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1 Organization of Appendix

In this appendix, we show the supplementary mate-
rial of this paper “Towards More Accurate Uncer-
tainty Estimation In Text Classification”. Firstly,
we present more experiment results and more exper-
iment settings. The experiment results are obtained
from Transformer model and RNN model, which
are also important in machine learning and differ-
ent from CNN model. The experiment settings
are further details about our experiments, such as
computing infrastructure. Secondly, we show more
Natural Language Processing (NLP) works related
to uncertainty, and different overconfidence.

2 Appendix of Experiments

2.1 Results of transformer and RNN model

Concretely, we apply XLnet (Yang et al., 2019) as
an example of the Transformer on Amazon dataset.
The XLnet is pretrained from (Wolf et al., 2019)
where it has 12 layers, 12 heads and dimension of
hidden state as 768. We apply the feature from
the last hidden state of the XLnet, followed by two
trainable layers, which is added by us. The two
trainable layers are FC1 layer (768— 768) and FC2
layer (768— 5), because of 5 sentimental labels in
Amazon. Only for this task, we apply its own word
embedding rather Glove embedding with dimen-
sion of 200. The Micro F1 of XLnet on Amazon is
shown as Table 1. To show the flexibility of MSD,
we try MSD2-b, which has two components as mix-
up and distinctiveness score, and apply MSD2-a to
represent default MSD?2 setting, where it only has
mix-up and self-ensembling.

Besides, Bidirectional Gated Recurrent Units
(BiGRU) (Jabreel et al., 2018) is applied as an
example of RNN model with two hidden layers.
The Micro F1 of BiGRU on Amazon is shown as
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Table 2.

From Tables 1 and 2, we can conclude:

Higher performance in micro F1 by MSD2(-
a). From Tables 1 and 2, we find MSD2 and MSD2-
a always achieve the highest results with little in-
crease compared with the MSD1. This still shows
the effect of mix-up and self-ensembling. Though
MSD3 performs not competitively compared with
MSDI1 and MSD?2, it still outperforms DE+Metric
obviously in both F1 scores and improved ratios
of F1 scores in BiGRU. The poor performance
of MSD3 compared with MSD1 and MSD3 also
shows the offsets in calculating uncertainty scores
by summing two parts in the testing process. Thus,
how to avoid offsets in reducing epistemic uncer-
tainty in the training process will be our future
work.

2.2 More experiment settings

Computing infrastructure. We do all experi-
ments on two GPUs, which both are GTX 1080Ti.
The RAM in our machine is 64 GB.

Running time. For the experiments on 20News,
IMDb, Amazon with saved hidden states from pre-
trained XLnet, the training can be completed in
2 hours, and testing can be completed in 30 min-
utes. For the experiments on Amazon (CNN) and
Amazon (BiGRU), the training can be finished in
6 hours, while testing is finished in 1 hour and 3
hours respectively. All training epoches are set as 4
and testing will repeat £ = 100 times tryouts with
the same dropout rate.

Number of parameters. We have 7 parameters
totally. Concretely, the mix-up has 1 parameter: €2,
which is a lower boundary of the mix-up random ra-
tio «; the self-ensembling has 2 parameters A\; and
A2 which are the coefficients of the losses Lxr,
and Lgp, respectively; the distinctiveness score has
4 parameters, where (51 and (3 are the coefficients
of the penalty and Mahalanobis distance respec-



Table 1: Accuracy of uncertainty scores shown by improvement of micro F1 scores for the Amazon (XLnet)

Uncertainty Ratio(Micro F1, Improved Ratio)

Methods(€2, A2. 71.72) |~ g, 10% 20% 30% 40%

DE 0.682 0.711(4.18%) 0.737(8.10%)  0.762(11.76%) 0.783(14.88%)
DE+Metric 0.686 0.717(4.47%) 0.744(8.49%) 0.771(12.46%) 0.796(16.12%)
MSD1 (1,0, 1, 0) 0.683 0.722(5.63%) 0.754(10.43%) 0.789(15.46%) 0.821(20.19%)
MSD2-a (1,0.01,1,0) | 0.684 0.723(5.72%) 0.758(10.92%) 0.792(15.88%) 0.824(20.57%)
MSD2-b (1,0, 1, 1) 0.683 0.717(5.12%)  0.740(8.39%)  0.755(10.59%) 0.783(14.76%)
MSD3 (1,0.01, 1, 1) 0.684 0.722(5.51%) 0.749(9.37%)  0.767(12.12%) 0.791(15.56%)

Table 2: Accuracy of uncertainty scores shown by improvement of micro F1 scores for the Amazon (BiGRU)

Uncertainty Ratio(Micro F1, Improved Ratio)
Methods(€, Az, 71, 72) | g, 10% 20% 30% 40%
DE 0.712  0.747(4.97%) 0.780(9.60%)  0.783(9.96%)  0.783(9.97%)
DE+Metric 0.709  0.745(5.06%) 0.755(6.48%)  0.754(6.33%)  0.753(6.20%)
MSD1 (1,0, 1, 0) 0.706 0.745(5.60%) 0.781(10.63%) 0.817(15.82%) 0.849(20.30%)
MSD2 (1,0.1, 1, 0) 0.708 0.748(5.58%) 0.783(10.54%) 0.819(15.58%) 0.850(20.02%)
MSD3 (1,0.1,1,0.1) | 0.709 0.746(5.32%) 0.778(9.83%) 0.808(13.97%) 0.848(19.66%)

tively, and ; and y» are the coefficient of the recip-
rocal of winning scores and distinctiveness scores
respectively.

Evaluation metrics link. Though we have
explained evaluation metrics in the experi-
ment section, we provide our metrics code in
“emnlp_eval.py” in our submitted zip file (down-
loading form “SupMat__Software ” of EMNLP
website), which is revised from (Zhang et al.,
2019b) metrics code “drop_entropy_eval.py” . We
revise their metrics, entropy calculated by bin
count, into ours, reciprocal of winning score but
still with dropout mechanism.

Hyperparameter configurations for best-
performing models. We give the concrete pa-
rameter setting, which obtains best performance
in certain DNN and component combinations, af-
ter MSDs in the first column of each Table, the
remaining parameters are constants, which have
been introduced in the model section.

3 Appendix of Related Work.

Comparison with previous NLP works related
to uncertainty. We compare MSD with some re-
cent NLP works in terms of uncertainty categories.
The comparison is listed in Table. 3. From the
table, we can conclude that few works in NLP
consider uncertainty in a comprehensive way (at

"https://github.com/xuczhang/UncertainDC/blob/master/

least three categories of uncertainty are considered).
Two works are noteworthy. Firstly, though we sum-
marize (Wang et al., 2020) considers the structural
uncertainty by two models with different layer de-
signs, compared with NAS, which tries hundreds
of different neural architectures, it is not a good
way to solve the structural uncertainty. Secondly,
although (Dong et al., 2018) considers the same
three categories of uncertainty in semantic pars-
ing, the main differences between it and MSD
are: (a) (Dong et al., 2018) only scales the un-
certainty score in the tesing process, without inter-
fering with the training process. While we apply
both the training process and testing process for
uncertainty score, because we assume the train-
ing process is more flexible and has more abun-
dant information compared with the testing pro-
cess. For examples, we apply the training process
to boost the negative correlation between the train-
ing samples and their uncertainty by the mix-up. (b)
Though we consider the three same categories of
uncertainty, we have obvious difference in solving
them. For examples, we solve the aleatoric uncer-
tainty by the mix-up, while (Dong et al., 2018) ap-
plys Gaussian noise; we consider both the dropout
and self-ensembling to solve pamametric uncer-
tainty, while only dropout is considered in (Dong
et al., 2018). (c) The uncertainty scores between
two works are calculated differently. We apply
the reciprocal of winning scores as our uncertainty



Table 3: Comparison between MSD and recent NLP works in terms of applied categories of uncertainty, where
“A”, “E”, “P”, and “S” represent aleatoric uncertainty, epistemic uncertainty, parametric uncertainty, and structural
uncertainty respectively; “1” represents that the model considers respective uncertainty, while “0” represents that

the model ignores the respective one.

Model

Task

(Onan et al., 2016)
(Nadeem et al., 2019)
(Hama et al., 2019)
(Jagannatha and Yu, 2020)
(Shen et al., 2019)
(Wang et al., 2020)
(Wang et al., 2019)
(Dong et al., 2018)
(Zhang et al., 2019a)
(Ebrahimi et al., 2017)
(Liang et al., 2017)
(Papadopoulos et al., 2019)
(Vasudevan et al., 2019)
(Xiao and Wang, 2019)
(Zhang et al., 2019b)
MSD

Keyword extraction
Multi-modal classification
Image-caption retrieval
Entities of interest
Document quality assessment
Machine Translation
Machine Translation
Semantic Parsing
Semantic Parsing
Text classification
Text classification
Text classification
Text classification
Text classification
Text classification
Text classification

— 0O 00O LR ORROOOO OO O
—_ O = =, OO0 OO, O ~=O~OOO|mE
_—m = O O e e e = e e | Y
OO0~ OO0 OW

scores, while (Dong et al., 2018) calculates the un-
certainty score by inputting confidence metrics to
gradient tree boosting model (Chen and Guestrin,
2016).

Different overconfidence. Though (Thulasi-
dasan et al., 2019) also mentions overconfidence,
their overconfidence is different from ours. Their
overconfidence is that the model accuracy is prone
to be lower than what is indicated by the predictive
score. While our overconfidence means that we
cannot guarantee negative correlation between the
winning scores and sample uncertainty, because the
winning scores of training samples are all set as 1
by one-hot labels. We name it also as overconfi-
dence because the negative correlation is missing
by the same winning scores, which should be de-
signed differently. Though the winning scores of 1
means the highest confidence, we can make sam-
ple confidence different by mix-up, which will de-
crease the winning scores. Hence, compared with
different but decreased winning scores, the original
winning scores are overconfident. In other word,
their overconfidence focuses on the two metrics
of model performance, while ours focuses on the
correlation between the winning scores and sam-
ple uncertainty, which also shows bias in the latent
assumption.
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