Chak Leong


2023

pdf
Target-oriented Proactive Dialogue Systems with Personalization: Problem Formulation and Dataset Curation
Jian Wang | Yi Cheng | Dongding Lin | Chak Leong | Wenjie Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Target-oriented dialogue systems, designed to proactively steer conversations toward predefined targets or accomplish specific system-side goals, are an exciting area in conversational AI. In this work, by formulating a <dialogue act, topic> pair as the conversation target, we explore a novel problem of personalized target-oriented dialogue by considering personalization during the target accomplishment process. However, there remains an emergent need for high-quality datasets, and building one from scratch requires tremendous human effort. To address this, we propose an automatic dataset curation framework using a role-playing approach. Based on this framework, we construct a large-scale personalized target-oriented dialogue dataset, TopDial, which comprises about 18K multi-turn dialogues. The experimental results show that this dataset is of high quality and could contribute to exploring personalized target-oriented dialogue.

pdf
Self-Detoxifying Language Models via Toxification Reversal
Chak Leong | Yi Cheng | Jiashuo Wang | Jian Wang | Wenjie Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Language model detoxification aims to minimize the risk of generating offensive or harmful content in pretrained language models (PLMs) for safer deployment. Existing methods can be roughly categorized as finetuning-based and decoding-based. However, the former is often resource-intensive, while the latter relies on additional components and potentially compromises the generation fluency. In this paper, we propose a more lightweight approach that enables the PLM itself to achieve “self-detoxification”. Our method is built upon the observation that prepending a negative steering prompt can effectively induce PLMs to generate toxic content. At the same time, we are inspired by the recent research in the interpretability field, which formulates the evolving contextualized representations within the PLM as an information stream facilitated by the attention layers. Drawing on this idea, we devise a method to identify the toxification direction from the normal generation process to the one prompted with the negative prefix, and then steer the generation to the reversed direction by manipulating the information movement within the attention layers. Experimental results show that our approach, without any fine-tuning or extra components, can achieve comparable performance with state-of-the-art methods.