
A Further details on WD50K

In contrast with Freebase which is no longer sup-
ported nor updated, we choose Wikidata as the
source KG for our dataset since it has an active
community and has seen contributions from various
companies that merge their knowledge with it. Ad-
ditionally, many new NLP tasks (Xiong et al., 2020;
Hayashi et al., 2019; Chakraborty et al., 2019), as
well as datasets (Wang et al., 2019b; Mesquita et al.,
2019; Dubey et al., 2019), are using Wikidata as a
reference KG.

The combined statistics of our dataset are pre-
sented in Table 1. WD50k consists of 47,156 enti-
ties, and 532 relations, amongst which 5,460 enti-
ties and 45 relations are found only within qualifier
(qp, qe) pairs. Fig. 5 illustrates how qualifiers are
distributed among statements, i.e., 236,393 state-
ments (99.9%) contain up to five qualifiers whereas
remaining 114 statements in a long tail contain up
to 20 qualifiers. Fig. 6 illustrates the in-degree dis-

Figure 5: Number of qualifiers per statement

tribution (with 50 bins, values higher than 1000
are omitted) of the WD50K graph structure where
most of the nodes have in-degrees up to 200.

Recall that we augmented our dataset to reduce
test set leakage by removing all instances from the
train, and validation sets whose main triple (s, p, o)
can be found in the test instances (Sec. 5). Another
form of test leakage, as discovered in (Toutanova
and Chen, 2015), may still persist in our dataset.
To estimate this, we count the instances in the test
set whose main triple’s ”direct” inverse (o, p, s),
or ”semantic” inverse (based on the relation P1696
in Wikidata, i.e., inverse of) is present in the train
set. This amounts to less than 4% (1.6k out of 46k)
instances in the test set.

Figure 6: In-degree distribution

B Sparse Representation

Sparse Triple Representation
s Q937 ... ...
o Q206702 ... ...
r P69 ... ...

index k k+1 k+2

Sparse Qualifier Representation
index k k ...
qr P812 P512 ...
qv Q413 Q849697 ...

Figure 7: Sparse representation for hyper-relational
facts. Each fact has a unique integer index k which is
shared between two COO matrices, i.e., the first one is
for main triples, the second one is for qualifiers. Quali-
fiers that belong to the same fact share the index k.

Storing full adjacency matrices of large KGs is
impractical due to O(|V|2) memory consumption.
GNNs encourage using sparse matrix representa-
tions and adopting sparse matrices is shown (Cohen
et al., 2020) to be scalable to graphs with millions
of edges. As illustrated in Figure 7, we employ
two sparse COO matrices to model hyper-relational
KGs. The first COO matrix is of a standard format
with rows containing indices of subjects, objects,
and relations associated with the main triple of a
hyper-relational fact.

In addition, we store index k that uniquely iden-
tifies each fact. The second COO matrix contains
rows of qualifier relations qr and entities qe that
are connected to their main triple (and the overall
hyper-relational fact) through the index k, i.e., if
a fact has several qualifiers those columns corre-
sponding to the qualifiers of the fact will share the
same index k. The overall memory consumption



is therefore O(|E|+ |Q|) and scales linearly to the
total number of qualifiers |Q|. Given that most
open-domain KGs rarely qualify each fact, e.g.,
as of August 2019, out of 734M Wikidata state-
ments approximately 128M (17.4%) have at least
one qualifier, this sparse qualifier representation
saves limited GPU memory.

C Hyperparameters

We tuned the model (STARE encoder with Trans-
former decoder) on the validation set using the
hyperparameters reported in Table 5. Implemen-
tations of mult, ccorr, and rotate functions in �q

and �r correspond to DistMult (Yang et al., 2015),
circular correlation (Nickel et al., 2016), and Ro-
tatE (Sun et al., 2019), respectively.

Table 5: This table reports the major hyperparameters
of our approach, and their corresponding bounds. Note
that ”Trf” refers to Transformers. Selected values are
in bold.

Parameter Value

STARE layers {1, 2}
Embedding dim {100, 200}
Batch size {128, 256, 512}
Learning rate {0.0001, 0.0005, 0.001}
�q mult, ccorr, rotate

�r mult, ccorr, rotate

� weighted sum concat, mul
Weighted sum ↵ [0.0, 1.0] step 0.1
Quals aggregation sum, mean
Trf layers {1, 2}
Trf hidden dim {256, 512, 768}
Trf heads {2, 4}
StarE dropout {0.1, 0.2, 0.3}
Trf dropout {0.1, 0.2, 0.3}
Label smoothing {0.0, 0.1}

The selected hyperparameters include two
STARE layers, embedding dimension of 200, batch
size of 128, Adam optimizer with 0.0001 learning
rate and 0.1 label smoothing. �r and �q are rotate
functions, �(·) is a weighted sum function with
↵ of 0.8, qualifiers are aggregated using a simple
summation, and 0.3 dropout rate. We use 2-layer
Transformer block with the hidden dimension of
512, and 4 attention heads with 0.1 dropout rate
as our decoder. For WD50K and JF17K datasets
we set the maximum length of a hyper-relational
fact to 15 (i.e., a statement can contain at most 6
qualifier pairs), and 7 for WikiPeople.

Infrastructure and Parameters. We train all
models on one Tesla V100 GPU. Due to a large
number of parameters, owing to large trainable em-
bedding matrices, it is advisable to a GPU with
at least 12GB of VRAM. Running STARE (H) +
Transformer (H) models with the selected hyper-
params on WD50K requires approximately 2 days
to train and has 10.8M parameters9; on JF17k the
model has 7.1M parameters and takes about 10
hours to train; on WikiPeople the model has 8.2M
parameters which we run for 500 epochs and takes
about 4 days.

StarE (H) + Transformer (H) models on reduced
datasets: the model corresponding to WD50K (33)
has 9M parameters and takes 20 hours to train
while WD50K model has 6.8M parameters and
takes about 9 hours to train. In case of WD50K
(100), the model has 5M parameters and takes 5
hours to train.

D Decoders

As an additional experiment, we pair STARE with
different decoders and evaluate them over WD50K
datasets. Along with the main reported model de-
noted as StarE + Trf, we implemented two CNN-
based decoders and another Transformer-based de-
coder. All models are trained with the same en-
coder hyperparameters as chosen in the main re-
ported model.

StarE + ConvE relies on the ConvE (Dettmers
et al., 2018)-like decoder but expanded for state-
ments with qualifiers. Given a query (s, r, {(qri,
qvi), ... }), we stack entities and relations em-
beddings row-wise and reshape the tensor into an
image of size H⇥W . For instance, for a statement
with 6 qualifier pairs, i.e., query length of 14, and
an embedding size of 200, we obtain images of size
40⇥ 70. We then apply a 2D convolutional layer
with a 7 ⇥ 7 kernel for each image, apply ReLU,
flatten the resulting tensor, and pass it through a
fully-connected layer. We used 200 filters and the
learning rate was set to 0.001.

StarE + ConvKB is based on the Con-
vKB (Nguyen et al., 2018)-like decoder adjusted
for statements with qualifiers. Given a query (s,
r, {(qri, qvi), ... }), we stack entities and rela-
tions embeddings row-wise and apply a 2D con-
volutional layer with a LQ ⇥ 7 kernel, e.g., for
queries of length 14 the kernel size is 14⇥ 7. We
then apply ReLU, flatten the resulting tensor, and

9According to a built-in PyTorch counter.



Table 6: Effect of different decoders on the link prediction task over WD50K, and its variations.

Dataset ! WD50K WD50K (33) WD50K (66) WD50K (100)

Method # MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

STARE + Trf 0.349 0.271 0.496 0.331 0.268 0.451 0.481 0.420 0.594 0.654 0.588 0.777

STARE + ConvE 0.341 0.260 0.496 0.323 0.254 0.456 0.460 0.392 0.590 0.627 0.550 0.772
STARE + ConvKB 0.323 0.241 0.479 0.316 0.247 0.448 0.448 0.377 0.584 0.621 0.544 0.763
STARE + MskTrf 0.341 0.262 0.489 0.324 0.260 0.446 0.479 0.417 0.595 0.649 0.579 0.774

Figure 8: Gamma experiment.

pass it through a fully-connected layer. We used
200 filtersand the learning rate was set to 0.001.

StarE + MskTrf denotes a Transformer decoder
with an explicit [MASK] token at the object po-
sition of each query. Given a query (s, r, {(qri,
qvi), ... }), we extract relevant entities and relation
embeddings and insert the [MASK] token, trans-
forming it into (s, r, [MASK], {(qri, qvi), ... }).
We then pass it through the Transformer layers and
retrieve the representation of the [MASK] token.
Finally, the token representation is passed through
a fully-connected layer. We trained the model with
0.0001 as the learning rate.

Table 6 reports link prediction results on a va-
riety of WD50K datasets with with different de-
coders. The default StarE + Trf decoder generally
attains superior results with biggest gains along
H@1 metric.

E Relation-Qualifiers Aggregation

In this experiment, we measure the impact of the
choice of �(·) function which is used for aggregat-
ing representations of a relation and its qualifiers
(see Eq. 5). To evaluate its impact we use STARE
(H) + Transformer (H) models, on four WD50K
datasets using three functions, i.e., concatenation
[hr,hq], element-wise multiplication hr � hq, and
weighted sum ↵� hr + (1� ↵)� hq where ↵ is
fixed to 0.8.

The results are presented in Fig.8. We find that
all the three settings have similar performance indi-

cating model’s stability with respect to the choice
of �(·) function.


