation
due to the topical content of the document, or gen-
erate the word from the ideology-specific portion of
the topic φvd,zn , and this specifies how the model
accounts for lexical variation due to the interaction
between the topical and ideological dimensions of
the document.

Finally, it is worth mentioning that the decision to
model λzn

3 at the topic-ideology level rather than at
the document level, as we have done with ξd, stems
from our goal to capture ideology-specific behavior
on a corpus level rather than capturing document-
specific writing style. However, it is worth mention-
ing that if one truly seeks to measure the degree of
bias associated with a given document,then one can
compute the frequency of the event xn,2 = 0 from
posterior samples. In this case, λzn acts as the prior
bias only. Moreover, computing the frequency of
the event xn,2 = 0 and zn = k gives the document’s
bias toward topic k per se.

Finally, it is worth mentioning that all multino-
mial topics in the model: β,Ω, φ are generated once
for the whole collection from a symmetric Dirichlet
prior, similarly, all bias variables, λ1:K are sampled
from a Beta distribution also once at the beginning
of the generative process.

3In an earlier version of the work we modeled λ on a per-
ideology basis, however, we found that using a single shared λ
results in more robust results

4 Posterior Inference Via Collapsed Gibbs
Sampling

The main tasks can be summarized as follows:

• Learning: Given a collection of documents,
find a point estimate of the model parameters
(i.e. β,Ω, φ, λ,etc.).

• Inference: Given a new document, and a point
estimate of the model parameters, find the pos-
terior distribution of the latent variables associ-
ated with the document at hand:
(θd, {xn,1}, {zn}, {xn,2}).

Under a hierarchical Bayesian setting, like the ap-
proach we took in this paper, both of these tasks can
be handled via posterior inference. Under the gener-
ative process, and hyperparmaters choices, outlined
in section 3, we seek to compute:

P (d1:D, β1:K ,Ω1:V , φ1:V,1:K, λ1:K |α, a, b,w,v),

where d is a shorthand for the hidden variables
(θd, ξd, z,x1,x2) in document d. The above poste-
rior probability is unfortunately intractable,and we
approximate it via a collapsed Gibbs sampling pro-
cedure (Griffiths and Steyvers, 2004; Gelman et al.,
2003) by integrating out, i.e. collapsing, the fol-
lowing hidden variables: the topic-mixing vectors
θd and the ideology bias ξd for each document, as
well as all the multinomial topic distributions: (β,Ω
and φ) in addition to the ideology-topic biases given
by the set of λ random variables.

Therefore, the state of the sampler at each itera-
tion contains only the following topic indicators and
coin flips for each document:(z,x1,x2). We alter-
nate sampling each of these variables conditioned on
its Markov blanket until convergence. At conver-
gence, we can calculate expected values for all the
parameters that were integrated out, especially for
the topic distributions, for each document’s latent
representation (mixing-vector) and for all coin bi-
ases. To ease the calculation of the Gibbs sampling
update equations we keep a set of sufficient statistics
(SS) in the form of co-occurrence counts and sum
matrices of the form CEQeq to denote the number of
times instance e appeared with instance q. For ex-
ample, CWK

wk gives the number of times word w was
sampled from the ideology-independent portion of
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topic k. Moreover, we follow the standard practice
of using the subscript −i to denote the same quan-
tity it is added to without the contribution of item
i. For example,CWK

wk,−i is the same as CWK
wk with-

out the contribution of word wi. For simplicity, we
might drop dependencies on the document whenever
the meaning is implicit form the context.

For word wn in document d, instead of sampling
zn, xn,1, xn,2 independently, we sample them as a
block as follows:

P (xn,1 = 1|wn = w, vd = v) ∝

(CDX1
d1,−n + a1)×

CVWvw,−n + α1∑
w′(CVWvw′,−n + α1)

P (xn,1 = 0, x2,n = 1, zn = k|wn = w, vd = v)

∝ (CDX1
d0,−n + b1)×

CKX2
k1,−n + a2

CKX2
k1,−n + CKX2

k0,−n + a2 + b2

×
CKWkw,−n + α1∑
w′(CKWkw′,−n + α1)

×
CDKdk,−n + α2∑
k′(CDKdk′,−n + α2)

P (xn,1 = 0, x2,n = 0, zn = k|wn = w, vd = v)

∝ (CDX1
d0,−n + b1)×

CKX2
k0,−n + b2

CKX2
k1,−n + CKX2

k0,−n + a2 + b2

×
CV KWvkw,−n + α1∑
w′(CV KWvkw′,−n + α1)

×
CDKdk,−n + α2∑
k′(CDKdk′,−n + α2)

The above three equations can be normalized to
form a 2 ∗ K + 1 multinomial distribution: one
component for generating a word from the ideol-
ogy topic, K components for generating the word
from the ideology-independent portion of topic k =
1, · · · ,K, and finally K components for generat-
ing the word from the ideology-specific portion of
topic k = 1, · · · ,K. Each of these 2 ∗ K + 1
cases corresponds to a unique assignment of the
variables zn, xn,1, xn,2. Therefore, our Gibbs sam-
pler just repeatedly draws sample from this 2∗K+1-
components multinomial distribution until conver-
gence. Upon convergence, we compute point es-
timates for all the collapsed variables by a simple
marginalization of the appropriate count matrices.
During inference, we hold the corpus-level count
matrices fixed, and keep sampling from the above

2∗K+1-component multinomial while only chang-
ing the document-level count matrices: CDK , CDX1

until convergence. Upon convergence, we compute
estimates for ξd and θd by normalizing CDK and
CDX1 (or possibly averaging this quantity across
posterior samples). As we mentioned in Section 3,
to compute the ideology-bias in addressing a given
topic say k in a given document, say d, we can sim-
ply compute the expected value of the event xn,2 =
0 and zn = k across posterior samples.

5 Data Sets

We evaluated our model over three datasets: the bit-
terlemons croups and a two political blog-data set.
Below we give details of each dataset.

5.1 The Bitterlemons dataset
The bitterlemons corpus consists of
the articles published on the website
http://bitterlemons.org/. The website
is set up to contribute to mutual understanding
between Palestinians and Israelis through the
open exchange of ideas. Every week, an issue
about the Israeli-Palestinian conflict is selected for
discussion, and a Palestinian editor and an Israeli
editor contribute one article each addressing the
issue. In addition, the Israeli and Palestinian editors
invite one Israeli and one Palestinian to express
their views on the issue. The data was collected
and pre-proceed as describes in (Lin et al., 2008).
Overall, the dataset contains 297 documents written
from the Israeli’s point of view, and 297 documents
written from the Palestinian’s point of view. On
average each document contains around 740 words.
After trimming words appearing less than 5 times,
we ended up with a vocabulary size of 4100 words.
We split the dataset randomly and used 80% of the
documents for training and the rest for testing.

5.2 The Political Blog Datasets
The first dataset refereed to as Blog-1 is a subset
of the data collected and processed in (Yano et al.,
2009). The authors in (Yano et al., 2009) collected
blog posts from blog sites focusing on American
politics during the period November 2007 to Oc-
tober 2008. We selected three blog sites from this
dataset: the Right Wing News (right-ideology) ;
the Carpetbagger, and Daily Kos as representatives
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Figure 2: Illustrating the big picture overview over the bitterlemons dataset using few topics. Each box lists the top
words in the corresponding multinomial topic distribution. See text for more details

of the liberal view (left-ideology). After trimming
short posts of less than 20 words, we ended up with
2040 posts distributed as 1400 from the left-wing
and the rest from the right-wing. On average, each
post contains around 100 words and the total size of
the vocabulary is 14276 words. For this dataset, we
followed the train-test split in (Yano et al., 2009).
In this split each blog is represented in both train-
ing and test sets. Thus this dataset does not measure
the model’s ability to generalize to a totally different
writing style.

The second dataset refereed to as Blog-2 is sim-
ilar to Blog-1 in its topical content and time frame
but larger in its blog coverage (Eisenstein and Xing,
2010). Blog-2 spans 6 blogs: three from the left-
wing and three from the right-wing. The dataset
contains 13246 posts. After removing words that
appear less then 20 times, the total vocabulary be-
comes 13236 with an average of 200 words per post.
We used 4 blogs (2 from each view) for training
and held two blogs (one from each view) for test-
ing. Thus this dataset measures the model’s ability

to generalize to a totally new blog.

6 Experimental Results
In this section we gave various qualitative and quan-
titative evaluations of our model over the datasets
listed in Section 5. For all experiments, we set
α1 = .01, α2 = .1, a = 1 and b = 1. We run Gibbs
sampling during training for 1000 iterations. During
inference, we ran Gibbs sampling for 300 iterations,
and took 10 samples, with 50-iterations lag, for eval-
uations.

6.1 Visualization and Browsing
One advantage of our approach is its ability to create
a “big-picture” overview of the interaction between
ideology and topics. In figure 2 we show a portion of
that diagram over the bitterlemons dataset. First note
how the ideology-specific topics in both ideology
share the top-three words, which highlights that the
two ideologies seek peace even though they still both
disagree on other issues. The figure gives example
of three topics: the US role, the Roadmap peace
process, and the Arab involvement in the conflict
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(the name of these topics were hand-crafted). For
each topic, we display the top words in the ideology-
independent part of the topic (β), along with top
words in each ideology’s view of the topic (φ).

For example, when discussing the roadmap pro-
cess, the Palestinian view brings the following is-
sues: [the Israeli side should] implement the oblig-
atory points in this agreement, stop expansion of
settlements, and move forward to the commitments
brought by this process. On the other hand, the Is-
raeli side brings the following points: [Israelis] need
to build confidence [with Palestinian], address the
role of terrorism on the implementation of the pro-
cess, and ask for a positive recognition of Israel
from the different Palestinian political parties. As
we can see, the ideology-specific portion of the topic
needn’t always represent a sentiment shared by its
members toward a given topic, but it might rather
includes extra important dimensions that need to be
taken into consideration when addressing this topic.

Another interesting topic addresses the involve-
ment of the neighboring Arab countries in the con-
flict. From the Israeli point of view, Israel is worried
about the existence of hizballah [in lebanon] and its
relationship with radical Iran, and how this might
affect the Palestinian-uprising (Intifada) and Jihad.
From the other side, the Palestinians think that the
Arab neighbors need to be involved in the peace pro-
cess and negotiations as some of these countries like
Syria and Lebanon are involved in the conflict.

The user can use the above chart as an entry point
to retrieve various documents pertinent to a given
topic or to a given view over a specific topic. For
instance, if the user asks for a representative sam-
ple of the Israeli(Palestinian) view with regard to the
roadmap process, the system can first retrieve docu-
ments tagged with the Israeli(Palestinian) view and
having a high topical value in their latent representa-
tion θ over this topic. Finally, the system then sorts
these documents by how much bias they show over
this topic. As we discussed in Section 4, this can be
done by computing the expected value of the event
xn,2 = 0 and zn = k where k is the topic under
consideration.

6.2 Classification
We have also performed a classification task over
all the datasets. The Scenario proceeded as follows.

We train a model over the training data with various
number of topics. Then given a test document, we
predict its ideology using the following equation:

vd = argmaxv∈V P (wd|v); (1)

We use three baselines. The first baseline
is an SVM classifier trained on the normalized
word frequency of each document. We trained
SVM using a regularization parameter in the range
{1, 10, 20, · · · , 100} and report the best result (i.e.
no cross-validation was performed). The other
two are supervised LDA models: supervised LDA
(sLDA) (Wang et. al., 2009; Blei and McCauliffe,
2007) and discLDA (Lacoste-Julien et al., 2008).
discLDA is a conditional model that divides the
available number of topics into class-specific top-
ics and shared-topics. Since the code is not publicly
available, we followed the same strategy in the orig-
inal paper and share 0.1K topics across ideologies
and then divide the rest of the topics between ide-
ologies4. However, unlike our model, there are no
internal relationships between these two sets of top-
ics. The decision rule employed by discLDA is very
similar to the one we used for mview-LDA in Eq
(1). For sLDA, we used the publicly available code
by the authors.

As shown in Figure 3, our model performs better
than the baselines over the three datasets. We should
note from this figure that mview-LDA peaks at a
small number of topics, however, each topic is repre-
sented by three multinomials. Moreover, it is evident
from the figure that the experiment over the blog-
2 dataset which measures each model’s ability to
generalizes to a totally unseen new blog is a harder
task than generalizing to unseen posts form the same
blog. However, our model still performs competi-
tively with the SVM baseline. We believe that sep-
arating each topic into an ideology-independent part
and ideology-specific part is the key behind this per-
formance, as it is expected that the new blogs would
still share much of the ideology-independent parts
of the topics and hopefully would use similar (but

4(Lacoste-Julien et al., 2008) gave an optimization algo-
rithm for learning the topic structure (transformation matrix),
however since the code is not available, we resorted to one of
the fixed splitting strategies mentioned in the paper. We tried
other splits but this one gives the best results
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(a) (b) (c)

Figure 3: Classification accuracy over the Bitterlemons dataset in (a) and over the two blog datasets in (b) and (c). For SVM we
give the best result obtained across a wide range of the SVM’s regularization parameter(not the cross-validation result).

no necessarily all) words from the ideology-specific
parts of each topic when addressing this topic.

Finally, it should be noted that the bitterlemons
dataset is a multi-author dataset and thus the models
were tested on some authors that were not seen dur-
ing training, however, two factors contributed to the
good performance by all models over this dataset.
The first being the larger size of each document (740
words per document as compared to 200 words per
post in blog-2) and the second being the more formal
writing style in the bitterlemons dataset.

6.3 An Ablation Study
To understand the contribution of each component of
our model, we conducted an ablation study over the
bitterlemons dataset. In this experiment we turned-
off one feature of our model at a time and mea-
sured the classification performance. The results are
shown in Figure 4. Full, refers to the full model; No-
Ω refers to a model in which the ideology-specific
background topic Ω is turned-off; and No-φ refers
to a model in which the ideology-specific portions of
the topics are turned-off. As evident from the figure,
φ is more important to the model than Ω and the dif-
ference in performance between the full model and
the No-φ model is rather significant. In fact without
φ the model has little power to discriminate between
ideologies beyond the ideology-specific background
topic Ω.

6.4 Retrieval: Getting the Other Views
To evaluate the ability of our model in finding al-
ternative views toward a given topic, we conducted
the following experiment over the Bitterlemons cor-
pus. In this corpus each document is associated with
a meta-topic that highlights the issues addressed in
this document like: “A possible Jordanian role”,

Figure 4: An Ablation study over the bitterlemons dataset.

“Demography and the conflict”,etc. There are a to-
tal of 148 meta-topics. These topics were not used
in fitting our model but we use them in the evalu-
ation as follows. We divided the dataset into 60%
for training and 40% for testing. We trained mview-
LDA over the training set, and then used the learned
model to infer the latent representation of the test
documents as well as their ideologies. We then used
each document in the training set as a query to re-
trieve documents from the test set that address the
same meta-topic in the query document but from the
other-side’s perspective. Note that we have access to
the view of the query document but not the view of
the test document. Moreover, the value of the meta-
topic is only used to construct the ground-truth result
of each query over the test set. In addition to mview-
LDA, we also implemented a strong baseline using
SVM+Dirichlet smoothing that we will refer to as
LM. In this baseline, we build an SVM classifier
over the training set, and use Dirichlet-smoothing
to represent each document (in test and training set)
as a multinomial-distribution over the vocabulary.
Given a query document d, we rank documents in
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Figure 5: Evaluating the performance of the view-Retrieval task. Figure compare performance between mview-LD vs. an SVM+a
smoothed language model approach using three measures: average rank, best rank and rank at full recall. ( Lower better)

.

the test set by each model as follows:

• mview-LDA: we computed the cosine-distance
between θmv−LDA−shared

d and θmv−LDA−shared
d′

weighted by the probability that d′ is written
from a different view than vd. The latter
quantity can be computed by normaliz-
ing P (v|d′). Moreover, θmv−LDA−shared

d,k ∝∑
n I
[
(xn,1 = 0) and (xn,2 = 1) and (zn = k)

]
,

and n ranges over words in document d. In-
tuitively, we would like θmv−LDA−shared

d to
reflect variation due to the topical content, but
not ideological view of the document.

• LM: For a document d′, we apply the SVM
classifier to get P (v|d′), then we measure sim-
ilarity by computing the cosine-distance be-
tween the smoothed multinomial-distribution
of d and d′. We combine these two components
as in mview-LDA.

Finally we rank documents in the test set in a
descending-order and evaluate the resulting rank-
ing using three measures: the rank at full recall
(lowest rank), average rank, and best rank of the
ground-truth documents as they appear in the pre-
dicted ranking. Figure 5 shows the results across a
number of topics. From this figure, it is clear that
our model outperforms this baseline over all mea-
sures. It should be noted that this is a very hard
task since the meta-topics are very fine-grained like:
Settlements revisited, The status of the settlements,
Is the roadmap still relevant?,The ceasefire and the
roadmap: a progress report,etc. We did not attempt
to cluster these meta-topics since our goal is just to
compare our model against the baseline.

7 A Semi-Supervised Extension

In this section we present and assess the efficacy of
a semi-supervised extension of mview-LDA. In this
setting, the model is given a set of ideologically-
labeled documents and a set of unlabeled docu-
ments. One of the key advantages of using a prob-
abilistic graphical model is the ability to deal with
hidden variables in a principled way. Thus the only
change needed in this case is adding a single step in
the sampling algorithm to sample the ideology v of
an unlabeled document as follows:

P (vd = v|rest) ∝ P (wd|vd = v, zd,x1,d,x2,d)

Note that the probability of the indicators
(x1,d,x2,d, zd) do not depend on the view of the
document and thus got absorbed in the normaliza-
tion constant, and thus one only needs to measures
the likelihood of generating the words in the doc-
ument under the view v. We divide the words
into three groups: Ad = {wn|xn,1 = 1} is the
set of words generated from the view-background
topic, Bd,k = {wn|zn = k, xn,1 = 0, xn,2 =
1} is the set of words generated from βk, and
Cd,k = {wn|zn = k, xn,1 = 0, xn,2 = 0} is the
set of words generated from φk,v. The probabil-
ity of Bd,k does not depend on the value of v and
thus can be absorbed into the normalization factor.
Therefore, we only need to compute the following
probability:P (Ad, Cd,1:K |vd = v, rest)=∏

k

∫
φk,v

P (Cd,k|φk,v, rest)p(φk,v|rest)dφk,v

×
∫

Ω
P (Ad|Ω, rest)p(Ω|rest)dΩ (2)
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All the integrals in (2) reduce to the ratio of two
log partition functions. For example, the product of
integrals containing Cd,k reduce to:

∏
k

∏
w Γ
(
CDKW,X2=0
dkw + CV KWvkw,−d + α1

)
Γ
(∑

w

[
CDKW,X2=0
dkw + CV KWvkw,−d + α1

])
×

Γ
(∑

w

[
CV KWvkw + α1

])
∏
w Γ
(
CV KWvkw,−d + α1

) (3)

Unfortunately, the above scheme does not mix
well because the value of the integrals in (2) are
very low for any view other than the view of the
document in the current state of the sampler. This
happens because of the tight coupling between vd
and the indicators (x1,x2, z). To remedy this prob-
lem we used a Metropolis-Hasting step to sample
(vd,x1,x2, z) jointly. We construct a set of V pro-
posals each of which is indexed by a possible view:
qv(x1,x2, z) = P (x1,x2, z|vd = v,wd). Since
we have a collection of proposal distributions, we
select one of them at random at each step. To
generate a sample from qv∗(), we run a few it-
erations of a restricted Gibbs scan over the docu-
ment d conditioned on fixing vd = v∗ and then
take the last sample jointly with v∗ as our pro-
posed new state. With probability min(r,1), the new
state (v∗,x1∗,x2∗, z∗) is accepted, otherwise the
old state is retained. The acceptance ratio,r, is com-
puted as: r = p(wd|v∗,x1∗,x2∗,z∗)

p(wd|v,x1,x2,z) , where the non-*
variables represent the current state of the sampler.
It is interesting to note that the above acceptance ra-
tio is equivalent to a likelihood ratio test. We com-
pute the marginal probability P (wd|..) using the
estimated-theta method (Wallach et al., 2009).

We evaluated the semi-supervised extension using
the blog-2 dataset as follows. We reveal R% of the
labels in the training set; then we train mview-LDA
only over the labeled portion and train the semi-
supervised version (ss-mview-LDA) on both the la-
beled and unlabeled documents. Finally we evaluate
the classification performance on the test set. We
used R = {20, 40, 80}. The results are given in Ta-
ble 1 which shows a decent improvement over the
supervised mview-LDA.

R mview-LDA ss-mview-LDA
80 65.60 66.41
60 62.31 65.43
20 60.87 63.25

Table 1: Classification performance of the semi-
supervised model. R is the ratio of labeled documents.

8 Discussion and Future Work

In this paper, we addressed the problem of model-
ing ideological perspective at a topical level. We
developed a factored topic model that we called
multiView-LDA or mview-LDA for short. mview-
LDA factors a document collection into three set
of topics: ideology-specific, topic-specific, and
ideology-topic ones. We showed that the resulting
representation can be used to give a bird-eyes’ view
to where each ideology stands with regard to main-
stream topics. Moreover, we illustrated how the la-
tent structure induced by the model can by used to
perform bias-detection at the document and topic
level, and retrieve documents that represent alterna-
tive views.

It is important to mention that our model induces
a hierarchical structure over the topics, and thus it
is interesting to contrast it with hierarchical topic
models like hLDA (Blei et al., 2003) and PAM (Li
and McCallum, 2006; Mimno et al., 2007). First,
these models are unsupervised in nature, while our
model is supervised. Second, the semantic of the
hierarchical structure in our model is different than
the one induced by those models since documents in
our model are constrained to use a specific portion
of the topic structure while in those models docu-
ments can freely sample words from any topic. Fi-
nally,in the future we plan to extend our model to
perform joint modeling and summarization of ide-
alogical discourse.
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Abstract

We present a novel approach for (written) di-
alect identification based on the discrimina-
tive potential of entire words. We generate
Swiss German dialect words from a Standard
German lexicon with the help of hand-crafted
phonetic/graphemic rules that are associated
with occurrence maps extracted from a linguis-
tic atlas created through extensive empirical
fieldwork. In comparison with a character-
n-gram approach to dialect identification, our
model is more robust to individual spelling dif-
ferences, which are frequently encountered in
non-standardized dialect writing. Moreover, it
covers the whole Swiss German dialect contin-
uum, which trained models struggle to achieve
due to sparsity of training data.

1 Introduction

Dialect identification (dialect ID) can be viewed as
an instance of language identification (language ID)
where the different languages are very closely re-
lated. Written language ID has been a popular re-
search object in the last few decades, and relatively
simple algorithms have proved to be very successful.
The central question of language ID is the following:
given a segment of text, which one of a predefined
set of languages is this segment written in? Language
identification is thus a classification problem.

Dialect identification comes in two flavors: spoken
dialect ID and written dialect ID. These two tasks are
rather different. Spoken dialect ID relies on speech
recognition techniques which may not cope well with
dialectal diversity. However, the acoustic signal is

also available as input. Written dialect ID has to deal
with non-standardized spellings that may occult real
dialectal differences. Moreover, some phonetic dis-
tinctions cannot be expressed in orthographic writing
systems and limit the input cues in comparison with
spoken dialect ID.

This paper deals with written dialect ID, applied to
the Swiss German dialect area. An important aspect
of our model is its conception of the dialect area as a
continuum without clear-cut borders. Our dialect ID
model follows a bag-of-words approach based on the
assumption that every dialectal word form is defined
by a probability with which it may occur in each
geographic area. By combining the cues of all words
of a sentence, it should be possible to obtain a fairly
reliable geographic localization of that sentence.

The main challenge is to create a lexicon of dialect
word forms and their associated probability maps.
We start with a Standard German word list and use
a set of phonetic, morphological and lexical rules
to obtain the Swiss German forms. These rules are
manually extracted from a linguistic atlas. This lin-
guistic atlas of Swiss German dialects is the result of
decades-long empirical fieldwork.

This paper is organized as follows. We start with
an overview of relevant research (Section 2) and
present the characteristics of the Swiss German di-
alect area (Section 3). Section 4 deals with the im-
plementation of word transformation rules and the
corresponding extraction of probability maps from
the linguistic atlas of German-speaking Switzerland.
We present our dialect ID model in Section 5 and
discuss its performance in Section 6 by relating it to
a baseline n-gram model.
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2 Related work

Various language identification methods have been
proposed in the last three decades. Hughes et al.
(2006) and Řehůřek and Kolkus (2009) provide re-
cent overviews of different approaches. One of
the simplest and most popular approaches is based
on character n-gram sequences (Cavnar and Tren-
kle, 1994). For each language, a character n-gram
language model is learned, and test segments are
scored by all available language models and labeled
with the best scoring language model. Related ap-
proaches involve more sophisticated learning tech-
niques (feature-based models, SVM and other kernel-
based methods).

A completely different approach relies on the iden-
tification of entire high-frequency words in the test
segment (Ingle, 1980). Other models have proposed
to use morpho-syntactic information.

Dialect ID has usually been studied from a speech
processing point of view. For instance, Biadsy et
al. (2009) classify speech material from four Arabic
dialects plus Modern Standard Arabic. They first run
a phone recognizer on the speech input and use the
resulting transcription to build a trigram language
model. Classification is done by minimizing the per-
plexity of the trigram models on the test segment.

An original approach to the identification of Swiss
German dialects has been taken by the Chochichästli-
Orakel.1 By specifying the pronunciation of ten pre-
defined words, the web site creates a probability map
that shows the likelihood of these pronunciations in
the Swiss German dialect area. Our model is heavily
inspired by this work, but extends the set of cues to
the entire lexicon.

As mentioned, the ID model is based on a large
Swiss German lexicon. Its derivation from a Standard
German lexicon can be viewed as a case of lexicon
induction. Lexicon induction methods for closely
related languages using phonetic similarity have been
proposed by Mann and Yarowsky (2001) and Schafer
and Yarowsky (2002), and applied to Swiss German
data by Scherrer (2007).

The extraction of digital data from hand-drawn di-
alectological maps is a time-consuming task. There-
fore, the data should be made available for differ-
ent uses. Our Swiss German raw data is accessible

1http://dialects.from.ch

on an interactive web page (Scherrer, 2010), and
we have proposed ideas for reusing this data for
machine translation and dialect parsing (Scherrer
and Rambow, 2010). An overview of digital dialec-
tological maps for other languages is available on
http://www.ericwheeler.ca/atlaslist.

3 Swiss German dialects

The German-speaking area of Switzerland encom-
passes the Northeastern two thirds of the Swiss ter-
ritory, and about two thirds of the Swiss population
define (any variety of) German as their first language.

In German-speaking Switzerland, dialects are used
in speech, while Standard German is used nearly ex-
clusively in written contexts (diglossia). It follows
that all (adult) Swiss Germans are bidialectal: they
master their local dialect and Standard German. In
addition, they usually have no difficulties understand-
ing Swiss German dialects other than their own.

Despite the preference for spoken dialect use, writ-
ten dialect data has been produced in the form of
dialect literature and transcriptions of speech record-
ings made for scientific purposes. More recently,
written dialect has been used in electronic media like
blogs, SMS, e-mail and chatrooms. The Alemannic
Wikipedia contains about 6000 articles, among which
many are written in a Swiss German dialect.2 How-
ever, all this data is very heterogeneous in terms of
the dialects used, spelling conventions and genre.

4 Georeferenced word transformation
rules

The key component of the proposed dialect ID model
is an automatically generated list of Swiss German
word forms, each of which is associated with a
map that specifies its likelihood of occurrence over
German-speaking Switzerland. This word list is gen-
erated with the help of a set of transformation rules,
taking a list of Standard German words as a start-
ing point. In this section, we present the different
types of rules and how they can be extracted from a
dialectological atlas.

2http://als.wikipedia.org; besides Swiss German, the
Alemannic dialect group encompasses Alsatian, South-West Ger-
man Alemannic and Vorarlberg dialects of Austria.
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4.1 Orthography

Our system generates written dialect words according
to the Dieth spelling conventions without diacritics
(Dieth, 1986).3 These are characterized by a transpar-
ent grapheme-phone correspondence and are widely
used by dialect writers. However, they are by no
means enforced or even taught.

This lack of standardization is problematic for di-
alect ID. We have noted two major types of deviations
from the Dieth spelling conventions in our data. First,
Standard German orthography may unduly influence
dialect spelling. For example, spiele is modelled af-
ter Standard German spielen ‘to play’, although the
vowel is a short monophthong in Swiss German and
should thus be written spile (ie represents a diph-
thong in Dieth spelling). Second, dialect writers do
not always distinguish short and long vowels, while
the Dieth conventions always use letter doubling to
indicate vowel lengthening. Future work will incor-
porate these fluctuations directly into the dialect ID
model.

Because of our focus on written dialect, the follow-
ing discussion will be based on written representa-
tions, but IPA equivalents are added for convenience.

4.2 Phonetic rules

Our work is based on the assumption that many words
show predictable phonetic differences between Stan-
dard German and the different Swiss German dialects.
Hence, in many cases, it is not necessary to explicitly
model word-to-word correspondences, but a set of
phonetic rules suffices to correctly transform words.

For example, the word-final sequence nd [nd
˚
] (as

in Standard German Hund ‘dog’4) is maintained in
most Swiss German dialects. However, it has to be
transformed to ng [N] in Berne dialect, to nn [n]
in Fribourg dialect, and to nt [nt] in Valais and Uri
dialects.

This phenomenon is captured in our system by four
transformation rules nd→ nd, nd→ ng, nd→ nn and
nd→ nt. Each rule is georeferenced, i.e. linked to

3Of course, these spelling conventions make use of umlauts
like in Standard German. There is another variant of the Di-
eth conventions that uses additional diacritics for finer-grained
phonetic distinctions.

4Standard German nd is always pronounced [nt] following a
general final devoicing rule; we neglect that artifact as we rely
only on graphemic representations.

a probability map that specifies its validity in every
geographic point. These four rules capture one single
linguistic phenomenon: their left-hand side is the
same, and they are geographically complementary.

Some rules apply uniformly to all Swiss Ger-
man dialects (e.g. the transformation st [st]→ scht
[St]). These rules do not immediately contribute to
the dialect identification task, but they help to ob-
tain correct Swiss German forms that contain other
phonemes with better localization potential.

More information about the creation of the proba-
bility maps is given in Sections 4.5 and 4.6.

4.3 Lexical rules

Some differences at the word level cannot be ac-
counted for by pure phonetic alternations. One reason
are idiosyncrasies in the phonetic evolution of high
frequency words (e.g. Standard German und ‘and’
is reduced to u in Bern dialect, where the phonetic
rules would rather suggest *ung). Another reason is
the use of different lexemes altogether (e.g. Standard
German immer ‘always’ corresponds to geng, immer,
or all, depending on the dialect). We currently use
lexical rules mainly for function words and irregular
verb stems.

4.4 Morphological rules

The transformation process from inflected Standard
German word forms to inflected Swiss German word
forms is done in two steps. First, the word stem is
adapted with phonetic or lexical rules, and then, the
affixes are generated according to the morphological
features of the word.

Inflection markers also provide dialect discrimina-
tion potential. For example, the verbal plural suffixes
offer a surprisingly rich (and diachronically stable)
interdialectal variation pattern.

4.5 The linguistic atlas SDS
One of the largest research projects in Swiss German
dialectology has been the elaboration of the Sprachat-
las der deutschen Schweiz (SDS), a linguistic atlas
that covers phonetic, morphological and lexical dif-
ferences of Swiss German dialects. Data collection
and publication were carried out between 1939 and
1997 (Hotzenköcherle et al., 1962-1997). Linguis-
tic data were collected in about 600 villages (in-
quiry points) of German-speaking Switzerland, and
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resulted in about 1500 published maps (see Figure 1
for an example).

Each map represents a linguistic phenomenon that
potentially yields a set of transformation rules. For
our experiments, we selected a subset of the maps ac-
cording to the perceived importance of the described
phenomena. There is no one-to-one correspondence
between maps and implemented phenomena, for sev-
eral reasons. First, some SDS maps represent in-
formation that is best analyzed as several distinct
phenomena. Second, a set of maps may illustrate the
same phenomenon with different words and slightly
different geographic distributions. Third, some maps
describe (especially lexical) phenomena that are be-
coming obsolete and that we chose to omit.

As a result, our rule base contains about 300 pho-
netic rules covering 130 phenomena, 540 lexical
rules covering 250 phenomena and 130 morpholog-
ical rules covering 60 phenomena. We believe this
coverage to be sufficient for the dialect ID task.

4.6 Map digitization and interpolation

Recall the nd -example used to illustrate the phonetic
rules above. Figure 1 shows a reproduction of the
original, hand-drawn SDS map related to this phe-
nomenon. Different symbols represent different pho-
netic variants of the phenomenon.5 We will use this
example in this section to explain the preprocessing
steps involved in the creation of georeferenced rules.

In a first preprocessing step, the hand-drawn map
is digitized manually with the help of a geographical
information system. The result is shown in Figure 2.
To speed up this process, variants that are used in less
than ten inquiry points are omitted. (Many of these
small-scale variants likely have disappeared since the
data collection in the 1940s.) We also collapse minor
phonetic variants which cannot be distinguished in
the Dieth spelling system.

The SDS maps, hand-drawn or digitized, are point
maps. They only cover the inquiry points, but do not
provide information about the variants used in other
locations. Therefore, a further preprocessing step in-
terpolates the digitized point maps to obtain surface
maps. We follow Rumpf et al. (2009) to create kernel
density estimators for each variant. This method is

5We define a variant simply as a string that may occur on the
right-hand side of a transformation rule.

Figure 1: Original SDS map for the transformation of
word-final -nd. The map contains four major linguistic
variants, symbolized by horizontal lines (-nd ), vertical
lines (-nt), circles (-ng), and triangles (-nn) respectively.
Minor linguistic variants are symbolized by different types
of circles and triangles.

Figure 2: Digitized equivalent of the map in Figure 1.

Figure 3: Interpolated surface maps for the variants -nn
(upper left), -ng (upper right), -nt (lower left) and -nd
(lower right). Black areas represent a probability of 1,
white areas a probability of 0.
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less sensitive to outliers than simpler linear interpola-
tion methods.6 The resulting surface maps are then
normalized such that at each point of the surface, the
weights of all variants sum up to 1. These normalized
weights can be interpreted as conditional probabili-
ties of the corresponding transfer rule: p(r | t), where
r is the rule and t is the geographic location (repre-
sented as a pair of longitude and latitude coordinates)
situated in German-speaking Switzerland. (We call
the set of all points in German-speaking Switzerland
GSS.) Figure 3 shows the resulting surface maps for
each variant. Surface maps are generated with a reso-
lution of one point per square kilometer.

As mentioned above, rules with a common left-
hand side are grouped into phenomena, such that at
any given point t ∈ GSS, the probabilities of all rules
r describing a phenomenon Ph sum up to 1:

∀
t∈GSS

∑
r∈Ph

p(r | t) = 1

5 The model

The dialect ID system consists of a Swiss German
lexicon that associates word forms with their geo-
graphical extension (Section 5.1), and of a testing
procedure that splits a sentence into words, looks
up their geographical extensions in the lexicon, and
condenses the word-level maps into a sentence-level
map (Sections 5.2 to 5.4).

5.1 Creating a Swiss German lexicon
The Swiss German word form lexicon is created
with the help of the georeferenced transfer rules pre-
sented above. These rules require a lemmatized, POS-
tagged and morphologically disambiguated Standard
German word as an input and generate a set of di-
alect word/map tuples: each resulting dialect word
is associated with a probability map that specifies its
likelihood in each geographic point.

To obtain a Standard German word list, we ex-
tracted all leaf nodes of the TIGER treebank (Brants
et al., 2002), which are lemmatized and morphologi-
cally annotated. These data also allowed us to obtain
word frequency counts. We discarded words with
one single occurrence in the TIGER treebank, as well
as forms that contained the genitive case or preterite

6A comparison of different interpolation methods will be the
object of future work.

tense attribute (the corresponding grammatical cate-
gories do not exist in Swiss German dialects).

The transfer rules are then applied sequentially on
each word of this list. The notation w0

∗→ wn repre-
sents an iterative derivation leading from a Standard
German word w0 to a dialectal word form wn by the
application of n transfer rules of the type wi→ wi+1.
The probability of a derivation corresponds to the
joint probability of the rules it consists of. Hence,
the probability map of a derivation is defined as the
pointwise product of all rule maps it consists of:

∀
t∈GSS

p(w0
∗→ wn | t) =

n−1

∏
k=0

p(wi→ wi+1 | t)

Note that in dialectological transition zones, there
may be several valid outcomes for a given w0.

The Standard German word list extracted from
TIGER contains about 36,000 entries. The derived
Swiss German word list contains 560,000 word
forms, each of which is associated with a map that
specifies its regional distribution.7 Note that proper
nouns and words tagged as “foreign material” were
not transformed. Derivations that did not obtain a
probability higher than 0.1 anywhere (because of
geographically incompatible transformations) were
discarded.

5.2 Word lookup and dialect identification
At test time, the goal is to compute a probability map
for a text segment of unknown origin.8 As a prepro-
cessing step, the segment is tokenized, punctuation
markers are removed and all words are converted to
lower case.

The identification process can be broken down in
three levels:

1. The probability map of a text segment depends
on the probability maps of the words contained
in the segment.

2. The probability map of a word depends on the
probability maps of the derivations that yield
the word.

7Technically, we do not store the probability map, but the
sequence of rule variants involved in the derivation. The proba-
bility map is restored from this rule sequence at test time.

8The model does not require the material to be syntactically
well-formed. Although we use complete sentences to test the
system, any sequence of words is accepted.
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3. The probability map of a derivation depends on
the probability maps of the rules it consists of.

In practice, every word of a given text segment is
looked up in the lexicon. If this lookup does not suc-
ceed (either because its Standard German equivalent
did not appear in the TIGER treebank, or because the
rule base lacked a relevant rule), the word is skipped.
Otherwise, the lookup yields m derivations from m
different Standard German words.9 The lexicon al-
ready contains the probability maps of the derivations
(see 5.1), so that the third level does not need to be
discussed here. Let us thus explain the first two levels
in more detail, in reverse order.

5.3 Computing the probability map for a word
A dialectal word form may originate in different Stan-
dard German words. For example, the three deriva-
tions sind [VAFIN] ∗→ si (valid only in Western di-
alects), sein [PPOSAT] ∗→ si (in Western and Central
dialects), and sie [PPER] ∗→ si (in the majority of
Swiss German dialects) all lead to the same dialectal
form si.

Our system does not take the syntactic context
into account and therefore cannot determine which
derivation is the correct one. We approximate by
choosing the most probable one in each geographic
location. The probability map of a Swiss German
word w is thus defined as the pointwise maximum10

of all derivations leading to w, starting with different
Standard German words w( j)

0 :

∀
t∈GSS

p(w | t) = max
j

p(w( j)
0

∗→ w | t)

This formula does not take into account the relative
frequency of the different derivations of a word. This
may lead to unintuitive results. Consider the two
derivations der [ART] ∗→ dr (valid only in Western
dialects) and Dr. [NN] ∗→ dr (valid in all dialects).
The occurrence of the article dr in a dialect text is a
good indicator for Western Swiss dialects, but it is
completely masked by the potential presence of the

9Theoretically, two derivations can originate at the same
Standard German word and yield the same Swiss German word,
but nevertheless use different rules. Our system handles such
cases as well, but we are not aware of such cases occurring with
the current rule base.

10Note that these derivations are alternatives and not joint
events. This is thus not a joint probability.

abreviation Dr. in all dialects. We can avoid this by
weighting the derivations by the word frequency of
w0: the article der is much more frequent than the
abreviation Dr. and is thus given more weight in the
identification task. This weighting can be justified
on dialectological grounds: frequently used words
tend to show higher interdialectal variation than rare
words.

Another assumption in the above formula is that
each derivation has the same discriminative poten-
tial. Again, this is not true: a derivation that is valid
in only 10% of the Swiss German dialect area is
much more informative than a derivation that is valid
in 95% of the dialect area. Therefore, we propose
to weight each derivation by the proportional size of
its validity area. The discriminative potential of a
derivation d is defined as follows:11

DP(d) = 1− ∑t∈GSS p(d | t)
|GSS|

The experiments in Section 6 will show the relative
impact of these two weighting techniques and of the
combination of both with respect to the unweighted
map computation.

5.4 Computing the probability map for a
segment

The probability of a text segment s can be defined as
the joint probability of all words w contained in the
segment. Again, we compute the pointwise product
of all word maps. In contrast to 5.1, we performed
some smoothing in order to prevent erroneous word
derivations from completely zeroing out the proba-
bilities. We assumed a minimum word probability of
φ = 0.1 for all words in all geographic points:

∀
t∈GSS

p(s | t) = ∏
w∈s

max(φ , p(w | t))

Erroneous derivations were mainly due to non-
implemented lexical exceptions.

6 Experiments and results

6.1 Data
In order to evaluate our model, we need texts an-
notated with their gold dialect. We have chosen to
use the Alemannic Wikipedia as a main data source.

11d is a notational abreviation for w0
∗→ wn.
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Wikipedia name Abbr. Pop. Surface
Baseldytsch BA 8% 1%
Bärndütsch BE 17% 13%
Seislertütsch FR 2% 1%
Ostschwizertütsch OS 14% 8%
Wallisertiitsch WS 2% 7%
Züritüütsch ZH 22% 4%

Table 1: The six dialect regions selected for our tests,
with their annotation on Wikipedia and our abreviation.
We also show the percentage of the German-speaking
population living in the regions, and the percentage of the
surface of the region relative to the entire country.

Figure 4: The localization of the six dialect regions used
in our study.

The Alemannic Wikipedia allows authors to write
articles in any dialect, and to annotate the articles
with their dialect. Eight dialect categories contained
more than 10 articles; we selected six dialects for our
experiments (see Table 1 and Figure 4).

We compiled a test set consisting of 291 sentences,
distributed across the six dialects according to their
population size. The sentences were taken from dif-
ferent articles. In addition, we created a development
set consisting of 550 sentences (100 per dialect, ex-
cept FR, where only 50 sentences were available).
This development set was also used to train the base-
line model discussed in section 6.2.

In order to test the robustness of our model, we
collected a second set of texts from various web sites
other than Wikipedia. The gold dialect of these texts
could be identified through metadata.12 This informa-
tion was checked for plausibility by the first author.
The Web data set contains 144 sentences (again dis-

12We mainly chose websites of local sports and music clubs,
whose localization allowed to determine the dialect of their con-
tent.

Wikipedia Web
Dialect P R F P R F
BA 34 61 44 27 61 37
BE 78 51 61 51 47 49
FR 28 71 40 10 33 15
OS 63 64 64 50 38 43
WS 58 100 74 14 33 20
ZH 77 62 69 77 41 53
W. Avg. 62 46

Table 2: Performances of the 5-gram model on Wikipedia
test data (left) and Web test data (right). The columns
refer to precision, recall and F-measure respectively. The
average is weighted by the relative population sizes of the
dialect regions.

tributed according to population size) and is thus
roughly half the size of the Wikipedia test set.

The Wikipedia data contains an average of 17.8
words per sentence, while the Web data shows 14.9
words per sentence on average.

6.2 Baseline: N-gram model

To compare our dialect ID model, we created a base-
line system that uses a character-n-gram approach.
This approach is fairly common for language ID and
has also been successfully applied to dialect ID (Bi-
adsy et al., 2009). However, it requires a certain
amount of training data that may not be available for
specific dialects, and it is uncertain how it performs
with very similar dialects.

We trained 2-gram to 6-gram models for each di-
alect with the SRILM toolkit (Stolcke, 2002), using
the Wikipedia development corpus. We scored each
sentence of the Wikipedia test set with each dialect
model. The predicted dialect was the one which ob-
tained the lowest perplexity.13

The 5-gram model obtained the best overall per-
formance, and results on the Wikipedia test set were
surprisingly good (see Table 2, leftmost columns).14

Note that in practice, 100% accuracy is not always
achievable; a sentence may not contain a sufficient
localization potential to assign it unambiguously to
one dialect.

13We assume that all test sentences are written in one of the
six dialects.

14All results represent percentage points. We omit decimal
places as all values are based on 100 or less data points. We did
not perform statistical significance tests on our data.
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However, we suspect that these results are due to
overfitting. It turns out that the number of Swiss
German Wikipedia authors is very low (typically,
one or two active writers per dialect), and that ev-
ery author uses distinctive spelling conventions and
writes about specific subjects. For instance, most
ZH articles are about Swiss politicians, while many
OS articles deal with religion and mysticism. Our
hypothesis is thus that the n-gram model learns to
recognize a specific author and/or topic rather than
a dialect. This hypothesis is confirmed on the Web
data set: the performances drop by 15 percentage
points or more (same table, rightmost columns; the
performance drops are similar for n = [2..6]).

In all our evaluations, the average F-measures for
the different dialects are weighted according to the
relative population sizes of the dialect regions be-
cause the size of the test corpus is proportional to
population size (see Section 6.1).15

We acknowledge that a training corpus of only 100
sentences per dialect provides limited insight into the
performance of the n-gram approach. We were able
to double the training corpus size with additional
Wikipedia sentences. With this extended corpus,
the 4-gram model performed better than the 5-gram
model. It yielded a weighted average F-measure
of 79% on Wikipedia test data, but only 43% on
Web data. The additional increase on Wikipedia data
(+17% absolute with respect to the small training
set), together with the decrease on Web data (−3%
absolute) confirms our hypothesis of overfitting. An
ideal training corpus should thus contain data from
several sources per dialect.

To sum up, n-gram models can yield good perfor-
mance even with similar dialects, but require large
amounts of training data from different sources to
achieve robust results. For many small-scale dialects,
such data may not be available.

6.3 Our model
The n-gram system presented above has no geo-
graphic knowledge whatsoever; it just consists of
six distinct language models that could be located
anywhere. In contrast, our model yields probability

15Roughly, this weighting can be viewed as a prior (the proba-
bility of the text being constant):

p(dialect | text) = p(text | dialect)∗ p(dialect)

maps of German-speaking Switzerland. In order to
evaluate its performance, we thus had to determine
the geographic localization of the six dialect regions
defined by the Wikipedia authors (see Table 1). We
defined the regions according to the respective can-
ton boundaries and to the German-French language
border in the case of bilingual cantons. The result of
this mapping is shown in Figure 4.

The predicted dialect region of a sentence s is de-
fined as the region in which the most probable point
has a higher value than the most probable point in
any other region:

Region(s) = arg max
Region

(
max

t∈Region
p(s | t)

)
Experiments were carried out for the four combi-

nations of the two derivation-weighting techniques
presented in Section 5.3 and for the two test sets
(Wikipedia and Web). Results are displayed in Ta-
bles 3 to 6. The majority of FR sentences were mis-
classified as BE, which reflects the geographic and
linguistic proximity of these regions.

The tables show that frequency weighting helps
on both corpora: the discriminative potential only
slightly improves performance on the web corpus.
Crucially, the two techniques are additive, so in
combination, they yield the best overall results. In
comparison with the baseline model, there is a per-
formance drop of about 16 percent absolute on
Wikipedia data. In contrast, our model is very ro-
bust and outperforms the baseline model on the Web
test set by about 7 percent absolute.

These results seem to confirm what we suggested
above: that the n-gram model overfitted on the small
Wikipedia training corpus. Nevertheless, it is still
surprising that our model has a lower performance
on Wikipedia than on Web data. The reason for this
discrepancy probably lies in the spelling conventions
assumed in the transformation rules: it seems that
Web writers are closer to these (implicit) spelling
conventions than Wikipedia authors. This may be
explained by the fact that many Wikipedia articles
are translations of existing Standard German articles,
and that some words are not completely adapted to
their dialectal form. Another reason could be that
Wikipedia articles use a proportionally larger amount
of proper nouns and low-frequency words which can-
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Wikipedia Web
Dialect P R F P R F
BA 41 19 26 80 22 35
BE 42 62 50 48 76 59
FR 0 0 0 17 33 22
OS 36 41 38 45 41 43
WS 3 14 5 8 33 13
ZH 65 33 44 62 37 46
W. Avg. 40 46

Table 3: Performances of the word-based model using
unweighted derivation maps.

Wikipedia Web
Dialect P R F P R F
BA 50 33 40 57 22 32
BE 47 60 53 60 79 68
FR 0 0 0 0 0 0
OS 29 31 30 46 50 48
WS 11 29 15 17 33 22
ZH 60 47 53 65 53 58
W. Avg. 44 53

Table 4: Performances of the word-based model using
derivation maps weighted by word frequency.

not be found in the lexicon and which therefore re-
duce the localization potential of a sentence.

However, one should note that the word-based di-
alect ID model is not limited on the six dialect regions
used for evaluation here. It can be used with any size
and number of dialect regions of German-speaking
Switzerland. This contrasts with the n-gram model
which has to be trained specifically on every dialect
region; in this case, the Swiss German Wikipedia
only contains two additional dialect regions with an
equivalent amount of data.

6.4 Variations

In the previous section, we have defined the predicted
dialect region as the one in which the most probable
point (maximum) has a higher probability than the
most probable point of any other region. The results
suggest that this metric penalizes small regions (BA,
FR, ZH). In these cases, it is likely that the most
probable point is slightly outside the region, but that
the largest part of the probability mass is still inside
the correct region. Therefore, we tested another ap-
proach: we defined the predicted dialect region as the
one in which the average probability is higher than

Wikipedia Web
Dialect P R F P R F
BA 34 31 32 38 17 23
BE 46 47 47 54 76 63
FR 11 14 13 20 33 25
OS 34 50 40 53 59 56
WS 5 14 7 0 0 0
ZH 47 27 34 75 43 55
W. Avg. 37 51

Table 5: Performances of the word-based model using
derivation maps weighted by their discriminative potential.

Wikipedia Web
Dialect P R F P R F
BA 46 28 35 33 11 17
BE 47 62 54 58 84 69
FR 0 0 0 20 33 25
OS 35 31 33 47 47 47
WS 8 29 13 14 33 20
ZH 63 53 58 66 51 58
W. Avg. 46 52

Table 6: Performances using derivation maps weighted by
word frequency and discriminative potential.

the average probability in any other region:

Region(s) = arg max
Region

(
∑t∈Region p(s | t)
|Region|

)
This metric effectively boosts the performance on

the smaller regions, but comes at a cost for larger
regions (Table 7). We also combined the two metrics
by using the maximum metric for the three larger
regions and the average metric for the three smaller
ones (the cutoff lies at 5% of the Swiss territory).
This combined metric further improves the perfor-
mance of our system while relying on an objective
measure of region surface.

We believe that region surface as such is not so
crucial for the metrics discussed above, but rather
serves as a proxy for linguistic heterogeneity. Geo-
graphically large regions like BE tend to have internal
dialect variation, and averaging over all dialects in
the region leads to low figures. In contrast, small
regions show a quite homogeneous dialect landscape
that may protrude over adjacent regions. In this case,
the probability peak is less relevant than the average
probability in the entire region. Future work will at-
tempt to come up with more fine-grained measures of
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Wikipedia Web
Dialect Max Avg Cmb Max Avg Cmb
BA 35 32 32 17 43 43
BE 54 39 54 69 54 69
FR 0 7 7 25 11 11
OS 33 23 33 47 49 47
WS 13 13 13 20 31 20
ZH 58 60 60 58 68 68
W. Avg. 46 40 47 52 55 58

Table 7: Comparison of different evaluation metrics. All
values refer to F-measures obtained with frequency and
discriminative potential-weighted derivation maps. Max
refers to the Maximum metric as used in Table 6. Avg
refers to the average metric, and Cmb is the combination
of both metrics depending on region surfaces. The under-
lined values in the Avg and Max columns represent those
used for the Cmb metric.

linguistic heterogeneity in order to test these claims.

7 Future work

In our experiments, the word-based dialect identifi-
cation model skipped about one third of all words
(34% on the Wikipedia test set, 39% on the Web
test set) because they could not be found in the lex-
icon. While our model does not require complete
lexical coverage, this figure shows that the system
can be improved. We see two main possibilities of
improvement. First, the rule base can be extended
to better account for lexical exceptions, orthographic
variation and irregular morphology. Second, a mixed
approach could combine the benefits of the word-
based model with the n-gram model. This would
require a larger, more heterogeneous set of training
material for the latter in order to avoid overfitting.
Additional training data could be extracted from the
web and automatically annotated with the current
model in a semi-supervised approach.

In the evaluation presented above, the task con-
sisted of identifying the dialect of single sentences.
However, one often has access to longer text seg-
ments, which makes our evaluation setup harder
than necessary. This is especially important in situ-
ations where a single sentence may not always con-
tain enough discriminative material to assign it to a
unique dialect. Testing our dialect identification sys-
tem on the paragraph or document level could thus
provide more realistic results.

8 Conclusion

In this paper, we have compared two empirical meth-
ods for the task of dialect identification. The n-gram
method is based on the approach most commonly
used in NLP: it is a supervised machine learning ap-
proach where training data of the type we need to
process is annotated with the desired outcome of the
processing.

Our second approach – the main contribution of
this paper – is quite different. The empirical compo-
nent consists in a collection of data (the SDS atlas)
which is not of the type we want to process, but rather
embodies some features of the data we ultimately
want to process. We therefore analyze this data in
order to extract empirically grounded knowledge for
more general use (the creation of the georeferenced
rules), and then use this knowledge to perform the
dialect ID task in conjunction with an unrelated data
source (the Standard German corpus).

Our choice of method was of course related to the
fact that few corpora, annotated or not, were avail-
able for our task. But beyond this constraint, we
think it may be well worthwhile for NLP tasks in
general to move away from a narrow machine learn-
ing paradigm (supervised or not) and to consider
a broader set of empirical resources, sometimes re-
quiring methods which are quite different from the
prevalent ones.
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Abstract

The computation of meaning similarity as
operationalized by vector-based models has
found widespread use in many tasks ranging
from the acquisition of synonyms and para-
phrases to word sense disambiguation and tex-
tual entailment. Vector-based models are typ-
ically directed at representing words in isola-
tion and thus best suited for measuring simi-
larity out of context. In his paper we propose
a probabilistic framework for measuring sim-
ilarity in context. Central to our approach is
the intuition that word meaning is represented
as a probability distribution over a set of la-
tent senses and is modulated by context. Ex-
perimental results on lexical substitution and
word similarity show that our algorithm out-
performs previously proposed models.

1 Introduction

The computation of meaning similarity as op-
erationalized by vector-based models has found
widespread use in many tasks within natural lan-
guage processing (NLP). These range from the ac-
quisition of synonyms (Grefenstette, 1994; Lin,
1998) and paraphrases (Lin and Pantel, 2001) to
word sense disambiguation (Schuetze, 1998), tex-
tual entailment (Clarke, 2009), and notably informa-
tion retrieval (Salton et al., 1975).

The popularity of vector-based models lies in
their unsupervised nature and ease of computation.
In their simplest incarnation, these models repre-
sent the meaning of each word as a point in a
high-dimensional space, where each component cor-
responds to some co-occurring contextual element

(Landauer and Dumais, 1997; McDonald, 2000;
Lund and Burgess, 1996). The advantage of taking
such a geometric approach is that the similarity of
word meanings can be easily quantified by measur-
ing their distance in the vector space, or the cosine
of the angle between them.

Vector-based models do not explicitly identify the
different senses of words and consequently repre-
sent their meaning invariably (i.e., irrespective of co-
occurring context). Consider for example the adjec-
tive heavy which we may associate with the gen-
eral meaning of “dense” or “massive”. However,
when attested in context, heavy may refer to an over-
weight person (e.g., She is short and heavy but she
has a heart of gold.) or an excessive cannabis user
(e.g., Some heavy users develop a psychological de-
pendence on cannabis.).

Recent work addresses this issue indirectly with
the development of specialized models that repre-
sent word meaning in context (Mitchell and Lap-
ata, 2008; Erk and Padó, 2008; Thater et al., 2009).
These methods first extract typical co-occurrence
vectors representing a mixture of senses and then use
vector operations to either obtain contextualized rep-
resentations of a target word (Erk and Padó, 2008)
or a representation for a set of words (Mitchell and
Lapata, 2009).

In this paper we propose a probabilistic frame-
work for representing word meaning and measuring
similarity in context. We model the meaning of iso-
lated words as a probability distribution over a set of
latent senses. This distribution reflects the a priori,
out-of-context likelihood of each sense. Because
sense ambiguity is taken into account directly in the
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vector construction process, contextualized meaning
can be modeled naturally as a change in the origi-
nal sense distribution. We evaluate our approach on
word similarity (Finkelstein et al., 2002) and lexical
substitution (McCarthy and Navigli, 2007) and show
improvements over competitive baselines.

In the remainder of this paper we give a brief
overview of related work, emphasizing vector-based
approaches that compute word meaning in context
(Section 2). Next, we present our probabilistic
framework and different instantiations thereof (Sec-
tions 3 and 4). Finally, we discuss our experimental
results (Sections 5 and 6) and conclude the paper
with future work.

2 Related work

Vector composition methods construct representa-
tions that go beyond individual words (e.g., for
phrases or sentences) and thus by default obtain
word meanings in context. Mitchell and Lapata
(2008) investigate several vector composition op-
erations for representing short sentences (consist-
ing of intransitive verbs and their subjects). They
show that models performing point-wise multiplica-
tion of component vectors outperform earlier pro-
posals based on vector addition (Landauer and Du-
mais, 1997; Kintsch, 2001). They argue that multi-
plication approximates the intersection of the mean-
ing of two vectors, whereas addition their union.
Mitchell and Lapata (2009) further show that their
models yield improvements in language modeling.

Erk and Padó (2008) employ selectional prefer-
ences to contextualize occurrences of target words.
For example, the meaning of a verb in the presence
of its object is modeled as the multiplication of the
verb’s vector with the vector capturing the inverse
selectional preferences of the object; the latter are
computed as the centroid of the verbs that occur
with this object. Thater et al. (2009) improve on this
model by representing verbs in a second order space,
while the representation for objects remains first or-
der. The meaning of a verb boils down to restricting
its vector to the features active in the argument noun
(i.e., dimensions with value larger than zero).

More recently, Reisinger and Mooney (2010)
present a method that uses clustering to pro-
duce multiple sense-specific vectors for each word.

Specifically, a word’s contexts are clustered to pro-
duce groups of similar context vectors. An aver-
age prototype vector is then computed separately
for each cluster, producing a set of vectors for each
word. These cluster vectors can be used to determine
the semantic similarity of both isolated words and
words in context. In the second case, the distance
between prototypes is weighted by the probability
that the context belongs to the prototype’s cluster.
Erk and Padó (2010) propose an exemplar-based
model for capturing word meaning in context. In
contrast to the prototype-based approach, no cluster-
ing takes place, it is assumed that there are as many
senses as there are instances. The meaning of a word
in context is the set of exemplars most similar to it.

Unlike Reisinger and Mooney (2010) and Erk and
Padó (2010) our model is probabilistic (we repre-
sent word meaning as a distribution over a set of la-
tent senses), which makes it easy to integrate and
combine with other systems via mixture or product
models. More importantly, our approach is concep-
tually simpler as we use a single vector representa-
tion for isolated words as well as for words in con-
text. A word’s different meanings are simply mod-
eled as changes in its sense distribution. We should
also point out that our approach is not tied to a spe-
cific sense induction method and can be used with
different variants of vector-space models.

3 Meaning Representation in Context

In this section we first describe how we represent
the meaning of individual words and then move on
to discuss our model of inducing meaning represen-
tations in context.

Observed Representations Most vector space
models in the literature perform computations on
a co-occurrence matrix where each row repre-
sents a target word, each column a document or
another neighboring word, and each entry their
co-occurrence frequency. The raw counts are typ-
ically mapped into the components of a vector in
some space using for example conditional probabil-
ity, the log-likelihood ratio or tf-idf weighting. Un-
der this representation, the similarity of word mean-
ings can be easily quantified by measuring their dis-
tance in the vector space, the cosine of the angle be-
tween them, or their scalar product.
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Our model assumes the same type of input data,
namely a co-occurrence matrix, where rows corre-
spond to target words and columns to context fea-
tures (e.g., co-occurring neighbors). Throughout
this paper we will use the notation ti with i : 1..I
to refer to a target word and cj with j : 1..J to refer
to context features. A cell (i, j) in the matrix rep-
resents the frequency of occurrence of target ti with
context feature cj over a corpus.

Meaning Representation over Latent Senses
We further assume that the target words ti i : 1...I
found in a corpus share a global set of meanings
or senses Z = {zk|k : 1...K}. And therefore the
meaning of individual target words can be described
as a distribution over this set of senses. More for-
mally, a target ti is represented by the following vec-
tor:

v(ti) = (P(z1|ti), ...,P(zK|ti)) (1)

where component P (z1|ti) is the probability of
sense z1 given target word ti, component P (z2|ti)
the probability of sense z2 given ti and so on.

The intuition behind such a representation is that
a target word can be described by a set of core mean-
ings and by the frequency with which these are at-
tested. Note that the representation in (1) is not
fixed but parametrized with respect to an input cor-
pus (i.e., it only reflects word usage as attested in
that corpus). The senses z1 . . . zK are latent and can
be seen as a means of reducing the dimensionality
of the original co-occurrence matrix.

Analogously, we can represent the meaning of a
target word given a context feature as:

v(ti, cj) = (P(z1|ti, cj), ...,P(zK|ti, cj)) (2)

Here, target ti is again represented as a distribution
over senses, but is now modulated by a specific con-
text cj which reflects actual word usage. This distri-
bution is more “focused” compared to (1); the con-
text helps disambiguate the meaning of the target
word, and as a result fewer senses will share most
of the probability mass.

In order to create the context-aware representa-
tions defined in (2) we must estimate the proba-
bilities P (zk|ti, cj) which can be factorized as the
product of P (ti, zk), the joint probability of target ti
and latent sense zk, and P (cj |zk, ti), the conditional
probability of context cj given target ti and sense zk:

P (zk|ti, cj) =
P (ti, zk)P (cj |zk, ti)∑
k P (ti, zk)P (cj |zk, ti)

(3)

Problematically, the term P (cj |zk, ti) is difficult to
estimate since it implies learning a total number of
K × I J-dimensional distributions. We will there-
fore make the simplifying assumption that target
words ti and context features cj are conditionally in-
dependent given sense zk:

P (zk|ti, cj) ≈
P (zk|ti)P (cj |zk)∑
k P (zk|ti)P (cj |zk)

(4)

Although not true in general, the assumption is rela-
tively weak. We do not assume that words and con-
text features occur independently of each other, but
only that they are generated independently given an
assigned meaning. A variety of latent variable mod-
els can be used to obtain senses z1 . . . zK and es-
timate the distributions P (zk|ti) and P (cj |zk); we
give specific examples in Section 4.

Note that we abuse terminology here, as the
senses our models obtain are not lexicographic
meaning distinctions. Rather, they denote coarse-
grained senses or more generally topics attested in
the document collections our model is trained on.
Furthermore, the senses are not word-specific but
global (i.e., shared across all words) and modulated
either within or out of context probabilistically via
estimating P (zk|ti, cj) and P (zk|ti), respectively.

4 Parametrizations

The general framework outlined above can be
parametrized with respect to the input co-occurrence
matrix and the algorithm employed for inducing the
latent structure. Considerable latitude is available
when creating the co-occurrence matrix, especially
when defining its columns, i.e., the linguistic con-
texts a target word is attested with. These con-
texts can be a small number of words surrounding
the target word (Lund and Burgess, 1996; Lowe
and McDonald, 2000), entire paragraphs, documents
(Salton et al., 1975; Landauer and Dumais, 1997)
or even syntactic dependencies (Grefenstette, 1994;
Lin, 1998; Padó and Lapata, 2007).
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Analogously, a number of probabilistic models
can be employed to induce the latent senses. Ex-
amples include Probabilistic Latent Semantic Anal-
ysis (PLSA, Hofmann (2001)), Probabilistic Prin-
cipal Components Analysis (Tipping and Bishop,
1999), non-negative matrix factorization (NMF, Lee
and Seung (2000)), and latent Dirichlet allocation
(LDA, Blei et al. (2003)). We give a more detailed
description of the latter two models as we employ
them in our experiments.

Non-negative Matrix Factorization Non-
negative matrix factorization algorithms approx-
imate a non-negative input matrix V by two
non-negative factors W and H , under a given
loss function. W and H are reduced-dimensional
matrices and their product can be regarded as a
compressed form of the data in V :

VI,J ≈WI,KHK,J (5)

where W is a basis vector matrix and H is an en-
coded matrix of the basis vectors in equation (5).
Several loss functions are possible, such as mean
squared error and Kullback-Leibler (KL) diver-
gence. In keeping with the formulation in Sec-
tion 3 we opt for a probabilistic interpretation of
NMF (Gaussier and Goutte, 2005; Ding et al., 2008)
and thus minimize the KL divergence between WH
and V .

min
∑
i,j

(Vi,j log
Vi,j

WHi,j
− Vi,j +WHi,j) (6)

Specifically, we interpret matrix V as
Vij = P (ti, cj), and matrices W and H as P (ti, zk)
and P (cj |zk), respectively. We can also ob-
tain the following more detailed factorization:
P (ti, cj) =

∑
k P (ti)P (zk|ti)P (cj |zk).

Le WH denote the factors in a NMF decom-
position of an input matrix V and B be a diag-
onal matrix with Bkk =

∑
j Hkj . B−1H gives a

row-normalized version of H . Similarly, given
matrix WB, we can define a diagonal matrix A,
with Aii =

∑
k(WB)ik. A−1WB row-normalizes

matrix WB. The factorization WH can now be re-
written as:

WH=AA−1WBB−1H=A(A−1WB)(B−1H)

which allows us to interpret A as P (ti), A−1WB
as P (zk|ti) and B−1H as P (cj |zk). These interpre-
tations are valid since the rows of A−1WB and of
B−1H sum to 1, matrix A is diagonal with trace 1
because elements in WH sum to 1, and all entries
are non-negative.

Latent Dirichlet Allocation LDA (Blei et al.,
2003) is a probabilistic model of text generation.
Each document d is modeled as a distribution
over K topics, which are themselves characterized
by distributions over words. The individual words
in a document are generated by repeatedly sampling
a topic according to the topic distribution and then
sampling a single word from the chosen topic.

More formally, we first draw the mixing propor-
tion over topics θd from a Dirichlet prior with pa-
rameters α. Next, for each of the Nd words wdn in
document d, a topic zdn is first drawn from a multi-
nomial distribution with parameters θdn. The prob-
ability of a word token w taking on value i given
that topic z = j is parametrized using a matrix β
with bij = P (w = i|z = j). Integrating out θd’s
and zdn’s, gives P (D|α, β), the probability of a cor-
pus (or document collection):

M∏
d=1

∫
P (θd|α)

 Nd∏
n=1

∑
zdn

P (zdn|θd)P (wdn|zdn, β)

dθd

The central computational problem in topic
modeling is to obtain the posterior distri-
bution P (θ, z|w, α, β) of the hidden vari-
ables z = (z1, z2, . . . , zN ). given a docu-
ment w = (w1, w2, . . . , wN ). Although this
distribution is intractable in general, a variety
of approximate inference algorithms have been
proposed in the literature. We adopt the Gibbs
sampling procedure discussed in Griffiths and
Steyvers (2004). In this model, P (w = i|z = j) is
also a Dirichlet mixture (denoted φ) with symmetric
priors (denoted β).

We use LDA to induce senses of target words
based on context words, and therefore each row ti
in the input matrix transforms into a document. The
frequency of ti occurring with context feature cj is
the number of times word cj is encountered in the
“document” associated with ti. We train the LDA
model on this data to obtain the θ and φ distribu-
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tions. θ gives the sense distributions of each tar-
get ti: θik = P (zk|ti) and φ the context-word dis-
tribution for each sense zk: φkj = P (cj |zk).

5 Experimental Set-up

In this section we discuss the experiments we per-
formed in order to evaluate our model. We describe
the tasks on which it was applied, the corpora used
for model training and our evaluation methodology.

Tasks The probabilistic model presented in Sec-
tion 3 represents words via a set of induced senses.
We experimented with two types of semantic space
based on NMF and LDA and optimized parameters
for these models on a word similarity task. The
latter involves judging the similarity sim(ti, t′i) =
sim(v(ti), v(t′i)) of words ti and t′i out of context,
where v(ti) and v(t′i) are obtained from the output of
NMF or LDA, respectively. In our experiments we
used the data set of Finkelstein et al. (2002). It con-
tains 353 pairs of words and their similarity scores
as perceived by human subjects.

The contextualized representations were next
evaluated on lexical substitution (McCarthy and
Navigli, 2007). The task requires systems to find
appropriate substitutes for target words occurring in
context. Typically, systems are given a set of substi-
tutes, and must produce a ranking such that appro-
priate substitutes are assigned a higher rank com-
pared to non-appropriate ones. We made use of the
SemEval 2007 Lexical Substitution Task benchmark
data set. It contains 200 target words, namely nouns,
verbs, adjectives and adverbs, each of which occurs
in 10 distinct sentential contexts. The total set con-
tains 2,000 sentences. Five human annotators were
asked to provide substitutes for these target words.
Table 1 gives an example of the adjective still and
its substitutes.

Following Erk and Padó (2008), we pool together
the total set of substitutes for each target word.
Then, for each instance the model has to produce a
ranking for the total substitute set. We rank the can-
didate substitutes based on the similarity of the con-
textualized target and the out-of-context substitute,
sim(v(ti, cj), v(t′i)), where ti is the target word, cj a
context word and t′i a substitute. Contextualizing
just one of the words brings higher discriminative
power to the model rather than performing compar-

Sentences Substitutes
It is important to apply the
herbicide on a still day, be-
cause spray drift can kill
non-target plants.

calm (5) not-windy (1)
windless (1)

A movie is a visual docu-
ment comprised of a series
of still images.

motionless (3) unmov-
ing (2) fixed (1) sta-
tionary (1) static (1)

Table 1: Lexical substitution data example for the adjec-
tive still ; numbers in parentheses indicate the frequency
of the substitute.

isons with the target and its substitute embedded in
an identical context (see also Thater et al. (2010) for
a similar observation).

Model Training All the models we experimented
with use identical input data, i.e., a bag-of-words
matrix extracted from the GigaWord collection of
news text. Rows in this matrix are target words and
columns are their co-occurring neighbors, within a
symmetric window of size 5. As context words, we
used a vocabulary of the 3,000 most frequent words
in the corpus.1

We implemented the classical NMF factorization
algorithm described in Lee and Seung (2000). The
input matrix was normalized so that all elements
summed to 1. We experimented with four dimen-
sions K: [600 − 1000] with step size 200. We ran
the algorithm for 150 iterations to obtain factors W
and H which we further processes as described in
Section 4 to obtain the desired probability distribu-
tions. Since the only parameter of the NMF model
is the factorization dimension K, we performed two
independent runs with each K value and averaged
their predictions.

The parameters for the LDA model are the num-
ber of topicsK and Dirichlet priors α and β. We ex-
perimented with topics K: [600− 1400], again with
step size 200. We fixed β to 0.01 and tested two val-
ues for α: 2

K (Porteous et al., 2008) and 50
K (Griffiths

and Steyvers, 2004). We used Gibbs sampling on
the “document collection” obtained from the input
matrix and estimated the sense distributions as de-
scribed in Section 4. We ran the chains for 1000 iter-

1The GigaWord corpus contains 1.7B words; we scale down
all the counts by a factor of 70 to speed up the computation of
the LDA models. All models use this reduced size input data.

1166



ations and averaged over five iterations [600−1000]
at lag 100 (we observed no topic drift).

We measured similarity using the scalar prod-
uct, cosine, and inverse Jensen-Shannon (IJS) diver-
gence (see (7), (8), and (9), respectively):

sp(v, w) =< v,w >=
∑

i

viwi (7)

cos(v, w) =
〈v, w〉
||v|| ||w||

(8)

IJS(v, w) =
1

JS(v,w)
(9)

JS(v,w) =
1
2

KL(v|m) +
1
2

KL(w|m) (10)

where m is a shorthand for 1
2(v + w) and

KL the Kullback-Leibler divergence, KL(v|w) =∑
i vilog( vi

wi
).

Among the above similarity measures, the scalar
product has the most straightforward interpretation
as the probability of two targets sharing a common
meaning (i.e., the sum over all possible meanings).
The scalar product assigns 1 to a pair of identi-
cal vectors if and only if P (zi) = 1 for some i
and P (zj) = 0,∀j 6= i. Thus, only fully disam-
biguated words receive a score of 1. Beyond similar-
ity, the measure also reflects how “focused” the dis-
tributions in question are, as very ambiguous words
are unlikely to receive high scalar product values.

Given a set of context words, we contextualize the
target using one context word at a time and compute
the overall similarity score by multiplying the indi-
vidual scores.

Baselines Our baseline models for measuring sim-
ilarity out of context are Latent Semantic Analysis
(Landauer and Dumais, 1997) and a simple seman-
tic space without any dimensionality reduction.

For LSA, we computed the UΣV SVD decompo-
sition of the original matrix to rank k = 1000. Any
decomposition of lower rank can be obtained from
this by setting rows and columns to 0. We evaluated
decompositions to ranks K: [200 − 1000], at each
100 step. Similarity computations were performed
in the lower rank approximation matrix UΣV , as
originally proposed in Deerwester et al. (1990), and
in matrix U which maps the words into the concept
space. It is common to compute SVD decomposi-
tions on matrices to which prior weighting schemes

have been applied. We experimented with tf-idf
weighting and line normalization.

Our second baseline, the simple semantic space,
was based on the original input matrix on which
we applied several weighting schemes such as point-
wise mutual information, tf-idf, and line normaliza-
tion. Again, we measured similarity using cosine,
scalar product and inverse JS divergence. In addi-
tion, we also experimented with Lin’s (1998) simi-
larity measure:

lin(v, w) =
∑

i∈I(v)∩I(w)(vi + wi)∑
i∈I(v) vi +

∑
l∈I(w)wi

(11)

where the values in v and w are point-wise mutual
information, and I(·) gives the indices of positive
values in a vector.

Our baselines for contextualized similarity were
vector addition and vector multiplication which
we performed using the simple semantic space
(Mitchell and Lapata, 2008) and dimensionality
reduced representations obtained from NMF and
LDA. To create a ranking of the candidate substi-
tutes we compose the vector of the target with its
context and compare it with each substitute vector.
Given a set of context words, we contextualize the
target using each context word at a time and multi-
ply the individual scores.

Evaluation Method For the word similarity task
we used correlation analysis to examine the rela-
tionship between the human ratings and their cor-
responding vector-based similarity values. We re-
port Spearman’s ρ correlations between the simi-
larity values provided by the models and the mean
participant similarity ratings in the Finkelstein et al.
(2002) data set. For the lexical substitution task, we
compare the system ranking with the gold standard
ranking using Kendall’s τb rank correlation (which is
adjusted for tied ranks). For all contextualized mod-
els we defined the context of a target word as the
words occurring within a symmetric context window
of size 5. We assess differences between models us-
ing stratified shuffling (Yeh, 2000).2

2Given two system outputs, the null hypothesis (i.e., that
the two predictions are indistinguishable) is tested by randomly
mixing the individual instances (in our case sentences) of the
two outputs. We ran a standard number of 10000 iterations.
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Model Spearman ρ
SVS 38.35
LSA 49.43
NMF 52.99
LDA 53.39
LSAMIX 49.76
NMFMIX 51.62
LDAMIX 51.97

Table 2: Results on out of context word similarity using
a simple co-occurrence based vector space model (SVS),
latent semantic analysis, non-negative matrix factoriza-
tion and latent Dirichlet allocation as individual models
with the best parameter setting (LSA, NMF, LDA) and as
mixtures (LSAMIX, NMFMIX, LDAMIX).

6 Results

Word Similarity Our results on word similar-
ity are summarized in Table 2. The simple co-
occurrence based vector space (SVS) performed best
with tf-idf weighting and the cosine similarity mea-
sure. With regard to LSA, we obtained best re-
sults with initial line normalization of the matrix,
K = 600 dimensions, and the scalar product sim-
ilarity measure while performing computations in
matrix U . Both NMF and LDA models are generally
better with a larger number of senses. NMF yields
best performance with K = 1000 dimensions and
the scalar product similarity measure. The best LDA
model also uses the scalar product, has K = 1200
topics, and α set to 50

K .
Following Reisinger and Mooney (2010), we also

evaluated mixture models that combine the output
of models with varying parameter settings. For both
NMF and LDA we averaged the similarity scores re-
turned by all runs. For comparison, we also present
an LSA mixture model over the (best) middle in-
terval K values. As can be seen, the LSA model
improves slightly, whereas NMF and LDA perform
worse than their best individual models.3 Overall,
we observe that NMF and LDA yield significantly
(p < 0.01) better correlations than LSA and the sim-

3It is difficult to relate our results to Reisinger and Mooney
(2010), due to differences in the training data and the vector rep-
resentations it gives rise to. As a comparison, a baseline config-
uration with tf-idf weighting and the cosine similarity measure
yields a correlation of 0.38 with our data and 0.49 in Reisinger
and Mooney (2010).

Model Kendall’s τb
SVS 11.05
Add-SVS 12.74
Add-NMF 12.85
Add-LDA 12.33
Mult-SVS 14.41
Mult-NMF 13.20
Mult-LDA 12.90
Cont-NMF 14.95
Cont-LDA 13.71
Cont-NMFMIX 16.01
Cont-LDAMIX 15.53

Table 3: Results on lexical substitution using a simple
semantic space model (SVS), additive and multiplicative
compositional models with vector representations based
on co-occurrences (Add-SVS, Mult-SVS), NMF (Add-
NMF, Mult-NMF), and LDA (Add-LDA, Mult-LDA) and
contextualized models based on NMF and LDA with the
best parameter setting (Cont-NMF, Cont-LDA) and as
mixtures (Cont-NMFMIX, Cont-LDAMIX).

ple semantic space, both as individual models and as
mixtures.

Lexical Substitution Our results on lexical sub-
stitution are shown in Table 3. As a baseline we
also report the performance of the simple semantic
space that does not use any contextual information.
This model returns the same ranking of the substi-
tute candidates for each instance, based solely on
their similarity with the target word. This is a rel-
atively competitive baseline as observed by Erk and
Padó (2008) and Thater et al. (2009).

We report results with contextualized NMF and
LDA as individual models (the best word similar-
ity settings) and as mixtures (as described above).
These are in turn compared against additive and
multiplicative compositional models. We imple-
mented an additive model with pmi weighting and
Lin’s similarity measure which is defined in an ad-
ditive fashion. The multiplicative model uses tf-
idf weighting and cosine similarity, which involves
multiplication of vector components. Other combi-
nations of weighting schemes and similarity mea-
sures delivered significantly lower results. We also
report results for these models when using the NMF
and LDA reduced representations.
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Model Adv Adj Noun Verb
SVS 22.47 14.38 09.52 7.98
Add-SVS 22.79 14.56 11.59 10.00
Mult-SVS 22.85 16.37 13.59 11.60
Cont-NMFMIX 26.13 17.10 15.16 14.18
Cont-LDAMIX 21.21 16.00 16.31 13.67

Table 4: Results on lexical substitution for different parts
of speech with a simple semantic space model (SVS), two
compositional models (Add-SVS, Mult-SVS), and con-
textualized mixture models with NMF and LDA (Cont-
NMFMIX, Cont-LDAMIX), using Kendall’s τb correlation
coefficient.

All models significantly (p < 0.01) outperform
the context agnostic simple semantic space (see
SVS in Table 3). Mixture NMF and LDA mod-
els are significantly better than all variants of com-
positional models (p < 0.01); the individual mod-
els are numerically better, however the difference
is not statistically significant. We also find that the
multiplicative model using a simple semantic space
(Mult-SVS) is the best performing compositional
model, thus corroborating the results of Mitchell and
Lapata (2009). Interestingly, dimensionality compo-
sitional models. This indicates that the better results
we obtain are due to the probabilistic formulation of
our contextualized model as a whole rather than the
use of NMF or LDA. Finally, we observe that the
Cont-NMF model is slightly better than Cont-LDA,
however the difference is not statistically significant.

To allow comparison with previous results re-
ported on this data set, we also used the General-
ized Average Precision (GAP, Kishida (2005)) as an
evaluation measure. GAP takes into account the or-
der of candidates ranked correctly by a hypothetical
system, whereas average precision is only sensitive
to their relative position. The best performing mod-
els are Cont-NMFMIX and Cont-LDAMIX obtaining
a GAP of 42.7% and 42.9%, respectively. Erk and
Padó (2010) report a GAP of 38.6% on this data set
with their best model.

Table 4 shows how the models perform across dif-
ferent parts of speech. While verbs and nouns seem
to be most difficult, we observe higher gains from
the use of contextualized models. Cont-LDAMIX

obtains approximately 7% absolute gain for nouns
and Cont-NMFMIX approximately 6% for verbs. All

Senses Word Distributions
TRAFFIC (0.18) road, traffic, highway, route, bridge
MUSIC (0.04) music, song, rock, band, dance, play
FAN (0.04) crowd, fan, people, wave, cheer, street
VEHICLE (0.04) car, truck, bus, train, driver, vehicle

Table 5: Induced senses of jam and five most likely words
given these senses using an LDA model; sense probabili-
ties are shown in parentheses.

contextualized models obtain smaller improvements
for adjectives. For adverbs most models do not im-
prove over the no-context setting, with the exception
Cont-NMFMIX.

Finally, we also qualitatively examined how the
context words influence the sense distributions of
target words using examples from the lexical sub-
stitution dataset and the output of an individual
Cont-LDA model. In many cases, a target word
starts with a distribution spread over a larger number
of senses, while a context word shifts this distribu-
tion to one majority sense. Consider, for instance,
the target noun jam in the following sentence:

(1) With their transcendent, improvisational jams
and Mayan-inspired sense of a higher, meta-
physical purpose, the band’s music delivers a
spiritual sustenance that has earned them a very
devoted core following.

Table 5 shows the out-of-context senses activated
for jam together with the five most likely words as-
sociated with them.4 Sense probabilities are also
shown in parentheses. As can be seen, initially two
traffic-related and two music-related senses are acti-
vated, however with low probabilities. In the pres-
ence of the context word band, we obtain a much
more “focused” distribution, in which the MUSIC

sense has 0.88 probability. The system ranks riff
and gig as the most likely two substitutes for jam.
The gold annotation also lists session as a possible
substitute.

In a large number of cases, the target is only par-
tially disambiguated by a context word and this is
also reflected in the resulting distribution. An ex-

4Sense names are provided by the authors in an attempt to
best describe the clusters (i.e., topics for LDA) to which words
are assigned.
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ample is the word bug which initially has a distribu-
tion triggering the SOFTWARE (0.09, computer, soft-
ware, microsoft, windows) and DISEASE (0.06, dis-
ease, aids, virus, cause) senses. In the context of
client, bug remains ambiguous between the senses
SECRET-AGENCY (0.34, agent, secret, intelligence,
FBI) ) and SOFTWARE (0.29):

(2) We wanted to give our client more than just a
list of bugs and an invoice — we wanted to
provide an audit trail of our work along with
meaningful productivity metrics.

There are also cases where the contextualized dis-
tributions are not correct, especially when senses are
domain specific. An example is the word function
occurring in its mathematical sense with the context
word distribution. However, the senses that are trig-
gered by this pair all relate to the “service” sense of
function. This is a consequence of the newspaper
corpus we use, in which the mathematical sense of
function is rare. We also see several cases where
the target word and one of the context words are as-
signed senses that are locally correct, but invalid in
the larger context. In the following example:

(3) Check the shoulders so it hangs well, stops at
hips or below, and make sure the pants are long
enough.

The pair (check, shoulder) triggers senses IN-
JURY (0.81, injury, left, knee, shoulder) and
BALL-SPORTS (0.10, ball, shot, hit, throw). How-
ever, the sentential context ascribes a meaning that
is neither related to injury nor sports. This suggests
that our models could benefit from more principled
context feature aggregation.

Generally, verbs are not as good context words
as nouns. To give an example, we often encounter
the pair (let, know), used in the common “inform”
meaning. The senses we obtain for this pair, are,
however, rather uninformative general verb classes:
{see, know, think, do} (0.57) and {go, say, do,
can} (0.20). This type of error can be eliminated in
a space where context features are designed to best
reflect the properties of the target words.

7 Conclusions

In this paper we have presented a general frame-
work for computing similarity in context. Key in this
framework is the representation of word meaning as
a distribution over a set of global senses where con-
textualized meaning is modeled as a change in this
distribution. The approach is conceptually simple,
the same vector representation is used for isolated
words and words in context without being tied to a
specific sense induction method or type of semantic
space.

We have illustrated two instantiations of this
framework using non-negative matrix factorization
and latent Dirichlet allocation for inducing the la-
tent structure, and shown experimentally that they
outperform previously proposed methods for mea-
suring similarity in context. Furthermore, both of
them benefit from mixing model predictions over a
set of different parameter choices, thus making pa-
rameter tuning redundant.

The directions for future work are many and var-
ied. Conceptually, we have defined our model in an
asymmetric fashion, i.e., by stipulating a difference
between target words and contextual features. How-
ever, in practice, we used vector representations that
do not distinguish the two: target words and con-
textual features are both words. This choice was
made to facilitate comparisons with the popular bag-
of-words vector space models. However, differen-
tiating target from context representations may be
beneficial particularly when the similarity compu-
tations are embedded within specific tasks such as
the acquisition of paraphrases, the recognition of en-
tailment relations, and thesaurus construction. Also
note that our model currently contextualizes target
words with respect to individual contexts. Ideally,
we would like to compute the collective influence of
several context words on the target. We plan to fur-
ther investigate how to select or to better aggregate
the entire set of features extracted from a context.
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Abstract

We introduce tiered clustering, a mixture
model capable of accounting for varying de-
grees of shared (context-independent) fea-
ture structure, and demonstrate its applicabil-
ity to inferring distributed representations of
word meaning. Common tasks in lexical se-
mantics such as word relatedness or selec-
tional preference can benefit from modeling
such structure: Polysemous word usage is of-
ten governed by some common background
metaphoric usage (e.g. the senses of line or
run), and likewise modeling the selectional
preference of verbs relies on identifying com-
monalities shared by their typical arguments.
Tiered clustering can also be viewed as a form
of soft feature selection, where features that do
not contribute meaningfully to the clustering
can be excluded. We demonstrate the applica-
bility of tiered clustering, highlighting partic-
ular cases where modeling shared structure is
beneficial and where it can be detrimental.

1 Introduction

Word meaning can be represented as high-
dimensional vectors inhabiting a common space
whose dimensions capture semantic or syntactic
properties of interest (e.g. Erk and Pado, 2008;
Lowe, 2001). Such vector-space representations of
meaning induce measures of word similarity that can
be tuned to correlate well with judgements made
by humans. Previous work has focused on de-
signing feature representations and semantic spaces
that capture salient properties of word meaning (e.g.
Curran, 2004; Gabrilovich and Markovitch, 2007;
Landauer and Dumais, 1997), often leveraging the
distributional hypothesis, i.e. that similar words ap-

pear in similar contexts (Miller and Charles, 1991;
Pereira et al., 1993).

Since vector-space representations are con-
structed at the lexical level, they conflate multiple
word meanings into the same vector, e.g. collaps-
ing occurrences of bankinstitution and bankriver. Meth-
ods such as Clustering by Committee (Pantel, 2003)
and multi-prototype representations (Reisinger and
Mooney, 2010) address this issue by perform-
ing word-sense disambiguation across word occur-
rences, and then building meaning vectors from
the disambiguated words. Such approaches can
readily capture the structure of homonymous words
with several unrelated meanings (e.g. bat and club),
but are not suitable for representing the common
metaphor structure found in highly polysemous
words such as line or run.

In this paper, we introduce tiered clustering, a
novel probabilistic model of the shared structure
often neglected in clustering problems. Tiered
clustering performs soft feature selection, allocat-
ing features between a Dirichlet Process cluster-
ing model and a background model consisting of
a single component. The background model ac-
counts for features commonly shared by all occur-
rences (i.e. context-independent feature variation),
while the clustering model accounts for variation
in word usage (i.e. context-dependent variation, or
word senses; Table 1).

Using the tiered clustering model, we derive a
multi-prototype representation capable of capturing
varying degrees of sharing between word senses,
and demonstrate its effectiveness in lexical seman-
tic tasks where such sharing is desirable. In partic-
ular we show that tiered clustering outperforms the
multi-prototype approach for (1) selectional prefer-
ence (Resnik, 1997; Pantel et al., 2007), i.e. predict-
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ing the typical filler of an argument slot of a verb,
and (2) word-relatedness in the presence of highly
polysemous words. The former case exhibits a high
degree of explicit structure, especially for more se-
lectionally restrictive verbs (e.g. the set of things that
can be eaten or can shoot).

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on the
methods compared, Section 3 outlines the multi-
prototype model based on the Dirichlet Process mix-
ture model, Section 4 derives the tiered cluster-
ing model, Section 5 discusses similarity metrics,
Section 6 details the experimental setup and in-
cludes a micro-analysis of feature selection, Section
7 presents results applying tiered clustering to word
relatedness and selectional preference, Section 8 dis-
cusses future work, and Section 9 concludes.

2 Background

Models of the attributional similarity of concepts,
i.e. the degree to which concepts overlap based on
their attributes (Turney, 2006), are commonly imple-
mented using vector-spaces derived from (1) word
collocations (Schütze, 1998), directly leveraging the
distributional hypothesis (Miller and Charles, 1991),
(2) syntactic relations (Padó and Lapata, 2007), (3)
structured corpora (e.g. Gabrilovich and Markovitch
(2007)) or (4) latent semantic spaces (Finkelstein
et al., 2001; Landauer and Dumais, 1997). Such
models can be evaluated based on their correlation
with human-reported lexical similarity judgements
using e.g. the WordSim-353 collection (Finkelstein
et al., 2001). Distributional methods exhibit a high
degree of scalability (Gorman and Curran, 2006) and
have been applied broadly in information retrieval
(Manning et al., 2008), large-scale taxonomy induc-
tion (Snow et al., 2006), and knowledge acquisition
(Van Durme and Paşca, 2008).

Reisinger and Mooney (2010) introduced a multi-
prototype approach to vector-space lexical seman-
tics where individual words are represented as col-
lections of “prototype” vectors. This representation
is capable of accounting for homonymy and poly-
semy, as well as other forms of variation in word
usage, like similar context-dependent methods (Erk
and Pado, 2008). The set of vectors for a word
is determined by unsupervised word sense discov-
ery (Schütze, 1998), which clusters the contexts in
which a word appears. Average prototype vectors

LIFE

all, about, life, would, death
my, you, real, your, about
spent, years, rest, lived, last
sentenced, imprisonment, sentence, prison
insurance, peer, Baron, member, company
Guru, Rabbi, Baba, la, teachings

RADIO

station, radio, stations, television
amateur, frequency, waves, system
show, host, personality, American
song, single, released, airplay
operator, contact, communications, message

WIZARD

evil, powerful, magic, wizard
Merlin, King, Arthur, Arthurian
fairy, wicked, scene, tale
Harry, Potter, Voldemort, Dumbledore

STOCK

stock, all, other, company, new
market, crash, markets, price, prices
housing, breeding, fish, water, horses
car, racing, cars, NASCAR, race, engine
card, cards, player, pile, game, paper
rolling, locomotives, line, new, railway

Table 1: Example tiered clustering representation of
words with varying degrees of polysemy. Each boxed
set shows the most common background (shared) fea-
tures, and each prototype captures one thematic usage
of the word. For example, wizard is broken up into a
background cluster describing features common to all us-
ages of the word (e.g., magic and evil) and several genre-
specific usages (e.g. Merlin, fairy tales and Harry Potter).

are then computed separately for each cluster, pro-
ducing a distributed representation for each word.

Distributional methods have also proven to be a
powerful approach to modeling selectional prefer-
ence (Padó et al., 2007; Pantel et al., 2007), rivaling
methods based on existing semantic resources such
as WordNet (Clark and Weir, 2002; Resnik, 1997)
and FrameNet (Padó, 2007) and performing nearly
as well as supervised methods (Herdaǧdelen and Ba-
roni, 2009). Selectional preference has been shown
to be useful for, e.g., resolving ambiguous attach-
ments (Hindle and Rooth, 1991), word sense disam-
biguation (McCarthy and Carroll, 2003) and seman-
tic role labeling (Gildea and Jurafsky, 2002).

3 Multi-Prototype Models

Representing words as mixtures over several pro-
totypes has proven to be a powerful approach to
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vector-space lexical semantics (Pantel, 2003; Pantel
et al., 2007; Reisinger and Mooney, 2010). In this
section we briefly introduce a version of the multi-
prototype model based on the Dirichlet Process Mix-
ture Model (DPMM), capable of inferring automat-
ically the number of prototypes necessary for each
word (Rasmussen, 2000). Similarity between two
DPMM word-representations is then computed as a
function of their cluster centroids (§5), instead of the
centroid of all the word’s occurrences.

Multiple prototypes for each word w are gener-
ated by clustering feature vectors vpcq derived from
each occurrence c P Cpwq in a large textual cor-
pus and collecting the resulting cluster centroids
πkpwq, k P r1,Kws. This approach is commonly
employed in unsupervised word sense discovery;
however, we do not assume that clusters correspond
to word senses. Rather, we only rely on clusters to
capture meaningful variation in word usage.

Instead of assuming all words can be repre-
sented by the same number of clusters, we allocate
representational flexibility dynamically using the
DPMM. The DPMM is an infinite capacity model
capable of assigning data to a variable, but finite
number of clusters Kw, with probability of assign-
ment to cluster k proportional to the number of data
points previously assigned to k. A single parameter
η controls the degree of smoothing, producing more
uniform clusterings as η Ñ 8. Using this model,
the number of clusters no longer needs to be fixed
a priori, allowing the model to allocate expressivity
dynamically to concepts with richer structure. Such
a model naturally allows the word representation to
allocate additional capacity for highly polysemous
words, with the number of clusters growing loga-
rithmically with the number of occurrences. The
DPMM has been used for rational models of con-
cept organization (Sanborn et al., 2006), but to our
knowledge has not yet been applied directly to lexi-
cal semantics.

4 Tiered Clustering

Tiered clustering allocates features between two
submodels: a (context-dependent) DPMM and a sin-
gle (context-independent) background component.
This model is similar structurally to the feature se-
lective clustering model proposed by Law et al.
(2002). However, instead of allocating entire feature
dimensions between model and background compo-
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Figure 1: Plate diagram for the tiered clustering model
with cluster indicators drawn from the Chinese Restau-
rant Process.

nents, assignment is done at the level of individual
feature occurrences, much like topic assignment in
Latent Dirichlet Allocation (LDA; Griffiths et al.,
2007). At a high level, the tiered model can be
viewed as a combination of a multi-prototype model
and a single-prototype back-off model. However,
by leveraging both representations in a joint frame-
work, uninformative features can be removed from
the clustering, resulting in more semantically tight
clusters.

Concretely, each word occurrence wd first selects
a cluster φd from the DPMM; then each feature wi,d
is generated from either the background modelφback
or the selected cluster φd, determined by the tier
indicator zi,d. The full generative model for tiered
clustering is given by

θd|α � Betapαq d P D,
φd|β, G0 � DPpβ, G0q d P D,

φback|βback � Dirichletpβbackq
zi,d|θd � Bernoullipθdq i P |wd|,

wi,d|φd, zi,d �

$''&
''%

Multpφbackq
pzi,d � 1q

Multpφdq
potherwiseq

i P |wd|,

where α controls the per-data tier distribution
smoothing and β controls the uniformity of the DP
cluster allocation. The DP is parameterized by a
base measure G0, controlling the per-cluster term
distribution smoothing; which use a Dirichlet with
hyperparameter η, as is common (Figure 1).

Since the background topic is shared across all oc-
currences, it can account for features with context-
independent variance, such as stop words and other
high-frequency noise, as well as the central tendency
of the collection (Table 1). Furthermore, it is possi-
ble to put an asymmetric prior on η, yielding more
fine-grained control over the assumed uniformity of
the occurrence of noisy features, unlike in the model
proposed by Law et al. (2002).
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Although exact posterior inference is intractable
in this model, we derive an efficient collapsed Gibbs
sampler via analogy to LDA (Appendix 1).

5 Measuring Semantic Similarity
Due to its richer representational structure, comput-
ing similarity in the multi-prototype model is less
straightforward than in the single prototype case.
Reisinger and Mooney (2010) found that simply av-
eraging all similarity scores over all pairs of proto-
types (sampled from the cluster distributions) per-
forms reasonably well and is robust to noise. Given
two words w and w1, this AvgSim metric is

AvgSimpw,w1q
def
�

1

KwKw1

Kw̧

j�1

Kw1¸
k�1

dpπkpwq, πjpw
1qq

Kw andKw1 are the number of clusters for w and w1

respectively, and dp�, �q is a standard distributional
similarity measure (e.g. cosine distance). As cluster
sizes become more uniform, AvgSim tends towards
the single prototype similarity,1 hence the effective-
ness of AvgSim stems from boosting the influence
of small clusters.

Tiered clustering representations offer more pos-
sibilities for computing semantic similarity than
multi-prototype, as the background prototype can be
treated separately from the other prototypes. We
make use of a simple sum of the distance between
the two background components, and the AvgSim
of the two sets of clustering components.

6 Experimental Setup

6.1 Corpus
Word occurrence statistics are collected from a snap-
shot of English Wikipedia taken on Sept. 29th, 2009.
Wikitext markup is removed, as are articles with
fewer than 100 words, leaving 2.8M articles with a
total of 2.05B words. Wikipedia was chosen due to
its semantic breadth.

6.2 Evaluation Methodology
We evaluate the tiered clustering model on two prob-
lems from lexical semantics: word relatedness and
selectional preference. For the word relatedness

1This can be problematic for certain clustering methods
that specify uniform priors over cluster sizes; however the
DPMM naturally exhibits a linear decay in cluster sizes with
the Er# clusters of size M s � η{M .

Rating distribution

WS-353
0.0

0.5

1.0

Evocation Pado

Sense count distribution

WS-353
0

3

10

80

Evocation Pado

Figure 2: (top) The distribution of ratings (scaled [0,1])
on WS-353, WN-Evocation and Padó datasets. (bottom)
The distribution of sense counts for each data set (log-
domain), collected from WordNet 3.0.

evaluation, we compared the predicted similarity of
word pairs from each model to two collections of hu-
man similarity judgements: WordSim-353 (Finkel-
stein et al., 2001) and the Princeton Evocation rela-
tions (WN-Evocation, Ma et al., 2009).

WS-353 contains between 13 and 16 human sim-
ilarity judgements for each of 353 word pairs, rated
on a 1–10 integer scale. WN-Evocation is signif-
icantly larger than WS-353, containing over 100k
similarity comparisons collected from trained hu-
man raters. Comparisons are assigned to only 3-
5 human raters on average and contain a signifi-
cantly higher fraction of zero- and low-similarity
items than WS-353 (Figure 2), reflecting more ac-
curately real-world lexical semantics settings. In our
experiments we discard all comparisons with fewer
than 5 ratings and then sample 10% of the remain-
ing pairs uniformly at random, resulting in a test set
with 1317 comparisons.

For selectional preference, we employ the Padó
dataset, which contains 211 verb-noun pairs with
human similarity judgements for how plausible the
noun is for each argument of the verb (2 arguments
per verb, corresponding roughly to subject and ob-
ject). Results are averaged across 20 raters; typical
inter-rater agreement is ρ � 0.7 (Padó et al., 2007).

In all cases correlation with human judgements
is computed using Spearman’s nonparametric rank
correlation (ρ) with average human judgements
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(Agirre et al., 2009).

6.3 Feature Representation

In the following analyses we confine ourselves to
representing word occurrences using unordered un-
igrams collected from a window of size T�10 cen-
tered around the occurrence, represented using tf-idf
weighting. Feature vectors are pruned to a fixed
length f , discarding all but the highest-weight fea-
tures (f is selected via empirical validation, as de-
scribed in the next section). Finally, semantic simi-
larity between word pairs is computed using cosine
distance (`2-normalized dot-product).2

6.4 Feature Pruning

Feature pruning is one of the most significant factors
in obtaining high correlation with human similarity
judgements using vector-space models, and has been
suggested as one way to improve sense disambigua-
tion for polysemous verbs (Xue et al., 2006). In this
section, we calibrate the single prototype and multi-
prototype methods on WS-353, reaching the limit
of human and oracle performance and demonstrat-
ing robust performance gains even with semanti-
cally impoverished features. In particular we obtain
ρ�0.75 correlation on WS-353 using only unigram
collocations and ρ�0.77 using a fixed-K multi-
prototype representation (Figure 3; Reisinger and
Mooney, 2010). This result rivals average human
performance, obtaining correlation near that of the
supervised oracle approach of Agirre et al. (2009).

The optimal pruning cutoff depends on the fea-
ture weighting and number of prototypes as well as
the feature representation. t-test and χ2 features are
most robust to feature noise and perform well even
with no pruning; tf-idf yields the best results but is
most sensitive to the pruning parameter (Figure 3).
As the number of features increases, more pruning
is required to combat feature noise.

Figure 4 breaks down the similarity pairs into four
quantiles for each data set and then shows corre-
lation separately for each quantile. In general the
more polarized data quantiles (1 and 4) have higher
correlation, indicating that fine-grained distinctions

2(Parameter robustness) We observe lower correlations on
average for T�25 and T�5 and therefore observe T�10 to
be near-optimal. Substituting weighted Jaccard similarity for
cosine does not significantly affect the results in this paper.
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Figure 4: Correlation results on WS-353 broken down
over quantiles in the human ratings. Quantile ranges are
shown in Figure 2. In general ratings for highly sim-
ilar (dissimilar) pairs are more predictable (quantiles 1
and 4) than middle similarity pairs (quantiles 2, 3). ESA
shows results for a more semantically rich feature set de-
rived using Explicit Semantic Analysis (Gabrilovich and
Markovitch, 2007).

in semantic distance are easier for those sets.3 Fea-
ture pruning improves correlations in quantiles 2–4
while reducing correlation in quantile 1 (lowest sim-
ilarity). This result is to be expected as more fea-
tures are necessary to make fine-grained distinctions
between dissimilar pairs.

7 Results

We evaluate four models: (1) the standard single-
prototype approach, (2) the DPMM multi-prototype
approach outlined in §3, (3) a simple combina-
tion of the multi-prototype and single-prototype ap-
proaches (MP+SP)4 and (4) the tiered clustering ap-
proach (§4). Each data set is divided into 5 quan-
tiles based on per-pair average sense counts,5 col-
lected from WordNet 3.0 (Fellbaum, 1998); ex-
amples of pairs in the high-polysemy quantile are
shown in Table 2. Unless otherwise specified,
both DPMM multi-prototype and tiered clustering

3The fact that the per-quantile correlation is significantly
lower than the full correlation e.g. in the human case indicates
that fine-grained ordering (within quantile) is more difficult than
coarse-grained (between quantile).

4(MP+SP) Tiered clustering’s ability to model both shared
and idiosyncratic structure can be easily approximated by us-
ing the single prototype model as the shared component and
multi-prototype model as the clustering. However, unlike in the
tiered model, all features are assigned to both components. We
demonstrate that this simplification actually hurts performance.

5Despite many skewed pairs (e.g. line has 36 senses while
insurance has 3), we found that arithmetic average and geomet-
ric average perform the same.
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Figure 3: Effects of feature pruning and representation on WS-353 correlation broken down across multi-prototype
representation size. In general tf-idf features are the most sensitive to pruning level, yielding the highest correlation for
moderate levels of pruning and significantly lower correlation than other representations without pruning. The optimal
amount of pruning varies with the number of prototypes used, with fewer features being optimal for more clusters.
Bars show 95% confidence intervals.

WordSim-353
stock-live, start-match, line-insurance, game-
round, street-place, company-stock

Evocation
break-fire, clear-pass, take-call, break-tin,
charge-charge, run-heat, social-play

Padó
see-drop, see-return, hit-stock, raise-bank, see-
face, raise-firm, raise-question

Table 2: Examples of highly polysemous pairs from each
data set using sense counts from WordNet.

use symmetric Dirichlet hyperparameters, β�0.1,
η�0.1, and tiered clustering usesα�10 for the back-
ground/clustering allocation smoother.

7.1 WordSim-353
Correlation results for WS-353 are shown in Table
3. In general the approaches incorporating multiple
prototypes outperform single prototype (ρ � 0.768
vs. ρ � 0.734). The tiered clustering model does not
significantly outperform either the multi-prototype
or MP+SP models on the full set, but yields signifi-
cantly higher correlation on the high-polysemy set.

The tiered model generates more clusters than
DPMM multi-prototype (27.2 vs. 14.8), despite us-
ing the same hyperparameter settings: Since words
commonly shared across clusters have been allo-
cated to the background component, the cluster
components have less overlap and hence the model
naturally allocates more clusters.

Examples of the tiered clusterings for several

Method ρ � 100 ErCs background

Single prototype 73.4�0.5 1.0 -
high polysemy 76.0�0.9 1.0 -

Multi-prototype 76.8�0.4 14.8 -
high polysemy 79.3�1.3 12.5 -

MP+SP 75.4�0.5 14.8 -
high polysemy 80.1�1.0 12.5 -

Tiered 76.9�0.5 27.2 43.0%
high polysemy 83.1�1.0 24.2 43.0%

Table 3: Spearman’s correlation on the WS-353 data set.
All refers to the full set of pairs, high polysemy refers to
the top 20% of pairs, ranked by sense count. ErCs is the
average number of clusters employed by each method and
background is the average percentage of features allo-
cated by the tiered model to the background cluster. 95%
confidence intervals are computed via bootstrapping.

words from WS-353 are shown in Table 1 and corre-
sponding clusters from the multi-prototype approach
are shown in Table 4. In general the background
component does indeed capture commonalities be-
tween all the sense clusters (e.g. all wizards use
magic) and hence the tiered clusters are more se-
mantically pure. This effect is most visible in the-
matically polysemous words, e.g. radio and wizard.

7.2 Evocation

Compared to WS-353, the WN-Evocation pair set
is sampled more uniformly from English word pairs
and hence contains a significantly larger fraction of
unrelated words, reflecting the fact that word sim-
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LIFE

my, you, real, about, your, would
years, spent, rest, lived, last
sentenced, imprisonment, sentence, prison
years, cycle, life, all, expectancy, other
all, life, way, people, human, social, many

RADIO

station, FM, broadcasting, format, AM
radio, station, stations, amateur,
show, station, host, program, radio
stations, song, single, released, airplay
station, operator, radio, equipment, contact

WIZARD

evil, magic, powerful, named, world
Merlin, King, Arthur, powerful, court
spells, magic, cast, wizard, spell, witch
Harry, Dresden, series, Potter, character

STOCK

market, price, stock, company, value, crash
housing, breeding, all, large, stock, many
car, racing, company, cars, summer, NASCAR
stock, extended, folded, card, barrel, cards
rolling, locomotives, new, character, line

Table 4: Example DPMM multi-prototype representation
of words with varying degrees of polysemy. Compared to
the tiered clustering results in Table 1 the multi-prototype
clusters are significantly less pure for thematically poly-
semous words such as radio and wizard.

ilarity is a sparse relation (Figure 2 top). Further-
more, it contains proportionally more highly polyse-
mous words relative to WS-353 (Figure 2 bottom).

On WN-Evocation, the single prototype and
multi-prototype do not differ significantly in terms
of correlation (ρ�0.198 and ρ�0.201 respectively;
Table 5), while SP+MP yields significantly lower
correlation (ρ�0.176), and the tiered model yields
significantly higher correlation (ρ�0.224). Restrict-
ing to the top 20% of pairs with highest human
similarity judgements yields similar outcomes, with
single prototype, multi-prototype and SP+MP sta-
tistically indistinguishable (ρ�0.239, ρ�0.227 and
ρ�0.235), and tiered clustering yielding signifi-
cantly higher correlation (ρ�0.277). Likewise tiered
clustering achieves the most significant gains on the
high polysemy subset.

7.3 Selectional Preference

Tiered clustering is a natural model for verb selec-
tional preference, especially for more selectionally
restrictive verbs: the set of words that appear in a
particular argument slot naturally have some kind of

Method ρ � 100 ErCs background

Single prototype 19.8�0.6 1.0 -
high similarity 23.9�1.1 1.0 -
high polysemy 11.5�1.2 1.0 -

Multi-prototype 20.1�0.5 14.8 -
high similarity 22.7�1.2 14.1 -
high polysemy 13.0�1.3 13.2 -

MP+SP 17.6�0.5 14.8 -
high similarity 23.5�1.2 14.1 -
high polysemy 11.4�1.0 13.2 -

Tiered 22.4�0.6 29.7 46.6%
high similarity 27.7�1.3 29.9 47.2%
high polysemy 15.4�1.1 27.4 46.6%

Table 5: Spearman’s correlation on the Evocation data
set. The high similarity subset contains the top 20% of
pairs sorted by average rater score.

Method ρ � 100 ErCs background

Single prototype 25.8�0.8 1.0 -
high polysemy 17.3�1.7 1.0 -

Multi-prototype 20.2�1.0 18.5 -
high polysemy 14.1�2.4 17.4 -

MP+SP 19.7�1.0 18.5 -
high polysemy 10.5�2.5 17.4 -

Tiered 29.4�1.0 37.9 41.7%
high polysemy 28.5�2.4 37.4 43.2%

Table 6: Spearman’s correlation on the Padó data set.

commonality (i.e. they can be eaten or can promise).
The background component of the tiered clustering
model can capture such general argument structure.
We model each verb argument slot in the Padó set
with a separate tiered clustering model, separating
terms co-occurring with the target verb according to
which slot they fill.

On the Padó set, the performance of the DPMM
multi-prototype approach breaks down and it yields
significantly lower correlation with human norms
than the single prototype (ρ�0.202 vs. ρ�0.258;
Table 6), due to its inability to capture the shared
structure among verb arguments. Furthermore com-
bining with the single prototype does not signif-
icantly change its performance (ρ�0.197). Mov-
ing to the tiered model, however, yields significant
improvements in correlation over the other models
(ρ�0.294), primarily improving correlation in the
case of highly polysemous verbs and arguments.
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8 Discussion and Future Work

We have demonstrated a novel model for dis-
tributional lexical semantics capable of capturing
both shared (context-independent) and idiosyncratic
(context-dependent) structure in a set of word occur-
rences. The benefits of this tiered model were most
pronounced on a selectional preference task, where
there is significant shared structure imposed by con-
ditioning on the verb. Although our results on the
Padó are not state of the art,6 we believe this to be
due to the impoverished vector-space design; tiered
clustering can be applied to more expressive vec-
tor spaces, such as those incorporating dependency
parse and FrameNet features.

One potential explanation for the superior perfor-
mance of the tiered model vs. the DPMM multi-
prototype model is simply that it allocates more
clusters to represent each word (Reisinger and
Mooney, 2010). However, we find that decreas-
ing the hyperparameter β (decreasing vocabulary
smoothing and hence increasing the effective num-
ber of clusters) beyond β � 0.1 actually hurts multi-
prototype performance. The additional clusters do
not provide more semantic content due to significant
background similarity.

Finally, the DPMM multi-prototype and tiered
clustering models allocate clusters based on the vari-
ance of the underlying data set. We observe a neg-
ative correlation (ρ��0.33) between the number of
clusters allocated by the DPMM and the number of
word senses found in WordNet. This result is most
likely due to our use of unigram context window
features, which induce clustering based on thematic
rather than syntactic differences. Investigating this
issue is future work.

(Future Work) The word similarity experiments
can be expanded by breaking pairs down further into
highly homonymous and highly polysemous pairs,
using e.g. WordNet to determine how closely related
the senses are. With this data it would be interest-
ing to validate the hypothesis that the percentage of
features allocated to the background cluster is corre-
lated with the degree of homonymy.

The basic tiered clustering can be extended with
additional background tiers, allocating more expres-
sivity to model background feature variation. This
class of models covers the spectrum between a pure

6E.g., Padó et al. (2007) report ρ�0.515 on the same data.

topic model (all background tiers) and a pure clus-
tering model and may be reasonable when there is
believed to be more background structure (e.g. when
jointly modeling all verb arguments). Furthermore,
it is straightforward to extend the model to a two-
tier, two-clustering structure capable of additionally
accounting for commonalities between arguments.

Applying more principled feature selection ap-
proaches to vector-space lexical semantics may
yield more significant performance gains. Towards
this end we are currently evaluating two classes of
approaches for setting pruning parameters per-word
instead of globally: (1) subspace clustering, i.e.
unsupervised feature selection (e.g., Parsons et al.,
2004) and (2) multiple clustering, i.e. finding fea-
ture partitions that lead to disparate clusterings (e.g.,
Shafto et al., 2006).

9 Conclusions

This paper introduced a simple probabilistic model
of tiered clustering inspired by feature selective
clustering that leverages feature exchangeability to
allocate data features between a clustering model
and shared component. The ability to model back-
ground variation, or shared structure, is shown to be
beneficial for modeling words with high polysemy,
yielding increased correlation with human similarity
judgements modeling word relatedness and selec-
tional preference. Furthermore, the tiered clustering
model is shown to significantly outperform related
models, yielding qualitatively more precise clusters.
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A Collapsed Gibbs Sampler

In order to sample efficiently from this model, we
leverage the Chinese Restaurant Process represen-
tation of the DP (cf., Aldous, 1985), introducing a
per-word-occurrence cluster indicator cd. Word oc-
currence features are then drawn from a combination
of a single cluster component indicated by cd and the
background topic.

By exploiting conjugacy, the latent variables θ, φ
and ηd can be integrated out, yielding an efficient
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collapsed Gibbs sampler. The likelihood of word
occurrence d is given by

P pwd|z, cd,φq �¹
i

P pwi,d|φcdq
δpzd,i�0qP pwi,d|φnoiseq

δpzd,i�1q.

Hence, this model can be viewed as a two-topic
variant of LDA with the addition of a per-word-
occurrence (i.e. document) cluster indicator.7 The
update rule for the latent tier indicator z is similar
to the update rule for 2-topic LDA, with the back-
ground component as the first topic and the second
topic being determined by the per-word-occurrence
cluster indicator c.

We can efficiently approximate ppz|wq via Gibbs
sampling, which requires the complete conditional
posteriors for all zi,d. These are

P pzi,d � t|z�pi,dq,w, α, βq �

n
pwi,dq
t � β°
wpn

pwq
t � βq

n
pdq
t � α°

jpn
pdq
j � αq

.

where z�pi,dq is shorthand for the set z�tzi,du, n
pwq
t

is the number of occurrences of wordw in topic t not
counting wi,d and npdqt is the number of features in
occurrence d assigned to topic t, not counting wi,d.

Likewise sampling the cluster indicators condi-
tioned on the data ppcd|w, c�d, α, ηq decomposes
into the DP posterior over cluster assignments
and the cluster-conditional Multinomial-Dirichlet
word-occurrence likelihood ppcd|w, c�d, α, ηq �
ppcd|c�d, ηqppwd|w�d, c, z, αq given by

P pcd � kold|c�d, α, ηq9�
m

p�dq
k

m
p�dq



� η

�
looooooomooooooon

ppcd|c�d,ηq

Cpα�ÝÑn
p�dq
k �ÝÑn

pdq


qq

Cpα�ÝÑn
p�dq
k qloooooooooooooomoooooooooooooon

ppwd|w�d,c,z,αq

P pcd � knew|c�d, α, ηq9
η

m
p�dq



� η

Cpα�ÝÑn
pdq


q

Cpαq

where m
p�dq
k is the number of occurrences as-

signed to k not including d, ÝÑn pdq
k is the vector of

counts of words from occurrence wd assigned to
7Effectively, the tiered clustering model is a special case of

the nested Chinese Restaurant Process with the tree depth fixed
to two (Blei et al., 2003).

cluster k (i.e. words with zi,d � 0) and Cp�q is
the normalizing constant for the Dirichlet Cpaq �
Γp
°m
j�1 ajq

�1
±m
j�1 Γpajq operating over vectors

of counts a.
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Abstract

We propose an approach to adjective-noun
composition (AN) for corpus-based distribu-
tional semantics that, building on insights
from theoretical linguistics, represents nouns
as vectors and adjectives as data-induced (lin-
ear) functions (encoded as matrices) over
nominal vectors. Our model significantly out-
performs the rivals on the task of reconstruct-
ing AN vectors not seen in training. A small
post-hoc analysis further suggests that, when
the model-generated AN vector is not simi-
lar to the corpus-observed AN vector, this is
due to anomalies in the latter. We show more-
over that our approach provides two novel
ways to represent adjective meanings, alter-
native to its representation via corpus-based
co-occurrence vectors, both outperforming the
latter in an adjective clustering task.

1 Introduction

An influential approach for representing the mean-
ing of a word in NLP is to treat it as a vector
that codes the pattern of co-occurrence of that word
with other expressions in a large corpus of language
(Sahlgren, 2006; Turney and Pantel, 2010). This
approach to semantics (sometimes called distribu-
tional semantics) naturally captures word cluster-
ing, scales well to large lexicons and doesn’t re-
quire words to be manually disambiguated (Schütze,
1997). However, until recently it has been limited to
the level of content words (nouns, adjectives, verbs),
and it hasn’t tackled in a general way compositional-
ity (Frege, 1892; Partee, 2004), that crucial property
of natural language which allows speakers to de-
rive the meaning of a complex linguistic constituent

from the meaning of its immediate syntactic subcon-
stituents.

Formal semantics (FS), the research program
stemming from Montague (1970b; 1973), has oppo-
site strengths and weaknesses. Its core semantic no-
tion is the sentence, not the word; at the lexical level,
it focuses on the meaning of function words; one
of its main goals is to formulate recursive composi-
tional rules that derive the quantificational properties
of complex sentences and their antecedent-pronoun
dependencies.

Given its focus on quantification, FS treats the
meanings of nouns and verbs as pure extensions:
nouns and (intransitive) verbs are properties, and
thus denote sets of individuals. Adjectives are also
often assumed to denote properties: in this view
redadj would be the set of ‘entities which are red’,
plasticadj , the set of ‘objects made of plastic’, and
so forth. In the simplest case, the meaning of an at-
tributive adjective-noun (AN) constituent can be ob-
tained as the intersection of the adjective and noun
extensions A∩N:

[ red car ] = {. . . red objects. . . } ∩ {. . . cars. . . }
However, the intersective method of combination

is well-known to fail in many cases (Kamp, 1975;
Montague, 1970a; Siegel, 1976): for instance, a
fake gun is not a gun. Even for red, the manner in
which the color combines with a noun will be dif-
ferent in red Ferrari (the outside), red watermelon
(the inside), red traffic light (the signal). These prob-
lems have prompted a more flexible FS representa-
tion for attributive adjectives — functions from the
meaning of a noun onto the meaning of a modified
noun (Montague, 1970a). This mapping could now
be sensitive to the particular noun the adjective re-
ceives, and it does not need to return a subset of the
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original noun denotation (as in the case of fake N).
However, FS has nothing to say on how these func-
tions should be constructed.

In the last few years there have been attempts to
build compositional models that use distributional
semantic representations as inputs (see Section 2 be-
low), most of them focusing on the combination of a
verb and its arguments. This paper addresses instead
the combination of nouns and attributive adjectives.
This case was chosen as an interesting testbed be-
cause it has the property of recursivity (it applies in
black dog, but also in large black dog, etc.), and be-
cause very frequent adjectives such as different are
at the border between content and function words.
Following the insight of FS, we treat attributive ad-
jectives as functions over noun meanings; however,
noun meanings are vectors, not sets, and the func-
tions are learnt from corpus-based noun-AN vector
pairs.

Original contribution We propose and evaluate a
new method to derive distributional representations
for ANs, where an adjective is a linear function from
a vector (the noun representation) to another vector
(the AN representation). The linear map for a spe-
cific adjective is learnt, using linear regression, from
pairs of noun and AN vectors extracted from a cor-
pus.

Outline Distributional approaches to composi-
tionality are shortly reviewed in Section 2. In Sec-
tion 3, we introduce our proposal. The experimen-
tal setting is described in Section 4. Section 5 pro-
vides some empirical justification for using corpus-
harvested AN vectors as the target of our function
learning and evaluation benchmark. In Section 6, we
show that our model outperforms other approaches
at the task of approximating such vectors for unseen
ANs. In Section 7, we discuss how adjectival mean-
ing can be represented in our model and evaluate this
representation in an adjective clustering task. Sec-
tion 8 concludes by sketching directions for further
work.

2 Related work

The literature on compositionality in vector-based
semantics encompasses various related topics, some
of them not of direct interest here, such as how to

encode word order information in context vectors
(Jones and Mewhort, 2007; Sahlgren et al., 2008)
or sophisticated composition methods based on ten-
sor products, quantum logic, etc., that have not yet
been empirically tested on large-scale corpus-based
semantic space tasks (Clark and Pulman, 2007;
Rudolph and Giesbrecht, 2010; Smolensky, 1990;
Widdows, 2008). Closer to our current purposes is
the general framework for vector composition pro-
posed by Mitchell and Lapata (2008), subsuming
various earlier proposals. Given two vectors u and
v, they identify two general classes of composition
models, (linear) additive models:

p = Au + Bv (1)
where A and B are weight matrices, and multiplica-
tive models:

p = Cuv

where C is a weight tensor projecting the uv tensor
product onto the space of p. Mitchell and Lapata de-
rive two simplified models from these general forms.
Their simplified additive model p = αu+βv was a
common approach to composition in the earlier liter-
ature, typically with the scalar weights set to 1 or to
normalizing constants (Foltz et al., 1998; Kintsch,
2001; Landauer and Dumais, 1997). Mitchell and
Lapata also consider a constrained version of the
multiplicative approach that reduces to component-
wise multiplication, where the i-th component of
the composed vector is given by: pi = uivi. The
simplified additive model produces a sort of (sta-
tistical) union of features, whereas component-wise
multiplication has an intersective effect. They also
evaluate a weighted combination of the simplified
additive and multiplicative functions. The best re-
sults on the task of paraphrasing noun-verb combi-
nations with ambiguous verbs (sales slump is more
like declining than slouching) are obtained using the
multiplicative approach, and by weighted combina-
tion of addition and multiplication (we do not test
model combinations in our current experiments).
The multiplicative approach also performs best (but
only by a small margin) in a later application to lan-
guage modeling (Mitchell and Lapata, 2009). Erk
and Padó (2008; 2009) adopt the same formalism
but focus on the nature of input vectors, suggest-
ing that when a verb is composed with a noun, the
noun component is given by an average of verbs that
the noun is typically object of (along similar lines,
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Kintsch (2001) also focused on composite input vec-
tors, within an additive framework). Again, the mul-
tiplicative model works best in Erk and Padó’s ex-
periments.

The above-mentioned researchers do not exploit
corpus evidence about the p vectors that result from
composition, despite the fact that it is straightfor-
ward (at least for short constructions) to extract
direct distributional evidence about the composite
items from the corpus (just collect co-occurrence
information for the composite item from windows
around the contexts in which it occurs). The
main innovation of Guevara (2010), who focuses on
adjective-noun combinations (AN), is to use the co-
occurrence vectors of observed ANs to train a su-
pervised composition model (we became aware of
Guevara’s approach after we had developed our own
model, that also exploits observed ANs for training).
Guevara adopts the full additive composition form
from Equation (1) and he estimates the A and B
weights using partial least squares regression. The
training data are pairs of adjective-noun vector con-
catenations, as input, and corpus-derived AN vec-
tors, as output. Guevara compares his model to
the simplified additive and multiplicative models of
Mitchell and Lapata. Observed ANs are nearer, in
the space of observed and predicted test set ANs, to
the ANs generated by his model than to those from
the alternative approaches. The additive model, on
the other hand, is best in terms of shared neighbor
count between observed and predicted ANs.

In our empirical tests, we compare our approach
to the simplified additive and multiplicative models
of Mitchell and Lapata (the former with normaliza-
tion constants as scalar weights) as well as to Gue-
vara’s approach.

3 Adjectives as linear maps

As discussed in the introduction, we will take ad-
jectives in attributive position to be functions from
one noun meaning to another. To start simple, we
assume here that adjectives in the attributive posi-
tion (AN) are linear functions from n-dimensional
(noun) vectors onto n-dimensional vectors, an oper-
ation that can be expressed as multiplication of the
input noun column vector by a n × n matrix, that
is our representation for the adjective (in the lan-

guage of linear algebra, an adjective is an endomor-
phic linear map in noun space). In the framework of
Mitchell and Lapata, our approach derives from the
additive form in Equation (1) with the matrix multi-
plying the adjective vector (say, A) set to 0:

p = Bv

where p is the observed AN vector, B the weight
matrix representing the adjective at hand, and v a
noun vector. In our approach, the weight matrix B is
specific to a single adjective – as we will see in Sec-
tion 7 below, it is our representation of the meaning
of the adjective.

Like Guevara, we estimate the values in the
weight matrix by partial least squares regression.
In our case, the independent variables for the re-
gression equations are the dimensions of the corpus-
based vectors of the component nouns, whereas the
AN vectors provide the dependent variables. Unlike
Guevara, (i) we train separate models for each adjec-
tive (we learn adjective-specific functions, whereas
Guevara learns a generic “AN-slot” function) and,
consequently, (ii) corpus-harvested adjective vectors
play no role for us (their values would be constant
across the training input vectors).

A few considerations are in order. First, although
we use a supervised learning method (least squares
regression), we do not need hand-annotated data,
since the target AN vectors are automatically col-
lected from the corpus just like vectors for single
words are. Thus, there is no extra “external knowl-
edge” cost with respect to unsupervised approaches.
Second, our approach rests on the assumption that
the corpus-derived AN vectors are interesting ob-
jects that should constitute the target of what a com-
position process tries to approximate. We provide
preliminary empirical support for this assumption in
Section 5 below. Third, we have some reasonable
hope that our functions can capture to a certain ex-
tent the polysemous nature of adjectives: we could
learn, for example, a green matrix with large posi-
tive weights mapping from noun features that per-
tain to concrete objects to color dimensions of the
output vector (green chair), as well as large positive
weights from features characterizing certain classes
of abstract concepts to political/social dimensions in
the output (green initiative). Somewhat optimisti-
cally, we hope that chair will have near-0 values
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on the relevant abstract dimensions, like initiative
on the concrete features, and thus the weights will
not interfere. We do not evaluate this claim specif-
ically, but our quantitative evaluation in Section 6
shows that our approach does best with high fre-
quency, highly ambiguous adjectives. Fourth, the
approach is naturally syntax-sensitive, since we train
it on observed data for a specific syntactic position:
we would train separate linear models for, say, the
same adjective in attributive (AN) and predicative
(N is A) position. As a matter of fact, the current
model is too syntax-sensitive and does not capture
similarities across different constructions. Finally,
although adjective representations are not directly
harvested from corpora, we can still meaningfully
compare adjectives to each other or other words by
using their estimated matrix, or an average vector for
the ANs that contain them: both options are tested
in Section 7 below.

4 Experimental setup

4.1 Corpus

We built a large corpus by concatenating the
Web-derived ukWaC corpus (http://wacky.
sslmit.unibo.it/), a mid-2009 dump of the
English Wikipedia (http://en.wikipedia.
org) and the British National Corpus (http:
//www.natcorp.ox.ac.uk/). This concate-
nated corpus, tokenized, POS-tagged and lemma-
tized with the TreeTagger (Schmid, 1995), contains
about 2.83 billion tokens (excluding punctuation,
digits, etc.). The ukWaC and Wikipedia sections can
be freely downloaded, with full annotation, from the
ukWaC site.

We performed some of the list extraction and
checking operations we are about to describe on a
more manageable data-set obtained by selecting the
first 100M tokens of ukWaC; we refer to this subset
as the sample corpus below.

4.2 Vocabulary

We could in principle limit ourselves to collecting
vectors for the ANs to be analyzed (the AN test set)
and their components. However, to make the anal-
ysis more challenging and interesting, we populate
the semantic space where we will look at the be-
haviour of the ANs with a large number of adjectives

and nouns, as well as further ANs not in the test set.
We refer to the overall list of items we build seman-
tic vectors for as the extended vocabulary. We use
a subset of the extended vocabulary containing only
nouns and adjectives (the core vocabulary) for fea-
ture selection and dimensionality reduction, so that
we do not implicitly bias the structure of the seman-
tic space by our choice of ANs.

To construct the AN test set, we first selected 36
adjectives across various classes: size (big, great,
huge, large, major, small, little), denominal (Amer-
ican, European, national, mental, historical, elec-
tronic), colors (white, black, red, green) positive
evaluation (nice, excellent, important, appropriate),
temporal (old, recent, new, young, current), modal
(necessary, possible), plus some common abstract
antonymous pairs (difficult, easy, good, bad, spe-
cial, general, different, common). We were care-
ful to include intersective cases such as electronic
as well as non-intersective adjectives that are almost
function words (the modals, different, etc.). We ex-
tracted all nouns that occurred at least 300 times
in post-adjectival position in the sample corpus, ex-
cluding some extremely frequent temporal and mea-
sure expressions such as time and range, for a to-
tal of 1,420 distinct nouns. By crossing the selected
adjectives and nouns, we constructed a test set con-
taining 26,440 ANs, all attested in the sample cor-
pus (734 ANs per adjective on average, ranging from
1,337 for new to 202 for mental).

The core vocabulary contains the top 8K most
frequent noun lemmas and top 4K adjective lemmas
from the concatenated corpus (excluding the top 50
most frequent nouns and adjectives). The extended
vocabulary contains this core plus (i) the 26,440
test ANs, (ii) the 16 adjectives and 43 nouns that
are components of these ANs and that are not in the
core set, and (iii) 2,500 more ANs randomly sam-
pled from those that are attested in the sample cor-
pus, have a noun from the same list used for the test
set ANs, and an adjective that occurred at least 5K
times in the sample corpus. In total, the extended
vocabulary contains 40,999 entries: 8,043 nouns,
4,016 adjectives and 28,940 ANs.

4.3 Semantic space construction

Full co-occurrence matrix The 10K lemmas
(nouns, adjectives or verbs) that co-occur with
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the largest number of items in the core vocabu-
lary constitute the dimensions (columns) of our co-
occurrence matrix. Using the concatenated corpus,
we extract sentence-internal co-occurrence counts of
all the items in the extended vocabulary with the
10K dimension words. We then transform the raw
counts into Local Mutual Information (LMI) scores
(LMI is an association measure that closely approx-
imates the Log-Likelihood Ratio, see Evert (2005)).

Dimensionality reduction Since, for each test set
adjective, we need to estimate a regression model
for each dimension, we want a compact space with
relatively few, dense dimensions. A natural way to
do this is to apply the Singular Value Decomposi-
tion (SVD) to the co-occurrence matrix, and repre-
sent the items of interest with their coordinates in
the space spanned by the first n right singular vec-
tors. Applying SVD is independently justified be-
cause, besides mitigating the dimensionality prob-
lem, it often improves the quality of the semantic
space (Landauer and Dumais, 1997; Rapp, 2003;
Schütze, 1997). To avoid bias in favour of dimen-
sions that capture variance in the test set ANs, we
applied SVD to the core vocabulary subset of the
co-occurrence matrix (containing only adjective and
noun rows). The core 12K×10K matrix was re-
duced using SVD to a 12K×300 matrix. The other
row vectors of the full co-occurrence matrix (in-
cluding the ANs) were projected onto the same re-
duced space by multiplying them by a matrix con-
taining the first n right singular vectors as columns.
Merging the items used to compute the SVD and
those projected onto the resulting space, we obtain a
40,999×300 matrix representing 8,043 nouns, 4,016
adjectives and 28,940 ANs. This reduced matrix
constitutes a realistically sized semantic space, that
also contains many items that are not part of our test
set, but will be potential neighbors of the observed
and predicted test ANs in the experiments to follow.
The quality of the SVD reduction itself was indepen-
dently validated on a standard similarity judgment
data-set (Rubenstein and Goodenough, 1965), ob-
taining similar (and state-of-the-art-range) Pearson
correlations of vector cosines and human judgments
in both the original (r = .70) and reduced (r = .72)
spaces.

There are several parameters involved in con-

structing a semantic space (choice of full and re-
duced dimensions, co-occurrence span, weighting
method). Since our current focus is on alterna-
tive composition methods evaluated on a shared se-
mantic space, exploring parameters pertaining to the
construction of the semantic space is not one of our
priorities, although we cannot of course exclude that
the nature of the underlying semantic space affects
different composition methods differently.

4.4 Composition methods

In the proposed adjective-specific linear map (alm)
method, an AN is generated by multiplying an adjec-
tive weight matrix with a noun (column) vector. The
j weights in the i-th row of the matrix are the coeffi-
cients of a linear regression predicting the values of
the i-th dimension of the AN vector as a linear com-
bination of the j dimensions of the component noun.
The linear regression coefficients are estimated sep-
arately for each of the 36 tested adjectives from
the corpus-observed noun-AN pairs containing that
adjective (observed adjective vectors are not used).
Since we are working in the 300-dimensional right
singular vector space, for each adjective we have
300 regression problems with 300 independent vari-
ables, and the training data (the noun-AN pairs avail-
able for each test set adjective) range from about
200 to more than 1K items. We estimate the coef-
ficients using (multivariate) partial least squares re-
gression (PLSR) as implemented in the R pls pack-
age (Mevik and Wehrens, 2007). With respect to
standard least squares estimation, this technique is
more robust against over-training by effectively us-
ing a smaller number of orthogonal “latent” vari-
ables as predictors (Hastie et al., 2009, Section 3.4),
and it exploits the multivariate nature of the prob-
lem (different regressions for each AN vector di-
mension to be predicted) when determining the la-
tent dimensions. The number of latent variables to
be used in the core regression are a free parameter of
PLSR. For efficiency reasons, we did not optimize it.
We picked instead 50 latent variables, by the rule-
of-thumb reasoning that for any adjective we can
use at least 200 noun-AN pairs for training, and the
independent-variable-to-training-item ratio will thus
never be above 1/4. We adopt a leave-one-out train-
ing regime, so that each target AN is generated by
an adjective matrix that was estimated from all the
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other ANs with the same adjective, minus the target.

We use PLSR with 50 latent variables also for
our re-implementation of Guevara’s (2010) single
linear map (slm) approach, in which a single re-
gression matrix is estimated for all ANs across ad-
jectives. The training data in this case are given
by the concatenation of the observed adjective and
noun vectors (600 independent variables) coupled
with the corresponding AN vectors (300 dependent
variables). For each target AN, we randomly sam-
ple 2,000 other adjective-noun-AN tuples for train-
ing (with larger training sets we run into memory
problems), and use the resulting coefficient matrix to
generate the AN vector from the concatenated target
adjective and noun vectors.

Additive AN vectors (add method) are obtained
by summing the corresponding adjective and noun
vectors after normalizing them (non-normalized ad-
dition was also tried, but it did not work nearly as
well as the normalized variant). Multiplicative vec-
tors (mult method) were obtained by component-
wise multiplication of the adjective and noun vec-
tors (normalization does not matter here since it
amounts to multiplying the composite vector by a
scalar, and the cosine similarity measure we use is
scale-invariant). Finally, the adj and noun baselines
use the adjective and noun vectors, respectively, as
surrogates of the AN vector.

For the add, mult, adj and noun methods, we ran
the tests of Section 6 not only in the SVD-reduced
space, but also in the original 10K-dimensional co-
occurrence space. Only the mult method achieved
better performance in the original space. We con-
jecture that this is because the SVD dimensions can
have negative values, leading to counter-intuitive re-
sults with component-wise multiplication (multiply-
ing large opposite-sign values results in large nega-
tive values). We tried to alleviate this problem by as-
signing a 0 to composite dimensions where the two
input vectors had different signs. The resulting per-
formance was better but still below that of mult in
original space. Thus, in Section 6 we report mult
results from the full co-occurrence matrix; reduced
space results for all other methods.

5 Study 1: ANs in semantic space

The actual distribution of ANs in the corpus, as
recorded by their co-occurrence vectors, is funda-
mental to what we are doing. Our method relies on
the hypothesis that the semantics of AN composi-
tion does not depend on the independent distribu-
tion of adjectives themselves, but on how adjectives
transform the distribution of nouns, as evidenced by
observed pairs of noun-AN vectors. Moreover, co-
herently with this view, our evaluation below will be
based on how closely the models approximate the
observed vectors of unseen ANs.

That our goal in modeling composition should be
to approximate the vectors of observed ANs is in
a sense almost trivial. Whether we synthesize an
AN for generation or decoding purposes, we would
want the synthetic AN to look as much as possible
like a real AN in its natural usage contexts, and co-
occurrence vectors of observed ANs are a summary
of their usage in actual linguistic contexts. However,
it might be the case that the specific resources we
used for our vector construction procedure are not
appropriate, so that the specific observed AN vectors
we extract are not reliable (e.g., they are so sparse in
the original space as to be uninformative, or they are
strictly tied to the domains of the input corpora). We
provide here some preliminary qualitative evidence
that this is in general not the case, by tapping into
our own intuitions on where ANs should be located
in semantic space, and thus on how sensible their
neighbors are.

First, we computed centroids from normalized
SVD space vectors of all the ANs that share the same
adjective (e.g., the normalized vectors of American
adult, American menu, etc., summed to construct
the American N centroid). We looked at the near-
est neighbors of these centroids in semantic space
among the 41K items (adjectives, nouns and ANs)
in our extended vocabulary (here and in all experi-
ments below, similarity is quantified by the cosine of
the angle between two vectors). As illustrated for a
random sample of 9 centroids in Table 1 (but apply-
ing to the remaining 27 adjectives as well), centroids
are positioned in intuitively reasonable areas of the
space, typically near the adjective itself or the corre-
sponding noun (the noun green near green N), proto-
typical ANs for that adjective (black face), elements

1188



related to the definition of the adjective (mental ac-
tivity, historical event, green colour, quick and little
cost for easy N), and so on.

American N black N easy N
Am. representative black face easy start
Am. territory black hand quick
Am. source black (n) little cost
green N historical N mental N
green (n) historical mental activity
red road hist. event mental experience
green colour hist. content mental energy
necessary N nice N young N
necessary nice youthful
necessary degree good bit young doctor
sufficient nice break young staff

Table 1: Nearest 3 neighbors of centroids of ANs that
share the same adjective.

How about the neighbors of specific ANs? Ta-
ble 2 reports the nearest 3 neighbors of 9 randomly
selected ANs involving different adjectives (we in-
spected a larger random set, coming to similar con-
clusions to the ones emerging from this table).

bad electronic historical
luck communication map
bad elec. storage topographical
bad weekend elec. transmission atlas
good spirit purpose hist. material
important route nice girl little war
important transport good girl great war
important road big girl major war
major road guy small war
red cover special collection young husband
black cover general collection small son
hardback small collection small daughter
red label archives mistress

Table 2: Nearest 3 neighbors of specific ANs.

The nearest neighbors of the corpus-based AN
vectors in Table 2 make in general intuitive sense.
Importantly, the neighbors pick up the composite
meaning rather than that of the adjective or noun
alone. For example, cover is an ambiguous word,
but the hardback neighbor relates to its “front of a
book” meaning that is the most natural one in com-
bination with red. Similarly, it makes more sense
that a young husband (rather than an old one) would
have small sons and daughters (not to mention the

mistress!).
We realize that the evidence presented here is

of a very preliminary and intuitive nature. Indeed,
we will argue in the next section that there are
cases in which the corpus-derived AN vector might
not be a good approximation to our semantic in-
tuitions about the AN, and a model-composed AN
vector is a better semantic surrogate. One of the
most important avenues for further work will be to
come to a better characterization of the behaviour of
corpus-observed ANs, where they work and where
the don’t. Still, the neighbors of average and AN-
specific vectors of Tables 1 and 2 suggest that, for
the bulk of ANs, such corpus-based co-occurrence
vectors are semantically reasonable.

6 Study 2: Predicting AN vectors

Having tentatively established that the sort of vec-
tors we can harvest for ANs by directly collecting
their corpus co-occurrences are reasonable represen-
tations of their composite meaning, we move on to
the core question of whether it is possible to recon-
struct the vector for an unobserved AN from infor-
mation about its components. We use nearness to
the corpus-observed vectors of held-out ANs as a
very direct way to evaluate the quality of model-
generated ANs, since we just saw that the observed
ANs look reasonable (but see the caveats at the end
of this section). We leave it to further work to as-
sess the quality of the generated ANs in an applied
setting, for example adapting Mitchell and Lapata’s
paraphrasing task to ANs. Since the observed vec-
tors look like plausible representations of compos-
ite meaning, we expect that the closer the model-
generated vectors are to the observed ones, the better
they should also perform in any task that requires ac-
cess to the composite meaning, and thus that the re-
sults of the current evaluation should correlate with
applied performance.

More in detail, we evaluate here the composition
methods (and the adjective and noun baselines) by
computing, for each of them, the cosine of the test
set AN vectors they generate (the “predicted” ANs)
with the 41K vectors representing our extended vo-
cabulary in semantic space, and looking at the posi-
tion of the corresponding observed ANs (that were
not used for training, in the supervised approaches)
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in the cosine-ranked lists. The lower the rank, the
better the approximation. For efficiency reasons, we
flatten out the ranks after the top 1,000 neighbors.

The results are summarized in Table 3 by the me-
dian and the other quartiles, calculated across all
26,440 ANs in the test set. These measures (unlike
mean and variance) are not affected by the cut-off
after 1K neighbors. To put the reported results into
perspective, a model with a first quartile rank of 999
does very significantly better than chance (the bino-
mial probability of 1/4 or more of 26,440 trials be-
ing successful with π = 0.024 is virtually 0, where
the latter quantity is the probability of an observed
AN being at rank 999 or lower according to a geo-
metric distribution with π=1/40999).

method 25% median 75%
alm 17 170 ≥1K
add 27 257 ≥1K
noun 72 448 ≥1K
mult 279 ≥1K ≥1K
slm 629 ≥1K ≥1K
adj ≥1K ≥1K ≥1K

Table 3: Quartile ranks of observed ANs in cosine-ranked
lists of predicted AN neighbors.

Our proposed method, alm, emerges as the best
approach. The difference with the second best
model, add (the only other model that does better
than the non-trivial baseline of using the compo-
nent noun vector as a surrogate for AN), is highly
statistically significant (Wilcoxon signed rank test,
p< 0.00001). If we randomly downsample the AN
set to keep an equal number of ANs per adjective
(200), the difference is still significant with p below
the same threshold, indicating that the general result
is not due to a better performance of alm on a few
common adjectives.1

Among the alternative models, the fact that the
performance of add is decidedly better than that of
mult is remarkable, since earlier studies found that

1The semantic space in which we rank the observed ANs
with respect to their predicted counterparts also contain the ob-
served vectors of nouns and ANs that were used to train alm.
We do not see how this should affect performance, but we nev-
ertheless repeated the evaluation leaving out, for each AN, the
observed items used in training, and we obtained the same re-
sults reported in the main text (same ordering of method perfor-
mance, and very significant difference between alm and add).

multiplicative models are, in general, better than ad-
ditive ones in compositionality tasks (see Section 2
above). This might depend on the nature of AN
composition, but there are also more technical is-
sues at hand: (i) we are not sure that previous stud-
ies normalized before summing like we did, and
(ii) the multiplicative model, as discussed in Section
4, does not benefit from SVD reduction. The sin-
gle linear mapping model (slm) proposed by Gue-
vara (2010) is doing even worse than the multiplica-
tive method, suggesting that a single set of weights
does not provide enough flexibility to model a vari-
ety of adjective transformations successfully. This
is at odds with Guevara’s experiment in which slm
outperformed mult and add on the task of ranking
predicted ANs with respect to a target observed AN.
Besides various differences in task definition and
model implementation, Guevara trained his model
on ANs that include a wide variety of adjectives,
whereas our training data were limited to ANs con-
taining one of our 36 test set adjectives. Future work
should re-evalute the performance of Guevara’s ap-
proach in our task, but under his training regime.

Looking now at the alm results in more detail, the
best median ranks are obtained for very frequent ad-
jectives. The top ones are new (median rank: 34),
great (79), American (82), large (82) and different
(97). There is a high inverse correlation between
median rank and adjective frequency (Spearman’s
ρ =−0.56). Although from a statistical perspec-
tive it is expected that we get better results where
we have more data, from a linguistic point of view it
is interesting that alm works best with extremely fre-
quent, highly polysemous adjectives like new, large
and different, that border on function words – a do-
main where distributional semantics has generally
not been tested.

Although, in relative terms and considering the
difficulty of the task, alm performs well, it is still far
from perfect – for 27% alm-predicted ANs, the ob-
served vector is not even in the top 1K neighbor set!
A qualitative look at some of the most problematic
examples indicates however that a good proportion
of them might actually not be instances where our
model got the AN vector wrong, but cases of anoma-
lous observed ANs. The left side of Table 4 com-
pares the nearest neighbors (excluding each other)
of the observed and alm-predicted vectors in 10 ran-
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SIMILAR DISSIMILAR

adj N obs. neighbor pred. neighbor adj N obs. neighbor pred. neighbor
common understanding common approach common vision American affair Am. development Am. policy

different authority diff. objective diff. description current dimension left (a) current element
different partner diff. organisation diff. department good complaint current complaint good beginning
general question general issue same great field excellent field gr. distribution

historical introduction hist. background same historical thing different today hist. reality
necessary qualification nec. experience same important summer summer big holiday

new actor new cast same large pass historical region large dimension
recent request recent enquiry same special something little animal special thing

small drop droplet drop white profile chrome (n) white show
young engineer young designer y. engineering young photo important song young image

Table 4: Left: nearest neighbors of observed and alm-predicted ANs (excluding each other) for a random set of ANs
where rank of observed w.r.t. predicted is 1. Right: nearest neighbors of predicted and observed ANs for random set
where rank of observed w.r.t. predicted is ≥ 1K.

domly selected cases where the observed AN is the
nearest neighbor of the predicted one. Here, the
ANs themselves make sense, and the (often shared)
neighbors are also sensible (recent enquiry for re-
cent request, common approach and common vision
for common understanding, etc.). Moving to the
right, we see 10 random examples of ANs where the
observed AN was at least 999 neighbors apart from
the alm prediction. First, we notice some ANs that
are difficult to interpret out-of-context (important
summer, white profile, young photo, large pass, . . . ).
Second, at least subjectively, we find that in many
cases the nearest neighbor of predicted AN is actu-
ally more sensible than that of observed AN: cur-
rent element (vs. left) for current dimension, histori-
cal reality (vs. different today) for historical thing,
special thing (vs. little animal) for special some-
thing, young image (vs. important song) for young
photo. In the other cases, the predicted AN neighbor
is at least not obviously worse than the observed AN
neighbor.

There is a high inverse correlation between the
frequency of occurrence of an AN and the rank of
the observed AN with respect to the predicted one
(ρ =−0.48), suggesting that our model is worse at
approximating the observed vectors of rare forms,
that might, in turn, be those for which the corpus-
based representation is less reliable. In these cases,
dissimilarities between observed and expected vec-
tors, rather than signaling problems with the model,
might indicate that the predicted vector, based on a
composition function learned from many examples,

is better than the one directly extracted from the cor-
pus. The examples in the right panel of Table 4 bring
some preliminary support to this hypothesis, to be
systematically explored in future work.

7 Study 3: Comparing adjectives

If adjectives are functions, and not corpus-derived
vectors, is it still possible to compare them mean-
ingfully? We explore two ways to accomplish this
in our framework: one is to represent adjectives by
the average of the AN vectors that contain them
(the centroid vectors whose neighbors are illustrated
in Table 1 above), and the other to compare them
based on the 300×300 weight matrices we esti-
mate from noun-AN pairs (we unfold these matri-
ces into 90K-dimensional vectors). We compare the
quality of these representations to that of the stan-
dard approach in distributional semantics, i.e., rep-
resenting the adjectives directly with their corpus
co-occurrence profile vectors (in our case, projected
onto the SVD-reduced space).

We evaluate performance on the task of cluster-
ing those 19 adjectives in our set that can be rel-
atively straightforwardly categorized into general
classes comprising a minimum of 4 items. The
test set built according to these criteria contains 4
classes: color (white, black, red, green), positive
evaluation (nice, excellent, important, major, ap-
propriate), time (recent, new, current, old, young),
and size (big, huge, little, small, large). We clus-
ter with the CLUTO toolkit (Karypis, 2003), us-
ing the repeated bisections with global optimization
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method, accepting all of CLUTO’s default values
for this choice. Cluster quality is evaluated by per-
centage purity (Zhao and Karypis, 2003). If ni

r is
the number of items from the i-th true (gold stan-
dard) class assigned to the r-th cluster, n is the to-
tal number of items and k the number of clusters,
then: Purity = 1

n

∑k
r=1 max

i
(ni

r). We calculate

empirical 95% confidence intervals around purity by
a heuristic bootstrap procedure based on 10K resam-
plings of the data set (Efron and Tibshirani, 1994).
The random baseline distribution is obtained by 10K
random assignments of adjectives to the clusters, un-
der the constraint that no cluster is empty.

Table 5 shows that all methods are significantly
better than chance. Our two “indirect” represen-
tations achieve similar performance, and they are
(slightly) better than the traditional method based on
adjective co-occurrence vectors. We conclude that,
although our approach does not provide a direct en-
coding of adjective meaning in terms of such inde-
pendently collected vectors, it does have meaningful
ways to represent their semantic properties.

input purity
matrix 73.7 (68.4-94.7)
centroid 73.7 (63.2-94.7)
vector 68.4 (63.2-89.5)
random 45.9 (36.8-57.9)

Table 5: Percentage purity in adjective clustering with
bootstrapped 95% confidence intervals.

8 Conclusion

The work we reported constitutes an encouraging
start for our approach to modeling (AN) composi-
tion. We suggested, along the way, various direc-
tions for further studies. We consider the following
issues to be the most pressing ones.

We currently train each adjective-specific model
separately: We should explore hierarchical model-
ing approaches that exploit similarities across adjec-
tives (and possibly syntactic constructions) to esti-
mate better models.

Evaluation-wise, the differences between ob-
served and predicted ANs must be analyzed more
extensively, to support the claim that, when their
vectors differ, model-based prediction improves on
the observed vector. Evaluation in a more applied

task should also be pursued – in particular, we will
design a paraphrasing task similar to the one pro-
posed by Mitchell and Lapata to evaluate noun-verb
constructions.

Since we do not collect vectors for the “functor”
component of a composition process (for AN con-
structions, the adjective), our approach naturally ex-
tends to processes that involve bound morphemes,
such as affixation, where we would not need to col-
lect independent co-occurrence information for the
affixes. For example, to account for re- prefixation
we do not need to collect a re- vector (required by all
other approaches to composition), but simply vec-
tors for a set of V/reV pairs, where both members of
the pairs are words (e.g., consider/reconsider).

Our approach can also deal, out-of-the-box, with
recursive constructions (sad little red hat), and can
be easily extended to more abstract constructions,
such as determiner N (mapping dog to the/a/one
dog). Still, we need to design a good testing scenario
to evaluate the quality of such model-generated con-
structions.

Ultimately, we want to compose larger and larger
constituents, up to full sentences. It remains to be
seen if the approach we proposed will scale up to
such challenges.
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Abstract

Linguistic Steganography is concerned with
hiding information in natural language text.
One of the major transformations used in Lin-
guistic Steganography is synonym substitu-
tion. However, few existing studies have stud-
ied the practical application of this approach.
In this paper we propose two improvements
to the use of synonym substitution for encod-
ing hidden bits of information. First, we use
the Web 1T Google n-gram corpus for check-
ing the applicability of a synonym in context,
and we evaluate this method using data from
the SemEval lexical substitution task. Second,
we address the problem that arises from words
with more than one sense, which creates a po-
tential ambiguity in terms of which bits are
encoded by a particular word. We develop a
novel method in which words are the vertices
in a graph, synonyms are linked by edges, and
the bits assigned to a word are determined by
a vertex colouring algorithm. This method
ensures that each word encodes a unique se-
quence of bits, without cutting out large num-
ber of synonyms, and thus maintaining a rea-
sonable embedding capacity.

1 Introduction

Steganography is concerned with hiding informa-
tion in a cover medium, in order to facilitate covert
communication, such that the presence of the infor-
mation is imperceptible to a user (human or com-
puter). Much of the existing research in steganog-
raphy has used images as cover media; however,
given the ubiquitous nature of electronic text, inter-
est is growing in using natural language as the cover
medium. Linguistic Steganography—lying at the in-

tersection of Computational Linguistics and Com-
puter Security—is concerned with making changes
to a cover text in order to embed information, in such
a way that the changes do not result in ungrammati-
cal or unnatural text.

A related area is natural language watermarking,
in which changes are made to a text in order to iden-
tify it, for example for copyright purposes. An inter-
esting watermarking application is “traitor tracing”,
in which documents are changed in order to embed
individual watermarks. These marks can then be
used to later identify particular documents, for ex-
ample if a set of documents—identical except for
the changes used to embed the watermarks— have
been sent to a group of individuals, and one of the
documents has been leaked to a newspaper.

In terms of security, a linguistic stegosystem
should impose minimum embedding distortion to
the cover text so that the resulting stegotext in which
a message is camouflaged is inconspicuous, result-
ing in high imperceptibility. In addition, since
steganography aims at covert communication, a lin-
guistic stegosystem should allow sufficient embed-
ding capacity, known as the payload. There is a fun-
damental tradeoff between imperceptibility and pay-
load, since any attempt to embed more information
via changes to the cover text increases the chance
of introducing anomalies into the text and therefore
raising the suspicion of an observer.

A linguistic transformation is required to em-
bed information. Transformations studied in pre-
vious work include lexical substitution (Chapman
and Davida, 1997; Bolshakov, 2004; Taskiran et al.,
2006; Topkara et al., 2006b), phrase paraphrasing
(Chang and Clark, 2010), sentence structure manip-
ulations (Atallah et al., 2001a; Atallah et al., 2001b;
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Liu et al., 2005; Meral et al., 2007; Murphy, 2001;
Murphy and Vogel, 2007; Topkara et al., 2006a) and
semantic transformations (Atallah et al., 2002; Vy-
bornova and Macq, 2007). Many of these transfor-
mations require some sophisticated NLP tools; for
example, in order to perform semantic transforma-
tions on text, word sense disambiguation, seman-
tic role parsing and anaphora resolution tools may
be required. However, the current state-of-the-art in
language technology is arguably not good enough
for secure linguistic steganography based on sophis-
ticated semantic transformations, and the level of ro-
bustness required to perform practical experiments
has only just become available. Hence many exist-
ing linguistic stegosystems are proof-of-concept im-
plementations with little practical evaluation of the
imperceptibility or payload.

1.1 Synonym substitution

Synonym substitution is a relatively straightforward
linguistic steganography method. It substitutes se-
lected words with the same part of speech (PoS) syn-
onyms, and does not involve operating on the sen-
tence structure so the modification can be guaran-
teed to be grammatical. Another advantage of this
method is that many languages are profuse in syn-
onyms, and so there is a rich source of information
carriers compared with other text transformations.

There are two practical difficulties associated with
hiding bits using synonym subsitution. The first is
that words can have more than one sense. In terms of
WordNet (Fellbaum, 1998), which is the electronic
dictionary we use, words can appear in more than
one synset. This is a problem because a word may be
assigned different bit strings in the different synsets,
and the receiver does not know which of the senses
to use, and hence does not know which hidden bit
string to recover. Our solution to this problem is a
novel vertex colouring method which ensures that
words are always assigned the same bit string, even
when they appear in different synsets.

The second problem is that many synonyms are
only applicable in certain contexts. For example, the
words in the WordNet synset {bridge, span} share
the meaning of “a structure that allows people or ve-
hicles to cross an obstacle such as a river or canal
or railway etc.”. However, bridge and span cannot
be substutited for each other in the sentence “sus-

Figure 1: An example of the basic algorithm

pension bridges are typically ranked by the length
of their main span”, and doing so would likely raise
the suspicion of an observer due to the resulting
anomaly in the text.

Our solution to this problem is to perform a con-
textual check which utilises the Web 1T n-gram
Google n-gram corpus.1 We evaluate the method
using the data from the English Lexical Substitu-
tion task for SemEval-2007.2 The resulting preci-
sion of our lexical substitution system can be seen
as an indirect measure of the imperceptibility of the
stegosystem, whereas the recall can be seen as an
indirect measure of the payload.

The paper is organised so that the contextual
check is described first, and this is evaluated inde-
pendently of the steganographic application. Then
the vertex colouring method is presented, and finally
we show how the contextual check can be integrated
with the vertex colouring coding method to give a
complete stegsosystem. For readers unfamiliar with
linguistic steganogaphy, Section 2 has some exam-
ples of how bits can be hidden using textual trans-
formations. Also, Chang and Clark (2010) is a re-
cent NLP paper which describes the general linguis-
tic steganography framework.

2 Related Work

In the original work on linguistic steganography in
the late 1990s, Winstein proposed an information
hiding algorithm using a block coding method to en-
code synonyms, so that the selection of a word from
a synset directly associates with part of the secret
bitstring (Bergmair, 2007). Figure 1 illustrates the
embedding procedure of this approach. In this ex-
ample, the bitstring to be embedded is 010, which

1www.ldc.upenn.edu/Catalog/docs/LDC2006T13/readme.txt
2http://www.dianamccarthy.co.uk/task10index.html
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Figure 2: An example of applying the basic algorithm to
overlapping synsets

can be divided into two codewords, 0 and 10, and the
information carriers in the cover text are the words
finished and project. According to the encoding dic-
tionary, complete represents 0, and task represents
10; hence these words are chosen and replace the
original words in the cover text (with suitable suffix-
ation). The stego sentence “He completed the task”
is then sent to the receiver. In order to recover the
message, the receiver only needs a copy of the en-
coding dictionary, and the decoding algorithm sim-
ply reverses the process used to encode the hidden
bits. Note that the receiver does not need the origi-
nal cover text to recover the information.

This algorithm requires synonym sets to be dis-
joint; i.e. no word may appear in more than one syn-
onym set, since overlapping synsets may cause am-
biguities during the decoding stage. Figure 2 shows
what happens when the basic algorithm is applied to
two overlapping synonym sets. As can be seen from
the example, composition is represented by two dif-
ferent codewords and thus the secret bitstring can-
not be reliably recovered, since the receiver does not
know the original cover word or the sense of the
word. In order to solve this problem, we propose
a novel coding method based on vertex colouring,
described in Section 4.

In addition to the basic algorithm, Winstein pro-
posed the T-Lex system using synonym substitution
as the text transformation. In order to solve the
problem of words appearing in more than one syn-
onym set, Winstein defines interchangeable words
as words that belong to the same synsets, and only
uses these words for substitution. Any words that are
not interchangeable are discarded and not available
for carrying information. The advantage in this ap-
proach is that interchangeable words always receive

the same codeword. The disadvantage is that many
synonyms need to be discarded in order to achieve
this property. Winstein calculates that only 30% of
WordNet can be used in such a system.

Another stegosystem based on synonym substi-
tution was proposed by Bolshakov (2004). In or-
der to ensure both sender and receiver use the
same synsets, Bolshakov applied transitive closure
to overlapping synsets to avoid the decoding ambi-
guity. Applying transitive closure leads to a merger
of all the overlapping synsets into one set which is
then seen as the synset of a target word. Consider
the overlapping synsets in Figure 2 as an example.
After applying transitive closure, the resulting set
is {‘authorship’, ‘composition’, ‘paper’, ‘penning’,
‘report’, ‘theme’, ‘writing’}.

Bolshakov (2004) also uses a method to deter-
mine whether a substitution is applicable in context,
using a collocation-based test. Finally, the colloca-
tionally verified synonyms are encoded by using the
block coding method. This is similar to our use of
the Google n-gram data to check for contextual ap-
plicability.

The disadvantage of Bolshakov’s system is that
all words in a synonym transitive closure chain need
to be considered, which can lead to very large sets
of synonyms, and many which are not synonymous
with the original target word. In contrast, our pro-
posed method operates on the original synonym sets
without extending them unnecessarily.

3 Proposed Method and Experiments

3.1 Resources

We use WordNet (Fellbaum, 1998) to provide sets
of synonyms (synsets) for nouns, verbs, adjectives
and adverbs. Since the purpose of using WordNet is
to find possible substitutes for a target word, those
synsets containing only one entry are not useful and
are ignored by our stegosystem. In addition, our
stegosystem only takes single word substitution into
consideration in order to avoid the confusion of find-
ing information-carrying words during the decoding
phase. For example, if the cover word ‘complete’ is
replaced by ‘all over’, the receiver would not know
whether the secret message is embedded in the word
‘over’ or the phrase ‘all over’. Table 1 shows the
statistics of synsets used in our stegosystem.
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noun verb adj adv
# of synsets 16,079 4,529 6,655 964
# of entries 30,933 6,495 14,151 2,025
average set size 2.56 2.79 2.72 2.51
max set size 25 16 21 8

Table 1: Statistics of synsets used in our stegosystem

For the contextual check we use the Google Web
1T 5-gram Corpus (Brants and Franz, 2006) which
contains counts for n-grams from unigrams through
to five-grams obtained from over 1 trillion word to-
kens of English Web text. The corpus has been used
for many tasks such as spelling correction (Islam and
Inkpen, 2009; Carlson et al., 2008) and multi-word
expression classification (Kummerfeld and Curran,
2008). Moreover, for the SemEval-2007 English
Lexical Substitution Task, which is similar to our
substitution task, six out of ten participating teams
utilised the Web 1T corpus.

3.2 Synonym Checking Method

In order to measure the degree of acceptability in a
substitution, the proposed filter calculates a substi-
tution score for a synonym by using the observed
frequency counts in the Web n-gram corpus. The
method first extracts contextual n-grams around the
synonym and queries the n-gram frequency counts
from the corpus. For each n, the total count fn is cal-
culated by summing up individual n-gram frequen-
cies, for every contextual n-gram containing the tar-
get word. We define a count function Count(w) =∑5

n=2 log(fn) where log(0) is defined as zero. If
Count(w) = 0, we assume the word w is unrelated
to the context and therefore is eliminated from con-
sideration. We then find the maximum Count(w)
called max from the remaining words. The main
purpose of having max is to score each word rela-
tive to the most likely synonym in the group, so even
in less frequent contexts which lead to smaller fre-
quency counts, the score of each synonym can still
indicate the degree of feasibility. The substitution
score is defined as Score(w) = Count(w)÷max.
The hypothesis is that a word with a high score is
more suitable for the context, and we apply a thresh-
old so that synonyms having a score lower than the
threshold are discarded.

Figure 3 demonstrates an example of calculat-

f2=525,856 high pole 3,544
pole . 522,312

f3=554 very high pole 84
high pole . 470

f4=72 a very high pole 72
very high pole . 0

f5=0 not a very high pole 0
a very high pole . 0

Count(‘pole’)=log(f2)+log(f3)+log(f4)+log(f5)=23
Score(‘pole’)=Count(‘pole’)/max=0.44>0.37

Figure 3: An example of using the proposed synonym
checking method

ing the substitution score for the synonym ‘pole’
given the cover sentence “This is not a very high
bar.” First of all, various contextual n-grams are ex-
tracted from the sentence and the Web n-gram cor-
pus is consulted to obtain their frequency counts.
Count(‘pole’) is then calculated using the n-gram
frequencies. Suppose the threshold is 0.37, and the
max score is 52. Since Count(‘pole’) is greater
than zero and the substitution score Score(‘pole’)
is 0.44, the word ‘pole’ is determined as acceptable
for this context (even though it may not be, depend-
ing on the meaning of ‘bar’ in this case).

3.3 Evaluation Data

In order to evaluate the proposed synonym check-
ing method, we need some data to test whether our
method can pick out acceptable substitutions. The
English Lexical Substitution task for SemEval-2007
has created human-annotated data for developing
systems that can automatically find feasible substi-
tutes given a target word in context. This data com-
prises 2010 sentences selected from the English In-
ternet Corpus3, and consists of 201 words: nouns,
verbs, adjectives and adverbs each with ten sen-
tences containing that word. The five annotators
were asked to provide up to three substitutes for a
target word in the context of a sentence, and were
permitted to consult a dictionary or thesaurus of
their choosing.

We use the sentences in this gold standard as the
cover text in our experiments so that the substi-
tutes provided by the annotators can be the positive
data for evaluating the proposed synonym check-

3http://corpus.leeds.ac.uk/internet.html
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noun verb adj adv
# of target words 59 54 57 35
# of sentences 570 527 558 349
# of positives 2,343 2,371 2,708 1,269
# of negatives 1,914 1,715 1,868 884

Table 2: Statistics of experimental data

ing methods. Since we only take into considera-
tion the single word substitutions for the reason de-
scribed earlier, multi-word substitutes are removed
from the positive data. Moreover, we use Word-
Net as the source of providing candidate substitutes
in our stegosystem, so if a human-provided sub-
stitute does not appear in any synsets of its target
word in WordNet, there is no chance for our sys-
tem to replace the target word with the substitute and
therefore, the substitute can be eliminated. Table 2
presents the statistics of the positive data for our ex-
periments.

Apart from positive data, we also need some neg-
ative data to test whether our method has the ability
to filter out bad substitutions. Since the annotators
were allowed to refer to a dictionary or thesaurus,
we assume that annotators used WordNet as one of
the reference resources while generating candidates.
Hence we assume that, if a word in the correct synset
for a target word is not in the set produced by the hu-
man annotators, then it is inappropriate for that con-
text and a suitable negative example. This method is
appropriate because our steganography system has
to distinguish between good and bad synonyms from
WordNet, given a particular context.

For the above reasons, we extract the negative
data for our experiments by first matching positive
substitutes of a target word to all the synsets that
contain the target word in WordNet. The synset
that includes the most positive substitutes is used
to represent the meaning of the target word. If
there is more than one synset containing the high-
est number of positives, all the synsets are taken
into consideration. We then randomly select up to
six single-word synonyms other than positive substi-
tutes from the chosen synset(s) as negative instances
of the target word. Figure 4 shows an example of
automatically collected negative data from WordNet
given a target word and its positive substitutes. The
synset {‘remainder’, ‘balance’, ‘residual’, ‘residue’,

Figure 4: An example of automatic negative data

noun verb adj adv
# of true negatives 234 201 228 98
# of false negatives 9 20 28 16

Table 3: Annotation results for negative data

‘residuum’, ‘rest’} is selected for negative data col-
lection since it contains one of the positives while
the other synsets do not. We assume the selected
synset represents the meaning of the original word,
and those synonyms in the synset which are not an-
notated as positives must have a certain degree of
mismatch to the context. Therefore, from this exam-
ple, ‘balance’, ‘residue’, ‘residuum’ and ‘rest’ are
extracted as negatives to test whether our synonym
checking method can pick out bad substitutions from
a set of words sharing similar or the same meaning.

In order to examine whether the automatically
collected instances are true negatives and hence
form a useful test set, a sample of automatically gen-
erated negatives was selected for human evaluation.
For each PoS one sentence of each different target
word is selected, which results in roughly 13% of
the collected negative data, and every negative sub-
stitute of the selected sentences was judged by the
second author. As can be seen from the annota-
tion results shown in Table 3, most of the instances
are true negatives, and only a few cases are incor-
rectly chosen as false negatives. Since the main pur-
pose of the data set is to test whether the proposed
synonym checking method can guard against inap-
propriate synonym substitutions and be integrated
in the stegosystem, it is reasonable to have a few
false negatives in our experimental data. Also, it
is more harmless to rule out a permissible substitu-
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PoS Acc% P% R% F% Threshold
noun 70.2 70.0 80.2 74.7 0.58
verb 68.1 69.7 79.5 74.3 0.56
adj 72.5 72.7 85.7 78.7 0.48
adv 73.7 76.4 80.1 78.2 0.54

Table 4: Performance of the synonym checking method

tion than including an inappropriate replacement for
a stegosystem in terms of the security. Table 2 gives
the statistics of the automatically collected negative
data for our experiments.

Note that, although we use the data from the lex-
ical substitution task, our task is different: the pos-
sible substitutions for a target word need to be fixed
in advance for linguistic steganography (in order for
the receiver to be able to recover the hidden bits),
whereas for the lexical substitution task participants
were asked to discover possible replacements.

3.4 Results

The performance of the proposed checking method
is evaluated in terms of accuracy, precision, recall
and balanced F-measure. Accuracy represents the
percentage of correct judgements over all accept-
able and unacceptable substitutions. Precision is the
percentage of substitutions judged acceptable by the
method which are determined to be suitable syn-
onyms by the human judges. Recall is the percent-
age of substitutions determined to be feasible by the
human annotators which are also judged acceptable
by the method. The interpretation of the measures
for a stegosystem is that a higher precision value im-
plies a better security level since good substitutions
are less likely to be seen as suspicious by the ob-
server; whereas a larger recall value means a greater
payload capacity since words are being substituted
where possible and therefore embedding as much in-
formation as possible.

In order to derive sensible threshold values for
each PoS, 5-fold cross-validation was implemented
to conduct the experiments. For each fold, 80% of
the data is used to find the threshold value which
maximises the accuracy, and that threshold is then
applied to the remaining 20% to get the final result.
Table 4 gives the results for the synonym checking
method and the average threshold values over the 5
folds. In addition, we are interested in the effect of

Figure 5: System performance under various thresholds

various thresholds on the system performance. Fig-
ure 5 shows the precision and recall values with re-
spect to different thresholds for each PoS. From the
graphs we can clearly see the trade-off between pre-
cision and recall. Although a higher precision can
be achieved by using a higher threshold value, for
example noun’s substitutions almost reach 90% pre-
cision with threshold equal to 0.9, the large drop in
recall means many applicable synonyms are being
eliminated. In other words, the trade-off between
precision and recall implies the trade-off between
imperceptibility and payload capacity for linguistic
steganography. Therefore, the practical threshold
setting would depend on how steganography users
want to trade off imperceptibility for payload.
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Figure 6: An example of coloured synonym graph

4 Proposed Stegosystem

4.1 The Vertex Coloring Coding Method

In this section, we propose a novel coding method
based on vertex colouring by which each synonym is
assigned a unique codeword so the usage of overlap-
ping synsets is not problematic for data embedding
and extracting. A vertex colouring is a labelling of
the graph’s vertices with colours subject to the con-
dition that no two adjacent vertices share the same
colour. The smallest number of colours required
to colour a graph G is called its chromatic num-
ber χ(G), and a graph G having chromatic number
χ(G) = k is called a k-chromatic graph. The main
idea of the proposed coding method is to represent
overlapping synsets as an undirected k-chromatic
graph called a synonym graph which has a vertex
for each word and an edge for every pair of words
that share the same meaning. A synonym is then
encoded by a codeword that represents the colour
assigned by the vertex colouring of the synonym
graph. Figure 6 shows the use of four different
colours, represented by ‘00’, ‘01’, ‘10’ and ‘11’, to
colour the 4-chromatic synonym graph of the two
overlapping synsets in Figure 2. Now, the over-
lapped word ‘composition’ receives a unique code-
word no matter which synset is considered, which
means the replacement of ‘paper’ to ‘composition’
in Figure 2 will not cause an ambiguity since the re-
ceiver can apply the same coding method to derive
identical codewords used by the sender.

99.6% of synsets in WordNet have size less than
8, which means most of the synsets cannot exhaust
more than a 2-bit coding space (i.e. we can only
encode at most 2 bits using a typical synset). There-
fore, we restrict the chromatic number of a synonym
graph G to 1 < χ(G) ≤ 4, which implies the max-
imum size of a synset is 4. When χ(G) = 2, each

Figure 7: Examples of 2,3,4-chromatic synonym graphs

vertex is assigned a single-bit codeword either ‘0’
or ‘1’ as shown in Figure 7(a). When χ(G) = 3,
the overlapping set’s size is either 2 or 3, which can-
not exhaust the 2-bit coding space although code-
words ‘00’, ‘01’ and ‘10’ are initially assigned to
each vertex. Therefore, only the most significant
bits are used to represent the synonyms, which we
call codeword reduction. After the codeword reduc-
tion, if a vertex has the same codeword, say ‘0’, as
all of its neighbors, the vertex’s codeword must be
changed to ‘1’ so that the vertex would be able to ac-
commodate either secret bit ‘0’ or ‘1’, which we call
codeword correction. Figure 7(b) shows an example
of the process of codeword reduction and codeword
correction for χ(G) = 3. For the case of χ(G) = 4,
codeword reduction is applied to those vertices that
themselves or their neighboring vertices have no ac-
cess to all the codewords ‘00’, ‘01’, ‘10’ and ‘11’.
For example, vertices a, b, c, e and f in Figure 7(c)
meet the requirement of needing codeword reduc-
tion. The codeword correction process is then fur-
ther applied to vertex f to rectify its accessibility.
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Figure 8 describes a greedy algorithm for con-
structing a coded synonym graph using at most
4 colours, given n synonyms w1, w2,. . . , wn in
the overlapping synsets. Let us define a function
E(wi, wj) which returns an edge between wi and
wj if wi and wj are in the same synset; otherwise
returns false. Another function C(wi) returns the
colour of the synonym wi. The procedure loops
through all the input synonyms. For each iteration,
the procedure first finds available colours for the tar-
get synonym wi. If there is no colour available,
namely all the four colours have already been given
to wi’s neighbors, wi is randomly assigned one of
the four colours; otherwise, wi is assigned one of
the available colours. After adding wi to the graph
G, the procedure checks whether adding an edge of
wi to graph G would violate the vertex colouring.
After constructing the coloured graph, codeword re-
duction and codeword correction as previously de-
scribed are applied to revise improper codewords.

4.2 Proposed Lexical Stegosystem

Figure 9 illustrates the framework of our lexical
stegosystem. Note that we have preprocessed Word-
Net by excluding multi-word synonyms and single-
entry synsets. A possible information carrier is first
found in the cover sentence. We define a possi-
ble information carrier as a word in the cover sen-
tence that belongs to at least one synset in Word-
Net. The synsets containing the target word, and all
other synsets which can be reached via the synonym
relation, are then extracted from WordNet (i.e. we
build the connected component of WordNet which
contains the target word according to the synonym
relation). Words in these sets are then examined
by the Google n-gram contextual checking method
to eliminate inappropriate substitutions. If there is
more than one word left and if words which pass the
filter all belong to the same synset, the block cod-
ing method is used to encode the words; otherwise
the vertex colouring coding is applied. Finally, ac-
cording to the secret bitstring, the system selects the
synonym that shares an edge with the target word
and has as its codeword the longest potential match
with the secret bitstring.

We use the connected component of WordNet
containing the target word as a simple method to en-
sure that both sender and receiver colour-code the

INPUT: a synonym list w1, w2,. . . , wn and an
empty graph G
OUTPUT: a coded synonym graph G using at
most four colours

FOR every synonym wi in the input list
initialize four colours as available for wi

FOR every wj in graph G
IF E(wi, wj) THEN

set C(wj) as unavailable
END IF

END FOR
IF there is a colour available THEN

assign one of the available colours
to wi

ELSE
assign one of the four colours to wi

END IF
ADD wi to graph G
FOR every wj in graph G

IF E(wi, wj) and C(wi) is not
equal to C(wj) THEN

ADD edge E(wi, wj) to G
END IF

END FOR
END FOR
codeword reduction
codeword correction
OUTPUT graph G

Figure 8: Constructing a coloured synonym graph

same graph. It is important to note, however, that
the sender only considers the synonyms of the target
word as potential substitutes; the connected compo-
nent is only used to consistently assign the codes.

For the decoding process, the receiver does not
need the original text for extracting secret data. An
information carrier can be found in the stegotext by
referring to WordNet in which related synonyms are
extracted. Those words in the related sets undergo
the synonym checking method and then are encoded
by either block coding or vertex colouring coding
scheme depending on whether the remaining words
are in the same synset. Finally, the secret bitstring is
implicit in the codeword of the information carrier
and therefore can be extracted.

We demonstrate how to embed secret bit 1 in the

1201



Figure 9: Framework of the proposed lexical stegosystem

sentence “it is a shame that we could not reach the
next stage.” A possible information carrier ‘shame’
is first found in the sentence. Table 5 lists the re-
lated synsets extracted from WordNet. The score
of each word calculated by the synonym checking
method using the Web 1T Corpus is given as a sub-
script. Assume the threshold score is 0.27. The out-
put of the synonym checking method is shown at the
right side of Table 5. Since the remaining words do
not belong to the same synset, the vertex colouring
coding method is then used to encode the words.
Figure 10(a) is the original synset graph in which
each vertex is assigned one of the four colours; Fig-
ure 10(b) is the graph after applying codeword re-
duction. Although both ‘disgrace’ and ‘pity’ are en-
coded by ‘1’, ‘pity’ is chosen to replace the cover
word since it has a higher score. Finally, the stego-
text is generated, “it is a pity that we could not reach
the next stage.”

As a rough guide to the potential payload with
this approach, we estimate that, with a threshold of
0.5 for the contextual check, the payload would be
slightly higher than 1 bit per newspaper sentence.

5 Conclusions

One of the contributions of this paper is to develop a
novel lexical stegosystem based on vertex colouring

cover sentence:
It is a shame that we could not reach the next stage
original synsets retained synsets
{commiseration.28, {commiseration,
pity.97, ruth.13, pathos.31} pity, pathos}
{pity.97, shame1} {pity, shame}
{compassion.49, pity.97} {compassion, pity}
{condolence.27, {commiseration}
commiseration.28} {pathos, poignancy}
{pathos.31, poignancy.31} {shame, disgrace}
{shame1, disgrace.84, {compassion}
ignominy.24} {poignancy}
{compassion.49,
compassionateness0}
{poignance.12,
poignancy.31}

Table 5: Synsets of ‘shame’ before and after applying the
synonym checking method

Figure 10: Synonym graph of ‘shame’

coding which improves the data embedding capacity
compared to existing systems. The vertex colouring
coding method represents synonym substitution as a
synonym graph so the relations between words can
be clearly observed. In addition, an automatic sys-
tem for checking synonym acceptability in context is
integrated in our stegosystem to ensure information
security. For future work, we would like to explore
more linguistic transformations that can meet the re-
quirements of linguistic steganography — retaining
the meaning, grammaticality and style of the origi-
nal text. In addition, it is crucial to have a full eval-
uation of the linguistic stegosystem in terms of im-
perceptibility and payload capacity so we can know
how much data can be embedded before the cover
text reaches its maximum distortion which is toler-
ated by a human judge.
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Abstract

Inducing a grammar directly from text is
one of the oldest and most challenging tasks
in Computational Linguistics. Significant
progress has been made for inducing depen-
dency grammars, however the models em-
ployed are overly simplistic, particularly in
comparison to supervised parsing models. In
this paper we present an approach to depen-
dency grammar induction using tree substi-
tution grammar which is capable of learn-
ing large dependency fragments and thereby
better modelling the text. We define a hi-
erarchical non-parametric Pitman-Yor Process
prior which biases towards a small grammar
with simple productions. This approach sig-
nificantly improves the state-of-the-art, when
measured by head attachment accuracy.

1 Introduction

Grammar induction is a central problem in Compu-
tational Linguistics, the aim of which is to induce
linguistic structures from an unannotated text cor-
pus. Despite considerable research effort this un-
supervised problem remains largely unsolved, par-
ticularly for traditional phrase-structure parsing ap-
proaches (Clark, 2001; Klein and Manning, 2002).
Phrase-structure parser induction is made difficult
due to two types of ambiguity: the constituent struc-
ture and the constituent labels. In particular the con-
stituent labels are highly ambiguous, firstly we don’t
know a priori how many there are, and secondly la-
bels that appear high in a tree (e.g., an S category
for a clause) rely on the correct inference of all the
latent labels below them. However recent work on
the induction of dependency grammars has proved

more fruitful (Klein and Manning, 2004). Depen-
dency grammars (Mel′čuk, 1988) should be easier to
induce from text compared to phrase-structure gram-
mars because the set of labels (heads) are directly
observed as the words in the sentence.

Approaches to unsupervised grammar induction,
both for phrase-structure and dependency grammars,
have typically used very simplistic models (Clark,
2001; Klein and Manning, 2004), especially in com-
parison to supervised parsing models (Collins, 2003;
Clark and Curran, 2004; McDonald, 2006). Sim-
ple models are attractive for grammar induction be-
cause they have a limited capacity to overfit, how-
ever they are incapable of modelling many known
linguistic phenomena. We posit that more complex
grammars could be used to better model the unsuper-
vised task, provided that active measures are taken
to prevent overfitting. In this paper we present an
approach to dependency grammar induction using
a tree-substitution grammar (TSG) with a Bayesian
non-parametric prior. This allows the model to learn
large dependency fragments to best describe the text,
with the prior biasing the model towards fewer and
smaller grammar productions.

We adopt the split-head construction (Eisner,
2000; Johnson, 2007) to map dependency parses to
context free grammar (CFG) derivations, over which
we apply a model of TSG induction (Cohn et al.,
2009). The model uses a hierarchical Pitman-Yor
process to encode a backoff path from TSG to CFG
rules, and from lexicalised to unlexicalised rules.
Our best lexicalised model achieves a head attach-
ment accuracy of of 55.7% on Section 23 of the WSJ
data set, which significantly improves over state-of-
the-art and far exceeds an EM baseline (Klein and
Manning, 2004) which obtains 35.9%.
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CFG Rule DMV Distribution Description

S→ LH HR p(root = H) The head of the sentence is H .

LH → Hl p(STOP |dir = L, head = H, val = 0) H has no left children.
LH → L1

H p(CONT |dir = L, head = H, val = 0) H has at least one left child.

L∗H → Hl p(STOP |dir = L, head = H, val = 1) H has no more left children.
L∗H → L1

H p(CONT |dir = L, head = H, val = 1) H has another left child.

HR→ Hr p(STOP |dir = R, head = H, val = 0) H has no right children.
HR→ HR1 p(CONT |dir = R, head = H, val = 0) H has at least one right child.

HR∗ → Hr p(STOP |dir = R, head = H, val = 1) H has no more right children.
HR∗ → HR1 p(CONT |dir = R, head = H, val = 1) H has another right child.

L1
H → LC CMH∗ p(C|dir = L, head = H) C is a left child of H .

HR1→ H∗MC CR p(C|dir = R, head = H) C is a right child of H .

CMH∗ → CR L∗H p = 1 Unambiguous
H∗MC → HR∗ LC p = 1 Unambiguous

Table 1: The CFG-DMV grammar schema. Note that the actual CFG is created by instantiating these templates with
part-of-speech tags observed in the data for the variables H and C. Valency (val) can take the value 0 (no attachment
in the direction (dir) d) and 1 (one or more attachment). L and R indicates child dependents left or right of the parent;
superscripts encode the stopping and valency distributions, X1 indicates that the head will continue to attach more
children and X∗ that it has already attached a child.

2 Background

The most successful framework for unsupervised
dependency induction is the Dependency Model
with Valence (DMV) (Klein and Manning, 2004).
This model has been adapted and extended by a
number of authors and currently represents the state-
of-the-art for dependency induction (Cohen and
Smith, 2009; Headden III et al., 2009). Eisner
(2000) introduced the split-head algorithm which
permits efficient O(|w|3) parsing complexity by
replicating (splitting) each terminal and processing
left and right dependents separately. We employ
the related fold-unfold representation of Johnson
(2007) that defines a CFG equivalent of the split-
head parsing algorithm, allowing us to easily adapt
CFG-based grammar models to dependency gram-
mar. Table 1 shows the equivalent CFG grammar for
the DMV model (CFG-DMV) using the unfold-fold
transformation. The key insight to understanding the
non-terminals in this grammar is that the subscripts
encode the terminals at the boundaries of the span
of that non-terminal. For example the non-terminal
LH encodes that the right most terminal spanned
by this constituent is H (and the reverse for HR),
while AMB encodes that A and B are the left-most

and right-most terminals of the span. The ∗ and 1

superscripts are used to encode the valency of the
head, both indicate that the head has at least one
attached dependent in the specified direction. This
grammar allows O(|w|3) parsing complexity which
follows from the terminals of the dependency tree
being observed, such that each span of the parse
chart uniquely specifies its possible heads (either the
leftmost, rightmost or both) and therefore the num-
ber of possible non-terminals for each span is con-
stant. The transform is illustrated in figures 1a and
1c which show the CFG tree for an example sentence
and the equivalent dependency tree.

Normally DMV based models have been trained
on part-of-speech tags of the words in a sentence,
rather than the words themselves. Headden III et al.
(2009) showed that performance could be improved
by including high frequency words as well as tags
in their model. In this paper we refer to such mod-
els as lexicalised; words which occur more than one
hundred times in the training corpus are represented
by a word/tag pair, while those less frequent are rep-
resented simply by their tags. We are also able to
show that this basic approach to lexicalisation im-
proves the performance of our models.
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S

Lhates[V ]

L1
hates[V ]

LN

Nl

NMhates[V]∗

NR

Nr

L∗hates[V ]

hates[V]l

hates[V ]R

hates[V ]R1

hates[V]∗MN

hates[V ]R∗

hates[V]r

LN

Nl

NR

Nr

(a) A TSG-DMV derivation for the sentence George hates broc-
coli. George and broccoli occur less than the lexicalisation cutoff
and are thus represented by the part-of-speech N, while hates is
common and therefore is represented by a word/tag pair. Bold
nodes indicate frontier nodes of elementary trees.

S

Lhates[V ]

L1
hates[V ]

LN NMhates[V]∗

hates[V ]R

hates[V ]R1

hates[V]∗MN NR
(b) A TSG-DMV elementary rule from Figure 1a. This rule en-
codes a dependency between the subject and object of hates that
is not present in the CFG-DMV. Note that this rule doesn’t re-
strict hates, or its arguments, to having a single left and right
child. More dependents can be inserted using additional rules
below the M/L/R frontier non-terminals.

George hates broccoli ROOT

(c) A traditional dependency tree representation of the parse tree
in Figure 1a before applying the lexicalisation cutoff.

Figure 1: TSG-DMV representation of dependency trees.

3 Lexicalised TSG-DMV

The models we investigate in this paper build upon
the CFG-DMV by defining a Tree Substitution
Grammar (TSG) over the space of CFG rules. A
TSG is a 4-tuple,G = (T,N, S,R), where T is a set
of terminal symbols, N is a set of non-terminal sym-
bols, S ∈ N is the distinguished root non-terminal
and R is a set of productions (rules). The produc-
tions take the form of elementary trees – tree frag-
ments of height ≥ 1, where each internal node is
labelled with a non-terminal and each leaf is la-
belled with either a terminal or a non-terminal. Non-
terminal leaves are called frontier non-terminals and
form the substitution sites in the generative process
of creating trees with the grammar.

A derivation creates a tree by starting with the
root symbol and rewriting (substituting) it with an
elementary tree, then continuing to rewrite fron-
tier non-terminals with elementary trees until there
are no remaining frontier non-terminals. We can
represent derivations as sequences of elementary
trees, e, by specifying that during the generation of
the tree each elementary tree is substituted for the
left-most frontier non-terminal. Figure 1a shows a

TSG derivation for the dependency tree in Figure 1c
where bold nonterminal labels denote substitution
sites (root/frontier nodes in the elementary trees).

The probability of a derivation, e, is the product
of the probabilities of its component rules,

P (e) =
∏

c→e∈e
P (e|c) . (1)

where each rewrite is assumed conditionally inde-
pendent of all others given its root nonterminal, c =
root(e). The probability of a tree, t, and string of
words, w, are

P (t) =
∑

e:tree(e)=t

P (e) and P (w) =
∑

t:yield(t)=w

P (t) ,

respectively, where tree(e) returns the tree for the
derivation e and yield(t) returns the string of termi-
nal symbols at the leaves of t.

A Probabilistic Tree Substitution Grammar
(PTSG), like a PCFG, assigns a probability to each
rule in the grammar, denoted P (e|c). The probabil-
ity of a derivation, e, is the product of the proba-
bilities of its component rules. Estimating a PTSG
requires learning the sufficient statistics for P (e|c)
in (1) based on a training sample. Parsing involves
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finding the most probable tree for a given string
(arg maxt P (t|w)). This is typically approximated
by finding the most probable derivation which can
be done efficiently using the CYK algorithm.

3.1 Model
In this work we propose the Tree Substitution Gram-
mar Dependency Model with Valence (TSG-DMV).
We define a hierarchical non-parametric TSG model
on the space of parse trees licensed by the CFG
grammar in Table 1. Our model is a generalisa-
tion of that of Cohn et al. (2009) and Cohn et al.
(2011). We extend those works by moving from a
single level Dirichlet Process (DP) distribution over
rules to a multi-level Pitman-Yor Process (PYP), and
including lexicalisation. The PYP has been shown
to generate distributions particularly well suited to
modelling language (Teh, 2006; Goldwater et al.,
2006). Teh (2006) used a hierarchical PYP to model
backoff in language models, we leverage this same
capability to model backoff in TSG rules. This ef-
fectively allows smoothing from lexicalised to un-
lexicalised grammars, and from TSG to CFG rules.

Here we describe our deepest model which has
a four level hierarchy, depicted graphically in Table
2. In Section 5 we evaluate different subsets of this
hierarchy. The topmost level of our model describes
lexicalised elementary elementary fragments (e) as
produced by a PYP,

e|c ∼ Gc
Gc|ac, bc,Plcfg ∼ PYP(ac, bc,Plcfg(·|c)) ,

where ac and bc control the strength of the backoff
distribution Plcfg. The space of lexicalised TSG rules
will inevitably be very sparse, so the base distribu-
tion Plcfg backs-off to calculating the probability of
a TSG rules as the product of the CFG rules it con-
tains, multiplied by a geometric distribution over the
size of the rule.

Plcfg(e|c) =
∏

f∈F(e)

sfc
∏
i∈I(e)

(1− sic)

×A(lex-cfg-rules(e|c))
α|c ∼ Ac
Ac|alcfg

c , b
lcfg
c ,P

cfg ∼ PYP(alcfg
c , b

lcfg
c ,P

cfg(·|c)),

where I(e) are the set of internal nodes in e exclud-
ing the root, F (e) are the set of frontier non-terminal

nodes, and ci is the non-terminal symbol for node
i and sc is the probability of stopping expanding a
node labelled c. The function lex-cfg-rules(e|c) re-
turns the CFG rules internal to e, each of the form
c′ → α; each CFG rule is drawn from the back-
off distribution, Ac′ . We treat sc as a parameter
which is estimated during training, as described in
Section 4.2.

The next level of backoff (Pcfg) removes the lexi-
calisation from the CFG rules, describing the gener-
ation of a lexicalised rule by first generating an un-
lexicalised rule from a PYP, then generating the lex-
icalisaton from a uniform distribution over words:1

Pcfg(α|c) = B(unlex(α)|unlex(c))

× 1
|w||α|

α′|c′ ∼ Bc′
Bc′ |acfg

c′ , b
cfg
c′ ,P

sh ∼ PYP(acfg
c′ , b

cfg
c′ ,P

sh(·|c′)),

where unlex(·) removes the lexicalisation from non-
terminals leaving only the tags.

The final base distribution over CFG-DMV rules
(Psh) is inspired by the skip-head smoothing model
of Headden III et al. (2009). This model showed that
smoothing the DMV by removing the heads from the
CFG rules significantly improved performance. We
replicate this behavior through a final level in our hi-
erarchy which generates the CFG rules without their
heads, then generates the heads from a uniform dis-
tribution:

Psh(α|c) = C(drop-head(c→ α))× 1
|P |

α|c ∼ Cc
Cc|ash

c , b
sh
c ∼ PYP(ash

c , b
sh
c ,Uniform(·|c)),

where drop-head(·) removes the symbols that mark
the head on the CFG rules, and P is the set of part-
of-speech tags. Each stage of backoff is illustrated in
Table 2, showing the rules generated from the TSG
elementary tree in Figure 1b.

Note that while the supervised model of Cohn et
al. (2009) used a fixed back-off PCFG distribution,
this model implicitly infers this distribution within

1All unlexicalised words are actually given the generic UNK
symbol as their lexicalisation.
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Plcfg Pcfg Psh

S

Lhates[V ] hates[V ]R

Lhates[V ]

L1
hates[V ]

S

LV V R

LV

L1
V

S

L· ·R

L·

L1
·

L1
hates[V ]

LN NMhates[V]∗

hates[V ]R

hates[V ]R1

L1
V

LN NMV ∗

V R

V R1

L1
·

LN NM·∗

·R

·R1

hates[V ]R1

hates[V]∗MN NR

V R1

V ∗MN NR

·R1

·∗MN NR

Table 2: Backoff trees for the elementary tree in Figure 1b.

its hierarchy, essentially learning the DMV model
embedded in the TSG.

In this application to dependency grammar our
model is capable of learning tree fragments which
group CFG parameters. As such the model can learn
to condition dependency links on the valence, e.g. by
combining LH → L1

H and L1
H → LC CMH∗ rules

into a single fragment the model can learn a pa-
rameter that the leftmost child of H is C. By link-
ing together multiple L1

H or HR1 non-terminals the
model can learn groups of dependencies that occur
together, e.g. tree fragments representing the com-
plete preferred argument frame of a verb.

4 Inference

4.1 Training

To train our model we use Markov Chain Monte
Carlo sampling (Geman and Geman, 1984). Where
previous supervised TSG models (Cohn et al., 2009)
permit an efficient local sampler, the lack of an ob-
served parse tree in our unsupervised model makes
this sampler not applicable. Instead we use a re-
cently proposed blocked Metroplis-Hastings (MH)
sampler (Cohn and Blunsom, 2010) which exploits a
factorisation of the derivation probabilities such that
whole trees can be sampled efficiently. See Cohn
and Blunsom (2010) for details. That algorithm is
applied using a dynamic program over an observed
tree, the generalisation to our situation of an inside
pass over the space of all trees is straightforward.

A final consideration is the initialisation of the

sampler. Klein and Manning (2004) emphasised the
importance of the initialiser for achieving good per-
formance with their model. We employ the same
harmonic initialiser as described in that work. The
initial derivations for our sampler are the Viterbi
derivations under the CFG parameterised according
to this initialiser.

4.2 Sampling hyperparameters

We treat the hyper-parameters {(axc , bxc , sc) , c ∈ N}
as random variables in our model and infer their val-
ues during training. We choose quite vague priors
for each hyper-parameter, encoding our lack of in-
formation about their values.

We place prior distributions on the PYP discount
ac and concentration bc hyperparamters and sam-
ple their values using a slice sampler. We use the
range doubling slice sampling technique of (Neal,
2003) to draw a new sample of a′c from its condi-
tional distribution.2 For the discount parameters ac
we employ a uniform Beta distribution, as we have
no strong prior knowledge of what its value should
be (ac ∼ Beta(1, 1)). Similarly, we treat the concen-
tration parameters, bc, as being generated by a vague
gamma prior, bc ∼ Gamma(1, 1), and sample a new
value b′c using the same slice-sampling approach as
for ac:

P (bc|z) ∝ P (z|bc)× Gamma(bc|1, 1).

2We made use of the slice sampler included in
Mark Johnson’s Adaptor Grammar implementation
http://www.cog.brown.edu/˜mj/Software.htm.
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Corpus Words Sentences

Sections 2-21 (|x| ≤ 10) 42505 6007

Section 22 (|x| ≤ 10) 1805 258

Section 23 (|x| ≤ 10) 2649 398
Section 23 (|x| ≤ ∞) 49368 2416

Table 3: Corpus statistics for the training and testing data
for the TSG-DMV model. All models are trained on the
gold standard part-of-speech tags after removing punctu-
ation.

We use a vague Beta prior for the stopping probabil-
ities in Plcfg, sc ∼ Beta(1, 1).

All the hyper-parameters are resampled after ev-
ery 10th sample of the corpus derivations.

4.3 Parsing

Unfortunately finding the maximising parse tree for
a string under our TSG-DMV model is intractable
due to the inter-rule dependencies created by the
PYP formulation. Previous work has used Monte
Carlo techniques to sample for one of the maxi-
mum probability parse (MPP), maximum probabil-
ity derivation (MPD) or maximum marginal parse
(MMP) (Cohn et al., 2009; Bod, 2006). We take a
simpler approach and use the Viterbi algorithm to
calculate the MPD under an approximating TSG de-
fined by the last set of derivations sampled for the
corpus during training. Our results indicate that this
is a reasonable approximation, though the experi-
ence of other researchers suggests that calculating
the MMP under the approximating TSG may also
be beneficial for DMV (Cohen et al., 2008).

5 Experiments

We follow the standard evaluation regime for DMV
style models by performing experiments on the text
of the WSJ section of the Penn. Treebank (Marcus et
al., 1993) and reporting head attachment accuracy.
Like previous work we pre-process the training and
test data to remove punctuation, training our unlex-
icalised models on the gold-standard part-of-speech
tags, and including words occurring more than 100
times in our lexicalised models (Headden III et al.,
2009). It is very difficult for an unsupervised model
to learn from long training sentences as they contain

a great deal of ambiguity, therefore the majority of
DMV based models have been trained on sentences
restricted in length to ≤ 10 tokens.3 This has the
added benefit of decreasing the runtime for exper-
iments. We present experiments with this training
scenario. The training data comes from sections 2-
21, while section 23 is used for evaluation. An ad-
vantage of our sampling based approach over pre-
vious work is that we infer all the hyperparameters,
as such we don’t require the use of section 22 for
tuning the model.

The models are evaluated in terms of head attach-
ment accuracy (the percentage of correctly predicted
head indexes for each token in the test data), on two
subsets of the testing data. Although we can argue
that unsupervised models are better learnt from short
sentences, it is much harder to argue that we don’t
then need to be able to parse long sentences with a
trained model. The most commonly employed test
set mirrors the training data by only including sen-
tences ≤ 10. In this work we focus on the accuracy
of our models on the whole of section 23, without
any pruning for length. The training and testing cor-
pora statistics are presented in Table 3. Subsequent
to the evaluation reported in Table 4 we use section
22 to report the correlation between heldout accu-
racy and the model log-likelihood (LLH) for ana-
lytic purposes.

As we are using a sampler during training, the re-
sult of any single run is non-deterministic and will
exhibit a degree of variance. All our reported results
are the mean and standard deviation (σ) from forty
sampling runs.

5.1 Discussion

Table 4 shows the head attachment accuracy results
for our TSG-DMV, plus many other significant pre-
viously proposed models. The subset of hierarchical
priors used by each model is noted in brackets.

The performance of our models is extremely en-
couraging, particularly the fact that it achieves the
highest reported accuracy on the full test set by a
considerable margin. On the |w| ≤ 10 test set all the
TSG-DMVs are second only to the L-EVG model
of Headden III et al. (2009). The L-EVG model
extends DMV by adding additional lexicalisation,

3See Spitkovsky et al. (2010a) for an exception to this rule.
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Directed Attachment
Accuracy on WSJ23

Model |w| ≤ 10 |w| ≤ ∞

Attach-Right 38.4 31.7

EM (Klein and Manning, 2004) 46.1 35.9
Dirichlet (Cohen et al., 2008) 46.1 36.9

LN (Cohen et al., 2008) 59.4 40.5
SLN, TIE V&N (Cohen and Smith, 2009) 61.3 41.4

DMV (Headden III et al., 2009) 55.7σ=8.0 -
DMV smoothed (Headden III et al., 2009) 61.2σ=1.2 -
EVG smoothed (Headden III et al., 2009) 65.0σ=5.7 -
L-EVG smoothed (Headden III et al., 2009) 68.8σ=4.5 -

Less is More (Spitkovsky et al., 2010a) 56.2 44.1
Leap Frog (Spitkovsky et al., 2010a) 57.1 45.0
Viterbi EM (Spitkovsky et al., 2010b) 65.3 47.9
Hypertext Markup (Spitkovsky et al., 2010c) 69.3 50.4

Adaptor Grammar (Cohen et al., 2010) 50.2 -

TSG-DMV (Pcfg) 65.9σ=2.4 53.1σ=2.4

TSG-DMV (Pcfg, Psh) 65.1σ=2.2 51.5σ=2.0

LexTSG-DMV (Plcfg, Pcfg) 67.2σ=1.4 55.2σ=2.2

LexTSG-DMV (Plcfg, Pcfg, Psh) 67.7σ=1.5 55.7σ=2.0

Supervised MLE (Cohen and Smith, 2009) 84.5 68.8

Table 4: Mean and variance for the head attachment accu-
racy of our TSG-DMV models (highlighted) with varying
backoff paths, and many other high performing models.
Citations indicate where the model and result were re-
ported. Our models labelled TSG used an unlexicalised
top level Gc PYP, while those labelled LexTSG used the
full lexicalised Gc.

valency conditioning, interpolated back-off smooth-
ing and a random initialiser. In particular Head-
den III et al. (2009) shows that the random initialiser
is crucial for good performance, however this ini-
tialiser requires training 1000 models to select a sin-
gle best model for evaluation and results in consider-
able variance in test set performance. Note also that
our model exhibits considerably less variance than
those induced using this random initialiser, suggest-
ing that the combination of the harmonic initialiser
and blocked-MH sampling may be a more practica-
ble training regime.

The recently proposed Adaptor Grammar DMV
model of Cohen et al. (2010) is similar in many
way to our TSG model, incorporating a Pitman Yor
prior over units larger than CFG rules. As such it
is surprising that our model is performing signif-

icantly better than this model. We can identify a
number of differences that may impact these results:
the Adaptor Grammar model is trained using vari-
ational inference with the space of tree fragments
truncated, while we employ a sampler which can
nominally explore the full space of tree fragments;
and the adapted tree fragments must be complete
subtrees (i.e. they don’t contain variables), whereas
our model can make use of arbitrary tree fragments.
An interesting avenue for further research would be
to extend the variational algorithm of Cohen et al.
(2010) to our TSG model, possibly speeding infer-
ence and allowing easier parallelisation.

In Figure 2a we graph the model LLH on the train-
ing data versus the head attachment accuracy on the
heldout set. The graph was generated by running
160 models for varying numbers of samples and
evaluating their accuracy. This graph indicates that
the improvements in the posterior probability of the
model are correlated with the evaluation, though the
correlation is not as high as we might require in or-
der to use LLH as a model selection criteria similar
to Headden III et al. (2009). Further refinements to
the model could improve this correlation.

The scaling perfomance of the model as the num-
ber of samples is increased is shown in Figure 2b.
Performance improves as the training data is sam-
pled for longer, and continues to trend upwards be-
yond 1000 samples (the point for which we’ve re-
ported results in Table 4). This suggests that longer
sampling runs – and better inference techniques –
could yield further improvements.

For further analysis Table 5 shows the accuracy
of the model at predicting the head for frequent
types, while Table 6 shows the performance on de-
pendencies of various lengths. We emphasise that
these results are for the single best performing sam-
pler run on the heldout corpus and there is consid-
erable variation in the analyses produced by each
sampler. Unsurprisingly, the model appears to be
more accurate when predicting short dependencies,
a result that is also reflected in the per type accura-
cies. The model is relatively good at identifying the
root verb in each sentence, especially those headed
by past tense verbs (VBD, was), and to a lesser de-
gree VBPs (are). Conjunctions such as and pose
a particular difficulty when evaluating dependency
models as the correct modelling of these remains a
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Figure 2

contentious linguistic issue and it’s not clear what
the ‘correct’ analysis should be. Our model gets a
respectable 75% accuracy for and conjunctions, but
for conjunctions (CC) as a whole, the model per-
forms poorly (39%).

Table 7 list the most frequent TSG rules lexi-
calised with has. The most frequent rule is sim-
ply the single level equivalent of the DMV termi-
nal rule for has. Almost as frequent is rule 3, here
the grammar incorporates the terminal into a larger
elementary fragment, encoding that it is the head
of the past participle occuring immediately to it’s
right. This shows the model’s ability to learn the
verb’s argument position conditioned on both the
head and child type, something lacking in DMV.
Rule 7 further refines this preferred analysis for has
been by lexicalising both the head and child. Rules
(4,5,8,10) employ similar conditioning for proper
and ordinary nouns heading noun phrases to the
left of has. We believe that it is the ability of the
TSG to encode stronger constraints on argument po-
sitions that leads to the model’s higher accuracy
on longer sentences, while other models do well
on shorter sentences but relatively poorly on longer
ones (Spitkovsky et al., 2010c).

6 Conclusion

In this paper we have made two significant contri-
butions to probabilistic modelling and grammar in-
duction. We have shown that it is possible to suc-
cessfully learn hierarchical Pitman-Yor models that
encode deep and complex backoff paths over highly
structured latent spaces. By applying these models
to the induction of dependency grammars we have
also been able to advance the state-of-the-art, in-
creasing the head attachment accuracy on section 23
of the Wall Street Journal Corpus by more than 5%.

Further gains in performance may come from an
exploration of the backoff paths employed within the
model. In particular more extensive experimentation
with alternate priors and larger training data may al-
low the removal of the lexicalisation cutoff which is
currently in place to counter sparsity.

We envisage that in future many grammar for-
malisms that have been shown to be effective in su-
pervised parsing, such as categorial, unification and
tree adjoining grammars, will prove amenable to
unsupervised induction using the hierarchical non-
parametric modelling approaches we have demon-
strated in this paper.
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Count LexTSG-DMV Rules

1 94 L∗has−V BZ → (L∗has−V BZ has-VBZl)
2 74 L1

has−V BZ → (L1
has−V BZ (LNN L1

NN ) NN Mhas−V BZ∗ )
3 71 has−V BZ∗MV BN → (has−V BZ∗MV BN (has−V BZR∗ has-VBZr) LV BN )
4 54 NN Mhas−V BZ∗ → (NN Mhas−V BZ∗ NN R (L∗has−V BZ has-VBZl))
5 36 NN Mhas−V BZ∗ → (NN Mhas−V BZ∗ NN R L∗has−V BZ)
6 36 has−V BZR∗ → (has−V BZR∗ (has−V BZR1

has−V BZ∗MV BN (V BN R VBNr)))
7 30 has−V BZ∗Mbeen−V BN → (has−V BZ∗Mbeen−V BN (has−V BZR∗ has-VBZr) Lbeen−V BN )
8 27 NNP Mhas−V BZ∗ → (NNP Mhas−V BZ∗ NNP R (L∗has−V BZ has-VBZl))
9 25 has−V BZR → (has−V BZR (has−V BZR1

has−V BZ∗MNNS (NNSR NNSR1)))
10 18 L1

has−V BZ → (L1
has−V BZ LNNP NNP Mhas−V BZ∗ )

Table 7: The ten most frequent LexTSG-DMV rules in a final training sample that contain has.
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Abstract
We reveal a previously unnoticed connection
between dependency parsing and statistical
machine translation (SMT), by formulating
the dependency parsing task as a problem of
word alignment. Furthermore, we show that
two well known models for these respective
tasks (DMV and the IBM models) share com-
mon modeling assumptions. This motivates us
to develop an alignment-based framework for
unsupervised dependency parsing. The frame-
work (which will be made publicly available)
is flexible, modular and easy to extend. Us-
ing this framework, we implement several al-
gorithms based on the IBM alignment mod-
els, which prove surprisingly effective on the
dependency parsing task, and demonstrate the
potential of the alignment-based approach.

1 Introduction

Both statistical machine translation (SMT) and un-
supervised dependency parsing have seen a surge of
interest in recent years, as the need for large scale
data processing has increased. The problems ad-
dressed by each of the fields seem quite different
at first glance. However, in this paper, we reveal a
strong connection between them and show that the
problem of dependency parsing can be formulated
as one of word alignment within the sentence. Fur-
thermore, we show that the two models that are ar-
guably the most influential in their respective fields,
the IBM models 1-3 (Brown et al., 1993) and Klein
and Manning’s (2004) Dependency Model with Va-
lence (DMV), share a common set of modeling as-
sumptions.

Based on this connection, we develop a frame-
work which uses an alignment-based approach for

unsupervised dependency parsing. The framework
is flexible and modular, and allows us to explore dif-
ferent modeling assumptions. We demonstrate these
properties and the merit of the alignment-based pars-
ing approach by implementing several dependency
parsing algorithms based on the IBM alignment
models and evaluating their performance on the task.
Although the algorithms are not competitive with
state-of-the-art systems, they outperform the right-
branching baseline and approach the performance of
DMV. This is especially surprising when we con-
sider that the IBM models were not originally de-
signed for the task. These results are encourag-
ing and indicate that the alignment-based approach
could serve as the basis for competitive dependency
parsing systems, much as DMV did.

This paper offers two main contributions. First,
by revealing the connection between the two tasks,
we introduce a new approach to dependency pars-
ing, and open the way for use of SMT alignment re-
sources and tools for parsing. Our experiments with
the IBM models demonstrate the potential of this ap-
proach and provide a strong motivation for further
development. The second contribution is a publicly-
available framework for exploring new alignment
models. The framework uses Gibbs sampling tech-
niques and includes our sampling-based implemen-
tations of the IBM models (see Section 3.4). The
sampling approach makes it easy to modify the ex-
isting models and add new ones. The framework
can be used both for dependency parsing and for bi-
lingual word alignment.

The rest of the paper is structured as follows. In
Section 2 we present a brief overview of those works
in the fields of dependency parsing and alignment
for statistical machine translation which are directly
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relevant to this paper. Section 3 describes the con-
nection between the two problems, examines the
shared assumptions of the DMV and IBM models,
and describes our framework and algorithms. In
Section 4 we present our experiments and discuss
the results. We conclude in Section 5.

2 Background and Related Work

2.1 Unsupervised Dependency Parsing

In recent years, the field of supervised parsing has
advanced tremendously, to the point where highly
accurate parsers are available for many languages.
However, supervised methods require the manual
annotation of training data with parse trees, a pro-
cess which is expensive and time consuming. There-
fore, for domains and languages with minimal re-
sources, unsupervised parsing is of great impor-
tance.

Early work in the field focused on models that
made use primarily of the co-occurrence informa-
tion of the head and its argument (Yuret, 1998;
Paskin, 2001). The introduction of DMV by Klein
and Manning (2004) represented a shift in the di-
rection of research in the field. DMV is based on
a linguistically motivated generative model, which
follows common practice in supervised parsing and
takes into consideration the distance between head
and argument, as well as the valence (the capac-
ity of a head word to attach arguments). Klein and
Manning (2004) also shifted from a lexical repre-
sentation of the sentences to representing them as
part-of-speech sequences. DMV strongly outper-
formed previous models and was the first unsuper-
vised dependency induction system to achieve accu-
racy above the right-branching baseline. Much sub-
sequent work in the field has focused on modifica-
tions and extensions of DMV, and it is the basis for
today’s state-of-the-art systems (Cohen and Smith,
2009; Headden III et al., 2009).

2.2 Alignment for SMT

SMT treats translation as a machine learning prob-
lem. It attempts to learn a translation model from
a parallel corpus composed of sentences and their
translations. The IBM models (Brown et al., 1993)
represent the first generation of word-based SMT
models, and serve as a starting point for most cur-

Figure 1: An example of an alignment between an En-
glish sentence (top) and its French translation (bottom).

rent SMT systems (e.g., Moses, Koehn et al. 2007;
Hiero, Chiang 2005). The models employ the notion
of alignment between individual words in the source
and translation. An example of such an alignment is
given in Figure 1.

The IBM models all seek to maximize Pr( f |e),
the probability of a French translation f of an En-
glish sentence e. This probability is broken down
by taking into account all possible alignments a be-
tween e and f , and their probabilities:

Pr( f |e) = ∑
a

Pr( f ,a|e) (1)

Each of the IBM models is based on the previous one
in the series, and adds another level of latent parame-
ters which take into account a specific characteristic
of the data.

3 Alignment-based Dependency Parsing

3.1 The Connection
The task of dependency parsing requires finding a
parse tree for a sentence, where two words are con-
nected by an edge if they participate in a syntactic
dependency relation. When dealing with unlabeled
dependencies, the exact nature of the relationship is
not determined. An example of a dependency parse
of a sentence is given in Figure 2 (left).

Another possible formulation of the problem is as
follows. Find a set of pairwise relations (si,s j) con-
necting a dependent word s j with its head word si in
the sentence. This alternate formulation allows us to
view the problem as one of alignment of a sentence
to itself, as shown in Figure 2 (right).

Given this perspective on the problem, it makes
sense to examine existing alignment models, com-
pare them to dependency parsing models, and see
if they can be successfully employed for the depen-
dency parsing task.
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Figure 2: Left: An example of an unlabeled dependency parse of a sentence. Right: The same parse, in the form of
an alignment between a head words (top) and their dependents (bottom).

3.2 Comparing IBM & DMV Assumptions

Lexical Association The core assumption of IBM
Model 1 is that the lexical identities of the En-
glish and French words help determine whether they
should be aligned. The same assumption is made in
all the dependency models mentioned in Section 2
regarding a head and its dependent (although DMV
uses word classes instead of the actual words).

Location IBM Model 2 adds the consideration
of difference in location between the English and
French words when considering the likelihood of
alignment. One of the improvements contributing
to the success of DMV was the notion of distance,
which was absent from previous models (see Sec-
tion 3 in Klein and Manning 2004).

Fertility IBM Model 3 adds the notion of fertil-
ity, or the idea that different words in the source lan-
guage tend to generate different numbers of words in
the target language. This corresponds to the notion
of valence, used by Klein and Manning (2004), and
the other major contributor to the success of DMV
(ibid.).

Null Source The IBM models all make use of
an additional “null” word in every sentence, which
has special status. It is attached to words in the
translation that do not correspond to a word in the
source. It is treated separately when calculating
distance (since it has no location) and fertility. In
these characteristics, it is very similar to the “root”
node, which is artificially added to parse trees and
used to represent the head of words which are not
dependents of any other word in the sentence.

In examining the core assumptions of the IBM
models, we note that there is a strong resemblance
to those of DMV. The similarity is at an abstract
level since the nature of the relationship that each
model attempts to detect is quite different. The
IBM models look for an equivalence relationship be-
tween lexical items in two languages, whereas DMV
addresses functional relationships between two el-
ements with distinct meanings. However, both at-
tempt to model a similar set of factors, which they
posit will be important to their respective tasks1.
This similarity motivates the work presented in the
rest of the paper, i.e, exploring the use of the IBM
alignment models for dependency parsing. It is im-
portant to note that the IBM models do not address
many important factors relevant to the parsing task.
For instance, they have no notion of a parse tree, a
deficit which may lead to degenerate solutions and
malformed parses. However, they serve as a good
starting point for exploring the alignment approach
to parsing, as well as discovering additional factors
that need to be addressed under this approach.

3.3 Experimental Framework

We developed a Gibbs sampling framework for
alignment-based dependency parsing2. The tradi-
tional approach to alignment uses Expectation Max-
imization (EM) to find the optimal values for the
latent variables. In each iteration, it considers all
possible alignments for each pair of sentences, and

1These abstract notions (lexical association, proximity, ten-
dencies towards few or many relations, and allowing for unasso-
ciated items) play an important role in many relation-detection
tasks (e.g., co-reference resolution, Haghighi and Klein 2010).

2Available for download at:
http://people.dbmi.columbia.edu/∼sab7012
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chooses the optimal one based on the current pa-
rameter estimates. The sampling method, on the
other hand, only considers a small change in each
step - that of re-aligning a previously aligned target
word to a new source. The reason for our choice is
the ease of modification of such sampling models.
They allow for easy introduction of further param-
eters and more complex probabilistic functions, as
well as Bayesian priors, all of which are likely to be
helpful in development3.

Under the sampling framework, the model pro-
vides the probability of changing the alignment A[i]
of a target word i from a previously aligned source
word j to a new one ĵ. In all the models we consider,
this probability is proportional to the ratio between
the scores of the old sentence alignment A and the
new one Â, which differs from the old only in the
realignment of i to ĵ.

P(A[i] = j ⇒ A[i] = ĵ )∼ Pmodel(Â)
Pmodel(A)

(2)

As a starting point for our dependency parsing
model, we re-implemented the first three IBM mod-
els 4 in the sampling framework.

3.4 Reformulating the IBM models
IBM Model 1 According to this model, the prob-
ability of an alignment between target word i and
source word ĵ depends only on the lexical identities
of the two words wi and w ĵ respectively. This gives
us equation 3.

P(A[i]⇒ ĵ )∼ Pmodel(Â)
Pmodel(A)

=
∏k P(wk,wA[k])

∏k′ P(wk′ ,wÂ[k′])

P(A[i]⇒ ĵ )∼
P(wi,w ĵ)
P(wi,w j)

(3)

In our implementation we assume the alignment
follows a Chinese Restaurant Process (CRP), where

3Preliminary experiments using the EM approach via the
GIZA++ toolkit (Och and Ney, 2003) resulted in similar per-
formance to that of the sampling method for IBM Models 1 and
2. However, we were unable to explore the use of Model 3
under that framework, since the implementation of the model
was strongly coupled to other, SMT-specific, optimizations and
heuristics.

4Our implementation, as well as some core components in
our framework, are based on code kindly provided by Chris
Dyer.

the probability of wi aligning to w j is proportional
to the number of times they have been aligned in the
past (the rest of the data), as follows:

P(wi,w ĵ) =
#(wi,w j)+α1/V

#(∗,w j)+α1
(4)

Here, #(wi,w j) represents the number of times the
target word wi was observed to be aligned to w j in
the rest of the data, and ∗ stands for any word, V
is the size of the vocabulary, and α1 is a hyperpa-
rameter of the CRP, which can also be viewed as a
smoothing factor.

IBM Model 2 The original IBM model 2 is a
distortion model that assumes that the probability
of an alignment between target word i and source
word ĵ depends only on the locations of the words,
i.e., the values i and ĵ, taking into account the dif-
ferent lengths l and m of the source and target sen-
tences, respectively. For dependency parsing, where
we align sentences to themselves, l = m. This gives
us equation 5.

P(A[i]⇒ ĵ )∼ Pmodel(Â)
Pmodel(A)

=
P(i, ĵ, l)
P(i, j, l)

P(i, ĵ, l) =
#(i, ĵ, l)+α2/D

#(i,∗, l)+α2
(5)

Again, we assume a CRP when choosing a dis-
tortion value, where D is the expected number of
distance values (set to 10 in our experiments), α2
is the CRP hyperparameter, #(i, j, l) is the number
of times a target word in position i was aligned to
a source word in position j in sentences of length l,
and #(i,∗, l) is the number of times word in position
i was aligned (to any source position) in sentences
of length l.

Even without the need for handling different
lengths for source and target sentences, this model
is complex and requires estimating a separate prob-
ability for each triplet (i, j, l). In addition, the as-
sumption that the distance distribution depends only
on the sentence length and is similar for all to-
kens seems unreasonable, especially when dealing
with part-of-speech tokens and dependency rela-
tions. Such concerns have been mentioned in the
SMT literature and were shown to be justified in
our experiments (see Sec. 4). For this reason, we
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also implemented an alternate distance model, based
loosely on Liang et al. (2006). Under the alternate
model, the probability of an alignment between tar-
get word i and source word ĵ depends on the distance
between them, their order, the sentence length, and
the word type of the head, according to equation 6.

P(i, ĵ, l) =
#[wi,(i- ĵ), l]+α3/D

#(wi,∗, l)+α3
(6)

IBM Model 3 This model handles the notion of
fertility (or valence). Under this model, the proba-
bility of an alignment depends on how many target
words are aligned to each of the source words. Each
source word type w ĵ, has a distribution specifying
the probability of having n aligned target words. The
probability of an alignment is proportional to the
product of the probabilities of the fertilities in the
alignment and takes into account the special status of
the null word (represented by the index j = 0). This
probability is given in Equation 7, which is based on
Equation 32 in Brown et al. (1993)5.

P(A)∼
(

l−φ0

φ0

)
pl−2φ0

0 pφ0
1

l

∏
j=1

φ j!
#(w j,φ j)+α4/F

#(w j,∗)+α4

(7)

Here, φ j denotes the number of target words aligned
to the j-th source word in alignment A. p1 and p0
sum to 1 and are used to derive the probability that
there will be φ0 null-aligned words in a sentence
containing l words6. #(w j,φ j) represents the num-
ber of times source word w j was observed to have
φ j dependent target words, #(w j,∗) is the number
of times w j appeared in the data, F is the expected
number of fertility values (5 in our experiments),
and α4 is the CRP hyperparameter.

Combining the Models The original IBM mod-
els work in an incremental fashion, with each model
using the output of the previous one as a starting
point and adding a new component to the probabil-
ity distribution. The dependency parsing framework
employs a similar approach. It uses the alignments

5The transitional version of this equation depends on
whether either the old source word ( j) or the new one ( ĵ) are
null, and is omitted for brevity. Further details can be found in
Brown et al. (1993) Section 4.4 and Equation 43.

6For details, see Brown et al. (1993) Equation 31.

learned by the previous model as the starting point of
the next and combines the probability distributions
of each component via a product model. This al-
lows for the easy introduction of new models which
consider different aspects of the alignment and com-
plement each other.

Preventing Self-Alignment When adapting the
alignment approach to dependency parsing, we view
the task as that of aligning a sentence to itself. One
issue we must address is preventing the degenerate
solution of aligning each word to itself. For this pur-
pose we introduce a simple model into the product
which gives zero probability to alignments which
contain a word aligned to itself, as in equation 8.

P(A[i] = ĵ ) =
{

0 if i = ĵ
1

l−1 otherwise
(8)

4 Experiments

4.1 Data

We evaluated our model on several corpora. The first
of these was the Penn. Treebank portion of the Wall
Street Journal (WSJ). We used the Constituent-to-
Dependency Conversion Tool7 to convert the tree-
bank format into CoNLL format.

We also made use of the Danish and Dutch
datasets from the CoNLL 2006 shared task8. Since
we do not make use of annotation, we can induce a
dependency structure on the entire dataset provided
(disregarding the division into training and testing).

Following Klein and Manning (2004), we used
the gold-standard part-of-speech sequences rather
than the lexical forms and evaluated on sentences
containing 10 or fewer tokens after removal of punc-
tuation.

4.2 Results

Table 1 shows the results of the IBM Models on
the task of directed (unlabeled) dependency parsing.
We compare to the right-branching baseline used by
Klein and Manning (2004). For the WSJ10 corpus,
the authors reported 43.2% accuracy for DMV and
33.6% for the baseline. Although there are small

7nlp.cs.lth.se/software/treebank converter/
8http://nextens.uvt.nl/∼conll/
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Corpus M 1 M2 M3 R-br
WSJ10 25.42 35.73 39.32 32.85
Dutch10 25.17 32.46 35.28 28.42
Danish10 23.12 25.96 41.94 16.05 *

Table 1: Percent accuracy of IBM Models 1-3 (M1-3) and
the right-branching baseline (R-br) on several corpora.

PoS attachment
NN DET
IN NN

NNP NNP
DET NN

JJ NN

PoS attachment
NNS JJ
RB VBZ

VBD NN
VB TO
CC NNS

Table 2: Most likely dependency attachment for the top
ten most common parts-of-speech, according to Model 1.

differences in evaluation, as evidenced by the dif-
ference between our baseline scores, IBM Models
2 and 3 outperform the baseline by a large margin
and Model 3 approaches the performance of DMV.
On the Dutch and Danish datasets, the trends are
similar. On the latter dataset, even Model 1 out-
performs the right-branching baseline. However, the
Danish dataset is unusual (see Buchholz and Marsi
2006) in that the alternate adjacency baseline of left-
branching (also mentioned by Klein and Manning
2004) is extremely strong and achieves 48.8% di-
rected accuracy.

4.3 Analysis
In order to better understand what our alignment
model was learning, we looked at each component
element individually.

Lexical Association To explore what Model 1 was
learning, we analyzed the resulting probability ta-
bles for association between tokens. Table 2 shows
the most likely dependency attachment for the top
ten most common parts-of-speech. The model is
clearly learning meaningful connections between
parts of speech (determiners and adjectives to nouns,
adverbs to verbs, etc.), but there is little notion of
directionality, and cycles can exist. For instance,
the model learns the connection between determiner
and noun, but is unsure which is the head and which
the dependent. A similar connection is learned be-
tween to and verbs in the base form (VB). This in-

consistency is, to a large extent, the result of the
deficiencies of the model, stemming from the fact
that the IBM models were designed for a different
task and are not trying to learn a well-formed tree.
However, there is a strong linguistic basis to con-
sider the directionality of these relations difficult.
There is some debate among linguists as to whether
the head of a noun phrase is the noun or the deter-
miner9 (see Abney 1987). Each can be seen as a dif-
ferent kind of head element, performing a different
function, similarly to the multiple types of depen-
dency relations identified in Hudson’s (1990) Word
Grammar. A similar case can be made regarding the
head of an infinitive phrase. The infinitive form of
the verb may be considered the lexical head, deter-
mining the predicate, while to can be seen as the
functional head, encoding inflectional features, as in
Chomsky’s (1981) Government & Binding model10.

Distance Models The original IBM distortion
model (Model 2), which does not differentiate be-
tween words types and looks only at positions, has
an accuracy of 33.43% on the WSJ10 corpus. In
addition, it tends to strongly favor left-branching at-
tachment (57.2% of target words were attached to
the word immediately to their right, 22.6% to their
left, as opposed to 31% and 25.8% in the gold stan-
dard). The alternative distance model we proposed,
which takes into account the identity of the head
word, achieves better accuracy and is closer to the
gold standard balance (43.5% right and 35.3% left).

Figure 3 shows the distribution of the location of
the dependent relative to the head word (at position
0) for several common parts-of-speech. It is inter-
esting to see that singular and plural nouns (NN,
NNS) behave similarly. They both have a strong
preference for local attachment and a tendency to-
wards a left-dependent (presumably the determiner,
see above Table 2). Pronouns (NNP), on the other
hand, are more likely to attach to the right since
they are not modified by determiners. Verbs in past
(VBZ) and present (VBD, VBP) forms have simi-
lar behavior, with a flatter distribution of dependent
locations, whereas the base form (VB) attaches al-
most exclusively to the preceding token, presumably

9In fact, the original DMV chose the determiner as the head
(see discussion in Klein and Manning 2004, Section 3).

10We thank an anonymous reviewer for elucidating this point.
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Figure 3: Distribution of head-to-dependent distance for several types of verbs (left) and nouns (right), as learned by
our alternate distance model.

to (see Table 2).

Fertility Figure 4 shows the distribution of fertil-
ity values for several common parts of speech. Verbs
have a relatively flat distribution with a longer tail
as compared to nouns, which means they are likely
to have a larger number of arguments. Once again,
the base form (VB) exhibits different behavior from
the other verbs forms, taking almost exclusively one
argument. This is likely an effect of the strong con-
nection between base form verbs and the preceding
word to.

Hyper-Parameters Each of our models requires a
value for its CRP hyperparameter (see Section 3.4).
In this work, since parameter estimation was not our
focus, we set the hyperparameters to be approxi-
mately 1

K , where K is the number of possible val-
ues, according to the rule of thumb common in the
literature. Specifically, we chose α1 = 0.01,α3 =
0.05,α4 = 0.1. We investigated the effect of these
choices on performance in a separate set of exper-
iments, which showed that small variations (up to
an order of magnitude) in these parameters had little
effect on the results.

In addition to the CRP parameters, Model 3 re-
quires a value for p1, the null fertility hyperparame-
ter. In our experiments, we found that this hyper-
parameter had a very strong effect on results if it
was above 0.1, creating many spurious null align-
ments. However, below that threshold, the effects

were small. In the experiments reported here, we set
p1 = 0.01.

Initialization One issue with DMV, which is of-
ten mentioned, is its sensitivity to initialization. We
tested our model with random initialization (uniform
alignment probabilities) and with an approximation
of the ad-hoc “harmonic” initialization described in
Klein and Manning (2004) and found no noticeable
difference in accuracy.

4.4 Discussion
The accuracy achieved by the IBM models (Table 1)
is surprisingly high, given the fact that the IBM
models were not designed with dependency parsing
in mind. It is likely that customizing the models to
the task will result in even better performance. Our
findings in Section 4.3 support this hypothesis. The
analysis showed that the lack of tree structure in the
model impacted the learning, and therefore it is ex-
pected that a component which enforces tree struc-
ture (prevents cycles) will be beneficial.

Although it lacks an inherent notion of tree struc-
ture, the alignment-based approach has several ad-
vantages over the head-outward approach of DMV
and related models. It can consider the alignment as
a whole and take into account global sentence con-
straints, not just head-dependent relations. These
may also include tree-structure constraints common
to the head-outward approaches, but can be more
flexible in how they are addressed. For instance,
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Figure 4: Distribution of fertility values for several types of verbs (left) and nouns (right), as learned by IBM Model 3.

DMV’s method of modeling tree structure does
not allow non-projective dependencies, whereas an
alignment-based model may choose to allow or con-
strain non-projectivity, as learned from the data. An-
other advantage of our alignment-based models is
the fact that they are not strongly sensitive to ini-
tialization and can be started from a set of random
alignments.

5 Conclusions and Future Work

We have described an alternative formulation of de-
pendency parsing as a problem of word alignment.
This connection motivated us to explore the possi-
bility of using alignment tools for the task of un-
supervised dependency parsing. We chose to ex-
periment with the well-known IBM alignment mod-
els which share a set of similar modeling assump-
tions with Klein and Manning’s (2004) Dependency
Model with Valence. Our experiments showed that
the IBM models are surprisingly effective at the
dependency parsing task, outperforming the right-
branching baseline and approaching the accuracy of
DMV. Our results demonstrate that the alignment
approach can be used as a foundation for depen-
dency parsing algorithms and motivates further re-
search in this area.

There are many interesting avenues for further re-
search. These include improving and extending the
existing IBM models, as well as introducing new
models that are specifically designed for the parsing

task and represent relevant linguistic considerations
(e.g., enforcing tree structure, handling crossing de-
pendencies, learning left- or right-branching tenden-
cies).

In Spitkovsky et al. (2010), the authors show that
a gradual increase in the complexity of the data can
aid the learning process. The IBM approach demon-
strated the benefit of a gradual increase of model
complexity. It would be interesting to see if the two
approaches could be successfully combined.

Finally, although we use our framework for de-
pendency parsing, the sampling approach and the
framework we developed can be used to explore new
models for bilingual word alignment. Furthermore,
an alignment-based parsing method is expected to
integrate well with SMT bi-lingual alignment mod-
els and may, therefore, be suitable for combined
models which use parse trees to improve word align-
ment (e.g., Burkett et al. 2010).
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Abstract

This paper addresses the problem of learn-
ing to map sentences to logical form, given
training data consisting of natural language
sentences paired with logical representations
of their meaning. Previous approaches have
been designed for particular natural languages
or specific meaning representations; here we
present a more general method. The approach
induces a probabilistic CCG grammar that
represents the meaning of individual words
and defines how these meanings can be com-
bined to analyze complete sentences. We
use higher-order unification to define a hy-
pothesis space containing all grammars con-
sistent with the training data, and develop
an online learning algorithm that efficiently
searches this space while simultaneously es-
timating the parameters of a log-linear parsing
model. Experiments demonstrate high accu-
racy on benchmark data sets in four languages
with two different meaning representations.

1 Introduction

A key aim in natural language processing is to learn
a mapping from natural language sentences to for-
mal representations of their meaning. Recent work
has addressed this problem by learning semantic
parsers given sentences paired with logical meaning
representations (Thompson & Mooney, 2002; Kate
et al., 2005; Kate & Mooney, 2006; Wong &
Mooney, 2006, 2007; Zettlemoyer & Collins, 2005,
2007; Lu et al., 2008). For example, the training
data might consist of English sentences paired with
lambda-calculus meaning representations:

Sentence: which states border texas
Meaning: λx.state(x) ∧ next to(x, tex)

Given pairs like this, the goal is to learn to map new,
unseen, sentences to their corresponding meaning.

Previous approaches to this problem have been
tailored to specific natural languages, specific mean-
ing representations, or both. Here, we develop an
approach that can learn to map any natural language
to a wide variety of logical representations of lin-
guistic meaning. In addition to data like the above,
this approach can also learn from examples such as:

Sentence: hangi eyaletin texas ye siniri vardir
Meaning: answer(state(borders(tex)))

where the sentence is in Turkish and the meaning
representation is a variable-free logical expression
of the type that has been used in recent work (Kate
et al., 2005; Kate & Mooney, 2006; Wong &
Mooney, 2006; Lu et al., 2008).

The reason for generalizing to multiple languages
is obvious. The need to learn over multiple repre-
sentations arises from the fact that there is no stan-
dard representation for logical form for natural lan-
guage. Instead, existing representations are ad hoc,
tailored to the application of interest. For example,
the variable-free representation above was designed
for building natural language interfaces to databases.

Our approach works by inducing a combinatory
categorial grammar (CCG) (Steedman, 1996, 2000).
A CCG grammar consists of a language-specific
lexicon, whose entries pair individual words and
phrases with both syntactic and semantic informa-
tion, and a universal set of combinatory rules that
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project that lexicon onto the sentences and meanings
of the language via syntactic derivations. The learn-
ing process starts by postulating, for each sentence
in the training data, a single multi-word lexical item
pairing that sentence with its complete logical form.
These entries are iteratively refined with a restricted
higher-order unification procedure (Huet, 1975) that
defines all possible ways to subdivide them, consis-
tent with the requirement that each training sentence
can still be parsed to yield its labeled meaning.

For the data sets we consider, the space of pos-
sible grammars is too large to explicitly enumerate.
The induced grammar is also typically highly am-
biguous, producing a large number of possible anal-
yses for each sentence. Our approach discriminates
between analyses using a log-linear CCG parsing
model, similar to those used in previous work (Clark
& Curran, 2003, 2007), but differing in that the syn-
tactic parses are treated as a hidden variable during
training, following the approach of Zettlemoyer &
Collins (2005, 2007). We present an algorithm that
incrementally learns the parameters of this model
while simultaneously exploring the space of possi-
ble grammars. The model is used to guide the pro-
cess of grammar refinement during training as well
as providing a metric for selecting the best analysis
for each new sentence.

We evaluate the approach on benchmark datasets
from a natural language interface to a database of
US Geography (Zelle & Mooney, 1996). We show
that accurate models can be learned for multiple
languages with both the variable-free and lambda-
calculus meaning representations introduced above.
We also compare performance to previous methods
(Kate & Mooney, 2006; Wong & Mooney, 2006,
2007; Zettlemoyer & Collins, 2005, 2007; Lu et al.,
2008), which are designed with either language- or
representation- specific constraints that limit gener-
alization, as discussed in more detail in Section 6.
Despite being the only approach that is general
enough to run on all of the data sets, our algorithm
achieves similar performance to the others, even out-
performing them in several cases.

2 Overview of the Approach

The goal of our algorithm is to find a function
f : x → z that maps sentences x to logical ex-

pressions z. We learn this function by inducing a
probabilistic CCG (PCCG) grammar from a train-
ing set {(xi, zi)|i = 1 . . . n} containing example
(sentence, logical-form) pairs such as (“New York
borders Vermont”, next to(ny, vt)). The induced
grammar consists of two components which the al-
gorithm must learn:

• A CCG lexicon, Λ, containing lexical items
that define the space of possible parses y for
an input sentence x. Each parse contains both
syntactic and semantic information, and defines
the output logical form z.

• A parameter vector, θ, that defines a distribu-
tion over the possible parses y, conditioned on
the sentence x.

We will present the approach in two parts. The
lexical induction process (Section 4) uses a re-
stricted form of higher order unification along with
the CCG combinatory rules to propose new entries
for Λ. The complete learning algorithm (Section 5)
integrates this lexical induction with a parameter es-
timation scheme that learns θ. Before presenting the
details, we first review necessary background.

3 Background

This section provides an introduction to the ways in
which we will use lambda calculus and higher-order
unification to construct meaning representations. It
also reviews the CCG grammar formalism and prob-
abilistic extensions to it, including existing parsing
and parameter estimation techniques.

3.1 Lambda Calculus and Higher-Order
Unification

We assume that sentence meanings are represented
as logical expressions, which we will construct from
the meaning of individual words by using the op-
erations defined in the lambda calculus. We use a
version of the typed lambda calculus (cf. Carpenter
(1997)), in which the basic types include e, for en-
tities; t, for truth values; and i for numbers. There
are also function types of the form 〈e, t〉 that are as-
signed to lambda expressions, such as λx.state(x),
which take entities and return truth values. We
represent the meaning of words and phrases using
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lambda-calculus expressions that can contain con-
stants, quantifiers, logical connectors, and lambda
abstractions.

The advantage of using the lambda calculus
lies in its generality. The meanings of individ-
ual words and phrases can be arbitrary lambda ex-
pressions, while the final meaning for a sentence
can take different forms. It can be a full lambda-
calculus expression, a variable-free expression such
as answer(state(borders(tex))), or any other log-
ical expression that can be built from the primitive
meanings via function application and composition.

The higher-order unification problem (Huet,
1975) involves finding a substitution for the free
variables in a pair of lambda-calculus expressions
that, when applied, makes the expressions equal
each other. This problem is notoriously complex;
in the unrestricted form (Huet, 1973), it is undecid-
able. In this paper, we will guide the grammar in-
duction process using a restricted version of higher-
order unification that is tractable. For a given ex-
pression h, we will need to find expressions for f
and g such that either h = f(g) or h = λx.f(g(x)).
This limited form of the unification problem will al-
low us to define the ways to split h into subparts
that can be recombined with CCG parsing opera-
tions, which we will define in the next section, to
reconstruct h.

3.2 Combinatory Categorial Grammar

CCG (Steedman, 2000) is a linguistic formalism
that tightly couples syntax and semantics, and
can be used to model a wide range of language
phenomena. For present purposes a CCG grammar
includes a lexicon Λ with entries like the following:

New York ` NP : ny

borders ` S\NP/NP : λxλy.next to(y, x)

Vermont ` NP : vt

where each lexical item w`X : h has words w, a
syntactic categoryX , and a logical form h expressed
as a lambda-calculus expression. For the first exam-
ple, these are “New York,” NP , and ny. CCG syn-
tactic categories may be atomic (such as S, NP ) or
complex (such as S\NP/NP ).

CCG combines categories using a set of com-
binatory rules. For example, the forward (>) and

backward (<) application rules are:

X/Y : f Y : g ⇒ X : f(g) (>)
Y : g X\Y : f ⇒ X : f(g) (<)

These rules apply to build syntactic and semantic
derivations under the control of the word order infor-
mation encoded in the slash directions of the lexical
entries. For example, given the lexicon above, the
sentence New York borders Vermont can be parsed
to produce:

New York borders Vermont

NP (S\NP )/NP NP
ny λxλy.next to(y, x) vt

>
(S\NP )

λy.next to(y, vt)
<

S
next to(ny, vt)

where each step in the parse is labeled with the com-
binatory rule (− > or − <) that was used.

CCG also includes combinatory rules of forward
(> B) and backward (< B) composition:

X/Y : f Y/Z : g ⇒X/Z : λx.f(g(x)) (> B)
Y \Z : g X\Y : f ⇒X\Z : λx.f(g(x)) (< B)

These rules provide for a relaxed notion of con-
stituency which will be useful during learning as we
reason about possible refinements of the grammar.

We also allow vertical slashes in CCG categories,
which act as wild cards. For example, with this
extension the forward application combinator (>)
could be used to combine the category S/(S|NP )
with any of S\NP , S/NP , or S|NP . Figure 1
shows two parses where the composition combina-
tors and vertical slashes are used. These parses
closely resemble the types of analyses that will be
possible under the grammars we learn in the experi-
ments described in Section 8.

3.3 Probabilistic CCGs

Given a CCG lexicon Λ, there will, in general, be
many possible parses for each sentence. We select
the most likely alternative using a log-linear model,
which consists of a feature vector φ and a parame-
ter vector θ. The joint probability of a logical form
z constructed with a parse y, given a sentence x is
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hangi eyaletin texas ye siniri vardir

S/NP NP/NP NP NP\NP
λx.answer(x) λx.state(x) tex λx.border(x)

<
NP

border(tex)
>

NP
state(border(tex))

>
S

answer(state(border(tex)))

what states border texas

S/(S|NP ) S|NP/(S|NP ) S\NP/NP NP
λfλx.f(x) λfλx.state(x)∧f(x) λyλx.next to(x, y) tex

>B
S|NP/NP

λyλx.state(x) ∧ next to(x, y)
>

S|NP
λx.state(x) ∧ next to(x, tex)

>
S

λx.state(x) ∧ next to(x, tex)

Figure 1: Two examples of CCG parses with different logical form representations.

defined as:

P (y, z|x; θ,Λ) =
eθ·φ(x,y,z)∑

(y′,z′) e
θ·φ(x,y′,z′)

(1)

Section 7 defines the features used in the experi-
ments, which include, for example, lexical features
that indicate when specific lexical items in Λ are
used in the parse y. For parsing and parameter es-
timation, we use standard algorithms (Clark & Cur-
ran, 2007), as described below.

The parsing, or inference, problem is to find the
most likely logical form z given a sentence x, as-
suming the parameters θ and lexicon Λ are known:

f(x) = arg max
z
p(z|x; θ,Λ) (2)

where the probability of the logical form is found by
summing over all parses that produce it:

p(z|x; θ,Λ) =
∑
y

p(y, z|x; θ,Λ) (3)

In this approach the distribution over parse trees y
is modeled as a hidden variable. The sum over
parses in Eq. 3 can be calculated efficiently using
the inside-outside algorithm with a CKY-style pars-
ing algorithm.

To estimate the parameters themselves, we
use stochastic gradient updates (LeCun et al.,
1998). Given a set of n sentence-meaning pairs
{(xi, zi) : i = 1...n}, we update the parameters θ it-
eratively, for each example i, by following the local
gradient of the conditional log-likelihood objective
Oi = logP (zi|xi; θ,Λ). The local gradient of the
individual parameter θj associated with feature φj
and training instance (xi, zi) is given by:

∂Oi
∂θj

= Ep(y|xi,zi;θ,Λ)[φj(xi, y, zi)]

−Ep(y,z|xi;θ,Λ)[φj(xi, y, z)]

(4)

As with Eq. 3, all of the expectations in Eq. 4 are
calculated through the use of the inside-outside al-
gorithm on a pruned parse chart. In the experiments,
each chart cell was pruned to the top 200 entries.

4 Splitting Lexical Items

Before presenting a complete learning algorithm, we
first describe how to use higher-order unification to
define a procedure for splitting CCG lexical entries.
This splitting process is used to expand the lexicon
during learning. We seed the lexical induction with
a multi-word lexical item xi`S :zi for each training
example (xi, zi), consisting of the entire sentence xi
and its associated meaning representation zi. For ex-
ample, one initial lexical item might be:

New York borders Vermont `S:next to(ny, vt) (5)

Although these initial, sentential lexical items
can parse the training data, they will not generalize
well to unseen data. To learn effectively, we will
need to split overly specific entries of this type into
pairs of new, smaller, entries that generalize better.
For example, one possible split of the lexical entry
given in (5) would be the pair:

New York borders ` S/NP : λx.next to(ny, x),
Vermont `NP : vt

where we broke the original logical expression into
two new ones λx.next to(ny, x) and vt, and paired
them with syntactic categories that allow the new
lexical entries to be recombined to produce the orig-
inal analysis. The next three subsections define the
set of possible splits for any given lexical item. The
process is driven by solving a higher-order unifica-
tion problem that defines all of the ways of splitting
the logical expression into two parts, as described in
Section 4.1. Section 4.2 describes how to construct
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syntactic categories that are consistent with the two
new fragments of logical form and which will allow
the new lexical items to recombine. Finally, Sec-
tion 4.3 defines the full set of lexical entry pairs that
can be created by splitting a lexical entry.

As we will see, this splitting process is overly pro-
lific for any single language and will yield many
lexical items that do not generalize well. For
example, there is nothing in our original lexical
entry above that provides evidence that the split
should pair “Vermont” with the constant vt and not
λx.next to(ny, x). Section 5 describes how we
estimate the parameters of a probabilistic parsing
model and how this parsing model can be used to
guide the selection of items to add to the lexicon.

4.1 Restricted Higher-Order Unification
The set of possible splits for a logical expression
h is defined as the solution to a pair of higher-
order unification problems. We find pairs of logi-
cal expressions (f, g) such that either f(g) = h or
λx.f(g(x)) = h. Solving these problems creates
new expressions f and g that can be recombined ac-
cording to the CCG combinators, as defined in Sec-
tion 3.2, to produce h.

In the unrestricted case, there can be infinitely
many solution pairs (f, g) for a given expression h.
For example, when h = tex and f = λx.tex, the
expression g can be anything. Although it would be
simple enough to forbid vacuous variables in f and
g, the number of solutions would still be exponen-
tial in the size of h. For example, when h contains a
conjunction, such as h = λx.city(x)∧major(x)∧
in(x, tex), any subset of the expressions in the con-
junction can be assigned to f (or g).

To limit the number of possible splits, we enforce
the following restrictions on the possible higher-
order solutions that will be used during learning:

• No Vacuous Variables: Neither g or f can be a
function of the form λx.e where the expression
e does not contain the variable x. This rules out
functions such as λx.tex.

• Limited Coordination Extraction: The ex-
pression g cannot contain more than N of the
conjuncts that appear in any coordination in
h. For example, with N = 1 the expression
g = λx.city(x)∧major(x) could not be used

as a solution given the h conjuction above. We
use N = 4 in our experimental evaluation.

• Limited Application: The function f can-
not contain new variables applied to any non-
variable subexpressions from h. For example,
if h = λx.in(x, tex), the pair f = λq.q(tex)
and g = λyλx.in(x, y) is forbidden.

Together, these three restrictions guarantee that
the number of splits is, in the worst case, an N -
degree polynomial of the number of constants in h.
The constraints were designed to increase the effi-
ciency of the splitting algorithm without impacting
performance on the development data.

4.2 Splitting Categories
We define the set of possible splits for a category
X :h with syntax X and logical form h by enumer-
ating the solution pairs (f, g) to the higher-order
unification problems defined above and creating
syntactic categories for the resulting expressions.
For example, given X :h = S\NP :λx.in(x, tex),
f = λyλx.in(x, y), and g = tex, we would
produce the following two pairs of new categories:

( S\NP/NP :λyλx.in(x, y) , NP :tex )

( NP :tex , S\NP\NP :λyλx.in(x, y) )

which were constructed by first choosing the syntac-
tic category for g, in this caseNP , and then enumer-
ating the possible directions for the new slash in the
category containing f . We consider each of these
two steps in more detail below.

The new syntactic category for g is determined
based on its type, T (g). For example, T (tex) = e
and T (λx.state(x)) = 〈e, t〉. Then, the function
C(T ) takes an input type T and returns the syntactic
category of T as follows:

C(T ) =


NP if T = e
S if T = t
C(T2)|C(T1) when T = 〈T1, T2〉

The basic types e and t are assigned syntactic
categories NP and S, and all functional types
are assigned categories recursively. For exam-
ple C(〈e, t〉) = S|NP and C(〈e, 〈e, t〉〉) =
S|NP |NP . This definition of CCG categories is
unconventional in that it never assigns atomic cate-
gories to functional types. For example, there is no
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distinct syntactic category N for nouns (which have
semantic type 〈e, t〉). Instead, the more complex cat-
egory S|NP is used.

Now, we are ready to define the set of all category
splits. For a category A = X:h we can define

SC(A) = {FA(A) ∪ BA(A) ∪ FC(A) ∪ BC(A)}

which is a union of sets, each of which includes
splits for a single CCG operator. For example,
FA(X:h) is the set of category pairs

FA(X:h) = {(X/Y :f, Y :g) | h=f(g) ∧ Y=C(T (g))
}

where each pair can be combined with the forward
application combinator, described in Section 3.2, to
reconstruct X:h.

The remaining three sets are defined similarly,
and are associated with the backward application
and forward and backward composition operators,
respectively:

BA(X:h) = {(Y :g,X\Y :f) | h=f(g) ∧ Y=C(T (g))
}

FC(X/Y :h) = {(X/W :f,W/Y :g) |
h=λx.f(g(x)) ∧W=C(T (g(x)))

}
BC(X\Y :h) = {(W\Y :g,X\W :f) |

h=λx.f(g(x)) ∧W=C(T (g(x)))
}

where the composition sets FC and BC only accept
input categories with the appropriate outermost slash
direction, for example FC(X/Y :h).

4.3 Splitting Lexical Items
We can now define the lexical splits that will be used
during learning. For lexical entry w0:n ` A, with
word sequence w0:n = 〈w0, . . . , wn〉 and CCG cat-
egory A, define the set SL of splits to be:

SL(w0:n`A) = {(w0:i`B,wi+1:n`C) |
0 ≤ i < n ∧ (B,C) ∈ SC(A)}

where we enumerate all ways of splitting the words
sequence w0:n and aligning the subsequences with
categories in SC(A), as defined in the last section.

5 Learning Algorithm

The previous section described how a splitting pro-
cedure can be used to break apart overly specific
lexical items into smaller ones that may generalize
better to unseen data. The space of possible lexi-
cal items supported by this splitting procedure is too

large to explicitly enumerate. Instead, we learn the
parameters of a PCCG, which is used both to guide
the splitting process, and also to select the best parse,
given a learned lexicon.

Figure 2 presents the unification-based learning
algorithm, UBL. This algorithm steps through the
data incrementally and performs two steps for each
training example. First, new lexical items are in-
duced for the training instance by splitting and merg-
ing nodes in the best correct parse, given the current
parameters. Next, the parameters of the PCCG are
updated by making a stochastic gradient update on
the marginal likelihood, given the updated lexicon.

Inputs and Initialization The algorithm takes as
input the training set of n (sentence, logical form)
pairs {(xi, zi) : i = 1...n} along with an NP list,
ΛNP , of proper noun lexical items such as Texas`
NP :tex. The lexicon, Λ, is initialized with a single
lexical item xi`S :zi for each of the training pairs
along with the contents of the NP list. It is possible
to run the algorithm without the initial NP list; we
include it to allow direct comparisons with previous
approaches, which also included NP lists. Features
and initial feature weights are described in Section 7.

Step 1: Updating the Lexicon In the lexical up-
date step the algorithm first computes the best cor-
rect parse tree y∗ for the current training exam-
ple and then uses y∗ as input to the procedure
NEW-LEX, which determines which (if any) new
lexical items to add to Λ. NEW-LEX begins by enu-
merating all pairs (C,wi:j), for i < j, where C is a
category occurring at a node in y∗ and wi:j are the
(two or more) words it spans. For example, in the
left parse in Figure 1, there would be four pairs: one
with the category C = NP\NP :λx.border(x) and
the phrase wi:j =“ye siniri vardir”, and one for each
non-leaf node in the tree.

For each pair (C,wi:j), NEW-LEX considers in-
troducing a new lexical item wi:j`C, which allows
for the possibility of a parse where the subtree rooted
at C is replaced with this new entry. (If C is a leaf
node, this item will already exist.) NEW-LEX also
considers adding each pair of new lexical items that
is obtained by splitting wi:j`C as described in Sec-
tion 4, thereby considering many different ways of
reanalyzing the node. This process creates a set of
possible new lexicons, where each lexicon expands
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Λ in a different way by adding the items from either
a single split or a single merge of a node in y∗.

For each potential new lexicon Λ′, NEW-LEX
computes the probability p(y∗|xi, zi; θ′,Λ′) of the
original parse y∗ under Λ′ and parameters θ′ that are
the same as θ but have weights for the new lexical
items, as described in Section 7. It also finds the
best new parse y′ = arg maxy p(y|xi, zi; θ′,Λ′).1

Finally, NEW-LEX selects the Λ′ with the largest
difference in log probability between y′ and y∗, and
returns the new entries in Λ′. If y∗ is the best parse
for every Λ′, NEW-LEX returns the empty set; the
lexicon will not change.

Step 2: Parameter Updates For each training ex-
ample we update the parameters θ using the stochas-
tic gradient updates given by Eq. 4.

Discussion The alternation between refining the
lexicon and updating the parameters drives the learn-
ing process. The initial model assigns a conditional
likelihood of one to each training example (there
is a single lexical item for each sentence xi, and
it contains the labeled logical form zi). Although
the splitting step often decreases the probability of
the data, the new entries it produces are less spe-
cific and should generalize better. Since we initially
assign positive weights to the parameters for new
lexical items, the overall approach prefers splitting;
trees with many lexical items will initially be much
more likely. However, if the learned lexical items
are used in too many incorrect parses, the stochastic
gradient updates will down weight them to the point
where the lexical induction step can merge or re-split
nodes in the trees that contain them. This allows the
approach to correct the lexicon and, hopefully, im-
prove future performance.

6 Related Work

Previous work has focused on a variety of different
meaning representations. Several approaches have
been designed for the variable-free logical repre-
sentations shown in examples throughout this pa-
per. For example, Kate & Mooney (2006) present a
method (KRISP) that extends an existing SVM learn-
ing algorithm to recover logical representations. The

1This computation can be performed efficiently by incre-
mentally updating the parse chart used to find y∗.

Inputs: Training set {(xi, zi) : i = 1 . . . n} where each
example is a sentence xi paired with a logical form
zi. Set of NP lexical items ΛNP . Number of iter-
ations T . Learning rate parameter α0 and cooling
rate parameter c.

Definitions: The function NEW-LEX(y) takes a parse
y and returns a set of new lexical items found by
splitting and merging categories in y, as described
in Section 5. The distributions p(y|x, z; θ,Λ) and
p(y, z|x; θ,Λ) are defined by the log-linear model,
as described in Section 3.3.

Initialization:

• Set Λ = {xi ` S : zi} for all i = 1 . . . n.
• Set Λ = Λ ∪ ΛNP

• Initialize θ using coocurrence statistics, as de-
scribed in Section 7.

Algorithm:
For t = 1 . . . T, i = 1 . . . n :

Step 1: (Update Lexicon)

• Let y∗ = arg maxy p(y|xi, zi; θ,Λ)

• Set Λ = Λ ∪NEW-LEX(y∗) and expand the
parameter vector θ to contain entries for the
new lexical items, as described in Section 7.

Step 2: (Update Parameters)

• Let γ = α0

1+c×k where k = i+ t× n.
• Let ∆ = Ep(y|xi,zi;θ,Λ)[φ(xi, y, zi)]

−Ep(y,z|xi;θ,Λ)[φ(xi, y, z)]

• Set θ = θ + γ∆

Output: Lexicon Λ and parameters θ.

Figure 2: The UBL learning algorithm.

WASP system (Wong & Mooney, 2006) uses statis-
tical machine translation techniques to learn syn-
chronous context free grammars containing both
words and logic. Lu et al. (2008) (Lu08) developed
a generative model that builds a single hybrid tree
of words, syntax and meaning representation. These
algorithms are all language independent but repre-
sentation specific.

Other algorithms have been designed to re-
cover lambda-calculus representations. For exam-
ple, Wong & Mooney (2007) developed a variant
of WASP (λ-WASP) specifically designed for this
alternate representation. Zettlemoyer & Collins
(2005, 2007) developed CCG grammar induction
techniques where lexical items are proposed accord-
ing to a set of hand-engineered lexical templates.
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Our approach eliminates this need for manual effort.
Another line of work has focused on recover-

ing meaning representations that are not based on
logic. Examples include an early statistical method
for learning to fill slot-value representations (Miller
et al., 1996) and a more recent approach for recover-
ing semantic parse trees (Ge & Mooney, 2006). Ex-
ploring the extent to which these representations are
compatible with the logic-based learning approach
we developed is an important area for future work.

Finally, there is work on using categorial gram-
mars to solve other, related learning problems.
For example, Buszkowski & Penn (1990) describe
a unification-based approach for grammar discov-
ery from bracketed natural language sentences and
Villavicencio (2002) developed an approach for
modeling child language acquisition. Additionally,
Bos et al. (2004) consider the challenging problem
of constructing broad-coverage semantic representa-
tions with CCG, but do not learn the lexicon.

7 Experimental Setup

Features We use two types of features in our
model. First, we include a set of lexical features:
For each lexical item L ∈ Λ, we include a feature
φL that fires when L is used. Second, we include se-
mantic features that are functions of the output logi-
cal expression z. Each time a predicate p in z takes
an argument a with type T (a) in position i it trig-
gers two binary indicator features: φ(p,a,i) for the
predicate-argument relation; and φ(p,T (a),i) for the
predicate argument-type relation.

Initialization The weights for the semantic fea-
tures are initialized to zero. The weights for the lex-
ical features are initialized according to coocurrance
statistics estimated with the Giza++ (Och & Ney,
2003) implementation of IBM Model 1. We com-
pute translation scores for (word, constant) pairs that
cooccur in examples in the training data. The initial
weight for each φL is set to ten times the average
score over the (word, constant) pairs in L, except for
the weights of seed lexical entries in ΛNP which are
set to 10 (equivalent to the highest possible coocur-
rence score). We used the learning rate α0 = 1.0
and cooling rate c = 10−5 in all training scenar-
ios, and ran the algorithm for T = 20 iterations.
These values were selected with cross validation on

the Geo880 development set, described below.

Data and Evaluation We evaluate our system
on the GeoQuery datasets, which contain natural-
language queries of a geographical database paired
with logical representations of each query’s mean-
ing. The full Geo880 dataset contains 880 (English-
sentence, logical-form) pairs, which we split into a
development set of 600 pairs and a test set of 280
pairs, following Zettlemoyer & Collins (2005). The
Geo250 dataset is a subset of Geo880 containing
250 sentences that have been translated into Turk-
ish, Spanish and Japanese as well as the original En-
glish. Due to the small size of this dataset we use
10-fold cross validation for evaluation. We use the
same folds as Wong & Mooney (2006, 2007) and Lu
et al. (2008), allowing a direct comparison.

The GeoQuery data is annotated with both
lambda-calculus and variable-free meaning rep-
resentations, which we have seen examples of
throughout the paper. We report results for both rep-
resentations, using the standard measures of Recall
(percentage of test sentences assigned correct log-
ical forms), Precision (percentage of logical forms
returned that are correct) and F1 (the harmonic mean
of Precision and Recall).

Two-Pass Parsing To investigate the trade-off be-
tween precision and recall, we report results with a
two-pass parsing strategy. When the parser fails to
return an analysis for a test sentence due to novel
words or usage, we reparse the sentence and allow
the parser to skip words, with a fixed cost. Skip-
ping words can potentially increase recall, if the ig-
nored word is an unknown function word that does
not contribute semantic content.

8 Results and Discussion

Tables 1, 2, and 3 present the results for all of the ex-
periments. In aggregate, they demonstrate that our
algorithm, UBL, learns accurate models across lan-
guages and for both meaning representations. This
is a new result; no previous system is as general.

We also see the expected tradeoff between preci-
sion and recall that comes from the two-pass parsing
approach, which is labeled UBL-s. With the abil-
ity to skip words, UBL-s achieves the highest recall
of all reported systems for all evaluation conditions.
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System English Spanish
Rec. Pre. F1 Rec. Pre. F1

WASP 70.0 95.4 80.8 72.4 91.2 81.0
Lu08 72.8 91.5 81.1 79.2 95.2 86.5
UBL 78.1 88.2 82.7 76.8 86.8 81.4

UBL-s 80.4 80.8 80.6 79.7 80.6 80.1

System Japanese Turkish
Rec. Pre. F1 Rec. Pre. F1

WASP 74.4 92.0 82.9 62.4 97.0 75.9
Lu08 76.0 87.6 81.4 66.8 93.8 78.0
UBL 78.5 85.5 81.8 70.4 89.4 78.6

UBL-s 80.5 80.6 80.6 74.2 75.6 74.9

Table 1: Performance across languages on Geo250 with
variable-free meaning representations.

System English Spanish
Rec. Pre. F1 Rec. Pre. F1

λ-WASP 75.6 91.8 82.9 80.0 92.5 85.8
UBL 78.0 93.2 84.7 75.9 93.4 83.6

UBL-s 81.8 83.5 82.6 81.4 83.4 82.4

System Japanese Turkish
Rec. Pre. F1 Rec. Pre. F1

λ-WASP 81.2 90.1 85.8 68.8 90.4 78.1
UBL 78.9 90.9 84.4 67.4 93.4 78.1

UBL-s 83.0 83.2 83.1 71.8 77.8 74.6

Table 2: Performance across languages on Geo250 with
lambda-calculus meaning representations.

However, UBL achieves much higher precision and
better overall F1 scores, which are generally compa-
rable to the best performing systems.

The comparison to the CCG induction techniques
of ZC05 and ZC07 (Table 3) is particularly striking.
These approaches used language-specific templates
to propose new lexical items and also required as in-
put a set of hand-engineered lexical entries to model
phenomena such as quantification and determiners.
However, the use of higher-order unification allows
UBL to achieve comparable performance while au-
tomatically inducing these types of entries.

For a more qualitative evaluation, Table 4 shows a
selection of lexical items learned with high weights
for the lambda-calculus meaning representations.
Nouns such as “state” or “estado” are consistently
learned across languages with the category S|NP ,
which stands in for the more conventional N . The
algorithm also learns language-specific construc-
tions such as the Japanese case markers “no” and
“wa”, which are treated as modifiers that do not add
semantic content. Language-specific word order is
also encoded, using the slash directions of the CCG

System Variable Free Lambda Calculus
Rec. Pre. F1 Rec. Pre. F1

Cross Validation Results
KRISP 71.7 93.3 81.1 – – –
WASP 74.8 87.2 80.5 – – –
Lu08 81.5 89.3 85.2 – – –

λ-WASP – – – 86.6 92.0 89.2
Independent Test Set

ZC05 – – – 79.3 96.3 87.0
ZC07 – – – 86.1 91.6 88.8
UBL 81.4 89.4 85.2 85.0 94.1 89.3

UBL-s 84.3 85.2 84.7 87.9 88.5 88.2

Table 3: Performance on the Geo880 data set, with varied
meaning representations.

categories. For example, “what” and “que” take
their arguments to the right in the wh-initial English
and Spanish. However, the Turkish wh-word “nel-
erdir” and the Japanese question marker “nan desu
ka” are sentence final, and therefore take their argu-
ments to the left. Learning regularities of this type
allows UBL to generalize well to unseen data.

There is less variation and complexity in the
learned lexical items for the variable-free represen-
tation. The fact that the meaning representation is
deeply nested influences the form of the induced
grammar. For example, recall that the sentence
“what states border texas” would be paired with the
meaning answer(state(borders(tex))). For this
representation, lexical items such as:

what ` S/NP : λx.answer(x)

states `NP/NP : λx.state(x)

border `NP/NP : λx.borders(x)

texas `NP : tex

can be used to construct the desired output. In
practice, UBL often learns entries with only a sin-
gle slash, like those above, varying only in the di-
rection, as required for the language. Even the
more complex items, such as those for quantifiers,
are consistently simpler than those induced from
the lambda-calculus meaning representations. For
example, one of the most complex entries learned
in the experiments for English is the smallest `
NP\NP/(NP |NP ):λfλx.smallest one(f(x)).

There are also differences in the aggregate statis-
tics of the learned lexicons. For example, the aver-
age length of a learned lexical item for the (lambda-
calculus, variable-free) meaning representations is:
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(1.21,1.08) for Turkish, (1.34,1.19) for English,
(1.43,1.25) for Spanish and (1.63,1.42) for Japanese.
For both meaning representations the model learns
significantly more multiword lexical items for the
somewhat analytic Japanese than the agglutinative
Turkish. There are also variations in the average
number of learned lexical items in the best parses
during the final pass of training: 192 for Japanese,
206 for Spanish, 188 for English and 295 for Turk-
ish. As compared to the other languages, the mor-
pologically rich Turkish requires significantly more
lexical variation to explain the data.

Finally, there are a number of cases where the
UBL algorithm could be improved in future work.
In cases where there are multiple allowable word or-
ders, the UBL algorithm must learn individual en-
tries for each possibility. For example, the following
two categories are often learned with high weight for
the Japanese word “chiisai”:

NP/(S|NP )\(NP |NP ):λfλg.argmin(x, g(x), f(x))

NP |(S|NP )/(NP |NP ):λfλg.argmin(x, g(x), f(x))

and are treated as distinct entries in the lexicon. Sim-
ilarly, the approach presented here does not model
morphology, and must repeatedly learn the correct
categories for the Turkish words “nehri,” “nehir,”
“nehirler,” and “nehirlerin”, all of which correspond
to the logical form λx.river(x).

9 Conclusions and Future Work

This paper has presented a method for inducing
probabilistic CCGs from sentences paired with log-
ical forms. The approach uses higher-order unifi-
cation to define the space of possible grammars in
a language- and representation-independent manner,
paired with an algorithm that learns a probabilistic
parsing model. We evaluated the approach on four
languages with two meaning representations each,
achieving high accuracy across all scenarios.

For future work, we are interested in exploring
the generality of the approach while extending it to
new understanding problems. One potential limi-
tation is in the constraints we introduced to ensure
the tractability of the higher-order unification proce-
dure. These restrictions will not allow the approach
to induce lexical items that would be used with,
among other things, many of the type-raised combi-
nators commonly employed in CCG grammars. We

English
population of ` NP/NP : λx.population(x)

smallest ` NP/(S|NP ) : λf.arg min(y, f(y), size(y))
what ` S|NP/(S|NP ) : λfλx.f(x)

border ` S|NP/NP : λxλy.next to(y, x)
state ` S|NP : λx.state(x)

most ` NP/(S|NP )\(S|NP )\(S|NP |NP ) :
λfλgλhλx.argmax(y, g(y), count(z, f(z, y) ∧ h(z)))

Japanese
no ` NP |NP/(NP |NP ) : λfλx.f(x)

shuu ` S|NP : λx.state(x)
nan desu ka ` S\NP\(NP |NP ) : λfλx.f(x)

wa ` NP |NP\(NP |NP ) : λfλx.f(x)
ikutsu ` NP |(S|NP )\(S|NP |(S|NP )) :

λfλg.count(x, f(g(x)))
chiiki ` NP\NP :λx.area(x)

Turkish
nedir ` S\NP\(NP |NP ) : λfλx.f(x)

sehir ` S|NP : λx.city(x)
nufus yogunlugu ` NP |NP : λx.density(x)

siniri` S|NP/NP : λxλy.next to(y, x)
kac tane ` S\NP/(S|NP |NP )\(S|NP ) :

λfλgλx.count(y, f(y) ∧ g(y, x))
ya siniri ` S|NP\NP : λxλy.next to(y, x)

Spanish
en ` S|NP/NP : λxλy.loc(y, x)

que es la ` S/NP/(NP |NP ): λfλx.f(x)
pequena ` NP\(S|NP )\(NP |NP ) :

λgλf.arg min(y, f(y), g(y))
estado ` S|NP : λx.state(x)

mas ` S\(S|NP )/(S|NP )\(NP |NP |(S|NP )) :
λfλgλh.argmax(x, h(x), f(g, x))

mayores `S|NP\(S|NP ) :λfλx.f(x) ∧major(x)

Table 4: Example learned lexical items for each language
on the Geo250 lambda-calculus data sets.

are also interested in developing similar grammar
induction techniques for context-dependent under-
standing problems, such as the one considered by
Zettlemoyer & Collins (2009). Such an approach
would complement ideas for using high-order unifi-
cation to model a wider range of language phenom-
ena, such as VP ellipsis (Dalrymple et al., 1991).
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Abstract

We present an approach to grammar induc-
tion that utilizes syntactic universals to im-
prove dependency parsing across a range of
languages. Our method uses a single set
of manually-specified language-independent
rules that identify syntactic dependencies be-
tween pairs of syntactic categories that com-
monly occur across languages. During infer-
ence of the probabilistic model, we use pos-
terior expectation constraints to require that a
minimum proportion of the dependencies we
infer be instances of these rules. We also auto-
matically refine the syntactic categories given
in our coarsely tagged input. Across six lan-
guages our approach outperforms state-of-the-
art unsupervised methods by a significant mar-
gin.1

1 Introduction

Despite surface differences, human languages ex-
hibit striking similarities in many fundamental as-
pects of syntactic structure. These structural corre-
spondences, referred to as syntactic universals, have
been extensively studied in linguistics (Baker, 2001;
Carnie, 2002; White, 2003; Newmeyer, 2005) and
underlie many approaches in multilingual parsing.
In fact, much recent work has demonstrated that
learning cross-lingual correspondences from cor-
pus data greatly reduces the ambiguity inherent in
syntactic analysis (Kuhn, 2004; Burkett and Klein,
2008; Cohen and Smith, 2009a; Snyder et al., 2009;
Berg-Kirkpatrick and Klein, 2010).

1The source code for the work presented in this paper is
available at http://groups.csail.mit.edu/rbg/code/dependency/

Root → Auxiliary Noun → Adjective
Root → Verb Noun → Article
Verb → Noun Noun → Noun
Verb → Pronoun Noun → Numeral
Verb → Adverb Preposition → Noun
Verb → Verb Adjective → Adverb
Auxiliary → Verb

Table 1: The manually-specified universal dependency
rules used in our experiments. These rules specify head-
dependent relationships between coarse (i.e., unsplit)
syntactic categories. An explanation of the ruleset is pro-
vided in Section 5.

In this paper, we present an alternative gram-
mar induction approach that exploits these struc-
tural correspondences by declaratively encoding a
small set of universal dependency rules. As input
to the model, we assume a corpus annotated with
coarse syntactic categories (i.e., high-level part-of-
speech tags) and a set of universal rules defined over
these categories, such as those in Table 1. These
rules incorporate the definitional properties of syn-
tactic categories in terms of their interdependencies
and thus are universal across languages. They can
potentially help disambiguate structural ambiguities
that are difficult to learn from data alone — for
example, our rules prefer analyses in which verbs
are dependents of auxiliaries, even though analyz-
ing auxiliaries as dependents of verbs is also consis-
tent with the data. Leveraging these universal rules
has the potential to improve parsing performance
for a large number of human languages; this is par-
ticularly relevant to the processing of low-resource

1234



languages. Furthermore, these universal rules are
compact and well-understood, making them easy to
manually construct.

In addition to these universal dependencies, each
specific language typically possesses its own id-
iosyncratic set of dependencies. We address this
challenge by requiring the universal constraints to
only hold in expectation rather than absolutely, i.e.,
we permit a certain number of violations of the con-
straints.

We formulate a generative Bayesian model that
explains the observed data while accounting for
declarative linguistic rules during inference. These
rules are used as expectation constraints on the
posterior distribution over dependency structures.
This approach is based on the posterior regular-
ization technique (Graça et al., 2009), which we
apply to a variational inference algorithm for our
parsing model. Our model can also optionally re-
fine common high-level syntactic categories into
per-language categories by inducing a clustering of
words using Dirichlet Processes (Ferguson, 1973).
Since the universals guide induction toward linguis-
tically plausible structures, automatic refinement be-
comes feasible even in the absence of manually an-
notated syntactic trees.

We test the effectiveness of our grammar induc-
tion model on six Indo-European languages from
three language groups: English, Danish, Portuguese,
Slovene, Spanish, and Swedish. Though these lan-
guages share a high-level Indo-European ancestry,
they cover a diverse range of syntactic phenomenon.
Our results demonstrate that universal rules greatly
improve the accuracy of dependency parsing across
all of these languages, outperforming current state-
of-the-art unsupervised grammar induction meth-
ods (Headden III et al., 2009; Berg-Kirkpatrick and
Klein, 2010).

2 Related Work

Learning with Linguistic Constraints Our work
is situated within a broader class of unsupervised ap-
proaches that employ declarative knowledge to im-
prove learning of linguistic structure (Haghighi and
Klein, 2006; Chang et al., 2007; Graça et al., 2007;
Cohen and Smith, 2009b; Druck et al., 2009; Liang
et al., 2009a). The way we apply constraints is clos-

est to the latter two approaches of posterior regular-
ization and generalized expectation criteria.

In the posterior regularization framework, con-
straints are expressed in the form of expectations on
posteriors (Graça et al., 2007; Ganchev et al., 2009;
Graça et al., 2009; Ganchev et al., 2010). This de-
sign enables the model to reflect constraints that are
difficult to encode via the model structure or as pri-
ors on its parameters. In their approach, parame-
ters are estimated using a modified EM algorithm,
where the E-step minimizes the KL-divergence be-
tween the model posterior and the set of distributions
that satisfies the constraints. Our approach also ex-
presses constraints as expectations on the posterior;
we utilize the machinery of their framework within
a variational inference algorithm with a mean field
approximation.

Generalized expectation criteria, another tech-
nique for declaratively specifying expectation con-
straints, has previously been successfully applied to
the task of dependency parsing (Druck et al., 2009).
This objective expresses constraints in the form of
preferences over model expectations. The objective
is penalized by the square distance between model
expectations and the prespecified values of the ex-
pectation. This approach yields significant gains
compared to a fully unsupervised counterpart. The
constraints they studied are corpus- and language-
specific. Our work demonstrates that a small set of
language-independent universals can also serve as
effective constraints. Furthermore, we find that our
method outperforms the generalized expectation ap-
proach using corpus-specific constraints.

Learning to Refine Syntactic Categories Recent
research has demonstrated the usefulness of auto-
matically refining the granularity of syntactic cat-
egories. While most of the existing approaches
are implemented in the supervised setting (Finkel
et al., 2007; Petrov and Klein, 2007), Liang et al.
(2007) propose a non-parametric Bayesian model
that learns the granularity of PCFG categories in
an unsupervised fashion. For each non-terminal
grammar symbol, the model posits a Hierarchical
Dirichlet Process over its refinements (subsymbols)
to automatically learn the granularity of syntactic
categories. As with their work, we also use non-
parametric priors for category refinement and em-
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ploy variational methods for inference. However,
our goal is to apply category refinement to depen-
dency parsing, rather than to PCFGs, requiring a
substantially different model formulation. While
Liang et al. (2007) demonstrated empirical gains on
a synthetic corpus, our experiments focus on unsu-
pervised category refinement on real language data.

Universal Rules in NLP Despite the recent surge
of interest in multilingual learning (Kuhn, 2004; Co-
hen and Smith, 2009a; Snyder et al., 2009; Berg-
Kirkpatrick and Klein, 2010), there is surprisingly
little computational work on linguistic universals.
On the acquisition side, Daumé III and Campbell
(2007) proposed a computational technique for dis-
covering universal implications in typological fea-
tures. More closely related to our work is the posi-
tion paper by Bender (2009), which advocates the
use of manually-encoded cross-lingual generaliza-
tions for the development of NLP systems. She ar-
gues that a system employing such knowledge could
be easily adapted to a particular language by spe-
cializing this high level knowledge based on the ty-
pological features of the language. We also argue
that cross-language universals are beneficial for au-
tomatic language processing; however, our focus is
on learning language-specific adaptations of these
rules from data.

3 Model

The central hypothesis of this work is that unsu-
pervised dependency grammar induction can be im-
proved using universal linguistic knowledge. To-
ward this end our approach is comprised of two
components: a probabilistic model that explains
how sentences are generated from latent dependency
structures and a technique for incorporating declar-
ative rules into the inference process.

We first describe the generative story in this sec-
tion before turning to how constraints are applied
during inference in Section 4. Our model takes as
input (i.e., as observed) a set of sentences where
each word is annotated with a coarse part-of-speech
tag. Table 2 provides a detailed technical descrip-
tion of our model’s generative process, and Figure 1
presents a model diagram.

For each observed coarse symbol s:

1. Draw top-level infinite multinomial over
subsymbols βs ∼ GEM(γ).

2. For each subsymbol z of symbol s:
(a) Draw word emission multinomial

φsz ∼ Dir(φ0).

(b) For each context value c:
i. Draw child symbol generation

multinomial θszc ∼ Dir(θ0).

ii. For each child symbol s′:
A. Draw second-level infinite

multinomial over subsymbols
πs′szc ∼ DP(α, βs′).

For each tree node i generated in context c by
parent symbol s′ and parent subsymbol z′:

1. Draw coarse symbol si ∼ Mult(θs′z′).

2. Draw subsymbol zi ∼ Mult(πsis′z′c).

3. Draw word xi ∼ Mult(φsizi).

Table 2: The generative process for model parameters
and parses. In the above GEM, DP, Dir, and Mult refer
respectively to the stick breaking distribution, Dirichlet
process, Dirichlet distribution, and multinomial distribu-
tion.

Generating Symbols and Words We describe
how a single node of the tree is generated before
discussing how the entire tree structure is formed.
Each node of the dependency tree is comprised of
three random variables: an observed coarse symbol
s, a hidden refined subsymbol z, and an observed
word x. In the following let the parent of the cur-
rent node have symbol s′ and subsymbol z′; the root
node is generated from separate root-specific distri-
butions. Subsymbol refinement is an optional com-
ponent of the full model and can be omitted by de-
terministically equating s and z. As we explain at
the end of this section, without this aspect the gener-
ative story closely resembles the classic dependency
model with valence (DMV) of Klein and Manning
(2004).

First we draw symbol s from a finite multinomial
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s - coarse symbol (observed)
z - refined subsymbol
x - word (observed)
θszc - distr over child coarse symbols for

each parent s and z and context c
βs - top-level distr over subsymbols for s
πss′z′c - distr over subsymbols for each s,

parent s′ and z′, and context c
φsz - distr over words for s and z

Figure 1: Graphical representation of the model and a summary of the notation. There is a copy of the outer plate for
each distinct symbol in the observed coarse tags. Here, node 3 is shown to be the parent of nodes 1 and 2. Shaded
variables are observed, square variables are hyperparameters. The elongated oval around s and z represents the two
variables jointly. For clarity the diagram omits some arrows from θ to each s, π to each z, and φ to each x.

distribution with parameters θs′z′c. As the indices
indicate, we have one such set of multinomial pa-
rameters for every combination of parent symbol
s′ and subsymbol z′ along with a context c. Here
the context of the current node can take one of six
values corresponding to every combination of di-
rection (left or right) and valence (first, second, or
third or higher child) with respect to its parent. The
prior (base distribution) for each θs′z′c is a symmet-
ric Dirichlet with hyperparameter θ0.

Next we draw the refined syntactic category sub-
symbol z from an infinite multinomial with parame-
ters πss′z′c. Here the selection of π is indexed by the
current node’s coarse symbol s, the symbol s′ and
subsymbol z′ of the parent node, and the context c
of the current node.

For each unique coarse symbol s we tie together
the distributions πss′z′c for all possible parent and
context combinations (i.e., s′, z′, and c) using a Hi-
erarchical Dirichlet Process (HDP). Specifically, for
a single s, each distribution πss′z′c over subsymbols
is drawn from a DP with concentration parameter
α and base distribution βs over subsymbols. This
base distribution βs is itself drawn from a GEM prior
with concentration parameter γ. By formulating the
generation of z as an HDP, we can share parame-
ters for a single coarse symbol’s subsymbol distribu-
tion while allowing for individual variability based
on node parent and context. Note that parameters
are not shared across different coarse symbols, pre-
serving the distinctions expressed via the coarse tag

annotations.
Finally, we generate the word x from a finite

multinomial with parameters φsz , where s and z are
the symbol and subsymbol of the current node. The
φ distributions are drawn from a symmetric Dirich-
let prior.

Generating the Tree Structure We now consider
how the structure of the tree arises. We follow
an approach similar to the widely-referenced DMV
model (Klein and Manning, 2004), which forms
the basis of the current state-of-the-art unsuper-
vised grammar induction model (Headden III et al.,
2009). After a node is drawn we generate children
on each side until we produce a designated STOP
symbol. We encode more detailed valence informa-
tion than Klein and Manning (2004) and condition
child generation on parent valence. Specifically, af-
ter drawing a node we first decide whether to pro-
ceed to generate a child or to stop conditioned on the
parent symbol and subsymbol and the current con-
text (direction and valence). If we decide to gener-
ate a child we follow the previously described pro-
cess for constructing a node. We can combine the
stopping decision with the generation of the child
symbol by including a distinguished STOP symbol
as a possible outcome in distribution θ.

No-Split Model Variant In the absence of sub-
symbol refinement (i.e., when subsymbol z is set to
be identical to coarse symbol s), our model simpli-
fies in some respects. In particular, the HDP gener-
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ation of z is obviated and word x is drawn from a
word distribution φs indexed solely by coarse sym-
bol s. The resulting simplified model closely resem-
bles DMV (Klein and Manning, 2004), except that it
1) explicitly generate words x rather than only part-
of-speech tags s, 2) encodes richer context and va-
lence information, and 3) imposes a Dirichlet prior
on the symbol distribution θ.

4 Inference with Constraints

We now describe how to augment our generative
model of dependency structure with constraints de-
rived from linguistic knowledge. Incorporating arbi-
trary linguistic rules directly in the generative story
is challenging as it requires careful tuning of either
the model structure or priors for each constraint. In-
stead, following the approach of Graça et al. (2007),
we constrain the posterior to satisfy the rules in ex-
pectation during inference. This effectively biases
the inference toward linguistically plausible settings.

In standard variational inference, an intractable
true posterior is approximated by a distribution from
a tractable set (Bishop, 2006). This tractable set typ-
ically makes stronger independence assumptions be-
tween model parameters than the model itself. To in-
corporate the constraints, we further restrict the set
to only include distributions that satisfy the specified
expectation constraints over hidden variables.

In general, for some given model, let θ denote
the entire set of model parameters and z and x de-
note the hidden structure and observations respec-
tively. We are interested in estimating the posterior
p(θ, z | x). Variational inference transforms this
problem into an optimization problem where we try
to find a distribution q(θ, z) from a restricted set Q
that minimizes the KL-divergence between q(θ, z)
and p(θ, z | x):

KL(q(θ, z) ‖ p(θ, z | x))

=
∫

q(θ, z) log
q(θ, z)

p(θ, z, x)
dθdz + log p(x).

Rearranging the above yields:

log p(x) = KL(q(θ, z) ‖ p(θ, z | x)) + F ,

where F is defined as

F ≡
∫

q(θ, z) log
p(θ, z, x)
q(θ, z)

dθdz. (1)

Thus F is a lower bound on likelihood. Maximizing
this lower bound is equivalent to minimizing the KL-
divergence between p(θ, z | x) and q(θ, z). To make
this maximization tractable we make a mean field
assumption that q belongs to a set Q of distributions
that factorize as follows:

q(θ, z) = q(θ)q(z).

We further constrain q to be from the subset of Q
that satisfies the expectation constraint Eq[f(z)] ≤ b
where f is a deterministically computable function
of the hidden structures. In our model, for exam-
ple, f counts the dependency edges that are an in-
stance of one of the declaratively specified depen-
dency rules, while b is the proportion of the total
dependencies that we expect should fulfill this con-
straint.2

With the mean field factorization and the expec-
tation constraints in place, solving the maximization
of F in (1) separately for each factor yields the fol-
lowing updates:

q(θ) = argmin
q(θ)

KL
(
q(θ) ‖ q′(θ)

)
, (2)

q(z) = argmin
q(z)

KL
(
q(z) ‖ q′(z)

)
s.t. Eq(z)[f(z)] ≤ b, (3)

where

q′(θ) ∝ expEq(z)[log p(θ, z, x)], (4)

q′(z) ∝ expEq(θ)[log p(θ, z, x)]. (5)

We can solve (2) by setting q(θ) to q′(θ) — since
q(z) is held fixed while updating q(θ), the expecta-
tion function of the constraint remains constant dur-
ing this update. As shown by Graça et al. (2007), the
update in (3) is a constrained optimization problem
and can be solved by performing gradient search on
its dual:

argmin
λ

λ>b + log
∑

z

q′(z) exp(−λ>f(z)) (6)

For a fixed value of λ the optimal q(z) ∝
q′(z) exp(−λ>f(z)). By updating q(θ) and q(z)
as in (2) and (3) we are effectively maximizing the
lower bound F .

2Constraints of the form Eq[f(z)] ≥ b are easily imposed
by negating f(z) and b.
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4.1 Variational Updates
We now derive the specific variational updates for
our dependency induction model. First we assume
the following mean-field factorization of our varia-
tional distribution:

q(β, θ, π, φ, z)

= q(z) ·
∏
s′

q(βs′) ·
T∏

z′=1

q(φs′z′)·∏
c

q(θs′z′c) ·
∏
s

q(πss′z′c), (7)

where s′ varies over the set of unique symbols in the
observed tags, z′ denotes subsymbols for each sym-
bol, c varies over context values comprising a pair
of direction (left or right) and valence (first, second,
or third or higher) values, and s corresponds to child
symbols.

We restrict q(θs′z′c) and q(φs′z′) to be Dirichlet
distributions and q(z) to be multinomial. As with
prior work (Liang et al., 2009b), we assume a de-
generate q(β) ≡ δβ∗(β) for tractability reasons, i.e.,
all mass is concentrated on some single β∗. We also
assume that the top level stick-breaking distribution
is truncated at T , i.e., q(β) assigns zero probability
to integers greater than T . Because of the truncation
of β, we can approximate q(πss′z′c) with an asym-
metric finite dimensional Dirichlet.

The factors are updated one at a time holding all
other factors fixed. The variational update for q(π)
is given by:

q(πss′z′c) = Dir
(
πss′z′c;αβ + Eq(z)[Css′z′c(z)]

)
,

where term Eq(z)[Css′z′c(z)] is the expected count
w.r.t. q(z) of child symbol s and subsymbol z in
context c when generated by parent symbol s′ and
subsymbol z′.

Similarly, the updates for q(θ) and q(φ) are given
by:

q(θs′z′c) = Dir
(
θs′z′c; θ0 + Eq(z)[Cs′z′c(s)]

)
,

q(φs′z′) = Dir
(
φs′z′ ;φ0 + Eq(z)[Cs′z′(x)]

)
,

where Cs′z′c(s) is the count of child symbol s being
generated by the parent symbol s′ and subsymbol z′

in context c and Cs′z′x is the count of word x being
generated by symbol s′ and subsymbol z′.

The only factor affected by the expectation con-
straints is q(z). Recall from the previous section that
the update for q(z) is performed via gradient search
on the dual of a constrained minimization problem
of the form:

q(z) = argmin
q(z)

KL(q(z) ‖ q′(z)).

Thus we first compute the update for q′(z):

q′(z) ∝
N∏

n=1

len(n)∏
j=1

(expEq(φ)[log φsnjznj (xnj)]

× expEq(θ)[log θsh(nj)zh(nj)cnj (snj)]

× expEq(π)[log πsnjsh(nj)zh(nj)cnj (znj)]),

where N is the total number of sentences, len(n)
is the length of sentence n, and index h(nj) refers
to the head of the jth node of sentence n. Given
this q′(z) a gradient search is performed using (6) to
find the optimal λ and thus the primal solution for
updating q(z).

Finally, we update the degenerate factor q(βs)
with the projected gradient search algorithm used
by Liang et al. (2009b).

5 Linguistic Constraints

Universal Dependency Rules We compile a set of
13 universal dependency rules consistent with vari-
ous linguistic accounts (Carnie, 2002; Newmeyer,
2005), shown in Table 1. These rules are defined
over coarse part-of-speech tags: Noun, Verb, Adjec-
tive, Adverb, Pronoun, Article, Auxiliary, Preposi-
tion, Numeral and Conjunction. Each rule specifies
a part-of-speech for the head and argument but does
not provide ordering information.

We require that a minimum proportion of the pos-
terior dependencies be instances of these rules in ex-
pectation. In contrast to prior work on rule-driven
dependency induction (Druck et al., 2009), where
each rule has a separately specified expectation, we
only set a single minimum expectation for the pro-
portion of all dependencies that must match one of
the rules. This setup is more relevant for learn-
ing with universals since individual rule frequencies
vary greatly between languages.
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1. Identify non-recursive NPs:

• All nouns, pronouns and possessive
marker are part of an NP.

• All adjectives, conjunctions and deter-
miners immediately preceding an NP
are part of the NP.

2. The first verb or modal in the sentence is the
headword.

3. All words in an NP are headed by the last
word in the NP.

4. The last word in an NP is headed by the
word immediately before the NP if it is a
preposition, otherwise it is headed by the
headword of the sentence if the NP is be-
fore the headword, else it is headed by the
word preceding the NP.

5. For the first word set its head to be the head-
word of the sentence. For each other word
set its headword to be the previous word.

Table 3: English-specific dependency rules.

English-specific Dependency Rules For English,
we also consider a small set of hand-crafted depen-
dency rules designed by Michael Collins3 for deter-
ministic parsing, shown in Table 3. Unlike the uni-
versals from Table 1, these rules alone are enough to
construct a full dependency tree. Thus they allow us
to judge whether the model is able to improve upon
a human-engineered deterministic parser. Moreover,
with this dataset we can assess the additional benefit
of using rules tailored to an individual language as
opposed to universal rules.

6 Experimental Setup

Datasets and Evaluation We test the effective-
ness of our grammar induction approach on English,
Danish, Portuguese, Slovene, Spanish, and Swedish.
For English we use the Penn Treebank (Marcus et
al., 1993), transformed from CFG parses into depen-

3Personal communication.

dencies with the Collins head finding rules (Collins,
1999); for the other languages we use data from the
2006 CoNLL-X Shared Task (Buchholz and Marsi,
2006). Each dataset provides manually annotated
part-of-speech tags that are used for both training
and testing. For comparison purposes with previ-
ous work, we limit the cross-lingual experiments to
sentences of length 10 or less (not counting punc-
tuation). For English, we also explore sentences of
length up to 20.

The final output metric is directed dependency ac-
curacy. This is computed based on the Viterbi parses
produced using the final unnormalized variational
distribution q(z) over dependency structures.

Hyperparameters and Training Regimes Un-
less otherwise stated, in experiments with rule-based
constraints the expected proportion of dependencies
that must satisfy those constraints is set to 0.8. This
threshold value was chosen based on minimal tun-
ing on a single language and ruleset (English with
universal rules) and carried over to each other ex-
perimental condition. A more detailed discussion of
the threshold’s empirical impact is presented in Sec-
tion 7.1.

Variational approximations to the HDP are trun-
cated at 10. All hyperparameter values are fixed to 1
except α which is fixed to 10.

We also conduct a set of No-Split experiments to
evaluate the importance of syntactic refinement; in
these experiments each coarse symbol corresponds
to only one refined symbol. This is easily effected
during inference by setting the HDP variational ap-
proximation truncation level to one.

For each experiment we run 50 iterations of vari-
ational updates; for each iteration we perform five
steps of gradient search to compute the update for
the variational distribution q(z) over dependency
structures.

7 Results

In the following section we present our primary
cross-lingual results using universal rules (Sec-
tion 7.1) before performing a more in-depth analysis
of model properties such as sensitivity to ruleset se-
lection and inference stability (Section 7.2).
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DMV PGI No-Split HDP-DEP
English 47.1 62.3 71.5 71.9 (0.3)
Danish 33.5 41.6 48.8 51.9 (1.6)
Portuguese 38.5 63.0 54.0 71.5 (0.5)
Slovene 38.5 48.4 50.6 50.9 (5.5)
Spanish 28.0 58.4 64.8 67.2 (0.4)
Swedish 45.3 58.3 63.3 62.1 (0.5)

Table 4: Directed dependency accuracy using our model
with universal dependency rules (No-Split and HDP-
DEP), compared to DMV (Klein and Manning, 2004) and
PGI (Berg-Kirkpatrick and Klein, 2010). The DMV re-
sults are taken from Berg-Kirkpatrick and Klein (2010).
Bold numbers indicate the best result for each language.
For the full model, the standard deviation in performance
over five runs is indicated in parentheses.

7.1 Main Cross-Lingual Results

Table 4 shows the performance of both our full
model (HDP-DEP) and its No-Split version using
universal dependency rules across six languages.
We also provide the performance of two baselines —
the dependency model with valence (DMV) (Klein
and Manning, 2004) and the phylogenetic grammar
induction (PGI) model (Berg-Kirkpatrick and Klein,
2010).

HDP-DEP outperforms both DMV and PGI
across all six languages. Against DMV we achieve
an average absolute improvement of 24.1%. This
improvement is expected given that DMV does not
have access to the additional information provided
through the universal rules. PGI is more relevant
as a point of comparison, since it is able to lever-
age multilingual data to learn information similar to
what we have declaratively specified using universal
rules. Specifically, PGI reduces induction ambigu-
ity by connecting language-specific parameters via
phylogenetic priors. We find, however, that we out-
perform PGI by an average margin of 7.2%, demon-
strating the benefits of explicit rule specification.

An additional point of comparison is the lexi-
calized unsupervised parser of Headden III et al.
(2009), which yields the current state-of-the-art un-
supervised accuracy on English at 68.8%. Our
method also outperforms this approach, without em-
ploying lexicalization and sophisticated smoothing
as they do. This result suggests that combining the
complementary strengths of their approach and ours

English
Rule Excluded Acc Loss Gold Freq
Preposition → Noun 61.0 10.9 5.1
Verb → Noun 61.4 10.5 14.8
Noun → Noun 64.4 7.5 10.7
Noun → Article 64.7 7.2 8.5

Spanish
Rule Excluded Acc Loss Gold Freq
Preposition → Noun 53.4 13.8 8.2
Verb → Noun 61.9 5.4 12.9
Noun → Noun 62.6 4.7 2.0
Root → Verb 65.4 1.8 12.3

Table 5: Ablation experiment results for universal depen-
dency rules on English and Spanish. For each rule, we
evaluate the model using the ruleset excluding that rule,
and list the most significant rules for each language. The
second last column is the absolute loss in performance
compared to the setting where all rules are available. The
last column shows the percentage of the gold dependen-
cies that satisfy the rule.

can yield further performance improvements.
Table 4 also shows the No-Split results where syn-

tactic categories are not refined. We find that such
refinement usually proves to be beneficial, yielding
an average performance gain of 3.7%. However, we
note that the impact of incorporating splitting varies
significantly across languages. Further understand-
ing of this connection is an area of future research.

Finally, we note that our model exhibits low vari-
ance for most languages. This result attests to how
the expectation constraints consistently guide infer-
ence toward high-accuracy areas of the search space.

Ablation Analysis Our next experiment seeks to
understand the relative importance of the various
universal rules from Table 1. We study how accu-
racy is affected when each of the rules is removed
one at a time for English and Spanish. Table 5 lists
the rules with the greatest impact on performance
when removed. We note the high overlap between
the most significant rules for English and Spanish.

We also observe that the relationship between
a rule’s frequency and its importance for high ac-
curacy is not straightforward. For example, the
“Preposition → Noun” rule, whose removal de-
grades accuracy the most for both English and Span-
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Figure 2: Accuracy of our model with different threshold
settings, on English only and averaged over all languages.
“Gold” refers to the setting where each language’s thresh-
old is set independently to the proportion of gold depen-
dencies satisfying the rules — for English this proportion
is 70%, while the average proportion across languages is
63%.

ish, is not the most frequent rule in either language.
This result suggests that some rules are harder to
learn than others regardless of their frequency, so
their presence in the specified ruleset yields stronger
performance gains.

Varying the Constraint Threshold In our main
experiments we require that at least 80% of the ex-
pected dependencies satisfy the rule constraints. We
arrived at this threshold by tuning on the basis of En-
glish only. As shown in Figure 2, for English a broad
band of threshold values from 75% to 90% yields re-
sults within 2.5% of each other, with a slight peak at
80%.

To further study the sensitivity of our method to
how the threshold is set, we perform post hoc ex-
periments with other threshold values on each of the
other languages. As Figure 2 also shows, on average
a value of 80% is optimal across languages, though
again accuracy is stable within 2.5% between thresh-
olds of 75% to 90%. These results demonstrate that
a single threshold is broadly applicable across lan-
guages.

Interestingly, setting the threshold value indepen-
dently for each language to its “true” proportion
based on the gold dependencies (denoted as the
“Gold” case in Figure 2) does not achieve optimal

Length
≤ 10 ≤ 20

Universal Dependency Rules
1 HDP-DEP 71.9 50.4
No Rules (Random Init)
2 HDP-DEP 24.9 24.4
3 Headden III et al. (2009) 68.8 -
English-Specific Parsing Rules
4 Deterministic (rules only) 70.0 62.6
5 HDP-DEP 73.8 66.1
Druck et al. (2009) Rules
6 Druck et al. (2009) 61.3 -
7 HDP-DEP 64.9 42.2

Table 6: Directed accuracy of our model (HDP-DEP) on
sentences of length 10 or less and 20 or less from WSJ
with different rulesets and with no rules, along with vari-
ous baselines from the literature. Entries in this table are
numbered for ease of reference in the text.

performance. Thus, knowledge of the true language-
specific rule proportions is not necessary for high
accuracy.

7.2 Analysis of Model Properties

We perform a set of additional experiments on En-
glish to gain further insight into HDP-DEP’s behav-
ior. Our choice of language is motivated by the
fact that a wide range of prior parsing algorithms
were developed for and tested exclusively on En-
glish. The experiments below demonstrate that 1)
universal rules alone are powerful, but language-
and dataset-tailored rules can further improve per-
formance; 2) our model learns jointly from the
rules and data, outperforming a rules-only deter-
ministic parser; 3) the way we incorporate posterior
constraints outperforms the generalized expectation
constraint framework; and 4) our model exhibits low
variance when seeded with different initializations.
These results are summarized in Table 6 and dis-
cussed in detail below; line numbers refer to entries
in Table 6. Each run of HDP-DEP below is with
syntactic refinement enabled.

Impact of Rules Selection We compare the per-
formance of HDP-DEP using the universal rules ver-
sus a set of rules designed for deterministically pars-
ing the Penn Treebank (see Section 5 for details).
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As lines 1 and 5 of Table 6 show, language-specific
rules yield better performance. For sentences of
length 10 or less, the difference between the two
rulesets is a relatively small 1.9%; for longer sen-
tences, however, the difference is a substantially
larger 15.7%. This is likely because longer sen-
tences tend to be more complex and thus exhibit
more language-idiosyncratic dependencies. Such
dependencies can be better captured by the refined
language-specific rules.

We also test model performance when no linguis-
tic rules are available, i.e., performing unconstrained
variational inference. The model performs substan-
tially worse (line 2), confirming that syntactic cat-
egory refinement in a fully unsupervised setup is
challenging.

Learning Beyond Provided Rules Since HDP-
DEP is provided with linguistic rules, a legitimate
question is whether it improves upon what the rules
encode, especially when the rules are complete and
language-specific. We can answer this question by
comparing the performance of our model seeded
with the English-specific rules against a determin-
istic parser that implements the same rules. Lines
4 and 5 of Table 6 demonstrate that the model out-
performs a rules-only deterministic parser by 3.8%
for sentences of length 10 or less and by 3.5% for
sentences of length 20 or less.

Comparison with Alternative Semi-supervised
Parser The dependency parser based on the gen-
eralized expectation criteria (Druck et al., 2009) is
the closest to our reported work in terms of tech-
nique. To compare the two, we run HDP-DEP using
the 20 rules given by Druck et al. (2009). Our model
achieves an accuracy of 64.9% (line 7) compared to
61.3% (line 6) reported in their work. Note that we
do not rely on rule-specific expectation information
as they do, instead requiring only a single expecta-
tion constraint parameter.4

Model Stability It is commonly acknowledged
in the literature that unsupervised grammar induc-
tion methods exhibit sensitivity to initialization.
As in the previous section, we find that the pres-

4As explained in Section 5, having a single expectation pa-
rameter is motivated by our focus on parsing with universal
rules.

ence of linguistic rules greatly reduces this sensitiv-
ity: for HDP-DEP, the standard deviation over five
randomly initialized runs with the English-specific
rules is 1.5%, compared to 4.5% for the parser de-
veloped by Headden III et al. (2009) and 8.0% for
DMV (Klein and Manning, 2004).

8 Conclusions

In this paper we demonstrated that syntactic uni-
versals encoded as declarative constraints improve
grammar induction. We formulated a generative
model for dependency structure that models syntac-
tic category refinement and biases inference to co-
here with the provided constraints. Our experiments
showed that encoding a compact, well-accepted set
of language-independent constraints significantly
improves accuracy on multiple languages compared
to the current state-of-the-art in unsupervised pars-
ing.

While our present work has yielded substantial
gains over previous unsupervised methods, a large
gap still remains between our method and fully su-
pervised techniques. In future work we intend to
study ways to bridge this gap by 1) incorporat-
ing more sophisticated linguistically-driven gram-
mar rulesets to guide induction, 2) lexicalizing the
model, and 3) combining our constraint-based ap-
proach with richer unsupervised models (e.g., Head-
den III et al. (2009)) to benefit from their comple-
mentary strengths.
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Abstract

Mining sentiment from user generated content
is a very important task in Natural Language
Processing. An example of such content is
threaded discussions which act as a very im-
portant tool for communication and collabo-
ration in the Web. Threaded discussions in-
clude e-mails, e-mail lists, bulletin boards,
newsgroups, and Internet forums. Most of the
work on sentiment analysis has been centered
around finding the sentiment toward products
or topics. In this work, we present a method
to identify the attitude of participants in an
online discussion toward one another. This
would enable us to build a signed network
representation of participant interaction where
every edge has a sign that indicates whether
the interaction is positive or negative. This
is different from most of the research on so-
cial networks that has focused almost exclu-
sively on positive links. The method is exper-
imentally tested using a manually labeled set
of discussion posts. The results show that the
proposed method is capable of identifying at-
titudinal sentences, and their signs, with high
accuracy and that it outperforms several other
baselines.

1 Introduction

Mining sentiment from text has a wide range of
applications from mining product reviews on the
Web (Morinaga et al., 2002; Turney and Littman,
2003) to analyzing political speeches (Thomas et al.,
2006). Automatic methods for sentiment mining are
very important because manual extraction of them is
very costly, and inefficient. A new application of
sentiment mining is to automatically identify atti-
tudes between participants in an online discussion.
An automatic tool to identify attitudes will enable

us to build a signed network representation of par-
ticipant interaction in which the interaction between
two participants is represented using a positive or
a negative edge. Even though using signed edges
in social network studies is clearly important, most
of the social networks research has focused only on
positive links between entities. Some work has re-
cently investigated signed networks (Leskovec et al.,
2010; Kunegis et al., 2009), however this work was
limited to a few number of datasets in which users
were allowed to explicitly add negative, as well as
positive, relations. This work will pave the way for
research efforts to examine signed social networks
in more detail. It will also allow us to study the re-
lation between explicit relations and the text under-
lying those relation.

Although similar, identifying sentences that dis-
play an attitude in discussions is different from iden-
tifying opinionated sentences. A sentence in a dis-
cussion may bear opinions about a definite target
(e.g., price of a camera) and yet have no attitude to-
ward the other participants in the discussion. For in-
stance, in the following discussion Alice’s sentence
has her opinion against something, yet no attitude
toward the recipient of the sentence, Bob.

Alice: “You know what, he turned out to
be a great disappointment”
Bob: “You are completely unqualified to
judge this great person”

However, Bob shows strong attitude toward Alice.
In this work, we look at ways to predict whether a
sentence displays an attitude toward the text recip-
ient. An attitude is the mental position of one par-
ticipant with regard to another participant. it could
be either positive or negative. We consider features
which takes into account the entire structure of sen-
tences at different levels or generalization. Those
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features include lexical items, part-of-speech tags,
and dependency relations. We use all those patterns
to build several pairs of models that represent sen-
tences with and without attitude.

The rest of the paper is organized as follows. In
Section 2 we review some of the related prior work
on identifying polarized words and subjectivity anal-
ysis. We explain the problem definition and discuss
our approach in Sections 3 & 4. Finally, in Sec-
tions 5 & 6 we introduce our dataset and discuss the
experimental setup. Finally, we conclude in Section
7.

2 Related Work

Identifying the polarity of individual words is a well
studied problem. In previous work, Hatzivassiloglou
and McKeown (1997) propose a method to iden-
tify the polarity of adjectives. They use a manu-
ally labeled corpus to classify each conjunction of
an adjective as “the same orientation” as the adjec-
tive or “different orientation”. Their method can
label simple in “simple and well-received” as the
same orientation and simplistic in “simplistic but
well-received” as the opposite orientation of well-
received. Although the results look promising, the
method would only be applicable to adjectives since
noun conjunctions may collocate regardless of their
semantic orientations (e.g., “rise and fall”).

In other work, Turney and Littman (2003) use sta-
tistical measures to find the association between a
given word and a set of positive/negative seed words.
In order to get word co-occurrence statistics they use
the “near” operator from a commercial search en-
gine on a given word and a seed word.

In more recent work, Takamura et al. (2005) used
the spin model to extract word semantic orientation.
First, they construct a network of words using def-
initions, thesaurus, and co-occurrence statistics. In
this network, each word is regarded as an electron,
which has a spin and each spin has a direction tak-
ing one of two values: up or down. Then, they use
the energy point of view to propose that neighboring
electrons tend to have the same spin direction, and
therefore neighboring words tend to have the same
polarity orientations. Finally, they use the mean field
method to find the optimal solution for electron spin
directions.

Previous work has also used WordNet, a lexi-
cal database of English, to identify word polarity.
Specifically, Hu and Liu (2004) use WordNet syn-
onyms and antonyms to predict the polarity of any
given word with unknown polarity. They label each
word with the polarity of its synonyms and the op-
posite polarity of its antonyms. They continue in
a bootstrapping manner to label all unlabeled in-
stances. This work is very similar to (Kamps et al.,
2004) in which a network of WordNet synonyms
is used to find the shortest path between any given
word, and the words “good” and “bad”. Kim and
Hovy (Kim and Hovy, 2004) used WordNet syn-
onyms and antonyms to expand two lists of positive
and negative seed words. Similarly, Andreevskaia
and Bergler (2006) used WordNet to expand seed
lists with fuzzy sentiment categories, in which words
could be more central to one category than the other.
Finally, Kanayama and Nasukawa (2006) used syn-
tactic features and context coherency, defined as the
tendency for same polarities to appear successively,
to acquire polar atoms.

All the work mentioned above focus on the task
of identifying the polarity of individual words. Our
proposed work is identifying attitudes in sentences
that appear in online discussions. Perhaps the most
similar work to ours is the prior work on subjectivity
analysis, which is to identify text that present opin-
ions as opposed to objective text that present fac-
tual information (Wiebe, 2000). Prior work on sub-
jectivity analysis mainly consists of two main cate-
gories: The first category is concerned with identify-
ing the subjectivity of individual phrases and words
regardless of the sentence and context they appear
in (Wiebe, 2000; Hatzivassiloglou and Wiebe, 2000;
Banea et al., 2008). In the second category, sub-
jectivity of a phrase or word is analyzed within its
context (Riloff and Wiebe, 2003; Yu and Hatzivas-
siloglou, 2003; Nasukawa and Yi, 2003; Popescu
and Etzioni, ). A good study of the applications
of subjectivity analysis from review mining to email
classification is given in (Wiebe, 2000). Somasun-
daran et al. (2007) develop genre-speci.c lexicons
using interesting function word combinations for de-
tecting opinions in meetings. Despite similarities,
our work is different from subjectivity analysis be-
cause the later only discriminates between opinions
and facts. A discussion sentence may display an
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opinion about some topic yet no attitude. The lan-
guage constituents considered in opinion detection
may be different from those used to detect attitude.
Moreover, extracting attitudes from online discus-
sions is different from targeting subjective expres-
sions (Josef Ruppenhofer and Wiebe, 2008; Kim
and Hovy, 2004). The later usually has a limited
set of targets that compete for the subjective expres-
sions (for example in movie review, targets could be:
director, actors, plot, and so forth). We cannot use
similar methods because we are working on an open
domain where anything could be a target. A very de-
tailed survey that covers techniques and approaches
in sentiment analysis and opinion mining could be
found in (Pang and Lee, 2008).

There is also some related work on mining on-
line discussions. Lin et al (2009) proposes a sparse
coding-based model simultaneously model seman-
tics and structure of threaded discussions. Shen
et al (2006) proposes three clustering methods for
exploiting the temporal information in the streams,
as well as an algorithm based on linguistic fea-
tures to analyze the discourse structure information.
Huang et al (2007) used an SVM classifier to extract
(thread-title, reply) pairs as chat knowledge from on-
line discussion forums to support the construction
of a chatbot for a certain domain. Other work has
focused on the structure of questions and question-
answer pairs in online forums and discussions (Ding
et al., 2008; Cong et al., 2008).

3 Problem Definition

Assume we have a set of sentences exchanged be-
tween participants in an online discussion. Our ob-
jective is to identify sentences that display an atti-
tude from the text writer to the text recepient from
those that do not. An attitude is the mental posi-
tion of one particpant with regard to another partic-
ipant. An attitude may not be directly observable,
but rather inferred from what particpants say to one
another. The attitude could be either positive or neg-
ative. Strategies for showing a positive attitude may
include agreement, and praise, while strategies for
showing a negative attitude may include disagree-
ment, insults, and negative slang. After identifying
sentences that display an attitude, we also predict the
sign (positive or negative) of that attitude.

4 Approach

In this section, we describe a model which, given a
sentence, predicts whether it carries an attitude from
the text writer toward the text recipient or not. Any
given piece of text exchanged between two partici-
pants in a discussion could carry an attitude toward
the text recipient, an attitude towards the topic, or
no attitude at all. As we are only interested in at-
titudes between participants, we limit our study to
sentences that use second person pronouns. Second
person pronouns are usually used in conversational
genre to indicate that the text writer is addressing the
text recipient. After identifying those sentences, we
do some pre-processing to extract the most relevant
fragments. We examine these fragments to to iden-
tify the polarity of every word in the sentence. Every
word could be assigned a semantic orientation. The
semantic orientation could be either positive, nega-
tive, or neutral. The existence of polarized words in
any sentence is an important indicator of whether it
carries an attitude or not.

The next step is to extract several patterns at
different levels of generalization representing any
given sentence. We use those patterns to build two
Markov models for every kind of patterns. The first
model characterizes the relation between different
tokens for all patterns that correspond to sentences
that have an attitude. The second model is similar to
the first one, but it uses all patterns that correspond
to sentences that do not have an attitude. Given a
new sentence, we extract the corresponding patterns
and estimate the likelihood of every pattern being
generated from the two corresponding models. We
then compare the likelihood of the sentence under
the two models and use this as a feature to predict
the existence of an attitude. A pair of models will
be built for every kind of patterns. If we have n dif-
ferent patterns, we will have n different likelihood
ratios that come from n pairs of models.

4.1 Word Polarity Identification

Identifying the polarity of words is an important step
for our method. Our word identification module is
similar to the work in (Annon, 2010). We construct
a graph where each node represent a word/part-of-
speech pair. Two nodes are linked if the words are
related. We use WordNet (Miller, 1995) to link re-
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lated words based on synonyms, hypernyms, and
similar to relations. For words that do not appear
in Wordnet, we used Wiktionary, a collaboratively
constructed dictionary. We also add some links
based on co-occurrence statistics between words as
from a large corpus. The resulting graph is a graph
G(W,E) where W is a set of word/part-of-speech
pairs, and E is the set of edges connecting related
words.

We define a random walk model on the graph,
where the set of nodes correspond to the state space
of the random walk. Transition probabilities are cal-
culated by normalizing the weights of the edges out
of every node. Let S+ and S− be two sets of ver-
tices representing seed words that are already la-
beled as either positive or negative respectively. We
used the list of labeled seeds from (Hatzivassiloglou
and McKeown, 1997) and (Stone et al., 1966). For
any given word w, we calculate the mean hitting
time between w, and the two seed sets h(w|S+), and
h(w|S−). The mean hitting time h(i|k) is defined as
the average number of steps a random walker, start-
ing in state i 6= k, will take to enter state k for the
first time (Norris, 1997). If h(w|S+) is greater than
h(w|S−), the word is classified as negative, oth-
erwise it is classified as positive. We also use the
method described in (Wilson et al., 2005) to deter-
mine the contextual polarity of the identified words.
The set of features used to predict contextual polar-
ity include word, sentence, polarity, structure, and
other features.

4.2 Identifying Relevant Parts of Sentences

The writing style in online discussion forums is very
informal. Some of the sentence are very long, and
punctuation marks are not always properly used. To
solve this problem, we decided to use the grammat-
ical structure of sentences to identify the most rele-
vant part of sentences that would be the subject of
further analysis. Figure 1 shows a parse tree repre-
senting the grammatical structure of a particular sen-
tence. If we closely examine the sentence, we will
notice that we are only interested in a part of the
sentence that includes the second person pronoun
”you“. We extract this part, by starting at the word
of interest , in this case ”you“, and go up in the hi-
erarchy till we hit the first sentence clause. Once,
we reach a sentence clause, we extract the corre-

sponding text if it is grammatical, otherwise we go
up one more level to the closest sentence clause. We
used the Stanford parser to generate the grammatical
structure of sentences (Klein and Manning, 2003).

Figure 1: An example showing how to identify the rele-
vant part of a sentence.

4.3 Sentences as Patterns
The fragments we extracted earlier are more rele-
vant to our task and are more suitable for further
analysis. However, these fragments are completely
lexicalized and consequently the performance of any
analysis based on them will be limited by data spar-
sity. We can alleviate this by using more general
representations of words. Those general representa-
tions can be used a long with words to generate a set
of patterns that represent each fragment. Each pat-
tern consists of a sequence of tokens. Examples of
such patterns could use lexical items, part-of-speech
(POS) tags, word polarity tags, and dependency re-
lations.

We use three different patterns to represent each
fragments:

• Lexical patterns: All polarized words are re-
places with the corresponding polarity tag, and
all other words are left as is.

• Part-of-speech patterns: All words are replaced
with their POS tags. Second person pronouns
are left as is. Polarized words are replaced with
their polarity tags and their POS tags.

• Dependency grammar patterns: the shortest
path connecting every second person pronoun
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to the closed polarized word is extracted. The
second person pronoun, the polarized word tag,
and the types of the dependency relations along
the path connecting them are used as a pat-
tern. It has been shown in previous work on
relation extraction that the shortest path be-
tween any two entities captures the the in-
formation required to assert a relationship be-
tween them (Bunescu and Mooney, 2005). Ev-
ery polarized word is assigned to the closest
second person pronoun in the dependency tree.
This is only useful for sentences that have po-
larized words.

Table 1 shows the different kinds of representa-
tions for a particular sentence. We use text, part-
of-speech tags, polarity tags, and dependency rela-
tions. The corresponding patterns for this sentence
are shown in Table 2.

4.4 Building the Models
Given a set of patterns representing a set of sen-
tences, we can build a graph G = V,E, w where
V is the set of all possible token that may appear
in the patterns. E = V × V is the set of possible
transitions between any two tokens. w : E → [0..1]
is a weighting function that assigns to every pair of
states (i, j) a weight w(i, j) representing the proba-
bility that we have a transition from state i to state
j.

This graph corresponds to a Markovian model.
The set of states are the vocabulary, and the the tran-
sition probabilities between states are estimated us-
ing Maximum Likelihood estimation as follows:

Pij =
Nij

Ni

where Nij is the number of times we saw a transition
from i to state j, and Ni is the total number of times
we saw state i in the training data. This is similar to
building a language model over the language of the
patterns.

We build two such models for every kind of pat-
terns. The first model is built using all sentences that
appeared in the training dataset and was labeled as
having an attitude, and the second model is built us-
ing all sentences in the training dataset that do not
have an attitude. If we have n kinds of patterns, we

will build one such pair for every kind of patterns.
Hence, we will end up with 2n models.

4.5 Identifying Sentences with Attitude

We split our training data into two splits; the first
containing all sentences that have an attitude and the
second containing all sentences that do not have an
attitude. Given the methodology described in the
previous section, we build n pairs of Markov mod-
els. Given any sentence, we extract the correspond-
ing patterns and estimate the log likelihood that this
sequence of tokens was generated from every model.

Given a model M , and sequence of tokens T =
(T1, T2, . . . TSn), the probability of this token se-
quence being generated from M is:

PM (T ) =
n∏

i=2

P (Ti|T1, . . . , Ti−1) =
n∏

i=2

W (Ti−1, Ti)

where n is the number of tokens in the pattern, and
W is the probability transition function.

The log likelihood is then defined as:

LLM (T ) =
n∑

i=2

log W (Ti−1, Ti)

For every pair of models, we may use the ratio be-
tween the two likelihoods as a feature:

f =
LLMatt(T )

LLMnoatt(T )

where T is the token sequence, LLMatt(T ) is the log
likelihood of the sequence given the attitude model,
and LLMnoatt(T ) is the log likelihood of the pattern
given the no-attitude model.

Given the n kinds of patterns, we can calculate
three different features. A standard machine learn-
ing classifier is then trained using those features to
predict whether a given sentence has an attitude or
not.

4.6 Identifying the Sign of an Attitude

To determine the orientation of an attitude sentence,
we tried two different methods. The first method as-
sumes that the orientation of an attitude sentence is
directly related to the polarity of the words it con-
tains. If the sentence has only positive and neutral
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Table 1: Tags used for building patterns
Text That makes your claims so ignorant
POS That/DT makes/VBZ your/PRP$ claims/NNS so/RB ignorant/JJ
Polarity That/O makes/O your/O claims/O so/O ignorant/NEG

Dependency your
poss→ claims

nsubj→ ignorant

Table 2: Sample patterns
Lexical pattern That makes your claims so NEG
POS pattern DT VBZ your PRP$ NNS RB NEG JJ
Dependency pattern your poss nsubj NEG

words, it is classified as positive. If the sentence
has only negative and neutral words, it is classified
as negative. If the sentence has both positive and
negative words, we calculate the summation of the
polarity scores of all positive words and that of all
negative words. The polarity score of a word is an
indicator of how strong of a polarized word it is. If
the former is greater, we classify the sentence as pos-
itive,otherwise we classify the sentence as negative.

The problem with this method is that it assumes
that all polarized words in a sentence with an atti-
tude target the text recipient. Unfortunately, that is
not always correct. For example, the sentence ”You
are completely unqualified to judge this great per-
son” has a positive word ”great” and a negative word
”unqualified”. The first method will not be able to
predict whether the sentence is positive or negative.
To solve this problem, we use another method that
is based on the paths that connect polarized words to
second person pronouns in a dependency parse tree.
For every positive word w , we identify the shortest
path connecting it to every second person pronoun
in the sentence then we compute the average length
of the shortest path connecting every positive word
to the closest second person pronoun. We repeat for
negative words and compare the two values. The
sentence is classified as positive if the average length
of the shortest path connecting positive words to the
closest second person pronoun is smaller than the
corresponding value for negative words. Otherwise,
we classify the sentence as negative.

5 Data

Our data was randomly collected from a set of dis-
cussion groups. We collected a large number of

threads from the first quarter of 2009 from a set of
Usenet discussion groups. All threads were in En-
glish, and had 5 posts or more. We parsed the down-
loaded threads to identify the posts and senders. We
kept posts that have quoted text and discarded all
other posts. The reason behind that is that partici-
pants usually quote other participants text when they
reply to them. This restriction allows us to iden-
tify the target of every post, and raises the proba-
bility that the post will display an attitude from its
writer to its target. We plan to use more sophsticated
methods for reconstructing the reply structure like
the one in (Lin et al., 2009). From those posts, we
randomly selected approximately 10,000 sentences
that use second person pronouns. We explained ear-
lier how second person pronouns are used in discus-
sions genres to indicate the writer is targeting the
text recipient. Given a random sentence selected
from some random discussion thread, the probabil-
ity that the sentence does not have an attitude is sig-
nificantly larger than the probability that it will have
an attitude. Hence, restricting our dataset to posts
with quoted text and sentences with second person
pronouns is very important to make sure that we
will have a considerable amount of attitudinal sen-
tences. The data was tokenized, sentence-split, part-
of-speech tagged with the OpenNLP toolkit. It was
parsed with the Stanford dependency parser (Klein
and Manning, 2003).

5.1 Annotation Scheme

The goals of the annotation scheme are to distin-
guish sentences that display an attitude from those
that do not. Sentences could display either a neg-
ative or a positive attitude. Disagreement, insults,
and negative slang are indicators of negative attitude.

1250



A B C D
A - 82.7 80.6 82.1
B 81.0 - 81.9 82.9
C 77.8 78.2 - 83.8
D 78.3 77.7 78.6 -

Table 3: Inter-annotator agreement

Agreement, and praise are indicators of positive at-
titude. Our annotators were instructed to read every
sentence and assign two labels to it. The first speci-
fies whether the sentence displays an attitude or not.
The existence of an attitude was judged on a three
point scale: attitude, unsure, and no-attitude. The
second is the sign of the attitude. If an attitude ex-
ists, annotators were asked to specify whether the
attitude is positive or negative. To evaluate inter-
annotator agreement, we use the agr operator pre-
sented in (Wiebe et al., 2005). This metric measures
the precision and recall of one annotator using the
annotations of another annotator as a gold standard.
The process is repeated for all pairs of annotators,
and then the harmonic mean of all values is reported.
Formally:

agr(A|B) =
|A ∩B|
|A|

(1)

where A, and B are the annotation sets produced by
the two reviewers. Table 3 shows the value of the
agr operator for all pairs of annotators. The har-
monic mean of the agr operator is 80%. The agr
operator was used over the Kappa Statistic because
the distribution of the data was fairly skewed.

6 Experiments

6.1 Experimental Setup

We performed experiments on the data described in
the previous section. The number of sentences with
an attitude was around 20% of the entire dataset.
The class imbalance caused by the small number of
attitude sentences may hurt the performance of the
learning algorithm (Provost, 2000). A common way
of addressing this problem is to artificially rebal-
ance the training data. To do this we down-sample
the majority class by randomly selecting, without
replacement, a number of sentences without an at-
titude that equals the number of sentences with an

attitude. That resulted in a balanced subset, approx-
imately 4000 sentences, that we used in our experi-
ments.

We used Support Vector Machines (SVM) as a
classifier. We optimized SVM separately for every
experiment. We used 10-fold cross validation for all
tests. We evaluate our results in terms of precision,
recall, accuracy, and F1. Statistical significance was
tested using a 2-tailed paired t-test. All reported re-
sults are statistically significant at the 0.05 level. We
compare the proposed method to several other base-
lines that will be described in the next subsection.
We also perform experiments to measure the perfor-
mance if we mix features from the baselines and the
proposed method.

6.2 Baselines

The first baseline is based on the hypothesis that the
existence of polarized words is a strong indicator
that the sentence has an attitude. As a result, we
use the number of polarized word in the sentence,
the percentage of polarized words to all other words,
and whether the sentences has polarized words with
mixed or same sign as features to train an SVM clas-
sifier to detect attitude.

The second baseline is based on the proximity be-
tween the polarized words and the second person
pronouns. We assume that every polarized word is
associated with the closest second person pronoun.
Let w be a polarized word and p(w) be the closes
second person pronoun, and surf dist(w, p(w)) be
the surface distance between w and p(w). This base-
line uses the minimum, maximum, and average of
surf dist(w, p(w)) for all polarized words as fea-
tures to train an SVM classifier to identify sentences
with attitude.

The next baseline uses the dependency tree dis-
tance instead of the surface distance. We assume that
every polarized word is associated to the second per-
son pronoun that is connected to it using the smallest
shortest path. The dep dist(w, p(w)) is calculated
similar to the previous baselines but using the de-
pendency tree distance. The minimum, maximum,
and average of this distance for all polarized words
are used as features to train an SVM classifier.
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Figure 2: Accuracy, Precision, and Recall for the Pro-
posed Approach and the Baselines.
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Figure 3: Precision Recall Graph.

6.3 Results and Discussion

Figure 2 compares the accuracy, precision, and re-
call of the proposed method (ML), the polarity based
classifier (POL), the surface distance based classi-
fier (Surf Dist), and the dependency distance based
classifier (Dep Dist). The values are selected to opti-
mize F1. The figure shows that the surface distance
based classifier behaves poorly with low accuracy,
precision, and recall. The two other baselines be-
have poorly as well in terms of precision and accu-
racy, but they do very well in terms of recall. We
looked at some of the examples to understand why
those two baselines achieve very high recall. It turns
out that they tend to predict most sentences that have
polarized words as sentences with attitude. This re-
sults in many false positives and low true negative
rate. Achieving high recall at the expense of losing
precision is trivial. On the other hand, we notice that
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Figure 4: Accuracy Learning Curve for the Proposed
Method.

the proposed method results in very close values of
precision and recall at the optimum F1 point.

To better compare the performance of the pro-
posed method and the baseline, we study the the
precision-recall curves for all methods in Figure 3.
We notice that the proposed method outperforms all
baselines at all operating points. We also notice that
the proposed method provides a nice trade-off be-
tween precision and recall. This allows us some flex-
ibility in choosing the operating point. For example,
in some applications we might be interested in very
high precision even if we lose recall, while in other
applications we might sacrifice precision in order to
get high recall. On the other hand, we notice that
the baselines always have low precision regardless
of recall.

Table 4 shows the accuracy, precision, recall, and
F1 for the proposed method and all baselines. It also
shows the performance when we add features from
the baselines to the proposed method, or merge some
of the baselines. We see that we did not get any im-
provement when we added the baseline features to
the proposed method. We believe that the proposed
method captures all the information captured by the
baselines and more.

Our proposed method uses three different features
that correspond to the three types of patterns we use
to represent every sentence. To understand the con-
tributions of every feature, we measure the perfor-
mance of every feature by itself and also all possible
combinations of pairs of features. We compare that
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to the performance we get when using all features in
Table 5. We see that the part-of-speech patterns per-
forms better than the text patterns. This makes sense
because the former suffers from data sparsity. De-
pendency patterns performs best in terms of recall,
while part-of-speech patterns outperform all others
in terms of precision, and accuracy. All pairs of
features outperform any single feature that belong
to the corresponding pair in terms of F1. We also
notice that using the three features results in better
performance when compared to all other combina-
tions. This shows that every kind of pattern captures
slightly different information when compared to the
others. It also shows that merging the three features
improves performance.

One important question is how much data is re-
quired to the proposed model. We constructed a
learning curve, shown in Figure 4, by fixing the
test set size at one tenth of the data, and varying
the training set size. We carried out ten-fold cross
validation as with our previous experiments. We see
that adding more data continues to increase the accu-
racy, and that accuracy is quite sensitive to the train-
ing data. This suggests that adding more data to this
model could lead to even better results.

We also measured the accuracy of the two meth-
ods we proposed for predicting the sign of attitudes.
The accuracy of the first model that only uses the
count and scores of polarized words was 95%. The
accuracy of the second method that used depen-
dency distance was 97%.

6.4 Error Analysis

We had a closer look at the results to find out what
are the reasons behind incorrect predictions. We
found two main reasons. First, errors in predicting
word polarity usually propagates and results in er-
rors in attitude prediction. The reasons behind incor-
rect word polarity predictions is ambiguity in word
senses and infrequent words that have very few con-
nection in thesaurus. A possible solution to this type
of errors is to improve the word polarity identifica-
tion module by including word sense disambigua-
tion and adding more links to the words graph using
glosses or co-occurrence statistics. The second rea-
son is that some sentences are sarcastic in nature. It
is so difficult to identify such sentences. Identify-
ing sarcasm should be addressed as a separate prob-

Method Accuracy Precision Recall F1
ML 80.3 81.0 79.4 80.2
POL 73.1 66.4 93.9 77.7
ML+POL 79.9 77.9 83.4 80.5
SurfDist 70.2 67.1 79.2 72.7
DepDist 73.1 66.4 93.8 77.8
SurfDist+ 73.1 66.4 93.8 77.7
DepDist
ML+SurfDist 73.9 67.2 93.6 78.2
ML+DepDist 72.8 66.1 93.8 77.6
ML+SurfDist+ 74.0 67.2 93.4 78.2
DepDist
SurfDist+ 73.1 66.3 93.8 77.7
DepDist+POL
ML+SurfDist+ 73.0 66.2 93.8 77.6
DepDist+POL

Table 4: Precision, Recall, F1, and Accuracy for the pro-
posed method, the baselines, and different combinations
of proposed method and the baselines features

Method Accuracy Precision Recall F1
txt 75.5 74.1 78.6 76.2
pos 77.7 78.2 76.9 77.5
dep 74.7 70.4 85.1 77.0
txt+pos 77.8 77.0 79.4 78.1
txt+dep 79.4 79.6 79.2 79.4
pos+dep 80.4 79.1 82.5 80.7
txt+pos+dep 80.3 81.0 79.4 80.2

Table 5: Precision, Recall, F1, and Accuracy for different
combinations of the proposed method’s features.

lem. A method that utilizes holistic approaches that
takes context and previous interactions between dis-
cussion participants into consideration could be used
to address it.

7 Conclusions

We have shown that training a supervised Markov
model of text, part-of-speech, and dependecy pat-
terns allows us to identify sentences with attitudes
from sentences without attitude. This model is more
accurate than several other baselines that use fea-
tures based on the existence of polarized word, and
proximity between polarized words and second per-
son pronouns both in text and dependecy trees. This
method allows to extract signed social networks
from multi-party online discussions. This opens the
door to research efforts that go beyond standard so-
cial network analysis that is based on positve links
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only. It also allows us to study dynamics behind in-
teractions in online discussions, the relation between
text and social interactions, and how groups form
and break in online discussions.
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Abstract

We propose two hashing-based solutions to
the problem of fast and effective personal
names spelling correction in People Search
applications. The key idea behind our meth-
ods is to learn hash functions that map similar
names to similar (and compact) binary code-
words. The two methods differ in the data
they use for learning the hash functions - the
first method uses a set of names in a given lan-
guage/script whereas the second uses a set of
bilingual names. We show that both methods
give excellent retrieval performance in com-
parison to several baselines on two lists of
misspelled personal names. More over, the
method that uses bilingual data for learning
hash functions gives the best performance.

1 Introduction

Over the last few years, People Search has emerged
as an important search service. Unlike general Web
Search and Enterprise Search where users search for
information on a wide range of topics including peo-
ple, products, news, events, etc., People Search is
about people. Hence, personal names are used pre-
dominantly as queries in People Search. As in gen-
eral Web Search, a good percentage of queries in
People Search is misspelled. Naturally, spelling cor-
rection of misspelled personal names plays a very
important role in not only reducing the time and ef-
fort needed by users to find people they are search-
ing for but also in ensuring good user experience.

Spelling errors in personal names are of a differ-
ent nature compared to those in general text. Long

before People Search became widely popular, re-
searchers working on the problem of personal name
matching had recognized the human tendency to be
inexact in recollecting names from the memory and
specifying them. A study of personal names in
hospital databases found that only 39% of the er-
rors in the names were single typographical errors
(Friedman and Sideli, 1992)1. Further, multiple and
long distance typographical errors (Gregzorz Kon-
drak for Grzegorz Kondrak), phonetic errors (as in
Erik Bryl for Eric Brill), cognitive errors (as in Sil-
via Cucerzan for Silviu Cucerzan) and word substi-
tutions (as in Rob Moore for Bob Moore) are ob-
served relatively more frequently in personal names
compared to general text.

In addition to within-the-word errors, People
Search queries are plagued by errors that are not
usually seen in general text. The study by Fried-
man and Sideli discovered that 36% of the errors
were due to addition or deletion of a word (as in
Ricardo Baeza for Ricardo Baeza-Yates) (Friedman
and Sideli, 1992). Although word addition and dele-
tion generally do not come under the purview of
spelling correction, in People Search they are im-
portant and need to be addressed.

Standard approaches to general purpose spelling
correction are not well-suited for correcting mis-
spelled personal names. As pointed out by
(Cucerzan and Brill, 2004), these approaches ei-
ther try to correct individual words (and will fail to
correct Him Clijsters to Kim Clijsters) or employ
features based on relatively wide context windows

1In contrast, 80% of misspelled words in general text are due
to single typographical errors as found by (Damerau, 1964).
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which are not available for queries in Web Search
and People Search. Spelling correction techniques
meant for general purpose web-queries require large
volumes of training data in the form of query logs
for learning the error models (Cucerzan and Brill,
2004), (Ahmad and Kondrak, 2005). However,
query logs are not available in some applications
(e.g. Email address book search). Further, un-
like general purpose web-queries where word order
often matters, in People Search word order is lax
(e.g. I might search for either Kristina Toutanova or
Toutanova Kristina). Therefore, spelling correction
techniques that rely crucially on bigram and higher
order language models will fail on queries with a dif-
ferent word order than what is observed in the query
log.

Unlike general purpose Web Search where it is
not reasonable to assume the availability of a high-
coverage trusted lexicon, People Search typically
employs large authoritative name directories. For
instance, if one is searching for a friend on Face-
book, the correct spelling of the friend’s name exists
in the Facebook people directory2 (assuming that the
friend is a registered user of Facebook at the time of
the search). Similarly, if one is searching for a con-
tact in Enterprise address book, the correct spelling
of the contact is part of the address book. In fact,
even in Web Search, broad-coverage name directo-
ries are available in the form of Wikipedia, IMDB,
etc. The availability of large authoritative name di-
rectories that serve as the source of trusted spellings
of names throws open the possibility of correcting
misspelled personal names with the help of name
matching techniques (Pfeifer et al., 1996), (Chris-
ten, 2006), (Navarro et al., 2003). However, the best
of the name matching techniques can at best work
with a few thousand names to give acceptable re-
sponse time and accuracy. They do not scale up to
the needs of People Search applications where the
directories can have millions of names.

In this work, we develop hashing-based name
similarity search techniques and employ them for
spelling correction of personal names. The motiva-
tion for using hashing as a building block of spelling
correction is the following: given a query, we want
to return the global best match in the name directory

2http://www.facebook.com/directory/people/

that exceeds a similarity threshold. As matching the
query with the names in the directory is a time con-
suming task especially for large name directories,
we solve the search problem in two stages:

• NAME BUCKETING: For each token of the
query, we do an approximate nearest neighbor
search of the name tokens of the directory and
produce a list of candidates, i.e., tokens that are
approximate matches of the query token. Using
the list of candidate tokens, we extract the list
of candidate names which contain at least one
approximately matching token.

• NAME MATCHING: We do a rigorous match-
ing of the query with candidate names.

Clearly, our success in finding the right name sug-
gestion for the query in the NAME MATCHING
stage depends crucially on our success in getting
the right name suggestion in the list of candidates
produced by the NAME BUCKETING stage search.
Therefore, we need a name similarity search tech-
nique that can ensure very high recall without pro-
ducing too many candidates. Hashing is best suited
for this task of fast and approximate name match-
ing. We hash the query tokens as well as directory
tokens into d bit binary codes. With binary codes,
finding approximate matches for a query token is as
easy as finding all the database tokens that are at a
Hamming distance of r or less from the query token
in the binary code representation (Shakhnarovich et
al., 2008), (Weiss et al., 2008). When the binary
codes are compact, this search can be done in a frac-
tion of a second on directories containing millions
of names on a simple processor.

Our contributions are:

• We develop a novel data-driven technique for
learning hash functions for mapping similar
names to similar binary codes using a set of
names in a given language/script (i.e. monolin-
gual data). We formulate the problem of learn-
ing hash functions as an optmization problem
whose relaxation can be solved as a generalized
Eigenvalue problem. (Section 2.1).

• We show that hash functions can also be learnt
using bilingual data in the form of name equiv-
alents in two languages. We formulate the
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problem of learning hash functions as an opt-
mization problem whose relaxation can be
solved using Canonical Correlation Analysis.
(Section 2.2)

• We develop new similarity measures for match-
ing names (Section 3.1).

• We evaluate the two methods systematically
and compare our performance against multiple
baselines. (Section 5).

2 Learning Hash Functions

In this section, we develop two techniques for learn-
ing hash functions using names as training data. In
the first approach, we use monolingual data consist-
ing of names in a language whereas in the second we
use bilingual name pairs. In both techniques, the key
idea is the same: we learn hash functions that map
similar names in the training data to similar code-
words.

2.1 M-HASH: Learning with Monolingual
Names Data

Let (s, s′) be a pair of names and w (s, s′) be their
similarity3. We are given a set of name pairs T =
{(s, s′)} as the training data. Let φ (s) ∈ Rd1 be the
feature representation of s. We want to learn a hash
function f that maps each name to a d bit codeword:
f : s 7→ {−1, 1}d. We also want the Hamming dis-
tance of the codeword of s to the codeword of s′ be
small when w (s, s′) is large. Further, we want each
bit of the codewords to be either 1 or −1 with equal
probablity and the successive bits of the codewords
to be uncorrelated. Thus we arrive at the following
optimization problem4:

minimize :
∑

(s,s′)∈T

w
(
s, s′

) ∥∥f (s)− f
(
s′
)∥∥2

s.t. : ∑
s:(s,s′)∈T

f (s) = 0

∑
s:(s,s′)∈T

f (s) f (s)T = ρ2Id

f (s) , f
(
s′
)
∈ {−1, 1}d

3We used 1− length normalized Edit Distance between s
and s′ as w (s, s′).

4Note that the Hamming distance of a codeword y to another
codeword y′ is 1

4
‖y − y′‖2.

where Id is an identity matrix of size d× d.
Note that the second constraint helps us avoid the

trap of mapping all names to the same codeword and
thereby making the Hamming error zero while satis-
fying the first and last constraints.

It can be shown that the above minimization prob-
lem is NP-hard even for 1-bit codewords (Weiss et
al., 2008). Further, the optimal solution gives code-
words only for the names in the training data. As we
want f to be defined for all s, we address the out-of-
sample extension problem by relaxing f as follows5:

fR (s) = ATφ (s) =
(
aT1 φ (s) , . . . , aTd φ (s)

)T
(1)

where A = [a1, . . . , ad] ∈ Rd1×d is a rank d matrix
(d ≤ d1).

After the linear relaxation (Equation 1), the first
constraint simply means that the data be centered,
i.e., have zero mean. We center Φ by subtracting the
mean of Φ from every φ (s) ∈ Φ to get Φ̂.

Subsequent to the above relaxation, we get the
following optimization problem:

minimize : Tr AT Φ̂LΦ̂TA (2)

s.t. : (3)

AT Φ̂Φ̂TA = ρ2Id (4)

whereL is the graph Laplacian for the similarity ma-
trix W defined by the pairwise similarities w (s, s′).

The minimization problem can be transformed
into a generalized Eigenvalue problem and solved
efficiently using either Cholesky factorization or QZ
algorithm (Golub and Van Loan, 1996):

Φ̂LΦ̂TA = Φ̂Φ̂TAΛ (5)

where Λ is a d× d diagonal matrix.
OnceA has been estimated from the training data,

the codeword of a name s can be produced by bina-
rizing each coordinate of fR (s):

f (s) =
(
sgn

(
aT1 φ (s)

)
, . . . , sgn

(
aTd φ (s)

))T
(6)

where sgn(u) = 1 if u > 0 and−1 otherwise for all
u ∈ R.

5In contrast to our approach, Spectral Hashing, a well-
known hashing technique, makes the unrealistic assumption
that the training data is sampled from a multidimensional uni-
form distribution to address the out-of-sample extension prob-
lem (Weiss et al., 2008).
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In the reminder of this work, we call the system
that uses the hash function learnt from monolingual
data as M-HASH.

2.2 B-HASH: Learning with Bilingual Names
Data

Let (s, t) be a pair of name s and its transliteration
equivalent t in a different language/script. We are
given the set T = {(s, t)} as the training data. Let
φ (s) ∈ Rd1 (and resp. ψ (t) ∈ Rd2) be the feature
representation of s (and resp. t). We want to learn
a pair of hash functions f, g that map names to d bit
codewords: f : s 7→ {−1, 1}d, g : t 7→ {−1, 1}d.
We also want the Hamming distance of the code-
word of a name to the codeword of its transliteration
be small. As in Section 2.1, we want each bit of the
codewords to be either 1 or−1 with equal probablity
and the successive bits of the codewords to be uncor-
related. Thus we arrive at the following optimization
problem:

minimize :
∑

(s,t)∈T

‖f (s)− g (t)‖2

s.t. : ∑
s:(s,t)∈T

f (s) = 0

∑
t:(s,t)∈T

g (t) = 0

∑
s:(s,t)∈T

f (s) f (s)T = ρ2Id∑
t:(s,t)∈S

g (t) g (t)T = ρ2Id

f (s) , g (t) ∈ {−1, 1}d

where Id is an identity matrix of size d× d.
As we want f (and resp. g) to be defined for all s

(and resp. t), we relax f (and resp. g) as follows:

fR (s) = ATφ (s) (7)

gR (t) = BTψ (s) (8)

where A = [a1, . . . , ad] ∈ Rd1×d and B =
[b1, . . . , bd] ∈ Rd2×d are rank d matrices.

As before, we center Φ and Ψ to get Φ̂ and Ψ̂ re-
spectively. Thus, we get the following optimization

problem:

minimize : Tr H
(
A,B; Φ̂, Ψ̂

)
(9)

s.t. : (10)

AT Φ̂Φ̂TA = ρ2Id (11)

BT Ψ̂Ψ̂TB = ρ2Id (12)

where H
(
A,B; Φ̂, Ψ̂

)
=
(
AT Φ̂−BT Ψ̂

)(
AT Φ̂−BT Ψ̂

)T
.

The minimization problem can be solved as a gen-
eralized Eigenvalue problem:

Φ̂Ψ̂TB = Φ̂Φ̂TAΛ (13)

Ψ̂Φ̂TA = Ψ̂Ψ̂TBΛ (14)

where Λ is a d × d diagonal matrix. Further, Equa-
tions 13 and 14 find the canonical coefficients of Φ̂
and Ψ̂ (Hardoon et al., 2004).

As with monolingual learning, we get the code-
word of s by binarizing the coordinates of fR (s)6:

f (s) =
(
sgn

(
aT1 φ (s)

)
, . . . , sgn

(
aTd φ (s)

))T
(15)

In the reminder of this work, we call the system
that uses the hash function learnt from bilingual data
as B-HASH.

3 Similarity Score

In this section, we develop new techniques for com-
puting the similarity of names at token level as well
as a whole. We will use these techniques in the
NAME MATCHING stage of our algorithm (Sec-
tion 4.2.1).

3.1 Token-level Similarity
We use a logistic function over multiple distance
measures to compute the similarity between name
tokens s and s′:

K
(
s, s′

)
=

1

1 + e−
∑

i αidi(s,s′)
. (16)

While a variety of distance measures can be
employed in Equation 16, two obvious choices

6As a biproduct of bilingual learning, we can hash names in
the second language using g:

g (t) =
(
sgn

(
bT1 ψ (t)

)
, . . . , sgn

(
bTd ψ (t)

))T
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are the normalized Damerau-Levenshtein edit dis-
tance between s and s′ and the Hamming dis-
tance between the codewords of s and s′ (=
‖f (s)− f (s′)‖). In our experiments, we found that
the continuous relaxation ‖fR (s)− fR (s′)‖ was
better than ‖f (s)− f (s′)‖ and hence we used it
with Damerau-Levenshtein edit distance. We esti-
mated α1 and α2 using a small held out set.

3.2 Multi-token Name Similarity

Let Q = s1s2 . . . sI and D = s′1s
′
2 . . . s

′
J be two

multi-token names. To compute the similarity be-
tween Q and D, we first form a weighted bipartite
graph with a node for each si and a node for each s′j
and set edge weight toK

(
si, s

′
j

)
. We then compute

the weight (κmax) of the maximum weighted match-
ing7 in this graph. The similarity between Q and D
is then computed as

K (Q,D) =
κmax

|I − J + 1|
. (17)

4 Spelling Correction using Hashing

In this section, we describe our algorithm for
spelling correction using hashing as a building
block.

4.1 Indexing the Name Directory

Given a name directory, we break each name into its
constituent tokens and form a set of distinct name to-
kens. Using the name tokens and the original names,
we build an inverted index which, for each name to-
ken, lists all the names that have the token as a con-
stituent. Further, we hash each name token into a d
bit codeword as described in Equation 6 (and resp.
Equation 15) when using the hash function learnt on
monolingual data (and resp. bilingual data) and store
in a hash table.

4.2 Querying the Name Directory

Querying is done in two stages:
NAME BUCKETING and NAME MATCHING.

7In practice, a maximal matching computed using a greedy
approach suffices since many of the edges in the bipartite graph
have low weight.

4.2.1 Name Bucketing
Given a query Q = s1s2 . . . sI , we hash each si

into a codeword yi and retrieve all codewords in the
hash table that are at a Hamming distance of r or
less from yi. We rank the name tokens thus retrieved
using the token level similarity score of Section 3.1
and retain only the top 100. Using the top tokens, we
get all names which contain any of the name tokens
as a constituent to form the pool of candidates C for
the NAME MATCHING stage.

4.2.2 Name Matching
First we find the best match for a query Q in the

set of candidates C as follows:

D∗ = argmax
D∈C

K (Q,D) . (18)

Next we suggest D∗ as the correction for Q if
K (Q,D∗) exceeds a certain empirically determined
threshold.

5 Experiments and Results

We now discuss the experiments we conducted to
study the retrieval performance of the two hashing-
based approaches developed in the previous sec-
tions. Apart from evaluating the systems on test sets
using different name directories, we were interested
in comparing our systems with several baselines, un-
derstanding the effect of some of the choices we
made (e.g. training data size, conjugate language)
and comparative analysis of retrieval performance
on queries of different complexity.

5.1 Experimental Setup
We tested the proposed hashing-based spelling cor-
rection algorithms on two test sets:

• DUMBTIONARY: 1231 misspellings of var-
ious names from Dumbtionary8 and a name
directory consisting of about 550, 000 names
gleaned from the English Wikipedia. Each of
the misspellings had a correct spelling in the
name directory.

• INTRANET: 200 misspellings of employees
taken from the search logs of the intranet
of a large organization and a name directory

8http://www.dumbtionary.com
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consisting of about 150, 000 employee names.
Each of the misspellings had a correct spelling
in the name directory.

Table 1 shows the average edit distance of a mis-
spelling from the correct name. Compared to
DUMBTIONARY, the misspellings in INTRANET
are more severe as the relatively high edit distance
indicates. Thus, INTRANET represents very hard
cases for spelling correction.

Test Set Average Std. Dev.
DUMBTIONARY 1.39 0.76
INTRANET 2.33 1.60

Table 1: Edit distance of a misspelling from the correct
name.

5.1.1 Training
For M-HASH, we used 30,000 single token

names in English (sampled from the list of names
in the Internet Movie Database9) as training data
and for B-HASH we used 14,941 parallel single to-
ken names in English-Hindi 10. Each name was
represented as a feature vector over character bi-
grams. Thus, the name token Klein has the bigrams
{·k, kl, le, ei, in, n·} as the features.

We learnt the hash functions from the training
data by solving the generalized Eigenvalue problems
of Sections 2.1 and 2.2. For both M-HASH and B-
HASH we used the top 32 Eigenvectors to form the
hash function resulting in a 32 bit representation for
every name token11.

5.1.2 Performance Metric
We measured the performance of all the systems

using Precision@1, the fraction of names for which
a correct spelling was suggested at Rank 1.

5.1.3 Baselines
The baselines are two popular search engines

(S1 and S2), Double Metaphone (DM), a widely
9http://www.imdb.com

10We obtained the names from the organizers
of NEWS2009 workshop (http://www.acl-ijcnlp-
2009.org/workshops/NEWS2009/pages/sharedtask.html).

11We experimented with codewords of various lengths and
found that the 32 bit representation gave the best tradeoff be-
tween retrieval accuracy and speed.

used phonetic search algorithm (Philips, 2000) and
BM25, a very popular Information Retrieval algo-
rithm (Manning et al., 2008). To use BM25 algo-
rithm for spelling correction, we represented each
name as a bag of bigrams and set the parameters K
and b to 2 and 0.75 respectively.

5.2 Results
5.2.1 DUMBTIONARY

Table 2 compares the results of the hashing-based
systems with the baselines on DUMBTIONARY. As
the misspellings in DUMBTIONARY are relatively
easier to correct, all the systems give reasonably
good retrieval results. Nevertheless, the results of
M-HASH and B-HASH are substantially better than
the baselines. M-HASH reduced the error over the
best baseline (S1) by 13.04% whereas B-HASH re-
duced by 46.17% (Table 6).

M-HASH B-HASH S1 S2 DM BM25
87.93 92.53 86.12 79.33 78.95 84.70

Table 2: Precision@1 of the various systems on DUMB-
TIONARY.

To get a deeper understanding of the retrieval per-
formance of the various systems, we studied queries
of varying complexity of misspelling. Table 3 com-
pares the results of our systems with S1 for queries
that are at various edit distances from the correct
names. We observe that M-HASH and B-HASH are
better than S1 in dealing with relatively less severe
misspellings. More interestingly, B-HASH is con-
sistently and significantly better than S1 even when
the misspellings are severe.

Distance M-HASH B-HASH S1
1 96.18 96.55 89.59
2 81.79 87.42 75.76
3 44.07 67.80 59.65
4 21.05 31.58 29.42
5 0.00 37.50 0.00

Table 3: Precision@1 for queries at various edit distances
on DUMBTIONARY.

5.2.2 INTRANET
For INTRANET, search engines could not be used

as baselines and therefore we compare our systems
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with Double Metaphone and BM25 in Table 4. We
observe that both M-HASH and B-HASH give sign-
ficantly better retrieval results than the baselines. M-
HASH reduced the error by 36.20% over Double
Metaphone whereas B-HASH reduced it by 51.73%.
Relative to BM25, M-HASH reduced the error by
31.87% whereas B-HASH reduced it by 48.44%.

M-HASH B-HASH DM BM25
70.65 77.79 54.00 56.92

Table 4: Precision@1 of the various systems on IN-
TRANET.

Table 5 shows the results of our systems for
queries that are at various edit distances from the
correct names. We observe that the retrieval results
for each category of queries are consistent with the
results on DUMBTIONARY. As before, B-HASH
gives signficantly better results than M-HASH.

Distance M-HASH B-HASH
1 82.76 87.93
2 57.14 72.86
3 34.29 65.71
4 38.46 53.85
5 6.67 26.67

Table 5: Precision@1 for queries at various edit distances
on INTRANET.

Test Set M-HASH B-HASH
DUMBTIONARY 13.04 46.17

INTRANET 36.20 51.73

Table 6: Percentage error reduction over the best base-
line.

5.2.3 Effect of Training Data Size
As both M-HASH and B-HASH are data driven

systems, the effect of training data size on retrieval
performance is important to study. Table 7 com-
pares the results for systems trained with various
amounts of training data on DUMBTIONARY. B-
HASH trained with just 1000 name pairs gives
95.5% of the performance of B-HASH trained with
15000 name pairs. Similarly, M-HASH trained with
1000 names gives 98.5% of the performance of

M-HASH trained with 30000 name pairs. This is
probably because the spelling mistakes in DUMB-
TIONARY are relatively easy to correct.

Table 8 shows the results on INTRANET. We see
that increase in the size of training data brings sub-
stantial returns for B-HASH. In contrast, M-HASH
gives the best results at 5000 and does not seem to
benefit from additional training data.

Size M-HASH B-HASH
1000 86.60 88.34
5000 87.36 91.13
10000 86.96 92.53
15000 87.19 92.20
30000 87.93 -

Table 7: Precision@1 on DUMBTIONARY as a function
of training data size.

Size M-HASH B-HASH
1000 66.04 66.03
5000 70.65 72.67
10000 68.09 75.26
15000 68.60 77.79
30000 65.40 -

Table 8: Precision@1 on INTRANET as a function of
training data size.

5.2.4 Effect of Conjugate Language
In Sections 5.2.1 and 5.2.2, we saw that bilingual

data gives substantially better results than monolin-
gual data. In the experiments with bilingual data,
we used English-Hindi data for training B-HASH.
A natural question to ask is what happens when we
use someother language, say Hebrew or Russian or
Tamil, instead of Hindi. In other words, does the
retrieval performance, on an average, vary substan-
tially with the conjugate language?

Table 9 compares the results on DUMB-
TIONARY when B-HASH was trained using
English-Hindi, English-Hebrew, English-Russian,
and English-Tamil data. We see that the retrieval
results are good despite the differences in the script
and language. Clearly, the source language (English
in our experiments) benefits from being paired with
any target language. However, some languages seem
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to give substantially better results than others when
used as the conjugate language. For instance, Hindi
as a conjugate for English seems to be better than
Tamil. At the time of writing this paper, we do not
know the reason for this behavior. We believe that a
combination of factors including feature representa-
tion, training data, and language-specific confusion
matrix need to be studied in greater depth to say any-
thing conclusively about conjugate languages.

Conjugate DUMBTIONARY INTRANET
Hindi 92.53 77.79

Hebrew 91.30 71.68
Russian 89.42 64.94
Tamil 90.48 69.12

Table 9: Precision@1 of B-HASH for various conjugate
languages.

5.2.5 Error Analysis

We looked at cases where either M-HASH or
B-HASH (or both) failed to suggest the correct
spelling. It turns out that in the DUMBTIONARY
test set, for 81 misspelled names, both M-HASH and
B-HASH failed to suggest the correct name at rank
1. Similarly, in the case of INTRANET test set, both
M-HASH and B-HASH failed to suggest the correct
name at rank 1 for 47 queries. This suggests that
queries that are difficult for one system are also in
general difficult for the other system. However, B-
HASH was able to suggest correct names for some
of the queries where M-HASH failed. In fact, in the
INTRANET test set, whenever B-HASH failed, M-
HASH also failed. And interestingly, in the DUMB-
TIONARY test set, the average edit distance of the
query and the correct name for the cases where M-
HASH failed to get the correct name in top 10 while
B-HASH got it at rank 1 was 2.96. This could be be-
cause M-HASH attempts to map names with smaller
edit distances to similar codewords.

Table 10 shows some interesting cases we found
during error analysis. For the first query, M-HASH
suggested the correct name whereas B-HASH did
not. For the second query, both M-HASH and B-
HASH suggested the correct name. And for the third
query, B-HASH suggested the correct name whereas
M-HASH did not.

Query M-HASH B-HASH
John Tiler John Tyler John Tilley

Ddear Dragba Didear Drogba Didear Drogba

James Pol James Poe James Polk

Table 10: Error Analysis.

5.3 Query Response Time

The average query response time is a measure of
the speed of a system and is an important factor
in real deployments of a Spelling Correction sys-
tem. Ideally, one would like the average query re-
sponse time to be as small as possible. However, in
practice, average query response time is not only a
function of the algorithm’s computational complex-
ity but also the computational infrastructure support-
ing the system. In our expriments, we used a sin-
gle threaded implementation of M-HASH and B-
HASH on an Intel Xeon processor (2.86 GHz). Ta-
ble 11 shows the average query response time. We
note that M-HASH is substantially slower than B-
HASH. This is because the number of collisions
in the NAME BUCKETING stage is higher for M-
HASH.

We would like to point out that both
NAME BUCKETING and NAME MATCHING
stages can be multi-threaded on a multi-core ma-
chine and the query response time can be decreased
by an order easily. Further, the memory footprint
of the system is very small and the codewords
require 4.1 MB for the employees name directory
(150,000 names) and 13.8 MB for the Wikipedia
name directory (550,000 names).

Test Set MHASH BHASH
DUMBTIONARY 190 87

INTRANET 148 75

Table 11: Average response time in milliseconds (single
threaded system running on 2.86 GHz Intel Xeon Proces-
sor).

6 Related Work

Spelling correction of written text is a well stud-
ied problem (Kukich, 1996), (Jurafsky and Mar-
tin, 2008). The first approach to spelling correc-
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tion made use of a lexicon to correct out-of-lexicon
terms by finding the closest in-lexicon word (Dam-
erau, 1964). The similarity between a misspelled
word and an in-lexicon word was measured using
Edit Distance (Jurafsky and Martin, 2008). The next
class of approaches applied the noisy channel model
to correct single word spelling errors (Kernighan et
al., 1990), (Brill and Moore, 2000). A major flaw of
single word spelling correction algorithms is they do
not make use of the context of the word in correcting
the errors. The next stream of approaches explored
ways of exploiting the word’s context (Golding and
Roth, 1996), (Cucerzan and Brill, 2004). Recently,
several works have leveraged the Web for improved
spelling correction (Chen et al., 2007),(Islam and
Inkpen, 2009), (Whitelaw et al., 2009). Spelling cor-
rection algorithms targeted for web-search queries
have been developed making use of query logs and
click-thru data (Cucerzan and Brill, 2004), (Ah-
mad and Kondrak, 2005), (Sun et al., 2010). None
of these approaches focus exclusively on correcting
name misspellings.

Name matching techniques have been studied in
the context of database record deduplication, text
mining, and information retrieval (Christen, 2006),
(Pfeifer et al., 1996). Most techniques use one or
more measures of phonetic similarity and/or string
similarity. The popular phonetic similarity-based
techniques are Soundex, Phonix, and Metaphone
(Pfeifer et al., 1996). Some of the string similarity-
based techniques employ Damerau-Levenshtein edit
distance, Jaro distance or Winkler distance (Chris-
ten, 2006). Data driven approaches for learning edit
distance have also been proposed (Ristad and Yiani-
los, 1996). Most of these techniques either give poor
retrieval performance on large name directories or
do not scale.

Hashing techniques for similarity search is also a
well studied problem (Shakhnarovich et al., 2008).
Locality Sensitive Hashing (LSH) is a theoretically
grounded data-oblivious approach for using random
projections to define the hash functions for data ob-
jects with a single view (Charikar, 2002), (Andoni
and Indyk, 2006). Although LSH guarantees that
asymptotically the Hamming distance between the
codewords approaches the Euclidean distance be-
tween the data objects, it is known to produce long
codewords making it practically inefficient. Re-

cently data-aware approaches that employ Machine
Learning techniques to learn hash functions have
been proposed and shown to be a lot more effective
than LSH on both synthetic and real data. Semantic
Hashing employs Restricted Boltzmann Machine to
produce more compact codes than LSH (Salakhutdi-
nov and Hinton, 2009). Spectral Hashing formalizes
the requirements for a good code and relates them to
the problem of balanced graph partitioning which is
known to be NP hard (Weiss et al., 2008). To give
a practical algorithm for hashing, Spectral Hashing
assumes that the data are sampled from a multidi-
mensional uniform distribution and solves a relaxed
partitioning problem.

7 Conclusions

We developed two hashing-based techniques for
spelling correction of person names in People
Search applications.To the best of our knowledge,
these are the first techniques that focus exclusively
on correcting spelling mistakes in person names.
Our approach has several advantages over other
spelling correction techniques. Firstly, we do not
suggest incorrect suggestions for valid queries un-
like (Cucerzan and Brill, 2004). Further, as we sug-
gest spellings from only authoritative name direc-
tories, the suggestions are always well formed and
coherent. Secondly, we do not require query logs
and other resources that are not easily available un-
like (Cucerzan and Brill, 2004), (Ahmad and Kon-
drak, 2005). Neither do we require pairs of mis-
spelled names and their correct spellings for learn-
ing the error model unlike (Brill and Moore, 2000)
or large-coverage general purpose lexicon for unlike
(Cucerzan and Brill, 2004) or pronunciation dictio-
naries unlike (Toutanova and Moore, 2002). Thirdly,
we correct the query as a whole unlike (Ahmad and
Kondrak, 2005) and can handle word order changes
unlike (Cucerzan and Brill, 2004). Fourthly, we
do not iteratively process misspelled name unlike
(Cucerzan and Brill, 2004). Fifthly, we handle large
name directories efficiently unlike the spectrum of
name matching techniques discussed in (Pfeifer et
al., 1996). Finally, our training data requirement is
relatively small.

As future work, we would like to explore the pos-
sibility of learning hash functions using 1) bilingual
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and monolingual data together and 2) multiple con-
jugate languages.
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Abstract

Determining whether a textual phrase denotes
a functional relation (i.e., a relation that maps
each domain element to a unique range el-
ement) is useful for numerous NLP tasks
such as synonym resolution and contradic-
tion detection. Previous work on this prob-
lem has relied on either counting methods or
lexico-syntactic patterns. However, determin-
ing whether a relation is functional, by ana-
lyzing mentions of the relation in a corpus,
is challenging due to ambiguity, synonymy,
anaphora, and other linguistic phenomena.

We present the LEIBNIZ system that over-
comes these challenges by exploiting the syn-
ergy between the Web corpus and freely-
available knowledge resources such as Free-
base. It first computes multiple typed function-
ality scores, representing functionality of the
relation phrase when its arguments are con-
strained to specific types. It then aggregates
these scores to predict the global functionality
for the phrase. LEIBNIZ outperforms previ-
ous work, increasing area under the precision-
recall curve from 0.61 to 0.88. We utilize
LEIBNIZ to generate the first public reposi-
tory of automatically-identified functional re-
lations.

1 Introduction

The paradigm of Open Information Extraction (IE)
(Banko et al., 2007; Banko and Etzioni, 2008) has
scaled extraction technology to the massive set of
relations expressed in Web text. However, additional
work is needed to better understand these relations,

and to place them in richer semantic structures. A
step in that direction is identifying the properties of
these relations, e.g., symmetry, transitivity and our
focus in this paper – functionality. We refer to this
problem as functionality identification.

A binary relation is functional if, for a given arg1,
there is exactly one unique value for arg2. Exam-
ples of functional relations are father, death date,
birth city, etc. We define a relation phrase to be
functional if all semantic relations commonly ex-
pressed by that phrase are functional. For exam-
ple, we say that the phrase ‘was born in’ denotes
a functional relation, because the different seman-
tic relations expressed by the phrase (e.g., birth city,
birth year, etc.) are all functional.

Knowing that a relation is functional is helpful
for numerous NLP inference tasks. Previous work
has used functionality for the tasks of contradiction
detection (Ritter et al., 2008), quantifier scope dis-
ambiguation (Srinivasan and Yates, 2009), and syn-
onym resolution (Yates and Etzioni, 2009). It could
also aid in other tasks such as ontology generation
and information extraction. For example, consider
two sentences from a contradiction detection task:
(1) “George Washington was born in Virginia.” and
(2) “George Washington was born in Texas.”
As Ritter et al. (2008) points out, we can only de-
termine that the two sentences are contradictory if
we know that the semantic relation referred to by
the phrase ‘was born in’ is functional, and that both
Virginia and Texas are distinct states.

Automatic functionality identification is essential
when dealing with a large number of relations as in
Open IE, or in complex domains where expert help
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Figure 1: Our system, LEIBNIZ, uses the Web and Free-
base to determine functionality of Web relations.

is scarce or expensive (e.g., biomedical texts). This
paper tackles automatic functionality identification
using Web text. While functionality identification
has been utilized as a module in various NLP sys-
tems, this is the first paper to focus exclusively on
functionality identification as a bona fide NLP infer-
ence task.

It is natural to identify functions based on triples
extracted from text instead of analyzing sentences
directly. Thus, as our input, we utilize tuples ex-
tracted by TEXTRUNNER (Banko and Etzioni, 2008)
when run over a corpus of 500 million webpages.
TEXTRUNNER maps sentences to tuples of the form
<arg1, relation phrase, arg2> and enables our
LEIBNIZ system to focus on the problem of decid-
ing whether the relation phrase is a function.

The naive approach, which classifies a relation
phrase as non-functional if several arg1s have multi-
ple arg2s in our extraction set, fails due to several
reasons: synonymy – a unique entity may be re-
ferred by multiple strings, polysemy of both entities
and relations – a unique string may refer to multiple
entities/relations, metaphorical usage, extraction er-
rors and more. These phenomena conspire to make
the functionality determination task inherently sta-
tistical and surprisingly challenging.

In addition, a functional relation phrase may ap-
pear non-functional until we consider the types of its
arguments. In our ‘was born in’ example, <George
Washington, was born in, 1732> does not contradict
<George Washington, was born in, Virginia> even
though we see two distinct arg2s for the same arg1.
To solve functionality identification, we need to con-
sider typed relations where the relations analyzed
are constrained to have specific argument types.

We develop several approaches to overcome these

challenges. Our first scheme employs approximate
argument merging to overcome the synonymy and
anaphora problems. Our second approach, DIS-
TRDIFF, takes a statistical view of the problem
and learns a separator for the typical count dis-
tributions of functional versus non-functional rela-
tions. Finally, our third and most successful scheme,
CLEANLISTS, identifies and processes a cleaner
subset of the data by intersecting the corpus with en-
tities in a secondary knowledge-base (in our case,
Freebase (Metaweb Technologies, 2009)). Utiliz-
ing pre-defined types, CLEANLISTS first identifies
typed functionality for suitable types for that rela-
tion phrase, and then combines them to output a final
functionality label. LEIBNIZ, a hybrid of CLEAN-
LISTS and DISTRDIFF, returns state-of-the-art re-
sults for our task.

Our work makes the following contributions:

1. We identify several linguistic phenomena that
make the problem of corpus-based functional-
ity identification surprisingly difficult.

2. We designed and implemented three novel
techniques for identifying functionality based
on instance-based counting, distributional dif-
ferences, and use of external knowledge bases.

3. Our best method, LEIBNIZ, outperforms the
existing approaches by wide margins, increas-
ing area under the precision-recall curve from
0.61 to 0.88. It is also capable of distinguishing
functionality of typed relation phrases, when
the arguments are restricted to specific types.

4. Utilizing LEIBNIZ, we created the first public
repository of functional relations.1

2 Related Work

There is a recent surge in large knowledge bases
constructed by human collaboration such as Free-
base (Metaweb Technologies, 2009) and VerbNet
(Kipper-Schuler, 2005). VerbNet annotates its
verbs with several properties but not functionality.
Freebase does annotate some relations with an ‘is
unique’ property, which is similar to functionality,
but the number of relations in Freebase is still much

1available at http://www.cs.washington.edu/
research/leibniz
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Figure 2: Sample arg2 values for a non-functional relation (visited) vs. a functional relation (was born in) illustrate
the challenge in discriminating functionality from Web text.

smaller than the hundreds of thousands of relations
existing on the Web, necessitating automatic ap-
proaches to functionality identification.

Discovering functional dependencies has been
recognized as an important database analysis tech-
nique (Huhtala et al., 1999; Yao and Hamilton,
2008), but the database community does not address
any of the linguistic phenomena which make this
a challenging problem in NLP. Three groups of re-
searchers have studied functionality identification in
the context of natural language.
AuContraire (Ritter et al., 2008) is a contradic-
tion detection system that also learns relation func-
tionality. Their approach combines a probabilis-
tic model based on (Downey et al., 2005) with es-
timates on whether each arg1 is ambiguous. The
estimates are used to weight each arg1’s contri-
bution to an overall functionality score for each
relation. Both argument-ambiguity and relation-
functionality are jointly estimated using an EM-like
method. While elegant, AuContraire requires sub-
stantial hand-engineered knowledge, which limits
the scalability of their approach.
Lexico-syntactic patterns: Srinivasan and Yates
(2009) disambiguate a quantifier’s scope by first
making judgments about relation functionality. For
functionality, they look for numeric phrases follow-
ing the relation. For example, the presence of the nu-
meric term ‘four’ in the sentence “the fire destroyed
four shops” suggests that destroyed is not functional,
since the same arg1 can destroy multiple things.

The key problem with this approach is that it often
assigns different functionality labels for the present
tense and past tense phrases of the same semantic re-
lation. For example, it will consider ‘lived in’ to be
non-functional, but ‘lives in’ to be functional, since
we rarely say “someone lives in many cities”. Since
both these phrases refer to the same semantic rela-

tion this approach has low precision. Moreover, it
performs poorly for relation phrases that naturally
expect numbers as the target argument (e.g., ‘has an
atomic number of’).

While these lexico-syntactic patterns do not per-
form as well for our task, they are well-suited for
identifying whether a verb phrase can take multiple
objects or not. This can be understood as a function-
ality property of the verb phrase within a sentence,
as opposed to functionality of the semantic relation
the phrase represents.
WIE: In a preliminary study, Popescu (2007) ap-
plies an instance based counting approach, but her
relations require manually annotated type restric-
tions, which makes the approach less scalable.

Finally, functionality is just one property of rela-
tions that can be learned from text. A number of
other studies (Guarino and Welty, 2004; Volker et
al., 2005; Culotta et al., 2006) have examined detect-
ing other relation properties from text and applying
them to tasks such as ontology cleaning.

3 Challenges for Functionality Identification

A functional binary relation r is formally defined as
one such that ∀x, y1, y2 : r(x, y1)∧r(x, y2)⇒ y1 =
y2. We define a relation string to be functional if all
semantic relations commonly expressed by the rela-
tion string are individually functional. Thus, under
our definition, ‘was born in’ and ‘died in’ are func-
tional, even though they can take different arg2s for
the same arg1, e.g., year, city, state, country, etc.

The definition of a functional relation suggests a
naive instance-based counting algorithm for identi-
fying functionality. “Look for the number of arg2s
for each arg1. If all (or most) arg1s have exactly one
arg2, label the relation phrase functional, else, non-
functional.” Unfortunately, this naive algorithm fails
for our task exposing several linguistic phenomena
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that make our problem hard (see Figure 2):

Synonymy: Various arg2s for the same arg1 may
refer to the same entity. This makes many func-
tional relations seem non-functional. For instance,
<George Washington, was born in, Virginia> and
<George Washington, was born in, the British
colony of Virginia> are not in conflict. Other
examples of synonyms include ‘Windy City’ and
‘Chicago’; ‘3rd March’ and ’03/03’, etc.

Anaphora: An entity can be referred to by using
several phrases. For instance,<George Washington,
was born in, a town> does not conflict with his be-
ing born in ‘Colonial Beach, Virginia’, since ‘town’
is an anaphora for his city of birth. Other examples
include ‘The US President’ for ‘George W. Bush’,
and ‘the superpower’ to refer to ‘United States’. The
effect is similar to that of synonyms – many relations
incorrectly appear non-functional.

Argument Ambiguity: <George Washington, was
born in, ‘Kortrijk, Belgium’> in addition to his be-
ing born in ‘Virginia’ suggests that ‘was born in’
is non-functional. However, the real cause is that
‘George Washington’ is ambiguous and refers to dif-
ferent people. This ambiguity gets more pronounced
if the person is referred to just by their first (or last
name), e.g., ‘Clinton’ is commonly used to refer to
both Hillary and Bill Clinton.

Relation Phrase Ambiguity: A relation phrase can
have several senses. For instance ‘weighs 80 kilos’
is a different weighs than ‘weighs his options’.

Type Restrictions: A closely related problem
is type-variations in the argument. E.g., <George
Washington, was born in, America> vs. <George
Washington, born in, Virginia> both use the same
sense of ‘was born in’ but refer to different semantic
relations – one that takes a country in arg2, and the
other that takes a state. Moreover, different argu-
ment types may result in different functionality la-
bels. For example, ‘published in’ is functional if the
arg2 is a year, but non-functional if it is a language,
since a book could be published in many languages.
We refer to this finer notion of functionality as typed
functionality.

Data Sparsity: There is limited data for more ob-
scure relations instances and non-functional relation
phrases appear functional due to lack of evidence.

Textually Functional Relations: Last but not least,
some relations that are not functional may appear
functional in text. An example is ‘collects’. We col-
lect many things, but rarely mention it in text. Usu-
ally, someone’s collection is mentioned in text only
when it makes the news. We name such relations
textually functional. Even though we could build
techniques to reduce the impact of other phenomena,
no instance based counting scheme could overcome
the challenge posed by textually functional relations.

Finally, we note that our functionality predictor
operates over tuples generated by an Open IE sys-
tem. The extractors are not perfect and their errors
can also complicate our analysis.

4 Algorithms

To overcome these challenges, we design three al-
gorithms. Our first algorithm, IBC, applies several
rules to determine whether two arg2s are equal. Our
second algorithm, DISTRDIFF, takes a statistical ap-
proach, and tries to learn a discriminator between
typical count distributions for functional and non-
functional relations. Our final approach, CLEAN-
LISTS, applies counting over a cleaner subset of the
corpus, which is generated based on entities present
in a secondary KB such as Freebase.

From this section onwards, we gloss over the dis-
tinction between a semantic relation and a relation
phrase, since our algorithms do not have access to
relations and operate only at the phrase level. We
use ‘relation’ to refer to the phrases.

4.1 Instance Based Counting (IBC)

For each relation, IBC computes a global function-
ality score by aggregating local functionality scores
for each arg1. The local functionality for each arg1
computes the fraction of arg2 pairs that refer to the
same entity. To operationalize this computation we
need to identify which arg2s co-refer. Moreover, we
also need to pick an aggregation strategy to combine
local functionality scores.

Data Cleaning: Common nouns in arg1s are of-
ten anaphoras for other entities. For example, <the
company, was headquartered in, ...> refers to dif-
ferent companies in different extractions. To combat
this, IBC restricts arg1s to proper nouns. Secondly,
to counter extraction errors and data bias, it retains
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Figure 3: IBC judges that Colonial Beach and Westmore-
land County, Virginia refer to the same entity.

an extraction only once per unique sentence. This
reduces the disproportionately large frequencies of
some assertions that are generated from a single ar-
ticle published at multiple websites. Similarly, it al-
lows an extraction only once per website url. More-
over, it filters out any arg1 that does not appear at
least 10 times with that relation.

Equality Checking: This key component judges
if two arg2s refer to the same entity. It first em-
ploys weak typing by disallowing equality checks
across common nouns, proper nouns, dates and
numbers. This mitigates the relation ambiguity
problem, since we never compare ‘born in(1732)’
and ‘born in(Virginia)’. Within the same category it
judges two arg2s to co-refer if they share a content
word. It also performs a connected component anal-
ysis (Hopcraft and Tarjan, 1973) to take a transitive
closure of arg2s judged equal (see Figure 3).

For example, for the relation ‘was named after’
and arg1=‘Bluetooth’ our corpus has three arg2s:
‘Harald Bluetooth’, ‘Harald Bluetooth, the King of
Denmark’ and ‘the King of Denmark’. Our equal-
ity method judges all three as referring to the same
entity. Note that this is a heuristic approach, which
could make mistakes. But for an error, there needs
to be extractions with the same arg1, relation and
similar arg2s. Such cases exist, but are not com-
mon. Our equality checking mitigates the problems
of anaphora, synonymy as well as some typing.

Aggregation: We try several methods to aggre-
gate local functionality scores for each arg1 into a
global score for the relation. These include, a simple
average, a weighted average weighted by frequency
of each arg1, a weighted average weighted by log
of frequency of each arg1, and a Bayesian approach
that estimates the probability that a relation is func-
tional using statistics over a small development set.

Overall, the log-weighting works the best: it assigns
a higher score for popular arguments, but not so high
that it drowns out all the other evidence.

4.2 DISTRDIFF

Our second algorithm, DISTRDIFF, takes a purely
statistical, discriminative view of the problem. It
recognizes that, due to aforementioned reasons,
whether a relation is functional or not, there are
bound to be several arg1s that look locally functional
and several that look locally non-functional. The
difference is in the number of such arg1s – a func-
tional relation will have more of the former type.

DISTRDIFF studies the count distributions for a
small development set of functional relations (and
similarly for non-functional) and attempts to build
a separator between the two. As an illustration,
Figure 4(a) plots the arg2 counts for various arg1s
for a functional relation (‘is headquartered in’).
Each curve represents a unique arg1. For an arg1,
the x-axis represents the rank (based on frequency)
of arg2s and y-axis represents the normalized fre-
quency of the arg2. For example, if an arg1 is found
with just one arg2, then x=1 will match with y=1
(the first point has all the mass) and x=2 will match
with y=0. If, on the other hand, an arg1 is found
with five arg2s, say, appearing ten times each, then
the first five x-points will map to 0.2 and the sixth
point will map to 0.

We illustrate the same plot for a non-functional
relation (‘visited’) in Figure 4(b). It is evident from
the two figures that, as one would expect, curves for
most arg1s die early in case of a functional relation,
whereas the lower ranked arg2s are more densely
populated in case of a non-functional relation.

We aggregate this information using slope of the
best-fit line for each arg1 curve. For functional re-
lations, the best-fit lines have steep slopes, whereas
for non-functional the lines are flatter. We bucket the
slopes in integer bins and count the fraction of arg1s
appearing in each bin. This lets us aggregate the
information into a single slope-distribution for each
relation. Bold lines in Figure 4(c) illustrate the aver-
age slope-distributions, averaged over ten sample re-
lations of each kind – dashed for non-functional and
solid for functional. Most non-functional relations
have a much higher probability of arg1s with low
magnitude slopes, whereas functional relations are
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Figure 4: DISTRDIFF: Arg2 count distributions fall more sharply for (a) a sample functional relation, than (b) a
sample non-functional relation. (c) The distance of aggregated slope-distributions from average slope-distributions
can be used to predict the functionality.

the opposite. Notice that the aggregated curve for
‘visited’ in the figure is closer to the average curve
for non-functional than to functional and vice-versa
for ‘was born on’.

We plot the aggregated slope-distributions for
each relation and use the distance from average dis-
tributions as a means to predict the functionality. We
use KL divergence (Kullback and Leibler, 1951) to
compute the distance between two distributions. We
score a relation’s functionality in three ways using:
(1) KLFUNC, its distance from average functional
slope-distribution Favg, (2) KLDIFF, its distance
from average functional minus its distance from av-
erage non-functional Navg, and (3) average of these
two scores. For a relation with slope distribution R,
the scores are computed as:

KLFUNC =
∑

iR(i)ln R(i)
Favg(i)

KLDIFF = KLFUNC - (
∑

iR(i)ln R(i)
Navg(i) )

Section 5.2 compares the three scoring functions.
A purely statistical approach is resilient to noisy
data, and does not need to explicitly account for the
various issues we detailed earlier. A disadvantage
is that it cannot handle relation ambiguity and type
restrictions. Moreover, we may need to relearn the
separator if applying DISTRDIFF to a corpus with
very different count distributions.

4.3 CLEANLISTS

Our third algorithm, CLEANLISTS, is based on the
intuition that for identifying functionality we need
not reason over all the data in our corpus; instead,

a small but cleaner subset of the data may work
best. This clean subset should ideally be free of syn-
onyms, ambiguities and anaphora, and be typed.

Several knowledge-bases such as Wordnet,
Wikipedia, and Freebase (Fellbaum, 1998;
Wikipedia, 2004; Metaweb Technologies, 2009),
are readily and freely available and they all provide
clean typed lists of entities. In our experiments
CLEANLISTS employs Freebase as a source of
clean lists, but we could use any of these or other
domain-specific ontologies such as SNOMED
(Price and Spackman, 2000) as well.

CLEANLISTS takes the intersection of Freebase
entities with our corpus to generate a clean subset for
functionality analysis. Freebase currently has over
12 million entities in over 1,000 typed lists. Thus,
this intersection retains significant portions of the
useful data, and gets rid of most of anaphora and
synonymy issues. Moreover, by matching against
typed lists, many relation ambiguities are separated
as well, since ambiguous relations often take dif-
ferent types in the arguments (e.g., ‘ran(Distance)’
vs. ‘ran(Company)’). To mitigate the effect of argu-
ment ambiguity, we additionally get rid of instances
in which arg1s match multiple names in the Freebase
list of names.

As an example, consider the ‘was born in’ rela-
tion. CLEANLISTS will remove instances with only
‘Clinton’ in arg1, since it matches multiple people
in Freebase. It will treat the different types, e.g.,
cities, states, countries, months separately and ana-
lyze the functionality for each of these individually.
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By intersecting the relation data with argument lists
for these types, we will be left with a smaller, but
much cleaner, subset of relation data, one for each
type. CLEANLISTS analyzes each subset using sim-
ple, instance based counting and computes a typed
functionality score for each type. Thus, it first com-
putes typed functionality for each relation.

There are two subtleties in applying this algo-
rithm. First, we need to identify the set of types to
consider for each relation. Our algorithm currently
picks the types that occur most in each relation’s
observed data. In the future, we could also use a
selectional preferences system (Ritter et al., 2010;
Kozareva and Hovy, 2010). Note that we remove
Freebase types such as Written Work from consid-
eration for containing many entities whose primary
senses are not that type. For example, both ‘Al Gore’
and ‘William Clinton’ are also names of books, but
references in text to these are rarely a reference to
the written work sense.

Secondly, an argument could belong to multiple
Freebase lists. For example, ‘California’ is both a
city and a state. We apply a simple heuristic: if a
string appears in multiple lists under consideration,
we assign it to the smallest of the lists (the list of
cities is much larger than states). This simple heuris-
tic usually assigns an argument to its intended type.
On a development set, the error rate of this heuristic
is<4%, though it varies a bit depending on the types
involved.

CLEANLISTS determines the overall functional-
ity of a relation string by aggregating the scores for
each type. It outputs functional if a majority of typed
senses for the relation are functional. For example,
CLEANLISTS judges ‘was born in’ to be functional,
since all relevant type restrictions are individually
typed functional – everyone is born in exactly one
country, city, state, month, etc.

CLEANLISTS has a much higher precision due to
the intersection with clean lists, though at some cost
of recall. The reason for lower recall is that the ap-
proach has a bias towards types that are easy to enu-
merate. It does not have different distances (e.g., 50
kms, 20 miles, etc.) in its lists. Moreover, arguments
that do not correspond to a noun cannot be handled.
For example, in the sentence, “He weighed eating
a cheeseburger against eating a salad”, the arg2 of
‘weighed’ can’t be matched to a Freebase list. To

increase the recall we back off to DISTRDIFF in the
cases when CLEANLISTS is unable to make a pre-
diction. This combination gives the best balance of
precision and recall for our task. We name our final
system LEIBNIZ.

One current limitation is that using only those
arg2s that exactly match clean lists leaves out some
good data (e.g., a tuple with an arg2 of ‘Univ of
Wash’ will not match against a list of universities
that spells it as ‘University of Washington’). Be-
cause we have access to entity types, using typed
equality checkers (Prager et al., 2007) with the clean
lists would allow us to recapture much of this useful
data. Moreover, the knowledge of functions could
apply to building new type nanotheories and reduce
considerable manual effort. We wish to study this in
the future.

5 Evaluation

In our evaluation, we wish to answer three ques-
tions: (1) How do our three approaches, Instance
Based Counting (IBC), DISTRDIFF, and CLEAN-
LISTS, compare on the functionality identification
task? (2) How does our final system, LEIBNIZ,
compare against the existing state of the art tech-
niques? (3) How well is LEIBNIZ able to identify
typed functionality for different types in the same
relation phrase?

5.1 Dataset

For our experiments we test on the set of 887 re-
lations used by Ritter et al. (2008) in their exper-
iments. We use the Open IE corpus generated by
running TEXTRUNNER on 500 million high quality
Webpages (Banko and Etzioni, 2008) as the source
of instance data for these relations. Extractor and
corpus differences lead to some relations not occur-
ring (or not occurring with sufficient frequency to
properly analyze, i.e.,≥ 5 arg1 with≥ 10 evidence),
leaving a dataset of 629 relations on which to test.

Two human experts tagged these relations for
functionality. Tagging the functionality of relation
phrases can be a bit subjective, as it requires the
experts to imagine the various senses of a phrase
and judge functionality over all those senses. The
inter-annotator agreement between the experts was
95.5%. We limit ourselves to the subset of the data
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Figure 5: (a) The best scoring method for DISTRDIFF averages KLFUNC and KLDIFF. (b) CLEANLISTS performs
significantly better than DISTRDIFF, which performs significantly better than IBC.

on which the two experts agreed (a subset of 601
relation phrases).

5.2 Internal Comparisons

First, we compare the three scoring functions for
DISTRDIFF. We vary the score thresholds to gener-
ate the different points on the precision-recall curves
for each of the three. Figure 5(a) plots these curves.
It is evident that the hybrid scoring function, i.e.,
one which is an average of KLFUNC (distance from
average functional) and KLDIFF (distance from av-
erage functional minus distance from average non-
functional) performs the best. We use this scoring in
the further experiments involving DISTRDIFF.

Next, we compare our three algorithms on
the dataset. Figure 5(b) reports the results.
CLEANLISTS outperforms DISTRDIFF by vast mar-
gins, covering a 33.5% additional area under the
precision-recall curve. Overall, CLEANLISTS finds
the very high precision points, because of its use of
clean data. However, it is unable to make 23.1% of
the predictions, primarily because the intersection
between the corpus and Freebase entities results in
very little data for those relations. DISTRDIFF per-
forms better than IBC, due to its statistical nature,
but the issues described in Section 3 plague both
these systems much more than CLEANLISTS.

To increase the recall LEIBNIZ uses a combina-
tion of DISTRDIFF and CLEANLISTS, in which the
algorithm backs off to DISTRDIFF if CLEANLISTS

is unable to output a prediction.

5.3 External Comparisons

We next compare LEIBNIZ against the existing state
of the art approaches. Our competitors are AuCon-
traire and NumericTerms (Ritter et al., 2008; Srini-
vasan and Yates, 2009). Because we use the Au-
Contraire dataset, we report the results from their
best performing system. We reimplement a version
of NumericTerms using their list of numeric quanti-
fiers and extraction patterns that best correspond to
our relation format. We run our implementation of
NumericTerms on a dataset of 100 million English
sentences from a crawl of high quality Webpages to
generate the functionality labels.

Figure 6(a) reports the results of this experiment.
We find that LEIBNIZ outperforms AuContraire by
vast margins covering an additional 44% area in the
precision-recall curve. AuContraire’s AUC is 0.61
whereas LEIBNIZ covers 0.88. A Bootstrap Per-
centile Test (Keller et al., 2005) on F1 score found
the improvement of our techniques over AuCon-
traire to be statistically significant at α = 0.05. Nu-
mericTerms does not perform well, because it makes
decisions based only on the local evidence in a sen-
tence, and does not integrate the knowledge from
different occurrences of the same relation. It returns
many false positives, such as ‘lives in’, which ap-
pear functional to the lexico-syntactic pattern, but
are clearly non-functional, e.g., one could live in
many places over a lifetime.

An example of a LEIBNIZ error is the ‘repre-
sented’ relation. LEIBNIZ classifies this as func-
tional, because it finds several strongly functional
senses (e.g., when a person represents a country),
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Figure 6: (a) LEIBNIZ, which is a hybrid of CLEANLISTS and DISTRDIFF, achieves 0.88 AUC and outperforms the
0.61 AUC from AuContraire (Ritter et al., 2008) and the 0.05 AUC from NumericTerms (Srinivasan and Yates, 2009).
(b) LEIBNIZ is able to tease apart different senses of polysemous relations much better than other systems.

but the human experts might have had some non-
functional senses in mind while labeling.

5.4 Typed Functionality
Next, we conduct a study of the typed functional-
ity task. We test on ten common polysemous re-
lations, each having both a functional and a non-
functional sense. An example is the ‘was pub-
lished in’ relation. If arg2 is a year it is func-
tional, e.g. <Harry Potter 5, was published in,
2003>. However, ‘was published in(Language)’
is not functional, e.g. <Harry Potter 5, was pub-
lished in, [French / Spanish / English]>. Simi-
larly, ‘will become(Company)’ is functional because
when a company is renamed, it transitions away
from the old name exactly once, e.g. <Cingular,
will become, AT&T Wireless>. However, ‘will be-
come(government title)’ is not functional, because
people can hold different offices in their life, e.g.,
<Obama, will become, [Senator / President]>.

In this experiment, a simple baseline of predict-
ing the same label for the two types of each rela-
tion achieves a precision of 0.5. Figure 6(b) presents
the results of this study. AuContraire achieves a flat
0.5, since it cannot distinguish between types. Nu-
mericTerms can be modified to distinguish between
basic types – check the word just after the numeric
term to see whether it matches the type name. For
example, the modified NumericTerms will search
the Web for instances of “was published in [nu-
meric term] years” vs. “was published in [numeric
term] languages”. This scheme works better when
the type name is simple (e.g., languages) rather than

complex (e.g., government titles).
LEIBNIZ performs the best and is able to tease

apart the functionality of various types very well.
When LEIBNIZ did not work, it was generally be-
cause of textual functionality, which is a larger issue
for typed functionality than general functionality. Of
course, these results are merely suggestive – we per-
form a larger-scale experiment and generate a repos-
itory of typed functions next.

6 A Repository of Functional Relations

We now report on a repository of typed functional
relations generated automatically by applying LEIB-
NIZ to a large collection of relation phrases. Instead
of starting with the most frequent relations from
TEXTRUNNER, we use OCCAM’s relations (Fader
et al., 2010) because they are more specific. For in-
stance, where TEXTRUNNER outputs an underspec-
ified tuple, <Gold, has, an atomic number of 79>,
OCCAM extracts <Gold, has an atomic number of,
79>. OCCAM enables LEIBNIZ to identify far more
functional relations than TEXTRUNNER.

6.1 Addressing Evidence Sparsity

Scaling up to a large collection of typed relations
requires us to consider the size of our data sets. For
example, consider which relation is more likely to be
functional—a relation with 10 instances all of which
indicate functionality versus a relation with 100 in-
stances where 95 behave functionally.

To address this problem, we adapt the likelihood
ratio approach from Schoenmackers et al. (2010).
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For a typed relation with n instances, f of which in-
dicate functionality, the G-test (Dunning, 1993), G
= 2*(f*ln(f/k)+(n-f)*ln((n-f)/(n-k))), provides a mea-
sure for the likelihood that the relation is not func-
tional. Here k denotes the evidence indicating func-
tionality for the case where the relation is not func-
tional. Setting k = n*0.25 worked well for us. This
G-score replaces our previous metric for scoring
functional relations.

6.2 Evaluation of the Repository

In CLEANLISTS a factor that affects the quality of
the results is the exact set of lists that is used. If
the lists are not clean, results get noisy. For exam-
ple, Freebase’s list of films contains 73,000 entries,
many of which (e.g., ”Egg”) are not films in their pri-
mary senses. Even with heuristics such as assigning
terms to their smallest lists and disqualifying dictio-
nary words that occur from large type lists, there is
still significant noise left.

Using LEIBNIZ with a set of 35 clean lists on
OCCAM’s extraction corpus, we generated a repos-
itory of 5,520 typed functional relations. To eval-
uate this resource a human expert tagged a random
subset of the top 1,000 relations. Of these relations
22% were either ill-formed or had non-sensical type
constraints. From the well-formed typed relations
the precision was estimated to be 0.8. About half
the errors were due to textual functionality and the
rest were LEIBNIZ errors. Some examples of good
functions found include isTheSequelTo(videogame)
and areTheBirthstoneFor(month). An example of
a textually functional relation found is wasThe-
FounderOf(company).

This is the first public repository of automatically-
identified functional relations. Scaling up our data
set forced us to confront new sources of noise in-
cluding extractor errors, errors due to mismatched
types, and errors due to sparse evidence. Still, our
initial results are encouraging and we hope that our
resource will be valuable as a baseline for future
work.

7 Conclusions

Functionality identification is an important subtask
for Web-scale information extraction and other ma-
chine reading tasks. We study the problem of pre-

dicting the functionality of a relation phrase auto-
matically from Web text. We presented three algo-
rithms for this task: (1) instance-based counting, (2)
DISTRDIFF, which takes a statistical approach and
discriminatively classifies the relations using aver-
age arg-distributions, and (3) CLEANLISTS, which
performs instance based counting on a subset of
clean data generated by intersection of the corpus
with a knowledge-base like Freebase.

Our best approach, LEIBNIZ, is a hybrid of
DISTRDIFF and CLEANLISTS, and outperforms
the existing state-of-the-art approaches by covering
44% more area under the precision-recall curve. We
also observe that an important sub-component of
identifying a functional relation phrase is identifying
typed functionality, i.e., functionality when the ar-
guments of the relation phrase are type-constrained.
Because CLEANLISTS is able to use typed lists, it
can successfully identify typed functionality.

We run our techniques on a large set of relations to
output a first repository of typed functional relations.
We release this list for further use by the research
community.2

Future Work: Functionality is one of the sev-
eral properties a relation can possess. Others in-
clude selectional preferences, transitivity (Schoen-
mackers et al., 2008), mutual exclusion, symme-
try, etc. These properties are very useful in increas-
ing our understanding about these Open IE relation
strings. We believe that the general principles devel-
oped in this work, for example, connecting the Open
IE knowledge with an existing knowledge resource,
will come in very handy in identifying these other
properties.
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Abstract

The rapid growth of geotagged social media
raises new computational possibilities for in-
vestigating geographic linguistic variation. In
this paper, we present a multi-level generative
model that reasons jointly about latent topics
and geographical regions. High-level topics
such as “sports” or “entertainment” are ren-
dered differently in each geographic region,
revealing topic-specific regional distinctions.
Applied to a new dataset of geotagged mi-
croblogs, our model recovers coherent top-
ics and their regional variants, while identi-
fying geographic areas of linguistic consis-
tency. The model also enables prediction of
an author’s geographic location from raw text,
outperforming both text regression and super-
vised topic models.

1 Introduction

Sociolinguistics and dialectology study how lan-
guage varies across social and regional contexts.
Quantitative research in these fields generally pro-
ceeds by counting the frequency of a handful of
previously-identified linguistic variables: pairs of
phonological, lexical, or morphosyntactic features
that are semantically equivalent, but whose fre-
quency depends on social, geographical, or other
factors (Paolillo, 2002; Chambers, 2009). It is left to
the experimenter to determine which variables will
be considered, and there is no obvious procedure for
drawing inferences from the distribution of multiple
variables. In this paper, we present a method for
identifying geographically-aligned lexical variation
directly from raw text. Our approach takes the form
of a probabilistic graphical model capable of iden-
tifying both geographically-salient terms and coher-
ent linguistic communities.

One challenge in the study of lexical variation is
that term frequencies are influenced by a variety of
factors, such as the topic of discourse. We address
this issue by adding latent variables that allow us to
model topical variation explicitly. We hypothesize
that geography and topic interact, as “pure” topi-
cal lexical distributions are corrupted by geographi-
cal factors; for example, a sports-related topic will
be rendered differently in New York and Califor-
nia. Each author is imbued with a latent “region”
indicator, which both selects the regional variant of
each topic, and generates the author’s observed ge-
ographical location. The regional corruption of top-
ics is modeled through a cascade of logistic normal
priors—a general modeling approach which we call
cascading topic models. The resulting system has
multiple capabilities, including: (i) analyzing lexi-
cal variation by both topic and geography; (ii) seg-
menting geographical space into coherent linguistic
communities; (iii) predicting author location based
on text alone.

This research is only possible due to the rapid
growth of social media. Our dataset is derived from
the microblogging website Twitter,1 which permits
users to post short messages to the public. Many
users of Twitter also supply exact geographical co-
ordinates from GPS-enabled devices (e.g., mobile
phones),2 yielding geotagged text data. Text in
computer-mediated communication is often more
vernacular (Tagliamonte and Denis, 2008), and as
such it is more likely to reveal the influence of ge-
ographic factors than text written in a more formal
genre, such as news text (Labov, 1966).

We evaluate our approach both qualitatively and
quantitatively. We investigate the topics and regions

1http://www.twitter.com
2User profiles also contain self-reported location names, but

we do not use that information in this work.
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that the model obtains, showing both common-sense
results (place names and sports teams are grouped
appropriately), as well as less-obvious insights about
slang. Quantitatively, we apply our model to predict
the location of unlabeled authors, using text alone.
On this task, our model outperforms several alterna-
tives, including both discriminative text regression
and related latent-variable approaches.

2 Data

The main dataset in this research is gathered from
the microblog website Twitter, via its official API.
We use an archive of messages collected over the
first week of March 2010 from the “Gardenhose”
sample stream,3 which then consisted of 15% of
all public messages, totaling millions per day. We
aggressively filter this stream, using only messages
that are tagged with physical (latitude, longitude)
coordinate pairs from a mobile client, and whose au-
thors wrote at least 20 messages over this period. We
also filter to include only authors who follow fewer
than 1,000 other people, and have fewer than 1,000
followers. Kwak et al. (2010) find dramatic shifts
in behavior among users with social graph connec-
tivity outside of that range; such users may be mar-
keters, celebrities with professional publicists, news
media sources, etc. We also remove messages con-
taining URLs to eliminate bots posting information
such as advertising or weather conditions. For inter-
pretability, we restrict our attention to authors inside
a bounding box around the contiguous U.S. states,
yielding a final sample of about 9,500 users and
380,000 messages, totaling 4.7 million word tokens.
We have made this dataset available online.4

Informal text from mobile phones is challeng-
ing to tokenize; we adapt a publicly available tok-
enizer5 originally developed for Twitter (O’Connor
et al., 2010), which preserves emoticons and blocks
of punctuation and other symbols as tokens. For
each user’s Twitter feed, we combine all messages
into a single “document.” We remove word types
that appear in fewer than 40 feeds, yielding a vocab-
ulary of 5,216 words. Of these, 1,332 do not appear
in the English, French, or Spanish dictionaries of the

3http://dev.twitter.com/pages/streaming_api
4http://www.ark.cs.cmu.edu/GeoTwitter
5http://tweetmotif.com

spell-checking program aspell.
Every message is tagged with a location, but most

messages from a single individual tend to come from
nearby locations (as they go about their day); for
modeling purposes we use only a single geographic
location for each author, simply taking the location
of the first message in the sample.

The authors in our dataset are fairly heavy Twit-
ter users, posting an average of 40 messages per day
(although we see only 15% of this total). We have
little information about their demographics, though
from the text it seems likely that this user set skews
towards teens and young adults. The dataset cov-
ers each of the 48 contiguous United States and the
District of Columbia.

3 Model

We develop a model that incorporates two sources
of lexical variation: topic and geographical region.
We treat the text and geographic locations as out-
puts from a generative process that incorporates both
topics and regions as latent variables.6 During infer-
ence, we seek to recover the topics and regions that
best explain the observed data.

At the base level of model are “pure” topics (such
as “sports”, “weather”, or “slang”); these topics are
rendered differently in each region. We call this gen-
eral modeling approach a cascading topic model; we
describe it first in general terms before moving to the
specific application to geographical variation.

3.1 Cascading Topic Models

Cascading topic models generate text from a chain
of random variables. Each element in the chain de-
fines a distribution over words, and acts as the mean
of the distribution over the subsequent element in
the chain. Thus, each element in the chain can be
thought of as introducing some additional corrup-
tion. All words are drawn from the final distribution
in the chain.

At the beginning of the chain are the priors, fol-
lowed by unadulerated base topics, which may then
be corrupted by other factors (such as geography or
time). For example, consider a base “food” topic

6The region could be observed by using a predefined geo-
graphical decomposition, e.g., political boundaries. However,
such regions may not correspond well to linguistic variation.
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that emphasizes words like dinner and delicious;
the corrupted “food-California” topic would place
weight on these words, but might place extra em-
phasis on other words like sprouts.

The path through the cascade is determined by a
set of indexing variables, which may be hidden or
observed. As in standard latent Dirichlet allocation
(Blei et al., 2003), the base topics are selected by
a per-token hidden variable z. In the geographical
topic model, the next level corresponds to regions,
which are selected by a per-author latent variable r.

Formally, we draw each level of the cascade from
a normal distribution centered on the previous level;
the final multinomial distribution over words is ob-
tained by exponentiating and normalizing. To ensure
tractable inference, we assume that all covariance
matrices are uniform diagonal, i.e., aI with a > 0;
this means we do not model interactions between
words.

3.2 The Geographic Topic Model
The application of cascading topic models to ge-
ographical variation is straightforward. Each doc-
ument corresponds to the entire Twitter feed of a
given author during the time period covered by our
corpus. For each author, the latent variable r cor-
responds to the geographical region of the author,
which is not observed. As described above, r se-
lects a corrupted version of each topic: the kth basic
topic has mean µk, with uniform diagonal covari-
ance σ2

k; for region j, we can draw the regionally-
corrupted topic from the normal distribution, ηjk ∼
N(µk, σ2

kI).
Because η is normally-distributed, it lies not in

the simplex but in RW . We deterministically com-
pute multinomial parameters β by exponentiating
and normalizing: βjk = exp(ηjk)/

∑
i exp(η(i)

jk ).
This normalization could introduce identifiability
problems, as there are multiple settings for η that
maximize P (w|η) (Blei and Lafferty, 2006a). How-
ever, this difficulty is obviated by the priors: given
µ and σ2, there is only a single η that maximizes
P (w|η)P (η|µ, σ2); similarly, only a single µmax-
imizes P (η|µ)P (µ|a, b2).

The observed latitude and longitude, denoted y,
are normally distributed and conditioned on the re-
gion, with mean νr and precision matrix Λr indexed
by the region r. The region index r is itself drawn

from a single shared multinomial ϑ. The model is
shown as a plate diagram in Figure 1.

Given a vocabulary size W , the generative story
is as follows:

• Generate base topics: for each topic k < K

– Draw the base topic from a normal distribu-
tion with uniform diagonal covariance: µk ∼
N(a, b2I),

– Draw the regional variance from a Gamma
distribution: σ2

k ∼ G(c, d).
– Generate regional variants: for each region
j < J ,
∗ Draw the region-topic ηjk from a normal

distribution with uniform diagonal covari-
ance: ηjk ∼ N(µk, σ

2
kI).

∗ Convert ηjk into a multinomial
distribution over words by ex-
ponentiating and normalizing:
βjk = exp

(
ηjk

)
/
∑W

i exp(η(i)
jk ),

where the denominator sums over the
vocabulary.

• Generate regions: for each region j < J ,

– Draw the spatial mean νj from a normal dis-
tribution.

– Draw the precision matrix Λj from a Wishart
distribution.

• Draw the distribution over regions ϑ from a sym-
metric Dirichlet prior, ϑ ∼ Dir(αϑ1).

• Generate text and locations: for each document d,

– Draw topic proportions from a symmetric
Dirichlet prior, θ ∼ Dir(α1).

– Draw the region r from the multinomial dis-
tribution ϑ.

– Draw the location y from the bivariate Gaus-
sian, y ∼ N(νr,Λr).

– For each word token,
∗ Draw the topic indicator z ∼ θ.
∗ Draw the word token w ∼ βrz .

4 Inference

We apply mean-field variational inference: a fully-
factored variational distribution Q is chosen to min-
imize the Kullback-Leibler divergence from the
true distribution. Mean-field variational inference
with conjugate priors is described in detail else-
where (Bishop, 2006; Wainwright and Jordan,
2008); we restrict our focus to the issues that are
unique to the geographic topic model.
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k variance parameter for regional variants of topic k
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θd author d’s topic proportions
rd author d’s latent region
yd author d’s observed GPS location
νj region j’s spatial center
Λj region j’s spatial precision
zn token n’s topic assignment
wn token n’s observed word type
α global prior over author-topic proportions
ϑ global prior over region classes

Figure 1: Plate diagram for the geographic topic model, with a table of all random variables. Priors (besides α) are
omitted for clarity, and the document indices on z and w are implicit.

We place variational distributions over all latent
variables of interest: θ, z, r,ϑ,η,µ, σ2,ν, and Λ,
updating each of these distributions in turn, until
convergence. The variational distributions over θ
and ϑ are Dirichlet, and have closed form updates:
each can be set to the sum of the expected counts,
plus a term from the prior (Blei et al., 2003). The
variational distributions q(z) and q(r) are categor-
ical, and can be set proportional to the expected
joint likelihood—to set q(z) we marginalize over r,
and vice versa.7 The updates for the multivariate
Gaussian spatial parameters ν and Λ are described
by Penny (2001).

4.1 Regional Word Distributions

The variational region-topic distribution ηjk is nor-
mal, with uniform diagonal covariance for tractabil-
ity. Throughout we will write 〈x〉 to indicate the ex-
pectation of x under the variational distribution Q.
Thus, the vector mean of the distribution q(ηjk) is
written 〈ηjk〉, while the variance (uniform across i)
of q(η) is written V(ηjk).

To update the mean parameter 〈ηjk〉, we max-
imize the contribution to the variational bound L
from the relevant terms:

L
[〈η(i)

jk 〉]
= 〈log p(w|β, z, r)〉+〈log p(η(i)

jk |µ
(i)
k , σ

2
k)〉,
(1)

7Thanks to the naı̈ve mean field assumption, we can
marginalize over z by first decomposing across all Nd words
and then summing over q(z).

with the first term representing the likelihood of the
observed words (recall that β is computed determin-
istically from η) and the second term corresponding
to the prior. The likelihood term requires the expec-
tation 〈logβ〉, but this is somewhat complicated by
the normalizer

∑W
i exp(η(i)), which sums over all

terms in the vocabulary. As in previous work on lo-
gistic normal topic models, we use a Taylor approx-
imation for this term (Blei and Lafferty, 2006a).

The prior on η is normal, so the contribution from
the second term of the objective (Equation 1) is
− 1

2〈σ2
k〉
〈(η(i)

jk − µ
(i)
k )2〉. We introduce the following

notation for expected counts: N(i, j, k) indicates the
expected count of term i in region j and topic k, and
N(j, k) =

∑
iN(i, j, k). After some calculus, we

can write the gradient ∂L/∂〈η((i))
jk 〉 as

N(i, j, k)−N(j, k)〈β(i)
jk 〉 − 〈σ

−2
k 〉(〈η

(i)
jk 〉 − 〈µ

(i)
k 〉),

(2)
which has an intuitive interpretation. The first two
terms represent the difference in expected counts for
term i under the variational distributions q(z, r) and
q(z, r, β): this difference goes to zero when β(i)

jk per-
fectly matches N(i, j, k)/N(j, k). The third term
penalizes η(i)

jk for deviating from its prior µ(i)
k , but

this penalty is proportional to the expected inverse
variance 〈σ−2

k 〉. We apply gradient ascent to maxi-
mize the objective L. A similar set of calculations
gives the gradient for the variance of η; these are
described in an forthcoming appendix.
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4.2 Base Topics

The base topic parameters areµk and σ2
k; in the vari-

ational distribution, q(µk) is normally distributed
and q(σ2

k) is Gamma distributed. Note that µk and
σ2
k affect only the regional word distributions ηjk.

An advantage of the logistic normal is that the vari-
ational parameters over µk are available in closed
form,

〈µ(i)
k 〉 =

b2
∑J

j 〈η
(i)
jk 〉+ 〈σ2

k〉a(i)

b2J + 〈σ2
k〉

V(µk) = (b−2 + J〈σ−2
k 〉)

−1,

where J indicates the number of regions. The ex-
pectation of the base topic µ incorporates the prior
and the average of the generated region-topics—
these two components are weighted respectively by
the expected variance of the region-topics 〈σ2

k〉 and
the prior topical variance b2. The posterior variance
V(µ) is a harmonic combination of the prior vari-
ance b2 and the expected variance of the region top-
ics.

The variational distribution over the region-topic
variance σ2

k has Gamma parameters. These param-
eters cannot be updated in closed form, so gradi-
ent optimization is again required. The derivation
of these updates is more involved, and is left for a
forthcoming appendix.

5 Implementation

Variational scheduling and initialization are impor-
tant aspects of any hierarchical generative model,
and are often under-discussed. In our implementa-
tion, the variational updates are scheduled as fol-
lows: given expected counts, we iteratively update
the variational parameters on the region-topics η and
the base topicsµ, until convergence. We then update
the geographical parameters ν and Λ, as well as the
distribution over regions ϑ. Finally, for each doc-
ument we iteratively update the variational param-
eters over θ, z, and r until convergence, obtaining
expected counts that are used in the next iteration
of updates for the topics and their regional variants.
We iterate an outer loop over the entire set of updates
until convergence.

We initialize the model in a piecewise fashion.
First we train a Dirichlet process mixture model on

the locations y, using variational inference on the
truncated stick-breaking approximation (Blei and
Jordan, 2006). This automatically selects the num-
ber of regions J , and gives a distribution over each
region indicator rd from geographical information
alone. We then run standard latent Dirichlet alloca-
tion to obtain estimates of z for each token (ignoring
the locations). From this initialization we can com-
pute the first set of expected counts, which are used
to obtain initial estimates of all parameters needed
to begin variational inference in the full model.

The prior a is the expected mean of each topic
µ; for each term i, we set a(i) = logN(i) − logN ,
where N(i) is the total count of i in the corpus and
N =

∑
iN(i). The variance prior b2 is set to 1, and

the prior on σ2 is the Gamma distribution G(2, 200),
encouraging minimal deviation from the base topics.
The symmetric Dirichlet prior on θ is set to 1

2 , and
the symmetric Dirichlet parameter on ϑ is updated
from weak hyperpriors (Minka, 2003). Finally, the
geographical model takes priors that are linked to the
data: for each region, the mean is very weakly en-
couraged to be near the overall mean, and the covari-
ance prior is set by the average covariance of clusters
obtained by running K-means.

6 Evaluation

For a quantitative evaluation of the estimated rela-
tionship between text and geography, we assess our
model’s ability to predict the geographic location of
unlabeled authors based on their text alone.8 This
task may also be practically relevant as a step toward
applications for recommending local businesses or
social connections. A randomly-chosen 60% of au-
thors are used for training, 20% for development,
and the remaining 20% for final evaluation.

6.1 Systems

We compare several approaches for predicting au-
thor location; we divide these into latent variable
generative models and discriminative approaches.

8Alternatively, one might evaluate the attributed regional
memberships of the words themselves. While the Dictionary of
American Regional English (Cassidy and Hall, 1985) attempts
a comprehensive list of all regionally-affiliated terms, it is based
on interviews conducted from 1965-1970, and the final volume
(covering Si–Z) is not yet complete.
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6.1.1 Latent Variable Models
Geographic Topic Model This is the full version
of our system, as described in this paper. To pre-
dict the unseen location yd, we iterate until con-
vergence on the variational updates for the hidden
topics zd, the topic proportions θd, and the region
rd. From rd, the location can be estimated as ŷd =
arg maxy

∑J
j p(y|νj ,Λj)q(rd = j). The develop-

ment set is used to tune the number of topics and to
select the best of multiple random initializations.

Mixture of Unigrams A core premise of our ap-
proach is that modeling topical variation will im-
prove our ability to understand geographical varia-
tion. We test this idea by fixing K = 1, running our
system with only a single topic. This is equivalent
to a Bayesian mixture of unigrams in which each au-
thor is assigned a single, regional unigram language
model that generates all of his or her text. The de-
velopment set is used to select the best of multiple
random initializations.

Supervised Latent Dirichlet Allocation In a
more subtle version of the mixture-of-unigrams
model, we model each author as an admixture of re-
gions. Thus, the latent variable attached to each au-
thor is no longer an index, but rather a vector on the
simplex. This model is equivalent to supervised la-
tent Dirichlet allocation (Blei and McAuliffe, 2007):
each topic is associated with equivariant Gaussian
distributions over the latitude and longitude, and
these topics must explain both the text and the ob-
served geographical locations. For unlabeled au-
thors, we estimate latitude and longitude by esti-
mating the topic proportions and then applying the
learned geographical distributions. This is a linear
prediction

f(z̄d;a) = (z̄T
da

lat, z̄T
da

lon)

for an author’s topic proportions z̄d and topic-
geography weights a ∈ R2K .

6.1.2 Baseline Approaches
Text Regression We perform linear regression
to discriminatively learn the relationship between
words and locations. Using term frequency features
xd for each author, we predict locations with word-
geography weights a ∈ R2W :

f(xd;a) = (xT
da

lat, xT
da

lon)

Weights are trained to minimize the sum of squared
Euclidean distances, subject to L1 regularization:∑

d

(xT
da

lat − ylat
d )2 + (xT

da
lon − ylon

d )2

+ λlat||alat||1 + λlon||alon||1

The minimization problem decouples into two sep-
arate latitude and longitude models, which we fit
using the glmnet elastic net regularized regres-
sion package (Friedman et al., 2010), which ob-
tained good results on other text-based prediction
tasks (Joshi et al., 2010). Regularization parameters
were tuned on the development set. The L1 penalty
outperformed L2 and mixtures of L1 and L2.

Note that for both word-level linear regression
here, and the topic-level linear regression in SLDA,
the choice of squared Euclidean distance dovetails
with our use of spatial Gaussian likelihoods in the
geographic topic models, since optimizing a is
equivalent to maximum likelihood estimation un-
der the assumption that locations are drawn from
equivariant circular Gaussians centered around each
f(xd;a) linear prediction. We experimented with
decorrelating the location dimensions by projecting
yd into the principal component space, but this did
not help text regression.

K-Nearest Neighbors Linear regression is a poor
model for the multimodal density of human popula-
tions. As an alternative baseline, we applied super-
vised K-nearest neighbors to predict the location yd
as the average of the positions of the K most sim-
ilar authors in the training set. We computed term-
frequency inverse-document frequency features and
applied cosine similarity over their first 30 principal
components to find the neighbors. The choices of
principal components, IDF weighting, and neighbor-
hood size K = 20 were tuned on the development
set.

6.2 Metrics
Our principle error metrics are the mean and median
distance between the predicted and true location in
kilometers.9 Because the distance error may be dif-
ficult to interpret, we also report accuracy of classi-

9For convenience, model training and prediction use latitude
and longitude as an unprojected 2D Euclidean space. However,
properly measuring the physical distance between points on the
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Regression Classification accuracy (%)
System Mean Dist. (km) Median Dist. (km) Region (4-way) State (49-way)
Geographic topic model 900 494 58 24
Mixture of unigrams 947 644 53 19
Supervised LDA 1055 728 39 4
Text regression 948 712 41 4
K-nearest neighbors 1077 853 37 2
Mean location 1148 1018
Most common class 37 27

Table 1: Location prediction results; lower scores are better on the regression task, higher scores are better on the
classification task. Distances are in kilometers. Mean location and most common class are computed from the test set.
Both the geographic topic model and supervised LDA use the best number of topics from the development set (10 and
5, respectively).

fication by state and by region of the United States.
Our data includes the 48 contiguous states plus the
District of Columbia; the U.S. Census Bureau di-
vides these states into four regions: West, Midwest,
Northeast, and South.10 Note that while major pop-
ulation centers straddle several state lines, most re-
gion boundaries are far from the largest cities, re-
sulting in a clearer analysis.

6.3 Results

As shown in Table 1, the geographic topic model
achieves the strongest performance on all metrics.
All differences in performance between systems
are statistically significant (p < .01) using the
Wilcoxon-Mann-Whitney test for regression error
and the χ2 test for classification accuracy. Figure 2
shows how performance changes as the number of
topics varies.

Note that the geographic topic model and the mix-
ture of unigrams use identical code and parametriza-
tion – the only difference is that the geographic topic
model accounts for topical variation, while the mix-
ture of unigrams sets K = 1. These results validate
our basic premise that it is important to model the
interaction between topical and geographical varia-
tion.

Text regression and supervised LDA perform es-
pecially poorly on the classification metric. Both
methods make predictions that are averaged across

Earth’s surface requires computing or approximating the great
circle distance – we use the Haversine formula (Sinnott, 1984).
For the continental U.S., the relationship between degrees and
kilometers is nearly linear, but extending the model to a conti-
nental scale would require a more sophisticated approach.

10http://www.census.gov/geo/www/us_regdiv.pdf
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Figure 2: The effect of varying the number of topics on
the median regression error (lower is better).

each word in the document: in text regression, each
word is directly multiplied by a feature weight; in
supervised LDA the word is associated with a la-
tent topic first, and then multiplied by a weight. For
these models, all words exert an influence on the pre-
dicted location, so uninformative words will draw
the prediction towards the center of the map. This
yields reasonable distance errors but poor classifica-
tion accuracy. We had hoped that K-nearest neigh-
bors would be a better fit for this metric, but its per-
formance is poor at all values of K. Of course it is
always possible to optimize classification accuracy
directly, but such an approach would be incapable
of predicting the exact geographical location, which
is the focus of our evaluation (given that the desired
geographical partition is unknown). Note that the
geographic topic model is also not trained to opti-
mize classification accuracy.
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“basketball”
“popular
music”

“daily life” “emoticons” “chit chat”

PISTONS KOBE
LAKERS game

DUKE NBA
CAVS STUCKEY

JETS KNICKS

album music
beats artist video

#LAKERS
ITUNES tour
produced vol

tonight shop
weekend getting
going chilling
ready discount

waiting iam

:) haha :d :( ;) :p
xd :/ hahaha

hahah

lol smh jk yea
wyd coo ima

wassup
somethin jp

Boston
+ CELTICS victory

BOSTON
CHARLOTTE

playing daughter
PEARL alive war

comp
BOSTON ;p gna loveee

ese exam suttin
sippin

N. California+ THUNDER
KINGS GIANTS
pimp trees clap

SIMON dl
mountain seee 6am OAKLAND

pues hella koo
SAN fckn

hella flirt hut
iono OAKLAND

New York + NETS KNICKS BRONX iam cab oww wasssup nm

Los Angeles+ #KOBE
#LAKERS
AUSTIN

#LAKERS load
HOLLYWOOD
imm MICKEY

TUPAC

omw tacos hr
HOLLYWOOD

af papi raining
th bomb coo

HOLLYWOOD

wyd coo af nada
tacos messin
fasho bomb

Lake Erie
+ CAVS

CLEVELAND
OHIO BUCKS od

COLUMBUS

premiere prod
joint TORONTO
onto designer

CANADA village
burr

stink CHIPOTLE
tipsy

;d blvd BIEBER
hve OHIO

foul WIZ salty
excuses lames

officer lastnight

Table 2: Example base topics (top line) and regional variants. For the base topics, terms are ranked by log-odds
compared to the background distribution. The regional variants show words that are strong compared to both the base
topic and the background. Foreign-language words are shown in italics, while terms that are usually in proper nouns
are shown in SMALL CAPS. See Table 3 for definitions of slang terms; see Section 7 for more explanation and details
on the methodology.

Figure 3: Regional clustering of the training set obtained by one randomly-initialized run of the geographical topic
model. Each point represents one author, and each shape/color combination represents the most likely cluster as-
signment. Ellipses represent the regions’ spatial means and covariances. The same model and coloring are shown in
Table 2.
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7 Analysis

Our model permits analysis of geographical vari-
ation in the context of topics that help to clarify
the significance of geographically-salient terms. Ta-
ble 2 shows a subset of the results of one randomly-
initialized run, including five hand-chosen topics (of
50 total) and five regions (of 13, as chosen automat-
ically during initialization). Terms were selected by
log-odds comparison. For the base topics we show
the ten strongest terms in each topic as compared to
the background word distribution. For the regional
variants, we show terms that are strong both region-
ally and topically: specifically, we select terms that
are in the top 100 compared to both the background
distribution and to the base topic. The names for the
topics and regions were chosen by the authors.

Nearly all of the terms in column 1 (“basketball”)
refer to sports teams, athletes, and place names—
encouragingly, terms tend to appear in the regions
where their referents reside. Column 2 contains sev-
eral proper nouns, mostly referring to popular mu-
sic figures (including PEARL from the band Pearl
Jam).11 Columns 3–5 are more conversational.
Spanish-language terms (papi, pues, nada, ese) tend
to appear in regions with large Spanish-speaking
populations—it is also telling that these terms ap-
pear in topics with emoticons and slang abbrevia-
tions, which may transcend linguistic barriers. Other
terms refer to people or subjects that may be espe-
cially relevant in certain regions: tacos appears in
the southern California region and cab in the New
York region; TUPAC refers to a rap musician from
Los Angeles, and WIZ refers to a rap musician from
Pittsburgh, not far from the center of the “Lake Erie”
region.

A large number of slang terms are found to have
strong regional biases, suggesting that slang may
depend on geography more than standard English
does. The terms af and hella display especially
strong regional affinities, appearing in the regional
variants of multiple topics (see Table 3 for defini-
tions). Northern and Southern California use variant
spellings koo and coo to express the same meaning.

11This analysis is from an earlier version of our dataset that
contained some Twitterbots, including one from a Boston-area
radio station. The bots were purged for the evaluation in Sec-
tion 6, though the numerical results are nearly identical.

term definition
af as fuck (very)
coo cool
dl download
fasho for sure
gna going to
hella very
hr hour
iam I am
ima I’m going to
imm I’m
iono I don’t know
lames lame (not cool)

people

term definition
jk just kidding
jp just playing (kid-

ding)
koo cool
lol laugh out loud
nm nothing much
od overdone (very)
omw on my way
smh shake my head
suttin something
wassup what’s up
wyd what are you do-

ing?

Table 3: A glossary of non-standard terms from Ta-
ble 2. Definitions are obtained by manually inspecting
the context in which the terms appear, and by consulting
www.urbandictionary.com.

While research in perceptual dialectology does con-
firm the link of hella to Northern California (Bu-
choltz et al., 2007), we caution that our findings
are merely suggestive, and a more rigorous analysis
must be undertaken before making definitive state-
ments about the regional membership of individual
terms. We view the geographic topic model as an
exploratory tool that may be used to facilitate such
investigations.

Figure 3 shows the regional clustering on the
training set obtained by one run of the model. Each
point represents an author, and the ellipses represent
the bivariate Gaussians for each region. There are
nine compact regions for major metropolitan areas,
two slightly larger regions that encompass Florida
and the area around Lake Erie, and two large re-
gions that partition the country roughly into north
and south.

8 Related Work

The relationship between language and geography
has been a topic of interest to linguists since the
nineteenth century (Johnstone, 2010). An early
work of particular relevance is Kurath’s Word Geog-
raphy of the Eastern United States (1949), in which
he conducted interviews and then mapped the oc-
currence of equivalent word pairs such as stoop and
porch. The essence of this approach—identifying
variable pairs and measuring their frequencies—
remains a dominant methodology in both dialec-
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tology (Labov et al., 2006) and sociolinguis-
tics (Tagliamonte, 2006). Within this paradigm,
computational techniques are often applied to post
hoc analysis: logistic regression (Sankoff et al.,
2005) and mixed-effects models (Johnson, 2009) are
used to measure the contribution of individual vari-
ables, while hierarchical clustering and multidimen-
sional scaling enable aggregated inference across
multiple variables (Nerbonne, 2009). However, in
all such work it is assumed that the relevant linguis-
tic variables have already been identified—a time-
consuming process involving considerable linguistic
expertise. We view our work as complementary to
this tradition: we work directly from raw text, iden-
tifying both the relevant features and coherent lin-
guistic communities.

An active recent literature concerns geotagged in-
formation on the web, such as search queries (Back-
strom et al., 2008) and tagged images (Crandall et
al., 2009). This research identifies the geographic
distribution of individual queries and tags, but does
not attempt to induce any structural organization of
either the text or geographical space, which is the
focus of our research. More relevant is the work
of Mei et al. (2006), in which the distribution over
latent topics in blog posts is conditioned on the ge-
ographical location of the author. This is somewhat
similar to the supervised LDA model that we con-
sider, but their approach assumes that a partitioning
of geographical space into regions is already given.

Methodologically, our cascading topic model is
designed to capture multiple dimensions of variabil-
ity: topics and geography. Mei et al. (2007) include
sentiment as a second dimension in a topic model,
using a switching variable so that individual word
tokens may be selected from either the topic or the
sentiment. However, our hypothesis is that individ-
ual word tokens reflect both the topic and the ge-
ographical aspect. Sharing this intuition, Paul and
Girju (2010) build topic-aspect models for the cross
product of topics and aspects. They do not impose
any regularity across multiple aspects of the same
topic, so this approach may not scale when the num-
ber of aspects is large (they consider only two as-
pects). We address this issue using cascading distri-
butions; when the observed data for a given region-
topic pair is low, the model falls back to the base
topic. The use of cascading logistic normal distri-

butions in topic models follows earlier work on dy-
namic topic models (Blei and Lafferty, 2006b; Xing,
2005).

9 Conclusion

This paper presents a model that jointly identifies
words with high regional affinity, geographically-
coherent linguistic regions, and the relationship be-
tween regional and topic variation. The key model-
ing assumption is that regions and topics interact to
shape observed lexical frequencies. We validate this
assumption on a prediction task in which our model
outperforms strong alternatives that do not distin-
guish regional and topical variation.

We see this work as a first step towards a unsuper-
vised methodology for modeling linguistic variation
using raw text. Indeed, in a study of morphosyn-
tactic variation, Szmrecsanyi (2010) finds that by
the most generous measure, geographical factors ac-
count for only 33% of the observed variation. Our
analysis might well improve if non-geographical
factors were considered, including age, race, gen-
der, income and whether a location is urban or ru-
ral. In some regions, estimates of many of these fac-
tors may be obtained by cross-referencing geogra-
phy with demographic data. We hope to explore this
possibility in future work.
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Abstract
This paper introduces algorithms for non-
projective parsing based on dual decomposi-
tion. We focus on parsing algorithms for non-
projective head automata, a generalization of
head-automata models to non-projective struc-
tures. The dual decomposition algorithms are
simple and efficient, relying on standard dy-
namic programming and minimum spanning
tree algorithms. They provably solve an LP
relaxation of the non-projective parsing prob-
lem. Empirically the LP relaxation is very of-
ten tight: for many languages, exact solutions
are achieved on over 98% of test sentences.
The accuracy of our models is higher than pre-
vious work on a broad range of datasets.

1 Introduction

Non-projective dependency parsing is useful for
many languages that exhibit non-projective syntactic
structures. Unfortunately, the non-projective parsing
problem is known to be NP-hard for all but the sim-
plest models (McDonald and Satta, 2007). There has
been a long history in combinatorial optimization of
methods that exploit structure in complex problems,
using methods such as dual decomposition or La-
grangian relaxation (Lemaréchal, 2001). Thus far,
however, these methods are not widely used in NLP.

This paper introduces algorithms for non-
projective parsing based on dual decomposition. We
focus on parsing algorithms for non-projective head
automata, a generalization of the head-automata
models of Eisner (2000) and Alshawi (1996) to non-
projective structures. These models include non-
projective dependency parsing models with higher-
order (e.g., sibling and/or grandparent) dependency
relations as a special case. Although decoding of full
parse structures with non-projective head automata
is intractable, we leverage the observation that key
components of the decoding can be efficiently com-
puted using combinatorial algorithms. In particular,

1. Decoding for individual head-words can be ac-
complished using dynamic programming.

2. Decoding for arc-factored models can be ac-
complished using directed minimum-weight
spanning tree (MST) algorithms.

The resulting parsing algorithms have the following
properties:

• They are efficient and easy to implement, relying
on standard dynamic programming and MST al-
gorithms.

• They provably solve a linear programming (LP)
relaxation of the original decoding problem.

• Empirically the algorithms very often give an ex-
act solution to the decoding problem, in which
case they also provide a certificate of optimality.

In this paper we first give the definition for non-
projective head automata, and describe the parsing
algorithm. The algorithm can be viewed as an in-
stance of Lagrangian relaxation; we describe this
connection, and give convergence guarantees for the
method. We describe a generalization to models
that include grandparent dependencies. We then in-
troduce a perceptron-driven training algorithm that
makes use of point 1 above.

We describe experiments on non-projective pars-
ing for a number of languages, and in particu-
lar compare the dual decomposition algorithm to
approaches based on general-purpose linear pro-
gramming (LP) or integer linear programming (ILP)
solvers (Martins et al., 2009). The accuracy of our
models is higher than previous work on a broad
range of datasets. The method gives exact solutions
to the decoding problem, together with a certificate
of optimality, on over 98% of test examples for many
of the test languages, with parsing times ranging be-
tween 0.021 seconds/sentence for the most simple
languages/models, to 0.295 seconds/sentence for the
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most complex settings. The method compares favor-
ably to previous work using LP/ILP formulations,
both in terms of efficiency, and also in terms of the
percentage of exact solutions returned.

While the focus of the current paper is on non-
projective dependency parsing, the approach opens
up new ways of thinking about parsing algorithms
for lexicalized formalisms such as TAG (Joshi and
Schabes, 1997), CCG (Steedman, 2000), and pro-
jective head automata.

2 Related Work
McDonald et al. (2005) describe MST-based parsing
for non-projective dependency parsing models with
arc-factored decompositions; McDonald and Pereira
(2006) make use of an approximate (hill-climbing)
algorithm for parsing with more complex models.
McDonald and Pereira (2006) and McDonald and
Satta (2007) describe complexity results for non-
projective parsing, showing that parsing for a variety
of models is NP-hard. Riedel and Clarke (2006) de-
scribe ILP methods for the problem; Martins et al.
(2009) recently introduced alternative LP and ILP
formulations. Our algorithm differs in that we do not
use general-purpose LP or ILP solvers, instead using
an MST solver in combination with dynamic pro-
gramming; thus we leverage the underlying struc-
ture of the problem, thereby deriving more efficient
decoding algorithms.

Both dual decomposition and Lagrangian relax-
ation have a long history in combinatorial optimiza-
tion. Our work was originally inspired by recent
work on dual decomposition for inference in graph-
ical models (Wainwright et al., 2005; Komodakis
et al., 2007). However, the non-projective parsing
problem has a very different structure from these
models, and the decomposition we use is very dif-
ferent in nature from those used in graphical mod-
els. Other work has made extensive use of de-
composition approaches for efficiently solving LP
relaxations for graphical models (e.g., Sontag et
al. (2008)). Methods that incorporate combinato-
rial solvers within loopy belief propagation (LBP)
(Duchi et al., 2007; Smith and Eisner, 2008) are
also closely related to our approach. Unlike LBP,
our method has strong theoretical guarantees, such
as guaranteed convergence and the possibility of a
certificate of optimality.

Finally, in other recent work, Rush et al. (2010)
describe dual decomposition approaches for other
NLP problems.

3 Sibling Models
This section describes a particular class of models,
sibling models; the next section describes a dual-
decomposition algorithm for decoding these models.

Consider the dependency parsing problem for a
sentence with n words. We define the index set
for dependency parsing to be I = {(i, j) : i ∈
{0 . . . n}, j ∈ {1 . . . n}, i 6= j}. A dependency
parse is a vector y = {y(i, j) : (i, j) ∈ I}, where
y(i, j) = 1 if a dependency with head word i and
modifier j is in the parse, 0 otherwise. We use i = 0
for the root symbol. We define Y to be the set of all
well-formed non-projective dependency parses (i.e.,
the set of directed spanning trees rooted at node 0).
Given a function f : Y 7→ R that assigns scores to
parse trees, the optimal parse is

y∗ = argmax
y∈Y

f(y) (1)

A particularly simple definition of f(y) is f(y) =∑
(i,j)∈I y(i, j)θ(i, j) where θ(i, j) is the score for

dependency (i, j). Models with this form are often
referred to as arc-factored models. In this case the
optimal parse tree y∗ can be found efficiently using
MST algorithms (McDonald et al., 2005).

This paper describes algorithms that compute y∗

for more complex definitions of f(y); in this sec-
tion, we focus on algorithms for models that capture
interactions between sibling dependencies. To this
end, we will find it convenient to define the follow-
ing notation. Given a vector y, define

y|i = {y(i, j) : j = 1 . . . n, j 6= i}

Hence y|i specifies the set of modifiers to word i;
note that the vectors y|i for i = 0 . . . n form a parti-
tion of the full set of variables.

We then assume that f(y) takes the form

f(y) =
n∑

i=0

fi(y|i) (2)

Thus f(y) decomposes into a sum of terms, where
each fi considers modifiers to the i’th word alone.

In the general case, finding y∗ =
argmaxy∈Y f(y) under this definition of f(y)
is an NP-hard problem. However for certain
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definitions of fi, it is possible to efficiently compute
argmaxy|i∈Zi

fi(y|i) for any value of i, typically
using dynamic programming. (Here we use Zi to
refer to the set of all possible values for y|i: specifi-
cally, Z0 = {0, 1}n and for i 6= 0, Zi = {0, 1}n−1.)
In these cases we can efficiently compute

z∗ = argmax
z∈Z

f(z) = argmax
z∈Z

∑
i

fi(z|i) (3)

where Z = {z : z|i ∈ Zi for i = 0 . . . n} by
simply computing z∗|i = argmaxz|i∈Zi

fi(z|i) for
i = 0 . . . n. Eq. 3 can be considered to be an approx-
imation to Eq. 1, where we have replaced Y with
Z . We will make direct use of this approximation
in the dual decomposition parsing algorithm. Note
that Y ⊆ Z , and in all but trivial cases, Y is a strict
subset of Z . For example, a structure z ∈ Z could
have z(i, j) = z(j, i) = 1 for some (i, j); it could
contain longer cycles; or it could contain words that
do not modify exactly one head. Nevertheless, with
suitably powerful functions fi—for example func-
tions based on discriminative models—z∗ may be a
good approximation to y∗. Later we will see that
dual decomposition can effectively use MST infer-
ence to rule out ill-formed structures.

We now give the main assumption underlying sib-
ling models:

Assumption 1 (Sibling Decompositions) A model
f(y) satisfies the sibling-decomposition assumption
if: 1) f(y) =

∑n
i=0 fi(y|i) for some set of functions

f0 . . . fn. 2) For any i ∈ {0 . . . n}, for any value
of the variables u(i, j) ∈ R for j = 1 . . . n, it is
possible to compute

argmax
y|i∈Zi

fi(y|i)−
∑
j

u(i, j)y(i, j)


in polynomial time.

The second condition includes additional terms in-
volving u(i, j) variables that modify the scores of
individual dependencies. These terms are benign for
most definitions of fi, in that they do not alter de-
coding complexity. They will be of direct use in the
dual decomposition parsing algorithm.

Example 1: Bigram Sibling Models. Recall that
y|i is a binary vector specifying which words are
modifiers to the head-word i. Define l1 . . . lp to be

the sequence of left modifiers to word i under y|i,
and r1 . . . rq to be the set of right modifiers (e.g.,
consider the case where n = 5, i = 3, and we have
y(3, 1) = y(3, 5) = 0, and y(3, 2) = y(3, 4) = 1:
in this case p = 1, l1 = 2, and q = 1, r1 = 4). In
bigram sibling models, we have

fi(y|i) =
p+1∑
k=1

gL(i, lk−1, lk) +
q+1∑
k=1

gR(i, rk−1, rk)

where l0 = r0 = START is the initial state, and
lp+1 = rq+1 = END is the end state. The functions
gL and gR assign scores to bigram dependencies to
the left and right of the head. Under this model cal-
culating argmaxy|i∈Zi

(
fi(y|i)−

∑
j u(i, j)y(i, j)

)
takes O(n2) time using dynamic programming,
hence the model satisfies Assumption 1.

Example 2: Head Automata Head-automata
models constitute a second important model type
that satisfy the sibling-decomposition assumption
(bigram sibling models are a special case of head
automata). These models make use of functions
gR(i, s, s′, r) where s ∈ S, s′ ∈ S are variables in a
set of possible states S, and r is an index of a word
in the sentence such that i < r ≤ n. The function
gR returns a cost for taking word r as the next depen-
dency, and transitioning from state s to s′. A similar
function gL is defined for left modifiers. We define

fi(y|i, s0 . . . sq, t0 . . . tp) =
q∑

k=1

gR(i, sk−1, sk, rk) +
p∑

k=1

gL(i, tk−1, tk, ll)

to be the joint score for dependencies y|i, and left
and right state sequences s0 . . . sq and t0 . . . tp. We
specify that s0 = t0 = START and sq = tp = END.
In this case we define

fi(y|i) = max
s0...sq ,t0...tp

fi(y|i, s0 . . . sq, t0 . . . tp)

and it follows that argmaxy|i∈Zi
fi(y|i) can be com-

puted inO(n|S|2) time using a variant of the Viterbi
algorithm, hence the model satisfies the sibling-
decomposition assumption.

4 The Parsing Algorithm

We now describe the dual decomposition parsing al-
gorithm for models that satisfy Assumption 1. Con-
sider the following generalization of the decoding

1290



Set u(1)(i, j)← 0 for all (i, j) ∈ I
for k = 1 to K do

y(k) ← argmax
y∈Y

∑
(i,j)∈I

(
γ(i, j) + u(k)(i, j)

)
y(i, j)

for i ∈ {0 . . . n},

z
(k)

|i ← argmax
z|i∈Zi

(fi(z|i)−
∑

j

u(k)(i, j)z(i, j))

if y(k)(i, j) = z(k)(i, j) for all (i, j) ∈ I then
return (y(k), z(k))

for all (i, j) ∈ I,
u(k+1)(i, j)← u(k)(i, j)+αk(z(k)(i, j)−y(k)(i, j))

return (y(K), z(K))

Figure 1: The parsing algorithm for sibling decompos-
able models. αk ≥ 0 for k = 1 . . .K are step sizes, see
Appendix A for details.

problem from Eq. 1, where f(y) =
∑

i fi(y|i),
h(y) =

∑
(i,j)∈I γ(i, j)y(i, j), and γ(i, j) ∈ R for

all (i, j):1

argmax
z∈Z,y∈Y

f(z) + h(y) (4)

such that z(i, j) = y(i, j) for all (i, j) ∈ I (5)

Although the maximization w.r.t. z is taken over the
set Z , the constraints in Eq. 5 ensure that z = y for
some y ∈ Y , and hence that z ∈ Y .

Without the z(i, j) = y(i, j) constraints, the
objective would decompose into the separate max-
imizations z∗ = argmaxz∈Z f(z), and y∗ =
argmaxy∈Y h(y), which can be easily solved us-
ing dynamic programming and MST, respectively.
Thus, it is these constraints that complicate the op-
timization. Our approach gets around this difficulty
by introducing new variables, u(i, j), that serve to
enforce agreement between the y(i, j) and z(i, j)
variables. In the next section we will show that these
u(i, j) variables are actually Lagrange multipliers
for the z(i, j) = y(i, j) constraints.

Our parsing algorithm is shown in Figure 1. At
each iteration k, the algorithm finds y(k) ∈ Y us-
ing an MST algorithm, and z(k) ∈ Z through sep-
arate decoding of the (n + 1) sibling models. The
u(k) variables are updated if y(k)(i, j) 6= z(k)(i, j)

1This is equivalent to Eq. 1 when γ(i, j) = 0 for all (i, j).
In some cases, however, it is convenient to have a model with
non-zero values for the γ variables; see the Appendix. Note that
this definition of h(y) allows argmaxy∈Y h(y) to be calculated
efficiently, using MST inference.

for some (i, j); these updates modify the objective
functions for the two decoding steps, and intuitively
encourage the y(k) and z(k) variables to be equal.

4.1 Lagrangian Relaxation
Recall that the main difficulty in solving Eq. 4 was
the z = y constraints. We deal with these con-
straints using Lagrangian relaxation (Lemaréchal,
2001). We first introduce Lagrange multipliers u =
{u(i, j) : (i, j) ∈ I}, and define the Lagrangian

L(u, y, z) = (6)

f(z) + h(y) +
∑

(i,j)∈I
u(i, j)

(
y(i, j)− z(i, j)

)
If L∗ is the optimal value of Eq. 4 subject to the
constraints in Eq. 5, then for any value of u,

L∗ = max
z∈Z,y∈Y,y=z

L(u, y, z) (7)

This follows because if y = z, the right term in Eq. 6
is zero for any value of u. The dual objective L(u)
is obtained by omitting the y = z constraint:

L(u) = max
z∈Z,y∈Y

L(u, y, z)

= max
z∈Z

(
f(z)−

∑
i,j

u(i, j)z(i, j)
)

+ max
y∈Y

(
h(y) +

∑
i,j

u(i, j)y(i, j)
)
.

Since L(u) maximizes over a larger space (y may
not equal z), we have that L∗ ≤ L(u) (compare this
to Eq. 7). The dual problem, which our algorithm
optimizes, is to obtain the tightest such upper bound,

(Dual problem) min
u∈R|I|

L(u). (8)

The dual objective L(u) is convex, but not differen-
tiable. However, we can use a subgradient method
to derive an algorithm that is similar to gradient de-
scent, and which minimizes L(u). A subgradient of
a convex function L(u) at u is a vector du such that
for all v ∈ R|I|, L(v) ≥ L(u) + du · (v − u). By
standard results,

du(k) = y(k) − z(k)

is a subgradient for L(u) at u = u(k), where z(k) =
argmaxz∈Z f(z)−

∑
i,j u

(k)(i, j)z(i, j) and y(k) =
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argmaxy∈Y h(y) +
∑

i,j u
(k)(i, j)y(i, j). Subgra-

dient optimization methods are iterative algorithms
with updates that are similar to gradient descent:

u(k+1) = u(k) − αkdu(k) = u(k) − αk(y(k) − z(k)),

where αk is a step size. It is easily verified that the
algorithm in Figure 1 uses precisely these updates.

4.2 Formal Guarantees
With an appropriate choice of the step sizes αk, the
subgradient method can be shown to solve the dual
problem, i.e.

lim
k→∞

L(u(k)) = min
u
L(u).

See Korte and Vygen (2008), page 120, for details.
As mentioned before, the dual provides an up-

per bound on the optimum of the primal problem
(Eq. 4),

max
z∈Z,y∈Y,y=z

f(z) + h(y) ≤ min
u∈R|I|

L(u). (9)

However, we do not necessarily have strong
duality—i.e., equality in the above equation—
because the sets Z and Y are discrete sets. That
said, for some functions h(y) and f(z) strong du-
ality does hold, as stated in the following:

Theorem 1 If for some k ∈ {1 . . .K} in the al-
gorithm in Figure 1, y(k)(i, j) = z(k)(i, j) for all
(i, j) ∈ I, then (y(k), z(k)) is a solution to the max-
imization problem in Eq. 4.

Proof. We have that f(z(k)) + h(y(k)) =
L(u(k), z(k), y(k)) = L(u(k)), where the last equal-
ity is because y(k), z(k) are defined as the respective
argmax’s. Thus, the inequality in Eq. 9 is tight, and
(y(k), z(k)) and u(k) are primal and dual optimal.

Although the algorithm is not guaranteed to sat-
isfy y(k) = z(k) for some k, by Theorem 1 if it does
reach such a state, then we have the guarantee of an
exact solution to Eq. 4, with the dual solution u pro-
viding a certificate of optimality. We show in the
experiments that this occurs very frequently, in spite
of the parsing problem being NP-hard.

It can be shown that Eq. 8 is the dual of an LP
relaxation of the original problem. When the con-
ditions of Theorem 1 are satisfied, it means that the
LP relaxation is tight for this instance. For brevity

we omit the details, except to note that when the LP
relaxation is not tight, the optimal primal solution to
the LP relaxation could be recovered by averaging
methods (Nedić and Ozdaglar, 2009).

5 Grandparent Dependency Models

In this section we extend the approach to consider
grandparent relations. In grandparent models each
parse tree y is represented as a vector

y = {y(i, j) : (i, j) ∈ I} ∪ {y↑(i, j) : (i, j) ∈ I}

where we have added a second set of duplicate vari-
ables, y↑(i, j) for all (i, j) ∈ I. The set of all valid
parse trees is then defined as

Y = {y : y(i, j) variables form a directed tree,

y↑(i, j) = y(i, j) for all (i, j) ∈ I}

We again partition the variables into n + 1 subsets,
y|0 . . . y|n, by (re)defining

y|i = {y(i, j) : j = 1 . . . n, j 6= i}
∪{y↑(k, i) : k = 0 . . . n, k 6= i}

So as before y|i contains variables y(i, j) which in-
dicate which words modify the i’th word. In addi-
tion, y|i includes y↑(k, i) variables that indicate the
word that word i itself modifies.

The set of all possible values of y|i is now

Zi = {y|i : y(i, j) ∈ {0, 1} for j = 1 . . . n, j 6= i;
y↑(k, i) ∈ {0, 1} for k = 0 . . . n, k 6= i;∑
k

y↑(k, i) = 1}

Hence the y(i, j) variables can take any values, but
only one of the y↑(k, i) variables can be equal to 1
(as only one word can be a parent of word i). As be-
fore, we define Z = {y : y|i ∈ Zi for i = 0 . . . n}.

We introduce the following assumption:
Assumption 2 (GS Decompositions)
A model f(y) satisfies the grandparent/sibling-
decomposition (GSD) assumption if: 1) f(z) =∑n

i=0 fi(z|i) for some set of functions f0 . . . fn. 2)
For any i ∈ {0 . . . n}, for any value of the variables
u(i, j) ∈ R for j = 1 . . . n, and v(k, i) ∈ R for
k = 0 . . . n, it is possible to compute

argmax
z|i∈Zi

(fi(z|i)−
∑
j

u(i, j)z(i, j)−
∑
k

v(k, i)z↑(k, i))

in polynomial time.
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Again, it follows that we can approxi-
mate y∗ = argmaxy∈Y

∑n
i=0 fi(y|i) by

z∗ = argmaxz∈Z
∑n

i=0 fi(z|i), by defining
z∗|i = argmaxz|i∈Zi

fi(z|i) for i = 0 . . . n. The
resulting vector z∗ may be deficient in two respects.
First, the variables z∗(i, j) may not form a well-
formed directed spanning tree. Second, we may
have z∗↑(i, j) 6= z∗(i, j) for some values of (i, j).

Example 3: Grandparent/Sibling Models An
important class of models that satisfy Assumption 2
are defined as follows. Again, for a vector y|i de-
fine l1 . . . lp to be the sequence of left modifiers to
word i under y|i, and r1 . . . rq to be the set of right
modifiers. Define k∗ to the value for k such that
y↑(k, i) = 1. Then the model is defined as follows:

fi(y|i) =
p+1∑
j=1

gL(i, k∗, lj−1, lj)+
q+1∑
j=1

gR(i, k∗, rj−1, rj)

This is very similar to the bigram-sibling model, but
with the modification that the gL and gR functions
depend in addition on the value for k∗. This al-
lows these functions to model grandparent depen-
dencies such as (k∗, i, lj) and sibling dependencies
such as (i, lj−1, lj). Finding z∗|i under the definition
can be accomplished inO(n3) time, by decoding the
model using dynamic programming separately for
each of the O(n) possible values of k∗, and pick-
ing the value for k∗ that gives the maximum value
under these decodings.

A dual-decomposition algorithm for models that
satisfy the GSD assumption is shown in Figure 2.
The algorithm can be justified as an instance of La-
grangian relaxation applied to the problem

argmax
z∈Z,y∈Y

f(z) + h(y) (10)

with constraints

z(i, j) = y(i, j) for all (i, j) ∈ I (11)

z↑(i, j) = y(i, j) for all (i, j) ∈ I (12)

The algorithm employs two sets of Lagrange mul-
tipliers, u(i, j) and v(i, j), corresponding to con-
straints in Eqs. 11 and 12. As in Theorem 1, if at any
point in the algorithm z(k) = y(k), then (z(k), y(k))
is an exact solution to the problem in Eq. 10.

Set u(1)(i, j)← 0, v(1)(i, j)← 0 for all (i, j) ∈ I
for k = 1 to K do

y(k) ← argmax
y∈Y

∑
(i,j)∈I

y(i, j)θ(i, j)

where θ(i, j) = γ(i, j) + u(k)(i, j) + v(k)(i, j).

for i ∈ {0 . . . n},
z
(k)

|i ← argmax
z|i∈Zi

(fi(z|i) −
∑

j

u(k)(i, j)z(i, j)

−
∑

j

v(k)(j, i)z↑(j, i))

if y(k)(i, j) = z(k)(i, j) = z
(k)
↑ (i, j) for all (i, j) ∈ I

then
return (y(k), z(k))

for all (i, j) ∈ I,
u(k+1)(i, j)← u(k)(i, j)+αk(z(k)(i, j)−y(k)(i, j))

v(k+1)(i, j)← v(k)(i, j)+αk(z
(k)
↑ (i, j)−y(k)(i, j))

return (y(K), z(K))

Figure 2: The parsing algorithm for grandparent/sibling-
decomposable models.

6 The Training Algorithm
In our experiments we make use of discriminative
linear models, where for an input sentence x, the
score for a parse y is f(y) = w · φ(x, y) where
w ∈ Rd is a parameter vector, and φ(x, y) ∈ Rd

is a feature-vector representing parse tree y in con-
junction with sentence x. We will assume that the
features decompose in the same way as the sibling-
decomposable or grandparent/sibling-decomposable
models, that is φ(x, y) =

∑n
i=0 φ(x, y|i) for some

feature vector definition φ(x, y|i). In the bigram sib-
ling models in our experiments, we assume that

φ(x, y|i) =

p+1∑
k=1

φL(x, i, lk−1, lk) +

q+1∑
k=1

φR(x, i, rk−1, rk)

where as before l1 . . . lp and r1 . . . rq are left and
right modifiers under y|i, and where φL and φR

are feature vector definitions. In the grandparent
models in our experiments, we use a similar defi-
nition with feature vectors φL(x, i, k∗, lk−1, lk) and
φR(x, i, k∗, rk−1, rk), where k∗ is the parent for
word i under y|i.

We train the model using the averaged perceptron
for structured problems (Collins, 2002). Given the
i’th example in the training set, (x(i), y(i)), the per-
ceptron updates are as follows:

• z∗ = argmaxy∈Z w · φ(x(i), y)

• If z∗ 6= y(i), w = w+φ(x(i), y(i))−φ(x(i), z∗)
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The first step involves inference over the set Z ,
rather than Y as would be standard in the percep-
tron. Thus, decoding during training can be achieved
by dynamic programming over head automata alone,
which is very efficient.

Our training approach is closely related to local
training methods (Punyakanok et al., 2005). We
have found this method to be effective, very likely
because Z is a superset of Y . Our training algo-
rithm is also related to recent work on training using
outer bounds (see, e.g., (Taskar et al., 2003; Fin-
ley and Joachims, 2008; Kulesza and Pereira, 2008;
Martins et al., 2009)). Note, however, that the LP re-
laxation optimized by dual decomposition is signifi-
cantly tighter than Z . Thus, an alternative approach
would be to use the dual decomposition algorithm
for inference during training.

7 Experiments
We report results on a number of data sets. For
comparison to Martins et al. (2009), we perform ex-
periments for Danish, Dutch, Portuguese, Slovene,
Swedish and Turkish data from the CoNLL-X
shared task (Buchholz and Marsi, 2006), and En-
glish data from the CoNLL-2008 shared task (Sur-
deanu et al., 2008). We use the official training/test
splits for these data sets, and the same evaluation
methodology as Martins et al. (2009). For com-
parison to Smith and Eisner (2008), we also re-
port results on Danish and Dutch using their alter-
nate training/test split. Finally, we report results on
the English WSJ treebank, and the Prague treebank.
We use feature sets that are very similar to those
described in Carreras (2007). We use marginal-
based pruning, using marginals calculated from an
arc-factored spanning tree model using the matrix-
tree theorem (McDonald and Satta, 2007; Smith and
Smith, 2007; Koo et al., 2007).

In all of our experiments we set the value K, the
maximum number of iterations of dual decompo-
sition in Figures 1 and 2, to be 5,000. If the al-
gorithm does not terminate—i.e., it does not return
(y(k), z(k)) within 5,000 iterations—we simply take
the parse y(k) with the maximum value of f(y(k)) as
the output from the algorithm. At first sight 5,000
might appear to be a large number, but decoding is
still fast—see Sections 7.3 and 7.4 for discussion.2

2Note also that the feature vectors φ and inner productsw ·φ

The strategy for choosing step sizes αk is described
in Appendix A, along with other details.

We first discuss performance in terms of accu-
racy, success in recovering an exact solution, and
parsing speed. We then describe additional experi-
ments examining various aspects of the algorithm.

7.1 Accuracy
Table 1 shows results for previous work on the var-
ious data sets, and results for an arc-factored model
with pure MST decoding with our features. (We use
the acronym UAS (unlabeled attachment score) for
dependency accuracy.) We also show results for the
bigram-sibling and grandparent/sibling (G+S) mod-
els under dual decomposition. Both the bigram-
sibling and G+S models show large improvements
over the arc-factored approach; they also compare
favorably to previous work—for example the G+S
model gives better results than all results reported in
the CoNLL-X shared task, on all languages. Note
that we use different feature sets from both Martins
et al. (2009) and Smith and Eisner (2008).

7.2 Success in Recovering Exact Solutions

Next, we consider how often our algorithms return
an exact solution to the original optimization prob-
lem, with a certificate—i.e., how often the algo-
rithms in Figures 1 and 2 terminate with y(k) = z(k)

for some value of k < 5000 (and are thus optimal,
by Theorem 1). The CertS and CertG columns in Ta-
ble 1 give the results for the sibling and G+S models
respectively. For all but one setting3 over 95% of the
test sentences are decoded exactly, with 99% exact-
ness in many cases.

For comparison, we also ran both the single-
commodity flow and multiple-commodity flow LP
relaxations of Martins et al. (2009) with our mod-
els and features. We measure how often these re-
laxations terminate with an exact solution. The re-
sults in Table 2 show that our method gives exact
solutions more often than both of these relaxations.4

In computing the accuracy figures for Martins et al.

only need to be computed once, thus saving computation.
3The exception is Slovene, which has the smallest training

set at only 1534 sentences.
4Note, however, that it is possible that the Martins et al. re-

laxations would have given a higher proportion of integral solu-
tions if their relaxation was used during training.
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Ma09 MST Sib G+S Best CertS CertG TimeS TimeG TrainS TrainG
Dan 91.18 89.74 91.08 91.78 91.54 99.07 98.45 0.053 0.169 0.051 0.109
Dut 85.57 82.33 84.81 85.81 85.57 98.19 97.93 0.035 0.120 0.046 0.048
Por 92.11 90.68 92.57 93.03 92.11 99.65 99.31 0.047 0.257 0.077 0.103
Slo 85.61 82.39 84.89 86.21 85.61 90.55 95.27 0.158 0.295 0.054 0.130
Swe 90.60 88.79 90.10 91.36 90.60 98.71 98.97 0.035 0.141 0.036 0.055
Tur 76.34 75.66 77.14 77.55 76.36 98.72 99.04 0.021 0.047 0.016 0.036

Eng1 91.16 89.20 91.18 91.59 — 98.65 99.18 0.082 0.200 0.032 0.076
Eng2 — 90.29 92.03 92.57 — 98.96 99.12 0.081 0.168 0.032 0.076

Sm08 MST Sib G+S — CertS CertG TimeS TimeG TrainS TrainG
Dan 86.5 87.89 89.58 91.00 — 98.50 98.50 0.043 0.120 0.053 0.065
Dut 88.5 88.86 90.87 91.76 — 98.00 99.50 0.036 0.046 0.050 0.054

Mc06 MST Sib G+S — CertS CertG TimeS TimeG TrainS TrainG
PTB 91.5 90.10 91.96 92.46 — 98.89 98.63 0.062 0.210 0.028 0.078
PDT 85.2 84.36 86.44 87.32 — 96.67 96.43 0.063 0.221 0.019 0.051

Table 1: A comparison of non-projective automaton-based parsers with results from previous work. MST: Our first-
order baseline. Sib/G+S: Non-projective head automata with sibling or grandparent/sibling interactions, decoded via
dual decomposition. Ma09: The best UAS of the LP/ILP-based parsers introduced in Martins et al. (2009). Sm08:
The best UAS of any LBP-based parser in Smith and Eisner (2008). Mc06: The best UAS reported by McDonald
and Pereira (2006). Best: For the CoNLL-X languages only, the best UAS for any parser in the original shared task
(Buchholz and Marsi, 2006) or in any column of Martins et al. (2009, Table 1); note that the latter includes McDonald
and Pereira (2006), Nivre and McDonald (2008), and Martins et al. (2008). CertS/CertG: Percent of test examples
for which dual decomposition produced a certificate of optimality, for Sib/G+S. TimeS/TimeG: Seconds/sentence for
test decoding, for Sib/G+S. TrainS/TrainG: Seconds/sentence during training, for Sib/G+S. For consistency of timing,
test decoding was carried out on identical machines with zero additional load; however, training was conducted on
machines with varying hardware and load. We ran two tests on the CoNLL-08 corpus. Eng1: UAS when testing on
the CoNLL-08 validation set, following Martins et al. (2009). Eng2: UAS when testing on the CoNLL-08 test set.

(2009), we project fractional solutions to a well-
formed spanning tree, as described in that paper.

Finally, to better compare the tightness of our
LP relaxation to that of earlier work, we consider
randomly-generated instances. Table 2 gives results
for our model and the LP relaxations of Martins et al.
(2009) with randomly generated scores on automata
transitions. We again recover exact solutions more
often than the Martins et al. relaxations. Note that
with random parameters the percentage of exact so-
lutions is significantly lower, suggesting that the ex-
actness of decoding of the trained models is a special
case. We speculate that this is due to the high perfor-
mance of approximate decoding with Z in place of
Y under the trained models for fi; the training algo-
rithm described in section 6 may have the tendency
to make the LP relaxation tight.

7.3 Speed

Table 1, columns TimeS and TimeG, shows decod-
ing times for the dual decomposition algorithms.
Table 2 gives speed comparisons to Martins et al.
(2009). Our method gives significant speed-ups over
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Figure 3: The average percentage of head automata that
must be recomputed on each iteration of dual decompo-
sition on the PTB validation set.

the Martins et al. (2009) method, presumably be-
cause it leverages the underlying structure of the
problem, rather than using a generic solver.

7.4 Lazy Decoding
Here we describe an important optimization in the
dual decomposition algorithms. Consider the algo-
rithm in Figure 1. At each iteration we must find

z
(k)
|i = argmax

z|i∈Zi

(fi(z|i)−
∑
j

u(k)(i, j)z(i, j))
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Sib Acc Int Time Rand
LP(S) 92.14 88.29 0.14 11.7
LP(M) 92.17 93.18 0.58 30.6

ILP 92.19 100.0 1.44 100.0
DD-5000 92.19 98.82 0.08 35.6
DD-250 92.23 89.29 0.03 10.2

G+S Acc Int Time Rand
LP(S) 92.60 91.64 0.23 0.0
LP(M) 92.58 94.41 0.75 0.0

ILP 92.70 100.0 1.79 100.0
DD-5000 92.71 98.76 0.23 6.8
DD-250 92.66 85.47 0.12 0.0

Table 2: A comparison of dual decomposition with lin-
ear programs described by Martins et al. (2009). LP(S):
Linear Program relaxation based on single-commodity
flow. LP(M): Linear Program relaxation based on
multi-commodity flow. ILP: Exact Integer Linear Pro-
gram. DD-5000/DD-250: Dual decomposition with non-
projective head automata, with K = 5000/250. Upper
results are for the sibling model, lower results are G+S.
Columns give scores for UAS accuracy, percentage of so-
lutions which are integral, and solution speed in seconds
per sentence. These results are for Section 22 of the PTB.
The last column is the percentage of integral solutions on
a random problem of length 10 words. The (I)LP experi-
ments were carried out using Gurobi, a high-performance
commercial-grade solver.

for i = 0 . . . n. However, if for some i, u(k)(i, j) =
u(k−1)(i, j) for all j, then z

(k)
|i = z

(k−1)
|i . In

lazy decoding we immediately set z(k)
|i = z

(k−1)
|i if

u(k)(i, j) = u(k−1)(i, j) for all j; this check takes
O(n) time, and saves us from decoding with the i’th
automaton. In practice, the updates to u are very
sparse, and this condition occurs very often in prac-
tice. Figure 3 demonstrates the utility of this method
for both sibling automata and G+S automata.

7.5 Early Stopping
We also ran experiments varying the value of K—
the maximum number of iterations—in the dual de-
composition algorithms. As before, if we do not find
y(k) = z(k) for some value of k ≤ K, we choose
the y(k) with optimal value for f(y(k)) as the final
solution. Figure 4 shows three graphs: 1) the accu-
racy of the parser on PTB validation data versus the
value for K; 2) the percentage of examples where
y(k) = z(k) at some point during the algorithm,
hence the algorithm returns a certificate of optimal-
ity; 3) the percentage of examples where the solution
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Figure 4: The behavior of the dual-decomposition parser
with sibling automata as the value of K is varied.

Sib P-Sib G+S P-G+S
PTB 92.19 92.34 92.71 92.70
PDT 86.41 85.67 87.40 86.43

Table 3: UAS of projective and non-projective decoding
for the English (PTB) and Czech (PDT) validation sets.
Sib/G+S: as in Table 1. P-Sib/P-G+S: Projective versions
of Sib/G+S, where the MST component has been re-
placed with the Eisner (2000) first-order projective parser.

returned is the same as the solution for the algorithm
with K = 5000 (our original setting). It can be seen
for K as small as 250 we get very similar accuracy
to K = 5000 (see Table 2). In fact, for this set-
ting the algorithm returns the same solution as for
K = 5000 on 99.59% of the examples. However
only 89.29% of these solutions are produced with a
certificate of optimality (y(k) = z(k)).

7.6 How Good is the Approximation z∗?

We ran experiments measuring the quality of z∗ =
argmaxz∈Z f(z), where f(z) is given by the
perceptron-trained bigram-sibling model. Because
z∗ may not be a well-formed tree with n dependen-
cies, we report precision and recall rather than con-
ventional dependency accuracy. Results on the PTB
validation set were 91.11%/88.95% precision/recall,
which is accurate considering the unconstrained na-
ture of the predictions. Thus the z∗ approximation is
clearly a good one; we suspect that this is one reason
for the good convergence results for the method.

7.7 Importance of Non-Projective Decoding

It is simple to adapt the dual-decomposition algo-
rithms in figures 1 and 2 to give projective depen-
dency structures: the set Y is redefined to be the set
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of all projective structures, with the arg max over Y
being calculated using a projective first-order parser
(Eisner, 2000). Table 3 shows results for projec-
tive and non-projective parsing using the dual de-
composition approach. For Czech data, where non-
projective structures are common, non-projective
decoding has clear benefits. In contrast, there is little
difference in accuracy between projective and non-
projective decoding on English.

8 Conclusions

We have described dual decomposition algorithms
for non-projective parsing, which leverage existing
dynamic programming and MST algorithms. There
are a number of possible areas for future work. As
described in section 7.7, the algorithms can be easily
modified to consider projective structures by replac-
ing Y with the set of projective trees, and then using
first-order dependency parsing algorithms in place
of MST decoding. This method could be used to
derive parsing algorithms that include higher-order
features, as an alternative to specialized dynamic
programming algorithms. Eisner (2000) describes
extensions of head automata to include word senses;
we have not discussed this issue in the current pa-
per, but it is simple to develop dual decomposition
algorithms for this case, using similar methods to
those used for the grandparent models. The gen-
eral approach should be applicable to other lexical-
ized syntactic formalisms, and potentially also to de-
coding in syntax-driven translation. In addition, our
dual decomposition approach is well-suited to paral-
lelization. For example, each of the head-automata
could be optimized independently in a multi-core or
GPU architecture. Finally, our approach could be
used with other structured learning algorithms, e.g.
Meshi et al. (2010).

A Implementation Details

This appendix describes details of the algorithm,
specifically choice of the step sizes αk, and use of
the γ(i, j) parameters.

A.1 Choice of Step Sizes

We have found the following method to be effec-
tive. First, define δ = f(z(1)) − f(y(1)), where
(z(1), y(1)) is the output of the algorithm on the first

iteration (note that we always have δ ≥ 0 since
f(z(1)) = L(u(1))). Then define αk = δ/(1 + ηk),
where ηk is the number of times that L(u(k′)) >
L(u(k′−1)) for k′ ≤ k. Hence the learning rate drops
at a rate of 1/(1+ t), where t is the number of times
that the dual increases from one iteration to the next.

A.2 Use of the γ(i, j) Parameters
The parsing algorithms both consider a general-
ized problem that includes γ(i, j) parameters. We
now describe how these can be useful. Re-
call that the optimization problem is to solve
argmaxz∈Z,y∈Y f(z) + h(y), subject to a set of
agreement constraints. In our models, f(z) can
be written as f ′(z) +

∑
i,j α(i, j)z(i, j) where

f ′(z) includes only terms depending on higher-
order (non arc-factored features), and α(i, j) are
weights that consider the dependency between i
and j alone. For any value of 0 ≤ β ≤
1, the problem argmaxz∈Z,y∈Y f2(z) + h2(y) is
equivalent to the original problem, if f2(z) =
f ′(z) + (1 − β)

∑
i,j α(i, j)z(i, j) and h2(y) =

β
∑

i,j α(i, j)y(i, j). We have simply shifted the
α(i, j) weights from one model to the other. While
the optimization problem remains the same, the al-
gorithms in Figure 1 and 2 will converge at differ-
ent rates depending on the value for β. In our ex-
periments we set β = 0.001, which puts almost
all the weight in the head-automata models, but al-
lows weights on spanning tree edges to break ties in
MST inference in a sensible way. We suspect this is
important in early iterations of the algorithm, when
many values for u(i, j) or v(i, j) will be zero, and
where with β = 0 many spanning tree solutions y(k)

would be essentially random, leading to very noisy
updates to the u(i, j) and v(i, j) values. We have
not tested other values for β.
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C. Lemaréchal. 2001. Lagrangian Relaxation. In Com-
putational Combinatorial Optimization, Optimal or
Provably Near-Optimal Solutions [based on a Spring
School], pages 112–156, London, UK. Springer-
Verlag.

A.F.T. Martins, D. Das, N.A. Smith, and E.P. Xing. 2008.
Stacking Dependency Parsers. In Proc. EMNLP,
pages 157–166.

A.F.T. Martins, N.A. Smith., and E.P. Xing. 2009. Con-
cise Integer Linear Programming Formulations for De-
pendency Parsing. In Proc. ACL, pages 342–350.

R. McDonald and F. Pereira. 2006. Online Learning
of Approximate Dependency Parsing Algorithms. In
Proc. EACL, pages 81–88.

R. McDonald and G. Satta. 2007. On the Complexity of
Non-Projective Data-Driven Dependency Parsing. In
Proc. IWPT.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005.
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