
1 Model Description

In this paper, we use two types of Transformer-
based models: non-pre-trained models (Trans, L3)
and pre-trained models (T5-Base and T5-Large) in
our experiments. The number of parameters for
these models are shown in Table 1. Mention Flags
in the T5-Base models add approximate 5000 train-
able parameters. Mention Flags in the T5-Large
models add approximate 9000 trainable parame-
ters. We use a single Tesla P100 GPU with 16
GB memory to train our models. Table 2 shows
the approximate training time for our models in all
three evaluation tasks. We only apply the T5-Large
model to the CommonGen task.

Models # Total P. # Trainable P.

T5-Base 222904 k 113276 k
T5-Base + MF 222909 k 113281 k

T5-Large 737669 k 402739 k
T5-Large + MF 737678 k 402739 k

Trans, L3 159189 k 159189 k
Trans, L3 + MF 159194 k 159194 k

Table 1: Model size for all used model in this paper.

Models CommonGen E2ENLG nocaps

T5-Base 2 h 1.5 h 30.5 h
+ MF 2.5 h 2 h 43.5 h

T5-Large 6 h - -
+ MF 7.5 h - -

Trans, L3 1.75 h 1.3 h 19.3 h
+ MF 2 h 1.7 h 27.6 h

Table 2: Training Time for all used model in this paper.

2 Model Hyper-parameters

As discussed above, we use the T5 models and their
shallower versions. We do not conduct any model
hyper-parameter search. Table 3 shows the training
hyper-parameter used in our experiments. In the
CommonGen task, we use the same batch size as
suggested in the Lin et al. (2020). We search the
batch size 25, 50, 75, 100 for the E2ENLG and
nocaps task. We search the LR for 1e-4, 5e-4, 1e-3,
the LR schedule for constant and with 10% warm-
up in the CommonGen task. We use the CIDEr
score on the CommonGen development set.

CommonGen E2ENLG nocaps

Batch Size 192 50 50
LR 5e-5 5e-5 5e-5

LR Schedule const. const. const.
Optimizer AdamW AdamW AdamW

Table 3: The training hyper-parameters used in our ex-
periments.

3 Datasets

Table 4 shows the number of training data in
all three tasks. All of our three datasets follow
the same formatting: each training instance has
one encoder input sequence and multiple human-
annotated ground-truth output sequences. During
training, we use all of these output sequences for
training. During evaluation, we only feed all en-
coder input sequences to the model and use the
multiple ground-truth output sequences for evalu-
ation. nocaps does not release its evaluation and
test captions. We submit all data in the E2ENLG
and CommonGen task in the Data together with
this submission. Due to the large size of the nocaps
data, we recommend readers to its official website
https://nocaps.org/ for more details. Wang
et al. (2021) also share information about the no-
caps dataset, including captions and visual features.
We follow the standard split used in all previous
work (Lin et al., 2020; Dušek et al., 2020; Agrawal
et al., 2019). As T5 models can handle any words

Split CommonGen E2ENLG nocaps

Train 33k / 67k 4862 / 42k 118k / 592k
Val 4018 / 993 547 / 4672 4500 / -
Test 6012 / 1497 630 / 4693 10600 / -

Table 4: Training Data Statistics. Input Sequence / Out-
put Sequence for Train/Val/Test split in all three tasks.
nocaps does not release its ground-truth captions.

in the input and output sequences, we only lower
case all of these sequences before feeding them
into the model.

4 Used Evaluation Metrics

In our experiments, we use following metrics to
evaluate the quality of generated output text:

1. CIDEr (Vedantam et al., 2015) is the average
cosine similarity between the system output
and the reference sentences on the level of
n-grams (n=1,2,3,4). The importance of the

https://nocaps.org/


individual n-grams is given by the TF-IDF.
This is proposed for short text in image cap-
tioning tasks.

2. SPICE (Anderson et al., 2016) parses human
references and system outputs as scene-graphs
and calculate F1 score for the graph matching
between system outputs and human references.
It captures more long-range dependencies and
word relationships than n-gram based metrics.
This is proposed for short text in image cap-
tioning tasks.

3. BLEU (Papineni et al., 2002) is the harmonic
mean of n-gram precision of the system output
given the ground-truth reference sentences,
with n =1, 2, 3, 4. It is lowered by a brevity
penalty if the output is shorter than references.

4. NIST (Lin and Hovy, 2003) is a version of
BLEU with higher weighting for less frequent
(i.e., more informative) n-grams and a differ-
ent length penalty. It uses n = 1,2,3,4,5.

5. METEOR (Banerjee and Lavie, 2005) mea-
sures both precision and recall of uni-grams by
aligning the system output with each ground-
truth reference sentence. It uses fuzzy match-
ing based on stemming and WordNet syn-
onyms.

5 System Output

Table 5 shows some output examples (including
positive and negative ones) from our MF model
and baseline model. In positive examples, our MF
model completes all input constraints with mean-
ingful sentences. The baseline outputs, missing
some of the constraints, do not make much sense.
In the negative examples, our MF model produces
sentences with all constraints satisfied but makes
factual errors.
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Positive Cases

pair, polish, shoe, demonstrate, clean

T5-B a woman demonstrates how to clean a pair of shoes
+ MF a woman demonstrates how to clean and polish a

pair of shoes
GT the lady demonstrates how to clean and polish a

pair of shoes
guitar, tattoo, stand, front, arm

T5-B a man standing in front of a tattooed guitar
+ MF a man with a tattoo on his arm standing in front of

a guitar
GT a man with tattoo ’s on his arms is standing in front

of a microphone playing guitar
crowd, stage, concert, jump, surfs

T5-B a man jumps and surfs on stage during a concert
+ MF a man jumps off stage and surfs the crowd during

a concert
GT a man jumps off the stage and crowd surfs at a

concert
couple, take, park, dog, walk

T5-B a couple is walking their dog in a park
+ MF a couple takes their dog for a walk in a park
GT a couple taking their dogs on a walk through a park

outside
Negative Cases

bench, wife, sit, husband

T5-B a husband and wife sit on a bench
+ MF a man sitting on a bench with his wife and husband
GT the husband and wife sit on a bench

ball, catch, dog, jump

T5-B a dog jumps to catch a ball
+ MF a dog jumps on a ball and catches it
GT the dog jumped to catch the ball

Table 5: Representative examples of T5 baseline and
MF model output in the CommonGen task. GT: ground
truth text. T5-B: T5 base.
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