
NAACL HLT 2019

The International Workshop on Semantic Evaluation

Proceedings of the Thirteenth Workshop

June 6–June 7, 2019
Minneapolis, Minnesota, USA

c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-06-2

ii

Introduction

Welcome to SemEval-2019!

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyse diverse semantic phenomena in text with the aim of extending the current state
of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2019 is the thirteenth workshop in the series of International Workshops on Semantic
Evaluation. The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004),
focused on word sense disambiguation, each time growing in the number of languages offered, in the
number of tasks, and also in the number of participating teams. In 2007, the workshop was renamed
to SemEval, and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond
word sense disambiguation. In 2012, SemEval turned into a yearly event. It currently runs every year,
but on a two-year cycle, i.e., the tasks for SemEval 2019 were proposed in 2018.

SemEval-2019 was co-located with the 17th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2019) in
Minneapolis, Minnesota, USA. It included the following 11 shared tasks organized in five tracks:

• Frame Semantics and Semantic Parsing

– Task 1: Cross-lingual Semantic Parsing with UCCA

– Task 2: Unsupervised Lexical Semantic Frame Induction

• Opinion, Emotion and Abusive Language Detection

– Task 3: EmoContext: Contextual Emotion Detection in Text

– Task 4: Hyperpartisan News Detection

– Task 5: HatEval: Multilingual Detection of Hate Speech Against Immigrants and Women in
Twitter

– Task 6: OffensEval: Identifying and Categorizing Offensive Language in Social Media

• Fact vs. Fiction

– Task 7: RumourEval 2019: Determining Rumour Veracity and Support for Rumours

– Task 8: Fact Checking in Community Question Answering Forums

• Information Extraction and Question Answering

– Task 9: Suggestion Mining from Online Reviews and Forums

– Task 10: Math Question Answering

• NLP for Scientific Applications

– Task 12: Toponym Resolution in Scientific Papers

iii

This volume contains both Task Description papers that describe each of the above tasks, and System
Description papers that present the systems that participated in these tasks. A total of 11 task description
papers and 220 system description papers are included in this volume.

We are grateful to all task organizers as well as to the large number of participants whose enthusiastic
participation has made SemEval once again a successful event. We are thankful to the task organizers
who also served as area chairs, and to task organizers and participants who reviewed paper submissions.
These proceedings have greatly benefited from their detailed and thoughtful feedback. We also thank the
NAACL HLT 2019 conference organizers for their support. Finally, we most gratefully acknowledge the
support of our sponsors: the ACL Special Interest Group on the Lexicon (SIGLEX) and Microsoft.

The SemEval 2019 organizers, Jonathan May, Ekaterina Shutova, Aurelie Herbelot, Xiaodan Zhu,
Marianna Apidianaki, Saif M. Mohammad

iv

Organizers:

Jonathan May, ISI, University of Southern California
Ekaterina Shutova, University of Amsterdam
Aurelie Herbelot, University of Trento
Xiaodan Zhu, Queen’s University
Marianna Apidianaki, LIMSI, CNRS, Université Paris-Saclay & University of Pennsylvania
Saif M. Mohammad, National Research Council Canada

Task Selection Committee:

Eneko Agirre, University of the Basque Country
Isabelle Augenstein, University of Copenhagen
Timothy Baldwin, University of Melbourne
Steven Bethard, University of Arizona
Georgeta Bordea, National University of Ireland
Daniel Cer, Google
Wanxiang Che, Harbin Institute of Technology
Nigel Collier, University of Cambridge
Mrinal Das, University of Massachusetts Amherst
Mona Diab, George Washington University
André Freitas, The University of Manchester
Dimitris Galanis, ILSP, “Athena” Research Center
David Jurgens, University of Michigan
Svetlana Kiritchenko, National Research Council Canada
Egoitz Laparra, University of Arizona
Inigo Lopez-Gazpio, University of Deusto
Alessandro Moschitti, University of Trento
Montse Maritxalar, University of the Basque Country
Tristan Miller, Technische Universität Darmstadt
Mohammad Taher Pilehvar, Iran University of Science and Technology & University of Cambridge
Maria Pontiki, ILSP, “Athena” Research Center
Peter Potash, Microsoft
Alan Ritter, The Ohio State University
Alexey Romanov, University of Massachusetts Lowell
Sara Rosenthal, IBM Watson
Juliano Efson Sales, University of St. Gallen
Guergana Savova, Harvard University
Parinaz Sobhani, University of Ottawa

v

Task Organizers:

Omri Abend, Hebrew University of Jerusalem, Israel
Payam Adineh, Bauhaus-Universität Weimar, Germany
Puneet Agrawal, Microsoft, India
Zohar Aizenbud, Hebrew University of Jerusalem, Israel
Ahmet Aker, University of Sheffield, UK
Pepa Atanasova, University of Copenhagen, Denmark
Ramy Baly, MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
Valerio Basile, Università degli Studi di Torino, Italy
Kalina Bontcheva, University of Sheffield, UK
Cristina Bosco, Università degli Studi di Torino, Italy
Paul Buitelaar, National University of Ireland, Ireland
Marie Candito, Paris Diderot University - CNRS, France
Ankush Chatterjee, Microsoft, India
Leshem Choshen, Hebrew University of Jerusalem, Israel
David Corney, Factmata Ltd., UK
Tobias Daudert, National University of Ireland, Ireland
Leon Derczynski, IT University of Copenhagen, Denmark
Noura Farra, Columbia University, USA
Elisabetta Fersini, Universitat Politècnica de València, Spain
Graciela Gonzalez-Hernandez, University of Pennsylvania, USA
Genevieve Gorrell, University of Sheffield, UK
Hannaneh Hajishirzi, University of Washington, USA
Daniel Hershcovich, Hebrew University of Jerusalem, Israel
Mark Hopkins, Reed College, USA
Meghana Joshi, Microsoft, India
Laura Kallmeyer, HHUD, SFB991, Germany
Georgi Karadzhov, SiteGround Hosting EOOD, Bulgaria
Johannes Kiesel, Bauhaus-Universität Weimar, Germany
Elena Kochkina, University of Warwick, UK; Alan Turing Institute, UK
Rik Koncel-Kedziorski, University of Washington, USA
Ritesh Kumar, Bhim Rao Ambedkar University, India
Ronan Le Bras, Allen Institute for Artificial Intelligence, USA
Maria Liakata, University of Warwick, UK; Alan Turing Institute, UK
Arjun Magge, Arizona State University, USA
Shervin Malmasi, Amazon Research, USA
Maria Mestre, Factmata Ltd., UK
Tsvetomila Mihaylova, Instituto de Telecomunicações, Portugal
Mitra Mohtarami, MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
Preslav Nakov, HBKU, Qatar
Kedhar Nath Narahari, Microsoft, India
Sapna Negi, Genesys Telecommunication Laboratories, Ireland
Debora Nozza, Universitat Politècnica de València, Spain
Karen O’Connor, University of Pennsylvania, USA
Viviana Patti, Università degli Studi di Torino, Italy
Cristian Petrescu-Prahova, Allen Institute for Artificial Intelligence, USA
Miriam R. L. Petruck, ICSI, US
Martin Potthast, Leipzig University, Germany
Behrang QasemiZadeh, SFB991, Germany
Francisco Rangel, Università degli Studi di Milano Bicocca, Italy; Autoritas Consulting, Spain
Ari Rappoport, Hebrew University of Jerusalem, Israel

vi

Sara Rosenthal, IBM Research, USA
Paolo Rosso, Università degli Studi di Milano Bicocca, Italy
Manuela Sanguinetti, Università degli Studi di Torino, Italy
Matthew Scotch, Arizona State University, USA
Rishabh Shukla, Factmata Ltd., UK
Gabriel Stanovsky, University of Washington, USA
Benno Stein, Bauhaus-Universität Weimar, Germany
Regina Stodden, HHUD, Germany
Elior Sulem, Hebrew University of Jerusalem, Israel
Emmanuel Vincent, Factmata Ltd., UK
Davy Weissenbacher, University of Pennsylvania, USA
Marcos Zampieri, University of Wolverhampton, UK
Arkaitz Zubiaga, Queen Mary University of London, UK

Invited Speaker:

Samuel R. Bowman, New York University

vii

Invited Talk: Task-Independent Sentence Understanding
Samuel R. Bowman
New York University

Abstract

This talk deals with the goal of task-independent language understanding: building machine learning
models that can learn to do most of the hard work of language understanding before they see a single
example of the language understanding task they’re meant to solve, in service of making the best of mod-
ern NLP systems both better and more data-efficient. I’ll survey the (dramatic!) progress that the NLP
research community has made toward this goal in the last year. In particular, I’ll dwell on GLUE—an
open-ended shared task competition that measures progress toward this goal for sentence understand-
ing tasks—and I’ll preview a few recent and forthcoming analysis papers that attempt to offer a bit of
perspective on this recent progress.

Biography

I have been on the faculty at NYU since 2016, when I finished my PhD with Chris Manning and Chris
Potts at Stanford. At NYU, I’m a core member of the new school-level Data Science unit, which focuses
on machine learning, and a co-PI of the CILVR machine learning lab. My research focuses on data, eval-
uation techniques, and modeling techniques for sentence understanding in natural language processing,
and on applications of machine learning to scientific questions in linguistic syntax and semantics. I am
an area chair for *SEM 2018, ICLR 2019, and NAACL 2019; I organized a twenty-three person team
at JSALT 2018; and I earned a 2015 EMNLP Best Resource Paper Award and a 2017 Google Faculty
Research Award.

viii

Table of Contents

SemEval-2019 Task 1: Cross-lingual Semantic Parsing with UCCA
Daniel Hershcovich, Zohar Aizenbud, Leshem Choshen, Elior Sulem, Ari Rappoport and Omri

Abend . 1

HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing
Wei Jiang, Zhenghua Li, Yu Zhang and Min Zhang . 11

SemEval-2019 Task 2: Unsupervised Lexical Frame Induction
Behrang QasemiZadeh, Miriam R L Petruck, Regina Stodden, Laura Kallmeyer and Marie Candito

16

Neural GRANNy at SemEval-2019 Task 2: A combined approach for better modeling of semantic rela-
tionships in semantic frame induction

Nikolay Arefyev, Boris Sheludko, Adis Davletov, Dmitry Kharchev, Alex Nevidomsky and Alexan-
der Panchenko . 31

SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text
Ankush Chatterjee, Kedhar Nath Narahari, Meghana Joshi and Puneet Agrawal 39

ANA at SemEval-2019 Task 3: Contextual Emotion detection in Conversations through hierarchical
LSTMs and BERT

Chenyang Huang, Amine Trabelsi and Osmar Zaiane . 49

SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti, Francisco Manuel

Rangel Pardo, Paolo Rosso and Manuela Sanguinetti . 54

Atalaya at SemEval 2019 Task 5: Robust Embeddings for Tweet Classification
Juan Manuel Pérez and Franco M. Luque . 64

FERMI at SemEval-2019 Task 5: Using Sentence embeddings to Identify Hate Speech Against Immi-
grants and Women in Twitter

Vijayasaradhi Indurthi, Bakhtiyar Syed, Manish Shrivastava, Nikhil Chakravartula, Manish Gupta
and Vasudeva Varma . 70

SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)
Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra and Ritesh Kumar

75

NULI at SemEval-2019 Task 6: Transfer Learning for Offensive Language Detection using Bidirectional
Transformers

Ping Liu, Wen Li and Liang Zou . 87

CUNY-PKU Parser at SemEval-2019 Task 1: Cross-Lingual Semantic Parsing with UCCA
Weimin Lyu, Sheng Huang, Abdul Rafae Khan, Shengqiang Zhang, Weiwei Sun and Jia Xu. . . .92

DANGNT@UIT.VNU-HCM at SemEval 2019 Task 1: Graph Transformation System from Stanford Basic
Dependencies to Universal Conceptual Cognitive Annotation (UCCA)

Dang Tuan Nguyen and Trung Tran. .97

ix

GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional and Recurrent Neural
Networks

Shiva Taslimipoor, Omid Rohanian and Sara Može . 102

MaskParse@Deskin at SemEval-2019 Task 1: Cross-lingual UCCA Semantic Parsing using Recursive
Masked Sequence Tagging

Gabriel Marzinotto, Johannes Heinecke and Geraldine Damnati . 107

Tüpa at SemEval-2019 Task1: (Almost) feature-free Semantic Parsing
Tobias Pütz and Kevin Glocker .113

UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with Attention-based Decoder
Dian Yu and Kenji Sagae . 119

HHMM at SemEval-2019 Task 2: Unsupervised Frame Induction using Contextualized Word Embed-
dings

Saba Anwar, Dmitry Ustalov, Nikolay Arefyev, Simone Paolo Ponzetto, Chris Biemann and Alexan-
der Panchenko . 125

L2F/INESC-ID at SemEval-2019 Task 2: Unsupervised Lexical Semantic Frame Induction using Con-
textualized Word Representations

Eugénio Ribeiro, Vânia Mendonça, Ricardo Ribeiro, David Martins de Matos, Alberto Sardinha,
Ana Lúcia Santos and Luísa Coheur . 130

BrainEE at SemEval-2019 Task 3: Ensembling Linear Classifiers for Emotion Prediction
Vachagan Gratian . 137

CAiRE_HKUST at SemEval-2019 Task 3: Hierarchical Attention for Dialogue Emotion Classification
Genta Indra Winata, Andrea Madotto, Zhaojiang Lin, Jamin Shin, Yan Xu, Peng Xu and Pascale

Fung . 142

CECL at SemEval-2019 Task 3: Using Surface Learning for Detecting Emotion in Textual Conversations
Yves Bestgen . 148

CLaC Lab at SemEval-2019 Task 3: Contextual Emotion Detection Using a Combination of Neural
Networks and SVM

Elham Mohammadi, Hessam Amini and Leila Kosseim. .153

CLARK at SemEval-2019 Task 3: Exploring the Role of Context to Identify Emotion in a Short Conver-
sation

Joseph Cummings and Jason Wilson . 159

CLP at SemEval-2019 Task 3: Multi-Encoder in Hierarchical Attention Networks for Contextual Emo-
tion Detection

Changjie Li and Yun Xing . 164

CoAStaL at SemEval-2019 Task 3: Affect Classification in Dialogue using Attentive BiLSTMs
Ana Valeria Gonzalez, Victor Petrén Bach Hansen, Joachim Bingel, Isabelle Augenstein and Anders

Søgaard . 169

ConSSED at SemEval-2019 Task 3: Configurable Semantic and Sentiment Emotion Detector
Rafał Poświata . 175

x

CX-ST-RNM at SemEval-2019 Task 3: Fusion of Recurrent Neural Networks Based on Contextualized
and Static Word Representations for Contextual Emotion Detection

Michał Perełkiewicz . 180

ParallelDots at SemEval-2019 Task 3: Domain Adaptation with feature embeddings for Contextual Emo-
tion Analysis

Akansha Jain, Ishita Aggarwal and Ankit Singh. .185

E-LSTM at SemEval-2019 Task 3: Semantic and Sentimental Features Retention for Emotion Detection
in Text

Harsh Patel . 190

ELiRF-UPV at SemEval-2019 Task 3: Snapshot Ensemble of Hierarchical Convolutional Neural Net-
works for Contextual Emotion Detection

José-Ángel González, Lluís-F. Hurtado and Ferran Pla . 195

EmoDet at SemEval-2019 Task 3: Emotion Detection in Text using Deep Learning
Hani Al-Omari, Malak Abdullah and Nabeel Bassam. 200

EMOMINER at SemEval-2019 Task 3: A Stacked BiLSTM Architecture for Contextual Emotion Detec-
tion in Text

Nikhil Chakravartula and Vijayasaradhi Indurthi . 205

EmoSense at SemEval-2019 Task 3: Bidirectional LSTM Network for Contextual Emotion Detection in
Textual Conversations

Sergey Smetanin . 210

EPITA-ADAPT at SemEval-2019 Task 3: Detecting emotions in textual conversations using deep learn-
ing models combination

Abdessalam Bouchekif, Praveen Joshi, Latifa Bouchekif and Haithem Afli 215

Figure Eight at SemEval-2019 Task 3: Ensemble of Transfer Learning Methods for Contextual Emotion
Detection

Joan Xiao . 220

GenSMT at SemEval-2019 Task 3: Contextual Emotion Detection in tweets using multi task generic
approach

Dumitru Bogdan. .225

GWU NLP Lab at SemEval-2019 Task 3 :EmoContext: Effectiveness ofContextual Information in Models
for Emotion Detection inSentence-level at Multi-genre Corpus

Shabnam Tafreshi and Mona Diab . 230

IIT Gandhinagar at SemEval-2019 Task 3: Contextual Emotion Detection Using Deep Learning
Arik Pamnani, Rajat Goel, Jayesh Choudhari and Mayank Singh . 236

KGPChamps at SemEval-2019 Task 3: A deep learning approach to detect emotions in the dialog utter-
ances.

Jasabanta Patro, Nitin Choudhary, Kalpit Chittora and Animesh Mukherjee 241

KSU at SemEval-2019 Task 3: Hybrid Features for Emotion Recognition in Textual Conversation
Nourah Alswaidan and Mohamed El Bachir Menai .247

xi

LIRMM-Advanse at SemEval-2019 Task 3: Attentive Conversation Modeling for Emotion Detection and
Classification

Waleed Ragheb, Jérôme Azé, Sandra Bringay and Maximilien Servajean . 251

MILAB at SemEval-2019 Task 3: Multi-View Turn-by-Turn Model for Context-Aware Sentiment Analysis
Yoonhyung Lee, Yanghoon Kim and Kyomin Jung . 256

MoonGrad at SemEval-2019 Task 3: Ensemble BiRNNs for Contextual Emotion Detection in Dialogues
Chandrakant Bothe and Stefan Wermter . 261

NELEC at SemEval-2019 Task 3: Think Twice Before Going Deep
Parag Agrawal and Anshuman Suri . 266

NL-FIIT at SemEval-2019 Task 3: Emotion Detection From Conversational Triplets Using Hierarchical
Encoders

Michal Farkas and Peter Lacko. .272

NTUA-ISLab at SemEval-2019 Task 3: Determining emotions in contextual conversations with deep
learning

Rolandos Alexandros Potamias and Gergios Siolas . 277

ntuer at SemEval-2019 Task 3: Emotion Classification with Word and Sentence Representations in RCNN
Peixiang Zhong and Chunyan Miao . 282

PKUSE at SemEval-2019 Task 3: Emotion Detection with Emotion-Oriented Neural Attention Network
Luyao Ma, Long Zhang, Wei Ye and Wenhui Hu . 287

Podlab at SemEval-2019 Task 3: The Importance of Being Shallow
Andrew Nguyen, Tobin South, Nigel Bean, Jonathan Tuke and Lewis Mitchell 292

SCIA at SemEval-2019 Task 3: Sentiment Analysis in Textual Conversations Using Deep Learning
Zinedine Rebiai, Simon Andersen, Antoine Debrenne and Victor Lafargue 297

Sentim at SemEval-2019 Task 3: Convolutional Neural Networks For Sentiment in Conversations
Jacob Anderson . 302

SINAI at SemEval-2019 Task 3: Using affective features for emotion classification in textual conversa-
tions

Flor Miriam Plaza del Arco, M. Dolores Molina González, Maite Martin and L. Alfonso Urena
Lopez . 307

SNU IDS at SemEval-2019 Task 3: Addressing Training-Test Class Distribution Mismatch in Conversa-
tional Classification

Sanghwan Bae, Jihun Choi and Sang-goo Lee . 312

SSN_NLP at SemEval-2019 Task 3: Contextual Emotion Identification from Textual Conversation using
Seq2Seq Deep Neural Network

Senthil Kumar B, Thenmozhi D, Aravindan Chandrabose and Srinethe Sharavanan 318

SWAP at SemEval-2019 Task 3: Emotion detection in conversations through Tweets, CNN and LSTM
deep neural networks

Marco Polignano, Marco de Gemmis and Giovanni Semeraro . 324

xii

SymantoResearch at SemEval-2019 Task 3: Combined Neural Models for Emotion Classification in
Human-Chatbot Conversations

Angelo Basile, Marc Franco-Salvador, Neha Pawar, Sanja Štajner, Mara Chinea Rios and Yassine
Benajiba . 330

TDBot at SemEval-2019 Task 3: Context Aware Emotion Detection Using A Conditioned Classification
Approach

Sourabh Maity . 335

THU_NGN at SemEval-2019 Task 3: Dialog Emotion Classification using Attentional LSTM-CNN
Suyu Ge, Tao Qi, Chuhan Wu and Yongfeng Huang . 340

THU-HCSI at SemEval-2019 Task 3: Hierarchical Ensemble Classification of Contextual Emotion in
Conversation

Xihao Liang, Ye Ma and Mingxing Xu. .345

TokyoTech_NLP at SemEval-2019 Task 3: Emotion-related Symbols in Emotion Detection
Zhishen Yang, Sam Vijlbrief and Naoaki Okazaki . 350

UAIC at SemEval-2019 Task 3: Extracting Much from Little
Cristian Simionescu, Ingrid Stoleru, Diana Lucaci, Gheorghe Balan, Iulian Bute and Adrian Iftene

355

YUN-HPCC at SemEval-2019 Task 3: Multi-Step Ensemble Neural Network for Sentiment Analysis in
Textual Conversation

Dawei Li, Jin Wang and Xuejie Zhang . 360

KDEHatEval at SemEval-2019 Task 5: A Neural Network Model for Detecting Hate Speech in Twitter
Umme Aymun Siddiqua, Abu Nowshed Chy and Masaki Aono . 365

ABARUAH at SemEval-2019 Task 5 : Bi-directional LSTM for Hate Speech Detection
Arup Baruah, Ferdous Barbhuiya and Kuntal Dey . 371

Amobee at SemEval-2019 Tasks 5 and 6: Multiple Choice CNN Over Contextual Embedding
Alon Rozental and Dadi Biton . 377

CIC at SemEval-2019 Task 5: Simple Yet Very Efficient Approach to Hate Speech Detection, Aggressive
Behavior Detection, and Target Classification in Twitter

Iqra Ameer, Muhammad Hammad Fahim Siddiqui, Grigori Sidorov and Alexander Gelbukh . . 382

CiTIUS-COLE at SemEval-2019 Task 5: Combining Linguistic Features to Identify Hate Speech Against
Immigrants and Women on Multilingual Tweets

Sattam Almatarneh, Pablo Gamallo and Francisco J. Ribadas Pena . 387

Grunn2019 at SemEval-2019 Task 5: Shared Task on Multilingual Detection of Hate
Mike Zhang, Roy David, Leon Graumans and Gerben Timmerman . 391

GSI-UPM at SemEval-2019 Task 5: Semantic Similarity and Word Embeddings for Multilingual Detec-
tion of Hate Speech Against Immigrants and Women on Twitter

Diego Benito, Oscar Araque and Carlos A. Iglesias . 396

HATEMINER at SemEval-2019 Task 5: Hate speech detection against Immigrants and Women in Twitter
using a Multinomial Naive Bayes Classifier

Nikhil Chakravartula . 404

xiii

HATERecognizer at SemEval-2019 Task 5: Using Features and Neural Networks to Face Hate Recogni-
tion

Victor Nina-Alcocer . 409

GL at SemEval-2019 Task 5: Identifying hateful tweets with a deep learning approach.
Gretel Liz De la Peña . 416

INF-HatEval at SemEval-2019 Task 5: Convolutional Neural Networks for Hate Speech Detection
Against Women and Immigrants on Twitter

Alison Ribeiro and Nádia Silva . 420

JCTDHS at SemEval-2019 Task 5: Detection of Hate Speech in Tweets using Deep Learning Methods,
Character N-gram Features, and Preprocessing Methods

Yaakov HaCohen-Kerner, Elyashiv Shayovitz, Shalom Rochman, Eli Cahn, Gal Didi and Ziv Ben-
David . 426

Know-Center at SemEval-2019 Task 5: Multilingual Hate Speech Detection on Twitter using CNNs
Kevin Winter and Roman Kern . 431

LT3 at SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in
Twitter (hatEval)

Nina Bauwelinck, Gilles Jacobs, Veronique Hoste and Els Lefever . 436

ltl.uni-due at SemEval-2019 Task 5: Simple but Effective Lexico-Semantic Features for Detecting Hate
Speech in Twitter

Huangpan Zhang, Michael Wojatzki, Tobias Horsmann and Torsten Zesch.441

MineriaUNAM at SemEval-2019 Task 5: Detecting Hate Speech in Twitter using Multiple Features in a
Combinatorial Framework

Luis Enrique Argota Vega, Jorge Carlos Reyes Magaña, Helena Gómez-Adorno and Gemma Bel-
Enguix . 447

MITRE at SemEval-2019 Task 5: Transfer Learning for Multilingual Hate Speech Detection
Abigail Gertner, John Henderson, Elizabeth Merkhofer, Amy Marsh, Ben Wellner and Guido

Zarrella . 453

Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter at SemEval-2019 Task
5: Frequency Analysis Interpolation for Hate in Speech Detection

Òscar Garibo i Orts . 460

STUFIIT at SemEval-2019 Task 5: Multilingual Hate Speech Detection on Twitter with MUSE and ELMo
Embeddings

Michal Bojkovsky and Matus Pikuliak . 464

Saagie at Semeval-2019 Task 5: From Universal Text Embeddings and Classical Features to Domain-
specific Text Classification

Miriam Benballa, Sebastien Collet and Romain Picot-Clemente . 469

SINAI at SemEval-2019 Task 5: Ensemble learning to detect hate speech against inmigrants and women
in English and Spanish tweets

Flor Miriam Plaza del Arco, M. Dolores Molina González, Maite Martin and L. Alfonso Urena
Lopez . 476

xiv

SINAI-DL at SemEval-2019 Task 5: Recurrent networks and data augmentation by paraphrasing
Arturo Montejo-Ráez, Salud María Jiménez-Zafra, Miguel A. García-Cumbreras and Manuel Car-

los Díaz-Galiano . 480

sthruggle at SemEval-2019 Task 5: An Ensemble Approach to Hate Speech Detection
Aria Nourbakhsh, Frida Vermeer, Gijs Wiltvank and Rob van der Goot . 484

The binary trio at SemEval-2019 Task 5: Multitarget Hate Speech Detection in Tweets
Patricia Chiril, Farah Benamara Zitoune, Véronique Moriceau and Abhishek Kumar 489

The Titans at SemEval-2019 Task 5: Detection of hate speech against immigrants and women in Twitter
Avishek Garain and Arpan Basu. .494

TuEval at SemEval-2019 Task 5: LSTM Approach to Hate Speech Detection in English and Spanish
Mihai Manolescu, Denise Löfflad, Adham Nasser Mohamed Saber and Masoumeh Moradipour Tari

498

Tw-StAR at SemEval-2019 Task 5: N-gram embeddings for Hate Speech Detection in Multilingual Tweets
Hala Mulki, Chedi Bechikh Ali, Hatem Haddad and Ismail Babaoğlu . 503

UA at SemEval-2019 Task 5: Setting A Strong Linear Baseline for Hate Speech Detection
Carlos Perelló, David Tomás, Alberto Garcia-Garcia, Jose Garcia-Rodriguez and Jose Camacho-

Collados . 508

UNBNLP at SemEval-2019 Task 5 and 6: Using Language Models to Detect Hate Speech and Offensive
Language

Ali Hakimi Parizi, Milton King and Paul Cook . 514

UTFPR at SemEval-2019 Task 5: Hate Speech Identification with Recurrent Neural Networks
Gustavo Henrique Paetzold, Marcos Zampieri and Shervin Malmasi . 519

Vista.ue at SemEval-2019 Task 5: Single Multilingual Hate Speech Detection Model
Kashyap Raiyani, Teresa Gonçalves, Paulo Quaresma and Vitor Nogueira 524

YNU NLP at SemEval-2019 Task 5: Attention and Capsule Ensemble for Identifying Hate Speech
Bin Wang and Haiyan Ding . 529

YNU_DYX at SemEval-2019 Task 5: A Stacked BiGRU Model Based on Capsule Network in Detection
of Hate

Yunxia Ding, Xiaobing Zhou and Xuejie Zhang. .535

Amrita School of Engineering - CSE at SemEval-2019 Task 6: Manipulating Attention with Temporal
Convolutional Neural Network for Offense Identification and Classification

Murali Sridharan and Swapna TR . 540

bhanodaig at SemEval-2019 Task 6: Categorizing Offensive Language in social media
Ritesh Kumar, Guggilla Bhanodai, Rajendra Pamula and Maheswara Reddy Chennuru 547

BNU-HKBU UIC NLP Team 2 at SemEval-2019 Task 6: Detecting Offensive Language Using BERT
model

Zhenghao Wu, Hao Zheng, Jianming Wang, Weifeng Su and Jefferson Fong 551

xv

CAMsterdam at SemEval-2019 Task 6: Neural and graph-based feature extraction for the identification
of offensive tweets

Guy Aglionby, Chris Davis, Pushkar Mishra, Andrew Caines, Helen Yannakoudakis, Marek Rei,
Ekaterina Shutova and Paula Buttery . 556

CN-HIT-MI.T at SemEval-2019 Task 6: Offensive Language Identification Based on BiLSTM with Dou-
ble Attention

Yaojie Zhang, Bing Xu and Tiejun Zhao . 564

ConvAI at SemEval-2019 Task 6: Offensive Language Identification and Categorization with Perspective
and BERT

John Pavlopoulos, Nithum Thain, Lucas Dixon and Ion Androutsopoulos 571

DA-LD-Hildesheim at SemEval-2019 Task 6: Tracking Offensive Content with Deep Learning using
Shallow Representation

Sandip Modha, Prasenjit Majumder and Daksh Patel . 577

DeepAnalyzer at SemEval-2019 Task 6: A deep learning-based ensemble method for identifying offensive
tweets

Gretel Liz De la Peña and Paolo Rosso . 582

NLP at SemEval-2019 Task 6: Detecting Offensive language using Neural Networks
Prashant Kapil, Asif Ekbal and Dipankar Das. .587

Duluth at SemEval-2019 Task 6: Lexical Approaches to Identify and Categorize Offensive Tweets
Ted Pedersen . 593

Emad at SemEval-2019 Task 6: Offensive Language Identification using Traditional Machine Learning
and Deep Learning approaches

Emad Kebriaei, Samaneh Karimi, Nazanin Sabri and Azadeh Shakery . 600

Embeddia at SemEval-2019 Task 6: Detecting Hate with Neural Network and Transfer Learning Ap-
proaches

Andraž Pelicon, Matej Martinc and Petra Kralj Novak . 604

Fermi at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media using
Sentence Embeddings

Vijayasaradhi Indurthi, Bakhtiyar Syed, Manish Shrivastava, Manish Gupta and Vasudeva Varma
611

Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based Approach to Offensive Language
Identification

Ehsan Doostmohammadi, Hossein Sameti and Ali Saffar . 617

HAD-Tübingen at SemEval-2019 Task 6: Deep Learning Analysis of Offensive Language on Twitter:
Identification and Categorization

Himanshu Bansal, Daniel Nagel and Anita Soloveva . 622

HHU at SemEval-2019 Task 6: Context Does Matter - Tackling Offensive Language Identification and
Categorization with ELMo

Alexander Oberstrass, Julia Romberg, Anke Stoll and Stefan Conrad. .628

Hope at SemEval-2019 Task 6: Mining social media language to discover offensive language
Gabriel Florentin Patras, Diana Florina Lungu, Daniela Gifu and Diana Trandabat 635

xvi

INGEOTEC at SemEval-2019 Task 5 and Task 6: A Genetic Programming Approach for Text Classifica-
tion

Mario Graff, Sabino Miranda-Jiménez, Eric Tellez and Daniela Alejandra Ochoa 639

JCTICOL at SemEval-2019 Task 6: Classifying Offensive Language in Social Media using Deep Learn-
ing Methods, Word/Character N-gram Features, and Preprocessing Methods

Yaakov HaCohen-Kerner, Ziv Ben-David, Gal Didi, Eli Cahn, Shalom Rochman and Elyashiv
Shayovitz .645

jhan014 at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media
Jiahui Han, Shengtan Wu and Xinyu Liu . 652

JTML at SemEval-2019 Task 6: Offensive Tweets Identification using Convolutional Neural Networks
Johnny Torres and Carmen Vaca . 657

JU_ETCE_17_21 at SemEval-2019 Task 6: Efficient Machine Learning and Neural Network Approaches
for Identifying and Categorizing Offensive Language in Tweets

Preeti Mukherjee, Mainak Pal, Somnath Banerjee and Sudip Kumar Naskar 662

KMI-Coling at SemEval-2019 Task 6: Exploring N-grams for Offensive Language detection
Priya Rani and Atul Kr. Ojha . 668

LaSTUS/TALN at SemEval-2019 Task 6: Identification and Categorization of Offensive Language in
Social Media with Attention-based Bi-LSTM model

Lutfiye Seda Mut Altin, Àlex Bravo Serrano and Horacio Saggion . 672

LTL-UDE at SemEval-2019 Task 6: BERT and Two-Vote Classification for Categorizing Offensiveness
Piush Aggarwal, Tobias Horsmann, Michael Wojatzki and Torsten Zesch . 678

MIDAS at SemEval-2019 Task 6: Identifying Offensive Posts and Targeted Offense from Twitter
Debanjan Mahata, Haimin Zhang, Karan Uppal, Yaman Kumar, Rajiv Ratn Shah, Simra Shahid,

Laiba Mehnaz and Sarthak Anand. .683

Nikolov-Radivchev at SemEval-2019 Task 6: Offensive Tweet Classification with BERT and Ensembles
Alex Nikolov and Victor Radivchev . 691

NIT_Agartala_NLP_Team at SemEval-2019 Task 6: An Ensemble Approach to Identifying and Catego-
rizing Offensive Language in Twitter Social Media Corpora

Steve Durairaj Swamy, Anupam Jamatia, Björn Gambäck and Amitava Das 696

NLP@UIOWA at SemEval-2019 Task 6: Classifying the Crass using Multi-windowed CNNs
Jonathan Rusert and Padmini Srinivasan . 704

NLPR@SRPOL at SemEval-2019 Task 6 and Task 5: Linguistically enhanced deep learning offensive
sentence classifier

Alessandro Seganti, Helena Sobol, Iryna Orlova, Hannam Kim, Jakub Staniszewski, Tymoteusz
Krumholc and Krystian Koziel .712

nlpUP at SemEval-2019 Task 6: A Deep Neural Language Model for Offensive Language Detection
Jelena Mitrović, Bastian Birkeneder and Michael Granitzer . 722

Pardeep at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media
using Deep Learning

Pardeep Singh and Satish Chand . 727

xvii

SINAI at SemEval-2019 Task 6: Incorporating lexicon knowledge into SVM learning to identify and
categorize offensive language in social media

Flor Miriam Plaza del Arco, M. Dolores Molina González, Maite Martin and L. Alfonso Urena
Lopez . 735

SSN_NLP at SemEval-2019 Task 6: Offensive Language Identification in Social Media using Traditional
and Deep Machine Learning Approaches

Thenmozhi D, Senthil Kumar B, Srinethe Sharavanan and Aravindan Chandrabose 739

Stop PropagHate at SemEval-2019 Tasks 5 and 6: Are abusive language classification results repro-
ducible?

Paula Fortuna, Juan Soler-Company and Sérgio Nunes . 745

TECHSSN at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Tweets using
Deep Neural Networks

Angel Suseelan, Rajalakshmi S, Logesh B, Harshini S, Geetika B, Dyaneswaran S, S Milton Ra-
jendram and Mirnalinee T T . 753

The Titans at SemEval-2019 Task 6: Offensive Language Identification, Categorization and Target Iden-
tification

Avishek Garain and Arpan Basu. .759

TüKaSt at SemEval-2019 Task 6: Something Old, Something Neu(ral): Traditional and Neural Ap-
proaches to Offensive Text Classification

Madeeswaran Kannan and Lukas Stein . 763

TUVD team at SemEval-2019 Task 6: Offense Target Identification
Elena Shushkevich, John Cardiff and Paolo Rosso . 770

UBC-NLP at SemEval-2019 Task 6: Ensemble Learning of Offensive Content With Enhanced Training
Data

Arun Rajendran, Chiyu Zhang and Muhammad Abdul-Mageed. .775

UHH-LT at SemEval-2019 Task 6: Supervised vs. Unsupervised Transfer Learning for Offensive Lan-
guage Detection

Gregor Wiedemann, Eugen Ruppert and Chris Biemann . 782

UM-IU@LING at SemEval-2019 Task 6: Identifying Offensive Tweets Using BERT and SVMs
Jian Zhu, Zuoyu Tian and Sandra Kübler . 788

USF at SemEval-2019 Task 6: Offensive Language Detection Using LSTM With Word Embeddings
Bharti Goel and Ravi Sharma . 796

UTFPR at SemEval-2019 Task 6: Relying on Compositionality to Find Offense
Gustavo Henrique Paetzold . 801

UVA Wahoos at SemEval-2019 Task 6: Hate Speech Identification using Ensemble Machine Learning
Murugesan Ramakrishnan, Wlodek Zadrozny and Narges Tabari . 806

YNU-HPCC at SemEval-2019 Task 6: Identifying and Categorising Offensive Language on Twitter
Chengjin Zhou, Jin Wang and Xuejie Zhang . 812

YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-embedding for identifying
offensive language

Bin Wang, Xiaobing Zhou and Xuejie Zhang . 818

xviii

Zeyad at SemEval-2019 Task 6: That’s Offensive! An All-Out Search For An Ensemble To Identify And
Categorize Offense in Tweets.

Zeyad El-Zanaty .823

SemEval-2019 Task 4: Hyperpartisan News Detection
Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney,

Benno Stein and Martin Potthast . 829

Team Bertha von Suttner at SemEval-2019 Task 4: Hyperpartisan News Detection using ELMo Sentence
Representation Convolutional Network

Ye Jiang, Johann Petrak, Xingyi Song, Kalina Bontcheva and Diana Maynard 840

SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for Rumours
Genevieve Gorrell, Ahmet Aker, Kalina Bontcheva, Leon Derczynski, Elena Kochkina, Maria Li-

akata and Arkaitz Zubiaga. .845

eventAI at SemEval-2019 Task 7: Rumor Detection on Social Media by Exploiting Content, User Credi-
bility and Propagation Information

Quanzhi Li, Qiong Zhang and Luo Si . 855

SemEval-2019 Task 8: Fact Checking in Community Question Answering Forums
Tsvetomila Mihaylova, Georgi Karadzhov, Pepa Atanasova, Ramy Baly, Mitra Mohtarami and

Preslav Nakov . 860

AUTOHOME-ORCA at SemEval-2019 Task 8: Application of BERT for Fact-Checking in Community
Forums

Zhengwei Lv, Duoxing Liu, Haifeng Sun, Xiao Liang, Tao Lei, Zhizhong Shi, Feng Zhu and Lei
Yang . 870

SemEval-2019 Task 9: Suggestion Mining from Online Reviews and Forums
Sapna Negi, Tobias Daudert and Paul Buitelaar . 877

m_y at SemEval-2019 Task 9: Exploring BERT for Suggestion Mining
Masahiro Yamamoto and Toshiyuki Sekiya . 888

SemEval-2019 Task 10: Math Question Answering
Mark Hopkins, Ronan Le Bras, Cristian Petrescu-Prahova, Gabriel Stanovsky, Hannaneh Hajishirzi

and Rik Koncel-Kedziorski . 893

AiFu at SemEval-2019 Task 10: A Symbolic and Sub-symbolic Integrated System for SAT Math Question
Answering

Yifan Liu, Keyu Ding and Yi Zhou . 900

SemEval-2019 Task 12: Toponym Resolution in Scientific Papers
Davy Weissenbacher, Arjun Magge, Karen O’Connor, Matthew Scotch and Graciela Gonzalez-

Hernandez . 907

DM_NLP at SemEval-2018 Task 12: A Pipeline System for Toponym Resolution
Xiaobin Wang, Chunping Ma, Huafei Zheng, Chu Liu, Pengjun Xie, Linlin Li and Luo Si 917

Brenda Starr at SemEval-2019 Task 4: Hyperpartisan News Detection
Olga Papadopoulou, Giorgos Kordopatis-Zilos, Markos Zampoglou, Symeon Papadopoulos and

Yiannis Kompatsiaris . 924

xix

Cardiff University at SemEval-2019 Task 4: Linguistic Features for Hyperpartisan News Detection
Carla Perez Almendros, Luis Espinosa Anke and Steven Schockaert . 929

Clark Kent at SemEval-2019 Task 4: Stylometric Insights into Hyperpartisan News Detection
Viresh Gupta, Baani Leen Kaur Jolly, Ramneek Kaur and Tanmoy Chakraborty 934

Dick-Preston and Morbo at SemEval-2019 Task 4: Transfer Learning for Hyperpartisan News Detection
Tim Isbister and Fredrik Johansson . 939

Doris Martin at SemEval-2019 Task 4: Hyperpartisan News Detection with Generic Semi-supervised
Features

Rodrigo Agerri . 944

Duluth at SemEval-2019 Task 4: The Pioquinto Manterola Hyperpartisan News Detector
Saptarshi Sengupta and Ted Pedersen . 949

Fermi at SemEval-2019 Task 4: The sarah-jane-smith Hyperpartisan News Detector
Nikhil Chakravartula, Vijayasaradhi Indurthi and Bakhtiyar Syed . 954

Harvey Mudd College at SemEval-2019 Task 4: The Carl Kolchak Hyperpartisan News Detector
Celena Chen, Celine Park, Jason Dwyer and Julie Medero . 957

Harvey Mudd College at SemEval-2019 Task 4: The Clint Buchanan Hyperpartisan News Detector
Mehdi Drissi, Pedro Sandoval Segura, Vivaswat Ojha and Julie Medero . 962

Harvey Mudd College at SemEval-2019 Task 4: The D.X. Beaumont Hyperpartisan News Detector
Evan Amason, Jake Palanker, Mary Clare Shen and Julie Medero . 967

NLP@UIT at SemEval-2019 Task 4: The Paparazzo Hyperpartisan News Detector
Duc-Vu Nguyen, Thin Dang and Ngan Nguyen . 971

Orwellian-times at SemEval-2019 Task 4: A Stylistic and Content-based Classifier
Jürgen Knauth . 976

Rouletabille at SemEval-2019 Task 4: Neural Network Baseline for Identification of Hyperpartisan Pub-
lishers

Jose G. Moreno, Yoann Pitarch, Karen Pinel-Sauvagnat and Gilles Hubert 981

Spider-Jerusalem at SemEval-2019 Task 4: Hyperpartisan News Detection
Amal Alabdulkarim and Tariq Alhindi . 985

Steve Martin at SemEval-2019 Task 4: Ensemble Learning Model for Detecting Hyperpartisan News
Youngjun Joo and Inchon Hwang . 990

TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection
Niko Palić, Juraj Vladika, Dominik Čubelić, Ivan Lovrencic, Maja Buljan and Jan Šnajder 995

Team Fernando-Pessa at SemEval-2019 Task 4: Back to Basics in Hyperpartisan News Detection
André Cruz, Gil Rocha, Rui Sousa-Silva and Henrique Lopes Cardoso . 999

Team Harry Friberg at SemEval-2019 Task 4: Identifying Hyperpartisan News through Editorially De-
fined Metatopics

Nazanin Afsarmanesh, Jussi Karlgren, Peter Sumbler and Nina Viereckel 1004

Team Howard Beale at SemEval-2019 Task 4: Hyperpartisan News Detection with BERT
Osman Mutlu, Ozan Arkan Can and Erenay Dayanik . 1007

xx

Team Jack Ryder at SemEval-2019 Task 4: Using BERT Representations for Detecting Hyperpartisan
News

Daniel Shaprin, Giovanni Da San Martino, Alberto Barrón-Cedeño and Preslav Nakov 1012

Team Kermit-the-frog at SemEval-2019 Task 4: Bias Detection Through Sentiment Analysis and Simple
Linguistic Features

Talita Anthonio and Lennart Kloppenburg. .1016

Team Kit Kittredge at SemEval-2019 Task 4: LSTM Voting System
Rebekah Cramerus and Tatjana Scheffler . 1021

Team Ned Leeds at SemEval-2019 Task 4: Exploring Language Indicators of Hyperpartisan Reporting
Bozhidar Stevanoski and Sonja Gievska . 1026

Team Peter Brinkmann at SemEval-2019 Task 4: Detecting Biased News Articles Using Convolutional
Neural Networks

Michael Färber, Agon Qurdina and Lule Ahmedi . 1032

Team Peter-Parker at SemEval-2019 Task 4: BERT-Based Method in Hyperpartisan News Detection
Zhiyuan Ning, Yuanzhen Lin and Ruichao Zhong . 1037

Team QCRI-MIT at SemEval-2019 Task 4: Propaganda Analysis Meets Hyperpartisan News Detection
Abdelrhman Saleh, Ramy Baly, Alberto Barrón-Cedeño, Giovanni Da San Martino, Mitra Mo-

htarami, Preslav Nakov and James Glass .1041

Team Xenophilius Lovegood at SemEval-2019 Task 4: Hyperpartisanship Classification using Convolu-
tional Neural Networks

Albin Zehe, Lena Hettinger, Stefan Ernst, Christian Hauptmann and Andreas Hotho.1047

Team yeon-zi at SemEval-2019 Task 4: Hyperpartisan News Detection by De-noising Weakly-labeled
Data

Nayeon Lee, Zihan Liu and Pascale Fung . 1052

The Sally Smedley Hyperpartisan News Detector at SemEval-2019 Task 4
Kazuaki Hanawa, Shota Sasaki, Hiroki Ouchi, Jun Suzuki and Kentaro Inui 1057

Tintin at SemEval-2019 Task 4: Detecting Hyperpartisan News Article with only Simple Tokens
Yves Bestgen . 1062

Tom Jumbo-Grumbo at SemEval-2019 Task 4: Hyperpartisan News Detection with GloVe vectors and
SVM

Chia-Lun Yeh, Babak Loni and Anne Schuth . 1067

UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-Based Bi-LSTMs
Chiyu Zhang, Arun Rajendran and Muhammad Abdul-Mageed . 1072

Vernon-fenwick at SemEval-2019 Task 4: Hyperpartisan News Detection using Lexical and Semantic
Features

Vertika Srivastava, Ankita Gupta, Divya Prakash, Sudeep Kumar Sahoo, Rohit R.R and Yeon Hyang
Kim . 1078

AndrejJan at SemEval-2019 Task 7: A Fusion Approach for Exploring the Key Factors pertaining to
Rumour Analysis

Andrej Janchevski and Sonja Gievska . 1083

xxi

BLCU_NLP at SemEval-2019 Task 7: An Inference Chain-based GPT Model for Rumour Evaluation
Ruoyao Yang, Wanying Xie, Chunhua Liu and Dong Yu . 1090

BUT-FIT at SemEval-2019 Task 7: Determining the Rumour Stance with Pre-Trained Deep Bidirectional
Transformers

Martin Fajcik, Pavel Smrz and Lukas Burget . 1097

CLEARumor at SemEval-2019 Task 7: ConvoLving ELMo Against Rumors
Ipek Baris, Lukas Schmelzeisen and Steffen Staab . 1105

Columbia at SemEval-2019 Task 7: Multi-task Learning for Stance Classification and Rumour Verifica-
tion

Zhuoran Liu, Shivali Goel, Mukund Yelahanka Raghuprasad and Smaranda Muresan.1110

GWU NLP at SemEval-2019 Task 7: Hybrid Pipeline for Rumour Veracity and Stance Classification on
Social Media

Sardar Hamidian and Mona Diab .1115

SINAI-DL at SemEval-2019 Task 7: Data Augmentation and Temporal Expressions
Miguel A. García-Cumbreras, Salud María Jiménez-Zafra, Arturo Montejo-Ráez, Manuel Carlos

Díaz-Galiano and Estela Saquete . 1120

UPV-28-UNITO at SemEval-2019 Task 7: Exploiting Post’s Nesting and Syntax Information for Rumor
Stance Classification

Bilal Ghanem, Alessandra Teresa Cignarella, Cristina Bosco, Paolo Rosso and Francisco Manuel
Rangel Pardo . 1125

BLCU_NLP at SemEval-2019 Task 8: A Contextual Knowledge-enhanced GPT Model for Fact Checking
Wanying Xie, Mengxi Que, Ruoyao Yang, Chunhua Liu and Dong Yu . 1132

CodeForTheChange at SemEval-2019 Task 8: Skip-Thoughts for Fact Checking in Community Question
Answering

Adithya Avvaru and Anupam Pandey . 1138

ColumbiaNLP at SemEval-2019 Task 8: The Answer is Language Model Fine-tuning
Tuhin Chakrabarty and Smaranda Muresan . 1144

DOMLIN at SemEval-2019 Task 8: Automated Fact Checking exploiting Ratings in Community Question
Answering Forums

Dominik Stammbach, Stalin Varanasi and Guenter Neumann . 1149

DUTH at SemEval-2019 Task 8: Part-Of-Speech Features for Question Classification
Anastasios Bairaktaris, Symeon Symeonidis and Avi Arampatzis . 1155

Fermi at SemEval-2019 Task 8: An elementary but effective approach to Question Discernment in Com-
munity QA Forums

Bakhtiyar Syed, Vijayasaradhi Indurthi, Manish Shrivastava, Manish Gupta and Vasudeva Varma
1160

SolomonLab at SemEval-2019 Task 8: Question Factuality and Answer Veracity Prediction in Commu-
nity Forums

Ankita Gupta, Sudeep Kumar Sahoo, Divya Prakash, Rohit R.R, Vertika Srivastava and Yeon Hyang
Kim . 1165

xxii

TMLab SRPOL at SemEval-2019 Task 8: Fact Checking in Community Question Answering Forums
Piotr Niewiński, Aleksander Wawer, Maria Pszona and Maria Janicka . 1172

TueFact at SemEval 2019 Task 8: Fact checking in community question answering forums: context
matters

Reka Juhasz, Franziska-Barbara Linnenschmidt and Teslin Roys . 1176

YNU-HPCC at SemEval-2019 Task 8: Using A LSTM-Attention Model for Fact-Checking in Community
Forums

Peng Liu, Jin Wang and Xuejie Zhang . 1180

DBMS-KU at SemEval-2019 Task 9: Exploring Machine Learning Approaches in Classifying Text as
Suggestion or Non-Suggestion

Tirana Fatyanosa, Al Hafiz Akbar Maulana Siagian and Masayoshi Aritsugi 1185

DS at SemEval-2019 Task 9: From Suggestion Mining with neural networks to adversarial cross-domain
classification

Tobias Cabanski . 1192

Hybrid RNN at SemEval-2019 Task 9: Blending Information Sources for Domain-Independent Sugges-
tion Mining

Aysu Ezen-Can and Ethem F. Can . 1199

INRIA at SemEval-2019 Task 9: Suggestion Mining Using SVM with Handcrafted Features
Ilia Markov and Eric Villemonte De la Clergerie . 1204

Lijunyi at SemEval-2019 Task 9: An attention-based LSTM and ensemble of different models for sugges-
tion mining from online reviews and forums

Junyi Li . 1208

MIDAS at SemEval-2019 Task 9: Suggestion Mining from Online Reviews using ULMFit
Sarthak Anand, Debanjan Mahata, Kartik Aggarwal, Laiba Mehnaz, Simra Shahid, Haimin Zhang,

Yaman Kumar, Rajiv Shah and Karan Uppal . 1213

NL-FIIT at SemEval-2019 Task 9: Neural Model Ensemble for Suggestion Mining
Samuel Pecar, Marian Simko and Maria Bielikova . 1218

NTUA-ISLab at SemEval-2019 Task 9: Mining Suggestions in the wild
Rolandos Alexandros Potamias, Alexandros Neofytou and Gergios Siolas 1224

OleNet at SemEval-2019 Task 9: BERT based Multi-Perspective Models for Suggestion Mining
Jiaxiang Liu, Shuohuan Wang and Yu Sun . 1231

SSN-SPARKS at SemEval-2019 Task 9: Mining Suggestions from Online Reviews using Deep Learning
Techniques on Augmented Data

Rajalakshmi S, Angel Suseelan, S Milton Rajendram and Mirnalinee T T 1237

Suggestion Miner at SemEval-2019 Task 9: Suggestion Detection in Online Forum using Word Graph
Usman Ahmed, Humera Liaquat, Luqman Ahmed and Syed Jawad Hussain 1242

Team Taurus at SemEval-2019 Task 9: Expert-informed pattern recognition for suggestion mining
Nelleke Oostdijk and Hans van Halteren . 1247

xxiii

ThisIsCompetition at SemEval-2019 Task 9: BERT is unstable for out-of-domain samples
Cheoneum Park, Juae Kim, Hyeon-gu Lee, Reinald Kim Amplayo, Harksoo Kim, Jungyun Seo and

Changki Lee . 1254

WUT at SemEval-2019 Task 9: Domain-Adversarial Neural Networks for Domain Adaptation in Sug-
gestion Mining

Mateusz Klimaszewski and Piotr Andruszkiewicz. .1262

Yimmon at SemEval-2019 Task 9: Suggestion Mining with Hybrid Augmented Approaches
Yimeng Zhuang . 1267

YNU_DYX at SemEval-2019 Task 9: A Stacked BiLSTM for Suggestion Mining Classification
Yunxia Ding, Xiaobing Zhou and Xuejie Zhang . 1272

YNU-HPCC at SemEval-2019 Task 9: Using a BERT and CNN-BiLSTM-GRU Model for Suggestion
Mining

Ping Yue, Jin Wang and Xuejie Zhang . 1277

Zoho at SemEval-2019 Task 9: Semi-supervised Domain Adaptation using Tri-training for Suggestion
Mining

Sai Prasanna and Sri Ananda Seelan . 1282

ZQM at SemEval-2019 Task9: A Single Layer CNN Based on Pre-trained Model for Suggestion Mining
Qimin Zhou, Zhengxin Zhang, Hao Wu and Linmao Wang . 1287

ProblemSolver at SemEval-2019 Task 10: Sequence-to-Sequence Learning and Expression Trees
Xuefeng Luo, Alina Baranova and Jonas Biegert . 1292

RGCL-WLV at SemEval-2019 Task 12: Toponym Detection
Alistair Plum, Tharindu Ranasinghe, Pablo Calleja, Constantin Orasan and Ruslan Mitkov . . . 1297

THU_NGN at SemEval-2019 Task 12: Toponym Detection and Disambiguation on Scientific Papers
Tao Qi, Suyu Ge, Chuhan Wu, Yubo Chen and Yongfeng Huang . 1302

UNH at SemEval-2019 Task 12: Toponym Resolution in Scientific Papers
Matthew Magnusson and Laura Dietz . 1308

UniMelb at SemEval-2019 Task 12: Multi-model combination for toponym resolution
Haonan Li, Minghan Wang, Timothy Baldwin, Martin Tomko and Maria Vasardani 1313

University of Arizona at SemEval-2019 Task 12: Deep-Affix Named Entity Recognition of Geolocation
Entities

Vikas Yadav, Egoitz Laparra, Ti-Tai Wang, Mihai Surdeanu and Steven Bethard 1319

xxiv

Workshop Program

Thursday, June 6, 2019

09:00–09:15 Welcome / Opening Remarks

09:30–10:30 Invited Talk: Task-Independent Sentence Understanding
Sam Bowman

10:30–11:00 Coffee

11:00–12:30 Tasks 1, 2 and 3

SemEval-2019 Task 1: Cross-lingual Semantic Parsing with UCCA
Daniel Hershcovich, Zohar Aizenbud, Leshem Choshen, Elior Sulem, Ari Rap-
poport and Omri Abend

HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree
Parsing
Wei Jiang, Zhenghua Li, Yu Zhang and Min Zhang

SemEval-2019 Task 2: Unsupervised Lexical Frame Induction
Behrang QasemiZadeh, Miriam R L Petruck, Regina Stodden, Laura Kallmeyer and
Marie Candito

Neural GRANNy at SemEval-2019 Task 2: A combined approach for better model-
ing of semantic relationships in semantic frame induction
Nikolay Arefyev, Boris Sheludko, Adis Davletov, Dmitry Kharchev, Alex Nevidom-
sky and Alexander Panchenko

SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text
Ankush Chatterjee, Kedhar Nath Narahari, Meghana Joshi and Puneet Agrawal

ANA at SemEval-2019 Task 3: Contextual Emotion detection in Conversations
through hierarchical LSTMs and BERT
Chenyang Huang, Amine Trabelsi and Osmar Zaiane

12:30–14:00 Lunch

14:00–15:30 Tasks 5 and 6

xxv

Thursday, June 6, 2019 (continued)

SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants
and Women in Twitter
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti,
Francisco Manuel Rangel Pardo, Paolo Rosso and Manuela Sanguinetti

Atalaya at SemEval 2019 Task 5: Robust Embeddings for Tweet Classification
Juan Manuel Pérez and Franco M. Luque

FERMI at SemEval-2019 Task 5: Using Sentence embeddings to Identify Hate
Speech Against Immigrants and Women in Twitter
Vijayasaradhi Indurthi, Bakhtiyar Syed, Manish Shrivastava, Nikhil Chakravartula,
Manish Gupta and Vasudeva Varma

SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social
Media (OffensEval)
Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra
and Ritesh Kumar

NULI at SemEval-2019 Task 6: Transfer Learning for Offensive Language Detec-
tion using Bidirectional Transformers
Ping Liu, Wen Li and Liang Zou

15:30–16:00 Coffee

16:00–16:30 Discussion

16:30–17:30 Poster Session

CUNY-PKU Parser at SemEval-2019 Task 1: Cross-Lingual Semantic Parsing with
UCCA
Weimin Lyu, Sheng Huang, Abdul Rafae Khan, Shengqiang Zhang, Weiwei Sun
and Jia Xu

DANGNT@UIT.VNU-HCM at SemEval 2019 Task 1: Graph Transformation Sys-
tem from Stanford Basic Dependencies to Universal Conceptual Cognitive Annota-
tion (UCCA)
Dang Tuan Nguyen and Trung Tran

GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional
and Recurrent Neural Networks
Shiva Taslimipoor, Omid Rohanian and Sara Može

MaskParse@Deskin at SemEval-2019 Task 1: Cross-lingual UCCA Semantic Pars-
ing using Recursive Masked Sequence Tagging
Gabriel Marzinotto, Johannes Heinecke and Geraldine Damnati

xxvi

Thursday, June 6, 2019 (continued)

Tüpa at SemEval-2019 Task1: (Almost) feature-free Semantic Parsing
Tobias Pütz and Kevin Glocker

UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with Attention-based
Decoder
Dian Yu and Kenji Sagae

HHMM at SemEval-2019 Task 2: Unsupervised Frame Induction using Contextual-
ized Word Embeddings
Saba Anwar, Dmitry Ustalov, Nikolay Arefyev, Simone Paolo Ponzetto, Chris Bie-
mann and Alexander Panchenko

L2F/INESC-ID at SemEval-2019 Task 2: Unsupervised Lexical Semantic Frame
Induction using Contextualized Word Representations
Eugénio Ribeiro, Vânia Mendonça, Ricardo Ribeiro, David Martins de Matos, Al-
berto Sardinha, Ana Lúcia Santos and Luísa Coheur

BrainEE at SemEval-2019 Task 3: Ensembling Linear Classifiers for Emotion Pre-
diction
Vachagan Gratian

CAiRE_HKUST at SemEval-2019 Task 3: Hierarchical Attention for Dialogue
Emotion Classification
Genta Indra Winata, Andrea Madotto, Zhaojiang Lin, Jamin Shin, Yan Xu, Peng Xu
and Pascale Fung

CECL at SemEval-2019 Task 3: Using Surface Learning for Detecting Emotion in
Textual Conversations
Yves Bestgen

CLaC Lab at SemEval-2019 Task 3: Contextual Emotion Detection Using a Com-
bination of Neural Networks and SVM
Elham Mohammadi, Hessam Amini and Leila Kosseim

CLARK at SemEval-2019 Task 3: Exploring the Role of Context to Identify Emotion
in a Short Conversation
Joseph Cummings and Jason Wilson

CLP at SemEval-2019 Task 3: Multi-Encoder in Hierarchical Attention Networks
for Contextual Emotion Detection
Changjie Li and Yun Xing

CoAStaL at SemEval-2019 Task 3: Affect Classification in Dialogue using Attentive
BiLSTMs
Ana Valeria Gonzalez, Victor Petrén Bach Hansen, Joachim Bingel, Isabelle Au-
genstein and Anders Søgaard

ConSSED at SemEval-2019 Task 3: Configurable Semantic and Sentiment Emotion
Detector
Rafał Poświata

xxvii

Thursday, June 6, 2019 (continued)

CX-ST-RNM at SemEval-2019 Task 3: Fusion of Recurrent Neural Networks Based
on Contextualized and Static Word Representations for Contextual Emotion Detec-
tion
Michał Perełkiewicz

ParallelDots at SemEval-2019 Task 3: Domain Adaptation with feature embeddings
for Contextual Emotion Analysis
Akansha Jain, Ishita Aggarwal and Ankit Singh

E-LSTM at SemEval-2019 Task 3: Semantic and Sentimental Features Retention for
Emotion Detection in Text
Harsh Patel

ELiRF-UPV at SemEval-2019 Task 3: Snapshot Ensemble of Hierarchical Convo-
lutional Neural Networks for Contextual Emotion Detection
José-Ángel González, Lluís-F. Hurtado and Ferran Pla

EmoDet at SemEval-2019 Task 3: Emotion Detection in Text using Deep Learning
Hani Al-Omari, Malak Abdullah and Nabeel Bassam

EMOMINER at SemEval-2019 Task 3: A Stacked BiLSTM Architecture for Contex-
tual Emotion Detection in Text
Nikhil Chakravartula and Vijayasaradhi Indurthi

EmoSense at SemEval-2019 Task 3: Bidirectional LSTM Network for Contextual
Emotion Detection in Textual Conversations
Sergey Smetanin

EPITA-ADAPT at SemEval-2019 Task 3: Detecting emotions in textual conversa-
tions using deep learning models combination
Abdessalam Bouchekif, Praveen Joshi, Latifa Bouchekif and Haithem Afli

Figure Eight at SemEval-2019 Task 3: Ensemble of Transfer Learning Methods for
Contextual Emotion Detection
Joan Xiao

GenSMT at SemEval-2019 Task 3: Contextual Emotion Detection in tweets using
multi task generic approach
Dumitru Bogdan

GWU NLP Lab at SemEval-2019 Task 3 :EmoContext: Effectiveness ofContextual
Information in Models for Emotion Detection inSentence-level at Multi-genre Cor-
pus
Shabnam Tafreshi and Mona Diab

IIT Gandhinagar at SemEval-2019 Task 3: Contextual Emotion Detection Using
Deep Learning
Arik Pamnani, Rajat Goel, Jayesh Choudhari and Mayank Singh

xxviii

Thursday, June 6, 2019 (continued)

KGPChamps at SemEval-2019 Task 3: A deep learning approach to detect emotions
in the dialog utterances.
Jasabanta Patro, Nitin Choudhary, Kalpit Chittora and Animesh Mukherjee

KSU at SemEval-2019 Task 3: Hybrid Features for Emotion Recognition in Textual
Conversation
Nourah Alswaidan and Mohamed El Bachir Menai

LIRMM-Advanse at SemEval-2019 Task 3: Attentive Conversation Modeling for
Emotion Detection and Classification
Waleed Ragheb, Jérôme Azé, Sandra Bringay and Maximilien Servajean

MILAB at SemEval-2019 Task 3: Multi-View Turn-by-Turn Model for Context-
Aware Sentiment Analysis
Yoonhyung Lee, Yanghoon Kim and Kyomin Jung

MoonGrad at SemEval-2019 Task 3: Ensemble BiRNNs for Contextual Emotion
Detection in Dialogues
Chandrakant Bothe and Stefan Wermter

NELEC at SemEval-2019 Task 3: Think Twice Before Going Deep
Parag Agrawal and Anshuman Suri

NL-FIIT at SemEval-2019 Task 3: Emotion Detection From Conversational Triplets
Using Hierarchical Encoders
Michal Farkas and Peter Lacko

NTUA-ISLab at SemEval-2019 Task 3: Determining emotions in contextual conver-
sations with deep learning
Rolandos Alexandros Potamias and Gergios Siolas

ntuer at SemEval-2019 Task 3: Emotion Classification with Word and Sentence
Representations in RCNN
Peixiang Zhong and Chunyan Miao

PKUSE at SemEval-2019 Task 3: Emotion Detection with Emotion-Oriented Neural
Attention Network
Luyao Ma, Long Zhang, Wei Ye and Wenhui Hu

Podlab at SemEval-2019 Task 3: The Importance of Being Shallow
Andrew Nguyen, Tobin South, Nigel Bean, Jonathan Tuke and Lewis Mitchell

SCIA at SemEval-2019 Task 3: Sentiment Analysis in Textual Conversations Using
Deep Learning
Zinedine Rebiai, Simon Andersen, Antoine Debrenne and Victor Lafargue

xxix

Thursday, June 6, 2019 (continued)

Sentim at SemEval-2019 Task 3: Convolutional Neural Networks For Sentiment in
Conversations
Jacob Anderson

SINAI at SemEval-2019 Task 3: Using affective features for emotion classification
in textual conversations
Flor Miriam Plaza del Arco, M. Dolores Molina González, Maite Martin and L.
Alfonso Urena Lopez

SNU IDS at SemEval-2019 Task 3: Addressing Training-Test Class Distribution
Mismatch in Conversational Classification
Sanghwan Bae, Jihun Choi and Sang-goo Lee

SSN_NLP at SemEval-2019 Task 3: Contextual Emotion Identification from Textual
Conversation using Seq2Seq Deep Neural Network
Senthil Kumar B, Thenmozhi D, Aravindan Chandrabose and Srinethe Sharavanan

SWAP at SemEval-2019 Task 3: Emotion detection in conversations through Tweets,
CNN and LSTM deep neural networks
Marco Polignano, Marco de Gemmis and Giovanni Semeraro

SymantoResearch at SemEval-2019 Task 3: Combined Neural Models for Emotion
Classification in Human-Chatbot Conversations
Angelo Basile, Marc Franco-Salvador, Neha Pawar, Sanja Štajner, Mara Chinea
Rios and Yassine Benajiba

TDBot at SemEval-2019 Task 3: Context Aware Emotion Detection Using A Condi-
tioned Classification Approach
Sourabh Maity

THU_NGN at SemEval-2019 Task 3: Dialog Emotion Classification using Atten-
tional LSTM-CNN
Suyu Ge, Tao Qi, Chuhan Wu and Yongfeng Huang

THU-HCSI at SemEval-2019 Task 3: Hierarchical Ensemble Classification of Con-
textual Emotion in Conversation
Xihao Liang, Ye Ma and Mingxing Xu

TokyoTech_NLP at SemEval-2019 Task 3: Emotion-related Symbols in Emotion De-
tection
Zhishen Yang, Sam Vijlbrief and Naoaki Okazaki

UAIC at SemEval-2019 Task 3: Extracting Much from Little
Cristian Simionescu, Ingrid Stoleru, Diana Lucaci, Gheorghe Balan, Iulian Bute and
Adrian Iftene

YUN-HPCC at SemEval-2019 Task 3: Multi-Step Ensemble Neural Network for
Sentiment Analysis in Textual Conversation
Dawei Li, Jin Wang and Xuejie Zhang

xxx

Thursday, June 6, 2019 (continued)

KDEHatEval at SemEval-2019 Task 5: A Neural Network Model for Detecting Hate
Speech in Twitter
Umme Aymun Siddiqua, Abu Nowshed Chy and Masaki Aono

ABARUAH at SemEval-2019 Task 5 : Bi-directional LSTM for Hate Speech Detec-
tion
Arup Baruah, Ferdous Barbhuiya and Kuntal Dey

Amobee at SemEval-2019 Tasks 5 and 6: Multiple Choice CNN Over Contextual
Embedding
Alon Rozental and Dadi Biton

CIC at SemEval-2019 Task 5: Simple Yet Very Efficient Approach to Hate Speech
Detection, Aggressive Behavior Detection, and Target Classification in Twitter
Iqra Ameer, Muhammad Hammad Fahim Siddiqui, Grigori Sidorov and Alexander
Gelbukh

CiTIUS-COLE at SemEval-2019 Task 5: Combining Linguistic Features to Identify
Hate Speech Against Immigrants and Women on Multilingual Tweets
Sattam Almatarneh, Pablo Gamallo and Francisco J. Ribadas Pena

Grunn2019 at SemEval-2019 Task 5: Shared Task on Multilingual Detection of Hate
Mike Zhang, Roy David, Leon Graumans and Gerben Timmerman

GSI-UPM at SemEval-2019 Task 5: Semantic Similarity and Word Embeddings for
Multilingual Detection of Hate Speech Against Immigrants and Women on Twitter
Diego Benito, Oscar Araque and Carlos A. Iglesias

HATEMINER at SemEval-2019 Task 5: Hate speech detection against Immigrants
and Women in Twitter using a Multinomial Naive Bayes Classifier
Nikhil Chakravartula

HATERecognizer at SemEval-2019 Task 5: Using Features and Neural Networks to
Face Hate Recognition
Victor Nina-Alcocer

GL at SemEval-2019 Task 5: Identifying hateful tweets with a deep learning ap-
proach.
Gretel Liz De la Peña

INF-HatEval at SemEval-2019 Task 5: Convolutional Neural Networks for Hate
Speech Detection Against Women and Immigrants on Twitter
Alison Ribeiro and Nádia Silva

JCTDHS at SemEval-2019 Task 5: Detection of Hate Speech in Tweets using Deep
Learning Methods, Character N-gram Features, and Preprocessing Methods
Yaakov HaCohen-Kerner, Elyashiv Shayovitz, Shalom Rochman, Eli Cahn, Gal
Didi and Ziv Ben-David

xxxi

Thursday, June 6, 2019 (continued)

Know-Center at SemEval-2019 Task 5: Multilingual Hate Speech Detection on
Twitter using CNNs
Kevin Winter and Roman Kern

LT3 at SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immi-
grants and Women in Twitter (hatEval)
Nina Bauwelinck, Gilles Jacobs, Veronique Hoste and Els Lefever

ltl.uni-due at SemEval-2019 Task 5: Simple but Effective Lexico-Semantic Features
for Detecting Hate Speech in Twitter
Huangpan Zhang, Michael Wojatzki, Tobias Horsmann and Torsten Zesch

MineriaUNAM at SemEval-2019 Task 5: Detecting Hate Speech in Twitter using
Multiple Features in a Combinatorial Framework
Luis Enrique Argota Vega, Jorge Carlos Reyes Magaña, Helena Gómez-Adorno and
Gemma Bel-Enguix

MITRE at SemEval-2019 Task 5: Transfer Learning for Multilingual Hate Speech
Detection
Abigail Gertner, John Henderson, Elizabeth Merkhofer, Amy Marsh, Ben Wellner
and Guido Zarrella

STUFIIT at SemEval-2019 Task 5: Multilingual Hate Speech Detection on Twitter
with MUSE and ELMo Embeddings
Michal Bojkovsky and Matus Pikuliak

Saagie at Semeval-2019 Task 5: From Universal Text Embeddings and Classical
Features to Domain-specific Text Classification
Miriam Benballa, Sebastien Collet and Romain Picot-Clemente

SINAI at SemEval-2019 Task 5: Ensemble learning to detect hate speech against
inmigrants and women in English and Spanish tweets
Flor Miriam Plaza del Arco, M. Dolores Molina González, Maite Martin and L.
Alfonso Urena Lopez

SINAI-DL at SemEval-2019 Task 5: Recurrent networks and data augmentation by
paraphrasing
Arturo Montejo-Ráez, Salud María Jiménez-Zafra, Miguel A. García-Cumbreras
and Manuel Carlos Díaz-Galiano

sthruggle at SemEval-2019 Task 5: An Ensemble Approach to Hate Speech Detec-
tion
Aria Nourbakhsh, Frida Vermeer, Gijs Wiltvank and Rob van der Goot

The binary trio at SemEval-2019 Task 5: Multitarget Hate Speech Detection in
Tweets
Patricia Chiril, Farah Benamara Zitoune, Véronique Moriceau and Abhishek Kumar

xxxii

Thursday, June 6, 2019 (continued)

The Titans at SemEval-2019 Task 5: Detection of hate speech against immigrants
and women in Twitter
Avishek Garain and Arpan Basu

TuEval at SemEval-2019 Task 5: LSTM Approach to Hate Speech Detection in En-
glish and Spanish
Mihai Manolescu, Denise Löfflad, Adham Nasser Mohamed Saber and Masoumeh
Moradipour Tari

Tw-StAR at SemEval-2019 Task 5: N-gram embeddings for Hate Speech Detection
in Multilingual Tweets
Hala Mulki, Chedi Bechikh Ali, Hatem Haddad and Ismail Babaoğlu

UA at SemEval-2019 Task 5: Setting A Strong Linear Baseline for Hate Speech
Detection
Carlos Perelló, David Tomás, Alberto Garcia-Garcia, Jose Garcia-Rodriguez and
Jose Camacho-Collados

UNBNLP at SemEval-2019 Task 5 and 6: Using Language Models to Detect Hate
Speech and Offensive Language
Ali Hakimi Parizi, Milton King and Paul Cook

UTFPR at SemEval-2019 Task 5: Hate Speech Identification with Recurrent Neural
Networks
Gustavo Henrique Paetzold, Marcos Zampieri and Shervin Malmasi

Vista.ue at SemEval-2019 Task 5: Single Multilingual Hate Speech Detection Model
Kashyap Raiyani, Teresa Gonçalves, Paulo Quaresma and Vitor Nogueira

YNU NLP at SemEval-2019 Task 5: Attention and Capsule Ensemble for Identifying
Hate Speech
Bin Wang and Haiyan Ding

YNU_DYX at SemEval-2019 Task 5: A Stacked BiGRU Model Based on Capsule
Network in Detection of Hate
Yunxia Ding, Xiaobing Zhou and Xuejie Zhang

Amrita School of Engineering - CSE at SemEval-2019 Task 6: Manipulating At-
tention with Temporal Convolutional Neural Network for Offense Identification and
Classification
Murali Sridharan and Swapna TR

xxxiii

Thursday, June 6, 2019 (continued)

bhanodaig at SemEval-2019 Task 6: Categorizing Offensive Language in social
media
Ritesh Kumar, Guggilla Bhanodai, Rajendra Pamula and Maheswara Reddy Chen-
nuru

BNU-HKBU UIC NLP Team 2 at SemEval-2019 Task 6: Detecting Offensive Lan-
guage Using BERT model
Zhenghao Wu, Hao Zheng, Jianming Wang, Weifeng Su and Jefferson Fong

CAMsterdam at SemEval-2019 Task 6: Neural and graph-based feature extraction
for the identification of offensive tweets
Guy Aglionby, Chris Davis, Pushkar Mishra, Andrew Caines, Helen Yan-
nakoudakis, Marek Rei, Ekaterina Shutova and Paula Buttery

CN-HIT-MI.T at SemEval-2019 Task 6: Offensive Language Identification Based on
BiLSTM with Double Attention
Yaojie Zhang, Bing Xu and Tiejun Zhao

ConvAI at SemEval-2019 Task 6: Offensive Language Identification and Catego-
rization with Perspective and BERT
John Pavlopoulos, Nithum Thain, Lucas Dixon and Ion Androutsopoulos

DA-LD-Hildesheim at SemEval-2019 Task 6: Tracking Offensive Content with Deep
Learning using Shallow Representation
Sandip Modha, Prasenjit Majumder and Daksh Patel

DeepAnalyzer at SemEval-2019 Task 6: A deep learning-based ensemble method
for identifying offensive tweets
Gretel Liz De la Peña and Paolo Rosso

NLP at SemEval-2019 Task 6: Detecting Offensive language using Neural Networks
Prashant Kapil, Asif Ekbal and Dipankar Das

Duluth at SemEval-2019 Task 6: Lexical Approaches to Identify and Categorize
Offensive Tweets
Ted Pedersen

Emad at SemEval-2019 Task 6: Offensive Language Identification using Traditional
Machine Learning and Deep Learning approaches
Emad Kebriaei, Samaneh Karimi, Nazanin Sabri and Azadeh Shakery

Embeddia at SemEval-2019 Task 6: Detecting Hate with Neural Network and
Transfer Learning Approaches
Andraž Pelicon, Matej Martinc and Petra Kralj Novak

Fermi at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language
in Social Media using Sentence Embeddings
Vijayasaradhi Indurthi, Bakhtiyar Syed, Manish Shrivastava, Manish Gupta and Va-
sudeva Varma

xxxiv

Thursday, June 6, 2019 (continued)

Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based Approach to
Offensive Language Identification
Ehsan Doostmohammadi, Hossein Sameti and Ali Saffar

HAD-Tübingen at SemEval-2019 Task 6: Deep Learning Analysis of Offensive Lan-
guage on Twitter: Identification and Categorization
Himanshu Bansal, Daniel Nagel and Anita Soloveva

HHU at SemEval-2019 Task 6: Context Does Matter - Tackling Offensive Language
Identification and Categorization with ELMo
Alexander Oberstrass, Julia Romberg, Anke Stoll and Stefan Conrad

Hope at SemEval-2019 Task 6: Mining social media language to discover offensive
language
Gabriel Florentin Patras, Diana Florina Lungu, Daniela Gifu and Diana Trandabat

INGEOTEC at SemEval-2019 Task 5 and Task 6: A Genetic Programming Approach
for Text Classification
Mario Graff, Sabino Miranda-Jiménez, Eric Tellez and Daniela Alejandra Ochoa

JCTICOL at SemEval-2019 Task 6: Classifying Offensive Language in Social Media
using Deep Learning Methods, Word/Character N-gram Features, and Preprocess-
ing Methods
Yaakov HaCohen-Kerner, Ziv Ben-David, Gal Didi, Eli Cahn, Shalom Rochman
and Elyashiv Shayovitz

jhan014 at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language
in Social Media
Jiahui Han, Shengtan Wu and Xinyu Liu

JTML at SemEval-2019 Task 6: Offensive Tweets Identification using Convolutional
Neural Networks
Johnny Torres and Carmen Vaca

JU_ETCE_17_21 at SemEval-2019 Task 6: Efficient Machine Learning and Neural
Network Approaches for Identifying and Categorizing Offensive Language in Tweets
Preeti Mukherjee, Mainak Pal, Somnath Banerjee and Sudip Kumar Naskar

KMI-Coling at SemEval-2019 Task 6: Exploring N-grams for Offensive Language
detection
Priya Rani and Atul Kr. Ojha

LaSTUS/TALN at SemEval-2019 Task 6: Identification and Categorization of Of-
fensive Language in Social Media with Attention-based Bi-LSTM model
Lutfiye Seda Mut Altin, Àlex Bravo Serrano and Horacio Saggion

LTL-UDE at SemEval-2019 Task 6: BERT and Two-Vote Classification for Catego-
rizing Offensiveness
Piush Aggarwal, Tobias Horsmann, Michael Wojatzki and Torsten Zesch

xxxv

Thursday, June 6, 2019 (continued)

MIDAS at SemEval-2019 Task 6: Identifying Offensive Posts and Targeted Offense
from Twitter
Debanjan Mahata, Haimin Zhang, Karan Uppal, Yaman Kumar, Rajiv Ratn Shah,
Simra Shahid, Laiba Mehnaz and Sarthak Anand

Nikolov-Radivchev at SemEval-2019 Task 6: Offensive Tweet Classification with
BERT and Ensembles
Alex Nikolov and Victor Radivchev

NIT_Agartala_NLP_Team at SemEval-2019 Task 6: An Ensemble Approach to
Identifying and Categorizing Offensive Language in Twitter Social Media Corpora
Steve Durairaj Swamy, Anupam Jamatia, Björn Gambäck and Amitava Das

NLP@UIOWA at SemEval-2019 Task 6: Classifying the Crass using Multi-
windowed CNNs
Jonathan Rusert and Padmini Srinivasan

NLPR@SRPOL at SemEval-2019 Task 6 and Task 5: Linguistically enhanced deep
learning offensive sentence classifier
Alessandro Seganti, Helena Sobol, Iryna Orlova, Hannam Kim, Jakub Staniszewski,
Tymoteusz Krumholc and Krystian Koziel

nlpUP at SemEval-2019 Task 6: A Deep Neural Language Model for Offensive
Language Detection
Jelena Mitrović, Bastian Birkeneder and Michael Granitzer

Pardeep at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language
in Social Media using Deep Learning
Pardeep Singh and Satish Chand

SINAI at SemEval-2019 Task 6: Incorporating lexicon knowledge into SVM learn-
ing to identify and categorize offensive language in social media
Flor Miriam Plaza del Arco, M. Dolores Molina González, Maite Martin and L.
Alfonso Urena Lopez

SSN_NLP at SemEval-2019 Task 6: Offensive Language Identification in Social
Media using Traditional and Deep Machine Learning Approaches
Thenmozhi D, Senthil Kumar B, Srinethe Sharavanan and Aravindan Chandrabose

Stop PropagHate at SemEval-2019 Tasks 5 and 6: Are abusive language classifica-
tion results reproducible?
Paula Fortuna, Juan Soler-Company and Sérgio Nunes

TECHSSN at SemEval-2019 Task 6: Identifying and Categorizing Offensive Lan-
guage in Tweets using Deep Neural Networks
Angel Suseelan, Rajalakshmi S, Logesh B, Harshini S, Geetika B, Dyaneswaran S,
S Milton Rajendram and Mirnalinee T T

xxxvi

Thursday, June 6, 2019 (continued)

The Titans at SemEval-2019 Task 6: Offensive Language Identification, Categoriza-
tion and Target Identification
Avishek Garain and Arpan Basu

TüKaSt at SemEval-2019 Task 6: Something Old, Something Neu(ral): Traditional
and Neural Approaches to Offensive Text Classification
Madeeswaran Kannan and Lukas Stein

TUVD team at SemEval-2019 Task 6: Offense Target Identification
Elena Shushkevich, John Cardiff and Paolo Rosso

UBC-NLP at SemEval-2019 Task 6: Ensemble Learning of Offensive Content With
Enhanced Training Data
Arun Rajendran, Chiyu Zhang and Muhammad Abdul-Mageed

UHH-LT at SemEval-2019 Task 6: Supervised vs. Unsupervised Transfer Learning
for Offensive Language Detection
Gregor Wiedemann, Eugen Ruppert and Chris Biemann

UM-IU@LING at SemEval-2019 Task 6: Identifying Offensive Tweets Using BERT
and SVMs
Jian Zhu, Zuoyu Tian and Sandra Kübler

USF at SemEval-2019 Task 6: Offensive Language Detection Using LSTM With
Word Embeddings
Bharti Goel, Ravi Sharma and Sriram Chellappan

UTFPR at SemEval-2019 Task 6: Relying on Compositionality to Find Offense
Gustavo Henrique Paetzold

UVA Wahoos at SemEval-2019 Task 6: Hate Speech Identification using Ensemble
Machine Learning
Murugesan Ramakrishnan, Wlodek Zadrozny and Narges Tabari

YNU-HPCC at SemEval-2019 Task 6: Identifying and Categorising Offensive Lan-
guage on Twitter
Chengjin Zhou, Jin Wang and Xuejie Zhang

YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-
embedding for identifying offensive language
Bin Wang, Xiaobing Zhou and Xuejie Zhang

Zeyad at SemEval-2019 Task 6: That’s Offensive! An All-Out Search For An En-
semble To Identify And Categorize Offense in Tweets.
Zeyad El-Zanaty

xxxvii

Friday, June 7, 2019

09:00–09:30 SemEval 2020 Tasks

09:30–10:30 State of SemEval Discussion

10:30–11:00 Coffee

11:00–12:30 Tasks 4, 7 and 8

SemEval-2019 Task 4: Hyperpartisan News Detection
Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam
Adineh, David Corney, Benno Stein and Martin Potthast

Team Bertha von Suttner at SemEval-2019 Task 4: Hyperpartisan News Detection
using ELMo Sentence Representation Convolutional Network
Ye Jiang, Johann Petrak, Xingyi Song, Kalina Bontcheva and Diana Maynard

SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for
Rumours
Genevieve Gorrell, Ahmet Aker, Kalina Bontcheva, Leon Derczynski, Elena
Kochkina, Maria Liakata and Arkaitz Zubiaga

eventAI at SemEval-2019 Task 7: Rumor Detection on Social Media by Exploiting
Content, User Credibility and Propagation Information
Quanzhi Li, Qiong Zhang and Luo Si

SemEval-2019 Task 8: Fact Checking in Community Question Answering Forums
Tsvetomila Mihaylova, Georgi Karadzhov, Pepa Atanasova, Ramy Baly, Mitra Mo-
htarami and Preslav Nakov

AUTOHOME-ORCA at SemEval-2019 Task 8: Application of BERT for Fact-
Checking in Community Forums
Zhengwei Lv, Duoxing Liu, Haifeng Sun, Xiao Liang, Tao Lei, Zhizhong Shi, Feng
Zhu and Lei Yang

12:30–14:00 Lunch

14:00–15:30 Tasks 9, 10 and 12

xxxviii

Friday, June 7, 2019 (continued)

SemEval-2019 Task 9: Suggestion Mining from Online Reviews and Forums
Sapna Negi, Tobias Daudert and Paul Buitelaar

m_y at SemEval-2019 Task 9: Exploring BERT for Suggestion Mining
Masahiro Yamamoto and Toshiyuki Sekiya

SemEval-2019 Task 10: Math Question Answering
Mark Hopkins, Ronan Le Bras, Cristian Petrescu-Prahova, Gabriel Stanovsky, Han-
naneh Hajishirzi and Rik Koncel-Kedziorski

AiFu at SemEval-2019 Task 10: A Symbolic and Sub-symbolic Integrated System
for SAT Math Question Answering
Yifan Liu, Keyu Ding and Yi Zhou

SemEval-2019 Task 12: Toponym Resolution in Scientific Papers
Davy Weissenbacher, Arjun Magge, Karen O’Connor, Matthew Scotch and Graciela
Gonzalez-Hernandez

DM_NLP at SemEval-2018 Task 12: A Pipeline System for Toponym Resolution
Xiaobin Wang, Chunping Ma, Huafei Zheng, Chu Liu, Pengjun Xie, Linlin Li and
Luo Si

15:30–16:00 Coffee

16:00–16:30 Discussion

16:30–17:30 Poster Session

Brenda Starr at SemEval-2019 Task 4: Hyperpartisan News Detection
Olga Papadopoulou, Giorgos Kordopatis-Zilos, Markos Zampoglou, Symeon Pa-
padopoulos and Yiannis Kompatsiaris

Cardiff University at SemEval-2019 Task 4: Linguistic Features for Hyperpartisan
News Detection
Carla Perez Almendros, Luis Espinosa Anke and Steven Schockaert

Clark Kent at SemEval-2019 Task 4: Stylometric Insights into Hyperpartisan News
Detection
Viresh Gupta, Baani Leen Kaur Jolly, Ramneek Kaur and Tanmoy Chakraborty

xxxix

Friday, June 7, 2019 (continued)

Dick-Preston and Morbo at SemEval-2019 Task 4: Transfer Learning for Hyper-
partisan News Detection
Tim Isbister and Fredrik Johansson

Doris Martin at SemEval-2019 Task 4: Hyperpartisan News Detection with Generic
Semi-supervised Features
Rodrigo Agerri

Duluth at SemEval-2019 Task 4: The Pioquinto Manterola Hyperpartisan News
Detector
Saptarshi Sengupta and Ted Pedersen

Fermi at SemEval-2019 Task 4: The sarah-jane-smith Hyperpartisan News Detector
Nikhil Chakravartula, Vijayasaradhi Indurthi and Bakhtiyar Syed

Harvey Mudd College at SemEval-2019 Task 4: The Carl Kolchak Hyperpartisan
News Detector
Celena Chen, Celine Park, Jason Dwyer and Julie Medero

Harvey Mudd College at SemEval-2019 Task 4: The Clint Buchanan Hyperpartisan
News Detector
Mehdi Drissi, Pedro Sandoval Segura, Vivaswat Ojha and Julie Medero

Harvey Mudd College at SemEval-2019 Task 4: The D.X. Beaumont Hyperpartisan
News Detector
Evan Amason, Jake Palanker, Mary Clare Shen and Julie Medero

NLP@UIT at SemEval-2019 Task 4: The Paparazzo Hyperpartisan News Detector
Duc-Vu Nguyen, Thin Dang and Ngan Nguyen

Orwellian-times at SemEval-2019 Task 4: A Stylistic and Content-based Classifier
Jürgen Knauth

Rouletabille at SemEval-2019 Task 4: Neural Network Baseline for Identification
of Hyperpartisan Publishers
Jose G. Moreno, Yoann Pitarch, Karen Pinel-Sauvagnat and Gilles Hubert

Spider-Jerusalem at SemEval-2019 Task 4: Hyperpartisan News Detection
Amal Alabdulkarim and Tariq Alhindi

Steve Martin at SemEval-2019 Task 4: Ensemble Learning Model for Detecting
Hyperpartisan News
Youngjun Joo and Inchon Hwang

xl

Friday, June 7, 2019 (continued)

TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection
Niko Palić, Juraj Vladika, Dominik Čubelić, Ivan Lovrencic, Maja Buljan and Jan
Šnajder

Team Fernando-Pessa at SemEval-2019 Task 4: Back to Basics in Hyperpartisan
News Detection
André Cruz, Gil Rocha, Rui Sousa-Silva and Henrique Lopes Cardoso

Team Harry Friberg at SemEval-2019 Task 4: Identifying Hyperpartisan News
through Editorially Defined Metatopics
Nazanin Afsarmanesh, Jussi Karlgren, Peter Sumbler and Nina Viereckel

Team Howard Beale at SemEval-2019 Task 4: Hyperpartisan News Detection with
BERT
Osman Mutlu, Ozan Arkan Can and Erenay Dayanik

Team Jack Ryder at SemEval-2019 Task 4: Using BERT Representations for De-
tecting Hyperpartisan News
Daniel Shaprin, Giovanni Da San Martino, Alberto Barrón-Cedeño and Preslav
Nakov

Team Kermit-the-frog at SemEval-2019 Task 4: Bias Detection Through Sentiment
Analysis and Simple Linguistic Features
Talita Anthonio and Lennart Kloppenburg

Team Kit Kittredge at SemEval-2019 Task 4: LSTM Voting System
Rebekah Cramerus and Tatjana Scheffler

Team Ned Leeds at SemEval-2019 Task 4: Exploring Language Indicators of Hy-
perpartisan Reporting
Bozhidar Stevanoski and Sonja Gievska

Team Peter Brinkmann at SemEval-2019 Task 4: Detecting Biased News Articles
Using Convolutional Neural Networks
Michael Färber, Agon Qurdina and Lule Ahmedi

Team Peter-Parker at SemEval-2019 Task 4: BERT-Based Method in Hyperpartisan
News Detection
Zhiyuan Ning, Yuanzhen Lin and Ruichao Zhong

Team QCRI-MIT at SemEval-2019 Task 4: Propaganda Analysis Meets Hyperpar-
tisan News Detection
Abdelrhman Saleh, Ramy Baly, Alberto Barrón-Cedeño, Giovanni Da San Martino,
Mitra Mohtarami, Preslav Nakov and James Glass

Team Xenophilius Lovegood at SemEval-2019 Task 4: Hyperpartisanship Classifi-
cation using Convolutional Neural Networks
Albin Zehe, Lena Hettinger, Stefan Ernst, Christian Hauptmann and Andreas Hotho

xli

Friday, June 7, 2019 (continued)

Team yeon-zi at SemEval-2019 Task 4: Hyperpartisan News Detection by De-
noising Weakly-labeled Data
Nayeon Lee, Zihan Liu and Pascale Fung

The Sally Smedley Hyperpartisan News Detector at SemEval-2019 Task 4
Kazuaki Hanawa, Shota Sasaki, Hiroki Ouchi, Jun Suzuki and Kentaro Inui

Tintin at SemEval-2019 Task 4: Detecting Hyperpartisan News Article with only
Simple Tokens
Yves Bestgen

Tom Jumbo-Grumbo at SemEval-2019 Task 4: Hyperpartisan News Detection with
GloVe vectors and SVM
Chia-Lun Yeh, Babak Loni and Anne Schuth

UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-
Based Bi-LSTMs
Chiyu Zhang, Arun Rajendran and Muhammad Abdul-Mageed

Vernon-fenwick at SemEval-2019 Task 4: Hyperpartisan News Detection using Lex-
ical and Semantic Features
Vertika Srivastava, Ankita Gupta, Divya Prakash, Sudeep Kumar Sahoo, Rohit R.R
and Yeon Hyang Kim

AndrejJan at SemEval-2019 Task 7: A Fusion Approach for Exploring the Key Fac-
tors pertaining to Rumour Analysis
Andrej Janchevski and Sonja Gievska

BLCU_NLP at SemEval-2019 Task 7: An Inference Chain-based GPT Model for
Rumour Evaluation
Ruoyao Yang, Wanying Xie, Chunhua Liu and Dong Yu

BUT-FIT at SemEval-2019 Task 7: Determining the Rumour Stance with Pre-
Trained Deep Bidirectional Transformers
Martin Fajcik, Pavel Smrz and Lukas Burget

CLEARumor at SemEval-2019 Task 7: ConvoLving ELMo Against Rumors
Ipek Baris, Lukas Schmelzeisen and Steffen Staab

Columbia at SemEval-2019 Task 7: Multi-task Learning for Stance Classification
and Rumour Verification
Zhuoran Liu, Shivali Goel, Mukund Yelahanka Raghuprasad and Smaranda Mure-
san

GWU NLP at SemEval-2019 Task 7: Hybrid Pipeline for Rumour Veracity and
Stance Classification on Social Media
Sardar Hamidian and Mona Diab

xlii

Friday, June 7, 2019 (continued)

SINAI-DL at SemEval-2019 Task 7: Data Augmentation and Temporal Expressions
Miguel A. García-Cumbreras, Salud María Jiménez-Zafra, Arturo Montejo-Ráez,
Manuel Carlos Díaz-Galiano and Estela Saquete

UPV-28-UNITO at SemEval-2019 Task 7: Exploiting Post’s Nesting and Syntax
Information for Rumor Stance Classification
Bilal Ghanem, Alessandra Teresa Cignarella, Cristina Bosco, Paolo Rosso and Fran-
cisco Manuel Rangel Pardo

BLCU_NLP at SemEval-2019 Task 8: A Contextual Knowledge-enhanced GPT
Model for Fact Checking
Wanying Xie, Mengxi Que, Ruoyao Yang, Chunhua Liu and Dong Yu

CodeForTheChange at SemEval-2019 Task 8: Skip-Thoughts for Fact Checking in
Community Question Answering
Adithya Avvaru and Anupam Pandey

ColumbiaNLP at SemEval-2019 Task 8: The Answer is Language Model Fine-
tuning
Tuhin Chakrabarty and Smaranda Muresan

DOMLIN at SemEval-2019 Task 8: Automated Fact Checking exploiting Ratings in
Community Question Answering Forums
Dominik Stammbach, Stalin Varanasi and Guenter Neumann

DUTH at SemEval-2019 Task 8: Part-Of-Speech Features for Question Classifica-
tion
Anastasios Bairaktaris, Symeon Symeonidis and Avi Arampatzis

Fermi at SemEval-2019 Task 8: An elementary but effective approach to Question
Discernment in Community QA Forums
Bakhtiyar Syed, Vijayasaradhi Indurthi, Manish Shrivastava, Manish Gupta and Va-
sudeva Varma

SolomonLab at SemEval-2019 Task 8: Question Factuality and Answer Veracity
Prediction in Community Forums
Ankita Gupta, Sudeep Kumar Sahoo, Divya Prakash, Rohit R.R, Vertika Srivastava
and Yeon Hyang Kim

TMLab SRPOL at SemEval-2019 Task 8: Fact Checking in Community Question
Answering Forums
Piotr Niewiński, Aleksander Wawer, Maria Pszona and Maria Janicka

TueFact at SemEval 2019 Task 8: Fact checking in community question answering
forums: context matters
Reka Juhasz, Franziska-Barbara Linnenschmidt and Teslin Roys

xliii

Friday, June 7, 2019 (continued)

YNU-HPCC at SemEval-2019 Task 8: Using A LSTM-Attention Model for Fact-
Checking in Community Forums
Peng Liu, Jin Wang and Xuejie Zhang

DBMS-KU at SemEval-2019 Task 9: Exploring Machine Learning Approaches in
Classifying Text as Suggestion or Non-Suggestion
Tirana Fatyanosa, Al Hafiz Akbar Maulana Siagian and Masayoshi Aritsugi

DS at SemEval-2019 Task 9: From Suggestion Mining with neural networks to ad-
versarial cross-domain classification
Tobias Cabanski

Hybrid RNN at SemEval-2019 Task 9: Blending Information Sources for Domain-
Independent Suggestion Mining
Aysu Ezen-Can and Ethem F. Can

INRIA at SemEval-2019 Task 9: Suggestion Mining Using SVM with Handcrafted
Features
Ilia Markov and Eric Villemonte De la Clergerie

Lijunyi at SemEval-2019 Task 9: An attention-based LSTM and ensemble of differ-
ent models for suggestion mining from online reviews and forums
Junyi Li

MIDAS at SemEval-2019 Task 9: Suggestion Mining from Online Reviews using
ULMFit
Sarthak Anand, Debanjan Mahata, Kartik Aggarwal, Laiba Mehnaz, Simra Shahid,
Haimin Zhang, Yaman Kumar, Rajiv Shah and Karan Uppal

NL-FIIT at SemEval-2019 Task 9: Neural Model Ensemble for Suggestion Mining
Samuel Pecar, Marian Simko and Maria Bielikova

NTUA-ISLab at SemEval-2019 Task 9: Mining Suggestions in the wild
Rolandos Alexandros Potamias, Alexandros Neofytou and Gergios Siolas

OleNet at SemEval-2019 Task 9: BERT based Multi-Perspective Models for Sug-
gestion Mining
Jiaxiang Liu, Shuohuan Wang and Yu Sun

SSN-SPARKS at SemEval-2019 Task 9: Mining Suggestions from Online Reviews
using Deep Learning Techniques on Augmented Data
Rajalakshmi S, Angel Suseelan, S Milton Rajendram and Mirnalinee T T

xliv

Friday, June 7, 2019 (continued)

Suggestion Miner at SemEval-2019 Task 9: Suggestion Detection in Online Forum
using Word Graph
Usman Ahmed, Humera Liaquat, Luqman Ahmed and Syed Jawad Hussain

Team Taurus at SemEval-2019 Task 9: Expert-informed pattern recognition for sug-
gestion mining
Nelleke Oostdijk and Hans van Halteren

ThisIsCompetition at SemEval-2019 Task 9: BERT is unstable for out-of-domain
samples
Cheoneum Park, Juae Kim, Hyeon-gu Lee, Reinald Kim Amplayo, Harksoo Kim,
Jungyun Seo and Changki Lee

WUT at SemEval-2019 Task 9: Domain-Adversarial Neural Networks for Domain
Adaptation in Suggestion Mining
Mateusz Klimaszewski and Piotr Andruszkiewicz

Yimmon at SemEval-2019 Task 9: Suggestion Mining with Hybrid Augmented Ap-
proaches
Yimeng Zhuang

YNU_DYX at SemEval-2019 Task 9: A Stacked BiLSTM for Suggestion Mining
Classification
Yunxia Ding, Xiaobing Zhou and Xuejie Zhang

YNU-HPCC at SemEval-2019 Task 9: Using a BERT and CNN-BiLSTM-GRU
Model for Suggestion Mining
Ping Yue, Jin Wang and Xuejie Zhang

Zoho at SemEval-2019 Task 9: Semi-supervised Domain Adaptation using Tri-
training for Suggestion Mining
Sai Prasanna and Sri Ananda Seelan

ZQM at SemEval-2019 Task9: A Single Layer CNN Based on Pre-trained Model for
Suggestion Mining
Qimin Zhou, Zhengxin Zhang, Hao Wu and Linmao Wang

ProblemSolver at SemEval-2019 Task 10: Sequence-to-Sequence Learning and Ex-
pression Trees
Xuefeng Luo, Alina Baranova and Jonas Biegert

RGCL-WLV at SemEval-2019 Task 12: Toponym Detection
Alistair Plum, Tharindu Ranasinghe, Pablo Calleja, Constantin Orasan and Ruslan
Mitkov

THU_NGN at SemEval-2019 Task 12: Toponym Detection and Disambiguation on
Scientific Papers
Tao Qi, Suyu Ge, Chuhan Wu, Yubo Chen and Yongfeng Huang

xlv

Friday, June 7, 2019 (continued)

UNH at SemEval-2019 Task 12: Toponym Resolution in Scientific Papers
Matthew Magnusson and Laura Dietz

UniMelb at SemEval-2019 Task 12: Multi-model combination for toponym resolu-
tion
Haonan Li, Minghan Wang, Timothy Baldwin, Martin Tomko and Maria Vasardani

University of Arizona at SemEval-2019 Task 12: Deep-Affix Named Entity Recog-
nition of Geolocation Entities
Vikas Yadav, Egoitz Laparra, Ti-Tai Wang, Mihai Surdeanu and Steven Bethard

xlvi

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1–10
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval-2019 Task 1:
Cross-lingual Semantic Parsing with UCCA

Daniel Hershcovich
Elior Sulem

Zohar Aizenbud
Ari Rappoport

School of Computer Science and Engineering
Hebrew University of Jerusalem

{danielh,zohara,borgr,eliors,arir,oabend}@cs.huji.ac.il

Leshem Choshen
Omri Abend

Abstract

We present the SemEval 2019 shared task
on Universal Conceptual Cognitive Annota-
tion (UCCA) parsing in English, German
and French, and discuss the participating
systems and results. UCCA is a cross-
linguistically applicable framework for se-
mantic representation, which builds on exten-
sive typological work and supports rapid an-
notation. UCCA poses a challenge for ex-
isting parsing techniques, as it exhibits reen-
trancy (resulting in DAG structures), discon-
tinuous structures and non-terminal nodes cor-
responding to complex semantic units. The
shared task has yielded improvements over
the state-of-the-art baseline in all languages
and settings. Full results can be found in the
task’s website https://competitions.
codalab.org/competitions/19160.

1 Overview

Semantic representation is receiving growing at-
tention in NLP in the past few years, and many
proposals for semantic schemes have recently
been put forth. Examples include Abstract Mean-
ing Representation (AMR; Banarescu et al., 2013),
Broad-coverage Semantic Dependencies (SDP;
Oepen et al., 2016), Universal Decompositional
Semantics (UDS; White et al., 2016), Parallel
Meaning Bank (Abzianidze et al., 2017), and Uni-
versal Conceptual Cognitive Annotation (UCCA;
Abend and Rappoport, 2013). These advances in
semantic representation, along with correspond-
ing advances in semantic parsing, can potentially
benefit essentially all text understanding tasks, and
have already demonstrated applicability to a vari-
ety of tasks, including summarization (Liu et al.,
2015; Dohare and Karnick, 2017), paraphrase de-
tection (Issa et al., 2018), and semantic evaluation
(using UCCA; see below). In this shared task,
we focus on UCCA parsing in multiple languages.

After

L

graduation

P

H

,
U

John

A

moved

P

to

R

Paris

C

A

H

A

Figure 1: An example UCCA graph.

One of our goals is to benefit semantic parsing in
languages with less annotated resources by mak-
ing use of data from more resource-rich languages.
We refer to this approach as cross-lingual parsing,
while other works (Zhang et al., 2017, 2018) de-
fine cross-lingual parsing as the task of parsing
text in one language to meaning representation in
another language.

In addition to its potential applicative value,
work on semantic parsing poses interesting algo-
rithmic and modeling challenges, which are often
different from those tackled in syntactic parsing,
including reentrancy (e.g., for sharing arguments
across predicates), and the modeling of the inter-
face with lexical semantics.

UCCA is a cross-linguistically applicable se-
mantic representation scheme, building on the
established Basic Linguistic Theory typological
framework (Dixon, 2010b,a, 2012). It has demon-
strated applicability to multiple languages, includ-
ing English, French and German, and pilot an-
notation projects were conducted on a few lan-
guages more. UCCA structures have been shown
to be well-preserved in translation (Sulem et al.,
2015), and to support rapid annotation by non-
experts, assisted by an accessible annotation in-
terface (Abend et al., 2017).1 UCCA has al-
ready shown applicative value for text simplifica-

1https://github.com/omriabnd/UCCA-App

1

Scene Elements
P Process The main relation of a Scene that evolves in time (usually an action or movement).
S State The main relation of a Scene that does not evolve in time.
A Participant Scene participant (including locations, abstract entities and Scenes serving as arguments).
D Adverbial A secondary relation in a Scene.

Elements of Non-Scene Units
C Center Necessary for the conceptualization of the parent unit.
E Elaborator A non-Scene relation applying to a single Center.
N Connector A non-Scene relation applying to two or more Centers, highlighting a common feature.
R Relator All other types of non-Scene relations: (1) Rs that relate a C to some super-ordinate relation, and

(2) Rs that relate two Cs pertaining to different aspects of the parent unit.
Inter-Scene Relations

H Parallel Scene A Scene linked to other Scenes by regular linkage (e.g., temporal, logical, purposive).
L Linker A relation between two or more Hs (e.g., “when”, “if”, “in order to”).
G Ground A relation between the speech event and the uttered Scene (e.g., “surprisingly”).

Other
F Function Does not introduce a relation or participant. Required by some structural pattern.

Table 1: The complete set of categories in UCCA’s foundational layer.

tion (Sulem et al., 2018b), as well as for defining
semantic evaluation measures for text-to-text gen-
eration tasks, including machine translation (Birch
et al., 2016), text simplification (Sulem et al.,
2018a) and grammatical error correction (Choshen
and Abend, 2018).

The shared task defines a number of tracks,
based on the different corpora and the availabil-
ity of external resources (see §5). It received sub-
missions from eight research groups around the
world. In all settings at least one of the submitted
systems improved over the state-of-the-art TUPA
parser (Hershcovich et al., 2017, 2018), used as a
baseline.

2 Task Definition

UCCA represents the semantics of linguistic ut-
terances as directed acyclic graphs (DAGs), where
terminal (childless) nodes correspond to the text
tokens, and non-terminal nodes to semantic units
that participate in some super-ordinate relation.
Edges are labeled, indicating the role of a child
in the relation the parent represents. Nodes and
edges belong to one of several layers, each corre-
sponding to a “module” of semantic distinctions.

UCCA’s foundational layer covers the
predicate-argument structure evoked by pred-
icates of all grammatical categories (verbal,
nominal, adjectival and others), the inter-relations
between them, and other major linguistic phe-
nomena such as semantic heads and multi-word
expressions. It is the only layer for which an-
notated corpora exist at the moment, and is thus
the target of this shared task. The layer’s basic
notion is the Scene, describing a state, action,

movement or some other relation that evolves
in time. Each Scene contains one main relation
(marked as either a Process or a State), as well
as one or more Participants. For example, the
sentence “After graduation, John moved to Paris”
(Figure 1) contains two Scenes, whose main
relations are “graduation” and “moved”. “John”
is a Participant in both Scenes, while “Paris”
only in the latter. Further categories account for
inter-Scene relations and the internal structure
of complex arguments and relations (e.g., coor-
dination and multi-word expressions). Table 1
provides a concise description of the categories
used by the UCCA foundational layer.

UCCA distinguishes primary edges, corre-
sponding to explicit relations, from remote edges
(appear dashed in Figure 1) that allow for a unit
to participate in several super-ordinate relations.
Primary edges form a tree in each layer, whereas
remote edges enable reentrancy, forming a DAG.

UCCA graphs may contain implicit units with
no correspondent in the text. Figure 2 shows the
annotation for the sentence “A similar technique
is almost impossible to apply to other crops, such
as cotton, soybeans and rice.”2 It includes a sin-
gle Scene, whose main relation is “apply”, a sec-
ondary relation “almost impossible”, as well as
two complex arguments: “a similar technique”
and the coordinated argument “such as cotton,
soybeans, and rice.” In addition, the Scene in-
cludes an implicit argument, which represents the
agent of the “apply” relation.

While parsing technology is well-established

2The same example was used by Oepen et al. (2015) to
compare different semantic dependency schemes.

2

A

E

similar

E

technique

C

A

is

F

almost

E

impossible

C

D

IMPLICIT

A

to

F

apply

P

to

R

other

E

crops

C

,

U

such as

R

cotton

C

,

U

soybeans

C

and

N

rice

C

E

A

.

U

Figure 2: UCCA example with an implicit unit.

for syntactic parsing, UCCA has several formal
properties that distinguish it from syntactic rep-
resentations, mostly UCCA’s tendency to abstract
away from syntactic detail that do not affect argu-
ment structure. For instance, consider the follow-
ing examples where the concept of a Scene has a
different rationale from the syntactic concept of a
clause. First, non-verbal predicates in UCCA are
represented like verbal ones, such as when they
appear in copula clauses or noun phrases. Indeed,
in Figure 1, “graduation” and “moved” are con-
sidered separate Scenes, despite appearing in the
same clause. Second, in the same example, “John”
is marked as a (remote) Participant in the grad-
uation Scene, despite not being explicitly men-
tioned. Third, consider the possessive construc-
tion in “John’s trip home”. While in UCCA “trip”
evokes a Scene in which “John” is a Participant, a
syntactic scheme would analyze this phrase simi-
larly to “John’s shoes”.

The differences in the challenges posed by syn-
tactic parsing and UCCA parsing, and more gen-
erally by semantic parsing, motivate the develop-
ment of targeted parsing technology to tackle it.

3 Data & Resources

All UCCA corpora are freely available.3 For En-
glish, we use v1.2.3 of the Wikipedia UCCA cor-
pus (Wiki), v1.2.2 of the UCCA Twenty Thousand
Leagues Under the Sea English-French parallel
corpus (20K), which includes UCCA manual an-
notation for the first five chapters in French and
English, and v1.0.1 of the UCCA German Twenty

3https://github.com/
UniversalConceptualCognitiveAnnotation

Thousand Leagues Under the Sea corpus, which
includes the entire book in German. For consistent
annotation, we replace any Time and Quantifier la-
bels with Adverbial and Elaborator in these data
sets. The resulting training, development4 and test
sets5 are publicly available, and the splits are given
in Table 2. Statistics on various structural proper-
ties are given in Table 3.

The corpora were manually annotated accord-
ing to v1.2 of the UCCA guidelines,6 and re-
viewed by a second annotator. All data was passed
through automatic validation and normalization
scripts.7 The goal of validation is to rule out cases
that are inconsistent with the UCCA annotation
guidelines. For example, a Scene, defined by the
presence of a Process or a State, should include at
least one Participant.

Due to the small amount of annotated data avail-
able for French, we only provided a minimal train-
ing set of 15 sentences, in addition to the devel-
opment and test set. Systems for French were
expected to pursue semi-supervised approaches,
such as cross-lingual learning or structure projec-
tion, leveraging the parallel nature of the corpus,
or to rely on datasets for related formalisms, such
as Universal Dependencies (Nivre et al., 2016).
The full unannotated 20K Leagues corpus in En-
glish and French was released as well, in order to
facilitate pursuing cross-lingual approaches.

Datasets were released in an XML for-
mat, including tokenized text automatically pre-

4
http://bit.ly/semeval2019task1traindev

5
http://bit.ly/semeval2019task1test

6
http://bit.ly/semeval2019task1guidelines

7https://github.com/huji-nlp/ucca/
tree/master/scripts

3

train/trial dev test total
corpus sentences tokens sentences tokens sentences tokens passages sentences tokens
English-Wiki 4,113 124,935 514 17,784 515 15,854 367 5,142 158,573
English-20K 0 0 0 0 492 12,574 154 492 12,574
French-20K 15 618 238 6,374 239 5,962 154 492 12,954
German-20K 5,211 119,872 651 12,334 652 12,325 367 6,514 144,531

Table 2: Data splits of the corpora used for the shared task.

En-Wiki En-20K Fr-20K De-20K
passages 367 154 154 367
sentences 5,141 492 492 6,514
tokens 158,739 12,638 13,021 144,529
non-terminals 62,002 4,699 5,110 51,934
% discontinuous 1.71 3.19 4.64 8.87
% reentrant 1.84 0.89 0.65 0.31
edges 208,937 16,803 17,520 187,533
% primary 97.40 96.79 97.02 97.32
% remote 2.60 3.21 2.98 2.68
by category
% Participant 17.17 18.1 17.08 19.86
% Center 18.74 16.31 18.03 14.32
% Adverbial 3.65 5.25 4.18 5.67
% Elaborator 18.98 18.06 18.65 14.88
% Function 3.38 3.58 2.58 2.98
% Ground 0.03 0.56 0.37 0.57
% Parallel Scene 6.02 6.3 6.15 7.54
% Linker 2.19 2.66 2.57 2.49
% Connector 1.26 0.93 0.84 0.65
% Process 7.1 7.51 6.91 7.03
% Relator 8.58 8.09 9.6 7.54
% State 1.62 2.1 1.88 3.34
% Punctuation 11.28 10.55 11.16 13.15

Table 3: Statistics of the corpora used for the shared
task.

processed using spaCy (see §5), and gold-standard
UCCA annotation for the train and development
sets.8 To facilitate the use of existing NLP tools,
we also released the data in SDP, AMR, CoNLL-U
and plain text formats.

4 TUPA: The Baseline Parser

We use the TUPA parser, the only parser for
UCCA at the time the task was announced, as a
baseline (Hershcovich et al., 2017, 2018). TUPA
is a transition-based DAG parser based on a
BiLSTM-based classifier.9 TUPA in itself has
been found superior to a number of conversion-
based parsers that use existing parsers for other
formalisms to parse UCCA by constructing a two-
way conversion protocol between the formalisms.
It can thus be regarded as a strong baseline for sys-

8https://github.com/
UniversalConceptualCognitiveAnnotation/
docs/blob/master/FORMAT.md

9https://github.com/huji-nlp/tupa

tem submissions to the shared task.

5 Evaluation

Tracks. Participants in the task were evaluated
in four settings:

1. English in-domain setting, using the Wiki
corpus.

2. English out-of-domain setting, using the
Wiki corpus as training and development
data, and 20K Leagues as test data.

3. German in-domain setting, using the 20K
Leagues corpus.

4. French setting with no training data, using the
20K Leagues as development and test data.

In order to allow both even ground compari-
son between systems and using hitherto untried re-
sources, we held both an open and a closed track
for submissions in the English and German set-
tings. Closed track submissions were only allowed
to use the gold-standard UCCA annotation dis-
tributed for the task in the target language, and
were limited in their use of additional resources.
Concretely, the only additional data they were al-
lowed to use is that used by TUPA, which consists
of automatic annotations provided by spaCy:10

POS tags, syntactic dependency relations, and
named entity types and spans. In addition, the
closed track only allowed the use of word em-
beddings provided by fastText (Bojanowski et al.,
2017)11 for all languages.

Systems in the open track, on the other hand,
were allowed to use any additional resource, such
as UCCA annotation in other languages, dictionar-
ies or datasets for other tasks, provided that they
make sure not to use any additional gold standard
annotation over the same text used in the UCCA

10http://spacy.io
11http://fasttext.cc

4

corpora.12 In both tracks, we required that sub-
mitted systems are not trained on the development
data. We only held an open track for French, due
to the paucity of training data. The four settings
and two tracks result in a total of 7 competitions.

Scoring. The following scores an output graph
G1 = (V1, E1) against a gold one, G2 = (V2, E2),
over the same sequence of terminals (tokens) W .
For a node v in V1 or V2, define yield(v) ⊆ W
as is its set of terminal descendants. A pair of
edges (v1, u1) ∈ E1 and (v2, u2) ∈ E2 with la-
bels (categories) `1, `2 is matching if yield(u1) =
yield(u2) and `1 = `2. Labeled precision and re-
call are defined by dividing the number of match-
ing edges in G1 and G2 by |E1| and |E2|, respec-
tively. F1 is their harmonic mean:

2 · Precision · Recall
Precision + Recall

Unlabeled precision, recall and F1 are the same,
but without requiring that `1 = `2 for the edges to
match. We evaluate these measures for primary
and remote edges separately. For a more fine-
grained evaluation, we additionally report preci-
sion, recall and F1 on edges of each category.13

6 Participating Systems

We received a total of eight submissions to the
different tracks: MaskParse@Deskiñ (Marzinotto
et al., 2019) from Orange Labs and Aix-Marseille
University, HLT@SUDA (Jiang et al., 2019) from
Soochow University, TüPa (Pütz and Glocker,
2019) from the University of Tübingen, UC
Davis (Yu and Sagae, 2019) from the Univer-
sity of California, Davis , GCN-Sem (Taslimipoor
et al., 2019) from the University of Wolverhamp-
ton, CUNY-PekingU (Lyu et al., 2019) from the
City University of New York and Peking Uni-
versity, DANGNT@UIT.VNU-HCM (Nguyen and
Tran, 2019) from the University of Information
Technology VNU-HCM, and XLangMo from Zhe-
jiang University. Some of the teams partici-
pated in more than one track and two systems
(HLT@SUDA and CUNY-PekingU) participated in
all the tracks.

12We are not aware of any such annotation, but include this
restriction for completeness.

13The official evaluation script providing both
coarse-grained and fine-grained scores can be found in
https://github.com/huji-nlp/ucca/blob/
master/scripts/evaluate_standard.py.

In terms of parsing approaches, the task
was quite varied. HLT@SUDA converted
UCCA graphs to constituency trees and trained
a constituency parser and a recovery mecha-
nism of remote edges in a multi-task frame-
work. MaskParse@Deskiñ used a bidirectional
GRU tagger with a masking mechanism. Tüpa
and XLangMo used a transition-based approach.
UC Davis used an encoder-decoder architecture.
GCN-SEM uses a BiLSTM model to predict Se-
mantic Dependency Parsing tags, when the syntac-
tic dependency tree is given in the input. CUNY-
PKU is based on an ensemble that includes dif-
ferent variations of the TUPA parser. DAN-
GNT@UIT.VNU-HCM converted syntactic depen-
dency trees to UCCA graphs.

Different systems handled remote edges differ-
ently. DANGNT@UIT.VNU-HCM and GCN-SEM
ignored remote edges. UC Davis used a different
BiLSTM for remote edges. HLT@SUDA marked
remote edges when converting the graph to a con-
stituency tree and trained a classification model
for their recovery. MaskParse@Deskiñ handles re-
mote edges by detecting arguments that are out-
side of the parent’s node span using a detection
threshold on the output probabilities.

In terms of using the data, all teams but one used
the UCCA XML format, two used the CoNLL-
U format, which is derived by a lossy con-
version process, and only one team found the
other data formats helpful. One of the teams
(MaskParse@Deskiñ) built a new training data
adapted to their model by repeating each sentence
N times, N being the number of non-terminal
nodes in the UCCA graphs. Three of the teams
adapted the baseline TUPA parser, or parts of it to
form their parser, namely TüPa, CUNY-PekingU
and XLangMo; HLT@SUDA used a constituency
parser (Stern et al., 2017) as a component in their
model; DANGNT@UIT.VNU-HCM is a rule-based
system over the Stanford Parser, and the rest are
newly constructed parsers.

All teams found it useful to use external re-
sources beyond those provided by the Shared
Task. Four submissions used external embed-
dings, MUSE (Conneau et al., 2017) in the case
of MaskParse@Deskiñ and XLangMo, ELMo (Pe-
ters et al., 2018) in the case of TüPa,14 and BERT
(Devlin et al., 2018) in the case of HLT@SUDA.

14GCN-Sem used ELMo in the closed tracks, training on
the available data.

5

Labeled Unlabeled
Team All Prim. Rem. All Prim. Rem.
English-Wiki (closed)
1 HLT@SUDA 77.4 77.9 52.2 87.2 87.9 52.5
2 baseline 72.8 73.3 47.2 85.0 85.8 48.4
3 Davis 72.2 73.0 0 85.5 86.4 0
4 CUNY-PekingU 71.8 72.3 49.5 84.5 85.2 50.1
5 DANGNT@UIT.

VNU-HCM
70.0 70.7 0 81.7 82.6 0

6 GCN-Sem 65.7 66.4 0 80.9 81.8 0
English-Wiki (open)
1 HLT@SUDA 80.5 81.0 58.8 89.7 90.3 60.7
2 CUNY-PekingU 80.0 80.2 66.6 89.4 89.9 67.4
3 baseline 73.5 73.9 53.5 85.1 85.7 54.3
3 TüPa 73.5 74.1 42.5 85.3 86.2 43.1
4 XLangMo 73.1 73.5 53.2 85.1 85.7 53.5
5 DANGNT@UIT.

VNU-HCM
70.3 71.1 0 81.7 82.6 0

English-20K (closed)
1 HLT@SUDA 72.7 73.6 31.2 85.2 86.4 32.1
2 baseline 67.2 68.2 23.7 82.2 83.5 24.3
3 CUNY-PekingU 66.9 67.9 27.9 82.3 83.6 29.0
4 GCN-Sem 62.6 63.7 0 80.0 81.4 0
English-20K (open)
1 HLT@SUDA 76.7 77.7 39.2 88.0 89.2 41.4
2 CUNY-PekingU 73.9 74.6 45.7 86.4 87.4 48.1
3 TüPa 70.9 71.9 29.6 84.4 85.7 30.7
4 XLangMo 69.5 70.4 36.6 83.5 84.6 38.5
5 baseline 68.4 69.4 25.9 82.5 83.9 26.2
German-20K (closed)
1 HLT@SUDA 83.2 83.8 59.2 92.0 92.6 60.9
2 CUNY-PekingU 79.7 80.2 59.3 90.2 90.9 59.9
3 baseline 73.1 73.6 47.8 85.9 86.7 48.2
4 GCN-Sem 71.0 72.0 0 85.1 86.2 0
German-20K (open)
1 HLT@SUDA 84.9 85.4 64.1 92.8 93.4 64.7
2 CUNY-PekingU 84.1 84.5 66.0 92.3 93.0 66.6
3 baseline 79.1 79.6 59.9 90.3 91.0 60.5
4 TüPa 78.1 78.8 40.8 89.4 90.3 41.2
5 XLangMo 78.0 78.4 61.1 89.4 90.1 61.4
French-20K (open)
1 CUNY-PekingU 79.6 80.0 64.5 89.1 89.6 71.1
2 HLT@SUDA 75.2 76.0 43.3 86.0 87.0 45.1
3 XLangMo 65.6 66.6 13.3 81.5 82.8 14.1
4 MaskParse@Deskiñ 65.4 66.6 24.3 80.9 82.5 25.8
5 baseline 48.7 49.6 2.4 74.0 75.3 3.2
6 TüPa 45.6 46.4 0 73.4 74.6 0

Table 4: Official F1-scores for each system in each
track. Prim.: primary edges, Rem.: remote edges.

Other resources included additional unlabeled data
(TüPa and CUNY-PekingU), a list of multi-word
expressions (MaskParse@Deskiñ), and the Stan-
ford parser in the case of DANGNT@UIT.VNU-
HCM. Only CUNY-PKU used the 20K unlabeled
parallel data in English and French.

A common trend for many of the systems was
the use of cross-lingual projection or transfer
(MaskParse@Deskiñ, HLT@SUDA, TüPa, GCN-
Sem, CUNY-PKU and XLangMo). This was nec-
essary for French, and was found helpful for Ger-
man as well (CUNY-PKU).

7 Results

Table 4 shows the labeled and unlabeled F1 for
primary and remote edges, for each system in each
track. Overall F1 (All) is the F1 calculated over
both primary and remote edges. Full results are
available online.15

Figure 3 shows the fine-grained evaluation by

15http://bit.ly/semeval2019task1results

labeled F1 per UCCA category, for each system in
each track. While Ground edges were uniformly
difficult to parse due to their sparsity in the train-
ing data, Relators were the easiest for all systems,
as they are both common and predictable. The
Process/State distinction proved challenging, and
most main relations were identified as the more
common Process category. The winning system
in most tracks (HLT@SUDA) performed better on
almost all categories. Its largest advantage was
on Parallel Scenes and Linkers, showing was es-
pecially successful at identifying Scene bound-
aries relative to the other systems, which requires
a good understanding of syntax.

8 Discussion

The HLT@SUDA system participated in all the
tracks, obtaining the first place in the six En-
glish and German tracks and the second place in
the French open track. The system is based on
the conversion of UCCA graphs into constituency
trees, marking remote and discontinuous edges for
recovery. The classification-based recovery of the
remote edges is performed simultaneously with
the constituency parsing in a multi-task learning
framework. This work, which further connects be-
tween semantic and syntactic parsing, proposes a
recovery mechanism that can be applied to other
grammatical formalisms, enabling the conversion
of a given formalism to another one for parsing.
The idea of this system is inspired by the pseudo
non-projective dependency parsing approach pro-
posed by Nivre and Nilsson (2005).

The MaskParse@Deskiñ system only partici-
pated to the French open track, focusing on cross-
lingual parsing. The system uses a semantic tag-
ger, implemented with a bidirectional GRU and a
masking mechanism to recursively extract the in-
ner semantic structures in the graph. Multilingual
word embeddings are also used. Using the En-
glish and German training data as well as the small
French trial data for training, the parser ranked
fourth in the French open track with a labeled F1
score of 65.4%, suggesting that this new model
could be useful for low-resource languages.

The Tüpa system takes a transition-based ap-
proach, building on the TUPA transition system
and oracle, but modifies its feature representa-
tions. Specifically, instead of representing the
parser configuration using LSTMs over the par-
tially parsed graph, stack and buffer, they use feed-

6

Adverbial Center Connector Elaborator Function Ground Linker ParallelScene Participant Process Relator State

77 8
1

90

78

83

0

8
6

76

69 66

9
3

30

73 77

82

74

80

29

7
7

6
3

63 64

92

29

69

77

8
3

74 78

50

74

6
6

62 62

91

30

72

77

8
3

7
4 81

0

76

6
2

6
0 62

91

23

73 75

81

71

7
8

0

76

53

6
2 6
3

89

31

70 71

87

74

8
0

29

84

29

5
8

45

91

0

HLT@SUDA baseline Davis CUNY-PekingU DANGNT@UIT.VNU-HCM GCN-Sem

(a) English Wiki (closed)

Adverbial Center Connector Elaborator Function Ground Linker ParallelScene Participant Process Relator State

80 8
4

93

81 84

0

9
0

83

74

67

94

26

79

85

9
0

82 83

0

8
6

73 72

66

93

34

74 77

8
4

74

81

0

81

6
6

6
4

64

91

33

73

78 8
2

7
6 82

0

76

6
3 6
4 6
5

92

31

73 77

85

73

8
1

0

81

6
6

6
3 6
4

91

30

73 76

82

72

7
8

0

77

53

61 6
2

90

29

HLT@SUDA CUNY-PekingU baselines TüPa XLangMo DANGNT@UIT.VNU-HCM

(b) English Wiki (open)

Adverbial Center Connector Elaborator Function Ground Linker ParallelScene Participant Process Relator State

56

80

84

78

70

0

72

6
1 65

71

86

18

53

76 76 74

70

7

64

5
1 5
6

66

84

20

51

77

71

75

69

0

62

4
8

5
6

6
4

83

15

52

73

78

74

6
5

4

72

2
5

5
4

5
3

84

0

HLT@SUDA baseline CUNY-PekingU GCN-Sem

(c) English 20K (closed)

Adverbial Center Connector Elaborator Function Ground Linker ParallelScene Participant Process Relator State

6
0

8
4 87

82

71

0

7
7

68

7
2 7
4

8
7

16

58

8
1

80 81

71

4

7
6

58

6
7 7
0

8
6

2
4

54

8
0

76 78

7
4

6

7
2

54

6
0

7
0

8
4

29

53

79 76 76

72

2
2

70

5
3 59

67

85

19

5
4

77

8
1

7
4

71

4

69

5
4 57

65

8
4

23

HLT@SUDA CUNY-PekingU TüPa XLangMo baseline

(d) English 20K (open)

Adverbial Center Connector Elaborator Function Ground Linker ParallelScene Participant Process Relator State

77

90

82

87 87

72

8
8

7
8 79 7
7

9
2

51

72

8
7

78

8
3 8
5

79

8
4

7
1 7
6

73

90

47

64

8
5

75

81 8
0

74 7
6

3
3

6
9 7
1

8
1

42

6
9

81 80 82 8
5

7
8 83

3
8

7
0

5
6

9
2

0

HLT@SUDA CUNY-PekingU baseline GCN-Sem

(e) German 20K (closed)

Adverbial Center Connector Elaborator Function Ground Linker ParallelScene Participant Process Relator State

78

91

82

88 90

75

87

8
0 82 8
0

92

54

7
7

91

82

87 89

8
0 88

78 8
0

78

92

5
967

87

82 84 85

76

8
4

73 7
5

7
4

91

46

68

87

78

83 8
4

69

79

70 73 71

90

43

67

86

8
0 82 85

62

85

71 73 71

89

27

HLT@SUDA CUNY-PekingU baseline TüPa XLangMo

(f) German 20K (open)

Adverbial Center Connector Elaborator Function Ground Linker ParallelScene Participant Process Relator State

64

85 83 85

68

3
4

83

65

7
2

7
1

9
3

4850

83 8
7

79

61 63

7
5

64

7
1 7
2

8
8

323
4

80

63

76

53

13

63

46

53

5
9

86

17

46

76

5
9

7
1

53

5

5
9

50 53

68

84

1713

7
0

53

60

3
8

0

36

16

2
5

35

77

6

11

68

1
8

57

24

5

32

2
1 2
5

2
2

69

0

CUNY-PekingU HLT@SUDA XLangMo MaskParse@Deskiñ baseline TüPa

(g) French 20K (open)

Figure 3: Each system’s labeled F1 per UCCA category in each track.

7

forward networks with ELMo contextualized em-
beddings. The stack and buffer are represented
by the top three items on them. For the partially
parsed graph, they extract the rightmost and left-
most parents and children of the respective items,
and represent them by the ELMo embedding of
their form, the embedding of their dependency
heads (for terminals, for non-terminals this is re-
placed with a learned embedding) and the embed-
dings of all terminal children. Results are gener-
ally on-par with the TUPA baseline, and surpass
it from the out-of-domain English setting. This
suggests that the TUPA architecture may be sim-
plified, without compromising performance.

The UC Davis system participated only in the
English closed track, where they achieved the sec-
ond highest score, on par with TUPA. The pro-
posed parser has an encoder-decoder architecture,
where the encoder is a simple BiLSTM encoder
for each span of words. The decoder iteratively
and greedily traverses the sentence, and attempts
to predict span boundaries. The basic algorithm
yields an unlabeled contiguous phrase-based tree,
but additional modules predict the labels of the
spans, discontiguous units (by joining together
spans from the contiguous tree under a new node),
and remote edges. The work is inspired by Kitaev
and Klein (2018), who used similar methods for
constituency parsing.

The GCN-SEM system uses a BiLSTM encoder,
and predicts bi-lexical semantic dependencies (in
the SDP format) using word, token and syntac-
tic dependency parses. The latter is incorporated
into the network with a graph convolutional net-
work (GCN). The team participated in the English
and German closed tracks, and were not among
the highest-ranking teams. However, scores on
the UCCA test sets converted to the bi-lexical
CoNLL-U format were rather high, implying that
the lossy conversion could be much of the reason.

The CUNY-PKU system was based on an en-
semble. The ensemble included variations of
TUPA parser, namely the MLP and BiLSTM mod-
els (Hershcovich et al., 2017) and the BiLSTM
model with an additional MLP. The system also
proposes a way to aggregate the ensemble going
through CKY parsing and accounting for remotes
and discontinuous spans. The team participated in
all tracks, including additional information in the
open domain, notably synthetic data based on au-
tomatically translating annotated texts. Their sys-

tem ranks first in the French open track.
The DANGNT@UIT.VNU-HCM system partic-

ipated only in the English Wiki open and closed
tracks. The system is based on graph transfor-
mations from dependency trees into UCCA, using
heuristics to create non-terminal nodes and map
the dependency relations to UCCA categories.
The manual rules were developed based on the
training and development data. As the system con-
verts trees to trees and does not add reentrancies,
it does not produce remote edges. While the re-
sults are not among the highest-ranking in the task,
the primary labeled F1 score of 71.1% in the En-
glish open track shows that a rule-based system on
top of a leading dependency parser (the Stanford
parser) can obtain reasonable results for this task.

9 Conclusion

The task has yielded substantial improvements to
UCCA parsing in all settings. Given that the
best reported results were achieved with differ-
ent parsing and learning approaches than the base-
line model TUPA (which has been the only avail-
able parser for UCCA), the task opens a variety of
paths for future improvement. Cross-lingual trans-
fer, which capitalizes on UCCA’s tendency to be
preserved in translation, was employed by a num-
ber of systems and has proven remarkably effec-
tive. Indeed, the high scores obtained for French
parsing in a low-resource setting suggest that high
quality UCCA parsing can be straightforwardly
extended to additional languages, with only a min-
imal amount of manual labor.

Moreover, given the conceptual similarity
between the different semantic representations
(Abend and Rappoport, 2017), it is likely the
parsers developed for the shared task will directly
contribute to the development of other semantic
parsing technology. Such a contribution is facil-
itated by the available conversion scripts available
between UCCA and other formats.

Acknowledgments

We are deeply grateful to Dotan Dvir and the
UCCA annotation team for their diligent work on
the corpora used in this shared task.

This work was supported by the Israel Science
Foundation (grant No. 929/17), and by the HUJI
Cyber Security Research Center in conjunction
with the Israel National Cyber Bureau in the Prime
Minister’s Office.

8

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proc. of
ACL, pages 228–238.

Omri Abend and Ari Rappoport. 2017. The state of
the art in semantic representation. In Proc. of ACL,
pages 77–89.

Omri Abend, Shai Yerushalmi, and Ari Rappoport.
2017. UCCAApp: Web-application for syntactic
and semantic phrase-based annotation. Proc. of ACL
System Demonstrations, pages 109–114.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The paral-
lel meaning bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. CoRR, abs/1702.03964.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Martha Palmer, and Nathan Schneider.
2013. Abstract Meaning Representation for sem-
banking. In Proc. of the Linguistic Annotation
Workshop.

Alexandra Birch, Omri Abend, Ondřej Bojar, and
Barry Haddow. 2016. HUME: Human UCCA-
based evaluation of machine translation. In Proc.
of EMNLP, pages 1264–1274.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL, 5:135–146.

Leshem Choshen and Omri Abend. 2018. Reference-
less measure of faithfulness for grammatical error
correction. In Proc. of NAACL (Short papers), pages
124–129.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of NAACL (to appear).

Robert M. W. Dixon. 2010a. Basic Linguistic Theory:
Grammatical Topics, volume 2. Oxford University
Press.

Robert M. W. Dixon. 2010b. Basic Linguistic Theory:
Methodology, volume 1. Oxford University Press.

Robert M. W. Dixon. 2012. Basic Linguistic Theory:
Further Grammatical Topics, volume 3. Oxford
University Press.

Shibhansh Dohare and Harish Karnick. 2017. Text
summarization using abstract meaning representa-
tion. CoRR, abs/1706.01678.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proc. of ACL, pages 1127–
1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proc. of ACL, pages 373–385.

Fuad Issa, Marco Damonte, Shay B. Cohen, Xiaohui
Yan, and Yi Chang. 2018. Abstract meaning rep-
resentation for paraphrase detection. In Proc. of
NAACL, pages 442–452.

Wei Jiang, Yu Zhang, Zhenghua Li, and Min Zhang.
2019. HLT@SUDA at semEval-2019 Task 1:
UCCA graph parsing as constituent tree parsing. In
Proc. of SemEval-2019.

Nikita Kitaev and Dan Klein. 2018. Consituency
parser with self-attentive decoder. In ACL, pages
2676–2686.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In Proc. of NAACL-HLT, pages 1077–1086, Denver,
Colorado.

Weimin Lyu, Sheng Huang, Abdul Rafae Khan,
Shengqiang Zhang, Weiwei Sun, and Jia Xu. 2019.
CUNY-PKU parser at SemEval-2019 Task 1: Cross-
lingual semantic parsing with UCCA. In Proc. of
SemEval-2019.

Gabriel Marzinotto, Johannes Heinecke, and Géraldine
Damnati. 2019. MaskParse@Deskiñ at semEval-
2019 Task 1: Cross-lingual UCCA semantic parsing
with recursive masked sequence tagging. In Proc. of
SemEval-2019.

Dang Tuan Nguyen and Trung Tran. 2019. DAN-
GNT@UIT.VNU-HCM at SemEval-2019 Task 1:
Graph transformation system from Stanford basic
dependencies to Universal Conceptual Cognitive
Annotation (UCCA). In Proc. of SemEval-2019.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proc. of LREC.

Joakin Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proc. of ACL,
pages 99–106.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger,
Jan Hajic, Angelina Ivanova, and Zdenka Uresova.
2016. Towards comparability of linguistic graph
banks for semantic parsing. In Proc. of LREC.

9

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, and Zdeňka Urešová. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proc. of SemEval, pages 915–926.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237. Association for Computational Linguis-
tics.

Tobias Pütz and Kevin Glocker. 2019. Tüpa at
SemEval-2019 Task 1: (Almost) feature-free seman-
tic parsing. In Proc. of SemEval-2019.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
ACL, pages 818–827.

Elior Sulem, Omri Abend, and Ari Rappoport. 2015.
Conceptual annotations preserve structure across
translations: A French-English case study. In Proc.
of S2MT, pages 11–22.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018a.
Semantic structural annotation for text simplifica-
tion. In NAACL 2018, pages 685–696.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018b.
Simple and effective text simplification using se-
mantic and neural methods. In Proc. of ACL, pages
162–173.

Shiva Taslimipoor, Omid Rohanian, and Sara Može.
2019. GCN-Sem at SemEval-2019 Task 1: Seman-
tic parsing using graph convolutional and recurrent
neural networks. In Proc. of SemEval-2019.

Aaron Steven White, Drew Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016.
Universal decompositional semantics on universal
dependencies. In Proc. of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1713–1723.

Dian Yu and Kenju Sagae. 2019. UC Davis at
SemEval-2019 Task 1: DAG semantic parsing with
attention-based decoder. In Proc. of SemEval-2019.

Sheng Zhang, Kevin Duh, and Benjamin Van Durme.
2017. Selective decoding for cross-lingual open in-
formation extraction. In Proc. of IJCNLP, pages
832–842.

Sheng Zhang, Xutai Ma, Rachel Rudinger, Kevin Duh,
and Benjamin Van Durme. 2018. Cross-lingual
decompositional semantic parsing. In Proc. of
EMNLP, pages 1664–1675.

10

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 11–15
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as
Constituent Tree Parsing

Wei Jiang, Zhenghua Li∗, Yu Zhang, Min Zhang
School of Computer Science and Technology, Soochow University, China

{wjiang0501, yzhang25}@stu.suda.edu.cn, {zhli13,minzhang}@suda.edu.cn

Abstract

This paper describes a simple UCCA
semantic graph parsing approach. The
key idea is to convert a UCCA semantic
graph into a constituent tree, in which
extra labels are deliberately designed to
mark remote edges and discontinuous
nodes for future recovery. In this way,
we can make use of existing syntactic
parsing techniques. Based on the data
statistics, we recover discontinuous
nodes directly according to the output
labels of the constituent parser and
use a biaffine classification model
to recover the more complex remote
edges. The classification model and the
constituent parser are simultaneously
trained under the multi-task learning
framework. We use the multilingual
BERT as extra features in the open tracks.
Our system ranks the first place in the
six English/German closed/open tracks
among seven participating systems. For
the seventh cross-lingual track, where
there is little training data for French, we
propose a language embedding approach
to utilize English and German training
data, and our result ranks the second
place.

1 Introduction

Universal Conceptual Cognitive Annotation
(UCCA) is a multi-layer linguistic framework
for semantic annotation proposed by Abend and
Rappoport (2013). Figure 1 shows an example
sentence and its UCCA graph. Words are
represented as terminal nodes. Circles denote
non-terminal nodes, and the semantic relation

∗Corresponding author, hlt.suda.edu.cn/zhenghua

1

2

H

3

4

“

5

lch

6

ging umher

A

7

und

A

8

tastete

9

.

H

UA P

L

A

H

P U

Figure 1: A UCCA graph example from
the German data. The English translation is
“ I went around and groped . We assign a number
to each non-terminal node to facilitate illustration.

between two non-terminal nodes is represented
by the label on the edge. One node may have
multiple parents, among which one is annotated
as the primary parent, marked by solid line
edges, and others as remote parents, marked by
dashed line edges. The primary edges form a
tree structure, whereas the remote edges enable
reentrancy, forming directed acyclic graphs
(DAGs).1 The second feature of UCCA is the
existence of nodes with discontinuous leaves,
known as discontinuity. For example, node 3 in
Figure 1 is discontinuous because some terminal
nodes it spans are not its descendants.

Hershcovich et al. (2017) first propose a
transition-based UCCA Parser, which is used as
the baseline in the closed tracks of this shared
task. Based on the recent progress on transition-
based parsing techniques, they propose a novel set
of transition actions to handle both discontinuous
and remote nodes and design useful features
based on bidirectional LSTMs. Hershcovich et al.
(2018) then extend their previous approach and
propose to utilize the annotated data with other

1The full UCCA scheme also has implicit and linkage
relations, which are overlooked in the community so far.

11

semantic formalisms such as abstract meaning
representation (AMR), universal dependencies
(UD), and bilexical Semantic Dependencies
(SDP), via multi-task learning, which is used as
the baseline in the open tracks.

In this paper, we present a simple UCCA
semantic graph parsing approach by treating
UCCA semantic graph parsing as constituent
parsing. We first convert a UCCA semantic
graph into a constituent tree by removing
discontinuous and remote phenomena. Extra
labels encodings are deliberately designed
to annotate the conversion process and to
recover discontinuous and remote structures.
We heuristically recover discontinuous nodes
according to the output labels of the constituent
parser, since most discontinuous nodes share the
same pattern according to the data statistics. As
for the more complex remote edges, we use a
biaffine classification model for their recovery.
We directly employ the graph-based constituent
parser of Stern et al. (2017) and jointly train the
parser and the biaffine classification model via
multi-task learning (MTL). For the open tracks,
we use the publicly available multilingual BERT
as extra features. Our system ranks the first
place in the six English/German closed/open
tracks among seven participating systems. For
the seventh cross-lingual track, where there is
little training data for French, we propose a
language embedding approach to utilize English
and German training data, and our result ranks the
second place.

2 The Main Approach

Our key idea is to convert UCCA graphs into
constituent trees by removing discontinuous and
remote edges and using extra labels for their future
recovery. Our idea is inspired by the pseudo non-
projective dependency parsing approach propose
by Nivre and Nilsson (2005).

2.1 Graph-to-Tree Conversion

Given a UCCA graph as depicted in Figure 1, we
produce a constituent tree shown in Figure 2 based
on our algorithm described as follows.

1) Removal of remote edges. For nodes that
have multiple parent nodes, we remove all remote
edges and only keep the primary edge. To fa-
cilitate future recovery, we concatenate an extra
“remote” to the label of the primary edge, indicat-

ROOT

H

U

“

H-ancestor1

A-remote

lch

P

ging umher

L-ancestor1

und

P

tastete

U

.

Figure 2: Constituent tree converted from UCCA
gragh.

train dev total percent(%)

ancestor 1 1460 149 1609 91.3

ancestor 2 96 19 115 6.5

ancestor 3 21 0 21 1.2

discontinuous 16 2 18 1.0

Table 1: Distribution of discontinuous structures
in the English-Wiki data, which is similar in the
German data.

ing that the corresponding node has other remote
relations. We can see that the label of the child
node 5 becomes “A-remote” after conversion in
Figure 1 and 2.

2) Handling discontinuous nodes. We call
node 3 in Figure 1 a discontinuous node because
the terminal nodes (also words or leaves) it spans
are not continuous (“lch ging umher und” are not
its descendants). Since mainstream constituent
parsers cannot handle discontinuity, we try to re-
move discontinuous structures by moving specific
edges in the following procedure.

Given a discontinuous node A = 3, we first
process the leftmost non-descendant node B =
“lch′′. We go upwards along the edges until we
find a node C = 2, whose father is either the
lowest common ancestor (LCA) of A = 3 and
B = “lch′′ or another discontinuous node. We
denote the father of C = 2 as D = 1.

Then we move C = 2 to be the child of A =
3, and concatenate the original edge label with
an extra string (among “ancestor 1/2/3/...” and
“discontinuous”) for future recovery, where the
number represents the number of edges between

12

xi... ...

Shared BiLSTMs

MLPs and Biaffines MLPs

Remote recovery Constituent Parsing

Figure 3: The framework of MTL.

the ancestor D = 1 and A = 3.
After reorganizing the graph, we then restart

and perform the same operations again until there
is no discontinuity.

Table 1 shows the statistics of the discontinuous
structures in the English-Wiki data. We can see
that D is mostly likely the LCA of A and B, and
there is only one edge between D and A in more
than 90% cases.

Considering the skewed distribution, we only
keep “ancestor 1” after graph-to-tree conversion,
and treat others as continuous structures for sim-
plicity.

3) Pushing labels from edges into nodes.
Since the labels are usually annotated in the nodes
instead of edges in constituent trees, we push all
labels from edges to the child nodes. We label the
top node as “ROOT”.

2.2 Constituent Parsing
We directly adopt the minimal span-based parser
of Stern et al. (2017). Given an input sentence
s = w1...wn, each word wi is mapped into a dense
vector xi via lookup operations.

xi = ewi ⊕ eti ⊕ ...

where ewi is the word embedding and eti is the
part-of-speech tag embedding. To make use of
other auto-generated linguistic features, provided
with the datasets, we also include the embeddings
of the named entity tags and the dependency
labels, but find limited performance gains.

Then, the parser employs two cascaded bidirec-
tional LSTM layers as the encoder, and use the
top-layer outputs as the word representations.

Afterwards, the parser represents each span
wi...wj as

ri,j = (fj − fi)⊕ (bi − bj)

where fi and bi are the output vectors of the top-
layer forward and backward LSTMs.

The span representations are then fed into MLPs
to compute the scores of span splitting and label-
ing. For inference, the parser performs greedy top-
down searching to build a parse tree.

2.3 Remote Edge Recovery

We borrow the idea of the state-of-the-art biaffine
dependency parsing (Dozat and Manning, 2017)
and build our remote edge recovery model. The
model shares the same inputs and LSTM encoder
as the constituent parser under the MTL frame-
work (Collobert and Weston, 2008). For each
remote node, marked by “-remote” in the con-
stituent tree, we consider all other non-terminal
nodes as its candidate remote parents. Given a
remote node A and another non-terminal node B,
we first represent them as the span representations.
ri,j and ri′,j′ , where i, i′, j, j′ are the start and end
word indices governed by the two nodes. Please
kindly note that B may be a discontinuous node.

Following Dozat and Manning (2017), we apply
two separate MLPs to the remote and candidate
parent nodes respectively, producing rchildi,j and
rparenti′,j′ .

Finally, we compute a labeling score vector via
a biaffine operation.

s(A← B) =

[
rchildi,j

1

]T

Wrparenti′,j′ (1)

where the dimension of the labeling score vector
is the number of the label set, including a “NOT-
PARENT” label.

Training loss. We accumulate the standard
cross-entropy losses of all remote and non-
terminal node pairs. The parsing loss and the
remote edge classification loss are added in the
MTL framework.

2.4 Use of BERT

For the open tracks, we use the contextualized
word representations produced by BERT (Devlin
et al., 2018) as extra input features.2 Following
previous works, we use the weighted summation
of the last four transformer layers and then mul-
tiply a task-specific weight parameter following
(Peters et al., 2018).

2We use the multilingual cased BERT from https://
github.com/google-research/bert.

13

3 Cross-lingual Parsing

Because of little training data for French, we bor-
row the treebank embedding approach of Stymne
et al. (2018) for exploiting multiple heterogeneous
treebanks for the same language, and propose a
language embedding approach to utilize English
and German training data. The training datasets
of the three languages are merged to train a single
UCCA parsing model. The only modification is
to concatenate each word position with an extra
language embedding (of dimension 50), i.e. xi ⊕
elang=en/de/fr to indicate which language this
training sentence comes from. In this way, we
expect the model can fully utilize all training
data since most parameters are shared except the
three language embedding vectors, and learn the
language differences as well.

4 Experiments

Except BERT, all the data we use, including the
linguistic features and word embeddings, are pro-
vided by the shared task organizer (Hershcovich
et al., 2019). We also adopt the averaged F1
score as the main evaluation metrics returned by
the official evaluation scripts (Hershcovich et al.,
2019).

We train each model for at most 100 iterations,
and early stop training if the peak performance
does not increase in 10 consecutive iterations.

Table 2 shows the results on the dev data. We
have experimented with different settings to gain
insights on the contributions of different com-
ponents. For the single-language models, it is
clear that using pre-trained word embeddings out-
performs using randomly initialized word embed-
dings by more than 1% F1 score on both English
and German. Finetuning the pre-trained word
embeddings leads to consistent yet slight perfor-
mance improvement. In the open tracks, replacing
word embedding with the BERT representation is
also useful on English (2.8% increase) and Ger-
man (1.2% increase). Concatenating pre-trained
word embeddings with BERT outputs leads is also
beneficial.

For the multilingual models, using randomly
initialized word embeddings is better than pre-
trained word embeddings, which is contradictory
to the single-language results. We suspect this
is due to that the pre-trained word embeddings
are independently trained for different languages
and would lie in different semantic spaces with-

Methods
F1 score

Primary Remote Avg
Single-language models on English

random emb 0.778 0.542 0.774
pretrained emb (no finetune) 0.790 0.494 0.785

pretrained emb 0.794 0.535 0.789
bert 0.821 0.593 0.817

pretrained emb ⊕ bert 0.825 0.603 0.821
official baseline (closed) 0.745 0.534 0.741
official baseline (open) 0.753 0.514 0.748

Single-language models on German
random emb 0.817 0.549 0.811

pretrained emb (no finetune) 0.829 0.544 0.823
pretrained emb 0.831 0.536 0.825

bert 0.842 0.610 0.837
pretrained emb ⊕ bert 0.849 0.628 0.844

official baseline (closed) 0.737 0.46 0.731
official baseline (open) 0.797 0.587 0.792

Multilingual models on French
random emb 0.688 0.343 0.681

pretrained emb 0.673 0.174 0.665
bert 0.796 0.524 0.789

official baseline (open) 0.523 0.016 0.514

Table 2: Results on the dev data.

out proper aligning. Using the BERT outputs is
tremendously helpful, boosting the F1 score by
more than 10%. We do not report the results
on English and German for brevity since little
improvement is observed for them.

5 Final Results

Table 3 lists our final results on the test data.
Our system ranks the first place in six tracks (En-
glish/German closed/open) and the second place
in the French open track. Note that we submitted
a wrong result for the French open track during
the evaluation phase by setting the wrong index
of language, which leads to about 2% drop of
averaged F1 score (0.752). Please refer to (Her-
shcovich et al., 2019) for the complete results and
comparisons.

6 Conclusions

In this paper, we describe our system submitted to
SemEval 2019 Task 1. We design a simple UCCA
semantic graph parsing approach by making full
use of the recent advance in syntactic parsing
community. The key idea is to convert UCCA
graphs into constituent trees. The graph recovery

14

Tracks
F1 score

Primary Remote Avg
English-Wiki closed 0.779 0.522 0.774
English-Wiki open 0.810 0.588 0.805
English-20K closed 0.736 0.312 0.727
English-20K open 0.777 0.392 0.767

German-20K closed 0.838 0.592 0.832
German-20K open 0.854 0.641 0.849
French-20K open 0.779 0.438 0.771

Table 3: Final results on the test data in each
track. Please refer to the official webpage for more
detailed results due to the limited space

problem is modeled as another classification task
under the MTL framework. For the cross-lingual
parsing track, we design a language embedding
approach to utilize the training data of resource-
rich languages.

Acknowledgements

The authors would like to thank the anonymous
reviewers for the helpful comments. We also
thank Chen Gong for her help on speeding up the
minimal span parser. This work was supported
by National Natural Science Foundation of China
(Grant No. 61525205, 61876116).

References
Omri Abend and Ari Rappoport. 2013. Universal

Conceptual Cognitive Annotation (UCCA). In Proc.
of ACL, pages 228–238.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proc. of
ICML.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training
of deep bidirectional transformers for language
understanding. arXiv:1810.04805.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency
parsing. In Proceedings of ICLR.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for ucca. In Proc. of ACL, pages 1127–1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proc. of ACL, pages 373–385.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. Semeval 2019 task 1: Cross-lingual
semantic parsing with ucca. arXiv:1903.02953.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proc. of ACL,
pages 99–106.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proc. of NAACL.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proc. of ACL, pages 818–827.

Sara Stymne, Miryam de Lhoneux, Aaron Smith,
and Joakim Nivre. 2018. Parser training with
heterogeneous treebanks. In Proc. of ACL, pages
619–625.

15

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 16–30
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval-2019 Task 2: Unsupervised Lexical Frame Induction

Behrang QasemiZadeh
SFB991, Germany
zadeh@phil.hhu.de

Miriam R. L. Petruck
ICSI, US

miriamp@icsi.berkeley.edu

Regina Stodden
HHUD, Germany

stodden@phil.hhu.de

Laura Kallmeyer
HHUD, SFB991, Germany
kallmeyer@phil.hhu.de

Marie Candito
Paris Diderot University - CNRS, France

marie.candito@linguist.univ-paris-diderot.fr

Abstract

This paper presents Unsupervised Lexical
Frame Induction, Task 2 of the International
Workshop on Semantic Evaluation in 2019.
Given a set of prespecified syntactic forms in
context, the task requires that verbs and their
arguments be clustered to resemble semantic
frame structures. Results are useful in iden-
tifying polysemous words, i.e., those whose
frame structures are not easily distinguished,
as well as discerning semantic relations of the
arguments. Evaluation of unsupervised frame
induction methods fell into two tracks: Task
A) Verb Clustering based on FrameNet 1.7;
and B) Argument Clustering, with B.1) based
on FrameNet’s core frame elements, and B.2)
on VerbNet 3.2 semantic roles. The shared
task attracted nine teams, of whom three re-
ported promising results. This paper describes
the task and its data, reports on methods and
resources that these systems used, and offers a
comparison to human annotation.

1 Introduction

SemEval 2019 Task 2 focused on the unsupervised
semantic labeling of a set of prespecified (seman-
tically) unlabeled structures (Figure 1). Unsuper-
vised learning methods analyze these structures
(Figure 1a) to augment them with semantic labels
(Figure 1b). The shape of the manually labeled in-
put frames is constrained to an acyclic connected
tree of lexical items (words and multi-word units)
of maximum depth 1, where just one root gov-
erns several arguments. The task used Berkeley
FrameNet (FN) (Ruppenhofer et al., 2016) and Q.
Zadeh and Petruck (2019), guidelines for this task,
to determine the arguments and label them with
semantic information.

We compared the proposed system results for
unsupervised semantic tagging with that of human
annotated (or, gold-standard) data in three differ-
ent subtasks (Figure 2). To evaluate the systems,
we computed distributional similarities between

Exxon Mobil sell

skyscraper

company

nsubj dobj

nmod:to

(a) Input: subcategorization frames.

Exxon Mobil
sell

COMMERCE SELL

skyscraper

company

nsubj

Seller

Agent

dobj

Goods

Theme

nmod:to

Buyer

Recipient

(b) Output: Semantic Frame Tagging using labels
learned by Unsupervised methods.

Figure 1: Given semantically unlabeled structures
(1a), annotate the input with semantic information
learned via unsupervised methods (1b).

their generated unsupervised labeled data and hu-
man annotated reference data. For computing sim-
ilarities we used general purpose numeral methods
of text clustering, in particular BCUBED F-SCORE

(Bagga and Baldwin, 1998) as the single figure of
merit to rank the systems.

The most important result of the shared task is
the creation of a benchmark for a future complex
task. This benchmark includes a moderately sized,
manually annotated set of frames, where only the
verbs of each were included, along with their core
frame elements (which uniquely define a frame
as Ruppenhofer et al. describe). To complement
FN’s core frame elements that have highly specific
meanings, the benchmark also includes the anno-
tated argument structures of the verbs based on the
generic semantic roles proposed for verb classes
in VerbNet 3.2 (Kipper et al., 2000; Palmer et al.,
2017). The benchmark comes with simplified an-
notation guidelines and a modular annotation sys-

16

tem with browsing and editing capabilities.1 Com-
plementing the benchmarking are several state-of-
the-art competing baselines, from the participants,
that serve as a point of departure for improvements
in the future.2

The rest of this paper is organized as follows:
Section 2 contextualizes this task; Section 3 offers
a detailed task-description; Section 4 describes
the data; Section 5 introduces the evaluation met-
rics and baselines; Section 6 characterizes the par-
ticipating systems and unsupervised methods that
participants used; Section 7 provides evaluation
scores and additional insight about the data; and
Section 8 presents concluding remarks.

2 Background

Frame Semantics (Fillmore, 1976) and other the-
ories (Gamerschlag et al., 2014) that adopt typed
feature structures for representing knowledge and
linguistic structures have developed in parallel
over several decades in theoretical linguistic stud-
ies about the syntax–semantics interface, as well
as in empirical corpus-driven applications in natu-
ral language processing. Building repositories of
(lexical) semantic frames is a core component in
all of these efforts. In formal studies, lexical se-
mantic frame knowledge bases instantiate foun-
dational theories with tangible examples, e.g., to
provide supporting evidence for the theory. Prac-
tically, frame semantic repositories play a pivotal
role in natural language understanding and seman-
tic parsing, both as inspiration for a representation
format and for training data-driven machine learn-
ing systems, which is required for tasks such as
information extraction, question-answering, text
summarization, among others.

However, manually developing frame semantic
databases and annotating corpus-derived illustra-
tive examples to support analyses of frames are
resource-intensive tasks. The most well-known
frame semantic (lexical) resource is FrameNet
(Ruppenhofer et al., 2016), which only covers a
(relatively) small set of the vocabulary of con-
temporary English. While NLP research has inte-
grated FrameNet data into semantic parsing, e.g.,
Swayamdipta et al. (2018), these methods can-
not extend beyond previously seen training labels,
tagging out-of-domain semantics as unknown at

1http://sfa.phil.hhu.de/.
2See https://competitions.codalab.org/

competitions/19159 for accessing the task’s language
resources, tools, and further technical details.

best. This limitation does not hinder unsupervised
methods, which will port and extend the coverage
of semantic parsers, a common challenge in se-
mantic parsing (Hartmann et al., 2017).

Unsupervised frame induction methods can
serve as an assistive semantic analytic tool, to
build language resources and facilitate linguis-
tic studies. Since the focus is usually to build
language resources, most systems (Pennacchiotti
et al. (2008); Green et al. (2004)) have used a lexi-
cal semantic resource like WordNet (Miller, 1995)
to extend coverage of a resource like FrameNet.
Some methods, e.g., Modi et al. (2012) and
Kallmeyer et al. (2018), tried to extract FrameNet-
like resources automatically without additional se-
mantic information. Others (Ustalov et al. (2018);
Materna (2012)) addressed frame induction only
for verbs with two arguments.

Lastly, unsupervised frame induction methods
can also facilitate linguistic investigations by cap-
turing information about the reciprocal relation-
ships between statistical features and linguistic or
extra-linguistic observations (e.g., Reisinger et al.
(2015)). This task aimed to benchmark a class of
such unsupervised frame induction methods.

3 Task Description

Exxon Mobil
sell

COMMERCE SELL
skyscraper

company

nsubj dobj

nmod:to

(a) Task A - Identifying Semantic Frames: Unsupervised
learned labels evaluated against FN’s lexical units

Exxon Mobil
sell

COMMERCE SELL skyscraper

company

nsubj

Seller
dobj

Goods

nmod:to

Buyer

(b) Task B.1 - Full Frame Semantic Tagging: Unsupervised
labels evaluated against FN’s frames

Exxon Mobil
sell

skyscraper

company

nsubj

Agent

dobj

Theme

nmod:to

Recipient

(c) Task B.2 – Case Role Labeling: Unsupervised labels eval-
uated against generic semantic roles (VerbNet)

Figure 2: Subtasks of SemEval 2019 Task 2.

17

The ambitious goal of this task was the unsuper-
vised induction of frame semantic structures from
tokenized and morphosyntacally labeled text cor-
pora. We sought to achieve this goal by building
an evaluation benchmark for three tasks. Task A
dealt with unsupervised labeling of verb lemmas
with their frame meaning. Task B involved unsu-
pervised argument role labeling, where B.1 bench-
marked unsupervised labeling of frame-specific
frame elements (FEs) based on FN, and B.2
benchmarked unsupervised role labeling of argu-
ments in Case Grammar terms (Fillmore, 1968)
and against a set of generic semantic roles, taken
primarily from VerbNet.

The task was unsupervised in that it forbade the
use of any explicit semantic annotation (only per-
mitting morphosyntactic annotation). Instead, we
encouraged the use of unsupervised representation
learning methods (e.g., word embeddings, brown
clusters) to obtain semantic information. Hence,
systems learn and assign semantic labels to test
records without appealing to any explicit training
labels. For development purposes, developers re-
ceived a small labeled development set.

3.1 Task A: Clustering Verbs

The goal of this task was to identify verbs that
evoke the same frame. The task involved labeling
verb uses in context to resemble their categoriza-
tion based on Frame Semantics (Figure 2a). Here,
we used FN 1.7 as the reference for frame defini-
tions. Hence, the task constituted the unsupervised
induction of FN’s lexical units, where a lexical
unit (LU) is a pairing of a lemma and a frame. For
example, we expected that the LUs auction.v, re-
tail.v, sell.v, etc., which evoke the typed situation
of COMMERCE SELL, be labeled with the same un-
supervised tag.3

The task resembles word sense induction in that
it assigns a class (or sense) label to a verb. In
word sense induction (WSI), labels are determined
and evaluated on word forms (lemma + part-of-
speech e.g., sell.v or auction.n). WSI evaluations
assume that the inventory of senses (set Sis) for
different word forms f is devised independently.
For instance, assuming f1 is labeled with the set
of senses S1 and f2 with S2, then S1 ∩ S2 6= φ
only if f1 = f2; and, if f1 6= f2 then S1 ∩ S2 =
φ (as in other SemEval benchmarks, including
Agirre and Soroa (2007); Manandhar et al. (2010);

3Dark red small caps indicate FN frames.

Jurgens and Klapaftis (2013); Navigli and Van-
nella (2013)). For instance, in WSI evaluations
based on OntoNotes (Hovy et al., 2006), six dif-
ferent labels from Ssell are assigned to the lemma
sell.v, and one label s′ is assigned to auction.v,
knowing that s′ /∈ Ssell. Typically, lexical se-
mantic relationships among members of Sis (e.g.,
synonymy, antonymy) are then analyzed indepen-
dently of WSI (e.g., Lenci and Benotto (2012);
Girju et al. (2007); McCarthy and Navigli (2007)).
In contrast, this task assumes that the sense inven-
tory is defined independent of word forms.

This task involves uncovering mapping between
word forms f and members of S such that differ-
ent word forms (i.e., fi 6= fj) can be mapped to
the same meaning (label), and the same meaning
(label) can be mapped to several word forms. We
defined S with respect to FrameNet and assumed
that its typed-situation frames are units of mean-
ing. So, COMMERCE SELL captures the meaning
associated with both sell.v and auction.v., as well
as other selling-related words. Hence, in some
sense, Task A goes beyond the ordinary WSI task
as it also demands identifying (unspecified) lexical
semantic relationships between verbs.

3.2 Task B.1: Unsupervised Frame Semantic
Argument Labeling

Taking the frames as primary and defining roles
relative to each frame, the aim of Task B.1 was to
cluster prespecified verb-headed argument struc-
tures according to the principles of Frame Se-
mantics, where FrameNet served as the reference
for evaluation. This task amounted to unsuper-
vised labeling of frames and core FEs (Figure 2b).
Because FrameNet defines FEs frame-specifically,
Task B.1 entails Task A.

Given a set of semantically-unlabelled argu-
ments as input (e.g., Figure 1a), the root nodes
(i.e., verbs) are clustered and assigned to a set of
unsupervised frame labels πi (1 ≤ i ≤ n, where
n is the number of latent frames). Then, the argu-
ments are labeled with semantic role labels (FEs)
interpreted locally given the frame. That is, for
any pair of πx and πy, the set of assigned roles Rx

to arguments under πx are assumed to be indepen-
dent from Ry labels for πy (Rx ∩Ry = φ).

3.3 Task B.2: Unsupervised Case Role
Labeling

We defined Subtask B.2 in parallel to Subtask B.1
and involved an idea from Case Grammar. The ar-

18

guments of a verb in a set of prespecified subcat-
egorization frames were clustered according to a
common set of generic semantic roles (Figure 2c).
Here, the task assumed that semantic roles are uni-
versal and generic (e.g., Agent, Patient). Their
configuration determines the argument structure of
verb-headed phrases. We evaluated this unsuper-
vised labeling of arguments with semantic roles
independently of the class, sense, and word form
of a verb. We compared the role labels against a set
of semantic roles from VerbNet 3.2 (Kipper et al.,
2000). Given a verb instance, no guarantee ex-
ists that input argument structures for B.2 and B.1
would be the same.

4 Evaluation Dataset

The dataset consists of manual annotations for
verb-headed frame structures anchored in tok-
enized sentences. These frame structures were
manually annotated using the guidelines for this
task (Q. Zadeh and Petruck, 2019). For example,
as already illustrated, the verb come from.v is an-
notated in terms of FN’s ORIGIN frame and its core
FEs, as Example 1 shows.

(1) Criticism of futures COMES FROM Wall Street.

Criticism come from Wall Street

ORIGIN

ENTITY ORIGIN

Also, using the set of 32 generic semantic role la-
bels in VerbNet 3.2 and two additional roles, COG-
NIZER and CONTENT, we annotated arguments of
the verb as the following graphic shows.

Criticism come from Wall Street

THEME SOURCE

We assumed unique identifiers for sentences,
e.g., #s1 for Example 1. The evaluation record for
come from.v (Task A) appears below, where #s1
4 5 specifies the position of the verb in the sen-
tence (Example 1).

A [#s1 4 5 come from.ORIGIN]

Similarly, for Task B.1 and Task B.2, respectively,
the evaluation records are as follows here.

B.1 [#s1 4 5 come from.ORIGIN Criticism-:-1-:-
ENTITY Wall Street-:-6 7-:-ORIGIN]

B.2 [#s1 4 5 come from.NA Criticism-:-1-:-
THEME Wall Street-:-6 7-:-SOURCE]

We stripped off the manually asserted labels from
the records and passed them to systems for assign-
ing unsupervised labels. Evidently, later a scorer
program (Section 5) compared system-generated
labels with the manually assigned labels.

4.1 Data Sampling
We sampled data from the Wall Street Journal
(WSJ) corpus of the Penn Treebank. Kallmeyer
et al. (2018) provided frame annotations similar
to those in this task for a portion of WSJ sen-
tences, using SemLink (Bonial et al., 2013) and
EngVallex (Cinková et al., 2014) to generate frame
semantic annotations semi-automatically. That
work was based on FrameNet and the Prague
Dependency Treebank (PSD) (Hajič et al., 2012)
from the Broad-coverage Semantic Dependency
resource (Oepen et al., 2016). We started by anno-
tating a portion of the records in Kallmeyer et al.
(2018), and later deviated from this subset to cre-
ate a more representative sample of the overall di-
versity and distribution of verbs in the WSJ corpus
using a stratified random sampling method.

4.2 Guidelines
The annotation guidelines for this task were
slightly different from those of FrameNet and var-
ious semantic dependency treebanks. In contrast
to FN, which annotates a full span of text as an ar-
gument filler, or PropBank, which annotates syn-
tactic constituents of arguments of verbs (Palmer
et al., 2005), we identified the text spans and
only annotated a single word or a multi-word unit
(MWU), i.e., the semantic head of the span, like
annotations in Oepen et al. (2016) and Abstract
Meaning Representation (Banarescu et al., 2013).
To illustrate, in Example 1, FN would annotate
Criticism of futures as filling the FE ENTITY.
We only annotated Criticism, understanding it as
the LU that evokes JUDGMENT COMMUNICATION,
which in turn represents the meaning of the whole
text span. Thus, we assumed that another frame fa
fills an argument of a frame. We annotated only
the main content word(s) that evoke(s) fa; these
main words are the semantic heads.4

Multi-word unit semantic heads (e.g., named
entities, word form combinations) are annotated as
if a single word form, such as Wall Street (# 1), ex-
cluding modifiers. In contrast to semantic depen-

4The annotation guidelines (Q. Zadeh and Petruck, 2019)
discuss decisions about marking semantic heads and the com-
plex situations resulting from it for argument annotation.

19

dency structures (e.g., DELPH-IN MRS-Derived
Semantic Dependencies, Enju PredicateArgument
Structures, and Tectogramatical Representation in
PSD (Oepen et al., 2016)), we did not commit to
the underlying syntactic structure of the sentence
since we were not obliged to relabel only syntac-
tic structures. Rather, we annotated words and
MWUs if the frame analysis permitted doing so.5

4.3 Annotation Procedure

We annotated the data in a modular manner and
in a semi-controlled environment using an annota-
tion system developed for this purpose. The proce-
dure consisted of four steps: 1) Reading and Com-
prehension; 2) Choosing a Frame; 3) Annotating
Arguments; and 4) Rating, Commenting, or Re-
vising. We tracked and logged all changes in the
data as well as annotator interaction with the anno-
tation system upon starting to annotate. The tool
measured the time that annotators spent on each
record and each annotation step, as well as how
annotators moved between steps.

In Step 1, annotators viewed a sentence with
one highlighted verb, as in Example 2.

(2) Criticism of futures COMES from Wall Street.

The goal of this step was understanding the
meaning of the verb and its semantic function, and
identifying semantic heads of arguments and their
associated words or MWUs. To continue, an anno-
tator must confirm the understanding of the verb’s
meaning of the verb, and can identify its seman-
tic arguments. Without confirmation, an annotator
would terminate the annotation process for that in-
put sentence and go to the next one.

If confirmed, Step 2 required the annotator to
choose the frame that the verb evoked. This
step may have included annotating multi-word
phrasal verbs, e.g., COMES+FROM (Example 2).
The annotation system assisted by providing a
list of likely frames for the verb, including a LU
lookup function (as in FN), an extended set of
LUs derived via statistical methods, and previ-
ously logged annotations. After reviewing the def-
initions of the proposed frames, annotators chose
one, or annotated the verb form with a different
existing FN frame. Otherwise, the annotator ter-
minated the process and the record moved to the
list of “skipped items”.

The annotation of arguments, Step 3, required

5Q. Zadeh and Petruck describe the issues in detail.

that annotators label the core FEs of the cho-
sen frame by first identifying their semantic head,
which first may have required marking MWUs,
e.g., Wall+Street in Example 3, below.

(3) Criticism of futures comes from Wall Street.

The tool lists the core FEs and their definitions,
and checks the integrity of record annotations to
ensure that each core FE is annotated only once.
In parallel, annotators add the verb’s subcatego-
rization frame and its semantic role. We did not
annotate null instantiated FEs (but FN does). Dur-
ing step 3, annotators could go back to the previ-
ous step and change their choice of frame type.

For Step 4, annotators rated their annotation,
stating their opinion on how well the annotated in-
stance fit FrameNet’s definition and how it com-
pared to other annotated instances. In a sense, an-
notators measured their confidence in the assigned
labels. They did so by selecting a number on a
scale from 1 to 5, with 1 not confident at all and 5
the most confident, i.e., the annotation fit perfectly
to the chosen FrameNet frame, its definition, and
examples. Annotators had the option to add free
text comments on each record.

The annotation procedure was rarely straight-
forward. Given the interdependence of Steps 2
and 3, annotators usually moved back and forth
between them. In Step 2 an annotator might be-
lieve that a target verb did not belong in any ex-
isting FN frame. Likewise, annotators could ter-
minate the annotation process even upon reaching
the last step.

4.3.1 Quality Control
At least two annotators verified all annotation used
in the evaluation. A main annotator annotated all
records in the dataset; two other annotators veri-
fied or disputed those annotations. If annotators
could not reach an agreement, we removed the
record from the SemEval dataset.

A full analysis of annotator disagreement goes
beyond the scope of this work. While the source
of annotator disagreement may seem trivial and
simple (e.g., only one annotator understood the
sentence correctly), we believe that some sen-
tences may have more than one interpretation, all
of which are plausible. Like the disagreement re-
sulting from incorrect frame assignment, decid-
ing what frame a verb evokes may be challeng-
ing; and resolving the dilemma is not always sim-
ple. Choosing between two related frames (e.g.,

20

BUILDING vs. INTENTIONALLY CREATE, related via
Inheritance in FN), or identifying metaphorical
and non-metaphorical uses of a verb requires sub-
tle and sophisticated understanding of the seman-
tics of the language, and of Frame Semantics. At
times, disagreements pointed to more complex lin-
guistic issues that remain in debate, e.g., choosing
the semantic head of a syntactically complex argu-
ment, treating quantifiers, conjunctions, etc.

4.4 Summary statistics

Table 1 shows a statistical summary of the annota-
tion task. The SemEval column reports the statis-
tics for the final set of records, i.e., gold records
with double-agreement between annotators, and
which we used to evaluate the systems. Total re-
ports the statistics of all analyzed records, from
which we chose our SemEval data. Skipped and
InProg show the statistics for discarded records
and records without a final decision, respectively.
Dev shows the statistics for the development set.

Each of the rows reports a value of a compo-
nent of the data or annotator interaction with the
data. Records indicates the number of annotated
verbs and their arguments. Sentences and Tokens
indicate the size of the sub-corpus of the anno-
tated records. VF is the number of distinct verb
lemmas (273), mapped to the number of distinct
frames that the Frames-Type row shows (149)
(Figure 3 in Appendix A.1 plots their frequency
distribution.) FElements reports the number of
annotated FEs categorized under the number of
FE types shown in the FE-Type row. Sem-Arg
shows the number of annotated verb arguments
with VerbNet-like semantic roles, classified into
32 of 41 possible semantic role categories. Multi-
word lists the number of annotated MWUs

SemEval Total Skipped InProg Dev
Records 4,620 5,637 301 716 594
Sentences 3,346 3,803 294 675 582
Tokens 90,460 102,067 8,329 19,151 15198
Verb-Forms 273 373 93 210 35
Frame-Type 149 234 75 185 37
#FEs 9,510 11,269 373 1,386 1,128
FE-Type 198 270 64 197 62
Sem-Arg 9,466 11,215 370 1,379 1,079
Multi-word 2,366 2,773 61 346 368
Confidence 3.30 3.2 2.41 2.5 3.34
Time 539h 742h 25h 177h 19h
Total-Move 68,784 83,753 1,903 13,066 4,406

Table 1: Annotation and Data Statistical Summary

Confidence reports the average of annotator-
assigned confidence scores for annotations per

record. Although interpreting this measure de-
mands more work, the averages appear to be as
expected. Specifically, SemEval is higher in value
than both InProg and Skipped, facts that we as-
sociate with double agreement and the choice re-
viewing process. Still, many records with high
confidence scores remained as InProg given the
lack of double agreement. Table 5 (Appendix A.1)
lists the top 10 frames annotated with their respec-
tive highest and lowest confidence ratings aver-
aged by their frequency in SemEval.

The last two rows of Table 1 are meta-data on
the annotation process. Time reports the total time
annotators spent in active annotation, engaged in
the steps described above (742 hours), excluding
the reviewing process (Section 4.3.1) and includ-
ing the time to annotate MWUs. Total-Move is
the total number of logical moves for frame anno-
tation between annotators and the annotation sys-
tem, i.e., logged changes in the process of frame
and core FE annotation. This number excludes
annotation of verb subcategorization with generic
semantic roles.6

In SemEval, annotated frames had an average
of 2.15 arguments, requiring a minimum of five
logical moves to annotate (MWU-less sentences).
However, on average, each SemEval record re-
quired 14.8 moves. This number is even higher
for InProg (18.2); we believe that it indicates the
complexity of the annotation task. Table 4 (Ap-
pendix A.1) further details annotator activity, with
time spent and moves per annotation step. As ex-
pected, frame annotation of verbs (Step 2), was the
most time consuming part of the task.
4.5 Development Dataset
Shared task participants received a development
set consisting of 600 records from a total of 4,620
records, where Table 4 shows the statistics. The
development set contained gold annotations for all
three subtasks.

5 Evaluation Metrics
For all subtasks, as figure of merit, here we re-
port the performance of participating systems with
measures for evaluating text clustering techniques,
including the classic measures of Purity (PU),
inverse-Purity (IPU), and their harmonic mean
(PIF) (Steinbach et al., 2000), as well as the har-
monic mean for BCubed precision and recall (i.e.,

6With the exception of a few verbs, annotators rarely
changed the annotation system’s rule-based suggestions of
VerbNet semantic roles.

21

BCP, BCR, and BCF, respectively) (Bagga and
Baldwin, 1998).

To compute these measures for the pairing of
reference-labeled data and unsupervised-labeled
data (with each having an exact set of annotated
items), we built a contingency table T with rows
for gold labels and columns for unsupervised sys-
tem labels. We filled the table with the number
of intersecting items, as done in cross-tabulation
of results in classification tasks to compute preci-
sion and recall. For Task A (Section 3), T tracks
the unsupervised system labels and the gold refer-
ence labels assigned to verbs. For Task B.1, we
labeled the rows and columns of T with tuples
(lv, la), where lv labels the frame evoking verb and
la labels the FE filler. For Task B.2, the rows and
columns in T track the unsupervised system la-
bels and the gold reference labels (generic seman-
tic roles) assigned to arguments.

These performance measures reflect a notion
of similarity between the distribution of unsuper-
vised labels and that of the gold reference labels,
given certain criteria. Specifically, they define the
notions of consistency and completeness of au-
tomatically generated clusters based on the eval-
uation data. Each method measures consistency
and completeness in its own way, and alone may
lack sufficient information for a clear understand-
ing and analysis of system performance (Amigó
et al., 2009). But, as the single metric for system
ranking, we used the BCF measure, given its satis-
factory behavior in certain situations. Note that we
modeled the task and its evaluation as hard cluster-
ing, where a record receives only one label, with-
out overlap in any generated category of items.

5.1 Baselines

Similar to other clustering tasks, we use base-
lines of random, all-in-one-cluster (AIN1), and
one-cluster-per-instance (1CPI). Additionally, we
adapted the baseline of the most frequent sense
in WSI for these tasks by introducing the
one-cluster-per-head (1CPH) baseline in Task
A, and one-cluster-per-syntactic-category (1CPG)
for verb argument clustering in Task B.2.7 For
Task B.1, we built a baseline, 1CPGH for label-
ing verbs with their lemmas (as in 1CPH) and
FEs with grammatical relation to their heads (as in
1CPG). We included two more labels lcmpx and

7We use syntactic dependencies of the Enhanced Univer-
sal Dependencies formalism (Schuster and Manning, 2016).

rcmpx for frame fillers with no direct syntactic re-
lation to the head verb, if occurring left of or right
of the verb, respectively.

Both 1CPH and 1CPG (and their combination
for Task B.1) are hard to beat because of the long-
tailed distribution of the frequency of our test data.
E.g., most verbs frequently instantiate one par-
ticular frame and rarely other ones. Similarly, a
particular role (FE) frequently is filled by words
that have a particular grammatical relation to its
governing verb; e.g., most subjects of most verb
forms receive the agent label in their subcatego-
rization frame (or, an agent-like element in their
Frame Semantics representations). Evidently the
chosen labels for grammatical relations influences
1CPG and 1CPHG scores. Values reported later
(specifically, Tables 6 and 2) could be improved
by employing heuristics, e.g., relabeling enhanced
dependencies using a few rules.

We also employed one unsupervised and a sec-
ond supervised system baselines. For the unsuper-
vised one, we trained the system with data from
Kallmeyer et al. (2018). For the supervised one,
we used OPEN-SESAME, a state-of-the-art su-
pervised FrameNet tagger (Swayamdipta et al.,
2018). After converting its output to the format of
the present task, we evaluated it similar to other
systems. Both systems were trained out-of-the-
box with no additional tuning.

6 System Descriptions

We received submissions from nine teams (13 par-
ticipants). Only three chose to submit system de-
scription papers. Arefyev et al. (2019) provided a
solution for Task A and Task B.2, using both sets
of these results to address Task B.1. Task A used
language models and Hearst-like patterns to tune
and obtain contextualized vector representations
for the verbs in the test set. A hierarchical agglom-
erative clustering method followed, where hyper-
parameters were set with labeled and unlabeled
records from the development and test sets. Task
B.2 employed a logistic regression trained over the
development set to identify only the most frequent
labels. The classifier was based on features ob-
tained from a language model and hand-crafted
rules. Using logistic regression and training this
algorithm with the development set remains an is-
sue of concern, given the intended unsupervised
scenario. While we objected to using the devel-
opment set to train a supervised system for this

22

subtask, we still report its scores. The differences
between its results and those of the other systems
may be informative. Still, we considered Arefyev
et al.’s results for Task B only complementarily,
not to rank the systems.

Anwar et al. (2019) proposed a method that was
similar to that of Arefyev et al. (2019). Arefyev
et al. used contextualized word embeddings from
the BERT language modeling tool Devlin et al.
(2018), whereas Anwar et al. used pre-trained em-
beddings. They merged the outputs of Tasks A
and B.2 for Task B.1. Task A used agglomerative
clustering of vectors with concatenated verb rep-
resentation vectors and vectors that represent us-
age context. Task B.2 employed hand crafted fea-
tures, a method to encode syntactic information,
and again an agglomerative clustering method.

Ribeiro et al. (2019) also reported results for
all subtasks using similar techniques to those re-
ported in the other two submitted papers. Ribeiro
et al. (2019) used the bidirectional neural language
model BERT, which Arefyev et al. (2019) also
used. Task A employed contextualized word rep-
resentations proposed in (Ustalov et al., 2018), and
Biemann’s clustering algorithm (Biemann, 2006).
Compared to the two other systems, Ribeiro et al.
(2019) exploited input structures, weighted them,
and used them elegantly in its algorithm. With
the same method but different hyper-parameters
for B.2 along with combining results from Task
A, Ribeiro et al. (2019) offered a solution to B.1.

7 Results and Data Analysis

Table 2 reports the BCF scores for system submis-
sions along with a baseline for each task.8 As the
table shows, each system performs best only in
one of the tasks. We report Arefyev et al.’s sub-
mission for Tasks B.1 and B.2 only to show the
benefit of using a small amount of training data
and a supervised method together with a cluster-
ing algorithm, provided that such training data is
available. As readers know, finding the optimal
(actual) number of clusters is an open research
area. Participants knew the number of clusters:
whereas Arefyev et al. and Anwar et al. used this
information, Ribeiro et al. opted for a statistical
method tuned with data that we provided.

The baseline systems, the unsupervised method
of Kallmeyer et al. (2018) performed the worst

8The full list of baselines and performance measures ap-
pear in Table 6 of the Appendix.

System BCF
Arefyev et al. 70.70
Anwar et al. 68.10
Ribeiro et al. 65.32
BASELINE 65.35

Task A

BCF
63.12
49.49
42.75
45.79

B.1

BCF
64.09
42.1

45.65

39.03

B.2

Table 2: Summary of Results. The BASELINE for
Task A is 1CPH, and for B.1 and B.2 is 1CPHG.
Best results appear in bold face; discarded results
are crossed out. Table 6 lists all other baselines.

of all systems regarding BCF. This result is not
surprising since that work did not effectively han-
dle MWUs in the test, where only the head of the
MWU was kept. However, the output of Open-
SESAME, and its low BCF was indeed surprising.

We fed Open-SESAME the sentences from the
test set; it identified approximately 5k frames.
However, the overlap with the test set was only
1,216 records (identification problem in Open-
SESAME). These 1,216 records exhibit a mis-
match between 536 of the arguments and their re-
spective target verbs. We ignored the system’s
extra or incorrectly generated arguments, and re-
placed the missing items with those of the 1CPHG
baseline records. We then used the resulting
records for evaluation against the task’s gold data
as did the task’s participants. As Table 3 shows,
the unsupervised method outperforms the super-
vised system for all tasks by a wide margin, i.e.,the
unsupervised label set can carry more information
than does the supervised label set.

BCP BCR BCF
Task A 84.52 44.67 58.45
Task B.1 81.04 31.6 45.47
Task B.2 34.26 36.56 35.37

Table 3: Open-SESAME Performance

We compared results for confidence measure
that annotators assigned to records. First, we split
the evaluation records according to their assigned
confidence value into five subsets Ei, 1 ≤ i ≤ 5,
such that subset E1 contained only records with
confidence value 1, E2 contained only record with
confidence value 2, etc.. Then we evaluated sys-
tem outputs on each subset Ei and logged that
BCF. Later, we performed this evaluation cumula-
tively using subsetsE′

is by adding records from all
Ejs to Ei where i < j. Interpreting the obtained
values requires careful attention (e.g., changes in
the prior probabilities of gold clusters and their

23

cardinality must be taken into account), overall,
we observed a similar trend for all systems: as ex-
pected, namely a positive correlation between the
confidence value and BCF. Thus, what human an-
notators usually found hard to annotate, automatic
systems also found hard to cluster. (The reverse re-
lation does not hold). Or, pessimistically, the level
of noise in annotation increases as their associated
confidence decreases. (Table 7 in Appendix A.2
details the results.)

Finally, we wanted to identify the frames that
machines found difficult to cluster. To estimate
difficulty we used the differences in BCF under
the following conditions. We repeated the evalu-
ation process 1 ≤ i ≤ n times (where n is the
number of gold labels for a task) for each sys-
tem. In each iteration i, we removed all data
items of a gold category i. We measured and
noted the resulting BCF in the given iteration; we
deduced the score from the system performance
over the entire gold set. To cancel frequency ef-
fects, we normalized the differences by the num-
ber of gold data instances. We removed all records
annotated as COMMERCE SELL from the evalua-
tion set E to form E′. We computed the BCF
of the systems over E′ (E′ ⊂ E), and measured
d = EBCF − E′

BCF. We interpreted a positive
difference as an easy to cluster gold category i,
and a negative difference as a hard to cluster gold
category i.

The heat maps in Table 8 and Table 9 show a
summary of the results for Task A and Task B.2,
respectively. All systems performed similarly for
approximately 30% of the gold classes. Compar-
ing differences across systems and the baselines
of 1CPH and 1CPG reveals (possibly) interest-
ing information. Thus, for example, in Task A,
most systems found COMMERCE SELL hard and
COMMERCE BUY easy to cluster. Interestingly, a
set of six verbs evokes each frame: buy, pur-
chase, buy back, buy up, buy out, buy into for
COMMERCE BUY; and sell, retail, auction, place,
deal, resell for COMMERCE SELL. From these two
sets of verbs, three are polysemous: buy in the for-
mer, and place and deal in the latter. Does the mor-
phology of the verbs (e.g., buy-back, resell) make
one easy to cluster? Alternatively, are other fac-
tors at play, such as the number of verb instances?
How these factors might influence the proposed
naive BCF-difference model is an open question.

8 Concluding Remarks

We have presented the SemEval 2019 task on un-
supervised lexical frame induction. We described
the task in detail, provided a summary of methods
that participants developed, and compared the re-
sults. Although much room for improvement of
the task remains, we consider it a step forward.
It employed a well-motivated typology of lexi-
cal frames to distinguish lexical frame induction
tasks. The evaluation data derived from annota-
tions of a well-known resource, namely a portion
of WSJ sentences, perhaps the most annotated cor-
pus of English. These features provide opportuni-
ties for future investigation, in particular in stud-
ies related to reciprocal relations between syntac-
tic and lexical semantic frame structures.

One reason to promote using unsupervised
methods is their inherent flexibility to embrace un-
known data. These methods have a high margin of
tolerance for noise, and perform better than super-
vised method with insufficient training data. For
unsupervised data, obtaining or generating train-
ing data is easier than doing so with supervised
methods because they simply do not require an-
notation. For example, all participant systems
could collect similar unlabeled training data from
only syntactically annotated corpora to generate
more unlabeled records. Ultimately, such methods
can achieve respectable performance, and produce
clusters which are both more informative than the
unlabeled input and supervised categories (under
certain situations). As shown, unsupervised meth-
ods can even outperform a state-of-the-art Frame
Semantics parser by a wide margin (Section 7),
while a very large gap remains for improvements
in future work.

Acknowledgements

This research was funded by DFG - SFB991. We
thank Timm Lichte, Rainer Oswald, Curt Ander-
son, and Kurt Erbach. We also thank the LDC for
its generous support, and the NVIDIA Corpora-
tion for the Titan Xp GPU used in this work.

References
Eneko Agirre and Aitor Soroa. 2007. Semeval-2007

task 02: Evaluating word sense induction and dis-
crimination systems. In Proceedings of the 4th In-
ternational Workshop on Semantic Evaluation, Se-
mEval ’07, pages 7–12, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

24

Enrique Amigó, Julio Gonzalo, Javier Artiles, and
Felisa Verdejo. 2009. A comparison of extrinsic
clustering evaluation metrics based on formal con-
straints. Inf. Retr., 12(4):461–486.

Saba Anwar, Dmitry Ustalov, Nikolay Arefyev, Si-
mone Paolo Ponzetto, Chris Biemann, and Alexan-
der Panchenko. 2019. Hm2 at semeval 2019 task
2: Unsupervised frame induction using contextu-
alized and uncontextualized word embeddings. In
Proceedings of The 13th International Workshop on
Semantic Evaluation.

Nikolay Arefyev, Boris Sheludko, Adis Davletov,
Dmitry Kharchev, Alex Nevidomsky, , and Alexan-
der Panchenko. 2019. Neural granny at semeval
2019 task 2: A combined approach for better model-
ing of semantic relationships in semantic frame in-
duction. In Proceedings of The 13th International
Workshop on Semantic Evaluation.

Amit Bagga and Breck Baldwin. 1998. Entity-
based cross-document coreferencing using the vec-
tor space model. In Proceedings of the 17th Inter-
national Conference on Computational Linguistics -
Volume 1, COLING ’98, pages 79–85, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186. Association for Compu-
tational Linguistics.

Chris Biemann. 2006. Chinese whispers - an efficient
graph clustering algorithm and its application to nat-
ural language processing problems. In Proceedings
of TextGraphs: the First Workshop on Graph Based
Methods for Natural Language Processing, pages
73–80. Association for Computational Linguistics.

Claire Bonial, Kevin Stowe, and Martha Palmer. 2013.
Renewing and revising semlink. In Proceedings of
the 2nd Workshop on Linked Data in Linguistics
(LDL-2013): Representing and linking lexicons, ter-
minologies and other language data, pages 9 – 17,
Pisa, Italy. Association for Computational Linguis-
tics.

Silvie Cinková, Eva Fučı́ková, Jana Šindlerová, and
Jan Hajič. 2014. EngVallex - English valency lex-
icon. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics, Charles
University.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

C. J. Fillmore. 1976. Frame Semantics and the Na-
ture of Language. Annals of the New York Academy
of Sciences, 280(Origins and Evolution of Language
and Speech):20–32.

Charles J. Fillmore. 1968. The case for case. In Uni-
versals in Linguistic Theory, pages 1–88. Holt Rine-
hart and Winston, New York.

Thomas Gamerschlag, Doris Gerland, Rainer Osswald,
and Wiebke Petersen, editors. 2014. General Intro-
duction. Springer International Publishing, Cham.

Roxana Girju, Preslav Nakov, Vivi Nastase, Stan Sz-
pakowicz, Peter Turney, and Deniz Yuret. 2007.
Semeval-2007 task 04: Classification of semantic
relations between nominals. In Proceedings of the
Fourth International Workshop on Semantic Evalu-
ation (SemEval-2007), pages 13–18. Association for
Computational Linguistics.

Rebecca Green, Bonnie J. Dorr, and Philip Resnik.
2004. Inducing frame semantic verb classes from
WordNet and LDOCE. In Proceedings of the 42Nd
Annual Meeting on Association for Computational
Linguistics, ACL ’04, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr
Sgall, Ondřej Bojar, Silvie Cinková, Eva Fučı́ková,
Marie Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Se-
mecký, Jana Šindlerová, Jan Štěpánek, Josef Toman,
Zdeňka Urešová, and Zdeněk Žabokrtský. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC-2012). European Language Resources Asso-
ciation (ELRA).

Silvana Hartmann, Ilia Kuznetsov, Teresa Martin, and
Iryna Gurevych. 2017. Out-of-domain framenet se-
mantic role labeling. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, volume 1, pages 471–482.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, NAACL-Short
’06, pages 57–60, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

David Jurgens and Ioannis Klapaftis. 2013. Semeval-
2013 task 13: Word sense induction for graded and
non-graded senses. In Second Joint Conference on
Lexical and Computational Semantics (* SEM), Vol-
ume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
volume 2, pages 290–299.

Laura Kallmeyer, Behrang QasemiZadeh, and Jackie
Chi Kit Cheung. 2018. Coarse lexical frame acquisi-
tion at the syntax–semantics interface using a latent-
variable pcfg model. In Proceedings of the Seventh

25

Joint Conference on Lexical and Computational Se-
mantics, pages 130–141, New Orleans, Louisiana.
Association for Computational Linguistics.

Karin Kipper, Hoa Trang Dang, and Martha Palmer.
2000. Class-based construction of a verb lexicon.
In Proceedings of the Seventeenth National Confer-
ence on Artificial Intelligence and Twelfth Confer-
ence on Innovative Applications of Artificial Intelli-
gence, pages 691–696. AAAI Press.

Alessandro Lenci and Giulia Benotto. 2012. Identify-
ing hypernyms in distributional semantic spaces. In
SemEval 2012, pages 75–79. Association for Com-
putational Linguistics.

Suresh Manandhar, Ioannis Klapaftis, Dmitriy Dligach,
and Sameer Pradhan. 2010. Semeval-2010 task 14:
Word sense induction & disambiguation. In Pro-
ceedings of the 5th International Workshop on Se-
mantic Evaluation, pages 63–68, Uppsala, Sweden.
Association for Computational Linguistics.

Jiřı́ Materna. 2012. Lda-frames: An unsupervised ap-
proach togenerating semantic frames. In Compu-
tational Linguistics and Intelligent Text Processing,
pages 376–387, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Diana McCarthy and Roberto Navigli. 2007. Semeval-
2007 task 10: English lexical substitution task. In
Proceedings of the Fourth International Workshop
on Semantic Evaluation (SemEval-2007), pages 48–
53. Association for Computational Linguistics.

George A. Miller. 1995. WordNet: A lexical database
for English. Commun. ACM, 38(11):39–41.

Ashutosh Modi, Ivan Titov, and Alexandre Klementiev.
2012. Unsupervised induction of frame-semantic
representations. In Proceedings of the NAACL-HLT
Workshop on the Induction of Linguistic Structure,
pages 1–7, Montréal, Canada. Association for Com-
putational Linguistics.

Roberto Navigli and Daniele Vannella. 2013. Semeval-
2013 task 11: Word sense induction and disam-
biguation within an end-user application. In Second
Joint Conference on Lexical and Computational Se-
mantics (*SEM), Volume 2: Proceedings of the Sev-
enth International Workshop on Semantic Evalua-
tion (SemEval 2013), pages 193–201, Atlanta, Geor-
gia, USA. Association for Computational Linguis-
tics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger,
Jan Hajic, Angelina Ivanova, and Zdenka Uresova.
2016. Towards comparability of linguistic graph
banks for semantic parsing. In LREC 2016, Paris,
France. ELRA.

Martha Palmer, Claire Bonial, and Jena Hwang. 2017.
Verbnet: Verbnet: Capturing english verb behavior,
meaning, and usage. In The Oxford Handbook of
Cognitive Science. Oxford Press.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus
of semantic roles. Comput. Linguist., 31(1):71–106.

Marco Pennacchiotti, Diego De Cao, Roberto Basili,
Danilo Croce, and Michael Roth. 2008. Automatic
induction of framenet lexical units. In Proceedings
of the Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP ’08, pages 457–
465, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Behrang Q. Zadeh and Miriam R. L. Petruck. 2019.
Guidelines for the semantic frame annotation sys-
tem. corpus annotation guidelines TR.9.2018,
SFB991 - ICSI.

Drew Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin Van
Durme. 2015. Semantic proto-roles. Transactions
of the Association for Computational Linguistics,
3:475–488.

Eugénio Ribeiro, Vânia Mendonça, Ricardo Ribeiro,
David Martins de Matos, Alberto Sardinha,
Ana Lúcia Santos, and Luı́sa Coheur. 2019.
L2F/INESC-ID at SemEval-2019 Task 2: Un-
supervised Lexical Semantic Frame Induction
using Contextualized Word Representations. In
Proceedings of The 13th International Workshop on
Semantic Evaluation.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L.
Petruck, Christopher R. Johnson, Collin F. Baker,
and Jan Scheffczyk. 2016. FrameNet II: Extended
Theory and Practice. ICSI, Berkeley.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), Paris, France. European Lan-
guage Resources Association (ELRA).

M. Steinbach, G. Karypis, and V. Kumar. 2000. A com-
parison of document clustering techniques. In KDD
Workshop on Text Mining.

Swabha Swayamdipta, Sam Thomson, Kenton Lee,
Luke Zettlemoyer, Chris Dyer, and Noah A. Smith.
2018. Syntactic scaffolds for semantic structures.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3772–3782, Brussels, Belgium. Association
for Computational Linguistics.

Dmitry Ustalov, Alexander Panchenko, Andrey Kutu-
zov, Chris Biemann, and Simone Paolo Ponzetto.
2018. Unsupervised semantic frame induction us-
ing triclustering. In ACL, pages 55–62, Melbourne,
Australia. ACL.

26

A Appendices

A.1 Appendix I: Annotation Process
A.1.1 Time and Moves per Annotation Step
Table 4 shows the amount of effort to develop
the SemEval dataset in terms of time and moves
that the annotation system recorded. (See Sec-
tions 4.3, 4.4).

Annotator Activity Time Moves
Reading and Comprehension 78 4,795
Choosing a Frame 177 9,737
Annotating Arguments 81 19,510
Rating, Revising, Commenting 115 25,793
Multi-word Unit Annotation 89 8,949
Total 539 68,784

Table 4: Total hours and number of moves for each
annotation step for the 4,620 record dataset.

A.1.2 Plot of frequency of annotated frames
Figure 3 plots the frequency distribution of the an-
notated frames in the gold data (SemEval).

641 Commerce buy

32
1
Cha

ng
e

po
sit

ion
on

a
sc

ale

28
0
Acti

vit
y sta

rt

64
1

C
om

m
er

ce
bu

y

91
O

pi
ni

on

65
P

ro
ce

ss
st

ar
t

43
P

ro
hi

bi
tin

g
or

lic
en

si
ng

32
M

an
uf

ac
tu

rin
g

25
Po

ss
es

si
on

19
In

te
nt

io
na

lly
cr

ea
te

14
Fi

lli
ng

13
C

om
in

g
to

be
lie

ve
9

P
ur

po
se

6
A

w
ar

en
es

s
5

B
ei

ng
in

co
nt

ro
l

4
Im

po
si

ng
ob

lig
at

io
n

3
A

im
in

g

3
C

om
m

un
ic

at
e

ca
te

go
riz

at
io

n

2
S

el
f

m
ot

io
n

2
A

ffi
rm

or
de

ny

Figure 3: Frequency Distribution of Annotated
Frames

A.1.3 Some Frames and their Averaged
Confidence

Table 5 lists FN frames annotated with the high-
est and lowest confidence. Table 4 details hours
spent to derive the evaluation data set. Section 4.3
discusses both tables. The full list of annotations

in human readable form is available to browse
and comment on at http://corpora.phil.
hhu.de/fi/frames.html.

A.2 Appendix II: Statistical Summary of
Evaluation and System Submissions

A.2.1 Unabridged Results Table
Table 6 extends Table 2. Section 5 defines the ab-
breviations. A horizontal line separates participat-
ing systems and the baselines.

A.2.2 Confidence Measures and BCF
Performance

Table 7 shows system BCF scores for confidence.
The table shows changes in the BCF of systems
when altering the evaluation set based on the as-
signed confidence for an annotated record. (See
Section 7 for an explanation).

Frame Type #VF #Rec Conf
DECIDING 1 13 4.31
AGREE OR REFUSE TO ACT 1 15 4.13
TAKE PLACE OF 1 11 4
BEING EMPLOYED 1 6 4
STATEMENT 8 149 3.97
TAKING SIDES 3 16 3.88
ACTIVITY STOP 4 16 3.88
COMMERCE SELL 6 168 3.82
BRINGING 1 5 3.8
GIVE IMPRESSION 4 39 3.79

(a) Frames with Highest Average Confidence

Frame Type #VF #Rec Conf
BEING IN CONTROL 2 5 1.6
COMING TO BE 2 5 1.8
OPERATING A SYSTEM 2 10 1.8
AWARENESS 1 6 1.83
REMOVING 3 8 1.88
INTENTIONALLY CREATE 6 19 1.95
CERTAINTY 1 68 2.03
OPINION 2 91 2.1
THWARTING 2 22 2.32
FIRST RANK 1 21 2.38

(b) Frames with Lowest Average Confidence

Table 5: Frame types with the highest (5a) and
the lowest (5b) confidence (Conf) by number
of records (#Rec) with double annotator agree-
ment. #VF reports the number of distinct verb
forms that evoke a frame.

27

System #C PU IPU PIF BCP BCR BCF
Arefyev et al. 272 78.68 77.62 78.15 70.86 70.54 70.7
Anwar et al. 150 72.4 81.49 76.68 62.17 75.27 68.1
Ribeiro et al. 222 72.84 77.84 75.25 61.25 69.96 65.32
Kallmeyer et al. 218 73.77 72.86 73.31 64.62 65.48 65.05
1CPI 4620 100 3.23 6.25 100 3.23 6.25
AIN1 1 13.87 100 24.37 3.78 100 7.28
1CPH 273 82.16 66.95 73.78 75.98 57.33 65.35
RANDOM 149 15.11 5.78 8.36 6.76 3.85 4.9

Task A

System #C PU IPU PIF BCP BCR BCF
Arefyev et al. 776 72.47 72.16 72.31 62.73 63.51 63.12
Anwar et al. 338 55.74 67.79 61.18 43.22 57.9 49.49
Ribeiro et al. 518 52.29 57.56 54.8 39.43 46.69 42.75
Kallmeyer et al. 1023 72.24 49.12 58.48 62.71 37.51 46.94
1CPI 9510 100 4.58 8.77 100 4.58 8.77
AIN1 1 6.55 100 12.3 1.56 100 3.08
1CPHG 1203 78.46 45.99 57.99 71.11 33.77 45.79
RANDOM 436 11.34 6.04 7.88 6.03 4.81 5.35

Task B.1

System #C PU IPU PIF BCP BCR BCF
Arefyev et al. 14 73.94 81.4 77.49 56.25 74.46 64.09
Anwar et al. 2 50.43 80.47 62.00 29.58 73.00 42.1
Ribeiro et al. 7 58.25 71.4 64.16 36.88 59.91 45.65
Kallmeyer et al. 37 61.44 51.53 56.05 40.89 37.33 39.03
1CPG 37 61.44 51.53 56.05 40.89 37.33 39.03
1CPI 9466 100 0.34 0.67 100 0.34 0.67
AIN1 1 34.34 100 51.13 21.66 100 35.6
RANDOM 32 34.65 4.75 8.36 21.89 3.45 5.96

Task B.2

Table 6: Complete System Results and Baselines

28

Cnf #I Arefyev Anwar Ribeiro
1 4620 70.7 68.10 65.32
2 4334 71.87 69.28 66.57
3 3657 74.64 72.22 70.17
4 2542 76.46 73.82 73.43
5 84 86.14 84.65 85.13

Task A

Cnf #I Arefyev Anwar Ribeiro
1 9,510 63.12 49.52 42.75
2 9017 64.20 50.44 43.61
3 7,606 67.18 53.40 46.42
4 5,356 68.70 55.99 49.20
5 169 85.16 81.85 65.60

Task B.1

Cnf #I Arefyev Anwar Ribeiro
1 9,466 64.09 42.12 45.65
2 8,911 64.98 42.32 46.27
3 7,528 66.47 42.67 47.52
4 5,292 65.71 40.67 46.95
5 167 77.19 55.18 56.58

Task B.2

Cumulative

Cnf #I Arefyev Anwar Ribeiro
1 286 73.79 70.57 67.70
2 677 66.45 63.80 60.46
3 1,115 76.71 75.98 70.01
4 2,458 76.65 74.05 73.45
5 84 86.14 84.65 85.13

Task A
Cnf #I Arefyev Anwar Ribeiro
1 493 68.57 55.37 51.84
2 1,411 59.86 49.08 42.16
3 2,250 70.67 57.97 47.60
4 5,187 68.70 56.01 49.24
5 169 85.16 81.85 65.60

Task B.1
Cnf #I Arefyev Anwar Ribeiro
1 553 52.69 39.82 38.21
2 1,385 58.36 40.99 41.55
3 2,236 69.01 48.07 49.4
4 5,125 65.44 40.37 46.72
5 167 77.19 55.18 56.58

Task B.2

Stratified

Table 7: Changes in BCF score of systems relative to changes in evaluation records based on assigned
confidence measure.

29

A.3 Examining Clusters by Removing One
Gold Cluster at a Time

#R
m

vd

Frame

A
re

fy
ev

A
nw

ar
R

ib
ei

ro
K

al
lm

ey
er

1C
P

H

168 Commerce sell
6 Awareness
89 Assessing
54 Seeking to achieve
30 Activity ongoing
19 Intention. creat.
2 Storing
3 Cause ... progress
27 Process continue
14 Filling
121 Causation
59 Hiring
89 Choosing
6 Being employed
7 Criminal investig.
65 Process start
4 Notifi... charges
28 Assistance
21 First rank
20 Giving
2 Sentencing
16 Activity stop
641 Commerce buy
42 Have associated
13 Request
149 Statement
67 Avoiding
2 Performer... roles
2 Attack
92 Cause change...
9 Purpose
14 Collaboration
13 Coming to believe

Table 8: Task A – Part of a heat map from results
(Section 7), with cases that exhibit a range of dif-
ference values. Red denotes a positive and blue a
negative difference; white means no change (zero
difference). Differences (normalized by cluster
size) are in domain 0.01 to −0.01.

#R
m

vd

Frame

A
re

fy
ev

A
nw

ar
R

ib
ei

ro
K

al
lm

ey
er

1C
P

H

2 Attending
38 Getting
16 Activity stop
63 Becoming a member
641 Commerce buy
6 Retaining
7 Criminal investigation
67 Avoiding
46 Scrutiny
280 Activity start
5 Bringing
2 Change event time
89 Choosing
8 Removing
13 Coming to believe
14 Inspecting
3 Cause to end
3 Communicate categorization
13 Deciding
2 Attack
2 Creating
19 Intentionally act
34 Cause to amalgamate
19 Intentionally create
5 Usefulness
16 Taking sides
4 Notification of charges
3 Aiming
121 Causation
3 Process end
2 Transfer
5 Coming to be
10 Cotheme
7 Hearsay
16 Transition to state
92 Cause change of position on a scale
7 Inclusion
7 Simultaneity
4 Imposing obligation
3 Cause change
3 Distributed position
39 Give impression
4 Supporting

Table 9: Heat map that visualizes Task B.2 data

30

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 31–38
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Neural GRANNy at SemEval-2019 Task 2: A combined approach for
better modeling of semantic relationships in semantic frame induction

Nikolay Arefyev1,2, Boris Sheludko1,2, Adis Davletov1,2, Dmitry Kharchev1,2,
Alex Nevidomsky1, and Alexander Panchenko3,4

1Samsung R&D Institute Russia, Moscow, Russia
2Lomonosov Moscow State University, Moscow, Russia

3Skolkovo Institute of Science and Technology, Moscow, Russia
4Language Technology Group, University of Hamburg, Hamburg, Germany

Abstract
We describe our solutions for semantic frame
and role induction subtasks of SemEval 2019
Task 2. Our approaches got the highest scores,
and the solution for the frame induction prob-
lem officially took the first place. The main
contributions of this paper are related to the se-
mantic frame induction problem. We propose
a combined approach that employs two differ-
ent types of vector representations: dense rep-
resentations from hidden layers of a masked
language model, and sparse representations
based on substitutes for the target word in the
context. The first one better groups synonyms,
the second one is better at disambiguating
homonyms. Extending the context to include
nearby sentences improves the results in both
cases. New Hearst-like patterns for verbs are
introduced that prove to be effective for frame
induction. Finally, we propose an approach to
selecting the number of clusters in agglomera-
tive clustering.

1 Introduction

Semeval-2019 Task 2 consisted of three subtasks,
this paper presents solutions to all three which
were all performing better than other submitted
approaches. The first solution officially took the
first place in the competition, the other two used
tuning on the development set provided by the or-
ganizers, which was then interpreted as using ad-
ditional corpora.

Semantic Frame Induction (Subtask A) is the
task of grouping target word occurrences in a
text corpus according to their frame (meaning
and semantic arguments structure). Target words
are usually verbs, nouns, and adjectives (these
have argument structure; however in the shared
task dataset only verbs were present). For in-
stance, the verbs rise, fall and climb in the sen-
tences The dollar is rising, which makes Rus-
sian economy unstable and The dollar fell 1% in

September after climbing 2% in August should be
clustered together, while the verb climb in sen-
tences like People climb mountains should be clus-
tered separately. For the sake of brevity, occur-
rences of different words sharing the same frame
will be called synonyms, and occurrences of the
same word belonging to different frames will be
called homonyms. This may violate the traditional
meaning of these terms. For instance, fall and
rise are not considered synonyms in the classi-
cal sense. Semantic Role Induction refers to find-
ing realizations of semantic arguments in text and
relating them to corresponding semantic frame
slots. Generic role induction (subtask B.2) re-
quires a small number of frame-independent roles
like Agent, Patient, Theme, etc. Frame-specific
role induction (subtask B.1) allows labeling ar-
guments of each frame independently from other
frames. For instance, Microsoft in Microsoft
bought Github and Google in Google opened new
offices should be labeled as the same role in B.2
but may be labeled differently in B.1. For further
details please refer to QasemiZadeh et al. (2019).

In this paper, we focused mainly on the Frame
Induction subtask. The main contributions for this
subtask are the following. A combined approach
to semantic frame induction is introduced, which
clusters dense representations obtained from hid-
den layers of a masked LM first and sparse bag-of-
words representations of possible substitutes for
a word in context afterward. This approach re-
sulted in better clustering of both synonyms and
homonyms1. New Hearst-like patterns designed
specifically for verbs were used and they proved to
be beneficial for Semantic Frame Induction. Also,
a simple but effective semi-supervised approach to
selecting the number of clusters for agglomerative
clustering was proposed. Finally, we proposed ex-

1GRANNy in the team name stands for General Relation
Acquisition with Neural Networks

31

tending context with neighboring sentences which
have shown consistent improvements for both of
our representations. For solving subtask B.2 we
used a semi-supervised approach of training lo-
gistic regression over features that were partly de-
signed and partly learned in an unsupervised fash-
ion. To ensure the best performance on verbs that
were not present in training data (the majority of
examples in the test) we used cross-validation with
a lexical split, to select optimal features and hyper-
parameters. For solving subtask B.1 we trivially
reused labels from B.2

2 Related Work

This section describes previous work which our
approach is based on. Word Sense Induc-
tion (WSI) is the task of clustering occurrences
of an ambiguous word according to their mean-
ing which is similar to Frame Induction. One
of the major differences from Frame Induction is
that WSI doesn’t require grouping together dif-
ferent words with similar meanings, however, we
adopt some ideas from WSI in this work. In-
stead of graph or vector representation of word co-
occurrence information traditionally used to solve
WSI task, Baskaya et al. (2013) proposed ex-
ploiting n-gram language model (LM) to gener-
ate possible substitutes for an ambiguous word
in a particular context. Their approach was one
of the best in SemEval-2013 WSI shared task
(Jurgens and Klapaftis, 2013). Struyanskiy and
Arefyev (2018) proposed pretraining SOTA neu-
ral machine translation model built from Trans-
former blocks (Vaswani et al., 2017) to restore
target words hidden from its input (replaced with
a special token CENTERWORD). After pretrain-
ing, they exploited both predicted output em-
beddings to represent ambiguous words and at-
tention weights to better weigh relevant context
words in word2vec weighted average represen-
tation. A combination of these representations
achieved SOTA results on one of the datasets
from RUSSE’2018 Word Sense Induction for the
Russian language shared task (Panchenko et al.,
2018). Amrami and Goldberg (2018) develop
ideas from Baskaya et al. (2013) exploiting neu-
ral bidirectional LM ELMO (Peters et al., 2018)
instead of n-gram LM for generating substitutes.
To improve results further they propose using dy-
namic symmetric patterns “T and ”, “ and T”
(here “T” stands for the target word and “ ” for

the position at which we collect LM predictions).
For instance, to represent the word orange in He
wears an orange shirt instead of predicting what
comes after wears in He wears they predict what
comes after and in He wears orange and (simi-
larly, for backward LM they predict what comes
before and in and orange shirt). This provides
more information to the LM because we don’t
hide the ambiguous word and forces it to produce
its co-hyponyms instead of all possible continu-
ations given a one-sided context. Other impor-
tant contributions include lemmatizing substitutes
to remove grammatical bias from representations
(which was especially important for verbs) and us-
ing IDF weights to penalize frequent substitutes,
which are probably worse for discriminating be-
tween senses. They achieve SOTA results on the
SemEval-2013 WSI dataset.

Devlin et al. (2018) proposed BERT (Bidi-
rectional Encoder Representations from Trans-
formers). Like the model from Struyanskiy and
Arefyev (2018), BERT is a deep NN built from
Transformer blocks and pretrained on the task of
restoring words hidden from its input (replaced
with a special token [MASK], hence they named
it masked LM). However they used much deeper
models, pretrained them on much more data and
predicted hidden words at each timestep rather
than generating them as an output sequence. Also
additional next sentence prediction task was used
to pretrain the model for sentence pairs classifi-
cation (like paraphrase detection and NLI). BERT
has shown better results than previous SOTA mod-
els on a wide spectrum of natural language pro-
cessing tasks.

3 Semantic Frame Induction

In this section, we describe our approaches to
building vector representations of an occurrence
of the target word (which is always a verb in
the SemEval-2019 Frame Induction task dataset).
The first approach exploits dense vector represen-
tations of the target word in a context obtained
from hidden layers of BERT model. Another ap-
proach builds sparse TF-IDF BOW vectors from
substitutes generated for the target word by BERT
masked LM. We found that each model has its own
downsides when used with non-trainable distance
functions like cosine and Euclidean, and with tra-
ditional clustering algorithms like agglomerative
clustering, DBScan, and affinity propagation. The

32

first approach didn’t discriminate different senses
of the same verb, the second one had problems
with clustering together similar senses of different
verbs. In preliminary experiments, we tried fixing
the first problem by learning a distance function
instead of using a fixed one, but this didn’t help,
presumably due to a very small amount of labeled
data provided and restrictions on using additional
labeled data. So our best performing algorithm is
two-stage: it groups examples to a relatively small
number of large clusters using the first representa-
tion (merging synonyms together while not taking
into consideration homonyms) and then splits each
of them into smaller clusters using the second rep-
resentation (disambiguating homonyms). Finally,
we describe our approach to clustering these vec-
tor representations and propose a technique for se-
lecting the appropriate number of clusters.

3.1 BERT Hidden Representations

In the preliminary experiments, we compared
dense representations from different layers of two
BERT models pretrained on English texts: bert-
base-uncased and bert-large-uncased with 3x more
weights. While being significantly slower, the
large model didn’t show better clustering results
for the development set, so we stuck to the base
model. Presumably, fine-tuning the large model
to the final task could reveal its superiority, but
this would require much more labeled data that
was provided. Interestingly, a weighted average
of word2vec embeddings for context words pro-
posed for WSI in Arefyev et al. (2018) showed
similar results, which also supports the hypothesis
that distance functions like cosine or Euclidean are
not appropriate for BERT hidden representations.
BERT-base consists of 12 Transformer blocks with
12 attention heads each, hidden state dimension-
ality is 768. It was pre-trained on lowercased
texts split into subword units. Hyperparameters
were selected on the development set, the best re-
sults were achieved using outputs of the layer 6 at
timestep when the first subword of the verb was
fed in. Also, better results were achieved when in-
put texts were lemmatized. This can be explained
by the large grammatical bias of LMs also no-
ticed by Amrami and Goldberg (2018): it is much
easier to correctly predict grammatical attributes
like number, gender, tense from contexts, so it is
more beneficial to assign higher probabilities to all
verbs with correct tense than to all verbs with cor-

rect meaning when losses like cross-entropy are
used, which results in large distance between oc-
currences of the same verb in the same meaning,
but in different tenses.

3.2 Substitutes Representations

We adopt ideas from Amrami and Goldberg
(2018) for our second approach to Frame Induc-
tion, with several important differences. First, we
propose new patterns which are more suitable for
verbs. Secondly, we use BERT, which proved to
be better than ELMO for generating substitutes
in our series of preliminary experiments. This is
likely due to the fact that BERT takes into ac-
count the whole context in all of its layers, un-
like bidirectional LM in ELMO, which consists of
two independently trained language models, one
using only right context, and another only left con-
text. Lastly, we do hard clustering instead of soft
clustering required for SemEval-2013 WSI, hence
we do not sample from distributions predicted by
LM, but instead, take the topmost probable substi-
tutes. We found this approach works better than
one doing soft clustering and then selecting the
most probable cluster for each example.

To generate substitutes, a masked LM based on
the bert-base-uncased model was utilized. It is
likely that the large model could generate better
substitutes, but we left it for future work. Non-
lemmatized lowercased text was passed through
all the layers of the model. We didn’t add bi-
ases of the last linear layer to obtain less frequent
but more contextually suitable subwords. We took
K most probable substitutes to represent each ex-
ample (K=40 was selected on the development
set), lemmatized them to get rid of grammatical
bias, and then built TF-IDF bag-of-words vec-
tors. To improve results we employ symmetric
patterns. Symmetric patterns were first proposed
in Hearst (1992) and then used in many cases, in-
cluding Widdows and Dorow (2002), Panchenko
et al. (2012), Schwartz et al. (2015), to extract
lexical relations like hyponymy, hypernymy, co-
hyponymy, etc. from texts, and to augment lex-
ical resources. However, we were not aware of
any Hearst-like patterns designed specifically for
verbs. Along with “T and ” pattern and trivial “T”
and “ ” patterns we proposed and experimented
with “T and then ”, “T and will ” and “T and then
will ” patterns. We suppose that the meaning of a
verb is better described not by its hypernyms or co-

33

hyponyms (which are traditionally extracted for
nouns using patterns like “ such as T” or “T and
”) but rather by preceding and following events

which are better extracted by the proposed pat-
terns. “T and then ” pattern has shown the best
results both for the development and the test sets.
For instance, to generate substitutes for the verb
build in They are building phones we pass They
are building and then [MASK] phones and collect
predictions at the masked timestep. We found that
among others, substitutes like export, distribute,
ship are generated for Manufacturing frame and
establish, open, close for Building frame of the
verb build allowing to discriminate between them.
See Appendix A for examples.

3.3 Clustering
We experimented with K-means, DBScan, Affin-
ity Propagation and Agglomerative clustering al-
gorithms implemented in the scikit-learn (Pe-
dregosa et al., 2011) and found agglomerative
clustering to achieve the best results. To select
hyperparameters of Agglomerative clustering for
dense representations (number of clusters and dis-
tance functions between points and clusters) we
used a simple yet effective semi-supervised ap-
proach: merge the development and test sets (la-
beled and unlabeled respectively) and perform
grid search for hyperparameters that provide clus-
tering with optimal value of the target metric
(BCubed-f1 in our case) on the labeled subset. Al-
most always optimal results were obtained using
cosine distance for points and average linkage for
clusters (average distance between elements).

3.4 Combined Approach
Our best performing submission was made of a
combination of techniques described above. At
phase 1, we clustered dense representations us-
ing proposed semi-supervised agglomerative clus-
tering. At phase 2, we split each cluster sep-
arately using sparse representations and conven-
tional agglomerative clustering with cosine dis-
tance and average linkage (selected on the devel-
opment set). We didn’t use the semi-supervised
tuning again because at that stage most clusters
didn’t contain labeled examples. During the blind
evaluation period, we simply split each cluster into
two (this method is denoted as Combined below).
In the post-evaluation period, we experimented
with more sophisticated approaches. Finally, our
best results (denoted as Combined2) were ob-

tained when the number of clusters at phase 2 was
selected using silhouette score and small clusters
(with less than 20 examples) or clusters with dif-
ferent target verbs were left intact. Also, during
the post-evaluation period, we tried extending the
context with nearby sentences (sentences with ad-
jacent IDs in the Penn Treebank corpus). This al-
lowed us to incorporate more information about
the preceding and following events, which resulted
in improved performance of both representations.
In Combined2 we passed a large context of max-
imum 7 sentences to the left and to the right for
dense, and smaller context of 2 sentences on both
sides for sparse representations (selected on the
development set).

3.5 Dataset and Experiments

Due to limitations imposed by the task, we re-
stricted ourselves to only using labeled data pro-
vided by the organizers. For the majority of
our experiments, we used the development set
that consisted of 600 examples of 35 verbs clus-
tered into 41 frames. There are many examples
of synonymy in this dataset but not so many of
homonymy. Almost all ambiguous verbs have
less than 5 examples for all frames except their
most frequent frame, hence we used only verbs
join and believe (54/9 and 12/8 examples of their
first/second most frequent frame respectively) to
select hyperparameters likely resulting in a subop-
timal performance on the test.

For internal evaluation of different represen-
tations and hyperparameters selection, we used
the following procedure: the development set or
its subset was clustered many times using ag-
glomerative clustering with all feasible hyperpa-
rameter values, and maximum BCubed-f1 value
(maxB3f1) was taken as a score for the represen-
tation. This allowed us to compare clusterability
of different representations while avoiding prob-
lems of selecting the number of clusters and other
hyperparameters. Of course, there is a possibil-
ity that other clustering algorithms might perform
better with different representations, however, we
didn’t see improvements from using other clus-
tering algorithms and stick to agglomerative clus-
tering. Table 1 shows maxB3f1 for the whole
development set and for all examples of several
homonyms. Evidently, dense representations are
significantly better when clustering the whole de-
velopment set, while sparse representations with

34

dev join@dev build@test follow@test start@test

sparse 0.91 0.98 0.83 0.96 0.75
dense 0.94 0.92 0.70 0.80 0.72

Table 1: Sparse vs. dense representations, maxB3f1

Figure 1: Recall for synonyms and homonyms w.r.t.
number of clusters for dense and sparse representations

an appropriate pattern are better for disambiguat-
ing homonyms.

We denote the proportion of synonyms shar-
ing common cluster as recall for synonyms and
the proportion of homonyms put in separate clus-
ters as recall for homonyms. Figure 1 shows
both metrics depending on the number of clus-
ters for agglomerative clustering of the whole de-
velopment set. It is evident that until a relatively
large number of clusters (30) almost all synonyms
are correctly clustered together when using dense
representations, yet homonyms are clustered to-
gether as well, which gives almost 1.0 recall for
synonyms and nearly 0.0 recall for homonyms.
MaxB3f1 of approximately 0.94 is achieved at
around 25-28 clusters (depending on the context
size) where synonyms are still clustered almost
perfectly. At the same time, sparse representations
split homonyms into different clusters even at very
small numbers of clusters, but simultaneously split
synonyms also, achieving lower maxB3f1 of 0.91
in a wider range of 25-40 clusters. To solve this
problem, our final solution clusters dense repre-
sentations first and then splits large clusters con-
taining examples of the same verb (to prevent
splitting synonyms) into a small number of clus-
ters to improve recall for homonyms.

Table 2 compares results on the test set. Verb
baseline assigns the first token of the verb to each
example as its cluster id. It overestimates the
real number of clusters in the test (149), giving
the highest precision but very low recall because

Method #cl PuIpuF1 B3P B3R B3F1

Verb baseline 227 73.94 74.61 58.95 65.86

Dense ctx0+ss.agglo 126 76.24 60.5 77.61 68
Combined 239 77.03 65.23 73.82 69.26

@Combined+sep. sell 240 78.86 70.61 73.82 72.18

?Dense ctx7+ss.agglo 194 77.52 66.68 72.67 69.55
?Combined2 272 78.15 70.86 70.54 70.70

?Dense ctx7+maxsil 126 75.77 60.23 76.34 67.33

Table 2: Subtask-A, results on test. ? for post-eval re-
sults, @ for manual postprocessing (out of competition)

Pattern ctx PuIpuF1 B3P B3R B3F1 maxB3F1

T and then 2 78.15 70.86 70.54 70.70 71.34
T and 2 77.92 70.43 70.16 70.30 71.16

2 77.80 70.37 69.85 70.11 71.01
T 2 77.95 68.50 71.97 70.19 71.15

T and then 0 77.79 70.56 69.67 70.11 71.06
T and then 1 77.93 70.87 69.89 70.38 71.38
T and then 2 78.15 70.86 70.54 70.70 71.34
T and then 3 78.14 70.52 70.66 70.59 71.29
T and then 5 77.72 70.29 70.10 70.19 71.13
T and then 7 77.94 70.95 69.89 70.41 71.24

Table 3: Subtask-A, effect of pattern and context size

synonyms are never clustered together. Dense
representation with semi-supervised agglomera-
tive clustering slightly underestimates the num-
ber of clusters in the test set (similarly to the de-
velopment set) resulting in the highest recall due
to merged synonyms. The combined approach
splits some clusters hurting BCubed-recall a bit
but increasing BCubed-precision, even more, re-
sulting in better BCubed-f1. The last row shows
that selecting the number of clusters which maxi-
mizes silhouette score (unsupervised approach) in-
stead of BCubed-f1 of the labeled subset results
in much worse results, hence our semi-supervised
approach is beneficial. Finally, we noticed that the
largest cluster had all the examples of both sell and
buy, which were among the most frequent verbs
in the test set. In FrameNet, they are assigned to
Commerce sell and Commerce buy frames respec-
tively which is a questionable solution since these
are just different ways to put into words the same
type of event with the same participants (some-
thing like commercial-transfer-of-property). We
simply moved all examples of the verb sell into
a separate cluster which gave significant improve-
ment in BCubed-f1. However, this result is out
of competition due to the manual postprocessing.
Yet, our best result without manual postprocessing
is still ranked first.

In Table 3 we report the results of clustering
the test set depending on the pattern and the con-

35

text size used to build sparse representations at
phase 2. In addition to standard metrics, we report
maxB3F1 which excludes the effect of a subopti-
mal number of clusters selected on the compari-
son results. Our proposed pattern seems to give
small but consistent improvement as well as con-
text extension. The context of 1-3 sentences on
both sides is a reasonable choice for sparse repre-
sentations.

4 Semantic Role Induction

After looking at examples from the development
set we decided that the subtask B.2 (generic se-
mantic role induction) could be solved much more
effectively using a classifier than any kind of clus-
tering because generic roles look more like a high-
level linguistic abstraction than something natu-
rally occurring in texts. We used the development
set to trained logistic regression on top of repre-
sentations extracted from BERT and several hand-
crafted features. BERT was pretrained in unsuper-
vised fashion on large corpora and this results in
much better generalization of our semi-supervised
approach compared to a logistic regression trained
only on hand-crafted features (see ablation anal-
ysis below). To select hyperparameters we used
cross-validation with lexical split (i.e. there were
no common verbs in train and test subsets for each
fold) to ensure the best performance on new verbs
not seen during training. This approach was re-
jected as using an additional labeled corpora to
train a supervised component. However we hardly
see how the development set provided by the or-
ganizers can be considered as additional.

4.1 Model Description and Results

We trained a logistic regression classifier for the
14 most frequent semantic roles in the develop-
ment set. Following recommendations of Devlin
et al. (2018) we used outputs from the last four
layers of BERT as features. These outputs were
taken for two timesteps at which the target argu-
ment and its corresponding verb were fed. To be
exact, we found the first subword of the verb (for
instance, buy for buy out) and the last subword
for the argument (Union for European Union) per-
forming best. Additionally we used several hand-
designed features. Table 4 shows our submis-
sion results. Also, we display results when us-
ing only BERT and only hand-designed features
suggesting that both of them contribute positively

Method #cl PuIpuF1 B3P B3R B3F1

ClstPerGrType 37 56.05 40.89 37.33 39.03
Logistic regression 14 77.47 56.21 74.41 64.04

w/o designed feats. 14 76.93 54.71 73.55 62.75
w/o BERT feats. 13 65.08 41.90 55.01 47.57

Table 4: Subtask-B.2, results on test

to the results but BERT features are much more
important. For additional details regarding hand-
designed features and ablation analysis please re-
fer to Appendix B. We didn’t experiment with sub-
task B.1 due to the lack of time, instead we used
labels predicted for subtask B.2 which resulted in
64.43 / 73.11 BCubed-F1 / PuIpu-F1 compared to
45.79 / 57.99 of the best performing baseline.

5 Conclusions

We show how neural language models can be ef-
fectively used for unsupervised inference of se-
mantic structures. To improve the result of seman-
tic frame induction we used a combined approach
that utilizes two different vector representations,
and adjusted our clustering algorithm accordingly.
The design stemmed from our analysis of prob-
lems in use of neural language models for the pur-
pose of semantic frame induction; the experiments
showed that issues may be strongly related to how
the models treat such linguistic phenomena as syn-
onymy and homonymy. Designing a system that
addresses this problem directly allowed us to im-
prove the result significantly. We think that our
result could be additionally improved by finding
better parameters and/or model combinations. We
also think that further research in this direction
could lead to neural language models that explic-
itly address various linguistic phenomena by de-
sign, for even better inference of semantic proper-
ties.

Acknowledgments

We thank Dmitry Lipin and Dmitry Ustalov for
their invaluable help, the orginizers and LDC for
the inspiring task and the data, all the reviewers
for the useful feedback. Alexander Panchenko
has been supported by the Deutsche Forschungs-
gemeinschaft (DFG) within the project “Argumen-
tation in Comparative Question Answering (AC-
QuA)” (grant BI 1544/7-1 and HA 5851/2-1) that
is part of the Priority Program “Robust Argumen-
tation Machines (RATIO)” (SPP-1999) and the
project “JOIN-T”.

36

References
Asaf Amrami and Yoav Goldberg. 2018. Word sense

induction with neural bilm and symmetric patterns.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4860–4867. Association for Computational Linguis-
tics.

Nikolay Arefyev, Pavel Ermolaev, and Alexander
Panchenko. 2018. How much does a word weigh?
Weighting word embeddings for word sense induc-
tion. In Computational Linguistics and Intellectual
Technologies. Papers from the Annual International
Conference Dialogue (2018), pages 68–84. RSUH.

Osman Baskaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. Ai-ku: Using substitute vectors and
co-occurrence modeling for word sense induction
and disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 300–306. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING 1992
Volume 2: The 15th International Conference on
Computational Linguistics.

David Jurgens and Ioannis Klapaftis. 2013. Semeval-
2013 task 13: Word sense induction for graded and
non-graded senses. In Second Joint Conference on
Lexical and Computational Semantics (*SEM), Vol-
ume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 290–299. Association for Computational Lin-
guistics.

Alexander Panchenko, Anastasiya Lopukhina, Dmitry
Ustalov, Konstantin Lopukhin, Nikolay Arefyev,
Alexey Leontyev, and Natalia V. Loukachevitch.
2018. Russe’2018: A shared task on word sense
induction for the russian language. In Computa-
tional Linguistics and Intellectual Technologies. Pa-
pers from the Annual International Conference Dia-
logue (2018), pages 547–564. RSUH.

Alexander Panchenko, Olga Morozova, and Hubert
Naets. 2012. A semantic similarity measure based
on lexico-syntactic patterns. In KONVENS.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, et al. 2011.
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Behrang QasemiZadeh, Miriam R. L. Petruck, Regina
Stodden, Laura Kallmeyer, and Marie Candito.
2019. Semeval-2019 task 2: Unsupervised lexical
frame induction. In Proceedings of The 13th Inter-
national Workshop on Semantic Evaluation. Associ-
ation for Computational Linguistics.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning, pages 258–267. Asso-
ciation for Computational Linguistics.

Oleg Struyanskiy and Nikolay Arefyev. 2018. Neural
Networks with Attention for Word Sense Induction.
In Supplementary Proceedings of the Seventh Inter-
national Conference on Analysis of Images, Social
Networks and Texts (AIST 2018), pages 208–213.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. CoRR, abs/1706.03762.

Dominic Widdows and Beate Dorow. 2002. A graph
model for unsupervised lexical acquisition. In COL-
ING 2002: The 19th International Conference on
Computational Linguistics.

37

build: Manufacturing/ follow: Compliance/ join: Participation/
Building Relative time Becoming a member

drive 0.61/0.031 execute 0.53/0.0 end 0.5/0.15
export 0.5/0.031 obey 0.47/0.0 support 0.81/0.32
import 0.67/0.046 keep 0.53/0.0 continue 0.5/0.23
distribute 0.72/0.092 adopt 0.74/0.0 begin 0.44/0.21
manufacture 0.94/0.12 apply 0.68/0.013 follow 0.56/0.37
ship 0.5/0.077 maintain 0.63/0.013 lead 0.88/0.77
release 0.5/0.092 use 0.63/0.013 start 0.5/0.56
make 0.56/0.11 enforce 0.47/0.013 leave 0.5/0.82
assemble 0.78/0.18 ignore 0.42/0.013 represent 0.31/0.52
deliver 0.89/0.22 implement 0.79/0.027 rejoin 0.25/0.6
...
rebuild 0.28/0.55 confirm 0.16/0.47 buy 0.062/0.47
expand 0.33/0.75 begin 0.16/0.48 found 0.0/0.4
acquire 0.22/0.58 end 0.11/0.64 oversee 0.0/0.4
finance 0.17/0.58 see 0.053/0.43 serve 0.0/0.48
erect 0.11/0.43 include 0.053/0.55 create 0.0/0.48
open 0.11/0.77 come 0.0/0.41 acquire 0.0/0.48
fund 0.056/0.58 be 0.0/0.49 purchase 0.0/0.55
establish 0.056/0.6 , 0.0/0.51 establish 0.0/0.6
close 0.0/0.42 mark 0.0/0.53 form 0.0/0.63
start 0.0/0.43 after 0.0/0.61 become 0.0/0.82

Table 5: Examples of generated substitutes for template
“T and then ”

A Examples of generated substitutes

To show how substitutes can disambiguate
homonyms we generated substitutes for examples
of two most frequent frames for several verbs.
For each verb we excluded rare substitutes with
P (subs|framei) < 0.4 for both frames. Then
we sorted the rest according to the probability ra-
tio P (subs|frame1)

P (subs|frame2)+1e−6 . Table 5 shows substitutes
with the largest and the smallest ratio (most dis-
criminating substitutes).

B Features and ablation analysis for
Generic Semantic Role Induction
subtask

We used the following hand-crafted features: an
indicator that the argument is to the left of the verb
and an indicator that the particle by is between
them; categorical features for the output syntac-
tic relation of the argument, the last relation in the
path between the argument and the verb, the part
of speech of the first word of the argument, the
number of words and the number of words start-
ing with a capital letter in the argument. All these
features were concatenated, categorical features
were encoded with one-hot vectors. In the prelimi-
nary experiments we noticed that hand-crafted fea-
tures performed well by themselves but didn’t im-
prove results when concatenated with BERT out-
puts; this was resolved by multiplying the fea-
tures by 10 (we attribute the effect to very high di-
mensionality of BERT outputs compared to hand-
crafted features, which requires harmonizing the
variance each of them adds to the scalar product

Method #cl PuIpuF1 B3P B3R B3F1

ClstPerGrType 37 56.05 40.89 37.33 39.03
Logistic regression 14 77.47 56.21 74.41 64.04

w/o designed feats. 14 76.93 54.71 73.55 62.75
w/o BERT feats. 13 65.08 41.90 55.01 47.57

w/o BERT@arg 14 73.45 51.60 67.59 58.52
w/o BERT@verb 14 74.88 52.16 71.88 60.45
w/o verb input rel 14 76.92 55.45 73.45 63.19
w/o by between 14 76.92 55.55 73.45 63.25
w/o arg is left 14 77.25 55.65 73.90 63.49

layer 0,1 14 73.56 50.34 68.33 57.97
layer 0 14 73.69 50.52 68.88 58.29
layer 1 14 74.71 51.65 70.47 59.61
layer 2 14 75.13 52.18 71.16 60.21
layer 4 14 76.16 54.11 72.30 61.90
layer 11 14 75.98 54.37 72.19 62.02
layer 10,11 14 76.58 55.10 73.25 62.89
layer 10 14 76.66 55.51 72.96 63.05
layer 6 14 76.98 55.72 73.29 63.31
layer 8 14 77.40 56.33 73.78 63.88

Table 6: Subtask-B.2, ablations on test set.

in the logistic regression). We tried multiplying
each feature by its own constant determined ana-
lytically from its dimensionality, but this worsened
the results, so we left it for the future work.

Table 6 shows results for subtask B.2 after
removing features from input representation or
using different BERT layers instead of the last
four. For ablation analysis, we selected L2-
regularization strength using cross-validation with
a lexical split after removing each feature while
leaving all other hyperparameters intact. The fea-
tures with largest contribution to the result are
(from most to least important) BERT output at the
argument, at the verb, the last relation in the path
from the argument to the verb, the indicator that
the particle by is between them (which was de-
signed to fix errors due to passive voice) and the
indicator that the argument is to the left of the
verb. All other features’ contributions (not shown)
are small. Remarkably, removing all BERT fea-
tures gives very large decrease in performance (-
18 B3F1) while removing only outputs at the argu-
ment/verb gives only moderate decrease (-5.5/-3.5
B3F1) which can be explained by deeply bidirec-
tional nature of BERT resulting in some informa-
tion about both the verb and the argument present
in each of these outputs. Finally, we tried using
other BERT layers instead of the last four (lay-
ers 8-11) and found that intermediate layers per-
form best. For instance, layer 8 can replace the
last four layers with very little decrease in perfor-
mance, while the last two layers (10, 11) concate-
nated perform noticeably worse but much better
than the first layers.

38

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 39–48
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval-2019 Task 3: EmoContext
Contextual Emotion Detection in Text

Ankush Chatterjee, Kedhar Nath Narahari, Meghana Joshi and Puneet Agrawal
Microsoft, India

{anchatte, kedharn, mejoshi, punagr}@microsoft.com

Abstract

In this paper, we present the SemEval-2019
Task 3 - EmoContext: Contextual Emotion
Detection in Text. Lack of facial expressions
and voice modulations make detecting emo-
tions in text a challenging problem. For in-
stance, as humans, on reading “Why don’t you
ever text me!” we can either interpret it as a
sad or angry emotion and the same ambigu-
ity exists for machines. However, the context
of dialogue can prove helpful in detection of
the emotion. In this task, given a textual dia-
logue i.e. an utterance along with two previ-
ous turns of context, the goal was to infer the
underlying emotion of the utterance by choos-
ing from four emotion classes - Happy, Sad,
Angry and Others. To facilitate the participa-
tion in this task, textual dialogues from user
interaction with a conversational agent were
taken and annotated for emotion classes af-
ter several data processing steps. A training
data set of 30160 dialogues, and two evalu-
ation data sets, Test1 and Test2, containing
2755 and 5509 dialogues respectively were
released to the participants. A total of 311
teams made submissions to this task. The final
leader-board was evaluated on Test2 data set,
and the highest ranked submission achieved
79.59 micro-averaged F1 score. Our analysis
of systems submitted to the task indicate that
Bi-directional LSTM was the most common
choice of neural architecture used, and most
of the systems had the best performance for
the Sad emotion class, and the worst for the
Happy emotion class.

1 Introduction

Emotions are basic human traits and have been
studied by researchers in the fields of psychol-
ogy, sociology, medicine, computer science etc.
for several years. Some of the prominent work in
understanding and categorizing emotions include
Ekman’s six class categorization (Ekman, 1992)

and Plutchik’s “Wheel of Emotion” (Plutchik and
Kellerman, 1986) which suggested eight primary
bipolar emotions . In recent times, several Arti-
ficial Intelligence (AI) agents like Siri, Cortana,
Alexa have emerged and they primarily focus on
providing users with assistance on specific tasks
such as booking tickets or scheduling meetings
etc. However, we believe that for machines and
humans to develop a deeper partnership, an In-
telligence Quotient (IQ) is not enough. These
agents need to also possess an Emotional Quotient
(EQ). Social conversational agents like Mitsuku1

or Ruuh 2 (Damani et al., 2018) are experimental
agents designed to have human-like persona, and
possess a deeper sense of EQ; understanding and
expressing emotions is an inherent aspect of these
agents.
Detecting emotions in textual dialogues is a chal-
lenging problem in absence of facial expressions
and voice modulations. Moreover, we observed
that context of ongoing dialogue can completely
change the emotion for an utterance as compared
to perceived emotion when the utterance is eval-
uated standalone. Table 1 presents few such ex-
amples. Note that, in the first example “I started
crying” will be perceived as ‘Sad’ by a majority,
however considering it in context, it turns out to
be a ‘Happy’ emotion. Similarly, in the second ex-
ample, the last turn “Try to do that once” is very
likely to be perceived as ‘Others’, however again,
a majority will judge it as ‘Angry’ with the given
context.

Naturally, considering context to estimate emo-
tion of a text utterance becomes even more impor-
tant for aforementioned scenarios of digital assis-
tants and conversational agents, because of their
text-based conversational interface. This task was

1www.pandorabots.com/mitsuku
2www.ruuh.ai

39

User Turn-1 Conversational Agent Turn-1 User Turn-2 True Class
I just qualified for the Nabard in-
ternship

WOOT! Thats great news. Congratulations! I started crying Happy

How dare you to slap my child If you spoil my car, I will do that to you too Just try to do that once Angry

I was hurt by u more You didn’t mean it. say u love me Sad

Table 1: Examples showing influence of context in determining emotion of last utterance.

designed to invite research interest in the area of
emotion detection in text. More details about the
task can be found on our web page3. The evalu-
ation data set served as a benchmark to compare
various techniques and the task received attention
from a wide range of researchers from industry as
well as academia. We believe continued interest
in this field will be beneficial towards making the
AI-agents more human-like.

2 Related Work

Researchers have achieved good results on image
based emotion recognition (Wang et al., 2018),
(Zhang et al., 2016) as well as voice based emo-
tion recognition (Pierre-Yves, 2003). Techniques
have been proposed to detect emotions in spoken
dialog systems (Liscombe et al., 2005). However,
classifying textual dialogues based on emotions is
relatively new research area. Emotion-detection
algorithms for text can be largely bucketized into
following two categories:

(a) Hand-crafted Feature Engineering Based
Approaches: - Many methods exploit the usage
of keywords in a sentence with explicit emo-
tional/affect value (Balahur et al., 2011), (Strap-
parava and Mihalcea, 2008), (Sykora et al., 2013).
To that end, several lexical resources have been
created, such as WordNet-Affect (Strapparava
et al., 2004) and SentiWordNet (Esuli and Se-
bastiani, 2007). Part-of-Speech taggers like the
Stanford POS tagger are also used to exploit the
structure of keywords in a sentence. These pat-
tern/dictionary based approaches, although attain-
ing high precision scores, suffer from low recall.

Hasan et al. (2014), Purver and Battersby
(2012), Suttles and Ide (2013) and Wang et al.
(2012) have also harnessed cues from emoticons
and hashtags. Other methods rely on extracting
statistical features such as presence of frequent n-
grams, negation, punctuation, emoticons, hashtags
to form representations of sentences which are

3Task webpage: humanizing-ai.com/emocontext.html

then used as input by classifiers such as Decision
Trees, SVMs among others to predict the output
(Alm et al., 2005), (Balabantaray et al., 2012),
(Davidov et al., 2010), (Kunneman et al., 2014),
(Yan and Turtle, 2016). However, all of these
methods require extensive feature engineering
and they often do not achieve high recall due
to diverse ways of representing emotions. For
example, the following utterance, “Trust me! I am
never gonna order again”, contains no affective
words despite conveying an emotion of anger or
frustration perhaps.

(b) Deep Learning Based Approaches: - Deep
Neural networks have enjoyed considerable suc-
cess in varied tasks in text, speech and im-
age domains. Variations of Recurrent Neural
Networks, such as Long Short Term Memory
networks (LSTM) (Hochreiter and Schmidhuber,
1997) and Bidirectional LSTM (BiLSTM) (Schus-
ter and Paliwal, 1997) have been effective in mod-
eling sequential information. Also, Convolutional
Neural Networks (CNN) (Krizhevsky et al., 2012)
have been a popular choice in the image domain.
Their introduction to the text domain has proven
their ability to decipher abstract concepts from raw
signals (Kim, 2014).
Recently, approaches which employ Deep Learn-
ing for emotion detection in text have been pro-
posed. Zahiri and Choi (2017) predicts emotion
in a TV show transcript. Abdul-Mageed and Un-
gar (2017) and Köper et al. (2017) tries to under-
stand emotions of tweets. Li et al. (2017) learns
to detect emotions on user comments in Chinese
language. Felbo et al. (2017) learns representation
based on emoticons, and uses it for emotion de-
tection. A further detailed analysis of various ap-
proaches have been provided by Chatterjee et al.
(2019). It is worth noting that textual dialogues
are informal and laden with misspellings which
pose serious challenges for automatic emotion de-
tection approaches. Prior to this task, to the best of
our knowledge, the methods proposed by Mundra

40

et al. (2017) and Chatterjee et al. (2019) are some
of the few methods that tackled the problem of
emotion detection in English textual dialogues.

3 Task Details

Problem Definition: In a textual dialogue, given
an utterance along with its two previous turns of
context, classify the emotion of the utterance as
one of the following classes: Happy, Sad, Angry
or Others.

The motivation for restricting the number of
emotion classes stems from the popularity of these
emotions in conversational data. The task pro-
ceeded in two phases. A training corpus, Train, of
30160 dialogues was provided at the beginning of
Phase 1. The evaluation in this phase was done on
an evaluation data set, Test1, comprising of 2755
dialogues. The labels for Test1 were made pub-
lic five weeks before the end of Phase 1, allowing
participants time and data to improve their models.
The final evaluation was carried out in Phase 2 on
a evaluation data set, Test2, which comprised of
5509 dialogues. It is important to note that while
the maximum number of submissions a participant
could make in Phase 1 was 20 per day, it was re-
duced to 10 per day during Phase 2.

4 Data Collection

A data set of textual dialogues was released to fa-
cilitate participation in this task. Several data pro-
cessing steps were performed to create the final set
of textual dialogues which are further explained in
this section.

4.1 Dialogue Collection and Processing

A dialogue mined from the user’s interaction with
agent is defined as a tuple of 3 values - User
Turn-1 (Utterance of the user), Conversational
Agent Turn-1 (Response by the agent), User Turn-
2 (User utterance as response to agent).
To begin with, user interactions with the agent
over a period of one year were considered and
over 2 million dialogues were randomly sampled.
These dialogues further went through the process-
ing and data cleaning as described in further sub-
sections.

4.1.1 Offensive filtering
All the dialogues were passed through a filtering
layer to remove offensive and sensitive content

Figure 1: Comparison of class distribution in Training
vs Evaluation data sets.

Emotion Happy Sad Angry Others #

Train 4243 5463 5506 14948 30160
Test1 142 125 150 2338 2755
Test2 284 250 298 4677 5509

Table 2: Emotion label count across classes in Train, Test1
and Test2 data sets.

such as adult information, politically sensitive top-
ics, or ethnic-religious content, or other potentially
contentious material, such as inappropriate refer-
ences to violence, crime and illegal substances etc.
Several lexicons and human judgments were used
to achieve this filtering.

4.1.2 PII filtering
Personally Identifiable Information (PII) identifies
the unique identity of a given user. This includes
personal data like names, phone numbers, email
Ids, among others. Dialogues containing any PII
content were removed using hand crafted rules and
via human judgments.

4.1.3 Language filtering
Given that the agent was available for users across
geographies, the dialogues contained multiple lan-
guages and users employed code-mixed language
as well. We used language detectors as well as
user modeling to identify the language in the di-
alogues and filter non-English dialogues from the
data set.

4.2 Training Data Set Creation
In the collected textual dialogues the emotion
classes were not frequently expressed and hence
directly annotating a random sample of textual di-
alogues results in very low volume of textual di-
alogues with emotion class. This problem was
tackled by Gupta et al. (2017) and we used similar
heuristics and strategies to ensure a higher ratio of

41

textual dialogues with emotion classes. This exer-
cise was primarily conducted to reduce the cost of
human judgments and is further explained below.
We started with a small set (approximately 300)
of annotated dialogues per emotion class obtained
by showing a randomly selected sample to human
judges. Using a variation of the model described
by Palangi et al. (2016), we created embedding
for these annotated dialogues. Potentially simi-
lar dialogues were further identified from the en-
tire pool of dialogues using a threshold-based co-
sine similarity and these dialogues form our can-
didate set for each emotion class. Various heuris-
tics like presence of opposite emoticons (example
“:’(” in a potential candidate set for Happy emo-
tion class), sentiment analysis, length of utterances
etc. are used to further prune the candidate set in
certain cases. The candidate set is then shown to
human judges to determine if they belong to an
emotion class. Using this method, we cut down
the amount of human judgments required by five
times as compared to showing a random sample of
dialogues and then choosing dialogues with emo-
tion class from them.
Data belonging to class “Others” is collected by
randomly selecting dialogues from our pool of di-
alogues and were human labelled to discard any
dialogues with emotion class such as Happy, Sad
or Angry.
Figure 1 shows the distribution of different classes
in training data set.

4.3 Evaluation Data Set Creation
Unlike training data set where we intentionally
over sampled dialogues from emotion classes to
help participants with a larger volume of data with
emotion classes, we maintained the natural distri-
bution of emotion classes in evaluation data sets.
We randomly sampled and annotated two eval-
uation sets, Test1 and Test2, of size 2755 and
5509 respectively. Detailed distribution of emo-
tion classes in these sets is described in Table 2.

4.4 Emotion Class Labeling
For this specific task of emotion class labelling,
50 human judges were trained. Given a dialogue,
i.e an utterance with two previous turns as con-
text, a judge was asked to annotate the utterance
as belonging to one of the following four classes:
Happy, Angry, Sad or Others. All dialogues were
judged by 7 human judges and a majority con-
sensus was taken as the final class label. Fleiss’

Figure 2: Comparison of word count of utterances per
emotion class. Emoticons were removed for this calcu-
lation, as a result of which the leftmost bin of 0 word
count can be seen as well.

Kappa score (Shrout and Fleiss, 1979) of 0.58 was
observed on training data set and of 0.59 on eval-
uation data set. Such a Kappa score indicates the
existence of multiple perspectives about the under-
lying emotion of a conversation.

5 Data Analysis

In this section we analyze the utterance in the di-
alogue that was judged by human judges for emo-
tion classes.

5.1 Word Count

Figure 2 shows the distribution of the word count
of utterances per emotion class. We observed
that users tend to repeat emoticons several times.
Hence emoticons were removed from utterances
for this calculation, as a result of which the ut-
terances which had only emoticons are clubbed
in the leftmost bin with utterance of length 0. It
can be observed that happiness is often expressed
through emoticons and hence happy emotion class
has highest count under the bin of 0 word count.
Also, happiness is often expressed in fewer words
as compared to other emotions can be observed
from the graph. Another point to note is that angry
emotion class is often expressed using more words
as compared to other emotion classes.

5.2 Top Unigrams

Figure 3 shows the most frequent unigrams per
emotion class in our data set. Note that emoticons
are not considered as unigrams for this analysis.
The length of the radius in the spiral graph denotes
the frequency of the unigram in all the utterances
belonging to that particular emotion class. In order

42

(a) Happy (b) Sad (c) Angry

Figure 3: Most frequent unigrams per emotion class in our data set. The length of the radius in the spiral graph
denotes the frequency of the unigram in all the utterances for a emotion class. Only those unigrams which are not
in the top 500 list of most frequent unigrams of the “Others” class have been considered.

Happy

Sad

Angry

Table 3: Top five emoticons per emotion class.

to avoid neutral words like “my”, “what”, “sure”
from showing up in the analysis, we consider only
those unigrams which are not in the top 500 list of
most frequent unigrams of the “Others” class.

5.3 Top Emoticons
Emoticons are frequently used in textual dia-
logues, as was observed by Gupta et al. (2017),
who found 21% of textual dialogues to contain
emoticons. Table 3 shows the top emoticons ob-
served in utterances per emotion class. While most
emoticons align with our expectations of the most
frequent emoticons, it is interesting to note the fre-
quent use of broken-heart emoticon to express sad
emotion.

6 Evaluation Metric

Evaluation was carried out using the micro-
averaged F1 score (F1µ) for the three emotion
classes - Happy, Sad and Angry on the submis-
sions made with predicted class of each sample in
the evaluation data set. To be precise, we define
the metric as following:

Pµ =
ΣTPi

Σ(TPi + FPi)
∀iε{Happy, Sad,Angry}

Rµ =
ΣTPi

Σ(TPi + FNi)
∀iε{Happy, Sad,Angry}

F1µ = 2 · Pµ ·Rµ
Pµ +Rµ

where TPi is the number of samples of class i
which are correctly predicted, FNi and FPi are
the counts of Type-I and Type-II errors 4 respec-
tively for the samples of class i.

Our final metric F1µ is calculated as the har-
monic mean of Pµ and Rµ.

7 Baseline Model

To encourage and assist participants in making
their first submission, we provided a starter kit,
which consisted of scripts for training a naive
baseline model. The script also enabled partic-
ipants to cross-validate their model and create a
submission file. This section explains the baseline
model in detail.

7.1 Data Processing
Minimal data pre-processing steps were provided.
These included replacing certain repeated punctu-
ation marks with their single instances, lower cas-
ing, removing extra space and tokenization. For
example, “I am so happy!!” was converted to “i
am so happy !”.

7.2 Model Architecture
We modeled the task of detecting emotions as a
multi-class classification problem where given a
dialogue, the model outputs probabilities of it be-
longing to four output classes - Happy, Sad, Angry
and Others. The three turns are concatenated us-
ing a special <eos> token. The concatenated in-
put is passed into a pre-trained word embedding

4http://en.wikipedia.org/wiki/Type_I_
and_type_II_errors

43

Team GloVe Word2Vec NTUA-
SLP

BERT ELMO ULMFit Others

NELEC

SymantoResearch

ANA

CAiRE HKUST

SNU IDS

THU-HCSI

Figure Eight

YUN-HPCC

LIRMM-Advanse

MILAB

PKUSE

THU NGN

Table 4: Input representations used by top systems.

layer, which projects the words into continuous
vector representations. We used 100 dimensional
GloVe embeddings (Pennington et al., 2014) for
this purpose. The embeddings are processed by an
LSTM layer, which produces a 128 dimensional
representation of the sentence. This representation
is then mapped to a 4 dimensional output vector
which outputs probabilities per emotion class us-
ing a fully connected neural network. The archi-
tecture of the model was kept deliberately simple
and was intended to serve as a starting point for
participants. The baseline model achieved a F1µ
score of 0.5861 on the final leader board and most
teams were able to beat the baseline model. Fur-
ther details on the model and its comparison with
other systems can be seen in Table 5.

8 Systems and Results

As mentioned earlier in section 3, the task was
conducted in two phases. The first phase saw a
participation from 311 teams and 164 teams par-
ticipated in the second phase. In this section, we
briefly describe the top systems 5, followed by ob-
servations across systems regarding the techniques
used and their performance across different emo-
tion classes.

5The top 2 systems - Leo1020 and Mfzszgs did not submit
system description papers, and hence have been omitted from
discussion in this Section.

8.1 Top Systems
Due to the overwhelming number of participants,
we cannot describe all systems. We describe the
main features of the top few systems ranked ac-
cording to their final performance.

• NELEC uses a combination of lexical fea-
tures such as word and character grams,
along with additional signals like emotional
intensity, valence-arousal-dominance scores.
In addition, they use adult, offensive and sen-
timent classifiers’ scores from neural mod-
els. Using these features, the authors trained
a Light-GBM tree (Ke et al., 2017), which
achieves better performance than their deep-
learning based architecture.

• SymantoResearch explores different deep-
learning based architectures, some of them
employing multi-task learning to better clas-
sify Others class vs. emotion classes. By en-
sembling such architectures with fine-tuned
BERT (Devlin et al., 2018) and USE (Cer
et al., 2018) models, the authors are able to
distinguish three emotions (Sad, Happy, An-
gry) and separate them from the rest (Others)
more accurately.

• ANA uses an ensemble of fine tuned BERT
model and Hierarchical LSTMs, where the
semantic and emotional content of text is en-
coded via GloVe, ELMo (Peters et al., 2018)

44

Team Name
ANGRY HAPPY SAD

F1µ
PRECISION RECALL F1 PRECISION RECALL F1 PRECISION RECALL F1

Leo1020 0.7723 0.8423 0.8058 0.804 0.7077 0.7528 0.8494 0.812 0.8303 0.7959

Mfzszgs 0.759 0.8456 0.8 0.7769 0.7113 0.7426 0.8595 0.832 0.8455 0.7947

NELEC 0.747 0.8322 0.7873 0.7632 0.7148 0.7382 0.7938 0.816 0.8047 0.7765

SymantoResearch 0.7807 0.7886 0.7846 0.738 0.7042 0.7207 0.8193 0.816 0.8176 0.7731

ANA 0.7198 0.8188 0.7661 0.7698 0.6831 0.7239 0.8458 0.812 0.8286 0.7709

CAiRE HKUST 0.6997 0.8289 0.7588 0.7301 0.743 0.7365 0.7774 0.852 0.813 0.7677

SNUIDS 0.7405 0.7852 0.7622 0.772 0.6796 0.7228 0.8135 0.82 0.8167 0.7661

THU-HCSI 0.7155 0.8356 0.7709 0.7702 0.6725 0.718 0.796 0.796 0.796 0.7616

Figure Eight 0.6954 0.8658 0.7713 0.7055 0.7254 0.7153 0.7695 0.828 0.7977 0.7608

YUN-HPCC 0.7198 0.8188 0.7661 0.7169 0.6866 0.7014 0.8016 0.824 0.8126 0.7588

LIRMM-Advanse 0.7229 0.8054 0.7619 0.7256 0.7077 0.7166 0.8291 0.776 0.8017 0.7582

MILAB 0.7295 0.8054 0.7656 0.7481 0.7007 0.7236 0.7652 0.808 0.786 0.7581

Huxiao 0.7362 0.8054 0.7692 0.7403 0.6725 0.7048 0.7757 0.816 0.7953 0.7564

PKUSE 0.745 0.755 0.75 0.7351 0.6937 0.7138 0.8056 0.812 0.8088 0.7557

THU NGN 0.7329 0.7919 0.7613 0.7452 0.6796 0.7109 0.8117 0.776 0.7935 0.7542

Baseline 0.4777 0.7867 0.5945 0.5123 0.5845 0.5461 0.5163 0.7600 0.6149 0.5861

Table 5: Performance comparison of top 15 teams on leaderboard.

and DeepMoji (Felbo et al., 2017) embed-
dings, following which a contextual LSTM
encodes the entire dialogue for prediction.

• CAiRE HKUST experiments with combina-
tions of feature based models and end-to-end
neural models. The feature based models
use various pre-trained word embeddings and
emotional embeddings, combining them with
Logistic Regression and XGBoost (Chen and
Guestrin, 2016). For the end-to-end neural
models, the authors found the performance
of hierarchical models, which take sequential
nature of dialogue into account, to be better.

• SNU IDS proposes several methods for al-
leviating the problems caused by difference
in class distributions between training data
and test data. The authors also present
a semi-hierarchical neural architecture com-
bining character and word embeddings that
effectively encodes an utterance in context of
the previous utterances.

• THU-HCSI is composed of three CNN-
based neural network models trained for
different base tasks - four-emotion classifi-
cation, Angry-Happy-Sad classification and

Others-or-not classification respectively. The
authors use multiple steps of voting to com-
bine the predictions of these base classifiers,
resulting in a more accurate and robust model
performance.

• Figure Eight uses an ensemble of transfer
learning models for capturing the represen-
tations of the utterances. Using sophisticated
fine-tuning techniques described in ULMFiT
(Howard and Ruder, 2018), the authors ob-
serve that transfer learning using pre-trained
language models outperforms models trained
from scratch.

8.2 Miscellaneous Observations

From the system description papers of the top 15
teams, we observed that BiLSTMs/LSTMs were
the most frequently used neural models. GRU
(Chung et al., 2014) and CNN models were used
by a few teams, and some variations of attention
mechanism were employed by most of the teams
to enhance performance of their models. Transfer
learning using BERT, ELMo, ULMFit was a
popular choice among top teams, and almost all
the teams used an ensemble of their best models
to create the final model.

45

F1µ

Max 0.7959
Min 0.0143
Mean 0.6599
Median 0.694
1st Quartile 0.637
3rd Quartile 0.7317
Std. Dev. 0.1264

Table 6: Performance statistics of all participants.

Table 4 shows the embeddings used by the top
5 teams. It can be observed that GloVe was used
most frequently. BERT and ELMo were the most
popular choice for transfer learning. NTUA-SLP
embeddings (Baziotis et al., 2018) were used as
well to leverage its affective information. Partici-
pant teams tried various ways to encode the emo-
tional content expressed by emoticons, and Deep-
moji and Emoji2Vec (Eisner et al., 2016) were uti-
lized in this regard. A good number of teams used
the “ekphrasis” package (Baziotis et al., 2017) for
tokenization, word normalization and word seg-
mentation.

8.3 Performance across Emotion Classes

Table 5 displays the detailed performance of the
top 156 participant teams. Upon inspection, it can
be observed that the performance of the systems
on the Happy class was not as good as the other
emotion classes for the evaluation set. We believe,
this is largely due to the natural ambiguity exist-
ing between neutral and happy utterances. For
example, a greeting like “Happy Morning” can
be thought of as expressing a happy emotion by
some, while being judged to be neutral by others.
We also observed that most systems performed
best for the Sad emotion class. Table 6 provides
some basic statistics on the results obtained by the
whole set of participants.

9 Conclusion

A total of 311 teams made submissions to the task.
The final leader-board was evaluated on Test2 data
set, and the highest ranked submission achieved
79.59 F1µ score. Our analysis of systems submit-

6Final rankings of all participating systems can
be consulted via the CodaLab website of our task:
https://competitions.codalab.org/competitions/19790

ted to the task indicate that Bi-directional LSTM
was the most common choice of network architec-
ture used by participants, and most systems had
best performance for Sad emotion class, and worst
for Happy emotion class. A large number of teams
have participated in the task but only 46 teams
submitted their final system description papers; in
fact, the top 2 teams in Phase 2 did not submit their
system description paper. It was also observed
that the ranking of various systems across both
the phases varied significantly. In this task, we
released the evaluation set without labels to par-
ticipants, in future tasks it might be useful to also
experiment with system submissions such that the
entire evaluation set is never seen, with or with-
out labels to the participants during the evaluation
phase in a bid to have completely blind evalua-
tion.

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, volume Vol. 1, pages 718–728.

Cecilia Ovesdotter Alm, Dan Roth, and Richard
Sproat. 2005. Emotions from text: machine learning
for text-based emotion prediction. In Proceedings of
the conference on human language technology and
empirical methods in natural language processing,
pages 579–586. ACL.

Rakesh C Balabantaray, Mudasir Mohammad, and
Nibha Sharma. 2012. Multi-class twitter emotion
classification: A new approach. International Jour-
nal of Applied Information Systems, Vol. 4, pages
48–53.

Alexandra Balahur, Jesús M Hermida, and Andrés
Montoyo. 2011. Detecting implicit expressions of
sentiment in text based on commonsense knowl-
edge. In Proceedings of the 2nd Workshop on Com-
putational Approaches to Subjectivity and Sentiment
Analysis, pages 53–60. ACL.

Christos Baziotis, Nikos Athanasiou, Alexandra
Chronopoulou, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas, Shrikanth
Narayanan, and Alexandros Potamianos. 2018.
Ntua-slp at semeval-2018 task 1: predicting affec-
tive content in tweets with deep attentive rnns and
transfer learning. arXiv preprint arXiv:1804.06658.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of

46

the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019. Understanding emo-
tions in text using deep learning and big data. Com-
puters in Human Behavior, 93:309–317.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pages 785–794.
ACM.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Sonam Damani, Nitya Raviprakash, Umang Gupta,
Ankush Chatterjee, Meghana Joshi, Khyatti Gupta,
Kedhar Nath Narahari, Puneet Agrawal, Manoj Ku-
mar Chinnakotla, Sneha Magapu, and Abhishek
Mathur. 2018. Ruuh: A deep learning based conver-
sational social agent. 32nd Conference on Neural
Information Processing Systems (NIPS 2018), Mon-
tral, Canada.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Enhanced sentiment learning using twitter hashtags
and smileys. In Proceedings of the 23rd inter-
national conference on computational linguistics:
posters, pages 241–249. ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, Vol. 6, pages 169–200.

Andrea Esuli and Fabrizio Sebastiani. 2007. Senti-
wordnet: A high-coverage lexical resource for opin-
ion mining. Evaluation, pages 1–26.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A sentiment-
and-semantics-based approach for emotion detec-
tion in textual conversations. arXiv preprint
arXiv:1707.06996.

Maryam Hasan, Emmanuel Agu, and Elke Runden-
steiner. 2014. Using hashtags as labels for super-
vised learning of emotions in twitter messages. In
ACM SIGKDD Workshop on Health Informatics,
New York, USA.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, Vol. 9,
pages 1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Informa-
tion Processing Systems, pages 3146–3154.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Maximilian Köper, Evgeny Kim, and Roman Klinger.
2017. Ims at emoint-2017: emotion intensity pre-
diction with affective norms, automatically extended
resources and deep learning. In WASSA, pages 50–
57.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Florian Kunneman, Christine Liebrecht, and Antal
van den Bosch. 2014. The (un) predictability of
emotional hashtags in twitter. In European Chap-
ter of the Association for Computational Linguistics,
pages 26–34.

Panpan Li, Jun Li, Feiqiang Sun, and Peng Wang. 2017.
Short text emotion analysis based on recurrent neu-
ral network. In Proceedings of the 6th International
Conference on Information Engineering. ACM.

Jackson Liscombe, Giuseppe Riccardi, and Dilek
Hakkani-Tur. 2005. Using context to improve emo-
tion detection in spoken dialog systems.

Shreshtha Mundra, Anirban Sen, Manjira Sinha,
Sandya Mannarswamy, Sandipan Dandapat, and
Shourya Roy. 2017. Fine-grained emotion detec-
tion in contact center chat utterances. In Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing, pages 337–349. Springer.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao,
Xiaodong He, Jianshu Chen, Xinying Song, and
Rabab Ward. 2016. Deep sentence embedding using
long short-term memory networks: Analysis and ap-
plication to information retrieval. IEEE/ACM Trans-
actions on Audio, Speech and Language Processing,
Vol. 24, pages 694–707.

47

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume Vol. 14, pages
1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Oudeyer Pierre-Yves. 2003. The production and recog-
nition of emotions in speech: features and algo-
rithms. International Journal of Human-Computer
Studies, 59(1-2):157–183.

Robert Plutchik and Henry Kellerman. 1986. Emotion:
theory, research and experience. Academic press
New York.

Matthew Purver and Stuart Battersby. 2012. Experi-
menting with distant supervision for emotion classi-
fication. In Proceedings of the 13th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 482–491. ACL.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, Vol. 45, pages 2673–2681.

Patrick E Shrout and Joseph L Fleiss. 1979. Intraclass
correlations: uses in assessing rater reliability. Psy-
chological bulletin, Vol. 86, page 420.

Carlo Strapparava and Rada Mihalcea. 2008. Learning
to identify emotions in text. In 2008 ACM sympo-
sium on Applied computing, pages 1556–1560.

Carlo Strapparava, Alessandro Valitutti, et al. 2004.
Wordnet affect: an affective extension of wordnet.
In The 4th International Conference on Language
Resources and Evaluation, volume Vol. 4, pages
1083–1086.

Jared Suttles and Nancy Ide. 2013. Distant supervision
for emotion classification with discrete binary val-
ues. In International Conference on Intelligent Text
Processing and Computational Linguistics, pages
121–136. Springer.

Martin D Sykora, Thomas Jackson, Ann O’Brien, and
Suzanne Elayan. 2013. Emotive ontology: Extract-
ing fine-grained emotions from terse, informal mes-
sages. IADIS International Journal on Computer
Science and Information Systems.

Shui-Hua Wang, Preetha Phillips, Zheng-Chao Dong,
and Yu-Dong Zhang. 2018. Intelligent facial emo-
tion recognition based on stationary wavelet entropy
and jaya algorithm. Neurocomputing, 272:668–676.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2012. Harnessing twitter “big
data” for automatic emotion identification. In Pri-
vacy, Security, Risk and Trust, 2012 International
Conference on Social Computing, pages 587–592.
IEEE.

Jasy Liew Suet Yan and Howard R Turtle. 2016. Ex-
ploring fine-grained emotion detection in tweets. In
The North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 73–80.

Sayyed M Zahiri and Jinho D Choi. 2017. Emo-
tion detection on tv show transcripts with sequence-
based convolutional neural networks. arXiv preprint
arXiv:1708.04299.

Yu-Dong Zhang, Zhang-Jing Yang, Hui-Min Lu, Xing-
Xing Zhou, Preetha Phillips, Qing-Ming Liu, and
Shui-Hua Wang. 2016. Facial emotion recognition
based on biorthogonal wavelet entropy, fuzzy sup-
port vector machine, and stratified cross validation.
IEEE Access, 4:8375–8385.

48

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 49–53
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ANA at SemEval-2019 Task 3: Contextual Emotion detection in
Conversations through hierarchical LSTMs and BERT

Chenyang Huang, Amine Trabelsi, Osmar R. Zaı̈ane
Department of Computing Science, University of Alberta
{chuang8,atrabels,zaiane}@ualberta.ca

Abstract
This paper describes the system submitted by
ANA Team for the SemEval-2019 Task 3:
EmoContext. We propose a novel Hierarchi-
cal LSTMs for Contextual Emotion Detection
(HRLCE) model. It classifies the emotion
of an utterance given its conversational con-
text. The results show that, in this task, our
HRCLE outperforms the most recent state-of-
the-art text classification framework: BERT.
We combine the results generated by BERT
and HRCLE to achieve an overall score of
0.7709 which ranked 5th on the final leader
board of the competition among 165 Teams.

1 Introduction

Social media has been a fertile environment for the
expression of opinion and emotions via text. The
manifestation of this expression differs from tradi-
tional or conventional opinion communication in
text (e.g., essays). It is usually short (e.g. Twit-
ter), containing new forms of constructs, including
emojis, hashtags or slang words, etc. This con-
stitutes a new challenge for the NLP community.
Most of the studies in the literature focused on the
detection of sentiments (i.e. positive, negative or
neutral) (Mohammad and Turney, 2013).

Recently, emotion classification from social
media text started receiving more attention (Yad-
dolahi et al., 2017; Mohammad et al., 2018). Emo-
tions have been extensively studied in psychology
(Ekman, 1992; Plutchik, 2001). Their automatic
detection may reveal important information in so-
cial online environments, like online customer ser-
vice. In such cases, a user is conversing with an
automatic chatbot. Empowering the chatbot with
the ability to detect the user’s emotion is a step
forward towards the construction of an emotion-
ally intelligence agent. Giving the detected emo-
tion, an emotionally intelligent agent would gener-
ate an empathetic response. Although its potential

convenience, detecting emotion in textual conver-
sation has seen limited attention so far. One of the
main challenges is that one users utterance may
be insufficient to recognize the emotion (Huang
et al., 2018). The need to consider the context of
the conversion is essential in this case, even for
human, specifically given the lack of voice mod-
ulation and facial expressions. The usage of figu-
rative language, like sarcasm, and the class size’s
imbalance adds up to this problematic (Chatterjee
et al., 2019a).

Context
LSTM

Context
LSTM

Context
LSTM

Utterance
Encoder

Multi-head self-attention

Category
Classification

Utterance
LSTM

GloVe ELMo

DeepMoji

Utterance
Encoder

Utterance
Encoder

Utterance
Encoder

 Figure 1: An illustration of the HRLCE model

In this paper, we describe our model, which was
proposed for the SemEval 2019-Task 3 competi-
tion: Contextual Emotion Detection in Text (Emo-
Context). The competition consists in classify-
ing the emotion of an utterance given its conver-
sational context. More formally, given a textual
user utterance along with 2 turns of context in a
conversation, the task is to classify the emotion
of user utterance as Happy, Sad, Angry or Others
(Chatterjee et al., 2019b). The conversations are
extracted from Twitter.

We propose an ensemble approach composed
of two deep learning models, the Hierarchi-
cal LSTMs for Contextual Emotion Detection
(HRLCE) model and the BERT model (Devlin
et al., 2018). The BERT is a pre-trained language

49

model that has shown great success in many NLP
classification tasks. Our main contribution con-
sists in devising the HRLCE model.

Figure 1 illustrates the main components of the
HRLCE model. We examine a transfer learning
approach with several pre-trained models in or-
der to encode each user utterance semantically
and emotionally at the word-level. The pro-
posed model uses Hierarchical LSTMs (Sordoni
et al., 2015) followed by a multi-head self atten-
tion mechanism (Vaswani et al., 2017) for a con-
textual encoding at the utterances level.

The model evaluation on the competition’s test
set resulted in a 0.7709 harmonic mean of the
macro-F1 scores across the categories Happy, An-
gry, and Sad. This result ranked 5th in the final
leader board of the competition among 142 teams
with a score above the organizers’ baseline.

2 Overview

2.1 Embeddings for semantics and emotion

We use different kinds of embeddings that have
been deemed effective in the literature in capturing
not only the syntactic or semantic information of
the words, but also their emotional content. We
breifly describe them in this section.

GloVe, (Pennington et al., 2014) is a widely
used pre-trained vector representation that cap-
tures fine-grained syntactic and semantic regulari-
ties. It has shown great success in word similarity
tasks and Named Entity Recognition benchmarks.

ELMo, or Embeddings from Language Models,
(Peters et al., 2018) are deep contextualized word
representations. These representations enclose a
polysemy encoding, i.e., they capture the varia-
tion in the meaning of a word depending on its
context. The representations are learned functions
of the input, pre-trained with deep bi-directional
LSTM model. It has been shown to work well in
practice on multiple language understanding tasks
like question answering, entailment and sentiment
analysis. In this work, our objective is to detect
emotion accurately giving the context. Hence, em-
ploying such contextual embedding can be crucial.

DeepMoji (Felbo et al., 2017) is a pre-trained
model containing rich representations of emo-
tional content. It has been pre-trained on the task
of predicting the emoji contained in the text using
Bi-directional LSTM layers combined with an at-
tention layer. A distant supervision approach was
deployed to collect a massive (1.2 billion Tweets)

dataset with diverse set of noisy emoji labels on
which DeepMoji is pre-trained. This led to state-
of-the art performance when fine-tuning Deep-
Moji on a range of target tasks related to senti-
ment, emotion and sarcasm.

2.2 Hierarchical RNN for context

One of the building component of our proposed
model (see Figure 1) is the Hierarchical or Con-
text recurrent encoder-decoder (HRED) (Sordoni
et al., 2015). HRED architecture is used for en-
coding dialogue context in the task of multi-turn
dialogue generation task (Serban et al., 2016). It
has been proven to be effective in capturing the
context information of dialogue exchanges. It
contains two types of recurrent neural net (RNN)
units: encoder RNN which maps each utterance
to an utterance vector; context RNN which fur-
ther processes the utterance vectors. HRED is ex-
pected to produce a better representation of the
context in dialogues because the context RNN al-
lows the model to represent the information ex-
changes between the two speakers.

2.3 BERT

BERT, the Bidirectional Encoder Representations
for Transformers, (Devlin et al., 2018) is a pre-
trained model producing context representations
that can be very convenient and effective. BERT
representations can be fine-tuned to many down-
stream NLP tasks by adding just one additional
output layer for the target task, eliminating the
need for engineering a specific architecture for a
task. Using this setting, it has advanced the state-
of-the-art performances in 11 NLP tasks. Using
BERT in this work has slightly improved the final
result, when we combine it with our HRLCE in an
ensemble setting.

2.4 Importance Weighting

Importance Weighting (Sugiyama and Kawanabe,
2012) is used when label distributions between the
training and test sets are generally different, which
is the case of the competition datasets (Table 2). It
corresponds to weighting the samples according to
their importance when calculating the loss.

A supervised deep learning model can be re-
garded as a parameterized function f(x;θ). The
backpropagation learning algorithm through a dif-
ferentiable loss is a method of empirical risk mini-
mization (ERM). Denote (xtr

i , y
tr
i), i ∈ [1 . . . ntr]

50

are pairs of training samples, testing samples are
(xte, yte), i ∈ [1 . . . nte].

The ratio P (x)te/P (x)tr is referred as the im-
portance of a sample x. When the label distribu-
tion of training data and testing data are different:
P (xte) 6= P (xtr), the training of the model fθ
is then called under covariate shift. In such situa-
tion, the parameter θ̂ should be estimated through
importance-weighted ERM:

argmin
θ

[1

ntr

ntr∑

i=1

P (xte)

P (xtr)
loss(ytri , f(xtr

i ;θ)
]
.

(1)

3 Models

Denote the input x = [u1, u2, u3], where ui is the
ith penultimate utterance in the dialogue. y is the
emotion expressed in u3 while giving u1 and u2 as
context.

To justify the effectiveness of the modules in
HRLCE, we propose two baseline models: SA-
LSTM (SL) and SA-LSTM-DeepMoji (SLD). The
SL model is part of the SLD model, while the
later one composes the utterance encoder of our
HRLCE. Therefore, we illustrate the models con-
secutively in Sections 3.1, 3.2, and 3.3.

3.1 SA-LSTM (SL)
Let x be the concatenation of u1 ,u2, and u3.
Hereby, x = [x1, x2, · · · , xn], where xi is the
ith word in the combined sequence. Denote the
pre-trained GloVe model as G. As GloVe model
can be directly used by looking up the word xi,
we can use G(xi) to represent its output. On the
contrary, ELMo embedding is not just dependent
on the word xi, but on all the words of the in-
put sequence. When taking as input the entire
sequence x, n vectors can be extracted from the
pre-trained ElMo model. Denote the vectors as
E = [E1, E2, · · · , En]. Ei contains both contex-
tual and semantic information of word xi. We use
a two-layer bidirectional LSTM as the encoder of
the sequence x. For simplicity, we denote it as
LSTM e. In order to better represent the informa-
tion of xi, we use the concatenation of G(xi) and
Ei as the feature embedding of xi. Therefore, we
have the following recurrent progress:

het = LSTM e([G(xt);Et], h
e
t−1). (2)

het is the hidden state of encoder LSTM at time
step t, and he0 = 0. Let he

x = [het , h
e
t , · · · , het] be

F1 Happy Angry Sad Harm. Mean

SL
Dev 0.6430 0.7530 0.7180 0.7016
Test 0.6400 0.7190 0.7300 0.6939

SLD
Dev 0.6470 0.7610 0.7360 0.7112
Test 0.6350 0.7180 0.7360 0.6934

HRLCE
Dev 0.7460 0.7590 0.8100 0.7706
Test 0.7220 0.766 0.8180 0.7666

BERT
Dev 0.7138 0.7736 0.8106 0.7638
Test 0.7151 0.7654 0.8157 0.7631

Table 1: Macro-F1 scores and its harmonic means of
the four models

the n hidden states of encoder given the input x.
Self-attention mechanism has been proven to be
effective in helping RNN dealing with dependency
problems (Lin et al., 2017). We use the multi-head
version of the self-attention (Vaswani et al., 2017)
and set the number of channels for each head as 1.
Denote the self-attention module as SA, it takes as
input all the hidden states of the LSTM and sum-
marizes them into a single vector. This process
is represented as hsax = SA(he

x). To predict the
model, we append a fully connected (FC) layer to
project hsax on to the space of emotions. Denote
the FC layer as output. Let oSLx = output(hsax),
then the estimated label ofx is the argmaxi(o

SL
x),

where i is ith value in the vector oSLx .

3.2 SA-LSTM-DeepMoji (SLD)
SLD is the combination of SA and DeepMoji. An
SLD model without the output layer is in fact the
utterance encoder of the proposed HRLCE, which
is illustrated in the right side of Figure 1. De-
note the DeepMoji model as D, when taking as
input x, the output is represented as hdx = D(x).
We concatenate hdx and hsax as the feature rep-
resentation of sequence of x. Same as SL, an
FC layer is added in order to predict the label:
oSLDx = output([hsax ;hdx]).

3.3 HRLCE
Unlike SL and SLD, the input of HRLCE is not
the concatenation of u1, u2, and u3.

Following the annotation in Section 3.1 and 3.2,
an utterance ui is firstly encoded as hsaui

and hdui
.

We use another two layer bidirectional LSTM as
the context RNN, denoted as LSTM c. Its hidden
states are iterated through:

hct = LSTM c([hsaut
;hdut

], hct−1), (3)

where hc0 = 0. The three hidden states hc =
[hc1, h

c
2, h

c
3], are fed as the input to a self-attention

51

layer. The resulting vector SA(hc) is also pro-
jected to the label space by an FC layer.

3.4 BERT

BERT (Section 2.3) can take as input either a sin-
gle sentence or a pair of sentences. A “sentence”
here corresponds to any arbitrary span of contigu-
ous words. In this work, in order to fine-tune
BERT, we concatenate utterances u1 and u2 to
constitute the first sentence of the pair. u3 is the
second sentence of the pair. The reason behind
such setting is that we assume that the target emo-
tion y is directly related to u3, while u1 and u2
are providing additional context information. This
forces the model to consider u3 differently.

4 Experiment

4.1 Data preprocessing

From the training data we notice that emojis are
playing an important role in expressing emotions.
We first use ekphrasis package (Baziotis et al.,
2017) to clean up the utterances. ekphrasis cor-
rects misspellings, handles textual emotions (e.g.
‘:)))’), and normalizes tokens (hashtags, numbers,
user mentions etc.). In order to keep the semantic
meanings of the emojis, we use the emojis pack-
age1 to first convert them into their textual aliases
and then replace the “:” and “ ” with spaces.

4.2 Environment and hyper-parameters

We use PyTorch 1.0 for the deep learning frame-
work, and our code in Python 3.6 can be accessed
in GitHub2. For fair comparisons, we use the same
parameter settings for the common modules that
are shared by the SL, SLD, and HRLCE. The di-
mension of encoder LSTM is set to 1500 per di-
rection; the dimension of context LSTM is set to
800 per direction. We use Adam optimizer with
initial learning rate as 5e-4 and a decay ratio of 0.2
after each epoch. The parameters of DeepMoji are
set to trainable. We use BERT-Large pre-trained
model which contains 24 layers.

happy angry sad others size
Train 14.07% 18.26% 18.11% 49.56% 30160
Dev 5.15% 5.44% 4.54% 84.86% 2755
Test 4.28% 5.57% 4.45% 85.70% 5509

Table 2: Label distribution of train, dev, and test set

1https://pypi.org/project/emoji/
2https://github.com/chenyangh/SemEval2019Task3

According to the description in (CodaLab,
2019), the label distribution for dev and test sets
are roughly 4% for each of the emotions. How-
ever, from the dev set (Table 2) we know that the
proportions of each of the emotion categories are
better described as %5 each, thereby we use %5
as the empirical estimation of distribution P (xte).
We did not use the exact proportion of dev set as
the estimation to prevent the overfitting towards
dev set. The sample distribution of the train set
is used as P (xtr). We use Cross Entropy loss for
all the aforementioned models, and the loss of the
training samples are weighted according to Eq. 1.

4.3 Results and analysis
We run 9-fold cross validation on the training set.
Each iteration, 1 fold is used to prevent the models
from overfitting while the remaining folds are used
for training. Therefore, every model is trained 9
times to ensure stability. The inferences over dev
and test sets are performed on each iteration. We
use the majority voting strategy to merge the re-
sults from the 9 iterations. The results are shown
in Table 1. It shows that the proposed HRLCE
model performs the best. The performance of SLD
and SL are very close to each other, on the dev set,
SLD performs better than SL but they have almost
the same overall scores on the test set. The Macro-
F1 scores of each emotion category are very differ-
ent from each other: the classification accuracy for
emotion Sad is the highest in most of the cases,
while the emotion Happy is the least accurately
classified by all the models. We also noticed that
the performance on the dev set is generally slightly
better than that on the test set.

5 Conclusions

Considering the competitive results generated by
BERT, we combined BERT and our proposed
model in an ensemble and obtained 0.7709 on the
final test leaderboard. From a confusion matrix
of our final submission, we notice that there are
barely miss-classifications among the three cate-
gories (Angry, Sad, and Happy). For example, the
emotion Sad is rarely miss-classified as “Happy”
or “Angry”. Most of the errors correspond to clas-
sifying the emotional utterances in the Others cat-
egory. We think, as future improvement, the mod-
els need to first focus on the binary classifica-
tion “Others” versus “Not-Others”, then the “Not-
Others” are classified in their respective emotion.

52

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

CodaLab. 2019. Semeval19 task 3: Emocon-
text. https://competitions.codalab.
org/competitions/19790#learn_the_
details-data-set-format.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Chenyang Huang, Osmar R. Zaiane, Amine Trabelsi,
and Nouha Dziri. 2018. Automatic dialogue genera-
tion with expressed emotions. In 16th Annual Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL),
New Orleans, USA.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Saif Mohammad, Felipe Bravo-Marquez, Moham-
mad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 task 1: Affect in tweets. In Proceed-
ings of The 12th International Workshop on Seman-
tic Evaluation, pages 1–17. Association for Compu-
tational Linguistics.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Robert Plutchik. 2001. The nature of emotions: Hu-
man emotions have deep evolutionary roots, a fact
that may explain their complexity and provide tools
for clinical practice. American Scientist, 89(4):344–
350.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Thirtieth AAAI
Conference on Artificial Intelligence.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-
Yun Nie. 2015. A hierarchical recurrent encoder-
decoder for generative context-aware query sugges-
tion. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Man-
agement, pages 553–562. ACM.

Masashi Sugiyama and Motoaki Kawanabe. 2012. Ma-
chine learning in non-stationary environments: In-
troduction to covariate shift adaptation. MIT press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Ali Yaddolahi, Ameneh Gholipour Shahraki, and Os-
mar R. Zaiane. 2017. Current state of text sentiment
analysis from opinion to emotion mining. ACM
Computing Surveys, 50(2):25:1–25:33.

53

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 54–63
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against
Immigrants and Women in Twitter

Valerio Basile♦ Cristina Bosco♦ Elisabetta Fersini♥
Debora Nozza♥ Viviana Patti♦ Francisco Rangel♠♣

Paolo Rosso♣ Manuela Sanguinetti♦
♦ Dipartimento di Informatica, Università degli Studi di Torino (Italy)

♣ Università degli Studi di Milano Bicocca (Italy)
♠ Autoritas Consulting (Spain)

♥ PRHLT Research Center, Universitat Politècnica de València (Spain)
♦{name.surname}@unito.it, ♥{name.surname}@unimib.it,

♠francisco.rangel@autoritas.es,
♣prosso@dsic.upv.es

Abstract

The paper describes the organization of the
SemEval 2019 Task 5 about the detection of
hate speech against immigrants and women in
Spanish and English messages extracted from
Twitter. The task is organized in two related
classification subtasks: a main binary subtask
for detecting the presence of hate speech, and
a finer-grained one devoted to identifying fur-
ther features in hateful contents such as the ag-
gressive attitude and the target harassed, to dis-
tinguish if the incitement is against an individ-
ual rather than a group. HatEval has been one
of the most popular tasks in SemEval-2019
with a total of 108 submitted runs for Subtask
A and 70 runs for Subtask B, from a total of 74
different teams. Data provided for the task are
described by showing how they have been col-
lected and annotated. Moreover, the paper pro-
vides an analysis and discussion about the par-
ticipant systems and the results they achieved
in both subtasks.

1 Introduction

Hate Speech (HS) is commonly defined as any
communication that disparages a person or a group
on the basis of some characteristic such as race,
color, ethnicity, gender, sexual orientation, nation-
ality, religion, or other characteristics (Nockleby,
2000). Given the huge amount of user-generated
contents on the Web, and in particular on social
media, the problem of detecting, and therefore
possibly contrasting the HS diffusion, is becom-
ing fundamental, for instance for fighting against
misogyny and xenophobia.
Some key aspects feature online HS, such as vi-
rality, or presumed anonymity, which distinguish
it from offline communication and make it po-
tentially also more dangerous and hurtful. Often

hate speech fosters discrimination against partic-
ular categories and undermines equality, an ever-
lasting issue for each civil society. Among the
mainly targeted categories there are immigrants
and women. For the first target, especially raised
by refugee crisis and political changes occurred in
the last few years, several governments and pol-
icy makers are currently trying to address it, mak-
ing especially interesting the development of tools
for the identification and monitoring such kind of
hate (Bosco et al., 2017). For the second one in-
stead, hate against the female gender is a long-time
and well-known form of discrimination (Manne,
2017). Both these forms of hate content impact
on the development of society and may be con-
fronted by developing tools that automatically de-
tect them.

A large number of academic events and shared
tasks for different languages (i.e. English, Span-
ish, Italian, German, Mexican-Spanish, Hindi)
took place in the very recent past which are cen-
tered on HS and related topics, thus reflecting the
interest by the NLP community. Let us men-
tion the first and second edition of the Workshop
on Abusive Language1 (Waseem et al., 2017), the
First Workshop on Trolling, Aggression and Cy-
berbullying (Kumar et al., 2018), that also in-
cluded a shared task on aggression identification,
the tracks on Automatic Misogyny Identification
(AMI) (Fersini et al., 2018b) and on Authorship
and Aggressiveness Analysis (MEX-A3T) (Car-
mona et al., 2018) proposed at the 2018 edition of
IberEval2, the GermEval Shared Task on the Iden-
tification of Offensive Language (Wiegand et al.,

1http://sites.google.com/view/alw2018/
2http://sites.google.com/view/

ibereval-2018

54

2018), and finally the Automatic Misogyny Identi-
fication task (AMI) (Fersini et al., 2018a) and the
Hate Speech Detection task (HaSpeeDe) (Bosco
et al., 2018) at EVALITA 20183 for investigating
respectively misogyny and HS in Italian.

HatEval consists in detecting hateful contents
in social media texts, specifically in Twitter’s
posts, against two targets: immigrants and women.
Moreover, the task implements a multilingual per-
spective where data for two widespread languages,
English and Spanish, are provided for training and
testing participant systems.
The motivations for organizing HatEval go beyond
the advancement of the state of the art for HS de-
tection for each of the involved languages and tar-
gets. The variety of targets of hate and languages
provides a unique comparative setting, both with
respect to the amount of data collected and an-
notated applying the same scheme, and with re-
spect to the results achieved by participants train-
ing their systems on those data. Such compara-
tive setting may help in shedding new light on the
linguistic and communication behaviour against
these targets, paving the way for the integration of
HS detection tools in several application contexts.
Moreover, the participation of a very large amount
of research groups in this task (see Section 4) has
improved the possibility of in-depth investigation
of the involved phenomena.

The paper is organized as follows. In the next
section, the datasets released to the participants
for training and testing the systems are described.
Section 3 presents the two subtasks and the mea-
sures we exploited in the evaluation. Section 4 re-
ports on approaches and results of the participant
systems. In Section 5, a preliminary analysis of
common errors in top-ranked systems is proposed.
Section 6 concludes the paper.

2 Data

The data have been collected using different gath-
ering strategies. For what concerns the time frame,
tweets have been mainly collected in the time
span from July to September 2018, with the ex-
ception of data with target women. Indeed, the
most part of the training set of tweets against
women has been derived from an earlier collection
carried out in the context of two previous chal-
lenges on misogyny identification (Fersini et al.,
2018a,b). Different approaches were employed

3http://evalita.org

Training Test
Label Imm. Women Imm. Women
Hateful 39.76 44.44 42.00 42.00
Non-Hateful 60.24 55.56 58.00 58.00
Individual Target 5.89 64.94 3.33 80.63
Generic Target 94.11 35.06 96.67 19.37
Aggressive 55.08 30.06 59.84 34.44
Non-Aggressive 44.92 69.94 40.16 65.56

Table 1: Distribution percentages across sets and cate-
gories for English data. The percentages for the target
and aggressiveness categories are computed on the to-
tal number of hateful tweets.

Training Test
Label Imm. Women Imm. Women
Hateful 41.93 41.38 40.50 42.00
Non-Hateful 58.07 58.62 59.50 58.00
Individual Target 13.72 87.58 32.10 94.94
Generic Target 86.28 12.42 67.90 5.06
Aggressive 68.58 87.58 50.31 92.56
Non-Aggressive 31.42 12.42 46.69 7.44

Table 2: Distribution percentages across sets and cate-
gories for Spanish data. The percentages for the target
and aggressiveness categories are computed on the to-
tal number of hateful tweets.

to collect tweets: (1) monitoring potential vic-
tims of hate accounts, (2) downloading the his-
tory of identified haters and (3) filtering Twitter
streams with keywords, i.e. words, hashtags and
stems. Regarding the keyword-driven approach,
we employed both neutral keywords (in line with
the collection strategy applied in Sanguinetti et al.
(2018)), derogatory words against the targets, and
highly polarized hashtags, in order to collect a cor-
pus for reflecting also on the subtle but important
differences between HS, offensiveness (Wiegand
et al., 2018) and stance (Taulé et al., 2017). The
keywords that occur more frequently in the col-
lected tweets are: migrant, refugee, #buildthat-
wall, bitch, hoe, women for English, and inmigra-,
arabe, sudaca, puta, callate, perra for Spanish4.

The entire HatEval dataset is composed of
19,600 tweets, 13,000 for English and 6,600 for
Spanish. They are distributed across the targets as
follows: 9,091 about immigrants and 10,509 about
women (see also Tables 1 for English and 2 for
Spanish). Figures 1 and 2 show the distribution of
the labels in the training and development set data
according to the different targets of hate (woman
and immigrants, respectively).

4The complete set of keywords exploited is avail-
able here: https://github.com/msang/hateval/
blob/master/keyword_set.md

55

2.1 Annotation
The data are released after the annotation pro-
cess, which involved non-trained contributors on
the crowdsourcing platform Figure Eight (F8)5.
The annotation scheme applied to the HatEval data
is a simplified merge of schemes already applied
in the development of corpora for HS detection
and misogyny by the organizers (Fersini et al.,
2018a,b; Bosco et al., 2018), also in the context
of funded projects with focus on the tasks topics6

(Sanguinetti et al., 2018; Poletto et al., 2017). It
includes the following categories:

• HS - a binary value indicating if HS is occur-
ring against one of the given targets (women
or immigrants): 1 if occurs, 0 if not.

• Target Range - if HS occurs (i.e. the value
for the feature HS is 1), a binary value indi-
cating if the target is a generic group of peo-
ple (0) or a specific individual (1).

• Aggressiveness - if HS occurs (i.e. the value
for the feature HS is 1), a binary value in-
dicating if the tweeter is aggressive (1) or
not (0).

We gave the annotators a series of guidelines
in English and Spanish, including the definition
for hate speech against the two targets considered,
the aggressiveness’s definition and a list of ex-
amples7. As requested by the platform, we pro-
vided a restricted set of “correct” answers to test
the reliability of the annotators. We required to
collect at least three independent judgments for
each tweet. We adopted the default F8 settings
for assigning the majority label (relative major-
ity). The F8 reported average confidence (i.e., a
measure combining inter-rater agreement and re-
liability of the contributor) on the English dataset
for the fields HS, TR, AG is 0.83, 0.70 and 0.73
respectively, while for the Spanish dataset is 0.89,
0.47 and 0.47. The use of crowdsourcing has been
successfully already experimented in several tasks
and in HS detection too, both for English (David-
son et al., 2017) and other languages (Sanguinetti
et al., 2018). However, stimulated by the discus-
sion in (Basile et al., 2018), we decided to apply

5http://www.figure-eight.com/
6http://hatespeech.di.unito.it/

ihateprejudice.html.
7Annotation guidelines provided are accessible here:

https://github.com/msang/hateval/blob/
master/annotation_guidelines.md.

Figure 1: Distribution of the annotated categories in
English and Spanish training and development set for
the target women.

Figure 2: Distribution of the annotated categories in
English and Spanish training and development set for
the target immigrants.

a similar methodology by adding two more expert
annotations to all the crowd-annotated data, pro-
vided by native or near-native speakers of British
English and Castilian Spanish, having a long ex-
perience in annotating data for the specific task’s
subject. We assigned the final label for this data
based on majority voting from crowd, expert1, and
expert2. This does not erase the contribution of the
crowd, but hopefully maximises consistency with
the guidelines in order to provide a solid evalua-
tion benchmark for this task.

For data release and distribution each post has
been identified by a newly generated index which
substitutes the original Twitter’s IDs.

2.2 Training, Development and Test Data

Data for training and development were released
according to the distribution described in Figures 1
and 2 across languages (Spanish and English) and
targets (women and immigrants). For what con-
cerns Spanish, the training and development set
includes 5,000 tweets, (3,209 for the target women
and 1,991 for immigrants), while for English it in-

56

cludes 10,000 tweets (5,000 for each target). For
a cross-language perspective see Figures 1 and 2.
It can be also observed that the distribution across
categories is pivoting around the main task cate-
gory, HS, while the other ones more freely vary.
Indeed, in order to provide a more balanced dis-
tribution of the HS and non-HS categories in the
dataset released for Subtask A, we altered the nat-
ural distribution: both in the training and test set,
hateful tweets are over-represented with respect to
the distribution observed in the data we collected
from Twitter8. Instead, the distribution of the other
categories which are relevant for Subtask B is not
constrained, and naturally follows from the selec-
tion of tweets for representing the classes relevant
for the main Subtask A.

As far as the test set is concerned, 3,000 tweets
have been annotated for English, half with target
women and half immigrants, and 1,600 for Span-
ish distributed with the same proportion across the
targets of hate: 1,260 hateful tweets and 1,740
non-hateful tweets for English, 660 hateful tweets
and 940 non-hateful tweets for Spanish.

According to the schema described above, the
format of an annotated tweet in the training and
development set has the following pattern:

ID, Tweet-text, HS, TR, AG

where ID is a progressive number denoting the
tweet within the dataset, Tweet-text is the given
text of the tweet, while the other parts of the pat-
tern, given in the training data and to be predicted
in the test set, are: Hate Speech [HS] (1 or 0), Tar-
get Range [TR] (0 for group or 1 for individual),
and Aggressiveness [AG] (0 or 1). Data included
in the test instead only include ID and Tweet-text,
the annotation of HS, TR and AG to be provided
by participants according to the subtask.
An example of annotation is the following:

7, lol, chop her head off and rape the bitch
https://t.co/ZB8CosmSD8, 1, 1, 1

which has been considered by the annotators as
hateful, against an individual target, and aggres-
sive. The latter category is not necessarily asso-
ciated to HS, as shown in the following exam-
ple, where a hateful content is expressed against
a generic group of people in terms of disrespect
and misogynistic stereotypes rather than using an
aggressive language:

8The whole original annotated dataset was very skewed
towards the non-HS class (only about 10% of the annotated
data contained hate speech).

11, WOW can’t believe all these women riding the
subway today? Shouldn’t these bitches be making

sandwiches LOL #ihatefemales.., 1, 0, 0

3 Task Description

The task is articulated around two related sub-
tasks. The first consists of a basic detection of
HS, where participants are asked to mark the pres-
ence of hateful content. In the second subtask in-
stead fine-grained features of hateful contents are
investigated in order to understand how existing
approaches may deal with the identification of es-
pecially dangerous forms of hate, i.e., those where
the incitement is against an individual rather than
against a group of people, and where an aggres-
sive behaviour of the author can be identified as a
prominent feature of the expression of hate. The
participants will be asked in this latter subtask to
identify if the target of hate is a single human or
a group of persons, and if the message author in-
tends to be aggressive, harmful, or even to incite,
in various forms, to violent acts against the target
(see e.g. (Sanguinetti et al., 2018)).

3.1 Subtask A - Hate Speech Detection
against immigrants and women

Subtask A is a two-class (or binary) classification
task where the system has to predict whether a
tweet in English or in Spanish with a given target
(women or immigrants) contains HS or not. The
following sentences present examples of a hate-
ful and non-hateful tweet where the targets are
women.

[hateful]

[id: 32411] Cállate @ vikidonda y la
gran puta madre que te repario. Que le
diste a la poltica...nada. Basura.
Shut up @ vikidonda you motherfucker. What

did you do for politics... nothing. Trash.9

[non-hateful]

[id: 33033] @ RyanAbe This is

inhumane Karma is a bitch she ll get
around these brainless heartless assholes!

9The target of the misogynistic hate here is Victoria
Donda Prez, an Argentinian woman, human rights activist
and member of the Argentine National Congress (mentioned
in the at-mention of the original tweet).

57

3.2 Subtask B - Aggressive behaviour and
Target Classification

Next, in Subtask B systems are asked to classify
hateful tweets (e.g., tweets where HS against our
targets has been identified) regarding both aggres-
sive attitude and the target harassed. On one hand,
the kind of target must be classified, and the task
is binary:

• Individual: the text includes hateful mes-
sages purposely sent to a specific target.

• Generic: it refers to hateful messages posted
to many potential receivers.

[Individual]:

[id: 4723] @ saima55016154 Come on
box I show you my cock darling

[Generic]:

[id: 5823] Women are equal and deserve
respect. Just kidding, they should suck my
dick.

On the other hand, the aggressive behaviour has
to be identified, then we propose a two-class clas-
sification task also for this feature. A tweet must
be classified as aggressive or not:

[Aggressive]

[id:1890] Sick barstewards! This is what
happens when we put up the refugees
welcome signs! They not only rape our
wives or girlfriends, our daughters but our
ruddy mothers too!! https://t.co/XAYLr6FjNk

[Non-Aggressive]

[id: 945] @EmmanuelMacron Hello??
Stop groping my nation.Schneider: current
migrant crisis represents a plan
orchestrated and prepared for a long time
by international powers to radically alter
Christian and national identity of European
peoples.http

3.3 Evaluation Measures and Baseline
The evaluation of the results considers different
strategies and metrics for Subtasks A and B in or-
der to allow more fine-grained scores.

Subtask A. Systems will be evaluated using
standard evaluation metrics, including Accuracy,
Precision, Recall and macro-averaged F1-score.

In order to provide a measure that is indepen-
dent on the class size, the submissions will be
ranked by macro-averaged F1-score, computed as
described in (Özgür et al., 2005). The metrics will
be computed as follows:

Accuracy =
number of correctly predicted instances

total number of instances
(1)

Precision =
number of correctly predicted instances

number of predicted labels
(2)

Recall =
number of correctly predicted labels
number labels in the gold standard

(3)

F1-score =
2× Precision×Recall

Precision+Recall
(4)

Subtask B. The evaluation of systems partici-
pating to Subtask B will be based on two crite-
ria: (1) partial match and (2) exact match. Re-
garding the partial match, each dimension to be
predicted (HS , TR and AG) will be evaluated in-
dependently from the others using standard evalu-
ation metrics, including accuracy, precision, recall
and macro-averaged F1-score. We will report to
the participants all the measures and a summary of
the performance in terms of macro-averaged F1-
score, computed as follows:

F1-score =
F1(HS) + F1(AG) + F1(TR)

3
(5)

Concerning the exact match, all the dimen-
sions to be predicted will be jointly considered
computing the Exact Match Ratio (Kazawa et al.,
2005). Given the multi-label dataset consisting of
n multi-label samples (xi, Yi), where xi denotes
the i-th instance and Yi represents the correspond-
ing set of labels to be predicted (HS ∈ {0, 1},
TR ∈ {0, 1} and AG ∈ {0, 1}), the Exact Match
Ratio (EMR) will be computed as follows:

EMR =
1

n

n∑

i=1

I(Yi, Zi) (6)

where Zi denotes the set of labels predicted for
the i-th instance and I is the indicator function.
The submissions will be ranked by EMR. This
choice is motivated by the willingness to capture
the difficulty of modeling the entire phenomenon,
and therefore to identify the most dangerous
behaviours against the targets.

Baselines. In order to provide a benchmark
for the comparison of the submitted systems, we

58

considered two different baselines. The first one
(MFC baseline) is a trivial model that assigns the
most frequent label, estimated on the training set,
to all the instances in the test set. The second one
(SVC baseline) is a linear Support Vector Machine
(SVM) based on a TF-IDF representation, where
the hyper-parameters are the default values set by
the scikit-learn Python library (Pedregosa et al.,
2011).

4 Participant Systems and Results

HatEval has been one of the most popular tasks
in SemEval-2019 with a total of 108 submitted
runs for Subtask A and 70 runs for Subtask B. We
received submission from 74 different teams, of
which 22 teams participated to all the subtasks for
the two languages10.

Besides traditional Machine Learning ap-
proaches, it has been observed that more than
half of the participants investigated Deep Learning
models. In particular, most of the systems adopted
models known to be particularly suitable for deal-
ing with texts, from Recurrent Neural Networks to
recently proposed language models (Sabour et al.,
2017; Cer et al., 2018). Consequently, external
resources such as pre-trained Word Embeddings
on tweets have been widely adopted as input fea-
tures. Only a few works deepen the linguistic fea-
tures analysis, probably due to the high expec-
tations on the ability of Deep Learning models
to extract high-level features. Most of the sub-
mitted systems adopted traditional preprocessing
techniques, such as tokenization, lowercase, stop-
words, URLs and punctuation removal. Some par-
ticipants investigated Twitter-driven preprocessing
procedures such as hashtag segmentation, slang
conversion in correct English and emoji transla-
tion into words. It is worth mentioning that the
construction of customized hate lexicons derived
by the detection of language patterns in the train-
ing set has been preferred to the use of external
hate lexicons expressing a more universal knowl-
edge about the hate speech phenomenon, addition-
ally demonstrating the need of developing more
advanced approaches for detecting hate speech to-
wards women and immigrants.

10The evaluation results are published
here: https://docs.google.com/
spreadsheets/d/1wSFKh1hvwwQIoY8_
XBVkhjxacDmwXFpkshYzLx4bw-0/

4.1 Subtask A - Hate Speech Detection
against immigrants and women

We received 69 submissions to the English Sub-
task A, of which 49% and 96% outperformed the
SVC and MFC baseline respectively, in terms of
macro-averaged F1-score. Among the five best
performing teams, only the team of Panaetius,
which obtained the second position (0.571), has
not provided a description of their system. The
higher macro-averaged F1-score (0.651) has been
obtained by the Fermi team. They trained a
SVM model with RBF kernel only on the pro-
vided data, exploiting sentence embeddings from
Google’s Universal Sentence Encoder (Cer et al.,
2018) as features. Both the third, fourth and fifth
ranked teams employ Neural Network models and,
more specifically, Convolutional Neural Networks
(CNNs) and Long Short Term Memory networks
(LSTMs). In particular, the third position has been
obtained by the YNU DYX team, which system
achieved 0.535 macro-averaged F1-score by train-
ing a stacked Bidirectional Gated Recurrent Units
(BiGRUs) (Cho et al., 2014) exploiting fastText
word embeddings (Joulin et al., 2017). Then, the
output of BiGRU is fed as input to the capsule
network (Sabour et al., 2017). The textual pre-
processing has been conducted with standard pro-
cedures, e.g. punctuation removal, tokenization,
contraction normalization, use of tags for hyper-
links, numbers and mentions. The fourth place
has been achieved by the team of alonzorz (0.535),
which used a novel type of CNN called Multi-
ple Choice CNN on the top of contextual embed-
dings. These embeddings have been created with
a model similar to Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2018) trained using 50 million unique tweets
from the Twitter Firehose dataset. The SINAI-
DL team ranked fifth with a F1-score of 0.519.
They employ a LSTM model based on the pre-
trained GloVe Word Embeddings from Stanford-
NLP group (Pennington et al., 2014). Since Deep
Learning models require a large amount of data for
training, they perform data augmentation through
the use of paraphrasing tools. For preprocessing
the texts in the specific Twitter domain, they con-
vert all the mentions to a common tag and they
tokenized hashtags according to the Camel Case
procedure, i.e. the practice of writing phrases such
that each word or abbreviation in the middle of the
phrase begins with a capital letter, with no inter-

59

vening spaces or punctuation.

For Subtask A in Spanish, we received 39 sub-
missions of which 51% and 100% outperformed
the SVC and MFC baseline respectively, in terms
of macro-averaged F1-score. The Atalaya and
MineriaUNAM teams obtained the best macro-
averaged F1-score of 0.73, both taking advan-
tage of Support Vector Machines. The Atalaya
team studied several sophisticated systems, how-
ever the best performances have been obtained by
a linear-kernel SVM trained on a text representa-
tion composed of bag-of-words, bag-of-characters
and tweet embeddings, computed from fastText
sentiment-oriented word vectors. The system pro-
posed by the MineriaUNAM team is based on a
linear-kernel SVM. The study has focused on a
combinatorial framework used to search for the
best feature configuration among a combination
of linguistic patterns features, a lexicon of aggres-
sive words and different types of n-grams (char-
acters, words, POS tags, aggressive words, word
jumps, function words and punctuation symbols).
The MITRE team has achieved the performance of
0.729, presenting a novel method for adapting pre-
trained BERT models to Twitter data using a cor-
pus of tweets collected during the same time pe-
riod of the HatEval training dataset. The CIC-2
team achieved 0.727 with a word-based represen-
tation by combining Logistic Regression, Multi-
nomial Naı̈ve Bayes, Classifiers Chain and Major-
ity Voting. They used TF and TF/IDF after remov-
ing HTML tags, punctuation marks and special
characters, converting slang and short forms into
correct English words and stemming. The partic-
ipants did not use external resources and trained
their systems only with the provided data. Finally,
the GSI-UPM team obtained the macro-averaged
F1-score of 0.725 with a system where the linear-
kernel SVM has been trained on an automated se-
lection of linguistic and semantic features, senti-
ment indicators, word embeddings, topic model-
ing features, and word and character TF-IDF n-
grams.

Table 3 shows basic statistics computed both
for Subtasks A and B, with respect to the rela-
tive performance measures. The statistics com-
prise mean, standard deviation (StdDev), mini-
mum, maximum, median and the first and third
quartiles (Q1 and Q3). Concerning Subtask A,
we notice that the maximum value in Spanish
(0.7300) is higher than the English one (0.6510),

Subtask A Subtask B
English Spanish English Spanish

Min. 0.3500 0.4930 0.1590 0.4280
Q1 0.4050 0.6665 0.2790 0.5820
Mean 0.4484 0.6821 0.3223 0.6013
Median 0.4500 0.7010 0.3120 0.6160
StdDev 0.0569 0.0521 0.0890 0.0662
Q3 0.4880 0.7165 0.3570 0.6365
Max. 0.6510 0.7300 0.5700 0.7050
SVC Baseline 0.451 0.701 0.308 0.588
MFC Baseline 0.367 0.370 0.580 0.605

Table 3: Basic statistics of the results for the partici-
pating system and baselines in Subtask A and Subtask
B expressed in terms of macro-averaged F1-score and
EMR respectively.

while the difference is even higher (23 points)
when considering the mean value, from 0.6821
to 0.4484. On the other hand, the variability is
very similar between English (0.0569) and Span-
ish (0.0521).

4.2 Subtask B - Aggressive behaviour and
Target Classification

For Subtask B in English, we received 39 submis-
sions, of which no system has been able to out-
perform the MFC baseline, which achieved 0.580
of EMR, while 61% outperformed the SVC base-
line. Among the five best performing teams, only
the team of scmhl5, which obtained the third posi-
tion (0.483), has not provided us with a description
of the system. The higher EMR result has been
obtained by the LT3 team with a value of 0.570.
They considered a supervised classification-based
approach with SVM models which combines a va-
riety of standard lexical and syntactic features with
specific features for capturing offensive language
exploiting external lexicons. The second position
has been obtained by the CIC-1 team. The team
achieved 0.568 in EMR with Logistic Regression
and Classifier Chains. They trained their model
only with the provided data, with a word-based
representation and without external resources. The
only preprocessing action was stemming and stop
words removal. The fourth position was obtained
by the team named The Titans. They achieved
0.471 of EMR with LSTM and TF/IDF-based
Multilayer Perceptron. To represent the docu-
ments, they used the tweet words after removing
links, mentions and spaces. They also tokenized
hashtags into word tokens. The MITRE team ex-
ploits the same approach used for participating in
Subtask A, obtaining 0.399 EMR. It is worth men-

60

tioning that, despite the fact that the baseline could
not be overcome in terms of EMR, the five first
performing systems obtained higher F-values. For
example, while the baseline obtained 0.421, the
scmhl5 (0.632) and the MITRE team (0.614) sys-
tems obtained about 20 points over it.

For Subtask B in Spanish, we received 23 sub-
missions of which 52% and 70% outperformed the
SVC and MFC baseline respectively, in terms of
EMR. The first position has been achieved by the
CIC-2 team with 0.705 in terms of EMR, propos-
ing the same approach for Subtask A in Span-
ish. The CIC-1 and MITRE teams, described pre-
viously, achieved the second and third positions
with 0.675 and 0.675 in EMR respectively. The
fourth position was obtained by the Atalaya team
that achieved 0.657 EMR by extending the pre-
viously presented approach for Subtask A to a
5-way classification problem for all the possible
label combinations. Finally, the team of Oscar-
Garibo achieved the fifth position (0.6444) with
Support Vector Machines and statistical embed-
dings to represent the texts. The proposed method,
a variation of LDSE (Rangel et al., 2016), consists
of finding thresholds on the frequencies of use of
the different terms in the corpora depending on the
class they belong to. In this subtask, the correla-
tion between EMR and macro-averaged F1-score
is more homogeneous than in English. However,
it is worth mentioning the case of the CIC-1 team
since its macro-averaged F1-score decreases with
respect to the EMR and is 10 points lower than the
rest of the best five performing teams.

The comparative results between all the per-
forming teams in the two languages show inter-
esting insights (see Table 3). Firstly, the best re-
sult is much higher in the case of Spanish (0.7050)
than in English (0.5700) in more than 13 points.
In the case of the fifth best results, the differ-
ence is much higher (0.2454), from 0.3990 in En-
glish to 0.6440 in Spanish. The average value
changes from 0.3223 in English to 0.6013 in Span-
ish, with a difference of 28 points. The variability
is also higher in English (0.0890) with respect to
the value in Spanish (0.0662).

We can also derive further conclusions by com-
paring the statistics of the two Subtasks. Looking
at the median, it is possible to notice that in both
languages, the performances obtained on Subtask
B are lower than the performances of Subtask A,
with a difference between Subtask A and B of 14

and 8 points for English and Spanish respectively.
This suggests that participant systems found much
harder to predict the aggressiveness and targets
than just the presence of hate speech. The quartile
Q1 has highlighted that for the English language
75% of the systems obtained a score higher than
0.41 and 0.28 for Subtasks A and B, in particular
50 out of 69 for Subtask A and 31 out of 41 for
Subtask B. While Q3 shows that 25% of the sys-
tems achieved a score value higher than 0.49 and
0.36 for Subtasks A and B, in particular 18 out of
69 for Subtask A and 11 out of 41 for Subtask B.
For the Spanish language, the value of Q1 indi-
cates that 75% of the systems have a score higher
than 0.67 and 0.58 for Subtasks A and B, in par-
ticular 30 out of 39 for Subtask A and 17 out of 23
for Subtask B. Observing the quartile Q3, it is pos-
sible to observe that 25% of the systems achieved
a value higher than 0.72 and 0.64 for Subtasks A
and B, in particular 10 out of 39 for Subtask A and
6 out of 23 for Subtask B. Moreover, it is worth
mentioning that the smaller the standard deviation
the closer are the data to the mean value, highlight-
ing that the Subtask B has shown high variability
in terms of results than Subtask A. This statistics
remarks again the difficulties of addressing Sub-
task B compared to Subtask A.

5 Error Analysis

In order to gain deeper insight into the results of
the HatEval evaluation, we conducted a first error
analysis experiment. For both languages, we se-
lected the three top-ranked systems and checked
the instances in the test set that were wrongly la-
beled by all three of them.

In the English Subtask A, the three top systems
(Fermi, Panaetius, and YNU DYX) predicted the
same wrong labels 569 times out of 2,971 (19.1%).
In the Spanish Subtask A, the three top systems
(Atalaya, mineriaUNAM, and MITRE) predicted
the same wrong labels 234 times out of 1,600
(14.6%). The results showing the percentages by
wrongly assigned labels are summarized in Ta-
ble 4.

Subtask Errors Predicted 1 Predicted 0
EN A 569 507 (89.1%) 62 (10.9%)
ES A 234 178 (76.1%) 56 (23.9%)

Table 4: Number of instances mislabeled by all the
three top-ranked systems, broken down by wrongly as-
signed label.

61

The common errors are highly skewed towards
the false positives. However, the unbalance is
stronger for English (89.1% false positives) than
for Spanish (76% false positives).

Two English examples, respectively a false pos-
itive and a false negative, are:

[id: 30249] My mom FaceTimed me to
show off new shoes she got and was like “no
cabe duda que soy una Bitch” i love her

[id: 30542] @ JohnnyMalc

@ OMGTheMess There are NO IN-
NOCENT people in detention centres
#SendThemBack

The false positive contains a swear word (“Bitch”)
used in a humorous, not offensive context, which
is a potential source of confusion for a classifier.
The false negative is a hateful message towards
migrants, but phrased in a slightly convoluted way,
in particular due to the use of negation (“no inno-
cent people”).

Similarly, a false positive and a false negative in
Spanish:

[id: 33119] Soy un sudaca haciendo su-
dokus https://t.co/vA7nQsfm85
I am a sudaca doing sudokus

[id: 34455] Estoy escuchando una puta
canción y la pelotuda de Demi Lovato se
pone a hablar en el medio. CANTÁ Y
CALLATE LA BOCA.
I am listening to a fucking song and that asshole

Demi Lovato starts talking in the middle of it.

SING AND SHUT YOUR MOUTH.

Like in the English example, in this false positive
a negative word (“sudaca”) is used humorously,
for the purpose of a wordplay. In the false neg-
ative, there a misogynistic message is expressed,
although covertly, implying that the target should
“shut up and sing”.

6 Conclusion

The very high number of participating teams at
HatEval 2019 confirms the growing interest of the
community around abusive language in social me-
dia and hate speech detection in particular. The
presence of this task at SemEval 2019 was in-
deed very timely and the multilingual perspec-
tive we applied by developing data in two dif-
ferent widespread languages, English and Span-
ish, contributed to include and raise interest in

a wider community of scholars. 38 teams sent
their system reports to describe the approaches and
the details of their participation to the task, con-
tributing in shedding light on this difficult task.
Some of the HatEval participants also participated
to the OffensEval11, another task related to abu-
sive language identification, but with an accent on
the different notion of offensiveness, an orthogo-
nal notion that can characterize also expressions
that cannot be featured as hate speech12. Overall,
results confirm that hate speech detection against
women and immigrants in micro-blogging texts is
challenging, with a large room for improvement.
We hope that the dataset made available as part of
the shared task will foster further research on this
topic, including its multilingual perspective.

Acknowledgments

Valerio Basile, Cristina Bosco, Viviana Patti
and Manuela Sanguinetti are partially sup-
ported by Progetto di Ateneo/CSP 2016 (Im-
migrants, Hate and Prejudice in Social Media,
S1618 L2 BOSC 01).

References
Valerio Basile, Nicole Novielli, Danilo Croce,

Francesco Barbieri, Malvina Nissim, and Viviana
Patti. 2018. Sentiment polarity classification at
evalita: Lessons learned and open challenges. IEEE
Transactions on Affective Computing.

Cristina Bosco, Felice Dell’Orletta, Fabio Poletto,
Manuela Sanguinetti, and Maurizio Tesconi. 2018.
Overview of the EVALITA 2018 Hate Speech De-
tection Task. In Proceedings of the Sixth Evalua-
tion Campaign of Natural Language Processing and
Speech Tools for Italian. Final Workshop (EVALITA
2018). CEUR-WS.org.

Cristina Bosco, Patti Viviana, Marcello Bogetti,
Michelangelo Conoscenti, Giancarlo Ruffo,
Rossano Schifanella, and Marco Stranisci. 2017.
Tools and Resources for Detecting Hate and Prej-
udice Against Immigrants in Social Media. In
Proceedings of First Symposium on Social Interac-
tions in Complex Intelligent Systems (SICIS), AISB
Convention 2017, AI and Society.

Miguel Ángel Álvarez Carmona, Estefanı́a Guzmán-
Falcón, Manuel Montes-y-Gómez, Hugo Jair Es-
calante, Luis Villaseñor Pineda, Verónica Reyes-
Meza, and Antonio Rico Sulayes. 2018. Overview

11https://competitions.codalab.org/
competitions/20011

12See (Sanguinetti et al., 2018) for a deeper reflection on
hate speech and offensiveness.

62

of MEX-A3T at IberEval 2018: Authorship and Ag-
gressiveness Analysis in Mexican Spanish Tweets.
In Proceedings of the Third Workshop on Evalua-
tion of Human Language Technologies for Iberian
Languages (IberEval 2018). CEUR-WS.org.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734.

Thomas Davidson, Dana Warmsley, Michael W. Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
CoRR, abs/1703.04009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Elisabetta Fersini, Debora Nozza, and Paolo Rosso.
2018a. Overview of the EVALITA 2018 Task on
Automatic Misogyny Identification (AMI). In Pro-
ceedings of Sixth Evaluation Campaign of Natural
Language Processing and Speech Tools for Italian.
Final Workshop (EVALITA 2018). CEUR-WS.org.

Elisabetta Fersini, Paolo Rosso, and Maria Anzovino.
2018b. Overview of the Task on Automatic Misog-
yny Identification at IberEval 2018. In Proceed-
ings of the Third Workshop on Evaluation of Hu-
man Language Technologies for Iberian Languages
(IberEval 2018). CEUR-WS.org.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, volume 2, pages 427–431.

Hideto Kazawa, Tomonori Izumitani, Hirotoshi Taira,
and Eisaku Maeda. 2005. Maximal margin labeling
for multi-topic text categorization. In Advances in
Neural Information Processing Systems, pages 649–
656.

Ritesh Kumar, Atul Kr. Ojha, Marcos Zampieri, and
Shervin Malmasi, editors. 2018. Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018). ACL.

Kate Manne. 2017. Down Girl. The Logic of Misogyny.
Oxford University Press.

John T. Nockleby. 2000. Hate speech. Encyclope-
dia of the American Constitution (2nd ed., edited by
Leonard W. Levy, Kenneth L. Karst et al., New York:
Macmillan, 2000), pages 1277–1279.

Arzucan Özgür, Levent Özgür, and Tunga Güngör.
2005. Text categorization with class-based and
corpus-based keyword selection. In International
Symposium on Computer and Information Sciences,
pages 606–615. Springer.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Fabio Poletto, Marco Stranisci, Manuela Sanguinetti,
Viviana Patti, and Cristina Bosco. 2017. Hate
Speech Annotation: Analysis of an Italian Twit-
ter Corpus. In Proceedings of the Fourth Italian
Conference on Computational Linguistics (CLiC-it
2017). CEUR-WS.org.

Francisco Rangel, Paolo Rosso, and Marc Franco-
Salvador. 2016. A low dimensionality represen-
tation for language variety identification. In 17th
International Conference on Intelligent Text Pro-
cessing and Computational Linguistics, CICLing.
Springer-Verlag, LNCS.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hin-
ton. 2017. Dynamic routing between capsules. In
Advances in neural information processing systems,
pages 3856–3866.

Manuela Sanguinetti, Fabio Poletto, Cristina Bosco,
Viviana Patti, and Marco Stranisci. 2018. An Italian
Twitter Corpus of Hate Speech against Immigrants.
In Proceedings of the 11th Language Resources and
Evaluation Conference 2018.

Mariona Taulé, Maria Antònia Martı́, Francisco
M. Rangel Pardo, Paolo Rosso, Cristina Bosco, and
Viviana Patti. 2017. Overview of the task on stance
and gender detection in tweets on catalan indepen-
dence. In Proceedings of the Second Workshop on
Evaluation of Human Language Technologies for
Iberian Languages (IberEval 2017). CEUR-WS.org.

Zeerak Waseem, Wendy Hui Kyong Chung, Dirk Hovy,
and Joel Tetreault, editors. 2017. Proceedings of the
First Workshop on Abusive Language Online. ACL.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval 2018, 14th
Conference on Natural Language Processing (KON-
VENS 2018).

63

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 64–69
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Atalaya at SemEval 2019 Task 5: Robust Embeddings for Tweet
Classification

Juan Manuel Pérez
Universidad de Buenos Aires

CONICET
jmperez@dc.uba.ar

Franco M. Luque
Universidad Nacional de Córdoba

CONICET
francolq@famaf.unc.edu.ar

Abstract
In this article, we describe our participa-
tion in HatEval, a shared task aimed at the
detection of hate speech against immigrants
and women. We focused on Spanish sub-
tasks, building from our previous experiences
on sentiment analysis in this language. We
trained linear classifiers and Recurrent Neural
Networks, using classic features, such as bag-
of-words, bag-of-characters, and word embed-
dings, and also with recent techniques such as
contextualized word representations. In partic-
ular, we trained robust task-oriented subword-
aware embeddings and computed tweet rep-
resentations using a weighted-averaging strat-
egy. In the final evaluation, our systems
showed competitive results for both Spanish
subtasks ES-A and ES-B, achieving the first
and fourth places respectively.

1 Introduction

Hate speech against women, immigrants, and
many other groups is a pervasive phenomenon on
the Internet. On the early days of the World Wide
Web, many academics adventured that prejudices
and hatred would be removed in this space by the
dissolution of identities (Lévy, 2001; Rheingold,
1993). Twenty years after this hypothesis, we can
say that it has not been the case. The prevalence of
racism in the “World White Web” has been stud-
ied in a number of works (Adams and Roscigno,
2005; Kettrey and Laster, 2014) and so has been
the misogyny in the virtual world (Filipovic, 2007;
Mantilla, 2013).

Racist and sexist discourse are a constant in so-
cial media, but peaks are documented after “trig-
ger” events, such as murders with religious or po-
litical reasons (Burnap and Williams, 2015). Most
social media companies are concerned about this
issue and take actions against it; nonetheless, most
of the efforts still need human intervention, mak-
ing this task very expensive. Therefore, reducing

human intervention is vital in order to have effec-
tive tools to avoid the escalation of hate speech.

HatEval (Basile et al., 2019) is a SemEval-2019
shared task aimed at the detection of hate speech
towards immigrants and women in tweets. It com-
prises two subtasks, with datasets in English (EN)
and Spanish (ES) for both of them, giving a total of
four subtasks. Subtask A is the binary classifica-
tion of tweets into hateful or not hateful (HS). Sub-
task B is a triple binary classification task where,
in addition to HS, tweets are classified into aggres-
sive or not aggressive (AG), and targets of hate
speech are classified into single humans or groups
of persons (TR).

In this article, we present our participation in
HatEval as team Atalaya. We focused our efforts
on subtask A for Spanish (ES-A) but also worked
at subtask B in Spanish (ES-B) and subtask A in
English (EN-A). Our systems are based on our
participation in the polarity classification task of
Spanish tweets TASS 2018 (Sentiment Analysis
at SEPLN) (Martı́nez-Cámara et al., 2018; Luque
and Pérez, 2018).

To represent tweets, we experimented with
a mixed approach of bag-of-words, bag-of-
characters and tweet embeddings, which were cal-
culated from word vectors using different aver-
aging schemes. We used fastText (Bojanowski
et al., 2016) to get subword-aware representations
specifically trained for sentiment analysis tasks.

These word representations are robust to noise
since they can be computed for unseen words by
using subword embeddings. Moreover, we trained
them using a database of 90M tweets from various
Spanish-speaking countries, giving wide domain-
specific vocabulary coverage. We achieved ad-
ditional robustness by doing preprocessing us-
ing several text-normalization and noise-reduction
techniques.

Also, we experimented with ELMo (Peters

64

et al., 2018), a deep contextualized word rep-
resentation that has drawn a lot of attention in
the last months. Unlike fastText, ELMo returns
context-dependent embeddings from a multi-layer
bidirectional-LSTM language model. These rep-
resentations improved the state-of-the-art of sev-
eral NLP tasks.

For the neural approach, we used bidirectional
LSTMs to combine the word embeddings. We
also did experiments that mix sequential models
with complementary representations such as bag-
of-words.

The rest of the paper is as follows. Next Sec-
tion presents the primary tools we used to build
our systems. Section 3 presents the configuration
and development of both linear and neural models.
Section 4 briefly shows our results in the competi-
tion, and Section 5 concludes the work with some
observations about our experience.

1.1 Previous Work

The detection of hate speech is a sentence classifi-
cation task quite related to sentiment analysis and
has been studied for several social media networks
(Thelwall, 2008; Pak and Paroubek, 2010; Saleem
et al., 2017). Regarding the detection of hateful
content, Greevy and Smeaton (2004) used bag-of-
words and SVMs to detect racist content in web
pages. Following a similar approach, Warner and
Hirschberg (2012) used unigrams and Brown clus-
ters with SVMs to detect anti-semitic messages on
Twitter.

Waseem and Hovy (2016) annotated a corpus
and used character n-grams to detect hateful com-
ments, and Badjatiya et al. (2017) used the same
dataset to train deep learning models and fine-
tuned embeddings along with Gradient Boosted
Trees. Zhang et al. (2018) trained a deep neural
network combining CNNs with Gated-recurrent
units (Cho et al., 2014), outperforming previous
systems in several datasets.

Anzovino et al. (2018) collected a corpus of
misogynous tweets and proposed a taxonomy to
distinguish them into different categories. The au-
thors proposed a number of different techniques
to classify them, showing that simple approaches
(as using linear models along with token n-grams)
achieve competitive performance on small-sized
datasets.

Regarding shared tasks, Fersini et al. (2018a)
presented a challenge on misogyny detection on

Twitter –both in Spanish and English– whereas
Fersini et al. (2018b) posed a similar challenge but
in Italian and English. Bosco et al. (2018) pro-
posed an automatic detection contest over Twitter
posts and Facebook comments, comprising gen-
eral hate speech.

2 Techniques and Resources

2.1 Preprocessing

Preprocessing is crucial in NLP applications, es-
pecially when working with noisy user-generated
data. Here, we followed Luque and Pérez (2018),
defining two levels of preprocessing: basic and
sentiment-oriented preprocessing. We used one or
the other, depending on the configuration.

Basic tweet preprocessing includes tokeniza-
tion, replacement of handles, URLs, and e-mails,
and shortening of repeated letters.

Sentiment-oriented preprocessing includes low-
ercasing, removal of punctuation, stopword,
and numbers, lemmatization –using TreeTagger
(Schmid, 1995)– and negation handling. For nega-
tion handling, we followed a simple approach: We
find negation words and add the prefix ’NOT ’
to the following tokens. Up to three tokens are
negated, or less if a non-word token is found.

2.2 Bags of Words and Characters

The simplest approach considered to build tweet
representations was bag-of-words encoding. A
bag-of-words (BoW) builds feature vectors for
each token seen in training data. For a partic-
ular tweet, its BoW vector contains the number
of occurrences of each token on it, resulting in
high-dimensional and sparse vectors. Variations
of BoW include counting not only single tokens
but also n-grams of tokens, binarizing counts, and
limiting the number of features.

Character usage in tweets may also hold use-
ful information for sentiment analysis. Charac-
ter n-grams –such as the presence and repetition
of uppercase letters, emoticons, and exclamation
marks– may indicate a strong presence of senti-
ment of some kind, where others may indicate a
more formal writing style, and therefore an ab-
sence of sentiment.

To capture this information, we considered a
bag-of-characters (BoC) representation that en-
codes counts of character n-grams for some values
of n. These vectors are computed from original

65

texts of tweets, with no preprocessing at all. BoCs
have the same variants and parameters as BoWs.

2.3 Word Embeddings
We used fastText, a subword-aware embeddings
library (Bojanowski et al., 2016) to get context-
independent word representations. Instead of
using publicly available pre-trained vectors, we
trained our own embeddings on a dataset of ∼
90 million tweets from various Spanish-speaking
countries. We prepared two versions of the data:
one using only basic preprocessing, and the other
using sentiment-oriented preprocessing (with the
exception of excepting lemmatization). For these
two datasets, skip-gram embeddings were trained
using different parameter configurations, includ-
ing a number of dimensions, size of word and sub-
word n-grams, and size of context window.

2.4 Tweet Embeddings
Linear combinations were used to compute a rep-
resentation for a single tweet. We followed two
simple approaches: plain average and weighted
average. In the second case, we used a scheme
that resembles Smooth Inverse Frequency (SIF)
(Arora et al., 2017), inspired by TF-IDF reweight-
ing. Each word w is weighted with a

a+p(w) , where
p(w) is the word unigram probability, and a is a
smoothing hyper-parameter. Big values of a mean
more smoothing towards plain averaging.

2.5 Context-Dependent Embeddings
After the great leap forward that represented
context-independent word embeddings, a new
wave came in the last years. Instead of having vec-
tors trained for each word, context-dependent rep-
resentations are generated for each token given a
sentence. For instance, McCann et al. (2017) used
a deep LSTM encoder for Machine Translation to
generate context-aware vectors.

ELMo (Peters et al., 2018) is one of these
context-dependent approaches and is based on a
deep bidirectional language model (biLM). The
architecture of the language model consists of L
layers of bidirectional LSTMs, plus a context-
independent token representation. Hence, for each
token in a sequence, we get 2L + 1 vector repre-
sentations. To obtain a final vector for each token,
the authors suggest collapsing the layers into vec-
tors by means of a linear combination.

In this work, we used the implementation and
pre-trained models from Che et al. (2018). The

Spanish model was trained with L = 2 layers and
1024 dimensions, and the linear combination was
done using a simple average.

3 Models

In this section, we describe the models we used in
the competition.

3.1 Linear Classifiers

The first set of models we trained were simple
classifying models implemented with scikit-learn
(Pedregosa et al., 2011).

We started from the optimal configuration from
Luque and Pérez (2018), that combines bag-of-
words (BoW), bag-of-characters (BoC) and tweet
embeddings as follows:

• BoW: All unigrams and bigrams of words,
with binarized counts and TF-IDF re-
weighting. For the Spanish training dataset,
this encoding gives 53504 sparse features.

• BoC: All n-grams of characters for n ≤
5, with binarized counts and TF-IDF re-
weighting. For the Spanish training dataset,
it gives 226156 sparse features.

• Tweet embeddings: Computed from fastText
sentiment-oriented word vectors of 50 di-
mensions. Weighted averaging was done as
described in Section 2.4, with a smoothing
value of a = 0.1.

Here, the only parameters specifically optimized
using the HatEval development set were the n-
gram ranges considered for BoW and BoC.

Using this vectorial representation we trained
logistic regressions and linear-kernel SVMs with
different hyperparameter values. The best results
are shown in the first block of Tab. 1, as LR0 and
SVM0.

Next, to confirm the relevance of each of the
three components, we performed ablation tests for
each of them. Results are displayed as SVMBoW ,
SVMBoC and SVMemb in Tab. 1. Drops in the
performance show the relevance of all compo-
nents, especially for BoW and BoC.

Next, we tried adding tweet representations
computed from ELMo vectors. Full tweet vec-
tors were obtained by doing simple un-weighted
averaging. PCA was optionally used to reduce the
dimension of final vectors. The best results were

66

Model Acc F1 (avg)
LR0 0.84 0.84
SVM0 0.85 0.85
SVMBoW 0.81 0.81
SVMBoC 0.81 0.81
SVMemb 0.84 0.84
SVMELMo 0.84 0.84

Table 1: Experiments with logistic regressions (LRs)
and SVMs on the Spanish development set. Models
are described in Section 3.1. The best result is in bold.

obtained using PCA to reduce from the original
1024 to 100 dimensions.

Results are shown as SVMELMo in Tab. 1. It
can be seen that, under this configuration, we are
not able to improve our results using ELMo.

To participate in the Spanish subtask B (ES-B)
we used a very naive approach. We didn’t develop
or tune a specific system for this subtask but in-
stead used the same system and configuration that
was found optimal for subtask A. To do this, we
first mapped the triple classification problem to a
5-way classification problem for all the possible
label combinations:

HS AG TR
0 0 0
1 0 0
1 0 1
1 1 0
1 1 1

Then, we simply trained the classifier using the
Spanish subtask B training dataset.

3.2 Neural Models

The second set of models we trained are neural
models. We trained Recurrent Neural Networks
(RNNs) using pre-trained context-dependent rep-
resentations for Spanish.

The first model considered was a bidirectional
LSTM with a dense layer on top, consuming
ELMo vectors; we call this model LSTM-ELMo.
Also, we tried another model by adding a second
input consisting of a bag-of-words, as illustrated in
Figure 1. We call this model LSTM-ELMo+BoW.
Using fastText embeddings (of dimension 300 and
context window 5) instead of BoW was considered
as suggested by Peters et al. (2018) but discarded
as it had no positive impact in performance (in the
development dataset).

The biLSTM layer consists of 256 units. The
bag-of-words has the 3500 most-frequent n-grams
(having document-frequency less than 0.65), fol-

lowed by a 512-unit dense layer. The two last
dense layers have 64 neurons.

We used Keras (Chollet et al., 2015) to imple-
ment and train our models. Adam (Kingma and
Ba, 2014) was the chosen optimizer, with lr =
35 ∗ 10−5 and decay = 0.01. To regularize our
models, we applied dropout with keep-prob of 0.2
on the first layer, and 0.45 on the second, and we
also early-stopped the training monitoring the per-
formance on the development dataset. The hy-
perparameters were chosen from a small random
search, as training ELMo is computationally ex-
pensive.

ELMo

BiLSTM

BoW

Dense

Dense Dense

Sigmoid

Figure 1: The LSTM-ELMo+BoW architecture. ELMo
and BoW boxes represent inputs.

4 Results

Table 2 displays the evaluation results for the
three classifiers trained for subtask A: SVM0,
and both neural models LSTM-ELMo and LSTM-
ELMo+BoW. For Spanish, the best performing
system was SVM0. Despite its simplicity, it
ranked first in terms of average F1 in the official
results.

Among the neural models, LSTM-ELMo+BoW
performed best, and ranked in position 17 for
Spanish in terms of average F1.1 We can observe
that LSTM-ELMo+BoW performs better on the de-
velopment set, although its performance decreases
sharply in the test set. In spite of the applied
regularization, we might have incurred in overfit-
ting during model selection (Cawley and Talbot,
2010) as the chosen model has higher variance

1Results shown in Tab. 2 differ from the ones in the leader-
board as we couldn’t exactly reproduce the experiments.

67

Spanish English
Dev Test Dev Test

Classifier Acc F1 (avg) Acc F1 (avg) Acc F1 (avg) Acc F1 (avg)
SVM0 0.850 0.850 0.731 0.730 — — — —
LSTM-ELMo 0.820 0.816 0.732 0.721 0.705 0.695 0.508 0.471
LSTM-ELMo+BoW 0.824 0.821 0.719 0.712 0.743 0.738 0.502 0.461

Table 2: Our evaluation results for subtask A on the development and test sets for Spanish and English. F1 (avg)
is the average on positive and negative classes.

than LSTM-ELMo. This last model achieved sim-
ilar results to SVM0. This difference between the
models was not seen in English.

For the Spanish subtask B (ES-B), the same
SVM0 system was used, achieving an average F1
of 0.758 and an EMR score of 0.657 over the test
set (fourth place in terms of EMR).

5 Conclusion and future work

As in our previous experience with sentiment anal-
ysis, we found that linear models can be a match
for neural models. Moreover, this time our SVM
ranked in the first place in one of the subtasks.

We believe that –for this kind of challenges with
small-sized datasets– preprocessing techniques,
data normalization and robustness play a stronger
role than model design and hyperparameter tun-
ing. On the other hand, deep neural models are
highly expressive and prone to overfitting, requir-
ing being extremely careful with regularization.

Acknowledgments

We are grateful to Pablo Brusco for providing us
with helpful comments. This material is based
upon work supported by the Air Force Office of
Scientific Research under award number FA9550-
18-1-0026, and also by a research grant from Se-
CyT, Universidad Nacional de Córdoba.

References
Josh Adams and Vincent J Roscigno. 2005. White

supremacists, oppositional culture and the world
wide web. Social Forces, 84(2):759–778.

Maria Anzovino, Elisabetta Fersini, and Paolo Rosso.
2018. Automatic identification and classification of
misogynistic language on twitter. In International
Conference on Applications of Natural Language to
Information Systems, pages 57–64. Springer.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-

beddings. In International Conference on Learning
Representations.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Cristina Bosco, Dell’Orletta Felice, Fabio Poletto,
Manuela Sanguinetti, and Tesconi Maurizio. 2018.
Overview of the evalita 2018 hate speech detection
task. In EVALITA 2018-Sixth Evaluation Campaign
of Natural Language Processing and Speech Tools
for Italian, volume 2263, pages 1–9. CEUR.

Pete Burnap and Matthew L Williams. 2015. Cyber
hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Gavin C Cawley and Nicola LC Talbot. 2010. On over-
fitting in model selection and subsequent selection
bias in performance evaluation. Journal of Machine
Learning Research, 11(Jul):2079–2107.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning

68

phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

François Chollet et al. 2015. Keras. https://
keras.io.

Elisabetta Fersini, Maria Anzovino, and Paolo Rosso.
2018a. Overview of the task on automatic misog-
yny identification at ibereval. In Proceedings
of the Third Workshop on Evaluation of Hu-
man Language Technologies for Iberian Languages
(IberEval 2018), co-located with 34th Conference of
the Spanish Society for Natural Language Process-
ing (SEPLN 2018). CEUR Workshop Proceedings.
CEUR-WS. org, Seville, Spain.

Elisabetta Fersini, Debora Nozza, and Paolo Rosso.
2018b. Overview of the evalita 2018 task on au-
tomatic misogyny identification (ami). Proceed-
ings of the 6th evaluation campaign of Natural
Language Processing and Speech tools for Italian
(EVALITA’18), Turin, Italy. CEUR. org.

Jill Filipovic. 2007. Blogging while female: How
internet misogyny parallels real-world harassment.
Yale JL & Feminism, 19:295.

Edel Greevy and Alan F Smeaton. 2004. Classifying
racist texts using a support vector machine. In Pro-
ceedings of the 27th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 468–469. ACM.

Heather Hensman Kettrey and Whitney Nicole Laster.
2014. Staking territory in the “world white web”
an exploration of the roles of overt and color-blind
racism in maintaining racial boundaries on a popular
web site. Social Currents, 1(3):257–274.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Pierre Lévy. 2001. Cyberculture, volume 4. U of Min-
nesota Press.

Franco M. Luque and Juan Manuel Pérez. 2018. Ata-
laya at TASS 2018: Sentiment analysis with tweet
embeddings and data augmentation. In Proceedings
of TASS 2018: Workshop on Semantic Analysis at
SEPLN, TASS@SEPLN 2018, co-located with 34nd
SEPLN Conference (SEPLN 2018), Sevilla, Spain,
September 18th, 2018., pages 29–35.

Karla Mantilla. 2013. Gendertrolling: Misogyny
adapts to new media. Feminist Studies, 39(2):563–
570.

Eugenio Martı́nez-Cámara, Yudivián Almeida Cruz,
Manuel C. Dı́az-Galiano, Suilan Estévez Velarde,
Miguel Á. Garcı́a-Cumbreras, Manuel Garcı́a-Vega,
Yoan Gutiérrez Vázquez, Arturo Montejo Ráez,
André Montoyo Guijarro, Rafael Muñoz Guillena,
Alejandro Piad Morffis, and Julio Villena-Román.
2018. Overview of TASS 2018: Opinions, health

and emotions. In Proceedings of TASS 2018:
Workshop on Semantic Analysis at SEPLN (TASS
2018), volume 2172 of CEUR Workshop Proceed-
ings, Sevilla, Spain. CEUR-WS.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6294–6305.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREC, volume 10, pages 1320–1326.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

Howard Rheingold. 1993. The virtual commu-
nity: Finding commection in a computerized world.
Addison-Wesley Longman Publishing Co., Inc.

Haji Mohammad Saleem, Kelly P Dillon, Susan Be-
nesch, and Derek Ruths. 2017. A web of hate: Tack-
ling hateful speech in online social spaces. arXiv
preprint arXiv:1709.10159.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to german. In In
Proceedings of the ACL SIGDAT-Workshop, pages
47–50.

Mike Thelwall. 2008. Social networks, gender, and
friending: An analysis of myspace member profiles.
Journal of the American Society for Information Sci-
ence and Technology, 59(8):1321–1330.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the world wide web. In Proceed-
ings of the Second Workshop on Language in Social
Media, pages 19–26. Association for Computational
Linguistics.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on twitter using a
convolution-gru based deep neural network. In Eu-
ropean Semantic Web Conference, pages 745–760.
Springer.

69

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 70–74
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Fermi at SemEval-2019 Task 5: Using Sentence Embeddings to identify
Hate Speech against Immigrants and Women on Twitter
Vijayasaradhi Indurthi1,3, Bakhtiyar Syed1, Manish Shrivastava1

Nikhil Chakravartula3, Manish Gupta1,2, Vasudeva Varma1

1 IIIT Hyderabad, India
2 Microsoft, India
3 Teradata, India

1{vijaya.saradhi, syed.b}@research.iiit.ac.in
1{m.shrivastava, manish.gupta, vv}@iiit.ac.in

2gmanish@microsoft.com 3nikhil.chakravartula@teradata.com

Abstract

This paper describes our system (Fermi) for
Task 5 of SemEval-2019: HatEval: Multilin-
gual Detection of Hate Speech Against Immi-
grants and Women on Twitter. We participated
in the subtask A for English and ranked first
in the evaluation on the test set. We evaluate
the quality of multiple sentence embeddings
and explore multiple training models to eval-
uate the performance of simple yet effective
embedding-ML combination algorithms. Our
team - Fermi’s model achieved an accuracy of
65.00% for English language in task A. Our
models, which use pretrained Universal En-
coder sentence embeddings for transforming
the input and SVM (with RBF kernel) for clas-
sification, scored first position (among 68) in
the leaderboard on the test set for Subtask A in
English language. In this paper we provide a
detailed description of the approach, as well as
the results obtained in the task.

1 Introduction

Microblogging platforms like Twitter provide
channels to exchange ideas using short messages
called tweets. While such a platform can be used
for constructive ideas, a small group of people can
propagate their notions including hatred against an
individual, or a group or a race to the entire world
in a few seconds. This necessitates the need to
come up with computational methods to identify
hate speech in user generated content.

Using computational methods to identify of-
fense, aggression and hate speech in user gener-
ated content has been gaining attention in the re-
cent years as evidenced in (Waseem et al., 2017;
Davidson et al., 2017; Malmasi and Zampieri,
2017; Kumar et al., 2018) and workshops such as
Abusive Language Workshop (ALW) 1 and Work-

1https://sites.google.com/view/alw2018

shop on Trolling, Aggression and Cyberbullying
(TRAC) 2.

2 Related Work

In this section we briefly describe other work in
this area.

A few of the early works related to hate speech
detection employed the use of features like bag of
words, word and character n-grams with relatively
off-the-shelf machine learning classifiers for de-
tection (Dinakar et al., 2011; Waseem and Hovy,
2016; Nobata et al., 2016). Deep learning methods
for hate speech detection were used by Badjatiya
et al. (2017) wherein the authors experimented
with a combination of multiple deep learning ar-
chitectures along with randomly initialized word
embeddings learned by Long Short Term Memory
(LSTM) models.

Papers published in the last two years include
the surveys by (Schmidt and Wiegand, 2017) and
(Fortuna and Nunes, 2018), the paper by (David-
son et al., 2017) which presented the Hate Speech
Detection dataset used in (Malmasi and Zampieri,
2017) and a few other recent papers such as (ElSh-
erief et al., 2018; Gambäck and Sikdar, 2017;
Zhang et al., 2018).

A proposal of typology of abusive language
sub-tasks is presented in (Waseem et al., 2017).
For studies on languages other than English see
(Su et al., 2017) on Chinese and (Fišer et al.,
2017) on Slovene. Finally, for recent discussion
on identifying profanity versus hate speech see
(Malmasi and Zampieri, 2018). This work high-
lighted the challenges of distinguishing between
profanity, and threatening language which may not
actually contain profane language.

Some of the similar and related previous work-
shops are Text Analytics for Cybersecurity and

2https://sites.google.com/view/trac1

70

Online Safety (TA-COS) 3, Abusive Language
Workshop 4, and TRAC 5. Related shared tasks
include GermEval (Wiegand et al., 2018) and
TRAC (Kumar et al., 2018).

3 Methodology

In this paper, we make use of several word embed-
ding and sentence embedding methods.

3.1 Word Embeddings

Word embeddings have been widely used in mod-
ern Natural Language Processing applications as
they provide vector representation of words. They
capture the semantic properties of words and
the linguistic relationship between them. These
word embeddings have improved the performance
of many downstream tasks across many do-
mains like text classification, machine comprehen-
sion etc. (Camacho-Collados and Pilehvar, 2018).
Multiple ways of generating word embeddings ex-
ist, such as Neural Probabilistic Language Model
(Bengio et al., 2003), Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), and more
recently ELMo (Peters et al., 2018).

These word embeddings rely on the distribu-
tional linguistic hypothesis. They differ in the
way they capture the meaning of the words or the
way they are trained. Each word embedding cap-
tures a different set of semantic attributes which
may or may not be captured by other word em-
beddings. In general, it is difficult to predict the
relative performance of these word embeddings on
downstream tasks. The choice of which word em-
beddings should be used for a given downstream
task depends on experimentation and evaluation.

3.2 Sentence Embeddings

While word embeddings can produce representa-
tions for words which can capture the linguistic
properties and the semantics of the words, the idea
of representing sentences as vectors is an impor-
tant and open research problem (Conneau et al.,
2017).

Finding a universal representation of a sentence
which works with a variety of downstream tasks
is the major goal of many sentence embedding
techniques. A common approach of obtaining a
sentence representation using word embeddings is

3http://ta-cos.org/
4https://sites.google.com/site/alw2018
5https://sites.google.com/view/trac1

by the simple and naı̈ve way of using the sim-
ple arithmetic mean of all the embeddings of the
words present in the sentence. Smooth inverse fre-
quency, which uses weighted averages and modi-
fies it using Singular Value Decomposition (SVD),
has been a strong contender as a baseline over tra-
ditional averaging technique (Arora et al., 2016).
Other sentence embedding techniques include p-
means (Rücklé et al., 2018), InferSent (Conneau
et al., 2017), SkipThought (Kiros et al., 2015),
Universal Encoder (Cer et al., 2018).
Task A (Hate speech detection) is a two-class clas-
sification where systems have to predict whether a
tweet in English or in Spanish with a given target
(women or immigrants) is hateful or not hateful.
TASK B (Aggressive behavior and Target Clas-
sification) is a two-class classification where sys-
tems have to classify hateful tweets (e.g., tweets
where Hate Speech against women or immigrants
has been identified) as aggressive or not aggres-
sive, and second to identify the target harassed as
individual or generic (i.e. single human or group).

We formulate sub-task A of HatEval as a text
classification tasks. In this paper, we evaluate var-
ious pre-trained sentence embeddings for identify-
ing the offense, hate and aggression. We train mul-
tiple models using different machine learning al-
gorithms to evaluate the efficacy of each of the pre-
trained sentence embeddings for the downstream
task. We observe that there is a class label imbal-
ance in the dataset. To prevent any bias induced
due to imbalanced classes, we process the trans-
formed training dataset using SMOTE (Chawla
et al., 2002) which synthetically oversamples data
and ensures that all the classes have same number
of instances.

In the following, we discuss various popular
sentence embedding methods in brief.

• InferSent (Conneau et al., 2017) is a set
of embeddings proposed by Facebook. In-
ferSent embeddings have been trained using
the popular language inference corpus. Given
two sentences the model is trained to infer
whether they are a contradiction, a neutral
pairing, or an entailment. The output is an
embedding of 4096 dimensions.

• Concatenated Power Mean Word Embedding
(Rücklé et al., 2018) generalizes the concept
of average word embeddings to power mean
word embeddings. The concatenation of dif-
ferent types of power mean word embeddings

71

Model LR RF SVM-RBF XGB
Acc. F1 Acc. F1 Acc. F1 Acc. F1

InferSent 64.26 64.34 63.96 62.45 57.13 41.54 71.18 71.21
Concat-p mean 63.35 63.43 67.17 65.83 63.86 60.98 71.08 70.67
Lexical Vectors 67.27 66.61 67.97 67.09 58.53 46.03 67.87 68.31
Universal Encoder 70.58 70.63 70.48 70.05 57.13 41.54 64.26 64.34
ELMo 69.68 69.78 65.96 65.12 68.37 68.44 66.57 66.59
NNLM 66.57 66.46 64.36 62.83 65.56 63.88 66.37 65.74

Table 1: Dev Set Accuracy and Macro-F1 scores(in percentage) for Sub-Task A- English.

considerably closes the gap to state-of-the-
art methods mono-lingually and substantially
outperforms many complex techniques cross-
lingually.

• Lexical Vectors (Salle and Villavicencio,
2018) is another word embedding similar
to fastText with slightly modified objective.
FastText (Bojanowski et al., 2016) is another
word embedding model which incorporates
character n-grams into the skipgram model of
Word2Vec and considers the sub-word infor-
mation.

• The Universal Sentence Encoder (Cer et al.,
2018) encodes text into high dimensional
vectors. The model is trained and optimized
for greater-than-word length text, such as
sentences, phrases or short paragraphs. It is
trained on a variety of data sources and a va-
riety of tasks with the aim of dynamically ac-
commodating a wide variety of natural lan-
guage understanding tasks. The input is vari-
able length English text and the output is a
512 dimensional vector.

• Deep Contextualized Word Representations
(ELMo) (Peters et al., 2018) use language
models to get the embeddings for individ-
ual words. The entire sentence or paragraph
is taken into consideration while calculating
these embedding representations. ELMo uses
a pre-trained bi-directional LSTM language
model. For the input supplied, the ELMo ar-
chitecture extracts the hidden state of each
layer. A weighted sum is computed of the
hidden states to obtain an embedding for each
sentence.

Using each of the sentence embeddings we have
mentioned above, we seek to evaluate how each
of them performs when the vector representations

are supplied for classification with various off-the-
shelf machine learning algorithms. For each of
the evaluation tasks, we perform experiments us-
ing each of the sentence embeddings mentioned
above and show our classification performance on
the dev set given by the task organizers.

Using each of the sentence embeddings we have
mentioned above, we seek to evaluate how each
of them performs when the vector representations
are supplied for classification with various off-the-
shelf machine learning algorithms. For each of
the evaluation tasks, we perform experiments us-
ing each of the sentence embeddings mentioned
above and show our classification performance on
the dev set given by the task organizers.

4 Dataset

The data collection methods used to compile the
dataset used in HatEval is described in (Basile
et al., 2019). We did not use any external datasets
to augment the data for training our models.

5 Results and Analysis

The official test set results scored on CodaLab
have been presented below in Table 2.

System F1 (macro) Accuracy
Universal Encoder 0.65 0.65

Table 2: Results for Sub-task A using Universal En-
coder Sentence embeddings with SVM classifier using
RBF kernel.

Our results on the different algorithms from the
ones stated above have been mentioned henceforth
and described in Table 1.

As described in Table 1 the dev set macro-
averaged F-1 and accuracy is given for the task
A-English.

72

We notice the best performance for task A in
English on the official test set was bagged by
the model which used pretrained Universal sen-
tence embeddings using SVM with RBF ker-
nel. However, pretrained Infersent embeddings
along with XGBoost algorithm outperformed ev-
ery other combination on the dev test. This can be
probably due to the difference between the distri-
butions in the dev and the official test sets.

Overall, this work shows how different set
of pretrained embeddings trained from different
state-of-the-art architectures and methods when
used with simple machine learning classifiers per-
form very well in the classification task of catego-
rizing text as offensive or not.

6 Conclusions and Future Work

It is also important to note that the experiments are
performed using the default parameters, so there
is much scope for improvement with a lot of fine-
tuning, which we plan on considering for future
research purposes. Further, we can explore aug-
menting data from other similar shared tasks to
achieve better performance.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016.

A simple but tough-to-beat baseline for sentence em-
beddings.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jose Camacho-Collados and Mohammad Taher Pile-
hvar. 2018. From word to sense embeddings: A sur-
vey on vector representations of meaning. Journal
of Artificial Intelligence Research, 63:743–788.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
In Eleventh International AAAI Conference on Web
and Social Media.

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbully-
ing. In The Social Mobile Web, pages 11–17.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

73

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive
Language Detection in Online User Content. In
Proceedings of the 25th International Conference
on World Wide Web, pages 145–153. International
World Wide Web Conferences Steering Committee.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Andreas Rücklé, Steffen Eger, Maxime Peyrard, and
Iryna Gurevych. 2018. Concatenated p-mean word
embeddings as universal cross-lingual sentence rep-
resentations. arXiv preprint arXiv:1803.01400.

Alexandre Salle and Aline Villavicencio. 2018. In-
corporating subword information into matrix fac-
torization word embeddings. arXiv preprint
arXiv:1805.03710.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In SRW@HLT-NAACL.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

74

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 75–86
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval-2019 Task 6:
Identifying and Categorizing Offensive Language in Social Media

(OffensEval)

Marcos Zampieri,1 Shervin Malmasi,2 Preslav Nakov,3
Sara Rosenthal,4 Noura Farra,5 Ritesh Kumar6

1University of Wolverhampton, UK, 2Amazon Research, USA
3Qatar Computing Research Institute, HBKU, Qatar

4IBM Research, USA, 5Columbia University, USA, 6Bhim Rao Ambedkar University, India
m.zampieri@wlv.ac.uk

Abstract

We present the results and the main findings of
SemEval-2019 Task 6 on Identifying and Cate-
gorizing Offensive Language in Social Media
(OffensEval). The task was based on a new
dataset, the Offensive Language Identification
Dataset (OLID), which contains over 14,000
English tweets. It featured three sub-tasks. In
sub-task A, the goal was to discriminate be-
tween offensive and non-offensive posts. In
sub-task B, the focus was on the type of of-
fensive content in the post. Finally, in sub-task
C, systems had to detect the target of the offen-
sive posts. OffensEval attracted a large num-
ber of participants and it was one of the most
popular tasks in SemEval-2019. In total, about
800 teams signed up to participate in the task,
and 115 of them submitted results, which we
present and analyze in this report.

1 Introduction

Recent years have seen the proliferation of offen-
sive language in social media platforms such as
Facebook and Twitter. As manual filtering is very
time consuming, and as it can cause post-traumatic
stress disorder-like symptoms to human annota-
tors, there have been many research efforts aim-
ing at automating the process. The task is usually
modeled as a supervised classification problem,
where systems are trained on posts annotated with
respect to the presence of some form of abusive
or offensive content. Examples of offensive con-
tent studied in previous work include hate speech
(Davidson et al., 2017; Malmasi and Zampieri,
2017, 2018), cyberbulling (Dinakar et al., 2011),
and aggression (Kumar et al., 2018). Moreover,
given the multitude of terms and definitions used
in the literature, some recent studies have investi-
gated the common aspects of different abusive lan-
guage detection sub-tasks (Waseem et al., 2017;
Wiegand et al., 2018).

Interestingly, none of this previous work has stud-
ied both the type and the target of the offensive
language, which is our approach here. Our task,
OffensEval1, uses the Offensive Language Identi-
fication Dataset (OLID)2 (Zampieri et al., 2019),
which we created specifically for this task. OLID
is annotated following a hierarchical three-level
annotation schema that takes both the target and
the type of offensive content into account. Thus,
it can relate to phenomena captured by previous
datasets such as the one by Davidson et al. (2017).
Hate speech, for example, is commonly under-
stood as an insult targeted at a group, whereas cy-
berbulling is typically targeted at an individual.

We defined three sub-tasks, corresponding to
the three levels in our annotation schema:3

Sub-task A: Offensive language identification
(104 participating teams)

Sub-task B: Automatic categorization of offense
types (71 participating teams)

Sub-task C: Offense target identification (66 par-
ticipating teams)

The remainder of this paper is organized as
follows: Section 2 discusses prior work, includ-
ing shared tasks related to OffensEval. Section 3
presents the shared task description and the sub-
tasks included in OffensEval. Section 4 includes
a brief description of OLID based on (Zampieri
et al., 2019). Section 5 discusses the participating
systems and their results in the shared task. Fi-
nally, Section 6 concludes and suggests directions
for future work.

1http://competitions.codalab.org/
competitions/20011

2http://scholar.harvard.edu/malmasi/
olid

3A total of 800 teams signed up to participate in the task,
but only 115 teams ended up submitting results eventually.

75

2 Related Work

Different abusive and offense language identifica-
tion problems have been explored in the literature
ranging from aggression to cyber bullying, hate
speech, toxic comments, and offensive language.
Below we discuss each of them briefly.

Aggression identification: The TRAC shared
task on Aggression Identification (Kumar et al.,
2018) provided participants with a dataset contain-
ing 15,000 annotated Facebook posts and com-
ments in English and Hindi for training and val-
idation. For testing, two different sets, one from
Facebook and one from Twitter, were used. The
goal was to discriminate between three classes:
non-aggressive, covertly aggressive, and overtly
aggressive. The best-performing systems in this
competition used deep learning approaches based
on convolutional neural networks (CNN), recur-
rent neural networks, and LSTM (Aroyehun and
Gelbukh, 2018; Majumder et al., 2018).

Bullying detection: There have been several stud-
ies on cyber bullying detection. For example, Xu
et al. (2012) used sentiment analysis and topic
models to identify relevant topics, and Dadvar
et al. (2013) used user-related features such as the
frequency of profanity in previous messages.

Hate speech identification: This is the most stud-
ied abusive language detection task (Kwok and
Wang, 2013; Burnap and Williams, 2015; Djuric
et al., 2015). More recently, Davidson et al. (2017)
presented the hate speech detection dataset with
over 24,000 English tweets labeled as non offen-
sive, hate speech, and profanity.

Offensive language: The GermEval4 (Wiegand
et al., 2018) shared task focused on offensive lan-
guage identification in German tweets. A dataset
of over 8,500 annotated tweets was provided for a
course-grained binary classification task in which
systems were trained to discriminate between of-
fensive and non-offensive tweets. There was also
a second task where the offensive class was sub-
divided into profanity, insult, and abuse. This is
similar to our work, but there are three key differ-
ences: (i) we have a third level in our hierarchy,
(ii) we use different labels in the second level, and
(iii) we focus on English.

4http://projects.fzai.h-da.de/iggsa/

Toxic comments: The Toxic Comment Classifica-
tion Challenge5 was an open competition at Kag-
gle, which provided participants with comments
from Wikipedia organized in six classes: toxic,
severe toxic, obscene, threat, insult, identity hate.
The dataset was also used outside of the compe-
tition (Georgakopoulos et al., 2018), including as
additional training material for the aforementioned
TRAC shared (Fortuna et al., 2018).

While each of the above tasks tackles a par-
ticular type of abuse or offense, there are many
commonalities. For example, an insult targeted at
an individual is commonly known as cyberbulling
and insults targeted at a group are known as hate
speech. The hierarchical annotation model pro-
posed in OLID (Zampieri et al., 2019) and used in
OffensEval aims to capture this. We hope that the
OLID’s dataset would become a useful resource
for various offensive language identification tasks.

3 Task Description and Evaluation

The training and testing material for OffensEval
is the aforementioned Offensive Language Identi-
fication Dataset (OLID) dataset, which was built
specifically for this task. OLID was annotated us-
ing a hierarchical three-level annotation model in-
troduced in Zampieri et al. (2019). Four examples
of annotated instances from the dataset are pre-
sented in Table 1. We use the annotation of each
of the three layers in OLID for a sub-task in Of-
fensEval as described below.

3.1 Sub-task A: Offensive language
identification

In this sub-task, the goal is to discriminate be-
tween offensive and non-offensive posts. Offen-
sive posts include insults, threats, and posts con-
taining any form of untargeted profanity. Each in-
stance is assigned one of the following two labels.

• Not Offensive (NOT): Posts that do not con-
tain offense or profanity;

• Offensive (OFF): We label a post as offensive
if it contains any form of non-acceptable lan-
guage (profanity) or a targeted offense, which
can be veiled or direct. This category in-
cludes insults, threats, and posts containing
profane language or swear words.

5
http://kaggle.com/c/jigsaw-toxic-comment-classification-challenge

76

Tweet A B C

@USER He is so generous with his offers. NOT — —
IM FREEEEE!!!! WORST EXPERIENCE OF MY FUCKING LIFE OFF UNT —
@USER Fuk this fat cock sucker OFF TIN IND
@USER Figures! What is wrong with these idiots? Thank God for @USER OFF TIN GRP

Table 1: Four tweets from the OLID dataset, with their labels for each level of the annotation model.

3.2 Sub-task B: Automatic categorization of
offense types

In sub-task B, the goal is to predict the type of
offense. Only posts labeled as Offensive (OFF)
in sub-task A are included in sub-task B. The two
categories in sub-task B are the following:

• Targeted Insult (TIN): Posts containing an in-
sult/threat to an individual, group, or others
(see sub-task C below);

• Untargeted (UNT): Posts containing non-
targeted profanity and swearing. Posts with
general profanity are not targeted, but they
contain non-acceptable language.

3.3 Sub-task C: Offense target identification

Sub-task C focuses on the target of offenses. Only
posts that are either insults or threats (TIN) arwe
considered in this third layer of annotation. The
three labels in sub-task C are the following:

• Individual (IND): Posts targeting an individ-
ual. It can be a a famous person, a named
individual or an unnamed participant in the
conversation. Insults/threats targeted at indi-
viduals are often defined as cyberbullying.

• Group (GRP): The target of these offensive
posts is a group of people considered as a
unity due to the same ethnicity, gender or sex-
ual orientation, political affiliation, religious
belief, or other common characteristic. Many
of the insults and threats targeted at a group
correspond to what is commonly understood
as hate speech.

• Other (OTH): The target of these offensive
posts does not belong to any of the previous
two categories, e.g., an organization, a situa-
tion, an event, or an issue.

NO
T

OF
F

Predicted label

NOT

OFF
Tr

ue
 la

be
l

552 68

95 145

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 1: Example of a confusion matrix provided in
the results package for team NULI, which is the best-
performing team for sub-task A.

3.4 Task Evaluation

Given the strong imbalance between the number
of instances in the different classes across the three
tasks, we used the macro-averaged F1-score as the
official evaluation measure for all three sub-tasks.

At the end of the competition, we provided the
participants with packages containing the results
for each of their submissions, including tables and
confusion matrices, and tables with the ranks list-
ing all teams who competed in each sub-task. For
example, the confusion matrix for the best team in
sub-task A is shown in Figure 1.

3.5 Participation

The task attracted nearly 800 teams and 115 of
them submitted their results. The teams that sub-
mitted papers for the SemEval-2019 proceedings
are listed in Table 2.6

6ASE-CSE is for Amrita School of Engineering - CSE.

77

Team System Description Paper

Amobee (Rozental and Biton, 2019)
ASE-CSE (Sridharan and T, 2019)
bhanodaig (Kumar et al., 2019)
BNU-HKBU ... (Wu et al., 2019)
CAMsterdam (Aglionby et al., 2019)
CN-HIT-MI.T (Yaojie et al., 2019)
ConvAI (Pavlopoulos et al., 2019)
DA-LD-Hildesheim (Modha et al., 2019)
DeepAnalyzer (la Pea and Rosso, 2019)
Duluth (Pedersen, 2019)
Emad (Kebriaei et al., 2019)
Embeddia (Pelicon et al., 2019)
Fermi (Indurthi et al., 2019)
Ghmerti (Doostmohammadi et al., 2019)

HAD-Tübingen (Bansal et al., 2019)
HHU (Oberstrass et al., 2019)
Hope (Patras et al., 2019)
INGEOTEC (Graff et al., 2019)
JCTICOL (HaCohen-Kerner et al., 2019)

jhan014 (Han et al., 2019)
JTML (Torres and Vaca, 2019)
JU ETCE 17 21 (Mukherjee et al., 2019)
KMI Coling (Rani and Ojha, 2019)
LaSTUS/TALN (Altin et al., 2019)
LTL-UDE (Aggarwal et al., 2019)
MIDAS (Mahata et al., 2019)
Nikolov-Radivchev (Nikolov and Radivchev, 2019)
NIT Agartala NLP Team (Swamy et al., 2019)
NLP (Kapil et al., 2019)
NLP@UIOWA (Rusert and Srinivasan, 2019)
NLPR@SRPOL (Seganti et al., 2019)
nlpUP (Mitrović et al., 2019)
NULI (Liu et al., 2019)
SINAI (Plaza-del Arco et al., 2019)

SSN NLP (Thenmozhi et al., 2019)
Stop PropagHate (Fortuna et al., 2019)
Pardeep (Singh and Chand, 2019)
techssn (S et al., 2019)
The Titans (Garain and Basu, 2019)
TUVD (Shushkevich et al., 2019)
TüKaSt (Kannan and Stein, 2019)
UBC-NLP (Rajendran et al., 2019)
UTFPR (Paetzold, 2019)
UHH-LT (Wiedemann et al., 2019)
UM-IU@LING (Zhu et al., 2019)
USF (Goel and Sharma, 2019)
UVA Wahoos (Ramakrishnan et al., 2019)
YNU-HPCC (Zhou et al., 2019)
YNUWB (Wang et al., 2019)
Zeyad (El-Zanaty, 2019)

Table 2: The teams that participated in OffensEval and
submitted system description papers.

4 Data

Below, we briefly describe OLID, the dataset used
for our SemEval-2019 task 6. A detailed descrip-
tion of the data collection process and annotation
is presented in Zampieri et al. (2019).

OLID is a large collection of English tweets an-
notated using a hierarchical three-layer annotation
model. It contains 14,100 annotated tweets di-
vided into a training partition of 13,240 tweets and
a testing partition of 860 tweets. Additionally, a
small trial dataset of 320 tweets was made avail-
able before the start of the competition.

A B C Train Test Total

OFF TIN IND 2,407 100 2,507
OFF TIN OTH 395 35 430
OFF TIN GRP 1,074 78 1,152
OFF UNT — 524 27 551
NOT — — 8,840 620 9,460

All 13,240 860 14,100

Table 3: Distribution of label combinations in OLID.

The distribution of the labels in OLID is shown
in Table 3. We annotated the dataset using the
crowdsourcing platform Figure Eight.7 We en-
sured the quality of the annotation by only hiring
experienced annotators on the platform and by us-
ing test questions to discard annotators who did
not achieve a certain threshold. All the tweets
were annotated by two people. In case of dis-
agreement, a third annotation was requested, and
ultimately we used a majority vote. Examples of
tweets from the dataset with their annotation labels
are shown in Table 1.

5 Results

The models used in the task submissions ranged
from traditional machine learning, e.g., SVM and
logistic regression, to deep learning, e.g., CNN,
RNN, BiLSTM, including attention mechanism,
to state-of-the-art deep learning models such as
ELMo (Peters et al., 2018) and BERT (Devlin
et al.). Figure 2 shows a pie chart indicating the
breakdown by model type for all participating sys-
tems in sub-task A. Deep learning was clearly
the most popular approach, as were also ensem-
ble models. Similar trends were observed for sub-
tasks B and C.

7https://www.figure-eight.com/

78

Machine
Learning

17%

Other
6%

N/A
7%

RNN, GRU
10%

CNN
11%

LSTM,
BiLSTM

13%
BERT
8%

Ensemble
20%

DL Other
8%

Deep
Learning

70%

Sub-task A Models

Machine Learning Other N/A
RNN, GRU CNN LSTM, BiLSTM
BERT Ensemble DL Other

Figure 2: Pie chart showing the models used in sub-
task A. ‘N/A’ indicates that the system did not have a
description.

Some teams used additional training data, explor-
ing external datasets such as Hate Speech Tweets
(Davidson et al., 2017), toxicity labels (Thain
et al., 2017), and TRAC (Kumar et al., 2018).
Moreover, seven teams indicated that they used
sentiment lexicons or a sentiment analysis model
for prediction, and two teams reported the use of
offensive word lists. Furthermore, several teams
used pre-trained word embeddings from FastText
(Bojanowski et al., 2016), from GloVe, includ-
ing Twitter embeddings from GloVe (Pennington
et al., 2014) and from word2vec (Mikolov et al.,
2013; Godin et al., 2015).

In addition, several teams used techniques for
pre-processing the tweets such as normalizing the
tokens, hashtags, URLs, retweets (RT), dates,
elongated words (e.g., “Hiiiii” to “Hi”, partially
hidden words (“c00l” to “cool”). Other techniques
include converting emojis to text, removing un-
common words, and using Twitter-specific tok-
enizers, such as the Ark Tokenizer8 (Gimpel et al.,
2011) and the NLTK TweetTokenizer,9 as well as
standard tokenizers (Stanford Core NLP (Manning
et al., 2014), and the one from Keras.10 Approxi-
mately a third of the teams indicated that they used
one or more of these techniques.

8http://www.cs.cmu.edu/˜ark/TweetNLP
9http://www.nltk.org/api/nltk.

tokenize.html
10http://keras.io/preprocessing/text/

The results for each of the sub-tasks are shown in
Table 4. Due to the large number of submissions,
we only show the F1-score for the top-10 teams,
followed by result ranges for the rest of the teams.
We further include the models and the baselines
from (Zampieri et al., 2019): CNN, BiLSTM, and
SVM. The baselines are choosing all predictions
to be of the same class, e.g., all offensive, and
all not offensive for sub-task A. Table 5 shows
all the teams that participated in the tasks along
with their ranks in each task. These two tables
can be used together to find the score/range for a
particular team.

Below, we describe the overall results for each
sub-task, and we describe the top-3 systems.

5.1 Sub-task A

Sub-task A was the most popular sub-task with
104 participating teams. Among the top-10 teams,
seven used BERT (Devlin et al.) with varia-
tions in the parameters and in the pre-processing
steps. The top-performing team, NULI, used
BERT-base-uncased with default-parameters, but
with a max sentence length of 64 and trained for
2 epochs. The 82.9% F1 score of NULI is 1.4
points better than the next system, but the differ-
ence between the next 5 systems, ranked 2-6, is
less than one point: 81.5%-80.6%. The top non-
BERT model, MIDAS, is ranked sixth. They used
an ensemble of CNN and BLSTM+BGRU, to-
gether with Twitter word2vec embeddings (Godin
et al., 2015) and token/hashtag normalization.

5.2 Sub-task B

A total of 76 teams participated in sub-task B,
and 71 of them had also participated in sub-task
A. In contrast to sub-task A, where BERT clearly
dominated, here five of the top-10 teams used
an ensemble model. Interestingly, the best team,
jhan014, which was ranked 76th in sub-task A,
used a rule-based approach with a keyword filter
based on a Twitter language behavior list, which
included strings such as hashtags, signs, etc.,
achieving an F1-score of 75.5%. The second and
the third teams, Amobee and HHU, used ensem-
bles of deep learning (including BERT) and non-
neural machine learning models. The best team
from sub-task A also performed well here, ranked
4th (71.6%), thus indicating that overall BERT
works well for sub-task B as well.

79

Sub-task A Sub-task B Sub-task C
Team Ranks F1 Range Team Ranks F1 Range Team Ranks F1 Range

1 0.829 1 0.755 1 0.660
2 0.815 2 0.739 2 0.628
3 0.814 3 0.719 3 0.626
4 0.808 4 0.716 4 0.621
5 0.807 5 0.708 5 0.613
6 0.806 6 0.706 6 0.613
7 0.804 7 0.700 7 0.591
8 0.803 8 0.695 8 0.588
9 0.802 9 0.692 9 0.587

CNN 0.800 CNN 0.690 10 0.586
10 0.798 10 0.687 11-14 .571-.580

11-12 .793-.794 11-14 .680-.682 15-18 .560-.569
13-23 .782-.789 15-24 .660-.671 19-23 .547-.557
24-27 .772-.779 BiLSTM 0.660 24-29 .523-.535
28-31 .765-.768 25-29 .640-.655 30-33 .511-.515
32-40 .750-.759 SVM 0.640 34-40 .500-.509

BiLSTM 0.750 30-38 .600-.638 41-47 .480-.490
41-45 .740-.749 39-49 .553-.595 CNN 0.470
46-57 .730-.739 50-62 .500-.546 BiLSTM 0.470
58-63 .721-.729 ALL TIN 0.470 SVM 0.450
64-71 .713-.719 63-74 .418-.486 46-60 .401-.476
72-74 .704-.709 75 0.270 61-65 .249-.340
SVM 0.690 76 0.121 All IND 0.210
75-89 .619-.699 All UNT 0.100 All GRP 0.180
90-96 .500-.590 ALL OTH 0.090

97-103 .422-.492
All NOT 0.420
All OFF 0.220

104 0.171

Table 4: F1-Macro for the top-10 teams followed by the rest of the teams grouped in ranges for all three sub-tasks.
Refer to Table 5 to see the team names associated with each rank. We also include the models (CNN, BiLSTM,
and SVM) and the baselines (All NOT and All OFF) from (Zampieri et al., 2019), shown in bold.

5.3 Sub-task C

A total of 66 teams participated in sub-task C,
and most of them also participated in sub-tasks
A and B. As in sub-task B, ensembles were quite
successful and were used by five of the top-
10 teams. However, as in sub-task A, the best
team, vradivchev anikolov, used BERT after try-
ing many other deep learning methods. They also
used pre-processing and pre-trained word embed-
dings based on GloVe. The second best team,
NLPR@SRPOL, used an ensemble of deep learn-
ing models such as OpenAI Finetune, LSTM,
Transformer, and non-neural machine learning
models such as SVM and Random Forest.

5.4 Description of the Top Teams

The top-3 teams by average rank for all three
sub-tasks were NLPR@SRPOL, NULI, and vradi-
vchev anikolov. Below, we provide a brief de-
scription of their approaches:

NLPR@SRPOL was ranked 8th, 9th, and 2nd on
sub-tasks A, B, and C, respectively. They
used ensembles of OpenAI GPT, Random
Forest, the Transformer, Universal encoder,
ELMo, and combined embeddings from fast-
Text and custom ones. They trained their
models on multiple publicly available offen-
sive datasets, as well as on their own custom
dataset annotated by linguists.

80

Sub-task Sub-task Sub-task
Team A B C Team A B C Team A B C

NULI 1 4 18 resham 40 43 - kroniker 79 71 -
vradivchev anikolov 2 16 1 Xcosmos 41 47 29 aswathyprem 80 - -
UM-IU@LING 3 76 27 jkolis 42 - - DeepAnalyzer 81 38 45
Embeddia 4 18 5 NIT Agartala NLP Team 43 5 38 Code Lyoko 82 - -
MIDAS 5 8 - Stop PropagHate 44 - - rowantahseen 83 - -
BNU-HKBU 6 62 39 KVETHZ 45 52 26 ramjib 84 - -
SentiBERT 7 - - christoph.alt 46 14 36 OmerElshrief 85 - -
NLPR@SRPOL 8 9 2 TECHSSN 47 22 16 desi 86 56 -
YNUWB 9 - - USF 48 32 62 Fermi 87 31 3
LTL-UDE 10 - 19 Ziv Ben David 49 64 33 mkannan 88 - -
nlpUP 11 - - JCTICOL 50 63 - mking 89 35 54
ConvAI 12 11 35 TüKaSt 51 23 50 ninab 90 69 -
Vadym 13 10 - Gal DD 52 66 25 dianalungu725 91 74 65
UHH-LT 14 21 13 HAD-Tübingen 53 59 61 Halamulki 92 - -
CAMsterdam 15 19 20 Emad 54 - - SSN NLP 93 65 64
YNU-HPCC 16 - - NLP@UIOWA 55 27 37 UTFPR 94 - -
nishnik 17 - - INGEOTEC 56 15 12 rogersdepelle 95 - -
Amobee 18 2 7 Duluth 57 39 44 Amimul Ihsan 96 - -
himanisoni 19 46 11 Zeyad 58 34 34 supriyamandal 97 75 -
samsam 20 - - ShalomRochman 59 70 58 ramitpahwa 98 - -
JU ETCE 17 21 21 50 47 stefaniehegele 60 - - ASE - CSE 99 33 32
DA-LD-Hildesheim 22 28 21 NLP-CIC 61 48 46 kripo 100 - -
YNU-HPCC 23 12 4 Elyash 62 67 40 garain 101 44 63
ChenXiuling 24 - 28 KMI Coling 63 45 53 NAYEL 102 - -
Ghmerti 25 29 - RUG OffenseEval 64 - - magnito60 103 - -
safina 26 - - jaypee1996 65 41 - AyushS 104 36 48
Arjun Roy 27 17 - orabia 66 55 8 UBC NLP - 6 9
CN-HIT-MI.T 28 30 22 v.gambhir15 67 58 60 bhanodaig - 57 -
LaSTUS/TALN 29 20 15 kerner-jct.ac.il 68 68 42 Panaetius - 60 -
HHU 30 3 - SINAI 69 - - eruppert - 61 -
na14 31 26 10 apalmer 70 13 55 Macporal - 72 -
NRC 32 37 24 ayman 71 53 57 NoOffense - - 6
NLP 33 54 52 Geetika 72 24 - HHU - - 14
JTML 34 - - Taha 73 51 59 quanzhi - - 17
Arup-Baruah 35 25 31 justhalf 74 - - TUVD - - 23
UVA Wahoos 36 42 - Pardeep 75 7 41 mmfouad - - 51
NLP@UniBuc 37 73 49 jhan014 76 1 30 balangheorghe - - 56
NTUA-ISLab 38 40 43 liuxy94 77 - -
Rohit 39 49 - ngre1989 78 - -

Table 5: All the teams that participated in SemEval-2019 Task 6 with their ranks for each sub-task. The symbol ‘-’
indicates that the team did not participate in some of the subtasks. Please, refer to Table 4 to see the scores based
on a team’s rank. The top team for each task is in bold, and the second-place team is underlined. Note: ASE - CSE
stands for Amrita School of Engineering - CSE, and BNU-HBKU stands for BNU-HKBU UIC NLP Team 2.

81

NULI was ranked 1st, 4th, and 18th on sub-tasks
A, B, and C, respectively. They experimented
with different models including linear mod-
els, LSTM, and pre-trained BERT with fine-
tuning on the OLID dataset. Their final
submissions for all three subtasks only used
BERT, which performed best during devel-
opment. They also used a number of pre-
processing techniques such as hashtag seg-
mentation and emoji substitution.

vradivchev anikolov was ranked 2nd, 16th, and
1st on sub-tasks A, B, and C, respectively.
They trained a variety of models and com-
bined them in ensembles, but their best sub-
missions for sub-tasks A and C used BERT
only, as the other models overfitted. For sub-
task B, BERT did not perform as well, and
they used soft voting classifiers. In all cases,
they used pre-trained GloVe vectors and they
also applied techniques to address the class
imbalance in the training data.

6 Conclusion

We have described SemEval-2019 Task 6 on Iden-
tifying and Categorizing Offensive Language in
Social Media (OffensEval). The task used OLID
(Zampieri et al., 2019), a dataset of English tweets
annotated for offensive language use, following
a three-level hierarchical schema that considers
(i) whether a message is offensive or not (for sub-
task A), (ii) what is the type of the offensive mes-
sage (for sub-task B), and (iii) who is the target of
the offensive message (for sub-task C).

Overall, about 800 teams signed up for Of-
fensEval, and 115 of them actually participated
in at least one sub-task. The evaluation results
have shown that the best systems used ensembles
and state-of-the-art deep learning models such as
BERT. Overall, both deep learning and traditional
machine learning classifiers were widely used.
More details about the indvididual systems can be
found in their respective system description pa-
pers, which are published in the SemEval-2019
proceedings. A list with references to these pub-
lications can be found in Table 2; note, however,
that only 50 of the 115 participating teams submit-
ted a system description paper.

As is traditional for SemEval, we have made
OLID publicly available to the research commu-
nity beyond the SemEval competition, hoping to
facilitate future research on this important topic.

In fact, the OLID dataset and the SemEval-2019
Task 6 competition setup have already been used
in teaching curricula in universities in UK and
USA. For example, student competitions based on
OffensEval using OLID have been organized as
part of Natural Language Processing and Text An-
alytics courses in two universities in UK: Impe-
rial College London and the University of Leeds.
System papers describing some of the students’
work are publicly accessible11 and have also been
made available on arXiv.org (Cambray and Pod-
sadowski, 2019; Frisiani et al., 2019; Ong, 2019;
Sapora et al., 2019; Puiu and Brabete, 2019;
Uglow et al., 2019). Similarly, a number of stu-
dents in Linguistics and Computer Science at the
University of Arizona in USA have been using
OLID in their coursework.

In future work, we plan to increase the size of
the OLID dataset, while addressing issues such
as class imbalance and the small size for the test
partition, particularly for sub-tasks B and C. We
would also like to expand the dataset and the task
to other languages.

Acknowledgments

We would like to thank the SemEval-2019 orga-
nizers for hosting the OffensEval task and for re-
plying promptly to all our inquires. We further
thank the SemEval-2019 anonymous reviewers for
the helpful suggestions and for the constructive
feedback, which have helped us improve the text
of this report.

We especially thank the SemEval-2019 Task 6
participants for their interest in the shared task, for
their participation, and for their timely feedback,
which have helped us make the shared task a suc-
cess.

Finally, we would like to thank Lucia Specia
from Imperial College London and Eric Atwell
from the University of Leeds for hosting the Of-
fensEval competition in their courses. We further
thank the students who participated in these stu-
dent competitions and especially those who wrote
papers describing their systems.

The research presented in this paper was par-
tially supported by an ERAS fellowship, which
was awarded to Marcos Zampieri by the Univer-
sity of Wolverhampton, UK.

11http://scholar.harvard.edu/malmasi/
offenseval-student-systems

82

References
Piush Aggarwal, Tobias Horsmann, Michael Wojatzki,

and Torsten Zesch. 2019. LTL-UDE at SemEval-
2019 Task 6: BERT and two-vote classification for
categorizing offensiveness. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Guy Aglionby, Chris Davis, Pushkar Mishra, Andrew
Caines, Helen Yannakoudakis, Marek Rei, Ekaterina
Shutova, and Paula Buttery. 2019. CAMsterdam
at SemEval-2019 Task 6: Neural and graph-based
feature extraction for the identification of offensive
tweets. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Lutfiye Seda Mut Altin, Alex Bravo Serrano, and Ho-
racio Saggion. 2019. LaSTUS/TALN at SemEval-
2019 Task 6: Identification and categorization of
offensive language in social media with attention-
based Bi-LSTM model. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Flor Miriam Plaza-del Arco, Dolores Molina-
González, Teresa Martı́n-Valdivia, and Alfonso
Ureña-López. 2019. SINAI at SemEval-2019 Task
6: Incorporating lexicon knowledge into SVM
learning to identify and categorize offensive lan-
guage in social media. In Proceedings of The 13th
International Workshop on Semantic Evaluation
(SemEval).

Segun Taofeek Aroyehun and Alexander Gelbukh.
2018. Aggression detection in social media: Us-
ing deep neural networks, data augmentation, and
pseudo labeling. In Proceedings of the First Work-
shop on Trolling, Aggression and Cyberbullying
(TRAC), pages 90–97.

Himanshu Bansal, Daniel Nagel, and Anita Soloveva.
2019. HAD-Tübingen at SemEval-2019 Task 6:
Deep learning analysis of offensive language on
Twitter: Identification and categorization. In Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Pete Burnap and Matthew L Williams. 2015. Cyber
hate speech on Twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Aleix Cambray and Norbert Podsadowski. 2019. Bidi-
rectional recurrent models for offensive tweet clas-
sification. arXiv preprint arXiv:1903.08808.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving cyberbul-
lying detection with user context. In Advances in
Information Retrieval, pages 693–696. Springer.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
Proceedings of the International Conference on We-
blogs and Social Media (ICWSM).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the Annual Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nology (NAACL-HLT).

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbully-
ing. In The Social Mobile Web, pages 11–17.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the Web Conference
(WWW).

Ehsan Doostmohammadi, Hossein Sameti, and Ali Saf-
far. 2019. Ghmerti at SemEval-2019 Task 6: A
deep word- and character-based approach to offen-
sive language identification. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Zeyad El-Zanaty. 2019. Zeyad at SemEval-2019 Task
6: That’s offensive! An all-out search for an ensem-
ble to identify and categorize offense in tweets. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval).

Paula Fortuna, José Ferreira, Luiz Pires, Guilherme
Routar, and Sérgio Nunes. 2018. Merging datasets
for aggressive text identification. In Proceedings of
the First Workshop on Trolling, Aggression and Cy-
berbullying (TRAC), pages 128–139.

Paula Fortuna, Juan Soler-Company, and Nunes Srgio.
2019. Stop PropagHate at SemEval-2019 Tasks 5
and 6: Are abusive language classification results
reproducible? In Proceedings of The 13th Interna-
tional Workshop on Semantic Evaluation (SemEval).

Nicolò Frisiani, Alexis Laignelet, and Batuhan Güler.
2019. Combination of multiple deep learning archi-
tectures for offensive language detection in tweets.
arXiv preprint arXiv:1903.08734.

Avishek Garain and Arpan Basu. 2019. The Titans at
SemEval-2019 Task 6: Hate speech and target de-
tection. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Spiros V Georgakopoulos, Sotiris K Tasoulis, Aris-
tidis G Vrahatis, and Vassilis P Plagianakos. 2018.
Convolutional neural networks for toxic comment
classification. arXiv preprint arXiv:1802.09957.

83

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for Twitter: annotation, features, and experiments.
In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics (ACL).

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multime-
dia Lab @ACL WNUT NER Shared Task: Named
entity recognition for Twitter microposts using dis-
tributed word representations. In Proceedings of the
Workshop on Noisy User-generated Text.

Bharti Goel and Ravi Sharma. 2019. USF at SemEval-
2019 Task 6: Offensive language detection using
LSTM with word embeddings. In Proceedings of
The 13th International Workshop on Semantic Eval-
uation (SemEval).

Mario Graff, Sabino Miranda-Jiménez, Eric S. Tellez,
and Daniela Moctezuma. 2019. INGEOTEC at
SemEval-2019 Task 5 and Task 6: A genetic pro-
gramming approach for text classification. In Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval).

Yaakov HaCohen-Kerner, Ziv Ben-David, Gal Didi, Eli
Cahn, Shalom Rochman, and Elyashiv Shayovitz.
2019. JCTICOL at SemEval-2019 Task 6: Classi-
fying offensive language in social media using deep
learning methods, word/character n-gram features,
and preprocessing methods. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Jiahui Han, Xinyu Liu, and Shengtan Wu. 2019.
jhan014 at SemEval-2019 Task 6: Identifying and
categorizing offensive language in social media. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval).

Vijayasaradhi Indurthi, Bakhtiyar Syed, Manish Shri-
vastava, Manish Gupta, and Vasudeva Varma. 2019.
Fermi at SemEval-2019 Task 6: Identifying and
categorizing offensive language in social media us-
ing sentence embeddings. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Madeeswaran Kannan and Lukas Stein. 2019. TüKaSt
at SemEval-2019 Task 6: something old, something
neu(ral): Traditional and neural approaches to of-
fensive text classification. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Prashant Kapil, Asif Ekbal, and Dipankar Das. 2019.
NLP at SemEval-2019 Task 6: Detecting offensive
language using neural networks. In Proceedings of
The 13th International Workshop on Semantic Eval-
uation (SemEval).

Emad Kebriaei, Samaneh Karimi, Nazanin Sabri, and
Azadeh Shakery. 2019. Emad at SemEval-2019
Task 6: Offensive language identification using tra-
ditional machine learning and deep learning ap-
proaches. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ritesh Kumar, Guggilla Bhanodai, Rajendra Pamula,
and Chennuru Maheshwar Reddy. 2019. bhanodaig
at SemEval-2019 Task 6: Categorizing offensive
language in social media. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC).

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
Detecting tweets against blacks. In Proceedings
of the AAAI Conference on Artificial Intelligence
(AAAI).

Ping Liu, Wen Li, and Liang Zou. 2019. NULI at
SemEval-2019 Task 6: Transfer learning for offen-
sive language detection using bidirectional trans-
formers. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Debanjan Mahata, Haimin Zhang, Karan Uppal, Ya-
man Kumar, Rajiv Ratn Shah, Simra Shahid, Laiba
Mehnaz, and Sarthak Anand. 2019. MIDAS at
SemEval-2019 Task 6: Identifying offensive posts
and targeted offense from Twitter. In Proceedings of
The 13th International Workshop on Semantic Eval-
uation (SemEval).

Prasenjit Majumder, Thomas Mandl, et al. 2018. Fil-
tering aggression from the multilingual social me-
dia feed. In Proceedings of the First Workshop
on Trolling, Aggression and Cyberbullying (TRAC),
pages 199–207.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings of
the Conference on Recent Advances in Natural Lan-
guage Processing (RANLP).

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1 – 16.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their compo-
sitionality. In Proceedings of the International Con-
ference on Neural Information Processing Systems
(NIPS).

84

Jelena Mitrović, Bastian Birkeneder, and Michael
Granitzer. 2019. nlpUP at SemEval-2019 Task 6: a
deep neural language model for offensive language
detection. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Sandip Modha, Prasenjit Majumder, and Daksh Patel.
2019. DA-LD-Hildesheim at SemEval-2019 Task 6:
Tracking offensive content with deep learning model
using shallow representation. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Preeti Mukherjee, Mainak Pal, Somnath Banerjee, and
Sudip Kumar Naskar. 2019. JU ETCE 17 21 at
SemEval-2019 Task 6: Efficient machine learning
and neural network approaches for identifying and
categorizing offensive language in tweets. In Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval).

Alex Nikolov and Victor Radivchev. 2019. Nikolov-
Radivchev at SemEval-2019 Task 6: Offensive tweet
classification with BERT and ensembles. In Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval).

Alexander Oberstrass, Julia Romberg, Anke Stoll, and
Stefan Conrad. 2019. HHU at SemEval-2019 Task
6: Context does matter - tackling offensive language
identification and categorization with ELMo. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval).

Ryan Ong. 2019. Offensive language analysis us-
ing deep learning architecture. arXiv preprint
arXiv:1903.05280.

Gustavo Henrique Paetzold. 2019. UTFPR at
SemEval-2019 Task 6: Relying on compositionality
to find offense. In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation (SemEval).

Gabriel Florentin Patras, Diana Florina Lungu, Daniela
Gifu, and Diana Trandabat. 2019. Hope at SemEval-
2019 Task 6: Mining social media language to dis-
cover offensive language. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

John Pavlopoulos, Nithum Thain, Lucas Dixon, and
Ion Androutsopoulos. 2019. ConvAI at SemEval-
2019 Task 6: Offensive language identification and
categorization with perspective and BERT. In Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval).

Ted Pedersen. 2019. Duluth at SemEval-2019 Task 6:
Lexical approaches to identify and categorize offen-
sive tweets. In Proceedings of The 13th Interna-
tional Workshop on Semantic Evaluation (SemEval).

Andraž Pelicon, Matej Martinc, and Petra Kralj Novak.
2019. Embeddia at SemEval-2019 Task 6: Detect-
ing hate with neural network and transfer learning
approaches. In Proceedings of The 13th Interna-
tional Workshop on Semantic Evaluation (SemEval).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Empirical Methods in Natu-
ral Language Processing (EMNLP).

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technology (NAACL-HLT).

Gretel Liz De la Pea and Paolo Rosso. 2019. Deep-
Analyzer at SemEval-2019 Task 6: A deep learning-
based ensemble method for identifying offensive
tweets. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Andrei-Bogdan Puiu and Andrei-Octavian Brabete.
2019. Towards NLP with deep learning: Convolu-
tional neural networks and recurrent neural networks
for offensive language identification in social media.
arXiv preprint arXiv:1903.00665.

Arun Rajendran, Chiyu Zhang, and Muhammad
Abdul-Mageed. 2019. UBC-NLP at SemEval-2019
Task 6: Ensemble learning of offensive content
with enhanced training data. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Murugesan Ramakrishnan, Wlodek Zadrozny, and
Narges Tabari. 2019. UVA Wahoos at SemEval-
2019 Task 6: Hate speech identification using en-
semble machine learning. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Priya Rani and Atul Kr. Ojha. 2019. KMIColing at
SemEval-2019 Task 6: Exploring n-grams for of-
fensive language detection. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Alon Rozental and Dadi Biton. 2019. Amobee at
SemEval-2019 Tasks 5 and 6: Multiple choice CNN
over contextual embedding. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Jonathan Rusert and Padmini Srinivasan. 2019.
NLP@UIOWA at SemEval-2019 Task 6: Classify-
ing the classless using multi-windowed CNNs. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval).

Angel Deborah S, Rajalakshmi S, Logesh B, Harshini
S, Geetika B, Dyaneswaran S, S Milton Rajendram,
and Mirnalinee T T. 2019. TECHSSN at SemEval-
2019 Task 6: Identifying and categorizing offensive
language in tweets using deep neural networks. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval).

85

Silvia Sapora, Bogdan Lazarescu, and Christo Lolov.
2019. Absit invidia verbo: Comparing deep learn-
ing methods for offensive language. arXiv preprint
arXiv:1903.05929.

Alessandro Seganti, Helena Sobol, Iryna Orlova,
Hannam Kim, Jakub Staniszewski, Tymo-
teusz Krumholc, and Krystian Koziel. 2019.
NLPR@SRPOL at SemEval-2019 Task 6 and Task
5: Linguistically enhanced deep learning offensive
sentence classifier. In Proceedings of The 13th
International Workshop on Semantic Evaluation
(SemEval).

Elena Shushkevich, John Cardiff, and Paolo Rosso.
2019. TUVD team at SemEval-2019 Task 6: Of-
fense target identification. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Pardeep Singh and Satish Chand. 2019. Pardeep at
SemEval-2019 Task 6: Identifying and categorizing
offensive language in social media using deep learn-
ing. In Proceedings of The 13th International Work-
shop on Semantic Evaluation (SemEval).

Murali Sridharan and Swapna T. 2019. Amrita School
of Engineering - CSE at SemEval-2019 Task 6:
Manipulating attention with temporal convolutional
neural network for offense identification and classi-
fication. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Steve Durairaj Swamy, Anupam Jamatia,
Björn Gambäck, and Amitava Das. 2019.
NIT Agartala NLP Team at SemEval-2019 Task 6:
An ensemble approach to identifying and catego-
rizing offensive language in Twitter social media
corpora. In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval).

Nithum Thain, Lucas Dixon, and Ellery Wulczyn.
2017. Wikipedia Talk Labels: Toxicity.

D Thenmozhi, Senthil Kumar B, Srinethe Sharavanan,
and Aravindan Chandrabose. 2019. SSN NLP at
SemEval-2019 Task 6: Offensive language identi-
fication in social media using machine learning and
deep learning approaches. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Johnny Torres and Carmen Vaca. 2019. JTML at
SemEval-2019 Task 6: Offensive tweets identifica-
tion using convolutional neural networks. In Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval).

Harrison Uglow, Martin Zlocha, and Szymon Zmys-
lony. 2019. An exploration of state-of-the-art meth-
ods for offensive language detection. arXiv preprint
arXiv:1903.07445.

Bin Wang, Xiaobing Zhou, and Xuejie Zhang. 2019.
YNUWB at SemEval-2019 Task 6: K-max pooling
cnn with average meta-embedding for identifying

offensive language. In Proceedings of The 13th In-
ternational Workshop on Semantic Evaluation (Se-
mEval).

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding abuse:
A typology of abusive language detection subtasks.
arXiv preprint arXiv:1705.09899.

Gregor Wiedemann, Eugen Ruppert, and Chris Bie-
mann. 2019. UHH-LT at SemEval-2019 Task 6: Su-
pervised vs. unsupervised transfer learning for of-
fensive language detection. In Proceedings of The
13th International Workshop on Semantic Evalua-
tion (SemEval).

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the GermEval 2018 shared
task on the identification of offensive language. In
Proceedings of the GermEval 2018 Workshop (Ger-
mEval).

Zhenghao Wu, Hao Zheng, Jianming Wang, Weifeng
Su, and Jefferson Fong. 2019. BNU-HKBU UIC
NLP Team 2 at SemEval-2019 Task 6: Detecting
offensive language using BERT model. In Proceed-
ings of The 13th International Workshop on Seman-
tic Evaluation (SemEval).

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and
Amy Bellmore. 2012. Learning from bullying traces
in social media. In Proceedings of the Annual Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technology (NAACL-HLT).

Zhang Yaojie, Xu Bing, and Zhao Tiejun. 2019. CN-
HIT-MI.T at SemEval-2019 Task6: Offensive lan-
guage identification based on BiLSTM with double
attention. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Predicting the type and target of offensive
posts in social media. In Proceedings of the Annual
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technology (NAACL-HLT).

Chengjin Zhou, Jin Wang, and Xuejie Zhang. 2019.
YNU-HPCC at SemEval-2019 Task 6: Identifying
and categorising offensive language on Twitter. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval).

Jian Zhu, Zuoyu Tian, and Sandra Kübler. 2019. UM-
IU@LING at SemEval-2019 Task 6: Identifying of-
fensive tweets using BERT and SVMs. In Proceed-
ings of The 13th International Workshop on Seman-
tic Evaluation (SemEval).

86

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 87–91
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NULI at SemEval-2019 Task 6: Transfer Learning for Offensive
Language Detection using Bidirectional Transformers

Ping Liu
Department of Computer Science

Illinois Institute of Technology
pliu19@hawk.iit.edu

Wen Li
Department of Linguistics

Indiana University
wl9@indiana.edu

Liang Zou
Department of Mathematics

New York University
lz1904@nyu.edu

Abstract

Transfer learning and domain adaptive learn-
ing have been applied to various fields in-
cluding computer vision (e.g., image recog-
nition) and natural language processing (e.g.,
text classification). One of the benefits of
transfer learning is to learn effectively and ef-
ficiently from limited labeled data with a pre-
trained model. In the shared task of identi-
fying and categorizing offensive language in
social media, we preprocess the dataset ac-
cording to the language behaviors on social
media, and then adapt and fine-tune the Bidi-
rectional Encoder Representation from Trans-
former (BERT) pre-trained by Google AI Lan-
guage team1. Our team NULI wins the first
place (1st) in Sub-task A - Offensive Lan-
guage Identification and is ranked 4th and 18th
in Sub-task B - Automatic Categorization of
Offense Types and Sub-task C - Offense Tar-
get Identification respectively.

1 Introduction

Anti-social online behaviors, including cyberbul-
lying, trolling and offensive language (Xu et al.,
2012; Kwok and Wang, 2013; Cheng et al., 2017),
are attracting more attention on different social
networks. The intervention of such behaviors
should be taken at the earliest opportunity. Auto-
matic offensive language detection using machine
learning algorithms becomes one solution to iden-
tifying such hostility and has shown promising
performance.

In SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media
(Zampieri et al., 2019b), the organizers collected
tweets through Twitter API and annotated them hi-
erarchically regarding offensive language, offense
type, and offense target. The task is divided into
three sub-tasks: a) detecting if a post is offensive

1https://github.com/google-research/bert

(OFF) or not (NOT); b) identifying the offense
type of an offensive post as targeted insult (TIN),
targeted threat (TTH), or untargeted (UNT); c) for
a post labeled as TIN/TTH in sub-task B, identify-
ing the target of offense as individual (IND), group
of people (GRP), organization or entity (ORG),
or other (OTH). The three sub-tasks are indepen-
dently evaluated by macro-F1 metric.

The challenges of this shared task include: a)
comparatively small dataset makes it hard to train
complex models; b) the characteristics of language
on social media pose difficulties such as out-of-
vocabulary words and ungrammatical sentences;
c) the distribution of target classes is imbalanced
and inconsistent between training and test data. To
address the problem of out-of-vocabulary words
especially emoji and hashtags, we preprocess each
tweet by interpreting emoji as meaningful En-
glish phrases and segmenting hashtags into space
separated words. The classifiers we experiment
with include: linear model with features of word
unigrams, word2vec, and Hatebase; word-based
Long Short-Term Memory (LSTM); fine-tuned
Bidirectional Encoder Representation from Trans-
former (BERT) (Devlin et al., 2018). We choose
BERT for our official submission, since it per-
forms the best in our experiments.

In the rest of this paper, we organize the con-
tent as follows: related work of hostility on social
media is stated in section 2; section 3 introduces
data description, details of preprocessing, and the
methodology of our models; experimental results
are discussed in section 4. We also present the
conclusion of our work at the end of paper.

2 Related Work

Schmidt and Wiegand (2017) surveyed features
widely used for hate speech detection, includ-
ing simple surface feature, word generalization,

87

knowledge-based features, etc. Davidson et al.
(2017) reported hate speech detection results us-
ing word n-grams and sentiment lexicon and pro-
vided insights on misclassified examples. A pro-
posal of typology of abusive language sub-tasks
is presented in (Waseem et al., 2017). (Liu et al.,
2018) also discuss that the forecasting of the fu-
ture hostility on Instagram can be divided into
two levels: presence and intensity. In addition
to English, researchers also investigated offen-
sive language detection for Chinese (Su et al.,
2017) and Slovene (Fišer et al., 2017). In the
shared task on aggression identification organ-
ised as part of the first workshop on trolling, ag-
gression and cyberbullying (TRAC - 1) at COL-
ING 2018, word/character n-grams and word em-
beddings were the most commonly used features
among the participants, and the most popular clas-
sifiers were SVM, LSTM, and RNN. The best per-
forming system employed bidirectional LSTM on
Glove embeddings.

3 Data and Methodology

3.1 Data Description

Offensive Language Identification Dataset (OLID)
(Zampieri et al., 2019a) is collected from Twit-
ter API by searching certain keywords set. The
keywords include some unbiased targeted phrase
such as ‘she is’, ‘he is’ and ‘you are’ which have
high proportional offensive tweets. The distribu-
tion of offensive tweets is controlled around 30%
by using different sampling methods. Another ob-
servation reported in the paper is political tweets
tend to be more likely offensive using keywords
as ‘MEGA’, ‘liberal’ and ‘conservative’.

The main task of this competition is decom-
posed into three different levels according to the
hierarchical annotation: a) Offensive Language
Detection b) Categorization of Offensive Lan-
guage c) Offensive Language Target Identifica-
tion. All the three different tasks share the same
dataset, and the latter one is the subset of the pre-
vious one.

The tasks release the dataset into three different
parts, which are the startingKit, training dataset
and testing dataset. The summary of dataset distri-
bution is concluded in the Table1. From the table,
it is easy to observe that the distribution of three
splittings is a little twisted which should be ex-
pected in real life, and also make the tasks much
harder.

Class StartKit Training Testing

NOT 243 8840 620
OFF 77 4400 280

TIN 38 3876 213
UNT 39 524 27

IND 30 2407 100
GRP 7 1074 78
OTH 2 395 35

Table 1: Data Distribution: The first two rows are the
class distribution of sub-task A. The mid part two rows
are the class distribution of sub-task B. The last three
rows are the class distribution of sub-task C.

3.2 Preprocessing

Emoji substitution We use one online emoji
project on github 2 which could map the emoji uni-
code to substituted phrase. We treat such phrases
into regular English phrase thus it could main-
tain their semantic meanings, especially when the
dataset size is limited.

HashTag segmentation The HashTag becomes
a popular culture cross multi social networks, in-
cluding Twitter, Instagram, Facebook etc. In order
to detect whether the HashTag contains profan-
ity words, we apply word segmentation using one
open source on the github 3. One typical example
would be ‘#LunaticLeft’ is segmented as ‘Lunatic
Left’ which is obviously offensive in this case.

Misc. We also convert all the text into lower
case. ‘URL’ is substituted by ‘http’, since ‘URL’
does not have embedding representation in some
pre-trained embedding and models. Consecutive
‘@USER’s are limited to three times to reduce the
redundancy.

3.3 Methodology

Linear model We firstly select Logistic Re-
gression as our baseline model to determine the
lower bound performance that we should com-
pare. First we cross-validate hyper-parameters of
different vectorizers to build bag of words rep-
resentation. Secondly, we adopt the pre-trained
word2vec model from google 4, then aggregate the
maximum and average value in each dimension.

2https://github.com/carpedm20/emoji
3https://github.com/grantjenks/python-wordsegment
4https://code.google.com/archive/p/word2vec/

88

(a) Sub-task A (b) Sub-task B (c) Sub-task C

System MacroF Acc
All NOT 0.4004 0.6677
All OFF 0.2494 0.3323
Linear 0.7102 0.7273
LSTM 0.7166 0.7659
BERT 0.7826 0.8485

System MacroF Acc
All TIN 0.4686 0.8818
All UNT 0.1057 0.1182
Linear 0.6028 0.8000
LSTM 0.5029 0.8795
BERT 0.3830 0.8682

System MacroF Acc
All GRP 0.1441 0.2758
All IND 0.2554 0.6211
All OTH 0.0623 0.1031
Linear 0.5607 0.7062
LSTM 0.5056 0.7036
BERT 0.8435 0.7294

Table 2: Results on Dev Data.

Thirdly, we use the dictionary Hatebase API5 to
aggregate the hate words in each category. We val-
idate all the features combinations, then report the
accuracy and F1 with the highest to determine the
model parameters.

LSTM Long Short-Term Memory is introduced
in 1991 (Hochreiter and Schmidhuber, 1997)
which is an more powerful extension of recurrent
neural network. The gates inside of LSTM could
prevent gradient vanishing problem, to memorize
the long time dependency. LSTM has been used
in tons of natural language processing task, such
as sentiment classification, neural translation, lan-
guage generation etc. We would also like to use
LSTM as our second powerful baseline model to
compare and report the result. The specific setting
is the following: the input is mapped from one-
hot encoder into a shared embedding layers with
dimension 140; the hidden units of LSTM is 64
and follower by a dropout layer with rate 0.5. The
maximum sequence length is 140, thus the sen-
tences would be either cut off or padded.

BERT Google research team releases Bidirec-
tional Encoder Representation from Transformer
(BERT) (Devlin et al., 2018) and achieve state of
the art results on many NLP tasks. BERT uses
identical multi-head transformer structure that is
introduced in (Vaswani et al., 2017). The model is
pre-trained on huge corpus from different sources.
Since the dataset size in this SemEval-2019 Task
6 is not that big, we pass the dataset into the pre-
trained BERT model, and report the loss and ac-
curacy at each epoch. The observation from ex-
periments shows that after 1st or 2nd epochs, the
model converges fast and always get very lower
loss on the validation set. In such case, in the
sub-task B and sub-task C, we report the macro-
F1 score after the model trains after 1st, 2nd and

5http://www.hatebase.org

3rd epoch.

4 Experiment Results

The evaluation metric of this task is Macro-F1,
which is the unweighted-average F1 of all the
classes. The imbalance distribution makes the
macro-F1 hard to achieve, and usually the score
is penalized by the minority class. Weighted-loss
is one solution during the training time to balance
the model not to lead to the majority class predic-
tion.

In the table 2 and 3, we report the results of our
dev-dataset and final test dataset. From the table 2,
we list the performance of our three selected mod-
els for each sub-task. The data is stratified split
into 9:1 as train and test. There is also one inde-
pendent validation set to determine the model se-
lection that is split from train set. One observation
from the table shows the problem of imbalanced
data, so that higher accuracy does not guarantee
higher macro-F1 score. Thus the stop criterion is
based on average loss of validation set we men-
tioned before. Based on the results of validation,
we choose to use BERT as our selected model for
the final submission.

In the table 3, it shows the results on official
test dataset. It should be noticed that in the sub-
task A, we also submit one result of a Bagging
classifier with number 50, and Logistic Regression
is the weak classifier. The features are the same
with linear model we mentioned before. The re-
sult from BERT model sub-task A achieves the 1st
place among all the participants. BERT-3 denotes
we train BERT with only 3 epochs. Same notation
with the latter two sub-tables. In the sub-task B
and sub-task C, the results are not as good as sub-
task A due to two reasons: 1) the class distribu-
tion is more skewed than that of sub-task A. 2) the
number of training instance is much smaller than
sub-task A. The worst performance is sub-task C,

89

(a) Sub-task A (b) Sub-task B (c) Sub-task C
System MacroF Acc
All NOT 0.4189 0.7209
All OFF 0.2182 0.2790
Bagg 0.7558 0.8105
Linear 0.7501 0.7953
BERT-3 0.8286 0.8628

System MacroF Acc
All TIN 0.4702 0.8875
All UNT 0.1011 0.1125
BERT-1 0.6932 0.8875
BERT-2 0.4702 0.8875
BERT-3 0.7159 0.8958

System MacroF Acc
All GRP 0.1787 0.3662
All IND 0.2130 0.4695
All OTH 0.0941 0.1643
BERT-1 0.5267 0.7277
BERT-2 0.5598 0.6948

Table 3: Results on Test Data.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

563 57

61 179

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: Sub-task A, BERT model after fine-tuning

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

203 10

15 12

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Sub-task B, BERT model after fine-tuning

since it is three-class classification, and the ‘OTH’
class has very few examples.

The confusion matrix of three sub-tasks are
shown in fig 1, 2, and 3. This is another way to
explain the results as we discussed before. The fig-
ures are provided by the organizers, and we use the
figures to summarize test distribution in the table
1. In the previous section, we mentioned the dis-
crepancy of class distribution between training and
test datasets. For example, in sub-task C, the class
‘OTH’ constitutes 0.101 of the training data, while
it makes up 0.164 of the test data. This adds diffi-
culty to the task, however, we are often confronted
with the same situation in real-world problems.

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

60 17 1

12 84 4

22 9 4

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Sub-task C, BERT model after fine-tuning

5 Conclusion

Offensive language and online hostility is crucial
on the social network. The minority proportion
of the nature and morphological language are the
difficulties to achieve high performance. The Di-
versity and evolution of the language at different
ages is another challenge for social media detec-
tion task. As a conclusion, our work shows the
competitive results in this shared task using cus-
tomized processing to dataset, as well as the power
of pre-trained model. In real life, labeled data
is always limited and requires expensive human
labors. In such case, transfer learning is always a
good option to get started. Domain adaption also
has prior knowledge of specific domain before do-
ing any modeling work on hand. How to tune the
parameters is nontrivial, and there are a lot of more
efficient ways to be explored, which could yield
better performance.

90

References
Justin Cheng, Michael Bernstein, Cristian Danescu-

Niculescu-Mizil, and Jure Leskovec. 2017. Anyone
can become a troll: Causes of trolling behavior in
online discussions. In Proceedings of the 2017 ACM
conference on computer supported cooperative work
and social computing, pages 1217–1230. ACM.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Irene Kwok and Yuzhou Wang. 2013. Locate the
hate: Detecting Tweets Against Blacks. In Twenty-
Seventh AAAI Conference on Artificial Intelligence.

Ping Liu, Joshua Guberman, Libby Hemphill, and
Aron Culotta. 2018. Forecasting the presence and
intensity of hostility on instagram using linguistic
and social features. In Twelfth International AAAI
Conference on Web and Social Media.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and
Amy Bellmore. 2012. Learning from bullying traces
in social media. In Proceedings of the 2012 confer-
ence of the North American chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 656–666. Association for Com-
putational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

91

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 92–96
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CUNY-PKU Parser at SemEval-2019 Task 1:
Cross-lingual Semantic Parsing with UCCA

Weimin Lyu†, Sheng Huang‡, Abdul Rafae Khan†, Shengqiang Zhang‡ , Weiwei Sun‡, Jia Xu†�
Computer Science Department, †Graduate Center and �Hunter College, City University of New York

{wlyu,akhan4}@gradcenter.cuny.edu, Jia.Xu@hunter.cuny.edu

‡Institute of Computer Science and Technology, Peking University
{huangsheng,ws,sq.zhang}@pku.edu.cn

Abstract

This paper describes the systems of the
CUNY-PKU team in “SemEval 2019 Task 1:
Cross-lingual Semantic Parsing with UCCA”1.
We introduce a novel model by applying a cas-
caded MLP and BiLSTM model. Then, we
ensemble multiple system-outputs by repars-
ing. In particular, we introduce a new
decoding algorithm for building the UCCA
representation. Our system won the first
place in one track (French-20K-Open), sec-
ond places in four tracks (English-Wiki-Open,
English-20K-Open, German-20K-Open, and
German-20K-Closed), and third place in one
track (English-20K-Closed), among all seven
tracks.

1 Introduction

We participate in all seven tracks in Cross-lingual
Semantic Parsing at SemEval 2019. Our sub-
mission systems2 are based on BiLSTM using
TUPA (Hershcovich et al., 2017a, 2018).

Then, we built a second single parser using BiL-
STM (Bi-directional LSTM) and Multi-Layer Per-
ceptron (MLP) with TUPA (Hershcovich et al.,
2017a, 2018). Most importantly, we introduce a
new model Cascaded BiLSTM by first pre-training
the BiLSTM and MLP model and then to con-
tinue training another MLP model. The cascaded
BiLSTM parser significantly enhances the parsing
accuracy on all tasks. We also complete a Self-
Attentive Constituency Parser (Kitaev and Klein,
2018a,b) as comparison. Finally, we ensemble dif-
ferent parsers with a reparsing strategy (Sagae and
Lavie, 2006). In particular, we introduce a novel
algorithm based on dynamic programming to per-
form inference for the UCCA representation. This

1https://competitions.codalab.org/
competitions/19160

2https://github.com/weimin17/
semEval-taks1

decoder can also be utilized as a core engine for a
single parser.

In the post-evaluation stage, our improved sys-
tems are ranked first in three tracks (French-
20K-Open, English-20K-Open and English-Wiki-
Open) and second in the other four tracks. A
shared task summary paper (Hershcovich et al.,
2019) by competition organizers summaries the
results.

We will describe our systems in detail, includ-
ing three single parsers in Section 2 and a voter in
Section 3. We focus on two novel technical con-
tributions: the Cascaded BiLSTM model and the
Reparsing strategy. In Section 4 we will present
experimental setup and results.

2 Single Parsers

2.1 TUPA Parsers

The TUPA parser (Hershcovich et al., 2017a)
builds on discontinuous constituency and depen-
dency graph parsing and makes some improve-
ments especially for the UCCA representation.
The English parsing is based on Hershcovich
et al. (2017a), while French and German parsing
is based on Hershcovich et al. (2018).

It has been shown that the choice of model
plays an important role in transition-based pars-
ing (Hershcovich et al., 2017b). For TUPA, we
built parsers with different models: MLP, BiL-
STM, and also invent a new architecture, viz. Cas-
caded BiLSTM. The three single parsers are de-
scribed as the following:

The MLP parser (Hershcovich et al., 2017b)
applies a feedforward neural network with dense
embedding features to predict optimal transitions
given particular parser states. This parser adopts a
similar architecture to Chen and Manning (2014).

The BiLSTM parser (Hershcovich et al.,
2018) applies a bidirectional LSTM to learn con-

92

Figure 1: Illustration of the multi-stage Cascaded BiL-
STM model. Top: parser state. Bottom: BiLTSM
with two MLP architectures. The red box represents
BiLSTM (Hershcovich et al., 2018), and the blue box
represents a MLP that we add after implementing the
BiLSTM architecture. Vector representation for the in-
put tokens is computed by two layers of bidirectional
LSTMs then fed into the double MLP with Softmax to
select the next transition.

textualized vector-based representations for words
that are then utilized for encoding a parser state,
similarly to Kiperwasser and Goldberg (2016).
The red box in Figure 1 shows the architecture
of BiLSTM model, indicating that the represen-
tations after BiLSTM are fed into a Multiple-layer
perceptron.

The Cascaded BiLSTM parser combines the
above two parsing models, which contains a multi-
stage training process. First, we use BiLSTM
TUPA model to train 100 epochs, then retrain
the model using MLP TUPA model for another
50 epochs. It’s really interesting that the per-
formances remains as good as BiLSTM TUPA
model, even slightly better. Figure 1 shows the
architecture of Cascaded BiLSTM model.

2.2 Phrase Constituency Parser

We also built a Constituency Parser as compari-
son, which uses a self-attentive architecture that
makes explicit the manner considering informa-
tion propagating between different locations in the
sentences (Kitaev and Klein, 2018a,b). The con-
stituency parser uses parsing tree structures as in-
put and output. Therefore, we convert the phrase
structure tree format into UCCA XML formation
and vice versa.

3 The Reparsing System

The reparsing system (voter) takes multiple single
parser (as in Section 2) results as input and pro-
duces a single, hopefully, improved UCCA graph
as output. Briefly, each input UCCA graph is en-
coded to a chart of scores for standard CKY de-
coding. In this step, we utilize a number of auxil-
iary labels to encode remote edges and discontinu-
ous constructions. These scores are summed up to
get a new chart, which is used for CKY decoding
for an immediate tree representation as the voting
result. An immediate tree is then enhanced with
reference relationships. Finally, a UCCA graph is
built via interpreting auxiliary labels.

Span representation Graph nodes in a UCCA
graph naturally create a hierarchical structure
through the use of primary edges. Following this
tree structure, we give the definition of span of
nodes.
Definition 1. The span of node x is:

1. empty if x is an implicit node;
2. [p, p+1) if x is a leaf node but not an implicit

node, where p is the position of the lexical unit
corresponding to x;

3. the union of spans of x’s children, otherwise.
Assuming that each span of nodes is consecu-

tive (we will deal with nonconsecutive spans in
Section 3). We encode the label of edge from x’s
parent to x as the label of span of x. If there
are some implicit nodes in x’s children, the la-
bels of edges from x to them are also encoded
by the label of the span of x. If the span of x is
the same as x’s parent, the label of this span will
be encoded ordered. This process is well-defined
due to the acyclic graph structure. Each parser is
assigned a weight to indicate its contribution to
reparsing. The spans with labels encoded from a
UCCA graph are assigned the same score accord-
ing to which parser they come from. Thus, there
is a set of scored spans for each UCCA graph.
Following the parsing literature, we call this set a
chart. We merge multiple charts produced by dif-
ferent parsers to a single chart simply by adding
the corresponding scores.

Handling Remote Edges A remote edge with
label L from node x to node y is equal to a pri-
mary edge with label L from x to an implicit node,
which is referred to node y. Hence, if we can find
the relationships of references, the remote edges
are able to be recovered.

93

x

L

y

x

F

y z

L

Figure 2: Remove nonconsecutive spans

Since all primary edges from nodes to their par-
ent are encoded in labels of spans, each node could
be represented as part of the label of a span. We
encode each reference of a remote edge as a pair of
two nodes with a score. After building all primary
edges through dynamic programming, we search
for available references with the maximum score
in each implicit node greedily and leverage these
references to recover remote edges.

Handling Discontinuous Spans Discontinuous
spans are removed by repeating the following
steps:

Step 1. Find a node x with a nonconsecutive
span with the minimum starting point and min-
imum height, supposed its consecutive sub-span
with minimum starting point is [a, b).

Step 2. Find a node y with a consecutive span
with starting point b and maximum height, sup-
posed the primary edge from y’s parent to y is e.

Step 3. Create a node z with a special type MIR-
ROR and create a primary edge with the label of e
from y’s parent to z. Remove the primary edge
e and create a primary edge with a special label
FAKE from x to y.

After each iteration, the span of y is added to
x, and the sum of the length of nonconsecutive
spans decreases. Each primary edge in an origi-
nal UCCA graph can only be removed once. To
that end, the running time of this algorithm is lin-
ear in the number of lexical units. If all references
of MIRROR nodes are correctly predicted, the ex-
pected UCCA graph will be obtained. In this way,
remote edges can be handled.

4 Experiments

4.1 Data Statistics

The semantic parsing task is carried out in three
languages: English, German and French, in-
cluding three training data sets and parallel four
test data sets. For English data, we use the
Wikipedia UCCA corpus (henceforth Wiki) as
training and development data, testing on English
UCCA Wikipedia corpus as the in-domain test.

Tracks Training Dev TestClosed Open
En-Wiki 4113 5132 514 515
En-20K 0 5132 0 492
Ge-20K 5211 6360 651 632
Fr-20K 15 547 238 239

Table 1: Sentence number in training, dev, and test sets
for English, German and French UCCA data sets.

Meanwhile, English UCCA Twenty Thousand
Leagues Under the Sea English-French-German
parallel corpus (henceforth 20K Leagues) serves
as an out-of-domain test set. For German data, we
use 20K Leagues corpus for train, development,
and test sets. For French data, they provide only
limited training data, along with development and
test data sets.

Table 1 shows the sentences number of data sets
for all three languages. We use the closed track
data and UCCA’s annotation resources for open
tracks. We merge those resources and build our
open track data3.

4.2 TUPA Parsers
We build MLP and BiLSTM systems using
TUPA (Hershcovich et al., 2017b). For Cas-
caded BiLSTM model, we add another MLP af-
ter the BiLSTM model, which forms a cascaded
BiSLTM. For closed tracks, we train models based
on the gold-standard UCCA annotation from offi-
cial resources. For open tracks, We use additional
UCCA data from other open sources as training
data set. We also generate synthetic data by auto-
matically translating text (Khan et al., 2018) and
its parsing labels across languages in our on-going
work.

Table 2 shows the results for four models in dif-
ferent tracks. The italicized values are our offi-
cial submission. However, we have made some
improvement after the Evaluation Phrase, and the
bold results are our best results. The first three
models are single systems and the fourth model
(Ensembled) ensembles different frameworks by
reparsing systems. The “baseline” represents the
baseline that competition provides for reference.

By using feedforward Neural Network and em-
bedding features, MLP models get the lowest
scores. BiLSTM models achieve better results
than MLP models in F1 scores, both in the in-
domain and out-of-domain data sets. However, the

3https://github.com/weimin17/
semEval-taks1

94

Tracks MLP BiLSTM(Submit) Cascaded BiLSTM Ensembled baseline

closed
En-Wiki 0.650 0.718 0.721 0.728 0.728
En-20K 0.617 0.669 0.673 0.681 0.672
Ge-20K 0.699 0.797 0.797 0.797 0.731

open

En-Wiki 0.784 0.800 0.843 0.846 0.735
En-20K 0.715 0.739 0.764 0.770 0.684
Ge-20K 0.598 0.841 0.841 0.840 0.791
Fr-20K 0.535 0.796 0.795 0.796 0.487

Table 2: F1 scores for both closed and open tracks in SemEval Task 1 2019 competition. The italic text represents
our official submission in competition and the bold text represents our best F1 scores.

Open Tracks F1 Scores
English-Wiki 0.75
English-20K 0.785

Table 3: F1 scores on unlabeled data.

combination of BiSLTM and MLP models (Cas-
caded BiLSTM model) performs best among the
three models in all results of single systems.

Our in-house reparsing system ensembles the
above parsers as described in Section 3. We can
see that ensemble results are better at closed track,
but not as good as the best results by Cascaded
BiLSTM at Open track.

4.3 Phrase Constituency Parser

For Phrase Constituency Parer, we only test the
performance on unlabeled data instead of labeled
data, while for TUPA we test on labeled data.

First, we use Benepar4, a parsing tool using out-
of domain pre-trained models to predict the labels,
the outputs are parsing tree structures.

Second, we convert the constituency parsing
tree structure to Conllu Format. We develop a one-
shot tool to improve the efficiency of conversion
based on TreebankPreprocessing5, which can au-
tomatically convert a batch of files in one direc-
tory.

Finally, we convert Conllu format to UCCA
XML using format6.

We only experiment on English-Wiki and
English-20K open track, and the results are pretty
bad, as shown in Table 3. We hypothesize there are
two reasons: 1. The conversion process could un-

4https://github.com/nikitakit/
self-attentive-parser

5https://github.com/hankcs/
TreebankPreprocessing

6https://github.com/huji-nlp/semstr/
blob/master/semstr/convert.py

Models test sets dev sets
CharsLSTM 91.96 92.21

ELMO 94.31 94.75

Table 4: F1 scores for two constituency parsers on both
Penn Treebank dev and test data sets.

avoidably cause accuracy loss. 2. The third-party
pre-trained models are not as efficient as the mod-
els trained directly on the specific UCCA data.

To test the accuracy on unlabeled data and to
evaluate how many losses are there during the con-
version process, we evaluate the accuracy in the
parsing tree structure phrase before the conver-
sion. We experimentally validate our system on
the English Wiki data set. We use official training
data set as training data, splitting official dev set
into two parts and separately serving as our dev
set and test set. We also use two models of con-
stituency parser: ELMO and CharsLSTM, tested
on Penn Treebank (Cross and Huang, 2019) data.

Table 4 indicates that, for Penn Treebank data
sets, CharsLSTM model’s F1 score achieves 92.21
on dev data set, with F1 score 91.96 on the test
dataset. Using ELMo, The dev dataset’s F1 score
achieves 94.75, with F1 score achieves 94.31 on
test data set.

5 Summary

Our submission systems mainly contain a BiL-
STM, an MLP, and a cascaded BiLSTM parser, as
well as a voted system of above. Our final sys-
tem ranks first in three tracks, French-20K-Open,
English-20K-Open and English-Wiki-Open, and
the second place in the other four tracks in the
post-evaluation.

95

Contributions and Acknowledgements

Weimin Lyu: built all TUPA Parsers, a self-
attentive Parser, convert UCCA graph as con-
stituency tree, verify the voting systems, and
draft the paper. Sheng Huang and Shengqiang
Zhang: built the reparsing system and UCCA-
Dependency graph transformer. Abdul Rafae
Khan: built cross-lingual parsers by generating
synthetic data with machine translation. Wei-
wei Sun: extensively supervised PKU team, and
Jia Xu: closely supervised CUNY team, in algo-
rithms and experiments. We thank the initial work
of Mark Perelman. This research was partially
funded by National Science Foundation (NSF)
Award No. 1747728 and National Science Foun-
dation of China (NSFC) Award No. 61772036
and 61331011 and partially supported by the Key
Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent
Press Media Technology) and the Computer Sci-
ence Department at CUNY Graduate Center as
well as CUNY Hunter College.

References
Danqi Chen and Christopher Manning. 2014. A fast

and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP), pages 740–750.

James Cross and Liang Huang. 2019. Span-based con-
stituency parser.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017a. A transition-based directed acyclic graph
parser for ucca. In Proc. of ACL, pages 1127–1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017b. A transition-based directed acyclic graph
parser for ucca. arXiv preprint arXiv:1704.00552.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. arXiv preprint arXiv:1805.00287.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. Semeval 2019 task 1: Cross-lingual
semantic parsing with ucca. arXiv preprint
arXiv:1903.02953.

Abdul Khan, Subhadarshi Panda, Jia Xu, and Lam-
pros Flokas. 2018. Hunter nmt system for wmt18
biomedical translation task: Transfer learning in
neural machine translation. In Proceedings of the
Third Conference on Machine Translation: Shared
Task Papers, pages 655–661.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Nikita Kitaev and Dan Klein. 2018a. Constituency
parsing with a self-attentive encoder. arXiv preprint
arXiv:1805.01052.

Nikita Kitaev and Dan Klein. 2018b. Multilingual
constituency parsing with self-attention and pre-
training. arXiv preprint arXiv:1812.11760.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers.

96

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 97–101
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

 1

DANGNT@UIT.VNU-HCM at SemEval 2019 Task 1: Graph Trans-
formation System from Stanford Basic Dependencies to Universal

Conceptual Cognitive Annotation (UCCA)

Dang Tuan Nguyen and Trung Tran
University of Information Technology, VNU-HCM

Ho Chi Minh City, Vietnam
dangnt@uit.edu.vn, ttrung@nlke-group.net

Abstract

This paper describes the graph transfor-
mation system (GT System) for SemEval
2019 Task 1: Cross-lingual Semantic Pars-
ing with Universal Conceptual Cognitive
Annotation (UCCA)1. The input of GT
System is a pair of text and its unannotated
xml, which is a layer 0 part of UCCA
form. The output of GT System is the cor-
responding full UCCA xml. Based on the
idea of graph illustration and transfor-
mation, we perform four main tasks when
building GT System. At the first task, we
illustrate the graph form of stanford
dependencies2 of input text. We then trans-
form into an intermediate graph in the sec-
ond task. At the third task, we continue to
transform into ouput graph form. Finally,
we create the output UCCA xml.

The evaluation results show that our
method generates good-quality UCCA xml
and has a meaningful contribution to the
semantic representation sub-field in Natu-
ral Language Processing.

1 Introduction

In the past few years, semantic representation is
receiving growing attention in NLP. Researchers
have recently proposed different semantic
schemes. Examples include Abstract Meaning
Representation (Banarescu et al. 2013), Broad-
coverage Semantic Dependencies (Oepen et al.
2014), Universal Decompositional Semantics
(White et al. 2016), Parallel Meaning Bank (Ab-
zianidze et al. 2016), Universal Conceptual Cog-
nitive Annotation (Abend and Rappoport 2013).
These advances in semantic representation, along
with corresponding advances in semantic parsing,
text understanding, summarization, paraphrase
detection, and semantic evaluation.

In SemEval 2019 Task 1: Cross-lingual Se-
mantic Parsing with Universal Conceptual Cogni-

tive Annotation (UCCA)1, the Committee focuses
on parsing text according to the UCCA semantic
annotation. UCCA (Abend and Rappoport 2013)
is a cross-linguistically applicable semantic repre-
sentation scheme, based on Basic Linguistic The-
ory (Dixon 2010). In general, UCCA represents
the semantics of linguistic utterances as directed
acyclic graphs (DAGs). In one DAG, nodes and
edges belong to one of several layers. There are
two types of node: (i) terminal nodes express the
text tokens; (ii) non-terminal nodes express se-
mantic units. Edges are labelled, indicating the
role of a child in the relation the parent represents.
As an example, consider sentence in Example 1:
“The album was recorded in Switzerland .”. Two
layers of UCCA xml of this sentence:

· Layer0:
<root annotationID="0" passageID="503012">

 <attributes />
 <layer layerID="0">
 <attributes />
 <extra ... />
 <node ID="0.1" type="Word">
 <attributes ... text="The" />
 <extra dep="det" ... tag="DT" />
 </node>
 ...
 </layer>

</root>

The relations of NodeID and corresponding lexi-
con:
{[ID="0.1" è dep="det" è “The”]

[ID="0.2" è dep="nsubj:pass" è “album”]

[ID="0.3" è dep="aux:pass" è “was”]

[ID="0.4" è dep="root" è “recorded”]

[ID="0.5" è dep="case" è “in”]

[ID="0.6" è dep="obl" è “Switzerland”]

[ID="0.7" è dep="punct" è “.”]}

· Layer1:
<layer layerID="1">

 <attributes />
 <node ID="1.1" type="FN">
 <attributes />

1 https://competitions.codalab.org/competitions/19160

97

 2

 <edge toID="1.2" type="H">
 <attributes />
 </edge>
 </node>
 <node ID="1.2" type="FN">
 <attributes />
 <edge toID="1.4" type="A">
 <attributes />
 </edge>
 ...
 </node>
 <node ID="1.4" type="FN">
 <attributes />
 <edge toID="1.10" type="E">
 <attributes />
 </edge>
 ...
 </node>
 <node ID="1.10" type="FN">
 <attributes />
 <edge toID="0.1" type="Terminal">
 <attributes />
 </edge>
 </node>
 ...

 </layer>

We have the graphical representation of the above
UCCA:

Figure 1: Graph form of UCCA xml of sentence in Ex-

ample 1.
The primary purpose of this article is to present
our system called graph transformation system
(GT System) for Task1. We perform four tasks
when building GT System. At the first task, we il-
lustrate the graph form of Stanford dependencies2
(Manning et al. 2014; Marie-Catherine et al.
2014) of input text. We then transform into an in-
termediate graph in the second task. At the third
task, we continue to transform into ouput graph
form. Finally, we create the output UCCA xml.

The rest of article is separated as follows. We
briefly describe Stanford dependencies in Section
2. In Section 3, we introduce our GT system for
Task1. Section 4 details the experiments and

2 https://stanfordnlp.github.io/CoreNLP/

analyzes the results. We offer conclusions in Sec-
tion 5.

2 Stanford Dependencies

Stanford dependencies2 (Manning et al. 2014; Ma-
rie-Catherine et al. 2014; Marie-Catherine and
Manning 2008) provides a representation of
grammatical relations between words in a sen-
tence. Stanford dependencies (SD) have three
parts: name of the relation, governor and depend-
ent. Consider English sentence in Example 1, be-
low is the xml representation of SD basic depend-
encies. This representation is the result of running
Stanford CoreNLP pipeline (Manning et al. 2014).

<dependencies type="basic-dependencies">

 <dep type="root">
 <governor idx="0">ROOT</governor>
 <dependent idx="4">recorded</dependent>
 </dep>
 <dep type="det">
 <governor idx="2">album</governor>
 <dependent idx="1">The</dependent>
 </dep>
 <dep type="nsubjpass">
 <governor idx="4">recorded</governor>
 <dependent idx="2">album</dependent>
 </dep>
 <dep type="auxpass">
 <governor idx="4">recorded</governor>
 <dependent idx="3">was</dependent>
 </dep>
 <dep type="case">
 <governor

idx="6">Switzerland</governor>
 <dependent idx="5">in</dependent>
 </dep>
 <dep type="nmod">
 <governor idx="4">recorded</governor>
 <dependent

idx="6">Switzerland</dependent>
 </dep>

</dependencies>

We have the graphical representation of the above
SD basic dependencies:

Figure 2: Graph form of SD basic dependencies of sen-

tence in Example 1.

98

 3

3 The Graph Transformation System

In this section, we express our GT system for cre-
ating UCCA xml of the input text. The general ar-
chitecture is represented in Figure 2:

Figure 3: Architecture of Graph Transformation Sys-

tem.
When building GT System, we perform two pro-
cesses: training and testing process. At training
process, we build the intermediate graph from
UCCA and SD basic dependencies of training da-
ta1. At the testing process, which can be called the
inverse process of training, we build the ouput
UCCA from intermediate graph of testing data.

3.1 Intermediate Graph

In general, the intermediate graph is an irreducible
representation of UCCA graph form. This inter-
mediate graph is quite similar to graph form of SD
basic dependencies. The main difference of the in-
termediate graph and graph form of SD basic de-
pendencies is: each edge label in the intermediate
graph is the combination of UCCA categories
(Abend and Rappoport. 2013) and Stanford de-
pendency relations (Marie-Catherine and Man-
ning 2008a, 2008b).

Below is the intermediate graph of sentence in
Example 1. This graph is the reduction of graph in
Figure 1, and quite similar to graph in Figure 2.

Figure 4: Intermediate graph of sentence in Example 1.

3.2 Training Process

Firstly, at training process, we consider train data1
and performed main tasks. The first and second

task is in turn viewing the graph from of SD basic
dependencies and UCCA of input text. At the third
task, we propose Left-First-Search liked algorithm
with Bottom-Up idea to reduce the graph form of
UCCA to intermediate graph. At the final task, we
propose rules and heuristics for matching graph
form of SD basic dependencies and intermediate
graph.

The main steps of Left-First-Search (LFS) al-
gorithm is as follow. Step 1. Browse to terminal
on the left. Step 2. Back to parent node of this
terminal. Check if parent having any other child
or not. Step 2.1. If yes. Repeat Step 1 with root is
this child node. Step 3. Swap the position of root
of sub-tree with position of child having important
annotation. Step 4. Back to parent node of this
root. Repeat Step 2 with this parent.

To perform LFS algorithm, we determine the
priority of SD and UCCA annotations according
to two factors. First. The meaning of each annota-
tion, representing the dependency relations and
grammatical roles of lexicons. Second. The posi-
tion of each node in graph.

Apply LFS algorithm for graph in Figure 3, we
in turn have three level reductions in Figure 5, 6, 4
(respectively):

Figure 5: First reduction of Graph form in Figure 1.

Figure 6: Second reduction of Graph form in Figure 1.

After having the final reduction, which is inter-
mediate graph, of graph form of UCCA, we com-
pare with graph form of SD basic dependencies.
We consider the similarities between two graphs
and propose rules and heuristics to (i) determine
the level of one node, and (ii) determine the group

99

 4

of UCCA annotation for each level. The general
idea of mechanism is:

· Collect all SD-type of relations in UCCA and
SD basic dependencies of training data. Be-
low is the collection:

SD basic
dependencies

acl:relcl / expl / csubjpass / cop / aux / conj / acl /
xcomp / dep / appos / advmod / neg / det /
cc:preconj / nmod:tmod / ccomp / root / advcl /
nsubj / case / iobj / cc / det:predet / nmod:poss /
compound:prt / csubj / nsubjpass / nummod /
nmod:npmod / nmod / auxpass / parataxis / amod
/ compound / discourse / mwe / dobj / mark

UCCA acl:relcl / expl / obl:npmod / cop / aux / conj / acl
/ appos / xcomp / goeswith / advmod / det /
ccomp / nsubj:pass / cc:preconj / nmod:tmod /
flat / root / obl:tmod / advcl / punct / nsubj / case
/ iobj / cc / vocative / det:predet / nmod:poss /
compound:prt / csubj / nummod / nmod:npmod /
nmod / parataxis / amod / list / compound / dis-
course / aux:pass / obj / obl / fixed / mark

· Determine the priority order of SD-type rela-
tions.

Example 2: dobj -> amod -> dep -> nmod -> case.

· Determine the compound (UCCA and SD) re-
lation in each node level.

Example 3: type conj at level 7: “H - A - E - C - C - C -

conj”

3.3 Testing Process

At the testing process, which can be called the in-
verse process of training, we considered develop-
ment and test data1 and performed main tasks. The
first task is viewing the graph from of SD basic
dependencies of input text. At the second task, we
applied proposed rules and heuristics to transform
this graph to intermediate graph. We then, at the
final task, we proposed Breadth-First-Search liked
algorithm with Top-Down idea to re-create the
graph form of UCCA from intermediate graph.
This BFS algorithm is, in fact, the inverse mecha-
nism of LFS algorithm in Section 3.2.

The main steps of Breadth-First-Search (BFS)
algorithm is as follow. Step 1. Reduce the first
level of node. Step 2. Determine the intergrated-
Child which adheres to this node. Step 3. If there
is no intergratedChild. Step 3.1. Repeat Step 1 un-
til node come down to terminal position. Step 3.2.
Repeat from Step 1 to Step 4 with each child of
this node. Step 4. If there is intergratedChild. Step
4.1. Repeat from Step 1 to Step 4 with each child
of this node which are different from intergrated-
Child. Step 4.2. Repeat from Step 1 to Step 4 with
this node. Step 4.3. Repeat from Step 1 to Step 4
with intergratedChild.

4 Experiment and Evaluation

At the evaluation phase, we focus on English in-
domain setting, using the Wiki corpus. In testing
data, this domain consists of 515 small texts with
corresponding unannotated UCCA xmls.

We test our method for both open and closed
track in the English setting: (i) closed track sub-
mission is only allowed to use the gold-standard
UCCA annotation distributed for the task in the
target language, and limited in its use of additional
resources; (ii) open track submission is allowed to
use any additional resource.

Table 1 and 2 view the results of testing data for
open and closed tracks with labeled (first row) and un-
labeled scores (second row).

Averaged
F1

 P R F1

0.708 Primary 0.738 0.694 0.715
 Remote 1.000 0.000 0.000

0.822 Primary 0.857 0.806 0.831
 Remote 1.000 0.000 0.000

Table 1: Results of testing data in open track.

Averaged
F1

 P R F1

0.706 Primary 0.737 0.692 0.714
 Remote 1.000 0.000 0.000

0.825 Primary 0.860 0.808 0.833
 Remote 1.000 0.000 0.000

Table 2: Results of testing data in closed track.

The testing results show that our GT system
creates good quality UCCA semantic representa-
tions in English Wiki testing data.

5 Conclusion

We have presented the graph transformation
method for creating UCCA semantic representa-
tion from English in-domain setting, using the
Wiki corpus1. Our method performs four main
tasks: (i) illustrate the graph form of Stanford de-
pendencies2 of input text; (ii) transform into an in-
termediate graph; (iii) continue to transform into
ouput graph form; (iv) create the output UCCA
xml. The experiment results show that our method
meets the requirements from SemEval Task1.

In future works, we intend to improve the trans-
formational algorithms and propose more accurate
rules for selecting best nodes and dependency
tags. Besides, we expand our method and test with
other datasets for a broader comparison.

100

 5

References

Aaron Steven White, Drew Reisinger, Keisuke
Sakaguchi, Tim Vieira, Sheng Zhang, Rachel
Rudinger, Kyle Rawlins, Benjamin Van Durme.
2016. Universal Decompositional Semantics on
Universal Dependencies. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing. Austin, Texas, pages 1713–
1723.

Daniel Hershcovich, Omri Abend and Ari Rappoport.
2017. A Transition-Based Directed Acyclic Graph
Parser for UCCA. In Proceedings of the 55th Annu-
al Meeting of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Vancouver, Canada, pages 1127–1138.

Daniel Hershcovich, Omri Abend and Ari Rappoport.
2018. Multitask Parsing Across Semantic Repre-
sentations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Long Papers). Association for Computational
Linguistics, Melbourne, Australia, pages 373–385.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajič, Christopher D.
Manning, Ryan McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal Dependencies v1: A Mul-
tilingual Treebank Collection. In LREC 2016.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse. Association for Computational Linguis-
tics, pages 178–186.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, Johan Bos. 2017. The Parallel
Meaning Bank: Towards a Multilingual Corpus of
Translations Annotated with Compositional Mean-
ing Representations. In Proceedings of the 15th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL). Va-
lencia, Spain, pages 242–247.

Manning, Christopher D., Mihai Surdeanu, John Bau-
er, Jenny Finkel, Steven J. Bethard, and David
McClosky. 2014. The Stanford CoreNLP Natural
Language Processing Toolkit. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstra-
tions, pages 55-60.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-

sal Stanford Dependencies: A cross-linguistic ty-
pology. In Proceedings of LREC.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008a. The Stanford typed dependencies
representation. In COLING 2008 Workshop on
Cross-framework and Cross-domain Parser Evalu-
ation.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008b. Stanford Dependencies manual.

Omri Abend and Ari Rappoport. 2013. Universal
Conceptual Cognitive Annotation (UCCA). In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, Sofia, Bulgaria, pages
228–238.

Omri Abend, Shai Yerushlami and Ari Rappoport.
2017. UCCAApp: Web-application for Syntactic
and Semantic Phrase-based Annotation. In Pro-
ceedings of ACL 2017.

Robert M. W. Dixon. 2010. Basic Linguistic Theory:
Grammatical Topics, Volume 2. Oxford University
Press.

Sebastian Schuster and Christopher D. Manning.
2016. Enhanced English Universal Dependencies:
An Improved Representation for Natural Language
Understanding Tasks. In LREC 2016.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 Task
8:Broad-Coverage Semantic Dependency Parsing.
In Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014). Dublin,
Ireland, pages 63–72.

101

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 102–106
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph
Convolutional and Recurrent Neural Networks

Shiva Taslimipoor Omid Rohanian Sara Može
Research Group in Computational Linguistics

University of Wolverhampton, UK
{shiva.taslimi, omid.rohanian, s.moze}@wlv.ac.uk

Abstract

This paper describes the system submitted to
the SemEval 2019 shared task 1 ‘Cross-lingual
Semantic Parsing with UCCA’. We rely on the
semantic dependency parse trees provided in
the shared task which are converted from the
original UCCA files and model the task as tag-
ging. The aim is to predict the graph structure
of the output along with the types of relations
among the nodes. Our proposed neural archi-
tecture is composed of Graph Convolution and
BiLSTM components. The layers of the sys-
tem share their weights while predicting de-
pendency links and semantic labels. The sys-
tem is applied to the CONLLU format of the
input data and is best suited for semantic de-
pendency parsing.

1 Introduction

Universal Conceptual Cognitive Annotation
(UCCA) (Abend and Rappoport, 2013) is a
semantically motivated approach to grammatical
representation inspired by typological theories of
grammar (Dixon, 2012) and Cognitive Linguistics
literature (Croft and Cruse, 2004). In parsing,
bi-lexical dependencies that are based on binary
head-argument relations between lexical units
are commonly employed in the representation of
syntax (Nivre et al., 2007; Chen and Manning,
2014) and semantics (Hajič et al., 2012; Oepen
et al., 2014; Dozat and Manning, 2018).

UCCA differs significantly from traditional de-
pendency approaches in that it attempts to ab-
stract away traditional syntactic structures and re-
lations in favour of employing purely semantic
distinctions to analyse sentence structure. The
shared task, ‘cross-lingual semantic parsing with
UCCA’ (Hershcovich et al., 2019) consists in pars-
ing English, German, and French datasets using
the UCCA semantic tagset. In order to enable
multi-task learning, the UCCA-annotated data is

automatically converted to other parsing formats,
e.g. Abstract Meaning Representation (AMR) and
Semantic Dependency Parsing (SDP), inter alia
(Hershcovich et al., 2018).

Although the schemes are formally different,
they have shared semantic content. In order to
perform our experiments, we target the converted
CONLLU format, which corresponds to tradi-
tional bi-lexical dependencies and rely on the con-
version methodology which is provided in the
shared task (Hershcovich et al., 2019) to attain
UCCA graphs.

UCCA graphs contain both explicit and implicit
units 1 However, in bi-lexical dependencies, nodes
are text tokens and semantic relations are direct
bi-lexical relations between the tokens. The con-
version between the two format results in partial
loss of information. Nonetheless, we believe that
it is worth trying to model the task using one of
the available formats (i.e. semantic dependency
parsing) which is very popular among NLP re-
searchers.

Typically, transition-based methods are used in
syntactic (Chen and Manning, 2014) and seman-
tic (Hershcovich et al., 2017) dependency parsing.
By contrast, our proposed system shares several
similarities with sequence-to-sequence neural ar-
chitectures, as it does not specifically deal with
parsing transitions. Our model uses word, POS
and syntactic dependency tree representations as
input and directly produces an edge-labeled graph
representation for each sentence (i.e. edges and
their labels as two separate outputs). This multi-
label neural architecture, which consists of a BiL-
STM and a Graph Convolutional Network (GCN),
is described in Section 3.

1Explicit units (terminal nodes) correspond to tokens in
the text, but implicit (semantic) units have no corresponding
component in the text.

102

2 Related Work

A recent trend in parsing research is sequence-to-
sequence learning (Vinyals et al., 2015b; Kitaev
and Klein, 2018), which is inspired from Neural
Machine Translation. These methods ignore ex-
plicit structural information in favour of relying on
long-term memory, attention mechanism (content-
based or position-based) (Kitaev and Klein, 2018)
or pointer networks (Vinyals et al., 2015a). By do-
ing so, high-order features are implicitly captured,
which results in competitive parsing performance
(Jia and Liang, 2016).

Sequence-to-sequence learning has been partic-
ularly effective in Semantic Role Labeling (SRL)
(Zhou and Xu, 2015). By augmenting these
models with syntactic information, researchers
have been able to develop state-of-the-art systems
for SRL (Marcheggiani and Titov, 2017; Strubell
et al., 2018).

As information derived from dependency parse
trees can significantly contribute towards under-
standing the semantics of a sentence, Graph Con-
volutional Network (GCN) (Kipf and Welling,
2017) is used to help our system perform semantic
parsing while attending to structural syntactic in-
formation. The architecture is similar to the GCN
component employed in Rohanian et al. (2019) for
detecting gappy multiword expressions.

3 Methodology

For this task, we employ a neural architecture util-
ising structural features to predict semantic pars-
ing tags for each sentence. The system maps a
sentence from the source language to a probability
distribution over the tags for all the words in the
sentence. Our architecture consists of a GCN layer
(Kipf and Welling, 2017), a bidirectional LSTM,
and a final dense layer on top.

The inputs to our system are sequences of
words, alongside their corresponding POS and
named-entity tags.2 Word tokens are repre-
sented by contextualised ELMo embeddings (Pe-
ters et al., 2018), and POS and named-entity tags
are one-hot encoded. We also use sentence-level
syntactic dependency parse information as input
to the system. In the GCN layer, the convolu-
tion filters operate based on the structure of the
dependency tree (rather than the sequential order

2spaCy (Honnibal and Johnson, 2015) is used to generate
POS, named-entity and syntactic dependency tags.

of words).

Graph Convolution. Convolutional Neural Net-
works (CNNs), as originally conceived, are se-
quential in nature, acting as detectors of N-
grams (Kim, 2014), and are often used as feature-
generating front-ends in deep neural networks.
Graph Convolutional Network (GCN) has been in-
troduced as a way to integrate rich structural rela-
tions such as syntactic graphs into the convolution
process.

In the context of a syntax tree, a GCN can be
understood as a non-linear activation function f
and a filter W with a bias term b:

c = f(
∑

i∈r(v)
Wxi + b) (1)

where r(v) denotes all the words in relation with
a given word v in a sentence, and c represents the
output of the convolution. Using adjacency matri-
ces, we define graph relations as mask filters for
the inputs (Kipf and Welling, 2017; Schlichtkrull
et al., 2017).

In the present task, information from each graph
corresponds to a sentence-level dependency parse
tree. Given the filter Ws and bias bs, we can there-
fore define the sentence-level GCN as follows:

Cs = f(WsX
TA+ bs) (2)

where Xn×v, An×n, and Co×n are tensor rep-
resentation of words, the adjacency matrix, and
the convolution output respectively.3 In Kipf
and Welling (2017), a separate adjacency matrix
is constructed for each relation to avoid over-
parametrising the model; by contrast, our model
is limited to the following three types of relations:
1) the head to the dependents, 2) the dependents
to the head, and 3) each word to itself (self-loops)
similar to Marcheggiani and Titov (2017). The fi-
nal output is the maximum of the weights from the
three individual adjacency matrices.
The model architecture is depicted in Figure 1.

4 Experiments

Our system participated in the closed track for En-
glish and German and the open track for French.
We exclusively used the data provided in the
shared task. The system is trained on the train-
ing data only, and the parameters are optimised us-
ing the development set. The results are reported

3o: output dimension; v: word vectors dimension; n: sen-
tence length

103

GCN
(Root to

Dependency)

GCN
(Dependency
to Root)

GCN
(Root)

Max

BiLSTM

FFN

Word
Representation

Figure 1: A GCN-based recurrent architecture.

on blind-test data in both in-domain and out-of-
domain settings. We focus on predicting the pri-
mary edges of UCCA semantic relations and their
labels.

4.1 Data

The datasets of the shared task are devised for four
settings: 1) English in-domain, using the Wiki cor-
pus; 2) English out-of-domain, using the Wiki cor-
pus as training and development data, and 20K
Leagues as test data; 3) German in-domain, using
the 20K Leagues corpus; 4) French setting with
no training data (except trial data), using the 20K
Leagues corpus as development and test data.

Whilst the annotated files used by the shared
task organisers are in the XML format, several
other formats are also available. We decided to
use CONLLU, as it is more interpretable. How-
ever, according to the shared task description,4 the
conversion between XML and CONLLU, which is
a necessary step before evaluation, is lossy. Her-
shcovich et al. (2017) used the same procedure of
performing dependency parsing methods on CON-
LLU files and converting the predictions back to
UCCA.

4.2 Settings

We trained ELMo on each of the shared task
datasets using the system implemented by Che
et al. (2018). The embedding dimension is set to
1024. The number of nodes is 256 for GCN and
300 for BiLSTM, and we applied a dropout of 0.5
after each layer. We used the Adam optimiser for
compiling the model.

We tested our model in four different settings,

4https://competitions.codalab.org/
competitions/19160#fn1

as explained in Section 4.1. The parameters are
optimised on the English Wiki development data
(batch-size = 16 and number of epochs = 100) and
used for all four settings. As no training data was
available for French, the trained system on English
Wiki was used to parse French sentences of 20K
Leagues. For this reason the French model is eval-
uated within the open track.

4.3 Official Evaluation

Our model predicts two outputs for each dataset:
primary edges and their labels (UCCA semantic
categories). 5

Table 1 shows the performance (in terms of pre-
cision, recall, and F1-score) for predicting primary
edges in both labeled (i.e. with semantic tags) and
unlabeled settings (i.e. ignoring semantic tags).
Table 2 shows F1-scores for each semantic cate-
gory separately. Although the overall performance
of the system, as shown in the official evaluation
in Table 1, is not particularly impressive, there are
a few results worth reporting. These are listed in
Table 2.

Our system is ranked second in predicting four
relations, i.e. L (linker), N (Connector), R (Rela-
tor), and G (Ground), in all settings displayed in
bold. A plausible explanation would be that these
relations are somewhat less affected by the loss of
information incurred as a result of the conversions
between formats.

5 Discussion

Our neural model is applied to UCCA corpora,
which are converted to bi-lexical semantic depen-
dency graphs and represented in the CONLLU for-
mat. The conversion from UCCA annotations to
CONLLU tags appears to have a distinctly neg-
ative impact on the system’s overall performance.
As reported in the shared task description, convert-
ing the English Wiki corpus to the CONLLU for-
mat and back to the standard format results in an
F1-score of only 89.7 for primary labeled edges.
This means that our system cannot go beyond this
upper limit.

Since our system is trained on CONLLU files
and the evaluation involves converting the CON-
LLU format back to the standard UCCA format,

5For more details about UCCA semantic categories and
the way they are used for the shared task, see https:
//competitions.codalab.org/competitions/
19160#learn_the_details-overview. Our system
does not predict remote edges defined in UCCA.

104

labeled unlabeled
dataset track Avg. F1 P R F1 Avg. F1 P R F1

UCCA English-Wiki closed 0.657 0.673 0.655 0.664 0.809 0.829 0.807 0.818
UCCA English-20K closed 0.626 0.632 0.642 0.637 0.8 0.808 0.821 0.814
UCCA German-20K closed 0.71 0.72 0.72 0.72 0.851 0.863 0.862 0.862
UCCA French-20K* open 0.438 0.443 0.447 0.445 0.690 0.698 0.705 0.702

Table 1: Official results of the shared task evaluation for predicting different semantic category labels. (* The
results for French are for Post-Evaluation.)

dataset (D) (C) (N) (E) (F) (G) (L) (H) (A) (P) (U) (R) (S) (Terminal)
English-Wiki 0.7 0.708 0.866 0.738 0.801 0.286 0.836 0.289 0.582 0.451 0.948 0.914 0 0.997
English-20K 0.521 0.733 0.776 0.743 0.647 0.04 0.719 0.248 0.538 0.527 0.978 0.844 0 0.997
German-20K 0.691 0.813 0.796 0.82 0.845 0.778 0.834 0.375 0.697 0.561 0.997 0.916 0 0.998
French-20K* 0.223 0.569 0.579 0.551 0.378 0.000 0.536 0.118 0.314 0.358 0.987 0.711 0 0.993

Table 2: Official results of the shared task evaluation for predicting Primary edges and their labels. (* The results
for French are for Post-Evaluation.)

the reported results for our system can be mislead-
ing. In order to further investigate this issue, we
performed an evaluation using the English Wiki
development data, comparing the predicted labels
with the gold standard in development set in the
CONLLU format. The average F1-score for la-
belled edges was 0.71 compared to the 0.685 score
our system achieved on the development set using
the official evaluation script.

This clearly demonstrates that our system fares
significantly better if it receives its input in the
form of bi-lexical dependency graphs. Therefore,
the system is best suited for semantic dependency
parsing, although we believe that promising re-
sults could also be achieved in UCCA annota-
tion if the conversion between the CONLLU and
UCCA formats is improved to map and preserve
information more accurately.

6 Conclusion and Future Work

In this paper, we described the system we sub-
mitted to the SemEval-2019 Task 1: ‘Semantic
Parsing using Graph Convolutional and Recurrent
Neural Networks’. The model performs semantic
parsing using information derived from syntactic
dependencies between words in each sentence. We
developed the model using a combination of GCN
and BiLSTM components. Due to the penalisation
resulting from the use of lossy CONLLU files, we
argue that the results cannot be directly compared
with those of the other task participants. 6

In the future, we would like to build on the work

6The code is available at https://github.com/
shivaat/GCN-Sem.

presented in this paper by applying the architec-
ture to the standard UCCA dataset, or possibly
training the system to perform bi-lexical semantic
dependency annotation.

References
Omri Abend and Ari Rappoport. 2013. Universal Con-

ceptual Cognitive Annotation (UCCA). In Proc. of
ACL, pages 228–238.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750. Association for Compu-
tational Linguistics.

William Croft and D. A Cruse. 2004. Cognitive lin-
guistics. Cambridge University Press.

Robert M. W Dixon. 2012. Basic linguistic theory.
Oxford University Press.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 484–490. Associa-
tion for Computational Linguistics.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr
Sgall, Ondřej Bojar, Silvie Cinková, Eva Fučı́ková,

105

Marie Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Se-
mecký, Jana Šindlerová, Jan Štěpánek, Josef Toman,
Zdeňka Urešová, and Zdeněk Žabokrtský. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In Proceedings of the 8th International
Conference on Language Resources and Evaluation
(LREC 2012), pages 3153–3160. ELRA, European
Language Resources Association.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for ucca. In Proc. of ACL, pages 1127–1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proc. of ACL, pages 373–385.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. Semeval 2019 task 1: Cross-lingual
semantic parsing with ucca.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1373–1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22. Association for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), Melbourne, Australia. Association for Com-
putational Linguistics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515. Association
for Computational Linguistics.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Glsen Eryigit, Sandra Kbler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser: A
language-independent system for data-driven depen-
dency parsing. Natural Language Engineering,
13(02).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL.

Omid Rohanian, Shiva Taslimipoor, Samaneh
Kouchaki, Le An Ha, and Ruslan Mitkov. 2019.
Bridging the gap: Attending to discontinuity in
identification of multiword expressions.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2017. Modeling relational data with graph convolu-
tional networks. arXiv preprint arXiv:1703.06103.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 5027–5038. Association for
Computational Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015a. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2692–2700. Curran Associates,
Inc.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015b. Gram-
mar as a foreign language. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2773–2781. Curran Associates,
Inc.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Pa-
pers), pages 1127–1137. Association for Computa-
tional Linguistics.

106

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 107–112
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

MaskParse@Deskiñ at SemEval-2019 Task 1: Cross-lingual UCCA
Semantic Parsing using Recursive Masked Sequence Tagging

Gabriel Marzinotto1,2 Johannes Heinecke1 Géraldine Damnati1
(1) Orange Labs / Lannion France

(2) Aix Marseille Univ, CNRS, LIS / Marseille France
{gabriel.marzinotto,johannes.heinecke,geraldine.damnati}@orange.com

Abstract
This paper describes our recursive system for
SemEval-2019 Task 1: Cross-lingual Seman-
tic Parsing with UCCA. Each recursive step
consists of two parts. We first perform seman-
tic parsing using a sequence tagger to estimate
the probabilities of the UCCA categories in the
sentence. Then, we apply a decoding policy
which interprets these probabilities and builds
the graph nodes. Parsing is done recursively,
we perform a first inference on the sentence to
extract the main scenes and links and then we
recursively apply our model on the sentence
using a masking feature that reflects the deci-
sions made in previous steps. Process contin-
ues until the terminal nodes are reached. We
choose a standard neural tagger and we fo-
cused on our recursive parsing strategy and on
the cross lingual transfer problem to develop
a robust model for the French language, using
only few training samples.

1 Introduction

Semantic representation is an essential part of
NLP. For this reason, several semantic represen-
tation paradigms have been proposed. Among
them we find PropBank (Palmer et al., 2005) and
FrameNet Semantics (Baker et al., 1998), Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), Universal Decompositional Seman-
tics (White et al., 2016) and Universal Conceptual
Cognitive Annotation (UCCA) (Abend and Rap-
poport, 2013). These constantly improving rep-
resentations, along with the advances in semantic
parsing, have proven to be beneficial in many NLU
tasks such as Question Answering (Shen and La-
pata, 2007), text summarization (Genest and La-
palme, 2011), dialog systems (Tur et al., 2005), in-
formation extraction (Bastianelli et al., 2013) and
machine translation (Liu and Gildea, 2010).

UCCA is a cross-lingual semantic representa-
tion scheme, has demonstrated applicability in En-

glish, French and German (with pilot annotation
projects on Czech, Russian and Hebrew). De-
spite the newness of UCCA, it has proven useful
for defining semantic evaluation measures in text-
to-text generation and machine translation (Birch
et al., 2016). UCCA represents the semantics of
a sentence using directed acyclic graphs (DAGs),
where terminal nodes correspond to text tokens,
and non-terminal nodes to higher level semantic
units. Edges are labelled, indicating the role of
a child in the relation to its parent. UCCA pars-
ing is a recent task and since UCCA has several
unique properties, adapting syntactic parsers or
parsers from other semantic representations is not
straight-forward. Current state of the art parser
TUPA (Hershcovich et al., 2017) uses a transition
based parsing to build UCCA representations.

Building over previous work on FrameNet Se-
mantic Parsing (Marzinotto et al., 2018a,b) we
chose to perform UCCA parsing using sequence
tagging methods along with a graph decoding pol-
icy. To do this we propose a recursive strategy in
which we perform a first inference on the sentence
to extract the main scenes and links and then we
recursively apply our model on the sentence with
a masking mechanism at the input in order to feed
information about the previous parsing decisions.

2 Model

Our system consists of a sequence tagger that is
first applied on the sentence to extract the main
scenes and links and then it is recursively applied
on the extracted element to build the semantic
graph. At each step of the recursion we use a
masking mechanism to feed information about the
previous stages into the model. In order to convert
the sequence labels into nodes of the UCCA graph
we also apply a decoding policy at each stage.

Our tagger is implemented using deep bi-

107

directional GRU (biGRU). This simple architec-
ture is frequently used in semantic parsers across
different representation paradigms. Besides its
flexibility, it is a powerful model, with close to
state of the art performance on both PropBank (He
et al., 2017) and FrameNet semantic parsing (Yang
and Mitchell, 2017; Marzinotto et al., 2018b).

More precisely, the model consists of a 4 layer
bi-directional Gated Recurrent Unit (GRU) with
highway connections (Srivastava et al., 2015). Our
model uses has a rich set of features including syn-
tactic, morphological, lexical and surface features,
which have shown to be useful in language ab-
stracted representations. The list is given below:

• Word embeddings of 300 dimensions 1.
• Syntactic dependencies of each token2.
• Part-of-speech and morphological features

such as gender, number, voice and degree2.
• Capitalization and word length encoding.
• Prefixes and Suffixes of 2 and 3 characters.
• A language indicator feature.
• Boolean indicator of idioms and multi word

expression. Detailed in section 3.2.
• Masking mechanism, which indicates, for a

given node in the graph, the tokens within the
span as well as the arc label between the node
and its parent. See details in section 2.1.

Except for words where we use pre-trained em-
beddings, we use randomly initialized embedding
layers for categorical features.

2.1 Masking Mechanism

We introduce an original masking mechanism in
order to feed information about the previous pars-
ing stages into the model. During parsing, we
first do an initial inference step to extract the main
scenes and links. Then, for each resulting node,
we build a new input which is essentially the same,
but with a categorical sequence masking feature.
For the input tokens in the node span, this feature
is equal to the label of the arc between the node
and its parent. Outside of the node span, this mask
is equal to O. A diagram of this masking process
is shown in figure 1. The process continues and
the model recursively extracts the inner semantic
structures (the node’s children) in the graph, until
the terminal nodes are reached.

1Obtained from https://github.com/facebookresearch/MUSE
2 Using Universal Dependencies categories.

To train such a model, we build a new training
corpus in which the sentences are repeated several
times. More precisely, a sentence appears N times
(N being the number of non terminal nodes in the
UCCA graph) each one a with different mask.

2.2 Multi-Task UCCA Objective
Along with the UCCA-XML graph representa-
tions, a simplified tree representation in CoNLL
format was also provided. Our model combines
both representations using a multitask objective
with two tasks. TASK1 consists in, for a given
node and its corresponding mask, predicting the
children and their arc labels. TASK1 encodes
the children spans using a BIO scheme. The
TASK2 consists in predicting the CoNLL sim-
plified UCCA structure of the sentence. More
precisely, TASK2 is a sequence tagger that pre-
dicts the UCCA-CoNLL function of each token.
TASK2 is not used for inference purposes. It is
only a support that help the model to extract rele-
vant features, allowing it to model the whole sen-
tence even when parsing small pre-terminal nodes.

2.3 Label Encoding
We have previously stated that TASK1 uses BIO
encoded labels to model the structure of the chil-
dren of each node in the semantic graph. In some
rare cases, the BIO encoding scheme is not suf-
ficient to model the interaction between parallel
scenes. For example, when we have two paral-
lel scenes and one of them appears as a clause
inside the other. In such cases, BIO encoding
does not allow to determine whether the last part
of the sentence belongs to the first scene or to
the clause. Despite this issue, prior experiments
testing more complete label encoding schemes
(BIEO, BIEOW) showed that BIO outperforms the
other schemes on the validation sets.

2.4 Graph Decoding
During the decoding phase, we convert the BIO la-
bels into graph nodes. To do so, we add a few con-
straints to ensure the outputs are feasible UCCA
graphs that respect the sentence’s structure:

• We merge parallel scenes (H) that do not have
either a verb or an action noun to the nearest
previous scene having one.

• Within each parallel scene, we force the ex-
istence of one and only one State (S) or
Process (P) by selecting the token with the
highest probability of State or Process.

108

1 Interne Orange

I:H I:H B:H B:H I:H I:H B:L

ate mice The fell asleep

INIT INIT INIT INIT INIT

Bi-GRU

Bi-GRU

Step 1

Step 2.A

Step 2.B

Step 3

cheese

INIT

and

INIT

B:P I:A B:A O O B:A O

REM-A REM-A B:D B:P O O O

H H H O O H O

Bi-GRU

O O O H H O O

Word

Mask

B:C B:E O O O O O

Bi-GRU

A A O O O O O

ate mice The fell asleep cheese and

ate mice The fell asleep cheese and

ate mice The fell asleep cheese and

Figure 1: Masking mechanism through recursive calls. Step 1 parses the sentence to extract parallel
scenes (H) and links (L). Then Steps 2.A 2.B use a different mask to parse these scenes and extract
arguments (A) and processes (P) which will be recursively parsed until terminal nodes are reached.

• For scenes (H) and arguments (A) we do not
allow to split multi word expressions (MWE)
and chunks into different graph nodes. If the
boundary between two segments lies inside a
chunk or MWE segments are merged.

2.5 Remote Edges

Our approach easily handles remote edges. We
consider remote arguments as those detected out-
side the parent’s node span (see REM in Fig.1). Our
earlier models showed low recall on remotes. To
fix this, we introduced a detection threshold on the
output probabilities. This increased the recall at
the cost of some precision. The optimal detection
threshold was optimized on the validation set.

3 Data

3.1 UCCA Task Data

In table 1 we show the number of annotations for
each language and domain. Our objective is to
build a model that generalizes to the French lan-
guage despite of having only 15 training samples.

When we analyse data in details we observe that
there are several tokenization errors. Specially in
the French corpus. These errors propagate to the
POS tagging and dependency parsing as well. For
this reason, we retokenized and parsed all the cor-
pus using a enriched version of UDpipe that we
trained ourselves (Straka and Straková, 2017) us-

Corpus Train Dev Test
English Wiki 4113 514 515
English 20K - - 492
German 20K 5211 651 652
French 20K 15 238 239

Table 1: number of UCCA annotated sentences in
the partitions for each language and domain

ing the Treebanks from Universial Dependencies3.
For French we enriched the Treebank with XPOS
from our lexicon. Finally, since tokenization is
pre-established in the UCCA corpus we projected
the improved POS and dependency parsing into
the original tokenization of the task.

3.2 Supplementary lexicon
We observed that a major difficulty in UCCA pars-
ing is analyzing idioms and phrases. The unaware-
ness about these expressions, which are mostly
used as links between scenes, mislead the model
during the early stages of the inference and er-
rors get propagated through the graph. To boost
the performance of our model when detecting
links and parallel scenes we developed an inter-
nal list with about 500 expression for each lan-
guage. These lists include prepositional, adverbial
and conjunctive expressions and are used to com-
pute Boolean features indicating the words in the
sentence which are part of an expression.

3https://universaldependencies.org/

109

Ours Labeled Ours Unlabeled TUPA Labeled TUPA Unlabeled
Open Tracks Avg

F1
Prim
F1

Rem
F1

Avg
F1

Prim
F1

Rem
F1

Avg
F1

Prim
F1

Rem
F1

Avg
F1

Prim
F1

Rem
F1

Dev English Wiki 70.8 71.3 58.7 82.5 83.8 37.5 74.8 75.3 51.4 86.3 87.0 51.4
Dev German 20K 74.7 75.4 40.5 87.4 88.6 40.9 79.2 79.7 58.7 90.7 91.5 59.0
Dev French 20K 63.6 64.4 19.0 78.9 79.6 20.5 51.4 52.3 1.6 74.9 76.2 1.6
Test English Wiki 68.9 69.4 42.5 82.3 83.1 42.8 73.5 73.9 53.5 85.1 85.7 54.3
Test English 20K 66.6 67.7 24.6 82.0 83.4 24.9 68.4 69.4 25.9 82.5 83.9 26.2
Test German 20K 74.2 74.8 47.3 87.1 88.0 47.6 79.1 79.6 59.9 90.3 91.0 60.5
Test French 20K 65.4 66.6 24.3 80.9 82.5 25.8 48.7 49.6 2.4 74.0 75.3 3.2

Table 2: Our model vs TUPA baseline performance for each open track

Tracks D C N E F G L H A P U R S
EN Wiki 64.3 71.4 68.5 69.6 76.7 0.0 71.4 61.3 60.0 64.0 99.7 89.2 25.1
EN 20K 47.2 75.2 62.5 72.3 71.5 0.2 57.9 49.5 55.7 69.8 99.7 83.2 19.5
DE 20K 69.4 83.8 57.7 80.5 83.8 59.2 68.4 62.2 67.5 68.9 97.1 86.9 25.9
FR 20K 46.1 76.0 58.9 71.2 53.3 4.8 59.4 50.4 52.8 67.6 99.6 83.5 16.9

Table 3: Our model’s Fine-grained F1 by label on Test Open Tracks

3.3 Multilingual Training

This model uses multilingual word embeddings
trained using fastText (Bojanowski et al., 2017)
and aligned using MUSE (Conneau et al., 2017).
This is done in order to ease cross-lingual training.
In prior experiments we introduced an adversarial
objective similar to (Kim et al., 2017; Marzinotto
et al., 2019) to build a language independent rep-
resentation. However, the language imbalance on
the training data did not allow us to take advantage
from this technique. Hence, we simply merged
training data from different languages.

4 Experiments

We focus on obtaining the model that best general-
izes on the French language. We trained our model
for 50 epochs and we selected the best one on the
validation set. In our experiments we did not use
any product of experts or bagging technique and
we did not run any hyper parameter optimization.

We trained several models building different
training corpora composed of different language
combinations. We obtained our best model us-
ing the training data for all the languages. This
model FR+DE+EN achieved 63.6% avg. F1 on
the French validation set. Compared to 63.1% for
FR+DE, 62.9% for FR+EN and 50.8% for only FR.

4.1 Main Results

In Table 2 we provide the performance of our
model for all the open tracks and we provide the
results for TUPA baseline in order to establish a

comparison. Our model finishes 4th in the French
Open Track with an average F1 score of 65.4%,
very close to the 3rd place which had a 65.6%
F1. For languages with larger training corpus, our
model did not outperform the monolingual TUPA.

4.2 Error Analysis
In Table 3 we give the performance by arc type.
We observe that the main performance bottleneck
is in the parallel scene segmentation (H). Due to
our recursive parsing approach, this kind of er-
ror is particularly harmful to the model perfor-
mance, because scene segmentation errors at the
early steps of the parsing may induce errors in the
rest of the graph. To assert this, we used the vali-
dation set to compare the performance of the mono
scene sentences (with no potential scene segmen-
tation problems) with the multi scene sentences.
For the French track we obtained 67.2% avg. F1
on the 114 mono scene sentences compared to
61.9% avg. F1 on the 124 multi scene sentences.

5 Conclusions

We described an original approach to recursively
build the UCCA semantic graph using a sequence
tagger along with a masking mechanism and a de-
coding policy. Even though this approach did not
yield the best results in the UCCA task, we believe
that our original recursive, mask-based parsing
can be helpful in low resource languages. More-
over, we believe that this model could be further
improved by introducing a global criterion and by
performing further hyper parameter tuning.

110

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 228–238.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In Pro-
ceedings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics-
Volume 1, pages 86–90. Association for Computa-
tional Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186.

Emanuele Bastianelli, Giuseppe Castellucci, Danilo
Croce, and Roberto Basili. 2013. Textual inference
and meaning representation in human robot interac-
tion. In Proceedings of the Joint Symposium on Se-
mantic Processing. Textual Inference and Structures
in Corpora, pages 65–69.

Alexandra Birch, Omri Abend, Ondřej Bojar, and
Barry Haddow. 2016. HUME: Human UCCA-based
evaluation of machine translation. arXiv preprint
arXiv:1607.00030.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Pierre-Etienne Genest and Guy Lapalme. 2011.
Framework for abstractive summarization using
text-to-text generation. In Proceedings of the Work-
shop on Monolingual Text-To-Text Generation, Port-
land, Oregon, USA. Association for Computational
Linguistics, Association for Computational Linguis-
tics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. arXiv preprint arXiv:1704.00552.

Joo-Kyung Kim, Young-Bum Kim, Ruhi Sarikaya, and
Eric Fosler-Lussier. 2017. Cross-lingual transfer

learning for pos tagging without cross-lingual re-
sources. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2832–2838. Association for Compu-
tational Linguistics.

Ding Liu and Daniel Gildea. 2010. Semantic role
features for machine translation. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics, COLING ’10, pages 716–724,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Gabriel Marzinotto, Jeremy Auguste, Frédéric Béchet,
Géraldine Damnati, and Alexis Nasr. 2018a. Se-
mantic Frame Parsing for Information Extraction :
the CALOR corpus. In LREC 2018, Miyazaki,
Japan.

Gabriel Marzinotto, Frédéric Béchet, Géraldine
Damnati, and Alexis Nasr. 2018b. Sources of Com-
plexity in Semantic Frame Parsing for Information
Extraction. In International FrameNet Workshop
2018, Miyazaki, Japan.

Gabriel Marzinotto, Géraldine Damnati, Frédéric
Béchet, and Benoı̂t Favre. 2019. Robust semantic
parsing with adversarial learning for domain gener-
alization. In Proc. of NAACL.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational linguistics,
31(1):71–106.

Dan Shen and Mirella Lapata. 2007. Using seman-
tic roles to improve question answering. In Pro-
ceedings of the 2007 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
12–21, Prague. Association for Computational Lin-
guistics, Association for Computational Linguistics.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Training very deep networks.
In NIPS 2015, pages 2377–2385, Montral, Qubec,
Canada.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Gokhan Tur, Dilek Hakkani-Tür, and Ananlada Choti-
mongkol. 2005. Semi-supervised learning for spo-
ken language understanding semantic role labeling.
In IEEE Workshop on Automatic Speech Recogni-
tion and Understanding, pages 232 – 237.

Aaron Steven White, Drew Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016.
Universal decompositional semantics on universal

111

dependencies. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1713–1723.

Bishan Yang and Tom Mitchell. 2017. A joint sequen-
tial and relational model for frame-semantic parsing.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1247–1256. Association for Computational Linguis-
tics.

112

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 113–118
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Tüpa at SemEval-2019 Task 1: (Almost) feature-free Semantic Parsing

Tobias Pütz
Department of Linguistics

University of Tübingen
SFB 833 A3

{tobias.puetz,kevin.glocker}@student.uni-tuebingen.de

Kevin Glocker
Department of Linguistics

University of Tübingen

Abstract
Our submission for Task 1 ‘Cross-lingual Se-
mantic Parsing with UCCA’ at SemEval-2018
is a feed-forward neural network that builds
upon an existing state-of-the-art transition-
based directed acyclic graph parser. We re-
place most of its features by deep contextu-
alized word embeddings and introduce an ap-
proximation to represent non-terminal nodes
in the graph as an aggregation of their termi-
nal children. We further demonstrate how aug-
menting data using the baseline systems pro-
vides a consistent advantage in all open sub-
mission tracks. We submitted results to all
open tracks (English, in- and out-of-domain,
German in-domain and French in-domain,
low-resource). Our system achieves compet-
itive performance in all settings besides the
French, where we did not augment the data.
Post-evaluation experiments showed that data
augmentation is especially crucial in this set-
ting.

1 Introduction

Semantic Parsing is the task of assigning an ut-
terance a structured representation of its mean-
ing. The goal is to assign similar structures to
utterances with similar meanings, regardless of
their syntactic realizations. In Syntactic Parsing,
for instance, the sentence ‘John saw Paul.’ will
have a different structure than ‘Paul was seen by
John’. Semantic Parsing, in contrast, aims to
solely encode the fact that John saw Paul. De-
riving a semantic representation of an utterance
has various applications. It can serve as a start-
ing point for the evaluation of machine translation
systems, as the structure of the semantic represen-
tation should be similar across languages. Birch
et al. (2016) use human annotated scores of indi-
vidual UCCA semantic units in their HUME met-
ric to provide a fine-grained analysis of transla-
tion quality and improve scalability to longer sen-

tences by approximating human judgement semi-
automatically from the annotated scores of each
unit. Explicit semantic representations could also
provide the structured information necessary to
alleviate recent issues in Natural Language In-
ference (NLI) where McCoy and Linzen (2019)
showed that state-of-the-art NLI systems fail to
recognize that e.g. ‘Alice believes Mary is lying.’
does not entail ‘Alice believes Mary.’. Using pre-
cise semantic representations of the sentences a
theorem could be built on which various logical in-
ferences can be performed with a theorem prover
such as in Martı́nez-Gómez et al. (2016).

Universal Conceptual Cognitive Annotation
(UCCA) (Abend and Rappoport, 2013) is a se-
mantic grammar formalism where natural lan-
guage expressions are analyzed as deep directed
acyclic graph (DAG) structures, deep meaning
the graphs feature non-terminal nodes. Due
to it’s coarse-grained representation using cogni-
tively motivated categories it is both domain and
language independent and quickly learned even
by annotators without a linguistic background
(Abend and Rappoport, 2013).

The goal of the SemEval-2018 Task 1 ‘Cross-
lingual Semantic Parsing with UCCA’ was to de-
velop a parser producing UCCA-DAG structures
trained on articles from Wikipedia in English
and passages from the book “Twenty Thousand
Leagues Under the Sea” in French and German.
The parsers were evaluated on the DAG-F1 met-
ric on in-domain passages in English, French and
German as well as out-of-domain passages in En-
glish in both an open and a closed track (Hersh-
covich et al., 2018b). Since we made extensive
use of external resources we participated only in
the open track of all settings.

For our participation, we build upon the
transition-based DAG parser Tupa (Hershcovich
et al., 2017). Our adaptation reuses the transition

113

system and oracle. We extend Tupa with respect to
its representations of non-terminal nodes in a way
that they are an aggregation of all their terminal
nodes. While Tupa uses a Recurrent Neural Net-
work, our system is a simple feed-forward network
that uses a small set of features and ELMo con-
textualized embeddings (Peters et al., 2018) made
available by Che et al. (2018)1 and Fares et al.
(2017).

2 Background

Until recently, semantic parsers were exclusively
symbolic rule-based systems (Bos, 2005). These
systems rely on complex hand-written and neces-
sarily language-specific sets of rules, requiring a
re-implementation for every new language. More
recently, neural methods have also arrived in the
domain of Semantic Parsing. They achieve state-
of-the-art results while being largely language-
agnostic. Since these systems usually require large
amounts of annotated data, this line of work is
largely concerned with the augmentation of train-
ing data. Hershcovich et al. (2018a) recognize the
similarity between several annotation schemes and
jointly learn to parse other semantic formalisms in
a multi-task setting, while van Noord et al. (2018)
add large amounts of automatically annotated data
to their training data. Both approaches led to sig-
nificant improvements over not using the addi-
tional data.

3 Silver Data

We created additional training data for both En-
glish and German using the open track baseline
systems. The English silver data was taken from
the 1B word benchmark (Chelba et al., 2014), the
German from the archive of the newspaper taz. For
both languages, we took the first 15,000 sentences
of the corpora and added UCCA annotation using
the baseline systems. Our training datasets then
consisted of the concatenation of gold and silver
data, and another gold only set. Due to a lack of
time we did not create silver data for our French
submission. Post-evaluation results for French,
trained on v2.0 of the GSD treebank2 provided by
Universal Dependencies (Nivre et al., 2016), are
presented in Section 6.1.

1https://github.com/HIT-SCIR/
ELMoForManyLangs/

2https://universaldependencies.org/
treebanks/fr_gsd/

Stack and Buffer

Item Left
Parent

Right
ParentNodes

ELMo

Dependency
Head Form

Child
Representation

Node Features

Action
Counts

Action-
ratios

Node-
ratios

Global Features

Figure 1: Illustration of the features used by Tüpa. The
final feature vector results from the concatenation of all
stack and buffer features with the global features. Fea-
tures dropped after preliminary experiments are omit-
ted for brevity.

4 System

Our system is an ensemble of small feed-forward
neural networks. We use three global features:
typed absolute counts for previous parser ac-
tions and action- and node-ratios (Hershcovich
et al., 2017). We further follow the standard in
transition-based parsing and extract a set of fea-
tures based on the top three items on stack and
buffer. To capture some of the structure of the par-
tially built graph, we extract the rightmost and left-
most parents and children of the respective items,
following Hershcovich et al. (2017). Each of these
items is represented by the ELMo embedding of
its form, the embedding of its dependency head
and the embeddings of all terminal children. We
use the average over all ELMo layers to retrieve
the embedding of a word. Non-terminal nodes do
not have a form or dependency head, hence these
are represented by a learned non-terminal embed-
ding. Both the non-terminals and terminals have
a third feature, a representation of their children.
In the case of terminals, this feature is equal to its
form feature. For the non-terminals, it is an ag-
gregation of all its children, produced by the child
representation module. Figure 1 illustrates the set
of features used by our system. We experimented
with richer feature sets, including the last parser
actions, named-entity, part-of-speech and depen-
dency types, but dropped them after performing
preliminary experiments. The input to the feed-
forward module is the concatenation of all features
with the output of the child representation module.
The classification portion of the system was imple-

114

mented using Tensorflow (Abadi et al., 2015).

4.1 Representing Non-Terminals
The child representation module aims to enrich the
representation of non-terminal nodes. Our initial
representation for non-terminal nodes was a set of
discrete features describing the number of typed
in- and outgoing edges and the nodes’ height in
the tree. While this might be informative on an
abstract level, it does not provide any information
about the content covered by this node. We solve
this poverty of information by concatenating each
of the embeddings of the terminal children of a
node with an embedding for the first edge type
leading to them. The resulting combination is fed
through a dense layer with d neurons, resulting in
n vectors with d dimensions where n is the num-
ber of terminals under the node. We then reduce
the n vectors into a single d dimensional vector
by taking the maximum value of each dimension.
Figure 2 depicts how the representation of a non-
terminal node is obtained. While it would be de-
sirable to process the children using context-aware
methods, such as RNNs or self attention, it is not
feasible since some of the nodes can have more
than 100 children. Future work should explore re-
cursive formulations for representing a node by its
direct children instead of relying on all terminal
children, performing largely redundant operations
for higher nodes.

4.2 Hyperparameters
We apply dropout (Srivastava et al., 2014) with a
keep probability of 0.8 to the inputs of all layers.
The child processing module is a single layer feed-
forward network with 256 hidden units. The feed-
forward module is single layer feed-forward net-
work with 512 hidden units. Both modules use the
ReLU activation function. Training is performed
with the Adam optimizer (Kingma and Ba, 2014)
using an initial learning rate of 8e−5 that is halved
every two epochs without an improvement on de-
velopment accuracy. We halt the training after
five epochs without an improvement on develop-
ment transition accuracy. The models were first
trained on the concatenation of the silver and gold
data and following the early stopping another time
only on the gold data using the same parameters.
We use mini-batches of size 192 and evaluate on
the development set every 1000 mini-batches. As
training time imposes a serious limitation, we did
not perform an extensive hyperparameter search

DAG-F1 Primary F1 Remote F1 Tupa-DAG

English Wiki 0.735 0.741 0.425 0.735
English 20k 0.709 0.719 0.296 0.684
German 20k 0.781 0.788 0.408 0.791
French 20k 0.456 0.464 0 0.487

Table 1: DAG-F1, primary F1 and remote F1 scores
with the DAG-F1 score of the baseline on the test sets
in the open tracks.

and settled on these after initial experiments.

5 Results and Discussion

Table 1 shows the submission scores of our parser
trained using the hyperparameters described in
Section 4.2 on the test datasets in the open tracks.
Since only 15 French passages were available
for training, our French results were obtained by
first training a model on the concatenation of the
French passages and the German 20k training
dataset using French ELMo embeddings. After
convergence, it was fine-tuned on only the French
passages for two epochs. However, this did not
provide a significant increase in F1 score over a
model trained exclusively on the French passages.
All results were produced using a five model en-
semble, consisting of the model with the best tran-
sition accuracy and the four following it before
early stopping. The results show that our parser
achieves competitive performance to the baseline
while relying on fewer features. In particular, for
the English in-domain data, we achieve the same
performance as the baseline, for the out-of-domain
data we surpass it by 0.025 DAG-F1. In German
and French where only in-domain data exists our
approach is outperformed by the baseline which
we partially attribute to issues in the creation of
the silver data. Post-submission results obtained
after performing a more exhaustive hyperparam-
eter search on the development set and with cor-
rect silver-data surpass the baseline performance
on the test sets in all open settings.

6 Further Experiments

In this section, we will describe the findings of
our post-evaluation experiments. We evaluated
the effect of silver data and provide results for
French with silver data. We further performed
experiments on non-terminal representations and
investigated the effect of model size. Since this
only covers a fraction of our experiments and
describing them all would be out of scope, we

115

After

L

graduation

P

,U

H

John

A

moved

P

to

R

Paris

C

.

U

A

H

A

AJohn Pmoved

maximum

to A Paris A . U

MLP

max

Figure 2: Depiction of a non-terminal representation. The terminal children dominated by the grey node are
concatenated with the first edge leading to them and fed through a fully-connected layer. The multiple resulting
vectors are reduced into a single one by taking the maximum value of each dimension.

Full Submission Forms only

Gold 0.724 0.733 0.679
Silver+Gold 0.739 0.744 0.688

Table 2: DAG F1 scores on the English development
set after training with gold and gold+silver data. Silver
data provides a boost for all combinations.

provide the full results alongside their hyperpa-
rameters at https://twuebi.github.io/
publications/ucca_post_eval.pdf.

6.1 Silver Data

We measured the effect of silver data on English
and French by evaluating several model configu-
rations in two settings. The first setting matches
the training data used for the submission and is
the concatenation of the gold and silver data. In
the second setting, the only available data is the
gold data.

English: We trained three models for English.
The first model configuration uses all features and
corresponds to the model described in the end of
Section 4, the second is our submission, described
in Section 4. The last model uses only embeddings
of the forms and dependency heads. As shown in
Table 2, additional training data provides a consis-
tent boost in F1 score across all tested feature com-
binations. Moreover, it seems that there is a larger
effect of the silver data on models with more fea-
tures, indicating a better estimation of the feature
representations based on the additional data.

Low resource setting: Table 3 demonstrates
the effect of silver data on French for the submis-
sion model configuration. The effect of additional
data is the largest in the low-resource setting, pro-
viding a boost of 0.1 in average F1 score. Adding
the silver data also leads to some of the remote
edges being correct, whereas there are no correct

Data avg. F1 remote F1

Gold 0.456 0.0
Silver+Gold 0.557 0.025

Table 3: DAG F1 Scores on the French test set with
and without silver data. Here in the low-resource set-
ting, the effect of additional data is the largest. Without
silver data, the parser did not predict any remote edges
correctly.

Full Submission

Discrete 0.723 0.688
Aggregated 0.739 0.744

Table 4: Effect of discrete and aggregated non-terminal
representations on the DAG F1 score on the English de-
velopment set. The aggregated representation provides
a clear advantage over the discrete one.

remote edges for the gold-only model.

6.2 Non-Terminal Representation

To measure the effectiveness of our non-terminal
representation, we ran two experiments using sil-
ver and gold data. In both cases, we trained one
model with aggregated non-terminal representa-
tions and one with the discrete representations
of typed in- and outgoing edges and the nodes’
heights in the tree. The first experiment used all
available features. The second was trained with
the features of our submission. Table 4 presents
the results of the experiments. The explicit child
representations provide a clear improvement over
the discrete representation. In the second experi-
ment, where no in- and outgoing edges were used
and the only non-terminal representations are the
left- and rightmost children, the gap increased
even further, in fact it is the worst F1 score of all
models trained on silver data.

116

100 200 300 400 500 600 700 800
of parameters

0.68

0.70

0.72

0.74

0.76

DA
G

F1

Figure 3: DAG F1 scores on English development data
on the y-axis. Million parameters in the models on the
x-axis. Larger models seem provide some improve-
ments that begin to level off for big models.

6.3 Bigger means better?

Figure 3 contrasts the number of trainable param-
eters of the models in our experiments with the F1
score on the English development set. While there
are some improvements for larger models, it can
be seen that the effect begins to level off at 200M
parameters and eventually leads to a small regres-
sion with the largest model. Possible causes are
overfitting and a lack of training data. Future work
should explore whether additional training data al-
lows for larger models. Additional regularization
such as L2 regularization might also prove useful.
For our experiments, this was out of scope since
training so many models was not feasible.

7 Conclusion

In this work, we presented a parser for the seman-
tic grammar formalism UCCA. Our parser relies
on a small set of features and achieves competi-
tive performance on the English and German data,
but lags behind on French where almost no train-
ing data is available. We demonstrated, using ab-
lation experiments, that the explicit representation
of non-terminals and additional silver data are cru-
cial for our result. We have further shown that sil-
ver data is especially helpful in the low-resource
setting where it boosts the average F1 score from
0.456 to 0.557. Future work should investigate
how much more improvement additional data can
provide. This should be explored both in form of
other formalisms (Hershcovich et al., 2018a) and
silver data (van Noord et al., 2018). Besides the

data aspect, we also believe that improving the
non-terminal representation will lead to significant
gains. The goal should be to find a representation
that leverages the recursive structure of the par-
tially built graph.

Acknowledgements

We would like to thank Çağrı Çöltekin for his
extensive comments on an earlier version of this
work.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2015. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems.

Omri Abend and Ari Rappoport. 2013. Universal con-
ceptual cognitive annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 228–238.

Alexandra Birch, Barry Haddow, Ondrej Bojar, and
Omri Abend. 2016. HUME: human UCCA-
based evaluation of machine translation. CoRR,
abs/1607.00030.

Johan Bos. 2005. Towards wide-coverage semantic in-
terpretation.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for mea-
suring progress in statistical language modeling. In
Fifteenth Annual Conference of the International
Speech Communication Association.

Murhaf Fares, Andrey Kutuzov, Stephan Oepen, and
Erik Velldal. 2017. Word vectors, reuse, and replica-
bility: Towards a community repository of large-text
resources. In Proceedings of the 21st Nordic Con-
ference on Computational Linguistics, pages 271–
276, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proc. of ACL, pages 1127–
1138.

117

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018a. Multitask parsing across semantic represen-
tations. In Proc. of ACL, pages 373–385.

Daniel Hershcovich, Leshem Choshen, Elior Sulem,
Zohar Aizenbud, Ari Rappoport, and Omri Abend.
2018b. Semeval 2019 shared task: Cross-lingual
semantic parsing with ucca-call for participation.
arXiv preprint arXiv:1805.12386.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Pascual Martı́nez-Gómez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2016. ccg2lambda: A
compositional semantics system. In Proceedings
of ACL 2016 System Demonstrations, pages 85–
90, Berlin, Germany. Association for Computational
Linguistics.

Richard T McCoy and Tal Linzen. 2019. Non-entailed
subsequences as a challenge for natural language in-
ference. Proceedings of the Society for Computation
in Linguistics, 2(1):358–360.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 23–28.

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018. Exploring neural methods for
parsing discourse representation structures. arXiv
preprint arXiv:1810.12579.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

118

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 119–124
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with
Attention-based Decoder

Dian Yu
University of California, Davis
dianyu@ucdavis.edu

Kenji Sagae
University of California, Davis
sagae@ucdavis.edu

Abstract

We present a simple and accurate model for
semantic parsing with UCCA as our submis-
sion for SemEval 2019 Task 1. We propose an
encoder-decoder model that maps strings to di-
rected acyclic graphs. Unlike many transition-
based approaches, our approach does not use
a state representation, and unlike graph-based
parsers, it does not score graphs directly.
Instead, we encode input sentences with a
bidirectional-LSTM, and decode with self-
attention to build a graph structure. Results
show that our parser is simple and effective for
semantic parsing with reentrancy and discon-
tinuous structures.

1 Introduction

Semantic parsing aims to capture structural re-
lationships between input strings and graph rep-
resentations of sentence meaning, going beyond
concerns of surface word order, phrases and re-
lationships. The focus on meaning rather than
surface relations often requires the use of reen-
trant nodes and discontinuous structures. Uni-
versal Conceptual Cognitive Annotation (UCCA)
(Abend and Rappoport, 2013) is designed to sup-
port semantic parsing with mappings between sen-
tences and their corresponding meanings in a
framework intended to be applicable across lan-
guages.

SemEval 2019 Task 1 (Hershcovich et al.,
2018b, 2019) focuses on semantic parsing of texts
into graphs consisting of terminal nodes that repre-
sent words, non-terminal nodes that represent in-
ternal structure, and labeled edges representing re-
lationships between nodes (e.g. participant, cen-
ter, linker, adverbial, elaborator), according to
the UCCA scheme. Annotated datasets are pro-
vided, and participants are evaluated in four set-
tings: English with domain-specific data, English

with out-of-domain data, German with domain-
specific data, and French with only development
and test data, but no training data. Additionally,
there are open and closed tracks, where the use of
additional resources is and is not allowed, respec-
tively. Our entry in the task is limited to the closed
track and the first setting, domain-specific English
using the Wiki corpus, where the relatively small
dataset (4113 sentences for training, 514 for devel-
opment, and 515 for testing) consists of annotated
sentences from English Wikipedia.

Our model follows the encoder-decoder archi-
tecture commonly used in state-of-the-art neural
parsing models (Kitaev and Klein, 2018; Kiper-
wasser and Goldberg, 2016b; Cross and Huang,
2016; Chen and Manning, 2014). However, we
propose a very simple decoder architecture that
relies only on a recursive attention mechanism
of the encoded latent representation. In other
words, the decoder does not require state encod-
ing and model-optimal inference whatsoever. Our
novel model achieved a macro-averaged F1-score
of 0.753 in labeled primary edges and 0.864 in
unlabeled primary edge prediction on the test set.
The results confirm the suitability of our proposed
model to the semantic parsing task.

2 Related work

Leveraging parallels between UCCA and known
approaches for syntactic parsing, Hershcovich
et al. (2017) proposed TUPA, a customized
transition-based parser with dense feature repre-
sentation. Based on this model, Hershcovich
et al. (2018a) used multitask learning effectively
by training a UCCA model along with similar
parsing tasks where more training data is avail-
able, such as Abstract Meaning Representation
(AMR) (Banarescu et al., 2013) and Universal De-
pendencies (UD) (Nivre et al., 2016). Due to

119

Figure 1: Illustration of the decoder for the beginning of a sentence, “Mariah Carey turned it down, and ...”.
Each vi represents the context embedding for each word i from the BiLSTM encoder. Words on edges represent
category labels between nodes, where A is participant and P is process. Circles represent nodes in the graph, each
with a pair in indices. Circles with 0 as the first index are terminal nodes, and circles with 1 as the first index
are non-terminal nodes. (1). Dashed green lines represent the attention mechanism for the word Carey, which
forms a continuous proper noun “Mariah Carey”. (2). Dashed red lines represent the attention mechanism for the
word down, which forms a discontinuous unit “turned ... down”. (3). Dotted blue lines represent the attention
mechanism for node1.4. The darker the color, the higher the attention score.

the requirements of reentrancy, discontinuity, and
non-terminals, other powerful parsers were shown
to be less suitable for parsing with UCCA (Hersh-
covich et al., 2017).

3 Parsing Model

BiLSTM models are capable of providing feature
representations with sequential data, and atten-
tion mechanisms (Vaswani et al., 2017) have been
applied successfully to parsing tasks (Kitaev and
Klein, 2018). Inspired by their success, our model
uses a BiLSTM encoder and a self-attention de-
coder. The encoder represents each node (terminal
and non-terminal) in the DAG without the need
to encode features and the current parser state.
The proposed decoder takes the encoded repre-
sentation as the configuration and uses attention
mechanism. Without any additional feature ex-
traction, it serves a similar role as an oracle and a
transition-system in transition-based parsers. We
jointly train a label prediction model and a discon-
tinuity prediction model. We predict remote edges
with a different encoder. An example of the pars-
ing model can be seen in Figure 1.

3.1 Terminal Nodes
To mitigate sparsity due to the small amount of
training data available, we concatenate part-of-
speech tags embeddings to word embeddings in
terminal nodes. In addition, because the connec-
tions between terminal nodes and non-terminal
nodes often require identification of named enti-

ties, we also added entity type and case informa-
tion as additional knowledge. Given a sentence
x = x1, ..., xn, the vector for each input token is
thus represented as ui = emb(xi) ◦ emb(posi) ◦
emb(entity typei)◦emb(casei), where casei is 1
if the first character of the word is capitalized and
0 otherwise. We use pretrained word embeddings
from fastText1 for emb(xi). POS tags and entity
types are predicted using external models2 and are
provided in the training corpus. Each word repre-
sentation from the encoder is vi = BiLSTM(ui).
We assign these contextual word embeddings as
vectors to terminal nodes.

3.2 Non-terminal Nodes

For non-terminal nodes with only one terminal
node as the child, the representation is the same as
its corresponding terminal node, i.e. a contextual
word embedding from the BiLSTM encoder. For
other non-terminal nodes that have more than one
terminal children or non-terminal children (i.e.
represent more than one word in the text), we use
a span representation. Following Cross and Huang
(2016), we represent the span between the words
xi, xj as vi,j = (fj−fi)◦(bi−bj) where f0, ..., fn
and b0, ..., bn are the output of the forward and
backward directions in the BiLSTM, respectively.
However, the linear subtractions from a nonlinear
recurrent neural network (RNN) as a span approx-
imation is not intuitive. Instead, we experimented

1https://fasttext.cc/
2https://spacy.io/

120

with an additional BiLSTM on the target span
xi, xi+1, ..., xj , similar to the recursive tree repre-
sentations in (Socher et al., 2013; Kiperwasser and
Goldberg, 2016a) but replaced the feed-forward
network with an LSTM. In our experiments with
the small dataset in the closed track of the English
domain-specific track, this method did not result
in improved performance.

3.3 Attention Mechanism For Decoding

Our basic decoding model is inspired by the global
attention mechanism used in machine translation.
The attention averages the encoded state in each
time step in the sequence with trainable weights
(Luong et al., 2015). We set a maximum sequence
length and calculate the attention weights (in prob-
ability) for the left boundary index of the span
given the node representation vi,j (i ≤ j):

hspan =MLP (vi,j) (1)

pleft boundary = softmax(hspan) (2)

where MLP is a multilayer perceptron and hspan
is of size (1, max sequence length). We choose
argmaxi pleft boundary as the index of the left
boundary of the predicted span. Let jl denote the
index of the left most child of the node j (for ex-
ample, in Figure 1, jl for node1.5 is 1 and jl for
node1.6 is 6)3. If i ≥ jl, then the node attends
to itself to indicate that a span cannot be created
yet (as is the case for node1.6 in Figure 1). Oth-
erwise, there is a span that forms a semantic unit
and we need to create a parent node. For example,
i = 1 for the node1.4, so we create a new node1.5
which connects the nodes within the span [1: 5],
i.e. node1.1, node1.3, and node1.4.

We do this recursively to attend to a previous in-
dex until the node attends to itself. Then we repeat
the procedure on the next word in the sequence.
The illustration is shown in Figure 1 with dotted
blue lines. The algorithm is presented in Algo-
rithm 1 below. primary parent indicates the par-
ent node to which the current node is not a remote
child (in the DAG setting, a child node may have
multiple parents). We set the maximum number of
recurrence to be 7 to prevent excessive node cre-
ation during inference.

Despite its simplicity, there are two limitations
to this method. One is the restriction of the maxi-
mum sequence length. The other is the distinction

3For simplicity, word indices start at 1 in the Figure.

Algorithm 1 Index-attention decoder
1: for recur num = 1 to max recur do
2: if i ≥ jl then
3: break
4: end if
5: hspan =MLP (vi,j)
6: iattn = argmax

i
softmax(hspan)

7: i = primary parent(viattn)l
8: end for

between the indices and the actual words in each
sentence. The model may cheat during training to
attend to specific indices regardless of the actual
words in these indices.

Motivated by the success of biaffine atten-
tion(Dozat and Manning, 2016) and self-attention
models (Vaswani et al., 2017), we replace the in-
dex attention decoder with a multiplication model
where we can leverage fast optimized matrix mul-
tiplication. Similar to the left most child, let jr
denote the index of the right most child of nodej .
vo = v[1 : jr] where v is the output from the
encoder of size (sequence length, batch size, hid-
den size). The scoring function is defined as:

hi = ReLU(W × vi + b) (3)

ho = ReLU(W × vo + b) (4)

mm = matrix multiplication(hi, h
T
o) (5)

pleft boundary = softmax(mm) (6)

Compared to the index attention decoder above,
this decoder considers both the index and the span
representation and thus is more flexible and ro-
bust to new texts. The recurrence call remains the
same by replacing line 5 and 6 in Algorithm 1 with
equations 3− 6.

3.4 Label Prediction

Contextual information is important to label pre-
diction. For instance, in the sentence “It an-
nounced Carey returned to the studio to start ... ”,
the phrase “Carey returned to the studio” should
be labeled as a participant (A) instead of a scene
(H) according to the context. Ideally the encoder
will capture the information from the whole sen-
tence so that we only need the current span to pre-
dict its label (since the span has the context infor-
mation from both sides). However, as shown in

121

previous research with RNN models, the contex-
tual information is lost for a relatively long sen-
tence. Therefore, similar to the label prediction
problem with dependency parsers, we use a MLP
to predict the label of a span vi,j given its context
p = primary parent(vi,j).

h = ReLU(W 1
l × (p ◦ vi,j) + b1l) (7)

l = argmax
l

softmax(W 2
l ∗ h+ b2l) (8)

We also experimented with only using span repre-
sentation as seen in constituency parsing (Gaddy
et al., 2018) by replacing (p◦vi,j) with vi,j in equa-
tion 7. Surprisingly, this increased the F1 score on
the development set by 1.4 points. We conjecture
that this is due to the limited amount of training
data, which makes it more difficult to learn noisier
representations.

3.5 Discontinuous Unit

After finding the left boundary of the current span
unit as shown in section 3.3, we use two MLPs
for binary classification to check (1) if the span
forms a proper noun with which we need to com-
bine multiple terminal nodes to one non-terminal
node (as “Mariah Carey” in Figure 1) and (2) if the
span forms a discontinuous unit (such as “turn ...
down” in Figure 1).

probpropn =W 2
p ×ReLU(W 1

p × vi,j + b1p) + b2p
(9)

probdiscont =W 2
d ×ReLU(W 1

d × vi,j + b1d) + b2d
(10)

If the node span attends to a node in the left
and the model predicts a proper noun, we will cre-
ate a non-terminal node and links all the terminal
nodes i, i+1, ..., j as its terminal children (shown
as dashed green lines in Figure 1).

If the model predicts that the span is a discon-
tinuous unit, instead of connecting all the terminal
nodes as its children, the new created node only
connects nodei and nodej , and do the recurrence
checks afterwards as shown in Algorithm 1 (illus-
trated as dashed red lines in Figure 1).

3.6 Remote Edges

We predict remote edges the same way as the ma-
trix multiplication decoder for primary edges. We
use a different BiLSTM encoder to learn represen-
tations and avoid confusion between attention to
primary edges and remote edges.

unlabeled(F1) labeled(F1)
official 0.746 0.866

+ max recur = 7 0.747 0.867

+ child pred 0.760 0.87

+ β2 = 0.9 0.762 0.87

+ bug fix 0.769 0.873

Table 1: F1 score on primary edges evaluated on the
development set

4 Training and Inference

During training, nodei attends to the left most
child of its primary parent (nodep) recursively un-
til nodep is not the left most child of nodep’s par-
ent. Because a span representation contains infor-
mation from both left to right and right to left,
nodei with the highest attention score not only
contains the embedding of its terminal node, but
also the span between index i and j in the text. We
use cross entropy loss to jointly train for embed-
dings, the BiLSTM encoder, and the decoder.

For inference, we take the output of each token
in the text from the BiLSTM encoder as input and
create a non-terminal node for each terminal node.
We create a new node when the token embedding
attends to a different token outside of the current
span boundary. The recurrence algorithm for each
newly created non-terminal node shown in Algo-
rithm 1 is applied.

5 Experiments

For the encoder, we use a 2-layer, 500 dimensional
BiLSTM with 0.2 dropout. The word embedding
size is 300 with feature embedding size of 20 each
(pos tagging, entity type, and case information).
We use Adam optimizer (Kingma and Ba, 2014)
with β2 set to 0.9 as suggested by Dozat and Man-
ning (2016). Development set is used for early
stopping. Because of the small dataset (4113 train-
ing sentences), the model overfits after 4 epochs.

6 Results

Table 1 provides the results on the development set
and Table 2 shows the results on the test set. offi-
cial shows results of the model we submitted to
the competition with a maximum recursion num-
ber of 5 and a β2 = 0.99. We obtained higher
scores by increasing the recursion limit as in sec-
tion 3.3 (+ max revur = 7), using current span only

122

primary remote
unlabeled labeled unlabeled labeled

baseline 0.733 0.858 0.472 0.484
official 0.73 0.864 - -

final 0.753 0.864 0.447 0.447

Table 2: F1 score on primary and remote edges re-
ported on the test set

as explained in section 3.4 (+ child pred), chang-
ing β2 as shown in section 5 (+ β2 = 0.9) and fix-
ing minor bugs (+ bug fix) incrementally. baseline
shows the results of the baseline model (TUPA)
from Hershcovich et al. (2017). final shows the re-
sults of the model fine-tuned on the development
set mentioned in Table 1.

Since there are normally 0 or 1 remote edges in
each sentence in the training corpus, the remote
edge prediction model is not as effective. Still, the
model captures some remote relations. For exam-
ple, in the sentence “Additionally, Carey’s newly
slimmed Figure began to change, as she stopped
her exercise routines and gained weight”, the node
“gained weight” is predicted to point to “Carey”
where the target annotated remote child is “she”.
Discontinuous unit prediction also suffers from the
problem of insufficient training samples.

7 Conclusion

This paper describes the system that the UC Davis
team submitted to SemEval 2019 Task 1. We pro-
pose a recursive self-attention decoder with a sim-
ple architecture. Our model is effective in UCCA
semantic parsing, ranking third in the close track
in-domain task with modest fine-tuning, highlight-
ing the suitability of our approach.

Acknowledgments

This work was supported by the National Science
Foundation under Grant No. 1840191. Any opin-
ions, findings, and conclusions or recommenda-
tions expressed are those of the authors and do not
necessarily reflect the views of the NSF.

References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (ucca). In ACL (1),
pages 228–238. The Association for Computer Lin-
guistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking.

Danqi Chen and Christopher D. Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750. ACL.

James Cross and Liang Huang. 2016. Span-based
constituency parsing with a structure-label system
and provably optimal dynamic oracles. CoRR,
abs/1612.06475.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. CoRR, abs/1611.01734.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. CoRR, abs/1804.07853.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers, pages 1127–
1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018a. Multitask parsing across semantic represen-
tations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 1: Long Papers, pages 373–385.

Daniel Hershcovich, Zohar Aizenbud, Leshem
Choshen, Elior Sulem, Ari Rappoport, and Omri
Abend. 2019. Semeval 2019 task 1: Cross-
lingual semantic parsing with UCCA. CoRR,
abs/1903.02953.

Daniel Hershcovich, Leshem Choshen, Elior Sulem,
Zohar Aizenbud, Ari Rappoport, and Omri Abend.
2018b. Semeval 2019 shared task: Cross-lingual se-
mantic parsing with UCCA - call for participation.
CoRR, abs/1805.12386.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016a. Easy-
first dependency parsing with hierarchical tree lstms.
CoRR, abs/1603.00375.

Eliyahu Kiperwasser and Yoav Goldberg. 2016b. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. CoRR,
abs/1603.04351.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. CoRR,
abs/1805.01052.

123

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR,
abs/1508.04025.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal dependencies v1: A mul-
tilingual treebank collection. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation LREC 2016, Portorož,
Slovenia, May 23-28, 2016.

R Socher, A Perelygin, J.Y. Wu, J Chuang, C.D. Man-
ning, A.Y. Ng, and C Potts. 2013. Recursive deep
models for semantic compositionality over a senti-
ment treebank. EMNLP, 1631:1631–1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

124

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 125–129
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

HHMM at SemEval-2019 Task 2: Unsupervised Frame Induction using
Contextualized Word Embeddings

Saba Anwar?, Dmitry Ustalov†, Nikolay Arefyev‡, §, Simone Paolo Ponzetto†,
Chris Biemann?, and Alexander Panchenko?,�

?Language Technology Group, Department of Informatics, University of Hamburg, Germany
�Skolkovo Institute of Science and Technology, Russia

{anwar,biemann,panchenko}@informatik.uni-hamburg.de
†Data and Web Science Group, University of Mannheim, Germany
{dmitry,simone}@informatik.uni-mannheim.de

‡Samsung R&D Institute Russia
§Lomonosov Moscow State University, Russia

narefyev@cs.msu.ru

Abstract

We present our system for semantic frame in-
duction that showed the best performance in
Subtask B.1 and finished as the runner-up in
Subtask A of the SemEval 2019 Task 2 on un-
supervised semantic frame induction (Qasem-
iZadeh et al., 2019). Our approach separates
this task into two independent steps: verb clus-
tering using word and their context embed-
dings and role labeling by combining these
embeddings with syntactical features. A sim-
ple combination of these steps shows very
competitive results and can be extended to pro-
cess other datasets and languages.

1 Introduction

Recent years have seen a lot of interest in
computational models of frame semantics, with
the availability of annotated sources like Prop-
Bank (Palmer et al., 2005) and FrameNet (Baker
et al., 1998). Unfortunately, such annotated re-
sources are very scarce due to their language and
domain specificity. Consequently, there has been
work that investigated methods for unsupervised
frame acquisition and parsing (Lang and Lapata,
2010; Modi et al., 2012; Kallmeyer et al., 2018;
Ustalov et al., 2018). Researchers have used
different approaches to induce frames, includ-
ing clustering verb-specific arguments as per their
roles (Lang and Lapata, 2010), subject-verb-object
triples (Ustalov et al., 2018), syntactic depen-
dency representation using dependency formats
like CoNLL (Modi et al., 2012; Titov and Kle-
mentiev, 2012), and latent-variable PCFG mod-
els (Kallmeyer et al., 2018).

The SemEval 2019 task of semantic frame and
role induction consists of three subtasks: (A)

learning the frame type of the highlighted verb
from the context in which it has been used; (B.1)
clustering the highlighted arguments of the verb
into specific roles as per the frame type of that
verb, e.g., Buyer, Goods, etc.; (B.2) clustering
the arguments into generic roles as per VerbNet
classes (Schuler, 2005), without considering the
frame type of the verb, i.e., Agent, Theme, etc.

Our approach to frame induction is similar to
the word sense induction approach by Arefyev
et al. (2018), which uses tf–idf-weighted context
word embeddings for a shared task on word sense
induction by Panchenko et al. (2018). In this unsu-
pervised task, our approach for clustering mainly
consists of exploring the effectiveness of already
available pre-trained models.1 Main contributions
of this paper are:

1. a method that uses contextualized distribu-
tional word representations (embeddings) for
grouping verbs to frame type clusters (Sub-
task A);

2. a method that combines word and con-
text embeddings for clustering arguments of
verbs to frame slots (Subtasks B.1 and B.2).

The key difference of our approach with re-
spect to prior work by Arefyev et al. (2018) and
Kallmeyer et al. (2018) is that we have only used
pre-trained embeddings to disambiguate the verb
senses and then combined these embeddings with
additional features for semantic labeling of the
verb roles.2

1HHMM is an abbreviation for Hansestadt Hamburg,
Mannheim, and Moscow. It is chosen to avoid confusion with
hidden Markov models.

2Our code is available at https://github.com/
uhh-lt/semeval2019-hhmm.

125

The remainder of the paper is organized as fol-
lows. The methodology and the results for each
subtask are discussed in Sections 2, 3 and 4 re-
spectively, followed by the conclusion in Sec-
tion 5.

2 Subtask A: Grouping Verbs to Frame
Type Clusters

In this subtask, each sentence has a highlighted
verb, which is usually the predicate. The goal is to
label each highlighted verb according to the frame
evoked by the sentence. The gold standard for this
subtask is based on the FrameNet (Baker et al.,
1998) definitions for frames.

2.1 Method

Since sentences evoking the same frame should
receive the same labels, we used a verb cluster-
ing approach and experimented with a number of
pre-trained word and sentence embeddings mod-
els, namely Word2Vec (Mikolov et al., 2013),
ELMo (Peters et al., 2018), Universal Sentence
Embeddings (Conneau et al., 2017), and fast-
Text (Bojanowski et al., 2017). This setup is sim-
ilar to treating the frame induction task as a word
sense disambiguation task (Brown et al., 2011).

We experimented with embedding different lex-
ical units, such as verb (V), its sentence (context,
C), subject-verb-object (SVO) triples, and verb ar-
guments. Combination of context and word rep-
resentations (C+W) from Word2Vec and ELMo
turned out to be the best combination in our case.

We used the standard Google News Word2Vec
embedding model by Mikolov et al. (2013). Since
this model is trained on individual words only and
the SemEval dataset contained phrasal verbs, such
as fall back and buy out, we have considered only
the first word in the phrase. If this word is not
present in the model vocabulary, we fall back to
a zero-filled vector. When aggregating a context
into a vector, we used the tf–idf-weighted average
of the word embeddings for this context as pro-
posed by Arefyev et al. (2018). We tuned these
weights on the development dataset.

We used the ELMo contextualized embedding
model by Peters et al. (2018) that generates
vectors of a whole context. Similarly to fast-
Text (Bojanowski et al., 2017), ELMo can produce
character-level word representations to handle out-
of-vocabulary words. In all our experiments we
used the same pre-trained ELMo model available

Method Pu F1 B3 F1

t w2v[C+W]norm 76.68 68.10
¨ ELMo[C+W]norm 77.03 69.50

A Cluster Per Verb 73.78 65.35
3 Winner 78.15 70.70

Table 1: Our results on Subtask A: Grouping Verbs to
Frame Type Clusters. Purity F1-score is denoted as Pu
F1, B-Cubed F1-score is denoted as B3 F1. t denotes
our final submission (# 536426), ¨ denotes our post-
competition result, A denotes a baseline, and 3 de-
notes the submission of the winning team.

on TensorFlow Hub.3 Among all the layers of this
model, we used the mean-pooling layer for word
and context embeddings.

2.2 Results and Discussion

We experimented with different clustering algo-
rithms provided by scikit-learn (Pedregosa et al.,
2011), namely agglomerative clustering, DB-
SCAN, and affinity propagation. After the model
selection on the development dataset, we have
chosen agglomerative clustering for further eval-
uation. Although both ELMo and Word2Vec
showed the best results on the development dataset
with single linkage, we opted average linkage after
analyzing t-SNE plots (van der Maaten and Hin-
ton, 2008).

Table 1 shows our results obtained on Sub-
task A. Our final submission (t) used agglom-
erative clustering of normalized vectors obtained
by concatenating the context and verb vectors
from the Word2Vec model. In particular, we
found that the best performance is attained for
Manhattan affinity and 150 clusters. During our
post-competition experiments (¨), we found that
ELMo performed better than Word2Vec when a
higher number of clusters, 235, was specified.

3 Subtask B.1: Clustering Arguments of
Verbs to Frame-Specific Slots

In this subtask, each sentence has a set of high-
lighted nouns or noun phrases corresponding to
the slots of the evoked frame. Additionally, each
sentence is provided with the same highlighted
verb as in Subtask A (Section 2). The goal is
to label each highlighted verb according to the
evoked frame and to assign each highlighted to-

3https://tfhub.dev/google/elmo/2

126

Method Pu F1 B3 F1

Agglomerative Clustering

t
Subtask A: w2v[C+W]

62.10 49.49
Subtask B.2: ID

Logistic Regression

�
Subtask A: w2v[C+W]norm

66.81 55.61
Subtask B.2: ELMo[C+W+V]+ID+B+123

¨
Subtask A: ELMo[C+W]norm

68.22 58.61
Subtask B.2: w2v[C+W+V]+ID+B+123

A Cluster Per Dependency Role 57.99 45.79
3 Winner 62.10 49.49

Table 2: Our results on Subtask B.1: Clustering Ar-
guments of Verbs to Frame-Specific Slots. Purity F1-
score is denoted as Pu F1, B-Cubed F1-score is denoted
as B3 F1. t denotes our final submission (# 535483),
� denotes a supervised Logistic Regression submission
that does not comply to the task rules, ¨ denotes our
post-competition result, A denotes a baseline, and 3
denotes the submission of the winning team.

ken a frame-specific semantic role identifier. The
gold standard for this subtask is annotated with
FrameNet frames and roles (Baker et al., 1998).

3.1 Method

Since Subtask B.1 asks to assign role labels to
highlighted tokens as per the frame type of the
verb, we attempted this by merging the output of
verb frame types from Subtask A (Section 2) and
the output of generic role labels from Subtask B.2
(Section 4). We used UKN (unknown) slot identi-
fier for the tokens present in Subtask B.1, but miss-
ing in Subtask B.2.

3.2 Results and Discussion

Table 2 shows the results from merging our so-
lutions for Subtasks A and B.2, as described in
Sections 2 and 4, correspondingly. For our final
submission (t), we merged the frame types ob-
tained by clustering the Word2Vec embeddings of
the sentence (context, C) and verb (word, W), and
the role labels obtained by clustering the vector
of inbound dependencies (ID). However, we ob-
served that the logistic regression model demon-
strated better performance in Subtask B.2 than any
clustering technique we tried, including our final
submission (t) and the baselines. But this per-
formance was further improved by combining the
results from post-competition experiments of Sub-
task A and Subtask B.2 (¨).

4 Subtask B.2: Clustering Arguments of
Verbs to Generic Roles

In Subtask B.2, similarly to Subtask B.1 (Sec-
tion 3), each sentence has a set of highlighted
nouns or noun phrases that correspond to the slots
of the evoked frame. The goal is to label each
highlighted token with a high-level generic class,
such as Agent or Patient. However, unlike Sub-
task B.1, the verb frame labeling part is omitted.
The gold standard for this subtask is annotated as
according to the VerbNet classes (Schuler, 2005).

4.1 Method

When addressing this subtask, we experimented
with combining the embeddings of the word (W)
filling the role, its sentence (context, C), and
the highlighted verb (V). To handle the out-of-
vocabulary roles in the case of Word2Vec embed-
dings, each role was tokenized and embeddings
for each token were averaged. If a token is still not
present in the vocabulary, then a zero-filled vector
was used as its embedding. During prototyping
we developed several features that improved the
performance score, namely inbound dependencies
(ID), which represent the dependency label from
the head to the role (dependent) and two trivial
baselines: Boolean (B) and 123.

We built a negative one-hot encoding feature
vector to represent the inbound dependencies of
the word corresponding to the role. Thus, for each
dependency of the given role (in case of a multi-
word expression), we fill -1 if the dependency re-
lationship holds, otherwise 0 is filled. During our
experiments for the development test, we also used
the outbound dependencies, which represent the
dependency label from the role (head) to the de-
pendent words. So we used -1 for inbound and 1
for outbound. But since they did not perform well
in comparison to inbound dependencies, they were
not considered for submitted runs.

For the Boolean baseline, given the position of
the verb in the sentence pv and the position of the
target token pt, we assign the role 0 to t if pv < pt,
otherwise 1. For the 123 baseline, we assign its
index to each highlighted slot filler. For example,
if five slots need to be labelled, the first one will be
labelled as 1 and the last one will be labelled as 5.

4.2 Results and Discussion

Table 3 shows our results on Subtask B.2. We
found that the trivial Boolean approach outper-

127

Method Pu F1 B3 F1

Agglomerative Clustering
t w2v[C]+ID 62.00 42.10
¨ ELMo[C]+ID 50.37 34.89

Logistic Regression
� ELMo[C+W+V]+ID+B+123 73.14 57.37
¨ w2v[C+W+V]+ID+B+123 74.36 58.83

A
Cluster Per Dependency Role 56.05 39.03
Boolean Baseline 67.16 46.78
Inbound Dependencies (ID) 66.05 45.77

3 Winner 64.16 45.65

Table 3: Our results on Subtask B.2: Clustering Ar-
guments of Verbs to Generic Roles. Purity F1-score
is denoted as Pu F1, B-Cubed F1-score is denoted as
B3 F1. t denotes our final submission (# 535480), �
denotes a supervised Logistic Regression submission
that does not comply to the task rules, ¨ denotes our
post-competition result, A denotes a baseline, and 3
denotes the submission of the winning team.

formed LPCFG (Kallmeyer et al., 2018) and all
the standard baselines, including cluster per de-
pendency role (OneClustPerGrType), on the
development dataset.4

Similarly to our solution for Subtask A (Sec-
tion 2), we tried different clustering algorithms
to cluster arguments of verbs to generic roles
and found that the best clustering performance is
shown by agglomerative clustering with Euclidean
affinity, Ward’s method linkage, and two clusters.
Our final submission (t) used the combination
of inbound dependencies and Word2Vec embed-
ding for sentence (context, C), which performed
marginally better than the cluster per dependency
role (OneClustPerGrType) baseline, but still
not better than such trivial baselines as Boolean or
123. Replacing Word2Vec with ELMo in our post-
competition experiments have lowered the perfor-
mance further.

In order to estimate our upper bound of the per-
formance, we compared our best-performing clus-
tering algorithm, i.e., agglomerative clustering, to
a logistic regression model. We found that the
combination of sentence (context, C), target word
(W), and verb (V) vectors, enhanced with our other
features, shows substantially better results than a
simple clustering model (�). However, we did not
observe a noticeable difference between the per-

4On the development dataset for Subtask B.2, the Boolean
baseline demonstrated B-Cubed F1 = 57.98, while LPCFG
and cluster per dependency role yielded F1 = 40.05 and
F1 = 50.79, correspondingly.

formance of the underlying embedding models.
As the model was trained on the development

dataset that contained 20 roles in contrast to the
test set which contained 32 roles, this approach
has its limitations due to this difference of the
number and meaning of roles. We believe that
the performance could be improved using semi-
supervised clustering methods, yet during proto-
typing with the pairwise-constrained k-Means al-
gorithm (Basu et al., 2004) we did not observe any
performance improvements.

5 Conclusion

We presented an approach for unsupervised se-
mantic frame and role induction that uses word
and context embeddings. It separates the task into
two independent steps: verb clustering and role
labelling, using combination of these embeddings
enhanced with syntactical features. Our approach
showed the best performance in Subtask B.1 and
also finished as the runner-up in Subtask A of this
shared task, and it can be easily extended to pro-
cess other datasets and languages.

Acknowledgments

We acknowledge the support of the Deutsche For-
schungsgemeinschaft (DFG) under the “JOIN-T”
and “ACQuA” projects and the German Academic
Exchange Service (DAAD). We thank the Sem-
Eval organizers for an inspiring shared task and
their quick responses to all our questions. We are
grateful to four anonymous reviewers who offered
useful comments. Finally, we thank the Linguis-
tic Data Consortium (LDC) for the provided Penn
Treebank dataset (Marcus et al., 1993).

References

Nikolay Arefyev, Pavel Ermolaev, and Alexander
Panchenko. 2018. How much does a word weight?
Weighting word embeddings for word sense in-
duction. In Computational Linguistics and Intel-
lectual Technologies: Papers from the Annual In-
ternational Conference “Dialogue”, pages 68–84,
Moscow, Russia. RSUH.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In Pro-
ceedings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics
- Volume 1, ACL ’98, pages 86–90, Montréal, QC,
Canada. Association for Computational Linguistics.

128

Sugato Basu, Arindam Banerjee, and Raymond J.
Mooney. 2004. Active Semi-Supervision for Pair-
wise Constrained Clustering. In Proceedings of the
2004 SIAM International Conference on Data Min-
ing, SDM 2004, pages 333–344, Lake Buena Vista,
FL, USA. SIAM.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Susan Windisch Brown, Dmitriy Dligach, and Martha
Palmer. 2011. VerbNet Class Assignment as a
WSD Task. In Proceedings of the Ninth Inter-
national Conference onComputational Semantics,
IWCS 2011, pages 85–94, Oxford, UK.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
Learning of Universal Sentence Representations
from Natural Language Inference Data. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 670–680,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Laura Kallmeyer, Behrang QasemiZadeh, and Jackie
Chi Kit Cheung. 2018. Coarse Lexical Frame Ac-
quisition at the Syntax–Semantics Interface Using a
Latent-Variable PCFG Model. In Proceedings of the
Seventh Joint Conference on Lexical and Computa-
tional Semantics, *SEM 2018, pages 130–141, New
Orleans, LA, USA. Association for Computational
Linguistics.

Joel Lang and Mirella Lapata. 2010. Unsupervised
Induction of Semantic Roles. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 939–947, Los
Angeles, CA, USA. Association for Computational
Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a Large Anno-
tated Corpus of English: The Penn Treebank. Com-
putational Linguistics, 19(2):313–330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeffrey Dean. 2013. Distributed Represen-
tations of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems 26, pages 3111–3119. Curran Associates,
Inc., Harrahs and Harveys, NV, USA.

Ashutosh Modi, Ivan Titov, and Alexandre Klementiev.
2012. Unsupervised Induction of Frame-Semantic
Representations. In Proceedings of the NAACL-HLT
Workshop on the Induction of Linguistic Structure,
pages 1–7, Montréal, QC, Canada. Association for
Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

Alexander Panchenko, Anastasia Lopukhina, Dmitry
Ustalov, Konstantin Lopukhin, Nikolay Arefyev,
Alexey Leontyev, and Natalia Loukachevitch. 2018.
RUSSE’2018: A Shared Task on Word Sense In-
duction for the Russian Language. In Computa-
tional Linguistics and Intellectual Technologies: Pa-
pers from the Annual International Conference “Di-
alogue”, pages 547–564, Moscow, Russia. RSUH.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, et al. 2011.
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), NAACL-
HLT 2018, pages 2227–2237, New Orleans, LA,
USA. Association for Computational Linguistics.

Behrang QasemiZadeh, Miriam R. L. Petruck, Regina
Stodden, Laura Kallmeyer, and Marie Candito.
2019. SemEval-2019 Task 2: Unsupervised Lexi-
cal Frame Induction. In Proceedings of the 13th In-
ternational Workshop on Semantic Evaluation, Min-
neapolis, MN, USA. Association for Computational
Linguistics.

Karin Kipper Schuler. 2005. VerbNet: A Broad-
coverage, Comprehensive Verb Lexicon. Ph.D. the-
sis, University of Pennsylvania, Philadelphia, PA,
USA.

Ivan Titov and Alexandre Klementiev. 2012. A
Bayesian Approach to Unsupervised Semantic Role
Induction. In Proceedings of the 13th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, EACL 2012, pages 12–22, Avi-
gnon, France. Association for Computational Lin-
guistics.

Dmitry Ustalov, Alexander Panchenko, Andrei Kutu-
zov, Chris Biemann, and Simone Paolo Ponzetto.
2018. Unsupervised Semantic Frame Induction us-
ing Triclustering. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), ACL 2018, pages
55–62, Melbourne, VIC, Australia. Association for
Computational Linguistics.

129

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 130–136
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

L2F/INESC-ID at SemEval-2019 Task 2: Unsupervised Lexical Semantic
Frame Induction using Contextualized Word Representations

Eugénio Ribeiro1,2, Vânia Mendonça1,2, Ricardo Ribeiro1,3,
David Martins de Matos1,2, Alberto Sardinha1,2, Ana Lúcia Santos4,5, Luı́sa Coheur1,2

1 INESC-ID Lisboa, Portugal
2 Instituto Superior Técnico, Universidade de Lisboa, Portugal

3 Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
4 Centro de Linguı́stica da Universidade de Lisboa, Portugal
5 Faculdade de Letras da Universidade de Lisboa, Portugal

eugenio.ribeiro@l2f.inesc-id.pt, vania.mendonca@tecnico.ulisboa.pt

Abstract
Building large datasets annotated with seman-
tic information, such as FrameNet, is an ex-
pensive process. Consequently, such resources
are unavailable for many languages and spe-
cific domains. This problem can be alleviated
by using unsupervised approaches to induce
the frames evoked by a collection of docu-
ments. That is the objective of the second task
of SemEval 2019, which comprises three sub-
tasks: clustering of verbs that evoke the same
frame and clustering of arguments into both
frame-specific slots and semantic roles.

We approach all the subtasks by applying a
graph clustering algorithm on contextualized
embedding representations of the verbs and ar-
guments. Using such representations is appro-
priate in the context of this task, since they
provide cues for word-sense disambiguation.
Thus, they can be used to identify different
frames evoked by the same words. Using this
approach we were able to outperform all of the
baselines reported for the task on the test set
in terms of Purity F1, as well as in terms of
BCubed F1 in most cases.

1 Introduction

The Frame Semantics theory of language (Fill-
more, 1976) states that one cannot understand the
meaning of a word without knowing the context
surrounding it. That is, a word may evoke dif-
ferent semantic frames depending on its context.
Considering this relation, sets of frame definitions
and annotated datasets that map text into the se-
mantic frames it evokes are important resources
for multiple Natural Language Processing (NLP)
tasks (Shen and Lapata, 2007; Aharon et al., 2010;
Das et al., 2014). The most prominent of such
resources is the FrameNet (Baker et al., 1998),
which provides a set of more than 1,200 generic
semantic frames, as well as over 200,000 anno-
tated sentences in English. However, this kind

of resource is expensive and time-consuming to
build, since both the definition of the frames and
the annotation of sentences require expertise in the
underlying knowledge. Furthermore, it is difficult
to decide both the granularity and the domains to
consider while defining the frames. Consequently,
such resources only exist for a reduced amount
of languages (Boas, 2009) and even English lacks
domain-specific resources in multiple domains.

The problem of building semantic frame re-
sources can be alleviated by using unsupervised
approaches to induce the frames evoked by a
collection of documents. The second task of
SemEval 2019 aims at comparing unsupervised
frame induction systems for building semantic
frame resources for verbs and their arguments
(Qasemi Zadeh et al., 2019). It is split into three
subtasks. The first, Task A, focuses on cluster-
ing instances of verbs according to the semantic
frame they evoke while the others focus on cluster-
ing the arguments of those verbs, both according
to the frame-specific slots they fill, on Task B.1,
and their semantic role, on Task B.2.

In this paper, we address the three subtasks
by following an approach that takes advantage
of the recent developments on the generation of
contextualized word representations (Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2018).
Such representations are able to disambiguate dif-
ferent word senses by varying the position of a
word in the embedding space according to its con-
text. This ability is important in the context of
semantic frame induction, since different word-
senses typically evoke different frames. To iden-
tify words that evoke the same frame or have the
same role, our approach consists of clustering their
representations by applying the Chinese Whispers
algorithm (Biemann, 2006) to a similarity-based
graph. This way, we do not need to define the
number of clusters and there is no bias towards the

130

generation of clusters of similar size.
In the remainder of the paper, we start by pro-

viding an overview of previous studies related to
the task, in Section 2. Then, in Section 3, we
describe our approach and explain how it differs
from previous approaches. Section 4 describes
our experimental setup. The results of our exper-
iments are presented and discussed in Section 5.
Finally, Section 6 summarizes the conclusions of
our work and provides pointers for future work.

2 Related Work

Following the motivation described in the previ-
ous section, previous studies have employed un-
supervised approaches for the induction of se-
mantic frames and roles. However, most stud-
ies have focused on semantic role induction. For
instance, Titov and Klementiev (2012) proposed
two models based on the Chinese Restaurant Pro-
cess (Ferguson, 1973). The factored model in-
duces semantic roles for each predicate indepen-
dently using an iterative clustering approach, start-
ing with one cluster per argument. On the other
hand, the coupled model takes into consideration
a distance-dependent prior shared among different
predicates. Arguments from different predicates
are then used as vertices of a similarity graph and
each argument selects another argument as a mem-
ber of the same cluster based on that similarity.
Overall, the coupled model performs slightly bet-
ter than the factored one. In both cases, each argu-
ment is represented by a set of syntactic features –
sentence voice, argument position, syntactic rela-
tion, and existing prepositions.

Lang and Lapata (2014) proposed a graph par-
titioning approach over a multilayer graph. Each
layer corresponds to a feature, i.e., each pair of
vertices (arguments) is connected through multi-
ple edges, each corresponding to their similarity
according to that feature. Then, two clustering
approaches were considered, achieving similar re-
sults. The first is an adaptation of agglomera-
tive clustering to the multilayer setting. Instead
of combining the similarity values into a single
score, it clusters the arguments in each layer and
then combines the obtained scores into a multi-
layer score. Clusters with greater multilayer sim-
ilarity are then merged together, with larger clus-
ters being prioritized. The second clustering ap-
proach consists of propagating cluster member-
ship along the graph edges. In both cases, the com-

bination of the scores of each layer is based on a
set of conditions, in order to avoid having to learn
or guess weights for each feature.

In contrast to the previous approaches, Titov
and Khoddam (2015) proposed a reconstruction-
error maximization framework which comprises
two main components: an auto-encoder, responsi-
ble for labeling arguments with induced roles, and
a reconstruction model, which takes the induced
roles and predicts the argument that fills each role,
i.e., it tries to reconstruct the input. The learning
error is obtained by comparing the reconstructed
argument to the original one. This enables the use
of a larger feature set and more complex features,
similarly to supervised approaches.

Concerning frame induction, Ustalov et al.
(2018a) proposed a graph-based approach for the
triclustering of Subject-Verb-Object (SVO) triples
extracted using a dependency parser. Each vertex
in the graph is the SVO triple, represented by the
concatenation of word embeddings for the three
elements. Vertices are connected to their k-nearest
neighbours (k=10) according to their cosine sim-
ilarity. The clusters are then generated using the
Watset fuzzy graph clustering algorithm (Ustalov
et al., 2017), which induces word-sense informa-
tion in the graph before clustering. For each clus-
ter, the corresponding triframe is generated by ag-
gregating the subjects, verbs, and objects into sep-
arate sets and generating a triple using those sets.
This approach outperformed hard clustering ap-
proaches, as well as topic-based approaches, such
as LDA-Frames (Materna, 2012).

3 Induction Approach

Considering the subtasks we are approaching, we
must use an approach that is able to induce not
only semantic roles, but also semantic frames and
its slots. In this sense, of the approaches described
in the previous section, the triclustering approach
proposed by Ustalov et al. (2018a) is the only one
able to induce frames. However, in the context
of our task, it has two major flaws. First, it fo-
cuses on the clustering of SVO triples, i.e., a frame
is defined by a head and two slots. In our case,
each instance has a variable number of arguments.
Thus, the triclustering approach is not appropri-
ate. Furthermore, since the arguments are clus-
tered in combination with the verb, this approach
is particularly inappropriate for semantic role in-
duction. The second flaw is related to the approach

131

used for inducing word-sense information, which
requires a thesaurus to provide synonymity infor-
mation. Such resources must be manually built
and, thus, may not be available for every language
or lack domain-specific information.

We approach the first flaw by clustering the verb
and its arguments independently. This way, we are
able to cluster the instances of verbs to identify the
frame heads, as required for Task A, and the in-
stances of arguments to identify semantic roles, as
required for Task B.2. To identify the slots of each
frame, as required for Task B.1, we combine the
clusters of the verbs with those of the arguments.

To deal with the second flaw, we replace the per-
word embeddings used by Ustalov et al. (2018a)
with contextualized word representations. These
include information concerning the context in
which a word appears and, thus, the position of
a word in the embedding space varies according to
that context. By using such representations, we are
able to discard the fuzzy clustering approach used
by Ustalov et al. (2018a) to induce word-sense,
since it is revealed by the contextual variations of
the representation of a word. Therefore, a hard
clustering algorithm can be applied directly.

Algorithm 1 Induction Approach
Input: T // The set of head tokens to cluster
Input: EMBED // The contextualized embedding

approach
Input: THRESH // The function for computing the

neighboring threshold
Output: C // The set of clusters

1: V ← {EMBED(t) : t ∈ T} // The whole sen-
tence is required for embedding generation

2: D ← {1 − cos(θv,v′) : (v, v
′) ∈ V 2, v 6= v′}

// θv,v′ is the angle between the two vectors
3: t← THRESH(D)
4: E ← {(v, v′, Dv,v′) : (v, v′) ∈ V 2, v 6=
v′, Dv,v′ < t} // The edge is weighted with
the cosine distance between the vertices

5: C ← CHINESEWHISPERS(V,E)
6: return C

Our approach is summarized in Algorithm 1. It
starts by generating the contextualized represen-
tation of each instance to be clustered. In cases
where the verb or argument to cluster consists of
multiple words, we use a dependency parser to
identify the head word and use its contextualized
representation, since it contains information from
the other words. Then, in order to build a graph,

we compute the pairwise distances between the in-
stances. These distances are used to decide which
instances are considered neighbors. Since each in-
stance is represented as a vector in the embedding
space, we use the cosine distance. Moreover, since
using a fixed number of neighbors is not realis-
tic, we decided to use a threshold based on this
distance. This threshold defines the granularity
of the clusters and varies according to the set of
instances. Instead of using a fixed threshold, we
define it based on the parameters of the pairwise
distances distribution. The actual combination of
the parameters varies according to the subtask and
is further discussed in the subsections below. Fi-
nally, to obtain the clusters, we apply the Chinese
Whispers algorithm (Biemann, 2006) on a graph
where the vertices are the instances and the edges
connect neighbor instances. The weight of each
edge is given by the distance between neighbors.
We use the Chinese Whispers algorithm since it
chooses the number of clusters on its own and is
able to handle clusters of different sizes, thus be-
ing appropriate for the task. Furthermore, it has
been proved successful in NLP clustering tasks.

3.1 Verb Clustering

The first subtask focuses on clustering verbs that
evoke the same frame. The number of frames
evoked in a set of documents is typically larger
than the number of semantic roles and even larger
in comparison to the number of slots per frame.
Thus, a lower neighboring threshold is required to
achieve such granularity. In our experiments, we
achieved the best results when defining the neigh-
boring threshold for clustering verbs, tf , as

tf =
µ+ σ

2
, (1)

where µ and σ are the mean and standard devia-
tion of the pairwise distance distribution, respec-
tively. Using this threshold may lead to the in-
duction of frames with different granularity, de-
pending on the sense similarity between the verbs
present in the dataset. However, if the induced
frames are considered too abstract, the approach
can be applied hierarchically on the instances of
each cluster to obtain finer-grained frames.

3.2 Argument Clustering

Both the second and third subtasks focus on clus-
tering arguments. However, while the second fo-
cuses on doing so in a per-frame manner to induce

132

its slots (frame elements), the third focuses on
clustering them independently of the frame, i.e.,
to induce generic semantic roles. In the first case
it would make sense to cluster the arguments of
verbs that evoke each frame independently of the
others. However, that may not be feasible on small
datasets. Thus, we opted for clustering all the ar-
guments together in both cases. The slot clusters
for the second subtask are then given by the com-
bination of the verb and argument clusters. Thus,
this approach considers that slots are per-frame
specializations of the semantic roles, which is ac-
curate in most situations.

As previously stated, the number of seman-
tic roles is typically smaller than the number of
frames. Thus, a higher neighboring threshold can
be used. In our experiments, we achieved the best
results when defining the neighboring threshold
while clustering arguments, ta, as

ta = µ− 1.5σ. (2)

Finally, since the arguments are highly depen-
dent on the verb, we also performed experiments
in which we combined the contextualized repre-
sentation of the argument with that of the verb be-
fore applying the clustering approach.

4 Experimental Setup

In this section we describe our experimental setup
in terms of data, implementation details, and eval-
uation metrics and baselines.

4.1 Dataset
In our experiments, we used the dataset provided
by the task organization, built with sentences from
the Penn Treebank 3.0 (Marcus et al., 1993), and
annotated with FrameNet frames (Task A), frame
elements or slots (Task B.1) and generic semantic
roles (Task B.2). The development set consists of
600 verb-argument instances, 588 sentences and
1,211 arguments. The (blind) test set comprises
4,620 verb-argument instances, 3,346 sentences,
9,466 arguments labeled for semantic role and
9,510 arguments labeled for frame slot. Addition-
ally, morphosyntactic information is provided in
the CoNLL-U format (Buchholz and Marsi, 2006).

4.2 Implementation Details1

In our experiments we compared the performance
of two approaches to generate the contextual-

1
https://gitlab.l2f.inesc-id.pt/eugenio/find/

ized word representations. The first, ELMo (Pe-
ters et al., 2018), is based on bi-directional
LSTMs (Hochreiter and Schmidhuber, 1997) and
was the first approach to generate contextualized
representations. Its output provides a context-free
representation of the word and context information
at two levels. In our experiments we use the sum
of all information, since it leads to variations of the
context-free representation according to the con-
text. The second representation, BERT (Devlin
et al., 2018), is based on the Transformer archi-
tecture (Vaswani et al., 2017) and currently leads
to state-of-the-art results on multiple benchmark
NLP tasks. Its output can be extracted from a
single layer or the multiple layers included in the
model. Contrarily to the ELMo layers, these do
not have an associated semantics. Thus, we use
the output of the last layer, since it contains in-
formation from all that precede it. In both cases
we used pre-trained models. To obtain embedding
vectors with the same dimensionality, 1,024, we
used the ELMo model provided by the AllenNLP
package (Gardner et al., 2017) and the large un-
cased BERT model provided by its authors.

To apply the Chinese Whispers algorithm, we
relied on the implementation by Ustalov et al.
(2018b), which requires the graph to be built using
the NetworkX package (Hagberg et al., 2004). We
did not use weight regularization and performed a
maximum of 20 iterations. Furthermore, in order
to avoid result changes based on non-deterministic
factors, we fixed the random seed as 1337.

Finally, to obtain the syntactic dependencies
used to determine the head token of multi-word
verbs or arguments, we used the annotations pro-
vided with the task dataset.

4.3 Baselines

For comparison purposes, in addition to our re-
sults, we report the baselines provided by the task
scorer. For the frame induction subtask (Task A),
the baseline consists of assigning each verb lemma
to a frame (Lemma). For the semantic role induc-
tion subtask (Task B.2), arguments are assigned
to clusters according to their syntactic relation to
the head verb (Dep). For the frame slot induc-
tion subtask (Task B.1), the previous baselines are
combined by assigning each pair of verb lemma
and argument’s syntactic dependency to a cluster
(Lemma + Dep). On the test set, we also consider
a random assignment to the gold number of clus-

133

Approach #C Purity inv-Purity Purity F1 B3 Precision B3 Recall B3 F1

Ta
sk

A ELMo 32 93.17 96.50 94.80 89.06 95.63 92.23
BERT 72 89.67 84.00 86.74 83.17 77.77 80.38

BL: Lemma 35 93.50 85.67 89.41 90.22 79.63 84.60
Ta

sk
B

.1 ELMo 72 68.35 72.40 70.31 57.60 64.18 60.72
BERT 170 52.98 72.98 61.39 46.82 62.77 53.64
ELMo + Verb 72 68.35 72.40 70.31 57.60 64.18 60.72

BL: Lemma + Dep 136 84.30 70.74 76.93 78.71 58.36 67.03

Ta
sk

B
.2

ELMo 11 62.23 69.01 65.44 46.75 56.33 51.10
BERT 72 48.35 83.97 61.36 38.94 72.86 50.75
ELMo + Verb 140 70.17 43.80 53.93 62.20 23.27 33.87
Dep + PoS 66 65.95 29.26 40.53 55.61 20.05 29.47

BL: Dep 22 67.93 71.32 69.59 53.31 57.67 55.41

Table 1: Results obtained on the development set. The baselines are identified with BL.

ters as a baseline. Due to space constraints, we do
not report the results of the remaining baselines
proposed by Kallmeyer et al. (2018).

We report the results of an additional baseline
for Task B.2 which considers both the argument’s
syntactic relation to the head verb and its Part-of-
Speech (POS) tag (Dep + POS).

4.4 Evaluation metrics

We report our results using the metrics defined for
the task: number of clusters (#C), purity, inverse-
purity, and their harmonic mean (Purity F1), as
proposed by Steinbach et al. (2000), and BCubed
(B3) precision, recall, and F1, as proposed by
Bagga and Baldwin (1998).

5 Results

The results obtained on the development set are
reported in Table 1. We can see that using ELMo
to obtain the contextualized word representations
leads to better results than BERT on every sub-
task. This is somewhat surprising since BERT is
the state-of-the-art approach to generate contex-
tualized representations. A possible explanation
may lie in the fact that the two levels of ELMo
which provide context information can be related
to syntax and semantics (Peters et al., 2018), mak-
ing them highly related to the task. On the other
hand, the information provided by BERT repre-
sentations is not as easy to categorize. Moreover,
in every case, the number of clusters is underesti-
mated when using ELMo and overestimated when
using BERT.

On the frame induction subtask (Task A), our
approach surpasses every baseline, but only when
using ELMo embeddings. The lemma baseline is

surpassed by over 5 percentage points on Purity
F1 and 7.5 on BCubed F1. The same is not true
on the other tasks, with the clustering based on
the dependency relation between the argument and
verb achieving the best results. It outperforms our
approach in terms of both F1 metrics by around
6.5 percentage points on the slot induction subtask
(Task B.1) and around 4 points on the semantic
role induction subtask (Task B.2). We believe that
this happens because the development set is small
and the kind of arguments does not vary much.

Combining the verb representation with that of
the argument leads to worse results on Task B.2,
since it is clustering the semantic roles per verb.
On Task B.1, the result is the same as without us-
ing the verb representation, which suggests that
the information provided by the verb is not able
to improve the induced slots, but only to attribute
them to the corresponding frame.

The approach which combines the dependency
relation with the POS tag obtains worse results on
Task B.2, as it leads to additional partitioning of
the clusters. Thus, a large number of clusters is
generated, which is not consistent with the nature
of semantic roles.

The results obtained on the test set are reported
in Table 2. We only submitted the clusters ob-
tained using ELMo, since it outperformed BERT
on the development set. Similarly, we did not con-
sider the combination of verb and argument repre-
sentation for the argument clustering tasks. How-
ever, we assessed the performance of the baseline
based on the dependency relation and the POS tag.

On Task A, our approach surpasses all the base-
lines in terms of Purity F1, but by less than 2 per-
centage points. In fact, it has a similar perfor-

134

Approach #C Purity inv-Purity Purity F1 B3 Precision B3 Recall B3 F1

Ta
sk

A ELMo 222 72.84 77.84 75.25 61.25 69.96 65.32

BL: Lemma 273 82.16 66.95 73.78 75.98 57.33 65.35
BL: Random 149 15.30 5.74 8.34 6.82 3.85 4.92

Ta
sk

B
.1 ELMo 526 58.26 64.30 61.13 44.79 53.21 48.64

BL: Lemma + Dep 1203 78.46 45.99 57.99 71.11 33.77 45.79
BL: Random 436 11.25 6.09 7.90 6.07 4.82 5.37

Ta
sk

B
.2 ELMo 6 58.29 71.19 64.10 36.80 60.15 45.66

Dep + PoS 159 57.39 26.25 36.03 41.41 15.07 22.1

BL: Dep 37 61.44 51.53 56.05 40.89 37.33 39.03
BL: Random 32 34.77 4.85 8.51 21.92 3.46 5.98

Table 2: Results obtained on the test set. The baselines are identified with BL.

mance to the lemma baseline in terms of BCubed
F1. This happens because it overestimates the
number of clusters, which suggests that the prob-
lem may be related to the threshold. However,
using a threshold that leads to the induction of a
number of frames similar to the gold standard ends
up generating clusters of lower quality. This sug-
gests that additional features must be introduced.

On the remaining tasks, our approach performs
better than every baseline, which supports the
claim that the better performance of the cluster-
ing approach based on the dependency relation on
the development set is due to the limited variation
in the kinds of argument present in that set. We
observed an improvement of around 4 percentage
points on Task B.1 on both F1 metrics, and above
8 percentage points on Purity F1 and nearly 7 on
BCubed F1 on Task B.2.

Once again, the approach which combines the
dependency relation with the POS tag leads to
worse results on Task B.2, due to additional par-
titioning of the clusters. In this case, the number
of semantic roles is even more overestimated.

6 Conclusions

In this paper we presented our approach on un-
supervised semantic frame, slot, and role induc-
tion in the context of the second task of SemEval
2019. The approach is based on the clustering of
contextualized word representations of verbs and
arguments. Using such representations is appro-
priate for the task since they provide word-sense
information which is important for distinguishing
the evoked frames.

We were able to achieve results that surpassed
or performed on par with every baseline proposed
for the three subtasks on the test set. However,

the results are far from perfect and below those
achieved by more complex approaches on the task,
which suggests that the contextualized represen-
tations on their own are not able to provide all
the information required to perform an accurate
frame induction. Thus, as future work, we intend
to assess the cases that our approach fails to clus-
ter, and introduce additional features that provide
relevant information for those cases, either by us-
ing a weighted combination of per-feature distance
functions or a multilayer graph similar to that pro-
posed by Lang and Lapata (2014).

Furthermore, since the number of instances in
the test set is larger than in the development set,
it may be feasible to apply a per-frame clustering
approach for the slot induction task. This way, the
induced slots are no longer mere specifications of
the generic semantic roles.

Finally, although the number of semantic roles
is not consensual in the literature, there is a set
of core semantic roles which is common to ev-
ery theory. Thus, it would be interesting to take
advantage of that information to apply clustering
approaches with a pre-defined number of clusters
for semantic role induction. In fact, it would be
interesting to explore other clustering approaches
on every task and compare their performance with
that of the Chinese Whispers algorithm.

Acknowledgements

This work was supported by national funds
through Fundação para a Ciência e a Tecnolo-
gia (FCT) with reference UID/CEC/50021/2019.
Vânia Mendonça is funded by an FCT grant with
reference SFRH/BD/121443/2016. The use of the
corpus was licensed by the Linguistic Data Con-
sortium (LDC).

135

References
Roni Ben Aharon, Idan Szpektor, and Ido Dagan. 2010.

Generating Entailment Rules from Framenet. In
ACL, volume 2, pages 241–246.

Amit Bagga and Breck Baldwin. 1998. Algorithms for
Scoring Coreference Chains. In LREC, pages 563–
566.

Collin F. Baker, Charles J. Fillmore, and John B.
Lowe. 1998. The Berkeley FrameNet Project. In
ACL/COLING, volume 1, pages 86–90.

Chris Biemann. 2006. Chinese Whispers: An Ef-
ficient Graph Clustering Algorithm and its Appli-
cation to Natural Language Processing Problems.
In Workshop on Graph-based Methods for Natural
Language Processing, pages 73–80.

Hans C. Boas, editor. 2009. Multilingual FrameNets in
Computational Lexicography: Methods and Appli-
cations. Mouton de Gruyter.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
Shared Task on Multilingual Dependency Parsing.
In CoNLL, pages 149–164.

Dipanjan Das, Desai Chen, André F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014.
Frame-Semantic Parsing. Computational Linguis-
tics, 40(1):9–56.

Jacob Devlin, Ming-wei Chang, Lee Kenton, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. CoRR, abs/1810.04805.

Thomas S. Ferguson. 1973. A Bayesian Analysis
of Some Nonparametric Problems. The Annals of
Statistics, 1(2):209–230.

Charles J. Fillmore. 1976. Frame Semantics and
the Nature of Language. Annals of the New York
Academy of Sciences, 280(Origins and Evolution of
Language and Speech):20–32.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. AllenNLP: A Deep Semantic Natural Lan-
guage Processing Platform. CoRR, abs/1803.07640.

Aric Hagberg, Dan Schult, and Pieter Swart. 2004.
NetworkX. GitHub.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Laura Kallmeyer, Behrang Qasemi Zadeh, and Jackie
Chi Kit Cheung. 2018. Coarse Lexical Frame Ac-
quisition at the Syntax–Semantics Interface Using a
Latent-Variable PCFG Model. In SEM, pages 130–
141.

Joel Lang and Mirella Lapata. 2014. Similarity-Driven
Semantic Role Induction via Graph Partitioning.
Computational Linguistics, 40(3):633–670.

Mitchell Marcus, Beatrice Santorini, and Mary
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: the Penn Treebank. Computa-
tional Linguistics, 19(2):330–331.

Jiřı́ Materna. 2012. LDA-Frames: An Unsupervised
Approach to Generating Semantic Frames. In CI-
CLing, pages 376–387.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In NAACL-HLT, volume 1, pages
2227–2237.

Behrang Qasemi Zadeh, Miriam R L Petruck, Stodden
Regina, Laura Kallmeyer, and Marie Candito. 2019.
Semeval 2019 task 2: Unsupervised lexical frame
induction. In SemEval@NAACL-HLT. The Associ-
ation for Computer Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving Language Under-
standing by Generative Pre-Training. Preprint.

Dan Shen and Mirella Lapata. 2007. Using Semantic
Roles to Improve Question Answering. In EMNLP-
CoNLL, pages 12–21.

Michael Steinbach, George Karypis, and Vipin Kumar.
2000. A Comparison of Document Clustering Tech-
niques. In KDD Workshop on Text Mining.

Ivan Titov and Ehsan Khoddam. 2015. Unsu-
pervised Induction of Semantic Roles within a
Reconstruction-Error Minimization Framework. In
NAACL-HLT, volume 1, pages 1–10.

Ivan Titov and Alexandre Klementiev. 2012. A
Bayesian Approach to Unsupervised Semantic Role
Induction. In EACL, volume 1, pages 12–22.

Dmitry Ustalov, Alexander Panchenko, and Chris Bie-
mann. 2017. Watset: Automatic Induction of
Synsets from a Graph of Synonyms. In ACL, vol-
ume 1, pages 1579–1590.

Dmitry Ustalov, Alexander Panchenko, Andrei Kutu-
zov, Chris Biemann, and Simone Paolo Ponzetto.
2018a. Unsupervised Semantic Frame Induction us-
ing Triclustering. In ACL, volume 2, pages 55–62.

Dmitry Ustalov et al. 2018b. Chinese Whispers for
Python. GitHub.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In NIPS, pages 5998–6008.

136

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 137–141
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

BrainEE at SemEval-2019 Task 3:
Ensembling Linear Classifiers for Emotion Prediction

Vachagan Gratian
Universität Stuttgart

vgratian@utopianlab.am

Abstract

We present a homogeneous ensemble of lin-
ear perceptrons trained for emotion classifi-
cation as part of the SemEval-2019 shared-
task 3. The model uses a matrix of proba-
bilities to weight the activations of the base-
classifiers and makes a final prediction us-
ing the sum rule. The base-classifiers are
multi-class perceptrons utilizing character and
word n-grams, part-of-speech tags and senti-
ment polarity scores. The results of our exper-
iments indicate that the ensemble outperforms
the base-classifiers, but only marginally. In
the best scenario our model attains an F-Micro
score1 of 0.672, whereas the base-classifiers
attained scores ranging from 0.636 to 0.666.

1 Introduction

Our task is to detect emotions in multi-turn chat
messages (see examples in table 1). The four
emotion categories the model has choose from are
happy, sad, angry and others. A major
caveat of the task is the imbalance of class dis-
tribution in the dataset, as described in 4.1. The
dataset, as well as the task itself are described in
detail in (Chatterjee et al., 2019).

We choose to deploy ensemble of linear classi-
fiers for this task, rather than a single model for
a number of reasons. Firstly, given the inherent
ambiguity of emotions (Brainerd, 2018) we expect
that ensembles are better suited for any emotion
prediction task. Secondly, it has been shown that
ensembles are more immune to overfitting in sim-
ilar tasks (Dong and Han, 2004). And finally, a
single model trained on a large number of feature
sets, tend to perform significantly worse than an
ensemble where each model is trained on a differ-
ent subset (or combinations) of feature types.

1This is a custom F-Micro score. See more details under
4.3 Evaluation

Conversation Emotion

A: Yes

B: How so?

A: Don’t message me ever angry

A: I am fine

B: I am good how is ur week

A: I am single others

Table 1: Two samples from the dataset with angry and
others respectively as gold labels.

For this purpose, we deploy BrainT, a multi-
class perceptron model utilizing word n-grams and
POS-tags, built and trained for implicit emotion
detection in Tweets (Gratian and Haid, 2018). In
the current scenario, we extend the feature sets of
BrainT with character n-grams and Sentiment po-
larity scores. We combine n = 11 and n = 5
classifiers into an ensemble model where a fi-
nal prediction is made based on the activations.
Our model also calculates a matrix of probabili-
ties used to weigh the input activations. Each el-
ement in the matrix is the probability of a given
node making correct prediction for a given emo-
tion class. In the initial experiments the nodes are
trained on the full train data. In the second group
of experiments, nodes are assigned a random sub-
sets of the train data separately. We hope that this
will promote diversity in the base-classifiers and
boost the performance of the ensemble.

The results of our experiments indicate that in
both cases the ensemble outperforms the base-
classifiers, however only slightly. In the following
sections we describe the architecture of the model,
the actual results on the SemEval shared-task. Fi-
nally we suggest ways to maximize the effective-
ness of ensemble models as ideas for future work.

137

2 Related Work

Ensemble learning aims at exploiting the ”shared
knowledge” of multiple classifiers based on Sta-
tistical Learning theory. A theoretical analysis
of ensemble learning using linear perceptrons,
can be found in (Hara and Okada, 2005) and
(Miyoshi et al., 2005). The authors demonstrate
that the generalization error of ensemble learn-
ing depends on (hence, can be calculated from)
two cosine measures: the similarity between the
base-classifiers and the training data and the mu-
tual similarity of the base-classifiers. In plain En-
glish, to maximize the performance of the ensem-
ble model, we want to increase the accuracy of the
base-classifiers but in such a way that we promote
diversity in the base-classifiers.

A simple way of combining the base-classifiers
is to take the average of their weights after train-
ing. A more common approach is to exploit the
output activations using different techniques. In
(Xia et al., 2011a) three such techniques are an-
alyzed for sentiment classification: fixed combi-
nation, weighted combination and meta-classifier
combination. The authors found fixed combina-
tion to be the weakest of all three, while weighted
combination and meta-classifier added on average
3-4% improvement over the performance of the
best base-classifier.

In our work, we deploy the weighted combina-
tion technique with the addition of a learned prob-
ability matrix, as described below.

3 The Model

3.1 Base-Classifiers
We use as base-classifier the linear perceptron
model described in (Gratian and Haid, 2018)
which reduces the task of multi-class prediction
into |Y | binary classification problems (where |Y |
is the number of emotion classes) following the
”one-against-all” approach described by Xia et al.
(2011b).

The output of each base-classifier is a vector α
of size |Y | corresponding to the number of emo-
tions. Before passing this vector to the ensemble
model, each activation αy is calibrated as follows:

α̂y =
αy∑

ŷ∈Y
αŷ

By doing so, each α̂y can be treated as a con-
fidence level of the node that the instance xi ex-

presses the emotion class y. The advantage of this
approach is that even when the true emotion class
is not the one predicted by the node (i.e., it is not
the highest activation), it can still contribute to the
true class being predicted by the ensemble if it has
a positive value.

3.2 Ensemble

The ensemble model M represents a matrix of
probabilities of size n×m:

M =




ϕ1,1 ϕ1,2 · · · ϕ1,m

ϕ2,1 ϕ2,2 · · · ϕ2,m

...
...

. . .
...

ϕn,1 ϕn,2 · · · ϕn,m




The ij-th element of this matrix is the proba-
bility that i-th node’s prediction for j-th class is
correct. This parameter is initialized to 1 and is
learned during training as:

ϕi,j =
|Rij |

|Rij |+ |R′
ij |

where |Rij | and |R′
ij | are respectively the cor-

rect and incorrect predictions of node i for class j
during training. This probability value, thus, cor-
responds to the Precision metric.

The input of the model is a matrix of equal size:
those are the activations of n nodes, each a vector
of size m (or |Y |). We weigh these activations by
the probabilities learned by the model by taking
the Hadamard product of the two matrices. The
final prediction is made by the ensemble following
the sum rule as described by (Xia et al., 2011b).
The predicted class ŷ is the one that has the highest
sum of weighted activations:

ŷ = argmaxmi=1

n∑

j=1

ϕi,j âi,j

4 Experiments

4.1 Dataset

The dataset we use is provided by the Se-
mEval2019 shared-task 3 and is described in de-
tail by (Chatterjee et al., 2019). It contains a train
set with 30,160 and a test set with 5,509 conversa-
tions. In both sets the emotion class others is dis-
proportionately overrepresented. Moreover, there

138

Angry Sad Happy Others Total

5,506 5,463 4,243 14,948 30,160

18.3% 18.1% 14.1% 49.6% 100%

Table 2: Class distribution in the train dataset.

Angry Sad Happy Others Total

298 250 284 4,677 5,509

5.4% 4.5% 5.2% 84.9% 100%

Table 3: Class distribution in the test dataset.

is a significant difference between the class distri-
butions in the train and test datasets as can be seen
in tables 2 and 3 imposing an additional challenge
for the classification task.

The evaluation metric of the shared task is
a custom F-micro measure which takes only
into account the three emotion classes (happy,
angry, sad) and disregards the overrepre-
sented class others.

4.2 Preprocessing

As in the previous experimental setup, we apply
minimal preprocessing. We don’t normalize to-
kens and don’t filter stopwords as this proved to
decrease system performance in our previous ex-
periments. We treat the 3 turns in each conversa-
tion as one stream of tokens by concatenating them
using the special token 〈STOP 〉.

4.3 Features

Our feature types are word and character n-grams,
as well as POS tags extracted with the NLTK
part-of-speech tagger and polarity scores from
the Sentiment Classification using
WSD library 2.

The word n-grams include unigrams, bigrams,
trigrams and tetragrams where one token is re-
placed with the placeholder 〈SKIP 〉 tag as this
feature type proved to be highly efficient in our
previous experiments.

The list of feature types used in our experiments
is in table 4.

4.4 Experimental Setup

We assign each node 2 to 4 feature types. In
the preparatory stage of the experiments we train
nodes with different combinations of the feature

2The library is free-software and is available on-
line: https://github.com/kevincobain2000/
sentiment_classifier

Feature Set Description

1GR word n-grams

2GR

3GR

4GR-S1

1CH character n-grams

2CH

3CH

POS Lexicon-based

SENTA

Table 4: The feature types utilized by the base-
classifiers.

False Positives False Negatives

Happy, Sad, Angry 0.8 1.5

Others 0.1 0.5

Table 5: Learning rates

types and select the 11 highest ranking nodes. Ta-
ble 6 lists these nodes.

To overcome overrepresantation of the class
others we apply a lower learning rate for this
class. We furthermore apply a higher learning rate
for false negatives than false positives, since in the
preparatory experiments all nodes showed a sig-
nificantly lower Recall than Precision. Table 5
lists those learning rates.

Finally, we test the ensemble model in two
experimental setups: uniform learning and dis-
tributed learning. In the first scenario, the entire
train data is used to train the 11 nodes. Either
all 11 node activations are passed to the ensemble
or only those of the 5 highest performing nodes.
In the second scenario, each node is assigned and
trained on a random 50% subset of the train data.

For all our experiments we choose the number
of epochs to be 60.

5 Results

5.1 Uniform Learning

In all of our experiments the ensemble per-
forms only slightly better than the best perform-
ing node(s). The results of the experiment with
uniform training are in Table 6. We observe that
reducing the number of nodes from 11 to 5, de-
creases Precision of the ensemble, but increases
Recall, however in both cases the difference is in-
significant.

139

Node Precision Recall F-micro

1GR 3GR 3CH POS 0.604 0.672 0.636

2GR 4GR-S1 3CH POS 0.627 0.675 0.65

2GR 4GR-S1 3CH 0.622 0.69 0.654

1GR 2GR 0.613 0.706 0.656

2GR SENTA 0.661 0.661 0.661

2GR 3CH SENTA 0.649 0.677 0.662

1GR 2GR POS 0.632 0.695 0.662

1GR 2GR SENTA 0.636 0.692 0.663

1GR 2GR 3CH SENTA 0.632 0.697 0.663

1GR 2GR 1CH 0.638 0.696 0.666

1GR 2GR 3CH 0.631 0.704 0.666

ENSEMBLE N=5 0.640 0.700 0.672

ENSEMBLE N=11 0.649 0.694 0.671

Table 6: Results for Exp 1 with 11 nodes and uniform
training.

We also observe that while the ensemble out-
performs the nodes in the F-micro measure, it has
a lower Precision and Recall than at least one of
the nodes.

5.2 Distributed Learning
In the second experiment each node is trained on a
50% random subset of the train data. We observe a
drop in the performance of both the ensemble and
the nodes, although the ensemble outperforms the
nodes with a slightly larger margin.

Compared to the results of uniform learning, we
see that the ensemble has roughly the same Pre-
cision, but a lower Recall. However when we
compare the performance of the ensemble with
the base-classifiers, we see that the ensemble now
has now a higher Precision score than any of the
nodes. This indicates that the ensemble benefits
more from the ”shared knowledge” of the base-
classifiers.

6 Discussion

The goal of our experiments was to build an en-
semble that makes better predictions than any of
the base-classifiers individually. While the results
of our experiments prove this to be a success,
they also indicate that the ensemble exploits the
strengths of the nodes weakly. For most of the
emotion classes, the ensemble underperforms at
least one of the nodes.

This disparity is especially vivid in the Recall
measure. We presume that this due to the fact that

Node Precision Recall F-micro

1GR 3GR 3CH POS 0.594 0.614 0.604

2GR SENTA 0.635 0.579 0.606

2GR 4GR-S1 3CH POS 0.6 0.629 0.614

2GR 4GR-S1 3CH 0.589 0.649 0.617

2GR 3CH SENTA 0.639 0.626 0.633

1GR 2GR 3CH 0.607 0.665 0.635

1GR 2GR 1CH 0.615 0.669 0.641

1GR 2GR SENTA 0.622 0.666 0.643

1GR 2GR 3CH SENTA 0.623 0.663 0.643

1GR 2GR 0.616 0.675 0.644

1GR 2GR POS 0.623 0.668 0.645

ENSEMBLE N=11 0.648 0.666 0.657

Table 7: Results for Exp 2 with 11 nodes and dis-
tributed training.

the probabilities matrix learned by the model re-
flects only Precision, not Recall. As a future im-
provement to the model, we could adapt the prob-
abilities to reflect Recall as well.

7 Future Work

In our future work we want to adopt a different
approach to ensemble learning. Firstly, we think
an important starting point should be a concrete
estimation of the ensemble’s upper bound perfor-
mance given n base-classifiers. This can then
serve as banchmark to evaluate the actual perfor-
mance of an ensemble model. In most, if not all,
real-world situations, the probability that a node
ni makes a correct prediction for an instance xj
will always be conditional to the probability of an-
other node nj . This means that the upper boundary
of the ensemble model depends on the conditional
probabilities of its nodes.

This implies that in our future work we will de-
scribe ensemble learning as the task to minimize
joint entropy of the base-classifiers in addition to
maximizing accuracy.

8 Conclusion

In this paper we describe an ensemble model
trained for emotion classification. We evaluate our
model on uniform and distributed learning of the
train data. The results of the experiments indicate
that while the model outperforms the strongest
model, it benefits weakly from the strengths and
variance of the base-classifiers.

140

References
C. J. Brainerd. 2018. The emotional-ambiguity hy-

pothesis: A large-scale test. Psychological Science,
29(10):1706–1715. PMID: 30130163.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Yan-Shi Dong and Ke-Song Han. 2004. A comparison
of several ensemble methods for text categorization.
pages 419– 422.

Vachagan Gratian and Marina Haid. 2018. Braint
at iest 2018: Fine-tuning multiclass perceptron for
implicit emotion classification. In Proceedings of
the 9th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 243–247. Association for Computational Lin-
guistics.

Kazuyuki Hara and Masato Okada. 2005. Ensemble
learning of linear perceptrons: On-line learning the-
ory. Journal of The Physical Society of Japan - J
PHYS SOC JPN, 74:2966–2972.

Seiji Miyoshi, Kazuyuki Hara, and Masato Okada.
2005. Analysis of ensemble learning using simple
perceptrons based on online learning theory. Physi-
cal review. E, Statistical, nonlinear, and soft matter
physics, 71:036116.

Rui Xia, Chengqing Zong, and Shoushan Li. 2011a.
Ensemble of feature sets and classification algo-
rithms for sentiment classification. Information Sci-
ences, 181(6):1138 – 1152.

Rui Xia, Chengqing Zong, and Shoushan Li. 2011b.
Ensemble of feature sets and classification al-
gorithms for sentiment classification. Inf. Sci.,
181:1138–1152.

141

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 142–147
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CAiRE HKUST at SemEval-2019 Task 3: Hierarchical Attention for
Dialogue Emotion Classification

Genta Indra Winata*, Andrea Madotto*, Zhaojiang Lin,
Jamin Shin, Yan Xu, Peng Xu, Pascale Fung

Center for Artificial Intelligence Research (CAiRE)
Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
{giwinata,amadotto,zlinao}@connect.ust.hk,

{jmshinaa,yxucb,pxuab}@connect.ust.hk,pascale@ece.ust.hk

Abstract

Detecting emotion from dialogue is a chal-
lenge that has not yet been extensively
surveyed. One could consider the emo-
tion of each dialogue turn to be indepen-
dent, but in this paper, we introduce a hi-
erarchical approach to classify emotion,
hypothesizing that the current emotional
state depends on previous latent emotions.
We benchmark several feature-based clas-
sifiers using pre-trained word and emo-
tion embeddings, state-of-the-art end-to-
end neural network models, and Gaussian
processes for automatic hyper-parameter
search. In our experiments, hierarchi-
cal architectures consistently give signif-
icant improvements, and our best model
achieves a 76.77% F1-score on the test set.

1 Introduction

Customer service can be challenging for both the
givers and receivers of services, leading to emo-
tions on both sides. Even human service-people
who are trained to deal with such situations strug-
gle to do so, partly because of their own emo-
tions. Neither do automated systems succeed in
such scenarios. What if we could teach machines
how to react under these emotionally stressful sit-
uations of dealing with angry customers?

This paper represents work on the SemEval
2019 shared task (Chatterjee et al., 2019b), which
aims to bring more research on teaching machines
to be empathetic, specifically by contextual emo-
tion detection in text. Given a textual dialogue
with two turns of context, the system has to clas-
sify the emotion of the next utterance into one
of the following emotion classes: Happy, Sad,
Angry, or Others. The training dataset contains

*Equal contribution.

15K records for emotion classes, and contains 15K
records not belonging to any of the aforemen-
tioned emotion classes.

The most naive first step would be to recognize
emotion from a given flattened sequence, which
has been researched extensively despite the very
abstract nature of emotion (Socher et al., 2013;
Felbo et al., 2017a; McCann et al., 2017; Xu et al.,
2018; Chatterjee et al., 2019a). However, these flat
models do not work very well on dialogue data as
we have to merely concatenate the turns and flat-
ten the hierarchical information. Not only does
the sequence get too long, but the hierarchy be-
tween sentences will also be destroyed (Hsu and
Ku, 2018; Kim et al., 2018). We believe that the
natural flow of emotion exists in dialogue, and us-
ing such hierarchical information will allow us to
predict the last utterance’s emotion better.

Naturally, the next step is to be able to detect
emotion with a hierarchical structure. To the best
of our knowledge, this task of extracting emotional
knowledge in a hierarchical setting has not yet
been extensively explored in the literature. There-
fore, in this paper, we investigate this problem
in depth with several strong hierarchical baselines
and by using a large variety of pre-trained word
embeddings.

2 Methodology

In this task, we focus on two main approaches:
1) feature-based and 2) end-to-end. The former
compares several well-known pre-trained embed-
dings, including GloVe (Pennington et al., 2014),
ELMo (Peters et al., 2018), and BERT (Devlin
et al., 2018), as well as emotional embeddings. We
combine these pre-trained features with a simple
Logistic Regression (LR) and XGBoost (Chen and
Guestrin, 2016) model as the classifier to compare
their effectiveness. The latter approach is to train

142

Encoder ()E

T1 T2 T3

Softmax

Emotion

E

T1 T2 T3

Emotion

E E

Softmax

M1

T1T2T3

Voting

Emotion

Mn−1

T1T2T3

Mn

T1T2T3

...

a) b) c)

Figure 1: a) Flat model; b) Hierarchical model; c) Voting scheme

a model fully end-to-end with back-propagation.
We mainly compare the performances of flat mod-
els and hierarchical models, which also take into
account the sequential turn information of dia-
logues.

2.1 Feature-based Approach
The pre-trained feature-based approach can be
subdivided into two categories: 1) word embed-
dings pre-trained only on semantic information,
and 2) emotional embeddings that augment word
embeddings with emotional or emoji information.
We also examine the use of both categories.

Word Embeddings These include the standard
pre-trained non-contextualized GloVe (Penning-
ton et al., 2014), the contextualized embeddings
from the bidirectional long short term memory
(biLSTM) language model ELMo (Peters et al.,
2018), and the more recent transformer based em-
beddings from the bidirectional language model
BERT (Devlin et al., 2018).

Emotional Embeddings These refer to two
types of features equipped with emotional knowl-
edge. The first is a word-level emotional repre-
sentation called Emo2Vec (Xu et al., 2018). It
is trained with six different emotion-related tasks
and has shown extraordinary performance over 18
different datasets. The second is a sentence-level
emotional representation called DeepMoji (Felbo
et al., 2017b), trained with a biLSTM with an
attention model to predict emojis from text on
a 1,246 million tweet corpus. Finally, we use
Emoji2Vec (Eisner et al., 2016) which directly
maps emojis to continuous representations.

2.2 End-to-End Approach
We consider four main models for the end-to-
end approach: fine-tuning ELMo (Peters et al.,

2018), fine-tuning BERT (Devlin et al., 2018),
Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), and Universal Trans-
former (UTRS) (Dehghani et al., 2018).1 In the
latter model, we also run a Gaussian process for
automatic hyper-parameter selection.

ELMo This model from Peters et al. (2018) is
a deep contextualized embedding extracted from a
pre-trained bidirectional language model that has
shown state-of-the-art performance in several nat-
ural language processing (NLP) tasks.

BERT This is the state-of-the-art bidirectional
pre-trained language model that has recently
shown excellent performance in a wide range of
NLP tasks. Here, we use BERTBASE

2 as our
sentence encoder. However, the original model
failed to capture the emoji features due to the
fact that all the emoji tokens are missing in the
vocab. Therefore, we concatenate each sentence
representation from BERT with bag of words
Emoji2Vec (Eisner et al., 2016). Then, a UTRS
is used as a context encoder to encode the whole
sequence.

LSTM and Universal Transformer LSTM is
the widely known model used almost ubiqui-
tously in the literature, while UTRS is a recently
published recurrent extension of the multi-head
self-attention based model, Transformer from
(Vaswani et al., 2017). Finally, for all models, we
consider a hierarchical extension which considers
the turn information as well. We add another in-
stance of the same model to also encode sentence-
level information on top of the word-level repre-
sentations. We also apply word-level attention to

1We also tested Transformer, but had an overfitting issue
2We used a PyTorch implementation from

https://github.com/huggingface/pytorch-pretrained-BERT

143

Table 1: The table shows the F1 score on LR and
XGBoost.

Feature(s) Classifier F1
DeepMoji LR 64.87
ELMo LR 63.86
GLoVe LR 55.11
Emo2Vec LR 50.91
BERT LR 44.51
Emoji2Vec LR 30.45
ELMo + DeepMoji LR 65.63
ELMo + Emo2Vec LR 65.42
Emoji2Vec + GLoVe LR 58.00
ELMo + DeepMoji XGBoost 69.86

Table 2: The table shows F1 score on flat and hier-
archical end-to-end models. GP denotes as Gaus-
sian process.

Model Flat Hierarchical
LSTM 72.53 73.45
LSTM+GLoVe 73.95 75.64
LSTM+GLoVe+Emo2Vec 73.85 74.59
UTRS 72.41 74.06
ELMo 68.14 70.55
BERT 66.12 73.29

Table 3: The table shows F1 score on different
ensemble models. XGB denotes XGBoost with
ELMo and DeepMoji features. ALL denotes all
ensemble models.

Model F1
Ensemble1 (3 HLSTMs) 76.08
Ensemble2 (HBERT + HLSTM + HUTRS) 75.76
Ensemble3 (HBERT + 3 HLSTMs + HUTRS) 76.26
Ensemble4 (HBERT + 5 HLSTMs + HUTRS) 76.24
Ensemble5 (HBERT + 5 HLSTMs + HUTRS) 76.20
Ensemblefinal (ALL + HLSTM + XGB) 76.77
- Angry 75.88
- Happy 73.65
- Sad 81.30

select the important information words on each di-
alogue turn.

3 Evaluation

In this section, we present the evaluation met-
rics used in the experiment, followed by results
on feature-based, end-to-end, and ensemble ap-
proaches and Gaussian process search.

3.1 Training Details
Feature-Based For the feature-based approach,
we run LR and XGBoost on features using the
Scikit-Learn toolkit (Pedregosa et al., 2011) with-
out any additional tuning.

E1 0.81

E2 0.8 0.94

E3 0.8 0.95 0.99

E4 0.81 0.98 0.96 0.96

E5 0.81 0.98 0.96 0.96 0.99

HLSTM 0.81 0.91 0.89 0.89 0.91 0.91

XGB E1 E2 E3 E4 E5

Figure 2: Pearson correlation matrix of a model to
other models. E1–E5 denote ensemble models.

ELMo For the flat model, we pre-train ELMo
by only fine-tuning the scalar-mix weights, as sug-
gested in Peters et al. (2018). We extract a 1024-
dimension bag-of-words representation for each
turn and concatenate the three turns into a 3072-
dimension vector which is passed to a multilayer
perceptron (MLP). For the hierarchical model, we
employ two methods: 1) run an LSTM model over
each turn’s representation 2) pre-extract all three
layer weights (LSTM and CNN) and concatenate
them into a 3072-dimension vector representation
for each turn, which is then passed to an LSTM
model. We report the results of the latter pre-
extracted method as it performs better.

BERT For the implementation details of
BERTBASE , we refer interested readers to
Devlin et al. (2018). Note that for hierarchical
BERT, we use a six-layer UTRS as the context
encoder. Each layer of UTRS consists of a
multi-head attention block with four heads, where
the dimension of each head is set to be ten, and a
convolution feed forward block with 50 filters. We
use modified Adam optimizer from Devlin et al.
(2018) to train our model. The initial learning rate
and dropout are 5e-5 and 0.3 respectively.

LSTM and Universal Transformer We train
hierarchical LSTMs with hidden sizes of {1000,
1500} using different dropouts {0.2,0.3,0.4,0.5}.
The best LSTMs (without additional features, with
GLoVE, with GLoVE+Emo2Vec) reported in Fig-
ure 2 have a hidden size of 1000 and dropout of
0.5, a hidden size of 1500 and dropout of 0.2, and
a hidden size of 1000 and dropout of 0.4 respec-
tively. Then, we train the UTRS using the best
hyper-parameters found by the GP. It has a hid-
den size of 488 with a single hop and ten attention
multi-heads. Noam (Vaswani et al., 2017) is used
as the learning rate decay.

144

Gaussian Processes GP hyper-parameter search
returns a set of hyper-parameters, both continuous
and discrete, and it returns the validation set F1
score. We implement the GP model using an exist-
ing library called GPyOpt.3 We run a GP for 100
iterations using the Expected Improvement (Jones
et al., 1998) acquisition function with 0.05 jitter
as a starting point. We use a hierarchical universal
transformer (HUTRS) as the base model since is
the model with the most hyper-parameters to tune
with a single split.

3.2 Evaluation Metrics

The task is evaluated with a micro F1 score for
the three emotion classes, i.e., Happy, Sad and An-
gry, and by taking the harmonic mean of the preci-
sion and the recall. This scoring function has been
provided by the challenge organizers (Chatterjee
et al., 2019b).

3.3 Voting Scheme

For each model, we randomly shuffle and split
the training set ten times and we apply a voting
scheme to create a more robust prediction. We use
a majority vote scheme to select the most often
seen predictions, and in case of ties, we give the
priority to Others. This scheme is applied to all
end-to-end models since it improved the validation
set performance.

3.4 Ensemble Models

To further refine our predictions, we build ensem-
bles of different models. We create five ensemble
models by combining the hierarchical version of
BERT, LSTM, and UTRS. Finally, we gather two
lesser-performing models, a hierarchical LSTM
and the best feature-based model (XGBoost with
ELMo and DeepMoji features), and we combine
them with five ensemble predictions using major-
ity voting to get our final prediction. Finally, we
show the Pearson correlation between models in
Figure 2.

3.5 Experimental Results

From Table 1, we can see that the DeepMoji fea-
tures outperforms all the other features by a large
margin. Indeed, DeepMoji has been trained using
a large emotion corpus, which is compatible with
the current task. Emoji2Vec get a very low F1-
score since it includes only emojis, and indeed,

3http://sheffieldml.github.io/GPyOpt/

by adding GLoVe, a more general embedding,
we achieve better performance. For the end-to-
end approach, hierarchical biLSTM with GLoVe
word embedding achieves the highest score with a
75.64% F1-score. Our ensemble achieves a higher
score compared to individual models. The best en-
semble model achieves a 76.77% F1-score. As
shown in Table 3, the ensemble method is effec-
tive to maximize the performance from a bag of
models.

4 Related work

Emotional knowledge can be represented in differ-
ent ways. Word-level emotional representations,
inspired from word embeddings, learn a vector for
each word, and have shown effectiveness in differ-
ent emotion related tasks, such as sentiment clas-
sification (Tang et al., 2016), emotion classifica-
tion (Xu et al., 2018), and emotion intensity pre-
diction (Park et al., 2018). Sentence-level emo-
tional representations, such as DeepMoji (Felbo
et al., 2017a), train a biLSTM model to encode the
whole sentence to predict the corresponding emoji
of the sentence. The learned model achieves state-
of-the-art results on eight datasets. Sentiment lex-
icons from Taboada et al. (2011) show that word
lexicons annotated with sentiment/emotion labels
are effective in sentiment classification. This
method is further developed using both supervised
and unsupervised approaches in Wang and Xia
(2017). Also, other models, such as a deep aver-
aging network (Iyyer et al., 2015), attention-based
network (Winata et al., 2018), and memory net-
work (Dou, 2017), have been investigated to im-
prove the classification performance. Practically,
the application of emotion classification has been
investigated on interactive dialogue systems (Bert-
ero et al., 2016; Winata et al., 2017; Siddique et al.,
2017; Fung et al., 2018).

5 Conclusion

In this paper, we compare different pre-trained
word embedding features by using Logistic Re-
gression and XGBoost along with flat and hier-
archical architectures trained in end-to-end mod-
els. We further explore a GP for faster hyper-
parameter search. Our experiments show that hi-
erarchical architectures give significant improve-
ments and we further gain accuracy by combining
the pre-trained features with end-to-end models.

145

References
Dario Bertero, Farhad Bin Siddique, Chien-Sheng Wu,

Yan Wan, Ricky Ho Yin Chan, and Pascale Fung.
2016. Real-time speech emotion and sentiment
recognition for interactive dialogue systems. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. pages 1042–
1047.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019).
Minneapolis, Minnesota.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM,
New York, NY, USA, KDD ’16, pages 785–794.
https://doi.org/10.1145/2939672.2939785.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Łukasz Kaiser. 2018. Univer-
sal transformers. arXiv preprint arXiv:1807.03819
.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805 .

Zi-Yi Dou. 2017. Capturing user and product informa-
tion for document level sentiment analysis with deep
memory network. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing. pages 521–526.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. In Proceedings of The Fourth
International Workshop on Natural Language Pro-
cessing for Social Media. pages 48–54.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017a. Using mil-
lions of emoji occurrences to learn any-domain rep-
resentations for detecting sentiment, emotion and
sarcasm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing. pages 1615–1625.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017b. Using mil-
lions of emoji occurrences to learn any-domain rep-
resentations for detecting sentiment, emotion and
sarcasm. In 2017 Conference on Empirical Methods

in Natural Language ProcessingEmpirical Methods
in Natural Language Processing. Association for
Computational Linguistics.

Pascale Fung, Dario Bertero, Peng Xu, Ji Ho Park,
Chien-Sheng Wu, and Andrea Madotto. 2018. Em-
pathetic dialog systems.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Chao-Chun Hsu and Lun-Wei Ku. 2018. Socialnlp
2018 emotionx challenge overview: Recognizing
emotions in dialogues. In Proceedings of the Sixth
International Workshop on Natural Language Pro-
cessing for Social Media. pages 27–31.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered com-
position rivals syntactic methods for text classifica-
tion. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). vol-
ume 1, pages 1681–1691.

Donald R Jones, Matthias Schonlau, and William J
Welch. 1998. Efficient global optimization of ex-
pensive black-box functions. Journal of Global op-
timization 13(4):455–492.

Yanghoon Kim, Hwanhee Lee, and Kyomin Jung.
2018. Attnconvnet at semeval-2018 task 1:
Attention-based convolutional neural networks for
multi-label emotion classification. In Proceedings
of The 12th International Workshop on Semantic
Evaluation. pages 141–145.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems. pages 6294–6305.

Ji Ho Park, Peng Xu, and Pascale Fung. 2018.
Plusemo2vec at semeval-2018 task 1: Exploiting
emotion knowledge from emoji and# hashtags. In
Proceedings of The 12th International Workshop on
Semantic Evaluation. pages 264–272.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP). pages 1532–1543.

146

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). volume 1,
pages 2227–2237.

Farhad Bin Siddique, Onno Kampman, Yang Yang,
Anik Dey, and Pascale Fung. 2017. Zara returns:
Improved personality induction and adaptation by an
empathetic virtual agent. Proceedings of ACL 2017,
system demonstrations pages 121–126.

Richard Socher, Alex Perelygin, Jean Wu, Ja-
son Chuang, Christopher D. Manning, Andrew
Ng, and Christopher Potts. 2013. Recur-
sive deep models for semantic compositional-
ity over a sentiment treebank. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1631–1642.
http://www.aclweb.org/anthology/D13-1170.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Computational lin-
guistics 37(2):267–307.

Duyu Tang, Furu Wei, Bing Qin, Nan Yang, Ting
Liu, and Ming Zhou. 2016. Sentiment embed-
dings with applications to sentiment analysis. IEEE
Transactions on Knowledge and Data Engineering
28(2):496–509.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems. pages 5998–6008.

Leyi Wang and Rui Xia. 2017. Sentiment lexicon con-
struction with representation learning based on hi-
erarchical sentiment supervision. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing. pages 502–510.

Genta Indra Winata, Onno Kampman, Yang Yang,
Anik Dey, and Pascale Fung. 2017. Nora the em-
pathetic psychologist. Proc. Interspeech 2017 pages
3437–3438.

Genta Indra Winata, Onno Pepijn Kampman, and Pas-
cale Fung. 2018. Attention-based lstm for psycho-
logical stress detection from spoken language us-
ing distant supervision. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, pages 6204–6208.

Peng Xu, Andrea Madotto, Chien-Sheng Wu, Ji Ho
Park, and Pascale Fung. 2018. Emo2vec: Learn-
ing generalized emotion representation by multi-
task training. In Proceedings of the 9th Workshop
on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis. pages 292–298.

147

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 148–152
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CECL at SemEval-2019 Task 3: Using Surface Learning for Detecting
Emotion in Textual Conversations

Yves Bestgen
Centre for English Corpus Linguistics

Université catholique de Louvain
Place Cardinal Mercier, 10 1348 Louvain-la-Neuve Belgium

yves.bestgen@uclouvain.be

Abstract

This paper describes the system developed by
the Centre for English Corpus Linguistics for
the SemEval-2019 Task 3: EmoContext. It
aimed at classifying the emotion of a user ut-
terance in a textual conversation as happy, sad,
angry or other. It is based on a large number of
feature types, mainly unigrams and bigrams,
which were extracted by a SAS program. The
usefulness of the different feature types was
evaluated by means of Monte-Carlo resam-
pling tests. As this system does not rest on any
deep learning component, which is currently
considered as the state-of-the-art approach, it
can be seen as a possible point of comparison
for such kind of systems.

1 Introduction

This paper presents the participation of the Cen-
tre for English Corpus Linguistics (CECL) in the
SemEval-2019 Task 3 “EmoContext: Contextual
Emotion Detection in Text”. The objective of the
task is to classify the emotion of a user utterance
in a textual conversation with a bot as happy, sad,
angry or other. Contextual information is provided
by means of the two previous utterances, the one
just before, which was produced by the bot, and
the first one of the triplet produced by the same
person as the third. This task can be seen as a dif-
ficult problem in absence of any non-written infor-
mation (Gupta et al., 2017).

Because of its recent and important develop-
ment for the analysis of big data and especially
for natural language processing, deep learning
has become the preferred procedure to take up
this kind of challenge (Chatterjee et al., 2019a).
However, detecting emotion in texts is a well-
established field of research for which unsuper-
vised approaches have been proposed in content
analysis (e.g. Anderson and McMaster, 1982;
Bestgen, 1994) as well as less recent supervised

approaches such as SVM (Chatterjee et al., 2019a;
Pang and Lee, 2008). SVM has long been con-
sidered as the state-of-the-art in text categorization
(Joachims, 2002). Therefore, it seemed interesting
to get an idea of its effectiveness for the present
task in comparison to deep learning approaches
that should be used by many participants in this
challenge. Trying to determine what level of per-
formance can be achieved with a surface learning
system was thus the main focus of this study. It
should be noted that the developed system does
not rely on complementary training data, nor on
lexical emotional norms produced manually or au-
tomatically (Bestgen and Vincze, 2012), nor on se-
mantic knowledge extracted from large databases
or large corpora (Miller et al., 1990). However,
several attempts have been made to increase its
effectiveness by adding more complex features to
the usual token n-grams.

The remainder of this report describes the
datasets made available for this challenge, the sys-
tems developed, and the results obtained as well as
the analyses performed to get a better idea of the
factors that affect the system performance as well
as the usefulness of the various types of features
used.

2 Data

The challenge organizers divided the materials
into three datasets (see Chatterjee et al. (2019b)
for details):

• The learning set (Learn) that contained 30160
instances of which approximately 16.7% of
the three emotion categories and the remain-
ing 50% of Other,

• The development set (Dev) that contained
2755 instances of which approximately 5%
of the emotion categories and the remaining
85% of Other

148

• The test set (Test) that contained twice as
many instances as the Dev set and the same
proportion of the four categories as in that set.

The true labels for the Learn set were available
from the beginning of the training phase, those for
the Dev set on December 10 and those for the Test
set after the end of the challenge. Between the
beginning of the development phase (August 21,
2018) and the beginning of the test phase (January
18, 2019), it was possible to use Codalab to evalu-
ate the systems on the Dev set.

3 Systems

This section describes the systems developed
to maximize the approach effectiveness. The
feature extraction was performed by means
of a custom SAS program running in SAS
University (freely available for research at
http://www.sas.com/en us/software/university-
edition.html). The predictive models used during
the development phase were built on the Learn
set and evaluated on the Dev set (see section 4
for a justification) by means of the L1-regularized
L2-loss Support Vector Machine for classification
(L1-L2-SVM) available in the LIBLINEAR
package (-s 5, Fan et al., 2008).

3.1 Base System
The main part of the system consists of tokens
and tokens n-grams present in the three utterances
of an instance to be categorized. First, the utter-
ances are processed by a Perl script that group the
most frequent contracted forms with their corre-
sponding full forms (e.g. I’m > I am). Then, an
ad-hoc tokenizer splits each sequence of charac-
ters separated by a space in tokens composed of
(lowercased) letters, numbers, punctuation marks
or emojis, trying not to cut the potential emoticons
such as :-) and :D. In the case of tokens composed
exclusively of alphabetic characters, the encoder
detects the presence of the same character at least
three times at the end of the token (e.g. ahhh) and
keeps only one occurrence.

The features for the SVM were generated from
these tokens. These are mainly unigrams and
bigrams of tokens, present in each utterance, to
which a tag is added to keep trace of the utter-
ance it comes from. The tokens, bigrams, and tri-
grams from the first and the last utterances, those
produced by the human participant, are also out-
putted without being distinguished by a tag so

that their frequencies add up. The emojis of the
first and third utterances are also processed specif-
ically. Each token composed of several emojis is
not only produced as it is, but the different emojis
that compose it are also outputted separately.

Finally, a feature frequency dictionary based on
all the available materials, thus also on the Test
set, is produced in order to be able to use a min-
imum frequency threshold (set in all the analyses
reported here at 2). This dictionary is also used
to number the features in order to put them in LI-
BLINEAR format. The weight of each feature is
equal to the logarithm in base 10 of its frequency
in the instance to which one is added.

3.2 Extended System

The basic system was extended during the devel-
opment period with a series of meta-features that
seemed to improve its predictive power. They
consist in a dozen simple global statistics com-
puted on each of the utterances: number of tokens,
number of characters without the spaces, number
of capital letters and a potential index of emo-
tional intensity based on the number of charac-
ters repeated at least three times, the number of
emoticons and of emojis (whatever their mean-
ing). These statistics were divided by the maxi-
mum values observed in the dataset.

Another addition was made specifically for the
instances whose third utterance contained only the
“yes” token: the content of the first utterance was
copied to this third one.

3.3 Parameters

The regularization meta-parameter C of the SVM
was optimized using a grid search. Although LIB-
LINEAR has a built-in program for optimizing C,
we used our optimization program to have more
flexibility in choosing the values to test. To take
into account the differences between the frequen-
cies of the four categories in the Learn and the
other two datasets, the LIBLINEAR -wi param-
eter, which allows modulating the C parameter ac-
cording to the category, was used. The values were
set using a heuristic approach.

4 Analyses and Results

All the results reported below are expressed in
terms of the challenge metric, which is the mi-
croaveraged F1 score (F1µ) for the three emo-
tion classes (see Chatterjee et al. (2019b) for de-

149

tails). A first analysis was aimed to determine
whether it was possible to extract several devel-
opment datasets from the Learn set that produced
similar performances to those obtained by using
the Dev set provided by the organizers so as to
limit the risk of overfitting when only one evalua-
tion dataset is used. To this end, ten development
samples were independently extracted from the
Learn set in such way that they contained exactly
the same number of instances in each of the four
categories as in the official Dev set1. The results
showed that the performances on these ten sam-
ples were systematically much higher than those
obtained on the Dev set (0.78 vs. 0.69 for the ver-
sion of the system available at that time). It would
thus seem that the Dev set has specificities that
distinguish it quite clearly from the Learn set and
therefore all the developments have been made on
the Dev set, accepting the risk of overfitting.

4.1 Official Performance on the Test Set
During the test phase, teams were allowed to sub-
mit 30 trials during 9 days. The base system (Sys-
tem 1) was first submitted to Codalab and obtained
a F1µ of 0.7212. The remaining 29 trials were
used to try improving performance. Three tracks
were followed:

• First, I tried to optimize the number of in-
stances assigned to each category in order to
obtain better recall and precision values. To
this end, I used the L1-regularized logistic re-
gression (L1-LR) available in LIBLINEAR
(-s 6) which is for the present datasets a lit-
tle less effective than the L1-L2-SVM used
previously but is able to estimate the prob-
abilities of each instance belonging to each
class. The most effective approach found was
to classify into a category the same number
of instances as the one actually presents in
the Test set (the needed counts were obtained
during the test phase by means of the proce-
dure described in Note 1). This system 2 ob-
tained a F1µ of 0.726.

• Then, the predictions of these two first sys-
1As these analyses were performed before the labels for

the Dev set had been released, I used the number of instances
assigned to each category in a submission and the precision
and recall for each category outputted by CodaLab for that
submission to calculate the actual category frequencies.

2SVM parameters for this system were as following: C =
0.67, w angry = 0.275, w happy = 0.31 and w sad =
0.275.

tems were combined to try maximizing the
F1s in each category because it was observed
that System 1 was less accurate than System
2 for the Angry and Sad categories, but more
accurate for the Happy category. Since the
prediction differences between the two sys-
tems were systematically changes from one
emotion category to the Other category or
vice versa, but never from one emotion cat-
egory to another one, it was easy to combine
the two systems by taking the Happy predic-
tions of System 1 and the Sad and Angry pre-
dictions of System 2 and placing the remain-
ing instances in the Other category. This Sys-
tem 3 reached a F1µ of 0.73.

• Finally, System 3 was combined with
a model based only on the third utter-
ance. This model was used to move
to the Other category instances assigned
to one of the three emotional categories
for which the probability of membership
(provided by the logistic regression) was
the lowest. A series of tests carried out
on Codalab to optimize the decision rules
made it possible to reach the final system
performance of 0.736 (F1 Angry=0.7331,
F1 Happy=0.7035, F1 Sad=0.7746).

4.2 Factors that Affect the System
Performance

The remainder of this report analyzes the impact
of several factors, including the different types of
features, to the system performance. All these
analyses were conducted using various versions
of System 1. They aimed at categorizing the Dev
set using the Learn set to build the model and the
Test set using the Learn and Dev sets to build the
model. In these analyses, the L1-L2 SVM was
used with the parameters considered as optimal for
each evaluation dataset. In order to determine if
the observed differences were statistically signif-
icant, two Monte-Carlo resampling tests (Howell,
2008, Chap. 18) were used, a test for related sam-
ples to compare two different models on the same
evaluation set and a test for independent samples
to compare the performance on the Dev and Test
sets.

A first analysis showed that using only the
Learn set for predicting the Test set instead of
the concatenation of the Learn and Dev sets hurt
the performance (0.716 vs. 0.721), but the dif-

150

Dev Set Test Set
System description F1µ Diff. p F1µ Diff. p
Full (System 1) 0.762 0.721
Without Meta-Features 0.752 -0.010 0.018 0.719 -0.002 0.715
Without 3grams 0.752 -0.010 0.007 0.719 -0.002 0.621
Without 2grams and 3grams 0.735 -0.027 0.002 0.710 -0.011 0.107
Without Utterance 2 0.751 0.012 -0.041 0.726 +0.005 0.193
Without Emojis Processing 0.746 -0.016 0.010 0.709 -0.012 0.006
Without Repeated Letters Processing 0.760 -0.002 0.508 0.722 +0.001 0.411

Table 1: F1µ, difference from the full system, and p-value for the ablation approach.

ference was far from being statistically significant
(p > 0.30).

A second analysis showed that the system was
more efficient on the Dev set (0.762) than on the
Test set (0.721), a statistically significant differ-
ence (p = 0.043). Providing that the Dev and
Test sets were randomly extracted from the same
sample, this result suggests that the system suffers
from overfitting since it was developed on the ba-
sis of the Dev set.

The ablation approach was then used to assess
the independent contribution of each type of fea-
tures to the overall performance. It consists in re-
moving some sets of features of the model and re-
evaluating it. As Table 1 shows, the impact of re-
moving feature types was often quite different on
the two evaluation sets. Suppressing most of the
feature types for the Dev set produced a sizable de-
crease in performance while a very small decrease
or even an increase in performance was observed
for the Test set. Significance tests, which compare
the ablated systems to the full one, confirm this
analysis. Table 1 also shows that the specific treat-
ment of emojis seemed particularly useful for both
datasets.

A final analysis consisted in constructing a sys-
tem from which all feature types in Table 1 were
simultaneously removed except the specific treat-
ment of emojis. This system obtained a F1µ of
0.743 on the Dev set, a decrease of 0.019, and a
F1µ of 0.731 on the Test set, an increase of 0.01.

5 Conclusion

The main goal of this study was to try to deter-
mine what level of performance could be reached
in the EmoContext task by employing a non-deep
learning approach. The achieved F1µ was be-
tween 0.721 and 0.736, ranking the system ap-
proximately in the first quarter of the 165 teams

who submitted a prediction for the Test set, yet far
enough from the top teams who achieved a F1µ of
0.79. Looking at the other system description pa-
pers should allow to find out whether other teams
used a surface learning approach while achieving
better performance.

To conclude, it seems useful to underline an ob-
servation reported above that could have greatly
affected the performance of the system, but also
of other systems. The analyses carried out showed
that the Dev set provided by the organizers gave
rise to significantly lower performances than those
obtained by using evaluation datasets from the
Learn set as similar as possible to the actual Dev
set. This led me to develop the system on the basis
of the Dev set provided by the organizers and the
consequence was a statistically significant overfit
on the Dev set when compared to the Test set. In
the absence of information about how the three
datasets were created, it is not possible to com-
ment on the origin of these differences.

Acknowledgments

The author wishes to thank the organizers of the
EmoContext task for putting together this valuable
event. The author is a Research Associate of the
Fonds de la Recherche Scientifique - FNRS.

References
C. W. Anderson and G. E. McMaster. 1982. Computer

assisted modeling of affective tone in written docu-
ments. Computers and the Humanities, 16(1):1–9.

Yves Bestgen. 1994. Can emotional valence in stories
be determined from words? Cognition and Emo-
tion, 8(1):21–36.

Yves Bestgen and Nadja Vincze. 2012. Checking
and bootstrapping lexical norms by means of word
similarity indexes. Behavior Research Methods,
44(4):998–1006.

151

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detec-
tion in text. In Proceedings of International Work-
shop on Semantic Evaluation (SemEval-2019), Min-
neapolis, USA.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of Ma-
chine Learning Research, 9:1871–1874.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A sentiment-
and-semantics-based approach for emotion detec-
tion in textual conversations. arXiv preprint
arXiv:1707.06996.

David Howell. 2008. Méthodes statistiques en sciences
humaines. De Boeck Université, Bruxelles.

Thorsten Joachims. 2002. Learning to Classify Text
Using Support Vector Machines – Methods, Theory,
and Algorithms. Kluwer/Springer.

George A. Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J. Miller. 1990.
Introduction to WordNet: An On-line Lexical
Database*. International Journal of Lexicography,
3(4):235–244.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in In-
formation Retrieval, 2(1):1–135.

152

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 153–158
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CLaC Lab at SemEval-2019 Task 3:
Contextual Emotion Detection Using

a Combination of Neural Networks and SVM

Elham Mohammadi, Hessam Amini and Leila Kosseim
Computational Linguistics at Concordia (CLaC) Lab

Department of Computer Science and Software Engineering
Concordia University, Montréal, Québec, Canada

first.last@concordia.ca

Abstract

This paper describes the CLaC Lab system at
SemEval 2019, Task 3 (EmoContext), which
focused on the contextual detection of emo-
tions in a dataset of 3-round dialogues. For our
final system, we used a neural network with
pretrained ELMo word embeddings and POS
tags as input, GRUs as hidden units, an atten-
tion mechanism to capture representations of
the dialogues, and an SVM classifier which
used the learned network representations to
perform the task of multi-class classification.
This system yielded a micro-averaged F1 score
of 0.7072 for the three emotion classes, im-
proving the baseline by approximately 12%.

1 Introduction

Automatic emotion detection has been the focus
of much research in a variety of fields, includ-
ing emotion detection based on images (Rao et al.,
2019), speech signals (Davletcharova et al., 2015),
electroencephalography (EEG) signals (Acker-
mann et al., 2016), and texts (Tafreshi and Diab,
2018).

With the advent of social media, emotion de-
tection from text has been used to track bloggers’
mental health and has been explored using differ-
ent techniques, such as lexicon-based approaches
and machine learning (Canales and Martı́nez-
Barco, 2014). Lexicon-based approaches include
keyword-based and ontological approaches. In a
keyword-based approach (e.g. Ma et al., 2005),
a specific set of opinion terms and their Word-
Net synonyms and antonyms are used to determine
the emotion class of the text. On the other hand,
ontology-based approaches (e.g. Sykora et al.,
2013) try to detect emotions by taking into ac-
count the knowledge of concepts, the intercon-
nection between them, and their final emotional
impact. To achieve better generalization, the re-
sources used in lexicon-based approaches can be

employed as input features to supervised or unsu-
pervised machine learning models.

The drawback with supervised machine learn-
ing approaches lies in the need for a large corpus
of labelled data. Abdul-Mageed and Ungar (2017)
collected a labelled twitter dataset of 1/4 billion
tweets, spanning over 8 primary emotions, using
distant supervision, i.e. collecting tweets with
emotion hashtags that can be used as labels. Then
using a gated recurrent neural network for classi-
fication, they achieved an accuracy of 95.68%, su-
perior to the best previously published results by
Volkova and Bachrach (2016).

Although much research has focused on the de-
tection of emotions in tweets and blog posts (e.g.
Mohammad, 2012; Desmet and Hoste, 2013; Liew
and Turtle, 2016), emotion detection in dialogues,
as well as in single utterances has received very
little attention. This topic can have significant im-
pact for the development of social chatbots, with
the aim of creating an emotional connection be-
tween a user and a chatbot (Banchs, 2017). Task
3 of SemEval 2019 (EmoContext) has focussed
on contextual emotion detection over 4 classes:
happy, sad, angry, and others (Chatterjee et al.,
2019b). We participated in this shared task un-
der the name CLaC Lab and used a combination
of artificial neural networks (with recurrent units
and attention mechanism) and Support Vector Ma-
chines (SVM) to address this multi-class classifi-
cation task.

The rest of the paper is organized as follows:
Section 2 describes the overall methodology. Sec-
tion 3 presents a detailed explanation of the differ-
ent components of the system. Section 4 presents
the results of the system. Section 5 discusses some
interesting findings from our participation to this
task. Finally, Section 6 is dedicated to the conclu-
sion of this work.

153

2 Methodology

This section presents the overall methodology
used to perform the task of contextual emotion de-
tection. An overview of the system architecture is
presented; while more detailed explanation can be
found in Section 3.

2.1 Neural Architecture

The core of our system is a neural network that is
trained to learn the feature representations neces-
sary to train our final classifier. Figure 1 shows the
overall architecture of the neural network that we
used.

The Input As shown in Figure 1, each input
sample consists of three consecutive utterances of
a dialogue between two interlocutors. We consider
each utterance as a sequence of tokens (words). As
a result, each utterance is represented as a vector,
such as [xi,1, xi,2, . . . , xi,t, . . . , xi,n], where xi,t is
the vector representation of the t-th word in the
i-th utterance, and n is the length of the i-th utter-
nace.

The Recurrent Component The input layer is
followed by a bidirectional hidden recurrent com-
ponent. Each utterance is fed to a separate hidden
component, who is responsible to process that spe-
cific utterance in a forward and backward pass.

For the forward pass, the content value of the
hidden component at a specific time-step, ht, re-
lies on both the value of the current input, xt, and
the content value of the hidden component itself
at the previous time-step, ht−1 (Equation 1). The
content value produced at this stage is then passed
through another mapping function, fy, which gen-
erates the output value of the hidden component at
the current time-step, yt (Equation 2).

ht = fh(xt, ht−1) (1)

yt = fy(ht) (2)

The backward pass differs from the forward
pass, in that in Equation 1, ht−1 is replaced by
ht+1, meaning that the content value of the hid-
den component relies on the content value at its
next time-step instead of the previous one. The
output calculation is identical to the forward pass
(see Equation 2).

Attention Mechanism Vaswani et al. (2017)
describes an attention mechanism as the weighted
sum of several values (i.e. vectors), where the
weight assigned to each value can be computed
using a compatibility function. Using this descrip-
tion, the overall function of the attention mecha-
nism for our task can be defined using Equation 3,
where ω(yt′) refers to the weight assigned to the
output of the hidden layer at time-step t′, and N
is the number of time-steps (i.e. the length of the
utterance).

attn =
N∑

t′=1

yt′ω(yt′) (3)

Although originally developed for the task of
machine translation (Bahdanau et al., 2014), atten-
tion mechanisms have been shown to significantly
improve text classification tasks (e.g. Yang et al.,
2016; Zhou et al., 2016; Wang et al., 2016; Cian-
flone et al., 2018). Following these works, we used
attention in our system (see Figure 1).

Classification Once the neural network has cre-
ated a representation of the input, a final feed-
forward classification network, which takes as in-
put the concatenated vectors from the attention
units of the three utterances, performs the classi-
fication task.

2.2 Support Vector Classifier

The neural network was not used to do the final
classification, but was used only as a feature ex-
tractor. This is illustrated in Figure 1 by the dot-
ted connections between the attention units and the
classifier. The extracted features were fed to an
SVM (Cortes and Vapnik, 1995), which acted as
the classifier.

Our main drive for using an SVM was due
to explicit handling of margin size versus mis-
classification rate (i.e. variance versus bias). This,
alongside the deterministic nature of an SVM and
its faster training process (in comparison to a neu-
ral network), enabled us to play with its several
configurations in order to find the optimal one for
our task.

3 System Overview

In this section, we provide detailed information on
the final system’s architecture.

154

Figure 1: The overall framework of the neural network model.

3.1 The Neural Network

We developed the neural network using PyTorch
(Paszke et al., 2017). Detailed explanations of the
neural network’s architecture are provided below.

Input Features Each word in each utterance is
sent to the neural network by using their word em-
beddings, concatenated to their one-hot part-of-
speech (POS) tag.

For word embeddings, we used a pretrained
ELMo word embedder (Peters et al., 2018), which
extracts the embeddings of each token in a textual
context from their constituent characters. The suit-
ability of ELMo for the current task lies in its abil-
ity to take into consideration the context of the to-
kens when generating the word embeddings, and
also the handling of out-of-vocabulary words. We
used pretrained ELMo embeddings of size 1024.

We followed the Penn Treebank tagset standard
(Marcus et al., 1993) for assigning POS tags to
each token. For this, we used spaCy1 for tokeniza-
tion and POS tagging of the data.

Recurrent Unit The system uses the bidirec-
tional Gated Recurrent Unit (GRU) architecture,
proposed by Cho et al. (2014), and stacks two
layers of 25 bidirectional GRUs for the recurrent
component of each utterance.

Attention Layer Equations 4, 5 and 6 show the
mechanisms used in the attention layer. Using
Equation 4, the weight matrix w is applied to the
output of the GRU component at each time-step,
yt, which maps each output vector of the recurrent
unit (with the size of 2 × 25 in our case) to a sin-
gle value, νt. Then, using Equation 5, the weights,
ω, are calculated. These will be used to calculate
the output of the attention layer in Equation 6 (N

1https://spacy.io/

represents the number of time-steps for each utter-
ance, i.e. the length of the utterance).

νt = yt × w (4)

ω = Softmax([ν1, ν2, ν3, . . . , νN]) (5)

attn =
N∑

t′=1

ωt′yt′ (6)

The Classifier The outputs of the attention lay-
ers from the three utterances are concatenated, and
fed to a fully-connected feed-forward layer, which
uses a softmax activation function at the end. The
output of the classifier includes a vector of 4 reals,
which represent the estimated probability for each
of the 4 classes (happy, sad, angry, and others).

Optimization Technique Cross-entropy is used
as the loss function and weights are applied to
each class proportional to the inverse of number
of their samples, in order to handle the unbalanced
distribution of the four different classes over the
data. The Adam optimizer (Kingma and Ba, 2014)
was used and the learning rate was set to 10−4.
For computational reasons, minibatches of size 32
were used for training the neural network model,
and different sequence sizes was handled by zero-
padding.

Experiments showed that, when trained on the
training dataset only, the neural network reaches
its maximum performance on the development
dataset (in our case, the micro-averaged F1 score
for the three emotion classes) in approximately 7
epochs.

155

3.2 The SVM
The scikit-learn library (Pedregosa et al., 2011)
was used for the SVM, which utilized a polyno-
mial kernel with degree of 4. The γ parameter was
set to the inverse of the number of features, which
was 1/150 in our case (since the model uses 50
features from each utterance’s attention layer, and
there were 3 utterances for each sample), and set
the penalty parameter C equal to 2.5. To train the
SVM, we used the samples from both the training
and the development datasets.

4 Results

We tested the system using two different config-
urations: 1) Using the neural network for feature
extraction and classification (NN); and 2) Using
the neural network for feature extraction and the
SVM for classification (NN+SVM). We compared
the two systems with the baseline system provided
by the EmoContext organizers (Chatterjee et al.,
2019a), which uses a neural network with LSTM
units (Hochreiter and Schmidhuber, 1997) in the
hidden layer and GloVe embeddings (Pennington
et al., 2014). Table 1 shows the results from our
two models in comparison to the baseline config-
uration.

System angry happy sad Micro
NN+SVM 0.7130 0.6667 0.7443 0.7072
NN 0.6206 0.6374 0.6800 0.6430
Baseline N/A N/A N/A 0.5868

Table 1: F1 scores on the shared task test dataset for
each emotion class and the micro-average. The final
system (NN+SVM) is highlighted in bold.

The results in Table 1 show that, both our
system configurations outperformed the baseline
system, while the NN+SVM is significantly bet-
ter than the others. We hypothesize that, given
the same set of features, an SVM constitutes
a stronger classifier due to its deterministic and
more robust nature, and also due to its explicit de-
sign to optimize the margin size between different
classes.

5 Discussion

Several interesting findings are worthy of discus-
sion:

• The use of LSTMs in the neural network de-
sign instead of GRU yielded lower results

with the development dataset. We believe
that this is because the LSTM model was
more prone to overfitting due to a higher
number of parameters. Also, since most of
the utterances were quite short (5.19 tokens
on average), a GRU was enough to capture
the necessary information.

• The use of POS tags alongside word embed-
dings did not help in improving the system
performance, but it was helpful in stabiliz-
ing the output of the system (i.e. less per-
formance fluctuations during training).

• For the SVM, an increase in the parameter
C from its default value of 1 to 2.5 achieved
slightly better results. We believe that this is
due to the neural based features being quite
representative of the final classes, and as a
result, more penalty had to be assigned to er-
rors during training as opposed to trying to
achieve larger decision margins.

6 Conclusion

This paper presented the system that we devel-
oped for our participation to SemEval 2019, Task 3
(EmoContext). The task focused on detecting four
classes of emotions, happy, sad, angry, and others
in a dataset consisting of small dialogues between
two people.

For this task, we developed a system that
used pretrained ELMo word embeddings along-
side POS tags as input features to a bidirectional
GRU, followed by an attention layer and out-
putting a representation of a sample dialogue. This
representation was, in turn, used as input to a fi-
nal SVM classifier. Using this method, we could
significantly outperform the baseline system, and
achieved a micro-averaged F1 of 0.7072 for the
three emotion classes on the test dataset.

Acknowledgments

We would like to express our gratitude to Parsa
Bagherzadeh for insightful discussions throughout
the course of our participation to EmoContext.

This work was financially supported by the Nat-
ural Sciences and Engineering Research Council
of Canada (NSERC).

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated

156

recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2017), pages 718–728,
Vancouver, Canada. Association for Computational
Linguistics.

Pascal Ackermann, Christian Kohlschein, Jó Agila
Bitsch, Klaus Wehrle, and Sabina Jeschke. 2016.
Eeg-based automatic emotion recognition: Fea-
ture extraction, selection and classification meth-
ods. In 2016 IEEE 18th International Conference
on e-Health Networking, Applications and Services
(Healthcom), pages 1–6, Munich, Germany. IEEE.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. Computing Research
Repository, arXiv:1409.0473.

R. E. Banchs. 2017. On the construction of more
human-like chatbots: Affect and emotion analy-
sis of movie dialogue data. In 2017 Asia-Pacific
Signal and Information Processing Association An-
nual Summit and Conference (APSIPA ASC), pages
1364–1367, Kuala Lumpur, Malaysia. IEEE.

Lea Canales and Patricio Martı́nez-Barco. 2014. Emo-
tion detection from text: A survey. In Proceedings
of the Workshop on Natural Language Processing in
the 5th Information Systems Research Working Days
(JISIC), pages 37–43, Quito, Ecuador. Association
for Computational Linguistics.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detec-
tion in text. In Proceedings of The 13th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2019), Minneapolis, Minnesota, USA. Association
for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2014), pages
1724–1734, Doha, Qatar. Association for Computa-
tional Linguistics.

Andre Cianflone, Yulan Feng, Jad Kabbara, and Jackie
Chi Kit Cheung. 2018. Let’s do it “again”: A first
computational approach to detecting adverbial pre-
supposition triggers. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (ACL 2018), pages 2747–2755, Mel-
bourne, Australia. Association for Computational
Linguistics.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–
297.

Assel Davletcharova, Sherin Sugathan, Bibia Abra-
ham, and Alex Pappachen James. 2015. Detection
and analysis of emotion from speech signals. Pro-
cedia Computer Science, 58:91–96.

Bart Desmet and VéRonique Hoste. 2013. Emotion de-
tection in suicide notes. Expert Systems with Appli-
cations, 40(16):6351–6358.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. Computing Re-
search Repository, arXiv:1412.6980.

Jasy Suet Yan Liew and Howard R. Turtle. 2016. Ex-
ploring fine-grained emotion detection in tweets. In
Proceedings of the NAACL Student Research Work-
shop, pages 73–80. Association for Computational
Linguistics.

Chunling Ma, Helmut Prendinger, and Mitsuru
Ishizuka. 2005. Emotion estimation and reasoning
based on affective textual interaction. In First Inter-
national Conference on Affective Computing and In-
telligent Interaction (ASCII 2005), pages 622–628,
Beijing, China. Springer.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Compututa-
tional Linguistics, 19(2):313–330.

Saif Mohammad. 2012. #emotional tweets. In *SEM
2012: The First Joint Conference on Lexical and
Computational Semantics – Volume 1: Proceedings
of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012),
pages 246–255. Association for Computational Lin-
guistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS 2017 Autodiff Workshop, Long Beach, Cal-
ifornia, USA.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine
Learning Research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word

157

representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2014), pages 1532–
1543, Doha, Qatar. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies (NAACL-HLT 2018), pages
2227–2237, New Orleans, Louisiana, USA. Associ-
ation for Computational Linguistics.

Tianrong Rao, Xiaoxu Li, Haimin Zhang, and Min Xu.
2019. Multi-level region-based convolutional neu-
ral network for image emotion classification. Neu-
rocomputing, 333:429–439.

Martin D. Sykora, Thomas Jackson, Ann O’Brien, and
Suzanne Elayan. 2013. Emotive ontology: Extract-
ing fine-grained emotions from terse, informal mes-
sages. IADIS International Journal on Computer
Science and Information Systems, 8(2):106–118.

Shabnam Tafreshi and Mona Diab. 2018. Emotion
detection and classification in a multigenre corpus
with joint multi-task deep learning. In Proceedings
of the 27th International Conference on Compu-
tational Linguistics (COLING 2018), pages 2905–
2913, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 30 (NIPS 2017), pages 5998–
6008. Curran Associates, Inc., Long Beach, Califor-
nia, USA.

Svitlana Volkova and Yoram Bachrach. 2016. Inferring
perceived demographics from user emotional tone
and user-environment emotional contrast. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2016),
pages 1567–1578, Berlin, Germany. Association for
Computational Linguistics.

Yequan Wang, Minlie Huang, xiaoyan zhu, and
Li Zhao. 2016. Attention-based lstm for aspect-level
sentiment classification. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2016), pages 606–615,
Austin, Texas, USA. Association for Computational
Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North

American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies (NAACL-HLT 2016), pages 1480–1489, San
Diego, California, USA. Association for Computa-
tional Linguistics.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-
based bidirectional long short-term memory net-
works for relation classification. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL 2016), pages 207–
212, Berlin, Germany. Association for Computa-
tional Linguistics.

158

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 159–163
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CLARK at SemEval-2019 Task 3: Exploring the Role of Context to
Identify Emotion in a Short Conversation

Joseph R. Cummings
Northwestern University

jcummings@u.northwestern.edu

Jason R. Wilson
Northwestern University

jrw@northwestern.edu

Abstract

With text lacking valuable information avail-
able in other modalities, context may provide
useful information to better detect emotions.
In this paper, we do a systematic exploration
of the role of context in recognizing emotion in
a conversation. We use a Naı̈ve Bayes model
to show that inferring the mood of the con-
versation before classifying individual utter-
ances leads to better performance. Addition-
ally, we find that using context while train-
ing the model significantly decreases perfor-
mance. Our approach has the additional bene-
fit that its performance rivals a baseline LSTM
model while requiring fewer resources.

1 Introduction

Recognizing affect (emotional content) in text has
been an ongoing research challenge for roughly
20 years. While earlier work focused on larger
bodies of text, like movie reviews for sentiment
analysis (Pang et al., 2002) or classifying mood in
blog posts (Mishne et al., 2005), more recent work
has looked at small bodies of text, particularly text
from social media. With smaller bodies of text
inherently having less information, current efforts
are investigating how context may supplement the
information. However, it is not yet clear how best
to incorporate context. To this end, we explore
how mood and emotion from previous messages
may be used to better recognize emotions.

Mood and emotion are generally regarded as
two types of affect. Emotions are reactions and
have a limited duration (Ortony et al., 1990;
Schwarz and Clore, 2006). While emotions are
dynamic and constantly changing, mood reflects
a more persistent affect that can influence cogni-
tive processes (Busemeyer et al., 2007), includ-
ing how people recognize emotions (Schmid and
Mast, 2010). For this work, we view mood as the
affect present in the whole conversation and emo-
tion as what is expressed in a given turn.

Figure 1: Example of a three turn conversation

Our goal is to take a short, online conversation
(see Figure 1) and categorize the last utterance as
happy, sad, angry, or others. In this paper, we
present our model Conversational Lexical Affect
Recognition Kit (CLARK), which is the result of
a systematic exploration into how context may be
used during the training and classification phases
of a model to improve emotion recognition. To as-
sess context we infer the mood of the conversation
and the emotions of previous utterances. Although
context would seem to be useful, providing addi-
tional information, we find that is only beneficial
during classification. Conversely, including con-
text while training the model leads to significantly
degraded performance.

2 Related Work

There are several approaches to recognizing affect
in a body of text. Many have used classification
methods on a large body of text, such as movie
reviews (Pang et al., 2002), blogs (Mishne et al.,
2005; Mihalcea and Liu, 2006), and fairy tales
(Alm et al., 2005; Mohammad, 2011), using tech-
niques like SVMs (Pang et al., 2002; Mishne et al.,
2005), Naı̈ve Bayes (Mihalcea and Liu, 2006),
HMMs (Ho and Cao, 2012), and Deep Learning
(Zhang et al., 2018).

More recently, the rise of instant messaging
and social media has led to greater interest in
recognizing emotion in a smaller body of text.
While lexicon based approaches were initially
used for detecting emotions in smaller bodies of
text (Thelwall et al., 2010; Staiano and Guerini,
2014), Deep Learning models dominate the recent

159

work (Abdul-Mageed and Ungar, 2017; Chatterjee
et al., 2019a).

Our approach is a blend of using a larger and
smaller body of text. For the larger body, we de-
tect the mood in a whole conversation. Addition-
ally, we consider a smaller body of text, a single
message in a conversation, and detect the emo-
tion in that message. In contrast to many recent
approaches using Deep Learning techniques, we
use a Naı̈ve Bayes model that requires less data
and is trained faster while exhibiting no notice-
able degradation in performance in comparison to
a baseline SS-LSTM model.

3 Model

We model the task of detecting emotions as a
multi-class classification problem. Given a user
utterance, the model outputs probabilities of it be-
longing to the four output classes: happy, sad, an-
gry, or others. Our approach uses CLARK, which
at its base level, utilizes a Naı̈ve Bayes model (Mc-
Callum and Nigam, 1998) with prior probabilities,
which we take to be the frequency of tokens per
class. To explore the role of context, we examine
several variants of training and classification, de-
tailed later. Keeping the feature set small, we use
only unigram and bigrams. We also remove stop
words and the following set of punctuation: pe-
riod, dash, underscore, ampersand, tilde, comma,
and backslash. To tokenize the tweets, we utilize
Natural Language Toolkit’s (NLTK) casual tok-
enize functionality, which places an emphasis on
informal language and is able to pick up emoticons
and collections of characters that are semantically
equivalent to emoticons, e.g. ’:)’ is a smiley face.

3.1 Training

The model is trained on three turn conversations
from Twitter with the last utterance classified ac-
cording to the context of the first two utterances
via semi-automated techniques (Chatterjee et al.,
2019b). 30,160 conversations were provided for
training and validation, consisting of 4,243 happy,
5,463 sad, 5,506 angry, and 14,947 others.

We test two variants for training the model,
Conv, which we use to infer mood, and only Turn
3 (T3), to calculate feature probabilities given our
set of four emotions. Conv consists of all words
from the entire conversation, whereas T3 is the
third and final utterance.

3.2 Classification

Our classification is a two step chaining process as
shown in Algorithm 1. In the first step we find the
initial probabilities for each class, denoted by the
variable post. If we are using mood, denoted by
the variable Mood, then this distribution is calcu-
lated using our model on Conv (see line 7). Oth-
erwise, it is set to the prior probabilities generated
from the training (line 9). The resulting probabil-
ities for each class are then used as the priors in
step two.

In the second step, we classify the following
combinations of individual turns in the conversa-
tion: {T3}, {T1, T3}, {T1, T2, T3}. Processing
a combination consists of finding the posterior of
the first turn and using it as the prior for the next
turn and continuing until getting a final posterior,
from which we take the highest probability class
and return it as the final classification.

Algorithm 1 Classification sequence
1: procedure CLASSIFYINCONTEXT
2: Mood← True ∨ False
3: Conv ← words from current conversation
4: default← prior probabilities of all classes
5: Turns ∈ {{T3}, {T1, T3}, {T1, T2, T3}}
6: if Mood then . Step 1
7: post = runModel(Conv, default)
8: else
9: post = default

10: end if
11: for each turn t do . Step 2
12: if t ∈ T urns then
13: post = runModel(t, post)
14: end if
15: end for
16: return argmax(post)
17: end procedure

4 Results

Our results show that inferring mood via Conv in
the conversation before recognizing emotion in in-
dividual utterances yields improved performance.
Furthermore, the best performances focus on the
first user, utilizing only the first and third utter-
ances in the second step of classification. We
also see that in training the model, the best per-
formance comes from limiting our set to just T3.

Results are organized by analysis on the inter-
nal model, followed by a comparison against a
baseline Deep Learning model - the one provided
by the EmoContext organizers. CLARK is tested
with two parameters - classification method and
training method. Our best results on the test set
yielded a micro F1 score of 0.5637, roughly equiv-

160

Classification Method Acc. Precision Recall F1

Conv (C) 0.4256 0.2788 0.4170 0.3342
Turn 3 (T3) 0.2651 0.2211 0.4105 0.2874
C, T3 0.5575 0.4073 0.5571 0.4705
T1, T2, T3 0.5308 0.3730 0.5120 0.4316
C, T1, T2, T3 0.5358 0.3823 0.5276 0.4433
T1, T3 0.5369 0.3874 0.5235 0.4431
C, T1, T3 0.5732 0.41915 0.5684 0.4825

Table 1: Results from varying parameter classification
method and training on the whole conversation.

Classification Method Acc. Precision Recall F1

Conv (C) 0.7125 0.7283 0.5366 0.6178
Turn 3 (T3) 0.7155 0.6366 0.7456 0.6867
C, T3 0.8131 0.7875 0.7766 0.782
T1, T2, T3 0.7997 0.7745 0.7516 0.7629
C, T1, T2, T3 0.7979 0.769 0.7573 0.7631
T1, T3 0.8168 0.7921 0.7778 0.7848
C, T1, T3 0.8169 0.7848 0.7892 0.7870

Table 2: Results from varying parameter classification
method and training on only T3.

alent to the model from the EmoContext organiz-
ers. This score is considerably lower than we got
from our evaluations on the training data, possibly
attributed to the quality of the labels for the train-
ing set versus the test set. We chose not to focus
our analysis on the test set because we are not able
to do a deep analysis as a result of the data not
being readily available at the time. The remain-
ing results we discuss are obtained using a 10-fold
cross validation on the training set. Tables 1 and 2
show results from using the 30,160 conversations.

From the difference in results between these ta-
bles, it is clear that the biggest improvements in
the model comes from training on only T3 as op-
posed to Conv. The difference in the average mi-
cro F1 score (Rijsbergen, 1979) of training on T3
and the average F1 score of training on Conv is de-
termined to be statistically significant (p < 0.005)
using a t-test (Kim, 2015).

Within the classification method, we see that us-
ing T1 in coordination with T3 provides F1 scores
at least 14% higher than just classifying with T3.
In addition, using Conv consistently provides bet-
ter performances, albeit close. Thus, the best
model is one which utilizes a classification combi-
nation of Conv, T1, and T3, with a micro F1 score
of 0.7870.

T1 (User 1) T2 (User 2) T3 (User 1) True Label Predicted Label
1 Same to you :)...hws life going? Bad Sad Sad
2 You are funny Why, thank you! So start a fun conversation Happy Others
4 Yes annoys me so much I really love it Happy Happy

Table 3: Results from adjusting classification method and training on only T3.

Figure 2: CLARK Confusion Matrix on a 9:1 ratio
training to testing split.

As shown in Figure 2, CLARK is incredibly
precise in the classification of the sad class and
does moderately well in others and angry. How-
ever, others and sad are commonly predicted even
when not the correct class predicted leading to
lower recall scores.

A few concrete examples of these strengths
and weaknesses are shown in Table 3. Because
CLARK does not place weight on the specific T2
utterance, we see that in no. 2, we miss the pos-
itive emotion and misclassify the conversation as
others. However, this is largely an anomaly - in
fact, we see that T2 usually involves an interroga-
tive or can be associated with a tangential class.

To demonstrate the efficiency of CLARK, we
compare it to the baseline SS-LSTM model pro-
vided by the SemEval-2019 Task 3 organizers
(Chatterjee et al., 2019a) as shown in Table 4.
We compare both on time to train and quantity of
data needed to produce certain performance. Time
to train is normalized to CLARK. The SS-LSTM
model performs at 0.6796 when trained with 1
Epoch (used as the very minimum required for
a neural model) and takes 26 times longer than
CLARK. For 3 Epochs, it performs at 0.7832 and
takes 70 times longer than CLARK.

We also examine the effect the size of the train-
ing dataset has on the performance of each model,
as shown in Figure 3. CLARK vastly outperforms
the SS-LSTM models with minimal data. The SS-
LSTM (3) model takes the full 30,160 data point

161

dataset to achieve an equivalent F1 score.

Model Time Micro F1

CLARK 1 0.7870
SS-LSTM(1) 26 0.6796
SS-LSTM(3) 70 0.7834

Table 4: Comparison between CLARK and baseline
Deep Learning models in terms of normalized time to
train and classification performance.

Figure 3: Comparisons of CLARK, SS-LSTM(1), and
SS-LSTM(3) at varying amount of training data.

5 Discussion

We investigated a way to model emotion from text
in the context of a conversation, instead of a sin-
gle utterance. In doing so, we analyzed the per-
formance of two different types of models, one
based on a Naı̈ve Bayes approach, which we call
CLARK, and one on a Deep Learning approach.
CLARK trained on T3 and classified using {Conv,
T1, T3} leads to the best performance.

One way to utilize context is during training, but
our results in experiments with CLARK show that
the including more context (i.e., the whole conver-
sation) significantly degrades performance. Train-
ing just on T3 produces much better results than
training on Conv. This makes sense as T3 is the
utterance directly associated with the assigned la-
bel and as such, represents the words that we can
associate to the label with the highest confidence.

Some notion of “context” is important in de-
termining the overall emotion of a conversation.
When classification uses Conv and the final utter-
ance (T3), the model produces the best results, as
demonstrated by consistently producing a better
F1 score. This reflects the idea that as humans,
mood affects how we judge the emotion a person
is currently expressing (Schmid and Mast, 2010).

Our approach to incorporating context is fun-
damentally different from the approach taken in

the baseline model. The SS-LSTM is more simi-
lar to a training method using all three utterances
and classification method using {T1, T2, T3}.
It also takes exponentially longer to train than
CLARK and produces roughly equivalent perfor-
mance, when examining the full dataset. Any at-
tempt to speed up the model by using less train-
ing data would be in vain as shown in Figure 3.
In cases where efficiency is paramount, the Deep
Learning approach is lacking because of these re-
quirements. Being able to produce good results
with less training data can be a valuable asset.

Many of this work’s limitations come from the
data and the way the data was processed. The
set of 30,160 three turn conversations is not bal-
anced - there is far more in the others class than
the rest. Because Naı̈ve Bayes is a probabilistic
model, it will prefer the others class. A solution
could be to utilize a Complement Naı̈ve Bayes,
which estimates parameters from data using com-
plement classes (Rennie et al., 2003). In addition,
the data was labelled using a semi-automatic tech-
nique. Human subjects labeled a small subset of
tweets, and key word embeddings were then ex-
trapolated to label the rest of the conversations.
This method leaves a lot of room for error and even
suggests the function our model is trying to learn
is this labelling mechanism. In future work, we
will use only data labelled by human subjects.

6 Conclusion

Context plays an important role in recognizing
emotions, but blindly including context can ac-
tually make recognizing emotions more difficult.
As a response to the SemEval-2019 Task 3 chal-
lenge, we performed a systematic exploration of
how to use context in classifying emotions in a
short conversation. The resulting model, CLARK,
performs best when trained on just the third turn of
conversations (no context) and then classification
uses Conv to infer mood and emotions from pre-
vious turns (with context). The relatively simple
Naı̈ve Bayes model, which performs on par with
a baseline LSTM model while requiring less data
and time to train, demonstrates one successful ap-
proach to using context that is usable in resource-
constrained scenarios. Furthermore, we believe
that while our results are demonstrated using a
Naive Bayes model, our approach to using context
only when classifying has the potential of being
applicable to other classification approaches.

162

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 718–728.

Cecilia Ovesdotter Alm, Dan Roth, and Richard
Sproat. 2005. Emotions from text: machine learning
for text-based emotion prediction. In Proceedings of
the conference on human language technology and
empirical methods in natural language processing,
pages 579–586. Association for Computational Lin-
guistics.

Jerome R. Busemeyer, Eric Dimperio, and Ryan K.
Jessup. 2007. Integrating emotional processes into
decision-making models. In Integrated models of
cognitive systems.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Dung T. Ho and Tru H. Cao. 2012. A high-order hid-
den markov model for emotion detection from tex-
tual data. In Knowledge Management and Acquisi-
tion for Intelligent Systems, pages 94–105, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Tae Kyun Kim. 2015. T test as a parametric statistic.
In Korean journal of anesthesiology.

A. McCallum and K. Nigam. 1998. A comparison of
event models for naive bayes text classification. In
Proceedings in Workshop on Learning for Text Cat-
egorization, AAAI98, pages 41–48.

Rada Mihalcea and Hugo Liu. 2006. A corpus-based
approach to finding happiness. In AAAI Spring Sym-
posium: Computational Approaches to Analyzing
Weblogs, pages 139–144.

Gilad Mishne et al. 2005. Experiments with mood clas-
sification in blog posts. In Proceedings of ACM SI-
GIR 2005 workshop on stylistic analysis of text for
information access, volume 19, pages 321–327.

Saif Mohammad. 2011. From once upon a time to
happily ever after: Tracking emotions in novels
and fairy tales. In Proceedings of the 5th ACL-
HLT Workshop on Language Technology for Cul-
tural Heritage, Social Sciences, and Humanities,
pages 105–114. Association for Computational Lin-
guistics.

Andrew Ortony, Gerald L Clore, and Allan Collins.
1990. The cognitive structure of emotions. Cam-
bridge university press.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. As-
sociation for Computational Linguistics.

Jason D. M. Rennie, Lawrence Shih, Jaime Teevan,
and David R. Karger. 2003. Tackling the poor as-
sumptions of naive bayes text classifiers. In Pro-
ceedings of the Twentieth International Conference
on International Conference on Machine Learning,
ICML’03, pages 616–623. AAAI Press.

C. J. Van Rijsbergen. 1979. Information Retrieval,
2nd edition. Butterworth-Heinemann, Newton, MA,
USA.

Petra Claudia Schmid and Marianne Schmid Mast.
2010. Mood effects on emotion recognition. Mo-
tivation and Emotion, 34(3):288–292.

Norbert Schwarz and Gerald L. Clore. 2006. Feelings
and phenomenal experiences. In A. Kruglansk and
E. T. Higgins, editors, Social psychology: Hand-
book of basic principles, 2nd edition, pages 385–
407. Guilford, New York.

Jacopo Staiano and Marco Guerini. 2014. De-
pechemood: a lexicon for emotion analysis
from crowd-annotated news. arXiv preprint
arXiv:1405.1605.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment strength
detection in short informal text. Journal of the
American Society for Information Science and Tech-
nology, 61(12):2544–2558.

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis: A survey. Wiley In-
terdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 8(4):e1253.

163

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 164–168
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CLP at SemEval-2019 Task 3: Multi-Encoder in Hierarchical Attention
Networks for Contextual Emotion Detection

Changjie Li
Artificial Intelligence Group

Sogou
Beijing, China, 100000

lichangjie0308@gmail.com

Yun Xing
Artificial Intelligence Lab
Lenovo Research, Lenovo

Beijing, China, 100000
xingyun44@hotmail.com

Abstract

In this paper, we describe the participation of
team ”CLP” in SemEval-2019 Task 3 “Con-
textual Emotion Detection in Text” that aims
to classify emotion of user utterance in tex-
tual conversation. The submitted system is
a deep learning architecture based on Hier-
archical Attention Networks (HAN) and Em-
bedding from Language Model (ELMo). The
core of the architecture contains two represen-
tation layers. The first one combines the out-
puts of ELMo, hand-craft features and Bidi-
rectional Long Short-Term Memory with At-
tention (Bi-LSTM-Attention) to represent user
utterance. The second layer use a Bi-LSTM-
Attention encoder to represent the conversa-
tion. Our system achieved F1 score of 0.7524
which outperformed the baseline model of the
organizers by 0.1656.

1 Introduction

Emotion detection has been widely researched in
psychology, sociology and computer science. Be-
ing able to recognize the emotion of text is of
vital importance in the human-computer interac-
tion (Cowie et al., 2001). However, detecting
emotion in text is generally considered very chal-
lenging in absence of facial expression or voice
modulation. In domain of natural language pro-
cessing, emotion detection is a task of associating
words, phrases or documents with emotions us-
ing psychological models (Duppada et al., 2018).
Traditional rule-based approaches (Balahur et al.,
2011; Chaumartin, 2007) and machine learning
approaches (Alm et al., 2005; Balabantaray et al.,
2012) rely on extracting word-level features to
classify emotion. These methods suffer from low
recall as many texts do not contain emotion words.
To tackle the problem, recent deep learning ap-
proaches (Mundra et al., 2017) take the advan-
tage of Word2Vec representation (Mikolov et al.,

2013a) to extract semantic features and achieve
remarkable performance. However, limited re-
searches have been done in classifying textual con-
versation emotions, which is further compounded
by difficulty in the context understanding.

Task 3 “Contextual Emotion Detection in Text”
in SemEval-2019 aims to find better solutions
for those difficulties in contextual emotion de-
tection (Chatterjee et al., 2019). The task con-
siders textual emotion classification on four-point
scale(Happy, Sad, Angry along with an Others
category). It classifies emotion of user utterance
along with 2 turns of context in conversation.

This paper describes the components and results
of our emotion recognition system. The proposed
system is a deep learning model based on HAN,
which combines multiple encoding methods in-
cluding ELMo, hand-craft features and Bi-LSTM-
Attention encoder. Our system yields a micro-
averaged F1 score of 0.7524 on test-set of Task
3 of SemEval 2019.

2 System Description

Figure 1 provides a overall architecture of our ap-
proach, which consists of three components: (1)
preprocessing, where we use a specially designed
text processing method to prepare inputs for our
neural network, (2) utterance encoder, where we
use ELMo, hand-craft features and Bi-LSTM-
Attention encoder to represent user utterance, (3)
conversation encoder, where we use a Bi-LSTM-
Attention layer to represent the conversation.

2.1 Preprocessing
Twitter limits that a tweet should not exceed 140
characters, which makes users use informal ways
to express themselves. Emotion detection for
these kinds of tweets is very challenging. To en-
sure effective feature extraction, we use Ekphrasis
(Baziotis et al., 2017) to normalize the utterance.

164

Figure 1: Overall architecture of our approach.

Ekphrasis contains a text processing pipeline that
is specially designed for social network texts. The
following steps are applied to utterances and lexi-
cons in corpus:

1. Tokenization. We use the tokenizer in
Ekphrasis to split utterance into word tokens
and extract text emoticons from raw texts.
The tokenizer is effective in splitting com-
pounded words that are commonly used in
Twitter. For example, the output of “#ifeel-
sad” will be “# i feel sad”.

2. Normalization. We use regex regressions
to detect and normalize categories, such as
url/email/money/time/date. These categories
are not sensitive features in the task.

3. Annotation. We annotate all uppercase
words, repeated words and elongated words
with corresponding tags, e.g. “helloooooo”
to “hello <elong>”; “yesyesyes” to “yes
<repeated>”; “HELLO” to “hello <all-
caps>”. These informal words are vital fea-
tures for prediction because they are rich in
emotion.

4. Spelling Correction. We manually build a
dictionary for out-of-vocabulary words (not
in pre-trained word vectors) based on the pro-
vided datasets. 921 words are collected and
corrected. The spelling correction reduces

percentage of unknown words from 18% to
12%.

5. Emoji and Emoticon Normalization. We
normalize emojis/emoticons because some of
them have the same meaning. For example,
“<3” and “<<33” both indicate heart, while
“:(((” and “:(” both represent unhappy.

6. Lowercase. All characters in user utterance
are converted to lowercase.

2.2 ELMo

ELMo (Peters et al., 2018) is an off-the-shelf pre-
trained language model that produces deep con-
textualized word representation, which captures
both syntax and semantic information. ELMo
can be easily integrated into existing model and
usually leads to performance improvement. For
most state-of-the-art Natural Language Process-
ing (NLP) tasks, pre-trained word representation
is a key component (Mikolov et al., 2013b; Pen-
nington et al., 2014). We assume that different
word representations allow the model to benefit
from diversified information, so we make ELMo
a part of our utterance encoder. Specifically, to
generate ELMo representation, we use pre-trained
model provided by TensorFlow Hub 1, which out-
puts a mean-pooling vector of all contextualized

1https://tfhub.dev/google/elmo/2.

165

Dataset Others Happy Sad Angry Total
original training 14948 4243 5463 5506 30160
cleaned training 14865 4231 5447 5476 30019

cleaned + augmented training 20351 14566 11240 8319 54476

Table 1: Emotion Distribution of Datasets.

word representations with 1024 dimensions in our
model.

2.3 Hand-craft Features

Hand-craft features represent prior knowledge.
We extract hand-craft features related to emoji and
emoticon because they are frequently used as emo-
tion indicators in Twitter and vital to textual emo-
tion detection. We create a list that contains 300
emojis and emoticons based on this corpus. With
the list, we build a Term Frequency–Inverse Doc-
ument Frequency (TF-IDF) vectorizer. Finally, we
convert the utterance to a 300 dimensions vector.

2.4 HAN

HAN (Yang et al., 2016) is designed to capture
hierarchical structure in document. Conversation
has the same hierarchical structure (words form
sentence, sentences form conversation) as docu-
ment, so we use HAN as the main structure of our
system. Our HAN structure has two layers: utter-
ance encoder and context encoder.

Utterance Encoder. We use pre-trained word
vectors of GloVe (Pennington et al., 2014) for
Twitter as our word embedding. The word embed-
ding is put into a 1-layer Bi-LSTM followed by
an attention layer (Vaswani et al., 2017). Figure 1
gives the architecture of Bi-LSTM-Attention. The
Bi-LSTM summarizes utterance from both direc-
tions and incorporates the contextual information,
while the attention mechanism extracts word im-
portance. After the Bi-LSTM-Attention, we com-
bine the output of Bi-LSTM-Attention, ELMo and
hand-craft feature vector to represent user utter-
ance.

Conversation Encoder. Given the utterance
representation of each turn, we get the conversa-
tion representation in a similar way. We use an-
other Bi-LSTM layer to summarize the contextual
information in conversation, and we apply atten-
tion mechanism to capture the importance of each
turn. The output vector of the conversation en-
coder is a high level representation of the conver-
sation and can be used as features for classifica-

tion, which is a final softmax layer that predict the
emotion.

3 Experiments and Evaluation

3.1 Data Preparation
The organizers provide 30160 conversations for
training, 2755 for development and 5509 for test.
Before training, we remove conversations that
might not be correctly labeled. Then we create
more datasets by data augmentation.

Data Cleaning. We firstly train our models
with five-fold cross validation. 500 false positive
data points with high confidence are picked out.
Among them, we manually filter and delete 141
wrong labeled conversations.

Data Augmentation. Data augmentation (DA)
is frequently used in Computer Vision (Fawzi
et al., 2016). However, this method is less pow-
erful in NLP because NLP data is discrete. Even
small perturbations may change the meaning of a
whole sentence. In this task, we assume that the
positions of emojis and emoticons do not influence
the emotion of sentences, so DA can be consid-
ered reliable. Our DA includes two steps, 1) all
emojis and emoticons in an utterance are extracted
by using Ekphrasis, 2) we relocate the emojis and
emoticons to the start and the end of the utterance,
thus we create 2 additional utterances (not applied
for utterances that contain emojis/emoticons only,
or utterances begin or end with emojis/emoticons).
In total, we get at most 3 utterances for each turn,
which means 27 conversations for three turns.

Table 1 describes the emotion distribution of
original, data cleaned, data cleaned and aug-
mented training datasets. The proportion of
each class in original training dataset is around
4:1:1:1 (Others:Happy:Sad:Angry) and it remains
the same after data cleaning. However, DA
changes the proportion to around 5:4:3:2 be-
cause Twitter users are more likely to use emo-
jis/emoticons when they post happy, sad and an-
gry tweets. In total, 24457 additional data points
are created and the distribution of Angry, Sad and
Happy classes is improved.

166

Model F1Angry F1Happy F1Sad F1Micro

Baseline of Organizers 0.5945 0.5461 0.6149 0.5868
HAN 0.6585 0.6716 0.7667 0.6935

HAN+ELMo 0.6922 0.6973 0.7462 0.7102
HAN+ELMo+HCF 0.7062 0.6997 0.7575 0.7199

HAN+ELMo+HCF+Preprocessing 0.7552 0.6935 0.7959 0.7459
HAN+ELMo+HCF+Preprocessing+DA 0.7607 0.7013 0.7961 0.7524

Table 2: Class-wise and micro-averaged F1 scores for models. Our best result comes from HAN + ELMo +
Hand-craft Feature (HCF) + Preprocessing + DA.

3.2 Hyper-parameters

We minimize the cross-entropy loss function by
using back-propagation with Adam (Kingma and
Ba, 2015) and mini-batches of size 64. In order to
optimize our results, we introduce class weights
in loss function to reduce the impact of the unbal-
anced training set. The value of class weights is set
based on the distribution of classes. The config-
uration of hyper-parameters includes as follows:
the word embedding size is 200; the dimension of
hidden layer size in LSTM is 200; the max length
of the utterance in each turn is set 25, as nearly
99% of the utterances have less than 25 word to-
kens; the dropout rate is 0.2 to prevent over-fitting;
the learning rate is 10e-3 and the learning rate de-
cay is 10e-5 for each update.

3.3 Results and Discussion

Table 2 presents the results of different ap-
proaches. The organizers provide a baseline model
with 0.5878 F1 score. Our best model achieves F1
score of 0.7524 which outperforms the baseline by
0.1656. We present 5 models to show how dif-
ferent components (Preprocessing, ELMo, Hand-
craft features and DA) affect the performance. The
results indicate that HAN is well performed in this
task, which alone increases F1 score from 0.5878
to 0.6935. With ELMo encoder and hand-craft
features, the performance improves by 0.0264 and
continues to rise to 0.7449 if we apply preprocess-
ing to the utterances. DA improves the F1 score of
Angry, Sad and Happy, suggesting that more data
points of these three classes are beneficial for the
task.

Attention weight in HAN reflects how utter-
ances contribute to emotion classification. There-
fore, we calculate the average attention weight of
three turns in conversation of test-set. Figure 2
shows that the third turn contributes the most to
emotion detection, complying with the objective

Figure 2: Attention weight of three turns.

of the task which is to predict third turn emotion.
We also find that the weight of first turn is higher
than the second, which can be explained by the
fact that the first turn and the third turn come from
the same user.

4 Conclusion

In this paper we describe our solution to SemEval
2019 Task 3. To classify contextual emotion in
a conversation, we propose a HAN based deep
learning model that combines multiple encoding
methods including ELMo, hand-craft features and
Bi-LSTM-Attention encoder. We also build a pre-
processing method to improve inputs quality and
we apply data augmentation to create more data
points. With all these components, our system
achieves micro-averaged F1 score of 0.7524 and
ranks 17th out of 165 teams on Task 3 leader-
board.

References
Cecilia Alm, Dan Roth, and Richard Sproat. 2005.

Emotions from text: Machine learning for text-based
emotion prediction.

R C Balabantaray, Iiit Bhubaneswar, Mudasir Moham-

167

mad, and Nibha Sharma. 2012. N.: Multi-class
twitter emotion classification: A new approach. In-
ternational Journal of Applied Information Systems,
pages 48–53.

Alexandra Balahur, Jesús M. Hermida, and Andrés
Montoyo. 2011. Detecting implicit expressions of
sentiment in text based on commonsense knowl-
edge. In Proceedings of the 2Nd Workshop on Com-
putational Approaches to Subjectivity and Sentiment
Analysis, WASSA ’11, pages 53–60, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

François-Régis Chaumartin. 2007. Upar7: A
knowledge-based system for headline sentiment tag-
ging. In Proceedings of the Fourth International
Workshop on Semantic Evaluations (SemEval-
2007), pages 422–425, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Roddy Cowie, Ellen Douglas-Cowie, Nicolas Tsap-
atsoulis, George Votsis, Stefanos Kollias, Winfried
Fellenz, and J.G. Taylor. 2001. Emotion recognition
in human-computer interaction. Signal Processing
Magazine, IEEE, 18:32 – 80.

Venkatesh Duppada, Royal Jain, and Sushant Hiray.
2018. Seernet at semeval-2018 task 1: Domain
adaptation for affect in tweets. pages 18–23.

A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard.
2016. Adaptive data augmentation for image classi-
fication. In 2016 IEEE International Conference on
Image Processing (ICIP), pages 3688–3692.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In 1st International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Proceedings of the 26th International
Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS’13, pages 3111–3119, USA.
Curran Associates Inc.

Shreshtha Mundra, Anirban Sen, Manjira Sinha,
Sandya Mannarswamy, Sandipan Dandapat, and
Shourya Roy. 2017. Fine-grained emotion detection
in contact center chat utterances. pages 337–349.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

168

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 169–174
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CoAStaL at SemEval-2019 Task 3: Affect Classification in Dialogue using
Attentive BiLSTMs

Ana Valeria González∗ and Victor Petrén Bach Hansen∗ and Joachim Bingel
and Isabelle Augenstein and Anders Søgaard

University of Copenhagen, Dept. of Computer Science
Copenhagen, Denmark

ana|victor.petren|bingel|augenstein|soegaard@di.ku.dk

Abstract

This work describes the system presented by
the CoAStaL Natural Language Processing
group at University of Copenhagen. The main
system we present uses the same attention
mechanism presented in (Yang et al., 2016).
Our overall model architecture is also inspired
by their hierarchical classification model and
adapted to deal with classification in dialogue
by encoding information at the turn level. We
use different encodings for each turn to create
a more expressive representation of dialogue
context which is then fed into our classifier.
We also define a custom preprocessing step in
order to deal with language commonly used
in interactions across many social media out-
lets. Our proposed system achieves a micro
F1 score of 0.7340 on the test set and shows
significant gains in performance compared to
a system using dialogue level encoding.

1 Introduction

Recognizing emotion is crucial to human-human
communication and has for a long time been a
goal in human-machine interaction. Although
there has been growing interest in emotion detec-
tion across many fields (Liscombe et al., 2005;
Agrafioti et al., 2012; Craggs and Wood, 2004),
much of the work has focused on developing em-
pathetic systems using multimodal approaches i.e.
speech and gestures as well as text (Hazarika et al.,
2018). Approaching emotion detection as a multi-
modal problem certainly makes sense, as face-face
human communication involves many modalities,
however, this fails to consider all the communica-
tion that is increasingly happening solely via chat,
or written means. Detecting emotion in textual di-
alogue without the other modalities, such as work
done by Gupta et al., can allow us to improve a
number of applications dealing with social media

∗Authors contributed equally

interactions, opinion mining, and customer inter-
actions, unfortunately, this is a great challenge that
has remained largely unexplored. SemEval 2019
Task 3 attempts to encourage research in this di-
rection. Given a user utterance and the previous
two turns of context, the task consists in classi-
fying the user utterance according to one of four
emotion classes: happy, sad, angry or other. For
a full description of the task see (Chatterjee et al.,
2019). In this paper, we describe our turn-level at-
tention model used to tackle this task, specifically
using the attention mechanism presented in (Yang
et al., 2016). Our model encodes turns in a conver-
sation separately using an Attentive Bidirectional
LSTM encoder. In the model presented in the
shared task, the turn encoders do not share param-
eters, achieving a micro F1 score of 0.7340. The
code for all experiments presented here is avail-
able. 1

2 Related Work

Due to its many potential applications across many
fields, detection of speaker emotional state in spo-
ken dialogue systems has been studied extensively.
Early studies showed that the use of prosody as
well as speaking style features leads to increases
in accuracy for emotion prediction (Ang et al.,
2002; Devillers et al., 2002). Researchers have
also shown that using domain specific features as
well as speech signals can improve performance
(Ai et al., 2006). Furthermore, there is plenty of
work that tries to improve detection of affect in
text using multiple modalities such as video or
an embodied conversational agent (Alonso-Martin
et al., 2013; Dmello and Graesser, 2010), however,
detection of emotion solely based on text conver-
sation data has not seen the same breakthroughs.

1https://github.com/coastalcph/
emocontext

169

Very recently, work has started to emerge deal-
ing with emotion detection in textual dialogue
only. Majumder et al. introduced an atten-
tive RNN model that treats each party of a con-
versation independently in order to provide spe-
cific representations for speaker and listener at a
given point in a conversation. This model as-
sumes that in a dialogue, the emotion of speaker
A will be influenced by the utterances expressed
by speaker B. Using this approach, the model
achieves state of the art performance in two affect
datasets (Schuller et al., 2011; Busso et al., 2008)).
The model presented by us falls in this line of re-
search, as we also attempt to exploit turn level in-
formation independently, however, our work dif-
fers in the fact that we create representations for
each turn as opposed to creating representations
for each speaker.

3 Data Preprocessing

Due to the casual text language used in many of
the dialogues in the dataset, properly preprocess-
ing these is an essential part of the classification
process. The preprocessing pipeline consists of
multiple steps that we describe in more depth be-
low.

Text Normalization We use a custom normal-
ization function which takes commonly used con-
tractions in social media and maps them to a nor-
malized version by unpacking them i.e. idk → i
don’t know and plz→ please.

Spell Correction We normalize elongated
words and use a spell correction tool which
replaces misspelled words with the most probable
candidate based on 2 corpora (Wikipedia and
Twitter) (Baziotis et al., 2017a).

Tokenization We employ a tokenizer which em-
phasizes expressions and words typically used in
social media. These include: 1) censored words,
2) words with emphasis, 3) elongated words, 4)
splitting emoticons etc. All words are also lower-
cased when tokenized.

Emoji Descriptions As the dialogues contain
a wide variety of emojis, which can contain a
great deal of information about a users emotions
(Felbo et al., 2017), we replace the emojis found
in the utterances with their textual description.
We used the emoji descriptions utilized for train-
ing Emoji2Vec (Eisner et al., 2016) which can be

found in the Unicode emoji standard 2.
For most of the preprocessing steps described

above, we relied on the Ekphrasis3 text processing
tool (Baziotis et al., 2017b).

4 Model Description

This section describes our conversational senti-
ment classification model as was used in the Emo-
Context shared task. Our architecture is illustrated
in figure 1.

Embedding Layer We initiate the embedding
layer with an embedding matrix computed using
pretrained GloVe embeddings trained on 2 Billion
tweets4. We do not finetune the weights during
training.

Turn Encoder We use bidirectional LSTMs to
encode a single turn in the conversation. Given
a turn Tk made up of Nk words i.e. Tk =
(w1k , w2k , ..., wNk

), the representation of a given
word wNk

consists of the concatenation of the for-
ward hidden state

−→
h Nk

and backward hidden state←−
h Nk

, i.e. hNk
= [
←−
h Nk

,
−→
h Nk

]. This bidirectional
representation is then fed through a batch normal-
ization layer and then into the attention layer. The
different turn encoders do not share their weights.

Turn Attention We use the attention mecha-
nism introduced by (Yang et al., 2016) in order
to extract important words in a single turn. The
representation hNk

is fed into a one-layer MLP to
obtain the representation uNk

. The similarity be-
tween uNk

and a randomly initialized word con-
text vector uc is computed using the dot product
and then the normalized weights αNk

are obtained
through a softmax function:

αNk
=

exp(uNk
· uc)∑

k exp(uNk
· uc)

The final turn representation Tk is the weighted
sum of the word vectors based on αNk

.

Tk =
∑

k

αNk
hNk

2http://www.unicode.org/emoji/charts/
full-emoji-list.html

3https://github.com/cbaziotis/
ekphrasis

4https://nlp.stanford.edu/projects/
glove/

170

%

H
a
p
p
y

S
a
d

A
n
g
ry

O
th
e
r

LSTM

LSTM

h1h1

LSTM

LSTM

h2h2

LSTM

LSTM

...

...

...

hNt3
hNt3

LSTM

LSTM

h1h1

LSTM

LSTM

h2h2

LSTM

LSTM

...

...

...

hNt2
hNt2

LSTM

LSTM

h1h1

LSTM

LSTM

h2h2

LSTM

LSTM

...

...

...

hNt1
hNt1

Figure 1: Our proposed model architecture. The turns are preprocessed and embedded using pretrain GloVe em-
beddings (trained on Twitter data) and fed into their respective BiLSTMs, which are attended over, and combined
into a dialogue representation that is classified into one of the 4 classes.

Dialogue Representation For each turn of the
conversation we use separate turn encoders and
turn attention mechanisms and concatenate the
final representations. So for a dialogue of k
turns, we end up with a dialogue vector D =
[T1, T2, T3, ..., Tk]. This representation was cho-
sen as the dialogue length was fixed to 3, but in a
variable turn number setting, an LSTM could be
utilized to create the final dialogue representation.

Emotion Classification The representation of
dialogue D is fed into a softmax layer in order to
estimate the probability distribution over the four
possible emotion classes.

5 Baselines

Dialogue-level LSTM The main baseline model
we compare performance to is the one provided
by the task organizers. The system consists of
one LSTM encoder, which encodes all turns in the
conversation in the same sequence, separated by
an end-of-turn token. We show the performance
of the baseline given the provided preprocessing
script by the organizers. In addition, we include
the results of the baseline model using our custom
preprocessor.

Dialogue-level TF-IDF with no added features
For comparison with the dialogue-level LSTM, we
include the performance of a SVM model with
stochastic gradient descent. As input we use TF-
IDF features computed over all turns. We encode
the entire dialogue into a vector of the top 5k fea-
tures.

Dialogue-level TF-IDF with added features In
order to investigate the effect of additional infor-
mation beyond TF-IDF features, we compute the
ratio of words that are 1) elongated and 2) capi-
talized at the dialogue-level. In addition, we com-
pute the average embeddings of the emojis (Eisner
et al., 2016) occurring in the dialogue and concate-
nate all features with the dialogue level TF-IDF
features.

Turn-level TF-IDF with no added features As
our main system is a turn encoder, for comparison
we also include the performance of an SVM clas-
sifier using stochastic gradient descent. using turn
level TF-IDF vectors, concatenated into a final di-
alogue representation.

Turn-level TF-IDF with added features In or-
der to quickly investigate the effect of additional
information at the turn level, we compute the same
features as mentioned earlier: 1) the ratio of words

171

that are capitalized in a given turn, 2) the ratio of
words that are elongated, and 3) the average em-
beddings of the emojis (Eisner et al., 2016) occur-
ring in a given turn. All features are concatenated.

6 Setup and Results

In addition to our proposed system that is de-
scribed in Section 4 (BILSTM-ATT) and the base-
lines in Section 5, we also report results for
two other variants of BILSTM-ATT. The first
model (BILSTM-ATT-SHARED) shares weights
between the RNNs, ie. we encode all turns in-
dividually with the same BiLSTM, and a model
that simply encodes the entire dialogue as a single
turn (BILSTM-ATT-DIA). We train the models
with BiLSTM hidden state size of 256, a dropout
rate between the LSTM layer and attention layer
of 0.5 , a batch size of 200, and we use a word
embedding dimension of 200. We optimize using
the ADADELTA algorithm (Zeiler, 2012) with a
learning rate of 1.0, ρ = 0.95 and ε = 10−6.

System Micro F1 Precision Recall
LSTM 0.5613 0.4743 0.6862
DIALOGUE-TFIDF 0.5528 0.6202 0.4986
DIALOGUE-TFIDF-ADDED 0.6064 0.7127 0.5276
TURN-TFIDF 0.5918 0.6394 0.5507
TURN-TFIDF-ADDED 0.6955 0.7632 0.6388
BILSTM-ATT 0.7340 0.7132 0.7560
BILSTM-ATT-SHARED 0.7243 0.6715 0.7861
BILSTM-ATT-DIA 0.6789 0.6039 0.7752

Table 1: The table shows the results of our models on
the EmoContext shared task test set.

Our results are shown in Table 1. From the re-
sults we can observe that our proposed attentive
turn-level BiLSTM outperforms all baselines, in-
cluding the task organizers LSTM model, with a
Micro F1 score of 0.7340. What is interesting
to note is that almost all of our proposed sim-
ple SVM baselines also outperforms the baseline
LSTM, with even TURN-TFIDF-ADDED by a sig-
nificant margin. In general we see that encoding
the dialogue on the turn level achieves better per-
formance than its dialogue level counterparts.

7 Discussion

We saw that in all cases, encoding information at
the turn level led to improvements in classifier per-
formance over the dialogue level encoding. This
observation is in line with work that exists trying
to encode conversational context beyond the sin-
gle turn or the dialogue level (Majumder et al.,

Emotion class Micro F1 Precision Recall
BILSTM-ATT

ANGRY 0.751 0.686 0.829
HAPPY 0.692 0.721 0.666
SAD 0.757 0.742 0.772

BILSTM-ATT-DIA

ANGRY 0.699 0.590 0.859
HAPPY 0.648 0.601 0.704
SAD 0.687 0.687 0.760

Table 2: F1, precision and recall scores for each of
the emotion classes for two of our proposed models,
BILSTM-ATT and BILSTM-ATT-DIA

2019; Webb et al., 2005). In addition, in the re-
sults shown in Table 1, we can observe that the di-
alogue level attention LSTM achieves a high recall
but low precision. In contrast, the differences in all
metrics for our proposed model are much smaller
and more balanced. This suggests that without the
turn level encoding, the classifier becomes more
biased towards a specific class. In Table 2, we
show the scores of the individual emotion classes
for our turn and dialogue-level models. We can
see that across all classes the models have a harder
time when it comes to classifying dialogues la-
beled as Happy, suggesting that the happy conver-
sations might have a tendency to be more neutral
in language, resulting in a higher mislabelling rate
with the Other class. This becomes more apparent
when inspecting the data itself. What is also note-
worthy is that the BILSTM-ATT-SHARED, which
shared a turn encoder between turns, achieves a
lower F1 score than BILSTM-ATT, which used
separate turn encoders. This could indicate that
the different turns carry different weights in the
context when it comes to determining the senti-
ment of the most recent speaker.

8 Conclusion

Overall, our very straight forward model shows
the important effect that encoding turn level infor-
mation separately has when it comes to classifying
dialogues. Using the entire dialogue with an end-
of-turn token, we see that the model is not able
to capture important features of individual turns
that might affect the overall sentiment of the con-
versation. Our results also shows that, although
less sophisticated, simpler and more interpretable
models does also give decent results, compared to
the LSTM baseline model.

172

References
Foteini Agrafioti, Dimitris Hatzinakos, and Adam K

Anderson. 2012. Ecg pattern analysis for emotion
detection. IEEE Transactions on Affective Comput-
ing, 3(1):102–115.

Hua Ai, Diane J Litman, Kate Forbes-Riley, Mihai Ro-
taru, Joel Tetreault, and Amruta Purandare. 2006.
Using system and user performance features to im-
prove emotion detection in spoken tutoring dialogs.
In Ninth International Conference on Spoken Lan-
guage Processing.

Fernando Alonso-Martin, Maria Malfaz, Joao Se-
queira, Javier Gorostiza, and Miguel Salichs. 2013.
A multimodal emotion detection system during
human–robot interaction. Sensors, 13(11):15549–
15581.

Jeremy Ang, Rajdip Dhillon, Ashley Krupski, Eliza-
beth Shriberg, and Andreas Stolcke. 2002. Prosody-
based automatic detection of annoyance and frustra-
tion in human-computer dialog. In Seventh Interna-
tional Conference on Spoken Language Processing.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017a. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017b. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N Chang, Sungbok Lee, and Shrikanth S
Narayanan. 2008. Iemocap: Interactive emotional
dyadic motion capture database. Language re-
sources and evaluation, 42(4):335.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Richard Craggs and Mary McGee Wood. 2004. A cat-
egorical annotation scheme for emotion in the lin-
guistic content of dialogue. In Tutorial and Re-
search Workshop on Affective Dialogue Systems,
pages 89–100. Springer.

Laurence Devillers, Ioana Vasilescu, and Lori Lamel.
2002. Annotation and detection of emotion in a
task-oriented human-human dialog corpus. In pro-
ceedings of ISLE Workshop.

Sidney K Dmello and Arthur Graesser. 2010. Multi-
modal semi-automated affect detection from conver-
sational cues, gross body language, and facial fea-
tures. User Modeling and User-Adapted Interac-
tion, 20(2):147–187.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. CoRR, abs/1609.08359.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1615–1625. Association for Computa-
tional Linguistics.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Devamanyu Hazarika, Soujanya Poria, Amir Zadeh,
Erik Cambria, Louis-Philippe Morency, and Roger
Zimmermann. 2018. Conversational memory net-
work for emotion recognition in dyadic dialogue
videos. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), volume 1, pages
2122–2132.

Jackson Liscombe, Giuseppe Riccardi, and Dilek
Hakkani-Tur. 2005. Using context to improve emo-
tion detection in spoken dialog systems.

Navonil Majumder, Soujanya Poria, Devamanyu Haz-
arika, Rada Mihalcea, Alexander Gelbukh, and Erik
Cambria. 2019. Dialoguernn: An attentive rnn for
emotion detection in conversations. In proceedings
of AAAI Conference.

Björn Schuller, Michel Valstar, Florian Eyben, Gary
McKeown, Roddy Cowie, and Maja Pantic. 2011.
Avec 2011–the first international audio/visual emo-
tion challenge. In Affective Computing and Intelli-
gent Interaction, pages 415–424. Springer.

Nick Webb, Mark Hepple, and Yorick Wilks. 2005.
Dialogue act classification based on intra-utterance
features. In Proceedings of the AAAI Workshop on
Spoken Language Understanding, volume 4, page 5.
Citeseer.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

173

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

174

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 175–179
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ConSSED at SemEval-2019 Task 3: Configurable Semantic and Sentiment
Emotion Detector

Rafał Poświata
National Information Processing Institute

al. Niepodległości 188b, 00-608 Warsaw, Poland
rafal.poswiata@opi.org.pl

Abstract

This paper describes our system participating
in the SemEval-2019 Task 3: EmoContext:
Contextual Emotion Detection in Text. The
goal was to for a given textual dialogue, i.e. a
user utterance along with two turns of context,
identify the emotion of user utterance as one
of the emotion classes: Happy, Sad, Angry or
Others. Our system: ConSSED is a configu-
rable combination of semantic and sentiment
neural models. The official task submission
achieved a micro-average F1 score of 75.31
which placed us 16th out of 165 participating
systems.

1 Introduction

Emotion detection is crucial in developing a
“smart” social (chit-chat) dialogue system (Chen
et al., 2018). Like many sentence classification
tasks, classifying emotions requires not only un-
derstanding of single sentence, but also capturing
contextual information from entire conversations.
For the competition we were invited to create a
system for emotion detection of user utterance
from short textual dialogue i.e. a user utterance
along with two turns of context (Chatterjee et al.,
2019b). The number of emotion classes has been
limited to four (Happy, Sad, Angry and Others).

The rest of the paper is organized as follows.
Section 2 briefly shows the related work. Section
3 elaborates on our approach. It shows preproces-
sing step and architecture of our system. Section 4
describes the data set, used word embeddings and
hyper-parameters, adopted research methodology
and experiments with results. Finally, Section 5
concludes our work.

2 Related Work

Detection of emotions in dialogues can be divided
into two types: based only on the text of the dialo-

gue (Chen et al., 2018) and based on many chan-
nels (video, speech, motion capture of a face, text
transcriptions) (Busso et al., 2008). Regardless of
the type, the most common solution is the use of
neural networks, in particular variations of Recur-
rent Neural Networks, such as LSTMs (Hochreiter
and Schmidhuber, 1997), BiLSTMs (Schuster and
Paliwal, 1997) and GRUs (Cho et al., 2014) or Co-
nvolutional Neural Networks (Krizhevsky et al.,
2012). Our solution uses LSTMs and BiLSTMs
and is based on the ideas from SS-BED system
(Chatterjee et al., 2019a).

3 Our Approach

Figure 1 provides an overview of our approach.
We wanted to create a system that would bene-
fit from the advantages of semantic and sentiment
embeddings (like SS-BED). At the same time,
it would be easily configurable both in terms of
the selection of parameters/network architecture
as well as the change of applied embeddings, both
static and dynamic. In the next subsections, we
describe in details our approach.

3.1 Preprocessing

For the preprocessing, we adjusted the ekphrasis
tool (Baziotis et al., 2017). We use this tool for
tokenization and to do the following:

• Normalize URLs, emails, per-
cent/money/time/date expressions and
phone numbers.

• Annotate emphasis and censored words and
phrases with all capitalized letters.

• Annotate and reduce elongated (e.g. Whaaaat
becomes <elongated> What) and repeated
words (e.g. !!!!!!!!! becomes <repeated> !).

175

Text

Preprocessing

Semantic

Embedding
LSTM / BiLSTM LSTM / BiLSTM

Angry

Text

Preprocessing

Sentiment

Embedding
LSTM / BiLSTM LSTM / BiLSTM

Others Class
Regularizer

Semantic Recurrent Network (SemRN)

Sentiment Recurrent Network (SenRN)

utterances

Softmax

Fully Connected
Network

Sad

Happy

Others

Figure 1: High level architecture of Configurable Semantic and Sentiment Emotion Detector (ConSSED).

• Unpack hashtags (e.g. #GameTime becomes
<hashtag> game time </hashtag>) and con-
tractions (e.g. “didn’t” becomes “did not”).

• Simplify emoticons e.g. :-] is changed to :).

We also prepare and apply dictionaries with com-
mon abbreviations and mistakes to reduce vocabu-
lary size and deal with Out of Vocabulary (OOV)
issue.

3.2 Model
Our model contains four parts: Semantic Recur-
rent Network (SemRN), Sentiment Recurrent Ne-
twork (SenRN), Fully Connected Network and
Others Class Regularizer. SemRN and SenRN are
independent of each other and have similar archi-
tecture: Text Preprocessing, suitable Word Em-
bedding and 2-layer LSTM or bidirectional LSTM
(BiLSTM) - which is configurable. Outputs of
those two modules are concatenated and become
input for Fully Connected Network. This network
has one hidden layer and Softmax layer which re-
presents probabilities of classes. The last element
of our model is Others Class Regularizer (used
only during the prediction on validation/test set).

3.3 Others Class Regularizer
This component was created due to the fact that
a real-life distribution is about 4% for each of
Happy, Sad and Angry class and the rest is Others
class. This component works by grouping records
into three sets, depending on whether they are pre-
dicted as Happy, Sad or Angry. Next, for all of

these sets, it checks if there are more representa-
tives than the assumed percentage of all records.
If yes, it increases the probability for Others class
by 0.01 (independently in each set) until it reaches
the number of representatives lower than the as-
sumed percentage. The assumed percentage value
was defined as 5.5% taking into account the vali-
dation set.

4 Experiments and Results

4.1 Data

In our work on the system, we used only official
data sets made available by the organizers. Ho-
wever, we noticed that there are cases when co-
nversations occur twice, but with different labels.
We have removed these records and received sets
which are shown in Table 1.

Number of records
train 29977
validation 2755
test 5509

Table 1: Data sets statistics.

4.2 Word Embeddings

For our experiments, we chose five word embed-
dings: three semantic and two sentiment. Se-
mantic embeddings are GloVe (Pennington et al.,
2014) trained on Twitter data1, Word2Vec (Mi-

1https://nlp.stanford.edu/projects/
glove/

176

Hyper-parameter name Possible values
SEM LSTM DIM [200, 230, 256, 280, 300, 320]
SEM FIRST BIDIRECTIONAL [False, True]
SEM SECOND BIDIRECTIONAL [False, True]
SEN LSTM DIM [200, 230, 256, 280, 300, 320]
SEN FIRST BIDIRECTIONAL [False, True]
SEN SECOND BIDIRECTIONAL [False, True]
HIDDEN DIM [100, 128, 150]
LSTM DIM [200, 230, 256, 280, 300, 320]
BATCH SIZE [32, 64, 80, 100, 128]
DROPOUT (0.1, 0.5)
RECURRENT DROPOUT (0.1, 0.5)
LEARNING RATE (0.001, 0.004)
OTHERS CLASS WEIGHT (1.0, 3.0)

Table 2: The names of hyper-parameters with possible values.

kolov et al., 2013) with ten affective dimensions
trained by NTUA-SLP team as part of their solu-
tion for SemEval2018 (Baziotis et al., 2018)2 (we
call it NTUA 310) and ELMo (Peters et al., 2018)
trained on 1 Billion Word Benchmark3. As sen-
timent embeddings we chose Sentiment-Specific
Word Embedding (SSWE) (Tang et al., 2014)4 and
Emo2Vec (Xu et al., 2018)5.

4.3 Hyper-parameters Search
In order to tune the hyper-parameters of our
model, we adopt a Bayesian optimization by
using Hyperopt library6. The names of hyper-
parameters with possible values (list or range)
are shown in Table 2. Parameters with SEM
prefix apply to the Semantic Recurrent Network,
and with SEN prefix to the Sentiment Recur-
rent Network. LSTM DIM parameter is for BiL-
STM baseline systems. In order to cope with the
differences in the distribution of classes in the
training set and the validation and test sets, as
well as the previously mentioned actual distribu-
tion of emotion classes in relation to the Others
class, apart from the use of Others Class Regula-
rizer we also used class weight for Others class
(OTHERS CLASS WEIGHT parameter).

4.4 Methodology
We train all models using the training set and tune
the hyper-parameters using the validation set. Due
to the time frame of the competition, we limited
the search of hyper-parameters to 10 iterations for

2https://github.com/cbaziotis/
ntua-slp-semeval2018

3https://tfhub.dev/google/elmo/2
4http://ir.hit.edu.cn/˜dytang/
5https://github.com/pxuab/emo2vec_

wassa_paper
6https://hyperopt.github.io/hyperopt/

each model. Then, for the best parameters (found
in a limited number of iterations), we once again
learned this model with a training and validation
set. The final model validation took place on the
test set. During all experiments, we used the pre-
processing described in section 3.1.

4.5 Experiments

The results of our experiments are shown in Table
3. We have divided them into two stages: valida-
tion of the baseline systems and our solution.

For the first stage, we used the 2-layer bidirec-
tional LSTM model (BiLSTM) with all the word
embedding presented in section 4.2 and compa-
red this approach to the baseline model prepared
by the organizers (Baseline). The model using
NTUA 310 embedding (73.34) performed best,
compared to the Baseline, we have an improve-
ment of about fifteen percent. The second best
model was a solution using ELMo embedding
(72.42). From sentiment embeddings the best was
Emo2Vec (71.18).

The second stage was focused on the validation
of the ConSSED model. In this experiment, we
trained six models to verify all possible pairs of
semantic embedding-sentiment embedding. The
results show that the use of the ConSSED model
allows better results than corresponding baseline
systems. As we could have guessed from the first
stage, the best was a combination of NTUA 310
and Emo2Vec (75.31), which was our official so-
lution during the competition. In parentheses, we
presented the results without the use of Others
Class Regularizer. As we can see, the use of this
component improves the results but only slightly.
In addition, after the competition, we have rerun
the search for hyper-parameters (this time incre-
asing the number of iterations) for the ConSSED-

177

Happy F1 Sad F1 Angry F1 Avg. F1
Baseline 54.61 61.49 59.45 58.61
BiLSTM-GloVe 59.62 67.16 73.64 67.39
BiLSTM-ELMo 67.99 74.69 74.35 72.42
BiLSTM-NTUA 310 70.29 77.21 73.07 73.34
BiLSTM-SSWE 66.34 71.54 69.07 68.86
BiLSTM-Emo2Vec 69.48 73.27 70.93 71.18
ConSSED-GloVe-SSWE 68.48 (67.86) 74.91 (69.69) 76.54 (74.00) 73.30 (70.62)
ConSSED-GloVe-Emo2Vec 68.46 (68.46) 77.51 (77.51) 73.21 (71.39) 72.90 (72.18)
ConSSED-ELMo-SSWE 69.27 (69.16) 79.30 (79.30) 74.88 (73.32) 74.27 (73.60)
ConSSED-ELMo-Emo2Vec 71.30 (71.30) 76.05 (76.05) 76.67 (76.50) 74.69 (74.68)
ConSSED-NTUA 310-SSWE 70.69 (70.69) 78.13 (78.13) 75.54 (74.92) 74.66 (74.45)
ConSSED-NTUA 310-Emo2Vec 69.69 (69.69) 78.39 (78.39) 77.67 (76.95) 75.31 (75.10)
*ConSSED-NTUA 310-Emo2Vec 72.66 (72.66) 79.60 (79.60) 77.80 (76.83) 76.64 (76.31)

Table 3: Results of our experiments on the test set. The values without the use of Others Class Regularizer are
shown in parentheses. Bolded model indicate our official solution in the competition. Experiment with an asterisk
was carried out after the end of the competition.

Competition Model Best Model
Avg. F1 75.31 76.64
SEM LSTM DIM 320 320
SEM FIRST BIDIRECTIONAL True True
SEM SECOND BIDIRECTIONAL False False
SEN LSTM DIM 256 280
SEN FIRST BIDIRECTIONAL True True
SEN SECOND BIDIRECTIONAL True True
HIDDEN DIM 150 150
BATCH SIZE 100 100
DROPOUT 0.30328 0.34468
RECURRENT DROPOUT 0.31007 0.29362
LEARNING RATE 0.00338 0.00333
OTHERS CLASS WEIGHT 2.41235 2.63698

Table 4: Comparison between two ConSSED-NTUA 310-Emo2Vec models: official Competition Model and
Best Model trained after the end of the competition.

NTUA 310-Emo2Vec model, which give us a
better result than our official competition result
(76.64). Hyper-parameters found for ConSSED-
NTUA 310-Emo2Vec models and differences be-
tween them are shown in Table 4.

4.6 Competition Results
The best result we have obtained on official le-
aderboard is equal to 75.31 according to micro-
averaged F1 score. Our solution is ranked 16th
out of 165 participating systems.

5 Conclusion

In this paper, we present Configurable Semantic
and Sentiment Emotion Detector (ConSSED) - our
system participating in the SemEval-2019 Task 3.
ConSSED has achieved good results, and subse-
quent studies show that it can achieve even bet-
ter which results from a further search for hyper-
parameters. We think that the use of fine-tuned
ELMo model (e.g. by Twitter data) would improve
the result even more. In addition, we would like

to integrate our system with the BERT embedding
(Devlin et al., 2018).

For developing our system we used Keras7

with TensorFlow8 as backend. We make our
source code available at https://github.
com/rafalposwiata/conssed.

References
Christos Baziotis, Athanasiou Nikolaos, Alexandra

Chronopoulou, Athanasia Kolovou, Georgios Pa-
raskevopoulos, Nikolaos Ellinas, Shrikanth Naray-
anan, and Alexandros Potamianos. 2018. NTUA-
SLP at semeval-2018 task 1: Predicting affec-
tive content in tweets with deep attentive rnns and
transfer learning. In Proceedings of The 12th
International Workshop on Semantic Evaluation,
SemEval@NAACL-HLT, New Orleans, Louisiana,
June 5-6, 2018, pages 245–255.

Christos Baziotis, Nikos Pelekis, and Christos Doul-
keridis. 2017. Datastories at semeval-2017 task
7https://keras.io/
8https://www.tensorflow.org/

178

4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Ka-
zemzadeh, Emily Mower Provost, Samuel Kim, Je-
annette Chang, Sungbok Lee, and Shrikanth Naray-
anan. 2008. Iemocap: Interactive emotional dyadic
motion capture database. Language Resources and
Evaluation, 42:335–359.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Sheng-Yeh Chen, Chao-Chun Hsu, Chuan-Chun Kuo,
Ting-Hao K. Huang, and Lun-Wei Ku. 2018. Emo-
tionlines: An emotion corpus of multi-party conver-
sations. CoRR, abs/1802.08379.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kri-
stina Toutanova. 2018. Bert: Pre-training of deep bi-
directional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep co-
nvolutional neural networks. In Proceedings of the
25th International Conference on Neural Informa-
tion Processing Systems - Volume 1, NIPS’12, pages
1097–1105, USA. Curran Associates Inc.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed represen-
tations of words and phrases and their compositio-
nality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Na-
tural Language Processing (EMNLP), pages 1532–
1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word re-
presentations. In Proc. of NAACL.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Si-
gnal Processing, 45:2673–2681.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Me-
eting of the Association for Computational Lingu-
istics (Volume 1: Long Papers), pages 1555–1565,
Baltimore, Maryland. Association for Computatio-
nal Linguistics.

Peng Xu, Andrea Madotto, Chien-Sheng Wu, Ji Ho
Park, and Pascale Fung. 2018. Emo2vec: Lear-
ning generalized emotion representation by multi-
task training. In Proceedings of the 9th Workshop
on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis, pages 292–298.
Association for Computational Linguistics.

179

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 180–184
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CX-ST-RNM at SemEval-2019 Task 3: Fusion of Recurrent Neural
Networks Based on Contextualized and Static Word Representations for

Contextual Emotion Detection

Michał Perełkiewicz
National Information Processing Institute
al. Niepodległości 188b, Warsaw, Poland

michal.perelkiewicz@opi.org.pl

Abstract

In this paper, I describe a fusion model combi-
ning contextualized and static word represen-
tations for approaching the EmoContext task
in the SemEval 2019 competition. The mo-
del is based on two Recurrent Neural Ne-
tworks, the first one is fed with a state-of-the-
art ELMo deep contextualized word represen-
tation and the second one is fed with a sta-
tic Word2Vec embedding augmented with 10-
dimensional affective word feature vector. The
proposed model is compared with two base-
line models based on a static word representa-
tion and a contextualized word representation,
separately. My approach achieved officially
0.7278 microaveraged F1 score on the test da-
taset, ranking 47th out of 165 participants.

1 Introduction

The EmoContext task in the Semantic Evaluation
2019 (SemEval 2019) competition focuses on the
classification of textual dialogues i.e. a user short
conversation with a bot, into ’happy’, ’sad’, ’an-
gry’ and ’others’ sentiment classes. Understan-
ding emotions in textual conversations is a chal-
lenging task mainly because of an absence of
others expression channels such as voice modula-
tions and facial expressions usually accompanying
a people conversation. In textual conversation de-
termining the emotion of a given statement is very
dependent on the context of previous statements.

A sentiment detection field has been thoro-
ughly analysed. The first attempts to manage this
problem included mainly extracting hand-crafted
features and knowledge-based systems (Balahur
et al., 2011; Chaumartin, 2007; Joulin et al., 2016).

Neural machine learning approaches, especially
Recurrent Neural Networks (RNN) like LSTM
and GRU and Convolutional Neural Networks
(CNN), are effective tools for detecting sentiment
from text and were widely used in this area (Tang

et al., 2015; Liu et al., 2016; dos Santos and Gatti,
2014). Except that, one of the approaches employs
Hierarchical Attention Networks (HAN) to deter-
mining emotions from textual dialogues data (Sa-
xena et al., 2018).

In this work, I propose a deep neural fusion mo-
del that combines two Bidirectional LSTM Recur-
rent Neural Networks for detecting sentiments in
textual dialogues. I use static Word2Vev word re-
presentation and a contextualized ELMo word re-
presentation to create a unified model. This archi-
tecture of the model is inspired by the work pre-
sented in (Gupta et al., 2017).

The rest of the paper is structured as follows.
Section 2 describes the proposed approach and
word representations. The experiments and results
are presented and discussed in Section 3. Finally,
in the last section, the conclusions are presented.

2 Approach

The following section provides details on prepro-
cessing I used to normalize textual data provi-
ded by the task organizers, the method to ma-
nage unbalanced datasets problem and describes
the model architecture and used word embeddings.

2.1 Preprocessing
To clean and normalize textual data, I adapt the ek-
phrasis text processing library1 with some chan-
ges. It was designed with a focus on text from
social networks, such as Twitter or Facebook. It
provides tools to process text, such as tokeniza-
tion, word normalization, word segmentation and
spell correction, using word statistics from 2 big
corpora (English-language Wikipedia and Twit-
ter)(Baziotis et al., 2017).

The ekphrasis preprocessing techniques I used
includes: Twitter-specific tokenization, omitting

1https://github.com/cbaziotis/
ekphrasis

180

special words and phrases (like emails, phone
numbers, nicknames, dates and time, URLs), spell
correction, words annotations (for uppercased, re-
peated, hashtagged and elongated words), redu-
cing emoticons variations by replacing emoticons
expressing similar emotions to the same form (e.g
’:)’ and ’:-)’ emoticons are both mapped to the
〈happy〉 mark).

To better normalize texts and suit the tool to
EmoContext datasets, I did following modifica-
tions in the text processing library:

– adding a new dictionary to expand English
contractions (e.g. can’t → can not, co-
uldn’t’ve→ could not have), normalize slang
words (e.g. plz → please) and correct typos
(whhat→ what).

– extending the emoticons dictionary with
emoticons found in the training and the te-
sting corpora to reduce them to the basic
form.

– adding new map for emoticons expressing
strong emotions by adding the very word be-
fore them (e.g ’:)))))))’ → very 〈happy〉)

– changing emoticons mapping by adding the
prefix ’emo ’ to emotion marks2, like ’:)’:
’〈emo happy〉’.

2.2 Altering the Training Balance

According to information pointed out by the task
organizers on the EmoContext web page3, provi-
ded datasets are unbalanced. Training data consi-
sts of about 5000 (about 17%) samples each from
’angry’, ’sad’, ’happy’ class, and about 15000
(about 50%) samples from ’others’ class, whereas,
both the development dataset and the test dataset
sets have a real-life distribution, which is about 4%
each of ’angry’, ’sad’, ’happy’ class and the rest is
’others’ class.

To deal with unbalanced datasets and avoid
to bias model towards the ’other’ class, I cre-
ated two derivative training datasets: the binary
one, by mapping ’happy’, ’sad’, ’angry’ labels to
the one ’sentiment’ label and left the ’others’ la-
bel unchanged. This binary set contains about
50% of dialogues covey some sentiment and about

2only used by the contextualized embedding
3https://competitions.codalab.

org/competitions/19790#learn_the_
details-data-set-format

50% dialogues conveys no sentiment (the original
’other’ label). The second derivative dataset con-
tains dialogues labelled one of the following la-
bels: ’happy’, ’sad’, ’angry’. So, this dataset con-
tains examples originally conveys some sentiment.
Classes distributions of these two derivative data-
sets are more balanced. These derivative datasets
are used to learn a two-stage model based on two
Recurrent Neural Networks as described in Sub-
section 2.4.

Furthermore, I extend the training dataset by
carrying 1753 examples from the development da-
taset and left 1000 examples to valid my model.

2.3 Word Embeddings
Word embeddings are representations of words as
n-dimensional vectors, previously learned on large
text corpus. The proposed model is fed both a sta-
tic word embedding and a contextualized (dyna-
mic) word embedding.

Static Word Embedding Static word embed-
dings map the same word to the same vector, in-
dependently of the word context. The advantages
of static word embeddings are easy interpretability
and capturing semantic properties of words (em-
bedding vectors for words semantically similar are
similar as well). However, they suffer from some
problems, for example a meaning conflation defi-
ciency – the inability to discriminate among diffe-
rent meanings of a word.

To embed textual data to a static representa-
tion I adapt pretrained 300-dimensional Word2Vec
word embedding vector augmented with a 10-
dimensional vector of word affective features pro-
posed in (Baziotis et al., 2018). It was trained
on the collection of 550 million Twitter messages
preprocessed by the ekphrasis text processing li-
brary. Such very similar preprocessing stage can
better suit EmoContext textual data to this pretra-
ined embedding.

Therefore, the static word embedding I use
maps every sentence in EmoContext datasets to a
310 dimensional n-length list where n is a number
of words in a sentence.

Contextualized Word Embedding As opposed
to static embeddings, contextualized word embed-
dings generate words representation vectors dyna-
mically, depending on the context in which a gi-
ven word appears. They need the whole sentence
to generate words embeddings because of a need
to know the context of each word in a sentence.

181

I employee the Embeddings from Language
Models (ELMo) word embedding, where word
vector representations are learned functions of the
internal states of a deep bidirectional language
model (biLM) (Peters et al., 2018). I use official
available, pretrained ELMo original model4 which
was learned on the dataset of 5.5 billion tokens
consisting of Wikipedia (1.9 billion) and all of the
monolingual news crawl data from WMT 2008-
2012 (3.6 billion). To vectorize words, I get the
state of the last biLM layer built on 1024 neurons,
therefore the embedding vectors are the length of
1024 elements. To better suit this embedding to
the EmoContext datasets, I fine-tuned the ELMo
model by learning pretrained biLM. For this pur-
pose, I used all utterances from the datasets provi-
ded by the organizers.

To generate more context-aware representations
of words, for each dialogue in the datasets I mer-
ged the previous one or two utterances with the
second or the third utterance in a dialogue, respec-
tively. Such a context extending allows generating
vector representations for two last utterances ta-
king into account the context of the previous utte-
rances in whole dialogue. For a first utterance, I
use only the first utterance without any extension.

2.4 Model Architecture
Next, I present in detail the submitted model.
My final model is based on the fusion of two
deep, two-layer Bidirectional LSTM Neural Ne-
tworks with Attention Mechanism. First one con-
sumes 310-dimensional vectors and produces a
250-dimensional encoding as a averaged Bidirec-
tional LSTM network states over time. The second
one consumes 1024-dimensional vectors and pro-
duces a 300-dimensional encoding vector, as in the
previous case, as a averaged Bidirectional LSTM
network states over time. Then these two enco-
dings are merged and are consumed by a Fully
Connected layer with 120 neurons. The activation
function of this layer is a softmax function to get
probabilities of output classes. The architecture is
depicted in Figure 1.

To avoid overfitting during learning the model,
I use the following regularization techniques:

– Dropout inputs to BiLSMT networks, for
each layer.

– Dropout input to Fully Connected Layer.
4https://allennlp.org/elmo

Figure 1: The proposed model architecture.

– Recurrent Dropout to dropout connections
between the recurrent units in Recurrent Ne-
tworks for each layer.

I learnt two models based on described archi-
tecture separately using datasets describing in Sec-
tion 2.2. These two networks are stacked and the
prediction process runs as follows:

– the general model (called sent-others ne-
twork) predicts if a dialogue conveys some
sentiment or not. This model predicts one
of two labels: ’sentiment’ or ’others’ to input
data.

– if the general model has predicted the ’senti-
ment’ label, the input data is carried forward
to the second model (called happy-sad-angry
network). The responsibility of this model is
to determine the sentiment of an input data
and put one of three labels: ’angry’, ’sad’,
’happy’.

After this two-stage classification, the model la-
bels input data as ’happy’, ’sad’, ’angry’, ’others’
example.

Furthermore, because of different class distri-
butions in the datasets, I added an parameter T
to the sent-others network to fit the model to de-
velopment/test datasets classes distribution. This
parameter specifies the minimum value that the
softmax probability for ’sentiment’ class has to
achieve to label input data as ’sentiment’. For pre-
dicting on the test dataset, I set the parameter T to
0.75, which was the value that achieved the best
result on the validation dataset.

182

Parameter Value Tested Valuessent-others happy-sad-angry

LAYERS NUMBER 2 2 2
NEURONS NUMBER 300, 300 250, 250 200, 200; 250, 250; 300, 300
BI-LSTM INPUT DROPOUT 0.3, 0.5 0.3, 0.5 0.2, 0.5; 0.3, 0.5
RECURRENT DROPOUT 0.3, 0.5 0.3, 0.5 0.2, 0.5; 0.3, 0.5
FULL CONNECTED LAYER DROPOUT 0.3 0.3 0.3, 0.4, 0.5
FULL CONNECTED LAYER SIZE 120 120 100, 120
BATCH SIZE 32 32 32
THRESHOLD T 0.75 - 0.25, 0.55, 0.75

Table 1: The parameters of the proposed model.

Model Validation(1000) Test

sent-others happy-sad-angry 2-stage sent-others happy-sad-angry 2-stage

ELMo 0.9456 0.9700 0.7511 0.9517 0.9447 0.7192
Word2Vec-310 0.9534 0.9641 0.7500 0.9568 0.9351 0.7180

Word2Vec-310 + ELMo 0.9542 0.9672 0.7558 0.9537 0.9422 0.7278

Table 2: Microaveraged F1 score of baselines models and the fusion model on the validation and the test datasets.

Table 1 presents tested model parameters and
the best parameters set for the validation dataset.

3 Results

Table 2 presents microaveraged F1 score achieved
on the test and the validation datasets for the pro-
posed model containing also F1 scores for the first
(sent-onthers network) and the second (happy-sad-
angry network) classification stages. I compared
the proposed fusion model against 2 baselines ba-
sed on the static and contextualized models used
in the proposed method, separately. Therefore the
first baseline model uses 2-layer Bi-LSTM Neural
Network which is learned on static, Word2Vec with
affective features word representation, and the se-
cond one is a baseline model 2-layer BI-LSTM
Neural Network as well but is learned on conte-
xtualized ELMo word representation embedding.
The results of such baseline models allow better
insight into the performance of the proposed fu-
sion model.

The best results for 2-stage classification for the
test dataset achieved the fusion model (0.7558 for
validation and 0.7278 for the test dataset) despite
the worse results in the sent-others and the happy-
sad-angry classification stages. For the validation
dataset, the proposed fusion model achieved the
best score as well. The best result for 2-stage clas-
sification was better by about 1 percent from base-
lines results.

4 Conclusion

In this paper, we have presented the fusion model,
a sentiment classifier that combines the features of
static and contextualized word embedding. This
approach achieved officially 0.7278 F1-score, ran-
king 47th out of 165 participants.

My results show that combining word embed-
dings can improve sentiment detection models ba-
sed only on one, static or contextualized, embed-
ding. The two-stage classification model can bet-
ter insight to classification process and paramete-
rized each stage separately.

References
Alexandra Balahur, Jesús M. Hermida, and Andrés

Montoyo. 2011. Detecting implicit expressions of
sentiment in text based on commonsense know-
ledge. In Proceedings of the 2Nd Workshop on
Computational Approaches to Subjectivity and Sen-
timent Analysis, WASSA ’11, pages 53–60, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Christos Baziotis, Nikos Athanasiou, Alexandra Chro-
nopoulou, Athanasia Kolovou, Georgios Paraske-
vopoulos, Nikolaos Ellinas, Shrikanth Narayanan,
and Alexandros Potamianos. 2018. NTUA-SLP at
semeval-2018 task 1: Predicting affective content in
tweets with deep attentive rnns and transfer learning.
CoRR, abs/1804.06658.

Christos Baziotis, Nikos Pelekis, and Christos Doul-
keridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of

183

the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

François-Régis Chaumartin. 2007. Upar7: A
knowledge-based system for headline sentiment tag-
ging. In Proceedings of the Fourth Internatio-
nal Workshop on Semantic Evaluations (SemEval-
2007), pages 422–425, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Umang Gupta, Ankush Chatterjee, Radhakrishnan Sri-
kanth, and Puneet Agrawal. 2017. A sentiment-and-
semantics-based approach for emotion detection in
textual conversations. CoRR, abs/1707.06996.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. CoRR, abs/1607.01759.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial
Intelligence, IJCAI’16, pages 2873–2879. AAAI
Press.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word re-
presentations. CoRR, abs/1802.05365.

Cicero dos Santos and Maira Gatti. 2014. Deep co-
nvolutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers, pages 69–78, Dublin,
Ireland. Dublin City University and Association for
Computational Linguistics.

Rohit Saxena, Savita Bhat, and Niranjan Pedanekar.
2018. Emotionx-area66: Predicting emotions in dia-
logues using hierarchical attention network with se-
quence labeling. In Proceedings of the Sixth Inter-
national Workshop on Natural Language Processing
for Social Media, pages 50–55, Melbourne, Austra-
lia. Association for Computational Linguistics.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1422–1432, Lisbon, Portu-
gal. Association for Computational Linguistics.

184

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 185–189
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ParallelDots at SemEval-2019 Task 3: Domain Adaptation with feature
embeddings for Contextual Emotion Analysis

Akansha Jain1

Paralledots, Inc.
Ishita Aggarwal1

Paralledots, Inc.

1akansha, ishita, ankit@paralleldots.com

Ankit Narayan Singh1

Paralledots, Inc.

Abstract

This paper describes our proposed system &
experiments performed to detect contextual
emotion in texts for SemEval 2019 Task 3. We
exploit sentiment information, syntactic pat-
terns & semantic relatedness to capture diverse
aspects of the text. Word level embeddings
such as Glove, FastText, Emoji along with
sentence level embeddings like Skip-Thought,
DeepMoji & Unsupervised Sentiment Neuron
were used as input features to our architecture.
We democratize the learning using ensembling
of models with different parameters to produce
the final output. This paper discusses compar-
ative analysis of the significance of these em-
beddings and our approach for the task.

1 Introduction

Emotion Classification is more nuanced version
of Sentiment Analysis. While Sentiment Anal-
ysis gives you a general idea about user expe-
rience by categorizing statements into positive
or negative, Emotion Classification extracts spe-
cific attributes about each of these 2 categories.
Contextual Emotion Classification needs to keep
the context of an ongoing conversation to pre-
dict their emotional state and therefore comes with
its own challenges. Detecting emotions has be-
come a crucial part of understanding user gener-
ated content and to generate emotion aware re-
sponses. This paper describes our approach for
SemEval 2019 Task 3: EmoContext. The task is
Emotion Classification in the conversational sce-
nario. Complete details about the task, evalua-
tion and dataset can be found in paper released
by organizers (Chatterjee et al., 2019). We use
various state-of-the-art Machine Learning models
and perform domain adaptation (Pan and Yang,
2010) from their source task to the SemEval Emo-
Context task. Our solution uses multiple types
of feature embeddings viz Skip-Thought vectors

(Kiros et al., 2015), Unsupervised Sentiment Neu-
ron (Radford et al., 2017), DeepMoji’s attention
and last layer (Felbo et al., 2017) embedding along
with Glove (Pennington et al., 2014), Emoji Em-
bedding (Eisner et al., 2016) and FastText (Joulin
et al., 2016). These feature embeddings are passed
to a Deep Learning architecture. We train mul-
tiple models with different hyper-parameters. Fi-
nally, the results from each models are stacked to-
gether in an ensemble (Polikar, 2006). Our main
approach for the literature survey was to look for
similar research work used in previous SemEval
tasks and other published state-of-the-art method-
ologies in the same domain. Infact, SemEval
2018 task of finding Affect in Tweet (Mohammad
et al., 2018) demonstrates how detection of emo-
tion plays an important role in understanding con-
tent as well as its creators. It was helpful to learn
about how various architectures such as Siamese
(Ghosh and Veale, 2018), CNNs (Khosla, 2018)
and Deeply connected LSTMs (Wu et al., 2018)
can be used to effectively learn emotional context
of text. Methodologies such as ensembling (Po-
likar, 2006) and use of diverse features embed-
dings (Duppada et al., 2018) plays an important
role when the data is limited, imbalanced and con-
fusing to classify accurately. In this paper, we dis-
cuss our approach and experiments to solve this
problem. The remainder of this paper is organized
as follows. Section 2 explains the System Descrip-
tion and our analysis. Experiment setup and Re-
sults are discussed in section 3, followed by con-
clusion in the last section.

2 System Description

The following section describes our analysis of
the task and data. We then discuss preprocessing
steps, features used and system design with archi-
tecture flow.

185

Figure 1: For each input sentence, word-level embeddings are passed to Bi-LSTMs, the output is concatenated
and then passed through an LSTM. The sentence-level embeddings are then concatenated with LSTMs output and
passed to the dense layer with softmax. First, the input is classified into others or non-others emotion category, the
latter classified input is then passed to a second 4 class model for final classification.

2.1 Task and Data Analysis
The Data consists of 3 consecutive utterances in
a conversation called turn1, turn2 and turn3. The
task is to classify the emotion of the user on turn3.
There are 4 labels which includes three emotions
viz happy, sad, angry and others is used for emo-
tionless label. After analysing the data we found
some inconsistency like use of slangs (lol, xoxo),
spelling errors(hellooo, frnd) and incomplete sen-
tences. There is also difficulty in determining
emotion because of ambiguity, for ex. I am not
talking to u which can be either interpreted as sad
or angry statement. Another important discovery
shows that every labelled emotion is highly as-
sociated with the emojis used. The major issue
with the data we faced was of class imbalance, 4%
of data belonged to three emotion class and 88%
belonged to the others category, which ultimately
causes confusion between others and each emo-
tion class. Hence, we decided to first classify the
utterances into others or non others, and then fur-
ther the non others into the 4 classes.

2.2 Pre Processing
We avoided removing stop words and lemmatiza-
tion since it results in loss of information. We fol-
lowed standard pre-processing steps: 1) All three
utterances are concatenated using a placeholder
<eos>. 2) All characters are converted to lower-
case. 3) A contiguous sequence of emojis is split
into individual emojis. 4) All repeated punctuation
(???, ...) and white spaces are removed.

2.3 Features
During literature survey, we discovered different
features that helped us capture an informal con-
versation as a whole. To tackle the ambiguity and
other inconsistencies, we have used both word-
level and sentence-level embeddings as input fea-
tures to the model.

2.3.1 Word Level Embeddings
• Glove Embedding - We used 300 dimension

Glove embedding to capture the general se-
mantics of each word in the utterance.

• Emoji Embedding - Emoticons played a cen-
tral role to understand the context of emo-
tion in the text. We used a 300 dimension
Emoji Embedding pre trained on large emoji
corpus, to capture each emoji in the corpus
which were being missed by Glove.

• FastText Embedding - We trained 300 di-
mension FastText embeddings on the training
data to capture data specific semantics of the
words.

2.3.2 Sentence Level Embeddings
• Skip-thought Vectors - We extracted 4800

dimension sentence embedding of the data
using Skip-Thought vectors encoder, which
capture generic sentence representation.

• Unsupervised Sentiment Neuron (USN)- We
trained USN to obtain a 4096 dimension sen-

186

tence embedding to capture the representa-
tion of sentiment in the text.

• DeepMoji - DeepMoji is trained on a huge
corpus of 1.3 billion tweets for sentiment,
emotion and sarcasm. Felbo et al.(Felbo
et al., 2017) released the pre-trained model
for the sole purpose of transfer learning for
similar tasks. We extracted 2 feature sets on
our dataset: DeepMoji Attention layer Em-
bedding - 2304 dimension, DeepMoji Soft-
max Layer Embedding - 64 dimension.

2.4 Architecture

Our system comprises of 2 models. The first
model is a binary classifier. It classifies the data
into others and non-others. The second model is
a 4-class classifier which further classifies non-
others classes into all the 4 labels. For both
models, vocab size is 20000, maximum sequence
length is 100, word-level embedding size is 300,
categorical cross entropy loss, and Adam opti-
miser is used, refer Figure 1. The type of addi-
tional sentence features to baseline are the only
differentiating features to each model. The 4 class
classifier exclusively takes Skip thought and USN
sentence embeddings. On contrary, Binary classi-
fier classifier takes Skip thought, USN, DeepMojis
attention and softmax layer.
Baseline : For both models the basic architecture
is same; All three word level embeddings, each
learned by a Bi-LSTM, concatenated together is
passed through LSTM to finally classify by a soft-
max dense layer.

2.5 Ensembling

We train five different classifiers for each of the
model to perform stacked ensembling (Polikar,
2012). We use different configurations by chang-
ing value of learning rate, epoch size, LSTM di-
mensions and dropout rate to diversify the learn-
ing. The results from the models are given to meta
classifier as input. The output of this meta model
is treated as the final output of the system. Among
different meta classifiers, our system achieved best
results with logistic regression.

3 Experiments and Results

In this section, several experiments that were con-
ducted to prove the effectiveness of our method are
explained. All experiments and models concluded

to benefit from (i) Pre-processing (ii) Emoji Em-
beddings (iii) Sentence Embeddings as extra fea-
tures. The evaluation metrics used to compare re-
sults in the below section is micro F1 score. The
metric used for evaluation on leaderboard score is
micro averaged F1 of all three emotion classes.

3.1 Benchmarking on State-of-the-Art
Architectures

We fine-tune 2 models on the EmoContext data
viz. DeepMoji (Felbo et al., 2017) and Universal
Language Model Fine-tuning (ULMFiT) (Howard
and Ruder, 2018). Fine tuning DeepMoji on our
data achieved an averaged F1 score of 0.65. The
ULMFiT pretrains a language model (LM) on a
large general-domain corpus and fine-tunes it on
the target task. We deployed ULMFiT pretrained
on standard Wikitext-103 (Merity et al., 2018)
which limits the classifier for chat conversations
data. It only achieved F-1 score of 0.56. Refer
Table 1 for results.

3.2 Impact of Embeddings
Glove does not have embeddings for emoticons
and removing emoji from the text results in emo-
tional context loss. To overcome this challenge
we employed a separate Emoji Embedding which
played a crucial role to interpret the underlying
emotion in a conversation as seen in Table 2.
Emoji Embeddings turned out to give better re-
sults than replacing emojis with their description.
To capture sentence representation for different
aspects, sentence embeddings played an impor-
tant role as explained in feature section. Results
show major improvement in score with combi-
nation of sentence-embeddings and word embed-
dings, and in turn yields better performance than
word-embeddings alone.

3.3 Impact of Extra Features
We also tried traditional approach to extract fea-
tures from the data. They have shown to bene-
fit the Machine Learning models in the past. In
our case, including several sentence level features
(number of words, number of special characters,
number of emojis, average word length, readabil-
ity index, compound valence score, ’negative va-
lence score’, neutral valence score, POS valence
score, number of nouns, number of verbs) reduced
the F-1 score below our baseline for test set. This
is shown in Table 1. It is assumed the reason for
the same is inconsistent and noisy data.

187

Model F-1 (avg) Happy Sad Angry Others
ULMFiT 0.5600 0.47 0.63 0.59 0.93
DeepMoji 0.6551 0.62 0.71 0.65 0.93
4-Class classifier (M) 0.6954 0.68 0.71 0.70 0.95
M + Resampled data 0.6869 0.61 0.72 0.72 0.95
M + Extra features 0.7055 0.67 0.72 0.72 0.95
M + Ensemble (ME) 0.7128 0.69 0.72 0.73 0.95
Binary classifier (B) + ME 0.7180 0.68 0.72 0.74 0.95
(B + Ensemble) + ME* 0.7201 0.68 0.75 0.74 0.96

Table 1: Results with Additional Resources. * Final results for competition.

Embedding Feature Set F-1(avg) Happy Sad Angry Others
Glove 0.5971 0.58 0.58 0.62 0.92
Glove + FastText 0.6657 0.66 0.70 0.64 0.93
Glove + FastText + Emoji Embeddings (WE) 0.6833 0.70 0.71 0.66 0.94
WE + Sentence Embeddings 0.6954 0.68 0.71 0.70 0.95

Table 2: Comparative Results on Embeddings.

Datasets F-1 (avg) Happy Sad Angry Others
Emotion Push Chat Logs 0.89448 0.87 0.86 0.96 0.88
SemEval 2019 - Task 3 0.683386 0.70 0.71 0.66 0.94

Table 3: Experiments with Baseline.

3.4 Imbalance Data

To solve the problem of data imbalance, generat-
ing synthetic data is one of the many techniques.
However, adding synthetic data which is made
from down-sampling majority class and simulta-
neously up-sampling the minority classes didn’t
bring much improvement, and in this case even re-
duced the accuracy of the test result.

3.5 Final Classification

All the above experiments, after detailed analysis
shows that major confusion exists between each
emotion and ’others’ label. This led us to the
conclusion, to improve F1, a binary classification
could be done first. Results also helped us to de-
cide the number of classes for the second model
to be 4 instead of 3 because 4 class model clas-
sifies the incorrect non-others back to the others
category.

3.6 Effectiveness of Baseline

EmotionPush chat logs are conversations between
friends on Facebook Messenger collected by an
app called EmotionPush1 (Chen et al., 2018). We
take sample of this data in the same format as

EmoContext. We trained our baseline architec-
ture on both datasets. Comparative results in Ta-
ble 3 shows how our simple baseline performs
extremely well for EmotionPush texts, Moreover
contrasting the subjective effect of noisy data on
model performance for SemEval data.

4 Conclusion

Contextual Emotion detection, like any multi-
class text classification requires powerful ability to
comprehend the sentence in variety of aspects. In
this contest, our model performed decent, scoring
72.01 on final leader board. For our method, emoji
played very important role in understanding emo-
tion in the text, and just by using Emoji Embed-
ding we gained a significant improvement in F1.
We proved how feature engineering can be very
powerful on skewed and imbalanced data to cap-
ture contexts in NLP. We present a simple baseline
of our model that gives commendable results for a
general Emotion Classification scenario as proven
for EmotionPush sample data.

1Participants consented to make their private conversa-
tions available for research purposes.

188

References
Ankush Chatterjee, Kedhar Nath Narahari, Meghana

Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Sheng-Yeh Chen, Chao-Chun Hsu, Chuan-Chun Kuo,
Lun-Wei Ku, et al. 2018. Emotionlines: An emotion
corpus of multi-party conversations. arXiv preprint
arXiv:1802.08379.

Venkatesh Duppada, Royal Jain, and Sushant Hiray.
2018. Seernet at semeval-2018 task 1: Domain
adaptation for affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 18–23. Association for Computational
Linguistics.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

Aniruddha Ghosh and Tony Veale. 2018. Ironymagnet
at semeval-2018 task 3: A siamese network for irony
detection in social media. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion, pages 570–575. Association for Computational
Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Sopan Khosla. 2018. Emotionx-ar: Cnn-dcnn autoen-
coder based emotion classifier. In Proceedings of
the Sixth International Workshop on Natural Lan-
guage Processing for Social Media, pages 37–44.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. An analysis of neural language
modeling at multiple scales. arXiv preprint
arXiv:1803.08240.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of

The 12th International Workshop on Semantic Eval-
uation, pages 1–17. Association for Computational
Linguistics.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Robi Polikar. 2006. Ensemble based systems in deci-
sion making. IEEE Circuits and systems magazine,
6(3):21–45.

Robi Polikar. 2012. Ensemble learning. In Ensemble
machine learning, pages 1–34. Springer.

Alec Radford, Rafal Józefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. CoRR, abs/1704.01444.

Chuhan Wu, Fangzhao Wu, Sixing Wu, Junxin
Liu, Zhigang Yuan, and Yongfeng Huang. 2018.
Thu ngn at semeval-2018 task 3: Tweet irony de-
tection with densely connected lstm and multi-task
learning. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 51–56.
Association for Computational Linguistics.

189

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 190–194
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

E-LSTM at SemEval-2019 Task 3: Semantic and Sentimental Features
Retention for Emotion Detection in Text

Harsh Patel
Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar

201701021@daiict.ac.in

Abstract

This paper discusses the solution to the prob-
lem statement of the SemEval19: EmoContext
competition(Chatterjee et al., 2019b) which is
”Contextual Emotion Detection in Texts”. The
paper includes the explanation of an architec-
ture that I created by exploiting the embedding
layers of Word2Vec and GloVe using LSTMs
as memory unit cells which detects approxi-
mate emotion of chats between two people in
the English language provided in the textual
form. The set of emotions on which the model
was trained was Happy, Sad, Angry and Oth-
ers. The paper also includes an analysis of
different conventional machine learning algo-
rithms in comparison to E-LSTM.

1 Introduction

Emotions are the basic human quality that al-
most every human possesses. According, to a re-
cent study by Glasgow University1, human emo-
tions can be divided into six basic classes which
are happiness, sadness, anger, fear, surprise and
disgust, surprise being the most difficult one as
both positive and negative statements can lead to
a sense of surprise. For example, the statement
Your application for CSE branch in Stanford Uni-
versity is accepted is positive and it leads to sur-
prise whereas the statement Your brother met with
an accident is a negative statement which all leads
to a surprise.

Problem Statement: Given a text for three
turn conversation, classify the emotion of the text
in the following four categories - Happy, Sad,
Angry, Others.

1https://www.gla.ac.uk/news/
archiveofnews/2014/february/headline_
306019_en.html

2WhatsApp is used as a messaging platform to illustrate
the three turn conversation approach

Figure 1. Example of three turn conversation2

Detecting human emotions only from the text is
very difficult as the emotions are a combination of
the situation and the facial expressions of a per-
son(Cowie et al., 2001). So, merely classifying it
from the conversation is not a very accurate way.

In this paper, I have proposed an extended
approach to the original model(Chatterjee et al.,
2019a) which combines deep learning along with
some techniques used in Natural Language Pro-
cessing(NLP) using semantic and embedding ap-
proach (Franco-Salvador et al., 2018; Shivhare
and Khethawat, 2012) called as ”Emotion LSTM”
or E-LSTM to detect emotions in the provided
training set. The E-LSTM is a combination of both
count-based and predictive techniques which are
widely used in Natural Language Processing.

2 Approach

My approach in solving the given problem state-
ment was to maintain the semantic and sentimental
relationship among the words(Gupta et al., 2017).
So, as shown in Figure 2, I modeled the archi-
tecture such that the lower part contains the em-
beddings for sentiment analysis whereas the up-
per part contains the embeddings for maintain-
ing a semantic relationship. The embeddings are
then passed onto a network of LSTM layers which
memorize the relationship among the words. The
output of the final LSTM cell is then flattened and
is combined with the output of the LSTM cell in
the other half. The combined matrix is then passed
as an input to a dense network with two sub-levels

190

Figure 2. Architecture of E-LSTM model

Data Labels Happy Sad Angry Others Total
First Phase # 4243 5463 5506 14948 30160

% 14.07 18.11 18.26 49.56 100
Final Phase # 142 125 150 2338 2755

% 5.15 4.53 5.44 84.86 100

Table 1. Statistics of Training Dataset

whose output is then treated as a probability for the
given four possible emotions using Softmax func-
tion.

2.1 Training Dataset

For the EmoContext SemEval-2019 Task 3, I was
provided initially with a training dataset of about
30,000 entries containing 3 turn conversation and
labels corresponding to each conversation. Af-
ter successfully completing the first round, I was
then provided with a final training dataset of about
2,700 entries. Statistics of both the datasets are
shown in Table 1.

For the first phase, I proceeded with the pro-
vided dataset as a whole fro training whereas,
in the second phase, I merged the provided new
dataset with the dataset of Phase I and then used it
for the model training.

2.2 Handling Repetition and Emoticons

After thoroughly analyzing the provided dataset, it
was observed that emoticons were frequently used
in the statements to describe the feeling or to end
the statement. Similarly, special characters like .

Word1,Word2 Word2Vec GloVe
sad,:(0.25 0.78

better,great 0.81 0.19

Table 2. Comparison of Word2Vec and GloVe em-
beddings in classifying relation among two words

and * were also frequently used along with repe-
tition. For example, You’ve got me blushing...,
and Go to hell/ statements. So, the first step of
my data preprocessing was to remove the multi-
ple instances of special characters and emoticons.
So, the statement You’ve got me blushing..., af-
ter preprocessing became You’ve got me blushing.
Other than normal preprocessing, the emoticons
were also stored according to the sentence index in
a dictionary and were used at the last step to ver-
ify if the predicted emotion matches partly or fully
with the emotion depicted by used emojis using a
weighted approach.

2.3 Embedding Layers
The main challenge in the architecture of the
model was to identify a proper embedding layer

191

Turn 1 Turn 2 Turn 3 True Label Comments

1 You broke my
heart

It was never
mine to break !

See you are
arrogant

sad LSTM-Word2Vec failed
because of word ”arro-
gant”

2 I like to cry why are you cry-
ing

It was a joke happy Almost all model failed
except E-LSTM model

3 You’re not giv-
ing me coupon
nor photo

your phone is on
mute hahahha

//// sad All the models failed but
the last emoji comparing
technique passed for the
E-LSTM model

4 its only being
childish

Your username
is sad. ’-’ hug =/

how? others Counting based models
failed becasue of nega-
tive words

Table 3. Qualitative Analysis of baseline models along with proposed E-LSTM model

to increase the model accuracy. The initial evalua-
tions were passed only by using the baseline struc-
ture of GloVe embedding along with LSTM layers
which proved to be costly as the micro F1 score
that I got was comparatively less (about 0.57 for
phase I and 0.61 for phase II) whereas the train-
ing time for significantly high. So, the accuracy
of the model was improved through maintaining
the semantic and syntactic features of statements
intact by using the two novel types of research in
the Natural Language Processing field which are
Word2Vec(Word to Vector)(Mikolov et al., 2013;
Rahmawati and Khodra, 2016) and GloVe(Global
Vectors)(Baroni et al., 2014; Pennington et al.,
2014) embedding layers. The Word2Vec embed-
ding layers maintained the sentiments of the pro-
vided text whereas the GloVe embedding main-
tained the semantic feature of the text. As shown
in Table 2, Word2Vec was better in classifying a
relationship between sad and :(as it is a predictive
model and was thus trained accordingly, whereas
GloVe embedding was better in classifying rela-
tion between words better and great as the ap-
proach is completely based on counting i.e. count-
ing involved in matrices operation.

2.4 Model Training

For training my E-LSTM model, I have used Keras
library. As the data was limited, I have used
the K-fold cross-validation method to train the
model better. For training, I used K=5 i.e. 5 fold
cross-validation. This number was chosen specifi-

cally after training on the data multiple times and
comparing the obtained accuracy with the training
time. The most optimal hyperparameters for my
model were using CrossEntropy with Softmax as
my loss function along with SGD(Stochastic Gra-
dient Descent) as an optimizer with a learning rate
of 0.003. For fully connected dense layers, I used a
dropout of 0.3 to prevent over-fitting of the model.
The batch size that I used while training the model
was 800. Apart from hyperparameters, the main
thing to note while concatenation of results ob-
tained from the LSTM layers is the Leaky-ReLU
layer that I have used. Reason being some nega-
tive input values which were completely discarded
by normal ReLU layer.

3 Experimental Setup

In this section, I have described the statistics of
my testing data along with a comparison of the ob-
tained results with other models. I have also dis-
cussed some of the glitches that are evident in my
model in the latter half.

3.1 Test Dataset

Similar to training dataset, test dataset was also
provided in both the phases i.e. initial phase and
final phase. But before the System-Design sub-
mission, one gold test dataset was also provided to
test the model if it’s changed before paper submis-
sion. All the three test dataset files contained an
index number and three turn conversation as their
entry.

192

Model Happy Sad Angry

Precision Micro
F1

F1 Precision Micro
F1

F1 Precision Micro
F1

F1

NB 45.4 56.32 50.27 74.22 70.1 72.10 43.21 38.21 40.57

SVM 75.21 32.1 45 94.45 66.66 78.16 92.11 62.21 74.26

CNN 64.3 49.32 55.82 76.21 70.12 73.04 74.12 49.44 59.32

CNN-
GloVe

57.9 58.43 58.16 92.11 77.43 84.13 73.11 74.47 73.78

GloVe-
LSTM

69.31 49.87 58 82.6 87.42 84.94 79.12 64.21 70.89

W2V-
LSTM

75.42 45.55 56.8 84.32 78.12 81.1 80.2 64.34 71.4

E-LSTM 76.68 61.3 64.47 92.11 82.12 86.83 94.32 69.89 80.29

Table 4. Comparison of accuracy of different models ran on validation dataset of Task-2

3.2 Baseline Approaches

For comparison and proving my model better, I
compared it with two different categories - 1. Ma-
chine Learning based and 2. Deep Learning based

For Machine Learning based baseline models,
I have used Naive Bayes(NB) and Support Vec-
tor Machine(SVM). As the used models are inef-
ficient with large datasets, so I used a subset of
provided dataset to train them.

For Deep Learning based baseline models,
I have used normal Convolutional Neural Net-
works(CNNs), CNN combined with Long Short
Term Memory(LSTM) memory unit cells for data
remembering, CNN combined with embedding
layer of Global Vectors(GloVE) which maintains
the sentiments in the text, LSTMs combined with
GloVe embedding layer to find the sentiments
among words and Word2Vect embedding layer
combined with LSTMs which is used to main-
tain the semantic features in a statement. For all
the deep learning baseline architectures, text in
batches was given as input.

4 Results

As seen in the table Table 4, E-LSTM model out-
performed all other models in both F1 score and
average F1 score for all classes of emotion. Hence,
it can be concluded that combining semantic and
sentiment features of a statement can lead to better

accuracy of emotion detection. It is also evident
that Deep Learning models like CNNs, LSTMs,
and RNNs are better than normal Machine Learn-
ing models like SVMs.

4.1 Qualitative Analysis
It is evident from Table 3 that E-LSTM model per-
formed best as it tackled all the cases where count-
ing based models when actual emotion is different
from the words used in the conversation. Senti-
mental features also provided wrong results some-
times due to the predicted and true emotions be-
ing very close. The third entry in the table in-
volves conversation which is highly contradicting
from the true emotion. Thus, almost all the mod-
els failed in this type of case. But the verifica-
tion of predicted emotion with the emoticons as
described earlier saved the E-LSTM model from
failing. Thus, the handcrafted features at the end
of the model are very useful in this type of scenar-
ios.

5 Conclusion

Evaluation of the given test data set shows that
my model outperforms classical machine learning
algorithms and also simple CNN and LSTM lay-
ers based models. Thus, it can be concluded that
maintaining the semantic and syntactic relation-
ship among words can be useful to identify emo-
tions from texts accurately.

193

References
Marco Baroni, Georgiana Dinu, and Germán

Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 238–247.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Roddy Cowie, Ellen Douglas-Cowie, Nicolas Tsap-
atsoulis, George Votsis, Stefanos Kollias, Winfried
Fellenz, and John G Taylor. 2001. Emotion recog-
nition in human-computer interaction. IEEE Signal
processing magazine, 18(1):32–80.

Marc Franco-Salvador, Sudipta Kar, Thamar Solorio,
and Paolo Rosso. 2018. Uh-prhlt at semeval-2016
task 3: Combining lexical and semantic-based fea-
tures for community question answering. arXiv
preprint arXiv:1807.11584.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A sentiment-
and-semantics-based approach for emotion detec-
tion in textual conversations. arXiv preprint
arXiv:1707.06996.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Dyah Rahmawati and Masayu Leylia Khodra. 2016.
Word2vec semantic representation in multilabel
classification for indonesian news article. In 2016
International Conference On Advanced Informat-
ics: Concepts, Theory And Application (ICAICTA),
pages 1–6. IEEE.

Shiv Naresh Shivhare and Saritha Khethawat. 2012.
Emotion detection from text. CoRR, abs/1205.4944.

194

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 195–199
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ELiRF-UPV at SemEval-2019 Task 3: Snapshot Ensemble of Hierarchical
Convolutional Neural Networks for Contextual Emotion Detection

José-Ángel González, Lluı́s-F. Hurtado, Ferran Pla
Departament de Sistemas Informàtics i Computació

Universitat Politècnica de València.
Camı́ de Vera, sn
46022, València

{jogonba2, lhurtado, fpla}@dsic.upv.es

Abstract

This paper describes the approach developed
by the ELiRF-UPV team at SemEval 2019
Task 3: Contextual Emotion Detection in Text.
We have developed a Snapshot Ensemble of
1D Hierarchical Convolutional Neural Net-
works to extract features from 3-turn conver-
sations in order to perform contextual emotion
detection in text. This Snapshot Ensemble is
obtained by averaging the models selected by
a Genetic Algorithm that optimizes the evalua-
tion measure. The proposed ensemble obtains
better results than a single model and it obtains
competitive and promising results on Contex-
tual Emotion Detection in Text.

1 Introduction

Emotion Detection problem arises in the context
of conversational interactions, among two or more
agents, when one agent is interested in knowing
the emotional state of other agent involved in the
conversation. The detection of emotions is a dif-
ficult task when the content is expressed by using
only text, due to the lack of facial and hand ges-
ture expressions, voice modulations, etc. More-
over, the task becomes more complex if the detec-
tion of emotions is applied only on a short piece of
text without including context. This is because the
context can act as an emotion modifier of a given
turn in the conversation.

Although, researchers mainly focus on emotion
detection on text in absence of context (Moham-
mad et al., 2018) (Klinger et al., 2018), tipically
extracted from social media, recently, there are
few works that approach the emotion detection in
conversations by using context information (Haz-
arika et al., 2018b) (Majumder et al., 2018) (Haz-
arika et al., 2018a). These contextual systems
work on long conversations where different users
are involved and they use multimodal data, specif-
ically, text, audio and video in order to address the

emotion detection problem on large multi-party
conversations.

In this work, we present an approach to the Se-
meval 2019 Task 3: Contextual Emotion Detec-
tion in Text (Chatterjee et al., 2019). This task
is a simplification of the text emotion detection
problem on conversations where each conversa-
tion have only three utterances. Only two different
users are involved in each conversation, where the
first and third turn corresponds to the first user and
the second turn corresponds to the second user.
The goal of this tasks is to predict the emotion
of the third turn. We propose a Snapshot Ensem-
ble (SE) of 1D Hierarchical Convolutional Neu-
ral Networks (HCNN) trained to extract useful in-
formation from 3-turn conversations. Our system
was designed following some ideas of (Morris and
Keltner, 2000) and (Majumder et al., 2018). Con-
cretely, we consider the inter-turn and self-turn de-
pendencies (Morris and Keltner, 2000) along with
the context given by the preceding utterances (Ma-
jumder et al., 2018) to determine the emotion of a
given turn.

2 System Description

2.1 Preprocessing

For the tokenization process, our system used
TweetTokenizer from NLTK (Loper and Bird,
2002). In addition, we performed some other ac-
tions. All the text was transformed to lowercase.
Multiple spaces were converted to a single space.
Urls were replaced by the tag ”url”. We trans-
formed multiple instances of punctuation marks in
a single one (e.g., ”???” → ”?”). In order to ex-
tract semantic representations of the unicode emo-
jis, they are replaced by their description using the
Common Locale Data Repository (CLDR) Short
Name (e.g., → ”grinning face with star eyes”).
Moreover, non relevant and common words are

195

removed from these descriptions (”grinning face
with star eyes”→ ”grinning star eyes”).

2.2 Word Embeddings
It is well known that word embeddings (WE)
learned from the same domain of a downstream
task usually lead to obtain better results than those
obtained using general domain WE. Due to the
fact that we did not have sentences of the task
to learn word embeddings from them, we used
embeddings learned from Twitter posts because
we considered that the characteristics of tweets
are similar to the task language. Both of them
have a noisy nature and they share common fea-
tures of the internet language (slang, letter homo-
phones, onomatopoeic spelling, emojis, lexical er-
rors, etc.). Therefore, we used 400-dimensional
WE obtained from a skip-gram model trained
with 400 million tweets gathered from 1/3/2013
to 28/2/2014 (Godin et al., 2015).

2.3 Hierarchical Convolutional Neural
Networks

We considered several characteristics of the task
in order to design our system. First, the utterances
are short and there are many short-term dependen-
cies among these words. Therefore, we propose
to use 1D Convolutional Neural Networks (Kim,
2014) (CNN) to extract a rich semantic representa-
tion of each utterance. Second, the conversations
are composed only by 3 utterances, for that rea-
son, it is not required to uses models with high
capacity to learn long contexts. Thus, we pro-
pose to use another CNN on top of the first CNN
that extracts sentence representations, in order to
obtain representation of conversations. We called
this approach Hierarchical Convolutional Neural
Networks (HCNN) following the work of (Yang
et al., 2016).

As input to the model, each utterance j (com-
posed by a maximum of N words) in a conversa-
tion i is arranged in a matrix Mj ∈ RN×d, where
each row corresponds with a word in the utter-
ance j, represented by using d-dimensional WE.
As each conversation is a sequence of three ut-
terances, these conversations are arranged in a 3-
dimensional matrix where each channel j is the
representation of the utterance j in the conversa-
tion, i.e. for the conversation i, Mi ∈ R3×N×d.
On all the matrices of Mi, 1D Dropout (Srivastava
et al., 2014) was used to augment the dataset, by
deleting words of each utterance with p = 0.3.

Given the representation of the conversation i,
Mi, for each utterance independently, a CNN with
kernels of different sizes is applied in order to ob-
tain a composition of word embeddings that can
extract semantic/emotional properties from each
utterance. At this first level, we use f1 = 256 ker-
nels of sizes {2, 4, 6} and their weights are shared
among the three channels. From that, for each ut-
terance, three new matrices are obtained. These
matrices capture relevant features for each kernel
size and utterance. These features are pooled into
a vector by using 1D Global Max Pooling (GMP).

The resulting three vectors from the previous
level were concatenated as rows to obtain a matrix
representation of the conversation i composed by
the CNN map of its sentences, Wi ∈ R3×f1 . We
considered that conversation features could be rel-
evant for the task. At this level, in order to extract
these relevant features and following the ideas
in (Morris and Keltner, 2000) (Majumder et al.,
2018), the system is intended to take into account
the context and potentially the emotions given by
preceding utterances to determine the emotion ex-
pressed by the last utterance. To do this, a CNN
with f2 = 256 kernels of sizes {1, 2, 3}were used.
The size of the filters is crucial to understand what
features the system is capable to learn.

Concretely, 3-size kernels: semantic/emotional
features over all the contexts (full conversation);
2-size kernels: inter-turn features and seman-
tic/emotional features of preceding and later ut-
terances given a context of two utterances; 1-size
kernels: self-turn features and semantic/emotional
features of each utterance independently.

On the output maps of this second CNN1, GMP
is used in order to extract the most relevant fea-
tures from each dimension and the resulting vec-
tors are concatenated. Later, a fully connected
layer L1 with 512 neurons is used to fuse the con-
catenated vectors. Finally, to obtain a probabil-
ity distribution over C classes ({happy, sad, angry,
others}) we use a softmax fully connected layer
L2. Figure 1 shows the proposed model architec-
ture.

2.4 Snapshot Ensemble

Generally, ensemble models outperform single
models in similar tasks (Duppada et al., 2018)
(Rozental et al., 2018). Therefore, we decided

1After all the CNN layers (at two levels), BatchNormal-
ization, LeakyReLU and Dropout are applied

196

Xi,1

Xi,2

Xi,3

WL1
WL2

1D Convolution

Kernel Height 2

1D Convolution

Kernel Height 4

1D Convolution

Kernel Height 6

GMP

GMP

GMP

Concatenate

1D Convolution

Kernel Height 1

1D Convolution

Kernel Height 2

1D Convolution

Kernel Height 3

GMP

GMP

GMP

Concatenate

FC
Layer

FC
Layer

L1

L2

...

...

...

...

...

...

Figure 1: Hierarchical Convolutional Neural Networks.

to use ensemble methods instead of trying differ-
ent architectures. We used the ideas of Snapshot
Ensemble (SE) (Huang et al., 2017) to combine
HCNN trained until reaching good and diverse lo-
cal minima by using SGD and a cosine learning
rate with T = 24 training iterations, M = 6 learn-
ing cycles, and initial learning rate alpha = 0.4.

From this training method, we took 24 snap-
shots (one for each training iteration). From the
set of snapshots S = {si / 1 ≤ i ≤ 24 ∧ si :
R3×N×d → RC}, we generate 4 different systems:

1. Best snapshot of all iterations

f1 = argmax
si

µF1(si(x), y) (1)

2. Average of all snapshots

f2 =
1

|S|
∑

si∈S
si(x) (2)

3. Average of best snapshot at each learning cy-
cle

f3 =
M

T

T
M
−1∑

i=0

argmax
si∈S[T

M
·i, T

M
·(i+1)]

µF1(si(x), y)

(3)

4. Average of genetic selected snapshots

f4 =
1

|g(S)|
∑

si∈g(S)
g(S)i si(x) (4)

where x and y are the input and the target, re-
spectively, and g(S)i is the decision of a genetic
algorithm to include the snapshot si in the ensem-
ble. We used this method in order to discretely
select (g(S)i ∈ {0, 1}) what snapshots are well-
suited for the final averaging ensemble which tries
to optimize µF1. The genetic algorithm (Mitchell,

1998) starts with a population of 400 individuals,
they are crossed by using two point crossover, mu-
tated with flip bit and selected by using tourna-
ment selection during 100 generations. Moreover,
this algorithm addresses a multi-objective prob-
lem, it must to reach combinations of snapshots
whose averaged predictions yield to high values
of µF1 while minimizing the number of models in
the ensemble (the final genetic ensemble is com-
posed by 6 system, i.e. as many systems as learn-
ing cycles) These decisions were taken in order
to reduce the overfiting risk during the learning of
the ensemble i.e. we prioritize simpler ensembles
which are composed by discretely selected snap-
shots.

3 Analysis of Results

In order to evaluate different configurations of our
system we used the development set given by the
task organizers. On this development set, ablation
analysis on single HCNN was carried out in order
to observe if the input Dropout and the incorpora-
tion of L1 layer yield to better results (the capac-
ity of HCNN must be greater when including both
techniques). The results of this ablation analysis
are shown in Table 1.

System µP µR µF1

Vanilla 70.65 75.06 72.79
Dropout 71.78 76.26 73.95
L1 72.36 75.23 73.84
Dropout + L1 75.42 75.78 75.60

Table 1: Ablation analysis of input Dropout and L1

layer on HCNN (development set)

Vanilla system is a single HCNN without in-
put Dropout neither the L1 layer. It can be ob-
served that, the systems with Dropout and L1 out-
performed the Vanilla version of HCNN in terms
of µP , µR and µF1. In terms of µP , the sys-
tems which incorporate L1 achieved better results.
However, although Dropout + L1 obtained the
best improvement in terms of µP , the highest µR
was obtained using only Dropout. This could in-
dicate that data augmentation could be useful to
increase the µR but it is required more network
capacity to handle this augmentation in order to
increase also the µP .

These results were obtained by using a single
HCNN with adam as update rule (Kingma and Ba,
2014) with default learning rate. However, the SE

197

training mode with Vanilla SGD and cosine learn-
ing rate, along with the proposed ensemble gener-
ation, allows the Dropout + L1 system to reach
better results (Table 2).

Ensemble µP µR µF1

Best snapshot (single) 74.82 78.41 76.58
Average All 74.38 77.93 76.18
Best per Cycle 75.29 77.45 76.35
Genetic Average 75.73 80.09 77.85

Table 2: Results on development set with several SE of
HCNN.

In this case, the best single model (Best snap-
shot) obtained in the SE training mode, provided
higher µR than Dropout + L1 at the expense of
a reduction in µP . This improvement of 3 points
ofµR yields also an increase of theµF1 measure.

Among the ensembles, only Genetic Average
improves the Best snapshot and Dropout + L1

systems in all the metrics. This is due to a big
increase in µR. This suggests that it is possible
to improve the µF1 results by balancing µP and
µR.

The other ensembles obtain lower results in
terms of µR and µF1 than Best snapshot, which
is a single model. Moreover, all SE (including
Best snapshot) except Genetic Average are less
accurate (lower µP) than Dropout + L1. How-
ever, all of them improved considerably the µR.

Due to the SE HCNN models generally outper-
formed the best single model Dropout + L1 in
terms of µF1 on the development set, we submit-
ted all these systems to be evaluated on the test
set. The results are shown in Table 3. It can be
seen that the best system is Genetic Average, the
same behavior observed on the development set.
Although Best snapshot is more accurate than the
ensembles (higher µP), two of the three ensem-
bles yields better results µF1. Moreover, a big
degradation in the results are observed, all systems
goes from 77 µF1 on the development set, to 74
µF1 on the test set.

System µP µR µF1

Best snapshot (single) 75.69 72.60 74.11
Average All 73.15 75.00 74.07
Best per Cycle 73.27 75.12 74.18
Genetic Average 73.43 75.72 74.56

Table 3: Results on test set with several SE of HCNN.

Table 4 shows the results of our best system
(Genetic Average) at class level. The worse clas-
sified classes in terms of F1 were Angry and
Happy.

Class P R F1

Angry 68.73 78.19 73.16
Happy 75.19 69.37 72.16
Sad 77.82 80.00 78.90

Table 4: Results at class level of Genetic Average on
test set.

4 Conclusion and Future Work

In this paper, we have presented Snapshot Ensem-
bles of Hierarchical Convolutional Neural Net-
works to address the Semeval 2019 Task 3: Con-
textual Emotion Detection in Text. Our system is
based on the use of a Genetic Algorithm in or-
der to ensemble different snapshots of the same
model. This ensemble outperformed single mod-
els and also classical snapshot ensembles, obtain-
ing competitive results in the addressed task.

Due to the fact that in the proposed system, the
semantic and emotional information is only pro-
vided by the representation of the words and the
utterances, as future work we plan to study differ-
ent word and sentence embeddings. It would be
also interesting to incorporate other emotional or
sentiment features such as: Sentiment Unit (Rad-
ford et al., 2017), DeepMoji (Felbo et al., 2017),
Sentiment Specific WE (Tang et al., 2014); or po-
larity lexicons. Moreover, we are also interested in
work with more powerful word embeddings such
as BERT (Devlin et al., 2018) in order to incorpo-
rate a richer semantic word representation.

Acknowledgments

This work has been partially supported by the
Spanish MINECO and FEDER founds under
project AMIC (TIN2017-85854-C4-2-R) and the
GiSPRO project (PROMETEU/2018/176). Work
of José-Ángel González is also financed by Uni-
versitat Politècnica de València under grant PAID-
01-17.

References
Ankush Chatterjee, Kedhar Nath Narahari, Meghana

Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection

198

in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Venkatesh Duppada, Royal Jain, and Sushant Hiray.
2018. Seernet at semeval-2018 task 1: Domain
adaptation for affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 18–23. Association for Computational
Linguistics.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1615–1625. Association for Computa-
tional Linguistics.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multime-
dia lab $@$ acl wnut ner shared task: Named entity
recognition for twitter microposts using distributed
word representations. In Proceedings of the Work-
shop on Noisy User-generated Text, pages 146–153.
Association for Computational Linguistics.

Devamanyu Hazarika, Soujanya Poria, Rada Mihal-
cea, Erik Cambria, and Roger Zimmermann. 2018a.
Icon: Interactive conversational memory network
for multimodal emotion detection. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2594–2604.
Association for Computational Linguistics.

Devamanyu Hazarika, Soujanya Poria, Amir Zadeh,
Erik Cambria, Louis-Philippe Morency, and Roger
Zimmermann. 2018b. Conversational memory net-
work for emotion recognition in dyadic dialogue
videos. In NAACL-HLT.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu,
John E. Hopcroft, and Kilian Q. Weinberger. 2017.
Snapshot ensembles: Train 1, get m for free. CoRR,
abs/1704.00109.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751. As-
sociation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Roman Klinger, Orphee De Clercq, Saif Mohammad,
and Alexandra Balahur. 2018. Iest: Wassa-2018
implicit emotions shared task. In Proceedings of
the 9th Workshop on Computational Approaches to

Subjectivity, Sentiment and Social Media Analysis,
pages 31–42. Association for Computational Lin-
guistics.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Navonil Majumder, Soujanya Poria, Devamanyu Haz-
arika, Rada Mihalcea, Alexander F. Gelbukh, and
Erik Cambria. 2018. Dialoguernn: An attentive
rnn for emotion detection in conversations. CoRR,
abs/1811.00405.

Melanie Mitchell. 1998. An Introduction to Genetic
Algorithms. MIT Press, Cambridge, MA, USA.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 1–17. Association for Computational
Linguistics.

Michael W. Morris and Dacher Keltner. 2000. How
emotions work: The social functions of emotional
expression in negotiations. Research in Organiza-
tional Behavior, 22:1 – 50.

Alec Radford, Rafal Józefowicz, and Ilya Sutskever.
2017. Learning to generate reviews and discovering
sentiment. CoRR, abs/1704.01444.

Alon Rozental, Daniel Fleischer, and Zohar Kelrich.
2018. Amobee at iest 2018: Transfer learning from
language models. In Proceedings of the 9th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 43–49.
Association for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1555–1565. Asso-
ciation for Computational Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alexander J. Smola, and Eduard H. Hovy. 2016. Hi-
erarchical attention networks for document classifi-
cation. In HLT-NAACL.

199

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 200–204
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

EmoDet at SemEval-2019 Task 3: Emotion Detection in Text using Deep
Learning

Hani Al-Omari Malak Abdullah Nabeel Bassam
alomarihani1997@gmail.com mabdullah@just.edu.jo nabeelbassam98@gmail.com

Department of Computer Science
Jordan University of Science and Technology

Irbid, Jordan

Abstract

Task 3, EmoContext, in the International
Workshop SemEval 2019 provides training
and testing datasets for the participant teams
to detect emotion classes (Happy, Sad, Angry,
or Others). This paper proposes a participat-
ing system (EmoDet) to detect emotions us-
ing deep learning architecture. The main input
to the system is a combination of Word2Vec
word embeddings and a set of semantic fea-
tures (e.g. from AffectiveTweets Weka-
package). The proposed system (EmoDet) en-
sembles a fully connected neural network ar-
chitecture and LSTM neural network to ob-
tain performance results that show substantial
improvements (F1-Score 0.67) over the base-
line model provided by Task 3 organizers (F1-
score 0.58).

1 Introduction

The past decades have seen an explosive growth
of user-generated content through social media
platforms. People are expressing online their
feelings and opinions on a variety of topics on a
daily basis. Tracking and analyzing public opin-
ions from social media can help to predict certain
political events or predicting people’s attitude
towards certain products. Therefore, detecting
sentiments and emotions in text have gained a
considerable amount of attention(Mohammad
et al., 2018). Researchers and scientists in
different fields considered this a promising topic
(Abdullah et al., 2018; Liu, 2012). Many machine
learning approaches have been used to detect and
predict emotions and sentiments. Recently, the
deep neural network (DNN) is attracting more
researchers as they have been benefited from the
high-performance graphics processing unit (GPU)
power (Abdullah et al., 2018; Dos Santos and
Gatti, 2014).

The shared task (Task 3: ”EmoContext”) in
SemEval-2019 workshop has been designed for
understanding emotions in textual conversations
(Chatterjee et al., 2019). In this task, the partic-
ipants are given a textual dialogue i.e. a user ut-
terance along with three turns of context. The par-
ticipant teams have to classify the emotion of user
utterance as one of the emotion classes: Happy,
Sad, Angry or Others. Further details about Task
3 and the datasets appear in Section 3.

This paper describes our team approach to de-
tect and classify emotions. The input has been rep-
resented as word vectors (Mikolov et al., 2013b)
and a set of different features which are applied to
different neural network architecture to obtain the
results. The performance of the system shows sub-
stantial improvements F1-Score over the baseline
model provided by Task 3 organizers.

The remainder of this research paper is orga-
nized as follows: Section 2 gives a brief overview
of existing work on social media emotion and sen-
timent analyses. Section 3 presents the require-
ments of SemEval Task3 and examines our pro-
posed system to determine the presence of emo-
tion in conversational text. Section 4 summarizes
the key findings of the study and the evaluations
and concludes with future directions for this re-
search.

2 Related Work

Defining and theorizing emotions had been in-
vestigated by several psychology researchers
(Plutchik, 1990; Ekman and Keltner, 1997). The
basic emotions according to Ekman (Ekman and
Keltner, 1997) had been identified as anger, dis-
gust, fear, happiness, sadness, and surprise. A
little corpus exists for emotion labeling with text.
Recently, several shared tasks and challenges had
been introduced for detecting the intensity of emo-

200

tion felt by the speaker of a tweet (Mohammad
et al., 2018; Strapparava and Mihalcea, 2007).
A group of researchers (Mohammad and Bravo-
Marquez, 2017) introduced the WASSA- 2017
shared task of detecting the intensity of emotion
felt by the speaker of a tweet. The previous Se-
meval Task1 (Mohammad et al., 2018) also intro-
duced a dataset (annotated tweets) for emotion de-
tection. The state-of- the-art systems in the pre-
vious competitions used different approaches of
ensembling different deep neural network-based
models, representing tweets as word2vec/doc2vec
embedding vectors and extracting semantic fea-
tures. Our system is using word2vec embed-
ding vectors (Mikolov et al., 2013a) and extracted
features using a Weka package, AffectiveTweet,
(Bravo-Marquez et al., 2014), also extracting em-
bedding from the text using deeMoji model (Felbo
et al., 2017).

3 Our Approach

Our system has the ability to determine the emo-
tion (Happy, Sad, Angry and Other) in English tex-
tual dialogue with F1-Score over 0.67. Figure 1
shows the general structure of the system. More
details for the systems components are shown in
the following subsections: Section 3.1 describes
the systems input and preprocessing step. Section
3.2 lists the extracted feature vectors, and Section
3.3 details the system’s architecture of neural net-
works. Section 3.4 discusses the output details.

3.1 Input and Preprocessing

The shared task (Task 3: EmoContext) provides
training and testing datasets to be used by all
participants. The number of training and testing
datasets for each emotion can be shown in Table 1.

Train Data Test Data
Anger 5656 298
Happy 4385 284

Sad 5588 250
Other 17286 4677
Total 32915 5509

Table 1: Training and Testing Datasets

The training dataset contains 5 columns:
ID - Contains a unique number to identify each

training sample.

Turn 1 - Contains the first turn in the three turn
conversation, written by User 1.

Turn 2 - Contains the second turn, which is a
reply to the first turn in conversation and is written
by User 2.

Turn 3 - Contains the third turn, which is a reply
to the second turn in the conversation, which is
written by User 1.

Label - Contains the human-judged label of
Emotion of Turn 3 based on the conversation for
the given training sample. It is always one of the
four values - ’happy’, ’sad, ’angry’ and ’others’.

For testing dataset, the 5th column - ’Label’ is
absent. See Table 2 for more clarification.

The prepossessing methods applied for the data
include converting the text into lower case, stem-
ming the words and removing of extraneous white
spaces. Punctuation has been treated as individual
words (”.,?!:;()[]#@’). It’s worth mentioning that
removing stop-words dissolved the meaning of the
sentence, therefore we didn’t remove them.

3.2 Feature Vector

We have explored different features to represent
each turn and the concatenated turns. Our ap-
proach extracts feature vectors from texts with a
total of 2753 dimensions (Check Table 3). We
have applied the same methods for each turn and
the concatenated turns.
Each turn is represented as a 300-dimensional
vector using the pretrained word2vec embedding
model that is trained on Google News (Mikolov
et al., 2013a). We have used the summation
technique to represent every turn or conversa-
tion. In addition to that, each turn/conversation
is represented as 145 dimensional vectors by
concatenating three vectors obtained from the
AffectiveTweets Weka-package bravo2014meta,
mohammad2017wassa, 43 features have been
extracted using the TweetToLexiconFeatureVec-
torattribute that calculates attributes for a tweet
using a variety of lexical resources; two-
dimensional vector using the sentiments strength
feature from the same package, and the final 100
dimensional vectors is obtained by vectorizing
the tweets to embeddings attribute also from
the same package. We have also extracted 2302
dimensions vector using the attention layer of
DeepMoji model (Felbo et al., 2017). Finally, we
have used the NRC Valence, Arousal, and Dom-
inance Lexicon to extract the last 4-dimensional

201

Figure 1: The architecture of our approach

id Turn1 Turn2 Turn3 label
156 You are funny LOL I konw that. :) happy
187 Yeah exactly Like you said, like brother like sister ;) Not in the least others

Table 2: Examples of datasets format

vector to represent Anger, fear, sadness, and joy
(Mohammad, 2018).

Dimension
Word2Vec 300

AffectiveTweets 145
DeepMoji 2302

NRC 4
Total 2753

Table 3: Feature vectors

3.3 Network Architecture

Knowing that Deep Neural Networks (DNN) is
showing significant improvements over traditional
Machine Learning (ML) based approaches on
classification tasks(LeCun et al., 2015). This
derives more researchers to apply it recently
for detecting sentiments and emotions. The
standard Recurrent Neural Network (RNN) is
distinguished from Feed-forward network with a
memory. A special kind of RNNs are Long Short-
Term Memory Network (LSTM) (Hochreiter and
Schmidhuber, 1997), which is composed of a
memory cell, an input gate, an output gate and a
forget gate.

The architecture of our system consists of two
sub-models that use both: feed-forward (Dense)
and LSTM. For our first sub-Model, the Input

2753-dimensional vector feeds a fully connected
neural network with three dense hidden layers
of 500, 200 and 80 neurons for each layer. The
activation function for each layer is ReLU (Good-
fellow et al., 2013). Two dropouts have been
added to this sub-model, which are 0.3 and 0.2
after the first and the second layers. The output
layer consists of 4 sigmoid neurons to predict
the class of emotion in each conversation. For
optimization, we use Stochastic Gradient Descent
(SGD) optimizer (lr=.001, decay=1 × 10−6, and
momentum = 0.9) augmenting for MSE loss
function and ACCURACY metrics. We have also
saved the output predictions weights to predict the
testing data sets. The fit function uses number of
epochs = 60, batch size=32, validation split= 33%.

In the second sub-model, the same 2753-
dimensional vector feeds an LSTM by using an
embedding layer of 500-dimensions. The LSTM
layer consists of 300 neurons with using Dropout
0.3 after the LSTM layer to avoid over-fitting.
A dense layer with 200 neurons is added and
followed by four sigmoid neurons to predict
the emotion class in each conversation. For
optimization, we use the same method as the first
sub-model. We have also used early stopping
technique to get the best result. finally, we have
saved the output prediction weights to predict the
testing data sets. The fit function uses number of
epochs = 80, batch size=8, validation split= 33%.

202

Formula micro-F1
Dense(Turn1) + 2×Dense(Turn3) 0.605355

Dense(Turn1) + 2×Dense(Turn3) + 2×Dense(All) 0.618162
2×Dense(All) + 3×Dense(Turn3) + 3× LSTM(All) 0.626

Dense(All) + part3 + 3× LSTM(All) 0.636
Dense(All) + part3 + 10× LSTM(All) 0.656165

Dense(All) + 4×Dense(Turn3) + 28× LSTM(All) + 19× LSTM(Turn3) 0.6714

Table 4: Weight Ensembling

Conversation Turn 1 Turn 2 Turn 3
micro-F1 0.26379 0.08435 0.58920

Table 5: Using Sub-model 1 - Dense Layer

Conversation Turn 1 Turn 2 Turn 3
micro-F1 0.20734 0.13543 0.44364

Table 6: Using Sub-model 1 - Dense Layer plus re-
moving 70% of others randomly

System Epoch micro-F1
LSTM (All Conversation) 40 0.5376
LSTM (All Conversation) 80 0.6094
LSTM (All Conversation) 114 0.5096
Dense (All Conversation) 60 4677

Table 7: Best Epoch for both LSTM and Dense

3.4 Output and result

In the beginning, we have analyzed all the con-
versation (turn1 + turn2 + turn3) using both sub-
model systems. We have noticed that the third turn
of the conversation provides better predictions of
emotion’s class, see in Table 5. Removing 70%
of the others randomly in the training data set led
to bad predictions so we didn’t apply this method,
see Table 6. One of the key findings is noticing
that LSTM gives better prediction than the feed-
forward system for the whole conversation, see the
result in Table 7. For the final stage, we have com-
bined both sub-models results to produce a real
value number between 0 and 1. It has shown that
the second sub-model gives higher accuracy than
the first sub-model. Applying different amount
of weights for four prediction led us to find out
that the correct formula for our system using turn3
alone as a sub-model and All-Conversation pre-
diction and from the second sub-Model turn3 and

All-Conversation and combining them together in
a formula, It showed a higher F1-Score equal to
0.67. Also, it’s worth mentioning that we used
Grid Search to find the best parameters for the for-
mula (Check Table 4).

4 Conclusion

In this paper, we have presented our system
EmoDet that uses deep learning architectures for
detecting the existence of emotions in a text. The
performance of the system surpasses the perfor-
mance of the baselines model indicating that our
approach is promising. In this system, we uses
word embedding models with feature vectors ex-
tracted using the AffectiveTweets package and
Deepmoji model. These vectors feed different
deep neural network architectures, feed-forward
and LSTM, to obtain the predictions. We use the
SemEval-2019 Task 3s datasets as input for our
system and show that EmoDet has a high profi-
ciency in detecting emotions in a conversational
text and surpasses the F1-score Baseline models
performance, which is provided by the SemEval-
Task 3 organizers.

References
Malak Abdullah, Mirsad Hadzikadicy, and Samira

Shaikhz. 2018. Sedat: Sentiment and emotion de-
tection in arabic text using cnn-lstm deep learning.
In 2018 17th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), pages
835–840. IEEE.

Felipe Bravo-Marquez, Marcelo Mendoza, and Bar-
bara Poblete. 2014. Meta-level sentiment models for
big social data analysis. Knowledge-Based Systems,
69:86–99.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

203

Cicero Dos Santos and Maira Gatti. 2014. Deep con-
volutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers, pages 69–78.

Paul Ekman and Dacher Keltner. 1997. Universal fa-
cial expressions of emotion. Segerstrale U, P. Mol-
nar P, eds. Nonverbal communication: Where nature
meets culture, pages 27–46.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Maxout
networks. arXiv preprint arXiv:1302.4389.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. nature, 521(7553):436.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 1–17.

Saif M. Mohammad. 2018. Word affect intensities. In
Proceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. arXiv
preprint arXiv:1708.03700.

Robert Plutchik. 1990. Emotions and psychotherapy:
A psychoevolutionary perspective. In Emotion, psy-
chopathology, and psychotherapy, pages 3–41. Else-
vier.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of the
Fourth International Workshop on Semantic Evalu-
ations (SemEval-2007), pages 70–74.

204

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 205–209
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

EMOMINER at SemEval-2019 Task 3: A Stacked BiLSTM Architecture
for Contextual Emotion Detection in Text

Nikhil Chakravartula
Teradata / Hyderabad

nikhil.chakravartula@gmail.com

Vijayasaradhi Indurthi
Teradata / Hyderabad

vijayasaradhi.indurthi@teradata.com

Abstract

This paper describes our participation in the
SemEval 2019 Task 3 - Contextual Emotion
Detection in Text. This task aims to identify
emotions, viz. happiness, anger, sadness in
the context of a text conversation. Our system
is a stacked Bidirectional LSTM, equipped
with attention on top of word embeddings pre-
trained on a large collection of Twitter data. In
this paper, apart from describing our official
submission, we elucidate how different deep
learning models respond to this task.

1 Introduction

Sentiment analysis is an established field in NLP,
but just identifying positive and negative senti-
ments may not be enough. Applications require
systems to go further beyond sentiment analysis
and perform emotion analysis, which deals with
identifying discrete emotions like anger, joy, sad-
ness, etc. The task is challenging because the im-
portance of context in emotion analysis cannot be
overstated (Malik et al., 2017; Vanzo et al., 2014).
Also, text in a conversation often contains lan-
guage slangs, emoticons, emojis and other noisy
data that make it difficult to identify the type of
feeling expressed.

Many approaches have been put forward to
identify emotions in a text. Purver and Battersby
(2012); Balabantaray et al. (2012) used SVM clas-
sifier on twitter data to carry out emotion analysis.
Potapova and Gordeev (2016) deployed a model
based on Random Forests to identify aggression
in texts. These approaches are often assisted by
lexicons and require heavy feature engineering.

In recent years, deep learning approaches have
outperformed traditional algorithms in NLP tasks
(Bahdanau et al., 2014). Felbo et al. (2017); Gupta
et al. (2017) utilized LSTMs to achieve emotion
identification in text. Abdul-Mageed and Ungar

happy sad angry others
14.06% 18.11% 18.25% 49.56%

Table 1: Train dataset composition.

(2017) showed that GRNNs achieved a very good
performance on 24 fine-grained types of emotions.
Kratzwald et al. (2018) proposed sent2affect, a tai-
lored form of transfer learning for affective com-
puting, where the network is pre-trained for sen-
timent analysis task, and subsequently the output
layer is tuned to the task of emotion recognition.
In this paper, we propose a stacked Bidirectional
LSTM architecture to recognize emotions in text.

The rest of the paper is organized as follows. In
sec. 2 we give a brief explanation of the shared
task. In sec. 3 we describe the process of fea-
ture engineering from the text. In sec. 4 we dis-
cuss system architecture. It is followed by sec. 5
which contains the various settings used in our ex-
periments. In sec. 6, we analyse the results and
conclude our paper in sec. 7 with future ideas and
vision.

2 Shared Task Description

The SemEval 2019 Task 3 is as follows: Given
three turns of a conversation by two users, say
turn1 by user1, turn2 by user2 and turn3 by user1,
the system must identify the emotion of turn3
based on the conversation. It has to be one of the
four values - happy, sad, angry and others. The
dataset is provided by the organizers of the task.
The composition of the dataset is described in Ta-
ble 1. More details about the task can be found in
the task description paper (Chatterjee et al., 2019).

205

3 Feature Engineering

3.1 Pre Processing

We perform the following pre-processing opera-
tions on the text before feature engineering.

• All text is converted to lower case.

• All contractions are replaced with their full
form. For example, don’t will be replaced by
do not and can’t will be replaced by can not.

• All punctuation marks are removed.

• Spell correction and Emoji expansion:
Many conversations include words in an
elongated form (nooooo, youuuuu, heyyyyyy
etc.,) and slangs(wassup, 4u, lolz etc.,). We
perform spell corrections (Jurafsky and Mar-
tin, 2018) on these words to reduce the vo-
cabulary size and to account for better results.
Text81 is utilized to generate unigram and bi-
gram word statistics with ekphrasis (Baziotis
et al., 2017) to perform spell correction.

Emojis play a crucial part in identifying the
emotion of a conversation. A conversation
often contains a high number of emojis that
intrinsically determines its nature. Identi-
fying this quintessential importance, we use
a python package named emoji2 to expand
the emojis into representative keywords. Eg:
’unamused face’

• Parts Of Speech: Part-of-speech (POS) tag-
ging is an important and fundamental step
in Natural Language Processing. The Part-
of-speech gives a large amount of informa-
tion about a word and its neighbours, syn-
tactic categories of words and similarities
and dissimilarities between them. NLTK
(Steven Bird and Loper, 2009) is used to ex-
tract the Parts Of Speech tags for each word
in the conversation, and then concatenated
them with GloVe vectors. As a result, Glove
vectors will have syntactic information of
words (Rezaeinia et al., 2017).

3.2 Feature Extraction

• Word Embeddings: Glove840B - common
crawl (Pennington et al., 2014) pre-trained

1http://mattmahoney.net/dc/textdata.
html

2https://github.com/carpedm20/emoji/

word embeddings are used to convert each
of the words in the conversation to a 300-
dimensional feature vector.

• One Hot Encoding: The POS tags gener-
ated in the previous step are converted to a
constant vector using One-Hot Encoding

• Lexicon: We exploit the DepecheMood
affective lexicon Deepechemood++ (Araque
et al., 2018) that has been built in a com-
pletely unsupervised fashion, from affec-
tive scores assigned by readers to news ar-
ticles. DepecheMood++ allows for both
high-coverage and high-precision, providing
scores for 187k entries on the following af-
fective dimensions: Afraid, Happy, Angry,
Sad, Inspired, Don’t Care, Inspired, Amused,
Annoyed.

4 System Architecture

4.1 Embedding Layer1 (EL1)

This embedding layer takes as input a fixed se-
quence of 200 words and converts each word
into its corresponding 300 dimensional glove word
vector (Pennington et al., 2014).

4.2 Embedding Layer2 (EL2)

This embedding layer takes as input a fixed se-
quence of 200 Parts Of Speech tags and converts
each of them into a constant one-hot vector.

4.3 Embedding Layer3 (EL3)

This embedding layer takes as input a fixed se-
quence of 200 words and converts each of them
into a vector based on the values in DepecheMood
affective lexicon.

4.4 BiLSTM

Long Short-Term Memory (LSTM) is a recurrent
neural network (RNN) architecture that has been
designed to address the vanishing and exploding
gradient problems of conventional RNNs. Unlike
feed-forward neural networks, RNNs have cyclic
connections making them powerful for modelling
sequences. They have been successfully used for
sequence labelling and sequence prediction tasks
(Sak et al., 2014). An LSTM has 3 types of gates,
the forget gate, the input gate and the output gate.
The information flow is governed by the following
equations.

206

S.No Setting F1µavg

1 EL1 + LSTM(256) + dropout(0.3) 0.8891
2 EL1 + BiLSTM(256) + dropout(0.2) 0.8903
3 EL1 + LSTM(256) + dropout(0.3) + Attention 0.8950
4 EL1 + BiLSTM(256) + dropout(0.3) + Attention 0.8918
5 EL1 + BiLSTM(128) + dropout(0.2) + BILSTM(128) + dropout(0.3) 0.8951
6 EL1 + BiLSTM(128) + dropout(0.2) + BILSTM(128) + dropout(0.3) + Attention 0.8956
7 EL1 + EL2 + BiLSTM(128) + dropout(0.2) + BiLSTM(128) + dropout(0.3) 0.8965
8 EL1 + EL3 + BiLSTM(128) + dropout(0.2) + BiLSTM(128) + dropout(0.3) 0.8969
9 EL1 + EL2 + EL3 + BiLSTM(128) + dropout(0.2) + BiLSTM(128) + dropout(0.3) 0.8931

Table 2: Results of different settings. S.No 1-6 are the variations of the system that are evaluated for the competi-
tion. S.No 7-9 provide further analysis of the system after the competition ended. All results shown are obtained
with five fold cross validation on the train set.

f t = σ(W f · [ht-1, xt] + bf) (1)

it = σ(W i · [ht-1, xt] + bi) (2)

C̃ t = tanh(WC · [ht-1, xt] + bC) (3)

C t = f t × C t-1 + it ∗ C̃ t (4)

ot = σ(W o · [ht-1, xt] + bo) (5)

ht = ot × tanhC t (6)

Where:

• Wi, Wf, Wo, Wc : are the trained weights.

• bi, bf, bo, bc : are the trained biases

• σ: is the sigmoid function.

• xt : is the input at time step t

• ct : is the cell state at time t

• ht : is the output at time step t

Single directional LSTM can only use the con-
textual information from the past. Bidirectional
LSTM can use the contexts of the past as well as
the future, generating two independent sequences
of LSTM output vectors (Schuster and Paliwal,
1997). The output at each time step is the con-
catenation of two output vectors from both the di-
rections, i.e.,

ht =
−→
ht ⊕

←−
ht

4.5 Dropout
Dropout is a regularization technique in which
units and their connections are randomly dropped
from the neural network during training (Srivas-
tava et al., 2014). This prevents units from co-
adapting too much. Dropout of p sets p fraction

of units to 0 at each update during training time.
We employ dropout in our system to avoid overfit-
ting.

4.6 Attention

Not all words in a sentence contribute to a senti-
ment. A neural network armed with an attention
mechanism can actually understand how to disre-
gard the noise and focus on what’s relevant. This
is especially effective in sequence tasks as the net-
work can choose to remember only that context
that’s relevant (Zhang et al., 2018).

5 Experiments

5.1 Evaluation Metrics

Evaluation will be done by calculating micro aver-
aged F1 score(F1µ) for the three emotion classes
i.e. Happy, Sad and Angry. The Others class is
ignored in the evaluation.

• Pµ = (
∑
TPi)÷ (

∑
(TPi+ FPi))

∀i ∈ Happy, Sad,Angry

• Rµ = (
∑
TPi)÷ (

∑
(TPi+ FNi))

∀i ∈ Happy, Sad,Angry

• F1µ = (2× Pµ×Rµ)÷ (Pµ+Rµ)

TPi is the number of samples of class i which are
correctly predicted, FNi and FPi are the counts of
Type-I and Type-II errors respectively for the sam-
ples of class i. Please note that both the precision
and recall are micro-averaged.

5.2 Methodology

All the experiments are developed using the
Scikit-Learn (Pedregosa et al., 2011) machine

207

learning library and keras deep learning library
(Chollet et al., 2015) with Tensorflow backend
(Abadi et al., 2015). We concatenate turn1, turn2
and turn3 using a separator ’eos’, read as ’end of
sentence’. Similarly, we concatenate the POS tags
of all the turns as well using the same separator.
Five-fold cross validation is used to evaluate our
models. In all our experiments, the batch size is
200, the learning rate is 0.008 and the number of
epochs is 10. The loss is categorical cross-entropy
and the optimizer used is rmsprop. In all the set-
tings, the activation for LSTM/BiLSTM is tanh
and the last layer is a dense layer of 4 units with
sigmoid activation. Attention layer, if employed,
is used after the last LSTM/BiLSTM layer. All our
code is publicly available in a Github repository.3

Table 2 shows the results of different variations
of the system.

6 Results and Analysis

The results show that attention based models out-
perform their corresponding equivalents. It is in-
teresting to see from S.No 1-4 that BiLSTM out-
performs LSTM when no attention is used but in
the presence of attention, LSTM performs better
than BiLSTM. The two layer BiLSTM with atten-
tion in S.No 6 surmounted all the other variations
during the competition. Hence, we submitted this
model and achieved an F1µ score of 0.6939.

S.No 7-9 show our further analysis of the sys-
tem when different embedding layers are merged.
We see that concatenating any one of POS and De-
pecheMood to the word vectors increased the per-
formance in S.No 7-8, but not by much. How-
ever, concatenation of word vectors, POS and De-
pecheMood decreased performance, as shown in
S.No 9.

7 Conclusion and Future Work

In this paper, we described a stacked BiLSTM
deep learning model to detect emotion in context.
We used glove pre-trained embeddings to convert
each word into its corresponding word vector and
then passed it on to two layers of BiLSTM, ap-
plied attention mechanism and finally, passed the
intermediate inputs on to a dense layer of 4 units
with sigmoid activations. We also depicted the re-
sults of adding different features to the pre-trained
word vectors. Inspired by the work of Rezaeinia

3https://git.io/fhFG4

et al. (2017), in the future, we would like to ex-
amine more lexicon combinations to analyze the
performance of the system. We would also like
to make the system deeper to scrutinize how it re-
sponds.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Muhammad Abdul-Mageed and Lyle Ungar. 2017.
Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
718–728. Association for Computational Linguis-
tics.

Oscar Araque, Lorenzo Gatti, Jacopo Staiano, and
Marco Guerini. 2018. Depechemood++: a bilingual
emotion lexicon built through simple yet powerful
techniques. CoRR, abs/1810.03660.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

R C Balabantaray, Iiit Bhubaneswar, Mudasir Moham-
mad, and Nibha Sharma. 2012. N.: Multi-class
twitter emotion classification: A new approach. In-
ternational Journal of Applied Information Systems,
pages 48–53.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

208

François Chollet et al. 2015. Keras. https://
keras.io.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1615–1625. Association for Computa-
tional Linguistics.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Daniel Jurafsky and James H. Martin. 2018. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics, and Speech Recognition. Prentice Hall.

Bernhard Kratzwald, Suzana Ilic, Mathias Kraus, Ste-
fan Feuerriegel, and Helmut Prendinger. 2018. De-
cision support with text-based emotion recognition:
Deep learning for affective computing. CoRR,
abs/1803.06397.

Mubasher H. Malik, Syed Ali Raza, and H.M. Shehzad
Asif. 2017. Context based emotion analyzer for in-
teractive agent. International Journal of Advanced
Computer Science and Applications, 8(1).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Rodmonga Potapova and Denis Gordeev. 2016. De-
tecting state of aggression in sentences using CNN.
CoRR, abs/1604.06650.

Matthew Purver and Stuart Adam Battersby. 2012. Ex-
perimenting with distant supervision for emotion
classification. In EACL 2012.

Seyed Mahdi Rezaeinia, Ali Ghodsi, and Rouhollah
Rahmani. 2017. Improving the accuracy of pre-
trained word embeddings for sentiment analysis.
CoRR, abs/1711.08609.

Hasim Sak, Andrew W. Senior, and Françoise Beau-
fays. 2014. Long short-term memory based recur-
rent neural network architectures for large vocabu-
lary speech recognition. CoRR, abs/1402.1128.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Sig-
nal Processing, 45:2673–2681.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Ewan Klein Steven Bird and Edward Loper. 2009. Nat-
ural Language Processing with Python– Analyzing
Text with the Natural Language Toolkit. O’Reilly
Media, Inc.

Andrea Vanzo, Danilo Croce, and Roberto Basili.
2014. A context-based model for sentiment anal-
ysis in twitter. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers, pages 2345–2354.
Dublin City University and Association for Compu-
tational Linguistics.

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis : A survey. CoRR,
abs/1801.07883.

209

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 210–214
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

EmoSense at SemEval-2019 Task 3: Bidirectional LSTM Network for
Contextual Emotion Detection in Textual Conversations

Sergey Smetanin
National Research University Higher School of Economics

Moscow, Russia
sismetanin@gmail.com

Abstract

In this paper, we describe a deep-learning sys-
tem for emotion detection in textual conversa-
tions that participated in SemEval-2019 Task 3
“EmoContext”. We designed a specific archi-
tecture of bidirectional LSTM which allows
not only to learn semantic and sentiment fea-
ture representation, but also to capture user-
specific conversation features. To fine-tune
word embeddings using distant supervision we
additionally collected a significant amount of
emotional texts. The system achieved 72.59%
micro-average F1 score for emotion classes on
the test dataset, thereby significantly outper-
forming the officially-released baseline. Word
embeddings and the source code were released
for the research community.

1 Introduction

Emotion detection has emerged as a challeng-
ing research problem that can make some valu-
able contribution not only in basic spheres like
medicine, sociology and phycology but also in
more innovative areas such as human-computer
interaction. Nowadays, people increasingly com-
municate using text messages with dialogue sys-
tems, for which it is crucial to provide emotion-
ally aware responses to users. The SemEval-2019
Task 3 “EmoContext” is focused on the contex-
tual emotion detection in textual conversation. In
EmoContext, given a textual user utterance along
with 2 turns of context in a conversation, we must
classify whether the emotion of the next user ut-
terance is “happy”, “sad”, “angry” or “others” (4-
point scale). For a detailed description see (Chat-
terjee et al., 2019).

In this paper, we present bidirectional LSTM
for contextual emotion detection in textual con-
versations that participated in SemEval-2019 Task
3 “EmoContext”. The proposed architecture aims

to capture not only semantic and sentiment fea-
ture representation from the conversation turns,
but also to capture user-specific conversation fea-
tures. We avoided using traditional NLP features
like sentiment lexicons and hand-crafted linguistic
features by substituting them with word embed-
dings which were calculated automatically from
the text corpora. Based on this paper, we make
the following contributions1 freely available for
the research community:

• The source code of the deep-learning system
for emotion detection.

• Word embeddings fine-tuned for emotional
detection in short texts.

The rest of the article is organized as follows.
Section 2 gives a brief overview of the related
work. In section 3 we describe the proposed ar-
chitecture of LSTM used in our system. Section
4 is focused on the texts pre-processing and train-
ing process. Section 5 lays emphasis on the differ-
ent system architectures and approaches we have
tried. In conclusion, the performance of our sys-
tem and further ways of research are presented.

2 Related Work

In recent years deep learning techniques have cap-
tured the attention of researchers due to their abil-
ity to significantly outperform traditional methods
in sentiment analysis task (Tang et al., 2015). This
fact has also been confirmed by previous itera-
tions of SemEval competition, where leading so-
lutions used convolutional neural networks (CNN)
and long short-term memory (LSTM) networks
(Cliche, 2017; Baziotis et al., 2017, 2018) as well
as transfer learning techniques (Duppada et al.,
2018). However, limited research was focused

1https://github.com/sismetanin/
emosense-semeval2019-task3-emocontext

210

Figure 1: The architecture of a smaller version of the proposed architecture. LSTM unit for the first turn and for
the third turn have shared weights.

on emotion identification in textual conversations.
Since recurrent neural networks (RNNs) and their
variations have been efficient in capturing sequen-
tial information, they have been successfully ap-
plied in emotion recognition systems (Poria et al.,
2017; Gupta et al., 2017). Consequently, we draw
our primary attention to the emotion classification
in conversations using RRNs.

3 System Description

A recurrent neural network (RNN) is a family of
artificial neural networks which is specialized in
processing of sequential data. In contrast with
traditional neural networks, RRNs are designed
to deal with sequential data by sharing their in-
ternal weights processing the sequence. For this
purpose, the computation graph of RRNs includes
cycles, representing the influence of the previous
information on the present one. As an extension
of RNNs, Long Short-Term Memory networks
(LSTMs) have been introduced in 1997 (Hochre-
iter and Schmidhuber, 1997). In LSTMs recur-
rent cells are connected in a special way in or-
der to avoid vanishing and exploding gradient is-
sues. Traditional LSTMs only preservs informa-
tion from the past since they process the sequence
only in one direction. Bidirectional LSTMs com-
bine output from two hidden LSTM layers mov-
ing in opposite directions, where one moves for-
ward through time, and another moves backwards
through time, thereby enabling to capture infor-
mation from both past and future states simulta-
neously (Schuster and Paliwal, 1997).

A high-level overview of our approach is pro-

vided in Figure 1. The proposed architecture of the
neural network consists of the embedding unit and
two bidirectional LSTM units (dim = 64). The
former LSTM unit is intended to analyze the utter-
ance of the first user (i.e. the first turn and the third
turn of the conversation), and the latter is intended
to analyze the utterance of the second user (i.e. the
second turn). These two units learn not only se-
mantic and sentiment feature representation, but
also how capture user-specific conversation fea-
tures, which allows classifying emotions more ac-
curately. At the first step, each user utterance is
fed into corresponding bidirectional LSTM unit
using pre-trained word embeddings. Next, these
three feature maps are concatenated in a flatten
feature vector and then passed to a fully connected
hidden layer (dim = 30), which analyzes inter-
actions between obtained vectors. Finally, these
features proceed through the output layer with the
softmax activation function to predict a final class
label. To reduce overfitting, regularization layers
with Gaussian noise were added after the embed-
ding layer, dropout layers (Srivastava et al., 2014)
were added at each LSTM unit (p = 0.2) and be-
fore the hidden fully connected layer (p = 0.1).

4 Training

To train this model we had access to 30160
human-labelled tweets provided by task organiz-
ers, where about 5000 samples each from “angry”,
“sad”, “happy” class and 15000 for “others” class
(Table 1). Dev and test sets, which were also pro-
vided by organizers, in contrast with train set, have
a real-life distribution, which is about 4% for each

211

Dataset Happy Sad Angry Others Total
Train 14.07% 18.11% 18.26% 49.56% 30160
Dev 5.15% 4.54% 5.45% 84.86% 2755
Test 5.16% 4.54% 5.41% 84.90% 5509
Distant 33.3% 33.3% 33.3% 0% 900k

Table 1: Emotion class label distribution in datasets.

emotional class and the rest for the “others” class.
Data provided by Microsoft.

In addition to this data, we collected 900k En-
glish tweets in order to create a distant dataset of
300k tweets for each emotion. To form the dis-
tant dataset, we based on the strategy of Go et al.
(2009), under which we simply associate tweets
with the presence of emotion-related words such
as ’#angry’, ’#annoyed’, ’#happy’, ’#sad, ’#sur-
prised’, etc. The list of query terms was based
on the query terms of SemEval-2018 AIT DISC
(Duppada et al., 2018).

The key performance metric of EmoContext is a
micro-average F1 score for three emotion classes,
i.e. ‘sad’, ‘happy’, and ‘angry’. It is calculated as
the harmonic mean of Precision and Recall.

4.1 Pre-processing

Before any training stage, texts were pre-
processed by text pre-processing tool Ekphrasis
(Baziotis et al., 2017). This tool helps to perform
spell correction, word normalization and segmen-
tation and allows to specify which tokens should
be omitted, normalized or annotated with special
tags. We used the following techniques for the pre-
processing stage:

• URLs, emails, the date and time, usernames,
percentage, currencies and numbers were re-
placed with the corresponding tags.

• Repeated, censored, elongated, and capital-
ized terms were annotated with the corre-
sponding tags.

• Elongated words were automatically cor-
rected based on built-in word statistics cor-
pus.

• Hashtags and contractions unpacking (i.e.
word segmentation) was performed based on
built-in word statistics corpus.

• A manually created dictionary for replacing
terms extracted from the text was used in or-
der to reduce a variety of emotions.

In addition, Emphasis provides with the tokenizer
which is able to identify most emojis, emoticons
and complicated expressions such as censored,
emphasized and elongated words as well as dates,
times, currencies and acronyms.

4.2 Unsupervised Training
Word embeddings have become an essential part
of any deep-learning approaches for NLP systems.
To determine the most suitable vectors for emo-
tions detection task, we try Word2Vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014)
and FastText (Joulin et al., 2017) models as well
as DataStories pre-trained word vectors (Baziotis
et al., 2017). The key concept of Word2Vec is
to locate words, which share common contexts in
the training corpus, in close proximity in vector
space. Both Word2Vec and Glove models learn
geometrical encodings of words from their co-
occurrence information, but essentially the former
is a predictive model and the latter is a count-
based model. In other words, while Word2Vec
tries to predict a target word (CBOW architec-
ture) or a context (Skip-gram architecture), i.e. to
minimize the loss function, GloVe calculates word
vectors doing dimensionality reduction on the co-
occurrence counts matrix. FastText is very similar
to Word2Vec except for the fact that it uses char-
acter n-grams in order to learn word vectors, so
it’s able to solve the out-of-vocabulary issue. For
all techniques mentioned above, we used the de-
fault training prams provided by the authors. We
train a simple LSTM model (dim = 64) based on
each of these embeddings and compare effective-
ness using cross-validation. According to the re-
sult, DataStories pre-trained embeddings demon-
strated the best average F1 score.

4.3 Distant Pre-training
To enrich selected word embeddings with the
emotional polarity of the words, we consider per-
forming distant pre-training phrase by a fine-
tuning of the embeddings on the automatically
labelled distant dataset. The importance of us-
ing pre-training was demonstrated in (Deriu et al.,
2017). We use the distant dataset to train the
simple LSTM network to classify angry, sad and
happy tweets. The embeddings layer was frozen
for the first training epoch in order to avoid sig-
nificant changes in the embeddings weights, and
then it was unfrozen for the next 5 epochs. After
the training stage, the fine-tuned embeddings was

212

System Happy Sad Angry Happy&Sad&Angry
F1 P R F1 P R F1 P R F1 P R

Baseline n/a n/a n/a n/a n/a n/a n/a n/a n/a 58.61 n/a n/a
Random 8.89 5.36 26.06 7.96 4.70 26.00 8.45 5.14 23.67 8.43 5.06 25.18
LSTM1 67.07 59.07 77.68 76.95 71.57 83.36 71.18 61.75 84.67 71.37 63.31 81.89
LSTM2 68.16 61.25 77.25 78.19 74.34 82.72 72.51 63.32 85.13 72.58 65.34 81.73
LSTM3 67.33 60.70 75.77 75.23 69.60 82.00 70.06 59.08 86.27 70.58 62.34 81.41
LSTMs 64.83 56.70 77.30 73.53 67.27 81.84 66.93 55.10 86.78 67.89 58.34 82.07
LSTMa 66.50 58.71 77.00 75.64 71.40 80.71 69.88 59.27 85.56 70.30 62.15 81.19
LSTMw 68.67 62.30 76.60 77.51 73.87 81.60 70.35 60.25 84.67 71.77 64.45 81.00

Table 2: Comparison of various models on dev dataset using micro-average Precision, Recall and F1-score for
emotional classes. Baseline is an official baseline approach released by task organizers.

saved for the further training phases.

4.4 Supervised Training

At the final stage, the training dataset provided by
SemEval-2019 was split into training and valida-
tion subsets. The validation subset was utilized
as an unbiased accuracy evaluation of a model to
fine-tune hyperparameters during training. The
embedding layer was initialized with pre-trained
word vectors from the previous distant training
step. We use Adam optimizer (Kingma and Ba,
2014) with the initial learning rate of 0.001 and
categorical cross-entropy as a loss function.

We train our network with frozen embeddings
for the 15 epochs. We tried to unfrozen embed-
dings on the different epoch with the simultane-
ous reduction of learning rate but failed to get bet-
ter results. It is probably connected with the size
of the training dataset (Baziotis et al., 2017). The
model was implemented using Keras with Tensor-
flow (Abadi et al., 2016) backend.

5 Experiments and Results

In the process of searching for optimal architec-
ture, we experimented not only with the number
of cells in layers, activation functions and regular-
ization parameters but also with the architecture of
the neural network. Let us take a closer look at the
latter type of experiments. Comparison of various
models presented in Table 2.

• LSTM1 is a model with one bidirectional
LSTM unit for all three conversation turns.

• LSTM2 is a final model with two bidirec-
tional LSTM units described in Section 2.

• LSTM3 is a model with three bidirectional
LSTM unit, where each unit is intended to
analyze the corresponding conversation turn.

• LSTMw is LSTM2 with an additional regu-
larization based on class weights.

• LSTMs is LSTM2 with an additional
LSTM unit above concatenated layer.

• LSTMa is LSTM2 with additional context-
attention layer (Yang et al., 2016).

Since LSTM2 demonstrated the best scores on
the dev dataset, it was used in the final evaluation
stage of the competition. On the final test dataset,
it achieved 72.59% micro-average F1 score for
emotional classes. This is well above the official
baseline released by task organizers, which was
58.68%.

6 Conclusion

In this paper, we presented the deep-learning sys-
tem for emotion detection in textual conversa-
tions we used to compete in SemEval-2019 Task 3
”EmoContext” competition. Utilizing state-of-
the-art approaches in the literature, we decided to
use RNNs to detect emotions. We designed a spe-
cific architecture of LSTM which allows not only
to learn semantic and sentiment feature represen-
tation, but also to capture user-specific conversa-
tion features. In this work, we didn’t use any tradi-
tional NLP features such as sentiment lexicons or
hand-crafted linguistic by substituting them with
word embeddings which were calculated automat-
ically from the text corpora with an advanced pre-
processing stage.

Our approach achieved 72.59% micro-average
F1 score for emotion classes at the test dataset,
thereby significantly outperform the officially-
released baseline, namely larger in 14%. Further
research will be focused on the advanced usage of
techniques to handle imbalanced data. It also can
be useful to consider the application of character-
level language models.

213

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
Tensorflow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementa-
tion, OSDI’16, pages 265–283, Berkeley, CA, USA.
USENIX Association.

Christos Baziotis, Athanasiou Nikolaos, Pinelopi
Papalampidi, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas, and Alexandros
Potamianos. 2018. Ntua-slp at semeval-2018 task 3:
Tracking ironic tweets using ensembles of word and
character level attentive rnns. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion (SemEval-2018), pages 613–621. Association
for Computational Linguistics.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 747–754. Association
for Computational Linguistics.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task 4:
Twitter sentiment analysis with cnns and lstms. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 573–
580. Association for Computational Linguistics.

Jan Deriu, Aurelien Lucchi, Valeria De Luca, Aliak-
sei Severyn, Simon Müller, Mark Cieliebak, Thomas
Hofmann, and Martin Jaggi. 2017. Leveraging
large amounts of weakly supervised data for multi-
language sentiment classification. In Proceedings
of the 26th international conference on world wide
web, pages 1045–1052. International World Wide
Web Conferences Steering Committee.

Venkatesh Duppada, Royal Jain, and Sushant Hiray.
2018. Seernet at semeval-2018 task 1: Domain
adaptation for affect in tweets. In Proceedings of
the 12th International Workshop on Semantic Evalu-
ation (SemEval-2018), pages 18–23. Association for
Computational Linguistics.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A sentiment-
and-semantics-based approach for emotion detec-

tion in textual conversations. arXiv preprint
arXiv:1707.06996.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient text
classification. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, volume 2, pages 427–
431. Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems,
volume 2 of NIPS’13, pages 3111–3119, USA. Cur-
ran Associates Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Majumder, Amir Zadeh, and Louis-Philippe
Morency. 2017. Context-dependent sentiment anal-
ysis in user-generated videos. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, volume 1, pages 873–883. As-
sociation for Computational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Deep learn-
ing for sentiment analysis: Successful approaches
and future challenges. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery,
5(6):292–303.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, pages 1480–1489. Association for Computa-
tional Linguistics.

214

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 215–219
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

EPITA-ADAPT at SemEval-2019 Task 3: Using Deep Sentiment Analysis
Models and Transfer Learning for Emotion Detection in Textual

Conversations

Abdessalam Bouchekif 1

abdessalam.bouchekif@epita.fr

Praveen Joshi 2

praveen.joshi@mycit.ie

1 LSE, EPITA Graduate School of Computer Science, France
2 ADAPT Centre, Cork Institute of Technology, Cork, Ireland

3 University Abou Bekr Belkaid-Tlemcen, Algeria

Latifa Bouchekif 3

latifa.bouchekif@univ-tlemcen.dz

Haithem Afli 2

haithem.afli@cit.ie

Abstract
Messaging platforms like WhatsApp, Fa-
cebook Messenger and Twitter have gained
recently much popularity owing to their ability
in connecting users in real-time. The content
of these textual messages can be a useful re-
source for text mining to discover and unhide
various aspects, including emotions. In this
paper we present our submission for SemEval
2019 task ’EmoContext’. The task consists of
classifying a given textual dialogue into one of
four emotion classes : Angry, Happy, Sad and
Others. Our proposed system is based on the
combination of different deep neural networks
techniques. In particular, we use Recurrent
Neural Networks (LSTM, B-LSTM, GRU,
B-GRU), Convolutional Neural Network
(CNN) and Transfer Learning (TL) methods.
Our final system, achieves an F1µ score of
74.51% on the subtask evaluation dataset.

1 Introduction
The world of text conversations has undergone

drastic changes during the last few years. The ge-
neration and sharing of such information have be-
come much easier than before with the advent
of popular social media platforms such as Twit-
ter, Facebook, etc. According to Statistica 1 What-
sApp is the most popular mobile messaging app in
the world with one billion monthly active users.
Facebook Messenger closely follows with 900
million monthly active users. The content of these
messages can be useful resource for text mining
to discover and unhide various aspects, including
emotions (Chatterjee et al., 2019a).

Capturing and analysing these emotions from
peoples conversations has raised growing interest
within the scientific community in varied fields
like cognitive and social psychology, signal pro-

1. https://www.statista.com/topics/
1145/internet-usage-worldwide/

cessing and natural language processing (Gupta
et al., 2017; Zhang et al., 2018; Majumder et al.,
2018).
The goal of detecting emotions in SemEval2019
task3 described in (Chatterjee et al., 2019b) is
to classify a given conversation into one of four
classes - happy, sad, angry and others, that best
represents the mental state of the users. This can
be seen as a multiclass classification problem.

In this paper, we propose an approach to detect
emotions like happy, sad or angry in textual mes-
sages using a combination of deep learning mo-
dels. We apply, also, a transfer learning approach,
from a model trained on a similar task consists on
the prediction of the sentiment of the conversation,
i.e. positive, negative or neutral. Then, the pre-
trained model is re-used to classify the dialogue
into one of four classes : happy, sad, angry and
others.

The rest of the paper is organized as follows.
Section 2 provides a brief literature review on
emotion detection in textual datasets. The descrip-
tion of our proposed system is presented in Sec-
tion 3. The experimental set-up and results are des-
cribed in Section 4. Finally, a conclusion is given
with a discussion of future works in Section 5.

2 Related Work
Emotions are closely related to sentiment

with more analysis of the inferred polarity. For
example, a negative sentiment can be caused by
sadness or anger, while a positive sentiment can
be caused by happiness or anticipation. Thus, fol-
lowing the way in sentiment analysis, many deep
learning models are applied to detect emotions
(Zhang et al., 2018; Poria et al., 2017).

(Zhou et al., 2018) proposed an Emotional
Chatting Machine (ECM) that can generate appro-
priate responses grammatically relevant and emo-
tionally consistent based on GRU. Their system

215

is modeling the emotion factor, using emotion ca-
tegory embedding, internal emotion memory, and
external memory. A bilingual attention network
model was proposed by (Wang et al., 2016) for
code-switched emotion prediction. The authors
used a LSTM model to construct a document level
representation of each post, and an attention me-
chanism to capture the informative words from bi-
lingual and monolingual contexts. (Abdul-Mageed
and Ungar, 2017) built a large, automatically cu-
rated dataset for emotion detection using distant
supervision and then used GRNNs to model fine-
grained emotion. They extended the classification
to model (Plutchik, 2001)’s 8 primary emotion di-
mensions.

(Felbo et al., 2017) show how millions of rea-
dily available emoji occurrences on Social Media
can be used to pre-train models to learn a richer
emotional representation. They transfer this know-
ledge to emotion, sarcasm and sentiment detection
tasks using a new layer-wise fine-tuning method.
In (Daval-Frerot et al., 2018) the authors used a
transfer learning approach, from a model trained
on a similar task. They propose to pre-train a mo-
del to predict if a tweet is positive, negative or neu-
tral by applying a B-LSTM on an external dataset.
Then, they used the pre-trained model to classify
a tweet according to the seven-point (range from 5
to +5 respectively from very negative to very po-
sitive) scale of positive and negative sentiment in-
tensity.

3 Proposed System
Figure 1 provides a high-level overview of our

system, which consists of three steps :

1. First step applies the basic text processing
(Tokenisation, lemmatisation, filtering the
noise from the raw text data, etc) and repre-
sents words in textual dialogue as vectors.

2. In the second step, we learn a model for each
one of the emotions : angry, happy and sad.

3. The last step does the prediction based on
the probabilities of our three models. The
system classifies the dialogue in one of four
classes (angry, happy, sad and others).

In this work, we consider each conversation as one
single input, i.e. we didn’t take into account the
writing turn (utterance). Our decision was based
on the fact that the language and the size of these
conversations are similar to the standard user ge-
nerated content type of data sets.

Figure 1 – Our proposed system architecture

3.1 Pre-processing and word representation
The textual dialogues are processed using ek-

phrasis 2 tool which allows performing the fol-
lowing tasks : tokenization, word normalization,
word segmentation (for splitting hashtags) and
spell correction (i.e replace a misspelled word
with the most probable candidate word). All words
are lowercased. E-mails, URLs and user handles
are normalized. A detailed description of this tool
is given in (Baziotis et al., 2017).
Each word in the text is represented by a vector of
real numbers capturing the semantic meanings of
words. We used datastories embeddings (Baziotis
et al., 2017) trained on 330M english twitter mes-
sages posted from 12/2012 to 07/2016. The em-
beddings used in this work are 300 dimensional.

3.2 Neural Networks
With the recent advances in deep learning, the

ability to analyse sentiments has considerably
improved. Indeed, many experiments have used
state-of-the-art systems to achieve high perfor-
mance. For example, (Baziotis et al., 2017) use Bi-
directional Long Short-Term Memory (B-LSTM)
with attention mechanisms while (Deriu et al.,
2016) use Convolutional Neural Networks (CNN).
Both systems obtained the best performance at the
the 2016 and 2017 SemEval 4-A task respecti-

2. https://github.com/cbaziotis/
ekphrasis

216

vely. In this work, we use Long Short-Term Me-
mory (LSTM), B-LSTM, Gated Recurrent Unit
(GRU), Bidirectional-GRU (B-GRU) and CNN
models and we, also, apply a Transfer Learning
(TL) approach.

3.2.1 LSTM, GRU 1 and GRU 2 models

LSTM (Schuster and Paliwal, 1997) and GRU
(Cho et al., 2014) are a special kind of RNN, ca-
pable of learning long-term dependencies. This
ability comes from LSTM cells, that can decide
which information to add and remove to the cell
state regulated by gates (input gate, output gate
and forget gate). The GRU cell is a simplified ver-
sion of the LSTM cell.
LSTM and GRU 1 contain 2 layers of 128 neurons
each. Similarly to (Baziotis et al., 2017), we ad-
ded a Gaussian noise at the embedding layer with
σ = 0.3 and dropout of 0.3 at LSTM/GRU layers.
GRU 2 is similar to GRU 1, with some little diffe-
rences where GRU 2 contains 3 layers of 100 neu-
rons and dropout of 0.2 at the embedding layer.

3.2.2 B-LSTM and B-GRU models

The B-LSTM become a standard for deep senti-
ment analysis (Baziotis et al., 2017; Daval-Frerot
et al., 2018; Moore and Rayson, 2017). B-LSTM
and B-GRU consists of two LSTMs and two GRUs
respectively in different directions running in pa-
rallel : the first forward network reads the input se-
quence from left to right and the second backward
network reads the sequence from right to left. Each
LSTM / GRU yields a hidden representation : ~h
(left to right vector) and

←−
h (right-to-left vector)

which are then combined to compute the output
sequence. For our problem, capturing the context
of words from both directions allows to better un-
derstand the textual conversations semantic. We
use the same parameters of LSTM and GRU 1 mo-
dels.

3.2.3 CNN model

The application of CNN models started with vi-
sual imagery. Many works apply CNN for sen-
timent analysis and obtained interesting results
(Kim, 2014; Ouyang et al., 2015; Deriu et al.,
2016). CNN is typically composed of three types
of layers : convolution, pooling, and fully connec-
ted layers. Each neuron in the convolutional layer
is connected only to a local region. In this work,
we use multiple convolutional filters of sizes 3, 4
and 5.

3.2.4 TL-BLSTM model

In this work, we apply a TL, which allows to
avoid learning from scratch. TL consists of trans-
ferring the knowledge learned on one task to a se-
cond related task. We start by training a first model
to predict the sentiment of the dialogue : positive,
negative or neutral. For this, we added a dense
layer of 3 neurons to our B-LSTM (see subsec-
tion 3.2.2) . The model is learned using an external
dataset 3 composed of 50333 tweets (7840 nega-
tives, 19903 positives and 22590 neutrals). Then,
the first model is re-used as the starting point to
train a new model that classifies the dialogue into
one of four classes : happy, sad, angry and others.
For this, we remove the last layer of the pre-trained
model and we add a fully-connected layer of 128
neurons followed by an output layer of 3 neurons
(similar to our previous work (Daval-Frerot et al.,
2018)).

4 Experimental settings and results
For each emotion, we use only the best models

which maximizes the F1µ score. Table 2 presents
the selected models for each emotion. Then, we
combine these models using the soft voting ap-
proach considering only the probability of the se-
lected emotion : happy, sad or angry.

For example, suppose that the CNN model gives
0.7, 0.1, 0.2 and 0.0 respectively for happy, sad,
angry and others. And the GRU 1 model gives
0.6, 0.2, 0.0 and 0.2 for the same classes. We
know, based on our results in table 2, that the CNN
and GRU 1 are the best models for the emotion
happy. So the soft voting combination is the ave-
rage probability of 0.7 and 0.6, i.e 0.65.

In the last step we are applying a threshold af-
ter getting all prediction probabilities for our three
classes. We choose threshold scores of 0.75 for an-
gry and sad, and 0.67 for happy based on our expe-
riments on the development set. These scores were
high in order to avoid any possible confusion with
the class others. This confusing can be caused by
the fact that our training data is unbalanced.

Table 1 illustrates the performances of our sys-
tem on Dev and Test sets. We can see an overall si-
milarity in term of performance the system in both
data sets. Indeed, the system achieves 74.4% and
74.5% on Dev and test sets respectively. The re-

3. https://github.com/cbaziotis/
datastories-semeval2017-task4/tree/
master/dataset/Subtask_A/downloaded

217

Sad Angry Happy Micro Average
P R F1 P R F1 P R F1 Pµ Rµ F1µ

Dev 77.2 78.4 77.8 74.2 74.7 74.4 70.6 72.5 71.5 73.8 75.1 74.4
Test 82.5 75.6 78.9 73.9 75.8 74.8 70.8 70.1 70.4 75.2 73.8 74.5

Table 1 – performances of our system on Dev and Test corpora.

models Pµ Rµ F1µ

B-GRU 73.7 79.6 76.5
B-LSTM 72.6 78.8 75.6

Sad LSTM 80.1 71.2 75.4
GRU 1 80.4 70.8 75.3
B-GRU 72.5 76.1 74.3

Angry GRU 2 69.5 78.1 73.6
TL-BLSTM 70.1 76.5 73.1

LSTM 72.2 71.4 71.8
Happy CNN 69.4 68.6 69.6

GRU 1 71.8 67.2 69.4

Table 2 – Models used for each emotion and their
scores on test set.

sults shows a good performance for the happy and
Angry and a better detection for the class Sad with
a score around 78%.

Our final combination system, achieves an F1µ
score of 74.51% on the test set gaining more
than 3.5% compared to the best model before the
combination which is B-GRU. This improvement
comes from the fact that all systems used for the
combination are using different methods that al-
lows the diversification of their results and maxi-
mise the effect the soft voting.

Finally we can mention that after analysing our
results, we have seen that most of errors came
from the confusion between the class Others and
the rest (Happy, Angry and Sad) which will be in-
vestigated in our future work.

5 Conclusion
In this paper, we propose to use a combina-

tion of different deep neural networks techniques
including LSTM, B-LSTM, GRU, B-GRU, CNN
and TL methods for the SemEval2019 task 3 of
Emotions detection in textual conversations. Our
system achieves a final F1µ of 74.51% on the sub-
task evaluation dataset.

As future work, we plan to develop an attention
model to determine the importance of each part of
the conversation (utterance) and its specific contri-
bution to the emotion classification. We plan, also,

to extend our work to other modalities such as au-
dio emotions classification.

6 Acknowledgments
This research is partially supported by EPITA

Systems Laboratory (www.lse.epita.fr) and
Science Foundation Ireland through ADAPT
Centre (Grant 13/RC/2106) (www.adaptcentre.ie).

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet : Fine-grained emotion detection with ga-
ted recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, page 718728, Vancouver, Ca-
nada.

Christos Baziotis, Nikos Pelekis, and Christos Doulke-
ridis. 2017. Datastories at semeval-2017 task 6 : Sia-
mese LSTM with attention for humorous text com-
parison. In Proceedings of the 11th International
Workshop on Semantic Evaluation, SemEval@ACL
2017, Vancouver, Canada.

Ankush Chatterjee, Umang Gupta, Manoj Kumar Chin-
nakotla, Radhakrishnan Srikanth, Michel Galley,
and Puneet Agrawal. 2019a. Understanding emo-
tions in text using deep learning and big data. Com-
puters in Human Behavior, 93 :309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3 : Emocontext : Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Na-
tural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724–
1734.

Guillaume Daval-Frerot, Abdessalam Bouchekif, and
Anatole Moreau. 2018. Epita at semeval-2018
task 1 : Sentiment analysis using transfer lear-
ning approach. In Proceedings of The 12th
International Workshop on Semantic Evaluation,
SemEval@NAACL-HLT, New Orleans, Louisiana,
June 5-6, 2018, pages 151–155.

218

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli,
Aurélien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. Swisscheese at semeval-2016 task 4 : Senti-
ment classification using an ensemble of convolu-
tional neural networks with distant supervision. In
Proceedings of the 10th International Workshop on
Semantic Evaluation, SemEval@NAACL-HLT, USA.

Bjarke Felbo, Alan Mislove, Anders Sgaard, Iyad Rah-
wan, and Sune Lehmann. 2017. Using millions of
emoji occurrences to learn any-domain representa-
tions for detecting sentiment, emotion and sarcasm.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, page
16151625.

Umang Gupta, Ankush Chatterjee, Radhakrishnan Sri-
kanth, and Puneet Agrawal. 2017. A sentiment-and-
semantics-based approach for emotion detection in
textual conversations. In Proceedings of Neu-IR
2017 SIGIR Workshop on Neural Information Re-
trieval (Neu-IR 17).

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. CoRR, abs/1408.5882.

Navonil Majumder, Soujanya Poria, Devamanyu Ha-
zarika, Rada Mihalcea, Alexander Gelbukh, and
Erik Cambria. 2018. Dialoguernn : An attentive
rnn for emotion detection in conversations. In
arXiv :1811.00405v3.

Andrew Moore and Paul Rayson. 2017. Lancaster A
at semeval-2017 task 5 : Evaluation metrics matter :
predicting sentiment from financial news headlines.
In Proceedings of the 11th International Workshop
on Semantic Evaluation, SemEval@ACL 2017, Ca-
nada.

X. Ouyang, P. Zhou, C. H. Li, and L. Liu. 2015. Sen-
timent analysis using convolutional neural network.
In 2015 IEEE International Conference on Compu-
ter and Information Technology ; Ubiquitous Com-
puting and Communications ; Dependable, Autono-
mic and Secure Computing ; Pervasive Intelligence
and Computing, pages 2359–2364.

Robert Plutchik. 2001. The nature of emotions hu-
man emotions have deep evolutionary roots, a fact
that may explain their complexity and provide tools
for clinical practice. In American scientist, volume
89(4), page 344350.

Soujanya Poria, Erik Cambria, Devamanyu Haza-
rika, Navonil Mazumder, Amir Zadeh, and Louis-
Philippe Morency. 2017. Context-dependent senti-
ment analysis in user-generated videos. In Procee-
dings of the 55th Annual Meeting of the Association
for Computational Linguistics, page 873883, Van-
couver, Canada.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Si-
gnal Processing.

Zhongqing Wang, Yue Zhang, Sophia Yat Mei Lee,
Shoushan Li, and Guodong Zhou. 2016. A bilin-
gual attention network for code-switched emotion.
In Proceedings of the International Conference on
Computational Linguistics (COLING 2016).

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis : A survey. In
arXiv :1801.07883v2.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine : Emotional conversation generation with in-
ternal and external memory. In Proceedings of The
Thirty-Second AAAI Conference on Artificial Intelli-
gence (AAAI-18)).

219

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 220–224
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Figure Eight at SemEval-2019 Task 3: Ensemble of Transfer Learning
Methods for Contextual Emotion Detection

Joan Xiao
Figure Eight Inc.

San Francisco, CA 94103
joan.xiao@gmail.com

Abstract

This paper describes our transfer learning-
based approach to contextual emotion detec-
tion as part of SemEval-2019 Task 3. We
experiment with transfer learning using pre-
trained language models (ULMFiT, OpenAI
GPT, and BERT) and fine-tune them on this
task. We also train a deep learning model
from scratch using pre-trained word embed-
dings and BiLSTM architecture with attention
mechanism. The ensembled model achieves
competitive result, ranking ninth out of 165
teams. The result reveals that ULMFiT per-
forms best due to its superior fine-tuning tech-
niques. We propose improvements for future
work.

1 Introduction

Traditionally sentiment analysis attempts to clas-
sify the polarity of a given text at the document,
sentence, or feature/aspect level, i.e., whether the
expressed opinion in the text is positive, negative,
or neutral. More advanced sentiment classification
looks at emotional states such as “Angry”, “Sad”,
and “Happy”.

Due to the increasing popularity of social me-
dia, over the past years sentiment analysis tasks
in SemEval competitions have been mostly fo-
cused on twitter (Rosenthal et al., 2014) (Rosen-
thal et al., 2015; Nakov et al., 2016; Rosenthal
et al., 2017). SemEval-2018 Task 1: Affect in
Tweets (Mohammad et al., 2018) includes an ar-
ray of subtasks on inferring the emotions (such as
joy, fear, valence, and arousal) of a person from
his/her tweet.

As we increasingly communicate using text
messaging applications and digital agents, contex-
tual emotion detection in text is gaining impor-
tance to provide emotionally aware responses to
users. SemEval-2019 Task 3 (Chatterjee et al.,

2019) introduces a task to detect contextual emo-
tion in conversational text.

Deep-learning based approaches have recently
dominated the state-of-the-art in sentiment anal-
ysis. However, a good performing model often
requires large amounts of labeled data and takes
many days to train. In computer vision, trans-
fer learning has enabled deep learning practition-
ers to leverage models that have been pre-trained
on ImageNet, MS-COCO, and other large datasets
(Razavian et al., 2014; Shelhamer et al., 2017; He
et al., 2016; Huang et al., 2017). Fine-tuning such
pre-trained models in computer vision has been
a far more common practice than training from
scratch.

In Natural Language Processing (NLP), the
most common and simple transfer learning tech-
nique is fine-tuning pre-trained word embeddings
(Mikolov et al., 2013). These embeddings are used
as the first layer of the model on the new dataset,
and still require training from scratch with large
amounts of labeled data to obtain good perfor-
mance.

In 2018 several pre-trained language models
(ULMFiT, OpenAI GPT and BERT) emerged.
These models are trained on very large corpus, and
enable robust transfer learning for fine-tuning NLP
tasks with little labeled data.

In SemEval-2019 Task 3, we apply transfer
learning approach using both pre-trained word
embeddings and pre-trained language models.
Our model achieves highly competitive result.

In this paper we describe our approach and
experiments. The rest of the paper is laid out
as follows: Section 2 provides an overview of
the task, Section 3 describes the system architec-
ture, and Section 4 reports results and performs
an error analysis to obtain a better understand-
ing of strengths and weaknesses of our approach
and subsequently proposes improvements. Finally

220

Label Train Dev Test
Happy 4,243 142 284
Sad 5,463 125 250
Angry 5,506 150 298
Others 14,948 2,338 4,677
Total 30,160 2,755 5,509

Table 1: Train/Dev/Test set in SemEval2019 Task 3.

we conclude in Section 5 along with a discussion
about future work.

2 Task Overview

2.1 Dataset

The organizers provide a training, development,
and test set. Each row in the dataset is a 3-turn
conversation between two people. The task is to
classify the emotion of a conversation as “Happy”,
“Sad”, “Angry”, or “Others”. Table 1 shows the
distribution of the datasets across the labels. No
other dataset is used in our experiments.

2.2 Evaluation Metric

Evaluation metric is micro-averaged F1 score for
the three emotion classes i.e. Happy, Sad and An-
gry (excluding the class “Others”). This is referred
as micro F1 score throughout the paper.

3 System Description

3.1 System Architecture

Figure 1 details the System Architecture. We now
describe how all the different modules are tied to-
gether. The input raw text is pre-processed as
described in Section 3.2. The processed text is
passed through all the models described in Sec-
tions 3.3 to 3.8. Finally, the system returns the av-
erage of the predicted probabilities from all mod-
els as the output.

3.2 Pre-processing

The conversation text in the dataset is similar to
tweets in that it may contain one or many emojis,
and may have misspelled words. We use ekphrasis
tool 1 to preprocess the data. The tool performs the
following steps: tokenization, spell correction (i.e
replace a misspelled word with the most probable
candidate word), word normalization, and word
segmentation. All words are lower-cased.

1https://github.com/cbaziotis/ ekphrasis

After the text in each turn is processed, we con-
catenate them with a separator ”〈eos〉”.

3.3 Fine-tuning ULMFiT

Universal Language Model Fine-tuning (ULM-
FiT) (Howard and Ruder, 2018) trains language
models on Wikitext-103 (Merity et al., 2017b),
which consists of 28,595 preprocessed Wikipedia
articles and 103 million words. It’s based on
the language model AWD-LSTM (Merity et al.,
2017a), a regular LSTM (with no attention, short-
cut connections, or other sophisticated additions)
with various tuned dropout hyperparameters. It
provides two pre-trained models: a forward model
trained from left to right, a backward model
trained from right to left.

Furthermore, it introduced several novel tech-
niques for transfer learning: discriminative fine-
tuning, slanted triangular learning rates, and grad-
ual unfreezing, to retain previous knowledge and
avoid catastrophic forgetting during fine-tuning.

We first fine-tune the forward language model.
We combine all data including training, dev and
test set, and split into a training and validation set.
We use fast.ai’s lr find 2 method to find the opti-
mum learning rate, and use early stopping on val-
idation loss to tune the dropout values from 0.7 to
2.5.

Then we fine-tune the classifier on the training
set using 10-fold cross validation. We use early
stopping on the evaluation metric of the task (mi-
cro F1 with ”Others” class excluded). We experi-
ment with dropout values from 0.7 to 0.85.

We repeat the same process for the backward
language model.

3.4 Fine-tuning BERT

Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018) trains
language models on BooksCorpus (800M words)
(Zhu et al., 2015) and English Wikipedia (2,500M
words). It trains a deep bidirectional language
models by masking some percentage of the input
tokens at random, and then predicting only those
masked token. This creates deep bidirectional
representations by jointly conditioning on both
left and right context in all layers.

In addition, it also trains a binarized next sen-
tence prediction task which helps with understand-
ing relation between two sentences, important for

2https://github.com/fastai/fastai

221

Figure 1: System Architecture.

Question Answering and Natural Language Infer-
ence tasks.

BERT provides pre-trained base and large mod-
els in multiple languages. In our experiments we
use the large uncased English model. And we use
the pytorch implementation by huggingface 3.

We experiment with fine-tuning the language
model on a training and validation set split from a
combined data set including training, dev and test
set. We use early stopping on validation loss.

We then add a classifier layer on top of the out-
put from the language model, and train it using the
training set from the task with 10-fold cross vali-
dation. We use early stopping on the evaluation
metric of the task (micro F1 with “Others” class
excluded). We experiment with learning rate from
7e-6 to 3e-5.

3.5 Fine-tuning OpenAI GPT
OpenAI’s Generative Pre-Training (GPT) (Alec
et al., 2018) trains a language model using Trans-
former architecture on BooksCorpus. It obtains
state-of-the-art result on many tasks including
Natural Language Inference, Question answering
and commonsense reasoning, Semantic Similarity,
and Text Classification.

We tune the hyperparameters (clf pdrop,
embd pdrop, resid pdrop and attn pdrop) in
different combinations of values 0.1 and 0.2
(default value is 0.1) on the dev set. Due to that

3https://github.com/huggingface/pytorch-pretrained-
BERT

the dev score is less promising than the previous
approaches, we do not use cross validation as it
would take significant more time and compute
resources. In fact this model was not included in
the final submission.

3.6 Fine-tuning DeepMoji
DeepMoji (Felbo et al., 2017) performs distant
supervision on a dataset of 1246 million tweets
containing one of 64 common emojis. It ob-
tained state-of-the-art performance on 8 bench-
mark datasets within sentiment, emotion and sar-
casm detection using a single pretrained model.

We perform fine-tuning using the training set
for training, and dev set as a validation set. We
adopt the gradual unfreezing apporach (introduced
by ULMFiT): first unfreeze the last layer and fine-
tune all unfrozen layers for one epoch. We then
unfreeze the next lower frozen layer and repeat,
until we fine-tune all layers until convergence at
the last iteration.

We do not use 10-fold cross validation due to
that the highest micro F1 score on dev set does not
seem promising.

3.7 Training a DeepMoji model with NTUA
embedding

We also train a model from scratch using the
DeepMoji’s architecutre, but replace its embed-
ding with a 310 dimensional embedding trained
by NTUA-SLP team (Baziotis et al., 2018), which
was trained on a dataset of 550M English twit-

222

Model F1 (Dev) F1 (Test)
Happy Sad Angry Avg Happy Sad Angry Avg

ULMFiT Fwd 0.7138 0.8106 0.7593 0.7586 0.6901 0.7647 0.7535 0.7357
ULMFiT Bwd 0.7101 0.8077 0.752 0.7541 0.6993 0.7598 0.7387 0.7321
BERT 0.6585 0.7574 0.7403 0.7172 0.6289 0.7040 0.7345 0.6907
OpenAI GPT 0.6322 0.7481 0.7395 0.7050 0.6388 0.7279 0.7280 0.6976
DeepMoji 0.6195 0.7037 0.7435 0.6914 0.5933 0.6932 0.7190 0.6703
DeepMoji/NTUA 0.7066 0.7881 0.7011 0.7274 0.6997 0.7518 0.7048 0.7168
Combined (all) 0.7097 0.8077 0.7656 0.7585 0.7267 0.8023 0.7776 0.7680
Combined (no OpenAI)* 0.7285 0.8244 0.7761 0.7742 0.7153 0.7977 0.7713 0.7608
ULMFiT+BERT+OpenAI 0.7255 0.7658 0.8185 0.7619 0.7254 0.8031 0.7799 0.7686

Table 2: Micro Average F1 scores on dev set and test set. Bold indicates the highest F1 score on each dataset
among the ensembled models. Asterisk indicates our final submission: ensemble of all models except OpenAI.

Figure 2: Prediction examples by ULMFiT and BERT. Red indicates incorrect prediction.

ter messages. It was trained based on word2vec
and has 310 dimensional embeddings, consisting
of 300 dim word2vec embeddings and 10 dim af-
fective dimensions.

We use the keras lr finder 4 method to find the
optimum starting learning rate (with the fastest de-
crease in training loss), and train the model on
the training set using 10-fold cross validation and
early stopping on the evaluation metric of micro
F1 score.

3.8 Ensembling

We combine the predictions of all models above
by taking the unweighted average of the posterior
probabilities for these models, and the final pre-
diction is the class with the largest averaged prob-
ability.

4 Results and Analysis

Table 2 shows the results of various models on the
dev set and test set. ULMFiT has the best perfor-
mance on both dev and test sets, outperforming all
other pre-trained models. The DeepMoji model

4https://github.com/surmenok/keras lr finder

trained from scratch with NTUA embedding ranks
the second.

Figure 2 shows some examples where the
ULMFiT or BERT makes incorrect predictions for
the same conversations. We observe that BERT
often makes incorrect predictions when emojis are
present in the text, while ULMFiT is more robust
to emojis. This suggests that the high performance
of ULMFiT is due to not only the large corpus on
which the language model is pre-trained on, but
also the superior fine-tuning methods, such as dis-
criminative fine-tuning, slanted triangular learning
rates, and gradual unfreezing.

5 Conclusion

In this paper we describe our methods for contex-
tual emotion detection. We achieved very com-
petitive results in SemEval-2019 Task 3 using
an ensemble of Transfer Learning models. We
demonstrate that with sophisticated fine-tuning
techniques in ULMFiT, transfer learning using
pre-trained language models yields the highest
performance, outperforming models trained from
scratch. For future work we plan to explore these
techniques with OpenAI GPT and BERT as well.

223

References
Radford Alec, Narasimhan Karthik, Salimans Tim, and

Ilya Sutskever Openai. 2018. Improving Language
Understanding by Generative Pre-Training. Techni-
cal report.

Christos Baziotis, Nikos Athanasiou, Alexandra
Chronopoulou, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas, Shrikanth
Narayanan, and Alexandros Potamianos. 2018.
NTUA-SLP at SemEval-2018 Task 1: Predicting
Affective Content in Tweets with Deep Attentive
RNNs and Transfer Learning.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. Technical report.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. Technical report.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339. Association for Com-
putational Linguistics.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. 2017. Densely connected
convolutional networks. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 2261–2269.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017a. Regularizing and Optimizing LSTM
Language Models. Technical report.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017b. Pointer Sentinel Mixture
Models.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Saif M Mohammad, Felipe Bravo-Marquez, Moham-
mad Salameh, and Svetlana Kiritchenko. 2018.
SemEval-2018 Task 1: Affect in Tweets. Technical
report.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. SemEval-
2016 Task 4: Sentiment Analysis in Twitter. Tech-
nical report.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sul-
livan, and Stefan Carlsson. 2014. CNN features off-
the-shelf: an astounding baseline for recognition.
CoRR, abs/1403.6382.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 Task 4: Sentiment Analysis in Twit-
ter. Technical report.

Sara Rosenthal, Saif M Mohammad, Preslav Nakov,
Alan Ritter, Svetlana Kiritchenko, and Veselin Stoy-
anov Facebook. 2015. SemEval-2015 Task 10: Sen-
timent Analysis in Twitter. Technical report.

Sara Rosenthal, Preslav Nakov, Alan Ritter, and
Veselin Stoyanov. 2014. SemEval-2014 Task 9:
Sentiment Analysis in Twitter. Technical report.

Evan Shelhamer, Jonathan Long, and Trevor Darrell.
2017. Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. In-
tell., 39(4):640–651.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. CoRR, abs/1506.06724.

224

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 225–229
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

GenSMT at SemEval-2019 Task 3: Contextual Emotion Detection in
tweets using multi task generic approach

Dumitru C. Bogdan
Faculty of Mathematics and Computer Science, University of Bucharest

Human Language Technologies Research Center, University of Bucharest
bogdan27182@gmail.com

Abstract

In this paper, we describe our participation
in SemEval-2019 Task 3: EmoContext - A
Shared Task on Contextual Emotion Detection
in Text. We propose a three layer model with a
generic, multi-purpose approach that without
any task specific optimizations achieve com-
petitive results (f1 score of 0.7096) in the
EmoContext task. We describe our develop-
ment strategy in detail along with an exposi-
tion of our results.

1 Introduction

In recent years, emotion detection in text has be-
come more popular due to its vast potential appli-
cations in marketing, artificial intelligence, educa-
tion, politics, psychology, human-computer inter-
action, etc. Social platforms like Twitter and Face-
book, enabled access to huge amount of textual
data facilitating both theoretical and experimental
research.

Consequently, sentiment analysis and emotion
detection have gained the interest of researchers
in natural language processing and other fields.
While sentiment analysis refers to classifying a
subjective text as positive, neutral, or negative;
emotion detection identify specific types of feel-
ings such as anger, joy, fear, or sadness.

SemEval is the International Workshop on Se-
mantic Evaluation that has evolved from SensE-
val. The purpose of this workshop is to evalu-
ate semantic analysis systems. Task 3 (Chatterjee
et al., 2019) in this workshop, presents the task of
detecting contextual emotion in a given three turn
conversation where every turn is a short phrase (or
tweet).

Our proposed model factors a generic approach
to sentiment and emotion detection in tweets thus
being suitable for several tasks in 2019 SemEval
competition like task 3, task 5 or task 6. By not

exploiting to the fullest specificity of task 3 (be-
ing a three turn conversation) and by not includ-
ing transfer learning from any similar task we as-
sumed a lower accuracy, being confident that in a
longer term this approach will be useful for a large
class of emotion detection tasks in text.

We leverage the latest developments in natu-
ral language processing, like deep contextualized
word representation and a specially build sub-
model (encoder) as we will see in section 4.

2 Previous work

Sentiment classification, the task of detecting
whether a text is positive or negative, has a long
history of research. From the moment when
(Pak and Paroubek, 2010) constructed a corpus of
tweets for this task research in this area, on this
type of corpus, increased considerably. Classify-
ing tweets according to sentiment has many appli-
cations in political science, social sciences, mar-
ket research, and many others (Martı́nez-Cámara
et al., 2012).

It was only natural to extend research in this
area to include a more fine grained classification
of text, more than positive or negative. As result
emotion classification in tweets started to gain in-
terest.

Emotion detection is part of the broader area
of Affective Computing that has the goal to help
machines detect and simulate emotions (Picard,
1995). Psychology offers us a number of theories
about how to represent emotions while two are the
most important and the most often used in exist-
ing approaches in sentiment analysis: emotional
categories and emotional dimensions.

Emotional categories approaches are concen-
trated on model emotions based on distinct emo-
tion classes. The categorical model assumes that
emotion categories clearly separable, are discrete

225

. Ekman presented a basic emotion model that fits
categorical model approach. (Ekman, 2005) con-
cluded that the six basic emotions are anger, dis-
gust, fear, happiness, sadness and surprise.

Anger, sadness and happiness are the subject
of the current task with one important addition:
the absence of context which can add ambigu-
ity making the task classification task much more
complex, without access to facial expression and
speech. Important amount of work has been done
regarding to speech and facial emotion recogni-
tion however text based emotion detection systems
still needs attraction of researchers (Sebea et al.,
2005). Various methods where developed in the
past like: Keyword Spotting Technique, Lexical
Affinity Method or Learning-based Methods.

A similar research area is where emotions or
more precisely emotion combinations plays a sig-
nificant role is detection of optimism/pessimism in
texts (Caragea et al., 2018).

Hopefully participants to this task will provide
models and tools that will add value and will con-
tribute to this field in a similar manner as previous
SemEval tasks did (Mohammad et al., 2018).

3 Data preparation

Being a multi-task system, data preparation was
also constrained to basic text preparation and
tweets specific procedures. In effect we have
treated all three sentences as a paragraph. We have
concatenated turn1, turn2, turn3 separated by dot
thus transforming the dataset in a list of pairs (la-
bel, text).

Tweets specific prepossessing involved sanitisa-
tion (links were replaced with url tag and user
mentions were replaced with entity tag) and most
important, we have translated emoji to text (e.g an
emoji representing a face with tears of joy was ex-
panded to ”face with tears of joy” text). Emoji
conversion is very important and based on inter-
mediary tests it can greatly influence accuracy of
models on datasets containing tweets.

To run our experiments, we used the dataset
provided by the task organizers (Chatterjee et al.,
2019) as follows. In pre-evaluation period we
have trained our models on training-set and eval-
uated our model versions on dev-set. Dataset pro-
vided by the organizers contained 30160 entries
and we have separated them into 24999 entries for
training-set and remaining 5161 for dev-set. Table
1 provides more information about categories split

in each set.

Data Angry Sad Happy Others Total
All 5506 5463 4243 14948 30160
Train 4560 4504 3544 12391 24999
Dev 946 959 699 2557 5161

Table 1: Data split by sets and categories

4 Approach

Our selected model has a classical layered ap-
proach as outlined in figure 1.

The first layer consists of few embedders, that
receives the input data as a text sequence and con-
verts it into a specific representation.

Resulted transformation is next feed to the mid-
dle layer where few encoders individually trans-
forms input vectors to a final representation of in-
put texts.

Next, final representations are concatenated into
a large vector and transmitted to the final layer
which is a dense layer those output is transformed
into a probability distribution consisting of k prob-
abilities, where k is the number of classes depend-
ing on the selected SemEval task: k = 4 for task
3, k = 2 for task 5 and task 6.

Along with layered approach, a parallel text
transformation was considered, meaning that the
input text was transformed into three different
internal representations using three different en-
coders.

Figure 1: GenSMT model structure

First encoder is ELMo (Peters et al., 2018), a
deep contextualised word representation that mod-
els both complex characteristics of words syn-
tax and semantics, and variations across linguistic
contexts. Previous research and test showed sig-
nificant improvements in various canonical NLP

226

problems. A short description of this encoder is:
ELMo word representations consists of functions
of the entire input sentence computed on top of
two-layer biLMs using character convolutions, as
a linear function of the internal model states.

We can formalize this encoder as follows:

ELMo(xE1
1:n) = γ

l∑

j=0

sjh
LM
j

where γ is a scalar parameter, l is the number of
representation, s are softmax-normalized weights
and h represents LSTM outputs.

Second encoder is NCR and works as follows:
based on a list of words proposed by (Mohammad,
2018) it selects all occurrences of those words and
their synonyms presented in the input text. Next it
simply counts occurrences for each category (sad,
anger, happy) and concatenates the results into a
fixed size output vector.

We can formalize this encoder as follows:

NCR(xE2
1:n) = [count

cat∈{anger,... }
(< cat >, x1:n)]

where < cat > represents category and count
is the counting function.

Other NCR variations where proposed where
we do not use a count function but we add, sub
or dot product word representation and next we
perform an operation of averaging, minimum or
maximum.

Third encoder, RHN is an extended LSTM with
recurrent dropout and possibility to use highway
connections between internal layers.

We can formalize this encoder as follows:

RHN(xE3
1:n) = h · t+ x · c

where h, t and c are internal compositions of
nonlinear and linear functions.

Input data of the above encoders is formalized
as follows:

xE1
1:n = embedder1(x1:n)

xE2
1:n = embedder2(x1:n)

xE3
1:n = embedder3(x1:n)

where embedder1 produce character level
representation of input text, embedder2 and

embedder3 transform input words into their word
embedding representation.

Now, we can formalize the full model as fol-
lows:

GenSMT (x1:n) =softmax(MLP (Θ));

Θ =[ELMo(xE1
1:n),

NCR(xE2
1:n),

RHN(xE3
1:n)]

As word representation we have use used var-
ious pretrained models in various configuration
of GenSMT: Glove, Glove Twitter (Pennington
et al., 2014), FastText (Joulin et al., 2016) and
Wikipedia2vec (Yamada et al., 2018).

For development and testing we have used
Python with ML related library like pytorch,
numpy, pandas and others. Initial prototyping was
done using Flair framework (Akbik et al., 2018)
and development was done with AllenNLP (Gard-
ner et al., 2017).

Training, validation and testing were performed
on a single GPU machine. Training times were
below one hour for each model configuration thus
making this model suitable for hyper-parameters
optimisation using grid search.

5 Experiments and results

As described in section 3 dataset was split in train
and dev sets after being lightly pre-processed.

For training we use the model structure de-
scribed in section 4 and we only changed model
parameters and word embeddings of the embed-
ders. We did not use any hyperparameters opti-
misation methods. Various model configurations
were selected based on our previous experience
with this kind of models.

Table 2 shows accuracy on dev tests of few se-
lected configurations of GenSMT.

Model configuration Accuracy
GenSMT1 0.90
GenSMT2 0.87
GenSMT3 0.88
GenSMT4 0.89

Table 2: Accuracy of various model configurations

GenSMT1 configuration has the following
general characteristics:

227

• embeder1 performs character encoding

• embeder2 uses 100d glove embeddings

• embeder2 uses 500d wikipedia2vec embed-
dings

• ELMo large model

• MLP has three layers with ReLU activation

• batch size of 16

• Adam optimiser with a cosine learning rate
scheduler

• 20 epochs with a patience of 5

Table 3 shows GenSMT1 configuration where
only default word embeddings of embedder3 was
changed. Results indicate that choosing word em-
beddings may influence accuracy.

Model configuration Accuracy
GenSMT1(500d− wikipedia2vec) 0.90
GenSMT1(300d− glove) 0.89
GenSMT1(300d− fasttext) 0.89

Table 3: Word-embeddings variations for a given con-
figuration

We were interested to measure how each en-
coder contributes to model accuracy and for that
ablation tests were performed. Table 4 shows
GenSMT1 configuration with one encoder re-
moved.

Model configuration Accuracy
GenSMT1(noELMo) 0.88
GenSMT2(noNCR) 0.88
GenSMT3(noRHN) 0.89

Table 4: Ablation tests on best performing configura-
tion

While ELMo is powerful encoder, the gap be-
tween his absence and NCR absence, a simple en-
coder, is almost unnoticeable which is a surprise.
This mean that a simpler model, with similar re-
sults, can be considered in scenarios where train-
ing or prediction speeds are of great importance
(e.g mobile or IoT devices with low computing re-
sources or low power resources).

For final, competition test we have used few
GenSMT1 configurations and the best perform-
ing one had an f1 score of 0.7096 placing this
model in the upper half of the competition board.

6 Conclusions and future work

In this paper we have presented GenSMT model
build as a generic system for SemEval 2019 task3,
task 5 and task 6. It is a three layer model with
three parallel embedders and encoders those out-
puts are concatenated and feed to dense layer
which is next transformed into a probability dis-
tribution that produce text classification.

GenSMT was build with two constraint in mid.
First we wanted to eliminate task specific depen-
dencies as result we did not included any task
specificity into the model. Second we did not use
task specific transfer learning (e.g pretraining our
model on a twitter sentiment dataset). This two
constrains gave us the advantage to use the same
model more than one task however reducing our
accuracy capacity.

We have showed that choosing specific pre-
trained word embeddings can slightly improve the
results, however greater gains are obtained by al-
tering model hyperparameters.

By performing ablation tests we have showed
that using a powerful encoder like ELMo increase
the accuracy but not with an impressive score thus
giving the option to use a simple and lower compu-
tational model to attain similar results much faster
for both training and prediction.

Future work should explore two hypothesis.
First as an upgrade of the model, it will be in-
teresting to study how the model will perform if
we remove the initial constraints and pretrain our
model with a large twitter sentiment dataset fol-
lowed by task specific data manipulation (e.g re-
move turn1 from dataset or inverse turns order).
Second, as an update of the model, we can replace
current encoder and embedders with new, state of
the art ones.

Another aspect, specific for micro-blogging text
is emoji presence and importance. While also
present in larger texts, in short micro-blogging
texts, emoji have more meaning, they carry a high
quantity and quality of information that can be
used for emotion detection thru data preprocess-
ing or maybe using a model/encoder especially for
them.

228

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In COLING 2018, 27th International Con-
ference on Computational Linguistics, pages 1638–
1649.

Cornelia Caragea, Liviu P. Dinu, and Bogdan Dumitru.
2018. Exploring optimism and pessimism in twit-
ter using deep learning. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 652–658. Association for
Computational Linguistics.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Paul Ekman. 2005. Basic emotions. In Handbook of
Cognition and Emotion, pages 45–60. John Wiley &
Sons, Ltd.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Eugenio Martı́nez-Cámara, M. Teresa Martı́n-Valdivia,
and L. Alfonso Ureña-López. 2012. Sentiment anal-
ysis in twitter. Natural Language Engineering,
20(01):1–28.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 1–17. Association for Computational
Linguistics.

Saif M. Mohammad. 2018. Word affect intensities. In
Proceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Alexander Pak and Patrick Paroubek. 2010. Twitter
as a corpus for sentiment analysis and opinion min-
ing. In Proceedings of the Seventh conference on
International Language Resources and Evaluation
(LREC’10). European Languages Resources Asso-
ciation (ELRA).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

R. W. Picard. 1995. Affective computing.

Nicu Sebea, Ira Cohenb, and The Netherl. 2005. Mul-
timodal approaches for emotion recognition: A sur-
vey.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo,
Hideaki Takeda, and Yoshiyasu Takefuji. 2018.
Wikipedia2vec: An optimized tool for learning
embeddings of words and entities from wikipedia.
arXiv preprint 1812.06280.

229

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 230–235
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

GWU NLP Lab at SemEval-2019 Task 3 : EmoContext: Effective
Contextual Information in Models for Emotion Detection in

Sentence-level in a Multigenre Corpus

Shabnam Tafreshi
George Washington University

Department of Computer Science
Washington, DC

shabnamt@gwu.edu

Mona Diab
AWS AI

George Washington University
Department of Computer Science

Washington, DC
mtdiab@gwu.edu

Abstract

In this paper we present an emotion classifier
models that submitted to the SemEval-2019
Task 3 : EmoContext. The task objective is
to classify emotion (i.e. happy, sad, angry) in
a 3-turn conversational data set. We formu-
late the task as a classification problem and
introduce a Gated Recurrent Neural Network
(GRU) model with attention layer, which is
bootstrapped with contextual information and
trained with a multigenre corpus. We utilize
different word embeddings to empirically se-
lect the most suited one to represent our fea-
tures. We train the model with a multigenre
emotion corpus to leverage using all avail-
able training sets to bootstrap the results. We
achieved overall %56.05 f1-score and placed
144.

1 Introduction

In recent studies, deep learning models have
achieved top performances in emotion detection
and classification. Access to large amount of data
has contributed to these high results. Numerous
efforts have been dedicated to build emotion clas-
sification models, and successful results have been
reported. In this work, we combine several popu-
lar emotional data sets in different genres, plus the
one given for this task to train the emotion model
we developed. We introduce a multigenre train-
ing mechanism, our intuition to combine differ-
ent genres are a) to augment more training data,
b) to generalize detection of emotion. We uti-
lize Portable textual information such as subjec-
tivity, sentiment, and presence of emotion words,
because emotional sentences are subjective and af-
fectual states like sentiment are strong indicator
for presence of emotion.
The rest of this paper is structured as followings:
section 2 introduce our neural net model, in sec-
tion 3 we explain the experimental setup and data

that is been used for training and development sets,
section 4 discuss the results and analyze the er-
rors, section 5 describe related works, section 6
conclude our study and discuss future direction.

2 Model Description

Gates Recurrent Neural Network (GRU) (Cho
et al., 2014; Chung et al., 2015) and attention
layer are used in sequential NLP problems and
successful results are reported in different studies.
Figure 1 shows the diagram of our model. 1

GRU- has been widely used in the literature
to model sequential problems. RNN applies the
same set of weights recursively as follow:

ht = f(Wxt + Uht−1 + b) (1)

GRU is very similar to LSTM with the following
equations:

rt = σ(W r
xt

+ U rht−1 + br) (2)

zt = σ(W z
xt

+ U zht−1 + bz) (3)

ĥt = tanh(Wxt + rt × U ĥht−1 + bĥ) (4)

ht = zt × ht−1 + (1− zt)× ĥt (5)

GRU has two gates, a reset gate rt, and an update
gate zt. Intuitively, the reset gate determines
how to combine the new input with the previous
memory, and the update gate defines how much
of the previous memory to keep around. We
use Keras2 GRNN implementation to setup our
experiments. We note that GRU units are a
concatenation of GRU layers in each task.

Attention layer - GRUs update their hidden
state h(t) as they process a sequence and the final

1Data and system will be released upon the request.
2https://keras.io/

230

hidden state holds the summation of all other
history information. Attention layer (Bahdanau
et al., 2014) modifies this process such that
representation of each hidden state is an output
in each GRU unit to analyze whether this is an
important feature for prediction.

Model Architecture - our model has an em-
bedding layer of 300 dimensions using fasttext
embedding, and 1024 dimensions using ELMo
(Peters et al., 2018) embedding. GRU layer has
70 hidden unites. We have 3 perceptron layers
with size 300. Last layer is a softmax layer to
predict emotion tags. Textual information layers
(explained in section 2.1) are concatenated with
GRU layer as auxiliary layer. We utilize a dropout
(Graves et al., 2013) layer after the first perceptron
layer for regularization.

2.1 Textual Information

Sentiment and objective Information (SOI)-
relativity of subjectivity and sentiment with
emotion are well studied in the literature. To craft
these features we use SentiwordNet (Baccianella
et al., 2010), we create sentiment and subjective
score per word in each sentences. SentiwordNet
is the result of the automatic annotation of all the
synsets of WORDNET according to the notions of
positivity, negativity, and neutrality. Each synset
s in WORDNET is associated to three numerical
scores Pos(s), Neg(s), and Obj(s) which indicate
how positive, negative, and objective (i.e., neutral)
the terms contained in the synset are. Different
senses of the same term may thus have different
opinion-related properties. These scores are
presented per sentence and their lengths are equal
to the length of each sentence. In case that the
score is not available, we used a fixed score 0.001.

Emotion Lexicon feature (emo)- presence
of emotion words is the first flag for a sentence
to be emotional. We use NRC Emotion Lexicon
(Mohammad and Turney, 2013) with 8 emotion
tags (e.i. joy, trust, anticipation, surprise, anger,
fear, sadness, disgust). We demonstrate the
presence of emotion words as an 8 dimension
feature, presenting all 8 emotion categories of the
NRC lexicon. Each feature represent one emotion
category, where 0.001 3 indicates of absent of

3empirically we observed that 0 is not a good initial value
in neural net.

the emotion and 1 indicates the presence of the
emotion. The advantage of this feature is their
portability in transferring emotion learning across
genres.

2.2 Word Embedding
Using different word embedding or end to end
models where word representation learned from
local context create different results in emotion
detection. We noted that pre-trained word embed-
dings need to be tuned with local context during
our experiments or it causes the model to not
converge. We experimented with different word
embedding methods such as word2vec, GloVe
(Pennington et al., 2014), fasttext (Mikolov et al.,
2018), and ELMo. Among these methods fasttext
and ELMo create better results.

GRU

Perceptron

Sentim
ent Encoding

fasttext fasttext fasttext

300 300 300

Sentiment

70

Objective Emotion

70 8

148

300

NLP is fun

Concatinate

Softm
ax

GRUGRU

Contextual Information

A
ttention Layer

Figure 1: GRU-Attention neural net architecture. In this
model framework, context information are features generated
from SentiWordNet and emotion lexicon. We use fasttext to
show the embedding layer (we use ELMo too, but we do not
show it in here). Features are presented to GRU and attention
layer and the output of attention layer is sent to 3 perceptron
layer. Last layer is a softmax layer to predict emotion labels.
Model without contextual info, exclude the contextual info
input, which we do not show in the architecture.

3 Experimental Setup

We split MULTI dataset into 80%,10%,10% for
train, dev, and test, respectively. We use AIT and
EmoContext (data for this task) split as it is given
by SemEval 2018 and semEval 2019. We describe
these data sets in details in the next section. All
experiments are implemented using Keras 4 and
Tensorflow 5 in the back-end.

3.1 Data
We used three different emotion corpora in our
experiments. Our corpora are as follows: a)

4https://keras.io/
5https://www.tensorflow.org/

231

A multigenre corpus created by (Tafreshi and
Diab, 2018) with following genres: emotional
blog posts, collected by (Aman and Szpakowicz,
2007), headlines data set from SemEval 2007-task
14 (Strapparava and Mihalcea, 2007), movie
review data set (Pang and Lee, 2005) originally
collected from Rotten tomatoes 6 for sentiment
analysis and it is among the benchmark sets
for this task. We refer to this multigenre set as
(MULTI), b) SemEval-2018 Affect in Tweets
data set (Mohammad et al., 2018) (AIT) with
most popular emotion tags: anger, fear, joy, and
sadness, c) the data set that is given for this task,
which is 3-turn conversation data. From these
data sets we only used the emotion tags happy,
sad, and angry. We used tag no-emotion from
MULTI data set as others tag. Data statistics are
shown in figures 2, 3, 4 .

Data pre-processing - we tokenize all the
data. For tweets we replace all the URLs, image
URLs, hashtags, @users with specific anchors.
Based on the popularity of each emoticon per
each emotion tag, we replace them with the
corresponding emotion tag. We normalized all
the repeated characters, finally caps words are
replaced with lower case but marked as caps
words.

3.2 Training the Models

We have input size of 70 for sentence length,
sentiment, and objective features and emotion
lexicon feature has size 8. All these features are
explained in section 2.1 and are concatenated with
GRU layer as auxiliary (input) layer. Attention
comes next after GRU and have size 70. We select
dropout of size 0.2. We select 30 epochs in each
experiment, however, training is stopped earlier
if 2 consecutive larger loss values are seen on
evaluation of dev set. We use Adam (Kingma and
Ba, 2014) optimizer with a learning rate 0.001.
We use dropout with rates 0.2. The loss function
is a categorical-cross-entropy function. We use
a mini batch (Cotter et al., 2011) of size 32. All
hyper-parameter values are selected empirically.
We run each experiment 5 times with random
initialization and report the mean score over these
5 runs. In section 4 we describe how we choose
the hyper-parameters values.

6https://www.rottentomatoes.com/

Data set #train #dev #test total
MULTI 13776 1722 1722 17220
AIT 6839 887 4072 11798
EmoContext 30160 2755 5510 38425

Table 1: Data statistics illustrating the distributions of the
train, dev, and test sets across different data sets.

baseline- in each sentence we tagged every
emotional word using NRC emotion lexicon
(Mohammad and Turney, 2013), if any emotion
has majority occurrence we pick that emotion tag
as sentence emotion tag, when all emotion tags
happen only once we randomly choose among
them, when there is no emotional word we tag the
sentence as others. We only use the portion of the
emotion lexicon that covers the tags in the task
(i.e. happy, sad, and angry).

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

anger

anti

disgust

fear

joy

sadness

surprise

trust

no-emo

MULTI

train dev test

Figure 2: MULTI data set - train, dev, test data statistic

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200

anger

fear

joy

sadness

AIT

train dev test

Figure 3: AIT data set - train, dev, test data statistic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

·104

angry

happy

sad

others

EmoContext

train dev test

Figure 4: EmoContext data set - train, dev, test data statistic

232

Methods/Data set EmoContext
pr. re. f. acc. sp./#epo.

Baseline - - 46.20 46.20 n.a.
GRU-att-fasttext 88.12 81.24 83.44 80.84 103/14
GRU-att-fasttext+F 88.27 84.47 85.27 82.07 321/8
GRU-att-ELMo 88.50 82.65 83.05 82.65 310/20
GRU-att-ELMo+F 88.61 84.34 85.54 83.62 960/28
Context Results(emotion only) 54.28 57.93 56.04 - 960/28

Table 2: Results on the EmoContext test sets. We report
the mean score over 5 runs. Standard deviations in score are
around 0.8. The experiments are demonstrating different em-
bedding (i.e. ELMo and fasttext), with features (F), which
are emo and SOI explained in section 2.1

Emotion tags/Data set EmoContext
pr. re. f.

happy 45.37 53.52 49.11
sad 57.92 55.60 56.73
angry 61.02 64.09 62.52

Table 3: Context results of each emotion tag.

4 Results and Analysis

The results indicates the impact of contextual in-
formation using different embeddings, which are
different in feature representation. Results of class
happy without contextual features has %44.16 by
GRU-att-ELMo model, and %49.38 by GRU-att-
ELMo+F.
We achieved the best results combining ELMo
with contextual information, and achieve %85.54
f-score overall, including class others. In this task
we achieved %56.04 f-score overall for emotion
classes, which indicates our model needs to im-
prove the identification of emotion. Table 3 shows
our model performance on each emotion tag. The
results show a low performance of the model for
emotion tag happy, which is due to our data be-
ing out of domain. Most of the confusion and er-
rors are happened among the emotion categories,
which suggest further investigation and improve-
ment. We achieved %90.48, %60.10, %60.19,
%49.38 f-score for class others, angry, sad, and
happy respectfully.
Processing ELMo and attention is computation-
ally very expensive, among our models GRU-att-
ELMo+F has the longest training time and GRU-
att-fasttext has the fastest training time. Results
are shown in table 2 and table refemoresultss

5 Related Works

In semEval 2018 task-1, Affect in Tweets (Mo-
hammad et al., 2018), 6 team reported results
on sub-task E-c (emotion classification), mainly
using neural net architectures, features and

resources, and emotion lexicons. Among these
works (Baziotis et al., 2018) proposed a Bi-LSTM
architecture equipped with a multi-layer self
attention mechanism, (Meisheri and Dey, 2018)
their model learned the representation of each
tweet using mixture of different embedding. in
WASSA 2017 Shared Task on Emotion Intensity
(Mohammad and Bravo-Marquez, 2017), among
the proposed approaches, we can recognize teams
who used different word embeddings: GloVe or
word2vec (He et al., 2017; Duppada and Hiray,
2017) and exploit a neural net architecture such
as LSTM (Goel et al., 2017; Akhtar et al., 2017),
LSTM-CNN combinations (Köper et al., 2017;
Zhang et al., 2017) and bi-directional versions (He
et al., 2017) to predict emotion intensity. Similar
approach is developed by (Gupta et al., 2017)
using sentiment and LSTM architecture. Proper
word embedding for emotion task is key, choosing
the most efficient distance between vectors is
crucial, the following studies explore solution
sparsity related properties possibly including
uniqueness (Shen and Mousavi, 2018; Mousavi
and Shen, 2017) .

6 Conclusion and Future Direction

We combined several data sets with different an-
notation scheme and different genres and train an
emotional deep model to classify emotion. Our re-
sults indicate that semantic and syntactic contex-
tual features are beneficial to complex and state-
of-the-art deep models for emotion detection and
classification. We show that our model is able to
classify non-emotion (others) with high accuracy.
In future we want to improve our model to be able
to distinguish between emotion classes in a more
sufficient way. It is possible that hierarchical bi-
directional GRU model can be beneficial, since
these models compute history and future sequence
while training the model.

References

Md S Akhtar, Palaash Sawant, Asif Ekbal, JD Pawar,
and Pushpak Bhattacharyya. 2017. Iitp at emoint-
2017: Measuring intensity of emotions using sen-
tence embeddings and optimized features. In Asso-
ciation for Computational Linguistics.

Saima Aman and Stan Szpakowicz. 2007. Identify-
ing expressions of emotion in text. In International

233

Conference on Text, Speech and Dialogue, pages
196–205. Springer.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining.
In Lrec, pages 2200–2204.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Christos Baziotis, Nikos Athanasiou, Alexandra
Chronopoulou, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas, Shrikanth
Narayanan, and Alexandros Potamianos. 2018.
Ntua-slp at semeval-2018 task 1: Predicting affec-
tive content in tweets with deep attentive rnns and
transfer learning. arXiv preprint arXiv:1804.06658.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2015. Gated feedback recur-
rent neural networks. In International Conference
on Machine Learning, pages 2067–2075.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik
Sridharan. 2011. Better mini-batch algorithms via
accelerated gradient methods. In Advances in neural
information processing systems, pages 1647–1655.

Venkatesh Duppada and Sushant Hiray. 2017. Seernet
at emoint-2017: Tweet emotion intensity estimator.
arXiv preprint arXiv:1708.06185.

Pranav Goel, Devang Kulshreshtha, Prayas Jain, and
Kaushal Kumar Shukla. 2017. Prayas at emoint
2017: An ensemble of deep neural architectures
for emotion intensity prediction in tweets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 58–65.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A sentiment-
and-semantics-based approach for emotion detec-
tion in textual conversations. arXiv preprint
arXiv:1707.06996.

Yuanye He, Liang-Chih Yu, K Robert Lai, and Weiyi
Liu. 2017. Yzu-nlp at emoint-2017: Determin-
ing emotion intensity using a bi-directional lstm-
cnn model. In Proceedings of the 8th Workshop

on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis, pages 238–242.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Maximilian Köper, Evgeny Kim, and Roman Klinger.
2017. Ims at emoint-2017: emotion intensity pre-
diction with affective norms, automatically extended
resources and deep learning. In Proceedings of
the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 50–57.

Hardik Meisheri and Lipika Dey. 2018. Tcs research
at semeval-2018 task 1: Learning robust representa-
tions using multi-attention architecture. In Proceed-
ings of The 12th International Workshop on Seman-
tic Evaluation, pages 291–299.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 1–17.

Saif M Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. arXiv
preprint arXiv:1708.03700.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a word-emotion association lexicon.
Computational Intelligence, pages 436–465.

Seyedahmad Mousavi and Jinglai Shen. 2017. Solu-
tion uniqueness of convex piecewise affine functions
based optimization with applications to constrained

\

ell 1minimization. arXiv preprint arXiv:1711.05882.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with re-
spect to rating scales. In Proceedings of the 43rd an-
nual meeting on association for computational linguis-
tics, pages 115–124. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

234

Jinglai Shen and Seyedahmad Mousavi. 2018. Least spar-
sity of p-norm based optimization problems with p¿1.
SIAM Journal on Optimization, 28(3):2721–2751.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of the 4th
international workshop on semantic evaluations, pages
70–74. Association for Computational Linguistics.

Shabnam Tafreshi and Mona T Diab. 2018. Sentence and
clause level emotion annotation, detection, and classi-
fication in a multi-genre corpus. In LREC.

You Zhang, Hang Yuan, Jin Wang, and Xuejie Zhang.
2017. Ynu-hpcc at emoint-2017: Using a cnn-lstm
model for sentiment intensity prediction. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Media
Analysis, pages 200–204.

235

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 236–240
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

IIT Gandhinagar at SemEval-2019 Task 3: Contextual Emotion Detection
Using Deep Learning

Arik Pamnani∗, Rajat Goel∗, Jayesh Choudhari, Mayank Singh
IIT Gandhinagar

Gujarat, India
{arik.pamnani,rajat.goel,choudhari.jayesh,singh.mayank}@iitgn.ac.in

Abstract

Recent advancements in Internet and Mobile
infrastructure have resulted in the development
of faster and efficient platforms of communi-
cation. These platforms include speech, facial
and text-based conversational mediums. Ma-
jority of these are text-based messaging plat-
forms. Development of Chatbots that automat-
ically understand latent emotions in the tex-
tual message is a challenging task. In this pa-
per, we present an automatic emotion detec-
tion system that aims to detect the emotion of a
person textually conversing with a chatbot. We
explore deep learning techniques such as CNN
and LSTM based neural networks and outper-
formed the baseline score by 14%. The trained
model and code are kept in public domain.

1 Introduction

In recent times, text has become a preferred mode
of communication (Reporter, 2012; ORTUTAY,
2018) over phone/video calling or face-to-face
communication. New challenges and opportuni-
ties accompany this change. Identifying sentiment
from text has become a sought after research
topic. Applications include detecting depres-
sion (Wang et al., 2013) or teaching empathy to
chatbots (WILSON, 2016). These applications
leverage NLP for extracting sentiments from
text. On this line, SemEval Task 3: EmoContext
(Chatterjee et al., 2019) challenges participants to
identify Contextual Emotions in Text.

Challenges: The challenges with extracting
sentiments from text are not only limited to the use
of slang, sarcasm or multiple languages in a sen-
tence. There is also a challenge which is presented
by the use of non-standard acronyms specific to in-
dividuals and others which are present in the task’s
dataset 2.
∗Equal Contribution

Existing work: For sentiment analysis, most of
the previous year’s submissions focused on neu-
ral networks (Nakov et al., 2016). Teams exper-
imented with Recurrent Neural Network (RNN)
(Yadav, 2016) as well as Convolutional Neu-
ral Network (CNN) based models (Ruder et al.,
2016). However, some top ranking teams also
used (Giorgis et al., 2016) classic machine learn-
ing models. Aiming for the best system, we started
with classical machine learning algorithms like
Support Vector Machine (SVM) and Logistic Re-
gression (LR). Based on the findings from them
we moved to complex models using Long Short-
Term Memory (LSTM), and finally, we experi-
mented with CNN in search for the right system.

Our contribution: In this paper, we present
models to extract emotions from text. All our
models are trained using only the dataset provided
by EmoContext organizers. The evaluation metric
set by the organizers is micro F1 score (referred
as score in rest of the paper) on three {Happy,
Sad, Angry} out of the four labels. We experi-
mented by using simpler models like SVM, and
Logistic regression but the score on dev set was
below 0.45. We then worked with a CNN model
and two LSTM based models where we were able
to beat the baseline and achieve a maximum score
of 0.667 on test set.

Outline: Section 2 describes the dataset and
preprocessing steps. Section 3 presents model de-
scription and system information. In the next sec-
tion (Section 4), we discuss experimental results
and comparisons against state-of-the-art baselines.
Towards the end, Section 5 and Section 6 conclude
this work with current limitations and proposal for
future extension.

236

2 Dataset

We used the dataset provided by Task 3 in SE-
MEVAL 2019. This task is titled as ‘EmoCon-
text: Contextual Emotion Detection in Text’. The
dataset consists of textual dialogues i.e. a user
utterance along with two turns of context. Each
dialogue is labelled into several emotion classes:
Happy, Sad, Angry or Others. Figure 1 shows an
example dialogue.

Turn 1: N u
Turn 2: Im fine, and you?
Turn 3: I am fabulous

Figure 1: Example textual dialogue from EmoCon-
text dataset.

Table 1 shows the distribution of classes in the
EmoContext dataset. The dataset is further subdi-
vided into train, dev and test sets. In this work, we
use training set for model training and dev set for
validation and hyper-parameter tuning.

Others Happy Sad Angry
Train 14948 4243 5463 5506
Dev 2338 142 125 150
Test 4677 284 250 298

Table 1: Dataset statistics.

Preprocessing: We leverage two pretrained
word embedding: (i) GloVe (Pennington et al.,
2014) and (ii) sentiment specific word embedding
(SSWE) (Tang et al., 2014). However, several
classes of words are not present in these embed-
dings. We list these classes below:
• Emojis: , , etc.
• Elongated words: Wowwww, noooo, etc.
• Misspelled words: ofcorse, activ, doin, etc.
• Non-English words: Chalo, kyun, etc.
We follow a standard preprocessing pipeline to

address the above limitations. Figure 2 describes
the dataset preprocessing pipeline.

By using the dataset preprocessing pipeline, we
reduced the number of words not found in GloVe
embedding from 4154 to 813 and in SSWE from
3188 to 1089.

†NLTK Library (Bird et al., 2009)
‡For spell check we the used the following PyPI package

- pypi.org/project/pyspellchecker/.

Tokenize sentences
using NLTK’s

TweetTokenizer†

Is the
token an
emoji?

Convert Unicode
to string
−→ “:)”

Use regex to remove
repetition of letters

at the end of a token.
“heyyyyy” −→ “hey”

Correct spelling‡

errors in tokens.

Lemmatize the
token using NLTKs

WordNetLemmatizer.

YES

NO

Figure 2: Data processing pipeline.

3 Experiments

We experiment with several classification systems.
In the following subsections we first explain the
classical ML based models followed by Deep
Neural Network based models.

3.1 Classical Machine Learning Methods

We learn§ two classical ML models, (i) Support
Vector Machine (SVM) and (ii) Logistic Regres-
sion (LR). The input consists a single feature vec-
tor formed by combining all sentences (turns). We
term this combination of sentences as ’Dialogue’.

We create feature vector by averaging over d di-
mensional GloVe representations of all the words
present in the dialogue. Apart from standard aver-
aging, we also experimented with tf-idf weighted
averaging. The dialogue vector construction from
tf-idf averaging scheme is described below:

V ectordialogue =
ΣN
i=1(tf-idfwi ×GloV ewi)

N

§We leverage the Scikit-learn (Pedregosa et al., 2011) im-
plementation.

237

Here, N is the total number of tokens in a sen-
tence and wi is the ith token in the dialogue. Em-
pirically, we found that, standard averaging shows
better prediction accuracy than tf-idf weighted av-
eraging.

3.2 Deep Neural Networks

In this subsection, we describe three deep neural
architectures that provide better prediction accu-
racy than classical ML models.

3.2.1 Convolution Neural Network (CNN)

We explore a CNN model analogous to (Kim,
2014) for classification. Figure 3 describes our
CNN architecture. The model consists of an em-
bedding layer, two convolution layers, a max pool-
ing layer, a hidden layer, and a softmax layer.
For each dialogue, the input to this model is a
sequence of token indices. Input sequences are
padded with zeros so that each sequence has equal
length n.

Hey

How

are

you

?

d = embedding
dimension

Embedding
matrix of

size N x d

* =

Feature
maps

Max
pooling

.

.

.

.

.

.

.

.

.

.

.

.

Filters of size
2xd, 3xd, 4xd

Concat

Softmax

⊕

⊕

Fully Connected
Layers

Figure 3: Architecture of the CNN model.

The embedding layer maps the input sequence
to a matrix of shape n× d, where n represents nth

word in the dialogue and d represents dimensions
of the embedding. Rows of the matrix correspond
to the GloVe embedding of corresponding words
in the sequence. A zero vector represents words
which are not present in the embedding.

At the convolution layer, filters of shape m× d
slide over the input matrix to create feature maps
of length n−m + 1. Here, m is the ‘region size’.
For each region size, we use k filters. Thus, the
total number of feature maps is m × k. We use
two convolution layers, one after the other.

Next, we apply a max-pooling operation over
each feature map to get a vector of length m × k.
At the end, we add a hidden layer followed by a

softmax layer to obtain probabilities for classifica-
tion. We used Keras for this model.

3.2.2 Long Short-Term Memory-I (LSTM-I)
We experiment with two Long Short-term Mem-
ory (Hochreiter and Schmidhuber, 1997) based ap-
proaches. In the first approach, we use an architec-
ture similar to (Gupta et al., 2017) Here, similar to
the CNN model, the input contains an entire dia-
logue. We experiment with two embedding layers,
one with SSWE embeddings, and the other with
GloVe embeddings. Figure 4 presents detailed de-
scription. Gupta et al. showed that SSWE embed-
dings capture sentiment information and GloVe
embeddings capture semantic information in the
continuous representation of words. Similar to the
CNN model, here also, we input the word indices
of dialogue. We pad input sequences with zeros so
that each sequence has length n.

The architecture consists of two LSTM layers
after each embedding layer. The LSTM layer out-
puts a vector of shape 128 × 1. Further, concate-
nation of these output vectors results a vector of
shape 256× 1. In the end, we have a hidden layer
followed by a softmax layer. The output from the
softmax layer is a vector of shape 4 × 1 which
refers to class probabilities for the four classes. We
used Keras for this model.

128

SSWE SSWE SSWE

TURN 1 <eos> TURN 2 <eos> TURN 3

TURN 1 <eos> TURN 2 <eos> TURN 3

Leaky
ReLU

Fully Connected
Layer

Softmax

128

GloVe GloVe GloVe

LSTM

LSTM

LSTM

LSTM

Figure 4: LSTM-I architecture.

3.2.3 Long Short-Term Memory-II
(LSTM-II)

In the second approach, we use the architecture
shown in Figure 5. This model consists of embed-
ding layers, LSTM layers, a dense layer and a soft-
max layer. Here, the entire dialogue is not passed
at once. Turn 1 is passed through an embedding
layer which is followed by an LSTM layer. The
output is a vector of shape 256× 1. Turn 2 is also

238

passed through an embedding layer which is fol-
lowed by an LSTM layer. The output from Turn 2
is concatenated with the output of Turn 1 to form
a vector of shape 512 × 1. The concatenated vec-
tor is passed through a dense layer which reduces
the vector to 256× 1. Turn 3 is passed through an
embedding layer which is followed by an LSTM
layer. The output from Turn 3 is concatenated with
the reduced output of Turn 1 & 2, and the resultant
vector has shape 512 × 1. The resultant vector is
passed through a dense layer and then a softmax
layer to find the probability distribution across dif-
ferent classes. We used Pytorch for this model.

The motivation of this architecture was derived
from the Task’s focus to identify the emotion of
Turn 3. Hence, this architecture gives more weight
to Turn 3 while making a prediction and condi-
tions the result on Turn 1 & 2 by concatenating
their output vectors. The concatenated vector of
Turn 1 & 2 accounts for the context of the conver-
sation.

TURN 1

256

256

512

Leaky
ReLU

Fully Connected
Layer

⊕

256

256

Softmax

LSTM

GloVe GloVe GloVe

TURN 2

LSTM

GloVe GloVe GloVe

TURN 3

LSTM

GloVe GloVe GloVe

Figure 5: LSTM-II architecture.

4 Results

In Table 2, we report the performance of all the
models described in the previous section. We train
each model multiple (=5) times and compute the
mean of scores.

Algorithm Scoredev Scoretest
SVM 0.46 0.41
LR 0.44 0.40
SVM
(tf-idf weighted averaging)

0.42 0.38

LR
(tf-idf weighted averaging)

0.37 0.34

CNN 0.632 0.612
LSTM-I 0.677 0.667
LSTM-II 0.684 0.661

Table 2: Model performance on dev & test dataset.

SVM and Logistic Regression models did not
yield very good results. We attribute this to the
dialogue features that we use for the models. Tf-
idf weighted average of GloVe vectors performed
worse than the simple average of vectors. Hand-
crafted features might have performed better than
our current implementation. Neural network based
models had very good results, CNN performed
better than classical ML models but lagged behind
LSTM based models. On the test set, our LSTM-
I model performed slightly better than LSTM-II
model.

Hyper-parameter selection for CNN was diffi-
cult, and we restricted to LSTM for the Phase
2 (i.e. test phase). We also noticed that the
LSTM model was overfitting early in the train-
ing process (4-5 epochs) and that was a challenge
when searching for optimal hyper-parameters. We
used grid search to find the right set of hyper-
parameters for our models. We grid searched over
dropout (Srivastava et al., 2014), number of LSTM
layers, learning rate and number of epochs. In case
of the CNN model, number of filters was an extra
hyper-parameter. We used Nvidia GeForce GTX
1080 for training our models.

5 Conclusion

In this paper, we experimented with multiple ma-
chine learning models. We see that LSTM and
CNN models perform far better than classical ML
methods. In phase-1 of the competition (dev
dataset), we were able to achieve a score of 0.71,
when the scoreboard leader had 0.77. But in
phase-2 (test dataset), our best score was only
0.634, when the scoreboard leader had 0.79. After
phase-2 ended, we experimented more with hyper-
parameters and achieved an increase in scores on
the test-set (mentioned in Table 2).

Full code for the paper can be found on
GitHub∗.

6 Future Work

Our scores on the test dataset suggest room for im-
provement. Now we are narrowing down to trans-
fer learning where the starting point for our model
will be a pre-trained network on a similar task.
Our assumption is, this will help in better con-
vergence on EmoContext dataset given the dataset
size is not too large.
∗https://github.com/lingo-iitgn/

emocontext-19

239

References
Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Stavros Giorgis, Apostolos Rousas, John Pavlopoulos,
Prodromos Malakasiotis, and Ion Androutsopoulos.
2016. aueb. twitter. sentiment at semeval-2016 task
4: A weighted ensemble of svms for twitter senti-
ment analysis. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 96–99.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th international workshop on se-
mantic evaluation (semeval-2016), pages 1–18.

BARBARA ORTUTAY. 2018. Poll: Teens prefer tex-
ting over face-to-face communication.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In In EMNLP.

Daily Telegraph Reporter. 2012. Texting more popular
than face-to-face conversation.

Sebastian Ruder, Parsa Ghaffari, and John G Bres-
lin. 2016. Insight-1 at semeval-2016 task 4:

convolutional neural networks for sentiment clas-
sification and quantification. arXiv preprint
arXiv:1609.02746.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. volume 1, pages 1555–1565.

Xinyu Wang, Chunhong Zhang, Yang Ji, Li Sun, Leijia
Wu, and Zhana Bao. 2013. A depression detection
model based on sentiment analysis in micro-blog so-
cial network. In Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 201–213.
Springer.

MARK WILSON. 2016. This startup is teaching chat-
bots real empathy.

Vikrant Yadav. 2016. thecerealkiller at semeval-2016
task 4: Deep learning based system for classifying
sentiment of tweets on two point scale. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 100–102.

240

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 241–246
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

KGPChamps at SemEval-2019 Task 3:
A deep learning approach to detect emotions in the dialog utterances.

1Jasabanta Patro, 2Nitin Choudhary, 3Kalpit Chittora, and 4Animesh Mukherjee
IIT Kharagpur, India

{1jasabantapatro, 2nitch13jan, 3chittora.kalpit }@iitkgp.ac.in, 4animeshm@cse.iitkgp.ac.in

Abstract

This paper describes our approach to solve Se-
meval task 3: EmoContext; where, given a tex-
tual dialogue, i.e., a user utterance along with
two turns of context, we have to classify the
emotion associated with the utterance as one
of the following emotion classes: Happy, Sad,
Angry or Others. To solve this problem, we ex-
periment with different deep learning models
ranging from simple LSTM to relatively more
complex attention with Bi-LSTM model. We
also experiment with word embeddings such
as ConceptNet along with word embeddings
generated from bi-directional LSTM taking in-
put characters. We fine tune different param-
eters and hyper-parameters associated with
each of our model and report the micro pre-
cision, micro recall and micro F1-score for
each model. We identify the Bi-LSTM model,
along with the input word embedding taken
as the concatenation of the embeddings gen-
erated from the bidirectional character LSTM
and ConceptNet embedding, as the best per-
forming model with a highest micro-F1 score
over the test set as 0.7261.

1 Introduction

In recent years, with the increase in the popularity
of social media platforms, a significant amount of
unstructured social media content (posts, tweets,
messages etc.) has become available to the re-
search community. People use social media as
a platform to share their opinions, emotions,
thoughts etc. This information has a huge poten-
tial to serve as a commercial catalyst to the busi-
ness of companies and organizations, e.g., know-
ing the opinion of people about a product or a ser-
vice could help the company to do betterment of
their product or service according to the desire of
the online consumers. In similar lines, emotions
from the peoples’ comments/opinion can help us
to model the future popularity of the product or the

service. Further, knowing public emotions about
different events can help political parties to set
their agenda for elections. Thus mining of opin-
ions and emotions has a lot of practical relevance.
Even prior to the social media era, emotion detec-
tion had achieved significant attention of psychol-
ogists and linguistics. An elaborate discussion of
emotion as a research topic is presented in the next
section.

In this paper, we describe our system and
the models, with which, we achieved signifi-
cant performance improvement over the SemEval
baseline for task 3. The task is described
in (Chatterjee et al., 2019), where, given a textual
dialogue, i.e., a user utterance along with two turns
of context, we have to classify the emotion asso-
ciated with the utterance into one of the following
emotion classes: Happy, Sad, Angry or Others. To
solve this problem, we experiment with different
deep learning models ranging from simple LSTMs
to more complex attention based Bi-LSTM mod-
els. We also experiment with different word em-
beddings such as ConceptNet along with word em-
beddings generated from bi-directional character
LSTMs. Our best model gives a micro F1 of
0.7261 on the test set released by the organizers.

2 Related works:

From the last decades of the previous century,
emotion as a topic of research has captured
the attention of many scientists and researches
from different sub-fields of computer science
and psychology. While prior to the current
century, researches tried to capture emotions
from acoustic signals (Murray and Arnott,
1993; Banse and Scherer, 1996) and fa-
cial expressions (Ekman and Friesen, 1971;
Ekman, 1993; Ekman et al., 1987), in the
current century, due to the emergence of

241

Internet and social media, expression and
detection of emotion through/from texts and
social media, has grabbed significant atten-
tion (Alm et al., 2005; Fragopanagos and Taylor,
2005; Binali et al., 2010; Dini and Bittar,
2016; Canales and Martı́nez-Barco, 2014;
Seyeditabari et al., 2018) of researchers. The
whole literature around emotion can be broadly
divided into two categories (1) theoretical studies
and (ii) computational studies.

Theoretical studies: The theoretical stud-
ies include searching answers for whether
facial expressions of emotion are univer-
sal (Ekman and Friesen, 1971), searching for
cross-cultural agreement in the judgment of
facial expression (Ekman et al., 1987), study-
ing the acoustic profile of vocal emotion
expression (Banse and Scherer, 1996) etc. An
exploratory discussion of the literature detailing
human vocal emotion and its principal findings
are presented in (Murray and Arnott, 1993).
Application of the literature to the construction of
a system capable of producing synthetic speech
with emotion has also been discussed. A brief
description of how emotion is processed in our
brain is discussed in (LeDoux, 2000).

Computational studies: From last two decades
detecting and analysis of emotion in texts and
social media content has grabbed significant at-
tention of computational linguists and social sci-
entists. (Litman and Forbes-Riley, 2004) deter-
mine the utility of speech and lexical features for
predicting student emotions in computer-human
spoken tutoring dialogues. They develop an an-
notated corpora that mark each student dialogue
for negative, neutral, positive and mixed emo-
tions. Then they extract acoustic-prosodic features
from the speech signal, and lexical items from
the transcribed or recognized speech and apply
machine learning approaches to detect the emo-
tions. In the same year, (Busso et al., 2004) came
up with an analysis of emotion recognition tech-
niques, using facial expressions, speech and multi-
modal information etc. They conclude that the
system based on facial expression gives better per-
formance than the system based on just acoustic
information for the emotions considered. Sen-
timent classification seeks to identify a piece of
text according to its authors general feeling to-
ward their subject, be it positive or negative. Tra-
ditional machine learning techniques have been

applied to this problem with reasonable success,
but they have been shown to work well only
when there is a good match between the train-
ing and test data with respect to the topic. (Read,
2005) use emoticons to reduce dependency in ma-
chine learning techniques for sentiment classifica-
tion. (Wiebe et al., 2005) came up with a corpus
having an annotation of opinions, emotions, senti-
ments, speculations, evaluations and other private
states in the language of 10000 lines. In the sec-
ond half of the last decade several studies came up
that analyze and detect (Fragopanagos and Taylor,
2005; Binali et al., 2010; Hancock et al., 2007;
Strapparava and Mihalcea, 2008) emotion from
the text using machine learning techniques of
the text context. Detection of emotion over
social media content (Yassine and Hajj, 2010;
Pak and Paroubek, 2010; Gupta et al., 2010) and
electronic media content (Neviarouskaya et al.,
2007; Yang et al., 2007) started to become pop-
ular during this period. Emotion cause de-
tection (Chen et al., 2010) introduce another in-
teresting problem in this period. In the cur-
rent decade many problems in this domain have
been introduced like emotion detection in code-
switching texts (Wang et al., 2015), metaphor de-
tection with topic transition, emotion and cog-
nition in context (Jang et al., 2016), sentence
and clause level emotion annotation and detec-
tion (Tafreshi and Diab, 2018), detecting emo-
tion in social media contents (Roberts et al.,
2012; Liew, 2014), detecting emotion in mul-
tilingual contexts (Das, 2011) etc. to name a
few. Several corpora have been introduced hav-
ing an annotation of emotions and other asso-
ciated things such as emotion over multi-genre
corpus (Tafreshi and Diab, 2018), emotion corpus
of multi-party conversations (Hsu et al., 2018), a
fine-grained emotion corpus for sentiment analy-
sis (Liew et al., 2016), a dataset of emotion anno-
tated tweets to understand the interaction between
affect categories (Mohammad and Kiritchenko,
2018) etc. to name few. Simultaneously,
methodological novelty in emotion detection is
also an important contribution by researchers in
the recent times; works like emotion detection
by GRUs (Abdul-Mageed and Ungar, 2017), rep-
resentation mapping (Buechel and Hahn, 2018),
hybrid neural networks (Li et al., 2016) etc.
are a few such latest techniques. A de-
tail description of different hidden challenges

242

present in emotion detection over social me-
dia content is present in (Dini and Bittar, 2016).
Few survey papers (Canales and Martı́nez-Barco,
2014; Seyeditabari et al., 2018) describing dif-
ferent emotion analysis and detection methods
adopted in past years also came up during this pe-
riod.

3 Dataset and preprocesing

3.1 Dataset

The dataset consists of three parts, (i) training
data, (ii) development data (dev set), and (iii) test
data. The training dataset consists of 30k con-
versations, where each conversation contains three
turns of user utterances. The dev set and the test
set contains 2754 and 5508 conversations respec-
tively. These have been collected and annotated
by the organisers. All of the conversations are
classified into four classes, ’angry’, ’sad’, ’happy’
and ’others’. Training data consists of about 5k
samples each from ’angry’, ’sad’, ’happy’ class,
and 15k samples from ’others’ class, whereas,
both dev and test sets have a real-life distribution,
which is about 4% each of ’angry’, ’sad’, ’happy’
class and the rest is ’others’ class.

3.2 Preprocessing

Before feeding the conversations to our model, we
perform the following operations on the text:

• The three turns of the conversation are joined
to form a single sentence; also if there are
multiple instances of punctuation, then we
keep only a single instance. The joined utter-
ance contains the conversations in the same
order as that is given in the data set.

• Each emoji is replaced by its respective En-
glish translation. Example: ‘:-)’ is replaced
by ‘happy’.

• All the possible English contractions are re-
placed by their expanded forms. for example:
‘don’t’ is converted ‘do not’.

• We use Ekphrasis toolkit (Baziotis et al.,
2017) to normalize the occurrence of the
URL, e-mail, percent, money, phone, user,
time, date, and number in the comments. For
example, URLs are replaced by ‘url’, and all
occurrences of @someone are replaced by
‘user’.

Figure 1: Overall schematic architecture of our sys-
tem.

• Finally, we use NLTK Wordnet lemma-
tizer (Loper and Bird, 2002) to lemmatize the
words to their roots.

4 System description

Our overall system is illustrated in Figure 1. We
run different variants of our system by changing
associated parameters, hyper-parameters and lay-
ers. For input, we consider a variety of options,
which include (i) creating word embeddings us-
ing a Bi-LSTM trained on the character sequence
of the sentence/utterance, (ii) using a pre-trained
word embedding, i.e., Conceptnet, and (iii) con-
catenating (i) and (ii). From the architecture point
of view our systems can be categorized into three
types – (i) simple LSTM model, where an LSTM
layer is considered instead of a Bi-LSTM layer
(see figure 1) with no attention, i.e., the final hid-
den vector of LSTM layer is fed to the dense layer
bypassing the attention layer (ii) simple Bi-LSTM
model, where no attention layer is present, i.e., the
final hidden vector of Bi-LSTM layer is fed to the
dense layer by-passing the attention layer in fig-
ure 1, and (iii) Bi-LSTM model + attention, where
we keep the attention layer active as shown in fig-
ure 1. We use the python module keras for our
implementation.

5 Models and results

As previously stated, we experiment with differ-
ent variants of the model. In this section, we
discuss some of the top performing models and
their performance. The results for different sys-

243

Model Type Accµ Preµ Recµ F1µ F1test

LSTM + Conceptnet 0.90 0.88 0.90 0.89 0.6825
Bi-LSTM + ConceptNet 0.90 0.86 0.91 0.88 0.6686
BiLSTM + (char embed. + Conceptnet) 0.90 0.88 0.89 0.89 0.7261
Bi-LSTM + (character embed. + Conceptnet) + no emojis 0.90 0.88 0.90 0.89 0.6418
Attentive Bi-LSTM + character embedding + Conceptnet 0.89 0.88 0.88 0.88 0.6900

Table 1: Results of different models; accuracy (Accµ), micro-precision (Preµ), micro-recall (Recµ) and
micro-F1 score (F1µ) over the training data for five-fold cross validation; F1test is the micro-F1 score
over the test set released by the organisers.

tems and their description are as shown in Table 1.
We report two types of results (i) performance
over training set which we obtain through five-
fold cross-validation and (ii) performance over test
data as reported by SemEval organizers. A short
description of the model variants and their results
are given below.

1. The first two models present in Table 1, as
the name suggests, contains a layer of LSTM
(1st model) and Bi-LSTM (2nd model). Se-
quence of words padded to a fixed length is
given as input to this layer. The input se-
quence is then converted to an embedding
vector with the help of pre-trained embed-
ding matrices. We tried various pre-trained
embedding matrices such as GloVe, fastText,
ConceptNet and Google word2vec, out of
which for Conceptnet we get best results.
The outcome of LSTM/Bi-LSTM is given as
input to the final dense layer which contains
four nodes with sigmoid activation function
for four emotions.

2. In the next model, we append character
embeddings to the Conceptnet embeddings.
This model produces the best performance
over the test set, i.e., micro F1 score over the
test set is 0.7261 as released by the organiz-
ers. The input to this model is a 2-D vector of
words with characters in the second dimen-
sion.

3. The fourth model is the same as the previous
model but emotion words (words which re-
placed emojis) are removed. As we can infer
from the table this choice though did not af-
fect the performance over the training set, the
test set performance is significantly affected.

4. Finally, in the attentive Bi-LSTM model, we
switch on the attention layer. Other param-

eters are kept the same as the third model
model.

6 Conclusion

In this paper, we present a neural network based
model to detect emotions from textual conversa-
tions. The usage of pre-trained embedding, Con-
ceptnet gives a huge boost to the performance of
our system. The performance reported in our pa-
per could further be improved by implementing a
better prepossessing pipeline and using more ad-
vanced RNN models. Furthermore, the dataset
provided had a huge imbalance among different
classes, therefore sampling among classes could
result in increased performance. On the other
hand, studying emotion in social media text can be
linked further to the popularity of a product, ser-
vice etc. which might be linked to financial inter-
ests of organizations. Further, how users express-
ing a particular predominant emotion interact with
other users could be another line of future study.

References
Muhammad Abdul-Mageed and Lyle H. Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In ACL.

Cecilia Ovesdotter Alm, Dan Roth, and Richard
Sproat. 2005. Emotions from text: Machine
learning for text-based emotion prediction. In
HLT/EMNLP.

Rainer Banse and Klaus R. Scherer. 1996. Acoustic
profiles in vocal emotion expression. Journal of per-
sonality and social psychology, 70 3:614–36.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

244

Haji Binali, Chen W Wu, and Vidyasagar Potdar. 2010.
Computational approaches for emotion detection in
text. 4th IEEE International Conference on Digital
Ecosystems and Technologies, pages 172–177.

Sven Buechel and Udo Hahn. 2018. Representa-
tion mapping: A novel approach to generate high-
quality multi-lingual emotion lexicons. CoRR,
abs/1807.00775.

Carlos Busso, Zhigang Deng, Serdar Yildirim, Murtaza
Bulut, Chul Min Lee, Abe Kazemzadeh, Sungbok
Lee, Ulrich Neumann, and Shrikanth Narayanan.
2004. Analysis of emotion recognition using facial
expressions, speech and multimodal information. In
ICMI.

Lea Canales and Patricio Martı́nez-Barco. 2014. Emo-
tion detection from text : A survey.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Ying Chen, Sophia Yat Mei Lee, Shoushan Li, and
Chu-Ren Huang. 2010. Emotion cause detection
with linguistic constructions. In COLING 2010.

Dipankar Das. 2011. Analysis and tracking of emo-
tions in english and bengali texts: a computational
approach. In WWW.

Luca Dini and André Bittar. 2016. Emotion analysis
on twitter: The hidden challenge. In LREC.

Paul Ekman. 1993. Facial expression and emotion.
The American psychologist, 48 4:384–92.

Paul Ekman and Wallace V. Friesen. 1971. Constants
across cultures in the face and emotion. Journal of
personality and social psychology, 17 2:124–9.

Paul Ekman, Wallace V. Friesen, Maree O’Sullivan,
Aryola Chan, I Diacoyanni-Tarlatzis, K G Heider,
Rainer Krause, W A LeCompte, Tom K Pitcairn, and
P. E. Ricci-Bitti. 1987. Universals and cultural dif-
ferences in the judgments of facial expressions of
emotion. Journal of personality and social psychol-
ogy, 53 4:712–7.

Nickolaos F. Fragopanagos and John G. Taylor. 2005.
Emotion recognition in human-computer interac-
tion. Neural networks : the official journal of the In-
ternational Neural Network Society, 18 4:389–405.

Narendra K. Gupta, Mazin Gilbert, and Giuseppe Di
Fabbrizio. 2010. Emotion detection in email cus-
tomer care. Computational Intelligence, 29:489–
505.

Jeffrey T. Hancock, Christopher Landrigan, and Court-
ney Silver. 2007. Expressing emotion in text-based
communication. In CHI.

Chao-Chun Hsu, Sheng-Yeh Chen, Chuan-Chun Kuo,
Ting-Hao K. Huang, and Lun-Wei Ku. 2018. Emo-
tionlines: An emotion corpus of multi-party conver-
sations. CoRR, abs/1802.08379.

Hyeju Jang, Yohan Jo, Qinlan Shen, Michael Z.
Miller, Seungwhan Moon, and Carolyn Penstein
Rosé. 2016. Metaphor detection with topic transi-
tion, emotion and cognition in context. In ACL.

Joseph E. LeDoux. 2000. Emotion circuits in the brain.
Annual review of neuroscience, 23:155–84.

Xiangsheng Li, Jianhui Pang, Biyun Mo, and Yanghui
Rao. 2016. Hybrid neural networks for social emo-
tion detection over short text. 2016 International
Joint Conference on Neural Networks (IJCNN),
pages 537–544.

Jasy Suet Yan Liew. 2014. Expanding the range of au-
tomatic emotion detection in microblogging text. In
EACL.

Jasy Suet Yan Liew, Howard R. Turtle, and Eliza-
beth D. Liddy. 2016. Emotweet-28: A fine-grained
emotion corpus for sentiment analysis. In LREC.

Diane J. Litman and Katherine Forbes-Riley. 2004.
Predicting student emotions in computer-human tu-
toring dialogues. In ACL.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit in proceedings of the acl work-
shop on effective tools and methodologies for teach-
ing natural language processing and computational
linguistics. Philadelphia, Association for Computa-
tional Linguistics, pages 62–69.

Saif Mohammad and Svetlana Kiritchenko. 2018. Un-
derstanding emotions: A dataset of tweets to study
interactions between affect categories. In LREC.

Iain R. Murray and John L. Arnott. 1993. Toward the
simulation of emotion in synthetic speech: a review
of the literature on human vocal emotion. The Jour-
nal of the Acoustical Society of America, 93 2:1097–
108.

Alena Neviarouskaya, Helmut Prendinger, and Mitsuru
Ishizuka. 2007. Narrowing the social gap among
people involved in global dialog: Automatic emo-
tion detection in blog posts. In ICWSM.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREC.

Jonathon Read. 2005. Using emoticons to reduce de-
pendency in machine learning techniques for senti-
ment classification. In ACL.

Kirk Roberts, Michael A. Roach, Joseph Johnson,
Josh Guthrie, and Sanda M. Harabagiu. 2012. Em-
patweet: Annotating and detecting emotions on twit-
ter. In LREC.

245

Armin Seyeditabari, Narges Tabari, and Wlodek
Zadrozny. 2018. Emotion detection in text: a re-
view. CoRR, abs/1806.00674.

Carlo Strapparava and Rada Mihalcea. 2008. Learning
to identify emotions in text. In SAC.

Shabnam Tafreshi and Mona T. Diab. 2018. Sentence
and clause level emotion annotation, detection, and
classification in a multi-genre corpus. In LREC.

Zhongqing Wang, Sophia Yat Mei Lee, Shoushan Li,
and Guodong Zhou. 2015. Emotion detection in
code-switching texts via bilingual and sentimental
information. In ACL.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language Resources and Evalu-
ation, 39:165–210.

Changhua Yang, Kevin Hsin-Yih Lin, and Hsin-Hsi
Chen. 2007. Emotion classification using web blog
corpora. IEEE/WIC/ACM International Conference
on Web Intelligence (WI’07), pages 275–278.

Mohamed Yassine and Hazem M. Hajj. 2010. A frame-
work for emotion mining from text in online social
networks. 2010 IEEE International Conference on
Data Mining Workshops, pages 1136–1142.

246

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 247–250
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

KSU at SemEval-2019 Task 3: Hybrid Features for Emotion Recognition
in Textual Conversation

Nourah Alswaidan Mohamed El Bachir Menai
Department of Computer Science

College of Computer and Information Sciences
King Saud University

Saudi Arabia
nourah swaidan@yahoo.com, menai@ksu.edu.sa

Abstract

In this paper, we present the model submitted
to the SemEval-2019 Task 3 competition: con-
textual emotion detection in text “EmoCon-
text”. We propose a model that hybridizes au-
tomatically extracted features and human en-
gineered features to capture the representa-
tion of a textual conversation from different
perspectives. The proposed model utilizes a
fast gated-recurrent-unit backed by CuDNN
(CuDNNGRU), and a convolutional neural
network (CNN) to automatically extract fea-
tures. The human engineered features take the
term frequency-inverse document frequency
(TF-IDF) of semantic meaning and mood tags
extracted from SinticNet. For the classifica-
tion, a dense neural network (DNN) is used
with a sigmoid activation function. The model
achieved a micro-F1 score of 0.6717 on the
test dataset.

1 Introduction

Emotion recognition in text refers to the task of
automatically assigning an emotion to a text se-
lected from a set of predefined emotion labels.
The SemEval-2019 competition (Chatterjee et al.,
2019b) provides a textual dialogue and asks to
classify the emotion as one of the emotion labels:
happy, sad, and angry or others.

Previous research shows that emotion recogni-
tion has been performed on different types of text,
including fairy tales1 (Alm et al., 2005), news
headlines2 (Strapparava and Mihalcea, 2007), blog
posts3 (Aman and Szpakowicz, 2007), and tweets4

(Mohammad et al., 2018). Whether a text ex-
presses a single emotion or multiple emotions, it is
challenging to recognize implicit emotions, which

1http://people.rc.rit.edu/ coagla/affectdata/index.html
2http://web.eecs.umich.edu/ mihalcea/affectivetext
3http://saimacs.github.io
4https://competitions.codalab.org/competitions/17751

requires natural language understanding (NLU).
Recognizing emotions in textual conversation in-
creases difficulty by adding a dialogue format.
Understanding emotions in textual conversation
will further boost the research on NLU.

In this paper, we present an emotion recognition
model that hybridizes human engineered features
and automatically extracted features. For the hu-
man engineered features, we opted for calculating
the term frequency-inverse document frequency
(TF-IDF) of semantic meaning and mood tags re-
trieved from SenticNet. For the automatically
extracted features, we explored two deep neural
networks, a fast gated-recurrent-unit backed by
CuDNN (CuDNNGRU) and convolutional neural
networks (CNN). The classification is performed
by a dense neural network (DNN).

The remainder of this paper is organized as fol-
lows. Section 2 describes the task corpus. Sec-
tion 3 presents the proposed emotion recognition
model. Section 4 presents the experimental re-
sults, and the main conclusions and future work
are presented in Section 5.

2 Corpus

The organizers of the competition split the cor-
pus into three datasets: a training dataset with
30160 instances, a development dataset with 2755
instances, and a test dataset with 5509 instances.
The corpus was in a (.txt) format and contained
five columns. The first column held the ID of the
instances. The second, third and fourth columns
held a conversation between two individuals. The
first individual started the conversation then it was
the second individuals turn, then the turn returned
to the first individual. The fifth column held the
emotion labels of the third turn in the conversa-
tion. The emotion label was either happy, sad,
angry, or others. The distribution of the emotion

247

Figure 1: Diagram of the proposed model.

Figure 2: Diagram of submodel 1.

labels differed between the training, development
and test datasets. The training data consisted of
approximately 5000 instances each of happy, sad,
and angry labels, and 15000 instances of the others
label. The development and the test datasets had
4% each of happy, sad, and angry labels and the
rest was for the label others. During the competi-
tion, the development dataset and the test dataset
were released without the label column. The full
development dataset was released when the final
evaluation on the test dataset started. The full test
dataset was released after the end of the competi-
tion.

3 Proposed Model

In this section, we present the submitted emotion
recognition model. Figure 1 shows an overview of

Figure 3: Diagram of submodel 2.

Figure 4: Diagram of submodel 3.

the model.

3.1 Preprocessing

The conversation style was informal and similar
to a social media style of writing. Therefore, we
utilized the ekphrasis5 (Baziotis et al., 2017) tool.
Ekphrasis was developed as part of the text pro-
cessing pipeline for SemEval-2017 Task 4, senti-
ment analysis in Twitter. The preprocessing steps
include Twitter-specific tokenization, unpack con-
tractions, spell correction, word normalization,
word annotation, word segmentation (for splitting
hashtags), and replacing emoticons with suitable
keywords.

We also grouped the most popular emojis into
four classes, which matched the corpus emotion
labels. With the use of regular expressions, we re-
placed the emoji with a keyword that represented
the group the emoji belonged to. Then, we per-
formed stopword removal and lemmatization with
the use of the natural language toolkit6 (NLTK).

5https://github.com/cbaziotis/ekphrasis
6https://www.nltk.org

248

3.2 Automatically Extracted Features

We utilized different deep neural networks, from
the Keras7 deep learning library, to enhance the
representation of the text. However, we did not
utilize any pretrained embeddings.

After text preprocessing, we split the text based
on the conversation turns into turn 1 (T1), turn 2
(T2) and turn 3 (T3). An embedding matrix was
generated for each turn of the conversation. Then,
we applied BatchNormalization. These embed-
dings were used in two parallel submodels.

Submodel 1 in Figure 2, shows that each em-
bedding matrix formed an input to a separate CuD-
NNGRU. The outputs of the three CuDNNGRUs
were concatenated, and global max-pooling was
performed. A dropout of value 0.1 was added to
help avoid overfitting. Finally, the output was fed
into two dense neural networks (DNN) with 50
units and a rectified linear unit (ReLU) activation
function.

Submodel 2 in Figure 3, shows that each em-
bedding matrix formed an input to a separate CNN
with a sigmoid activation function. The number of
filters of the first two CNNs was 100, but the third
one had 300 filters, and the kernel size was five
in all three CNNs. Next, global max-pooling was
performed on the output of each CNN. Finally, the
outputs were concatenated and fed into two DNNs
with 100 units and a ReLU activation function.

3.3 Human Engineered Features

We took the conversation as a whole and extracted
the following features:

• The TF-IDF of the Mood tags: SenticNet8

(Cambria et al., 2018) was used to retrieve the
mood tag of each word in the dataset. Then,
every word was replaced by its mood tag. If
a word had no mood tag, then it was deleted.
Finally, the TF-IDF was calculated using the
scikit-learn9 library.

• The TF-IDF of the semantic meaning: Sen-
ticNet8 was used to retrieve the semantic
meaning of each word in the dataset. Then,
the word was replaced by its semantic mean-
ing. Finally, the TF-IDF was calculated using
the scikit-learn8 library.

7https://keras.io
8https://sentic.net
9https://scikit-learn.org

Item Precision Recall F1
Angry 0.6345 0.8333 0.7205
Happy 0.5263 0.7746 0.6268
Sad 0.4641 0.7760 0.5808
Micro Average 0.5398 0.7962 0.6434

Table 1: Performance results on the development
dataset using the automatically extracted features only.

Item Precision Recall F1
Angry 0.4359 0.7933 0.5626
Happy 0.2734 0.5141 0.3570
Sad 0.4934 0.6000 0.5415
Micro Average 0.3858 0.6403 0.4815

Table 2: Performance results on the development
dataset using the human engineered features only.

Item Precision Recall F1
Angry 0.6531 0.8533 0.7399
Happy 0.5385 0.7887 0.6400
Sad 0.6216 0.7360 0.6740
Micro Average 0.6014 0.7962 0.6852

Table 3: Performance results on the development
dataset using both automatically extracted features and
human engineered features.

Item Precision Recall F1
Angry 0.6456 0.7886 0.7100
Happy 0.5306 0.7324 0.6154
Sad 0.6780 0.7160 0.6965
Micro Average 0.6098 0.7476 0.6717

Table 4: Performance results on the test dataset using
both automatically extracted features and human engi-
neered features.

Submodel 3 in Figure 4, was responsible for
training the human engineered features. Each of
the TF-IDF features was trained with a DNN with
100 units and a ReLU activation function. Then,
the outputs were concatenated and fed into two
DNNs with 50 units and a ReLU activation func-
tion.

3.4 Emotion Classification

The three submodels were concatenated and fed
into two DNNs with 50 units and a ReLU activa-
tion function. Then, a dropout of value 0.1 was
used. Finally, a DNN with four units and a sig-
moid activation function was added as an output
layer for the classification of the emotions.

249

4 Experiments

The code was implemented in Python. We used
the following libraries: NLTK6, scikit-learn9, and
Keras7 deep learning library run on a GPU, with
the TensorFlow10 backend.

We found the best hyper-parameters by evaluat-
ing on the development dataset. We trained with
a batch size of 32, for two epochs with Adam op-
timization and 0.0005 as a learning rate. Tables
1 and 2 show the performance results obtained
on the development dataset when only the auto-
matically extracted features, and the human en-
gineered features were used, respectively. They
show that automatically extracted features clearly
lead to the best microaverage performance results
(Precision=0.5398, Recall=0.7962, F1=0.6434) in
comparison to those obtained with the human
engineered features only (Precision=0.3858, Re-
call=0.6403, F1=0.4815).

Table 3 presents the microaverage results ob-
tained with the proposed model on the develop-
ment dataset when both kinds of features were
used altogether. The model achieved its best preci-
sion and F1 results (precision=0.6014, F1=0.6852)
and the same recall obtained with only the au-
tomatically extracted features (Recall=0.7962).
These performance results demonstrate the effec-
tiveness of the proposed model. It scored above
the baseline (Chatterjee et al., 2019a) on the test
dataset. Table 4 presents the microaverage re-
sults obtained (Precision=0.6098, Recall=0.7476,
F1=0.6717).

5 Conclusion

In this paper, we proposed a model to address
emotion recognition in textual conversation based
on using automatically extracted features and hu-
man engineered features. The usefulness of the
model was demonstrated by the experimental re-
sults obtained in terms of precision, recall, and
F1 measures. In the future, we plan to investigate
the impact of other features on the performance of
the model, including affect lexicons and pretrained
embedding models.

References
Cecilia Ovesdotter Alm, Dan Roth, and Richard

Sproat. 2005. Emotions from text: Machine learn-
ing for text-based emotion prediction. In Proceed-

10https://www.tensorflow.org

ings of the Conference on Human Language Tech-
nology and Empirical Methods in Natural Language
Processing, HLT ’05, pages 579–586, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Saima Aman and Stan Szpakowicz. 2007. Identifying
expressions of emotion in text. In Proceedings of the
10th International Conference on Text, Speech and
Dialogue, TSD’07, pages 196–205, Berlin, Heidel-
berg. Springer-Verlag.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at SemEval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Erik Cambria, Soujanya Poria, Devamanyu Hazarika,
and Kenneth Kwok. 2018. Senticnet 5: Discov-
ering conceptual primitives for sentiment analysis
by means of context embeddings. In AAAI, pages
1795–1802.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of
the 4th International Workshop on Semantic Evalu-
ations, SemEval ’07, pages 70–74, Stroudsburg, PA,
USA. Association for Computational Linguistics.

250

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 251–255
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

LIRMM-Advanse at SemEval-2019 Task 3: Attentive Conversation
Modeling for Emotion Detection and Classification

Waleed Ragheb1,2 , Jérôme Azé 1,2 , Sandra Bringay1,3 and Maximilien Servajean1,3

1LIRMM UMR 5506, CNRS, University of Montpellier, Montpellier, France
2IUT de Béziers, University of Montpellier, Béziers, France

3AMIS, Paul Valery University - Montpellier 3 , Montpellier, France
{First.Last}@lirmm.fr

Abstract

This paper addresses the problem of model-
ing textual conversations and detecting emo-
tions. Our proposed model makes use of 1)
deep transfer learning rather than the clas-
sical shallow methods of word embedding;
2) self-attention mechanisms to focus on the
most important parts of the texts and 3) turn-
based conversational modeling for classifying
the emotions. Our model was evaluated on
the data provided by the SemEval-2019 shared
task on contextual emotion detection in text.
The model shows very competitive results.

1 Introduction

Emotional intelligence has played a signifi-
cant role in many application in recent years
(Krakovsky, 2018). It is one of the essential
abilities to move from narrow to general human-
like intelligence. Being able to recognize expres-
sions of human emotion such as interest, distress,
and pleasure in communication is vital for help-
ing machines choose more helpful and less aggra-
vating behavior. Human emotions are a mental
state that can be sensed and hence recognized in
many sources such as visual features in images or
videos (Boubenna and Lee, 2018), as textual se-
mantics and sentiments in texts (Calefato et al.,
2017) or even patterns in EEG brain signals (Jenke
et al., 2014). With the increasing number of mes-
saging platforms and with the growing demand
of customer chat bot applications, detecting the
emotional state in conversations becomes highly
important for more personalized and human-like
conversations (Zhou et al., 2018).

This paper addresses the problem of modeling
a conversation that comes with multiple turns for
detecting and classifying emotions. The proposed
model makes use of transfer learning through the
universal language modeling that is composed of

consecutive layers of Bi-directional Long Term
Short Term Memory (Bi-LSTM) units. These lay-
ers are learned first in sequence-to-sequence fash-
ion on a general text and then fine-tuned to a spe-
cific target task. The model also makes use of an
attention mechanism in order to focus on the most
important parts of each text turn. Finally, the pro-
posed classifier models the changing of the emo-
tional state of a specific user across turns.

The rest of the paper is organized as follows. In
Section 2, the related work is introduced. Then,
we present a quick overview of the task and the
datasets in Section 3. Section 4 describes the pro-
posed model architecture, some variants and hy-
perparameters settings. The experiments and re-
sults are presented in Section 5. Section 6 con-
cludes the study.

2 Related Work

Transfer learning or domain adaptation has been
widely used in machine learning especially in the
era of deep neural networks (Goodfellow et al.,
2016). In natural language processing (NLP),
this is done through Language Modeling (LM).
Through this step, the model aims to predict a
word given some context. This is considered
as a vital and important basics in most of NLP
applications. Not only because it tries to un-
derstand the long-term dependencies and hierar-
chical structure of the text but also for its open
and free resources. LM is considered as unsu-
pervised learning process which needs only cor-
pus of unlabeled text. The problem is that LMs
get overfitted to small datasets and suffer catas-
trophic forgetting when fine-tuned with a classi-
fier. Compared to Computer Vision (CV), NLP
models are typically more shallow and thus re-
quire different fine-tuning methods. The develop-
ing of the Universal Language Model Fine-tuning

251

(ULMFiT) (Howard and Ruder, 2018) is consid-
ered like moving from shallow to deep pre-training
word representation. This idea has been proved to
achieve CV-like transfer learning for many NLP
tasks. ULMFiT makes use of the state-of-the-
art AWD-LSTM (Average stochastic gradient de-
scent - Weighted Dropout) language model (Mer-
ity et al., 2018). Weight-dropped LSTM is a strat-
egy that uses a DropConnect (Wan et al., 2013)
mask on the hidden-to-hidden weight matrices, as
a means to prevent overfitting.

On the other hand, one of the recent trend in
deep learning models is the attention Mechanism
(Young et al., 2018). Attention in neural networks
are inspired from the visual attention mechanism
found in humans. The main principle is being
able to focus on a certain region of an image with
“high resolution” while perceiving the surround-
ing image in “low resolution”, and then adjusting
the focal point over time. This is why the early
applications for attention were in the field of im-
age recognition and computer vision (Larochelle
and Hinton, 2010). In NLP, most competitive neu-
ral sequence transduction models have an encoder-
decoder structure (Vaswani et al., 2017). A limi-
tation of these architectures is that it encodes the
input sequence to a fixed length internal represen-
tation. This cause the results going worse perfor-
mance for very long input sequences. Simply, at-
tention tries to overcome this limitation by guiding
the network to learn where to pay close attention
in the input sequence. Neural Machine Transla-
tion (NMT) is one of the early birds that make use
of attention mechanism (Bahdanau et al., 2014).
It has recently been applied to other problems like
sentiment analysis (Ma et al., 2018) and emotional
classification (Majumder et al., 2018).

3 Data

The datasets are collections of labeled conversa-
tions (Chatterjee et al., 2019b). Each conversation
is a three turn talk between two persons. The con-
versation labels correspond to the emotional state
of the last turn. Conversations are manually clas-
sified into three emotional states for happy, sad,
angry and one additional class for others. In gen-
eral, released datasets are highly imbalanced and
contains about 4% for each emotion in the valida-
tion (development) set and final test set. Table 1
shows the number of conversations examples and
emotions provided in the official released datasets.

Dataset Data size Happy Sad Angry

Training 30160 5191 6357 6027
Validation (Dev) 2755 180 151 182
Testing 5509 369 308 324

Table 1: Used datasets.

4 Proposed Models

4.1 Model Architecture
In figure 1, we present our proposed model archi-
tecture. The model consists of two main steps: en-
coder and classifier. We used a linear decoder to
learn the language model encoder as we will dis-
cuss later. This decoder is replaced by the clas-
sifier layers. The input conversations come in
turns of three. After tokenization, we concatenate
the conversation text but keep track of each turn
boundaries. The overall conversation is inputted to
the encoder. The encoder is a normal embedding
layer followed by AWD-LSTM block. This uses
three stacked different size Bi-LSTM units trained
by ASGD (Average Stochastic Gradient Descent)
and managed dropout between LSTM units to pre-
vent overfitting. The conversation encoded output
has the form of CEnc = [T 1

Enc ⊕ T 2
Enc ⊕ T 3

Enc]
where T i is the ith turn in the conversation and
⊕ denotes a concatenation operation and T i

Enc =
{T i

1, T
i
2, . . . , T

i
Ni
}. The sequence length of turn i

is denoted by Ni. The size of T i
j is the final en-

coding of the j’s sequence item of turn i.
For classification, the proposed model pays

close attention to the first and last turns. The rea-
sons behind this are that the problem is to clas-
sify the emotion of the last turn. Also, the effect
of the middle turn appear implicitly on the encod-
ing of the last turn as we used Bi-LSTM encoding
on the concatenated conversation. In addition to
these, tracking the difference between the first and
the last turn of the same person may be beneficial
in modeling the semantic and emotional changes.
So, we apply self-attention mechanism followed
by an average pooling to get turn-based represen-
tation of the conversation. The attention scores for
the ith turn Si is given by:

Si = Softmax{Wi.T
i
Enc} (1)

Where Wi is the weight of the attention layer
of the ith turn and Si has the form of Si =
{Si

1, S
i
2, ..., S

i
Ni
}. The output of the attention layer

is the scoring of the encoded turn sequence Oi =

252

Figure 1: Proposed model architecture (Model-A).

{oi1, oi2, . . . , oiNi
}which has the same length as the

turn sequence and is given by Oi = Si � T i
Enc

where � is the element-wise multiplication. The
difference of the pooled scored output of O1 and
O3 is computed as Odiff. The Input of the linear
block is Xin is formed by:

Xin = [Odiff ⊕O3
pool] (2)

The fully connected linear block consist of two
different sized dense layers followed by a Softmax
to determine the target emotion of the conversa-
tion.

4.2 Training Procedures

Training the overall models comes into three main
steps: 1) The LM is randomly initialized and then
trained by stacking a linear decoder in top of the
encoder. The LM is trained on a general-domain
corpus. This helps the model to get the general
features of the language. 2) The same full LM af-
ter training is used as an initialization to be fine-
tuned using the data of the target task (conversa-
tion text). In this step we limit the vocabulary of
the LM to the frequent words (repeated more tan
twice) of target task. 3) We keep the encoder and
replace the decoder with the classifier and both are
fine-tuned on the target task.

For training the language model, we used
the Wikitext-103 dataset (Merity et al., 2016).
We train the model on the forward and back-
ward LMs for both the general-domain and task
specific datasets. Both LMs -backward and
forward- are used to build two versions of the
same proposed architecture. The final decision

is the ensemble of both. Our code is released
at https://github.com/WaleedRagheb/Attentive-
Emocontext.

4.3 Model Variations

In addition to the model - Model-A - described by
Figure 1, we tried five different variants.

The first variant -(Model-B)- is formed by by-
passing the self attention layer. This will pass the
output of the encoder directly to the average pool-
ing layer such thatXB

in = [Tdiff⊕T 3
pool] where Tdiff

is the difference between the first and third pooled
encoded turns of the conversations.

-(Model-C)- is to input a pooled condensed rep-
resentation to the whole conversation Cpool rather
than the last turn to the linear layer block. In this
case: XC

in = [Odiff ⊕ Cpool]. We also studied two
versions of the basic model where only one input
is used XD

in = Odiff -(Model-D)- and XE
in = O3

pool
-(Model-E). In these two variants, we just change
the size of the first linear layer.

Also, we apply the forward direction LM and
classifier only without ensemble them with the
backward direction and keep the same basic archi-
tecture -(Model-F).

4.4 Hyperparameters

We use the same set of hyperparameters across all
model variants. For training and fine-tuning the
LM, we use the same set of hyperparameter of
AWD-LSTM proposed by (Merity et al., 2018) re-
placing the LSTM with Bi-LSTM. For classifier,
we used masked self-attention layers and average
pooling. For the linear block, we used hidden lin-
ear layer of size 100 and apply dropout of 0.4. We

253

Results

Models Happy Sad Angry Micro

P R F1 P R F1 P R F1 F1

A 0.7256 0.7077 0.7166 0.8291 0.776 0.8017 0.7229 0.8054 0.7619 0.7582

B 0.7341 0.6514 0.6903 0.7401 0.82 0.778 0.7049 0.8255 0.7604 0.7439
C 0.7279 0.6972 0.7122 0.7765 0.792 0.7842 0.6941 0.8221 0.7527 0.7488
D 0.7214 0.7113 0.7163 0.8128 0.764 0.7876 0.6965 0.8087 0.7484 0.749
E 0.7204 0.7077 0.714 0.8205 0.768 0.7934 0.7026 0.8087 0.752 0.7512
F 0.7336 0.669 0.6998 0.8377 0.764 0.7992 0.738 0.7752 0.7561 0.75

Table 2: Test set results of the basic proposed model and it’s variants.

used Adam optimizer (Dozat and Manning, 2017)
with β1 = 0.8 and β2 = 0.99. The base learn-
ing rate is 0.01. We used the same batch size
used in training LMs but we create each batch us-
ing weight random sampling. We used the same
weights (0.4 for each emotion). We train the clas-
sifier on training set for 30 epochs and select the
best model on validation set to get the final model.

5 Results & Discussions

The results of the test set for different variants
of the model for each emotion is shown in table
2. The table shows the value of precision (P),
recall (R) and F1 measure for each emotion and
the micro-F1 for all three emotional classes. The
micro-F1 scores are the official metrics used in
this task. Model-A gives the best performance F1
for each emotion and the overall micro-F1 score.
However some variants of this model give bet-
ter recall or precision values for different emo-
tions, Model-A compromise between these values
to give the best F1 for each emotion. Removing
the self-attention layer in the classifier -Model-B-
degraded the results. Also, inputting a condensed
representation of the all conversation rather than
the last turn -Model-C- did not improve the re-
sults. Even modeling the turns difference only -
Model-D- gives better results over Model-C. These
proves empirically the importance of the last turn
in the classification performance. This is clear for
Model-E where the classifier is learned only by in-
putting the last turn of the conversation. Ensemble
the forward and backward models was more useful
than using the forward model only -Model-F.

Comparing the results for different emotions
and different models, we notice the low perfor-
mance in detecting happy emotion. This validate

the same conclusion of Chatterjee et.al in (2019a).
The model shows a significant improvement over
the EmoContext organizer baseline (F1: 0.5868).
Also, comparing to other participants in the same
task with the same datasets, the proposed model
gives competitive performance and ranked 11th

out of more than 150 participants. The proposed
model can be used to model multi-turn and multi-
parties conversations. It can be used also to track
the emotional changes in long conversations.

6 Conclusions

In this paper, we present a new model used for
Semeval-2019 Task-3 (Chatterjee et al., 2019b).
The proposed model makes use of deep transfer
learning rather than the shallow models for lan-
guage modeling. The model pays close attention
to the first and the last turns written by the same
person in 3-turn conversations. The classifier uses
self-attention layers and the overall model does
not use any special emotional lexicons or feature
engineering steps. The results of the model and
it’s variants show a competitive results compared
to the organizers baseline and other participants.
Our best model gives micro-F1 score of 0.7582.
The model can be applied to other emotional and
sentiment classification problems and can be mod-
ified to accept external attention signals and emo-
tional specific word embedding.

Acknowledgement

We would like to acknowledge La Région Occi-
tanie and Communauté d’Agglomération Béziers
Méditerranée which finance the thesis of Waleed
Ragheb.

254

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations (ICLR), vol-
ume abs/1409.0473.

Hadjer Boubenna and Dohoon Lee. 2018. Image-based
emotion recognition using evolutionary algorithms.
Biologically Inspired Cognitive Architectures, 24:70
– 76.

Fabio Calefato, Filippo Lanubile, and Nicole Novielli.
2017. Emotxt: A toolkit for emotion recognition
from text. In 2017 Seventh International Confer-
ence on Affective Computing and Intelligent Interac-
tion Workshops and Demos (ACIIW), pages 79–80.
IEEE.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309 – 317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. volume abs/1611.01734.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339.

R. Jenke, A. Peer, and M. Buss. 2014. Feature ex-
traction and selection for emotion recognition from
eeg. IEEE Transactions on Affective Computing,
5(3):327–339.

Marina Krakovsky. 2018. Artificial (emotional) intelli-
gence. Commun. ACM, 61(4):18–19.

Hugo Larochelle and Geoffrey E Hinton. 2010. Learn-
ing to combine foveal glimpses with a third-order
boltzmann machine. In Advances in Neural Infor-
mation Processing Systems 23, pages 1243–1251.

Yukun Ma, Haiyun Peng, and Erik Cambria. 2018.
Targeted aspect-based sentiment analysis via em-
bedding commonsense knowledge into an attentive
lstm. In Association for the Advancement of Artifi-
cial Intelligence (AAAI 2018).

Navonil Majumder, Soujanya Poria, Devamanyu Haz-
arika, Rada Mihalcea, Alexander F. Gelbukh, and
Erik Cambria. 2018. Dialoguernn: An attentive rnn
for emotion detection in conversations. CoRR, As-
sociation for the Advancement of Artificial Intelli-
gence (AAAI 2019).

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In International Conference on
Learning Representations (ICLR).

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. CoRR, abs/1609.07843.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun,
and Rob Fergus. 2013. Regularization of neural net-
works using dropconnect. In Proceedings of the
30th International Conference on Machine Learn-
ing, volume 28 of Proceedings of Machine Learn-
ing Research, pages 1058–1066, Atlanta, Georgia,
USA. PMLR.

Tom Young, Devamanyu Hazarika, Soujanya Poria,
and Erik Cambria. 2018. Recent trends in deep
learning based natural language processing [review
article]. In IEEE Computational Intelligence Maga-
zine, volume 13, pages 55–75.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with in-
ternal and external memory. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), pages 730–739.

255

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 256–260
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

MILAB at SemEval-2019 Task 3: Multi-View Turn-by-Turn Model for
Context-Aware Sentiment Analysis

Yoonhyung Lee, Yanghoon Kim, and Kyomin Jung
Seoul National University, Seoul, Korea

{cpi1234, ad26kr, kjung}@snu.ac.kr

Abstract

This paper describes our system for SemEval-
2019 Task 3: EmoContext, which aims to pre-
dict the emotion of the third utterance consid-
ering two preceding utterances in a dialogue.
To address this challenge of predicting the
emotion considering its context, we propose
a Multi-View Turn-by-Turn (MVTT) model.
Firstly, MVTT model generates vectors from
each utterance using two encoders: word-level
Bi-GRU encoder (WLE) and character-level
CNN encoder (CLE). Then, MVTT grasps
contextual information by combining the vec-
tors and predict the emotion with the contex-
tual information. We conduct experiments on
the effect of vector encoding and vector com-
bination. Our final MVTT model achieved
0.7634 microaveraged F1 score.

1 Introduction

Sentiment analysis is a task of identifying emo-
tional information from text materials and has
been studied by various research fields since it can
be applied to many applications such as public sur-
vey and market analysis. However, most studies in
sentiment analysis have only focused on a single
sentence (Socher et al., 2011) or a single document
(Pang and Lee, 2005). It is still hard to predict the
emotion of a sentence with extra contextual infor-
mation because the emotion can be understood dif-
ferently depending on its context. SemEval-2019
Task 3: EmoContext (Chatterjee et al., 2019) pro-
vides a dataset of dialogues which consist of three
utterances between two users (Figure 1). Partic-
ipants are required to predict the emotion of the
third utterance among ‘Happy’, ‘Sad’, ‘Angry’,
and ‘Others’, considering its context of two pre-
ceding utterances.

In this paper, we propose a Multi-View Turn-
by-Turn (MVTT) model which encodes each ut-
terance separately and combines the encoded vec-

Figure 1: An example of a dialogue between two users.

tors to get the contextual information. MVTT
model first generates vectors from each utterance
with two encoders: word-level Bi-GRU encoder
(WLE) and character-level CNN encoder (CLE).
The two-encoder strategy makes MVTT model
more robust to the noisy texts which have a lot
of typos and abbreviations. Then, MVTT extracts
contextual information by combining the vectors
and makes a prediction. We compare the MVTT
model with some variants focusing on utterance
vector encoding and utterance vector combination
methods with microaveraged F1 score (F1) which
is the main evaluation metric.

This paper is organized as follows: Section
2 describes MVTT model architecture in detail.
Section 3 describes dataset and various methods
that we use to reflect the dataset’s characteristics
to our training. Section 4 compares our results
of MVTT model and other variants, and Section
5 outlines our conclusions.

2 System Description

This section describes our Multi-View Turn-by-
Turn (MVTT) model which consists of two en-
coders: word-level Bi-GRU encoder (WLE) and
character-level CNN encoder (CLE), which make
our model more robust to noisy data. First, MVTT
generates utterance vectors from each utterance
using the encoders. Then, to understand the con-
textual information, MVTT combines the vectors
into context-aware dialogue vectors and makes a

256

Figure 2: Overview of MVTT model: how each encoder generates utterance vectors from each utterance and how
MVTT model combines the vectors to make a prediction.

prediction using the context-aware dialogue vec-
tors.

In this section, we first describe how each en-
coder generates the utterance vectors from each ut-
terance and how MVTT combines the vectors into
the context-aware dialogue vectors in detail.

2.1 Word-level Bi-GRU encoder

Figure 3: Word-level Bi-GRU encoder.

Word-level Bi-GRU encoder (WLE) takes
an utterance as a sequence of word tokens
{w1, w2, ..., wN}. The tokens are fed into an
embedding layer which is initialized with Glove
word-embedding (Pennington et al., 2014) trained
with a large twitter corpus. Then the embedded
tokens are fed into the Bi-GRU encoder to get an
utterance vector by max-pooling its hidden states
over time.

WLE allows the model to benefit from pre-
trained Glove word-embedding which have abun-
dant information in syntactic and semantic word
relationships. Also, MVTT benefits a lot from Bi-
GRU encoder (Cho et al., 2014): (a) MVTT model
can understand an text contextually with previous
word information using Bi-GRU’s gating mecha-
nism; (b) by reading an text in two opposite ways,
MVTT model can extract contextually more infor-
mative information. This is especially beneficial
for MVTT to understand contextual meaning of a
dialogue from each utterance.

Figure 4: Character-level CNN encoder.

2.2 Character-level CNN encoder

Character-level CNN encoder (CLE) takes
an input as a sequence of character tokens
{c1, c2, ..., cN}. The tokens are fed into a ran-
domly initialized embedding layer, and then the
embedded tokens are fed into the CNN encoder
(Kim, 2014) to get an utterance vector.

Since it is impossible to consider all words in a
word-level encoding, vocabulary consisting of 15k
words is pre-defined based on word frequency and
the other words are considered as out of vocabu-
lary (OOV) tokens. Therefore, if the model only
depends on WLE to extract features from a se-
quence of word tokens, a significant proportion of
words will be tokenized as the OOV tokens when
the texts are noisy. As a result, the model can’t suf-
ficiently utilize the benefit from pre-trained word-
embedding. However, since the CNN encoder
helps extract the local features from a sequence of
character tokens, CLE enables our model to spec-
ulate the meaning of the text has some typos.

2.3 Multi-View Turn-by-Turn encoding

Multi-View Turn-by-Turn encoding is a method of
generating utterance vectors from each utterance
first and then combining the vectors into context-
aware dialogue vectors. MVTT makes a predic-
tion by encoding each utterance and combining
them using concatenation and feed-forward neural
network (FNN) as follows:

257

w13 = FNN([w1;w3])

w123 = FNN([w13;w2])

c13 = FNN([c1; c3])

c123 = FNN([c13; c2])

pred = FNN([w123; c123])

where w1, w2, w3 are the utterance vectors
from each utterance generated by WLE and
c1, c2, c3 are the utterance vectors from each ut-
terance generated by CLE.

Since the first and third utterances are written
by the same user, they are more informative in pre-
dicting the emotion of the third utterance. There-
fore, by processing each utterance separately and
combining them as above, the model can under-
stand the context while maintaining the important
emotional information.

2.4 Binary relevance classification

Binary relevance classification is a classification
scheme to independently train binary classifiers
for each label. It has usually been used for multi-
label classification tasks and we apply the method
to our task. In our system, we build three identi-
cal classifiers for ‘Happy’, ‘Sad’, ‘Angry’ classes
and independently train them to output probabili-
ties of each class. Then, we take the emotion with
the highest probability as a class prediction, oth-
erwise, if all the probabilities don’t exceed 50%,
take ‘Others’ as a predicted class.

3 Experiments

SemEval-2019 Task 3: EmoContext provided di-
alogue dataset consisting of three utterances writ-
ten by two users and each sample is labeled among
‘Happy’, ‘Sad’, ‘Angry’ and ‘Others’. In this sec-
tion, we describe the dataset and some implemen-
tation details.

3.1 Datasets

The provided dialogue dataset is split into train-
ing, validation and test sets. Table 1 shows the
label distribution of each data split. As Table 1
indicates, there are large differences in class label
distributions among data splits and it is important
to consider the differences in configuring our sys-
tem.

Data split Happy Sad Angry Others
training 4243 5463 5506 14948

validation 142 125 150 2338
test 284 250 290 4677

Table 1: The statistics for the number of labels of each
split.

3.2 Implementation details
We optimize our model using Adam optimizer
(Kingma and Ba, 2014) and learning rate is set to
0.0015. We use Bi-GRU with 256 hidden units and
CNN filters with window sizes of [3, 5, 9], 64 fea-
ture maps each. All FNN have 256 hidden units
with tanh activation function except for the last
FNN classifier with sigmoid function.

3.3 Pre-processing
In this task, we pre-process the utterances as de-
scribed in Figure 5. We first lowercase all texts
and replace abbreviations with their original forms
as many as possible to make the best use of Glove
word-embedding. Next, we unify emojis that have
similar meanings into one specific emoji to help
our model to learn emoji embeddings.

Figure 5: Text pre-processing.

3.4 Label smoothing
Label smoothing is a method to relax our confi-
dence on the labels by using lower target values
like 0.7 instead of 1. In the test set, almost all sam-
ples belong to the ”Others” class with only a small
percentage of examples belonging to the ”Happy”,
”Sad”, or ”Angry” classes. Therefore, if we train
each classifier for each emotion with label smooth-
ing, we can prevent the model from predicting a
emotion with excessive confidence and make the
model be more likely to predict the emotions as
‘Others’.

4 Results

In this section, we compare the performance of our
MVTT model with some variants of our model.
Since our model mainly consists of WLE and
CLE, we try to investigate how our model benefits

258

from both encoders. Further, we found that dif-
ferent combination methods of utterance vectors
make a great difference in model evaluation. All
of the results below are experimental results on the
test set. MVTT outperforms all other variants and
achieved 0.7634 microaveraged f1 score.

4.1 Ablation test on sentence embeddings
Our MVTT model utilizes the features of WLE
and CLE. As is shown in Table 2, the model
takes more advantage from WLE than CLE since
the WLE utilizes the pre-trained word-embedding
vectors trained on large twitter corpus which have
abundant information in syntactic and semantic
word relationships in the corpus. However, when
we use both encoders, our MVTT model outper-
forms both models that use only one encoder. This
results from the fact that CLE gives robustness to
our model because it takes an input as a sequence
of character tokens and extracts the local features
from it.

Model F1(H) F1(S) F1(A) F1µ
WLE 0.7227 0.7680 0.7638 0.7515
CLE 0.6975 0.7860 0.7089 0.7270
MVTT 0.7273 0.7853 0.7767 0.7634

Table 2: Performance comparison among WLE, CLE
and MVTT.

4.2 Impact of Turn-by-Turn encoding
Considering the characteristic of the given task,
we find that the way to combine features from each
utterance of a dialog is crucial. We tried several
different combination methods, especially in the
order of combination, to find out which setting has
the most explainable structure with the best perfor-
mance. We here list some variants with compara-
bly better performance:

• C123: We simply concatenate w1 (c1),
w2 (c2), w3 (c3) and feed it into a FNN to
generate context-aware dialogue vectors.

• C12 3: Firstly concatenate w1 (c1), w2 (c2)
and feed it into a FNN, and then concate-
nate the output and w3 (c3) and feed it into
another FNN to generate context-aware dia-
logue vectors.

• C13 2 (MVTT): Firstly concatenate w1 (c1),
w3 (c3) and feed it into a FNN, and then con-
catenate the output and w2 (c2) and feed it

into another FNN to generate context-aware
dialogue vectors.

• Submission: Ensemble of C123, C12 3,
C13 2 models with various hyper parameters

Model F1(H) F1(S) F1(A) F1µ
C123 0.7119 0.7798 0.7602 0.7502
C12 3 0.7029 0.7674 0.7524 0.7406
Submission 0.7236 0.7860 0.7656 0.7581
MVTT 0.7273 0.7853 0.7767 0.7634

Table 3: The effect of vector combination on perfor-
mance.

Table 3 shows the results of MVTT and some
variants which combine the utterance vectors in
other ways. As is shown in Table 3, our utterance
vector combination method enables our model to
understand both the emotional and contextual in-
formation. Since it is likely that a person’s emo-
tion is maintained through a 3-turn dialogue, com-
bining the utterance vectors by user first and then
making a prediction is beneficial to understand the
context while maintaining emotional information.

5 Conclusion

In this paper, we propose a Multi-View Turn-by-
Turn model (MVTT) for SemEval-2019 Task 3:
EmoContext. Our goal was to predict the emo-
tion of the third utterance in a dialogue consisting
of three utterances. Firstly, MVTT model gen-
erates utterance vectors from each utterance us-
ing two encoders: word-level Bi-GRU encoder
and character-level CNN encoder. The encoders
make MVTT model more robust to the noisy texts.
Then, MVTT combines the vectors to understand
both the emotional and contextual meanings. We
evaluated our MVTT model and its variants, fo-
cusing on utterance vector encoding and utter-
ance vector combination. Our final MVTT model
achieved 0.7634 microaveraged f1 score.

References
Ankush Chatterjee, Kedhar Nath Narahari, Meghana

Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

259

Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd annual meeting on association for computa-
tional linguistics, pages 115–124. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
conference on empirical methods in natural lan-
guage processing, pages 151–161. Association for
Computational Linguistics.

260

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 261–265
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

MoonGrad at SemEval-2019 Task 3:
Ensemble BiRNNs for Contextual Emotion Detection in Dialogues

Chandrakant Bothe and Stefan Wermter
Knowledge Technology, Department of Informatics, University of Hamburg,

Vogt-Koelln-Str. 30, 22527 Hamburg, Germany
www.informatik.uni-hamburg.de/WTM/

{bothe, wermter}@informatik.uni-hamburg.de

Abstract

When reading “I don’t want to talk to you any
more”, we might interpret this as either an an-
gry or a sad emotion in the absence of context.
Often, the utterances are shorter, and given a
short utterance like “Me too!”, it is difficult
to interpret the emotion without context. The
lack of prosodic or visual information makes
it a challenging problem to detect such emo-
tions only with text. However, using contex-
tual information in the dialogue is gaining im-
portance to provide a context-aware recogni-
tion of linguistic features such as emotion, di-
alogue act, sentiment etc. The SemEval 2019
Task 3 EmoContext competition provides a
dataset of three-turn dialogues labeled with the
three emotion classes, i.e. Happy, Sad and An-
gry, and in addition with Others as none of the
aforementioned emotion classes. We develop
an ensemble of the recurrent neural model with
character- and word-level features as an in-
put to solve this problem. The system per-
forms quite well, achieving a microaveraged
F1 score (F1μ) of 0.7212 for the three emotion
classes.

1 Introduction

Humans might interpret text wrongly when read-
ing sentences in the absence of context, so ma-
chines might too. When reading the following ut-
terance,

Why don’t you ever text me?

it is hard to interpret the emotion where it can be
either a sad or an angry emotion (Chatterjee et al.,
2019; Gupta et al., 2017). The problem becomes
even harder when there are ambiguous utterances,
for example, the following utterance:

Me too!

one cannot really interpret the emotion behind
such an utterance in the absence of context. See
Table 1 where the utterance “Me too!” is used in

many emotional contexts such as sad, angry, and
happy and also in the class “others” where none
of aforementioned emotions is present.

Analyzing the emotion or sentiment of text pro-
vides the opinion cues expressed by the user. Such
cues could assist computers to make better deci-
sions to help users (Kang and Park, 2014) or to
prevent potentially dangerous situations (O’Dea
et al., 2015; Mohammad and Bravo-Marquez,
2017; Sailunaz et al., 2018). Character-level deep
neural networks have recently showed outstand-
ing results on text understanding tasks such as
machine translation and text classification (Zhang
et al., 2015; Kalchbrenner and Blunsom, 2013).

Usually, the utterances are short and contain
mis-spelt words, emoticons, and hashtags, espe-
cially in the textual conversation. Hence, using
character-level language representations can the-
oretically capture the notion of such texts. On
the other hand, the EmoContext dataset is col-
lected from the social media, and so the charac-
ter language model used in our experiments is also
trained on such a corpus (Radford et al., 2017).

We propose a system that encapsulates
character- and word-level features and is mod-
elled with recurrent and convolution neural
networks (Lakomkin et al., 2017). We used our
recently developed models for the context-based
dialogue act recognition (Bothe et al., 2018).
Our final model for EmoContext is an ensemble
average of the intermediate neural layers, ended
with a fully connected layer to classify the
contextual emotions. The system performs quite
well and we ranked on the public leaderboard
(MoonGrad team) on CodaLab1 in the top 35%
of the systems (at the time of writing this paper
Feb 2019) achieving the microaveraged F1 score
(F1μ) of 0.7212 for the three emotion classes.

1https://competitions.codalab.org/
competitions/19790

261

User 1 User 2 User 1
id turn1 turn2 turn3 label
2736 I don’t hate you. you are just an AI i don’t hate anyone me too angry
2867 everything is bad whats bad? me too sad
4756 I am very much happy :D Thank you, I’m enjoying it :) Me too happy
8731 How r uh am fine dear and u? Me too others

Table 1: Examples from training dataset, where turn3 is mostly the same while contextual emotion is different.

Label Train Dev Test
30160 2755 5509

happy 4243 142 284
sad 5463 125 250
angry 5506 150 298
others 14948 2338 4677

Table 2: EmoContext Data Distribution; first row rep-
resents the total number of conversations in dataset.

2 Approach

The final model used for the submission to the
EmoContext challenge is shown in Figure 1. It
is an average ensemble of four variants of neural
networks. Net1 and Net2 use the input from a pre-
trained character language model; Net3 and Net4
use GloVe word embeddings as input. All models
are trained with Adam optimizer at a learning rate
of 0.001 (Kingma and Ba, 2014).

The dataset provided by the EmoContext orga-
nizers consists of the 3-turn dialogues from Twit-
ter, where turn1 is a tweet from user 1; turn2 is
a response from user 2 to that tweet, and turn3
is a back response to user 2 (Gupta et al., 2017).
The data distribution is presented in Table 2. We
do not perform any special pre-processing except
converting all the data into plain text.

2.1 Character-level RNN Model

The character-level utterance representations are
encoded with the pre-trained recurrent neural net-
work model2 which contains a single multiplica-
tive long short-term memory (mLSTM) (Krause
et al., 2016) layer with 4,096 hidden units, trained
on ∼80 million Amazon product reviews as a
character-level language model (Radford et al.,
2017). Net1 and Net2 are fed the last vector (LM)
and the average vector (AV) of the mLSTM re-
spectively. It is shown in (Lakomkin et al., 2017)

2https://github.com/openai/
generating-reviews-discovering-sentiment

that the AV contains effective features for emo-
tion detection. The character-level RNN models
(Net1 and Net2) are identical and consist of two
stacked bidirectional LSTMs (BiLSTM) followed
by an average layer over the sequences computed
by final BiLSTM.

2.2 Word-level RNN and RCNN Model

The word embeddings are used to encode the ut-
terances. We use pre-trained GloVe embeddings
(Pennington et al., 2014) trained on Twitter3 with
200d embedding dimension. The average length
of the utterances is 4.88 (i.e. ∼5 words/utterance
on average) and about 99.37% utterances are un-
der or equal to 20 words. Therefore, we set 20
words as a maximum length of the utterances.
Net3 is stacked with two levels of BiLSTM plus
the average layer while Net4 consists of a convo-
lutional neural network (Conv). Conv in Net4 over
the embedding layer captures the meaningful fea-
tures followed by a max pooling layer (max), with
the kernel size of 5 with 64 filters and all the ker-
nel weights matrix initialized with Glorot uniform
initializer (Glorot et al., 2011; Kim, 2014; Kalch-
brenner and Blunsom, 2013). The max pooling
layer of pool size 4 is used in this setup, the out-
put dimensions are shown in Figure 1. We build
a recurrent-convolutional neural network (RCNN)
model by cascading the stack of LSTMs and the
average layer to model the context.

2.3 Ensemble Model

The overall model is developed in such a way that
the outputs of all the networks (Net1, Net2, Net3,
and Net4) are averaged and a fully connected layer
(FCL) is used with softmax function over the four
given classes. The complete model is trained end-
to-end so that, given a set of three turns as an input,
the model classifies the emotion labels.

3https://nlp.stanford.edu/projects/
glove/

262

Bi
L
S
T
M

A
v
g

Bi
L
S
T
M

A
v
g

Bi
L
S
T
M

A
v
g

Bi
L
S
T
M

A
v
g

A
v
g

F
C
L

Bi
L
S
T
M

Bi
L
S
T
M Happy

Sad
Angry
Others

Input Turns
[turn1
turn2
turn3]

m
L
S
T
M

L
V

A
V

e
m
b

Bi
L
S
T
M

A
v
g

Character
Language

Model

Word
Embeddings

GloVe L
S
T
M

A
v
g

C
o
n
v

m
a
x

(3, 4096)

(3, 4096)

(3, 20, 200)

(3, 16, 64)
(3, 4, 64)

(3, 4, 128)
(3, 128)

(3, 256)

(1, 256)

(1, 256)

(1, 256) (1, 4)

(3, 256) (3, 256)

(3, 256)(3, 256)

Last
Vector (LV)

Average
Vector (AV)

(3, 256)(3, 20, 256)
(3, 256)

Fully Connected
Layer (FCL)

Net1

Net2

Net3

Net4

(1, 256)

(1, 256)

Figure 1: The overall architecture of the contextual emotion detection.

Models F1μ
Baseline model (organizers) 0.5838
Our proposed model 0.7212
happy 0.6893
sad 0.7485
angry 0.7287

Table 3: Result as microaveraged F1 score (F1μ) com-
pared to baseline and F1 score for each emotion.

3 Experiments and Results

The final submitted result to the challenge is
shown in Table 3. The metric used for the chal-
lenge is the microaveraged F1 score (F1μ) for the
three emotion classes, i.e. Happy, Sad and An-
gry. Our model performance was able compete
quite well with the participating teams in the chal-
lenge. The main goal to present these experiments
is to explore the features used for contextual emo-
tion detection. For the comparison of different lan-
guage features (character and word), we consider
calculating the accuracy over all four classes, in
addition to F1μ. The experimental setup devel-
oped and each network is tested individually and
in an ensemble way. The results are reported in
Table 4. When the models train individually, the
output of the model being trained is directly con-
nected to the FCL as shown in dotted line in Figure
1. From the results, it is clear that the average vec-

Models Acc (%) F1μ
Char-LM LV Model (Net1) 88.12 0.655
Char-LM AV Model (Net2) 89.87 0.694
Char-LM AV Model 86.25 0.603
(No Context)
Word Embs Model (Net3) 88.27 0.665
Word Embs Model (Net4) 88.80 0.653
Char-LM Models 89.59 0.688
(Net1 and Net2)
Word Embs Models 87.91 0.692
(Net3 and Net4)
Final Ensemble Model 91.63 0.721
Avg. Ensemble Model 91.71 0.721
(outputs of individual nets)

Table 4: Results comparing our experimental setups.

tor Char-LM AV Model outperforms the four indi-
vidual networks. As this model performs well, we
also train a single FCL to see the effect of the ab-
sence of context. The ensemble models, Char-LM
Models (Net1 and Net2) and Word Embs Models
(Net3 and Net4) show a clearer pick up on accu-
racy than individuals. The final ensemble model
clearly improves the overall performance. How-
ever, we also ensemble the output predictions of
all the networks trained individually, and average
them at the end. Such ensembling is also effective
for the overall improvement in the performance.

263

Av
g.

Ne
t2

Ne
t1

Ne
t3

Ne
t4

Av
g.

Char
LM

Word
Embs

Char-LM AV Model
(No Context)

Despite of gaining about 86%
of accuracy, the models’
internal state seems unstable
and could not generalize well,
which is indicated by gaining
lower F1μ (0.603).

Ne
t1

Ch
ar

-L
M

 L
V

Ne
t3

W
or

d
Em

bs

Ne
t4

W
or

d
Em

bs

Ne
t2

Ch
ar

-L
M

 A
V

Ne
t1

Ne
t3

Ne
t4

Ne
t2

Av
g.

Final Ensemble Model

The models’ internal state
seems stable and could
generalize well.
Also the accuracy (91.63%)
and F1μ (0.721) are
relatively high.

Figure 2: Clustering the intermediate representations of different networks and their average (Avg.) ensembled
representations. EmoContext test data is used to generate these representations.

264

In Figure 2, we demonstrate the intermediate
representations taken at the last average layers
of the networks on test data and plotted against
four classes. We use t-SNE algorithm that con-
verts multi-dimensional (in our case 256) to 2-
dimensional arrays. We can notice that the Net2
Char-LM AV model is quite consistent while other
models are a bit unstable in clustering for the given
emotions classes. For the final ensemble model,
surprisingly, word models become too cluttered,
but still contribute to the improvement.

4 Conclusion

The contextual emotion detection is a crucial step
towards conversational analysis where emotion
can aid the natural language understanding in
socio-linguistic studies. Especially in the absence
of facial expression and prosodic features, con-
text becomes an important asset for emotion de-
tection in the text. As we can see from the results
our model could compete and provide insight to
explore different feature representations. The en-
semble modelling and transfer learning are effec-
tive tools for such a challenging task, specifically,
when the given data is small and the labels are not
balanced over all the samples.

Acknowledgments

This project has received funding from the Eu-
ropean Unions Horizon 2020 research and inno-
vation programme under the Marie Sklodowska
Curie grant agreement No 642667 (SECURE).

References
Chandrakant Bothe, Sven Magg, Cornelius Weber, and

Stefan Wermter. 2018. Conversational Analysis
using Utterance-level Attention-based Bidirectional
Recurrent Neural Networks. In Proceedings of the
International Conference INTERSPEECH 2018.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. SemEval-2019
Task 3: EmoContext: Contextual Emotion Detection
in Text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019).

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep Sparse Rectifier Neural Networks. In
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, PMLR,
volume 15, pages 315–323. PMLR.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A Sentiment-

and-Semantics-Based Approach for Emotion Detec-
tion in Textual Conversations. Proceedings of the
Neu-IR 2017 SIGIR Workshop on Neural Informa-
tion Retrieval.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
Convolutional Neural Networks for Discourse Com-
positionality. In Proceedings of the Workshop on
Continuous Vector Space Models and their Compo-
sitionality, ACL, pages 119–126.

Daekook Kang and Yongtae Park. 2014. Review-based
measurement of customer satisfaction in mobile ser-
vice: Sentiment analysis and VIKOR approach. Ex-
pert Systems with Applications, 41(4):1041–1050.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. Proceedings of the Confer-
ence on EMNLP, pages 1746–1751.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations.

Ben Krause, Liang Lu, Iain Murray, and Steve Renals.
2016. Multiplicative LSTM for sequence modelling.
Workshop track of Proceedings of the International
Conference on Learning Representations.

Egor Lakomkin, Chandrakant Bothe, and Stefan
Wermter. 2017. GradAscent at EmoInt-2017: Char-
acter and Word Level Recurrent Neural Network
Models for Tweet Emotion Intensity Detection. In
Proceedings of the 8th Workshop WASSA at the Con-
ference EMNLP, pages 169–174. ACL.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017.
Emotion Intensities in Tweets. In Proceedings of
the Sixth Joint Conference on Lexical and Compu-
tational Semantics (*Sem), Vancouver, Canada.

Bridianne O’Dea, Stephen Wan, Philip J Batterham,
Alison L Calear, Cecile Paris, and Helen Chris-
tensen. 2015. Detecting suicidality on Twitter. In-
ternet Interventions, 2(2):183–188.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global Vectors for Word
Representation. Proceedings of the Conference on
EMNLP, pages 1532–1543.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
2017. Learning to Generate Reviews and Discov-
ering Sentiment. arXiv: 1704.01444.

Kashfia Sailunaz, Manmeet Dhaliwal, Jon Rokne, and
Reda Alhajj. 2018. Emotion Detection from Text
and Speech - A Survey. Social Network Analysis
and Mining, 8(1):28.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level Convolutional Networks for Text
Classification. In Advances in Neural Information
Processing Systems, pages 649–657.

265

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 266–271
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NELEC at SemEval-2019 Task 3: Think Twice Before Going Deep

Parag Agrawal∗
Microsoft

paragag@microsoft.com

Anshuman Suri∗
Microsoft

ansuri@microsoft.com

Abstract

Existing Machine Learning techniques yield
close to human performance on text-based
classification tasks. However, the presence of
multi-modal noise in chat data such as emoti-
cons, slang, spelling mistakes, code-mixed
data, etc. makes existing deep-learning solu-
tions perform poorly. The inability of deep-
learning systems to robustly capture these
covariates puts a cap on their performance.
We propose NELEC : Neural and Lexical
Combiner, a system which elegantly com-
bines textual and deep-learning based meth-
ods for sentiment classification. We eval-
uate our system as part of the third task
of ’Contextual Emotion Detection in Text’
as part of SemEval-2019 (Chatterjee et al.,
2019b). Our system performs significantly
better than the baseline, as well as our deep-
learning model benchmarks. It achieved a
micro-averaged F1 score of 0.7765, ranking
3rd on the test-set leader-board. Our code
is available at https://github.com/
iamgroot42/nelec

1 Introduction

Sentiment analysis of textual data: Twitter
data (Kouloumpis et al., 2011; Pak and Paroubek,
2010), movie reviews (Thet et al., 2010), and prod-
uct reviews (Pang et al., 2008), is perhaps the most
extensively explored problem, with a plethora of
research to tackle it. Novel systems utilise deep
learning architectures to achieve near-human per-
formance on clean, well-formatted data. How-
ever, sentiment classification of chat data is signif-
icantly challenging. The presence of spelling er-
rors, slang, emoticons, code-mixing, style of writ-
ing and abbreviations makes it significantly harder
for existing deep-learning models to work on such
data.

∗Equal contribution, order determined by coin toss

Literature dealing with this problem comprises
a wide range of approaches: from hand-crafted
features to end-to-end deep-learning methods.
Some rule-learning based methods use keyword-
based analysis (Ko and Seo, 2000) and part-of-
speech tagging (Agarwal et al., 2011). These pro-
cedures require extensive human-involvement for
identifying keywords and designing rules and are
thus not scalable.

Non-neural machine-learning methods utilize
feature extraction algorithms like n-grams and Tf-
Idf vectors, coupled with classification algorithms
like Naive Bayes (Pang et al., 2002), Decision
Trees (Bilal et al., 2016), SVM (Moraes et al.,
2013). These approaches perform significantly
better than rule-based approaches but fail to cap-
ture context well, since they ignore the order of
words in text sequences.

Statistic Train Dev Test
Emojis (%) 17.6 11.1 12.5
OOV (%) 3.7 4.9 4.9

OOV(processed) (%) 2.1 1.5 1.8
Avg.Length 13.6 12.7 12.7

Avg.Length(processed) 15.7 15.3 15.2
Happy emotion (%) 14.1 5.2 5.2

Sad emotion (%) 18.1 4.5 4.5
Angry emotion (%) 18.3 5.4 5.4

Table 1: Some statistics for the given training, develop-
ment and test sets.

Neural, deep-learning based approaches use ar-
chitectures such as variations of recurrent mod-
els: GRU (Chung et al., 2014), LSTM (Hochreiter
and Schmidhuber, 1997), BiLSTM (Schuster and
Paliwal, 1997) and Convolutional models (Mundra
et al., 2017), performing significantly better than
other machine-learning techniques. Their ability
to generalise and capture context over long se-

266

Turn 1 Turn 2 Turn 3

Pre-Processing

how you care
…

EMB EMB EMB

LSTM

GRU

LSTMLSTM

GRU GRU

Max-PoolAverage-PoolAttention

Max-PoolAverage-PoolAttention

Dropout

Dropout

DropoutDropout

0.1
0.3
0.4
0.2

Happy

Sad

Angry

Others

OutputRaw
Input

Embeddings

Recurrent Cells

Figure 1: System diagram of the Deep-Learning model described in Section 2.1.

quences makes them a popular choice for text clas-
sification tasks.

We propose NELEC, a novel system specifi-
cally designed for sentiment classification. We
combine lexical and neural features for sentiment
classification, followed by class-specific thresh-
olds for better labelling. Our system yields an F1

score of 0.7765 on the test-set of Task 3 of Sem-
Eval 2019.

2 System Description

2.1 Deep Learning Model

We experiment with a two-layer, recurrent, deep-
learning model with skip connections, bidirec-
tional cells and attention (Figure 1). We trained
our model for 100 epochs with Cyclic Learning
Rate (Smith, 2017) scheduling. This model out-
performs the baseline by a significant margin. An
in-depth analysis of the cases where it fails re-
veals its shortcomings (along with that of a deep-
learning model in general): it is not robust to mis-
spellings and cannot capture the meaning of out-
of-vocabulary words robustly. Even though pre-
trained embeddings are available for most words,
the context with which they are used in chat may
vary from the corpora they were trained on, thus
lowering their usability.

2.2 NELEC : Neural and Lexical Combiner

Since neural features have a lot of shortcomings,
we shift our focus to lexical features. Using a

combination of both lexical (n-gram features, etc.)
and neural features (scores from neural classi-
fiers), we trained a standard Light-GBM (Ke et al.,
2017) Model for 100 iterations, with feature sub-
sampling of 0.7 and data sub-sampling of 0.7 us-
ing bagging with a frequency of 1.0. We use
10−2 ∗ ‖weights‖2 as regularization. We also ex-
perimented with a logistic regression model, but
it had a significant drop in performance for the
’happy’ and ’angry’ classes (Table 2). The to-
tal number of features used is 9270, out of which
9189 are sparse. The features we use in our model
are described in the sections below:

2.2.1 Turn Wise Word n-Grams

Word level bi-grams and tri-grams (skip 1). These
help capture patterns like “am happy” and auto-
matically handles unseen data such as ”am very
happy” or ”am so happy” because of the skip
word. We take the term frequencies of these n-
Grams as features. Word Grams not|good, hate,
no|one had the highest feature gains.

2.2.2 Turn Wise Char n-Grams

Character level bi-grams and tri-grams. This fea-
ture helps capture character-level trends such as
“haha” (and its variants), as well as emoticons.
It helps with misspellings and makes the system
robust to variants of several words like “haha”.
h|a|h, w|o|w had one of the highest feature gains.

267

2.2.3 Valence Arousal Dominance
We used Valence-Arousal-Dominance data (Mo-
hammad, 2018) in the following manner:

1. Mean of Valence and Arousal values, along
with turn-wise Maximum Dominance value
for all words. Turn 3 Arousal for maximum
dominant word had the highest feature gain.

2. Turn-wise mean of Valence, Arousal and
Dominance values.

2.2.4 Emotion Intensity
We use EmoLex (Mohammad and Turney, 2010),
which associates words to eight emotions and two
sentiments. For each turn, we obtain the number
of words having specific emotions and sentiment
and use it as a feature.

Model
F1

happy sad angry µavg

Without Data Pre-Processing
Deep .5863 .5977 .6485 .6123

NELEC .7382 .8047 .7873 .7765
Logistic .6712 .7642 .7151 .7154
Baseline .5461 .6149 .5945 .5861

With Data Pre-Processing
Deep .5710 .6630 .7350 .6651

NELEC .7324 .8015 .7878 .7736
Logistic .6782 .7680 .7120 .7177
Baseline .5797 .5973 .6241 .6024

Table 2: Class-wise and micro-averaged F1 scores for
NELEC, our deep-learning model and existing base-
line.

2.2.5 Neural Features
We used scores obtained by utilizing available pre-
trained classifiers features:

1. Scores obtained by running conversations
through a Sentiment Classifier trained on
Twitter Data using SSWE embeddings (Tang
et al., 2014).

2. Signals from Adult and Offensive Classi-
fiers (Yenala et al., 2017), obtained via the
Text Moderation API by Microsoft Cognitive
Services. As observed in Table 2, this helps
in ’Anger’ detection. 1

1https://docs.microsoft.com/en-in/azure/cognitive-
services/content-moderator/text-moderation-api

2.3 Lexical Count Features
Lastly, we used certain count features such as
the number of interrogation marks, exclamation
marks, uppercase letters, the total number of
words and letters for each turn. These features
were observed to be very helpful while detecting
anger and happiness.

3 Data Preparation

The training, development and test sets consist of
30160, 2755 and 5509 examples respectively. The
final model is trained on the combined training
and development set. For each instance, one of
four class labels: {happy, angry, sad, other}, is
provided. Table 1 provides some statistics for the
given dataset.

We concatenate all three turns per conversa-
tion. For the Deep-Learning approach, a spe-
cial 〈eos〉 token is inserted in between these turn-
conversations.

3.1 Pre-processing for NELEC
1. Lemmatization: Contrary to intuition, us-

ing lemmatization decreased the final perfor-
mance of our model. Further analysis sug-
gests that emotion is highly sensitive to ex-
act words: information captured by the word
“hate” and “hated” are very different, even
though a lemmatization system would reduce
them to the same word, and similarly for
“happy” versus “happiest”. Using lemmati-
zation drops the system’s F1 score by 0.0092.

2. WordNet for Synonyms: We also tried us-
ing synonyms for nouns using the Wordnet
Graph (Miller, 1998). However, a similar
issue plagues this approach. For instance
“dog”, “doggie” and “puppy” are all syn-
onyms, but they do not express the same kind
of emotion: words like “puppy” convey much
more positive emotion. Using Wordnet drops
the system’s F1 score by 0.0023.

3. Normalization: We try word tokenization
and normalization by removing diacritics,
numbers, stop-words, question marks etc.
However, this also drops the F1 score by
0.0046.

Character n-gram features can handle lemmati-
zation as well as misspellings for most of the cases
without discarding any additional information. Fi-
nally, we only lower-cased the sentences.

268

Feature Dropped Features (#) F1µavg Angry F1 Sad F1 Happy F1 F1µavg gain
Word n-grams 4565 .7355 .7373 .7723 .6995 .0410

Character n-grams 4624 .6067 .6271 .6168 .5749 .1698
Valence-Arousal 15 .7444 .7125 .7426 .7160 .0321

Word-emotion Classifier 30 .7537 .7584 .7739 .7301 .0228
Pre-Built Classifier 9 .7524 .7373 .7756 .7481 .0241

Lexical Count Features 27 .7654 .7751 .8015 .7217 .0111
Turn 1 (All Features) 2578 .7417 .7173 .7716 .7106 .0348
Turn 2 (All Features) 3873 .7642 .7719 .8015 .7217 .0123

Turn 1 & 2 (All Features) 6451 .7191 .7304 .7539 .6750 .0574

Table 3: Micro-averaged F1 scores when all features apart from these (per row) are dropped. F1 gain here refers
to the gain when using the feature mentioned, as opposed to dropping it.

3.2 Pre-processing for Deep-Learning based
Approach

We use pre-trained GloVe (Pennington et al.,
2014) embeddings. Some observations are:

• Emoticons: Around 15% of all conversations
includes at least one emoticon. We use em-
beddings from a pre-trained emoji2vec (Eis-
ner et al., 2016) model to handle emoticons.

• Words with repeated characters: This
trend is common for chat-data. For example,
“heelloo”, “ookayy”. We design specific reg-
ular expressions to handle such variations.

• Abbreviations and slang: tokens such as
“idk”, “irl” are converted to their full forms.

4 Experiments

To ascertain the novelty of our system, we report
both class-wise and micro-averaged F1 scores on
the test set. We also compare our performance
with the benchmarks provided by the contest or-
ganizers (Chatterjee et al., 2019a).

As mentioned in Section 3.2, data pre-
processing on deep-learning models leads to sig-
nificant performance gains, while leading to a drop
in performance when using NELEC. NELEC
outperforms both the baseline and our deep model
by a considerable margin (Table 2).

4.1 Ablation Study
To analyze the usefulness of all features used by
NELEC, we perform hold-one-out experiments
on its features (Section 2.2). Results are reported
in Table 3. There is a noticeable gain for most of
the features, with character n-grams observing the
maximum gain among them all.

One of the most intriguing patterns observed is
the ease with which they detect sad emotion and
an equal difficulty in detecting happiness.

• Words like “haha” and “okay” have several
forms which all convey different magnitudes
of emotion. While lemmatising such words,
there is a significant loss of information.

• Most of the conversations labelled sad have
easy-to-recognize signals such as negative
emoticons, keywords like “lonely”, which
make detection easy. On the other hand, dif-
ferentiating happy and others is non-trivial.

• Not using the second turn, along with its as-
sociated features, leads to a negligible drop in
F1 performance. This observation highlights
the importance of the first user (in data) in an-
alyzing sentiment. Moreover, we can utilize
this information to make the feature set even
smaller, making the model smaller and faster.

5 Conclusion

We propose a deep neural architecture to solve
the problem of emotion detection in conversations
from chat data. Although it outperforms the exist-
ing baseline, its performance is not satisfactory. To
better capture lexical features and make the model
robust to misspellings, abbreviations, emoticons,
etc., we propose NELEC, a Neural and Lexical
Combiner. Our model utilises lexical features,
along with signals from pre-trained neural mod-
els for sentiment and adult-offensive classification
to boost performance. Our system performs at par
with the existing state of the art, yielding a micro-
averaged F1 score of 0.7765 on the test set, rank-
ing 3rd on the test-set leader-board.

269

References
Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Ram-

bow, and Rebecca Passonneau. 2011. Sentiment
analysis of twitter data. In Proceedings of the work-
shop on languages in social media, pages 30–38.
Association for Computational Linguistics.

Muhammad Bilal, Huma Israr, Muhammad Shahid,
and Amin Khan. 2016. Sentiment classification
of roman-urdu opinions using naı̈ve bayesian, deci-
sion tree and knn classification techniques. Journal
of King Saud University-Computer and Information
Sciences, 28(3):330–344.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota, USA.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Informa-
tion Processing Systems, pages 3146–3154.

Youngjoong Ko and Jungyun Seo. 2000. Automatic
text categorization by unsupervised learning. In
Proceedings of the 18th conference on Computa-
tional linguistics-Volume 1, pages 453–459. Asso-
ciation for Computational Linguistics.

Efthymios Kouloumpis, Theresa Wilson, and Jo-
hanna D Moore. 2011. Twitter sentiment analysis:
The good the bad and the omg! Icwsm, 11(538-
541):164.

George Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Saif Mohammad. 2018. Obtaining reliable human rat-
ings of valence, arousal, and dominance for 20,000
english words. In Proceedings of the 56th Annual

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
174–184.

Saif M. Mohammad and Peter D. Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
HLT-NAACL 2010.

Rodrigo Moraes, JoãO Francisco Valiati, and Wilson
P GaviãO Neto. 2013. Document-level sentiment
classification: An empirical comparison between
svm and ann. Expert Systems with Applications,
40(2):621–633.

Shreshtha Mundra, Anirban Sen, Manjira Sinha,
Sandya Mannarswamy, Sandipan Dandapat, and
Shourya Roy. 2017. Fine-grained emotion detec-
tion in contact center chat utterances. In Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing, pages 337–349. Springer.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREc, volume 10, pages 1320–1326.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. As-
sociation for Computational Linguistics.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and
sentiment analysis. Foundations and Trends R© in In-
formation Retrieval, 2(1–2):1–135.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Leslie N Smith. 2017. Cyclical learning rates for train-
ing neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 464–472. IEEE.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1555–
1565.

Tun Thura Thet, Jin-Cheon Na, and Christopher SG
Khoo. 2010. Aspect-based sentiment analysis of
movie reviews on discussion boards. Journal of in-
formation science, 36(6):823–848.

270

Harish Yenala, Ashish Jhanwar, Manoj K Chinnakotla,
and Jay Goyal. 2017. Deep learning for detecting
inappropriate content in text. International Journal
of Data Science and Analytics, pages 1–14.

271

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 272–276
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NL-FIIT at SemEval-2019 Task 3: Emotion Detection From
Conversational Triplets Using Hierarchical Encoders

Michal Farkas, Peter Lacko
Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies
Ilkovicova 2, 842 16 Bratislava, Slovakia

michal.farkas@stuba.sk, peter.lacko@stuba.sk

Abstract

In this paper, we present our system submis-
sion for the EmoContext, the third task of
the SemEval 2019 workshop. Our solution is
a hierarchical recurrent neural network with
ELMo embeddings and regularization through
dropout and Gaussian noise. We have mainly
experimented with two main model architec-
tures: simple and hierarchical LSTM network.
We have also examined ensembling of the
models and various variants of an ensemble.
We have achieved microF1 score of 0.7481,
which is significantly higher than baseline and
currently the 19th best submission.

1 Introduction

Sentiment analysis has a long and successful his-
tory in the context of natural language processing.
As with the majority of the problems in this do-
main, we have seen a gradual shift towards so-
lutions based on neural models. Nowadays, such
models can be readily used as a part of a larger so-
lution, for example to analyse communication on
social networks.

Then, perhaps unsurprisingly, the EmoContext
task (Chatterjee et al., 2019b) with its format is
highly evocative of the social networks. That is, it
consists of conversational triplets, where the task
is to correctly guess the emotion category of the
last conversational turn.

Over the years, there was a number of differ-
ent sentiment analysis and recognition competi-
tions, workshops and shared tasks (Klinger et al.,
2018; Rosenthal et al., 2017), however the conver-
sational nature of the data is not common.

Our system is based on the recurrent neural
networks, both simple and hierarchical architec-
tures. We have experimented with various tech-
niques and hyper-parameters, such as regular-
ization, class weights, embeddings, strength of

dropout and added noise. Finally, we have im-
proved our results by creating an ensemble, with
various voting methods and sample reweighing.

2 Approach

The first step in any natural language processing
system is to preprocess the input data so it can be
easily understood by the system. Since prepro-
cessing was the major part of our previous work
(Pecar et al., 2018), we have decided to prior-
itize work on the model instead. Nevertheless,
we need to do some kind of preprocessing, hence
we used the readily available Ekphrasis (Baziotis
et al., 2017) tool.

We have experimented with both standard
GloVe embeddings (Pennington et al., 2014) and
more sophisticated ELMo embeddings (Peters
et al., 2018). The improvements contextual em-
beddings, like ELMo, can bring are already well
known and there is little need for additional com-
parisons, however the model that uses standard
embeddings is considerably faster and hence more
useful for quick experiments. Since training
ELMo can be quite time consuming and resource
intense, we have opted for pretrained models that
are part of the AllenNLP library (Gardner et al.,
2017).

It should be noted that the character sensitive
nature of the ELMo embeddings should help with
typos, which were not fixed by preprocessing, and
other similar errors.

2.1 Model

We have experimented with two main model
variants. First model variant uses a simple
bi-directional LSTM encoder (Hochreiter and
Schmidhuber, 1997), second variant uses a hier-
archical encoder, both can be seen in the figure 1.
In both cases, the encoders are followed by dense

272

a) Simple encoder model. b) Hierarchical encoder model.

Figure 1: Architecture of the main model variants.

layer which outputs probability distribution of la-
bels.

Simple encoder works on concatenated utter-
ances, utterances are part of a single string sepa-
rated by semicolon. During the development we
have also ran several runs only on the last utter-
ance.

Hierachical model consists of two different en-
coders, at the utterance level and on the dialog
level. This is fairly common practice in the dia-
log system domain (Serban et al., 2016). The ut-
terance encoder is a bi-directional LSTM which
encodes utterances into their representations. This
utterance representation is then sent to the dialog
encoder, which is a uni-directional LSTM.

Much of our model was dictated by a lack of
GPU memory 1, we had to prioritize what to in-
clude in the model. Fully-connected layer as a dia-
log encoder, separate encoder for each turn, dense
layer as a top encoder and attention mechanisms,
did not achieve significantly better results and in
some cases resulted in insufficient memory.

In the end, we had better results with the sim-
pler, larger model rather than with the more com-
plex, smaller model.

2.2 Training

We have opted to use Adam optimizer due to its
far better performance on the hierarchical model
where stochastic gradient descent did not perform
up to our expectations.

1We used a single RTX 2070 with 8GB of memory

To properly regularize the model we have used
the dropout (Srivastava et al., 2014) combined
with the gaussian noise applied to word embed-
dings. Since we did not use multi-layer LSTMs
we did not apply dropout in any other place in the
model.

In the case of ensembles, we scheduled 90%
reduction of the learning rate at the third epoch.
This was done in the hopes of achieving less vari-
ance in the performance of various runs. Since a
single model is trained considerably faster than an
entire ensemble, we did not schedule learning rate
change, as we were able to pick the best model or
average from a variety of runs.

The class imbalance in the dataset, both for the
train, validation and test set, was an issue we had
to deal with. We have opted for class reweighing
instead of a weighted sampling, due to ease of im-
plementation. We have experimented with various
weight setups.

2.3 Ensemble

To improve our results and help with significant
variance in performance of different experiment
runs, we have used an ensemble of multiple mod-
els. It should be noted that they are the exact same
model, trained several times.

We have experimented both with voting through
summation of the probabilities and with stacked
classifier on top of the ensemble results. Stacked
classifier is a single dense layer with the rec-
tified linear activation and softmax. As input
it takes a tensor of shape (batch size, ensem-

273

Model Size Input data Embeddings MicroF1
Hierarchical 3076/1024 all ELMo 0.733
Hierarchical 2048/1024 all ELMo 0.7213
Hierarchical 1024/512 all ELMo 0.7172
Simple 2048 concatenated ELMo 0.7123
Simple 4096 concatenated ELMo 0.7079
Simple 2048 last only ELMo 0.7076
Hierarchical 2048/1024 all GloVe 0.6394
Simple 4096 concatenated GloVe 0.639
Simple 2048 concatenated GloVe 0.6312
Hierarchical 1024/512 all GloVe 0.6294
Hierarchical 3076/1024 all GloVe 0.6291
Simple 2048 last only GloVe 0.5984

Table 1: Comparison of various model variants.

Size Voting Reweighing Max Average Combined
3 sum No 0.7371 0.7265 0.7481(+0.0110/+0.0216)
5 sum No 0.7426 0.7295 0.7454(+0.0028/+0.0159)
5 sum Yes 0.7369 0.7272 0.7430(+0.0061/+0.0158)
3 sum Yes 0.7306 0.7144 0.7381(+0.0075/+0.0237)
5 sum Yes* 0.7281 0.7191 0.7373(+0.0093/+0.018)
3 stack No 0.7248 0.7103 0.7326(+0.0078/+0.0223)
5 stack Yes 0.7338 0.7270 0.7310(-0.0028/+0.004)
3 stack Yes 0.7336 0.7257 0.7289(-0.0047/+0.0032)

Table 2: Comparison of various ensemble setups.

Distribution Weights MicroF1
train set 1.0/1.0/1.0/1.0 0.6924
test set 0.25/0.25/0.25/1.7 0.733
balanced 1 1.56/1.56/1.56/0.5 0.6888
balanced 2 1.56/1.56/1.56/0.3 0.6651
test w/o others 1.33/1.33/1.33/0. 0.2429

Table 3: Effect of different class weight setups.

ble size*num labels) and outputs a tensor of shape
(batch size, num labels).

To ensure that the single models in the ensem-
ble will specialize on different samples, we have
included the option for sample weight rebalance,
based on their performance on the already trained
models. However, error in the code caused that the
rebalance calculation took into account only the
last model and that the sample weights were grad-
ually rising for the latter models in an ensemble.
This was fixed only after the submissions were
closed.

3 Evaluation

In this section, we cover metrics used, our exper-
iments and analysis of our results. All results in
this sections are achieved on the test set.

For evaluation we have modified code that is the
part of the starter kit (Chatterjee et al., 2019a). Out
of all metrics this function calculates we have pri-
marily used microF1 score, which is the score re-
ported in all our tables.

3.1 Results
In our experiments, we have explored a variety of
different models, setups, ensembling approaches
and effects of class weights. If not specified oth-
erwise, models are using categorical crossentropy
and following parameters:

• batch size: 32

• gaussian noise after embedding layer: 0.5 for
simple, 3 for the hierarchical model

• dropout after embedding layer: 0.5 for sim-
ple, 0.6 for the hierarchical model

274

Class Precision Recall F1
Angry 0.6948 0.8020 0.7445
Happy 0.7303 0.6866 0.7078
Sad 0.7687 0.8240 0.7954
Micro Average 0.7281 0.7692 0.7481

Table 4: Summary of the best submission.

Our first set of experiments are targeted at the
model architecture and the effect of the used em-
beddings, results can be seen in table 1. In this
table, all results are an average of three different
runs. Unsurprisingly, the most significant effect
is from the type of embeddings used. The effect
of the rest of the factors seems to be in this or-
der: model/input and size. At least for the ELMo
embeddings, hierarchical models universally out-
performed simple models. For the GloVe embed-
dings there is no clear separation, however the dif-
ferences are rather small and if we averaged from
more experiment runs a distinction could appear.
The model that takes only the last turn into account
was last when compared with the same embed-
dings, however we expected a more pronounced
difference.

The next batch of experiments examines setup
of our ensembles as seen in the table 2. In these
experiments each row represent a single run of the
entire ensemble. The combined score is the score
of the ensemble after voting, in the parentheses we
see change in respect to the max and average of
the constituent models. Since the flawed reweigh-
ing does not seem to have a significant effect we
have decided to left these experiments in. The
experiment with asterisk, done after the submis-
sions were closed, was run with the rebalancing
fixed and while it shows second best improvement
it is hard to tell if this is just a noise or a real ef-
fect. The most significant finding of this batch is
that the stacked classifier performed rather poorly
compared to the summation. For the stacked clas-
sifier, in two cases out of three, the combined score
is actually worse than the best model in an ensem-
ble.

Lastly, we have taken a look at the effect of dif-
ferent class weights, which can be seen in table
3, where the first column signifies distribution re-
sulting from the given reweighing. We have ex-
perimented with ignoring others class due to the
way the evaluation is done. The effect of such re-
balancing is that all of the samples belonging to

the ’others’ class is classified as one of the other
classes, which causes extremely high recall. Since
the test set distribution is closer to the distribution
of the train set than to the balanced dataset, trying
to reweigh the data to obtain a balanced dataset2 is
worse than doing nothing. The best results are ob-
tained when the reweighed distribution is the same
as the test set, even though score is not averaged
over the ’others’ class.

Detailed summary of our best submission can
be seen in the table 4.

4 Conclusion

In this paper, we have presented our models and
experiments for emotion detection in conversa-
tional triples. We have also discussed results, var-
ious setups and model variants.

The bulk of our work was focused on simple vs.
hierarchical models. We observed that the hier-
archical model outperformed simple model. Ad-
ditionally, simple model with only the last turn
of conversation was only slightly worse than the
model with the entire context.

We managed to improve our results by using an
ensemble of multiple instances of the same model.
During our experiments summation method of re-
sult combination proved to be superior to using
stacked classifier. Interestingly, the stacked clas-
sifier could be perhaps a way to adapt model to
different class distribution.

Our efforts were hindered by insufficient
amount of memory on our GPU, thus we could not
include every feature we wanted into our model.
Perhaps, using GPU with more memory available,
we could achieve slightly better results.

The source code of our system is available at
GitHub 3.

Acknowledgements

This work was partially supported by the project
Development of research infrastructure STU,
project no. 003STU-2-3/2016 by the Ministry of
Education, Science, Research and Sport of the
Slovak Republic, Slovak Research and Develop-
ment Agency under the contract No. APVV-16-
0213 and APVV-16-0213 and by financial contri-
bution from the STU Grant scheme for Support of
Young Researchers.

2balanced 2 slightly supresses the others class
3https://github.com/michalfarkas/

nl-fiit_emocontext

275

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Roman Klinger, Orphee De Clercq, Saif Mohammad,
and Alexandra Balahur. 2018. Iest: Wassa-2018
implicit emotions shared task. In Proceedings of
the 9th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 31–42. Association for Computational Lin-
guistics.

Samuel Pecar, Michal Farkaš, Marian Simko, Peter
Lacko, and Maria Bielikova. 2018. Nl-fiit at iest-
2018: Emotion recognition utilizing neural networks
and multi-level preprocessing. In Proceedings of
the 9th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 217–223. Association for Computational Lin-
guistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518, Vancouver, Canada. Association for
Computational Linguistics.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Thirtieth AAAI
Conference on Artificial Intelligence.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

276

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 277–281
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NTUA-ISLab at SemEval-2019 Task 3: Determining emotions in
contextual conversations with deep learning

Rolandos Alexandros Potamias, Georgios Siolas
Intelligent Systems Laboratory,

National Technical University of Athens,
Zografou, Athens , Greece

rolpotamias@gmail.com , gsiolas@islab.ntua.gr

Abstract

Sentiment analysis (SA) in texts is a well-
studied Natural Language Processing task,
which in nowadays gains popularity due to
the explosion of social media, and the subse-
quent accumulation of huge amounts of related
data. However, capturing emotional states
and the sentiment polarity of written excerpts
requires knowledge on the events triggering
them. Towards this goal, we present a compu-
tational end-to-end context-aware SA method-
ology, which was competed in the context of
the SemEval-2019 / EmoContext task (Task 3).
The proposed system is founded on the com-
bination of two neural architectures, a deep
recurrent neural network, structured by an at-
tentive Bidirectional LSTM, and a deep dense
network (DNN). The system achieved 0.745
micro f1-score, and ranked 26/165 (top 20%)
teams among the official task submissions.

1 Introduction and Related Work

One of the most challenging fields of Natural Lan-
guage Processing (NLP) and Computational Lin-
guistics is Sentiment Analysis (SA) that aims to-
wards the automated extraction of a writer’s sen-
timent or emotion as conveyed in text excerpts
(Liu, 2015). Relevant efforts focus on tracking the
sentiment polarity of single utterances, which in
most of the cases is loaded with a lot of subjec-
tivity and a degree of vagueness (Thelwall et al.,
2010). Contemporary research in the field uti-
lizes data from social media resources (e.g., Face-
book, Twitter) as well as other short text refer-
ences. However, users of social media tend to vi-
olate common grammar and vocabulary rules and
even use various figurative language forms to com-
municate their message. In such situations, the
sentiment polarity underlying the literal content
of the conveyed concept may significantly differ
from its figurative context, making SA tasks even

more puzzling (Patra et al., 2016). Evidently, sin-
gle turn text lacks in detecting sentiment polar-
ity on sarcastic and ironic expressions (Potamias
et al., 2019), as already indicatd in the relevant
SemEval-2014 Task-9 Sentiment Analysis in Twit-
ter (Sara et al., 2014). As sentiment reflects the
emotion behind customer engagement, SA finds
its realization in automated customer aware ser-
vices (Kurniawati et al., 2013). A lot of research
has already been devoted on capturing the senti-
ment polarity of contextual conversations of vari-
ous utterances. Most of the relevant studies utilize
single turn texts from topic related sources (e.g.,
Twitter). Hand-crafted and sentiment-oriented
features, indicative of emotion polarity, are uti-
lized to represent respective excerpt cases. The
formed data were used as input to various tra-
ditional machine learning classifiers (e.g. SVM,
Random Forests etc.) or deep learning architec-
tures (e.g. recurrent neural networks, CNNs) in
order to induce analytical models that are able to
capture the underlying sentiment content of pas-
sages (Singh et al., 2018; Jianqiang et al., 2018;
Hangya and Farkas, 2017).

The work presented in this study considers the
recognition of the three fundamental emotions,
Happy, Sad and Angry, specified in the SemEval-
2019 / EmoContext task (Task 3), as a context
sensitive task. In order to capture emotional cate-
gories, we settled two-layered bidirectional LSTM
units that share weights over three embedded ut-
terances resembling a siamese like architecture
(Mueller and Thyagarajan, 2016). Pretrained word
embeddings were utilized, Standford GloVe (Pen-
nington et al., 2014), in order to represent sin-
gle turn text input, resulting into an attentive and
context-aware model. We also extended word
embeddings with appropriate handling of emojis,
utilizing the pretrained emoji2vec vectors (Eisner
et al., 2016), and sentiment lexicons, NCR and De-

277

pecheMood (Mohammad and Turney, 2013), re-
sulting into an enhanced representation of single
turn text cases. The overall complex presents a
combined neural architecture to serve SA tasks.

2 Experimental Setup: Data &
Preprocessing

The SemEval-2019 / EmoContext shared task
(Task 3) targets the emotion classification of user
utterances in three classes, namely Happy, Sad,
Angry and Other (Chatterjee et al., 2019). It pro-
vides a 33K training textual dialogue dataset in the
form of three contextual turns. The distribution
of data demands the elaboration of techniques that
are able to cope with class imbalances in order to
capture correctly the less frequent emotions, i.e.,
Happy, Sad and Angry (13%, 17%, 17% and 53%
for Happy, Sad, Angry and Other, respectively).
To handle imbalance among classes we applied a
penalty weight to the loss function, proportional to
the respective class frequencies.

Given that the provided data do not contain any
Twitter-specific informative sign, such as hashtags
and user mentions, we tried to keep the prepro-
cessing step as simple as possible. Thus, we re-
placed repeated emojis and punctuation with sin-
gle ones, and substituted slang abbreviations to
their full expression (e.g. “bcz” is substituted by
“because”).

3 System Overview

The proposed emotion analysis methodology is
composed by (i) the formulation of the suitable
representation schemes for the input data, and (ii)
the implementation of an elaborative deep neural
network architecture to map these schemes to their
associated labels and the appropriate neural layers.

3.1 Embedding Layer

Word Embeddings tend to become a necessary
component of deep learning approaches, with the
mapping of single dimensional words to their
dense vector encodings to be a critical part of the
job (Mikolov et al., 2013). Vector representations
are exhaustively trained on large corpora to cap-
ture the semantic content of each word. One of the
most utilized vector representation is offered by
Standford GloVe pretrained word vectors. How-
ever, GloVe vectors do not handle one of the most
important factors in sentiment analysis, the emo-
jis. To expand their capabilities, we append GloVe

embeddings with pretrained emoji2vec, as pro-
posed by Eisner et al. (2016). In addition, we uti-
lized 23 extra features to enhance our pretrained
word embeddings. Specifically, we elaborated
13 mood-oriented emotions, provided by the De-
pecheMood lexicon, as proposed by Staiano and
Guerini (2014), in order to capture words mood
intentions, as well as 10 NRC emotion relation
scores. The utility of emotion scores is manifested
in various studies (Mohammad and Turney, 2013;
Kiritchenko et al., 2014). The enhancement led
to a dense 323 dimensions vector representation
for each word (300d-GloVe + 13d-DepecheMood
emotions + 10d-NRC sentiment scores), which
after re-normalization fed a recurrent neural net-
work.

3.2 Bidirectional LSTMs and Siamese
Network Architecture

In the recent years, deep learning models and in
particular convolutional neural network (CNN) ar-
chitectures, have become a popular and a favor-
able choice for several artificial intelligence tasks.
However, the recurrent nature of textual data im-
plies the need for architectures that are able to cap-
ture data of sequential nature information, which
CNNs are unable to manage. To cope with the re-
current nature of textual data as well as with the
sentiment contradictions that may occur in both
text directions we utilize a bidirectional LSTM
network architecture. In particular, we used three
bidirectional LSTMs (Hochreiter and Schmidhu-
ber, 1997) in a siamese like architecture (Bromley
et al., 1994) in order to map all turns into the same
vector space (Figure 1). To determine the senti-
ment impact of the last utterance, given the previ-
ous two, we introduce bidirectional LSTM hidden
states, for each time-step and utterance. The hid-
den states are calculated using the same weights
for each input.

3.3 Attention layer

To focus on the most significant time-sample, an
attention layer (Bahdanau et al., 2014) is added on
top of the regular LSTMs in order to capture and
assign an importance attention factor to the hidden
states, forming the so-called attentive vector ~s:

rt = tanh(Whht + bt) (1)

at =
ert

∑T
j=0 e

rt
,

n∑

t=1

at = 1 (2)

278

Figure 1: Siamese alike architecture, containing two layers of bidirectional LSTMs.

~s =
T∑

t=0

atht (3)

where Wh and bt are the LSTM model weights, to
be optimized during training.

3.4 Dense network

To unfold and map the devised feature set we im-
plemented a four-layered deep dense neural net-
work, equiped with unigram and bigram Tf-idf
weights of each utterance. Each neuron is acti-
vated by a ReLu function, and the final layer is
concatenated with the attentive vector as defined
in sub-section 3.3.

3.5 Proposed method

As already mentioned, we utilize two different
and combined schemes to represent and train pro-
cessed data, (i) an embedded matrix that feeds
the Embeddings layer (as described in sub-section
3.1), and (ii) a uni/bi-gram Tf-idf training schema
to be processed by the a layered dense DNN. In
addition, the Embedding layer is connected with
a siamese like bidirectional LSTM architecture,
containing 164 units each. As shown in Figure
2, on top of the shared weighted LSTMs we add
another bidirectional LSTM layer, also containing
164 units. To boost LSTM performance, we apply
an attention mechanism on top of it, concluding to
an attentive vector, as described in sub-section 3.3.
We will refer to this subnetwork as S-LSTM, which
includes the siamese like layers extended with an
attentive mechanism. The Tf-idf features, as ex-
tracted for each conversation turn, are mapped
onto two-layered dense neural networks contain-
ing 84 neurons each, with a ReLu non-linear acti-
vation function. The output of these layers is then

concatenated and followed by another dense 84-
neuron layer, creating a vector ~d. We refer to this
dense sub-network as F-DNN. The output vectors,
~s and ~d, from the respective S-LSTM and F-DNN
sub-networks are then concatenated and feed a fi-
nal softmax activated dense network. The whole
setup presents a combination of different and het-
erogeneous deep learning models.

3.6 Training
To train our model we adopted several regulariza-
tion techniques to prevent overfitting. Therefore,
we applied Dropout (Srivastava et al., 2014) to
randomly deactivate neurons during forward train-
ing pass. We empirically set dropout parameters
to 0.3 for every model layer, as well as recurrent
connections of LSTM units (Gal and Ghahramani,
2016). In addition, we utilized L2 regularization
penalty loss function to every LSTM unit exceed-
ing weight limits. Finally, we apply early-stopping
technique to terminate training when loss on the
development phase stop decreasing. To optimize
our network we adopted Adam optimizer (Kingma
and Ba, 2014) using cross entropy loss.

4 Results

Our proposed system achieved a micro f1-score
(f1µ) of 0.743, ranked the 26th in the SemEval
2019 EmoContext task. Results are presented in
Table 1 and compared with different approaches.
EmoContext organisers proposed a baseline clas-
sifier (referred as Baseline) that exhibits a f1-score
of 0.587(Chatterjee et al., 2019). In Table 1, we
compare the proposed method with the S-LSTM
and F-DNN implementations, described in 3.4 and
3.5, respectively. Moreover, we present results
for the SS-BED system, proposed by Gupta et al.

279

Figure 2: Proposed Method. the left model (S-LSTM) is composed by two LSTM layers followed by an atten-
tive mechanism; the right model (F-DNN) is composed by two dense layers for each utterance followed by two
additional dense layers

(2017). Compared with the other approaches, the
proposed method exhibits a significantly higher
f1-score for the Happy and Angry classes, 0.71
and 0.75, respectively. SS-BED system achieves
a better performance for the Sad class (0.81) but
it exhibits a poor performance for the Happy class
(0.59).

To assess the importance of emoji embeddings
and of the introduced mood and emotion fea-
ture sets which appended GloVe embeddings (G),
we conducted additional experiments retaning the
same siamese neural architecture (S-LSTM). In
each experiment we extended GloVe embeddings
with a respective feature set, i.e., the emoji2vec
embeddings (E), the 13 DepecheMood (D) mood
intensions, and the 10 NRC emotion relations (N).
Compared to the S-LSTMG neural classifier, the
use of additional embedding sets improve slightly
the f1µ performance, with the utilization of the
emoji embeddings to achieve the highest increase
(S-LSTMG+E , from 0.67 to 0.70). But their yield
remains lower compared to the respective archi-
tecture where all embedding sets are utilised (S-
LSTMall, 0.72).

In summary, the results demonstrate the supe-
riority of the proposed method over all other ap-
proaches, and signifies its ability to succeed stable
results over the different sentiment classes.

5 Conclusion

In this study we implemented a combination of
two different representations and respective train-
ing schemes for the input data. First, we extended
pretrained GloVe embedding vectors with emojis

and appended 23 additional emotional features. In
addition, we developed an S-LSTM model, con-
taining a siamese alike bidirectional LSTM archi-
tecture with its output to feed another bidirectional
LSTM layer followed by an attention layer. Fur-
thermore, we transformed input data by their Tf-
idf weight representations in order to feed a dense
deep neural network (F-DNN).

System f1Happy f1Sad f1Angry f1µ
Baseline - - - 0.58
SS-BED 0.59 0.81 0.74 0.71
F-DNN 0.70 0.68 0.73 0.70
S-LSTMall 0.69 0.76 0.71 0.72
S-LSTMG 0.67 0.69 0.65 0.67
S-LSTMG+E 0.65 0.71 0.74 0.70
S-LSTMG+D 0.68 0.68 0.71 0.69
S-LSTMG+N 0.66 0.71 0.68 0.68
Proposed 0.71 0.77 0.75 0.74

Table 1: Comparison results: Proposed method vs.
other approaches (f1µ refer to the f1-micro metric)

All model features are appropriately mapped
and concatenated in order to feed the final dense
softmax layer. Comparative results demonstrate
the superiority of the proposed method over other
approaches and single network models, as well
as its robustness with regard the stability of per-
formance over different emotional classes. Thus
we could state that the proposed methodology de-
fines an end-to-end solution on sentiment analy-
sis and classification tasks, suited for imbalanced
data, with the ability as well, to cope with huge
amounts of data.

280

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1994. Signature ver-
ification using a” siamese” time delay neural net-
work. In Advances in neural information processing
systems, pages 737–744.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Viktor Hangya and Richárd Farkas. 2017. A compara-
tive empirical study on social media sentiment anal-
ysis over various genres and languages. Artificial
Intelligence Review, 47(4):485–505.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780.

Zhao Jianqiang, Gui Xiaolin, and Zhang Xuejun. 2018.
Deep convolution neural networks for twitter senti-
ment analysis. IEEE Access, 6:23253–23260.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and
Saif Mohammad. 2014. Nrc-canada-2014: Detect-
ing aspects and sentiment in customer reviews. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 437–
442.

Kurniawati Kurniawati, Graeme G Shanks, and Nar-
giza Bekmamedova. 2013. The business impact
of social media analytics. In ECIS, volume 13,
page 13.

Bing Liu. 2015. Sentiment analysis: Mining opinions,
sentiments, and emotions. Cambridge University
Press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif M Mohammad and Peter D Turney. 2013. Nrc
emotion lexicon. National Research Council,
Canada.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence simi-
larity. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, AAAI’16, pages
2786–2792. AAAI Press.

Braja Gopal Patra, Soumadeep Mazumdar, Dipankar
Das, Paolo Rosso, and Sivaji Bandyopadhyay. 2016.
A multilevel approach to sentiment analysis of figu-
rative language in twitter. In International Confer-
ence on Intelligent Text Processing and Computa-
tional Linguistics, pages 281–291. Springer.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global Vectors for Word
Representation. In EMNLP, volume 14, pages
1532–1543.

Rolandos Alexandros Potamias, Georgios Siolas, and
Andreas Stafylopatis. 2019. A robust deep ensem-
ble classifier for figurative language detection. In
20th International Conference on Engineering Ap-
plications of Neural Networks. Springer.

Rosenthal Sara, Ritter Alan, Nakov Preslav, and Stoy-
anov Veselin. 2014. Semeval-2014 task 9: Senti-
ment analysis in twitter. In Proc. of the 8th Inter-
national Workshop on Semantic Evaluation, pages
73–80.

Nikhil Kumar Singh, Deepak Singh Tomar, and
Arun Kumar Sangaiah. 2018. Sentiment analysis:
a review and comparative analysis over social me-
dia. Journal of Ambient Intelligence and Humanized
Computing, pages 1–21.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Jacopo Staiano and Marco Guerini. 2014. De-
pechemood: a lexicon for emotion analysis
from crowd-annotated news. arXiv preprint
arXiv:1405.1605.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment strength
detection in short informal text. Journal of the
American Society for Information Science and Tech-
nology, 61(12):2544–2558.

281

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 282–286
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ntuer at SemEval-2019 Task 3: Emotion Classification with Word and
Sentence Representations in RCNN

Peixiang Zhong, Chunyan Miao
Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly

Nanyang Technological University Singapore
peixiang001@e.ntu.edu.sg, ascymiao@ntu.edu.sg

Abstract

In this paper we present our model on the
task of emotion detection in textual conver-
sations in SemEval-2019. Our model ex-
tends the Recurrent Convolutional Neural Net-
work (RCNN) by using external fine-tuned
word representations and DeepMoji sentence
representations. We also explored several
other competitive pre-trained word and sen-
tence representations including ELMo, BERT
and InferSent but found inferior performance.
In addition, we conducted extensive sensitiv-
ity analysis, which empirically shows that our
model is relatively robust to hyper-parameters.
Our model requires no handcrafted features
or emotion lexicons but achieved good perfor-
mance with a micro-F1 score of 0.7463.

1 Introduction

Emotions are psychological and physiological
states generated in humans in reaction to inter-
nal or external events. Messages in human con-
versations inherently convey emotions. With the
rise of social media platforms such as Twitter, as
well as chatbots such as Amazon Alexa, there is an
emerging need for machines to understand human
emotions in conversations, which has a wide range
of applications such as opinion analysis in cus-
tomer support (Devillers et al., 2002) and provid-
ing emotion-aware responses (Zhong et al., 2019).
SemEval-2019 Task 3: EmoContext (Chatterjee
et al., 2019b) is designed to promote research in
this task.

This task is to detect emotions in textual conver-
sations. Each conversation is composed of three
turns of utterances and the objective is to detect
the emotion of the last utterance given the first
two utterances as the context. The emotions in
this classification task include happy, sad, angry
and others, adapted from the well-known Ekman’s
six basic emotions: anger, disgust, fear, happiness,

sadness, and surprise (Ekman, 1992). The evalu-
ation criteria is micro-averaged F1 score since the
data is extremely unbalanced, as shown in Table 1.

In recent years, pre-trained word and sentence
representations achieved very competitive per-
formance in many NLP tasks, e.g., fine-tuned
word embeddings using distant training (Cliche,
2017) and tweet sentence representations Deep-
Moji (Felbo et al., 2017) on sentiment analysis,
and contextualized word representations BERT
(Devlin et al., 2018) on 11 NLP tasks. Motivated
by these successes, in this task we explored differ-
ent word and sentence representations. We then
fed these representations into a Recurrent Con-
volutional Neural Network (RCNN) (Lai et al.,
2015) for classification. RCNN includes a Long
short-term memory (LSTM) network (Hochreiter
and Schmidhuber, 1997) to capture word order-
ing information and a max-pooling layer (Scherer
et al., 2010) to learn discriminative features. We
also experimented LSTM and CNN in our pre-
liminary analysis but achieved worse performance
as compared to RCNN. Our final system adopted
fine-tuned word embeddings and DeepMoji as our
choices of word and sentence representations, re-
spectively, due to their superior performance on
the validation dataset. The code is publicly avail-
able at Github1.

2 Related Work

Emotion detection in textual conversations is an
under-explored research task. The majority of ex-
isting works focused on the multi-modality set-
tings (Devillers et al., 2002; Hazarika et al., 2018;
Majumder et al., 2019). Chatterjee et al. (2019a) is
one of the early works on the textual modality that
first collected the dataset used in this task and then

1https://github.com/zhongpeixiang/SemEval2019-Task3-
EmotionDetection

282

Dataset Split Size #Happy #Sad #Angry #Others Average Utterance Length
Train 30160 4243 5463 5506 14948 5.22
Val 2755 142 125 150 2338 5.05
Test 5509 284 250 298 4677 5.05

Table 1: Total number of conversations and their distributions over each emotion class for each dataset split.
Average number of tokens per utterance for each dataset split are also reported.

proposed an LSTM model with both semantic and
sentiment embeddings to classify emotions. This
task is also closely related to sentiment analysis
(Pang et al., 2008) where the opinions of a piece
of text is to be identified. One major difference be-
tween them is that this task detects emotions only
on the last portion of a piece of text and the rest is
treated as context.

Our model leverages pre-trained word and sen-
tence representations. There is a research trend
on word and sentence embeddings after the in-
vention of Word2Vec (Mikolov et al., 2013).
Cliche (2017) fine-tuned word embeddings us-
ing CNN-based sentiment classification model and
distant training (Go et al., 2009). Peters et al.
(2018) proposed a contextualized word embed-
ding named ELMo to incorporate context informa-
tion and solve the polysemy issues in conventional
word embeddings. Devlin et al. (2018) proposed
another contextualized word embedding named
BERT by extending the context to both directions
and training on the masked language modelling
task. Kiros et al. (2015) proposed a sentence-level
representation named SkipThought, which shares
similar ideas to Word2Vec but operates on sen-
tence level. Conneau et al. (2017) proposed In-
ferSent by learning sentence representations on
natural language inference tasks. Felbo et al.
(2017) proposed DeepMoji by learning tweet sen-
tence representations in the emoji classification
task using 1246 million tweets and distant train-
ing.

Our RCNN model is closely related to neural
network based sentiment analysis models. Two of
the most popular models are LSTMs and CNNs.
LSTM-based models can capture the word or-
dering information and have achieved the state-
of-the-art performance on many sentiment anal-
ysis datasets (Gray et al., 2017; Liu et al., 2018;
Howard and Ruder, 2018). CNN-based mod-
els can capture local dependencies, discriminative
features, and are parallelizable for efficient com-
putation (Kim, 2014; Johnson and Zhang, 2017).

3 System Description

In this section we describe our data preprocess-
ing procedures and illustrate how we leverage pre-
trained word and sentence representations in our
RCNN model. The overall architecture is depicted
in Figure 1.

3.1 Data Preprocessing

We concatenated three utterances as one sentence,
separated by EOS tokens. We used the tokenizer
from Spacy2 for tokenization. We removed train-
ing sentences that have more than 75 tokens. We
removed duplicate punctuations and spaces. We
kept all remaining tokens in the training dataset as
the vocabulary.

3.2 Pre-trained Word Representation

We fine-tuned the word embeddings obtained from
(Baziotis et al., 2017), which has an embedding
size of 100 and is pre-trained on 330M English
Twitter messages using Glove (Pennington et al.,
2014). The fine-tuning is conducted on the bi-
nary sentiment classification task using the basic
CNN model (Kim, 2014) on 1.6 million tweets
(Go et al., 2009). These tweets are labelled with
positive and negative sentiments. Fine-tuning on
these tweets introduces sentiment-discriminative
features to word embeddings (Cliche, 2017). The
CNN model has kernel sizes of 1, 2, and 3. Each
kernel size has 300 filters. During fine-tuning, the
embedding layer is first frozen for one epoch and
then unfrozen for another three epochs.

3.3 Pre-trained Sentence Representation

We adopted DeepMoji (Felbo et al., 2017) as the
sentence representations in our model. Each sen-
tence will be encoded into a vector of size 2304.
DeepMoji is trained on the 64-class emoji clas-
sification task using 1246 million tweets. Since
emoji reflects emotions and sentiments, Deep-
Moji is an ideal model to provide emotion-
discriminative sentence representations. We also

2https://spacy.io/

283

Concatenated Utterances

BiLSTM Encoder

Word Representations W1 W2 W3 Wn-1 Wn...

h1
b h2

b h3
b hn-1

b hn
b...

h1
f h2

f h3
f hn-1

f hn
f...

W1 W2 W3 Wn-1 Wn...

W2 W3 Wn-1 Wn

Max-PoolingMax-Pooling Layer

Word Representations

SoftmaxSoftmax Layer

Sentence Representations

W1

Linear Transformation Layer

Concatenation

Figure 1: Overall architecture of our proposed model.

explored InferSent (Conneau et al., 2017), another
sentence representation model with competitive
performance on sentence classification and infor-
mation retrieval tasks (Perone et al., 2018).

3.4 RCNN

As shown in Figure 1, we fed word and sen-
tence representations into a RCNN model. The
RCNN model mainly comprises of a two-layer Bi-
directional LSTM (BiLSTM), a linear transforma-
tion layer and a max-pooling layer. At the em-
bedding layer, each sentence is transformed to a
sequence of word embeddings Wi of size 100 us-
ing our pre-trained word representations, where
i = 1, 2, ..., n, and n is the number of tokens
in the concatenated utterance. The BiLSTM en-
codes these word embeddings into hidden states
hf

i , hb
i in both forward and backward directions,

respectively, where each direction has a hidden
size of 200. The hidden states in both directions
are concatenated together, along with the word
representations Wi to form a vector of size 500.
A linear transformation is then applied to project
the resulted vector into a vector of size 200, fol-
lowed by a max-pooling layer to extract discrim-
inative sentence features. Finally, the DeepMoji
sentence representation is concatenated with the
pooled vector to form a final sentence represen-
tation of size 2504, followed by a softmax layer
for classification.

3.5 Training

We train our model on the training dataset and
fine-tune on the validation dataset based on the
micro-F1 score. Since the dataset is highly unbal-
anced, we use weighted cross-entropy loss for op-
timization, where the weights are the ratio of vali-
dation dataset label distribution to training dataset
label distribution, followed by a normalization to
ensure that the sum of weights is 1. We use Adam
(Kingma and Ba, 2014) optimizer with a learning
rate of 0.0005 and batch size of 64. We clip the
norm of gradients to 5. We trained our model 6
epochs. The learning rate is annealed by a factor
of 0.2 every epoch after epoch 5. We also freeze
the embedding for the first two epochs. We use
dropout rate of 0.5 in BiLSTM and 0.7 in linear
layers. The model is implemented in PyTorch.

4 Result Analysis

In this section we explored different word and sen-
tence representations and compared their perfor-
mance on the test set. We also conducted sen-
sitivity analysis for our model hyper-parameters.
All results are averaged across 5 different seeds.
It is worth noting that the settings with the best
test scores in the analysis below are not exactly
the same as our best system on the leaderboard
since our best system is fine-tuned on the valida-
tion dataset, which do not guarantee to produce the
best test results.

284

100 200 300 400 500

hidden size

0.66

0.68

0.70

0.72

0.74

m
ic

ro
F

1

1.0 1.5 2.0 2.5 3.0 3.5 4.0

number of layers

0.66

0.68

0.70

0.72

0.74

m
ic

ro
F

1

50 100 150 200 250

batch size

0.66

0.68

0.70

0.72

0.74

m
ic

ro
F

1

0.000 0.002 0.004 0.006 0.008 0.010

learning rate

0.66

0.68

0.70

0.72

0.74

m
ic

ro
F

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

dropout in BiLSTM

0.66

0.68

0.70

0.72

0.74

m
ic

ro
F

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

dropout in linear layers

0.66

0.68

0.70

0.72

0.74

m
ic

ro
F

1

Figure 2: Sensitivity analysis on model hyper-parameters.

Word Representation micro-F1
Original Glove 0.7250

Pre-trained Glove 0.7279
Fine-tuned Glove 0.7339

ELMo 0.6990
BERT 0.6656

Table 2: Micro-F1 score on the test set using different
word representations.

Sentence Representation micro-F1
None 0.7194

InferSent (GloVe) 0.7259
InferSent (fastText) 0.7277

DeepMoji 0.7299
DeepMoji + InferSent (GloVe) 0.7298

DeepMoji + InferSent (fastText) 0.7344

Table 3: Micro-F1 score on the test set using different
sentence representations.

We explored the original GloVe embedding
trained on 27B tweet tokens3, pre-trained GloVe
embedding4, our fine-tuned GloVe embedding,
ELMo embedding and BERT embedding. The re-
sults are shown in Table 2. Fine-tuned GloVe em-
bedding performs noticeably better than the orig-
inal GloVe embedding and the pre-trained GloVe
embedding. Surprisingly, contextualized embed-
dings such as ELMo and BERT perform worse
than the original GloVe embedding. Possible rea-
sons for their inferior performance are 1) they are
fixed during training, which may hinder the overall
optimization. 2) they have large embedding size,
which can easily cause overfitting.

We explored no sentence embedding, InferSent
trained on GloVe, InferSent trained on fastText,
and DeepMoji. The results are shown in Table

3https://nlp.stanford.edu/projects/glove/
4https://github.com/cbaziotis/datastories-semeval2017-

task4

3. It is clear that sentence representations im-
proved model performance significantly. In partic-
ular, DeepMoji achieves the best performance for
single sentence representation. InferSent trained
on fastText consistently performs better than In-
ferSent trained on GloVe. In addition, concatenat-
ing two sentence representations together further
improved model performance.

We conducted sensitivity analysis on our model
hyper-parameters: hidden size, number of layers
in BiLSTM, batch size, learning rate, dropout in
BiLSTM and dropout in linear layers. The results
are depicted in Figure 2. Our model is relatively
robust to hyper-parameters except for the learn-
ing rate. When learning rate is around 0.0001 or
smaller, the model is unable to be trained effec-
tively.

5 Conclusion

In this paper we presented our model on the task
of emotion detection in textual conversations in
SemEval-2019. We explored different word and
sentence representations in the RCNN model and
achieved competitive results. Our result analy-
sis indicate that both pre-trained word and sen-
tence representations help improve the perfor-
mance of RCNN. However, currently popular con-
textualized word representations such as ELMo
and BERT produced inferior results.

Acknowledgement

This research is supported, in part, by the Na-
tional Research Foundation, Prime Minister’s Of-
fice, Singapore under its IDM Futures Funding
Initiative and the Singapore Ministry of Health
under its National Innovation Challenge on Ac-
tive and Confident Ageing (NIC Project No.
MOH/NIC/HAIG03/2017).

285

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In SemEval-2017,
pages 747–754, Vancouver, Canada.

Ankush Chatterjee, Umang Gupta, Manoj Kumar
Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In SemEval-2019, Minneapolis, Minnesota.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task
4: Twitter sentiment analysis with cnns and lstms.
arXiv preprint arXiv:1704.06125.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In EMNLP, pages
670–680, Copenhagen, Denmark.

Laurence Devillers, Ioana Vasilescu, and Lori Lamel.
2002. Annotation and detection of emotion in a
task-oriented human-human dialog corpus. In pro-
ceedings of ISLE Workshop.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In EMNLP, pages 1615–1625.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Scott Gray, Alec Radford, and Diederik P Kingma.
2017. Gpu kernels for block-sparse weights. Tech-
nical report, Technical report, OpenAI.

Devamanyu Hazarika, Soujanya Poria, Amir Zadeh,
Erik Cambria, Louis-Philippe Morency, and Roger
Zimmermann. 2018. Conversational memory net-
work for emotion recognition in dyadic dialogue
videos. In NAACL, volume 1, pages 2122–2132.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
ACL, volume 1, pages 328–339.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In ACL, volume 1, pages 562–570.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–
1751.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
NIPS, pages 3294–3302.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In AAAI, volume 333, pages 2267–
2273.

Fei Liu, Trevor Cohn, and Timothy Baldwin. 2018. Re-
current entity networks with delayed memory up-
date for targeted aspect-based sentiment analysis. In
NAACL, volume 2, pages 278–283.

Navonil Majumder, Soujanya Poria, Devamanyu Haz-
arika, Rada Mihalcea, Alexander Gelbukh, and Erik
Cambria. 2019. Dialoguernn: An attentive rnn for
emotion detection in conversations. In AAAI.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS, pages 3111–3119.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and
sentiment analysis. Foundations and Trends R© in In-
formation Retrieval, 2(1–2):1–135.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, pages 1532–1543.

Christian S Perone, Roberto Silveira, and Thomas S
Paula. 2018. Evaluation of sentence embeddings
in downstream and linguistic probing tasks. arXiv
preprint arXiv:1806.06259.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL, volume 1, pages 2227–2237.

Dominik Scherer, Andreas Müller, and Sven Behnke.
2010. Evaluation of pooling operations in con-
volutional architectures for object recognition. In
ICANN, pages 92–101. Springer.

Peixiang Zhong, Di Wang, and Chunyan Miao. 2019.
An affect-rich neural conversational model with bi-
ased attention and weighted cross-entropy loss. In
AAAI.

286

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 287–291
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

PKUSE at SemEval-2019 Task 3: Emotion Detection with
Emotion-Oriented Neural Attention Network

Luyao Ma1,2∗, Long Zhang1,2∗, Wei Ye1, Wenhui Hu1

1National Engineering Research Center for Software Engineering, Peking University
2School of Software and Microeconomics, Peking University

{maluyao, zhanglong418, wye, huwenhui}@pku.edu.cn

Abstract

This paper presents the system in SemEval-
2019 Task 3, “EmoContext: Contextual Emo-
tion Detection in Text”. We propose a
deep learning architecture with bidirectional
LSTM networks, augmented with an emotion-
oriented attention network that is capable of
extracting emotion information from an ut-
terance. Experimental results show that our
model outperforms its variants and the base-
line. Overall, this system has achieved 75.57%
for the microaveraged F1 score.

1 Introduction

With the rapid development of social media plat-
forms like Twitter, a huge number of textual dia-
logues has increasingly emerged. It is a challenge
for chat bots to generate responses based on user
emotions which can avoid inappropriate conversa-
tions. Emotion detection in text (Chatterjee et al.,
2019) is a research area within Natural Language
Processing which is aim to detect the emotion of
user expressed in text.

Many techniques have been proposed, Wang
et al.,Hasan et al.,Liew and Turtle used feature en-
gineering to extract features manually. In this area,
deep learning-based approches have performed
well in recent years. Some methods (Wöllmer
et al., 2010; Metallinou et al., 2012; Poria et al.,
2017; Chernykh et al., 2017) used recurrent neu-
ral network to model the sequence of utterances
for emotion detection. However, those models did
not highlight the emotion-related parts. We use at-
tention mechanism to locate the parts expressing
emotions in the utterance.

The Task3 in Semeval-2019 is to detect contex-
tual emotions in text. For this task, we propose a
deep learning approach which is a combination of

∗∗These authors have contributed equally to this work.

Long Short-Term Memory network and attention
mechanism.

The rest of the paper is organized as follows:
Section 2 provides system overview. Section 3 de-
scribes our approach in detail. Our experiment is
discussed in Section 4. We conclude our work in
Section 5.

2 System Overview

2.1 Text Preprocessing and Word Embedding

We use word embeddings as input to the model.
Word embeddings are distributed vector presenta-
tions of words (Mikolov et al., 2013), capturing
their syntactic and semantic information. A good
word embedding can get a better classification per-
formance. After comparison, we find that the ef-
fect of the GloVe (Pennington et al., 2014) is the
best, but when we turn the word into a word vec-
tor, we find a lot of cases that are out of vocabu-
lary(oov). In view of that, we preprocess the data
as follows:

• The emoji used in the chat can better express
human emotions, so we turn them into corre-
sponding emotion words and add them to the
sentence, which not only solves the oov, but
also increases the emotion information in the
sentence

• Several emoticons are replaced by the tokens
“happy”, “sad”, “angry”

• All words are lowercased

2.2 Long Short-Term Memory

LSTM is a special form of threshold RNN
(Hochreiter and Schmidhuber, 1997), which is de-
signed to deal with sequential data by sharing its
internal weights across the sequence. Different
from the structure of RNN, LSTM has three gates:

287

an input gate it, a forget gate ft, an output gate
ot and a memory cell ct. Their effect is to allow
the network to store and retrieve information over
long periods of time.

In our approach, we use the bidirectional LSTM
model to better capture the contextual informa-
tion in sentences. Schuster and Paliwal shows that
the bidirectional structure has better performance
in classification experiments. In order to better
handle the relations among the utterances of a di-
alogue, we use the bc-LSTM architecture(Poria
et al., 2017) to process the dialogue-level classi-
fication. The architecture preserves the sequential
order of utterances when constructing the dialogue
representation.

2.3 Attention Mechanism

The attention mechanism was originally applied
to image recognition (Itti and Koch, 2001; Mnih
et al., 2014), mimicking the focus of the eye mov-
ing on different objects when the person viewed
the image. Similarly, when people read an article,
their attention to each part of the text is different.
The attention mechanism imitates human behav-
ior, giving each feature different weights. With
the weight of a feature being greater, the contribu-
tion of this to current recognition becomes greater.
Neural networks with attention mechanism have
been applied in many tasks of NLP, including ma-
chine translation (Bahdanau et al., 2014; Luong
et al., 2015) text summarization (Rush et al., 2015)
text classification (Yang et al., 2016) sentiment
classification (Chen et al., 2016) and stance classi-
fication (Du et al., 2017).

When learning the representations of text se-
quences, word embeddings are the most effective
intermediate representations for capturing seman-
tic information. We embed the classification label
and word into the same semantic space, and then
construct the semantic relatedness of them accord-
ing to the similarity of word embeddings. Our
model obtains the attention weights of the words
through the emotion-oriented attention network,
which highlights the emotion words, thus improv-
ing the performance of the emotion classification.

3 Model Description

Our model has two steps as follows: 1. Extract the
features of each utterance in the dialogue 2. Con-
struct the representation of the dialogue by the fea-
tures of three utterances for emotion classification.

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀𝐿𝑆𝑇𝑀

Feature extractor

Utterance 1 Utterance2 Utterance3

LSTM

Full-Connected

Softmax for classification

Figure 1: Architecture for emotion classification.

In the feature extraction step: the embedding of
each utterance is fed into the BiLSTM layer to
construct the word representation of each word;
meanwhile we obtain the attention weight of the
corresponding word by the emotion-oriented at-
tention network. We use the inner product of them
to represent the word, and then feed it into the BiL-
STM layer. Finally, we get the representation of
each utterance after the pooling operation(Fig. 2).

In the classification step: the features of the
three utterances obtained from the previous step
are fed into the LSTM layer as timing information
for emotion classification(Fig. 1).

3.1 Embedding Layer

An input sequence X of length T is composed of
word tokens: X = {x1, ..., xT }. Each token xt is
replaced with the corresponding vocabulary index
V (t). The embedding layer transforms the token
into vector et ∈ Rd which is selected from the em-
bedding matrix E according to the index, where d
is the dimensionality of the embedding space.

In order to highlight the emotion words in the
sequence, we append the word embedding vector
of “emotion” to the embedding of each word in
original text. The emotion-augmented embedding
of a word t is the concatenation of the embedding
vector et and the emotion representation ez ,

ezt = et‖ez (1)

where ‖ denotes the concatenation operation,
and then the dimention of ezt is 2d.

288

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 …𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 …𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

…

…

…

…

Inner Product

Emotion-Oriented Attention
Embedding

Linear

Softmax

…𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑐𝑎𝑡

…𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑐𝑎𝑡 𝐶𝑜𝑛𝑐𝑎𝑡

Embedding

BiLSTM

BiLSTM

PoolFeature extracor

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 …𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀 …𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

…

Figure 2: Feature extractor of an utterance with emotion-oriented attention network.

3.2 BiLSTM Layer

The LSTM reads the sequence X only in one di-
rection. We use a bidirectional LSTM to get an-
notations of words by summarizing the contextual
information from both directions. A bidirectional
LSTM consists of a forward LSTM

−→
f that reads

the sentence from x1 to xT and a backward LSTM←−
f that reads the sentence from xT to x1. We ob-
tain the annotation ht for each word xt, by con-
catenating the forward hidden state

−→
h t and the

backward one
←−
h t,

ht =
−→
h t‖
←−
h t (2)

3.3 Emotion-Oriented Attention Network

In the task, the emotion words in the conversa-
tion are vital for classification, which cannot be
captured by the BiLSTM. In order to highlight
the emotion-related words in the utterance, we de-
sign an attention mechanism which increases the
weight of the important words on the basis of the
BiLSTM and contributes more to the classification
decision.

We apply a linear layer to convert the emotion-
augmented embedding of a word ezt to a scalar
value ut, and then get a normalized importance
weight αt through a softmax function. This weight
is producted with the word representation ht to get
a weighted word representation vt for each word.

ut =Wue
z
t + bu (3)

αt =
eut

∑T
i=1 e

ui
(4)

vt = αtht (5)

3.4 Pooling Layer

From the idea of network in network, we use
global maxpooling, global averagepooling and last
tensor for the matrix f output of the BiLSTM
layer. Maxpooling can get the most important fea-
tures of all features (Scherer et al., 2010). Aver-
agepooling can get the most common features of
all features. The last tensor output l of the matrix
f can obtain the semantic information of the sen-
tence in forward and backward through BiLSTM.

The utterance representation z is obtained by
the concatenation of the max vector m, the aver-
age vector a and the last vector l.

z = m||a||l (6)

3.5 Emotion Classification

We use the three utterance representations ob-
tained by feature extractor shown in Figure 2 to
construct the dialogue representation. The three
utterance representations [z1, z2, z3] are fed into
the LSTM, and the last time-step hidden state h3
of the LSTM is regarded as the dialogue repre-
sentation r. We pass it to a fully-connected net-
work with a softmax activation function. This

289

layer obtains a normalized four-dimensional vec-
tor through the nonlinear transformation function
of the input vector.

p = softmax(Wfh3 + bf) (7)

whereWf and bf are the weights and bias terms
of the fullly-connected layer.

4 Evaluation

4.1 Data
The datasets are provided by Semeval-2019 Task
3. Table 1 gives an overview of the datasets. All
the conversations are collected from twitter. The
conversations consist of user 1’s tweet, user 2’s re-
sponse to the tweet and user 1’s response to user2.
The label is the emotion of the third turn that hu-
man judges mark after considering the context of
three rounds of dialogue.

Dataset Happy Sad Angry Others Total
Training 4243 5463 5506 14948 30160
Validation 425 547 551 1495 3018
Test 284 250 298 4677 5509

Table 1: Datasets for Semeval-2019 Task 3.

4.2 Experiments
The model is implemented using Keras 2.0 (Chol-
let et al., 2017). We experiment with Stanford’s
GloVe 300 dimensional word embeddings trained
on 840 billion words from Common Crawl. Our
model is trained with Adam Optimizer (Kingma
and Ba, 2014) with initial learning rate of 0.001
and batch size of 64. We use BiLSTMs with hid-
den state size 256, with dropout rate 0.5 on the first
BiLSTM layer and dropout rate 0.3 on the second
one to prevent our neural network from overfitting
(Srivastava et al., 2014).

In our task, the size of samples for each class is
not balanced, which will result in the model tend-
ing to be biased toward the majority class with
poor accuracy for the minority class. For this, we
adjust the parameter ‘class weight’ to weight the
loss function of each class during training. This
can be useful to tell the model to “pay more atten-
tion” to samples from an under-represented class.
In this case, we set the parameter ‘class weight’
(Happy : 2, Sad : 1, Angry : 1, Others : 4)

4.3 Result and Analysis
In order to evaluate the effect of the emotion-
oriented attention network and the balanced class

weights, we compare our approach with its vari-
ants and the baseline.
Variant1: The variant does not adjust the param-
eter ‘class weight’.
Variant2: The variant changes the emotion-
oriented attention network with the attention
machanism used in (Yang et al., 2016)
Variant3: The variant removes the emotion-
oriented attention network from the model.

model Happy Sad Angry MicroF1
Baseline 0.5461 0.6149 0.5945 0.5861
Variant1 0.7082 0.7574 0.7175 0.7264
Variant2 0.6967 0.7683 0.7375 0.7330
Variant3 0.7051 0.8113 0.7182 0.7423
Our Model 0.7138 0.8088 0.7500 0.7557

Table 2: Performance of our system and its variants.

Table 2 shows that our model outperforms the
other variants which are all above the baseline
0.5861 for the micro-averaged F1 score. Variant3
has the best performance on ‘Sad’ class and our
model has the best performance on two classes and
micro-averaged F1 score.

To validate that our model has the ability to cap-
ture the emotion-related parts of an utterance, we
visualize the weights of attention for the following
three dialogues. Figure 3 shows that the emotion
words are highlighted in the dialogues, such as
‘Haha’, ‘funny’, ‘cool’, ‘like’, ‘hate’, ‘felt’, ‘bad’,
‘SORRY’, but the model also highlights some triv-
ial words, such as ‘Give’.

haha haha what‘s so funny 😄 give me your number Happy

You dont have cool features i don't like you I hate you Angry

Did you felt bad yeah me too :(I'm sorry Sad

Figure 3: Visualization of attention of examples.

5 Conclusion

In this paper, we proposed an emotion-oriented
neural attention network for Semeval-2019 Task
3. The network use the attention mechanism to
select the emotion-related parts in the utterances.
The classification performance of our model is
better than its variants and the baseline. Mean-
while, the visualization shows that the model has
captured more decision-making information in the
dialogue.

290

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin,
and Zhiyuan Liu. 2016. Neural sentiment classifi-
cation with user and product attention. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1650–1659.

Vladimir Chernykh, Grigoriy Sterling, and Pavel Pri-
hodko. 2017. Emotion recognition from speech
with recurrent neural networks. arXiv preprint
arXiv:1701.08071.

François Chollet et al. 2017. Keras https://github.
com/fchollet/keras.

Jiachen Du, Ruifeng Xu, Yulan He, and Lin Gui. 2017.
Stance classification with target-specific neural at-
tention networks. International Joint Conferences
on Artificial Intelligence.

Maryam Hasan, Emmanuel Agu, and Elke Runden-
steiner. 2014. Using hashtags as labels for super-
vised learning of emotions in twitter messages. In
ACM SIGKDD Workshop on Health Informatics,
New York, USA.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Laurent Itti and Christof Koch. 2001. Computational
modelling of visual attention. Nature reviews neu-
roscience, 2(3):194.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jasy Suet Yan Liew and Howard R Turtle. 2016. Ex-
ploring fine-grained emotion detection in tweets. In
Proceedings of the NAACL Student Research Work-
shop, pages 73–80.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421.

Angeliki Metallinou, Martin Wollmer, Athanasios
Katsamanis, Florian Eyben, Bjorn Schuller, and
Shrikanth Narayanan. 2012. Context-sensitive
learning for enhanced audiovisual emotion classifi-
cation. IEEE Transactions on Affective Computing,
3(2):184–198.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al.
2014. Recurrent models of visual attention. In
Advances in neural information processing systems,
pages 2204–2212.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Majumder, Amir Zadeh, and Louis-Philippe
Morency. 2017. Context-dependent sentiment anal-
ysis in user-generated videos. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 873–883.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685.

Dominik Scherer, Andreas Müller, and Sven Behnke.
2010. Evaluation of pooling operations in convo-
lutional architectures for object recognition. In In-
ternational conference on artificial neural networks,
pages 92–101. Springer.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2012. Harnessing twitter” big
data” for automatic emotion identification. In 2012
International Conference on Privacy, Security, Risk
and Trust and 2012 International Confernece on So-
cial Computing, pages 587–592. IEEE.

Martin Wöllmer, Angeliki Metallinou, Florian Eyben,
Björn Schuller, and Shrikanth Narayanan. 2010.
Context-sensitive multimodal emotion recognition
from speech and facial expression using bidirec-
tional lstm modeling. In Proc. INTERSPEECH
2010, Makuhari, Japan, pages 2362–2365.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

291

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 292–296
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Podlab at SemEval-2019 Task 3: The Importance of Being Shallow

Andrew Nguyen1,2, Tobin South1,2, Nigel G. Bean1,2, Jonathan Tuke1,2 and Lewis Mitchell1,2,3
1ARC Centre of Excellence in Mathematical and Statistical Frontiers

2School of Mathematical Sciences, The University of Adelaide
3Stream Leader, Data to Decisions CRC

Abstract

This paper describes our linear SVM system
for emotion classification from conversational
dialogue, entered in SemEval2019 Task 3. We
used off-the-shelf tools coupled with feature
engineering and parameter tuning to create
a simple, interpretable, yet high-performing,
classification model. Our system achieves a
micro F1 score of 0.7357, which is 92% of the
top score for the competition, demonstrating
that “shallow” classification approaches can
perform well when coupled with detailed fea-
ture selection and statistical analysis.

1 Introduction

Sentiment analysis from textual data is a well-
studied topic, however the particular problem of
inferring the emotional context of text-based con-
versations is relatively little-studied. With the in-
creasing abundance of conversational text-based
datasets, particularly from social media, there is
increasing interest in studying such datasets across
a wide range of domains, from unsolicited opinion
polling (Cody et al., 2015) to mental health mon-
itoring (Miner et al., 2016). Highly sophisticated
systems for emotion detection on conversational
data exist (Gupta et al., 2017), however these may
not be appropriate for researchers in other fields,
and it is desirable to develop interpretable mod-
els where the informative features can be readily
interpreted and measures of confidence can be as-
signed to individual predictions.

Our aim in entering SemEval2019 therefore
was to build a high-performing model using only
off-the-shelf tools and some feature engineering,
without resorting to deep neural network archi-
tectures or overly sophisticated approaches. This
model only uses linear Support Vector Machines
(SVMs) (Hastie et al., 2009) and feature engineer-
ing using the Natural Language Toolkit (NLTK)

(Bird et al., 2009). These relatively “shallow” (as
opposed to “deep”) approaches to classification
from text have been used, for example, in event
prediction from social media data (Tuke et al.,
2018). Despite its simplicity, our system per-
formed very well, achieving a maximum score in
the top 22% of all submissions.

2 Task

The task for Semeval 2019 Task 3 is classify-
ing the correct emotion (happy, angry, sad
or others) on a 3-turn text communication di-
alogue (Chatterjee et al., 2019). Table 1 shows an
example conversation.

Turn 1 You are funny
Turn 2 LOL I know that :p
Turn 3 =)
Label Happy

Table 1: A example of the 3-turn text dialogue.

The Training dataset contained 5 columns:

• ID: a unique number to identify each training
sample;

• Turn 1: the first turn in the 3-turn conversa-
tion, written by User A;

• Turn 2: a reply to Turn 1 by User B;

• Turn 3: reply to Turn 2, written again by
User A;

• Label: the human-judged label of emotion
of Turn 3 based on the conversation for the
given training sample. It is always one of
the four labels: happy, sad, angry and
others.

The organisers provided three datasets:

292

• Training contains 30,160 examples with
the correct labels and approximately 50%
others;

• Dev contains 2,755 examples with correct la-
bels (approximately 88% others);

• Test contains 5,509 examples without la-
bels, but participants are told that the split is
approximately the same as the Dev set, i.e.,
≈88% others.

This last piece of information given by the or-
ganisers regarding the balance of the Test set
will be critial to our system described below, as we
will employ a post hoc class balancing technique
to match these proportions.

Evaluation is performed using the micro-
averaged F1 score for the three emotion classes i.e.
happy, sad and angry on the Test set.

3 Proposed System

Figure 1 shows an overview of our system, which
we describe below in detail.

Core Model

Class Tuning

Happy vs Rest

Happy vs Rest
Override

Predictions

Figure 1: Model pipeline. Our core SVM model per-
forms well for the sad and angry classes, but un-
derestimates the happy class. The “Happy vs Rest”
override classifier therefore is designed to achieve high
accuracy on this class specifically.

3.1 Feature Engineering
Given a 3-turn text conversation between two
users, our system only relied on Turns 1 and 3
while discarding Turn 2 altogether. This was mo-
tivated by the insight that the label for each con-
versation was “the human judged label of Emo-
tion of Turn 3 based on the conversation” (from
the competition website, emphasis ours). This
means the overall emotional context of the con-
versation is dictated by the reaction of User A to
the chatbot User B’s response to A’s initial post in
Turn 1. Therefore, we hypothesised that the most

informative features regarding the emotional con-
text would come from User A’s text (with Turn 3
likely to be more informative than Turn 1), and
that Turn 2 would largely degrade the impact of
these features. This was borne out by experimen-
tation, where inclusion of features from Turn 2
only ever decreased the score compared with mod-
els using only data from Turn 1 and Turn 3. Table
2 shows the results of our experiments using dif-
ferent combinations of turns in terms of F1 score.

Turns 1 and 3 were then tokenized using the
NLTK Tweet Tokenizer with additional rules1 to
handle symbols, and odd tokens.

These tokens were then scanned for nega-
tion words such as {‘not’, ‘isnt’, ‘no’,
‘dont’} and combined with the next neighbour-
ing token to create one new token. For example,
the sentence: ‘not happy jane’ tokenized
turns into ‘not’, ‘happy’, ‘jane’ finally
combining negations turns into ‘not happy’,
‘jane’.

Next the tokens were turn-encoded, meaning
each token is prepended with ‘1 ’ or ‘3 ’ based
on which turn the token was extracted from. For
example, tokens from Turn 1 {‘you’, ‘are’,
‘funny’} are prepended to {‘1 you’,
‘1 are’, ‘1 funny’}, while Turn 3 tokens
{‘=)’} turn into {‘3 =)’}.

3.2 Feature selection using TFIDF

The previous section constructs all the tokens
found in the Training, Dev and Test data. We
then use only the vocabulary found in the intersec-
tion of all the datasets. This was done because
features which do not appear in the test set have
no predictive power on that set. We found in prac-
tice that including these features did not improve
the scores obtained by our system.

The term frequency inverse document fre-
quency (TFIDF) score was then computed for each
term per label basis. The token importance score
is computed using the highest TFIDF score for
that token across classes minus the second high-
est. In this manner the importance score used was
a measure of a feature’s ability to discriminate be-
tween classes. Experimentation on the Dev set
showed that this produced better results than fil-
tering based on, for example, the highest TFIDF
score across classes. Figure 2 shows the top 10

1https://github.com/andrew-
ai/EmoContext2019/blob/master/tokenzie.py

293

features based on the importance scores.
A cutoff importance score was experimentally

selected to further filter down the vocabulary to
use only the most informative tokens and avoid
overfitting (see Figure 3).

We note that the system is robust to variations
in this parameter above a certain threshold – as
shown in Figure 3, while the F1 score varies
greatly for cutoff values between 0 and 0.005,
above 0.005 the F1 score varies only between
0.720 and 0.725.

The features were then one-hot encoded as our
final transformation.

Figure 2: Top 10 features based on the importance
score computed and their associated labels.

3.3 Model pipeline: Core Model

The sklearn Linear Support Vector Classifier (Lin-
earSVC) was used as our classifier. We used
a gridsearch strategy with a simple hold out set
(Training set to train and Dev set to validate) to
tune the best performing hyper parameters based
on F1 score for the Training and Dev datasets.
We used sklearn’s default LinearSVC parameters,
except for the cost penalty (C) which we tuned and
set to C = 0.3.

3.4 Model pipeline: Class tuning

Once the core model and model parameters were
well tuned, we further tuned the predictions out-
put by the system. Each class of predictions was

Figure 3: F1 score and vocabulary size as a function
of the happy importance score cutoff. The importance
scores for the angry, sad and others classes was
set to 0.001 from prior tuning. Tuning individually on
the happy importance score was performed due to it
being the weakest classification class and in the end,
0.007 was chosen, which was a local max.

ranked and the least confident predictions based
on sklearn’s LinearSVC decision function were
shifted to the others class. Shifting the classes
to have angry ≈ 5%, happy ≈ 4.5% and sad
≈ 4% maximised our F1 score. The results of
these experiments are shown in Table 2. We note
that this relies on the observation that the Dev
and Test sets have approximately the same class-
wise distributions, which of course may not hold
true if the model is to be used in other contexts.

3.5 Model pipeline: Happy vs Rest override

This model tended to under-predict the happy
class in terms of precision and recall, therefore
an additional model was built to boost classifica-
tions within this class. A Happy vs Rest classifier
was trained, using the same LinearSVC model and
parameters but this time trained on the Training
data relabeled as ‘happy’ or ‘rest’ (angry, sad,
others).

After the Core Model predictions and the class
tuning, the Happy vs Rest predictions were com-
pared and the most confident predictions based on
a confidence threshold was used to override the
Core Models predictions. This threshold was cho-
sen by ranking the predictions from the Happy vs
Rest classifier in decreasing order of confidence,
and converting the top n most confident predic-
tions to happy over this threshold. In this case,
all predictions from the Happy vs Rest linearSVC
decision function with a signed distance over -0.6
were converted. Here the threshold was chosen
by inspection of where the predictions appeared to

294

change from being correct to dubious.
This allowed a more focused model to boost

happy predictions that the Core Model had
missed.

4 Results

Table 2 shows the results of all the system vari-
ants described in Section 3. The best overall micro
F1 score achieved by our system was 0.735719, or
92.4% of the overall top score in the competition.
This placed us in the top 22% of all submissions,
and resulted in a final ranking of 37th place.

We note that for each variant of the model, using
only Turn 1 + Turn 3 consistently improved the
F1 score over using all turns. Adding the Happy
vs Rest classifier boosted the happy predictions
from: Precision = 0.7490, Recall = 0.6514, F1 =
0.6968 to Precision = 0.7368, Recall = 0.6901, F1
= 0.7127. This boosted our overall micro F1 score
from 0.729352 to 0.735719. While not shown in
Table 2, our post hoc class balancing of the final
predictions to match the proportions in the Dev
set was consistently also beneficial in improving
our model, as shown in Figure 3.

T123 T13
NCB 0.7155 0.7188
CB 0.7255 0.7294
NCB + HvR 0.7175 0.7198
CB + HvR 0.7294 0.7357

Table 2: Experimental results for system variants
where: T123 = Turn 1 + Turn 2 + Turn 3, T13 = Turn 1
+ Turn 3, NCB = No class balancing, CB = Class bal-
ancing against test set, HvR = With Happy vs Rest over-
ride. Note that in each case using using T13 improves
over using T123.

Figure 4 shows a confusion matrix for predic-
tions made by our system. In general, the worst
misclassifications made by our system were pre-
dictions of the others class when the correct la-
bel was one of the other emotions (or vice versa),
rather than misclassifications between emotions,
which were negligible.

Figure 5 shows the top 5 “mistakes” – where our
system was highly confident in its prediction, but
turned out to be wrong. All of these top mislabels
were when we incorrectly predicted an emotional
class (angry, happy, sad) rather than others,
and generally when the text contained emojis.

Figure 4: Confusion matrix of misclassifications by our
system.

Figure 5: Top misclassifications by our system. All
errors were when the correct label was “others” but our
system predicted an emotion.

5 Conclusion

That our system performed so well using such a
simple approach was very satisfying, and demon-
strates that high-quality emotion detection is
achievable by practitioners across a range of dis-
ciplines. Future work using this system will inves-
tigate a longitudinal study of long-term changes in
the emotional context of conversations conducted
over online social network platforms.

295

References
Steven Bird, Edward Loper, and Ewan Klein.

2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Emily M Cody, Andrew J Reagan, Lewis Mitchell,
Peter Sheridan Dodds, and Christopher M Dan-
forth. 2015. Climate change Sentiment on Twit-
ter: An unsolicited public opinion poll. PLoS ONE,
10(8):e0136092.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A Sentiment-
and-Semantics-Based Approach for Emotion De-
tection in Textual Conversations. In Proceedings
ofNeu-IR 2017 SIGIR Workshop on Neural Informa-
tion Retrieval, Shinjuku, Tokyo, Japan, August 11,
2017 (Neu-IR ’17), pages 1–6.

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2009. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer.

Adam S Miner, Arnold Milstein, Stephen Schueller,
Roshini Hegde, Christina Mangurian, and Eleni
Linos. 2016. Smartphone-based conversational
agents and responses to questions about mental
health, interpersonal violence, and physical health.
JAMA Internal Medicine, 176(5):619–625.

Jonathan Tuke, Andrew Nguyen, Mehwish Nasim,
Drew Mellor, Asanga Wickramasinghe, Nigel Bean,
and Lewis Mitchell. 2018. Pachinko Prediction: A
Bayesian method for event prediction from social
media data. arXiv preprint: 1809.08427.

296

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 297–301
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SCIA at SemEval-2019 Task 3: Sentiment analysis in textual
conversations using Deep Learning

Zinedine Rebiai 1

zinedine.rebiai@epita.fr

Antoine Debrenne 1

antoine.debrenne@epita.fr
1 EPITA Graduate School of Computer Science, France

Simon Andersen 1

simon.andersen@epita.fr

Victor Lafargue 1

victor.lafargue@epita.fr

Abstract

In this paper we present our submission for
SemEval-2019 Task 3: EmoContext. The task
consisted of classifying a textual dialogue into
one of four emotion classes: happy, sad, an-
gry or others. Our approach tried to improve
on multiple aspects, preprocessing with an
emphasis on spell-checking and ensembling
with four different models: Bi-directional con-
textual LSTM (BC-LSTM), categorical Bi-
LSTM (CAT-LSTM), binary convolutional
Bi-LSTM (BIN-LSTM) and Gated Recurrent
Unit (GRU). On the leader-board, we submit-
ted two systems that obtained a micro F1 score
(F1µ) of 0.711 and 0.712. After the competi-
tion, we merged our two systems with ensem-
bling, which achieved a F1µ of 0.7324 on the
test dataset.

1 Introduction
Rapid progress in natural language processing
with the rise of deep learning has brought increas-
ing attention on tasks such as text classification
and sentiment analysis. Most of the work in that
field was made using social media due to the large
amount of data available. The task addressed in
this paper focuses on emotion detection within
conversations from social media. The key point is
that we need to take into account multiple speakers
and capture a global emotion out of their conver-
sation. It becomes a challenge when facing differ-
ent users who each have a different way to express
their emotions depending on their personalities. In
a dialogue, users have an initial emotional state,
and their mood will shift as the dialogue goes on.
Therefore, the task of labelling a turn-based con-
versation with the right emotion is even more chal-
lenging.

State of the art approaches consist of using lan-
guage models (Vaswani et al., 2017) to pre-train
the model on the general NLP task of language

modeling before fine-tuning on specific tasks like
classification or translation. The language model
approach used by ULMFiT (Howard and Ruder,
2018), ELMO (Peters et al., 2018) and BERT
(Devlin et al., 2018) was especially successful for
this kind of tasks. For the specific task of emo-
tion classification in textual conversation, Gupta
et al. (2017) achieved a F1µ score of 0.7134 on
the same dataset, using an architecture based on
LSTM. For sentiment analysis, other successful
approaches also used Bi-LSTM (Baziotis et al.,
2017b) as well as transfer learning (Daval-Frerot
et al., 2018).

In this paper, we present two sub-systems
that are composed of four deep-learning models
(using Bi-LSTM, GRU and CNN). Those two
sub-systems competed independently at SemEval-
2019 Task 3 (Chatterjee et al., 2019). After the fi-
nal evaluation, we merged both sub-systems, tak-
ing advantage of ensemble learning. The rest of
the paper is organized as follows. Part 2 gives
an overview of our approach. Our preprocessing
methods, the description of our models, and our
ensembling approach are all described in Part 3.
Part 4 shows the obtained results and in Part 5, we
give a conclusion with remarks for future works.

2 Overview

Our four models are: CAT-LSTM, BIN-LSTM,
BC-LSTM and GRU. We decided to use four dif-
ferent model architecture, two different prepro-
cessing and two different word embeddings. We
built very diverse models in order to maximize
the effect of ensembling on our system. CAT-
LSTM and BIN-LSTM share the exact same pre-
processing and embeddings, while BC-LSTM and
GRU use the same embeddings but slightly differ-
ent preprocessing methods.

297

3 Proposed System

3.1 Text Preprocessing

We used two different preprocessing methods.
However, both preprocessing share the same nor-
malization (all words are lower cases and num-
bers, links, emails and dates were replaced by spe-
cial tags). String emoticons are transformed into
Emojis before tokenization (’:)’ becomes).

3.1.1 CAT-LSTM and BIN-LSTM

Here, the preprocessing used was motivated by
the fact that the dataset comes from social media,
meaning the writing style contains improper use
of grammar, misspellings, emoticons and slang.
Because of that we used the ekphrasis1 (Baziotis
et al., 2017a) library which was made specifically
for preprocessing text from social networks. This
tool performs tokenization, word normalization,
word segmentation and spell correction. Here, we
didn’t take into account the fact that our inputs are
turned based and instead we added a special to-
ken <eos> in-between each turn of the dialogues
which we then concatenated together. We also im-
proved spellchecking with this method. Indeed,
we realized that 8.8% of our vocabulary consisted
of words that weren’t part of our word embeddings
because they were misspelled, even after prepro-
cessing with ekphrasis. Obvious spelling errors
like angru instead of angry were still present. In
order to solve this problem we used a spellcheck-
ing library named autocorrect2 after preprocessing
with ekphrasis which decreased to 3.4% the num-
ber of unknown words from our vocabulary.

3.1.2 BC-LSTM and GRU

Here, for the normalization, specials tags (num-
bers, links, emails and dates) were removed. We
did the spellchecking ourselves with the most
common mistakes (e.g: waht becomes what). This
makes the conversation cleaner and easier to un-
derstand while leaving a part of natural since most
of the words are not corrected (e.g: nooo stay nooo
instead of just no since it has a stronger meaning).
Notice that for our GRU model, we concatenated
the three input turns to make it simpler for the
GRU to process but for our BC-LSTM, we made
separate layers to process each turns.

1https://github.com/cbaziotis/
ekphrasis

2https://github.com/phatpiglet/
autocorrect

3.2 Pre-Trained Word Embeddings

Word embeddings are dense vectors representing
semantic meaning for each word of the vocabu-
lary. We used pre-trained word embeddings to ini-
tialize the weights of our embedding layers. CAT-
LSTM and BIN-LSTM used Datastories embed-
dings 3, while BC-LSTM and GRU used our own
pre-trained word embeddings.

3.2.1 CAT-LSTM and BIN-LSTM

The weights we used for the embedding matrix
of these models were the same as Baziotis et al.
(2017b), pre-trained on 330 millions of english
tweets messages posted from 12/2012 to 07/2016
with GloVe.

3.2.2 BC-LSTM and GRU

For these models, each word is represented by a
vector of 312 dimensions which are obtained by
the concatenation of the following features :

• Word2Vec (Mikolov et al., 2013) - We cre-
ated our vector representations of words us-
ing Word2Vec networks trained with skip-
gram and negative sampling on 30 millions of
english tweets messages posted from 01/2017
to 06/2017. This word embeddings are 300
dimensional.

• Affect Intensity Lexicons (Mohammad and
Turney, 2013) - 6,000 entries for four basic
emotions: anger, fear, joy, and sadness. Con-
sidering fear as other, it adds 4 dimensions

• Emolex (Novak et al., 2015) - The NRC
Emolex is a list of words and their associ-
ations with eight emotions (anger, fear, an-
ticipation, trust, surprise, sadness, joy, and
disgust). We transformed fear, anticipation,
trust, surprise and disgust into the class ’oth-
ers’ with a vector of 4 dimensions (joy, anger,
sad, others)

• Emoji Emotion 4 - List of emoji rated by
polarity. The polarity was hand classified
(by one person) based on the names of these
emoji. The contained emoji are the faces de-
fined by Unicode

3https://github.com/cbaziotis/
datastories-semeval2017-task4

4https://github.com/words/
emoji-emotion

298

Figure 1: Ensembling method.

3.3 Models Description

We used Bi-directional Long Short-Term Mem-
ory networks (B-LSTM) in every model except
the GRU. Every model used Adam optimizer and
crossentropy 5 as the loss function.

3.3.1 CAT-LSTM Model

The core of the network is composed of two sets
of B-LSTM as in Baziotis et al. (2017a). The in-
put layer is composed of an embedding layer of
size 300, followed by a dropout layer (0.4) directly
after the embedding layer to help regularizing by
showing slightly different sequences every epochs.
Each B-LSTM layer consist of 150 units with re-
current dropout (0.5) and regular dropout (0.5). B-
LSTM layers reads each sequence two times in dif-
ferent order, forward (from left to right) and back-
ward (from right to left) which helps to capture
the context of the sentence. The output layer is a
dense layer followed by a softmax.

3.3.2 BIN-LSTM Model

With the previous model (CAT-LSTM), we real-
ized most of our errors came from confusion be-
tween the class ’others’ and the rest (angry, happy
and sad). Which might be because the training
set is slightly unbalanced (15k others, 5.5k angry,
5.4k happy, 4.2k sad). Because of that we decided
to train a model specifically on binary classifica-
tion between the class ’others’ and the rest. That
way we could use ensembling to help our categor-
ical model to differentiate between the two cate-
gories. For this binary model, we kept a similar
architecture as CAT-LSTM. However, we added a
convolution 1D and a maxpool before the first B-

5We used categorical crossentropy except for the binary
(BIN-LSTM) model which used binary crossentropy

LSTM layer to train faster. Since our input is a one-
dimensional sequence of words, it makes sense to
use a one-dimensional convolution right after the
embedding layer in order to capture meaningful
context about our sequence while reducing its size.
We kept most spatial information by using a ker-
nel size of 5 so that we take every group of 5 adja-
cent words into account. After the convolution, we
used a one-dimensional maxpool layer of size 5 in
order to reduce the input size. With this new archi-
tecture we were able to train a second model more
focused on separating ’others’ class from the rest
of the emotion classes while increasing our train-
ing speed by 80%.

3.3.3 BC-LSTM Model

We used the BC-LSTM architecture introduced
in Poria et al. (2017). BC-LSTM (Bidirec-
tional Contextual LSTM) is a model for context-
dependent sentiment analysis and emotion recog-
nition. For this model we treated each turn inputs
in separate parallel layers before concatenating the
results. Hence, we have 3 parallel embedding lay-
ers with our pre-trained embeddings, which then
go through 3 parallel bidirectional LSTM layers of
300 units. Each of those B-LSTM have a Dropout
of 0.5. After that, we stack each B-LSTM layer.
We then have a fully-connected layer with 4 units,
that will give us probabilities for each emotion
class. This model was particularly useful to de-
tect happy, sad, and others emotions so we only
keep those 3 probabilities.

3.3.4 GRU Model

The GRU model (Cho et al., 2014) allowed us
to discriminate the angry class. The first layer is
made using our pre-trained embeddings to process

299

the concatenated text input. We added a dropout
of 0.5. Then, the output of our embedding goes
through a GRU layer of 128 units. On top of our
GRU, we added a fully-connected layer of 32 units
with relu as the activation function. A Dropout of
0.2 was added after this layer.

3.4 Ensembling

As stated before, we trained each model individ-
ually, hence giving us multiple sets of predictions
for each input sample. We used all of those prob-
abilities to train a logistic regression. We stack all
10 predictions (4 from CAT-LSTM, 2 from BIN-
LSTM, 1 from GRU and 3 from BC-LSTM) to
a create a new training sample associated with the
corresponding true label of the sample, as shown
in Figure 1. This way, we take each of our mod-
els into account and the logistic regression takes
care of weighting the importance of our models.
Since our four models are very diverse, they all
contribute to the final prediction.

4 Results and Analysis
When evaluating each group of model separately,
we found that they were correct on different sam-
ples even if the F1µ score is almost the same. Ta-
ble 1 illustrate the performances of our systems on
the test set. We can see that the class ’happy’ gave
our models the most trouble. Which might be be-
cause it is the smallest class in the dataset. Ensem-
bling had a little impact on this emotion compared
to ’angry’ and ’sad’. Our final system achieves an
F1µ score of 0.7324.

Models
Emotion

Angry Happy Sad F1µ

CAT-LSTM+
BIN-LSTM

0.719 0.678 0.734 0.711

GRU+
BC-LSTM

0.722 0.673 0.739 0.712

Model ensembling 0.744 0.689 0.766 0.7324

Table 1: F1µ score on the test set for each model.

Note that [CAT-LSTM + BIN-LSTM] and
[GRU + BC-LSTM] were submitted indepen-
dently for the final submission. However, both
systems were combined in model ensembling af-
ter the competition ended which significantly im-
proved our final score.

5 Conclusion
In this paper, we proposed to use ensemble learn-
ing for sentiment analysis in conversations (Se-
mEval2019 Task 3). Using various neural net-
works structures such as B-LSTM, parallel B-
LSTM, GRU and CNN, ensemble learning takes
advantage of this diversity of approach to make a
prediction for our emotions classes (angry, happy,
sad or others). Each model was trained separately
on the given corpus. Then, we trained a logistic
regression with the probabilities given by our four
deep learning models in order to make the final
predictions for each conversations. Our ensem-
bling system achieved a F1µ score of 0.7324 on
the final testing set, after the competition ended.

Improvements could be made by gathering
more models. A properly fine-tuned language
model (for instance using ULMFiT) or LSTM
with attention mechanism could improve our cur-
rent system. Future work will consist of finding
better ensembling methods and working with lan-
guage models pre-trained on larger corpus of data.

Acknowledgments
We would like to thank Abdessalam Bouchekif
and Anatole Moreau for interesting scientific dis-
cussions (Daval-Frerot et al., 2018).

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017a. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017b. Datastories at semeval-2017 task 6:
Siamese lstm with attention for humorous text com-
parison. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 381–386, Vancouver, Canada. Association for
Computational Linguistics.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Kyunghyun Cho, Bart van Merrienboer, aglar Gülehre,
Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In EMNLP.

300

Guillaume Daval-Frerot, Abdesselam Bouchekif, and
Anatole Moreau. 2018. Epita at semeval-2018 task
1: Sentiment analysis using transfer learning ap-
proach. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 151–155.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training
of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv e-prints, page
arXiv:1810.04805.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
arXiv e-prints, page arXiv:1801.06146.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS.

Saif Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a word-emotion association lexicon. Com-
putational Intelligence, 29:436–465.

Petra Kralj Novak, Jasmina Smailovic, Borut Sluban,
and Igor Mozetic. 2015. Sentiment of emojis. In
PloS one.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Majumder, Amir Zadeh, and Louis-Philippe
Morency. 2017. Context-dependent sentiment anal-
ysis in user-generated videos. In ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv e-prints, page arXiv:1706.03762.

301

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 302–306
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Sentim at SemEval-2019 Task 3: Convolutional Neural Networks For
Sentiment in Conversations

Jacob Anderson
Sentim LLC, USA

papers@sentimllc.com

Abstract
In this work convolutional neural networks
were used in order to determine the sentiment
in a conversational setting. This paper’s con-
tributions include a method for handling any
sized input and a method for breaking down
the conversation into separate parts for easier
processing. Finally, clustering was shown to
improve results and that such a model for han-
dling sentiment in conversations is both fast
and accurate.

1 Introduction

The model for this paper was created for Task 3
of SemEval 2019, EmoContext (Chatterjee et al.,
2019). The basic idea of the task is to classify
the emotion (as “angry”, “sad”, “happy”, or “oth-
ers”) that someone is expressing in the third turn
of a three part conversation, given the previous two
turns as context.

The dominant approach in many natural lan-
guage tasks is to use recurrent neural networks or
convolutional neural networks (CNN) (Conneau
et al., 2016). For classification tasks, recurrent
neural networks have a natural advantage because
of their ability to take in any size input and out-
put a fixed size output. This ability allows for
greater generalization as no data is removed nor
added in order for the inputs to match in length.
While CNN’s can also support input of any size,
they lack the ability to generate a fixed size output
from any sized input. In text classification tasks,
this often means that the input is fixed in size in
order for the output to also have a fixed size.

This work expands upon a previous work (An-
derson, 2018), a way of using CNN’s for classifi-
cation to allow for any sized input length without
adding or removing data. That work was expanded
upon in this paper by making it simpler, using it in
a different setting, and applying a new method to
compensate for the previous model’s deficiencies.

2 Model Description

The overall architecture of this model can be bro-
ken into two parts: the language understanding
model and the emotion prediction model. The lan-
guage understanding model takes in each part of
the conversation and processes it separately in or-
der to produce a latent vector representing the net-
work’s understanding of that part of the conversa-
tion. Then, the emotion prediction model takes all
of the latent vectors from the language understand-
ing model and combines them in order to make a
prediction for what the emotion is.

More specifically, the language understanding
model takes in the first and third turns of each con-
versation1, processes them separately, and returns
a respective understanding vector of size 128 for
each input. The emotion model then concatenates
those vectors to make one vector of size 256 and
then processes that output through a small fully
connected network in order to predict the emo-
tional content.

The model was designed using Tensorflow
(Abadi et al., 2015) and Keras (Chollet et al.,
2015) and was trained using a Google Colab GPU.

2.1 Language Understanding Model

The idea behind the language understanding
model (Figure 1) is to take in each part of the con-
versation separately and process them into a fixed
size vector representing a machine understanding
of the input text. In order to accomplish this, the
input conversation was first embedded into a sub-
word embedding using the byte-paired encoding
provided by Heinzerling and Strube (2018) and
SentencePiece (Kudo and Richardson, 2018). The
subword embedding used a base vocabulary size
of 10,000 with a vector size of 100. This em-

1The second turn was not used during my training because
it was found empirically to make the results worse.

302

bedding was further extended with random vectors
during data preprocessing to include emojis and
other unique characters not found in the original
vocabulary.

Subword Embedding

Output

Convolution 1D

Residual Dilated
Convolution1D

Residual Dilated
Convolution1D

Residual Dilated
Convolution1D

Residual Dilated
Convolution1D

Residual Dilated
Convolution1D

Residual Dilated
Convolution1D

Residual Dilated
Convolution1D

Convolution 1D

Global Max Pooling

Input

FC (128)

Figure 1: The language understanding model.

A specialized convolutional stack was used in
order to process the embeddings. The first layer of
the stack was a convolutional layer with linear ac-
tivation in order to set up the initial size of the in-
put. This was followed by a stack of seven residual
dilated convolutional layers (Figure 2) with relu

activation. The number of layers was chosen so
that the final layer would have a receptive field
large enough to be able to see the whole input.

Dilated Convolution1D Linear

Output

Input

Figure 2: A residual dilated convolution, without skip
connections.

One more convolutional layer was used with a
linear activation function and the “same” padding
method. This layer was originally added to in-
crease the number of filters, but after a grid search
was performed to determine the optimal hyperpa-
rameters, this layer was left in as a way to do any
necessary linear transformations on the latent vec-
tor. Note that all convolutional layers in the final
version had a kernel size of 2 and 300 filters. Ad-
ditionally, the padding method varied depending
on the experiment. See the “Experiments and Re-
sults” section for more information on that topic.

The convolutional stack was followed by a
global max pool layer to bring the network down
to a constant size, and then an FC Layer. The idea
of this last FC layer is to allow for any fine tuning
of the language understanding model as necessary
and to compensate for the max pool layer’s inabil-
ity to provide perfect information.

2.2 Emotion Prediction Model

The purpose of the emotion prediction model (Fig-
ure 3) is to predict the emotion given the latent
vectors representing the conversation. The emo-
tion prediction model starts off with the concate-
nation all of the language understanding outputs.
This is then fed through one fully connected layer
of size 256 with sigmoid activation, followed by
the final prediction fully connected layer of size 4,
also with sigmoid activation.

303

First Turn Vector Third Turn Vector

First Turn Vector, Third Turn Vector

Concat

FC (256)

Output (4)

Figure 3: The layout of the emotion prediction model.

2.3 Training and Loss Functions

The network is end to end trainable without hav-
ing to train the networks separately. Triplet loss
was used (with triplets chosen via the all anchor-
positive method) from Schroff et al. (2015) to clus-
ter similarly labeled data together for the language
understanding model, and softmax cross entropy
loss was used for the emotion prediction model.
The models were trained using the Adam (Kingma
and Ba, 2014) optimization method with a learn-
ing rate of .001.

The loss function can be written as

L = T (as, ps, ns)+T (ae, pe, ne)+S(labels, logits)

Where T (anchor, positive, negative) is the
triplet loss and S(labels, logits) is the softmax
cross entropy loss given the true labels and logit
predictions from the emotion prediction model.
Additionally, as, ps, ns are the anchor, positive,
and negative examples corresponding to the first
turn and ae, pe, ne are the anchor, positive, and
negative examples corresponding to the last turn
respectively.

To further clarify, each first turn text in the batch
was matched against every other first turn text so
that they (the anchor) would be closer to similarly
labeled data (positive examples) and farther away
from every other category of data (the negative ex-
amples). The same thing was done for the last turn
of the conversation. The first turn was specifically
not clustered to be close to both first turn and last

turn labels in order to preserve any contextual in-
formation that could be available in the first turn
of a conversation versus the last turn.

An interesting thing to note is the time taken to
train the model. Perhaps due to using the clus-
tering loss and the softmax cross entropy loss si-
multaneously, the fast speed of training residual
convolutions, or the small size of the dataset, the
model always finished training within 7 minutes
(or 9 epochs). Any more than that would never
improve the micro f1 score and would start over-
fitting. Furthermore, roughly twenty percent of the
time the model would show the best results within
1.5 minutes (or 2 epochs).

In one experiment, the networks were trained
using just softmax cross entropy loss, but the net-
works never improved beyond the initial predic-
tion of always pick the “others” class. This could
be because of wrong hyperparameters (the same
model was used as the one with the clustering
loss), didn’t train for long enough (one model was
trained for 24 hours (or 1755 epochs over the train-
ing data)), or didn’t try enough random restarts (10
restarts were attempted in this paper). Regardless
of the case, this shows that using the clustering
loss helped the network find the right solutions
faster and with less hyperparameter tuning than
just using the softmax cross entropy loss.

3 Experiments and Results

The experiments for this paper were all run on the
dataset provided by the EmoContext organizers.
The main dataset contains roughly 30,000 con-
versations, while the test dataset contains roughly
2,750, and the final evaluation dataset contains
about 5,500. The order of each conversation goes
Person A, Person B, then Person A again for all of
the datasets.

Model Type Micro F1 Score
118 network ensemble .7295
Same padding ensemble .7262
Causal padding ensemble .7357
Best single model .7255
2nd best single model .707
Ensemble of micro f1 >.7 .7366
Ensemble of micro f1 >.71 .7386
Emoji replacement model .7386

Table 1: Micro f1 score on the final evaluation set for
each of my submissions.

304

The first submission on the evaluation dataset
was an ensemble of 118 networks. In total, the
118 networks came from 100 different training cy-
cles: 50 runs using causal padding as the padding
method in the dilated residual convolutional stack,
and 50 runs using the “same” padding method.
Each run was trained against the full dataset for
nine epochs and tested against the test dataset, so
the checkpoints chosen were the ones that per-
formed the best on the test dataset. The remaining
18 networks came from checkpoints that were not
the best checkpoint of the training run but still had
a micro f1 score above 0.7 on the test set.

To compare two different convolutional padding
methods, an ensemble of all networks using
“same” padding (56 in total), and an ensemble of
all causal padding runs (62 in total) was submitted.
While the causal padding models performed bet-
ter on average, the difference was not significant.
Two non-ensemble runs were submitted - one of
which was the best run of all 100 runs (which hap-
pened to be a causal padding model) and the other
of which was the second best run of all 100 runs
(which happened to be a “same” padding model).

The sixth submission was an ensemble where
every network in the ensemble had to have a micro
f1 score of .7 or higher and the seventh submission
was an ensemble where every network had to have
a micro f1 score of .71 or higher respectively.

Unsurprisingly, the ensemble methods ourper-
form the best single model runs on micro f1 score.
Interestingly though, the 118 network ensemble
performed worse than the causal padding ensem-
ble. This could represent opposing learning bi-
ases present in “casual” versus “same” padding
types. That is, instead of the two different types
of models agreeing with each other and remov-
ing bad predictions, the two models instead mostly
disagree over certain portions of the data, leading
to larger uncertainty and therefore lower overall
performance.

A rule based model was also tested where ev-
ery conversation was labeled based on whether
or not it contained an emoji. More specifically,
for every conversation the first and third turns of
the text were concatenated and then if that had a
happy emoji it was labeled happy, if it had a sad
emoji it was labeled sad, if it had an angry emoji
it was labeled angry, and if it didn’t have any of
those emojis then it was labeled using the output
of the seventh submission. This model is interest-

ing because applying the algorithm changed zero
labels from the seventh submission. This means
that the network learned the different emojis and
used them in order to predict the emotion. This
also agrees with the intuition that emojis should
represent how a user is feeling (or perhaps that the
dataset was created or biased by this idea). To see
all of the results, view Table 1.

Submitter F1 Score
1st Place .7959
2nd Place .7947
3rd Place .7765
My Best .7386
Median .6947
Average .6605

Table 2: Micro f1 score of the first, second, and third
place submissions as well as the average and median
scores of all submissions as compared to my best sub-
mission.

To see a comparison to other people’s submis-
sions in the competition, view Table 2. Addition-
ally, I show the micro f1 score as well as the f1
score for the happy, angry, and sad labels for a few
of my models in Table 3.

Model F1 Angry Happy Sad
BSM .7255 .7382 .6718 .7653
f1 >.7 .7366 .7481 .6812 .7803
f1 >.71 .7386 .7536 .6790 .7818

Table 3: Micro f1 score as well as the f1 score for
the angry, happy, and sad labels. Best single model
is abbreviated as BSM, as well as the ensemble of all
models that scored higher than a certain f1 score as f1
>score.

4 Conclusion

A language understanding model and an emotion
prediction model was trained in an end to end
fashion for understanding and predicting the emo-
tions of conversations. The previous work was
adapted in order to leverage the ability to use any
sized inputs with convolutional neural networks,
and showed that such a model can be fast and ac-
curate. Finally, it was shown that augmenting lan-
guage learning using clustering loss can help aug-
ment training and improve results.

305

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Jacob Anderson. 2018. Fully convolutional net-
works for text classification. arXiv preprint
arXiv:1902.05575.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

François Chollet et al. 2015. Keras.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
CoRR, abs/1808.06226.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embed-
ding for face recognition and clustering. CoRR,
abs/1503.03832.

306

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 307–311
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SINAI at SemEval-2019 Task 3: Using affective features for emotion
classification in textual conversations

Flor Miriam Plaza-del-Arco, M. Dolores Molina-González,
M. Teresa Martı́n-Valdivia, L. Alfonso Ureña-López

Department of Computer Science, Advanced Studies Center in ICT (CEATIC)
Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
{fmplaza, mdmolina, maite, laurena}@ujaen.es

Abstract

Detecting emotions in textual conversation is
a challenging problem in absence of nonverbal
cues typically associated with emotion, like fa-
cial expression or voice modulations. How-
ever, more and more users are using message
platforms such as WhatsApp or telegram. For
this reason, it is important to develop systems
capable of understanding human emotions in
textual conversations. In this paper, we carried
out different systems to analyze the emotions
of textual dialogue from SemEval-2019 Task
3: EmoContext for English language. Our
main contribution is the integration of emo-
tional and sentimental features in the classifi-
cation using the SVM algorithm.

1 Introduction

Emotions seem to govern our daily lives since
most of our decisions are guided by our mood.
They are complex and that is why they have been
studied in many areas over time. Given the im-
portance to develop systems to be able to mimic
functioning of the human brain, emotions have at-
tracted the attention in the field of affective com-
puting (Thilmany, 2007).

To our knowledge, there are not many works
that focus on studying how emotions are reflected
verbally. However, studying emotions on text
messaging platforms such as WhatsApp, Face-
book Messenger or Telegram is important as more
and more users are using them to share their expe-
riences and emotions.

Currently, detecting emotions in instant mes-
saging has multiple applications in different fields
(Gupta et al., 2017; Yadollahi et al., 2017; Hakak
et al., 2017), such as businesses intelligence to in-
crease customer satisfaction knowing their prefer-
ences, social media to alert users if they are going
to post an offensive tweet or psychology to detect
some disorders like anorexia, anxiety or stress.

In this paper, we present the different sys-
tems we developed as part of our participation in
SemEval-2019 Task 3: Contextual Emotion De-
tection in Text (EmoContext) (Chatterjee et al.,
2019b). It is an emotion classification task. Given
a textual dialogue along with two turns of context,
its consists of classify the emotion of user utter-
ance as one of the emotion classes: Happy, Sad,
Angry or Others.

The rest of the paper is structured as follows. In
Section 2 we explain the data used in our methods.
Section 3 introduces the lexical resources used for
this work. Section 4 presents the details of the pro-
posed systems. In Section 5, we discuss the analy-
sis and evaluation results for our system. We con-
clude in Section 6 with remarks and future work.

2 Data

To run our experiments, we used the English
datasets provided by the organizers in SemEval19
Task 3 : EmoContext (Chatterjee et al., 2019b).
The datasets containing 3-turn conversations along
with their emotion class labels (Happy, Sad, An-
gry, Others) provided by human judges. The Turn
1 contains the first turn in the three turn conver-
sation, written by User 1. The turn 2 contains the
second turn, which is a reply to the first turn in
conversation and it is written by User 2 and finally,
the turn 3 contains the last turn, which is a reply to
the second turn in the conversation, which is writ-
ten by User 1.

During pre-evaluation period, we trained our
models on the train set, and evaluated our differ-
ent approaches on the dev set. During evaluation
period, we trained our models on the train and dev
sets, and tested the model on the test set. Table 1
shows the number of 3-turn conversations used in
our experiments in English.

307

Dataset train dev test
Happy 4,243 142 284

Sad 5,463 125 250
Angry 5,506 150 298
Others 14,948 2,338 4,677
Total 30,160 2,755 5,509

Table 1: Number of 3-turn conversations per EmoCon-
text dataset

3 Resources

For the development of the task, we used different
lexicons that we explain in detail below.

NRC Affect Intensity Lexicon (Mohammad,
2017). It has almost 6,000 entries in English. Each
of them has an intensity score associated to one of
the following basic emotions: anger, fear, sadness
and joy. The scores range from 0 to 1, where 1 in-
dicates that the word has a high association to the
emotion and 0 that the word has a low association
to the emotion.

NRC Word-Emotion Association Lexicon
(EmoLex) (Mohammad and Turney, 2010). This
lexicon has a list of English words associated to
one or more of the following emotions: anger,
fear, anticipation, trust, surprise, sadness and joy.

VADER (Valence Aware Dictionary and sEn-
timent Reasoner) (Gilbert, 2014). The VADER
sentiment lexicon is a rule-based sentiment analy-
sis tool. This is sensitive both the polarity and the
intensity of sentiments expressed in social media
contexts, and is also generally applicable to senti-
ment analysis in other domains. VADER has been
validated by multiple independent human judges.
The tool returns four values: positive, negative,
neutral and compound. The first three scores rep-
resent the proportion of text that falls in these cate-
gories. The compound score is computed by sum-
ming the valence scores of each word in the lexi-
con, adjusted according to the rules, and then nor-
malized to be between -1 (most extreme negative)
and +1 (most extreme positive).

4 System Description

In this section, we describe the systems developed
for the EmoContext task. During our experiments,
the scikit-learn machine learning in Python library
(Pedregosa et al., 2011) was used for benchmark-
ing.

4.1 Data Preprocessing
In first place, we preprocessed the corpus of con-
versations provided by the organizers. We applied
the following preprocessing steps: the documents
were tokenized using NLTK Tweet Tokenizer1 and
all letters were converted to lower-case.

4.2 Feature Extractor
Converting sentences into feature vectors is a focal
task of supervised learning based sentiment anal-
ysis method. Therefore, the features we chose in
our system can be divided into three parts: statistic
features, morphological features and lexical fea-
tures.

• Statistic features. We employed the feature
that usually perform well in text classifica-
tion: Term Frecuency (TF) taking into ac-
count unigrams and bigrams.

• Morphological features. We employed Part-
of-speech tagging (PoS). For each sentence,
we obtain a vector associated with the part of
speech recognized in each word of the sen-
tence.

• Lexical features. As we explained in Section
3, we used three lexicons obtained different
features in the following way:

1. NRC Affect Intensity. We checked the
presence of lexicon terms in the sen-
tence and then we computed the sum
of the intensity value of the words of
the sentence grouping them by the emo-
tional category (fear, sadness, anger
and joy). Therefore, we obtained a vec-
tor of four values (four emotions) for
each sentence. Each value of intensity
is normalized ı̂e applying the following
equation:

ı̂e =
ie∑
e ie

Where e = {fear, sadness, anger, joy}
and ie is equal to value of intensity per
emotion. Note that the components of
the normalized vector add up to 1, and
each of them is a positive number be-
tween 0 and 1.

1https://www.nltk.org/api/nltk.tokenize.html

308

2. Emolex. We identified the presence of
lexicon terms in the sentence and we
assigned 1 as confidence value (CV).
Then, we summed the CV of the words
whose emotion is the same obtaining a
vector of emotions for each sentence.
As a result, we obtained a vector of eight
values (eight emotions). Each value v̂e
is normalized following the next equa-
tion:

v̂e =
CVe∑
eCVe

Where e = {anger, fear, anticipation,
trust, surprise, sadness and joy} and
CVe is equal to confidence value per
emotion. Note that the components of
the normalized vector add up to 1, and
each of them is a positive number be-
tween 0 and 1.

3. VaderSentiment. We use the senti-
ment.vader module2 provided by the
Natural Language Toolkit (NLTK).
With this module, we analyze each
sentence and we obtained a vector
of four scores: negative sentiment,
positive sentiment, neutral sentiment
and compound polarity.

4.3 Classifier
The concatenation of the features described before
are applied for the classification using the SVM
algorithm. We selected the Linear SVM formu-
lation, known as C-SVC and the value of the C
parameter was 1.0.

5 Experiments and analysis of results

During the pre-evaluation phase we carried out
several experiments and the best experiments were
taken into account for the evaluation phase. The
architecture of the different systems can be seen in
Figure 1 and are described below:

• Basic system (BS). For this experiment, we
have combined the 3-turn conversations of
the corpus in a text string separated by
spaces. For example, for turn 1: ”Hahah i

2https://www.nltk.org/_modules/nltk/
sentiment/vader.html

Turn 1

Turn 2

Turn 3

Statistics
Features

Statistics,
Morphological

and lexical
features

SVM
BS

Statistics
Features

SVM
BS-2

SVM
SF

Figure 1: Systems architecture.

loved it” , turn 2: ”Yay! Glad you loved
it X3” and turn 3: ”You always make us
happy”, the final sentence is ”Hahah i loved
it Yay! Glad you loved it X3 You always
make us happy”. Then, each sentence is rep-
resented as a vector of unigrams and bigrams
choosing the TF weighting scheme and it is
used as feature for the classification using the
SVM algorithm.

• Basic system with turn 1 and 2 (BS-2). This
experiment is similar to the previous one.
However, we have only taken into account the
first and last conversation turns because ana-
lyzing the training data, we realized that the
second conversation turn is not useful for the
classification as it does not provide represen-
tative information. For example, for turn 1:
”Hahah i loved it” , turn 2: ”Yay! Glad you
loved it X3” and turn 3: ”You always make us
happy”, the final sentence is ”Hahah i loved it
You always make us happy”. We notice that
the emotion is the same (happy) as if we con-
sider the three turns.

• System with features (SF). In this system,
also we have only taken into account the
first and last conversation turns. With these
turns of conversations, we have tested sev-
eral combinations with the lexical resources
during the development phase and we chose
the best combination for the evaluation phase.
The best combination is the set of the vector
of NRC (four values), the vector of Emolex
(eight values) and the vector of VaderSenti-
ment (four values) explained in Subsection
4.2. Therefore, the union of the best lexical
features and the TF of the two conversation
turns are used as features to perform the clas-
sification with the selected SVM algorithm.

The official competition metric to evaluate the

309

Experiment
Sad Angry Happy Micro - Avg

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

BS 0.49 0.73 0.58 0.54 0.79 0.64 0.43 0.73 0.54 0.48 0.75 0.59
BS-2 0.64 0.74 0.68 0.60 0.85 0.70 0.57 0.76 0.65 0.60 0.79 0.68
SF 0.63 0.81 0.71 0.62 0.87 0.72 0.57 0.77 0.66 0.61 0.82 0.7

Table 2: Results on the dev set.

Experiment
Sad Angry Happy Micro - Avg

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

BS 0.59 0.74 0.66 0.53 0.77 0.66 0.5 0.64 0.56 0.56 0.72 0.63
BS-2 0.64 0.77 0.7 0.59 0.8 0.68 0.62 0.71 0.66 0.61 0.76 0.68
SF 0.61 0.78 0.69 0.58 0.81 0.68 0.61 0.70 0.65 0.6 0.76 0.67

Table 3: Results on the test set.

User name (ranking) F1
leo1020 (1) 0.79
gautam naik (60) 0.72
fmplaza (92) 0.68
emocontext organizers (140) 0.59
waylensu (161) 0.0143

Table 4: System test results per user in EmoContext
task.

systems in EmoContext task is the microaver-
aged F1 score (F1µ) for the three emotion classes
(Happy, Sad and Angry). This metric is calculated
between the real classes and the predicted classes.
The results of our participation in the task can be
seen in Tables 2 and 3.

In relation to our results, during the pre-
evaluation phase and evaluation phase, we noticed
that 1 and 3 conversation turns performed better
the classification due to the reason that the 2 con-
versation turn is usually a contradiction or a ques-
tion of the 1-turn. In Tables 2 and 3 we can ob-
served that the BS-2 experiments outperformed
the BS experiments. According to the classifica-
tion per emotion, we may note different issues. On
the one hand, the use of lexical features (SF exper-
iment) improve about 2% of F1 with respect to the
BS-2 experiment in the dev set. Nevertheless, this
is not the case in the test set. On the other hand,
the Happy emotion class perform worse than other
emotion classes in both datasets, as it happens in
other works (Chatterjee et al., 2019a; Gupta et al.,
2017). Besides, if we observed the SF experiment
in test set, we can see that the emotional features

do not help to improve the classification because
there are some words like “love” or “cool” whose
assigned emotion is Happy class but in the 3-turn
conversation of test set have been marked as Oth-
ers class by the judges. Finally, in Table 4 we can
observe our official position in the competition.
We are ranked 92 out of 165 participating teams
and our system outperforms the baseline system
provided by the organizers of the task.

6 Conclusions and Future Work

In this paper, we present different systems to pre-
dict the emotion of user in a textual dialogue along
with two turns of context. To carry out the task, we
have developed three different systems. The first
two are base systems, combining different turns
of conversation and in the last system we decided
to incorporate lexical features from sentiment and
emotional resources.

In the future, we plan to continue working in
emotion classification tasks because we have ob-
served that the participation in this tasks is very
high and this shows the interest by the scientific
community in solving this type of tasks. Efforts
will also be made to include more contextual in-
formation and to explore other multiple classifier
methods.

Acknowledgments

This work has been partially supported by Fondo
Europeo de Desarrollo Regional (FEDER) and
REDES project (TIN2015-65136-C2-1-R) from
the Spanish Government.

310

References
Ankush Chatterjee, Umang Gupta, Manoj Kumar

Chinnakotla, Radhakrishnan Srikanth, Michel Gal-
ley, and Puneet Agrawal. 2019a. Understanding
emotions in text using deep learning and big data.
Computers in Human Behavior, 93:309–317.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019b. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

CJ Hutto Eric Gilbert. 2014. Vader: A parsimo-
nious rule-based model for sentiment analysis of so-
cial media text. In Eighth International Confer-
ence on Weblogs and Social Media (ICWSM-14).
Available at (20/04/16) http://comp. social. gatech.
edu/papers/icwsm14. vader. hutto. pdf.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A sentiment-
and-semantics-based approach for emotion detec-
tion in textual conversations. arXiv preprint
arXiv:1707.06996.

Nida Manzoor Hakak, Mohsin Mohd, Mahira Kirmani,
and Mudasir Mohd. 2017. Emotion analysis: A sur-
vey. In Computer, Communications and Electron-
ics (Comptelix), 2017 International Conference on,
pages 397–402. IEEE.

Saif M Mohammad. 2017. Word affect intensities.
arXiv preprint arXiv:1704.08798.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 26–34. Association for
Computational Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jean Thilmany. 2007. The emotional robot: Cognitive
computing and the quest for artificial intelligence.
EMBO reports, 8(11):992–994.

Ali Yadollahi, Ameneh Gholipour Shahraki, and Os-
mar R Zaiane. 2017. Current state of text sentiment
analysis from opinion to emotion mining. ACM
Computing Surveys (CSUR), 50(2):25.

311

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 312–317
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SNU IDS at SemEval-2019 Task 3: Addressing Training-Test Class
Distribution Mismatch in Conversational Classification

Sanghwan Bae, Jihun Choi and Sang-goo Lee
Department of Computer Science and Engineering

Seoul National University, Seoul, Korea
{sanghwan,jhchoi,sglee}@europa.snu.ac.kr

Abstract

We present several techniques to tackle the
mismatch in class distributions between train-
ing and test data in the Contextual Emotion
Detection task of SemEval 2019, by extending
the existing methods for class imbalance prob-
lem. Reducing the distance between the dis-
tribution of prediction and ground truth, they
consistently show positive effects on the per-
formance. Also we propose a novel neural
architecture which utilizes representation of
overall context as well as of each utterance.
The combination of the methods and the mod-
els achieved micro F1 score of about 0.766 on
the final evaluation.

1 Introduction

A new task whose goal is to predict the emo-
tion of the last speaker given a sequence of text
messages has been designed, and coined Contex-
tual Emotion Detection (EmoContext; Chatterjee
et al., 2019).

Though predicting the emotion of a single utter-
ance or sentence, i.e. emotion detection, is a well-
discussed subject in natural language understand-
ing literature, EmoContext has several novel chal-
lenges. Firstly, the class distribution of training
data is significantly different from that of the test
data. Consequently, a model trained on the train-
ing data might not perform well on the test data.
There have been efforts made to address the prob-
lem of learning from training data sets that have
imbalanced class distribution, i.e. the class imbal-
ance problem (Chawla et al., 2004; Buda et al.,
2018). However, they are not applicable to our
case, since the imbalance appears only in the test
data while the training data can be viewed to be
balanced.

We extend the existing methods of addressing
the class imbalance problem to be applicable for
more general cases where the distributions of the

collected training data differ from those of the real
population or the data at test time, under the as-
sumption that the validation set is organized care-
fully to reflect the practical distribution. From ex-
periments and analyses, we show that the proposed
methods reduce the difference between two distri-
butions and as a result improve the performance of
the model.

The additional challenge we have to consider
arises from the fact that utterances having identical
surface form may have different meanings due to
sarcasm, irony, or etc.. Thus a model should track
the emotional transitions within a dialogue. To
grasp the context of utterances, we propose a semi-
hierarchical encoder structure. Lastly, the texts
contain lots of non-standard words, e.g. emoticons
and emojis. This makes it difficult to exploit typ-
ical pre-trained embeddings such as GloVe (Pen-
nington et al., 2014). Therefore, we adopt pre-
trained embeddings which are specialized for han-
dling non-standard words. We show that the pro-
posed model largely outperforms the baseline of
task organizers by experiments.

2 Related Work

2.1 Contextual Emotion Detection

EmoContext is a emotion classification data set
composed of 3-turn textual conversations. The
goal of the data set is to classify the emotion in
the last utterance of each example given the con-
text. The label set consists of 4 classes: ‘happy’,
‘sad’, ‘angry’ and ‘others’. In the training data set,
there are about 50% of ‘others’ class examples and
50% of emotional (happy, sad, angry) examples,
which can be viewed as well-balanced. On the
other hand, only 15% of examples in the test and
the validation data set are labeled as emotional, re-
flecting the real-life frequency. For more details,
refer to Chatterjee et al. (2019).

312

2.2 Class Imbalance Problem
When some classes have the significantly higher
number of examples than other classes in a train-
ing set, the data is said to have an imbalanced
class distribution (Buda et al., 2018). This makes
it difficult to learn from the data set using ma-
chine learning approaches (Batista et al., 2004;
Mazurowski et al., 2008), since the learned mod-
els can be biased to majority classes easily, which
results in poor performance (Wang et al., 2016).
We give a brief explanation of methods to solve
this problem.
Sampling: This type of methods deals with the
problem by manipulating the data itself to make
the resulting data distribution balanced. The sim-
plest versions are random oversampling and ran-
dom undersampling. The former randomly dupli-
cates examples from the minority classes and the
latter randomly removes instances from the major-
ity classes (Mollineda et al., 2007).
Thresholding: This method moves the decision
threshold after training phase, changing the out-
put class probabilities. Typically, this can be done
by simply dividing the output probability for each
class by its estimated prior probability (Richard
and Lippmann, 1991; Buda et al., 2018).
Cost-Sensitive Learning: This assigns different
misclassification cost for each class and applies
the cost in various ways, e.g. output of the net-
work, learning rate or loss function. For multi-
class classification tasks, the simplest form of
the cost-sensitive learning is to introduce weights
to the cross entropy loss (Han, 2017; Lin et al.,
2018):

L = − 1

N

N∑

i=1

K∑

c=1

wcyci ln p(c|xi), (1)

where N and K denote the total number of exam-
ples and classes respectively, p(c|xi) the predicted
probability of i-th example xi belonging to class
c, yci the ground truth label which is 0 or 1, and wc

a class dependent weighting factor. Recent work
suggests to use the inverse ratio of each class, i.e.
wc = N

Nc
, where Nc is the number of examples be-

longing to class c (Wu et al., 2018; Aurelio et al.,
2019).
Ensemble: The term ensemble usually refers to
a collection of classifiers that are minor variants
of the same classifier to boost the performance.
This is also successfully applied to the class im-
balance problem (Sun et al., 2007; Seiffert et al.,

2010), by replacing the resampling procedure in
the bagging algorithm with oversampling or un-
dersampling (Galar et al., 2012).

3 Methods for Mismatch Problem

3.1 Sampling

In our case, it is not possible to make the distinc-
tion between majority and minority classes; even
if the ‘others’ class is the most prevalent in the
training data, the ratio is less than that of the test
data. To address this issue, the random minority
oversampling technique should be modified, since
it assumes that the class imbalance appears only
in the training data set. Accordingly, we apply
random oversampling or random undersampling
to make the distribution of the training data sim-
ilar to that of the validation data.

3.2 Thresholding

The basic thresholding method mentioned in §2.2
is not sufficient for our case, since we should ad-
ditionally bias the model output distribution to
match the test time distribution, not only correct-
ing the imbalance in the training data. When pr is
a probability of training time and ps is that of vali-
dation time, we multiply the predicted probability
by the estimated class ratio from validation set as
below:

yc(x) = p(c|x) ≈ ps(c)

pr(c)
· pr(c|x)

=
ps(c)

pr(c)
· pr(c) · pr(x|c)

pr(x)

=
ps(c) · pr(x|c)

pr(x)
,

(2)

where p(c) = Nc
N .

3.3 Cost-Sensitive Learning

The weighted cross entropy loss, described in Eq.
(1), can be used for our case, as long as the weights
are carefully chosen. Although the reciprocal of
class ratio is helpful for learning balanced predic-
tion (Wu et al., 2018), the target distribution be-
tween classes is not uniform for our task. Also,
the misclassification cost of ‘others’ class should
be larger than those of emotional classes, because
the model tends to predict it less than the actual.
Therefore, it is reasonable to modify wc by mul-
tiplying the estimated ratio of each class for test
time, i.e. wc = Nr

Nr
c
· Ns

c
Ns , where N r and N s denote

313

Figure 1: Overall Architecture

the number of instances in training and validation
data set respectively. This corresponds to the term
introduced in Eq. (2), as Nr

Nr
c
· Ns

c
Ns = ps(c)

pr(c)
. The dif-

ference between them is that thresholding utilizes
the term in inference phase after training is fin-
ished, while weighted cross entropy loss includes
it from the training time.

3.4 Ensemble
We combined bagging-based ensemble with sam-
pling techniques represented in §3.1. In addition,
we compared ensembles of randomly initialized
classifiers using other methods (i.e. thresholding
and cost-sensitive learning).

4 Model and Training Details1

4.1 Overall Architecture
We propose a semi-hierarchical structure to cap-
ture the context as well as the meaning of each
single utterance. Fig. 1 depicts the overall archi-
tecture. Each single utterance representation um
is encoded by Utterance Encoder described in Fig.
2. In addition, we introduce another bi-directional
LSTM (BiLSTM) encoder for higher level repre-
sentation which receives the outputs of utterance
encoder as its inputs. The representation of all
context is generated by the concatenation of u1,
u2, u3, u1 − u2 + u3 and the output of this en-
coder. Then it is fed to the two 300-dimensional
(300D) hidden layers with ReLU activation with
shortcut connections and a softmax output layer.

4.2 Utterance Encoder
The proposed utterance encoder has two types
of shortcut-stacked bi-directional long short-term

1The implementation of our model is available at https:
//github.com/baaesh/semeval19 task3

Figure 2: Utterance Encoder

memory (BiLSTM) encoder (Nie and Bansal,
2017) to fully exploit four types of lexicon level
representations. The first encoder utilizes pre-
trained word2vec (Mikolov et al., 2013) em-
beddings concatenated with trainable embeddings
from a character level convolutional neural net-
work (CNN). We also added emoji2vec (Eisner
et al., 2016) embeddings to word2vec to map
emoji symbols to the same space. The other
encoder receives concatenated representations of
pre-trained datastories (Baziotis et al., 2017) em-
beddings and contextualized represenations from
ELMo (Peters et al., 2018).

The results from the two stacked BiLSTM
encoder are concatenated. We use the multi-
dimensional source2token self-attention of Shen
et al. (2018) and max pooling to integrate con-
textualized word level representations to a single
utterance representation, as in Im and Cho (2017).

4.3 Training Details

We use 300D Google News word2vec2 embed-
dings and 300D pre-trained emoji2vec.3 Datasto-
ries vectors4 which were pre-trained on a big col-
lection of Twitter messages using GloVe are also
300D. The dimension of character embeddings is
fixed to 15, and it is fed to a CNN where the filter
sizes are 1, 3, and 5 and the number of feature map
for each is 100, thus a 300D vector is generated
for each word as a result. To guarantee the same
size for ELMo embeddings, a 300D position-wise
feed-forward network is applied above them. The
hidden states of all the BiLSTMs for each direc-

2https://code.google.com/archive/p/word2vec/
3https://github.com/uclmr/emoji2vec
4https://github.com/cbaziotis/

datastories-semeval2017-task4

314

Figure 3: Class distributions on test data. Actual is
from the ground truth labels and the others are from the
predicted labels by each model. These are the averages
of 10 results with random initialization.

tion are 150D and the number of layers is 2.
Our model is trained using the Adam optimizer

(Kingma and Ba, 2014) with a learning rate of
0.001 and a batch size 64. We clip the norm of gra-
dients to make it smaller than 3. Dropout (Srivas-
tava et al., 2014) technique is applied to word em-
beddings with p = 0.1. We chose the best model
based on a micro F1 score on the validation set.

5 Experiments

5.1 Effects of mismatch in class distributions

Fig. 3 shows that the class distribution of predic-
tions from the baseline model without any meth-
ods applied is substantially different from that of
the actual test data. On the other hand, when the
proposed methods are applied, the gap becomes
much smaller. From this result, we conjecture that
the difference in output distributions could be a
reason for poor performance of the baseline com-
pared to the proposed methods, as presented in Ta-
ble 1.

5.2 Single model methods

Table 1 shows the accuracy and micro F1 scores of
variants of our methods and baselines on the test
set. We report the mean and standard deviation of
10 experimental runs (with the same hyperparam-
eters) for each methods. And all the models were
chosen based on their performance on the valida-
tion set.

The reported results show that proposed meth-
ods except undersampling are effective for en-
hancing both accuracy and F1 score. This means
that alleviating the difference of class distribution
is the key factor for the higher performance. In
the case of undersampling, since the total size of

Approach Acc (±) F1 (±)
Baseline (organizers) - - .587 -
Baseline (ours) .914 .005 .726 .008
Oversampling .922 .004 .733 .012
Undersampling .919 .006 .719 .013
Thresholding .924 .002 .738 .010
Cost-Sensitive .924 .004 .739 .010

Table 1: Comparison of single model approaches on
the test set.

Approach Acc F1
Baseline (ours) .921 .743
Oversampling .930 .758
Undersampling .930 .753
Thresholding .930 .752
Cost-Sensitive .931 .757
Mixed (submitted) .933 .766

Table 2: Comparison of ensemble approaches on the
test set. 10 models were used for each ensemble result.

training data decreases, the model seems to fail to
capture the general semantics. The result is con-
sistent with Buda et al. (2018), where the under-
sampling solely does not bring a performance gain
for deep learning models. On the other hand, in
our experiments, thresholding and cost-sensitive
learning were the most effective approaches when
a single model is used.

5.3 Ensemble methods

Table 2 reports the comparison of ensemble mod-
els. The results show that our methods consis-
tently outperform the baseline. We can see that en-
semble with bagging has a great effect on refining
class distribution, and in this time, undersampling
also showed a good performance. Overall, for en-
semble methods, oversampling and cost-sensitive
learning performed best. The version we submit-
ted to the leaderboard was the ensemble of differ-
ent methods selected by their performance on vali-
dation set, and achieved the official result of 0.766.

6 Conclusion

In this paper, we proposed several methods for
alleviating the problems caused by difference in
class distributions between training data and test
data. We demonstrated that these methods have
positive effects on the result performance. We also
presented a novel semi-hierarchical neural archi-
tecture that effectively exploits the context and the
utterance representation. For future work, we plan
to conduct more systematic experiments on other
data sets to generalize our results.

315

References
Yuri Sousa Aurelio, Gustavo Matheus de Almeida,

Cristiano Leite de Castro, and Antonio Padua Braga.
2019. Learning from imbalanced data sets with
weighted cross-entropy function. Neural Process-
ing Letters, pages 1–13.

Gustavo EAPA Batista, Ronaldo C Prati, and
Maria Carolina Monard. 2004. A study of the be-
havior of several methods for balancing machine
learning training data. ACM SIGKDD explorations
newsletter, 6(1):20–29.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Mateusz Buda, Atsuto Maki, and Maciej A
Mazurowski. 2018. A systematic study of the
class imbalance problem in convolutional neural
networks. Neural Networks, 106:249–259.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

NV Chawla, N Japkowicz, and A Kotcz. 2004. Edito-
rial: special issue on learning from imbalanced data
sets. sigkdd explor newsl 6: 1–6.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Mikel Galar, Alberto Fernandez, Edurne Barrenechea,
Humberto Bustince, and Francisco Herrera. 2012.
A review on ensembles for the class imbalance
problem: bagging-, boosting-, and hybrid-based ap-
proaches. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
42(4):463–484.

Xiao Han. 2017. Automatic liver lesion segmentation
using a deep convolutional neural network method.
arXiv preprint arXiv:1704.07239.

Jinbae Im and Sungzoon Cho. 2017. Distance-based
self-attention network for natural language infer-
ence. arXiv preprint arXiv:1712.02047.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tsung-Yi Lin, Priyal Goyal, Ross Girshick, Kaiming
He, and Piotr Dollár. 2018. Focal loss for dense ob-
ject detection. IEEE transactions on pattern analy-
sis and machine intelligence.

Maciej A Mazurowski, Piotr A Habas, Jacek M Zu-
rada, Joseph Y Lo, Jay A Baker, and Georgia D
Tourassi. 2008. Training neural network classifiers
for medical decision making: The effects of imbal-
anced datasets on classification performance. Neu-
ral networks, 21(2-3):427–436.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

RA Mollineda, R Alejo, and JM Sotoca. 2007. The
class imbalance problem in pattern classification and
learning. In II Congreso Espanol de Informática
(CEDI 2007). ISBN, pages 978–84.

Yixin Nie and Mohit Bansal. 2017. Shortcut-
stacked sentence encoders for multi-domain infer-
ence. arXiv preprint arXiv:1708.02312.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Michael D Richard and Richard P Lippmann. 1991.
Neural network classifiers estimate bayesian a pos-
teriori probabilities. Neural computation, 3(4):461–
483.

Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse,
and Amri Napolitano. 2010. Rusboost: A hybrid ap-
proach to alleviating class imbalance. IEEE Trans-
actions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 40(1):185–197.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
Shirui Pan, and Chengqi Zhang. 2018. Disan: Di-
rectional self-attention network for rnn/cnn-free lan-
guage understanding. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Yanmin Sun, Mohamed S Kamel, Andrew KC Wong,
and Yang Wang. 2007. Cost-sensitive boosting for
classification of imbalanced data. Pattern Recogni-
tion, 40(12):3358–3378.

Shoujin Wang, Wei Liu, Jia Wu, Longbing Cao,
Qinxue Meng, and Paul J Kennedy. 2016. Training
deep neural networks on imbalanced data sets. In
Neural Networks (IJCNN), 2016 International Joint
Conference on, pages 4368–4374. IEEE.

316

Zhenyu Wu, Yang Guo, Wenfang Lin, Shuyang Yu,
and Yang Ji. 2018. A weighted deep representa-
tion learning model for imbalanced fault diagnosis
in cyber-physical systems. Sensors, 18(4):1096.

317

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 318–323
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SSN NLP at SemEval-2019 Task 3: Contextual Emotion Identification
from Textual Conversation using Seq2Seq Deep Neural Network

B. Senthil Kumar, D. Thenmozhi, Chandrabose Aravindan, S. Srinethe
Department of CSE, SSN College of Engineering, India
{senthil,theni d,aravindanc}@ssn.edu.in

srinethe16108@cse.ssn.edu.in

Abstract

Emotion identification is a process of iden-
tifying the emotions automatically from text,
speech or images. Emotion identification from
textual conversations is a challenging problem
due to absence of gestures, vocal intonation
and facial expressions. It enables conversa-
tional agents, chat bots and messengers to de-
tect and report the emotions to the user in-
stantly for a healthy conversation by avoid-
ing emotional cues and miscommunications.
We have adopted a Seq2Seq deep neural net-
work to identify the emotions present in the
text sequences. Several layers namely embed-
ding layer, encoding-decoding layer, softmax
layer and a loss layer are used to map the
sequences from textual conversations to the
emotions namely Angry, Happy, Sad and Oth-
ers. We have evaluated our approach on the
EmoContext@SemEval2019 dataset and we
have obtained the micro-averaged F1 scores as
0.595 and 0.6568 for the pre-evaluation dataset
and final evaluation test set respectively. Our
approach improved the base line score by 7%
for final evaluation test set.

1 Introduction

Emotion identification is a process of identifying
the emotions automatically from different modali-
ties. Several research work have been presented on
detecting emotions from text (Rao, 2016; Abdul-
Mageed and Ungar, 2017; Samy et al., 2018; Al-
Balooshi et al., 2018; Gaind et al., 2019), speech
(Arias et al., 2014; Amer et al., 2014; Lim et al.,
2016), images (Shan et al., 2009; Ko, 2018; Ayvaz
et al., 2017; Faria et al., 2017; Mohammadpour
et al., 2017) and video (Matsuda et al., 2018; Hos-
sain and Muhammad, 2019; Kahou et al., 2016).
Emotion understanding from video may be eas-
ier by analyzing the body language, speech vari-
ations and facial expressions. However, identifi-
cation of emotions from textual conversations is

a challenging problem due to absence of above
factors. Emotions in text are not only identified
by its cue words such as happy, good, bore, hurt,
hate and fun, but also the presence of interjec-
tions (e.g. “whoops”), emoticons (e.g. “:)”), id-
iomatic expressions (e.g. “am in cloud nine”),
metaphors (e.g. “sending clouds”) and other de-
scriptors mark the existence of emotions in the
conversational text. Recently, the growth of text
messaging applications for communications re-
quire emotion detection from conversation tran-
scripts. This helps conversational agents, chat bots
and messengers to avoid emotional cues and mis-
communications by detecting the emotions during
conversation. EmoContext@SemEval2019 shared
task (Chatterjee et al., 2019) goal is to encourage
more research in the field of contextual emotion
detection in textual conversations. The shared task
focuses on identifying emotions namely Angry,
Happy, Sad and Others from conversation with
three turns. Since, emotion detection is a classifi-
cation problem, research works have been carried
out by using machine learning with lexical fea-
tures (Sharma et al., 2017) and deep learning with
deep neural network (Phan et al., 2016) and convo-
lutional neural network (Zahiri and Choi, 2018) to
detect the emotions from text. However, we have
adopted Seq2Seq deep neural network for detect-
ing the emotions from textual conversations which
include sequence of phrases. This paper elabo-
rates our Seq2Seq approach for identifying emo-
tions from text sequences.

2 Related Work

This section reviews the research work reported
for emotion detection from text / tweets (Perikos
and Hatzilygeroudis, 2013; Rao, 2016; Abdul-
Mageed and Ungar, 2017; Samy et al., 2018; Al-
Balooshi et al., 2018; Gaind et al., 2019) and text

318

conversations (Phan et al., 2016; Sharma et al.,
2017; Zahiri and Choi, 2018).

Sharma et al. (2017) proposed a methodology
to create a lexicon - a vocabulary consisting of
positive and negative expressions. This lexicon
is used to assign an emotional value which is de-
rived from a fuzzy set function. Gaind et al. (2019)
classified twitter text into emotion by using tex-
tual and syntactic features with SMO and decision
tree classifiers. The tweets are annotated manually
by Liew and Turtle (2016) with 28 fine-grained
emotion categories and experimented with differ-
ent machine learning algorithms. Results show
that SVM and BayesNet classifiers produce con-
sistently good performance for fine-grained emo-
tion classification. Phan et al. (2016) developed
an emotion lexicon from WordNet. The conver-
sation utterances are mapped to the lexicons and
22 features are extracted using rule-based algo-
rithm. They used fully connected deep neural net-
work to train and classify the emotions. TF-IDF
with handcrafted NLP features were used by Al-
Balooshi et al. (2018) in logistic regression, XG-
BClassifier and CNN+LSTM for emotion classi-
fication. The authors found that the logistic re-
gression performed better than the deep neural net-
work model. All the models discussed above con-
sidered the fine-grained emotion categories and
used the twitter data to create a manually anno-
tated corpus. These models used the rule-based or
machine learning based algorithms to classify the
emotion category.

A new C-GRU (Context-aware Gated Recurrent
Units) a variant of LSTM was proposed by Samy
et al. (2018) which extracts the contextual infor-
mation (topics) from tweets and uses them as an
extra layer to determine sentiments conveyed by
the tweet. The topic vectors resembling an im-
age are fed to CNN to learn the contextual infor-
mation. Abdul-Mageed and Ungar (2017) built a
very large dataset with 24 fine-grained types of
emotions and classified the emotions using gated
RNN. Instead of using basic CNN, a new recurrent
sequential CNN is used by Zahiri and Choi (2018).
They proposed several sequence-based convolu-
tion neural network (SCNN) models with attention
to facilitate sequential dependencies among utter-
ances. All the models discussed above show that
the emotion prediction can be handled using vari-
ants of deep neural network such as C-GRU, G-
RNN and Sequential-CNN. The commonality be-

tween the above models are the variations of RNN
or LSTM. This motivated us to use the Sequence-
to-Sequence (Seq2Seq) model which consists of
stacked LSTMs to predic the emotion labels con-
ditioned on the given utterance sequences.

3 Data and Preprocessing

We have used the dataset provided by EmoCon-
text@SemEval2019 shared task in our approach.
The dataset consists of training set, development
set and test set with 30160, 2755 and 5509 in-
stances respectively. The dataset contains se-
quence id, text sequences with three turns which
include user utterance along with the context, fol-
lowed by emotion class label. The task is to label
the user utterance as one of emotion class: happy,
sad, angry or others. The textual sequences con-
tain many short words. In preprocessing, these
words are replaced with original or full word. We
resort to build a look-up table which replace ‘’m’,
with ‘am’, ‘’re’ with ‘are’, ‘’ere’ with ‘were’,
‘n’t’ with ‘not’, ‘’ll’ with ‘will’, ‘’d’ with ‘would’,
‘what’s’ with ‘what is’ and ‘it’s’ with ‘it is’. The
sequences are converted to lower case. Also, the
three turns/sentences are delimited with “eos” in
the input sequences.

4 Methodology

Seq2Seq model is the most popular model in
learning the target sequence conditioned on the
source sequence. The Seq2Seq model is adopted
to map the sequences of n words with a target la-
bel (n:1 mapping). This model has an embedding
layer, an encoder, a decoder and a projection layer
as shown in Figure 1.

Once the dialogue sentences are preprocessed,
the first three turns of each instance are considered
as the input sequences w1, w2,..,wn, and the cor-
responding label e is considered as the target se-
quence. For example, the given instance “13 Bad
Bad bad! That’s the bad kind of bad. I have no gf
sad” is converted into input sequence “bad eos bad
bad that is the bad kind of bad eos i have no gf”
and target label ”sad”. The input sequences and
the target label are converted into its correspond-
ing word embeddings by the embedding layer. The
vector representation for each word is derived at
embedding layer by choosing a fixed vocabulary
of size V for input sequences and target labels.

Now, the encoder which uses Bi-LSTM, encode
these embeddings into a fixed vector representa-

319

Figure 1: System Architecture

tion s which also represents the summary of in-
put sequences. Once the source sequences are
encoded, the last hidden state of the encoder is
used to initialize the decoder. The projection layer
is fed with the tensors of the target output label.
Given the hidden state ht , the decoder predicts
the label et. However, ht and et are conditioned
on the previous output et−1 and on the summary
s of the input sequence. The projection layer is a
dense matrix to turn the top hidden states of de-
coder to logit vectors of dimension V . Given the
logit values, the training loss is easily minimized
by using standard SGD optimizer with a learn-
ing rate. The model is also trained with the at-
tention mechanism, which computes the attention
weight by comparing the current decoder hidden
state with all encoder states. The detailed descrip-
tion of working principle about Seq2Seq model is
described in (Sutskever et al., 2014).

We have adopted Neural Machine Translation1

code to implement our Seq2Seq deep neural net-
work. Several variations have been implemented
by varying the number of layers, units and atten-
tion mechanisms. It is evident from the earlier
experiments (Sutskever et al., 2014; Thenmozhi
et al., 2018) that bi-directional LSTM performs
better for short text sequences. Hence, we have
used it for encoding and decoding processes. The
models were trained for 30000 steps with drop out

1https://github.com/tensorflow/nmt

Models F1 µ Score
8L SL No split 0.523
8L NB No split 0.527
8L NB TV split 0.5296
8L NB EOS TV split 0.5499
16L NB No split 0.510
16L NB TV split 0.526
16L NB EOS TV split 0.547
32L NB EOS No split 0.531
32L NB EOS TV split 0.5398
2L NB EOS No split 0.544
2L NB EOS TV split 0.595

Table 1: Development Set Micro-avereged F1 Score.

of 0.2. We have utilized two attention wrappers
namely Normed Bahdanau (NB) (Sutskever et al.,
2014; Bahdanau et al., 2014) and Scaled Luong
(SL) (Luong et al., 2015, 2017).

Since, the model was developed using deep
learning technique, it does not require much of
linguistic features such as stemming, case nor-
malization and PoS in identifying the emotion
cue words. These linguistic phenomena could be
captured by the encoder RNNs in sequence-to-
sequence (Seq2Seq) model. The other statistical
features such as the word frequency are also not
considered as input to the model, because the pres-
ence of particular cue alone does not guarantee to
detect emotions in the text.

5 Results

Our approach is evaluated on EmoCon-
text@SemEval2019 data set. During devel-
opment, we have implemented our variations with
and without end of sentence (EOS) delimiter. We
have built the models using entire training set
(No split) and train-validation splits (TV split).
27160 and 3000 instances from training data
were considered as training and validation set
in TV split. The performance was measured in
terms of micro-averaged F1 score (F1µ) for the
three emotion classes namely Angry, Happy and
Sad.

We have submitted eleven runs for EmoCon-
text@SemEval2019 shared task on pre-evaluation
dataset. The results obtained for pre-evaluation
dataset are given in Table 1.

We observe from Table 1 that
Normed Bahdanau attention mechanism per-
forms better than Scaled Luong. Model building

320

Models F1 µ Score
16U TV split 1 0.649422
32U TV split 1 0.416399
64U TV split 1 0.656752
128U TV split 1 0.626124
256U TV split 1 0.581599
16U TV split 2 0.59668
32U TV split 2 0.617944
64U TV split 2 0.618201
128U TV split 2 0.622652
256U TV split 3 0.642144
16U TV split 3 0.611716
32U TV split 3 0.567093
64U TV split 3 0.624924
128U TV split 3 0.655106
256U TV split 3 0.612288

Table 2: Final Evaluation Test Data Micro-avereged F1
Score .

with TV split performs better than the model
without split. The incorporation of delimiter
text EOS also improved the performance of our
approach. Further, the performance degrades
with the increase in number of layers. Thus,
2 layered LSTM with TVsplit, EOS delimiter
and Normed Bahdanau attention mechanism
perform better on the pre-evaluation dataset of
EmoContext@SemEval2019 and this architecture
is considered for evaluating the final-evaluation
test set. The final evaluation submissions are
based upon the variations in TV split ratio and
the number of units as 16, 32, 64, 128 and
256. For TV split 1, the development set (2755
instances) given by EmoContext@SemEval2019
was considered as a validation set. The other two
TV splits are by keeping the validation set as 1/5
(TV split 2) and 1/3 (TV split 3) of training set.
The results of our submissions on final evaluation
test data are given in Table 2. It is observed from
Table 2 that 64U TV split 1 model outperforms
all the other models with 0.656752 F1µ score.
This score is higher than the base line score with
7% improvement. Table 3 shows the class-wise
performance of our models on final evaluation set.
Our models perform better for Angry class than
the other two classes namely Happy and Sad.

6 Conclusion

We have adopted a Seq2Seq deep neural network
to identify the emotions present in the text se-

Models F1 Score
Happy Sad Angry

16U TV split 1 0.619 0.645 0.686
32U TV split 1 0.299 0.550 0.384
64U TV split 1 0.633 0.638 0.695
128U TV split 1 0.606 0.583 0.689
256U TV split 1 0.553 0.566 0.626
16U TV split 2 0.525 0.584 0.684
32U TV split 2 0.537 0.637 0.677
64U TV split 2 0.585 0.615 0.657
128U TV split 2 0.596 0.595 0.676
256U TV split 3 0.609 0.637 0.681
16U TV split 3 0.513 0.641 0.679
32U TV split 3 0.507 0.588 0.607
64U TV split 3 0.552 0.637 0.685
128U TV split 3 0.612 0.664 0.692
256U TV split 3 0.559 0.618 0.657

Table 3: Class-wise F1 Score for Final Evaluation Test
Data.

quences. Our approach is evaluated on the Emo-
Context@SemEval2019 dataset. The input se-
quences are pre-processed by replacing the short
hand notations and by introducing a delimiter
string. The sequence is vectorized using word em-
beddings and given to bi-directional LSTM for en-
coding and decoding. We have implemented sev-
eral variations by changing the parameters namely,
number of layers, units, attention wrappers, with
and without delimiter string and train-validation
split. The performance is measured using micro-
averaged F1 score on three emotion class labels
namely Angry, Happy and Sad. Our experiments
on development set show that 2 layered LSTM
with Normed Bahdanau attention mechanism with
delimiter string and train-validation split performs
better than all the other variations. Three vari-
ations of train-validation split ratio were experi-
mented on final evaluation test data by varying
the number of units with the best parameter val-
ues that are learnt during the development phase.
64U TV split 1 model performs better than all the
other runs we have submitted to the task. This
model shows 7% improvement than the base line
on final evaluation test set. Our Seq2Seq model
can be improved further by incorporating the soft
attention mechanism which uses joint distribution
between attention and output layer (Shankar et al.,
2018).

321

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 718–728.

Hessa AlBalooshi, Shahram Rahmanian, and
Rahul Venkatesh Kumar. 2018. Emotionx-
smartdubai nlp: Detecting user emotions in social
media text. In Proceedings of the Sixth Interna-
tional Workshop on Natural Language Processing
for Social Media, pages 45–49.

Mohamed R Amer, Behjat Siddiquie, Colleen Richey,
and Ajay Divakaran. 2014. Emotion detection in
speech using deep networks. In 2014 IEEE inter-
national conference on acoustics, speech and signal
processing (ICASSP), pages 3724–3728. IEEE.

Juan Pablo Arias, Carlos Busso, and Nestor Becerra
Yoma. 2014. Shape-based modeling of the funda-
mental frequency contour for emotion detection in
speech. Computer Speech & Language, 28(1):278–
294.

Uğur Ayvaz, Hüseyin Gürüler, and Mehmet Osman De-
vrim. 2017. Use of facial emotion recognition in
e-learning systems. Information Technologies and
Learning Tools, 60(4):95–104.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019).

Ana Raquel Faria, Ana Almeida, Constantino Mar-
tins, Ramiro Gonçalves, José Martins, and Frederico
Branco. 2017. A global perspective on an emotional
learning model proposal. Telematics and Informat-
ics, 34(6):824–837.

Bharat Gaind, Varun Syal, and Sneha Padgalwar. 2019.
Emotion detection and analysis on social media.
arXiv preprint arXiv:1901.08458.

M Shamim Hossain and Ghulam Muhammad. 2019.
Emotion recognition using deep learning approach
from audio–visual emotional big data. Information
Fusion, 49:69–78.

Samira Ebrahimi Kahou, Xavier Bouthillier, Pas-
cal Lamblin, Caglar Gulcehre, Vincent Michalski,
Kishore Konda, Sébastien Jean, Pierre Froumenty,
Yann Dauphin, Nicolas Boulanger-Lewandowski,
et al. 2016. Emonets: Multimodal deep learning ap-
proaches for emotion recognition in video. Journal
on Multimodal User Interfaces, 10(2):99–111.

Byoung Ko. 2018. A brief review of facial emotion
recognition based on visual information. sensors,
18(2):401.

Jasy Suet Yan Liew and Howard R Turtle. 2016. Ex-
ploring fine-grained emotion detection in tweets. In
Proceedings of the NAACL Student Research Work-
shop, pages 73–80.

Wootaek Lim, Daeyoung Jang, and Taejin Lee. 2016.
Speech emotion recognition using convolutional and
recurrent neural networks. In 2016 Asia-Pacific Sig-
nal and Information Processing Association Annual
Summit and Conference (APSIPA), pages 1–4. IEEE.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao.
2017. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Yuki Matsuda, Dmitrii Fedotov, Yuta Takahashi, Yu-
taka Arakawa, Keiichi Yasumoto, and Wolfgang
Minker. 2018. Emotour: Multimodal emotion
recognition using physiological and audio-visual
features. In Proceedings of the 2018 ACM Interna-
tional Joint Conference and 2018 International Sym-
posium on Pervasive and Ubiquitous Computing and
Wearable Computers, pages 946–951. ACM.

Mostafa Mohammadpour, Hossein Khaliliardali,
Seyyed Mohammad R Hashemi, and Mohammad M
AlyanNezhadi. 2017. Facial emotion recognition
using deep convolutional networks. In 2017
IEEE 4th International Conference on Knowledge-
Based Engineering and Innovation (KBEI), pages
0017–0021. IEEE.

Isidoros Perikos and Ioannis Hatzilygeroudis. 2013.
Recognizing emotion presence in natural language
sentences. In International conference on engineer-
ing applications of neural networks, pages 30–39.
Springer.

Duc Anh Phan, Hiroyuki Shindo, and Yuji Matsumoto.
2016. Multiple emotions detection in conversation
transcripts. In Proceedings of the 30th Pacific Asia
Conference on Language, Information and Compu-
tation: Oral Papers, pages 85–94.

Yanghui Rao. 2016. Contextual sentiment topic model
for adaptive social emotion classification. IEEE In-
telligent Systems, 31(1):41–47.

Ahmed E Samy, Samhaa R El-Beltagy, and Ehab Has-
sanien. 2018. A context integrated model for multi-
label emotion detection. Procedia computer sci-
ence, 142:61–71.

Caifeng Shan, Shaogang Gong, and Peter W McOwan.
2009. Facial expression recognition based on local
binary patterns: A comprehensive study. Image and
vision Computing, 27(6):803–816.

322

Shiv Shankar, Siddhant Garg, and Sunita Sarawagi.
2018. Surprisingly easy hard-attention for sequence
to sequence learning. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 640–645.

Shikhar Sharma, Piyush Kumar, and Krishan Kumar.
2017. Lexer: Lexicon based emotion analyzer.
In International Conference on Pattern Recognition
and Machine Intelligence, pages 373–379. Springer.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

D Thenmozhi, B Senthil Kumar, and Chandrabose Ar-
avindan. 2018. Ssn nlp@ iecsil-fire-2018: Deep
learning approach to named entity recognition and
relation extraction for conversational systems in in-
dian languages. CEUR, 2266:187–201.

Sayyed M Zahiri and Jinho D Choi. 2018. Emotion de-
tection on tv show transcripts with sequence-based
convolutional neural networks. In Workshops at the
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

323

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 324–329
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SWAP at SemEval-2019 Task 3: Emotion detection in conversations
through Tweets, CNN and LSTM deep neural networks

Marco Polignano
University of Bari A. MORO

Dept. Computer Science
E.Orabona 4, Italy

marco.polignano@uniba.it

Marco de Gemmis
University of Bari A. MORO

Dept. Computer Science
E.Orabona 4, Italy

marco.degemmis@uniba.it

Giovanni Semeraro
University of Bari A. MORO

Dept. Computer Science
E.Orabona 4, Italy

giovanni.semeraro@uniba.it

Abstract

Emotion detection from user-generated con-
tents is growing in importance in the area of
natural language processing. The approach we
proposed for the EmoContext task is based on
the combination of a CNN and an LSTM using
a concatenation of word embeddings. A stack
of convolutional neural networks (CNN) is
used for capturing the hierarchical hidden rela-
tions among embedding features. Meanwhile,
a long short-term memory network (LSTM) is
used for capturing information shared among
words of the sentence. Each conversation
has been formalized as a list of word embed-
dings, in particular during experimental runs
pre-trained Glove and Google word embed-
dings have been evaluated. Surface lexical
features have been also considered, but they
have been demonstrated to be not usefully for
the classification in this specific task. The fi-
nal system configuration achieved a micro F1
score of 0.7089. The python code of the sys-
tem is fully available at https://github.
com/marcopoli/EmoContext2019.

1 Introduction

The task of emotion detection from a text is grow-
ing in importance as a consequence of a large
number of possible applications in personalized
systems. This task can be considered as part of
the sentiment analysis process also if it differs
about the information collected. Sentiment Anal-
ysis aims to detect the polarity (positive, nega-
tive or neutral) about a topic of discussion or a
specific aspect. On the contrary, Emotion Detec-
tion aims to associate an emotional label to textual
content to explicitly understand what is the emo-
tional state of the user while writing it. The fi-
nal user behaviors are strongly influenced by the
emotional state which she is in. Following the
studies of Ekman (Ekman et al., 1987), Plutchik
(Plutchik, 1990), Parrot (Parrott and Sabini, 1990),

and Frijda (Frijda and Mesquita, 1994) some emo-
tions can be considered ”basics” and consequently
more important than others during everyday deci-
sions. Their identification is, therefore, one cru-
cial aspect for applications in commerce, pub-
lic health, disaster management, and trend anal-
ysis (consumer understanding). In the research
area of emotion detection and sentiment analy-
sis, many challenges are organized every for over-
coming the state-of-the-art results. SemEval 1 is
one of the most famous among them and it pro-
vides a large amount of data every year useful for
supporting the research about the topic and com-
monly considered as state-of-the-art. Recently the
best results are obtained by machine learning ap-
proaches (Colneriĉ and Demsar, 2018) based on
recurrent neural networks (long short-term mem-
ory network) (Li and Qian, 2016; Wöllmer et al.,
2010). These algorithms have quickly become
the standard approach for solving the Emotion de-
tection task placing great emphasis on the strate-
gies used for formalizing the training data (Levy
et al., 2015; Goldberg and Levy, 2014) and for op-
timizing hyper-parameters of the algorithms (Vi-
lalta and Drissi, 2002).

2 Background and Related Work

Machine learning, and more recently deep learn-
ing algorithms, have been demonstrated to be the
best option when approaching classification tasks
of contents in natural language (Collobert and
Weston, 2008). Example of state-of-the-art re-
sults have been achieved for hate speech detec-
tion (Zhang et al., 2018), part-of-speech tagging
(Blevins et al., 2018) and name entity recognition
(Chiu and Nichols, 2016; Chen et al., 2018).

Typical emotion detection systems work mostly
with features directly extracted from text (Kao

1http://alt.qcri.org/semeval2019/

324

et al., 2009). A simple vector-space strategy can
often be sufficient for resolving easier tasks, but
it suffers from sparsity and lack of generaliza-
tion. In (Bengio et al., 2003) the author ex-
poses the concept of word embedding summa-
rized as a ”learned distributed feature vector to
represent similarity between words”. This con-
cept has been exploited by Mikolov (Mikolov
et al., 2013b) through word2vec, a tool for im-
plementing work embeddings through two stan-
dard approaches: skip-gram (Guthrie et al., 2006)
and CBOW (Mikolov et al., 2013a). An alterna-
tive word embedding representation is described
in (Pennington et al., 2014) as Glove trained on
global word-word co-occurrence counts and able
to use statistics for producing a word vector space
with meaningful sub-structure. However, the use
of word embeddings enriched with surface lex-
ical features is common in sentiment classifica-
tion algorithms. The relevance of these features
is supported by Mohammad et al. (Mohammad
et al., 2013) that produced the top ranked system at
SemEval-2013 and SemEval-2014 for sentiment
classification of Tweets using emotional lexicons.
Moreover, word and character n-grams, number of
URL, mentions, hashtags, punctuations, word and
document lengths, capitalization, and more are of-
ten used for improving the classification perfor-
mances (Shojaee et al., 2013). A support for a
correct classification is also provided by lexical re-
sources used for look up the sentiment of words
in sentences. Linguistic features include syntactic
information such as Part of Speech (PoS) which
can provide relevant information for formalizing
the syntactical form of the sentence. These as-
pects have been considered in our final classifica-
tion system in order to provide a robust and up-
dated tool for emotion detection from Tweets.

3 The EmoContext task at SemEval 2019

The EmoContext task at SemEval 2019 (Chatter-
jee et al., 2019) 2 aims to understand the emotion
of the last turn expressed by a short dialog com-
posed of three turns extracted from social media.
The training set is composed of 30k records an-
notated with three main emotions: Happy, Sad,
Angry and the ’other’ class that includes all other
not annotated emotions following a data distribu-
tion of respectively 5k, 5k, 5k, 15k. The test set
is composed by 5509 records, 2,95% of the total

2https://www.humanizing-ai.com/emocontext.html

’Happy’ , 2,68% about ’Sad’, and 3,15% of ’An-
gry’ records. The tuning of the systems has been
performed over a ”dev set” composed by 2755
records with a class distribution similar to the one
of the test set. Evaluation has been performed by
calculating micro-averaged F1 score (µF1) for the
three emotion classes, i.e. Happy, Sad and Angry.

4 Classification model

The model of emotion understanding applied in
this study is based on the synergy between two
deep learning classification approaches: the con-
volutional neural networks (LeCun et al., 1989)
(CNN) and the long-short-term memory networks
(LSTM) (Hochreiter and Schmidhuber, 1997).

The conjunct use of a CNN and an LSTM has
been demonstrated to be very efficient with tex-
tual data (Chiu and Nichols, 2016; Ordóñez and
Roggen, 2016). Fig. 1 shows the complete stack of
the classification model for emotion understand-
ing. Data are provided as the input of the model
through a word embedding layer. Each n-gram of
the record has been mapped into a k-dimensional
word embedding vector. The dimension of the
word embedding is different for each strategy of
encoding evaluated, and the length of the record
has been truncated at max 50 tokens. Words not
found in the embedding dictionary have been en-
coded using a randomly selected word. The out-
put of the previous layer has been provided to a
1D convolution layer with 200 filters and a ker-
nel of size 3x3. The activation function used is
the rectified linear unit function (’ReLU’) (Nair
and Hinton, 2010). The output has been down-
sampled by a max pooling layer using a pool size
of 4 along the number of tokens. The output of
dimension 12x200 has been passed as input of a
Bidirectional LSTM layer based, as for the CNN,
on the ReLU activation function. The difference
with a classic LSTM layer is the ability to find
correlation among words in both the directions.
In order to ’flatten’ the results, we used a max
pooling strategy for considering only the highest
value obtained for each slot and each direction.
The resultant 1x400 vector has been provided to
a dense layer without activation function with the
purpose to reduce the dimensionality of the vec-
tor obtained. Finally, another dense layer with a
soft-max activation function has been applied for
estimating the probability distribution of each of
the four classes of the dataset. The model has

325

Figure 1: Model of emotion understanding using CNN
and Bidirectional LSTM.

been trained using the categorical cross entropy
loss function (Goodfellow et al., 2016) and Adam
optimizer (Kingma and Ba, 2014).

5 Data processing

Each discussion in the dataset is provided as a set
of three consecutive turns. We consider the dialog
as a single textual content obtained concatenating
the three turns into a single textual entity. Tex-
tual data have been processed for obtaining surface
lexical features over the whole record. In particu-
lar, we calculate the following:

• Statistics (RStat): number of tokens and
characters; percent of uppercase characters
and special tokens such as numbers, email,
money, phone numbers, date and time, emoti-
cons, stopwords, names, verbs, adverbs,
pronoun; percent of punctuations including
white spaces, exclamation points and word in
a common words English dictionary 3;

• Sentiment (RSent): the polarity of the
record obtained through Stanford CoreNLP
4 and the percent of positive/negative words
analyzed by TextBlob 5;

The textual record has been normalized before
their transformation into word embeddings. We
performed the correction of misspellings and the
stripping of repeated characters using the Ekphra-
sis6 python library. The record has been conse-
quently tokenized using the TweetTokenizer of the

3https://github.com/cbaziotis/ekphrasis
4https://stanfordnlp.github.io/CoreNLP/
5https://textblob.readthedocs.io/en/dev/
6https://github.com/cbaziotis/ekphrasis

”nltk” suite 7 and when required for the word em-
bedding lookup, they have been transformed into
lower case. For each token we calculate, other ex-
tra features:

• Statistics (TStat): percentage upper case
characters; percentage repeated characters,
before the text normalization;

• Sentiment (TSent): sentiment of the token
obtained using TextBlob;

• Sentiment (TLex): part of speech; name en-
tity label; is exclamation mark; is question
mark; is a stopword; is in a dictionary of
common English Words;

The transformation of each token in a word em-
bedding has been performed using the following
pre-trained resources:

• Google word embeddings (GoEmb)8: 300
dimensionality word2vec vectors, case sen-
sitive, composed by a vocabulary of 3 mil-
lions words and phrases that they trained on
roughly 100 billion words from a Google
News dataset;

• Glove (GLEmb):9: 300 dimensionality vec-
tors, composed by a vocabulary of 2.2 mil-
lions words case sensitive trained on data
crawled from generic web pages;

• Sentiment140 positive (SentPosEmb) and
negative (SentNegEmb): word embeddings
created over the tweets annotated in the Sen-
timent140 dataset 10. We used a word2vec
skip-gram strategy over a window of 5 posi-
tions, 30 epochs and considering only words
counted at least five times in the dataset. We
produced two word embeddings (one for pos-
itive tweets and one for negative) of 100 di-
mensionality vectors each case sensitive;

• Generic Tweets (GTEmb): word embed-
dings created over 1.1 million of generic
tweets in English language. As previously,
we used the skip-gram strategy over a win-
dow of 5 positions, 30 epochs min word
count of 5 for obtained 300 dimensionality
vectors case sensitive.

7https://www.nltk.org
8http://mccormickml.com/2016/04/12/googles-

pretrained-word2vec-model-in-python/
9https://nlp.stanford.edu/projects/glove/

10https://www.kaggle.com/kazanova/sentiment140

326

Dimensions Accuracy Precision Recall µ F1
GoEmb 300 0.87005 0.63309 0.53441 0.57958
GoEmb + SentEmb 500 0.87150 0.73141 0.53415 0.61740
GoEmb + GTEmb 600 0.91742 0.71223 0.71016 0.71119
GeEmb + SentEmb + GTEmb 800 0.91070 0.72661 0.68397 0.70465
GLEmb 300 0.87005 0.69304 0.52260 0.59587
GLEmb + SentEmb 500 0.86787 0.69784 0.51871 0.59509
GLEmb + GTEmb 600 0.86896 0.81055 0.53228 0.64258
GLEmb + SentEmb + GTEmb 800 0.88094 0.77697 0.56055 0.65125

Table 1: Results obtained by different formalization of records through word emebeddings.

Dim. Accuracy Precision Recall µF1 diff. µ F1
GoEmb + GTEmb 600 0.91742 0.71223 0.71016 0.71119 -

all Lex features 638 0.85562 0.76627 0.59110 0.66738 -0.0438
- RStat 617 0.89574 0.71411 0.66123 0.68665 -0.0245
- Rsent 632 0.86214 0.73456 0.61756 0.67099 - 0.0401
-TStat 636 0.85146 0.77134 0.56713 0.65365 - 0.0573
-TSent 636 0.85214 0.74840 0.59232 0.66131 - 0.0498
-TLex 631 0.86467 0.78254 0.58713 0.67089 - 0.0402

Table 2: Results obtained by different formalization of records through word emebeddings.

6 Experiments, discussion and results

We began to configure the proposed model point-
ing attention on the strategy to formalize records.
We decided to train our model for 10 epochs for
each run using a batches size equal to 64 on the
train dataset and validating the model on the dev
dataset. For each run, we vary the word embed-
ding formalization. In Tab. 1 are shown the results
that allow us to observe how the concatenation
of Google pre-trained word embeddings (GoEmb)
and the words embeddings obtained by general
tweets (GTEmb) is the most promising for the
classification task in term of micro F1. It is also
important to note that the value of precision ob-
tained by the concatenation of Glove pre-trained
word embeddings (GLEmb) and the GTEmb set
is the higher obtained but very unbalanced with
the recall. This is a clear index of the instabil-
ity of the model. The second step performed in
this tuning phase has been the inclusion of surface
lexical features about the records and every sin-
gle token. In order to understand the influence of
each set of lexical features on the final micro F1
score, we performed an ablation test. The results
in Tab. 2 demonstrate that lexical features, in this
specific classification task and dataset do not con-
tribute positively to the final performances of the
model. As a consequence of this observation, we
decided to do not use them in our model.

Following the goal to make the model robust,
we decided to train it for its final configuration also
on data which comes from the dev set about the

classes Happy, Sad and Angry. Then we trained
the model again for 10 times on 100 epochs, with
a batch size of 64 using GoEmb + GTEmb for data
embeddings with a validation set of 20% of train-
ing data and an early stop when the micro F1 of
the validation would overcome 0.75. We obtained
three final models with micro F1 respectively of
0.7714, 0.8078 and 0.78163. We used these final
models to classify the test set adopting a major-
ity vote algorithm of the predictions. This strategy
has allowed us to reach a final evaluation score of
0.7089 in the final task leader-board.

7 Conclusion

In this work, we proposed a robust emotion de-
tection classifier based on the synergy of a CNN
and an LSTM deep learning algorithm. The model
has been evaluated with different data formaliza-
tion and configurations for finding the one which
better fits the data provided for the EmoCon-
text task at SemEval-2019. Future work will in-
clude the evaluation of other model shapes and
deep learning algorithms in order to increase the
final performances of the system. The source
code is available at https://github.com/
marcopoli/EmoContext2019.

8 Acknowledgment

This research has received funding from the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme under the Marie Sklodowska-
Curie grant agreement N. 691071.

327

References
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Terra Blevins, Omer Levy, and Luke Zettlemoyer.
2018. Deep rnns encode soft hierarchical syntax.
arXiv preprint arXiv:1805.04218.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Guangyu Chen, Tao Liu, Deyuan Zhang, Bo Yu, and
Baoxun Wang. 2018. Complex named entity recog-
nition via deep multi-task learning from scratch.
In CCF International Conference on Natural Lan-
guage Processing and Chinese Computing, pages
221–233. Springer.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357–370.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

Niko Colneriĉ and Janez Demsar. 2018. Emotion
recognition on twitter: Comparative study and train-
ing a unison model. IEEE Transactions on Affective
Computing.

Paul Ekman, Wallace V Friesen, Maureen O’Sullivan,
Anthony Chan, Irene Diacoyanni-Tarlatzis, Karl
Heider, Rainer Krause, William Ayhan LeCompte,
Tom Pitcairn, Pio E Ricci-Bitti, et al. 1987. Uni-
versals and cultural differences in the judgments of
facial expressions of emotion. Journal of personal-
ity and social psychology, 53(4):712.

Nico H Frijda and Batja Mesquita. 1994. The social
roles and functions of emotions.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. 2016. Deep learning, volume 1.
MIT press Cambridge.

David Guthrie, Ben Allison, Wei Liu, Louise Guthrie,
and Yorick Wilks. 2006. A closer look at skip-gram
modelling. In Proceedings of the 5th international
Conference on Language Resources and Evaluation
(LREC-2006), pages 1–4.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Edward Chao-Chun Kao, Chun-Chieh Liu, Ting-Hao
Yang, Chang-Tai Hsieh, and Von-Wun Soo. 2009.
Towards text-based emotion detection a survey and
possible improvements. In Information Manage-
ment and Engineering, 2009. ICIME’09. Interna-
tional Conference on, pages 70–74. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yann LeCun et al. 1989. Generalization and network
design strategies. Connectionism in perspective,
pages 143–155.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Dan Li and Jiang Qian. 2016. Text sentiment anal-
ysis based on long short-term memory. In Com-
puter Communication and the Internet (ICCCI),
2016 IEEE International Conference on, pages 471–
475. IEEE.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 807–814.

Francisco Javier Ordóñez and Daniel Roggen. 2016.
Deep convolutional and lstm recurrent neural net-
works for multimodal wearable activity recognition.
Sensors, 16(1):115.

W Gerrod Parrott and John Sabini. 1990. Mood and
memory under natural conditions: Evidence for
mood incongruent recall. Journal of personality and
Social Psychology, 59(2):321.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

328

Robert Plutchik. 1990. Emotions and psychotherapy:
A psychoevolutionary perspective. In Emotion, psy-
chopathology, and psychotherapy, pages 3–41. Else-
vier.

Somayeh Shojaee, Masrah Azrifah Azmi Murad,
Azreen Bin Azman, Nurfadhlina Mohd Sharef, and
Samaneh Nadali. 2013. Detecting deceptive reviews
using lexical and syntactic features. In Intelligent
Systems Design and Applications (ISDA), 2013 13th
International Conference on, pages 53–58. IEEE.

Ricardo Vilalta and Youssef Drissi. 2002. A perspec-
tive view and survey of meta-learning. Artificial In-
telligence Review, 18(2):77–95.

Martin Wöllmer, Angeliki Metallinou, Florian Eyben,
Björn Schuller, and Shrikanth Narayanan. 2010.
Context-sensitive multimodal emotion recognition
from speech and facial expression using bidirec-
tional lstm modeling. In Proc. INTERSPEECH
2010, Makuhari, Japan, pages 2362–2365.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on twitter using a
convolution-gru based deep neural network. In Eu-
ropean Semantic Web Conference, pages 745–760.
Springer.

329

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 330–334
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SymantoResearch at SemEval-2019 Task 3: Combined Neural Models for
Emotion Classification in Human-Chatbot Conversations

Angelo Basile∗, Marc Franco-Salvador∗, Neha Pawar∗, Sanja Štajner∗,
Mara Chinea Rios, and Yassine Benajiba

Symanto Research, Nürnberg, Germany
{angelo.basile, marc.franco, neha.pawar, sanja.stajner,

mara.chinea, yassine.benajiba}@symanto.net

Abstract

In this paper, we present our participation to
the EmoContext shared task on detecting emo-
tions in English textual conversations between
a human and a chatbot. We propose four neu-
ral systems and combine them to further im-
prove the results. We show that our neural
ensemble systems can successfully distinguish
three emotions (SAD, HAPPY, and ANGRY),
and separate them from the rest (OTHERS) in
a highly-imbalanced scenario. Our best sys-
tem achieved a 0.77 F1-score and was ranked
fourth out of 165 submissions.

1 Introduction

Detecting emotions in text is a key task in many
scenarios, such as social listening, personalised
marketing, customer caring, or in building emo-
tionally intelligent chat-bots: in this last case, the
task complexity increases, since a bot’s response
might influence the user’s emotion.

The EmoContext shared task (Chatterjee et al.,
2019) was posed as a sequence classification task.
Given a set of three conversational turns (human–
bot–human), the goal is to predict the emotion
of the third turn. The label space contains the
emotions SAD, ANGRY and HAPPY, and the la-
bel OTHERS denoting anything else (emotional or
non-emotional), as illustrated in Table 1.

In this paper, we present our approaches to
EmoContext shared task, and describe our best
system in details. Additionally, we show that: (a)
this task is very difficult even for humans (Sec-
tion 2.2); (b) for this task, neural approaches out-
perform a strong non-neural baseline (Section 4);
(c) an ensemble of neural systems with differ-

∗* The first four authors have contributed equally to this
work and are ordered alphabetically.

ent architectures significantly outperforms the best
neural model in isolation (Section 4).

2 Data

The data released by the organisers consist of En-
glish user-chatbot interactions occurring in an In-
dian chat room. An overview of the dataset is
provided in Table 2. It can be seen that the la-
bel distribution is highly imbalanced, and different
for the training set than for the development (dev)
and test sets (a 14:18:18:50 distribution for the
training set, and a 5:5:5:85 distribution for the dev
and test sets). To overcome this issue we tested
three strategies: (1) down-sampling the dataset to
its smallest class; (2) up-sampling the emotion-
related labels with an in-house dataset; and (3)
up-sampling by duplicating a random portion of
the dataset. None of these solutions worked, and
therefore, we trained our best models using the
data provided by the organisers.

2.1 Preprocessing

The language of this corpus presents many of the
features of micro-blogging language: large use of
contractions (e.g. I’m gonna bother), elongations
(e.g. a vacation tooooooo!), non-standard use of
punctuation (e.g. gonna explain you later..!), in-
correct spelling (e.g. U r).

To properly handle this language, we build
a simple preprocessing pipeline which consists
of: (1) the NLTK TweetTokenizer (Bird and
Loper, 2004); and (2) a normalisation strategy
that reduces sparseness by lowercasing all the
words and converting elongations like looool to
lol. These steps are used in all the experiments.
Some of our models use additional preprocessing
described further in the text.

330

ID TURN 1 TURN 2 TURN 3 LABEL

71 Not good :(why not..? Been sick for one week SAD

78 I hate Siri and it’s friends if you hate them , they are not your friends then xD Yeah and u r Siri’s friend so I hate utoo ANGRY

91 Now I’m doing my dinner I can see you! How can you see me?? OTHERS

140 How about you tired of life or just your day? Aha I’ happy today, thanks for asking Wow great..! HAPPY

Table 1: Examples from the training dataset.

CLASS TRAIN DEV TEST

SAD 5463 125 250
HAPPY 4243 142 284
ANGRY 5506 150 298
OTHERS 14948 2338 4677

total 30160 2755 5509

Table 2: Distribution of classes.

2.2 Manual Validation
To check how difficult this task is, for a trained hu-
man annotator, and get an estimate of the expected
upper limit for our classification models, we asked
two fluent (but non-native) English speakers with
previous annotation experience to label 300 ran-
domly selected instances from the dev set. The
annotators achieved the official F1-score of 0.73
and 0.72 against the ‘gold’ labels, and a 0.71 F1-
score among themselves. The only observed mis-
classifications between “emotional” classes were
those between SAD and ANGRY. The highest num-
ber of disagreements the annotators had was be-
tween the OTHERS and the “emotional” classes.
This showed that: (1) the task is naturally diffi-
cult (the trained human annotators reach 0.73 F1-
score at the most); (2) the main problem is distin-
guishing between the OTHERS class and the “emo-
tional” classes.

3 Experimental Setup

We first randomly selected two times 2754 in-
stances from the official training set, maintaining
the class ratio that was announced for the offi-
cial dev and test sets (4:4:4:88) resulting in 110
instances for the SAD, ANGRY and HAPPY, and
2424 instances for the OTHERS class. These two
datasets we refer to as intDev and intTest sets,
while the rest of the training dataset we refer to
as intTrain.

We train and tune our four neural models (Sec-
tion 3.1) using intTrain and intDev sets, and test
them on the intTest, and the official dev and test
sets (in different phases of the competition). We
further experiment with combining their softmax
output per class probabilities (Section 3.2).

- other
- emotional

Dense
(Softmax)

Bi-LSTM
Embedding

Layer

Concat.
(T1,T2,T3)

Attention
Dense
(LReLU)

Dense
(Softmax)

- other
- angry
- happy
- sad

Dense
(LReLU)

Bi-LSTM
Embedding

Layer Bi-LSTM

T1
T2
T3

Attention
Dense

(Softmax)
Dense
(ReLU)

Dense
(ReLU)

Concat.

- other
- angry
- happy
- sad

Th
re

e
-i

n
p

u
t

m
o

d
el

Tw
o

-o
u

tp
u

t
m

o
d

el

Figure 1: Model architectures for the three-input (IN3)
and two-output (OUT2) models.

As a strong non-neural baseline we set up a lin-
ear SVM model with word and character n-grams
(1-6) as features.1

3.1 Neural Models

We propose four neural network models that
slightly differ on their objective.

3.1.1 Three-Input Model (IN3)
Having the three conversation turns (T1, T2, and
T3), we explicitly represent the position of each
sequence in the conversation by creating an in-
put branch for each turn. The branches are identi-
cal and represent the text using word embeddings
that feed a 2-layer bidirectional Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997). An attention mechanism (Yang et al., 2016)
combines its hidden states. This architecture al-
lows to independently process and attend to the
most relevant parts of T1, T2, and T3. The in-
formation is later combined by a simple concate-
nation and few fully connected dense layers. The
model architecture is shown in Figure 1.

We use a proprietary model c© Symanto Re-
search to obtain 300-dimensional word embed-
dings on the English Wikipedia. The performance

1For the implementation of the baseline we use
scikit-learn (Pedregos et al., 2011). All the neural
models are based on Tensorflow (Abadi et al., 2016), and
for the ensemble models we use Weka (Hall et al., 2009).

331

of this representation is comparable with fastText
(Bojanowski et al., 2017) but the resulting em-
bedding model is fifty times lighter. We apply
10% dropout on the output of the embedding and
concatenation layers, and layer normalisation (Ba
et al., 2016) after the concatenation and before the
output softmax.

3.1.2 Two-Output Model (OUT2)
Motivated by the findings of the manual validation
(Section 2.2), we build this model in an attempt
to ease the emotional vs. OTHERS classification.
For this reason, we use a multi-task learning ap-
proach and add an auxiliary output whose label
space conflated the ANGRY, HAPPY, and SAD la-
bels into a single emotional one. We hypothesise
that this approach is well suited to our unbalanced
scenario, with the dominant OTHERS class.

The model architecture is similar to our three-
input one (see Figure 1). However, the three con-
versational turns (T1, T2, and T3) are fed to the
model as a single concatenated input, with addi-
tional tokens to mark the turn boundaries. The
auxiliary output is connected to the output of the
attention. This forces the attention weights to
favour the emotional vs. OTHERS task.

We use the pretrained word embeddings de-
scribed in Section 3.1.1. Our dense layers use
the leaky version (LReLU) of the Rectified Linear
Unit (ReLU) activation. In addition, we use the at-
tention mechanism (He et al., 2017). Finally, we
use the batch normalisation (Ioffe and Szegedy,
2015) to process the attention output.

3.1.3 Sentence-Encoder Model (USE)
As an exploration in transfer-learning, we build
a simple feed-forward network together with a
fine-tuned Universal Sentence Encoder (Cer et al.,
2018). As input, we use the first (T1) and the last
(T3) turn of the conversation, as we observed that
adding the second turn (T2) leads to lower perfor-
mances of this model.

3.1.4 BERT Model (BERT)
We fine-tune a BERT-base model (Devlin et al.,
2018), modelling the problem as a sentence-pair
classification problem: we use the first and the
third conversational turn (T1 and T3) as the first
and the second sentence respectively, completely
ignoring the utterance by the bot (T2). We use this
model in combination with a lexical normalisation
system (van der Goot and van Noord, 2017).

We also built a neural model combining BERT,
IN3, and OUT2, but it resulted in lower perfor-
mance than any of those models separately, and is
thus not presented here.

3.2 Ensemble Models

As we noticed that our neural systems have differ-
ent strengths and weaknesses on the “emotional”
classes (see Table 4), we combine them by us-
ing the softmax output probabilities of each class
from all four models (16 features in total) and
training several classification algorithms: Naı̈ve
Bayes (John and Langley, 1995), Logistic Regres-
sion (le Cessie and van Houwelingen, 1992), Sup-
port Vector Machines (Keerthi et al., 2001) with
normalization (SVM-n) or standardization (SVM-
s), JRip rule learner (Cohen, 1995), J48 (Quinlan,
1993), Random Forest (Breiman, 2001), and vari-
ous meta-learners on top of them or their subsets.

The neural systems are trained and tuned on the
intTrain and intDev sets, and their per class prob-
abilities are obtained for the intTest, dev, and test
sets. The ensemble models are then trained on the
intTest+dev set and tested on the official test set.
For this second classification stage, we thus have
5509 instances for training (intTest+dev) and 5509
for testing (the official test set).

4 Results

We evaluate our systems using precision (P) and
recall (R) per each emotional class, and the micro
F1-score over the three “emotional” classes (the
metric used by the task organisers for the official
evaluation). The results for the baseline and the
four neural systems are presented in Table 4. The
results of the best ensemble models (trained on the
per class probabilities of the four neural models)
are presented in Table 5. We can notice that:

(1) Our best neural system (IN3) reaches .73 on
the intTest set and .72 on the official test set.

(2) All our neural systems have a noticeably
higher recall on the HAPPY and SAD classes on the
intTest set than on the official dev and test sets.

(3) Our two best neural systems (IN3 and
OUT2) have a noticeably lower precision on the
HAPPY and SAD classes on the intTest set than on
the official dev and test sets.

(4) Ensemble models reach .77 for three classi-
fication algorithms in the 10-fold cross-validation
setup on the intTest+dev set, and that score is
maintained on the official test set only by SVM.

332

ID TURN 1 TURN 2 TURN 3 GOLD OUR

388 Ok... No problem ok i hope what you stay ok, be safe:) Fuck off OTHERS ANGRY

4035 Am so pissed one had been there for A MONTH I’m so pissed SAD ANGRY

4129 yes. tomorrow :D Yay, you. hehehe gives sly smirk OTHERS HAPPY

397 What madness r u speaking abt? what language do u think I’m speaking English?? HAPPY OTHERS

1640 You don’t have it from outside You have form the inside? Are you a sock? ?? ANGRY OTHERS

253 wt u mean I mean rest if the year ???? SAD OTHERS

Table 3: Error analysis on the official test set.

SYSTEM TEST
SAD ANGRY HAPPY

F
P R P R P R

OUT2 int .66 .90 .67 .87 .55 .84 .73
dev .75 .78 .65 .78 .62 .77 .72
test .71 .82 .64 .76 .65 .74 .71

IN3 int .68 .92 .68 .84 .53 .88 .73
dev .71 .78 .67. .81 .61 .76 .72
test .70 .78 .67 .81 .62 .76 .72

USE int .65 .84 .44 .93 .50 .89 .65
dev .68 .78 .47 .92 .56 .78 .66
test .68 .76 .48 .92 .58 .76 .66

BERT int .59 .92 .48 .92 .47 .88 .65
dev .61 .82 .51 .91 .50 .70 .64
test .59 .82 .54 .89 .51 .74 .65

baseline int .51 .89 .47 .85 .46 .81 .60
dev .57 .78 .47 .86 .54 .77 .63
test .55 .82 .48 .90 .52 .70 .63

Table 4: Results of our four neural systems and the
strong non-neural baseline on the intTest (int), and the
official development (dev) and test (test) sets.

SYSTEM TEST
SAD ANGRY HAPPY

F
P R P R P R

Logistic CV .81 .81 .76 .80 .72 .73 .77
test .83 .76 .74 .77 .77 .64 .75

SVMn CV .81 .83 .74 .80 .66 .76 .77
test .82 .80 .73 .79 .75 .72 .77

RanForest CV .82 .82 .81 .73 .73 .67 .76
test .83 .76 .77 .72 .80 .63 .75

Table 5: Results of our best ensemble models in a 10-
fold cross-validation setup on intTest+dev (CV), and
training on intTest+dev and testing on test set. Our best
system submitted to the competition is marked in bold.

5 Error Analysis

The confusion matrix for our best system is given
in Figure 2. The highest number of confusions is
between the HAPPY and OTHERS classes, followed
by confusions between the ANGRY and OTHERS.

Given the findings of our manual validation
(Section 2.2), we performed an additional exper-
iment. All instances for which our best system did
not predict the gold label (355 instances), we pre-

Figure 2: Confusion martix for the best model.

sented to one of our annotators together with its
gold and predicted labels (in random order), and
asked him to choose the correct one, or assign a
NOT SURE label. The annotator chose the label
predicted by our system in 46% of the cases, the
gold label in 39% of the cases, and in 15% of the
cases the annotator was not sure. Several examples
of instances for which the predicted label did not
match the “gold” label are presented in Table 3.

6 Conclusions

We presented our most successful approaches to
the EmoContext shared task, with the goal of pre-
dicting the emotion (SAD, HAPPY, ANGRY, or
OTHERS) in the third turn of a human–chatbot-
human interaction, with an additional challenge of
having a very unbalanced distribution of classes.

We showed that the task is difficult even for
trained human annotators, and that our best neu-
ral systems can reach the human performance (.72
F-measure). Furthermore, we showed that a SVM
classifier trained on the softmax output per class
probabilities of four different neural systems can
improve results scoring a .77 F1-measure over
the three emotional classes, and reaching thus the
fourth place in the official competition.

333

References

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} Symposium
on Operating Systems Design and Implementation
({OSDI} 16), pages 265–283.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Leo Breiman. 2001. Random Forests. Machine Learn-
ing, 45(1):5–32.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Saskia le Cessie and Johannes C. van Houwelingen.
1992. Ridge Estimators in Logistic Regression. Ap-
plied Statistics, 41(1):191–201.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

William W. Cohen. 1995. Fast Effective Rule Induc-
tion. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 115–123.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Rob van der Goot and Gertjan van Noord. 2017.
Monoise: Modeling noise using a modular normal-
ization system. arXiv preprint arXiv:1710.03476.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: an update.
SIGKDD Explor. Newsl., 11:10–18.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2017. An unsupervised neural attention
model for aspect extraction. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 388–397.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

George H. John and Pat Langley. 1995. Estimating
Continuous Distributions in Bayesian Classifiers. In
Proceedings of the Eleventh Conference on Uncer-
tainty in Artificial Intelligence, pages 338–345.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and
K. R. K. Murthy. 2001. Improvements to Platt’s
SMO Algorithm for SVM Classifier Design. Neu-
ral Computation, 13(3):637–649.

Fabian Pedregos, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Ross Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, San Ma-
teo, CA.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Appendix A: Model Parameters

Three-input model parameters: 20k most fre-
quent tokens per branch, maximum text length of
25, 1024 LSTM units per layer, 300-dimensional
dense layers, batch size of 128, 15 training epochs,
and the Adam weight optimization.

Two-output model parameters: 20k most fre-
quent tokens, maximum text length of 100, 300
LSTM units, batch size of 128, dense layer sizes
of 300 and 150 (respectively), 10 training epochs,
and the Adam weight optimization.

334

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 335–339
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

TDBot at SemEval-2019 Task 3: Context Aware Emotion Detection Using
A Conditioned Classification Approach

Sourabh Maity
Teradata India Pvt. Ltd.

Hyderabad, India
sourabh.maity@teradata.com

Abstract

This paper presents the system developed
to detect the contextual emotion (SemEval19
Task 3 (Chatterjee et al., 2019)) from con-
versational dialogue. The system models the
fact that emotion of a dialogue depends on the
context of the conversation and not indepen-
dent. It uses multiple layers in the deep learn-
ing model where each layer bootstraps with
the context of what has already been said in
the conversation.

1 Introduction

Over the years, we are getting more and more
comfortable in text based conversations over the
web, leading to increased interest in emotion anal-
ysis. Such a conversation is no longer limited be-
tween humans, it is now mainstream to use chat
bots at various domains, e.g., customer care, HR
management, virtual doctor etc.
Needless to say that in a conversation human emo-
tions needed to be handled with care and empa-
thy. Due to this, the task of emotion detection
is very important when our aim to use chat bots
and voice assistants more effectively. It is more
difficult when the conversation is text based, lack
of facial expressions and voice modulations make
detecting emotions in text a challenging problem
(Gupta et al., 2017).
In this SemEval19 Task 3 there were total three
turns of dialogues; turn1 and turn3 were spoken
by one participant of the conversation and turn2
was spoken by another participant as a reply of
turn1. We are tasked to detect the emotion of
turn3. So, turn1 and turn2 act as context for turn3.
There are four different emotions in the data set,
namely, happy, sad, angry and others. The prob-
lem is modeled as a four class classification prob-
lem where each of the emotions listed above is the
target class.

2 System Description

2.1 Preprocessing

This section describes the preprocessing steps of
the system. Few of the steps are standard; the steps
are just mentioned and are not discussed in detail.
Rather the steps which are critical for the perfor-
mance in the task are discussed in detail. Standard
steps are: converting all letters to lower case, re-
moving numbers, removing white spaces, remov-
ing stop words, sparse terms and particular words.
The most important preprocessing steps are:
Expanding abbreviations: In chat data there are
infinite number of possible abbreviations or short-
hand uses, most of which are not standard. Those
abbreviations can not be left in the data set as is,
because there are no embedding for those. In my
system , it is chosen to expand the top 10% of such
abbreviations and others are ignored. For this, I
created a map of abbreviation to expansion manu-
ally by inspecting the data set.
Few examples: lol → laugh out loud, ur → you
are etc.
Handling emojis: Emojis are the single most im-
portant piece of information in chat data. In most
of the cases it is a huge clue about the emotion
of the party in conservation. I had two options to
handle emojis, one, to use some kind of embed-
ding (Eisner et al., 2016) for emojis; two, convert
emojis into text and then use word embedding. I
chose to convert emojis into text; partly because
of the robust performance of the word embeddings
and partly because of lack of a proven quality em-
bedding for emojis. Also, this conversion made
the weight of evidence feature (see section 2.2.2)
more effective.
Examples: → beaming face with smiling eyes,
→ sad face etc.

But, a conversion scheme shown in the above ex-
amples leads to infiltration of words like face,
with. To avoid this, I created a list of stop-words

335

and removed those from the expanded text. With
this modification the above examples will look
like:
→ beaming smiling eyes, → sad.

2.2 Features

There were mainly two features, word embedding
and weight of evidence. Each word in the con-
versation is embedded into a 300 dimensional em-
bedding space and for each turn the weight of ev-
idence is computed. I intentionally refrained my-
self from using any sentence encoder like BERT
(Devlin et al., 2018) or ELMo (Peters et al., 2018),
as I wanted to explore the lower level embedding
of words rather than using sentence embeddings as
back boxes.

2.2.1 Word Embeddings

In the system, word embeddings are created as an
average of three word vectors, GloVe (Pennington
et al., 2014), FastText (Bojanowski et al., 2016)
and Paragram (John Wieting and Livescu, 2015).
I used 300 dimensional word embeddings. The
embedding vocabulary could cover ∼85% of the
data set vocabulary (unique words in the data set)
which in turn covered ∼97% of the entire text of
the data set.

2.2.2 Weight of Evidence

Weight of evidence (WOE) is a measure of how
much the evidence supports or undermines a hy-
pothesis. Here the intention is to weigh the evi-
dence of each word in determining the emotion of
the conversation. WOE is defined as:

WOEword,event = ln

Nnon−event
word

Ntotalnon−event
word

Nevent
word

Ntotalevent
word

where,
Nnon−event

word : number of other class records that
has the word
N totalnon−event

word : total number of other class
records
N event

word : number of records of the class that has
the word
N totalevent

word : total number of records of the class

Top 1000 most common words for each of
the emotion classes were collected and then their
WOE is computed for each of the four emotion

classes. In the example below the words are rep-
resented by four dimensional vector, those dimen-
sions belong to the four emotion classes.

WOEword,event
Word

smiling sad
WOEword,happy 0.9 0.2
WOEword,sad 0.1 0.8
WOEword,angry 0.2 0.1
WOEword,others 0.6 0.5

Table 1: WOEword,event for words.

For each turn I add up the WOE vectors of the
words in that turn. So, each turn also has a WOE
embedding of four dimensions. This embedding is
fed into the model as an auxiliary feature. When
emojis were converted into text, the WOE vec-
tor of the words explaining an important emoji re-
flected the emotion nicely. Also, when an emoji is
used multiple times, its effect is multiplied into the
WOE embedding of the turn. For example, “

” in a turn produces the below WOE embed-
ding:

WOEword,event turn =
WOEsmiling,happy 2.7
WOEsmiling,sad 0.3
WOEsmiling,angry 0.6
WOEsmiling,others 1.8

Table 2: WOE embedding for turn “ ”.

Please note that “ ” was first converted
into text as: beaming smiling eyes beaming smil-
ing eyes beaming smiling eyes. In the above ta-
ble WOE vector for the word ”smiling” is shown.
Similar exercise can be done for other words.

2.3 Deep Learning Model
Given the turns of a conversation, the target emo-
tion label can be modeled in different ways. One,
model the target label based on turn3 only. Two,
Consider all the turns as one single input of text
(may be separated by EOS tokens) and from this
learn the target label. But, none of the options are
truly context aware. Construction of my model is
based on the idea that every turn in a conversa-
tion builds on top of the previous turn. Also this
task is treated as a multi-class classification prob-
lem where each emotion is treated as individual
classes.
At the core of the system are three bi-directional

336

(Schuster and Paliwal, 1997) Gated Recurrent
Unit (GRU) (Cho et al., 2014) layers, one each
for the three turns in the conversation. Second and
third layer are derived from their immediate pre-
vious layer. This is achieved by using the hidden
states of a turn GRU layer to initialize the subse-
quent turn’s GRU layer. Hence, when turn three
layer starts with the hidden state of turn two layer
which has already summarized the context of the
ongoing conversation, it is building on top of the
existing context. I see it as each layer is condi-
tioned on the what has already been conversed be-
fore it. Used model is depicted in Figure 2. Then
the additional features, i.e., theWOE values were
introduced into the model by concatenating with
the intermediate latent representation of the con-
versation.

2.3.1 Gated Recurrent Unit: GRU
A GRU unit (in Figure 1) can be represented by
the following equations:

zt = σ
(
xtU

z + ht−1W
z
)

rt = σ
(
xtU

r + ht−1W
r
)

h̃t = tanh
(
xtU

h + (rt ∗ ht−1)W
h
)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

Here r is the reset gate, and z is the update gate.
Intuitively, the reset gate determines how to com-
bine the new input with the previous memory, and
the update gate defines how much of the previous
memory to keep. And ht is the new hidden state.

Figure 1: Gated Recurrent Unit. Figure adapted from
(Olah, 2015).

2.3.2 Class Weights
The given data set is not well balanced (see
Table 4 for details). To combat this issue I used

class weights for weighting the loss function,
in a way it is to say the model which class to
concentrate on. A balanced class weight is used
to automatically adjust weights to be inversely
proportional to class frequencies in the input
training data. Weight of a class ci is given by:

weightci =
n samples

n class× n samplesci

Where,
n samples: total number of data sample
n class: number of class present
n samplesci : number of samples of class ci
The class weights that were used are listed in Ta-
ble 3.

class class weights

angry 2.145
happy 0.841
sad 1.085

others 0.702

Table 3: class weights for the input classes.

2.4 Data Description

We were provided 48544 data points to train our
model. The class representations are shown in
Table 4. It can be clearly seen that the data is
highly imbalanced. This imbalance is handled by
using weighted loss function and by fine tuning the
model based on the micro-averaged f1 score (see
section 2.5 for details).

Label # data points
angry 5656
happy 14426
sad 11176

others 17286

Table 4: Class representation in training data.

2.5 Training Details

Data set is split (90 : 10) into train and valida-
tion. For class representation in the whole data
set please see Table 4. In validation data gener-
ation, the proportion of class representation was
kept similar to the data set. Table 5 shows the data
split details.

I trained the model on the training data set and
fine-tuned on the validation data set based on the

337

Figure 2: The deep learning model used in the system.

#Label Training Validation
#angry 5091 565
#happy 12983 1443

#sad 10058 1118
#others 15557 1729

Table 5: Class representation in training and validation
data.

micro-F1 score. Since the data set is highly unbal-
anced, a weighted categorical cross-entropy loss
is used, see Table 1 for the class weights. Adam
(Kingma and Ba, 2015) optimizer is used with
a learning rate of 0.001 and batch size of 128.
Learning rate was decreased by 15% after each 3
epochs. Hidden state size of 256 is used for the bi-
GRU gates. All the dense layers are of dimension
128 and a dropout of 0.5 is used for all of those.

3 Results

Here the detailed result of the system performance
is presented. The performance shown in Table 6 is
on the test data set.

label precision recall f1-score support
others 0.96 0.91 0.94 4677
happy 0.56 0.74 0.64 284
sad 0.61 0.80 0.69 250
angry 0.60 0.81 0.69 298

Table 6: System performance details

In the task the evaluation metric is micro-
averaged F1 score only for the three emotion
classes happy, sad and angry. Table 7 shows the

confusion matrix of different classes.

label others happy sad angry

others 4246 162 119 150
happy 69 211 4 0
sad 36 3 200 11
angry 52 0 5 241

Table 7: Confusion matrix.

Precision and recall values for happy, sad and
angry classes are 0.783653 and 0.589511 respec-
tively. My system score is 0.6729 thereby beats
the baseline (score 0.5868) convincingly.

4 Conclusion

With the system it is shown how to use the con-
text information while detecting the emotion in a
dialogue. Some guidelines about how to handle
emojis is also laid out. While developing this sys-
tem I realized the importance of pre-processing in
conversational text data, or in general NLP related
tasks; it can not be over emphasized.

Acknowledgments

I want to thank my mentors at Teradata, Ramesh
Bhashyam and C Jaiprakash for the never ending
support and to my teammates Lovlean Arora and
Naveen TS for all the engaging discussions we
had.
I want to apologize to my wife Samarpita, for all
the weekend plans which were cancelled due to
me working on TDBot. I promise to make up for
those!

338

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota, USA.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bosnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. CoRR, abs/1609.08359.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Kevin Gimpel John Wieting, Mohit Bansal and Karen
Livescu. 2015. From paraphrase database to com-
positional paraphrase model and back. volume 3,
pages 345–358.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Christopher Olah. 2015. Understanding lstm net-
works. http://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Online;
visited 29/03/2019.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Sig-
nal Processing, 45:2673–2681.

339

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 340–344
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

THU NGN at SemEval-2019 Task 3: Dialog Emotion Classification using
Attentional LSTM-CNN

Suyu Ge , Tao Qi , Chuhan Wu , Yongfeng Huang
Department of Electronic Engineering, Tsinghua University Beijing 100084, China
{gesy17,qit16,wuch15,yfhuang}@mails.tsinghua.edu.cn

Abstract
With the development of the Internet, dialog
systems are widely used in online platforms to
provide personalized services for their users.
It is important to understand the emotions
through conversations to improve the qual-
ity of dialog systems. To facilitate the re-
searches on dialog emotion recognition, the
SemEval-2019 Task 3 named EmoContext is
proposed. This task aims to classify the emo-
tions of user utterance along with two short
turns of dialogues into four categories. In
this paper, we propose an attentional LSTM-
CNN model to participate in this shared task.
We use a combination of convolutional neural
networks and long-short term neural networks
to capture both local and long-distance con-
textual information in conversations. In ad-
dition, we apply attention mechanism to rec-
ognize and attend to important words within
conversations. Besides, we propose to use
ensemble strategies by combing the variants
of our model with different pre-trained word
embeddings via weighted voting. Our model
achieved 0.7542 micro-F1 score in the final
test data, ranking 15th out of 165 teams.

1 Introduction

The analysis of emotions in dialog systems where
limited number of words appear with strong se-
mantic relations between them deserves special
attention in domain of natural language process-
ing (NLP) due to both interesting language nov-
elties and wide future prospects (Gupta et al.,
2017). By analyzing the emotions through conver-
sations, service providers can design better chat-
ting strategies according to users’ emotion pat-
terns, which can improve user experience. There-
fore, SemEval-2019 task 3 (Chatterjee et al., 2019)
aims to call for research in this field. Given a tex-
tual dialogue, i.e., a user utterance along with two
turns of context, systems need to classify the emo-
tion of user utterance into four emotion classes:
happy, sad, angry or others.

The field of sentiment analysis has been ex-
tensively studied. For example, SemEval-2018
Task 2 (Barbieri et al., 2018) once called for the
study on relevance between tweet texts and emo-
jis. However, understanding textual conversations
is challenging in absence of voice modulations and
facial expressions, which participants at this task
are asked to deal with. Apart from diminishing the
negative impact caused by class size imbalance,
ambiguity, misspellings and slang, their systems
should mainly focus on capturing the intricate in-
terplay between two turns of conversations.

Traditional sentiment analysis requires a lot of
feature engineering, such as n-grams and features
extracted from sentiment lexicons (Mohammad
and Turney, 2013; Kiritchenko et al., 2014a), and
then feed them into a classifier such as Support
Vector Machines (SVM) (Bollen et al., 2011; Kir-
itchenko et al., 2014b). However, manual feature
engineering usually needs a large amount of do-
main knowledge. With the rapid development and
ambiguity of social dialogues, these feature en-
gineering strategies fade gradually and begin to
be supplanted by neural networks (Tang et al.,
2015; İrsoy and Cardie, 2014; Wang et al., 2016),
which usually take word embeddings as inputs
to incorporate rich semantic and syntactic infor-
mation (Collobert and Weston, 2008). However,
dialog emotion analysis is still very challenging,
since dialog conversations can be very noisy and
informal. In addition, the emotions evoked by con-
versations are usually highly context-dependent.

In this work, we propose an end-to-end atten-
tional LSTM-CNN network as a unified model
without hand-crafted features. In our approach,
we use a combination of LSTM and CNN to cap-
ture both local and long-distance information. We
use attention mechanism to select important words
to learn more informative word representations.
In addition, we use a data balancing method by
setting a cost-sensitive loss function for training.

340

Besides, we use ensemble strategies by using a
combination of the variants of our model with dif-
ferent pre-trained word embeddings. Our model
achieved 0.7542 micro-F1 score on the test set,
and extensive experiments validate the effective-
ness of our approach. The source code can be
found in our repository on github.1

2 Our Approach

The framework of our attentional LSTM-CNN
model is illustrated in Figure 1. Each layer of net-
work is introduced from bottom to top in the fol-
lowing sections.

Figure 1: The architecture of our attentional LSTM-
CNN model, the output is generated by soft voting en-
semble after the softmax layer.

2.1 Word Embeddings

The first layer is a word embedding layer, which
aims to convert the sequence of words in conversa-
tions into a low-dimensional vector sequence. We
harness three types of pre-trained word embed-
dings, i.e., word2vec-twitter (Godin et al., 2015),
pre-trained ekphrasis (Baziotis et al., 2017) vec-
tors and GloVe (Pennington et al., 2014), to ini-
tialize the word embedding matrix.

1github.com/gesy17/Semeval2019-Task3-Emocontext

2.2 Bi-LSTM Layer
Considering the close relevance between two turns
of dialogues, we use Bi-LSTM as encoder to cap-
ture abstract information from both directions. It
consists of a forward LSTM

−→
f that encodes the

sentence from x1 to xt and a backward LSTM
←−
f

that encodes the sentence backward. we concate-
nate the hidden representations in both directions,
we get final representation of a word xi:

xi =
←−xi||−→xi xi ∈ R2d, (1)

where || denotes the concatenation operation and
d is the size of each LSTM.

2.3 Attention Mechanism
An attention layer is incorporated after the Bi-
LSTM layer to automatically select and attend to
important words. The input of the attention layer
is the hidden state vector hi at each time step. The
attention weight αi for this time step can be com-
puted as:

mi = tanhhi, (2)

αi = wTmi + b, (3)

αi =
exp(αi)∑
j exp(αj)

, (4)

where w and b are the parameters of the attention
layer. The output of attention layer at the ith time
step is:

ri = αihi (5)

2.4 CNN Layer
We use a convolutional neural network (CNN) to
capture local contexts. Inspired by the residual
connection for in ResNet (He et al., 2016), which
combines the CNN outputs with original inputs to
get better accuracy and shorter training time of
deep CNN, we apply a merge layer to combine
Bi-LSTM outputs and CNN outputs together. Our
experiment proves that this structure can achieve
a higher accuracy due to its full usage of both
chronological information and local contextual in-
formation. Finally, max pooling is applied to the
concatenated vectors to build conversation repre-
sentations.

2.5 Emotion Classification
To make the final emotion prediction, we use
a dense layer with softmax activation function
to classify emotions. Considering the unbal-
anced data in both training set and testing set, we

341

Happy Sad Angry Average
Precision 0.7452 0.8117 0.7329 0.7598

Recall 0.6796 0.7760 0.7919 0.7488
F1 0.7109 0.7935 0.7613 0.7542

Table 1: Evaluation result on our final submission.

choose a cost-sensitive cross entropy loss func-
tion (Santos-Rodrguez et al., 2009) to modify the
attention our model gives to different emotion cat-
egories. The loss function we use is formulated
as:

L = −
N∑

i=1

wyiyilog(ŷi), (6)

whereN is the number of dialogue sentences, yi is
the emotion label of the ith dialogue, ŷi is the pre-
diction score, and wyi is the loss weight of emo-

tion label yi. wyi is defined as
∑C

k=1

√
Nk√

Nyi

, where

C is the number of emotion categories and Nj is
the number of texts with emotion label j. Conse-
quently, this helps our model place higher weights
towards infrequent emotion categories.

The last layer of our network utilizes a weighted
soft voting ensemble method to fully take the ad-
vantage of different word embeddings. It should
be mentioned that we design exactly the same
network architecture with only word embeddings
as slight differences. This soft voting method
strengthens robustness and modifies our model to
predict the class with the highest class probability.

3 Results and Analysis

3.1 Experimental settings

In our experiments, the word2vec-twitter embed-
ding (Godin et al., 2015) was trained on 400
million microposts, which has a vocabulary of
3,039,345 words and 400-dimensional word repre-
sentations. The Ekphrasis model leverages a col-
lection of 330 million Twitter messages to gener-
ate word embeddings. It also uses GloVe as pre-
trained word vectors. Besides, a pre-processing
pipeline is developed to enable users to get word
vectors in a directly numerical form2. We also
incorporate the GloVe embedding model and se-
lect the cased 300-dimension version3 obtained by
training on 2.2M data crawling from the Internet,
containing 840B tokens in total.

2github.com/cbaziotis/ekphrasis
3nlp.stanford.edu/projects/glove

With word2vec-twitter embedding and GloVe
embedding, we send raw texts to NLTK Tweet-
Tokenizer and randomly generate word vectors
for all emojis and those out of vocabulary words
appearing more than 3 times. Moreover, as to
ekphrasis embedding, we use the pipeline pro-
vided by it. The pre-processing steps included in it
are: Twitter-specic tokenization, spell correction,
word normalization, word segmentation (for split-
ting hashtags) and word annotation.

In the experiment, we pertain the original di-
mension of the word embeddings and send them to
a 400 dimension Bi-LSTM, adding to totally 800
dimension in LSTM layer. In the next CNN layer,
the number of filters is 256, with filter length of 3.
After each layer, we employ dropout with a drop
rate of 0.2 to mitigate overfitting. Additionally,
rmsprop (Tieleman and Hinton, 2012) is chosen as
optimizer and Keras library (Chollet et al., 2015)
is used for implementation.

3.2 Performance Evaluation

The final submission which scores micro F1 75.42
is equipped with both the attention mechanism
and weighted soft voting ensemble. The final
result is shown in table 1, it suggests that our
model performs relatively lower on happy emo-
tion due to lack of training data and ambigu-
ity. We evaluate parts of our network in the
following paragraphs. The baseline we use is
LSTM-CNN architecture(LSTM-CNN), baseline
with concatenating layer is denoted as LSTM-
CNN+CL. Upon this, attention mechanism is
added, which is written as LSTM-CNN+CL+AT.
Finally, a weighted soft voting is introduced,
namely LSTM-CNN+CL+AT+WE. The result
comparison is shown in table 2.

Concatenating Layer. By combining the out-
puts of Bi-LSTM and CNN layer, the model learns
both local feature and long-term context, with the
most obvious improvement in Word2vec-twitter,
F1 score increasing from 0.7307 to 0.7483.

Attention Mechanism. Adding attention into
network helps our network select those more es-
sential words in the case of Ekphrasis and Glove
word embeddings, but Word2vec-twitter witnesses
a slight decline. This may be due to the random-
ness of out-of-vocabulary words and emoji word
vectors. Overall speaking, attention benefits the
study of word importance to some degree.

Weighted Soft Voting Ensemble. We place

342

Word2vec-twitter Ekphrasis GloVe
LSTM-CNN 0.7307 0.7313 0.7429

LSTM-CNN+CL 0.7483 0.7355 0.7450
LSTM-CNN+CL+AT 0.7388 0.7392 0.7460

LSTM-CNN+CL+AT+WE 0.7542

Table 2: Results on test data under various system framework.

Figure 2: Influence of reducing training data on evalu-
ation scores.

Figure 3: Influence of oversampling rate k on evalua-
tion scores.

the highest weight on those showing good per-
formances on dev dataset in our final submis-
sion. The significant improvement of F1 score at
the bottom of table 2 indicates the power of en-
semble. Results show that GloVe performs bet-
ter than other two word embeddings, thus given
more weight in practice. The result is ensembled
from eight predictions , with the quantity we use
of Word2vec-twitter, Ekphrasis, GloVe is respec-
tively 2:3:3.

Quantity of training data. Since many meth-
ods in sentiment analysis rely heavily on high
quality labeled data, we test our model with dif-
ferent reduction portion rate of training data. It
can be seen in figure 2 that although there ex-

ists certain degree of performance reduction when
the data amount is limited, our approach remain
a F1 score of approximately 0.70 even with only
20% data, which proves that our approach can be
widely applied to even when there exists shortage
of labeled data.

Oversampling rate. The oversampling rate is
defined to be the rate of loss weight between the
class “others” and other three emotion categories.
We officially set the oversampling rate k to be 3,
meaning the loss weight rate between “others” and
other three emotion categories is 3:1:1:1. To test
the effectiveness of our choice of k, we select k to
be in range from 0.5 to 7 and report the changes on
F1 score, precision and recall in figure 3. It should
be noticed that the scores are extremely unstable
when k < 2, which may due to the sparsity of
emotion labels in training data.

4 Conclusion

In this paper, we propose an attentional LSTM-
CNN based neural network with concatenating
layer for SemEval-2019 Task 3, i.e., predict-
ing emotion categories of online dialogues. To
strengthen robustness, weighted soft voting en-
semble is exploited.

Acknowledgments

This work was supported by the National Key
Research and Development Program of China
under Grant number 2018YFC1604002, and the
National Natural Science Foundation of China
under Grant numbers U1836204, U1705261,
U1636113, U1536201, and U1536207.

References
Francesco Barbieri, Jose Camacho-Collados,

Francesco Ronzano, Luis Espinosa Anke, Miguel
Ballesteros, Valerio Basile, Viviana Patti, and
Horacio Saggion. 2018. Semeval 2018 task 2:
Multilingual emoji prediction. In Proceedings of

343

The 12th International Workshop on Semantic Eval-
uation, pages 24–33. Association for Computational
Linguistics.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Johan Bollen, Huina Mao, and Alberto Pepe. 2011.
Modeling public mood and emotion: Twitter sen-
timent and socio-economic phenomena. Icwsm,
11:450–453.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Franois Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New
York, NY, USA. ACM.

Frderic Godin, Baptist Vandersmissen, Wesley De
Neve, and Rik Van De Walle. 2015. Multimedia lab
@ acl w-nut ner shared task: Named entity recog-
nition for twitter microposts using distributed word
representations. In Workshop on User-generated
Text.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A sentiment-
and-semantics-based approach for emotion detec-
tion in textual conversations. arXiv preprint
arXiv:1707.06996.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

Ozan İrsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 720–728.

Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and
Saif Mohammad. 2014a. Nrc-canada-2014: Detect-
ing aspects and sentiment in customer reviews. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 437–
442. Association for Computational Linguistics.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014b. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a wordemotion association lexicon.
Computational Intelligence, 29(3):436–465.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Ral Santos-Rodrguez, Dario Garca-Garca, and Jess
Cid-Sueiro. 2009. Cost-sensitive classification
based on bregman divergences for medical diagno-
sis.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting
Liu. 2015. Target-dependent sentiment classifi-
cation with long short term memory. CoRR,
abs/1512.01100.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31.

Yequan Wang, Minlie Huang, xiaoyan zhu, and
Li Zhao. 2016. Attention-based lstm for aspect-level
sentiment classification. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 606–615. Association for
Computational Linguistics.

344

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 345–349
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

THU-HCSI at SemEval-2019 Task 3: Hierarchical Ensemble
Classification of Contextual Emotion in Conversation

Xihao Liang, Ye Ma, Mingxing Xu
Department of Computer Science & Technology

Tsinghua University, Beijing, China
(liangxh16, ma-y17)@mails.tsinghua.edu.cn, xumx@tsinghua.edu.cn

Abstract

In this paper, we describe our hierarchical
ensemble system designed for the SemEval-
2019 task3, EmoContext. In our system, three
sets of classifiers are trained for different sub-
targets and the predicted labels of these base
classifiers are combined through three steps
of voting to make the final prediction. Effec-
tive details for developing base classifiers are
highlighted. Experiment results show that the
ensemble approach manages to obtain better
predictive performance in comparison with the
base classifiers and our system has achieved
the performance within the top 10 ranks in the
final evaluation of EmoContext.

1 Introduction

Sentiment analysis is a task to identify the emo-
tion conveyed by written language (Balahur et al.,
2011; Lee et al., 2018). With the popularization
of the Internet and instant message applications,
text has become one of the most familiar media by
which people express their ideas and communicate
with each other. Automatic emotion classification
can help people and robots better understand the
messages or comments written by the others and
make proper responses, which makes this study
field increasingly important (Sun et al., 2018).

Deep learning approaches have achieved state-
of-art performance in many recent studies of senti-
ment analysis (Rodrigues do Carmo et al., 2017).
Gupta et al. (2017) used an LSTM-based model
to identify the emotion in 3-turn conversations
on Twitter. For emotion detection on TV show
transcripts, a sequence-based convolutional neu-
ral network which can associate the information
in the previous lines was designed by Zahiri and
Choi (2017). Hazarika et al. (2018) proposed
a conversational memory network based on both
CNN (Lecun and Bengio, 1998) and gated recur-
rent unit (Chung et al., 2014) to recognize emotion

in dyadic dialogue videos, featuring its ability to
manipulate the information of different speakers.
These studies focused on the architecture of the
neural networks, but the optimization of the classi-
fication system based on the feature of the datasets
are rarely discussed, which is crucial when dealing
with specific real-world problems.

In this paper, we describe our approach to
SemEval-2019 task3, EmoContext (Chatterjee
et al., 2019), which aims to encourage more re-
search of contextual emotion detection in textual
conversation. Datasets of 3-turn conversations
are provided and the participating systems are re-
quired to predict the contextual emotion of the last
turn in the conversation: Happy, Sad, Angry or
Others. The system performance is evaluated by
the micro-averaged F1-score for Angry, Happy,
and Sad (hereinafter referred to as AHS) on the
given Test set. According to our observation of
the dataset and single classifier’s performance on
it, we design a hierarchical ensemble classification
system, which is composed of three sets of base
classifiers, and three steps of voting to combine
their predicted labels to make the final prediction.
Our system has achieved F1-score of 0.7616 in the
final evaluation, which is within the top 10 perfor-
mances out of 165 participating systems.

This paper is organized as follows. In Section 2,
our system and the strategies of training base clas-
sifiers are demonstrated. In Section 3, experiments
are detailed and the evaluation results of our sys-
tem and the base classifiers are presented and dis-
cussed. Conclusion is given in Section 4.

2 System Description

As we notice that the distinction among AHS and
that between Others and AHS are significant, our
system is designed to contain three sets of clas-
sifiers trained for different sub-targets and the pre-

345

Turn	1

Em
be
dd
in
g

Turn	2 Turn	3

CNN

Max	Pooling

Gaussian	Noise

ReLU

Dropout

Dense	Layer

ReLU

Dense	Layer

Softmax
Tu
rn
	E
nc
od
er

CNN

Max	Pooling

ReLU

CNN

Max	Pooling

ReLU

Probability	Distribution

… … …

… ……

Figure 1: The architecture of the CNN-based classi-
fiers in our system.

dicted emotion of a 3-turn conversation is obtained
and refined through three steps of voting.

2.1 Classifier
Every base classifier in our system shares the same
architecture (Fig 1). The input to the classifier
is a 3-turn conversation represented as three se-
quences of tokens. An embedding layer is used to
map the input to three sequences of vectors. Each
turn is encoded to a vector individually by feeding
its sequence of vectors into a CNN layer followed
by a rectified linear unit (ReLU) and max pool-
ing, as we notice that each turn’s contribution to
the prediction is different and the predictive clue
to the contextual emotion can be captured within
the turn. Three vectors are then obtained and con-
catenated as the feature vector of the 3-turn con-
versation. It is finally fed into a dense layer with
a ReLU and another dense layer with softmax to
get the probability distribution over all predicted
classes.

2.2 Hierarchical Ensemble
Three steps of voting are designed (Algorithm 1)
and a set of classifiers are trained for each step.
For the first step, a set of four-emotion classifiers

Algorithm 1 Hierarchical ensemble
Input: the majority vote of Set A, LabelAMV ; the ma-

jority vote of Set B, LabelBMV , and its voting count,
CountBMV ; the voting count for Others in Set C,
CountCOthers; two chosen thresholds, thrII and thrIII

Output: the predicted labels after each step of voting,
LabelI , LabelII , LabelIII ;

1: LabelI ← LabelAMV ;
2: if LabelI 6= Others & CountBMV ≥ thrII then
3: LabelII ← LabelAMV ;
4: else
5: LabelII ← LabelI ;
6: end if
7: if CountCOthers >= thrIII then
8: LabelIII ← Others;
9: else

10: LabelIII ← LabelII ;
11: end if

(hereinafter referred to as Set A) are trained on the
given dataset and the original labels. For each test
case, majority voting is applied to Set A to get the
base predicted label, LabelAMV . This set of pre-
dicted labels are hereinafter referred to as Predic-
tion I.

For the second step, a set of three-emotion clas-
sifiers (hereinafter referred to as Set B) are trained
only on the data of AHS. For each test case, ma-
jority voting is applied to Set B to get a new la-
bel LabelBMV and the predicted label for this case
is changed to LabelBMV if LabelAMV is not Others
and more than thrII classifiers in Set B voted for
LabelBMV , by which the prediction for AHS is re-
fined. This set of predicted labels are hereinafter
referred to as Prediction II.

For the final step, a set of binary classifiers
(hereinafter referred to as Set C) are trained on the
given dataset but the labels for AHS are changed
to Not Others. For each test case, we change its
predicted label to Others if more than thrIII clas-
sifiers in Set C vote for Others, by which more
Others samples are recalled. This set of predicted
labels (hereinafter referred to as Prediction III) are
used as the final prediction of our system.

2.3 Regularization

Common methods to alleviate the problem of
overfitting are applied. Embedding layer is not
fine-tuned. If this layer is tuned through training,
the embedding space will be changed but the vec-
tors of the tokens that exist only in the Test set are
not adjusted, which may lead to wrong representa-
tions of these tokens. Gaussian noise is added after
the embedding layer, by which the model is more
robust when dealing with tokens of similar mean-

346

Turn 1 Turn 2 Turn 3 label
I live in uttra khand ohh nice! love that place! ∧.∧ ,, happy

degreee what degree & where? sryyy i really got to goo others

Table 1: Example training samples in Train set.

Dataset Others Happy Sad Angry
Train 14948 4243 5463 5506
Dev 2338 142 125 150
Test 4677 284 250 298

Table 2: Class distribution in each dataset.

ing. L2 regularization is applied to the weights
of the stacked dense layers. Dropout (Srivastava
et al., 2014) layer is added. Two more strategies
are specifically highlighted.

• For each classifier, 90% of the training data
is randomly selected for training and the
10% left for validation so that different in-
formation is captured. Although the evalu-
ation metric is micro-averaged F1-score for
AHS, for classifiers in Set A, the set of neu-
ral network weights that achieves the best
micro-averaged precision on the validation
set through the training process is chosen.
As we notice that the precision is signifi-
cantly sensitive to the class distribution and
the task organizers have emphasized the dif-
ference between the class distributions of the
provided datasets in advance, we need the
precision of the base classifiers to be as high
as possible.

• For each sample of the class Others in the
training data, a new Others sample is created
by randomly removing one token in one of
the turns to simulate the situation when the
user misspells a word and that misspelled to-
ken is not known to our embedding models.
This is inspired by our observation that most
of the Others samples in the training data still
belong to Others even if one of the tokens is
missing or misspelled. However, samples for
AHS are not automatically generated in case
a discriminative token is removed and a mis-
leading sample will be made.

3 Experiments and Discussion

3.1 Data
Task organizers have released three datasets. Each
sample in these datasets contains a 3-turn conver-
sation(Table 1), in which Turn 1 was written by

User 1, Turn 2 is User 2’s reply to Turn 1 and Turn
3 is User 1’s reply to Turn 2. The emotion label of
Turn 3 is annotated for each conversation, which is
one of the four emotions: Angry, Happy, Sad, and
Others. Class distributions of these three datasets
are shown in Table 2.

3.2 Preprocessing

We notice that the writing style of the conversa-
tions in the datasets resembles that of the tweets
and comments on Twitter, featuring emoticons,
informal usage of language, spelling errors and
so on. Hence, we utilize the tweet processor,
ekphrasis1 (Baziotis et al., 2017). The preprocess-
ing steps include (1) Twitter-specific tokenization,
(2) spell correction, (3) word normalization for
numbers and dates, (4) annotation for all-capital
words, elongated words and repeated punctua-
tions, (5) conversion of emoticons to emotion la-
bels, through which each 3-turn conversation is
converted to three sequences of tokens.

3.3 Word Embeddings

We deploy the pretrained embedding model pro-
vided by Baziotis et al. (2018) 2 (hereinafter called
NtuaW2V) in our system, which contains 300-
dimensional vectors trained on Twitter messages
that are also preprocessed by ekphrasis. In ad-
dition, we tried another pretrained model pro-
vided by Mikolov et al. (2013) 3 (hereinafter called
GoogleW2V), which contains 300-dimensional
vectors trained on Google News dataset, in order
to get an insight into the effect of different embed-
ding models. The pretrained embeddings are used
to initialize the embedding layer. For tokens that
are not covered in the embedding model but occur
in no less than two training samples, their embed-
ding vectors are randomly initialized.

3.4 Implementation Details

Tensorflow (Abadi et al., 2016) is used to de-
velop our models. For network optimization, we
choose Adam algorithm (Kingma and Ba, 2014).

1https://github.com/cbaziotis/ekphrasis
2https://github.com/cbaziotis/ntua-slp-semeval2018
3https://code.google.com/archive/p/word2vec/

347

Parameter Value
of classifiers in each set 5

thrII 2
thrIII 3

std. of Gaussian noise 0.1
kernel size of CNN 5

filter number of CNN 128
of cells of the first dense layer 32

dropout keep prob. 0.5
l2 0.2

initial learning rate 0.005
decay of learning rate 0.9

minibatch size 100

Table 3: Configuration of our system.

The configuration of our system and the hyper-
parameters of the classifiers are shown in Table 3.

3.5 Results and Discussion
Table 4 shows the performance of our base clas-
sifier and its variants on the Test set. Note that
BASE refers to the model trained as mentioned
in Section 2 and Prec, Rec, and F1 refer to the
micro-averaged ones for AHS.

According to Table 4, adding automatically
generated Others samples improves the accuracy,
precision, and F1-score as more Others samples
are correctly predicted but less AHS samples are
recalled as the cost.

We also observe the performance difference
when a different metric is used as the indicator for
choosing the network weights, which is rarely dis-
cussed but the results show that the effect is sig-
nificant. It is because of the remarkable difference
between the class distributions of the training data
and the Test set, which is emphasized by the task
organizers.

On the other hand, the embedding models used
to initialize the embedding layer are compared.
Results show that using NtuaW2V achieves bet-
ter F1-score while using GoogleW2V achieves the
best precision but also the worst recall among the
variants, which shows the importance of choosing
suitable pretrained embedding models. The data
on which the embedding model is trained and how
the data are preprocessed should be the keys to it.

Table 5 and 6 illustrate the performance of our
system after each step of voting. Results show that
the first two steps bring slight improvement on all
four metrics and the final step improves F1-score
by raising the precision at the cost of the recall.
The improvement also implies that, in comparison
with Set A, classifiers in Set B are more effective
to distinguish AHS samples and those in Set C are

Classifier Acc Prec Rec F1
BASE 0.9244 0.7247 0.7661 0.7445
w/o extra Others 0.9206 0.6974 0.7932 0.7420
choose weight by

F1-score 0.9112 0.6521 0.8093 0.7222
Recall 0.9020 0.6190 0.8253 0.7073

emb
GoogleW2V 0.9226 0.7421 0.7163 0.7286

Table 4: Performance of the base classifier and its vari-
ants on the Test set.

Prediction Acc Prec Rec F1
I 0.9278 0.7360 0.7740 0.7545
II 0.9281 0.7383 0.7764 0.7569
III 0.9305 0.7553 0.7680 0.7616

Table 5: Performance of our system after each step of
voting on the Test set.

more precise to classify whether a sample belongs
to Others. Although these classifier sets are all
trained on the given dataset, Set B and Set C man-
age to work as a patch to Set A as they only focus
on the simplified classification problems.

4 Conclusion and Future Work

In this paper, we present our system used for Se-
mEval2019 Task3, EmoContext. This system is
composed of three sets of CNN-based neural net-
work models trained for four-emotion classifica-
tion, Angry-Happy-Sad classification and Others-
or-not classification respectively. Three steps of
voting are used to combine the predicted labels of
the base classifiers and make the final prediction.
Experiment results show the ensemble approach
manages to improve the performance in compar-
ison with the base classifiers. Automatic genera-
tion of random Others samples is proven effective
and the importance of choosing pretrained embed-
ding models and picking the right metric as the
indicator for choosing network weights is high-
lighted. In order to achieve a better result based
on our system, improving the performance of the
base classifier is crucial. The architecture of neural
networks and the features used as the input should
be the fields that worth further exploration.

Prediction Others Happy Sad Angry
I 0.9595 0.7153 0.7806 0.7671
II 0.9595 0.7190 0.7801 0.7704
III 0.9608 0.7180 0.7960 0.7709

Table 6: F1-score for each emotion after each step of
voting on the Test set.

348

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, and Xiaoqiang Zheng. 2016. Tensorflow:
Large-scale machine learning on heterogeneous dis-
tributed systems.

Alexandra Balahur, Jesús M Hermida, and Andrés
Montoyo. 2011. Detecting implicit expressions of
sentiment in text based on commonsense knowl-
edge. In Proceedings of the 2nd Workshop on Com-
putational Approaches to Subjectivity and Sentiment
Analysis, pages 53–60. Association for Computa-
tional Linguistics.

Christos Baziotis, Nikos Athanasiou, Pinelopi Pa-
palampidi, Athanasia Kolovou, and Alexandros
Potamianos. 2018. Ntua-slp at semeval-2018 task
3: Tracking ironic tweets using ensembles of word
and character level attentive rnns.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. pages 747–754.

Rodrigo Rodrigues do Carmo, Anı́sio Mendes Lacerda,
and Daniel Hasan Dalip. 2017. A majority voting
approach for sentiment analysis in short texts using
topic models. In Proceedings of the 23rd Brazillian
Symposium on Multimedia and the Web, pages 449–
455. ACM.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

Umang Gupta, Ankush Chatterjee, Radhakrishnan
Srikanth, and Puneet Agrawal. 2017. A sentiment-
and-semantics-based approach for emotion detec-
tion in textual conversations.

Devamanyu Hazarika, Soujanya Poria, Amir Zadeh,
Erik Cambria, Louis-Philippe Morency, and Roger
Zimmermann. 2018. Conversational memory net-
work for emotion recognition in dyadic dialogue
videos. pages 2122–2132.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Yann Lecun and Yoshua Bengio. 1998. Convolutional
networks for images, speech, and time series.

Gichag Lee, Jaey Un Jeong, Seungwan Seo,
Czang Yeob Kim, and Pilsung Kan G. 2018.
Sentiment classification with word localization

based on weakly supervised learning with a convo-
lutional neural network. Knowledge-Based Systems,
152:S0950705118301710.

Tomas Mikolov, Ilya Sutskever, Chen Kai, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. Advances in Neural Information Processing
Systems, 26:3111–3119.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Xiaojie Sun, Menghao Du, Hua Shi, and Wenming
Huang. 2018. Text sentiment polarity classification
method based on word embedding. pages 99–104.

Sayyed M. Zahiri and Jinho D. Choi. 2017. Emo-
tion detection on tv show transcripts with sequence-
based convolutional neural networks.

349

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 350–354
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

TokyoTech NLP at SemEval-2019 Task 3: Emotion-related Symbols in
Emotion Detection

Zhishen Yang
Tokyo Institute
of Technology

zhishen.yang
@nlp.c.titech.ac.jp

Sam Vijlbrief
Delft University
of Technology
s.vijlbrief

@student.tudelft.nl

Naoaki Okazaki
Tokyo Institute
of Technology
okazaki

@c.titech.ac.jp

Abstract

This paper presents our contextual emotion de-
tection system in approaching the SemEval-
2019 shared task 3: EmoContext: Contextual
Emotion Detection in Text. This system co-
operates with an emotion detection neural net-
work method (Poria et al., 2017), emoji2vec
(Eisner et al., 2016) embedding, word2vec
embedding (Mikolov et al., 2013), and our
proposed emoticon and emoji preprocessing
method. The experimental results demon-
strate the usefulness of our emoticon and emoji
prepossessing method, and representations of
emoticons and emoji contribute model’s emo-
tion detection.

1 Introduction

Social media and online text applications have
been gaining popularity in recent years. Users post
videos, pictures, and text to share their daily life
as well as to communicate with others. This vast
amount of multimodal data greatly facilitates vari-
ous user analysis tasks such as sentiment analysis.

Emotion detection as part of sentiment analysis
can be conducted with user’s multimodal data such
as facial expression and voice data in addition to
text data. Therefore, emotion detection becomes
a challenging problem when only textual data is
available for extracting the contextual and senti-
ment features (Chatterjee et al., 2019). For exam-
ple, without proper visual and voice data, ”Why
did you not call me last night” may be classified as
sad or angry without an appropriate understanding
of context.

The SemEval-2019 shared task 3: EmoContext:
Contextual Emotion Detection in Text is the task
to detect an emotion of a three-turn conversation
(Chatterjee et al., 2019). We can consider this task
as contextual sentiment analysis, as it requires de-
tecting the emotion of the third-turn conversation
by comprehensively understanding the contextual

Emotion class Distribution
others 50%
happy 14%
sad 18%
angry 18%

Table 1: Emotion class distribution in the training data
set.

relationship and sentiment features from both lan-
guage and emotion-related symbols.

The task organizers provided a training set
that consisted of 30,160 three-turn conversations.
Meanwhile, as Table 1 shows, the emotion class
distribution in the training data set was unbal-
anced: 50% of samples were from “others” class.
The task organizers also mentioned about the real-
life distribution of emotion class: 88% of data is
classified as “others” (Chatterjee et al., 2019). We
also observed that over 28% of conversations in
the training data set contained emoticons or emoji;
users use them along with text to express emotion
in a conversation. These two observations chal-
lenge us to have a method that can learn emotion
and contextual features from unbalanced training
data and the emotion-related symbols (emoticons
and emoji).

The rest of this paper is organized as follows:
Section 2 introduces the related work to the task;
Section 3 explains our method in detail; Section 4
illustrates the experiments and analyzes the exper-
imental results; Section 5 concludes the paper and
presents the future work.

2 Related Work

Natural language processing in social media as an
emergent area has attracted a lot of attention (Po-
ria et al., 2017), especially from the recent ad-
vances in applying neural network methods with

350

pre-trained embeddings (Eisner et al., 2016).
To achieve generalization and robustness in so-

cial media sentiment analysis, pre-trained em-
beddings should contain the representations of
not only words from natural language but also
emotion-related symbols, such as emoticons and
emoji (Eisner et al., 2016). Both pre-trained em-
beddings GloVe (Pennington et al., 2014) and
word2vec (Mikolov et al., 2013) do not con-
tain representations for emotion-related symbols,
which restricts the performance of sentiment
analysis in social media. Although pre-trained
emoji2vec embedding contains Unicode emoji
representation, not all emotion-related symbols
are included, such as emoticons.

As emotion detection is a part of sentiment anal-
ysis, and the data from the task organizers contains
emoticons and emoji for emotion expressions, we
can utilize a neural network method with pre-
trained embedding to solve this task. We also need
to address the lack of representations of emotion-
related symbols.

3 Method

We formalize the SemEval-2019 shared task 3 as
an emotion classification problem. Our method
performs as an emotion classifier that accepts a
conversation containing three-turn textual utter-
ances, and classifies the last utterance to one of
four pre-defined emotion class (happy, sad, angry,
and others).

Our method focuses on learning contextual re-
lationships and extracting emotion features from
three-turn conversations. Poria et al. (2017) pre-
sented an LSTM-based contextual sentiment anal-
ysis model: contextual LSTM network that cap-
tures inter-dependency and contextual relationship
among utterances in a video. Their experimen-
tal results demonstrated that contextual features of
utterances significantly boost the performance of
sentiment analysis; therefore, we decided to use
this model as the main component in our system.

Although pre-trained embeddings such as
GloVe and word2vec are easy to access, both
of them do not have representations for emoti-
cons and emoji (Eisner et al., 2016). However,
pre-trained emoji2vec embedding as a supplement
to pre-trained Google news word2vec (Mikolov
et al., 2013) contains 1,661 emoji symbols and
is ready to be augmented in downstream natural
language processing tasks for social media (Eis-

ner et al., 2016). Thus, we decided to concatenate
word2vec and emoji2vec in our method as word
embedding.

3.1 Contextual LSTM Network
Since bi-directional contextual LSTM (bc-LSTM)
performed the best in the experiments of Poria
et al. (2017), we selected this variant of contextual
LSTM as the main component.

bc-LSTM (Poria et al., 2017) consists of five
layers: 1) embedding layer; 2) input layer; 3)
LSTM layer; 4) dense layer; and 5) softmax layer.
The embedding layer (shared across three utter-
ances) converts utterances into distributed rep-
resentations. The input layer is a shared bi-
directional LSTM, accepting the output of each ut-
terance from the embedding layer in a sequence.
The LSTM layer is an uni-directional LSTM that
uses concatenation of outputs of utterances from
the input layer. The extracted contextual features
from LSTM layer feed into a dense layer. Fi-
nally, the softmax layer predicts an output from
the dense layer.

3.2 Emoticon and Emoji Pre-possessing
The emoticon and emoji pre-processing method
removes sentiment ambiguity that emoji bring and
solves the lack of representations of emoticons in
pre-trained emoji2vec (Eisner et al., 2016) embed-
ding.

Emoji Normalization Since emoji2vec does
not learn context-dependent definitions of emoji
(Eisner et al., 2016), a mixture and duplication of
emoji within textual data in an utterance will add
the complexity and ambiguity in an emotion ex-
pression.

We also noticed that appending emoji to the
end of an utterance did not change its sentiment.
Instead, this process splits an utterance into two
parts: text part and emoji part, which guarantees
the smooth emotion expression in each part.

Our emoji normalization reduces multiple in-
stances of an emoji into one instance and append
it to the end of its belonging utterance.

Emoticon to Emoji Mapping In addition to
emoji, emoticons also play a vital role in express-
ing emotions. Thus, representations for emoticons
are also important to our method.

Although emoji2vec does not contain a rep-
resentation of an emoticon, an emoticon can be
treated as a ”surface variation” of an emoji. Thus,
we can use the same emoji2vec representation of

351

Figure 1: Emoticon to Emoji Dictionary.

an emoji only if the emoticon is associated with
the emoji. We built a dictionary to map an emoti-
con to its corresponding emoji (Figure 1). Con-
taining 150 common emoticons, this dictionary
can be used to replace emoticons to emoji.

3.3 System Description

Figure 2 shows an overview of our system: Toky-
oTech NLP contextual emotion detection system
(TNCED); our system consists of two phases:
training and test phases. Both phases use the same
pre-processing method. In the test phase, we use
the contextual LSTM network classifier from the
training phase to predict the emotion class on the
test data.

4 Experiments

4.1 Data

We used the training data provided by the task or-
ganizers to train our model. For evaluation, we
used the SemEval 2019 task 3 test data and micro
F1 score and F1 score as metrics.

4.2 Experiment Setup

We used Keras (Chollet et al., 2015) and the code
from the Github repository of bc-LSTM1 to im-
plement our TNCED system with the following
settings: 128 LSTM dimensions; adam (Kingma
and Ba, 2014) as an optimizer; 0.003 learning rate,
0.2 dropout, and 75 epochs. We used pre-trained
Google word2vec (Mikolov et al., 2013) and pre-
trained emoji2vec (Eisner et al., 2016) as embed-
dings.

4.3 Experiment Design

To evaluate the performance of emoji normaliza-
tion and emoticon to emoji mapping, we used them
to create following data set:

Data Set 1: For both training and test data, we
first conducted emoticon to emoji mapping, and
then performed punctuation normalization to re-
duce the number of repeated and frequently-used
punctuation ’?’, ’!’, ’,’, ’.’ into one. We put a white
space around the punctuation. Then, we applied
emoji normalization.

Data Set 2: In addition to Data Set 1, we ap-
plied punctuation normalization to two frequently-
used punctuation ’ ’ and ’:’; we only conducted
emoji normalization in this data set. This data
set was used in our submitted system for SemEval
2019 task 3.

Data Set 3: We did not apply any pre-
processing in both training and test data.

We used these three data sets to train and test
our system (TNCED), and calculated micro F1
score on the three emotion classes (happy, sad
and angry) and F1 scores of happy, sad and angry
classes.

4.4 Experimental Result

Table 2 shows micro F1 score and F1 scores of
happy, sad, and angry classes obtained from the
TNCED systems trained with different settings.
The system with setting 1 (TNCED+Data Set 1)
had the highest micro F1 score (0.7004) among
the settings; it also achieved the highest F1 scores
(0.746 and 0.709) in both sad and angry classes.

Compared with setting 3 (without any pre-
processing), both settings 1 and 2 gained better
F1 scores of three emotion classes as well as mi-
cro F1 scores, especially the setting 1 improved
nearly 0.131 in F1 score of sad class and 0.071 in

1https://github.com/SenticNet/conv-
emotion/tree/master/bc-LSTM

352

Figure 2: TokyoTech NLP contextual emotion detection system (TNCED).

Experiment Micro F1 Happy F1 Sad F1 Angry F1
Setting 1 (TNCED + Data Set 1) 0.7004 0.650 0.746 0.709
Setting 2 (TNCED + Data Set 2) (Submitted) 0.6801 0.658 0.695 0.688
Setting 3 (TNCED + Data Set 3) 0.6294 0.606 0.615 0.663
emocontext organizers 0.5868

Table 2: Micro F1 score and F1 scores of happy, sad, and angry obtained from TokyoTech NLP contextual emotion
detection system with three different settings, and SemEval-2019 Task 3 baseline’s micro F1 score.

micro F1 score. Compare to setting 2, emoticon to
emoji mapping helped setting 1, improving 0.051
and 0.021 in F1 scores of sad and angry classes.
These results indicate that our proposed emoticon
and emoji pre-processing method helps the con-
textual LSTM network in understanding emotion
expressions of emoticons and emoji.

5 Conclusion

In this paper, we described our system for
SemEval-2019 shared task 3. This system con-
sisted of the pre-processing method for emoticons
and emoji, and bi-directional contextual LSTM
network (Poria et al., 2017).

The proposed emoticon and emoji pre-
processing method solves the lack of representa-
tions of emotion-related symbols (emoticons) in
pre-trained embeddings, and removes the ambi-
guity in emotion expressions of emotion-related
symbols. Experimental results demonstrate
the usefulness of the emoticon and emoji
pre-processing method by improving the rep-
resentations of emoticons and emoji. It helped
the neural network model to capture emotion
expressions from emotion-related symbols.

A future direction of this work includes training
embeddings to gather contextual definitions of all
emotion-related symbols. Furthermore, we would
like to explore other neural network architectures
as well as retrieve more data to capture the nuance
emotion in text.

6 Acknowledgement

The research results have been achieved by “Re-
search and Development of Deep Learning Tech-
nology for Advanced Multilingual Speech Trans-
lation”, the Commissioned Research of National
Institute of Information and Communications
Technology (NICT), Japan.

References
Ankush Chatterjee, Kedhar Nath Narahari, Meghana

Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

François Chollet et al. 2015. Keras. https://
keras.io.

353

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning emoji representations from
their description. arXiv preprint arXiv:1609.08359.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
Navonil Majumder, Amir Zadeh, and Louis-Philippe
Morency. 2017. Context-dependent sentiment anal-
ysis in user-generated videos. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 873–883.

354

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 355–359
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UAIC at SemEval-2019 Task 3: Extracting Much from Little

Cristian Simionescu, Ingrid Stoleru, Diana Lucaci, Gheorghe Balan,
Iulian Bute, Adrian Iftene

Faculty of Computer Science, ”Alexandru Ioan Cuza” University of Iasi, Romania
cristian@nexusmedia.ro, ingridstoleru@gmail.com,
{diana.lucaci22, balangheorghe1997}@gmail.com,
iulian.bute@gmail.com, adiftene@info.uaic.ro

Abstract

In this paper, we present a system description
for implementing a sentiment analysis agent
capable of interpreting the state of an inter-
locutor engaged in short three message con-
versations. We present the results and obser-
vations of our work and which parts could be
further improved in the future.

1 Introduction

It is hard to understand emotions in textual conver-
sations in the absence of voice modulations and fa-
cial expressions (Gupta et al., 2017). In sentiment
analysis task researchers work on different levels
of sentiment analysis: document (when are con-
sidered single topics documents), sentence (when
single sentences are classified as positive, negative
or neutral), entity or aspect (which deal with find-
ing the aspects in the text and then classifying in
respective aspect) (Liu, 2012).

Similar to sentiment analysis at sentence level,
in last years tweets from Twitter were analyzed
and classified (Zhang and Liu, 2017), (Kumar and
Sebastian, 2012), (Mukherjee and Bhattacharyya,
2013) and (Singh and Husain, 2014). In the be-
ginning, a binary classification was used, which
linked opinions or opinions only to two classes:
positive or negative. In (Pak and Paroubek,
2010) the authors proposed a model for classi-
fying tweets in goals, positive and negative feel-
ings using a classifier based on multinomial Naive
Bayes to use features such as N-grams and tags
POS (part- of-Speech). In (Parikh and Movassate,
2009) the authors have implemented two models,
one based on the Naive Bayes bigrams model and
one using Maximum Entropy to classify tweets.

(Go et al., 2009) proposed a solution for analysing
feelings on Twitter using distant supervision, the
training data were tweets with emoticons, which
are regarded as noise data. They built several well
performing models using Naive Bayes, MaxEnt,
and SVM. (Barbosa and Feng, 2010) have mod-
eled an automated method to classify tweets us-
ing space features including retweets, hashtags,
links, punctuation mark amazement in combina-
tion with words and POS features polarity. (Luo
et al., 2013) have brought to light the difficulties
that they encounter when they want to classify
tweets. Spam and a variety of languages on Twit-
ter make the task of identifying opinions very dif-
ficult.

In SemEval 2019, in Task 3, EmoContext:
Contextual Emotion Detection in Text (Chatter-
jee et al., 2019), the organizers ask participants
to classify users messages in one of four classes:
Happy, Sad, Angry or Others. These are given
in the context of another two previous messages.
The textual dialogue is composed of short mes-
sages that appear to be from a chat conversation.
In such a context, the users express their thoughts
and ideas in a compact way. In this paper, we de-
scribe how we created one classifier to detect the
sentiment of short messages such as tweets.

2 Related Work

2.1 Word Embeddings

In order to incorporate the meaning of the words
in a software system that processes natural lan-
guage, distributed representations of words in a
vector space are used to achieve better results by
grouping similar words.

355

Previous work (Mikolov et al., 2013) intro-
duces two architectures CBOW (Continuous Bag-
of-Words) and Skip-gram model for learning word
representations using neural networks. The later
is more efficient for small training data, generat-
ing better representations for the infrequent words
(Naili et al., 2017).

When choosing the best representations for a
certain training dataset, one can either use pre-
trained word embeddings that were built using
large general corpora or train their own embed-
dings on a specific corpus which is similar to the
type of data the model will be working with. The
advantage of the first approach is that the repre-
sentations only need to add without any additional
computational cost, meanwhile, the second one
requires a large enough corpus that can lead to
meaningful representations that can capture both
syntactic and semantic regularities. While vec-
tors like Word2Vec, GloVe (Global Vectors for
Word Representation) or fastText capture the most
frequent semantic meaning of the words, training
new representation on social media data can bring
a number of advantages such as embedding the
specific informal language that is used on these
platforms and comprising numerous words that
might not be very frequent in general corpora (Ro-
tari et al., 2017) and (Flescan-Lovin-Arseni et al.,
2017).

3 System Architecture

In this section we will present the systems devel-
oped for the EmoContext task.

3.1 Data Pipeline

Starting off, a critical characteristic in our ar-
chitecture was the ease of configuration of dif-
ferent parameters of our system. We want our
system to require little additional work and trou-
bleshooting when changing, adding or remov-
ing pre-processing, feature extractions or post-
processing techniques.

As seen in Figure 1, the system can take any
configuration and order of pre-processing, feature
extraction and post-process methods as well as a
model to be fed the data.

Since a lot of small changes would sometimes
occur on the later stages of the pipeline, we imple-
mented an auto-save feature in all components of
the system which will simply use the cached pro-
cessed data up to the point of the last modified step

Figure 1: Pipeline structure

in the pipeline.

3.2 Data Processing

The dataset in from EmoContext task presented
some clear challenges. Since we had to learn
the expected sentiment of one of the interlocutors
from a relatively small amount of text it was of
utmost importance to remove noise from the data
with minimal loss of potentially useful informa-
tion. With such small amount of data (≈ 4 words
per message) in each column, we decided to con-
catenate all three messages in every entry in order
to be able to infer more information from it.

3.3 Pre-processing Stage

In the pre-processing stage, we implemented a
number of steps progressively remove noise such
as non utf-8 encoded symbols or random punctu-
ation or characters, from which no important in-
formation could be extracted, using regex rewrit-
ing rules. After which we transform all misspelled
words to the closest correct English word (closest
in terms of Hamming distance) while some words
would be transformed wrongly, the system per-
formed better when using the ”corrected” dataset.

We considered emoticons to be important in de-
termining the sentiment state of the communicat-
ing parties, as such we identified as many stan-
dard use emoticons. With these emoticons, we an-
alyzed the distribution of where they appear. For
example: ”:)” appeared predominantly in entries
labeled ”happy”. Using these we replaced each
emoticon with the keywords: ”happyemoticon”,
”angryemoticon”, ”angryemoticon” and ”othere-
moticon” respectively.

In terms of the actual noise reducing rewriting
rules:

356

• Eliminating any elongated series of charac-
ters greater than two, to a size of two;

• Reducing any repetition of English symbols
or punctuation marks to just one, since it
would not lead to any loss of information but
it will remove noise;

• Removal of spaces between punctuation
marks;

• Removal of any number with more than one
decimal;

• Rewriting Unicode characters into utf-8
equivalents or complete removals when not
possible;

• Isolated characters get deleted;

• Deletion of ASCII emoticons.

We have observed that this combination of pre-
processes leads to the best results, without elimi-
nating too much or leaving too much noise. Exten-
sive empirical experimentation was done to assert
the performance of various combinations of pre-
processes and parameters.

We have to keep in mind, that before applying
these modifications the average length of the con-
catenated messages is around 12 words, afterward,
it became around 10.

3.4 Feature Selection
For the actual features we wanted to use in our
system, we have attempted a number of syntactic
features we thought of extracting.

All of these features proved to be either not
helpful in the aid of the model performance or
detrimental in the sense that it left any model
we attempted prone to overfitting, such as getting
stuck in the local maxima of classifying all in-
stances as ”others”.

As such, we chose to use embeddings as our
only form of feature selection. We have tried to
utilize pre-trained embeddings offered online such
as GloVe, FastText and Word2vec.

Sadly, all of the embeddings we have attempted
to incorporate into the system produced weaker
results compared to training the embedding from
scratch on the data.

For this, we tokenized the data and padded it
to have 200 elements per list. Even though these
vectors were trained on a relatively small corpus,

due to the high usage of jargon, rare abbrevia-
tions and bad grammar which made our dataset
very much different compared to the corpus used
by any of the above mentioned pre-trained word
embeddings this was most likely the cause of im-
proved performance when our own embedding
even though the corpus is extremely small com-
pared to what would be required to create a good
embedding.

3.5 Model

In constructing our machine learning model, we
chose to use artificial neural networks with the use
of the ”Keras” python library1.

For the actual model of the system, we have
made use of very simple and small architectures
since any attempt of creating a deeper or wider ar-
tificial neural network models resulted in drastic
overfitting. Even with other overfitting alleviat-
ing techniques such as regularization, dropout and
batch normalization we had to stick to a shallow
architecture. We suspect this is due to the fact that
we trained our embedding on such a small dataset,
perhaps if more similar data can be collected and
a more general word vector is created, overfitting
would also be reduced. As such, the model we are
presenting does not suffer from overfitting but it is
relatively shallow.

Figure 2: Model

As seen in Figure 2, we used a trainable embed-
ding layer of size 256 as input to fit on our training
data. Next we used a single hidden layer of 128
Bidirectional LSTM cells with a 30% dropout and
a tanh activation function. Finally outputting the
result in a 4 neuron layer using the softmax func-
tion to learn the correct expected labels.

The model was trained using the RMSprop op-
timization algorithm.

357

Metrics

micro F1 Accuracy Precision Recall Sensitivity

Others 0.92459089 0.87620258 0.95740783 0.89394911 0.77644231
Angry 0.61855670 0.94626974 0.50209205 0.80536913 0.95432738
Sad 0.63508772 0.96224360 0.56562500 0.72400000 0.97356912
Happy 0.56877323 0.95788709 0.60236220 0.53873239 0.98066986
Average 0.68675210 0.93565070 0.65687170 0.74051260 0.92125210

Table 1: Submission metrics

4 Results

Using that simple model and an extensive meta-
parameter tuning we were able to reach an average
micro F1 score of 0.6895, this being the last sub-
mission we were able to upload during the work-
shop. See Table 1 for complete metrics of this sub-
mission, calculated by training the model 5 times,
to factor in for randomness of shuffled data and
weight initialization (all runs had comparably sim-
ilar results).

We noticed that the greatest difficulty our sys-
tem faces is correctly classifying instances belong-
ing to the ”happy” class. As such, we should look
into what data pre-processing we could use in or-
der to decrease the high number of false-negatives.

Another potential improvement would be to add
weights to the loss function based on the profi-
ciency we observe the system to exhibit on each
type of entry.

Applying the pre-processing we described pre-
viously we managed to boost that result to average
micro F1 of 0.7362.

Both of these models were trained using a K-
fold cross-validation with four splits and a batch
size of 64.

What we observed time and time again, the
main issue we faced was overfitting of the training
data, as we can see when looking at the progres-
sion on the validation data, see Figure 3.

5 Conclusions

This paper presents the system developed by our
group for the EmoContext task. The architecture
of the system includes data processing, feature se-
lection, and machine learning model. The results
are promising, but they also expose the need for
more experiments that should be done in this field
in the next period.

1https://keras.io/

Figure 3: Training / Validation F1 - red validation data
set, blue train data set

For the future, we believe a CNN approach
could prove fruitful. As well as a different or
deeper network and configuration while using a
similar pre-processing process which we believe
is the main contributor to our relatively successful
result.

Another direction worth investigating would be
a Mixture of Experts approach, using various vari-
ations of the system even if they prove sub-optimal
individually, such as The currently proposed sys-
tem; A system using a pre-trained embedding;
Three sub-systems each trained to only classify
one of the classes; A system with three input lay-
ers, one for each message reply, removing the con-
catenation of the text pre-processing; A system
which only looks at the emoticons present in the
text.

Acknowledgments

This work is partially supported by POC-A1-
A1.2.3-G-2015 program, as part of the PrivateSky
project (P 40 371/13/01.09.2016).

References
Luciano Barbosa and Junlan Feng. 2010. Robust sen-

timent detection on twitter from biased and noisy

358

data. volume 2, pages 36–44.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Iuliana Alexandra Flescan-Lovin-Arseni, Ramona An-
dreea Turcu, Cristina Sirbu, Larisa Alexa, San-
dra Maria Amarandei, Nichita Herciu, Constantin
Scutaru, Diana Trandabat, and Adrian Iftene. 2017.
warteam at semeval-2017 task 6: Using neural
networks for discovering humorous tweets. Se-
mEval@ACL 2017, pages 407–410.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
Processing, pages 1–6.

Umang Gupta, Ankush Chatterjee, Radhakrish-
nan Srikanth, and Puneet Agrawal. 2017. A
sentiment-and-semantics-based approach for emo-
tion detection in textual conversations. CoRR,
abs/1707.06996.

Akshi Kumar and Teeja Mary Sebastian. 2012. Senti-
ment analysis on twitter. IJCSI International Jour-
nal of Computer Science Issues, 9.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Morgan Claypool Publishers.

Tiejian Luo, Su Chen, Guandong Xu, and Jia Zhou.
2013. Sentiment Analysis.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. ICLR Workshop.

Subhabrata Mukherjee and Pushpak Bhattacharyya.
2013. Sentiment analysis : A literature survey.

Marwa Naili, Anja Habacha Chaibi, and Henda Ha-
jjami Ben Ghezala. 2017. Comparative study of
word embedding methods in topic segmentation. In-
ternational Conference on Knowledge Based and In-
telligent Information and Engineering Systems.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREC.

Ravi Parikh and Matin Movassate. 2009. Sentiment
analysis of user-generated twitter updates using var-
ious classication techniques.

Razvan-Gabriel Rotari, Ionut Hulub, Stefan Oprea,
Mihaela Plamad-Onofrei, Alina Beatrice Lorent,
Raluca Preisler, Adrian Iftene, and Diana Trandabat.
2017. Wild devs at semeval-2017 task 2: Using
neural networks to discover word similarity. Se-
mEval@ACL 2017, pages 267–270.

Pravesh Kumar Singh and Mohd Shahid Husain. 2014.
Methodological study of opinion minng and senti-
ment analysis techniques. IJSC International Jour-
nal of Soft Computing, 5.

Lei Zhang and Bing Liu. 2017. Sentiment Analysis and
Opinion Mining. Springer US, Boston, MA.

359

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 360–364
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

YUN-HPCC at SemEval-2019 Task 3: Multi-Step Ensemble Neural
Network for Sentiment Analysis in Textual Conversation

Dawei Li, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact: xjzhang@ynu.edu.cn

Abstract
This paper describes our approach to the e-
motion detection of Twitter textual conversa-
tions based on deep learning. We analyze the
syntax, abbreviations, and informal-writing of
Twitter; and perform perfect data preprocess-
ing on the data to convert them to normative
text. We apply a multi-step ensemble strate-
gy to solve the problem of extremely unbal-
anced data in the training set. This is achieved
by taking the GloVe and ELMo word vectors
as input into a combination model with four
different deep neural networks. The experi-
mental results from the development dataset
demonstrate that the proposed model exhibit-
s a strong generalization ability. For evalua-
tion on the test dataset, we integrated the re-
sults using the stacking ensemble learning ap-
proach and achieved competitive results. Ac-
cording to the final official review, the results
of our model achieved micro-F1 score of about
0.7588 on the final evaluation.

1 Introduction

Over the past 10 years, short microblogging com-
munication methods, such as Tweets and Weibo,
have been widely adopted. Numerous emotion-
s exist in the dialogue of texts, and there is great
commercial value for the detection of such emo-
tions. For example, in the customer service field,
the feedback time limit is divided according to the
emotion.

Text conversation emotion detection is a chal-
lenging issue without facial expressions and mood
information being available. Moreover, the data of
sadness, anger, and happiness in the current con-
text, as well as the extremely unbalanced scale,
natural language ambiguity, and rapidly growing
online language, further exacerbate the challenges
of sentiment detection.

In this paper, we describe our work on Se-
mEval 2019 Task 3, EmoContext: Contextu-

al Emotion Detection in Text (Chatterjee et al.,
2019). The main challenge of the task lies in
imbalanced data distribution. Previously pro-
posed methods for solving data imbalance include
over-sampling, under-sampling (Weiss, 2004), and
Synthetic Minority Oversampling Technique (S-
MOTE) (Chawla et al., 2002). over-sampling
is copying from a smaller number of categories,
which may lead to over-fitting. Under-sampling
discards potentially useful information, which can
degrade the performance of the classifier (Drum-
mond et al., 2003). SMOTE is down-sampling
first, and then integration. We propose a multi-
step integration approach similar to SMOTE for
this task to alleviate the data imbalance problem.
In the first step, we use five-fold cross-validation
to train five sub-neural networks with different da-
ta distributions. Thereafter, soft-voting is used for
integrating the results from these sub-neural net-
works. Soft-voting integration is applied because
it not only alleviates the problem of unstable pre-
diction results caused by data imbalance, but also
improves the effective prediction accuracy of the
single model. The second step of stacking integra-
tion further enhances the global effective predic-
tion accuracy. The experimental results indicate
that the proposed model alleviates the problem of
data imbalance and significantly improves the ef-
fective prediction accuracy.

The remainder of this paper is organized as fol-
lows. In section 2, we describe the system ar-
chitecture. Section 3 explains the data processing
and parameter tuning. The conclusions and future
work are presented in Section 4.

2 System Architecture

The data with the label others comprise 49.56%
of the training set. The model trained by the con-
ventional method exhibits a poor generalization a-

360

em
b

ed
d

in
g

Elmo Elmo Elmo

GloVe GloVe GloVe

word 1 word 2 word n

200 200 200

1024 1024 1024

B
i-G

R
U

B
i-G

R
U

A
tten

tio
n

em
b

ed
d

in
g

B
i-C

-G
R

U

B
i-C

-G
R

U

C
ap

su
le

em
b

ed
d

in
g

B
i-G

R
U

B
i-G

R
U

em
b

ed
d

in
g

B
i-L

S
T

M

B
i-L

S
T

M

C
o
n

ca
ten

a
tio

n

C
o
n

ca
ten

a
tio

n

X
G

B
o
o
st

others

angry

sad

happy

Bi-C-GRU: Bi-CuDNNGRU

Word vector Cross-validation Ensemble learning

Figure 1: System architecture.

bility and is prone to over-fitting. Sampling veri-
fication may alleviate the problem of data imbal-
ance (He and Garcia, 2008). In order to enable
the model to learn the data characteristics of small
samples, we use five-fold cross-validation to ver-
ify the model and test its robustness. The system
architecture is illustrated in Figure 1.

2.1 Embedding
We use a GloVe (Pennington et al., 2014) pre-
trained word vector: the Twitter 200-dimensional
word vector. GloVe is a word representation tool
based on the count base and overall statistics. It
expresses a word as a vector of real numbers, and
captures the semantic properties of words, such as
similarity and analogy. Meanwhile, the ELMo al-
gorithm (Peters et al., 2018) is used to train word
vectors. ELMo simulates not only the complex
features of vocabulary use, but also the changes
in these usages in different language contexts. To
train the ELMo word vector, we use the afore-
mentioned processed text as input, including both
the training and development set. The text is
processed into a lookup table, and the words are
passed into the ELMo algorithm one by one to
generate a 1024-dimensional word vector.

For the feature extraction step, we use Keras
(Francois and Chollet, 2015) to convert the tex-
t into a vector form of the word embeddings.

2.2 Model
Conventionally, the deep learning model is used
in the natural language processing field. We use
four superior-performance model components. By

Codes are publicly available at https://github.com/L-
Maybe/SemEval-2019-task3-EmoContext

combining two different word embedding model-
s, we obtain eight different models. We use four
deep learning models, namely LSTM (Hochreit-
er and Schmidhuber, 1997; Mikolov, 2010), GRU
(Cho et al., 2014), Capsule-Net (Sabour et al.,
2017; Zhao et al., 2018), and Self-Attention (Lu-
ong et al., 2015).

We use Dropout (Salakhutdinov et al., 2014) to
aid with improved model convergence. Finally, at
each model output, we output the four predicted
categories of probabilities, instead of the predicted
results.

2.3 Ensemble Learning
According to the dataset characteristics, we design
a multi-step ensemble neural network for the four-
category emotion detection task.

The first step of integration consists of random-
ly dividing the entire dataset into 5-folds. In each
round, four folds are used for training and the re-
maining fold is used to validate the model. More-
over, the model is used to predict the development
and test sets. We use softmax activation function
to get the probability distribution. At the end of
the 5-fold cross-validation, five predicted proba-
bility values of train set, development set and test
set are obtained. We apply a soft-voting mecha-
nism to integrate the prediction probability on five
predicted probability of development and test set-
s. The second step of integration involves com-
bining different word vectors (GloVe and ELMo)
with different models. The results of the first step
of multiple models are horizontally concatenated
as input for the second step of integration. The
parameters are tuned and the predicted results are
output.

361

others angry sad happy
Training 0.4956 0.1826 0.1811 0.1407

Development 0.8486 0.0544 0.0454 0.0515

Table 1: Percentage of categories in dataset.

In the final integration phase, we use the XG-
Boost (Chen and Guestrin, 2016) toolkit, which
utilizes CPU multithreading for parallelism and
exhibits strong classification performance. Fur-
thermore, the toolkit can set different weights for
unbalanced datasets, which is the most important
reason for its use as the final predictive classifier.
Following the ensemble learning of the soft-voting
in the first step, we obtain eight groups of classi-
fication probability values. Owing to the different
inputs, the final outputs of the four models differ,
which meets the requirements of integrated learn-
ing. We horizontally concatenate the eight sets
of probability prediction values into a new feature
matrix and use the XGBoost tool to learn the new
feature matrix to obtain the final prediction result.

3 Experiments and Results

3.1 Datastes and Official Evaluation Metrics
Datasets were provided by SemEval 2019 Task
3, EmoContext: Contextual Emotion Detection in
Text (Chatterjee et al., 2019). The participants
were asked to predict the emotions of a three-turn
conversation. The task considered three emotion
classes, namely happy, sad, and angry, along with
an others category. The number of training and
development sets was 30160 and 2755, respective-
ly. The categories of the training and development
sets are displayed in Table 1. Owing to the imbal-
ance of the training set data, the official evaluation
matrics is the micro-average F1-score.

3.2 Preprocessing
For the data preprocessing, cleaning, and tok-
enization, as well as for most of the training sets,
we used the Python Scikit-learn (Pedregosa et al.,
2013) and Ekphrasis (Baziotis et al., 2017; Gim-
pel et al., 2011). The data is different from regular
text, with substantial amounts of irregular gram-
mar, logograms, and abbreviations, among others.
Moreover, the emojis in text have an influence on
the emotions detection. We studied the abbrevi-
ations of the text, determined the comparison ta-
ble of abbreviations and words, and added English
abbreviations to the abbreviated words. Moreover,

the special emojis in text were counted, and a com-
parison table of expressions and corresponding ex-
planations was generated. The processing steps
are as follows:

• Process multiple consecutive punctuation
points or emojis in a text into a punctuation
or emoji.

• Splice the dialogue into a single text, and seg-
ment each round of dialogue with ’<eos>’.

• Use regular expressions to convert English
mis-spelled words with similar rules in-
to the correct words (for example, con-
vert ’goooooood’ to ’good’, and ’yesssss’ to
’yes’).

• Use the Ekphrasis tool to segment texts. This
tool is used to separate special emoticons (for
example, convert ’:-(’ to ’unhappy face’, and
’:)’ to ’smiley face’), which is effective for
the next step of expression processing.

• Traverse the word segmentation and compar-
ison table one by one, replacing logograms,
abbreviations, and emojis (for example, ’ /’
to ’unhappy face’ and convert ’,’ to ’smiley
face’,).

3.3 Parameter Optimization

In order to search the optimal parameters for each
model, we used the Scikit-Learn toolkit to perfor-
m a grid search on the training set. In the single
model tuning phase, we output the probability val-
ue of the four classifications and then performed
integration. We used the micro-averaged F1-score
to evaluate the results of the soft-voting and to tune
the optimal parameters.

After adjusting the single model parameters, we
obtain the eight best performing models. As the
training set was randomly scrambled, the training
set for each cross-validation differs. Therefore, in
the final integration, eight models will be run to-
gether, and the results of the eight models will be
integrated to obtain the predicted results. The clas-
sifier for integrated learning is XGBoost, which
uses the grid search method in Scikit-Learn to tune
the optimal parameters. As the data to be learned
are unbalanced, cross-validation is used to adjust
the parameters. This step is applied to the training
and development sets, and finally predicts the test
set results.

362

Embeding Dataset
Micro-Average-F1(%)

Attention GRU Capsule-Net LSTM GRU

GloVe
Dev 69.81 70.16 68.76 66.27

Test 71.26 70.24 69.05 69.43

ELMo
Dev 71.36 70.18 70.32 70.12

Test 70.04 70.95 70.92 70.1

Ensemble
Dev 76.05

Test 75.88

Table 2: Final submission of development sets and tests.

Precision Recall F1

happy 0.717 0.687 0.701

sad 0.802 0.824 0.813

angry 0.720 0.0.819 0.766

Table 3: The result for each emotion class of test dataset.

The parameters are described as follows: model
1 and model 2 are two layers of LSTM and GRU
respectively. Then there is the Dropout layer, and
finally the softmax function is used to output the
probability value. Model 3 and model 4 add the
Attention layer and the Capsule-Net layer respec-
tively after the stacked bidirectional GRU. The
output is the same as model 1 or 2. The dropout in
the GRU component is 0.25. The hidden dimen-
sion using the GloVe word vector is 120 while us-
ing the ELMO word vector is 400.The optimizer is
rmsprop with a learning rate of 0.3. The loss func-
tion is categorical cross-entropy. The bacth size of
model is 256. The Routings is 5 of Capsule-Net
while the number of capsule is 10 and the capsule
dimension is 32.

The super parameters of XGBoost are as fol-
lows: the learning rate is 0.09, the estimators
are 18, the maximum depth is 4, gamma is
1.7, subsample is 0.15, colsample bytree is 0.75,
reg alpha is 0.01, and seed is 6.

3.4 Results and Analysis

The proposed system is trained on the EmoCon-
text training set. There are eight models, and
each single model is trained using five-fold cross-
validation combined with a soft-voting method.
The stacking integration algorithm is used to out-
put the final predicted results. The results of the
development and test sets are presented in Table 2.
the result for each emotion class of test dataset in
Table 3.

It is worth noting that the results of developing

the ELMo word vector on the set are significantly
superior to the results of the GloVe word vector.
We did not discard the GloVe word vector, and the
results are not ineffective. Moreover, the perfor-
mance will be improved by integrating multiple d-
ifferent models. Based on the results of the test
set, the GloVe word vector results will be superior
to those of the development set in the final predic-
tion. In the overall comparison of the test set and
development set results, the model offers a strong
generalization ability.

Following the ensemble learning, our final re-
sult is 75.88%. Throughout the experiment, we
found that, although we used cross-validation and
applied a soft-voting mechanism, the experimen-
tal results were not very stable, the main reason
for which is that the data were not balanced.

4 Conlusion

Our system won 10th place in SemEval-2019 Task
3, EmoContext: Contextual Emotion Detection in
Text. The main challenge for this task was data
imbalance. We achieved a competitive result us-
ing a multi-step ensemble neural network. The use
of cross-validation in a single model mitigates the
effects of data imbalance. A soft-voting mecha-
nism was incorporated into the process to improve
the model stability further. The results of the eight
models were integrated using stacking integration.
According to the final official review, our system
is certainly effective. In future work, we will s-
tudy how to enable the model to learn more fea-
tures and improve our proposed model in the case
of data imbalance.

Acknowledgements

This work was supported by the National Natu-
ral Science Foundation of China (NSFC) under
Grants No.61702443 and No.61762091. We also
thank anonymous reviewers for their comments.

363

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. DataStories at SemEval-2017 Task 4:
Deep LSTM with Attention for Message-level and
Topic-based Sentiment Analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), 1, pages 747–754.

Ankush Chatterjee, Kedhar Nath Narahari, Meghana
Joshi, and Puneet Agrawal. 2019. Semeval-2019
task 3: Emocontext: Contextual emotion detection
in text. In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Nitesh Chawla, Kevin Bowyer, Lawrence O. Hall, and
W Philip Kegelmeyer. 2002. SMOTE: Synthetic
Minority Over-sampling Technique. J. Artif. Intel-
l. Res. (JAIR), 16:321–357.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost:
A Scalable Tree Boosting System. Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
785–794.

Kyunghyun Cho, Bart van Merri?nboer, Dzmitry Bah-
danau, and Y Bengio. 2014. On the Properties of
Neural Machine Translation: Encoder-Decoder Ap-
proaches. Computer Science.

Chris Drummond, Robert C Holte, et al. 2003. C4.
5, class imbalance, and cost sensitivity: why under-
sampling beats over-sampling. In Workshop on
learning from imbalanced datasets II, volume 11,
pages 1–8. Citeseer.

Francois and Chollet. 2015. Keras: Deep learning li-
brary for theano and tensorflow.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-Speech Tagging
for Twitter: Annotation, Features, and Experiments.
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies: Short Pa-
pers.

H. He and E. A. Garcia. 2008. Learning from Imbal-
anced Data. IEEE Transactions on Knowledge and
Data Engineering, 21(9):1263–1284.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1412—-1421.

Tomas Mikolov. 2010. Recurrent neural network based
language model. Interspeech, 2:3.

Fabian Pedregosa, Gal Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, and Vincent Dubourg. 2013. Scikit-learn:
Machine learning in python. Journal of Machine
Learning Research, 12(10):2825–2830.

Jeffrey Pennington, Richard Socher, and Christoper
Manning. 2014. GloVe: Global Vectors for Word
Representation. Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532—-1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. The North American Chapter of the
Association for Computational Linguistics 2019, ab-
s/1802.0.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic routing between capsules. pages
3856–3866.

Nitish Srivastava Salakhutdinov, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and Ruslan. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Gary M Weiss. 2004. Mining with rarity: a unifying
framework. ACM Sigkdd Explorations Newsletter,
6(1):7–19.

Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Suofei
Zhang, and Zhou Zhao. 2018. Investigating Cap-
sule Networks with Dynamic Routing for Text Clas-
sification. Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3110–3119.

364

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 365–370
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

KDEHatEval at SemEval-2019 Task 5: A Neural Network Model for
Detecting Hate Speech in Twitter

Umme Aymun Siddiqua, Abu Nowshed Chy, and Masaki Aono
Department of Computer Science and Engineering

Toyohashi University of Technology, Toyohashi, Aichi, Japan.
{aymun,nowshed}@kde.cs.tut.ac.jp and aono@tut.jp

Abstract

In the age of emerging volume of microblog
platforms, especially twitter, hate speech prop-
agation is now of great concern. However, due
to the brevity of tweets and informal user gen-
erated contents, detecting and analyzing hate
speech on twitter is a formidable task. In this
paper, we present our approach for detecting
hate speech in tweets defined in the SemEval-
2019 Task 5. Our team KDEHatEval em-
ploys different neural network models includ-
ing multi-kernel convolution (MKC), nested
LSTMs (NLSTMs), and multi-layer percep-
tron (MLP) in a unified architecture. More-
over, we utilize the state-of-the-art pre-trained
sentence embedding models including Deep-
Moji, InferSent, and BERT for effective tweet
representation. We analyze the performance of
our method and demonstrate the contribution
of each component of our architecture.

1 Introduction

Nowadays, microblog platforms such as twit-
ter has become the most popular communica-
tion medium among the people due to its conve-
nient feature for sharing views, opinions, breaking
news, and ideas. Besides its robust communica-
tion feature, it has facilitated the evil-minded peo-
ple to propagate anti-social behavior including on-
line harassment, cyber-bullying, and hate speech.

Hate speech is commonly defined as any com-
munication that disparages a person or a group
on the basis of some characteristics such as race,
color, ethnicity, gender, sexual orientation, na-
tionality, religion, or other characteristics (Basile
et al., 2019). Given the massive amount of user-
generated contents on the microblog, the problem
of detecting, and therefore possibly limit the hate
speech diffusion, is becoming fundamental, for in-
stance for fighting against misogyny and xenopho-
bia.

To address the challenges of hate speech detec-
tion in microblog platforms, Basile et al. (2019)
proposed a multilingual detection of hate speech
(HatEval) in twitter, task 5 at SemEval-2019. The
task features two specific different targets includ-
ing immigrants and women and focuses on two re-
lated subtasks.

Task A defines a two-class (or binary) classi-
fication problem where a system needs to predict
whether a tweet in English or Spanish with a given
target (women or immigrants) is hateful or not
hateful. Whereas task B defines the aggressive be-
havior and target classification problem. A system
first classifies a hateful tweet as aggressive or not
aggressive, and then identify the target harassed
as the individual or generic (i.e., single human or
group). In this paper, we only focus on the English
tweets for both task A and B.

The rest of the paper is structured as follows:
Section 2 provides a brief overview of prior re-
search. In Section 3, we introduce our proposed
neural network model. Section 4 includes exper-
iments and evaluations as well as the analysis of
our proposed method. Some concluded remarks
and future directions of our work are described in
Section 5.

2 Related Work

Early studies on hate speech detection focused
mainly on lexicon-based approaches (Kwok and
Wang, 2013; Gitari et al., 2015). However, these
approaches prone to failure for detecting hate
speech in a microblogging platform where rare
terms are evolving incessantly. Besides some re-
searchers tackled the problem by employing fea-
ture (e.g., N-gram, TF-IDF) based supervised
learning approach using SVM and Naive-Bayes
classifier (Gaydhani et al., 2018; Unsvåg and
Gambäck, 2018).

365

More recently several researchers tried to ad-
dress the problem by using state-of-the-art neu-
ral network based models. Among several promi-
nent works, Badjatiya et al. (2017) employed mul-
tiple deep learning architectures including CNNs,
LSTMs, and fastText to learn semantic word em-
beddings for hate speech detection. Golem et
al. (2018) utilized the combination of traditional
shallow machine learning models and deep learn-
ing models for hate speech detection. Pitsilis et
al. (2018) utilized the ensemble of recurrent neural
network (RNN) classifiers and incorporated var-
ious features associated with user-related infor-
mation. Zhang et al. (2018) introduced a new
method by combining a convolutional neural net-
work (CNN) and gated recurrent unit (GRU) mod-
els. Djuric et al. (2015) used the comment embed-
dings for detecting hate speech.

3 Proposed Framework

In this section, we describe the details of our pro-
posed neural network model. The goal of our
proposed approach is to detect whether a tweet is
hateful or not as well as determine its aggressive-
ness and identify the target harassed as individual
or generic. We consider each task as a binary clas-
sification problem as well as train and evaluate our
model accordingly. Figure 1 depicts an overview
of our proposed model.

Feature Vector

Nested LSTMs
Multilayer

Perceptron (MLP)

Dense Layer

Feature Vector

Concatenate Layer

Category Prediction

Activation Layer

Tweet Embedding

L × D
L=Tweet Length

D=Vector Dimension

Multi-kernel CNN
kernel size [2,3,4,5]

DeepMoji InferSent

2304-Dim 1024-Dim4096-Dim

BERT

Feature Vector

External Tweet Encoder

Figure 1: Proposed framework.

At first, we utilize a pre-trained word embed-
ding model to obtain the high-quality distributed
vector representations of tweets. Next, we apply
the multi-kernel convolution (MKC) and nested
LSTMs (NLSTMs) models to extract the higher-

level feature sequences with sequential informa-
tion from the tweet embeddings. Besides, we
employ three different pre-trained tweet encoder
models including DeepMoji, InferSent, and BERT
to encode each tweet into 2304, 4096, and 1024-
dimensional feature vector, respectively. These
feature vectors are then combined and sent to a
multi-layer perceptron (MLP) module. Finally, the
generated output feature sequences from MKC,
NLSTMs, and MLP are concatenated and fed into
the fully-connected prediction module to deter-
mine the final category label. For the simplicity
of discussion, we named our proposed neural net-
work architecture as MKC-NLSTMs-MLP. Next,
we describe each component elaborately.

3.1 Embedding Layer
Distributed representation of words known as
word embedding is treated as one of the most
popular representations of documents vocabulary
due to its capability of capturing the context of
a word within a document as well as estimat-
ing the semantic similarity and relation with other
words (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017).

In our proposed framework, we utilize a pre-
trained word embedding model based on fast-
Text (Bojanowski et al., 2017) to obtain the
high-quality distributed vector representations of
tweets. The dimensionality of the embedding ma-
trix will be L × D, where L is the tweet length,
and D is the word-vector dimension.

3.2 Multi-kernel Convolution
The convolution layers usually applied to extract
the higher level features from the given input ma-
trix. Since kernel sizes, i.e., the size of the con-
volution filters have a significant effect on perfor-
mance, we apply filters with different sizes to get
the different kinds of effective features. In our
multi-kernel convolution, We perform the convo-
lution on the input tweet’s embedding matrix by
using four different kernel sizes: 2, 3, 4, and 5.
Some previous studies already demonstrated the
effectiveness of multi-kernel convolution over the
single one (Kim, 2014; Zhang and Wallace, 2015;
Wang et al., 2017).

3.3 Nested LSTMs
In nested LSTMs (NLSTMs) (Moniz and Krueger,
2017), the LSTM memory cells have access to
their inner memory, where they can selectively

366

read and write relevant long-term information.
While the value of the outer memory cell in the
LSTM is estimated as coutert = ft� ct−1+ it�gt,
memory cells of the NLSTM use the concate-
nation (ft � ct−1, it � gt) as input to an inner
LSTM (or NLSTM) memory cell, and set coutert =
hinnert . The inner memories of NLSTMs operate
on longer time-scales and capture the context in-
formation from the input tweets effectively.

3.4 Pre-trained Models for Feature Encoding
In order to extract features for effective tweet rep-
resentation, we utilize the three state-of-the-art
pre-trained sentence embedding model including
DeepMoji, BERT, and InferSent. In this section,
we briefly describe these models.

DeepMoji: DeepMoji (Felbo et al., 2017) per-
forms distant supervision on a dataset of 1246 mil-
lion tweets comprising a more diverse set of noisy
labels. DeepMoji uses an embedding layer of 256
dimensions to project each word of a tweet into a
vector space. Two bidirectional LSTM layers with
1024 hidden units in each (512 in each direction)
are applied to capture the context of each word.
Finally, an attention layer takes all of these layers
as input using skip-connections. We employ the
representation vector of dimension 2304 obtained
from the attention layer as the features.

BERT: BERT (Devlin et al., 2018) stands
for Bidirectional Encoder Representations from
Transformers, which is a new method of pre-
training sentence representations. We employ the
BERT-Large, Uncased model to encode each tweet
into a 1024-dimensional feature vector.

InferSent: InferSent (Conneau et al., 2017) is a
universal sentence embedding model trained using
the supervised data of the Stanford Natural Lan-
guage Inference (SNLI) datasets. We employ the
InferSent model trained on fastText (Bojanowski
et al., 2017) vectors to encode each tweet into a
4096-dimensional feature vector.

3.5 Multi-layer Perceptron
After extracting features from the pre-trained ex-
ternal tweet encoder model, we concatenate them
and pass to a fully connected multi-layer percep-
tron (MLP) network.

A multilayer perceptron (MLP) (Pedregosa
et al., 2011) is a feed-forward artificial neural net-
work model that maps sets of input data onto a set
of appropriate outputs. An MLP consists of multi-
ple layers of nodes in a directed graph, with each

layer fully connected to the next one. Except for
the input nodes, each node is a neuron with a non-
linear activation function. MLP utilizes a super-
vised learning technique called back-propagation
for training the network.

3.6 Prediction Module and Model Training
We concatenate the final tweet representation from
the multi-kernel convolution (MKC) module, NL-
STMs module, and MLP module and pass it to a
fully connected softmax layer for category predic-
tion. We consider cross-entropy as the loss func-
tion and train the model by minimizing the error,
which is defined as:

E(x(i), y(i)) =

k∑

j=1

1{y(i) = j} log(y∼(i)
j)

where x(i) is the training sample with its true label
y(i). y∼(i)

j is the estimated probability in [0, 1] for
each label j. 1{condition} is an indicator which
is 1 if true and 0 otherwise. We use the stochastic
gradient descent (SGD) to learn the model param-
eter and adopt the Adam optimizer (Kingma and
Ba, 2014).

4 Experiments and Evaluations

4.1 Dataset Collection
The multilingual detection of hate speech (HatE-
val) task 5 at SemEval-2019 (Basile et al., 2019)
provides a benchmark dataset to evaluate the per-
formance of the participants’ systems. The pro-
posed task features two specific different targets
including immigrants and women in a multilingual
perspective, for Spanish and English. However,
we only used the English dataset to evaluate our
proposed system. The training, validation, and test
set of the English dataset contains the 9000, 1000,
and 2971 annotated tweets, respectively.

4.2 Model Configuration
In the following, we describe the set of param-
eters that we have used to design our proposed
neural network model, MKC-NLSTMs-MLP. Our
designed model was based on Tensorflow (Abadi
et al., 2016) and trained on a GPU (Owens et al.,
2008) to capture the benefit from the efficiency
of parallel computation of tensors. We performed
hyper-parameter optimization using a simple grid
search. We used the 300-dimensional fastText
embedding model pre-trained on Wikipedia with

367

skip-gram (Bojanowski et al., 2017) to initialize
the word embeddings in the embedding layer de-
scribed in Section 3.1. For the multi-kernel con-
volution described in Section 3.2, we employed
4 different kernel sizes including (2,3,4,5), and
the number of filters was set to 600. The nested
LSTMs module contains 2 layers and multi-
layer perceptron (MLP) module contains 3 fully-
connected dense layers. We trained all models
with 15 epochs with a batch size of 32 and an ini-
tial learning rate 0.001 by Adam optimizer. The
MLP layers were dropped out with a probability of
0.02. L2 regularization with a factor of 0.01 was
applied to the weights in the softmax layer. Unless
otherwise stated, default settings were used for the
other parameters.

4.3 Evaluation Measures

To evaluate the performance of the system, the or-
ganizers used different strategies and metrics for
the task A and B (Basile et al., 2019). For the task
A, standard evaluation metrics, including accu-
racy, precision, recall, and F1-score were applied
to estimate the performance of a system. How-
ever, F1-score considered as the primary evalua-
tion measure for this task.

For the task B, macro average F1-score of
the hate speech (HS), target range (TR), and ag-
gressiveness (AG) category and exact match ratio
(EMR) of these categories are used as the evalu-
ation measures. EMR considered as the primary
evaluation measure for task B.

4.4 Experimental Results

We now evaluate the performance of our pro-
posed method, MKC-NLSTMs-MLP, in this sec-
tion. The summarized results for task A and task B
are presented in Table 1 and Table 2, respectively.

At first, we presented the performance of our
proposed method denoted by team name KDEHat-
Eval as well as presenting the performance of ran-
domly chosen top-ranked participated systems and

Team Name Accuracy Precision Recall F1-Score

KDEHatEval 0.493 0.633 0.555 0.440

Fermi 0.653 0.690 0.679 0.651
YNU DYX 0.560 0.636 0.603 0.546
SINAI DL 0.535 0.601 0.577 0.519
Hateminers 0.544 0.658 0.596 0.516
SVC Baseline 0.492 0.595 0.549 0.451
MFC Baseline 0.579 0.289 0.500 0.367

Table 1: (Task A) Our result with other selected teams.

Team Name Avg. F1-Score Exact Match Ratio (EMR)

KDEHatEval 0.559 0.324

MFC Baseline 0.421 0.580
CIC-1 0.551 0.568
SINAI DL 0.611 0.384
Hateminers 0.589 0.357
SVC Baseline 0.578 0.308

Table 2: (Task B) Our result with other selected teams.

HatEval-2019 baselines. The organizers used the
SVC (a linear support vector machine) and MFC
(a trivial model that assigns the most frequent la-
bel, estimated on the training set) as the baseline
system (Basile et al., 2019).

In order to estimate the effect of each compo-
nent of our MKC-NLSTMs-MLP model, we per-
formed the component ablation study. In this re-
gard, we removed one component each time and
repeated the experiment. The summarized experi-
mental results of component ablation study for the
task A are presented in Table 3.

Method Accuracy Precision Recall F1-Score

MKC-NLSTMs-MLP 0.493 0.633 0.555 0.440

−MKC 0.441 0.507 0.503 0.381
−NLSTMs 0.483 0.630 0.548 0.423
−MLP 0.495 0.636 0.557 0.443
−MKC−NLSTMs 0.458 0.507 0.505 0.431
−MKC−MLP 0.475 0.592 0.537 0.419
−NLSTMs−MLP 0.485 0.640 0.549 0.423

Table 3: (Task A) Ablation study of our proposed
method.

From the results, it can be observed that when
removing multi-kernel convolution (MKC) and
nested LSTMs (NLSTMs) the overall F1 score de-
creased by 5.6% and 1.7%, respectively. How-
ever, when removing external tweet embedding
with MLP module, the results increased by 0.3%.
This observation deduced that in our current archi-
tecture, external pre-trained model features with
MLP contributed negatively.

Besides, removing one component, we also per-
form ablation study by removing two components
and present the results accordingly in Table 3.
This analysis provides the overall performance of
the individual component.

5 Conclusion

In this paper, we presented our approach to the
SemEval-2019 Task 5: HatEval: Detection of
hate speech. We tackled the problem by em-
ploying several deep learning techniques includ-

368

ing multi-kernel convolution, nested LSTMs, and
multi-layer perceptron in a unified architecture.

Though we have used the state-of-the-art tech-
niques in our proposed approach, the overall per-
formance is not satisfactory. The contribution
of nested LSTMs (NLSTMs) is not significant
while compared with the multi-kernel convolu-
tion (MKC). Regarding this, one possible solu-
tion will be used the MKC on top of NLSTMs.
Moreover, we observed that the multi-layer per-
ceptron (MLP) model trained with the concate-
nated features from the pre-trained sentence em-
bedding models hurts the performance of our pro-
posed architecture. We need to observe the abla-
tion study of the sentence embedding models as
well as modify the MLP architecture to mitigate
this issue.

Therefore, there is much room left to im-
prove the performance of our method presented in
HatEval-2019 task. In the future, we have a plan to
overcome these limitations by introducing several
sophisticated techniques.

Acknowledgments

The part of this research is supported by MEXT
KAKENHI, Grant-in-Aid for Scientific Research
(B), Grant Number 17H01746 and by grants from
the KDDI Foundation.

References

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: a system for large-scale ma-
chine learning. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Im-
plementation (OSDI), pages 265–283. USENIX As-
sociation.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
(WWW) Companion, pages 759–760. International
World Wide Web Conferences Steering Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics (TACL), 5:135–
146.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 670–680,
Copenhagen, Denmark. ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th Inter-
national Conference on World Wide Web (WWW),
pages 29–30. ACM.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1615–1625. ACL.

Aditya Gaydhani, Vikrant Doma, Shrikant Kendre, and
Laxmi Bhagwat. 2018. Detecting hate speech and
offensive language on twitter using machine learn-
ing: An n-gram and tfidf based approach. arXiv
preprint arXiv:1809.08651.

Njagi Dennis Gitari, Zhang Zuping, Hanyurwimfura
Damien, and Jun Long. 2015. A lexicon-based
approach for hate speech detection. International
Journal of Multimedia and Ubiquitous Engineering
(IJMUE), 10(4):215–230.

Viktor Golem, Mladen Karan, and Jan Šnajder. 2018.
Combining shallow and deep learning for aggressive
text detection. In Proceedings of the 1st Workshop
on Trolling, Aggression, and Cyberbullying (TRAC-
2018), pages 188–198.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751.
ACL.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
detecting tweets against blacks. In Proceedings of
the 27th AAAI Conference on Artificial Intelligence,
pages 1621–1622. AAAI Press.

369

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems (NeurIPS), pages 3111–3119.

Joel Ruben Antony Moniz and David Krueger. 2017.
Nested lstms. In Proceedings of the 9th Asian Con-
ference on Machine Learning (ACML), pages 530–
544. Springer.

John D Owens, Mike Houston, David Luebke, Si-
mon Green, John E Stone, and James C Phillips.
2008. Gpu computing. Proceedings of the IEEE,
96(5):879–899.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python . Journal of Machine Learning Re-
search (JMLR), 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. ACL.

Georgios K Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language
in tweets using deep learning. arXiv preprint
arXiv:1801.04433.

Elise Fehn Unsvåg and Björn Gambäck. 2018. The ef-
fects of user features on twitter hate speech detec-
tion. In Proceedings of the 2nd Workshop on Abu-
sive Language Online (ALW2), pages 75–85.

Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun
Yan. 2017. Combining knowledge with deep con-
volutional neural networks for short text classifica-
tion. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI), pages
2915–2921. AAAI Press.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on twitter using a
convolution-gru based deep neural network. In Pro-
ceedings of the 15th European Semantic Web Con-
ference (ESWC), pages 745–760. Springer.

370

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 371–376
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ABARUAH at SemEval-2019 Task 5 : Bi-directional LSTM for Hate
Speech Detection

Arup Baruah
Dept. of Comp. Sc. & Engg.

IIIT Guwahati, India
arup.baruah@gmail.com

Ferdous Ahmed Barbhuiya
Dept. of Comp. Sc. & Engg.

IIIT Guwahati, India
ferdous@iiitg.ac.in

Kuntal Dey
IBM Research India

New Delhi
kuntadey@in.ibm.com

Abstract
In this paper, we present the results obtained
using bi-directional long short-term memory
(BiLSTM) with and without attention and Lo-
gistic Regression (LR) models for SemEval-
2019 Task 5 titled ”HatEval: Multilingual De-
tection of Hate Speech Against Immigrants
and Women in Twitter”. This paper presents
the results obtained for Subtask A for English
language. The results of the BiLSTM and LR
models are compared for two different types
of preprocessing. One with no stemming per-
formed and no stopwords removed. The other
with stemming performed and stopwords re-
moved. The BiLSTM model without attention
performed the best for the first test, while the
LR model with character n-grams performed
the best for the second test. The BiLSTM
model obtained an F1 score of 0.51 on the test
set and obtained an official ranking of 8/71.

1 Introduction

Davidson et al. (2017) has defined hate speech
as “language that is used to express hatred to-
wards a targeted group or is intended to be deroga-
tory, to humiliate, or to insult the members of the
group.” Gambäck and Sikdar (2017), Badjatiya
et al. (2017), Waseem (2016) and Waseem et al.
(2017) have used the term hate speech to indicate
tweets having racist or sexist comments. Social
media is becoming a convenient medium to spread
hate speech. Hate speech spread through social
media has fueled riots in Myanmar 1, Sri Lanka 2,
Charlottesville (USA) 3, and many other parts of
the world. Thus, it is becoming increasingly im-
portant to detect and remove hate messages from

1https://www.nytimes.com/2018/10/15/technology/
myanmar-facebook-genocide.html

2https://qz.com/1223787/sri-lanka-shut-down-facebook-
whatsapp-and-instagram-to-stop-anti-muslim-violence/

3https://psmag.com/social-justice/how-social-media-
helped-organize-and-radicalize-americas-newest-white-
supremacists

the web. It is not possible to manually moder-
ate the vast amount of text exchanged on the web.
Developing automated systems to recognize hate
speech is becoming crucially important. However,
detecting hate speech in a text is more than just
checking for the presence of hate words. Lexicon
based approaches have not been very effective in
hate speech detection (Nobata et al., 2016).

As part of the 13th workshop on semantic eval-
uation (SemEval-2019), shared task 5 defines two
subtasks with regard to detection of hate speech
against immigrants and women in Twitter (Basile
et al., 2019). This task was conducted for tweets in
English and Spanish language. In Subtask A, it is
required to determine if a tweet, with a given tar-
get, is hateful or not. In Subtask B, it is required to
determine if a given hateful tweet is aggressive or
not and whether it targets an individual or a group.

2 Related Work

Nobata et al. (2016) studied the performance of
different features such as character n-grams, word
n-grams, word2vec, character2vec, etc. in detect-
ing hate speech. A regression model was used
in their study. Malmasi and Zampieri (2017)
made a similar study to compare the performance
of different features in detecting hate speech.
Djuric et al. (2015) used paragraph embeddings
for detecting hate speech. Wulczyn et al. (2017)
worked on detecting insults in Wikipedia com-
ments. Davidson et al. (2017) worked on detect-
ing hate speech when hate words are not explicitly
used in the text. Malmasi and Zampieri (2018)
used ensemble method and combined 16 differ-
ent base classifiers to detect hate speech. Serrà
et al. (2017) used character-based Recurrent Neu-
ral Network (RNN) to study the use of out-of-
vocabulary words in hate speech. Gao and Huang
(2017) used BiLSTMs with attention mechanism

371

to detect hate speech. Pavlopoulos et al. (2017)
used Convolutional Neural Network (CNN) and
RNN with attention mechanism to moderate user
comments. Sax (2016) compared the performance
of several deep learning techniques, LR and Sup-
port Vector Machine (SVM) models in detecting
hate speech.

3 Data

Table 1 below shows the proportion of positive and
negative instances of hate speech in the train, de-
velopment and test data sets. As can be seen, 42%
of the instances in each of the data set are hate
speech. The data collected in Gao et al. (2017)
had only 0.6% hateful tweets. Nobata et al. (2016)
found that only 5.9% of the online comments con-
tained hate speech. The data sets used for this task,
however, are quite balanced.

Type Not Hate Speech Hate Speech Total
Train 5217 (58%) 3783 (42%) 9000
Dev 573 (57.3%) 427 (42.7%) 1000
Test 1718 (57.85%) 1252 (42.15%) 2970

Table 1: Data set statistics

The models used in our study were trained and
validated using the train and development sets pro-
vided as part of this task. No other external data
sets were used for training or validating. How-
ever, pre-trained GloVe 4 word vectors trained us-
ing 2 billion tweets were used as features for the
two BiLSTM models. The 200-dimensional word
vectors were used in our experiments.

4 Experimental Settings

4.1 Preprocessing
The preprocessing performed on the text includes
the following -

1. All URLs, mentions and non-alphabetic char-
acters were removed from the tweets.

2. The tweets were then converted to lowercase.

3. Stemming was performed using NLTK’s
Lancaster stemmer.

4. Stopwords were removed.

5. Tokenizer was used to convert each tweet into
a sequence of integers by replacing each to-
ken by its index into the vocabulary. The

4https://nlp.stanford.edu/projects/glove/

tweet with the maximum length had 58 to-
kens (when stopwords were retained). This
value is later used as the length of the input
sequences to the Embedding layer of the BiL-
STM models. So, tweets with length less than
58 were padded with zeros, so as to make all
the tweets to be of the same length.

4.2 Models Used

In our study, we used a BiLSTM without attention,
and a BiLSTM with attention and an LR model.
The details of our models are provided below.

4.2.1 BiLSTM without attention mechanism

Figure 1 shows the architecture of the BiLSTM
used in our study. Both the forward and back-
ward Long Short-Term Memory (LSTM) layers of
the bi-directional layer of this model consisted of
100 units. Pre-trained GloVe embeddings were
used to train the model. An embedding layer
was used to feed the word vectors to the BiLSTM
layer. A dropout of 0.25 was applied to the in-
put of LSTM and a dropout of 0.1 was used for
the recurrent connections. The BiLSTM layer was
set to return the hidden state for each timestep.
Thus, the output shape of the BiLSTM layer was
(None,58,200). A global max pooling layer was
used on top of the BiLSTM layer. This resulted
in an output of the shape (None,200). The output
from the global max pooling layer was fed to a
Dense layer having 100 units. The Rectified Lin-
ear Unit (ReLU) activation function was used for
this Dense layer. The output of the Dense layer
was of the shape (None,100). The output was
passed through a dropout layer with the rate set
to 0.25. The output from the dropout layer was
then passed through another Dense layer having a
single unit. The sigmoid activation function was
used for this layer. The model was trained using
the Adam optimizer. The loss function used was
binary cross-entropy. The model was trained with
a batch size set to 32. The hyperparameter values
used for the model are summarized in Table 2.

4.2.2 BiLSTM with attention mechanism

This model is exactly the same as the model de-
scribed in 4.2.1 except that the global max pooling
layer was replaced with attention mechanism. The
hyperparameter values for both the models were
also same.

372

Figure 1: Architecture of the BiLSTM model used

Parameter Value
Number of LSTM units 100

LSTM dropout 0.25
Recurrent dropout 0.10

Units in 1st Dense layer 100
Activation Function for ReLU

1st Dense layer
Rate for dropout layer 0.25

Units in 2nd Dense layer 1
Activation Function for sigmoid

2nd Dense layer
Optimizer Adam

Loss Function Binary cross-entropy

Table 2: Hyperparameters for the BiLSTM model

4.2.3 Logistic Regression
The third model we used was an LR model with L2
regularization. The class weight and C parameter
were set to ‘balanced’ and 1.2 respectively. This
model was trained with character n-grams (1 to 6),
word n-grams (1 to 3), and a combination of both
character and word n-grams. The hyperparameter
values for the LR model were set as shown in Ta-
ble 3.

5 Results & Discussions

The following tests were performed by us:

1. BiLSTM model trained using GloVe word

Parameter Value
Regularization L2

C 1.2
Class weight balanced

Table 3: Hyperparameters for the LR model

embeddings as features.

2. BiLSTM model with attention mechanism
trained using GloVe word embeddings as fea-
tures.

3. LR model trained using character n-grams (1
to 6) only.

4. LR model trained using word n-grams (1 to
3) only.

5. LR model trained using both character and
word n-grams concatenated together.

Table 4 shows the results obtained by our mod-
els on the development set when stemming was
not performed and stopwords were not removed.
Table 5 shows the results when stemming was per-
formed and stopwords were also removed.

373

Approach Features Acc Prec Rec F1
BiLSTM GloVe word 0.748 0.749 0.748 0.748

embeddings
BiLSTM with GloVe word 0.737 0.738 0.737 0.737
attention embeddings
Logistic Char n-grams 0.727 0.733 0.727 0.728
Regression (1 to 6)
Logistic Word n-grams 0.722 0.729 0.722 0.723
Regression (1 to 3)
Logistic Char n-grams & 0.727 0.734 0.727 0.728
Regression Word n-grams

Table 4: Results of our models on Dev set of Task 5-
Subtask A (No stemming + No Stopwords removed)

Approach Features Acc Prec Rec F1
BiLSTM GloVe word 0.674 0.699 0.674 0.675

embeddings
BiLSTM with GloVe word 0.698 0.698 0.698 0.689
attention embeddings
Logistic Char n-grams 0.743 0.749 0.743 0.744
Regression (1 to 6)
Logistic Word n-grams 0.727 0.731 0.727 0.728
Regression (1 to 3)
Logistic Char n-grams & 0.739 0.746 0.739 0.740
Regression Word n-grams

Table 5: Results of our models on Dev set of Task 5-
Subtask A (Stemming + Stopwords removed)

Approach Accuracy Precision Recall F1
SVC Baseline 0.49 0.60 0.55 0.45
MFC Baseline 0.58 0.29 0.50 0.37
BiLSTM 0.54 0.64 0.59 0.51
Best System 0.65 0.69 0.68 0.65

Table 6: Official results for Task 5-Subtask A

As can be seen from Table 4, the BiLSTM
model without attention outperformed the other
two models for all the metrics. However, the
improvements achieved were not very significant
compared to the other two models. It can also
be seen that the choice of character or word n-
grams did not make much difference to the per-
formance of the LR model. Equivalent results
were obtained for all the 3 tests performed using
the LR model. This is surprising considering the
fact that character n-grams usually performs bet-
ter than word n-grams for text containing obfus-
cated words. Mehdad and Tetreault (2016) men-
tions that offenders often obfuscate the hate words
in order to avoid detection by keyword-based fil-
ters. So, character n-gram features should have
improved the performance of the model. One ex-
planation for this observation could be the removal
of numeric and special characters from the tweets
during the data preprocessing stage. Numeric and
special characters are used frequently used to ob-
fuscate hate words. ‘ass’ replaced by ‘a$$’, ‘slut’
replaced by ‘s1ut’ etc. are examples of such ob-
fuscation. So, a test was performed without re-

moving the numeric and special characters. How-
ever, no significant increase in the performance of
character-based model was observed.

As can be seen from Table 5, the LR models
performed better than the BiLSTM models when
stemming was performed and stopwords were re-
moved. The character n-gram based LR model
performed the best for all the metrics considered.

The predictions obtained for the test set using
the BiLSTM model without attention mechanism
were submitted as the final predictions. The model
that was trained with stopwords retained and stem-
ming not performed was used to make the predic-
tions on the test set. The official results obtained
for the submission are shown in Table 6. Our offi-
cial ranking is 8/71 in subtask A for the English
language. As can be seen from the results, the
MFC baseline had the best accuracy score. By la-
beling all the test instances with the most frequent
label, the MFC baseline was able to obtain a bet-
ter accuracy score. The MFC baseline achieved a
better accuracy score at the cost of a low precision
value. This resulted in a low F1 score for the base-
line. Our BiLSTM model obtained a significantly
higher F1 score compared to the MFC baseline.
Our BiLSTM model outperformed the SVC base-
line on all the metrics.

Table 7 shows the confusion matrices for the
tests performed by retaining the stopwords and
without performing stemming. The BiLSTM
models were able to achieve better F1 score com-
pared to the LR model by making better predic-
tions for the benign class.

Table 8 shows the confusion matrices for the
tests performed with stopwords removed and
stemming performed. As can be seen, the BiL-
STM models with attention and without attention
show opposite tendencies. While the BiLSTM
model without attention gets better in predicting
the hate class, it becomes weaker in predicting the
benign class. The opposite is true for the BiLSTM
model with attention. The character n-gram based
LR model gets better in predicting both the hate
and benign classes.

6 Error Analysis

From the errors made by our system, it is evident
that the model was not able to determine correctly
if the hate words have really been used to express
hate. For e.g., the following tweet from the test
set is not a hate speech - “I can be a bitch and

374

BiLSTM BiLSTM with Attention LR (char) LR (word) LR (char+word)
Predictions Predictions Predictions Predictions Predictions

Not Hate Not Hate Not Hate Not Hate Not Hate
Not 437 136 438 135 411 162 408 165 410 163
Hate 116 311 128 299 111 316 113 314 110 317

Table 7: Confusion Matrix (No Stemming + No stopword removed)

BiLSTM BiLSTM with Attention LR (char) LR (word) LR (char+word)
Predictions Predictions Predictions Predictions Predictions

Not Hate Not Hate Not Hate Not Hate Not Hate
Not 345 228 476 97 421 152 418 155 416 157
Hate 98 329 205 222 105 322 118 309 104 323

Table 8: Confusion Matrix (Stemming + Stopwords removed)

an asshole but I will love you and care about you
more than any other person you have met.” Here,
the speaker is attributing the word ‘bitch’ to him-
self/herself. So, the tweet cannot be a hate speech.
However, our system wrongly classifies the tweet
as a hate speech.

There have been many instances where our sys-
tem wrongly classifies a tweet as hate speech just
because of the mere presence of words such as
‘bitch’, ‘#buildthewall’ etc. even when the tweet
is not intended against women or immigrants. For
e.g., the tweet ‘He is a snake ass bitch. He is a
fugly slut...’ is a hate speech but it is not intended
against women. But our system was not able to
detect this and wrongly classifies it.

7 Conclusion

With hate speech in social media fomenting many
riots in different parts of the world, it is becom-
ing increasingly important to prevent their spread.
While manual moderation is almost impossible,
the need of the time is automated systems for their
removal. The BiLSTM and logistic regression
models used in this study have obtained some suc-
cess compared to the baselines used. But there is
much left to be desired. Hate words used in the be-
nign sense and hate speech not directed at women
and immigrants were wrongly getting classified.
Contextual information and features such as part-
of-speech (POS), dependency relations may help
in classifying such instances correctly.

References

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep Learning for Hate
Speech Detection in Tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760, Perth.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of the Eleventh International AAAI
Conference on Web and Social Media (ICWSM
2017), pages 512–515, Montreal.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate Speech Detection with Comment
Embeddings. In International World Wide Web Con-
ference (WWW), 2015, pages 29–30, Florence, Italy.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90, Vancouver,
BC, Canada. Association for Computational Lin-
guistics.

Lei Gao and Ruihong Huang. 2017. Detecting on-
line hate speech using context aware models. In
Proceedings of the International Conference Recent
Advances in Natural Language Processing, RANLP
2017, pages 260–266, Varna, Bulgaria. INCOMA
Ltd.

Lei Gao, Alexis Kuppersmith, and Ruihong Huang.
2017. Recognizing explicit and implicit hate speech
using a weakly supervised two-path bootstrapping
approach. In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 774–782,
Taipei, Taiwan. Asian Federation of Natural Lan-
guage Processing.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing hate speech in social media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing, RANLP 2017, pages
467–472, Varna, Bulgaria. INCOMA Ltd.

375

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in discriminating profanity from hate speech.
Journal of Experimental & Theoretical Artificial In-
telligence, 30(2):187–202.

Yashar Mehdad and Joel Tetreault. 2016. Do characters
abuse more than words? In Proceedings of the 17th
Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 299–303, Los An-
geles. Association for Computational Linguistics.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive Lan-
guage Detection in Online User Content. In Pro-
ceedings of the 25th International Conference on
World Wide Web, pages 145–153, Montreal.

John Pavlopoulos, Prodromos Malakasiotis, and Ion
Androutsopoulos. 2017. Deep learning for user
comment moderation. In Proceedings of the First
Workshop on Abusive Language Online, pages 25–
35, Vancouver, BC, Canada. Association for Com-
putational Linguistics.

S. Sax. 2016. Flame Wars: Automatic Insult De-
tection. http://cs224d.stanford.edu/
reports/Sax.pdf, (Technical Report).

Joan Serrà, Ilias Leontiadis, Dimitris Spathis, Gianluca
Stringhini, Jeremy Blackburn, and Athena Vakali.
2017. Class-based prediction errors to detect hate
speech with out-of-vocabulary words. In Proceed-
ings of the First Workshop on Abusive Language On-
line, pages 36–40, Vancouver, BC, Canada. Associ-
ation for Computational Linguistics.

Zeerak Waseem. 2016. Are you a racist or am i seeing
things? annotator influence on hate speech detection
on twitter. In Proceedings of the First Workshop on
NLP and Computational Social Science, pages 138–
142, Austin, Texas. Association for Computational
Linguistics.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding abuse:
A typology of abusive language detection subtasks.
In Proceedings of the First Workshop on Abusive
Language Online, pages 78–84, Vancouver, BC,
Canada. Association for Computational Linguistics.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex Machina: Personal Attacks Seen at Scale.
In Proceedings of the 26th International Conference
on World Wide Web, pages 1391–1399, Perth.

376

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 377–381
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Amobee at SemEval-2019 Tasks 5 and 6: Multiple Choice CNN Over
Contextual Embedding

Alon Rozental∗ , Dadi Biton∗

Amobee Inc., Tel Aviv, Israel
{alon.rozental,dadi.biton}@amobee.com

Abstract

This article describes Amobee’s participation
in “HatEval: Multilingual detection of hate
speech against immigrants and women in
Twitter” (task 5) and “OffensEval: Identifying
and Categorizing Offensive Language in
Social Media” (task 6). The goal of task 5
was to detect hate speech targeted to women
and immigrants. The goal of task 6 was to
identify and categorized offensive language in
social media, and identify offense target. We
present a novel type of convolutional neural
network called “Multiple Choice CNN” (MC-
CNN) that we used over our newly developed
contextual embedding, Rozental et al. (2019)1.
For both tasks we used this architecture and
achieved 4th place out of 69 participants with
an F1 score of 0.53 in task 5, in task 6 achieved
2nd place (out of 75) in Sub-task B - automatic
categorization of offense types (our model
reached places 18/2/7 out of 103/75/65 for
sub-tasks A, B and C respectively in task 6).

1 Introduction

Offensive language and hate speech identification
are sub-fields of natural language processing that
explores the automatic inference of offensive
language and hate speech with its target from
textual data. The motivation to explore these
sub-fields is to possibly limit the hate speech
and offensive language on user-generated content,
particularly, on social media. One popular social
media platform for researchers to study is Twitter,
a social network website where people “tweet”
short posts. Each post may contain URLs and/or
mentions of other entities on twitter. Among
these “tweets” we can find various opinions of
people regarding political events, public figures,
products, etc. Hence, Twitter data turned

∗These authors contributed equally to this work.
1To be published.

into one of the main data sources for both
academia and industry. Its unique insights are
relevant for business intelligence, marketing and
e-governance. This data also benefits NLP tasks
such as sentiment analysis, offensive language
detection, topic extraction, etc.

Both the OffensEval 2019 task (Zampieri et al.
(2019b)) and HatEval 2019 task are part of the
SemEval-2019 workshop. OffensEval has 3 sub-
tasks with over 65 groups who participate in each
sub-task and HatEval has 2 sub-tasks with 69
groups.

Word embedding is one of the most popular
representations of document vocabulary in low-
dimensional vector. It is capable of capturing
context of a word in a document, semantic and
syntactic similarity, relation with other words, etc.
For this work, word embedding was created with
a model similar to Bidirectional Encoder Rep-
resentations from Transformers (BERT), Devlin
et al. (2018). BERT is a language representation
model designed to pre-train deep bidirectional
representations by jointly conditioning on both
left and right context in all layers. As a
result, the pre-trained BERT representations can
be fine-tuned to create state-of-the-art models for
a wide range of tasks, such as question answering
and language inference, without substantial task-
specific architecture modifications. Besides the
word embedding, BERT generates a classification
token, which can be used for text classification
tasks.

This paper describes our system for the
OffensEval 2019 and HatEval 2019 tasks, where
our new contribution is the use of contextual
embedding (modified BERT) together with an
appropriate network architecture for such embed-
dings .

The paper is organized as follows: Section 2
describes the datasets we used and the pre-process

377

Sub-Task A

Label Train

Offensive 4,400
Not offensive 8,840

Total 13,240

(a)

Sub-Task B

Label Train

Targeted 3,876
Not targeted 524

Total 4,400

(b)

Sub-Task C

Label Train

Group 1,074
Individual 2,407

Other 395

Total 3,876

(c)

Table 1: Distributions of lables in OffensEval 2019.

phase. Section 3 describes our system architecture
and presents the MC-CNN. In section 4 we present
the results of both tasks - the OffensEval and
HatEval. Finally, in section 5 we review and
conclude the system.

2 Data and Pre-Processing

We used Twitter Firehose dataset. We took a
random sample of 50 million unique tweets using
the Twitter Firehose service. The tweets were used
to train language models and word embeddings;
in the following, we will refer to this as the
Tweets 50M dataset.

A modified language model, based on BERT,
was trained using a large Tweets 50M dataset,
containing 50 million unique tweets. We trained
two models, one used to predict hate speech
in posts (task 5) and the other used to predict
offensive language in posts (task 6). The pre-
process on the Tweets 50M dataset consists of
replacing URLs and Twitter handles with special
tokens and keeping only the first 80 sub-word
tokens in each tweet (for our vocabulary over 99%
of the tweets contain less than 80 tokens).

The language model we trained differs from
Devlin et al. (2018) mainly by the addition of a
latent variable that represents the topic of the tweet
and the persona of the writer. The work on this
model is still in progress and in this work we have
used an early version of the model described in
Rozental et al. (2019).

2.1 OffensEval

OffensEval 2019 is divided into three sub-tasks.

1. Sub-task A - Offensive language identifica-
tion - identify whether a text contains any
form of non-acceptable language (profanity)
or a targeted offense.

2. Sub-task B - Automatic categorization of
offense types - identify whether a text
contains targeted or non-targeted profanity
and swearing.

3. Sub-task C - Offense target identification -
determine whether the target of the offensive
text is an individual, group or other (e.g.,
an organization, a situation, an event, or an
issue).

The official OffensEval task datasets, retrieved
from social media (Twitter). Table 1 presents the
label distribution for each sub-task. For further
shared task description, data-sets and results
regarding this task, see Zampieri et al. (2019a).

2.2 HatEval
HatEval 2019 is divided into two sub-tasks.

1. Sub-task A - Hate Speech Detection against
Immigrants and Women: a two-class classifi-
cation where systems have to predict whether
a tweet in English with a given target (women
or immigrants) is hateful or not hateful.

2. Sub-task B - Aggressive behavior and Target
Classification: where systems are asked first
to classify hateful tweets for English and
Spanish (e.g., tweets where Hate Speech
against women or immigrants has been
identified) as aggressive or not aggressive,
and second to identify the target harassed as
individual or generic (i.e. single human or
group). In this paper we will focus only
on sub-task A as none of the participants
overcame the baseline accuracy in sub-task
B.

There were 69 groups who participated in sub-task
A. Table 2 presents the label distribution in sub-

378

Figure 1: Architecture Of Amobee Offensive Language Detector.

Label Train

Hate speech 4,210
Not hate speech 5,790

Total 10,000

Table 2: Distributions Of Labels In HatEval 2019.

task A. For further shared task description, data-
sets and results regarding this task, see Basile et al.
(2019). HatEval also included Spanish task which
we didn’t participate in.

3 Multiple Choice CNN

For both tasks, using our contextual word
embedding, we tried several basic approaches -
A feed forward network using the classification
vector and an LSTM and simple CNNs Zhang
and Wallace (2015) using the words vectors.
These approaches overfitted very fast, even for
straightforward unigram CNN with 1 filter, and
their results were inferior to those obtained by
similar models over a Twitter specific, Word2Vec
based embedding, Mikolov et al. (2013); Rozental
et al. (2018). The fast overfitting is due to the
information contained in contextual embedding
which was not reflected in Word2Vec based
embedding.

In order to avoid overfitting and achieve

better results we created the MC-CNN model.
The motivation behind this model is to replace
quantitative questions such as “how mad is the
speaker?”, where the result is believed to be
represented by the activation of the corresponding
filter, with multiple choice questions such as “what
is the speaker - happy/sad/other?”, where the
number of choices denoted by the number of
filters. By forcing the sum of the filter activations
for each group to be equal to 1, we believe that we
have acheived this effect.

The model that produced the best results is
an ensemble of multiple MC-CNNs over our
developed contextual embedding, described in
figure 1. On top of our contextual embedding,
we used four filter sizes - 1-4 sub-word token n-
grams. For each filter size individual filters were
divided into groups of 7 and a softmax activation
applied on the output of each group. These outputs
were concatenated and passed to a fully connected
feed forward layer of size 10 with tanh activation
before it yeiled the networks’ prediction. To
decrease the variance of the results, there were
multiple duplications of this architecture, where
the final prediction was the average of all the
duplications’ output.

4 Results

We chose to use this architecture for both tasks
because we believe that the BERT model output

379

contains most of the information about the tweet.
The layers above, the MC-CNN and the fully
connected layers, adapt it to the given task. We
think that this model can be use for variety of NLP
tasks in twitter data with the appropriate hyper-
parameters tuning.

The results yielded from the architecture which
was described in figure 1 for both tasks. We
optimized the hyper-parameters to maximize the
F1score using categorical cross entropy loss. The
tuned parameters were the activation function of
the filters and the number of filters in the MC-
CNNs, the size of the filter groups of the MC-
CNN, and the hidden layer size. The best result
were achieved with a sigmoid activation function
on the filters, where the number of filters was 7
in each group. There were 10, 6, 4 and 2 filter
groups for filter sizes of 1, 2, 3 and 4 respectively.
The model with those hyper-parameters yielded
the best results in both tasks.

At HatEval the model achieved an F1score of
0.535. In table 3 there is the best result compared
to two baselines- linear Support Vector Machine
based on a TF-IDF representation (SVC), and a
trivial model that assigns the most frequent label
(MFC), according to the F1score.

System F1 (macro) Accuracy
SVC baseline 0.451 0.492
MFC baseline 0.367 0.579
MC-CNN 0.535 0.558

Table 3: F1Score And Accuracy Of MC-CNN
Comparing To Baselines At HatEval.

At OffensEval the model achieved an F1score
of 0.787, 0.739 and 0.591 for sub-tasks A, B and
C respectively. In table 4 there is the best result
compared to the baseline for sub-tasks A, B and C
respectively according to the F1score.

5 Conclusion

In this paper we described the system Amobee
developed for the HatEval and OffensEval tasks.
It consists of our novel task specific contextual
embedding and MC-CNNs with softmax activa-
tion. The use of social networks motivated us to
train contextual embedding based on the Twitter
dataset, and use the information learned in this
language model to identify offensive language
and hate speech in the text. Using MC-CNN
helped overcome the overfitting caused by the

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
MC-CNN 0.7868 0.8384

(a) Sub-task A.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
MC-CNN 0.7386 0.9042

(b) Sub-task B.

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
MC-CNN 0.5909 0.7042

(c) Sub-task C.

Table 4: F1Score And Accuracy Of MC-CNN
Comparing To Baselines At OffensEval.

embedding. In order to decrease the variance of
the system we used duplications of this model
and averaged the results. This system reached
4th place at the HateEval task with an F1score
of 0.535, and 2nd place at sub-task B in the
OffensEval task, with an F1score of 0.739. As we
mentioned, we used an early version of a Twitter
specific language model to achieve the above
results. We plan to release the complete, fully
trained version in the near future and test it for
different NLP tasks- such as topic classification,
sentiment analysis, etc.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini,

Debora Nozza, Viviana Patti, Francisco Rangel,
Paolo Rosso, and Manuela Sanguinetti. 2019.
Semeval-2019 task 5: Multilingual detection of hate
speech against immigrants and women in twitter. In
Proceedings of the 13th International Workshop on
Semantic Evaluation (SemEval-2019). Association
for Computational Linguistics”, Minneapolis, Min-
nesota.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training
of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their

380

compositionality. In Advances in neural information
processing systems, pages 3111–3119.

Alon Rozental, Daniel Fleischer, and Zohar Kelrich.
2018. Amobee at iest 2018: Transfer learning from
language models. arXiv preprint arXiv:1808.08782.

Alon Rozental, Zohar Kelrich, and Daniel Fleischer.
2019. Latent universal task specific bert.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying
and Categorizing Offensive Language in Social
Media (OffensEval). In Proceedings of The 13th
International Workshop on Semantic Evaluation
(SemEval).

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification.

381

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 382–386
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CIC at SemEval-2019 Task 5:

Simple Yet Very Efficient Approach to Hate Speech Detection,
Aggressive Behavior Detection, and Target Classification in Twitter

Iqra Ameer, Muhammad Hammad Fahim Siddiqui, Grigori Sidorov,

and Alexander Gelbukh
Instituto Politécnico Nacional (IPN),

Center for Computing Research (CIC),
Av. Juan Dios Batiz, s/n, Zacatenco, 07738, Mexico City,

Mexico
{iqraameer133,hammad.fahim57}@gmail.com, {sidorov,gelbukh}@cic.ipn.mx

Abstract

In recent years, the use of social media has in-
creased incredibly. Social media permits Inter-net
users a friendly platform to express their views
and opinions. Along with these nice and distinct
communication chances, it also allows bad things
like usage of hate speech. Online automatic hate
speech detection in various aspects is a significant
scientific problem. This paper presents the Insti-
tuto Politécnico Nacional (Mexico) approach for
the Semeval 2019 Task-5 [Hateval 2019] (Basile
et al., 2019) competition for Multilingual Detec-
tion of Hate Speech on Twitter. The goal of this
paper is to detect (A) Hate speech against immi-
grants and women, (B) Aggressive behavior and
target classification, both for English and Spanish.
In the proposed approach, we used a bag of words
model with preprocessing (stemming and stop
words removal). We submitted two different sys-
tems with names: (i) CIC-1 and (ii) CIC-2 for Hat-
eval 2019 shared task. We used TF values in the
first system and TF-IDF for the second system.
The first system, CIC-1 got 2nd rank in subtask B
for both English and Spanish languages with
EMR score of 0.568 for English and 0.675 for
Spanish. The second system, CIC-2 was ranked
4th in subtask A and 1st in subtask B for Spanish
language with a macro-F1 score of 0.727 and
EMR score of 0.705 respectively.

1 Introduction

The social media applications enable users to dis-
cover, create and share contents handily, without
specific expertise. This remarkably boosted the

1 http://www.pewinternet.org/2017/07/11/online-harass-
ment-2017/ Last visited: 01/02/2019

amount of data generated by the users, within a pro-
cess that some people call “democratization” of the
web (Silva et al., 2016). Still, this liberty also per-
mits for the publication of data, which is insulting
and hurtful both regarding the ethics of democracy
and the privileges of some categories of people -
hate speech (HS). The Hate Speech (HS) term is
defined in the literature as an expression “that is
abusive, insulting, intimidating, harassing, and in-
cites to violence, hatred, or discrimination. It is di-
rected against people by their race, ethnic origin,
religion, gender, age, physical condition, disability,
sexual orientation, political conviction, and so
forth.” (Erjavec and Kovacic, 2012). HS has turned
into the main issue for each sort of online website,
where user-produced content comes into sight:
from the comments on any post to live chatting in
online games. Such material can isolate users and
inflame violence (Allan, 2013). Website operators
as Facebook, Twitter, and gaming companies like
Runic Games recognize that hateful data are creat-
ing both practical and ethical issues and have at-
tempted to demoralize them, causing changes in
their platforms or strategies.

As stated by Pew1, women experienced more
sexualized forms of abuse than men. Platforms as
Twitter are flopping in acting immediately against
real-time misogyny and taking a lot of time to de-
lete the hateful data2. The researchers began to con-
centrate on this problem and are building tech-
niques to detect misogyny in real time (Fersini et
al., 2018; Hewitt et al., 2016; Poland, 2016). Real-
time HS about groups of people like asylum search-
ers and visitors is common all over the world, but
it is rarely investigated.

2 https://www.telegraph.co.uk/news/2017/08/21/twitter-fail-
ing-women-taking-long-remove-misogynistic-abuse/ Last
visited: 01/02/2019

382

In this article, we worked on the detection of
(A) Hate speech against immigrants and women,
(B) Aggressive behavior and target classification,
both for English and Spanish languages at Hateval
2019. For this task, we submitted two systems with
names: (i) CIC-1 and (ii) CIC-2. We used the bag-
of-words model (plus stemming) with TF and TF-
IDF as feature values and then we classified these
vectors using various machine learning classifiers.
We submitted two approaches (systems). Subtask
A is ranked by macro-F1 score, whereas subtask B
is ranked by EMR score. Our system CIC-1 got 2nd
rank in subtask B for the both English (2nd out of
42 teams) and Spanish (2nd out of 25 teams) lan-
guages with EMR score of 0.568 for English; 0.675
for Spanish (accuracy score of 0.766 for English;
0.787 for Spanish). The second system, CIC-2 was
ranked 4th (out of 39 teams) in subtask A and 1st
(out of 23 teams) in subtask B for Spanish language
with a macro-F1 score of 0.727 and EMR score of
0.705 respectively (accuracy score of 0.727 in sub-
task A; 0.791 for subtask B).

2 Related work

A wide range of work has been devoted to HS de-
tection. Xu et al. (2012) applied sentiment analysis
to classify bullying in tweets with the usage of La-
tent Dirichlet Allocation (LDA) topic models (Blei
et al., 2003) to recognize related topics in these
scripts.

HS detection has been improved by a diverse
range of features such as n-grams (Nobata et al.,
2016), character n-grams (Mehdad and Tetreault,
2016), paragraph embeddings (Nobata et al., 2016;
Djuric et al., 2015) and average word embeddings.
(Silva et al., 2016) proposed to detect target groups
regarding their class and background on Twitter by
looking for sentence structures like “I <intensity>
hate <targeted group>”.

Currently, interest is increasing in the identifica-
tion of HS against women on the web (Ging et al.,
2018). Initially, Hewitt (2016) worked on the iden-
tification of HS against women in social media.
Fox (2015) observed that the reaction on hated con-
tents posted against women by unknown and know
accounts is different. In (Fox et al., 2015), the au-
thors study the roles of anonymity and interactivity
in response to sexist content posted on social me-
dia. They inferred that content from unknown ac-
count advances more prominent threatening sexism
than the known ones.

3 Corpora and task description

Multilingual detection of hate speech on Twitter
shared task at Hateval 2019 had two datasets for
the English and Spanish language. We partici-
pated in both subtasks for both languages.

3.1 Corpora
Corpora for the training of the model consist of
9,000 labeled tweets, and the development dataset
includes 1,000 unlabeled tweets. The English data
set statistics of different labels is given in Table 1
and the Spanish statistics in Table 2. The corpora
is manually labeled by different annotators ac-
cording to three types:

• Hate speech (present vs not-present),
• Target range (whole group vs individual),
• Aggressiveness (present vs not-present).

We describe these types in the following section.

Type Labels Train Dev
Hate

Speech
Present (0) 2631 278
Absent (1) 1838 222

Target
Range

Whole group (0) 3352 363
Individual (1) 1117 137

Aggres-
siveness

Present (0) 2984 324
Absent (1) 1485 176

Table 1: Spanish dataset statistics.

Type Labels Train Dev

Hate
Speech

Present (0) 3783 427
Absent (1) 5217 573

Target
Range

Whole group (0) 7659 781
Individual (1) 1341 219

Aggres-
siveness

Present (0) 1559 204
Absent (1) 7441 796

Table 2: English dataset statistics.

3.2 Description of the subtasks
Subtask A: Hate speech detection against immi-
grants and women: it is a binary classification
problem, where it is asked to predict if a specific
piece of text (tweet) with a given target (women or
immigrants) expresses hatred or not. The systems
are evaluated using standard evaluation metrics,
containing accuracy, precision, recall, and macro-
F1 score. The submissions are ranked by macro-F1
score.
Subtask B: aggressive behavior and target clas-
sification: it is required to identify hatred text
(tweet) (e.g., tweets, where there is HS against

383

women or immigrants were marked before) as ag-
gressive or not, and on the second place to recog-
nize a harassing target, either the text (tweet) is
against an individual or a group. The evaluation of
subtask B was carried out using a partial match and
exact match (Basile et al., 2019). The submissions
are ranked by EMR score. A tweet must be identi-
fied exclusively in one of the following types:

1. Hateful: an expression with feelings of
dislike, very unpleasant or filled with ha-
tred.

2. Target Range: the tweet contains offen-
sive messages intentionally sent to a par-
ticular individual or to a group.

3. Aggressiveness: it is based on the person’s
purpose to be aggressive, damaging, or
even to provoke.

3.3 Baselines
The Hateval 2019 has set up two following base-
lines:

• SVC baseline: the SVC baseline is a lin-
ear Support Vector Machine (SVM)
based on TF-IDF representation.

• MFC baseline: The MFC baseline is a
trivial model that assigns the most fre-
quent label (estimated on the training set)
to all the instances in the test set.

4 Description of our approach

In this section, we describe the two submitted ap-
proaches (systems) considering the features and
machines learning models used for this shared
task.

4.1 Pre-processing
We performed pre-processing on raw tweets be-
fore feature extraction. Pre-processing helps in
these kind of tasks (Markov et al., 2017). For both
approaches we used stemming and stop words re-
moval. In CIC-2 we additionally made the follow-
ing steps:

3 https://scikit-learn.org/sFigure/ Last visited: 01/04/2019

• we removed HTML tags,
• punctuation marks are removed,
• special characters are removed, like “&”,

“$”, “_”, “, ”, etc.

4.2 Features
The pre-processed text was used to generate the
features for the machine learning (ML) algo-
rithms. We used a well-known bag of words
model, for example, (Sidorov, 2013; Sidorov, 2019).
For the first system, we used TF and for the sec-
ond system TF-IDF values.

4.3 Machine learning algorithms
In our two systems, we used four different classifi-
ers for both subtasks A and B. In CIC-1: Subtask
A: Logistic regression, subtask B: Majority voting.
In CIC-2: Subtask A: Multinomial Naive Bayes,
subtask B: Classifier chains. For all classifiers, we
used available implementation in scikit-learn3.

5 Results and analysis

Results of our both systems CIC-1 and CIC-2 are
presented in Table 3, for both shared subtasks, i.e.,
A and B with our rank in Hateval 2019 competition.
Table 3, subtask A ranked by macro-F1 and B by
EMR, we used the following conventions. In the
first column, “Team” refers to both different sys-
tems (CIC-1 and CIC-2) submitted for the shared
task. “Task” represents two different subtasks A
and B (AF1 means that scores of the subtask A are
ranked by macro-F1 and BEMR means that scores of
the subtask B are ranked by EMR), see section 3.2.
“Classifier” states different classifiers, which we
used in this competition. “English” and “Spanish”
indicate scores for English and Spanish respec-
tively. “Rankeng.” and “Rankspa.” mean our team’s
rank in the competition in both subtasks.

The system CIC-1 got 2nd rank in subtask B for
the both English and Spanish languages with EMR
score of 0.568 for English; 0.675 for Spanish. We
used majority voting classifier for both languages.

 Team Task Classifier English Rankeng. Spanish Rankspa.

CIC-1 AF1 Logistic Regression 0.462 29 of 69 0.703 18 of 39
BEMR Majority Voting 0.568 2 of 41 0.675 2 of 23

CIC-2 AF1 MultinomialNB 0.494 14 of 69 0.727 4 of 39
BEMR Classifiers Chain 0.314 19 of 41 0.705 1 of 23

Table 3: Our results of Hateval 2019 shared task with ranking for both subtasks A and B.

384

The system CIC-2 CIC-2 ranked 4th in subtask A
and 1st in subtask B for Spanish language with a
macro-F1 score of 0.727 and EMR score of 0.705
respectively by using MultinomialNB classifier. It
is clear that our system was able to get good results

4 https://github.com/iqraameer133/HateEval2019 Last vis-
ited 13/02/2019

in subtask B (to classify aggressive behavior and
target), but was not able to perform well in subtask
A (to detect hate speech against immigrants and
women) for English language, although we ob-
tained the 2nd position in subtask A for Spanish lan-
guage. For Spanish subtask B, we tried to repro-
duce SVM baseline as by organizers but we failed,
our SVM baseline gave us 0.550 accuracy.

We made experiments without stop words re-
moval and stemming, and accuracy, in this case,
goes down by 2-3%. We discovered that imbal-
anced data was the main reason for poor perfor-
mance on English for subtasks A and B. We noticed
that most of the submitted systems achieved poor
results on the subtask A.

6 Conclusion and future work

In this article, we described our approach to detect
(1) Hate Speech Detection against immigrants and
women; (2) aggressive behavior and target on the
Twitter corpus. We submitted two different systems
namely: (i) CIC-1 and (i) CIC-2. We used a bag of
words model with TF and TF-IDF values. The vec-
tors are then used as features for classifiers like
MultinomialNB, Majority Voting, Logistic Regres-
sion, and Classifier Chains. Our CIC-1 system
ranked 2nd in task B for both English and Spanish
languages. Our system CIC-2 ranked 1st in task B
for Spanish and 4th for the same language in task A.

In future work, we can consider embeddings
with TF-IDF weighting (Arroyo-Fernández et al.,
2019) and learning of document embeddings like
in (Gómez-Adorno et al,. 2018). We also plan to
consider syntactic n-grams (n-grams obtained by
following paths in syntactic dependency trees) (Si-
dorov 2013; 2019).

We have also made the winning model public4
for other researchers to use.

Acknowledgement
The is work done with partial support of Mexi-

can government (Conacyt, SNI, COFAA-IPN). We
also acknowledge the support of Conacyt project
240844 and SIP-IPN projects 20171813,
20181849, and 20195719.

User name Macro-F1 Acc. Rank
saradhix 0.651 0.653 1
Panaetius 0.571 0.572 2

YunxiaDing 0.546 0.560 3
alonzorz 0.535 0.558 4
amontejo 0.519 0.535 5

:
:

:
:

:
:

:
:

hammad.fahim57 0.494 0.523 14
:
:

:
:

:
:

:
:

Iqraameer133 0.462 0.505 29...
SVC baseline 0.451 0.492 -
MFC baseline 0.367 0.579 -

Table 4: Results for Subtask A - English.
User name EMR Acc. Rank

MFC baseline 0.580 0.802 -
ninab 0.570 0.802 1

iqraameer133 0.568 0.766 2
scmhl5 0.483 0.770 3
garain 0.482 0.763 4
gertner 0.399 0.631 5

:
:

:
:

:
:

:
:

hammad.fahim57 0.314 0.711 19...
SVC baseline 0.308 0.692 -

Table 5: Results for Subtask B - English.
User name Macro-F1 Acc. Rank
francolq2 0.730 0.731 1
luiso.vega 0.730 0.734 2

gertner 0.729 0.729 3
hammad.fahim57 0.727 0.758 4

dibesa 0.725 0.728 5
:
:

:
:

:
:

:
:

Iqraameer133 0.703 0.708 18...
SVC baseline 0.701 0.705 -
MFC baseline 0.370 0.588 -

Table 6: Top 5 teams for Subtask A - Spanish.
User name EMR Acc. Rank

SVC baseline (as by or-
ganizers) 0.771 0.771

-

hammad.fahim57 0.705 0.791 1
MFC baseline 0.704 0.704 -
iqraameer133 0.675 0.787 2

gertner 0.671 0.758 3
francolq2 0.657 0.749 4

OscarGaribo 0.644 0.732 5...
SVC baseline(Our) 0.550

Table 7: Top 5 teams for subtask B - Spanish

385

References
Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and

Amy Bellmore. Learning from bullying traces in so-
cial media. In Proceedings of the 2012 Conference
of North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL HLT), Montreal, Canada, 2012,
pp.656-666.

 Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web, pages 145–153, Geneva, Switzerland.

 David M. Blei, Andrew Y. Ng and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research 3(Jan):993–1022.

Debbie Ging and Eugenia Siapera (eds.). 2018. Special
issue on online misogyny. Feminist Media Stud-
ies, pages 515–524.

Elisabetta Fersini, Debora Nozza, and Paolo Rosso.
2018. Overview of the evalita 2018 task on auto-
matic misogyny identification (ami). In Proceedings
of the 6th evaluation campaign of Natural Language
Processing and Speech tools for Italian
(EVALITA’18), Turin, Italy. CEUR.org.

Grigori Sidorov. Syntactic N-grams in Computational
Linguistics. Springer, 2019, 125 p.

Grigori Sidorov. 2013. Construcción no lineal de n-
gramas en la lingüística computacional [Non-linear
Construction of N-grams in Computational Linguis-
tics]. Sociedad Mexicana de Inteligencia Artificial,
166 p.

Helena Gómez-Adorno, Juan-Pablo Posadas-Durán,
Grigori Sidorov and David Pinto. 2018. Document
embeddings learned on various types of n-grams for
cross-topic authorship attribution. Computing, pa-
ges 1–16.

Ilia Markov, Efstathios Stamatatos and Grigori Si-
dorov. 2017. Improving Cross-Topic Authorship At-
tribution: The Role of Pre-Processing. In Proceed-
ings of the 18th International Conference on Com-
putational Linguistics and Intelligent Text Pro-
cessing (CICLing 2017), Budapest, Hun-
gary. Springer.

Ignacio Arroyo-Fernández, Carlos-Francisco Méndez-
Cruz, Gerardo Sierra, Juan-Manuel Torres-Moreno
and Grigori Sidorov. 2019. Unsupervised Sentence
Representations as Word Information Series: Revis-
iting TF–IDF. Computer Speech & Language,
10.1016/j.csl.2019.01.005.

Jesse Fox, Carlos Cruz, and Ji Young Lee. 2015. Per-
petuating online sexism offline: Anonymity, interac-
tivity, and the effects of sexist hashtags on social

media. Computers in Human Behavior, pages 436–
442.

Leandro Silva, Mainack Mondal, Denzil Correa, Fabri-
cio Benevenuto and Ingmar Weber. 2016. Analyzing
the Targets of Hate in Online Social Media. In Pro-
ceedings of the 10th International AAAI Conference
on Web and Social Media (ICWSM’16), pages 687–
690.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo
Grbovic, Vladan Radosavljevic and Narayan Bha-
midipati. 2015. Hate Speech Detection with Com-
ment Embeddings. In Proceedings of the 24th In-
ternational Conference on World Wide Web.

Sarah Hewitt, Thanassis Tiropanis and Christian
Bokhove. 2016. The problem of identifying misog-
ynist language on twitter (and other online social
spaces). In Proceedings of the 8th ACM Conference
on Web Science (WebSci’16), pages 333–335, ACM.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Rangel Francisco,
Paolo Rosso and Manuela Sanguinetti. 2019.
SemEval-2019 Task 5: Multilingual Detection of
Hate Speech Against Immigrants and Women in
Twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Association for Computational Linguistics, Minneap-
olis, Minnesota, USA.

Yashar Mehdad and Joel Tetreault. 2016. Do characters
abuse more than words? In 17th Annual Meeting of
the Special Interest Group on Discourse and Dia-
logue, pages 299–303, Los Angeles, CA, USA.

386

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 387–390
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CiTIUS-COLE at SemEval-2019 Task 5: Combining Linguistic Features
to Identify Hate Speech Against Immigrants and Women on Multilingual

Tweets

Sattam Almatarneh
(CiTIUS)

Universidade de Santiago
de Compostela, Spain

University of Vigo, Spain
sattam.almatarneh@usc.es

Pablo Gamallo
(CiTIUS)

Universidade de Santiago
de Compostela, Spain

pablo.gamallo@usc.es

Francisco J. Ribadas Pena
Department of Computer Science

University of Vigo, Spain
ribadas@uvigo.es

Abstract

This article describes the strategy submitted
by the CiTIUS-COLE team to SemEval 2019
Task 5, a task which consists of binary clas-
sification where the system predicts whether
a tweet in English or in Spanish is hateful
against women or immigrants or not. The
proposed strategy relies on combining linguis-
tic features to improve the classifier’s perfor-
mance. More precisely, the method combines
textual and lexical features, embedding words
with the bag of words in Term Frequency-
Inverse Document Frequency (TF-IDF) repre-
sentation. The system performance reaches
about 81% F1 when it is applied to the training
dataset, but its F1 drops to 36% on the official
test dataset for the English and 64% for the
Spanish language concerning the hate speech
class.

1 Introduction

Hate speech is usually defined as any communica-
tion that derogates a person or a group based on
some characteristic such as race, color, ethnicity,
gender, sexual orientation, nationality, religion,
or another characteristic (Schmidt and Wiegand,
2017). The spread of the Internet and the increas-
ing use of social networks has led people to have
an increased willingness to express their opinions
online. Despite the great benefits of using the In-
ternet and particularly the social networks, the risk
is that people are more likely to adopt aggressive
behavior because of the anonymity provided by
these environments. This contributes to the prop-
agation of hate speech as well. Since this type
of tendentious communication can be extremely
harmful to society, governments and social net-
work platforms can benefit from detection and pre-
vention tools. The scientific study of hate speech,
from a computer science point of view, is recent,
and the number of studies in the field is low (For-

tuna and Nunes, 2018). The goal of SemEval-
2019 Task 5 as described in Basile et al. (2019) is
Hate Speech detection in Twitter focused on two
specific targets, women and immigrants. The task
is organized in two related sub-tasks for each lan-
guage (English and Spanish):

• TASK A - Hate Speech Detection against Im-
migrants and Women

• TASK B - Aggressive behavior and Target
Classification.

In this article, we describe our proposed system for
task A only. Our approach is mainly based on the
generation of corpus-based dictionaries containing
hate speech words which are used in addition to
other linguistic features to improve the efficiency
in detecting hate speech in both English and Span-
ish languages.

This paper is organized as follows. The method
is described in Section 2. Experiments, results,
and a discussion on them are presented in Section
3. Finally, conclusions are addressed in Section 4.

2 Method

We deal with the task by automatic classifiers
composed of training data in a supervised strategy.
The characteristics of tweets are encoded as fea-
tures in vector representation. These vectors and
the corresponding labels feed the classifiers.

2.1 Features
Linguistic features are the most important and in-
fluential factor in increasing the efficiency of clas-
sifiers for any task of text mining. Many stud-
ies examined the impact of these features in many
tasks such as polarity classification (Almatarneh
and Gamallo, 2018b, 2019). In this study, we in-
cluded a number of linguistic features for the task
of determining hate speech in tweets. The main

387

linguistic features we will use and analyze are the
following: N-grams, word embeddings, and lexi-
cal features.

2.1.1 TF-IDF features
We model texts by n-grams based on the occur-
rence of unigrams of words that occur in docu-
ments. The unigrams are very valuable elements
to find very relevant expressions in the domain of
interest. All terms are assigned a weight by TF-
IDF which is computed in Equation 1:

tf/idft,d = (1 + log(tft,d))× log(
N

dft
), (1)

where tft,d is the term frequency of term t in docu-
ment d. N stands for the the number of documents
in the collection and, dft represents the number of
documents in the collection containing t. To trans-
form the tweets into a matrix of TF-IDF features,
we used sklearn feature extraction Python library.1

2.1.2 Doc2Vec
To represent the tweets, we make use of the
Doc2Vec algorithm described in Le and Mikolov
(2014). This neural-based model is efficient when
you have to account for high-dimensional and
sparse data (Le and Mikolov, 2014; Dai et al.,
2015). Doc2vec learns corpus features using an
unsupervised strategy and provides a fixed-length
feature vector as output. The output is then fed
into a machine learning classifier. We used a freely
available implementation of the Doc2Vec algo-
rithm included in gensim, 2 which is a free Python
library. The implementation of the Doc2Vec al-
gorithm requires the number of features to be re-
turned (length of the vector). Thus, we performed
a grid search over the fixed vector length 100 (Col-
lobert et al., 2011; Mikolov et al., 2013a,b).

2.1.3 Lexical features
Lexical features consist of specific words iden-
tified as belonging to the class of hate speech.
For instance, as word bitch can be associated
with hate speech, it will be added to a specific
dictionary containing words associated with hate
speech. In addition, a weight is assigned to each
word. The higher the weight the more intense the

1http://scikit-learn.org/stable/
modules/generated/sklearn.feature_
extraction.text.TfidfVectorizer.
html#sklearn.feature_extraction.text.
TfidfVectorizer

2https://radimrehurek.com/gensim/

hate value of the word. We automatically built sev-
eral weighted dictionaries from the annotated cor-
pus:

• Dictionary of lexical words 295 English
words and 262 Spanish words.

• Dictionary of hashtags: 1090 English hash-
tags and 201 Spanish hashtags.

• Dictionary of address references: 1661 En-
glish references and 1263 Spanish references.

We just considered words belonging to lexical
categories, hence, only nouns, verbs, adjectives,
and adverbs were selected. PoS tagging for En-
glish and Spanish was carried out with the multi-
lingual toolkit LinguaKit (Gamallo et al., 2018).

The method to build the hate speech dictionar-
ies is somehow inspired by that reported in Al-
matarneh and Gamallo (2018a, 2017) for very neg-
ative opinions. The hate speech score of a word,
noted HS, is computed as follows:

HS(w) =
freqtotal(w)

freqhs(w)
(2)

where freqtotal(w) is the number of occurrences
of word w in the whole corpus, and freqhs(w)
stands for the number of occurrences of the same
word in the segments (tweets) annotated as hate
speech. In addition to the hate speech score HS,
it is also required to compute a threshold above
which the word is considered hate speech. So, we
compute the difference between the use of a word
as hate speech and as not:

DIFF (w) = freqhs(w)− freq−hs(w) (3)

where freq−hs(w) stands for the occurrences of
w in segments that are not hate speech. To insert
a word in the dictionary, the value of DIFF (w)
must be higher than a experimentally set threshold.
In our experiments, this value was 5. So, in our
dictionaries, we only selected those words (hash-
tags or references) with DIFF values higher than
5. Finally, words were ranked by their HS score
giving rise to weighted and ranked lexicons.

3 Experiments

The main datasets that were used for training and
testing our model are described in Basile et al.
(2019). This article describes the SemEval-2019
Shared Task 5 aimed at Hate Speech detection in
Twitter.

388

Table 1: Performance on the training dataset with different feature configurations of TF-IDF, Doc2Vec and lexicons
for English language.

Featuers
Hate Not

Avg F1 Accuracy
Prec. Rec. F1 Prec. Rec. F1

TF-IDF 0.72 0.68 0.70 0.79 0.82 0.80 0.76 0.76
Doc2Vec 0.68 0.52 0.59 0.71 0.83 0.77 0.69 0.70
Lexicon 0.69 0.46 0.55 0.7 0.86 0.77 0.68 0.69
Doc2Vec + Lexicon 0.71 0.57 0.63 0.74 0.84 0.79 0.72 0.73
All 0.78 0.74 0.76 0.83 0.86 0.84 0.81 0.81

Table 2: Performance on the training dataset with different feature configurations of TF-IDF, Doc2Vec and lexicons
for Spanish.

Featuers
Hate Not

Avg F1 Accuracy
Prec. Rec. F1 Prec. Rec. F1

TF-IDF 0.75 0.7 0.72 0.78 0.83 0.80 0.77 0.77
Doc2Vec 0.57 0.11 0.18 0.58 0.94 0.72 0.49 0.58
Lexicon 0.82 0.66 0.73 0.78 0.89 0.83 0.79 0.79
Doc2Vec + Lexicon 0.82 0.68 0.74 0.78 0.89 0.83 0.79 0.80
TF-IDF + Lexicon 0.81 0.76 0.78 0.83 0.86 0.85 0.82 0.82

3.1 Development and training

As we considered that the size of the training col-
lection provided by the organizers was not large
enough, we made use of another available training
data for the same task to build our lexicons.3 The
algorithm to build the lexicons has been described
above in Subsection 2.1.3.

As far as the classification strategy is con-
cerned, we decided to use sklearn.svm.LinearSVC
for learning the classifiers.4 Suport Vector Ma-
chine (SVM) proved to be the best strategy for
detecting extreme opinions in previous work (Al-
matarneh and Gamallo, 2019)

The training dataset provided by the organizers
of the shared task was used as a development cor-
pus so as to learn the best feature configuration
using 10-fold cross-validation.

Tables 1 and 2 shows the result of the exper-
iments on the training corpus. In these tables,
we depict the performance of all tested features in
both English and Spanish Languages. The com-
bination of all features (TF-IDF, Doc2Vec, and
lexicons) gives the best performance for English.

3https://github.com/ZeerakW/
hatespeech/blob/master/NAACL_SRW_2016.
csv

4https://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.
html

However, in Spanish the use of Doc2Vec made it
lower the performance as the best F1 was achieved
by just combining TF-IDF with lexical features.

3.2 Test

Taking into account the results shown in tables 1
and 2, we submitted two different model configu-
rations for English and Spanish testing. More pre-
cisely, for English TASK A we used the combina-
tion of all features, whereas the Spanish model in
TASK A was built by only combining lexical and
TF-IDF features.

Unlike the experiments on the training dataset,
our approach showed bad performance on the test
dataset as Table 3 shows.

The poor scores in the English dataset are due
to the strange behavior of our approach with the
non-hate speech class of speech class. Recall on
this class was merely 0.07 while on the target class
reached 0.97.

4 Conclusions and Future Work

The approach we developed for the task of hate
speech detection in English and Spanish is mainly
based on the generation of lexicons containing
hate speech words. Lexicons are used in addition
to other linguistic features (TF-IDF and Doc2Vec)
to improve the efficiency of a SVM classifier.

389

Table 3: Performance of our approach on the test dataset for English and Spanish languages

Featuers
Hate Not

Avg F1 Accuracy
Prec. Rec. F1 Prec. Rec. F1

TASK A English 0.43 0.97 0.60 0.77 0.07 0.13 0.36 0.45
TASK A Spanish 0.59 0.54 0.56 0.70 0.74 0.72 0.64 0.66

Even if we obtained acceptable results in the de-
velopment phase using the training corpus (more
than 0.80 F1 score), the results achieved in the test
phase were disappointing, especially for the En-
glish language.

In order to discover the problems underlying
our overfitted model, a deep error analysis will be
performed. Once released the dataset test, we will
be able to analyze the contribution of each of the
features used so that we can check if it was one
of the lexicons that caused the low performance of
our system.

In future work, our objective is to improve the
basic method to build hate speech lexicons (and
related topics) from annotated corpora in order
to use them in both supervised and unsupervised
strategies.

Acknowledgments

This work has received financial support from
project TelePares (MINECO, ref:FFI2014-51978-
C2-1-R), and the Consellera de Cultura, Educacin
e Ordenacin Universitaria (accreditation 2016-
2019, ED431G/08) and the European Regional
Development Fund (ERDF).

References
Sattam Almatarneh and Pablo Gamallo. 2017. Au-

tomatic construction of domain-specific sentiment
lexicons for polarity classification. In International
Conference on Practical Applications of Agents and
Multi-Agent Systems, pages 175–182. Springer.

Sattam Almatarneh and Pablo Gamallo. 2018a. A lex-
icon based method to search for extreme opinions.
PloS one, 13(5):e0197816.

Sattam Almatarneh and Pablo Gamallo. 2018b. Lin-
guistic features to identify extreme opinions: An
empirical study. In Intelligent Data Engineering
and Automated Learning – IDEAL 2018, pages 215–
223, Cham. Springer International Publishing.

Sattam Almatarneh and Pablo Gamallo. 2019. Com-
paring supervised machine learning strategies and
linguistic features to search for very negative opin-
ions. Information, 10(1).

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics, location = Minneapolis,
Minnesota.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research,
12(Aug):2493–2537.

Andrew M Dai, Christopher Olah, and Quoc V Le.
2015. Document embedding with paragraph vec-
tors. arXiv preprint arXiv:1507.07998.

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Comput. Surv., 51(4):85:1–85:30.

P. Gamallo, M. Garcia, C. Pieiro, R. Martinez-Castao,
and J. C. Pichel. 2018. Linguakit: A big data-based
multilingual tool for linguistic analysis and informa-
tion extraction. In 2018 Fifth International Confer-
ence on Social Networks Analysis, Management and
Security (SNAMS), pages 239–244.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188–
1196.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

390

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 391–395
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Grunn2019 at SemEval-2019 Task 5:
Shared Task on Multilingual Detection of Hate

Mike Zhang, Roy David, Leon Graumans, Gerben Timmerman
University of Groningen

Groningen, the Netherlands
{j.j.zhang.1, r.a.david,

l.r.n.graumans, g.h.r.timmerman}@student.rug.nl

Abstract

Hate speech occurs more often than ever and
polarizes society. To help counter this polar-
ization, SemEval 2019 organizes a shared task
called the Multilingual Detection of Hate. The
first task (A) is to decide whether a given tweet
contains hate against immigrants or women,
in a multilingual perspective, for English and
Spanish. In the second task (B), the system
is also asked to classify the following sub-
tasks: hateful tweets as aggressive or not ag-
gressive, and to identify the target harassed as
individual or generic. We evaluate multiple
models, and finally combine them in an en-
semble setting. This ensemble setting is built
of five and three submodels for the English
and Spanish task respectively. In the current
setup it shows that using a bigger ensemble
for English tweets performs mediocre, while
a slightly smaller ensemble does work well for
detecting hate speech in Spanish tweets. Our
results on the test set for English show 0.378
macro F1 on task A and 0.553 macro F1 on
task B. For Spanish the results are significantly
higher, 0.701 macro F1 on task A and 0.734
macro F1 for task B.

1 Introduction

The increasing popularity of social media plat-
forms such as Twitter for both personal and politi-
cal communication has seen a well-acknowledged
rise in the presence of toxic and abusive speech
on these platforms (Kshirsagar et al., 2018). Al-
though the terms of services on these platforms
typically forbid hateful and harassing speech, the
volume of data requires that ways are found to
classify online content automatically. The prob-
lem of detecting, and therefore possibly limit the
hate speech diffusion, is becoming fundamental
(Nobata et al., 2016).

Previous work concerning hate speech against
immigrants and women such as Olteanu et al.

(2018) observed that extremist violence tends to
lead to an increase in online hate speech, partic-
ularly on messages directly advocating violence.
Also, Anzovino et al. (2018) contributed to the re-
search field by (1) making a corpus of misogynous
tweets, labelled from different perspective and (2)
created an exploratory investigations on NLP fea-
tures and ML models for detecting and classifying
misogynistic language.

Basile et al. (2019) proposed a shared task on
the Multilingual Detection of Hate, where partic-
ipants have to detect hate speech against immi-
grants and women in Twitter, in a multilingual
perspective, for English and Spanish. The task
is divided in two related subtasks for both lan-
guages: a basic task about hate speech, and an-
other one where fine-grained features of hateful
contents will be investigated in order to understand
how existing approaches may deal with the identi-
fication of especially dangerous forms of hate, for
example those where the incitement is against an
individual rather than against a group of people,
and where an aggressive behavior of the author
can be identified as a prominent feature of the ex-
pression of hate.

Within this experiment, Task A is a binary clas-
sification task where our system has to predict
whether a tweet is hateful or not hateful. For Task
B, our system has to decide whether a tweet is ag-
gressive or not aggressive, and whether that tweet
targets an individual or generic group, to elabo-
rate, a single human or group of people.

The paper is structures as follows. In section
2 our system setup is described. In section 3, the
datasets together with the preprocessing steps are
presented. In section 4, obtained results are de-
tailed. Finally, in section 5 a discussion about the
proposed system is outlined.

391

2 System Setup

In our approach, we trained multiple classifiers
and combined their results into an ensemble model
using majority vote.

English Ensemble Setup

The setup of our system optimized for the English
classification tasks consisted of the following clas-
sifiers:

• Random Forest

• Support Vector Machine (1)

• Support Vector Machine (2)

• Logistic Regression

• BiLSTM

Spanish Ensemble Setup

Due to time restrictions, we used three classifiers
for the Spanish tasks:

• Random Forest

• Support Vector Machine (1)

• Logistic Regression

These time restrictions occurred, because we de-
cided in the last moment to run our system for
the Spanish task too. However, we did not have
hate speech specific word embeddings, nor trained
a BiLSTM model for the Spanish task. Therefore,
we decided to run only three classifiers for both
the Spanish tasks.

2.1 Random Forest (RF)

For our RF model we executed a grid search start-
ing with the following parameters: character n-
grams with range: 2-3, 2-4, 1-3, 1-4; word n-
grams with range 1, 1-2, 1-3, 1-4 and all combi-
nations of them. In the end we used a tf-idf vec-
torizer with character n-grams with range 2-4. As
for our parameters also following a grid search we
used 400 estimators, entropy as our split criteri-
on/estimator, balanced for our class weight and a
random seed of 1337. Due to time restrictions, we
used the same parameters for the Spanish tasks.

2.2 Support Vector Machine (SVM 1)

Within this subpart of our ensemble model, we
used a SVM model from the scikit-learn library
(Pedregosa et al., 2011). We used a linear ker-
nel, and a weighted class weight. This
model used vectorized character n-grams in range
2-4 using a tf-idf vectorizer as its input.

2.3 Support Vector Machine (SVM 2)

We used a second SVM classifier within our en-
semble model, but this time with word embed-
dings as its input. This choice is motivated by
the hypothesis that introducing different predic-
tions given by models trained differently could
lead to more insights. We tested four pre-trained
embedding representations, which are the fol-
lowing: the 300-dimensional GloVe embeddings
and the 25-dimensional GloVe Twitter rep-
resentations by Pennington et al. (2014); a 400-
dimensional and 100-dimensional word embed-
ding created from tweets (Van der Goot). Us-
ing the GloVe embeddings proved to be superior
within our work. The results of each word embed-
ding can be found in Table 6.

2.4 Logistic Regression (LR)

Following our grid search testing our LR model
with a tf-idf vectorizer with the following param-
eters: character n-grams with range: 2-3, 2-4, 1-3,
1-4; word n-grams with range 1, 1-2, 1-3, 1-4 and
all combinations of them, we got the best perfor-
mance using a tf-idf vectorizer with character n-
grams with range 2-4. Due to time restrictions, we
used the same parameters for the Spanish tasks.

2.5 BiLSTM

Our BiLSTM classifier was only optimized for the
English classification task. Hence we decided not
to use it in our Spanish setup. In combination with
the BiLSTM model we used an attention mecha-
nism, as proposed by Yang et al. (2016).

LSTM models can handle input sequentially
and therefore can take word order into account.
We combine this with a bidirectional model,
which allows us to process the tweets both for-
wards and backwards. For each word in the
tweets, the LSTM model combines its previous
hidden state and the current word’s embedding
weight to compute a new hidden state. After us-
ing dropout to shut down a percentage of neurons
of the model, we feed the information to the at-

392

Hate Speech Target Range Aggressiveness
0 1 0 1 0 1

Trial data 50 50 87 13 80 20
Train data 5217 3783 7659 1341 7440 1559
Dev data 573 427 781 219 796 204
Test data 3000
Total 13100

Table 1: Distribution of English data, labels of the test
data were not specified.

Hate Speech Target Range Aggressiveness
0 1 0 1 0 1

Train data 2643 1857 3371 1129 2998 1502
Dev data 278 222 363 137 324 176
Test data 1600
Total 6600

Table 2: Distribution of Spanish data. No trial data was
available, and test data labels were not specified.

tention mechanism. This mechanism emphasizes
the most informative words in the article and gives
these more weight.

Our final model uses 512 units in the hidden
layer of the BiLSTM, a batch size of 64, the Adam
optimizer in combination with the default learning
rate of 0.001 and a dropout of 0.4. We trained our
model for 10 epochs, of which we saved the model
with the lowest validation loss.

3 Data and Preprocessing

For this shared task, the data distribution is seen in
Table 1 and Table 2 for the train and development
data, we assumed the trial data to be train data
too. After release of the test data, the distribution
would be 69% train, 8% development, and 23%
(3000 sentences) test data for the English task, and
for the Spanish task 68% train, 8% development,
and 24% (1600 sentences) test data. For final sub-
mission, we combined the train and development
data to train our system on.

The meaning of the binary encoding is as fol-
lows, for Hate Speech (HS) and Aggressiveness
(AG): 0 or 1, absent and present respectively. For
Target Range (TR): 0 or 1, whole group and in-
dividual respectively. We notice that there is more
data available for the English task than the Spanish
one.

With regard to preprocessing, we did this in the
following fashion:

• Tokenized with the NLTK TweetTokenizer.

• Replaced URLs with a placeholder suitable
for our English embeddings.

• Replaced mentions with a placeholder suit-
able for the available English embeddings
(van der Goot and van Noord, 2017).

• Converted words to lowercase.

• Filtered out stopwords using the stopwords
from NLTK, either English or Spanish.

• Removing single characters, excluding
emoji’s.

For the BiLSTM, we did not do any prepro-
cessing. We deemed this might affect the learning
curve of the system, since a BiLSTM algorithm
often performs well with lots of different data. So,
without preprocessing there will be less loss of in-
formation and thus a better performing system.

We tested how the preprocessing affected our
scores, results are in Table 3 and Table 4. We
used the train and development data available to
test the preprocessing. We started using all the
preprocessing, and in a cumulative way, excluded
a preprocess step one by one. So in the end, we
would only have tokenization left.

Interesting is that the scores of the RF and SVM
1 model are higher, for both English and Spanish
data, when we exclude preprocessing steps. At the
step of replacing URLs and usernames with place-
holders, we expected the scores to be higher if ex-
cluded. Because if the same URL or username
occurs often in the training set, and that specific
URL or username is always corresponding with a
hateful or non-hateful message, our system could
wrongly classify a comment in the development
set containing that same URL or username. The
scores also increase when we exclude lowercas-
ing or remove single characters in addition to the
placeholder steps. However, if we omit either low-
ercasing or characters alone, the scores do not get
better than if we use all preprocessing. This also
explains the higher score with the LR model, but
if we only disregard the character preprocessing
step, the score also does not get better.

4 Results

In this section, we state our results on the test set,
as well as the results of our ensemble model and
individual models on the development set. Our
final system for the English task consists of all
five models shown in the English Ensemble Setup,
each given a result being either 0 or 1, and run a
majority vote on it for a final result. For the Span-

393

RF SVM 1 SVM 2 LR BiLSTM
All 74.2 73.9 72.7 74.0 -
- URL 74.5 73.8 68.4 73.9 -
- USERNAME 75.3 74.1 68.3 73.9 -
- Lowercase 75.8 73.8 69.2 73.5 -
- Stopwords 74.2 72.4 67.9 73.4 -
- Characters 75.6 73.0 68.9 75.2 -
No preprocess
(only tokenization) 75.6 73.0 68.9 75.2 77.5

Table 3: Scores with changes in preprocessing for En-
glish, scores in bold means that it was higher than using
all preprocessing of the respective system.

RF SVM 1 LR
All 78.2 79.9 77.8
- URL 78.7 80.1 77.4
- USERNAME 78.2 78.8 77.9
- Lowercase 75.9 79.6 76.6
- Stopwords 77.3 80.8 76.7
- Characters 75.7 81.0 77.7
No preprocess
(only tokenization) 75.7 81.0 77.7

Table 4: Scores with changes in preprocessing for
Spanish, csores in bold means that it was higher than
using all preprocessing of the respective system.

ish task, the final system contains three models,
described in the Spanish Ensemble Setup.

The results on the the various tasks we partici-
pated in are listed in Table 5. For the English task,
we achieved a much lower accuracy and macro f1-
score than for the Spanish task. Assuming the data
has been distributed fairly for both languages, it
could be that the quality of the test data is lower
than the train and development data.

These scores were lower in comparison to our
results of the individual classifiers on the develop-
ment set which are listed in table 3 and 4.

5 Discussion

We compared multiple classification algorithms
and combined them into an ensemble model to get
a more robust and accurate system. Initially, our
system performed reasonably well on the develop-
ment set, but when tested on the final test set our
performance dropped a fair bit. Overall, the drop
in performance was to be expected. During the fi-
nal evaluation of the test set our system predicted
over 80% as hate speech. Looking at the data we
thought a large part of the remaining 20% could
also be classified as hate speech. Also the majority
class baseline (Basile et al., 2019) ranked second
for accuracy, supporting our expectations.

From our results we can conclude that using

English Task A accuracy macro F1
Fermi 0.653 0.651
Panaetius 0.572 0.571
YNU DYX 0.560 0.546
Grunn2019 0.459 0.378
English Task B EMR macro F1
MFC baseline 0.580 0.421
ninab 0.570 0.467
CIC-1 0.568 0.551
Grunn2019 0.279 0.553
Spanish Task A accuracy macro F1
Atalaya 0.731 0.730
mineriaUNAM 0.734 0.730
MITRE 0.729 0.729
Grunn2019 0.708 0.701
Spanish Task B EMR macro F1
hammad.fahim57 0.705 0.755
CIC-1 0.675 0.649
gertner 0.671 0.772
Grunn2019 0.601 0.734

Table 5: Scores of our ensemble models on both sub-
tasks and languages during testing phase, compared to
the top three systems in that subtask.

accuracy macro f1-socre
GloVe 300d 0.726 0.727
Glove Twitter 25d 0.680 0.675
Twitter 100d 0.716 0.711
Twitter 400d 0.719 0.717

Table 6: Scores on the English development set of the
Support Vector Machine (SVM 2) classifier using dif-
ferent word embeddings as input.

a bigger ensemble model for the English tweets
performs mediocre in comparison to a smaller en-
semble model for detecting hate speech in Spanish
tweets.

In the future, we would like to try to improve
the performance of our Spanish model, of which
our development was cut short due to time restric-
tions. We would also like to test our models with
more high quality data. It would be interesting to
find out whether this helps to improve our models’
performance.

6 Acknowledgements

We would like to thank the organizers of SemEval-
20191, the organizers of SemEval 2019 Task 5 -
Shared Task on Multilingual Detection of Hate2,
and the reviewers for accepting our paper. We
would also like to thank R.M. Van der Goot for
his guidance and help where needed.

1http://alt.qcri.org/semeval2019/
2https://competitions.codalab.org/

competitions/19935

394

References
Maria Anzovino, Elisabetta Fersini, and Paolo Rosso.

2018. Automatic identification and classification of
misogynistic language on twitter. In International
Conference on Applications of Natural Language to
Information Systems, pages 57–64. Springer.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Rob Van der Goot. http://www.let.rug.nl/
rob/.

Rob van der Goot and Gertjan van Noord. 2017.
MoNoise: Modeling noise using a modular normal-
ization system. Computational Linguistics in the
Netherlands Journal, 7:129–144.

Rohan Kshirsagar, Tyus Cukuvac, Kathleen McKeown,
and Susan McGregor. 2018. Predictive embeddings
for hate speech detection on twitter. arXiv preprint
arXiv:1809.10644.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153. International World Wide
Web Conferences Steering Committee.

Alexandra Olteanu, Carlos Castillo, Jeremy Boy, and
Kush R Varshney. 2018. The effect of extremist vi-
olence on hateful speech online. In Twelfth Interna-
tional AAAI Conference on Web and Social Media.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

395

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 396–403
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

GSI-UPM at SemEval-2019 Task 5: Semantic Similarity and Word
Embeddings for Multilingual Detection of Hate Speech Against

Immigrants and Women on Twitter

Diego Benito, Oscar Araque, and Carlos A. Iglesias
Intelligent Systems Group

Universidad Politécnica de Madrid
Madrid, Spain

Avenida Complutense, 30
{d.benito,o.araque,carlosangel.iglesias}@upm.es

Abstract

This paper describes the GSI-UPM system for
SemEval-2019 Task 5, which tackles multi-
lingual detection of hate speech on Twitter.
The main contribution of the paper is the use
of a method based on word embeddings and
semantic similarity combined with traditional
paradigms, such as n-grams, TF-IDF and POS.
This combination of several features is fine-
tuned through ablation tests, demonstrating the
usefulness of different features. While our ap-
proach outperforms baseline classifiers on dif-
ferent sub-tasks, the best of our submitted runs
reached the 5th position on the Spanish sub-
task A.

1 Introduction

Information available in social networks is the re-
sult of many interactions between users and their
activity on the net. Unfortunately, hate speech
and other misuses are proliferating on the Internet.
Hate speech authors justify their conduct based on
the freedom of speech argument. Thus, a debate
over hate speech legislation and freedom of speech
has been generated (Herz and Molnar, 2012).

The task to decide if a piece of text contains
hate speech is not trivial, even for humans. Being
subject to different interpretations and opinions,
the manifestations of hate speech become difficult
to define. Based on previous hate speech state-
ments (Fortuna and Nunes, 2018; Schmidt and
Wiegand, 2017), this phenomenon could be de-
fined as offensive or humorist content in form of
text, video, or images that attacks, diminishes, in-
cites violence or hate against groups or individu-
als, based on actual or perceived specific charac-
teristics such as physical appearance, religion, de-
scent, national or ethnic origin, sexual orientation,
gender identity, or any other.

Hate speech topic has gained impact and popu-
larity in recent years, which is reflected not only

by the increased media coverage but also by the
growing political attention. Regarding the specific
forms of hate speech that we deal with, sexism and
racism victims increased during 2017 according to
the FBI hate crime statistics1.

For this reason, participating in SemEval2019
Task 5 (Basile et al., 2019) is such an interest-
ing challenge. The proposed task consists in Hate
Speech detection in Twitter messages featured by
two specific different targets intrinsically related
to the phenomena mentioned above, immigrants
and women. The task is enriched by adding a
multilingual perspective fostering the research for
both English and Spanish messages.

The system proposed relies on a supervised
classifier using different text features combined
with several strategies with the aim of finding an
optimal performance. The remainder of this paper
is structured as follows. After this introductory
section, Section 2 reviews related work. Follow-
ing, the proposed classification model is described
in Section 3. Then, Section 4 presents the experi-
mental results, and finally, Section 5 concludes the
paper with a final discussion.

2 Related Work

Most of our literature review from the field is ref-
erenced by previous survey research (Fortuna and
Nunes, 2018; Schmidt and Wiegand, 2017).

Multiple procedures have been implemented,
since more traditional feature engineering, such
us n-grams (Waseem and Hovy, 2016) or Part-
of-Speech (POS) (Davidson et al., 2017) to more
complex deep learning architectures (Yuan et al.,
2016; Badjatiya et al., 2017).

According to the analyzed bias which moti-
vates hate speech, general hate speech (Silva et al.,
2016) is considered by the majority, however,

1https://ucr.fbi.gov/hate-crime/

396

there is large research that focuses particularly on
racism (Kwok and Wang, 2013) and sexism (He-
witt et al., 2016). Though it is not exactly a form of
hate speech, cyberbullying is a very related prob-
lem with some study research (Cortis and Hand-
schuh, 2015).

3 System Overview

The system relies on a supervised machine learn-
ing algorithm. This final classification step is
fed by a data processing pipeline formed by the
preprocessing and the feature extraction mod-
ules. Regarding the implementation, Python
has been used, with the additional capabilities
provided by the libraries scikit-learn (Pedregosa
et al., 2011), NLTK (Bird and Loper, 2004), and
GSITK (Araque et al., 2017) 2. Figure 1 illustrates
the system architecture from a general perspective.

3.1 Preprocessing

In this phase, the raw text is taken and cleaned
using common NLP techniques (Manning et al.,
1999): removal of punctuation marks, special
characters, URLs, and stop-words. Tweet prepro-
cessing relies on tokenization, user mentions nor-
malization, the appearance of hashtags, URLs, and
all caps words flagged supported by the tools pro-
vided by GSITK. In addition, tokens are lemma-
tized using the Porter stemmer (Porter, 1980).

3.2 Feature Engineering

Different features have been taken into account
during the feature engineering stage. Such fea-
tures are divided into subcategories: statistical fea-
tures, content analysis, word embeddings, seman-
tic features, and linguistic features.

3.2.1 Statistical Features
We collected word and character n-grams evaluat-
ing both approaches, Bag-of-Words (BOW) and
Term Frequency - Inverse Document Frequency
(TF-IDF). The reason to include character n-
grams comes from the Twitter domain, where texts
are short and misspelling may occur; this can
be attenuated at the character level (Schmidt and
Wiegand, 2017). Apart from the mentioned rea-
soning, previous research (Mehdad and Tetreault,
2016) has shown the effectiveness of character n-
grams in the problem of offensive language.

2https://github.com/gsi-upm/
semeval2019-hatespeech

Besides tokens included within the text corpus,
the system also includes frequencies from external
lexicons that are thought for hate speech3, senti-
ment analysis (Hu and Liu, 2004; Liu et al., 2005),
and subjectivity analysis (Pang and Lee, 2004).

3.2.2 Content Analysis
As seen, sentiment and subjectivity information
has been included. Hate speech can be considered
as subjective content, and a relation between sub-
jectivity, sentiments, and emotions can occur. Be-
sides, hate speech is expected to have a negative
polarity, so text subjectivity and polarity provided
by the TextBlob (Loria et al., 2014) library were
included in the analysis.

Topic modeling methods were added to the
study, particularly, Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) in order to extract the
topic of each tweet in combination with the ap-
pearance of hashtags (topics) inside the corpus.

3.2.3 Word Embeddings
In order to solve the lack of semantic of words in
n-grams features, word distributed representations
based on word embeddings models are evaluated.
Pre-trained word vectors convert words into vec-
tor space where semantically similar words tend
to appear close by each other. In this system, a
vector is extracted for each word in the input text;
then, as done in (Araque et al., 2017), the average
pooling operation is performed on all word vec-
tors, resulting in a vector of the same dimensions
as the original word vectors.

3.2.4 Semantic Features
A central part of the system consists of a
method (Araque et al., 2019) that exploits the se-
mantic similarity measure that a word embedding
model provides, via cosine similarity. In general
lines, this approach uses a lexicon to which the
input text is projected, employing the similarity
measure obtained from an embedding model.

The method considers a selection of words S
that constitutes a lexicon vocabulary to which the
input documents are projected. Given a text doc-
ument (e.g., tweet), a similarity value between the
input word vectors of that document and each of
the words in S is computed. After iterating over
all input words and all lexicon words, a matrix
m × |S| is obtained, where m is the number of
input words in a particular document. Following,

3https://hatebase.org/

397

Figure 1: System Overview

the maximum pooling function is applied column-
wise, obtaining the semantic similarity feature
vector of dimensionality |S|.

In this work, the previously mentioned lexi-
cons have been used, as well as a domain-oriented
word selection, which have been extracted from
the dataset. In this last approach, words were
filtered by its frequency of appearance consider-
ing the document annotation, being the cutoff fre-
quency an adjustable parameter.

3.2.5 Linguistic Features
The last set of features used are related to linguis-
tic aspects. The proposed system considers the
number of sentences, length from the tweet, POS
stats, as well as some Twitter-related features such
as the count of hashtags, URLs, mentions, all caps
words, emojis, and exclamations.

3.3 Classification

Finally, the furthest step in the data processing
pipeline makes use of a machine learning clas-
sifier. There are many options among machine
learning models that can be used. In this project,
we have evaluated the performance of three dif-
ferent types of algorithms: Logistic Regression,
Support Vector Machines (SVM) with linear ker-
nel, and Random Forest.

4 Experiments

This section presents the results obtained by the
proposed system in the competition, consider-
ing both test and development phase submissions.
Firstly, a data exploration has been carried out
in order to analyze the data distribution, possi-
ble features to feed the classifier, and deficiencies
in the data source. The evaluation of the differ-
ent feature extraction approaches and the hyper-
parameter tuning has been done by using a cross-
validation grid search. Special attention has been
paid in the regularization parameter of the algo-
rithms: “C” parameter in the Logistic Regression
and Linear SVM case and “maximum depth” of
the trees in the Random Forest case. Finally, the
system is trained, and the evaluation metrics are
computed. This workflow has been repeated sev-
eral times from the feature extraction step, chang-
ing the set of features in every iteration.

4.1 Sub-task A

The goal of this task is to classify both Spanish
and English tweets as hateful or not hateful. Sys-
tems are evaluated using standard evaluation met-
rics, including accuracy, precision, recall, and F1-
score, but predictions are ranked by F1-score met-
ric alone.

398

Team Accuracy Precision Recall F-score
English

Best 0.506 0.65 0.566 0.457
SVM baseline 0.492 0.595 0.549 0.451
GSI-UPM 0.483 0.643 0.549 0.42
MFC baseline 0.579 0.289 0.5 0.367

Spanish
Best 0.731 0.734 0.741 0.73
GSI-UPM 0.728 0.726 0.733 0.725
SVM baseline 0.705 0.701 0.707 0.701
MFC baseline 0.58 0.294 0.5 0.37

Table 1: Official test set results for Task A

Feature combination Accuracy Precision Recall F-score
English

Official submission combination 0.777 0.774 0.780 0.775
Lexical, similarity, embeddings, and n-
grams (1)

0.757 0.754 0.758 0.754

Bigrams, trigrams, similarity, and em-
beddings (2)

0.75 0.747 0.752 0.748

Embeddings, similarity, twitter stats,
and LDA (3)

0.736 0.731 0.733 0.732

Spanish
Official submission combination 0.856 0.856 0.852 0.853
Lexical, similarity, embeddings, and n-
grams (1)

0.812 0.811 0.807 0.808

Bigrams, trigrams, similarity, and em-
beddings (2)

0.796 0.794 0.791 0.792

Embeddings, similarity, Twitter stats,
and LDA (3)

0.784 0.781 0.782 0.782

Table 2: Development set results for Task A

Task A data was partitioned into train, develop-
ment, and test sets. Train and development sets
were used to obtain the best feature combination
by training over the train set and testing over the
development one. Finally, for the final submission,
the predictions for the test set were obtained with
a system trained over both train and development
sets.

Test results, which represent the official sub-
mission, as well as development phase results are
presented in Tables 1 and 2 respectively. Task
organizers included two baselines (Basile et al.,
2019) in the competition, a linear SVM based on
a TF-IDF representation and a trivial model that
assigns the most frequent label from the training
set to all instances in the test set.

The Spanish-oriented system relies on linguis-

tic features (excepting POS), semantic similar-
ity with a domain-oriented lexicon, sentiments
(using the sentiment vocabulary weighted by
the TF-IDF measure), word embeddings, topic
modeling (both LDA and hashtags), and word and
character TF-IDF n-grams. These features are fil-
tered according to the ANOVA F-test, selecting
the best 3,000. Linear SVM has been the selected
machine learning algorithm for classification. On
the other hand, the English-oriented system con-
siders the same feature set excluding word embed-
ding representation; the number of selected fea-
tures has been set at 17,500. In contrast to the
previous system, a Logistic Regression model was
used to perform the classification.

399

Team F-score(HS) F-score(TR) F-score(AG) F-score (Avg) EMR
English

MFC baseline (Best) 0.367 0.452 0.445 0.421 0.58
GSI-UPM 0.421 0.686 0.556 0.555 0.312
SVM baseline 0.45 0.697 0.587 0.578 0.308

Spanish
Best 0.729 0.798 0.737 0.755 0.705
GSI-UPM 0.725 0.79 0.735 0.75 0.624
SVM baseline 0.701 0.781 0.726 0.736 0.605
MFC baseline 0.37 0.424 0.413 0.402 0.588

Table 3: Official Results for Task B

Feature Combination F-score(HS) F-score(TR) F-score(AG) F-score (Avg) EMR
English

Official submission 0.775 0.811 0.723 0.770 0.665
(1) 0.754 0.797 0.712 0.755 0.641
(2) 0.748 0.788 0.699 0.745 0.628
(3) 0.731 0.767 0.687 0.728 0.611

Spanish
Official submission 0.853 0.876 0.824 0.851 0.78
(1) 0.808 0.839 0.777 0.808 0.732
(2) 0.792 0.843 0.776 0.804 0.718
(3) 0.782 0.836 0.783 0.800 0.714

Table 4: Development Results for Task B

4.2 Sub-task B

The goal of this task is firstly to classify hate-
ful tweets (i.e., tweets identified as hate speech
against women or immigrants) as aggressive or not
aggressive, and secondly to identify the target ha-
rassed as individual or generic (i.e., single person
or group). Systems are evaluated by two criteria:
partial match and exact match (Basile et al., 2019),
but predictions are ranked by exact match metric
alone.

For this task, the data has been delivered in the
same way than sub-task A, so we emulated the
same workflow than before, but in this case, con-
sidering solely hateful tweets. In this case, there
are different distributions (Basile et al., 2019)
along languages and sets, but different labels show
a similar layout. This result goes in line with the
work presented in (ElSherief et al., 2018), which
states that directed hate speech is more informal,
angrier, and often explicitly attacks the victim.
Regarding the language, Spanish-speaking people
tend to be more aggressive and more direct to-
wards specific individuals. Seeing this skewed dis-
tribution, we outlined the idea to balance aggres-

siveness and directed messages by oversampling
hateful tweets with not hateful ones, assuming that
not hateful tweets are not aggressive nor directed.

As done previously, Tables 3 and 4 present of-
ficial and development results, respectively. The
Spanish-oriented system in this task is identical to
that from Task A, but finally selecting 2,500 fea-
tures. For the English case, in light of aggressive-
ness and target tweets, a different combination of
features have been chosen. In order to detect ag-
gressive tweets, all features except semantic sim-
ilarity have been used, filtering the 32,500 best.
Otherwise, for target messages, the complete set
of features (sentiments and subjectivity were in-
cluded by means of TF-IDF and semantic similar-
ity) are used just considering the 2,500 best. Fi-
nally, different models were applied for each la-
bel, Logistic Regression for Target label and Lin-
ear SVM for the Aggressive one. The same algo-
rithm selection was made in the Spanish case.

4.3 Discussion

In general terms, the results obtained are auspi-
cious: the best submitted system achieved the 5th

400

position in the Spanish Task A, 0.5% points under
the best result obtained in the same task. For the
Spanish Task B, the proposed model outperforms
the baseline. In contrast to this, results in English
Task A are lower than expected, where there was
not any team that surpassed the 50% threshold in
terms of F-score. As a general trend, test set re-
sults are worse than development results, which
may indicate that our systems suffer over-fitting,
and cannot generalize properly. This observation
is enforced by attending to the English Task B,
where no system has surpassed the baseline.

Since the data distribution is equal along lan-
guages in Task A (Basile et al., 2019), the dif-
ference in performance across languages may be
due to Spanish speaking people are more ex-
plicit when typing any utterance with hate speech
goals. As previously mentioned, we have ob-
served that this type of hate speech messages show
more aggressiveness. Language characteristics
may be involved since the Spanish language has
a morphologically-richer nature than English.

The presented results constitute the outcome of
exhaustive experimentation of a variety of feature
combination tests. In contrast with earlier work,
semantic similarity and word embeddings repre-
sentations do not produce such high performance
results when compared to other domains such as
sentiment analysis (Araque et al., 2019) and sleep
disorder detection (Suarez et al., 2018) tasks. This
circumstance suggests that hate speech detection
is still an open challenge and more research must
be done into the specific characteristics of such an
exciting task.

Attending to the Spanish case, sentiment infor-
mation and character n-grams were features that
helped in a meaningful manner, confirming the is-
sues raised in Sect. 3. For the English case, the
improvement of the proposed features was incre-
mental. While subjectivity and emojis had a rele-
vant role in the results, this improvement was not
as high as in the Spanish case. In light of the
complexity of the hate speech domain, it could be
argued that attending to word context instead of
isolated words could help in the analysis. Indeed,
n-grams include this type of information to some
extent, but capturing the grammatical dependen-
cies within a sentence (Chen, 2011) or template
based strategies (Warner and Hirschberg, 2012)
could enhance the performance.

5 Conclusions

This paper described the GSI-UPM hate speech
detection system presented to participate in
SemEval-2019 Task 5, which revolves around an-
alyzing text messages from Twitter. In order to
tackle this, a machine learning based approach has
been developed. The different features that feed
this system have been thoroughly evaluated, con-
sidering its suitability in the field of hate speech
detection. It has been seen that both novel and
traditional approaches do not yield so promis-
ing when used separately. Nevertheless, prop-
erly combining several types of features, as well
as with content analysis features (e.g., sentiments
and subjectivity) can improve the system to the
point of reaching a reasonably good performance.

Concerning the achieved goals, the highest
ranking was 5th place on the Spanish sub-task A,
being 0.5% apart from the best performing sys-
tem. This is, undoubtedly, a promising result that
highlights the capacity of the proposed method to
obtain nearly state-of-the-art performance in this
task. When comparing with the same sub-task in
the English case, in which we scored lower, it is
necessary to study further the applicability of the
system to different languages.

As future work, several lines of work could be
addressed. Firstly, we plan to implement deep
learning architectures which have shown to obtain
better results in previous research (Zhang and Luo,
2018; Zhang et al., 2018). In addition, in order
to afford imbalanced distributions, data augmenta-
tion (Hemker, 2018) techniques could be explored.
Also, context-aware approaches could represent
an improvement (Dinakar et al., 2012), since hav-
ing general knowledge of hate speech (e.g., anti-
LGBT or racism) may boost the performance of
learning systems.

Acknowledgments

This work has been partially supported by the
Spanish Ministry of Economy and Competitive-
ness under the R&D project SEMOLA (TEC2015-
68284-R) and the European Union with Trivalent
(H2020 Action Grant No. 740934, SEC-06-FCT-
2016).

References
Oscar Araque, Ignacio Corcuera-Platas, J. Fernando

Snchez-Rada, and Carlos A. Iglesias. 2017. Enhanc-

401

ing deep learning sentiment analysis with ensemble
techniques in social applications. Expert Systems
with Applications, 77:236 – 246.

Oscar Araque, Ganggao Zhu, and Carlos A. Iglesias.
2019. A semantic similarity-based perspective of
affect lexicons for sentiment analysis. Knowledge-
Based Systems, 165:346 – 359.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, WWW ’17 Companion, pages 759–
760, Republic and Canton of Geneva, Switzerland.
International World Wide Web Conferences Steer-
ing Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Steven Bird and Edward Loper. 2004. Nltk: The nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive Poster and Demonstration Ses-
sions, ACLdemo ’04, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

Ying Chen. 2011. Detecting offensive language in
social medias for protection of adolescent online
safety.

Keith Cortis and Siegfried Handschuh. 2015. Analysis
of cyberbullying tweets in trending world events. In
Proceedings of the 15th International Conference on
Knowledge Technologies and Data-driven Business,
i-KNOW ’15, pages 7:1–7:8, New York, NY, USA.
ACM.

Thomas Davidson, Dana Warmsley, Michael W. Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
CoRR, abs/1703.04009.

Karthik Dinakar, Birago Jones, Catherine Havasi,
Henry Lieberman, and Rosalind Picard. 2012. Com-
mon sense reasoning for detection, prevention, and
mitigation of cyberbullying. ACM Trans. Interact.
Intell. Syst., 2(3):18:1–18:30.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth M. Belding.
2018. Hate lingo: A target-based linguistic anal-
ysis of hate speech in social media. CoRR,
abs/1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Computing Surveys (CSUR), 51(4):85.

Konstantin Hemker. 2018. Data augmentation and
deep learning for hate speech detection. Master’s
thesis, Imperial College London.

Michael Herz and Peter Molnar. 2012. The content and
context of hate speech. Cambridge University Press.

Sarah Hewitt, T. Tiropanis, and C. Bokhove. 2016. The
problem of identifying misogynist language on twit-
ter (and other online social spaces). In Proceedings
of the 8th ACM Conference on Web Science, WebSci
’16, pages 333–335, New York, NY, USA. ACM.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
Detecting tweets against blacks. In AAAI.

Bing Liu, Minqing Hu, and Junsheng Cheng. 2005.
Opinion observer: Analyzing and comparing opin-
ions on the web. In Proceedings of the 14th Interna-
tional Conference on World Wide Web, WWW ’05,
pages 342–351, New York, NY, USA. ACM.

Steven Loria, P Keen, M Honnibal, R Yankovsky,
D Karesh, E Dempsey, et al. 2014. Textblob: simpli-
fied text processing. Secondary TextBlob: Simplified
Text Processing.

C.D. Manning, C.D. Manning, H. Schütze, and H.A.
SCHUTZE. 1999. Foundations of Statistical Natu-
ral Language Processing. Mit Press. MIT Press.

Yashar Mehdad and Joel Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 299–303.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42Nd Annual Meeting on Association for Com-
putational Linguistics, ACL ’04, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

M.F. Porter. 1980. An algorithm for suffix stripping.
Program, 14(3):130–137.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

402

Leandro Araújo Silva, Mainack Mondal, Denzil Cor-
rea, Fabrı́cio Benevenuto, and Ingmar Weber. 2016.
Analyzing the targets of hate in online social media.
In ICWSM, pages 687–690.

D. Suarez, O. Araque, and C. A. Iglesias. 2018. How
well do spaniards sleep? analysis of sleep disorders
based on twitter mining. In 2018 Fifth International
Conference on Social Networks Analysis, Manage-
ment and Security (SNAMS), pages 11–18.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the world wide web. In Proceedings
of the Second Workshop on Language in Social Me-
dia, LSM ’12, pages 19–26, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Shuhan Yuan, Xintao Wu, and Yang Xiang. 2016. A
two phase deep learning model for identifying dis-
crimination from tweets. In EDBT, pages 696–697.

Ziqi Zhang and Lei Luo. 2018. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. CoRR, abs/1803.03662.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on twitter using a
convolution-gru based deep neural network. In The
Semantic Web, pages 745–760, Cham. Springer In-
ternational Publishing.

403

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 404–408
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

HATEMINER at SemEval-2019 Task 5: Hate speech detection against
Immigrants and Women in Twitter using a Multinomial Naive Bayes

Classifier

Nikhil Chakravartula
Teradata, Hyderabad

nikhil.chakravartula@gmail.com

Abstract
This paper describes our participation in the
SemEval 2019 Task 5 - Multilingual Detection
of Hate. This task aims to identify hate speech
against two specific targets, immigrants and
women. We compare and contrast the per-
formance of different word and sentence level
embeddings on the state-of-the-art classifica-
tion algorithms. Our final submission is a
Multinomial binarized Naive Bayes model for
both the subtasks in the English version.

1 Introduction

Twitter is a micro-blogging platform where peo-
ple exchange ideas using short messages called
tweets. Users can propagate their notions, includ-
ing hatred against an individual or a group, to the
entire global population with a latency of a few
seconds. This poses a unique challenge of devel-
oping systems that can automatically identify and
mitigate hate speech. Although twitter condemns
hate speech through its hateful conduct policy1,
enforcing it is difficult. There are several reasons
for this. Tweets often contain emoticons, emo-
jis, language slangs, hashtags and other noisy data.
Often, offensive and abusive language may be er-
roneously perceived as hate speech and hence it
is important to distinguish offensive, abusive and
hateful languages (Davidson et al., 2017; Waseem
and Hovy, 2016). These problems are exacerbated
by the fact that even humans find it difficult to de-
lineate offensive and hateful language.

Many approaches have been put forward to de-
tect hate speech. Bag of words and ngram features
are effective in hate speech detection (Burnap and
Williams, 2015; Warner and Hirschberg, 2012) as
well as the detection of abusive and offensive con-
tent (Nobata et al., 2016). Gitari et al. (2015) used

1https://help.twitter.
com/en/rules-and-policies/
hateful-conduct-policy

lexical resources to look up certain words that con-
tribute significantly to hate speech but such fea-
tures, when used in isolation may not be very ef-
fective. SVM (Burnap and Williams, 2015), Naive
Bayes (Kwok and Wang, 2013) and Logistic Re-
gression (Davidson et al., 2017) are some of the
classifiers used in this domain.

Most of the above methods are targeted to detect
general hate speech. Through this task, we aim
to identify hate speech, specifically against immi-
grants and women. Frenda et al. (2018) used lexi-
con resources to identify misogynistic comments.
Ahluwalia et al. (2018) used an ensemble of ran-
dom forest, gradient boosting and logistic regres-
sion with bag of words, ngram and lexical features
to discern hatred against women. We did not find
significant work in detection of hate speech in En-
glish against immigrants.

2 Shared Task Description

The SemEval 2019 Task 5 is divided into two sub-
tasks.

1. Subtask A, where systems must predict
whether a tweet is hateful (HS=1) against im-
migrants and women.

2. Subtask B, where systems must first classify
hateful tweets as aggressive (AG=1) or not,
and secondly to identify the target harassed
as an individual (TR=1) or generic.

We used the datasets provided by the organizers.
Table 1 describes the composition of the dataset.
Further details of the task are available in the task
description paper (Basile et al., 2019).

3 System Description

3.1 Pre Processing
We perform the following pre-processing opera-
tions on the text before feature engineering.

404

HS=1 TR=1 AG=1
Train 57.9% 17.3% 14.9%
Dev 42.7% 20.4% 21.9%

Table 1: Dataset composition. HS: Hate Speech TR:
Target AG:Aggressiveness

• All text is converted to lower case.

• All URLs, mentions, emojis and smileys are
removed from the tweets. We used a python
package tweet-preprocessor2 to achieve this.

• All contractions are replaced with their full
form. For example, don’t will be replaced by
do not and can’t will be replaced by can not.

• All punctuation marks are removed.

• All numerical sequences are removed from
the text.

• Hashtag segmentation and spell correc-
tion: Hashtags provide insights about a
specific ideology by a group of people.
These notions provide vital information for
text classification, especially in the case of
hate speech against immigrants and women.
For example, hashtags like #endimmigra-
tion, often come from a group of peo-
ple who are against immigrants. Segmen-
tation (Segaran and Hammerbacher, 2009)
of the hashtags is essential to allow the
classifier to treat #buildthatwall, #buildthe-
wall, #buildthedamnwall, #buildwall, etc
with the same importance. After segmenta-
tion, #buildthatwall becomes build that wall,
#buildthedamnwall becomes build the damn
wall etc. Many tweets contain abusive words
in elongated form, such as f****kkkk. We
perform spell corrections (Jurafsky and Mar-
tin, 2018) on these words to reduce the vo-
cabulary size and to account for better results.
Text83 is utilized to generate unigram and bi-
gram word statistics with ekphrasis (Baziotis
et al., 2017) to perform both these operations.

• Stemming: Stemming is the process of re-
ducing a word to its base root form. We used
Porter Stemmer4 from NLTK (Steven Bird

2https://github.com/s/preprocessor
3http://mattmahoney.net/dc/textdata.

html
4https://tartarus.org/martin/

PorterStemmer/

and Loper, 2009) to stem. Stemming is used
in combination with the Naive Bayes clas-
sifier. For other classifiers, pretrained word
embeddings without stemming are used.

3.2 Feature Engineering

The following features are considered in our ex-
periments.

• Bag of words (BoW): Bag of words is used
to represent the presence of word n-grams.

• Word Embeddings: Glove840B - common
crawl, GloveTwitter27B - twitter crawl (Pen-
nington et al., 2014) and fasttext - common
crawl (Mikolov et al., 2018) pre-trained word
embeddings are used to analyze their impact
on the classification.

• Sentence Embeddings: Infersent (Conneau
et al., 2017) is used to produce sentence level
embeddings. InferSent is a sentence embed-
ding method that provides semantic represen-
tations for English sentences. It is trained on
natural language inference.

4 Experiments

In this section, we describe the experimental set-
tings used in our research. All our code is publicly
available in a github repository.5

4.1 Evaluation Metrics

The evaluation metrics for subtask A are preci-
sion(HS), recall(HS) and F1-score(HS). Macro av-
eraged F1-score(HS,TR,AG) and Exact Match Ra-
tio (EMR) are the evaluation metrics for subtask-
B. Submissions are ranked based on F1-score(HS)
and EMR for subtask-A and subtask-B, respec-
tively.

4.2 Methodology

All the experiments are developed using the
Scikit-Learn (Pedregosa et al., 2011) machine
learning library. Five-fold cross validation score
on the train set used to evaluate our models. We
ran several experiments on various classification
algorithms. The best performing classifiers were
Naive Bayes, logistic regression, SVM and XG-
Boost. The following are the details of the classi-
fier settings.

5https://git.io/fhFGR

405

WordVector
Logreg SVM XGB

Favg(HS) Favg(HS,TR,AG) EMR Favg(HS) Favg(HS,TR,AG) EMR Favg(HS) Favg(HS,TR,AG) EMR

glove 0.58 0.57 0.49 0.54 0.54 0.45 0.61 0.56 0.44

fasttext 0.58 0.56 0.53 0.55 0.52 0.45 0.61 0.56 0.43

glove twitter 0.69 0.67 0.48 0.69 0.61 0.45 0.69 0.65 0.44

glove
+

infersent
0.73 0.70 0.47 0.66 0.64 0.46 0.72 0.68 0.46

Table 2: Pretrained word and sentence embeddings results. For each classifier family, the best score is made bold.

Word
ngrams Stem Binary Favg(HS)

Favg
(HS,TR,AG)

EMR

1,2 false true 0.69 0.66 0.45
1,2 false false 0.68 0.66 0.45
1,2 true true 0.69 0.67 0.47
1,2 true false 0.68 0.66 0.45
1,3 false true 0.69 0.66 0.45
1,3 true true 0.69 0.66 0.47
1,4 false true 0.69 0.66 0.45
1,4 true true 0.69 0.66 0.47

Table 3: Multinomial Naive Bayes Classifier results
with word ngram range, stemming and binarization

• Logistic Regression, SVM and XGBoost
Word or sentence level embeddings are fed as
inputs to these classifiers. In the absence of a
sentence embedder, we averaged all the word
vectors to get a vector representation of the
tweet. For logistic regression, the solver is li-
blinear (Fan et al., 2008) and L2 norm is used
for penalization. For SVM, inputs are nor-
malized using a soft scaling scheme and the
kernel used is a Radial Basis Function (Buh-
mann and Buhmann, 2003). The default pa-
rameters are kept as is for XGBoost6. Table
2 shows the results.

• Naive Bayes classifier: Multinomial Naive
Bayes classifier, along with the bag of words
generated with CountVectorizer7 gave bet-
ter results than other Naive Bayes variations.
Different runs are carried out to tune the pa-
rameters as shown in Table 3.

6https://xgboost.readthedocs.io/en/
latest/python/python_api.html

7https://scikit-learn.org/stable/
modules/generated/sklearn.feature_
extraction.text.CountVectorizer.html

Classifier F1(HS)
F1

(HS,TR,AG)
emr

glove twitter+logreg 0.70 0.70 0.48
glove twitter+XGB 0.69 0.66 0.55
glove+infersent+

XGB
0.72 0.69 0.55

glove+infersent+
logreg

0.72 0.72 0.53

stem+
NB binarized+

word-ngrams(1.2)
0.74 0.73 0.57

Table 4: Results on the dev set

5 Results and Analysis

We wanted to submit a single system for both the
subtasks. Hence, our goal was to maximize all
three metrics: F1(HS), F1(HS,TR,AG) and EMR.
The results show that there is no single variation
that defeats the others in all the metrics combined.
Logistic regression with glove and infersent per-
formed the best in F1(HS) and F1(HS,TR,AG), but
only with an acceptable EMR. Regarding the XG-
Boost family, glove with inferesent version out-
performs the rest in all the metrics. Stemmed-
binarized Naive Bayes classifier with ngram range
(1,2) performed better in F1(HS) and EMR in the
Naive Bayes family. The Glove-Twitter version of
logreg and XGboost aren’t too far behind as well.
We applied all these high performing models on
the dev set to analyse their performance further.
The results are shown in Table 4. Naive Bayes
comfortably achieved the highest score on the dev
set on all the three metrics as shown in Table 4.
Hence, we finalized the Naive Bayes model as our
official submission. This submission scored an
F1(HS) of 0.405 in subtask-A, F1(HS,TR,AG) of
0.54 and EMR of 0.296 in subtask-B.

406

6 Conclusion and Future Work

The aim of this research was to detect hate
speech against two specific targets, immigrants
and women. We described a naive bayes classi-
fier system and also elucidated our trials of us-
ing different pre-trained word and sentence level
embeddings on the state-of-the-art classification
algorithms. In the future, we would like to in-
clude lexicon-based, Parts Of Speech features to
further investigate the performance of these clas-
sifiers. We would also like to evaluate how deep
learning approaches respond to this task.

References
Resham Ahluwalia, Himani Soni, Edward Callow,

A. Nascimento, and Martine De Cock. 2018. De-
tecting hate speech against women in english tweets.
In EVALITA@CLiC-it.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics”, location = “Minneapo-
lis, Minnesota.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Martin D. Buhmann and M. D. Buhmann. 2003. Radial
Basis Functions. Cambridge University Press, New
York, NY, USA.

Pete Burnap and Matthew L. Williams. 2015. Cyber
hate speech on twitter : An application of machine
classification and statistical modeling for policy and
decision making.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Thomas Davidson, Dana Warmsley, Michael W. Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
CoRR, abs/1703.04009.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

Simona Frenda, Bilal Ghanem, Estefanı́a Guzmán-
Falcón, Manuel Montes-y-Gómez, and Luis Vil-
laseñor Pineda. 2018. Automatic expansion of lex-
icons for multilingual misogyny detection. In Pro-
ceedings of the Sixth Evaluation Campaign of Natu-
ral Language Processing and Speech Tools for Ital-
ian. Final Workshop (EVALITA 2018) co-located
with the Fifth Italian Conference on Computational
Linguistics (CLiC-it 2018), Turin, Italy, December
12-13, 2018.

Njagi Dennis Gitari, Zhang Zuping, Hanyurwimfura
Damien, and Jun Long. 2015. A lexicon-based ap-
proach for hate speech detection.

Daniel Jurafsky and James H. Martin. 2018. Speech
and Language Processing: An Introduction to Nat-
ural Language Processing, Computational Linguis-
tics, and Speech Recognition. Prentice Hall.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
detecting tweets against blacks. In AAAI 2013.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web, WWW ’16, pages 145–153, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Toby Segaran and Jeff Hammerbacher. 2009. Beautiful
Data: The Stories Behind Elegant Data Solutions.
O’Reilly Media, Inc.

Ewan Klein Steven Bird and Edward Loper. 2009. Nat-
ural Language Processing with Python– Analyzing
Text with the Natural Language Toolkit. O’Reilly
Media, Inc.

407

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the world wide web. In Proceedings
of the Second Workshop on Language in Social Me-
dia, LSM ’12, pages 19–26, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL Student Research Workshop, pages 88–93.
Association for Computational Linguistics.

408

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 409–415
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

HATERecognizer at SemEval-2019 Task 5: Using Features and Neural
Networks to Face Hate Recognition

Victor Nina-Alcocer
Department of Computer Systems and Computation

Universitat Politècnica de València, Spain
vicnial@inf.upv.es

Abstract

This paper presents a detailed description of
our participation in task 5 on SemEval-20191.
This task consists of classifying English and
Spanish tweets that contain hate towards wo-
men or immigrants. We carried out several ex-
periments; for a finer-grained study of the task,
we analyzed different features and designing
architectures of neural networks. Additionally,
to face the lack of hate content in tweets, we
include data augmentation as a technique to in-
crease hate content in our datasets.

1. Introduction

HatEval (Basile et al., 2019) aims to identify ca-
ses of aggressiveness and hate speech towards wo-
men and immigrants in social media considering
tweets messages written in English and Spanish.
This task defines two main sub-tasks:

Task1. Hate Speech Detection against Immi-
grants and Women: predict whether a tweet
in English or in Spanish is hateful or not ha-
teful.

Task2. Aggressive behavior and Target Clas-
sification: to identify if a tweet is aggressive
or not aggressive, and to identify the target
harassed as individual or generic.

To tackle the subtasks mentioned above we will
use Natural Language Processing (NLP) and Ma-
chine Learning (ML) fields to propose two approa-
ches. The first approach pretends to know more
about valuable features that allow us to get a good
understanding of its embedded knowledge. To get
this knowledge we study four features that we con-
sider important: its structure, its embedded emo-
tions, patterns on its pos tagging and skip-grams.
Each of these features will allow us to know if

1http://alt.qcri.org/semeval2019/index.php?id=tasks

tweets have some patterns that can be used to dis-
criminate tweets that contain hate or not.

The second approach will try to recognize pat-
terns using weights among neurons. To implement
this focus we designed several architectures of
neural networks (NN), which were fed with dif-
ferent kinds of corpora that were processed consi-
dering many aspects such as, lemmatization, stem-
ming, normalized hashtags, etc.

This work is organized into three sections. The
first section provides an introduction to this paper.
The second one describes the proposed approa-
ches, the experiments conducted, and the results
that we achieved. The third section presents some
conclusions.

2. Systems Description

In this section, we present the main features of
the two approaches considered in this paper and its
respective experiments.

The organizers provided a training dataset of
9000 and 4500 tweets written in English and Spa-
nish labeled with hate speech (HS), Aggressive
behavior (AG) and Target (TR). For what concerns
HS the distribution is almost balanced among
hate(42 %) and no-hate (58 %) tweets in both lan-
guages. Regarding AG and TR, the distribution
is skewed towards tweets that do not contain TR
(75 %) or AG(67 %) respectively. In order to as-
ses, the performance of the systems, tests set of
3000 and 1600 unlabeled tweets were provided.
The official evaluation metrics to evaluate the sys-
tems were: For the task1, accuracy (Acc.), preci-
sion (P), recall (R), and F1-score. For task2, The
models were evaluated using EMR and F1-score
as describe in (Basile et al., 2019)

2.1. Based on Classical ML
With this approach, we try to face hate de-

tection through classical machine learning algo-

409

rithms. Firstly, we established a baseline (called
((our baseline))) using Term frequency - Inverse
document frequency (TF-IDF) scheme based on
words and Support Vector Machine (SVM) as a su-
pervised learning model. This baseline gives us an
idea of whether the experiments that consider new
features or simply the use of other machine lear-
ning algorithms help us to achieve good results.

Preprocessing: The preprocessing consisted of
ridding of URLs, numbers, users, times, date,
email, percents. But, we decided to keep norma-
lized hashtags, elongated words, repetitions, emp-
hasis, and censored words. Next, we present an
example to show a raw and normalized version of
a tweet:

Raw tweet:
@KamalaHarris Illegalssssssss Dump their

Kids at the border like Road Kill and Refuse to
Unite! They Hope they get Amnesty, Free Edu-
catioon and Welfare Illegal #FamilesBelongToget-
her in their Country not on the Taxpayer Di-
me Its a SCAM #NoDACA #NoAmnesty #SendThe
https://t.co/Ks0SHbtYqn2

Normalized tweet:
illegals dump their kids at the border like road

kill and refuse to unite they hope they get amnesty
free education and welfare illegal familesbelong-
together in their country not on the taxpayer dime
its a scam nodaca noamnesty sendthe

Feature Extraction and Selection. As in (Sch-
midt and Wiegand, 2017) our models considered a
set of features. The first one takes into account the
structure of tweets, with this focus we are going to
consider and count if tweets have hashtags, pun-
ctuation marks, presence and its Unicode Common
Locale Data Repository (CLDR)3 version of emo-
jis, capital letters, number of words, numbers of
user and so on. To get the second group of featu-
res was necessary to consider pos tagging as des-
cribed (Bretschneider et al., 2014), but analyzing
some patterns on how people usually write or use
hate content in tweets as was mentioned by (Silva
et al., 2016), for instance, we noticed in the dataset
that people usually use this pattern to denigrate a
woman: “eres una maldita zorra” now to discover
some pattern we show its pos tagging representa-

2This raw tweet belongs to the original training data-
set and it was intentionally rewritten with typos to illustrate
which considerations were taken into account to its normali-
zation.

3http://cldr.unicode.org/translation/short names and keywords

Word Pe
jo

ra
tiv

e

D
er

og
at

iv
e

O
ff

en
si

ve

Vu
lg

ar

* solterona (es) - - -
* puta/puta de quinta (es) - -
* idiota (es) - - -
* huevon (es) - - -
* asswhore (en) - - -
* fucknigga/nigga (en) - - -
* pisslamist (en) - - -
* dogfucker (en) - - -

Table 1: Categories considered in our hate lexicon.

tion below:
eres AUX una DET maldita ADJ Gender=Fem

puta NOUN Gender=Fem zorra
ADJ Gender=Fem . PUNCT PunctType=Peri

As we know a sentence is composed by verbs,
prepositions, adjectives, adverbs and so on. In this
particular sentence shown above, we see that is
composed by auxiliaries, determiner, adjectives,
noun and a punctuation mark. All these tags plus
the gender of each word will give us a piece of im-
portant information to discriminate hate towards
women and immigrants. The third feature that we
consider important is to try to find out if a word
is pejorative, derogative, offensive or vulgar. To
get this aim we created a lexicon with these four
categories already mentioned before. In short, we
selected words that we called “seeds” then we
start to get synonyms or related words using seve-
ral sources4. Using this method we got more than
4900 words classified in the four mentioned cate-
gories. Some of the words and its respective cate-
gories are shown in Table 1.

We noticed that extending a little bit more the
four categories in the third feature, we can im-
prove slightly our results. Therefore, we take in-
to account the percentage of embedded emotions
in tweets, for this goal we used Linguistic Inquiry
and Word Count (LIWC)5. And we chose some
additional categories (sexual, anxiety feeling, an-
ger and so on.) that help us to discriminate bet-
ween tweets which contents hate or not. And fi-
nally, we have considered using TF-IDF schemes
over skip-grams (bigram and trigrams) (Davidson
et al., 2017).

In these experiments, we used scikit-learn to test
several machine learning algorithms and its res-
pective parameters. Some algorithms that we used

4https://www.dictionary.com
5https://www.receptiviti.ai/liwc-api-get-started

410

Approach Task1 Task1 Task2 Task2 Task1 Task1 Task1 Task1

E
ng

lis
h

E
ng

lis
h

E
ng

lis
h

E
ng

lis
h

Sp
an

is
h

Sp
an

is
h

Sp
an

is
h

Sp
an

is
h

Acc. F1-sc. F1-sc.(avg) EMR Acc. F1-sc. F1-sc.(avg) EMR
OUR BASELINE(See section 2.1) 0.763 0.766 0.731 0.629 0.834 0.840 0.785 0.710
TFIDF+POS 0.769 0.770 0.740 0.633 0.840 0.837 0.792 0.719
TFIDF+EMOTIONS 0.759 0.749 0.747 0.711 0.85 0.847 0.788 0.698
TFIDF+STRUCT 0.771 0.780 0.75 0.648 0.790 0.798 0.789 0.702
TFIDF+POS+EMOTIONS ↓ ↓ ↓ 0 0.849 0.842 0.791 0.700
TFIDF+POS+STRUCT ↓ ↓ ↓ 0 0.810 0.800 0.787 0.700
TFIDF+EMOTIONS+POS ↓ ↓ ↓ 0 0.846 0.839 0.781 0.698
TFIDF+SKIP-BIGR. ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
TFIDF+SKIP-TRIGR. ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
TFIDF+SKIP-
BIGR.+EMOTIONS

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

TFIDF+SKIP-BIGR.+STRUCT ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
TFIDF+SKIP-
BIGR.+EMOTIONS+STRUCT

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

TFIDF+SKIP-
TRIGR.+EMOTIONS

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

TFIDF+SKIP-TRIGR.+STRUCT ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
TFIDF+SKIP-
TRIGR.+EMOTIONS+STRUCT

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Table 2: Results achieved using LinearSVC algorithm for English and Spanish development datasets.

were: RandomForestClassifier (Breiman, 2001),
LogisticRegression, Naive Bayes (Kibriya et al.,
2004), LinearSVC (Hearst, 1998) and so on (For-
tuna, 2017). A summary of applying this approach
to the developing dataset and its respective results
are shown in Table 2. This table shows just results
using LinearSVC because it was the algorithm that
achieved good results. Other variations of corpus
like stemming or lemmatization version were not
used because we did not achieve good results.

Basically, we can highlight in table 2, that the
use of skip-grams does not help a lot, this fact is
due to the lack of skip-grams contained in tweets,
for instance, in the tweet mentioned before, the
skip-trigram ((illegals dump kids)) is just repeated
once in the whole dataset. A similar situation hap-
pens with skip-bigrams and skip-trigrams. On the
other hand, the use of the structure and emotions
(lexicon) embedded in tweets help to improve our
baseline in both languages respectively. We used
down arrow symbol ↓ to show that the value is be-
low of our baseline, so is not valuable include it.

2.2. Based on NN

This second approach tackle hate speech detec-
tion trough neural networks (Schmidt and Wie-
gand, 2017). In this stage, we used several neural
networks architectures which works enough well
with text, some of them are: Convolutional Neural
Networks (CNN) (Jacovi et al., 2018), Long short

term memory (LSTM) and its variations: Peepho-
le, Bidirectional (BILSTM) and Gated Recurrent
Unit (GRU) (Lu and Salem, 2017). We tested the-
se architectures with different corpora which were
slightly modified, in some cases we used a corpus
with stop words, or simply a stemming or a lem-
matized version of words. Additionally, we used
other variations to see which of them help us to
improve the performance of the system, the next
paragraph describes how the corpora were proces-
sed.

Preprocessing: Is valuable to mention that the
preprocessing of raw tweets was slightly different
for machine learning and NN, because we saw that
keeping an identical preprocess for both approa-
ches do not help a lot. So we decided to customi-
ze the preprocess for each focus as we describe in
section 2.1 and section 2.2. Swear words were kept
for both focuses because they helped to achieve
better results. Furthermore, emojis were normali-
zed using its CLDR short name, For instance, we
changed for ’:smiling face with smiling eyes:’
cleaned (without any additional symbol).

For this particular preprocess for NN were taken
to account many aspects that were already consi-
dered for ML’s preprocessing. Perhaps the main
difference is when we process the hashtag. For
instance, its version normalized for the raw tweet
shown in section 2.1, would be:

illegals dump their kids at the border like

411

road kill and refuse to unite they hope they
get amnesty free education and welfare ille-
gal families belong together in their country

not on the taxpayer dime its a scam no daca
no amnesty send the

As is shown, this version separates the content
of hashtags, additionally, we correct typos using
dictionaries6. For instance, we changed “familes”
by “families” in the above tweet.

This preprocess used for NN was used for ML
too, but we noticed that accuracy got down in our
experiments. Then we decided to keep the original
way of hashtags for ML (no splitting).

The results shown in Table 3 were achieved
using the developing datatset with the prepro-
cess commented in section 2.2. Summing up, stop
words, normal words (no stemming, no lemmati-
zation), normalized hashtags, spelling corrections
were considered. Furthermore, word embeddings
(Mikolov et al., 2013) (Goldberg, 2015) as effi-
cient word representation were used for all the ex-
periments in this stage.

Carrying on several experiments we realized
that Convolutional Neural Networks performed
well enough compared to other architectures, see
Table 3. Therefore, we named this architecture as
architecture A. This architecture is compound by
an input embedding layer, followed by and spatial
dropout and next to a convolutional layer with a
set up of 256 filters and kernel size of 2. Next a
globalmaxpooling is defined and finally, a dense
layer of 2 neurons with softmax is used to get the
results. The good performance of this architecture
encouraged us to use different word embeddings
to improve accuracy, the results of these experi-
ments are shown in Table 4.

As we can see in Table 4, there is a lack of
results on the Spanish language, this fact is due
that we could find in Spanish all the correspon-
ding resources exploited for experiments with En-
glish portion of the data. Sometimes some authors
publish word embeddings for this specific langua-
ge but mostly this embeddings does not fit with
our study case due to the language used in twitter
is kind of informal and use a lot of slang, swear
words and so on. And this important aspect redu-
ces the performance of our system.

Data Augmentation: As we commented at the
beginning of section 2, we noticed a slight skew
in favor of tweets that do not contain HS, AG or

6https://www.dictionary.com

TR. To deal with this unbalanced training data-
set, like in (Risch and Krestel, 2018) we adopted a
technique which allows us to increase the number
of tweets with hate content. To do this we analy-
zed some ways to get synonyms or similar words.
Firstly, we try to use synonyms only if these sy-
nonyms do not change the meaning of the who-
le sentence. This fact is challenging because is
kind of hard to use synonyms to increase our data-
set. For instance, the next tweet: ”Hurray, saving
us $$$ in so many ways potus realDonaldTrump
#LockThemUp #BuildTheWall #EndDACA #Boy-
cottNFL #BoycottNike” has to be cleaned and it
has to just keep words to get its synonyms. The re-
sult to process the tweet above is: ”hurray saving
us in so many ways lock them up build the wall end
daca boycott nfl boycott nike”. Now, we just have
to get synonyms for each word, in our case using
some resources such as: wordnet, dictionaries and
so on. It is important to highlight that wordnet and
dictionaries contain a formal language and those
have a lack of slang or informal language used
in tweets. Therefore, we decided to use word em-
beddings to get the most similar words, Additio-
nally, we defined a threshold7 to control that the
synonym was so close to the original word. In our
case, the threshold has been defined as 0.7 and the
results for the tweet mentioned before are shown
in Table 5.

Some remarkable facts that we saw in our ex-
periments are: if we keep a threshold over 0.9 for
sure we would not be able to get synonyms be-
cause with a high threshold we are just recovering
almost the same words used on the original sen-
tence. On the other hand, if we keep a threshold
under 0.5 we will get synonyms or similar words
that are not coherent and additionally those new
words change the meaning of the whole senten-
ce. For instance, in the syn3 with a threshold 0.3,
the original word (us) was changed by (states), we
assume that it refers to the country called the Uni-
ted States, that sometimes is written like us, this
is just an example of how many of these words
change the meaning of the sentence when is used a
lower threshold. Unfortunately, this approach was
not able to achieve good results. But we noticed
that is valuable go deeper with this focus.

7most similar function return the top n similar words and
their respective scores. In our case we assume, if the score is
close to 1 then more similar is the word.

412

Architecture
Spanish English

Task1 Task2 Task1 Task2

P R A F1
-s

co
re

F1
-s

co
re

(a
vg

)

EMR P R A F1
-s

co
re

F1
-s

co
re

(a
vg

)

EMR
Emb.+CNN1d 0.84 0.84 0.84 0.84 0.78 0.69 0.74 0.73 0.74 0.72 0.74 0.62
Emb.+CNN1d*4+dense*2 0.70 0.70 0.70 0.70 0.67 0.58 0.63 0.64 0.64 0.64 0.62 0.51
Emb.+LSTM 0.78 0.77 0.78 0.77 0.75 0.67 0.61 0.63 0.63 0.62 0.73 0.64
Emb.+LSTM Peep 0.77 0.77 0.77 0.77 0.74 0.65 0.57 0.57 0.57 0.58 0.70 0.58
Emb.+BILSTM 0.79 0.79 0.79 0.79 0.75 0.66 0.70 0.70 0.71 0.70 0.71 0.59
Emb.+BILSTM GRU 0.81 0.81 0.81 0.81 0.75 0.66 0.73 0.73 0.73 0.74 0.72 0.63

Table 3: Results achieved using several NN architectures for English and Spanish development datasets.

Task1
Spanish English

Acc. F1
-s

co
re

Acc. F1
-s

co
re

glove+100 - - 0.72 0.719
glove+200 - - 0.74 0.745
glove+300 0.842 0.84 0.739 0.73
google+300 - - 0.733 0.728
fasttext+300 0.777 0.78 0.732 0.75

Table 4: Results achieved by applying word embeddings to architecture A over development dataset.

Threshold Original Sentence
hurray saving us in so many ways lock them up build the wall end daca boycott nfl boycott nike

Threshold Similar Sentence
0.9 syn1: ’hurray saving us in so many ways lock them up build the wall end daca boycott nfl boycott nike’
0.9 syn2: ’hurray saving us in so many ways lock them up build the wall end daca boycott nfl boycott nike’
0.9 syn3: ’hurray saving us in so many ways lock them up build the wall end daca boycott nfl boycott nike’
0.7 syn1: ’hurray save us in but several ways locks themselves up construct of walls end daca boycotting redskins

boycotting adidas’
0.7 syn2: ’hurray saved us in anyway numerous ways lock them up rebuild the wall end daca boycotts usfl boycotts

nike’
0.7 syn3: ’hurray saving us in even countless ways lock them up build the wall end daca boycotted packers

boycotted nike’
0.5 syn1: ’hurra save u the but several way locks themselves ups construct of walls beginning daca boycotting

redskins boycotting adidas’
0.5 syn2: ’hurrah saved us/uk , anyway numerous things locking they up/ rebuild which ramparts ends daca

boycotts usfl boycotts reebok’
0.5 syn3: ’hooray rescuing states where even countless possibilities padlocks those messed constructing and door-

way ending daca boycotted packers boycotted sportswear’
0.3 syn1: ’hurra save u the but several way locks themselves ups construct of walls beginning să boycotting

redskins boycotting adidas’
0.3 syn2: ’hurrah saved us/uk , anyway numerous things locking they up/ rebuild which ramparts ends nica boy-

cotts usfl boycotts reebok’
0.3 syn3: ’hooray rescuing states where even countless possibilities padlocks those messed constructing and door-

way ending bucuresti boycotted packers boycotted sportswear’

Table 5: Similar words that were gotten using word embeddings.

Official Ranking

Table 6 shows the official results published by
the organizers of HatEval. We submitted 10 runs
for each task, the runs that achieved good results
were run01 and run07 for English and run05 and
run10 for Spanish. As we see too the performan-

ce of our the four runs or systems achieved high
values over their respective baselines. Run01 and
Run05 use TF-IDF scheme, run01 uses just struc-
ture features, meanwhile, run05 uses pos tagging
and embedded emotions. Features that we have al-
ready described in section 2.1. Both runs achie-

413

ved good results using Support Vector Machine.
The system used in run07 is the architecture A
which was already described in section 2.2. Run10
used an embedding layer as input, followed by an
LSTMPeephole layer and finally a dense layer of
2 neurons with softmax is used. The last two runs
that use neural networks were fed with a corpus
described in section 2.2. As we notice both ap-
proaches perform enough well, but architectures
that use neural networks work slightly better than
focuses that use classical machine learning algo-
rithms.

Task1 Task2
English

Acc. F1
-s

co
re

(a
vg

)

EMR F1
-s

co
re

(a
vg

)

SVC off. Base. 0.492 0.451 0.308 0.578
vmna (run01) 0.512 0.472 0.341 0.577
vmna (run07) 0.515 0.481 0.353 0.569

Spanish
SVC off. Base. 0.705 0.701 0.605 0.736
vmna (run05) 0.721 0.718 0.621 0.739
vmna (run10) 0.735 0.729 0.632 0.747

Table 6: Official results for task1 and task2.

Having the golden labels we realize that our
proposed system misclassified several tweets. As
we can see in the next examples:

1. * (original tweet) Estas navidades mi polla
mereces
* (Engish version) you deserve my dick for
Christmas
Language: Spanish
Golden Label: no-hate (0)
our system(run05): hate (1)

2. * (original tweet) @shakhepri69 @KuriMe-
lon21 @HoruSenpai @crafter657 oye puta
basura, cállate
* (Engish version) @shakhepri69 @KuriMe-
lon21 @HoruSenpai @crafter657 shut the
fuck up, bitch
Language: Spanish
Golden Label: no-hate (0)
our system(run05): hate (1)

3. * (original tweet) @GMA @TVMarci His
own fault #SENDTHEMBACK
* (Spanish version) @GMA @TVMarci su
culpa #SENDTHEMBACK

Language: English
Golden Label: no-hate (0)
our system(run01): hate (1)

All three examples have been labeled as hate
by our classifier. On the first example, after pre-
processing, the system just kept the words navida-
des (Christmas), polla (dick) and mereces (deser-
ve). And looking for these words in our lexicons
just the last two words were found, so the sys-
tem marked the tweet as hate-content. The same
situation happened with example 2 and 3, just the
words puta (bitch), basura (trash), callate (shut
up) and culpa (fault), send (enviar), back (regreso)
were found. As (Zhang and Luo, 2018) noticed,
that some times hate and no-hate tweets have no
enough features to be differentiated. Doing a ma-
nual analysis in the datasets we notice that fact to
in several tweets.

3. Conclusions

This work proposed two main approaches. The
first one, take into account some features that can
be considered to feed classical machine learning
algorithms, some of these features are: structure,
embedded emotions, pos tagging, and skip-grams.
On the other hand, the second approach consists of
designing several neural networks architectures to
test a variety of corpora and word representations.
Moreover, we face an unbalanced dataset using a
technique called data augmentation. To get simi-
lar words were used pre-trained word embeddings
with a tuned few thresholds. Using data augmenta-
tion our results did not improve but we noticed that
is a promising field to study. Furthermore, looking
at the results in Table 6 we appreciate that both ap-
proaches contribute to achieving good results, per-
haps a deep study in both approaches can help us
to understand and improve our results. As a future
work, it is interesting to explore more deep lear-
ning or neural networks and design more complex
architectures.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, De-

bora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-

414

mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Leo Breiman. 2001. Random forests. Mach. Learn.,
45(1):5–32.

Uwe Bretschneider, Thomas Wöhner, and Ralf Peters.
2014. Detecting online harassment in social net-
works. In ICIS.

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated Hate Speech De-
tection and the Problem of Offensive Language.

Paula Fortuna. 2017. FACULDADE DE ENGENHA-
RIA DA UNIVERSIDADE DO PORTO Automatic
detection of hate speech in text: an overview of the
topic and dataset annotation with hierarchical clas-
ses. Technical report.

Yoav Goldberg. 2015. A primer on neural network
models for natural language processing. CoRR,
abs/1510.00726.

Marti A. Hearst. 1998. Support vector machines. IEEE
Intelligent Systems, 13(4):18–28.

Alon Jacovi, Oren Sar Shalom, and Yoav Goldberg.
2018. Understanding convolutional neural networks
for text classification. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, pages 56–65.
Association for Computational Linguistics.

Ashraf M. Kibriya, Eibe Frank, Bernhard Pfahringer,
and Geoffrey Holmes. 2004. Multinomial naive ba-
yes for text categorization revisited. In Proceedings
of the 17th Australian Joint Conference on Advan-
ces in Artificial Intelligence, AI’04, pages 488–499,
Berlin, Heidelberg. Springer-Verlag.

Yuzhen Lu and Fathi M. Salem. 2017. Simplified ga-
ting in long short-term memory (LSTM) recurrent
neural networks. CoRR, abs/1701.03441.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Julian Risch and Ralf Krestel. 2018. Aggression identi-
fication using deep learning and data augmentation.

Anna Schmidt and Michael Wiegand. 2017. A sur-
vey on hate speech detection using natural language
processing. In Proceedings of the Fifth Internatio-
nal Workshop on Natural Language Processing for
Social Media, pages 1–10. Association for Compu-
tational Linguistics.

Leandro Silva, Mainack Mondal, Denzil Correa, Fabri-
cio Benevenuto, and Ingmar Weber. 2016. Analy-
zing the Targets of Hate in Online Social Media.

Ziqi Zhang and Lei Luo. 2018. Hate Speech Detection:
A Solved Problem? The Challenging Case of Long
Tail on Twitter.

415

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 416–419
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

GL at SemEval-2019 Task 5: Identifying hateful tweets with a deep
learning approach.

Gretel Liz De la Peña Sarracén
Universitat Politècnica de València, Spain

Abstract

This paper describes the system we developed
for SemEval 2019 on Multilingual detection
of hate speech against immigrants and women
in Twitter (HatEval - Task 5). We use an
approach based on an Attention-based Long
Short-Term Memory Recurrent Neural Net-
work. In particular, we build a Bidirectional
LSTM to extract information from the word
embeddings over the sentence, then apply at-
tention over the hidden states and finally feed
this vector to another LSTM model to get a
representation from de data. Then, the output
obtained with this model is used to get the pre-
diction of each of the sub-tasks with models
based on neural networks and linguistic char-
acteristics.

1 Introduction

Nowadays, the number of content generated by
users on social networks is growing rapidly. In
this context, the problem of detecting and limit-
ing the dissemination of the Hate Speech is be-
coming a matter of great importance. Therefore,
many efforts are dedicated to studying and treating
this phenomenon. A large number of workshops
on this topic have been developed in recent years,
which reflects the interest of many researchers.

Some examples are the Workshop on Trolling,
Aggression and Cyberbullying (Kumar et al.,
2018), that included a shared task on aggression
identification; the tracks on Automatic Misog-
yny Identification (AMI) (Fersini et al., 2018a)
and on Autohorship and Aggressiveness Analy-
sis (MEX-A3T) (Álvarez-Carmona et al., 2018)
proposed at IberEval 2018; the Automatic Misog-
yny Identificationtask at EVALITA 2018 (Fersini
et al., 2018b), the Workshop on Abusive Language
(Waseem et al., 2017) and the GermEval Shared
Task on the Identification of Offensive Language
(Wiegand et al., 2018).

The proposed works have used different fea-
tures and models. Among them, models based
on deep learning, such as Recurrent Neural Net-
works (RNN) and Convolutional Neural Networks
(CNN) have been widely used.

This paper presents a strategy based on RNN,
which is an extension of previous models pro-
posed for the tasks MEX-A3T and EVALITA 2018
(Cuza et al., 2018; la Peña Sarracén et al., 2018).
Those models use an Attention-based LSTM in-
spired by the work (Yang et al., 2016). In this
work the authors use a hierarchical attention net-
work for document classification and their experi-
ments show that the architecture outperforms pre-
vious methods. This last model has two levels of
attention mechanisms applied at the word and sen-
tence level, enabling it to attend differentially to
more and less important content when construct-
ing the document representation.

The aim of the proposed extension in this work
is not only the hate language identification, but
also the study of other features of hateful mes-
sages. In this case, the model based on the Atten-
tion mechanism and the LSTM is used as a repre-
sentation of the input. This representation is then
used to detect the hate language with a fully con-
nected network. In addition, it is combined with
some linguistic characteristics to analyze the other
features of hateful messages. The objective has
been defined for the HatEval1 shared task on Se-
mEval 2019.

The HatEval (Basile et al., 2019) task consists in
Hate Speech identification in messages from Twit-
ter in Spanish and English. The main objective
focuses on detecting the hate expressed against
women and immigrants in particular. The task is
divided into two related subtasks: a binary classi-
fication as a first sub-task about Hate Speech de-

1https://competitions.codalab.org/competitions/19935

416

tection, and another one where other features of
hateful contents is investigated:

• TASK A - Hate Speech Detection against Im-
migrants and Women: Predicting whether a
tweet with a given target (women or immi-
grants) is hateful or not (HS).

• TASK B - Aggressive behavior and Target
Classification: Classifying hateful tweets as
aggressive or not (AG), and second iden-
tifying the target harassed as individual or
generic (TR).

The paper is organized as follows. Section 2
describes the proposed methodology. Experimen-
tal results are then discussed in Section3. Finally,
we present our conclusions with a summary of our
findings in Section 4.

2 Methodology

In this work, a simple preprocessing is performed
in which the text is cleaned. First, emoticons,
hashtags, urls, and other strings that do not rep-
resent alphabetic sequences are eliminated. Then,
the texts are represented as vectors with a word
embedding model. We used pre-trained word vec-
tors of Glove (Pennington et al., 2014), trained on
2 billion words from Twitter for English. On the
other hand, for Spanish we used the word vectors
of fasttext (Bojanowski et al., 2017).

In general, we propose a model that consists of
a Bidirectional LSTM neural network (Bi-LSTM)
at the word level in the input. At each time step the
Bi-LSTM gets as input a word embedding. After-
ward, an attention layer is applied over each hid-
den state. The attention weights are learned us-
ing the concatenation of the current hidden state
of the Bi-LSTM and the past hidden state of an-
other LSTM. In this way, a representation (R) of
the input is obtained from the last LSTM to get
the prediction of each of the subtasks, as shown in
Figure 1.

2.1 Sub-task A

For the sub-task A, which consists in the identifi-
cation of hate in tweets (HS), R is used as input
of a Fully Connected Neural Network (FCNN) of
two dense layers with the relu activation function.
The class (hatefull or not) is obtained in an out-
put layer with two units, relative to the number of
classes, with the softmax activation function.

Figure 1: General architecture

2.2 Sub-task B

In the sub-task B the aim is to analyze some fea-
tures of hateful messages, as discussed above. On
the one hand, identifying against whom is directed
the hate language (TR) and on the other hand, de-
tecting whether a message with hate language is
also aggressive.

For the task of detecting the target of hate (TR),
the information of the part-of-speech tagging pro-
cess of the tweets is used. The sequence of la-
bels is analyzed with a LSTM RNN, obtaining a
vector. Then, this vector is concatenated with R
(from subtask A) and it is used as input to a dense
layer with the relu activation function. Finally, the
output layer has two neurons with the softmax ac-
tivation function. In this way, the prediction cor-
responding to the offensive target in the tweets is
obtained.

In the case of the task of classifying a hateful
tweet in aggressive or not, a linguistic resource
that consists of a dictionary of aggressive words
is used. In this way, a linguistic characteristic is
added to R according to the number of words in
the tweet that appear in the dictionary. In addition,
a one hot vector corresponding to the POS tags
present in the tweet is added. With this new vec-
tor, the prediction is obtained in a similar way to

417

the previous task, using another dense layer with
the relu activation function.

3 Results

For the evaluation of the results of the task, dif-
ferent strategies and metrics are applied. For the
sub-task A, systems are evaluated using standard
evaluation metrics, including accuracy, precision,
recall and F1-score. The submissions are ranked
by F1-score. For the sub-task B, systems are eval-
uated with two criteria: partial match and exact
match (EMR). In partial match, each dimension
to be predicted (HS, TR and AG) is evaluated in-
dependently of the others using standard evalua-
tion metrics including accuracy, precision, recall
and F1-score, and then combined. In exact match,
all the dimensions to be predicted are jointly con-
sidered. The submissions are ranked by the EMR
measure.

Table 1 shows the results obtained for each of
the languages in the sub-task A. In addition, the
results of the system positioned in the first place
of the ranking are shown for each of the metrics.
In the same way, the results obtained for the sub-
task B are shown in Table 2.

Language Task A
Acc P R F1-score

English 0.453 0.545 0.516 0.39
Best-English 0.653 0.69 0.679 0.651
Spanish 0.723 0.717 0.722 0.718
Best-Spanish 0.731 0.734 0.741 0.73

Table 1: Results for the sub-task A

Language Task B
F1-score EMR

English 0.532 0.268
Best-English 0.467 0.57
Spanish 0.74 0.618
Best-Spanish 0.755 0.705

Table 2: Results for the sub-task B

As can be seen, the results for English are very
far from the best results obtained in the compe-
tition, reaching a low position in the ranking of
the participating systems. On the other hand, the
results for Spanish are better, reaching the eighth
position in the ranking for task A and the eleventh

for task B. However, these results are not good
enough, which reveals that possibly the complex-
ity of the model used is a problem. Therefore, a
better approach might be to simplify the model in
order to reduce the number of parameters to train.
On the other hand, we think that it is very impor-
tant for improving the results, to find discrimina-
tory linguistic features, able of capturing the na-
ture of the texts with hate; and to make a fined
tunned of paramaters for each language.

4 Conclusion

In this paper we presented our solution for HatE-
val task in SemEval 2019. We used an approxi-
mation that combines a BiLSTM RNN with an at-
tention mechanism to obtain a text representation
vector. This vector is used as input in each of the
models designed for each of the subtasks in which
HatEval is divided. The results obtained were not
very good, far away from the results obtained by
the best system in the competition. As a conclu-
sion of the analysis, it is believed that a better
approximation would be to simplify the proposed
model to reduce the number of parameters to train.
Also, searching for discriminating linguistic fea-
tures, which manage to capture the nature of texts
with hate, should help to obtain better results.

References
Miguel Álvarez-Carmona, Estefanıa Guzmán-Falcón,

Manuel Montes-y Gómez, Hugo Jair Escalante, Luis
Villasenor-Pineda, Verónica Reyes-Meza, and An-
tonio Rico-Sulayes. 2018. Overview of mex-a3t at
ibereval 2018: Authorship and aggressiveness anal-
ysis in mexican spanish tweets. In Notebook Pa-
pers of 3rd SEPLN Workshop on Evaluation of Hu-
man Language Technologies for Iberian Languages
(IBEREVAL), Seville, Spain, volume 6.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Carlos Enrique Muniz Cuza, Gretel Liz De la Pena Sar-
racén, and Paolo Rosso. 2018. Attention mechanism

418

for aggressive detection. In CEUR Workshop Pro-
ceedings, volume 2150, pages 114–118.

Elisabetta Fersini, Maria Anzovino, and Paolo Rosso.
2018a. Overview of the task on automatic misog-
yny identification at ibereval. In Proceedings
of the Third Workshop on Evaluation of Hu-
man Language Technologies for Iberian Languages
(IberEval 2018), co-located with 34th Conference of
the Spanish Society for Natural Language Process-
ing (SEPLN 2018). CEUR Workshop Proceedings.
CEUR-WS. org, Seville, Spain.

Elisabetta Fersini, Debora Nozza, and Paolo Rosso.
2018b. Overview of the evalita 2018 task on au-
tomatic misogyny identification (ami). Proceed-
ings of the 6th evaluation campaign of Natural
Language Processing and Speech tools for Italian
(EVALITA18), Turin, Italy. CEUR. org.

Ritesh Kumar, Atul Kr Ojha, Marcos Zampieri, and
Shervin Malmasi. 2018. Proceedings of the first
workshop on trolling, aggression and cyberbullying
(trac-2018). In Proceedings of the First Workshop
on Trolling, Aggression and Cyberbullying (TRAC-
2018).

Gretel Liz De la Peña Sarracén, Reynaldo Gil Pons,
Carlos Enrique Muñiz-Cuza, and Paolo Rosso.
2018. Hate speech detection using attention-based
LSTM. In Proceedings of the Sixth Evaluation
Campaign of Natural Language Processing and
Speech Tools for Italian. Final Workshop (EVALITA
2018) co-located with the Fifth Italian Conference
on Computational Linguistics (CLiC-it 2018), Turin,
Italy, December 12-13, 2018.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Zeerak Waseem, Wendy Hui Kyong Chung, Dirk Hovy,
and Joel Tetreault. 2017. Proceedings of the first
workshop on abusive language online. In Proceed-
ings of the First Workshop on Abusive Language On-
line.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the germeval 2018 shared
task on the identification of offensive language. In
14th Conference on Natural Language Processing
KONVENS 2018.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

419

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 420–425
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

INF-HatEval at SemEval-2019 Task 5: Convolutional Neural Networks
for Hate Speech Detection Against Women and Immigrants on Twitter

Alison P. Ribeiro
Institute of Informatics

Federal University of Goiás
Goiânia – Goiás – Brazil

alisonrib17@gmail.com

Nádia F. F. da Silva
Institute of Informatics

Federal University of Goiás
Goiânia – Goiás – Brazil
nadia@inf.ufg.br

Abstract

In this paper, we describe our approach to
detect hate speech against women and immi-
grants on Twitter in a multilingual context, En-
glish and Spanish. This challenge was propo-
sed by the SemEval-2019 Task 5, where par-
ticipants should develop models for hate spe-
ech detection, a two-class classification where
systems have to predict whether a tweet in En-
glish or in Spanish with a given target (women
or immigrants) is hateful or not hateful (Task
A), and whether the hate speech is directed at a
specific person or a group of individuals (Task
B). For this, we implemented a Convolutio-
nal Neural Networks (CNN) using pre-trained
word embeddings (GloVe and FastText) with
300 dimensions. Our proposed model obtai-
ned in Task A 0.488 and 0.696 F1-score for
English and Spanish, respectively. For Task B,
the CNN obtained 0.297 and 0.430 EMR for
English and Spanish, respectively.

1 Introduction

With the growth of users in social networks,
there was also an increase in the odious activi-
ties that permeate these communicative structures.
According to Nockleby et al. (2000), hate speech
can be defined as any communication that depre-
cates a person or a group based on some charac-
teristics such as race, color, ethnicity, gender, na-
tionality, religion or other features. And the main
motive that encourages users to spread hate on so-
cial networks is anonymity, so users can spread
hate words to a particular target. For this reason,
the hatred propagated can generate irreversible
consequences, where young people who approach
with cyberbullying and homophobia, mainly, com-
mit suicide.

Nowadays, social networks like Twitter1, Fa-

1https://twitter.com/

cebook2 and YouTube3 are pressured to develop
tools to fight the proliferation of hate in their
networks. A good example of this is the German
government that threatened to fine social networks
by up to 50 million euros if they did not fight the
spread of hate (Gambäck and Sikdar, 2017).

However, while there is plenty of available con-
tent on social networks, the task of detecting hate
speech remains difficult, largely because of the use
of different sets of data for work, lack of bench-
marking, and efficient approaches. Waseem, for
example, bring a study focused on the detection
of racism and sexism, whereas Nahar et al. 2012
and Sanchez and Kumar 2011) conducted a sur-
vey on detecting bullying. For the detection of ho-
mophobia, misogyny and xenophobia, the number
of papers is still limited, one can cite a recent pa-
per (Sanguinetti et al., 2018), where the authors
sought to identify hate speech against immigrants.
However, it is important that new research is publi-
cized, because only in this way will it be possible
to fight against hate in social networks.

Introducing a brief definition of hate speech and
the importance of combating it, SemEval-2019
proposed a task in which it challenges partici-
pants to develop systems for detecting hate speech
against women and immigrants on Twitter from a
multilingual perspective , for English and Spanish.

The task was articulated around two related sub-
tasks for each one of the languages involved: a
basic task about hate speech, and another where
refined hate content resources will be investigated
to understand how existing approaches can handle
the identification of especially dangerous forms of
hatred, that is, those in which incitement is di-
rected against an individual rather than against a
group of people, and where aggressive behavior of

2https://www.facebook.com/
3https://www.youtube.com/

420

the perpetrator can be identified as a prominent fe-
ature of the expression of hatred. In order to reach
this goal, this work proposed to develop a Con-
volutional Neural Network with the use of word
embeddings.

The paper is organised as follows: previous
work on hate-speech identification is discussed in
Section 2. Section 3 presents details about the
task, data sets and evaluation methods. Section
4 describes the methodology for categorizing hate
speech based on deep learning, while experiments
and results are reported in Section 5. Finally, Sec-
tion 6 summarises the discussion.

2 Related Work

Some computational methods to detect hate
speech are presented in this section. An example is
the work of Badjatiya et al. (2017) that applied se-
veral algorithms of machine learning and deep le-
arning, among them: Logistic Regression, Support
Vector Machine, Random Forest, Gradient Boos-
ted Decision (GBDT), CNN and Long Short-Term
Memory (LSTM). As a baseline they used char
n-grams and bag-of-words, and as word embed-
dings they used GloVe and FastText. The objec-
tive was to classify if a tweet is racist, sexist or
none, and the best result was 0.930 of F1-score,
which was obtained through a LSTM model with
Random Embedding and GBDT.

Another work that also follows a line of ternary
classification was proposed by Malmasi and Zam-
pieri (2017), where the purpose is to classify a
tweet as hateful, offensive (but not hateful) or of-
fensive language. For this, the researchers propo-
sed an approach based on n-grams and word skip-
grams using Support Vector Machine with cross-
validation, the best result achieved was 0.78 of ac-
curacy.

Gambäck and Sikdar (2017) developed a Con-
volutional Neural Network to classify hate speech
on Twitter. In this case, the authors used 4 catego-
ries: racism, sexism, both (racism and sexism) and
non-hate-speech. The structure of CNN was cons-
tructed with convolutional layers and pooling of
4 modes: character 4-grams, word vector based on
semantic information built using word2vec (Miko-
lov et al., 2013a), randomly generated word vec-
tors and word embeddings with character n-grams.
In the classification phase, the softmax function
and cross-validation with 10-folds were applied,
the model based on word2vec embeddings best

performed with 0.783 of F-score.
A recent study developed by Gaydhani et al.

(2018) sought to address the difference between
offensive language and hate speech, then the
authors proposed several machine learning models
based on n-grams and TF-IDF. The models were
analyzed considering several n-values in n-grams
and TF-IDF normalization methods. Consequen-
tly, the best result among several approaches was
0.956 of accuracy.

3 SemEval-2019 Task 5

In this section we will describe some details
about data sets, tasks, and evaluation methods.

3.1 Dataset
The data for the task consists of 9000 tweets in

English for training, 1000 for develop and 2805
for test. For Spanish, 4469 tweets for training, 500
for develop and 415 for test. The data were struc-
tured in 5 columns: id, text, Hate Speech (HS),
Target Range (TR) and Aggressiveness (AG). See
an example in the Table 1 (Basile et al., 2019). If
the @username is a woman, we have a case of
feminicide.

id text HS TR AG
93874 @username stupid wish 1 1 1you die.
18267 Leftwing filth Deport them 1 0 1all. #Sendthemback
18345 1,500 migrants have died 0 0 0in Mediterranean in 2018

Table 1: Example of hate speech. Some examples are
also taken from the data.

3.2 Task A
The task A is a two-class classification problem

in which participants have to predict whether a
tweet, in English or Spanish, with a particular tar-
get (women or immigrants) is hateful or not hate-
ful – Hate Speech (1/0).

3.3 Task B
The purpose of this task is to: (i) classify hate

tweets into English and Spanish, where tweets
with hate speech, against women or immigrants,
were identified as aggressive or non-aggressive,
and (ii) identify the harassed target as just one per-
son or group of individuals.

421

3.4 Evaluation
For the results evaluation of both tasks A and

B, different metrics were used in order to allow
more refined conclusions.

Task A. The systems will be evaluated according
to the following metrics: accuracy, precision, re-
call and F1-score. The equations below show how
the calculations are done. In the case of this task,
the scores will be classified by F1-score. For better
understanding, we will show the following defini-
tions:

• True positive (TP): means a correct classifica-
tion as odious. For example, the royal class
is hateful and the model ranks as hateful.

• True negative (TN): means a correct classifi-
cation as not hateful. For example, the royal
class is not hateful and the model ranked as
not hateful.

• False positive (FP): means a wrong classifica-
tion as odious. For example, the royal class is
not hateful and the model rated it as hateful.

• False negative (FN): means a wrong classi-
fication not hateful. For example, the royal
class is hateful and the model ranked as not
hateful.

Accuracy = TP + TN

TP + FN + FP + TN
(1)

Precision = TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

F1-score = 2 ∗ Precision ∗Recall

Precision +Recall
(4)

Task B. In this task, the evaluation metrics are
two: partial match and exact match. The stra-
tegy for the partial match is to evaluate the Hate
Speech, Target Range and Agressiveness classes
independently of each other using the metrics de-
fined above. However, each system will include
all measures and a summary of the performance in
terms of macro-average F1-score, calculated ac-
cording to the Equation 5. The exact match consi-
ders the predicted classes together, thus computing

the Exact Match Ratio (Kazawa et al., 2005). Gi-
ven the set of data consisting of n multi-label sam-
ples (Xi, Yi), where Xi denotes the i-th instance
and Yi corresponds to the labels to be predicted
(HS, TR and AG), the Exact Match Ratio (EMR)
is calculated according to Equation 6.

F1-score = F1(HS) + F1(AG) + F1(TR)
3

(5)

EMR = 1

n

n∑
i=1 I(Y i,Zi) (6)

where Zi denotes the set of labels predicted for
the i-th instance and I is the indicator function.

4 Methodology

In this section, we describe the details of our
proposed methods, including data preprocessing,
neural networks and word embeddings.

4.1 Preprocessing
This step consists in eliminating noises and

terms that have no semantic significance in classes
prediction. For this, we performed the removal of
links, numbers, special characters, and stop words
(words with low discriminative power, for exam-
ple, “is”, “that” etc.) and standardized in lower-
case.

4.2 Word embeddings
Word Embeddings (Bengio et al., 2003) is a su-

pervised statistical language model trained using
deep neural networks. The purpose of this lan-
guage model is to predict the next word, given the
previous words of the sentence. The vector em-
beddings was a great advance in relation to the
strategies based on the bag-of-words, which jus-
tifies its use in several works (Nakov et al., 2016;
Poria et al., 2015; Cliche, 2017; Zhou et al., 2018;
Rotim et al., 2017). For the proposed task, we use
the GloVe (Pennington et al., 2014) and FastText
(Joulin et al., 2016) model with 300 dimensions.

For the English language, we made use of the
Stanford pre-trained GloVe (Pennington et al.,
2014) where word embedding were trained with
Wikipedia 2014 and Gigaword 5, while Fast-
Text (Joulin et al., 2016) was trained in Wikipe-
dia 2017, UMBC webbase corpus and statmt.org
news.

For the Spanish language, the GloVe vocabu-
lary was computed from SBWC (Pennington et al.,

422

2014; Cardellino, 2016), while FastText was com-
puted from the Spanish Wikipedia (Bojanowski
et al., 2016).

4.3 Convolutional Neural Networks
Initially, the Convolutional Neural Network ar-

chitecture was designed for image processing,
however it has been commonly used in the sen-
timent analysis (Wang et al., 2016; Cambria et al.,
2016; Rosenthal et al., 2017; dos Santos and Gatti,
2014; Poria et al., 2015).

For the purpose of the task, a CNN was im-
plemented based on the architecture proposed by
(Zhang and Wallace, 2015), and this implementa-
tion can be divided in two steps: feature extrac-
tion and classification. In the feature extraction
step, only two layers of convolution and two layers
of pooling were used, with tanh activation func-
tion. Four filters were used, 2 of 3 dimensions
and 2 of 4 dimensions. Each filter refers to the
classic n-grams technique (extremely used in bag-
of-words based models), which consists of proces-
sing a group of n words, in order to consider not
only isolated words in a tweet, but also the context
in which they are inserted. The filters are applied
under the vector representation of the input tweets
(embedding layer), using the concept of Back pro-
pagation to adjust the weights dynamically. Ac-
cording to Poria et al. (2016), these filters can
extract lexical, syntactic or semantic features au-
tomatically. Finally, the two layers of convolution
and pooling are concatenated and directed to the
next step.

In the classification stage, we used two dense
layers, the first one has 512 neurons, relu func-
tion of activation and dropout of 0.5. The se-
cond has a neuron and sigmoid activation func-
tion, phase where classification occurs. For the
training, the loss and optimization functions used
were binary crossentropy and RMSprop (Hinton
et al., 2012) (with learning rate 0.001), respecti-
vely.

5 Results

In this section we will discuss the results ob-
tained by using a CNN for the detection of hate
speech and the target of hate.

Task A

English

Model F1 P R Acc

CNN-FastText 0.488 0.628 0.574 0.520

Spanish

Model F1 P R Acc

CNN-GloVe 0.696 0.708 0.712 0.696

Table 2: Results obtained related to Task A.

We obtained 0.488 of F1-score for English and
0.696 for Spanish with our CNN model using
word embeddings, as shown in Table 2. This re-
sult also suggests that the combination of CNN
and GloVe provides better results for this task.

English

Class F1 P R

hateful 0.617 0.465 0.916

not hateful 0.359 0.792 0.232

Spanish

Class F1 P R

hateful 0.685 0.598 0.802

not hateful 0.707 0.817 0.622

Table 3: Confusion matrix concerning task A.

The Table 3 displays the results of F1-score,
Precision and Recall reached by class for each lan-
guage. The F1-score can be used to measure the
performance of the classifier, in this case CNN
ranked the hateful class better, obtaining 0.617 of
F1-score, while the result for not hateful class was
0.359 of F1-score in the English language.

From the perspective of the Spanish language,
CNN obtained good results in the classification of
both classes, hateful and not hateful, with 0.685
F1-score and 0.707 F1-score, respectively.

Task B

English

Model F1 EMR

CNN-FastText 0.577 0.297

Spanish

Model F1 EMR

CNN-FastText 0.609 0.430

Table 4: Results obtained related to Task B.

423

Recapitulating the idea of task B, where the goal
is to identify the target of the hate speech, that is,
whether it is a single person or a group of indi-
viduals. Knowing that there is hate speech in the
tweet (HS is 1), then one must detect if the target
is only one person (TR is 1) or if it is a group of in-
dividuals (TR is 0), and if there is presence of ag-
gressiveness in speech (AG is 1) or not (AG is 0).
In this case, the EMR measure shows a percentage
in which it corresponds to an accuracy rate, that
is, it measures how much the model has managed
not only to classify the hate speech, but also the
target and the aggressiveness. The Table 4 shows
the results of task B, where it was possible to ob-
tain 0.297 EMR for English and 0.430 EMR for
Spanish.

6 Conclusion

In this paper, we introduced the system that we
proposed for SemEval-2019, task 5. Our goal
was to experience an architecture that was adap-
ted from a CNN using word embeddings. The task
was to detect hate speech against women and im-
migrants on Twitter from a multilingual perspec-
tive, English and Spanish. We participate in two
subtasks directed to the two languages, and we ob-
tain the 18th position in the ranking of task A and
the 19th position of task B in the English language.
In the Spanish language, we obtain the 24th posi-
tion in the ranking for both tasks.

The success of deep learning depends on finding
an architecture to fit the task. Furthermore, as deep
learning has scaled up to more challenging tasks,
the architectures have become difficult to design
by hand. In this paper, a CNN was implemen-
ted based on the architecture proposed by Zhang
and Wallace 2015 and a fine-tuning of hyperpara-
meters was not done for the proposed tasks (tasks
A and B). In addition, other features were not ex-
ploited as sarcasm and irony, inherent in this type
of domain. We intend to explore these and other
features in future work.

Another discussion can be raised regarding the
best performance to have happened in Spanish.
The main hypothesis is related to the nature of the
corpus used. It is observed that the test set of Spa-
nish is smaller than that of English, besides being
a corpus with “simpler texts to be classified” (Spa-
nish texts have few signs of sarcasm). Such analy-
zes need further studies and will be evaluated in
future work.

For future work as well, it would be interes-
ting to explore systems that use different parame-
ters for CNN and other word embeddings, such as
Word2Vec (Mikolov et al., 2013b). It would also
be interesting to construct an LSTM with atten-
tion mechanism proposed by Lin et al. (2017) and
compare its performance.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, De-
bora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics”, location = “Minneapo-
lis, Minnesota.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint ar-
Xiv:1607.04606.

Erik Cambria, Soujanya Poria, Rajiv Bajpai, and Björn
Schuller. 2016. Senticnet 4: A semantic resource
for sentiment analysis based on conceptual primiti-
ves. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers, pages 2666–2677.

Cristian Cardellino. 2016. Spanish Billion Words Cor-
pus and Embeddings.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task
4: Twitter sentiment analysis with cnns and lstms.
arXiv preprint arXiv:1704.06125.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
convolutional neural networks to classify hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Aditya Gaydhani, Vikrant Doma, Shrikant Kendre, and
Laxmi Bhagwat. 2018. Detecting hate speech and
offensive language on twitter using machine lear-
ning: An n-gram and tfidf based approach. arXiv
preprint arXiv:1809.08651.

424

Geoffrey Hinton, Nitish Srivastava, and Kevin
Swersky. 2012. Neural networks for machine lear-
ning lecture 6a overview of mini-batch gradient des-
cent.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. CoRR, abs/1607.01759.

Hideto Kazawa, Tomonori Izumitani, Hirotoshi Taira,
and Eisaku Maeda. 2005. Maximal margin labeling
for multi-topic text categorization. In Advances in
neural information processing systems, pages 649–
656.

Zhouhan Lin, Minwei Feng, Cı́cero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. CoRR, abs/1703.03130.

Shervin Malmasi and Marcos Zampieri. 2017. De-
tecting hate speech in social media. CoRR,
abs/1712.06427.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word re-
presentations in vector space. arXiv preprint ar-
Xiv:1301.3781.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013b. Efficient estimation of word re-
presentations in vector space. arXiv preprint ar-
Xiv:1301.3781.

Vinita Nahar, Sayan Unankard, Xue Li, and Chaoyi
Pang. 2012. Sentiment analysis for effective detec-
tion of cyber bullying. In Asia-Pacific Web Confe-
rence, pages 767–774. Springer.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. In Pro-
ceedings of the 10th international workshop on se-
mantic evaluation (semeval-2016), pages 1–18.

John T. Nockleby, Kenneth L. Karst Leonard W. Levy,
and Adam Winkler. 2000. Hate Speech. In Ency-
clopedia of the American Constitution. New York :
Macmillan Reference USA, ©2000.

Jeffrey Pennington, Richard Socher, and Chris-
topher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Na-
tural Language Processing (EMNLP), pages 1532–
1543.

Soujanya Poria, Erik Cambria, and Alexander Gel-
bukh. 2015. Deep convolutional neural network
textual features and multiple kernel learning for
utterance-level multimodal sentiment analysis. In
Proceedings of the 2015 conference on empiri-
cal methods in natural language processing, pages
2539–2544.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
and Prateek Vij. 2016. A deeper look into sarcas-
tic tweets using deep convolutional neural networks.
arXiv preprint arXiv:1610.08815.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017. Semeval-2017 task 4: Sentiment analysis in
twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Leon Rotim, Martin Tutek, and Jan Šnajder. 2017.
Takelab at semeval-2017 task 5: Linear aggrega-
tion of word embeddings for fine-grained sentiment
analysis of financial news. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 866–871.

Huascar Sanchez and Shreyas Kumar. 2011. Twitter
bullying detection. ser. NSDI, 12:15–15.

Manuela Sanguinetti, Fabio Poletto, Cristina Bosco,
Viviana Patti, and Marco Stranisci. 2018. An italian
twitter corpus of hate speech against immigrants. In
Proceedings of LREC.

Cicero dos Santos and Maira Gatti. 2014. Deep con-
volutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING 2014,
the 25th International Conference on Computatio-
nal Linguistics: Technical Papers, pages 69–78.

Jin Wang, Liang-Chih Yu, K Robert Lai, and Xuejie
Zhang. 2016. Dimensional sentiment analysis using
a regional cnn-lstm model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), vo-
lume 2, pages 225–230.

Zeerak Waseem. 2016. Are you a racist or am i seeing
things? annotator influence on hate speech detection
on twitter. In Proceedings of the first workshop on
NLP and computational social science, pages 138–
142.

Ye Zhang and Byron Wallace. 2015. A sensitivity
analysis of (and practitioners’ guide to) convoluti-
onal neural networks for sentence classification. ar-
Xiv preprint arXiv:1510.03820.

Liyuan Zhou, Qiongkai Xu, Hanna Suominen, and
Tom Gedeon. 2018. Epution at semeval-2018 task
2: Emoji prediction with user adaption. In Proce-
edings of The 12th International Workshop on Se-
mantic Evaluation, pages 449–453.

425

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 426–430
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Abstract

In this paper, we describe our submissions

to SemEval-2019 contest. We tackled

subtask A - “a binary classification where

systems have to predict whether a tweet

with a given target (women or immigrants)

is hateful or not hateful”, a part of task 5

“Multilingual detection of hate speech

against immigrants and women in Twitter

(HatEval)”. Our system JCTDHS

(Jerusalem College of Technology Detects

Hate Speech) was developed for tweets

written in English. We applied various

supervised ML methods, various

combinations of n-gram features using the

TF-IDF scheme. In addition, we applied

various combinations of eight basic

preprocessing methods. Our best

submission was a special bidirectional

RNN, which was ranked at the 11th position

out of 68 submissions.

1 Introduction

Hate Speech is usually defined as communication

that contains contempt or hatred towards a person

or a group of people on the basis of some

characteristic e.g., color, ethnicity, gender,

nationality, race, religion, and sexual orientation.

The phenomenon of hate speech in social media

has grown in recent years (Eadicicco. 2014). A

strong connection between hate speech and actual

hate crimes has been shown in Watch (2014). In

light of the huge amount of information in social

media, early detection of people using hate speech

could prevent them from carrying out their hate

speech. Therefore, the detection of hate speech in

social media has become an issue of increasing

importance (Moulson. 2016).

In this paper, we describe our six models (each

model with another team member as the first

author) submitted to task 5-A for tweets written in

English. The full description of this task is given

in Basile et al. (2019).

The structure of the rest of the paper is as

follows. Section 2 introduces a background

concerning hate speech, tweet classification, and

data preprocessing. Section 3 presents, in general,

the description of Task 5. In Section 4, we

describe the submitted models and their

experimental results. Section 6 summarizes and

suggests ideas for future research.

2 Background

2.1 Hate Speech

Waseem and Hovy (2016) introduced a list of

criteria founded in critical race theory and used

them to label a publicly available corpus of more

than 16k tweets with tags about both racial and

sexist offenses. Nobata et al. (2016) developed a

machine learning based method to detect hate

speech on online user comments from two

domains. They also built a corpus of user

comments annotated accordingly to three

subcategories (hate speech, derogatory,

profanity). Schmidt and Wiegand (2017)

introduced a survey of the NLP methods that were

developed in order to detect hate speech.

Davidson et al. (2017) presented a multi-class

classifier to distinguish between three categories:

hate speech, offensive language, and none of these

two. The analysis of the predictions and the errors

shows when they can reliably separate hate speech

from other types of offensive language (e.g.,

tweets with the highest predicted probabilities of

being hate speech tend to contain multiple racial

JCTDHS at SemEval-2019 Task 5: Detection of Hate Speech

in Tweets using Deep Learning Methods,

Character N-gram Features, and Preprocessing Methods

Yaakov HaCohen-Kerner, Elyashiv Shayovitz,

Shalom Rochman, Eli Cahn, Gal Didi, and Ziv Ben-David

 Department of Computer Science, Jerusalem College of Technology, Lev Academic Center

21 Havaad Haleumi St., P.O.B. 16031, 9116001 Jerusalem, Israel

kerner@jct.ac.il, elyashiv12@gmail.com,

shal.rochman@gmail.com, eli.cahn@gmail.com,

galdd8@gmail.com, and benda1237@gmail.com

426

or homophobic slurs) and when this

differentiation is more difficult (e.g., many tweets

misclassified as hate speech contain terms that can

be considered racist and sexist; however it is

apparent that many Twitter users use this type of

language in their everyday communications).

Anzovino et al. (2018) built a labeled corpus

containing 2,227 misogynous (hate speech against

women) tweets and no-misogynous tweets and

explored various NLP features and ML models for

detecting and classifying misogynistic language.

2.2 Tweet Classification

Tweet classification is the task to automatically

classify a tweet into one of a set of predefined

classes. This research domain has been growing

rapidly in recent years. Twitter as one of the

leading social networks presents challenges to the

researchers since tweets are informal, short, and

contain various misspellings, shortenings, and

slang words (HaCohen-Kerner et al., 2017).

2.3 Data preprocessing

Data preprocessing is an important step in data

mining (DM) and ML processes. In data files, it is

common to find typos, emojis, slang, HTML tags,

spelling mistakes, irrelevant and redundant

information. Analyzing data that has not been

carefully cleaned or pre-processed might lead to

misleading results.

Not all of the preprocessing types are

considered effective by all text classification (TC)

researchers. For instance, Forman (2003), in his

study on feature selection metrics for TC, claimed

that stop words frequently occur and are

ambiguous and therefore should be removed,

However, HaCohen-Kerner et al. (2008)

demonstrated that the use of word unigrams

including stop words lead to improved TC results

compared to the results obtained using word

unigrams excluding stop words in the domain of

Hebrew-Aramaic Jewish law documents.

In our system, we applied various combinations

of eight basic preprocessing types: C - spelling

Correction (The spelling correction is performed

using an autocorrect library, written by McCallum

(2014)1), H – HTML Tags Removal, L –

converting to Lowercase letters, P – Punctuation

removal, S – Stopwords Removal, R – Repeated

characters removal (repeated characters were

removed and only one character was left), T –

sTemming, and M - leMmatizion) in order to

check whether they improve TC or not.

3 Task Description

Task 5 deals with two tasks related to hate speech

detection in Twitter with two specific targets,

women and immigrants, for tweets in English and

Spanish. We participated only in Task 5-A for

tweets written in English, i.e., a two-class

classification task where we have to predict

whether a tweet with a given target (women or

immigrants) is hateful or not hateful.

The datasets of Task 5-A consists of Train, Dev

and Test datasets. The Train dataset contains

9,000 categorized tweets: 3,783 HS (hateful

speech) tweets and 5,217 NHS (not hateful

speech) tweets. The Dev dataset first published

without labels, and they were added only in the

final evaluation phase. The Dev set contains 1,000

tweets: 427 HS tweets, and 572 NHS tweets. The

Test dataset contains 3,000 uncategorized Tweets.

4 The Submitted Models and

Experimental Results

We have submitted six models (one for each

author) to task 5-A for tweets written in English.

The general TC algorithm is as follows.

1. Using a TF-IDF scheme, find the optimal

number of word n-grams and combination of

pre-processing types.

2. Apply various supervised ML methods

including RNN models and others to find the

best accuracy results.

Table 1 presents the main characteristics and

results of our six submitted models in descending

order according to their F1-Macro (F-M) score on

the test set. Figure 1 presents our final RNN model

using n-gram features in layer N.

1 https://github.com/phatpiglet/autocorrect/ Last access date:

19-MAR-19.

427

Table 1: Results of our 6 models in task-A.

The first

name of the

model

authors

Pre-

processing

Model Score

RNN Architecture
N-gram

Features

Its Fully

Connected

Layer uses

CV

Score

(F- M)

Test

Score

(F- M)

Rank

galdd8@

gmail.com
CHLPRS

Bidirectional RNN

with 4 hidden layers.

Each layer contains128

LSTM units and

Dropout layer (0.4).

GloVe of 200d used for

embedding

100 char

trigrams,

no skips

Logistic

Regression
0.737 0.5

11 \

68

elyashiv12

@

gmail.com

None

 RNN contains 128

LSTM units, and

Dropout layer (0.3).

GloVe of 200d used for

embedding

None None 0.751 0.49
15 \

68

kerner@

jct.ac.il
None

Bidirectional RNN

with 4 hidden layers.

Each layer contains128

LSTM units and

Dropout layer (0.4).

GloVe of 200d used for

embedding

None None 0.754 0.48
21 \

68

ShalomRo

chman
CHLPRS

Bidirectional RNN

with 4 hidden layers.

Each layer contains128

LSTM units and

Dropout layer (0.4).

GloVe of 200d used for

embedding

200 char

bigrams,

no skips

SVM

(SGD

Variant)

0.749 0.42
42 \

68

benda1237

@

gmail.com

CHLPRS

Bidirectional RNN

with 4 hidden layers.

Each layer contains128

LSTM units and

Dropout layer (0.4).

GloVe of 200d used for

embedding

200 word

unigram,

no skips

SVM

(SGD

Variant)

0.713 0.41
41 \

68

ecahn CHLPRS

 Bidirectional RNN

with 2 hidden layers.

Each layer contains128

LSTM units and

Dropout layer (0.4).

GloVe of 200d used for

embedding

300 char

bigrams,

no skips

SVM

(SVC

Variant)

0.759 0.38
54 \

68

428

Figure 1: Final RNN model with n-gram features in layer N.

Analysis of the results presented in Table 1 shows

that our best Macro F-measure score (as opposed to

F1 of hate speech alone) for the test set (0.5) was

obtained by a bidirectional RNN with 4 hidden

layers, 128 LSTMs, 0.4 Dropout and a GloVe

(Pennington et al., 2014) of 200d special for Twitter

as an embedded layer. The best combination of pre-

processing types was found to be CHLPRS, which

means to activate all pre-processing types.

In our experiments, we used the following

framework Python 3.6 with Keras2 and Scikit-

Learn in PyCharm IDE (Pedregosa et al., 2011)

using the TF-IDF scheme called

TfidfTransformer3). The accuracy of each ML

model was estimated by a 5-fold cross-validation

testing. The vocabulary words were used as zero-

vectors during the word-to-embedding conversion.

The Fully connected layer (FC) is the last layer in

RNN models. It performs the final classification.

The activation function of the FC layer is the

sigmoid function. We used the RMSProp optimizer

and 30 epochs for each model.

5 Conclusions and Future Research

In this paper, we describe our submissions to Task

5-A of SemEval-2019 contest. Our system

JCTDHS (Jerusalem College of Technology

Detects Hate Speech) was developed for tweets

written in English. We used a TF-IDF scheme and

2 https://github.com/gucci-j/vae.
3 https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.

we performed various combinations of six pre-

processing methods to improve the performance.

Our best submission for Task 5-A was a

bidirectional RNN with 4 hidden layers while each

layer contains128 LSTM units, a dropout layer

(0.4), and a GloVe (Global Vectors for Word

Representation) of 200d that was used for

embedding. GloVe was developed by the Stanford

NLP Group (Pennington et al., 2014). It applies a

co-occurrence matrix and by using matrix

factorization.

This submission was ranked at the 11th out of 68

submissions for tweets written in English.

Future research proposals are as follows. It is

known that many tweets include acronyms

(abbreviations) that are presented in different

forms. Acronym disambiguation (HaCohen-

Kerner et al., 2010A), i.e., selecting the correct

long form of the acronym depending on its context

will enrich the tweet’s text and will enable better

TC.

More ideas that may contribute to better

classification are implementing TC using (1)

additional feature sets such as stylistic feature sets

(HaCohen-Kerner et al., 2010B) and key phrases

that can be extracted from the text files (HaCohen-

Kerner et al., 2007) and (2) additional deep

learning models.

text.TfidfTransformer.html#sklearn.feature_extraction.text.Tfi

dfTransformer

429

Acknowledgments

This research was partially funded by the

Jerusalem College of Technology, Lev Academic

Center.

References

Maria Anzovino, Elisabetta Fersini, and Paolo Rosso.

2018. Automatic Identification and Classification of

Misogynistic Language on Twitter. International

Conference on Applications of Natural Language to

Information Systems. Springer, Cham.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,

Debora Nozza, Viviana Patti, Francisco Rangel,

Paolo Rosso, and Manuela Sanguinetti. 2019.

SemEval-2019 Task 5: Multilingual Detection of

Hate Speech Against Immigrants and Women on

Twitter. Proceedings of the 13th International

Workshop on Semantic Evaluation (SemEval-

2019), Association for Computational Linguistics,

Minneapolis, Minnesota, USA.

Thomas Davidson, Dana Warmsley, Michael Macy,

and Ingmar Weber. 2017. Automated hate speech

detection and the problem of offensive language. In:

Proceedings of the 12th International AAAI

Conference on Web and Social Media.

Lisa Eadicicco. 2014. This female game developer was

harassed so severely on twitter she had to leave her

home. Business Insider, 12(10).

George Forman. 2003. An extensive empirical study of

feature selection metrics for text

classification. Journal of machine learning

research, 3(Mar), 1289-1305.

Yaakov HaCohen-Kerner, Ittay Stern, David Korkus,

and Erick Fredj. 2007. Automatic machine learning

of keyphrase extraction from short HTML

documents written in Hebrew. Cybernetics and

Systems: An International Journal, 38(1), 1-21.

Yaakov HaCohen-Kerner, Dror Mughaz, Hananya

Beck, and Elchai Yehudai 2008. Words as classifiers

of documents according to their historical period

and the ethnic origin of their authors. Cybernetics

and Systems: An International Journal, 39(3), 213-

228.

Yaakov HaCohen-Kerner, Ariel Kass, and Ariel Peretz.

2010A. HAADS: A Hebrew Aramaic abbreviation

disambiguation system. Journal of the American

Society for Information Science and

Technology, 61(9), 1923-1932.

Yaakov HaCohen-Kerner, Hananya Beck, Elchai

Yehudai, and Dror Mughaz. 2010B. Stylistic feature

sets as classifiers of documents according to their

historical period and ethnic origin. Applied

Artificial Intelligence, 24(9), 847-862.

Yaakov HaCohen-Kerner, Ziv Ido, and Ronen

Ya’akobov. 2017. Stance classification of tweets

using skip char Ngrams. In Joint European

Conference on Machine Learning and Knowledge

Discovery in Databases (pp. 266-278). Springer,

Cham.

Hate Speech Watch. 2014. Hate crimes: Consequences

of hate speech. http:

//www.nohatespeechmovement. org/hate-speech-

watch/focus/ consequences-of-hate-speech, June.

Seen on 23rd Jan. 2016.

Jonas McCallum. 2014. Python 3 Spelling Corrector.

https://pypi.python.org/pypi/autocorrect/0.1.0.

Geir Moulson. 2016. Zuckerberg in Germany: No place

for hate speech on Facebook.

http://abcnews.go.com/Technology/

wireStoryZuckerberg-place-hatespeech-facebook-

37217309. Accessed 10/03/2016.

Chikashi Nobata, Joel Tetreault, Achint Thomas,

Yashar Mehdad, and Yi Chang. 2016. Abusive

language detection in online user content. In:

Proceedings of the 25th International Conference on

World Wide Web, pp. 145–153. International World

Wide Web Conferences Steering Committee.

Fabian Pedregosa, Varoquaux, G., Gramfort, A.,

Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R. and Dubourg, V. and

Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., and Duchesnay, E. 2011. Scikit-

learn: Machine learning in Python. Journal of

machine learning research, 12(Oct), 2825-2830.

Jeffrey Pennington, Richard Socher, and Christopher

D. Manning. 2014. GloVe: Global Vectors for Word

Representation.

Anna, Schmidt, and Michael Wiegand. 2017. A survey

on hate speech detection using natural language

processing. In: Proceedings of the Fifth

International Workshop on Natural Language

Processing for Social Media. Association for

Computational Linguistics, Valencia, Spain, pp. 1–

10.

Zeerak Waseem, and Dirk Hov. 2016. Hateful symbols

or hateful people? predictive features for hate

speech detection on Twitter. In: SRW@ HLT-

NAACL, pp. 88–93.

430

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 431–435
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Know-Center at SemEval-2019 Task 5: Multilingual Hate Speech
Detection on Twitter using CNNs

Kevin Winter
Know-Center GmbH

Inffeldgasse 13
Graz, 8010, Austria

kwinter@know-center.at

Roman Kern
Know-Center GmbH

Inffeldgasse 13
Graz, 8010, Austria

rkern@know-center.at

Abstract

This paper presents the Know-Center system
submitted for task 5 of the SemEval-2019
workshop. Given a Twitter message in either
English or Spanish, the task is to first detect
whether it contains hateful speech and second,
to determine the target and level of aggres-
sion used. For this purpose our system uti-
lizes word embeddings and a neural network
architecture, consisting of both dilated and tra-
ditional convolution layers. We achieved aver-
age F1-scores of 0.57 and 0.74 for English and
Spanish respectively.

1 Introduction

The ever-increasing number of message board fo-
rums, social media platforms and other websites
that allow user comments enable participants to
express their opinions freely and sometimes even
anonymously. This barley restricted access in
combination with the unmanageably vast amount
of user-generated content unfortunately also cre-
ates an environment, which is vulnerable to pro-
fanity and hateful speech, rendering it hostile to
the individuals or groups of people targeted. This
problem is of increasing importance (Kettrey and
Laster, 2014) and calls to establish systems that
allow for automated detection of such behavior.

While detecting abusive language by it self is al-
ready a challenging task, (Malmasi and Zampieri,
2018) showed that it is even harder to differentiate
between its subtypes. Messages containing pro-
fanity, sexism, racism and other forms of hateful
speech may be formed using very similar vocabu-
laries. Additionally, these subtypes may overlap,
making data sets dependent on the subjective judg-
ments of annotators. This may be particularly true
for finding a threshold distinguishing aggressive
and none-aggressive speech. In a task organized as
part of COLING 2018 (Kumar et al., 2018) 15,000

participants were asked to detect aggressive be-
haviour in a data set of Facebook posts. Even the
best system only obtained a weighted F1-score of
0.64.

Task 5 of the SemEval-2019 workshop (Basile
et al., 2019) aims to accelerate the research and de-
velopment of such systems. It comprises two dis-
tinct subtasks. The first subtask is devoted to de-
tect hateful speech against immigrants and women
in Twitter messages. For the second subtask, mes-
sages that are detected to be hateful are investi-
gated further. Here, the goal is to identify ag-
gressive behaviour and the target, women or immi-
grant, harassed. Given the multilingual nature of
the task, systems for both English and Spanish are
required. For the design and evaluation of these
systems, training data sets for both languages are
provided. The English data set consists of 9000
annotated messages whereas the Spanish data set
consists of 4500.

Closely related, another task is hosted at the
SemEval-2019 workshop, dealing with offensive
language in social media and the individuals and
groups targeted by it (Zampieri et al., 2019).

The rest of the paper is organized as follows. In
the next section we give an overview of work that
has been done in the field of detecting hateful and
abusive speech. Section 3 describes our submitted
system, including the pre-processing performed as
well as the classifier trained on the data sets pro-
vided. In section 4 we show the results of our sys-
tem and compare them with those of other partici-
pants in this challenge. Section 5 contains a brief
summary.

2 Related Work

The problem of abusive behaviour in online me-
dia has been addressed in various fields. (Olteanu
et al., 2018) address the causes for hateful speech

431

Figure 1: Network architecture of our classifier. Our system makes use of different strategies of applying convolu-
tions, including dilated convolutions.

and in particular the effects of violent attacks per-
formed by extremist groups and individuals. They
were able to show, that such events majorly fuel
hateful comments on Twitter and Reddit.

For the detection and classification task multi-
ple methods have been previously explored. One
approach involves the identification of words and
parts of words in the form of character n-grams,
that are the most indicative of hateful speech
(Waseem and Hovy, 2016; Nobata et al., 2016). A
potential downside of such approach might be that
the meaning of a word may depend on the con-
text it is used in (Sood et al., 2012). Chen et al.
(2012) tried to overcome this issue by employing
word n-grams. However, this is associated with an
increase in feature space.

Another approach is to employ word embed-
dings in order to capture similarities between
words (Badjatiya et al., 2017). Extending this
method, Djuric et al. (2015) used paragraph2vec
(Le and Mikolov, 2014) to encode whole mes-
sages and detect hateful messages in the embed-
ding vector space. In addition to these lexical
features, linguistic and syntactic features can be
extracted. These may include the length of mes-
sages, average length of words, number of punctu-
ations, Part-of-Speech (PoS) tags and dependency
relationships (Nobata et al., 2016).

Recent work on this topic include different neu-
ral network architectures to classify text. Here
either recurrent neural networks (RNNs) like
LSTMs and GRUs, convolutional neural networks
(CNNs) or both have been researched (Zhang and

Luo, 2018; Zhang et al., 2018; Badjatiya et al.,
2017).

3 System Description

Following the latest developments in the field of
text classification, our system utilizes different
convolutional filters in order to extract features. In
the following sections we will describe the steps
performed to pre-process the raw text messages
and the network architecture used.

3.1 Pre-Processing

Given the raw Twitter messages, several steps
of pre-processing are applied. First we follow
the suggestions of Pennington et al. (2014),
which involves the replacement of certain char-
acters by tags. User mentions are replaced by
"<user>", numbers by "<number>", web
links by "<url>" and repeating characters like
"!!!" by "! <repeat>". Furthermore,
words that are written using uppercase characters
only are replaced by the same word in lowercase,
followed by "<allcaps>". Hashtags like
"#IllegalImmigrants" are replaced with
"<hashtag> illegal immigrants",
splitting the text before each uppercase char-
acter. The resulting text is then padded with
"<space>" to match the length of the longest
message.

The sequences are then encoded using pre-
trained word embeddings. For English, the
200-dimensional GloVe embeddings from Pen-
nington et al. (2014) are used, because they

432

were trained on Twitter messages and include
vectors for the tags mentioned above. For
Spanish, the 300-dimensional GloVe embeddings
trained on the Spanish Billion Word Corpus
(Cardellino, 2016) are used. Unknown words
were replaced by "<unknown>" in English and
"desconocido" in Spanish. These embed-
dings are then directly fed to our neural network
classifier.

In order to compare our model to traditional ap-
proaches as discussed above, we also implemented
a second pre-processing pipeline. This takes the
padded sequences, applies stemming and extracts
n-grams tuples with n being in the range from one
to four words. These tuples are then vectorized
using TF-IDF.

3.2 Classification

The detection of hate speech as well as the clas-
sification of aggressive behavior and the target
harassed can be seen as three independent bi-
nary classification tasks. Hence, we can use the
same model for each individual subtask and lan-
guage. The only exception to this is the size of
the input, since the the English embedding is 200-
dimensional, whereas the Spanish embedding is
300-dimensional.

The network itself employs five different filter
types, as shown in Figure 1. All of them are 1-
d convolutions, meaning that the windows spread
along all dimensions of the embedding size and
only move along the words in a message. The
first three are traditional convolutional filters with
a window size of two, three and four words. These
can be seen as n-gram feature extractors. The
other two filters have a window size of two, but
are dilated with dilation rates of two and three.
By skipping words in between two other words,
these filters may extract word combinations that
may otherwise be missed due to the low impor-
tance of the words in the middle. All filter types
use a stride of one, same padding and rectified lin-
ear units (ReLUs) as activation functions. For each
of the five filter type, 100 filters are used. Max-
pooling with a filter size of four and a stride of
four is performed on all, to reduce dimensional-
ity. In the next layer, the filter maps are concate-
nated and global max-pooling is performed. This
flattens the filters in a non-parametric way and ex-
tracts the most pronounced features along all fil-
ters. Finally, these features are fully connected

Model EN ES
CNN + DIL 0.78 0.82
CNN 0.77 0.80
SVM 0.63 0.68
LogReg 0.65 0.68
SVM (n-gram TF-IDF) 0.76 0.81
LogReg (n-gram TF-IDF) 0.76 0.77

Table 1: Comparison of model performance (F1-score)
on the training set for subtask 1 (hate speech detection).

with one output neuron, which uses the sigmoid
activation function. The network is trained for
ten epochs using the Adam optimization algorithm
(Kingma and Ba, 2014) and a batch size of 32.

We found this model to yield the best perfor-
mance, comparing it to various other approaches.
For the test set we selected ten percent of the train-
ing data points randomly and stratified. The re-
sults of this comparison can be seen in table 1. In
order to evaluate the effectiveness of dilated con-
volutions we removed them from the model, leav-
ing just the three regular convolutional filter types.
As a result the F1-scores dropped by 0.01 in En-
glish and 0.02 in Spanish. Furthermore, logistic
regression and SVM classifiers were trained both
on the word embeddings and the n-gram based TF-
IDF features. On the training data our approach
performs slightly better than these. One reason
for this very marginal improvement over the tra-
ditional approaches may be the size of the training
set. In order to train a model with a high number
of parameters like ours large data sets are majorly
beneficial.

4 Results

Here we show the performance of the Know-
Center system on the challenge’s official test sets
and compare it with the performances of the other
participants. The results are shown in Tables 3
and 2 for the English and Spanish tasks respec-
tively. The provided rankings refer to the average
F1-scores over all subtasks, namely hate speech
detection, target classification and aggression clas-
sification.

As illustrated, the Know-Center system
achieved F1-scores of 0.45 and 0.72 in identifying
hate speech in English and Spanish. For the target
classification, we achieved F1-scores of 0.69 and
0.81. In detecting aggressive behavior, our system

433

Team name AVG HS TR AG
1 MITRE 0.77 0.76 0.82 0.73
2 Saagie 0.76 0.72 0.81 0.76
3 Atalaya 0.76 0.74 0.81 0.73
4 CIC-2 0.76 0.73 0.80 0.74
5 INGEOTEC 0.75 0.71 0.82 0.74

10 Know-Center 0.74 0.72 0.81 0.70
15 SVC baseline 0.74 0.70 0.78 0.73
26 MFC baseline 0.40 0.37 0.42 0.41

Table 2: F1-scores for each subtask in Spanish (sub-
task 1: hate speech detection (HS), subtask 2: target
(TR) and aggression (AG) classification) as well as the
overall average (AVG) per team, including their rank
(#)

achieved F1-scores of 0.57 and 0.70.

This is particularly interesting when comparing
these results with the once obtained on the train-
ing data. Here the Spanish model performs sim-
ilarly, but the English model does not. In gen-
eral, the F1-scores obtained in the Spanish sub-
tasks are better across all teams, even though less
teams participated in it. One reason for that may
be differences between training and test set. Be-
sides that, our model uses high dimensional fea-
tures, given the size of the word embeddings and
the message length. For this, the size of the train-
ing set is very small, which makes it difficult to
train a model with a high number of parameters
such as ours. Even though a validation set was
used during training, the possible homogeneity of
the training set may have led to an over-fitting of
the model.

5 Conclusion

We framed the tasks an a binary text classifica-
tion problem, for which we developed a classifi-
cation method that we used to participate in both
subtasks of task 5 of the SemEval-2019 workshop.
The classifier makes use of word embeddings and
CNNs to identify hate speech in Twitter messages,
determine the target and aggressive behavior. The
same pre-processing and network architecture has
been used for all tasks and languages. Averaged
over all subtasks we achieved F1-scores of 0.57
and 0.74 for English and Spanish respectively.

Team name AVG HS TR AG
1 scmhl5 0.63 0.60 0.71 0.59
2 alonzorz 0.61 0.52 0.75 0.57
3 MITRE 0.61 0.53 0.74 0.58
4 SINAI-DL 0.61 0.52 0.71 0.60
5 YNU NLP 0.61 0.50 0.71 0.62

17 SVC baseline 0.58 0.45 0.70 0.59
20 Know-Center 0.57 0.45 0.69 0.57
42 MFC baseline 0.42 0.37 0.45 0.45

Table 3: F1-scores for each subtask in English (subtask
1: hate speech detection (HS), subtask 2: target (TR)
and aggression (AG) classification) as well as the
overall average (AVG) per team, including their rank
(#)

Acknowledgments

The Know-Center GmbH Graz is funded within
the Austrian COMET Program - Competence
Centers for Excellent Technologies - under the
auspices of the Austrian Federal Ministry of
Transport, Innovation and Technology, the Aus-
trian Federal Ministry of Economy, Family and
Youth and by the State of Styria. COMET is man-
aged by the Austrian Research Promotion Agency
FFG.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Cristian Cardellino. 2016. Spanish Billion Words Cor-
pus and Embeddings.

Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu.
2012. Detecting offensive language in social media
to protect adolescent online safety. In 2012 Inter-
national Conference on Privacy, Security, Risk and
Trust and 2012 International Confernece on Social
Computing, pages 71–80. IEEE.

434

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th interna-
tional conference on world wide web, pages 29–30.
ACM.

Heather Hensman Kettrey and Whitney Nicole Laster.
2014. Staking territory in the world white web
an exploration of the roles of overt and color-blind
racism in maintaining racial boundaries on a popu-
lar web site. Social Currents, 1(3):257–274.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188–
1196.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in discriminating profanity from hate speech.
Journal of Experimental & Theoretical Artificial In-
telligence, 30(2):187–202.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153. International World Wide
Web Conferences Steering Committee.

Alexandra Olteanu, Carlos Castillo, Jeremy Boy, and
Kush R. Varshney. 2018. The effect of extremist vi-
olence on hateful speech online. In Twelfth Interna-
tional AAAI Conference on Web and Social Media.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Sara Owsley Sood, Judd Antin, and Elizabeth
Churchill. 2012. Using crowdsourcing to improve
profanity detection. In 2012 AAAI Spring Sympo-
sium Series.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and cate-
gorizing offensive language in social media (offen-
seval).

Ziqi Zhang and Lei Luo. 2018. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. arXiv preprint arXiv:1803.03662.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on twitter using a
convolution-gru based deep neural network. In Eu-
ropean Semantic Web Conference, pages 745–760.
Springer.

435

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 436–440
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

LT3 at SemEval-2019 Task 5: Multilingual Detection of Hate Speech
Against Immigrants and Women in Twitter (hatEval)

Nina Bauwelinck, Gilles Jacobs, Véronique Hoste and Els Lefever
LT3, Language and Translation Technology Team

Department of Translation, Interpreting and Communication – Ghent University
Groot-Brittanniëlaan 45, 9000 Ghent, Belgium

firstname.lastname@ugent.be, gillesm.jacobs@ugent.be

Abstract

This paper describes our contribution to the
SemEval-2019 Task 5 on the detection of
hate speech against immigrants and women
in Twitter (hatEval). We considered a super-
vised classification-based approach to detect
hate speech in English tweets, which combines
a variety of standard lexical and syntactic fea-
tures with specific features for capturing offen-
sive language. Our experimental results show
good classification performance on the train-
ing data, but a considerable drop in recall on
the held-out test set.

1 Introduction

The exponential growth of social media such as
Twitter, Facebook, Youtube and community fo-
rums has created a variety of novel ways for all
of us to communicate with each other, but this op-
portunity to freely communicate online has unfor-
tunately also given a forum to people who want to
denigrate others because of their race, colour, gen-
der, sexual orientation, religion, etc. While there
has been an increasing interest in automatic hate
speech detection in social media, the problem is
far from solved, partly due to the low consensus on
what exactly constitutes hate speech, how it relates
to offensive language and bullying and thus the
low reliability of hate speech annotations (Ross
et al., 2017). Davidson et al. (2017) for exam-
ple observe that their classifications of hate speech
tend to reflect their own subjective biases: while
racist and homophobic insults are considered hate-
ful, they tend to see sexist language as merely
offensive. When we consider the different ap-
proaches that address hate speech, we can observe
that -apart from simple methodologies that rely on
lookup in a dictionary of hateful terms (Tulkens
et al., 2016) - most methods cast the problem as a
supervised classification task either using a more

standard machine learning approach or deep learn-
ing methods (Pitsilis et al., 2018). This was also
the approach we took for our hate speech detec-
tion system.

We participated for both subtasks proposed for
English for Task 5 (Basile et al., 2019), being
TASK A, which was defined as a binary classifica-
tion task where systems have to predict whether a
tweet with a given target (women or immigrants) is
hateful or not hateful, and TASK B, where systems
are asked first to classify hateful tweets as aggres-
sive or not aggressive, and second to identify the
target harassed as individual or generic (i.e. single
human or group).

2 System Description

We designed a cascaded classification-based ap-
proach, where a first classifier categorizes a tweet
as being hateful or not, while in a second step the
hateful tweets are classified as (a) being aggres-
sive or not, and (b) the target as being individual
or generic. For the second step we built separate
classifiers for both subtasks (a) and (b).

2.1 Preprocessing

We applied the Twitter-specific tweetokenize (Sut-
tles, 2013)1 module for tokenization and prepro-
cessing. With this module, we were able to en-
sure all unicode emojis would be preserved. It
also allowed us to add emoticons to the mod-
ule’s lexicon, to avoid splitting them up. We used
the module with standard settings: allcaps were
maintained; @mentions were replaced by ”USER-
NAME”; urls replaced by ”URL”. We decided to
preserve hashtags and numbers (but replacing pho-
nenumbers and times by ”PHONENUMBER” and
”TIME”, respectively), as well as quotes and stop-
words. Finally, we applied a function to tokenize

1https://github.com/jaredks/tweetokenize

436

the hashtags, but this proved insufficient, as it did
not tokenize camelcased hashtags correctly.

2.2 Featurization
We aimed to develop a rich feature set that fo-
cused on lexical information with some syntactic
and non-linguistic features included. This featur-
ization pipeline is based on work in cyberbully-
ing detection and analysis (Van Hee et al., 2018).
The whole set of features listed below was used
to build all three classifiers. We did not apply any
feature selection.
Bag-of-words features: We included binary to-
ken unigrams, bigrams and trigrams, along with
character trigrams and fourgrams. The latter pro-
vide robustness to the spelling variation typically
found in social media.
Lexicon features: We computed positive and neg-
ative opinion word ratio and overall post senti-
ment using both the MPQA (Wilson et al., 2005)
and Hu and Liu’s (Hu and Liu, 2004) opinion
lexicons. We added positive, negative and neu-
tral emoji counts based on the BOUNCE emoji
sentiment lexicon (Kökciyan et al., 2013). We
also included the relative frequency of all 64 psy-
chometric categories in the Linguistic Inquiry and
Word Count (LIWC) dictionary (Pennebaker et al.,
2007). Furthermore, we included diminisher, in-
tensifier, negation, and “allness” lexicons which
relate to a negative mindset in the context of
suicidality research (Osgood and Walker, 1959;
Gottschalk and Gleser, 1960; Shapero, 2011) as
well as a proper name gazetteer.
Syntactic features: Two binary features were
implemented indicating whether the imperative
mood was used in a post and whether person al-
ternation occurred (i.e. combinations of first and
second person pronouns).

2.3 Experimental Setup
As mentioned in Section 2, we built three differ-
ent classifiers to tackle the various subtasks: (1)
determine whether a tweet is hateful or not, (2) for
tweets classified as hateful, determine whether the
target is individual or generic and (3) for tweets
classified as hateful, determine whether the tweet
is aggressive or not. As the classification algo-
rithm we used LIBSVM (Chang and Lin, 2011)
with linear kernel. For each classification task, we
performed a grid search to find the optimal cost
parameter using 5-fold cross-validation (CV) on
the training data. The resulting hyperparameter

(c = 0, 03125) was applied in four different ex-
perimental setups: LIBSVM with RBF kernel not
normalized, RBF kernel normalized, linear ker-
nel not normalized and linear kernel normalized.
These experiments revealed the setup with the lin-
ear kernel using normalized data as the best per-
forming system. Table 1 presents the 5-fold CV
results for this system on the training set. The ex-
perimental results on the training data show good
detection results of hate speech (F-score of 71.7%
on the positive class), very good results for the
classification of the target as being generic or indi-
vidual (average F-score of 87.5%) and lower clas-
sification performance for the classification of ag-
gressive tweets (average F-score of 66.2%).

2.4 Competition Results and Analysis

Table 2 lists the results of our optimized linear
kernel system for Task 1, whereas Table 3 shows
the results for all three subtasks. As is clear from
the results for task 1, our system undergenerates,
resulting in a recall of only 6.8%, as opposed to
74.3% on the training data.

Upon closer inspection of the classification er-
rors made by our system for task 1 (hate speech or
not), it is possible to distinguish a few broad error
categories. In order to reveal possible causes for
our low recall, we will focus on hate speech that
was not detected by the classifier.

2.4.1 HS Towards Women
Prediction: NOT, Gold: HS. Firstly, we con-
sider the tweets targeted at women. For most of
the tweets misclassified by our system as not con-
taining hate speech, it is unclear which features
of the text may have caused confusion, as is illus-
trated by example 1:

(1) That bitch on the spoiled whore list
Thought she could play games with Drake
but forfeit

Similar examples include at least one offensive
term and are clear instances of hate speech. There
are, however, some tweets containing some ele-
ments which may explain the erroneous classifica-
tion.

Insults which contain a metaphorical element
(such as ”meat” in the example below) are hard
to classify for our system:

(2) Open your mouth & take the meat like a
hoe you bitch ass

437

#instances Recall Precision F-score
TASK 1: hateful or not

Hateful 4210 74.3 69.2 71.7
Not Hateful 5790 78.7 82.6 80.6
Macro Avg 10000 76.5 75.9 76.2

TASK 2: individual or generic
Individual 1560 83.4 82.8 83.1
Generic 2650 89.9 90.3 90.1
Macro Avg 4210 86.7 86.6 86.6

TASK 3: aggressive or not
Aggressive 1763 61.1 53.0 56.8
Not Aggresive 2447 69.1 75.7 72.2
Macro Avg 4210 65.1 64.4 64.5

Table 1: Cross-validation results on the training data with the linear kernel with optimised hyperparameter settings.

Recall Precision F-score
TASK 1: hateful or not

Hateful 6.8 55.9 12.1
Not Hateful 96.1 58.6 72.8
Macro Avg 51.4 57.3 42.5
Accuracy 58.5

Table 2: Final results task 1 of best system (optimized
linear kernel with normalization).

Recall Precision F-score
TASK 1: hateful or not

Macro Avg 51.4 57.3 42.5
Accuracy 58.5

TASK 2: individual or generic
Macro Avg 53.4 60.9 52.9
Accuracy 81.3

TASK 3: aggressive or not
Macro Avg 50.1 90.1 44.7
Accuracy 80.2

Table 3: Final results of best system (optimized linear
kernel with normalization).

Finally, we have noticed that tweets contain-
ing self-directed or self-referential insults are of-
ten misclassified as not containing hate speech:

(3) @USERNAME 1o million, one cent less,
i am a liei8ng son of a bitch and my mom
is a whore

Some of the errors can be explained by the am-
biguity inherent in the tweet in question. First
of all, our system has some difficulty distinguish-

ing between genuine insults and jocular insults be-
tween friends. For example, this tweet has been
classified as not containing hate speech:

(4) @USERNAME you hoe you need to be
checked for aids bitch.

On the other hand, many tweets have been cor-
rectly classified as not containing hate speech.
These usually contain positive words like ”love”
and ”friend”:

(5) Lana i love you bitch. Put that flag back
up hoe [USA flag emoji] #lustfoflife

There are also some edge cases, where there is
ambiguity as to the intent of the tweeter. It makes
sense that our undergenerating system is not pre-
ferred in cases such as these:

(6) @USERNAME Bitch RT me one more
time & not answer my text [face with
steam from nose]

A second error type of ambiguous tweets is that
of the tweet containing an intensifier, which is usu-
ally ”bitch”, for example:

(7) i’m so salty i tried to go in a store with no
shoes on and the ladies like ”you have to
have shoes” BITCH IM NOT VCARRY-
ING A DISEASE

A third type of ambiguity occurs when there is
some kind of reference to or citation of an exist-
ing text containing offensive language. For in-
stance, Tweets sometimes contain references to
well-known vines. Some of these are correctly
classified by our system (first example, classified

438

as NOT HS), while others are not (second exam-
ple, misclassified as NOT HS):

(8) I love you...bitch. I ain’t never gonna stop
loving you...bitch. You’re my best friend
in the whole wide world and I can’t wait
to hug you

(9) when ugly hoes try to come for you
Bitch DISGUSTING

A fourth category of errors caused by ambiguity
occurs whenever the tweeter is making a general
remark, characterized by the use of plural form
(”bitches”, ”niggas”). These tweets usually be-
gin with a phrase indicating the sentiment of the
speaker (”I’m tired of”) and can contain an inten-
sifier.

(10) I’m tired of bitches wearin no clothes then
got the nerve to say niggas is insecure like
bitch I’m tryn help you not look like a hoe

We would like to finish this section with some
general remarks on this part of the task, with the
focus on HS targeted towards women. After close
inspection of the results, we noted the difficulty
of annotating such data. First of all, tweets with
jocular intent are not always easy to distinguish.
We did observe that tweets containing references
to birthdays tended not to be hate speech, for ex-
ample:

(11) @USERNAME happy birthday bitch!
Hope you have a fab day you hoe n get
on lifts soon [car emoji] URL

Second, the truly ambiguous tweets, those
which confuse both man and machine, appear to
be those in which there is potential ironic intent.
This is mostly the case whenever there is overex-
aggeration (the reaction to the colleague’s ques-
tion is disproportionate to the topic of tie dye t-
shirts):

(12) This bitch at work had the nerve to ask
why are all y’all wearing tye die.. because
u lil whore it’s lit

Third, lots of tweets include references to real-
life situations (e.g. someone quoting an insult they
have received); or to memes (like the ”Me: X,
Also Me: X” meme in the second example):

(13) Fat whore!!! Ugly bitch!!! Me: URL

2.4.2 HS Towards Immigrants
Prediction: NOT, Gold: HS. Once again, our
system undergenerates on detecting hate speech
targeted at immigrants. First of all, many tweets
contained the offensive term ”shithole”. The fact
that this is a compound term may explain why our
classifier was unable to pick up on ”shit” as offen-
sive:

(14) @JoShawTx a meluzzi #BanMuslims
#BanIslam #SendThemBack to their
shitholes!! #CloseTheBorders

Our classifier was not able to pick up on hate
speech in tweets containing a metaphorical mean-
ing. For example:

(15) Bloody foreign hornets coming over here
killing our bees. #brexitmeansbrexit
#sendthemhome #controlourborders

Finally, it is clear that this part of the task re-
quires a classifier which is better able to pick up
on derogatory use of the terms ”invasion/invader”,
”illegal alien” and is able to deal with contracted
insults like ”rapefugee”:

(16) @ShadilayAlways Illegal invaders that
deserve to be deported, as usual. #Deport-
ThemAll #BuildTheWall #KAG #Suppor-
tICE

(17) @AhsanNasir5 @enough14 @AZecken-
biss Gtfo off europe. Here is no place for
you, you rapefugee.

It turns out our system was only able to cor-
rectly classify the tweet as containing hate speech
when it also contained other offensive words:

(18) This fuck is a weak cunt and puy his fel-
low country men in a bad way with the
rapefugee invasion. Deport THEM ALL.

3 Conclusion

We applied a supervised classification-based ap-
proach to the task of hate speech detection against
women and immigrants, incorporating a variety
of standard lexical and syntactic information with
specific features for capturing offensive language.
Our results revealed good classification perfor-
mance on the training data, but a lower perfor-
mance on the evaluation set, with a notable drop
in recall for all subtasks. A detailed error analy-
sis revealed a number of tendencies, but inherently

439

ambiguous tweets (irony, references to memes and
vines, etc.) appeared to be the major cause of clas-
sification errors for hate speech towards women.
Hate speech against immigrants seems to be char-
acterized by compound terms containing offensive
parts (e.g. ”rapefugee”, ”shitholes”).

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology
(TIST), 2(3):27:1–27:27. ISSN: 2157-6904.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
Proceedings of ICWSM.

Louis Gottschalk and Goldine Gleser. 1960. An anal-
ysis of the verbal content of suicide notes. British
Journal of Medical Psychology, 33(3):195–204.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Nadin Kökciyan, Arda Çelebi, Arzucan Özgür, and
Suzan Üsküdarl. 2013. BOUNCE: Sentiment Clas-
sification in Twitter using Rich Feature Sets. In Sec-
ond Joint Conference on Lexical and Computational
Semantics (*SEM): Proceedings of the Seventh In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2013), volume 2, pages 554–561, Atlanta,
Georgia, USA. Association for Computational Lin-
guistics.

Charles Osgood and Evelyn Walker. 1959. Motivation
and language behavior: A content analysis of suicide
notes. The Journal of Abnormal and Social Psychol-
ogy, 59(1):58.

James Pennebaker, Roger Booth, and Martha Fran-
cis. 2007. Liwc2007: Linguistic inquiry and word
count. Austin, Texas: liwc. net.

Georgios Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Effective hate-speech detection in
twitter data using recurrent neural networks. Ap-
plied Intelligence.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2017. Measuring the reliability of hate
speech annotations: The case of the european
refugee crisis.

Jess Jann Shapero. 2011. The language of suicide
notes. Ph.D. thesis, University of Birmingham.

Jared Suttles. 2013. tweetokenize. GitHub repository.

Stephan Tulkens, Lisa Hilte, Elise Lodewyckx, Ben
Verhoeven, and Walter Daelemans. 2016. A
dictionary-based approach to racism detection in
dutch social media. Proceedings of the First Work-
shop on Text Analytics for Cybersecurity and Online
Safety (TA-COS 2016).

Cynthia Van Hee, Gilles Jacobs, Chris Emmery, Bart
Desmet, Els Lefever, Ben Verhoeven, Guy De Pauw,
Walter Daelemans, and Veronique Hoste. 2018. Au-
tomatic detection of cyberbullying in social media
text. PLOS ONE, 13:22.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing, pages
347–354. Association for Computational Linguis-
tics.

—

440

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 441–446
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ltl.uni-due at SemEval-2019 Task 5: Simple but Effective Lexico-Semantic
Features for Detecting Hate Speech in Twitter

Huangpan Zhang, Michael Wojatzki, Tobias Horsmann and Torsten Zesch
Language Technology Lab, University of Duisburg-Essen

{huangpan.zhang, michael.wojatzki}@uni-due.de
{tobias.horsmann, torsten.zesch}@uni-due.de

Abstract
In this paper, we present our contribution to
SemEval 2019 Task 5 Multilingual Detection
of Hate, specifically in the Subtask A (En-
glish and Spanish). We compare different
configurations of shallow and deep learning
approaches on the English data and use the
system that performs best in both sub-tasks.
The resulting SVM-based system with lexico-
semantic features (n-grams and embeddings)
is ranked 23rd out of 69 on the English data
and beats the baseline system. On the Spanish
data our system is ranked 25th out of 39.

1 Introduction

Hateful, abusive, or offending statements which
target individuals or groups on the basis of char-
acteristics such as gender, nationality, or sexual
orientation are called hate speech (Basile et al.,
2019). Social media is particularly affected by
hate speech, as it is known to poison the com-
munication climate, build up negative sentiment
towards groups of people, or even lead to real-
life consequences (Warner and Hirschberg, 2012;
Waseem and Hovy, 2016; Schmidt and Wiegand,
2017; Wojatzki et al., 2018; Benikova et al., 2017;
Ross et al., 2017).

In this work, we present our submission to the
SemEval 2019 Task 5: Multilingual Detection of
Hate (Subtask A) for English and Spanish. The
objective in Subtask A was to build a system
which is able to predict whether given tweets in
English or in Spanish are hateful or not hateful to-
wards women or immigrants.

We develop a hate speech detection system by
experimenting with a range of classifiers which
are either based on engineered features or on neu-
ral network architectures. We systematically com-
pare the performance of these different detection
systems and for our final submission (for both En-
glish and Spanish) we use the model that performs

best on the English training data. Our best sys-
tem is a SVM equipped with n-gram features and
fastText (Mikolov et al., 2018) embeddings. Our
system obtains the 23rd rank (out of 69) on the En-
glish dataset and the 25th rank (out of 39) on the
Spanish dataset.

2 System Description

For our submission, we compare a wide range of
different neural and non-neural systems in terms
of their performance. Our actual submission sys-
tem is the system that performed best in this eval-
uation. We will now describe both our neural net-
work approaches and the feature-engineering ap-
proaches for detecting whether tweets are hateful
towards women or immigrants (Subtask A). We
developed and evaluated the approaches for the
English dataset and applied the best performing
system as-is to the Spanish data. We now first
briefly describe the provided data and then discuss
the prediction approaches in more detail.

Dataset In Subtask A, the English training set
consists of 9,000 tweets and the development set
consists of 1,000 tweets. The Spanish training set
consists of 5,000 tweets, the development set con-
sists of 500 tweets. In the test data, there are 2,971
English and 1,600 Spanish tweets. For each tweet,
the task organizers provided a binary annotation
indicating whether a tweet is hateful or not hateful
towards a given target (i.e. women or immigrants).
An example for the label hateful (towards immi-
grants) is the tweet:

This immigrant should be hung
or shot! Period! Animal.
https://t.co/wFcGoLCqJ5

An example for the label not hateful is the follow-
ing tweet:

441

Don’t mess with these migrant dads
#SkimmLife https://t.co/swVmkTlFRz
via @theSkimm.

For more details on the dataset and its creation,
we refer to the overview paper of the shared task
(Basile et al., 2019).

Preprocessing In almost all of our classification
approaches, we vectorize the tweets based on word
occurrences. Hence, we tokenize the tweets with
the twitter specific tokenizer provided by Owoputi
et al. (2013). We decided not to remove or nor-
malize social media specific phenomena such as
@-mentions, #-hashtags, URLs, and emojis as we
hypothesize that these phenomena may provide
useful signals for classification. For example, it is
conceivable that a reference to the twitter-handle
of Donald Trump (@realDonaldTrump) may indi-
cate hatred towards immigrants.

2.1 Feature Engineering Approaches

We now report on those approaches that are based
on traditional machine learning algorithms and
that represent the train and test instances using
manually crafted and engineered features. The
explored machine learning algorithms are: SVM
(LibSVM by Chang and Lin (2011), XGBoost
(Chen and Guestrin, 2016), RandomForest (Wit-
ten et al., 2016) and Vowpal Wabbit.1

We implement the classifiers using the text
classification framework DKPro TC (Daxenberger
et al., 2014) which includes all of the above-
mentioned classifiers. We use the following fea-
tures to represent the tweets:

N-grams As a baseline feature, we represent the
tweets using word and character n-grams. We ex-
periment with n-gram sizes in the range from 1-3
for word n-grams and 2-5 for character n-grams.
To reduce the feature space, we only use the n-
grams that are most common in the (English and
Spanish) training data. We experiment with the
frequency cut-off values of 200, 500 and 1,000.

Hateword lists We hypothesize that the pres-
ence of specific hate or insult words gives an indi-
cation of whether a tweet constitutes hate speech.
Hence, we check if the words in the tweets occur
in lists of hate or insult words. We use the word
lists provided by Wiegand et al. (2018), which
contain a basic word list and a extended word list.

1https://github.com/VowpalWabbit/vowpal wabbit

There are 1,650 words in basic list with binary
labels (abusive or not), and 8,478 words in ex-
tended list with a numeric weight. We extract abu-
sive words to use in the following features: a) a
boolean hateful feature if a posting contains any
word contained in the basic list, b) a hatefulness
ratio of total words to hateful words, and c) the
sum of the hatefulness weights based on the ex-
tended list.

Sentiment We also suspect that the tone in
which a tweet is composed can be an indication for
hate speech. For instance, we assume that tweets
that have a strong positive sentiment are rarely
hate speech. To measure the overall sentiment of
tweets, we use the tool by Socher et al. (2013) to
compute a sentiment score for each tweet. The
computed sentiment score uses a five-degree scale
from very positive to very negative.

Word embeddings We use pre-trained word
embeddings to enhance our tweet representa-
tion with a semantic component. For comput-
ing semantic features, we first average the 300-
dimensional (Spanish or English) word embed-
dings provided by Mikolov et al. (2018) of all
words of a tweet. Next, we use every dimension
of the averaged vector as a feature.

2.2 Neural Network Approaches

Besides traditional machine learning approach,
we also experiment with neural network archi-
tectures: multilayer perceptrons (MLP), convo-
lutional neural networks (CNN), bi-directional
LSTMs and a combination of LSTMs and CNNs
(LSTM + CNN). We initialize all setups with the
300-dimensional word embeddings provided by
Mikolov et al. (2018), which were trained on the
common crawl corpus. Furthermore, in all setups,
we use a dropout of 0.25 after the embedding layer
and update network weights using the Adam op-
timizer (Kingma and Ba, 2014). For all archi-
tectures, we have optimized the hyperparameters
(e.g. number and size of layers) on an held-out de-
velopment set. We here report only the best-found
parameterization.

MLP Besides the final softmax layer, our MLP
has a total of 6 densely connected layers. Starting
from the input, the layers have 256, 128, 64, 32,
16 and 8 nodes. We use relu as activation function
in all layers.

442

CNN Our CNN uses three stacked convolutional
layers that use a filter size of two. The first layer
has 128 nodes, the second 64 and the third 32.
Subsequently, we apply max pooling, a dense layer
with ten nodes and the final softmax classification
layer.

LSTM At the core of our LSTM is a bidirec-
tional LSTM layer with 128 nodes. This layer is
followed by two dense layers (40 and 10 nodes)
and the softmax layer.

LSTM + CNN For the combination of LSTM
and CNN, we put our CNN model on top of LSTM
model.

All of the above-described architectures are im-
plemented using deepTC (Horsmann and Zesch,
2018) with the Keras (Chollet et al., 2015) and
Tensorflow (Abadi et al., 2015) backend.

BERT We also experiment with Bidirectional
Encoder Representations from Transformers
(BERT), which recently excelled in a number
of NLP tasks (Devlin et al., 2018). For our
experiments, we use the provided pre-trained
multilingual-cased BERT-Base model,2 a max-
imum sequence-length of 128 and batches of
32 instances. In the described configuration,
BERT yields an accuracy of 0.66 after fine-tuning
for the second time. As we observe that the
performance of BERT begins to decrease from the
third fine-tuning, we do not fine-tune the model
furthermore.

3 Model Selection and Results

We evaluate each of the proposed prediction ap-
proaches in a 10-fold cross-validation on the En-
glish training dataset to determine the best per-
forming one. As baseline, we use an SVM
equipped with word unigram feature.

For all our approaches, we optimize the hyper-
parameters (e.g. SVM’s slack variable or number
of layers in neural networks) and feature config-
urations (e.g. frequency cut-offs for n-gram fea-
tures) on the training data and report the best per-
formance for each approach. We start with fine-
tuning the n-gram features. We test a wide range
of different combinations of n-gram sizes and fre-
quency cut-offs with different classifiers. We re-
port the results in Table 1. We use wn and cn as

2https://storage.googleapis.com/bert models/2018 11 23/
multi cased L-12 H-768 A-12.zip

macro-F1 Best n-gram Combination

LibSVM 0.780 wn=1 / topk=1000
cn=2-4 / topk=200

Random Forest 0.771 wn=1-2 / topk=500
cn=2-4 / topk=1000

XGBoost 0.764 wn=1-2 / topk=1000
cn=2-5 / topk=1000

Vowpal Wabbit 0.742 wn=1-3 / topk=1000
cn=2 / topk=200

Table 1: Results for Fine-tuned n-gram Features.

macro-F1 accuracy

Baseline 0.693 0.692

LibSVM 0.787 0.794

LSTM + CNN 0.744 0.768
MLP 0.741 0.750
CNN 0.740 0.746
LSTM 0.674 0.688
BERT 0.660 0.660

Table 2: Results for 10-folds Cross-validation on the
Training Dataset for English.

the abbreviations of word n-grams and character
n-grams.

We find that SVM has the overall best perfor-
mance based on cross-validation, and we continue
our experiment (hateword lists, sentiment, word
embeddings) using LibSVM with the best n-gram
setup. We compare this best feature-engineered
system in Table 2 with the neural approaches.

Overall, we observe that the approaches based
on feature engineering tend to outperform the neu-
ral approaches. As our SVM classifier performs
best, we select it as our official submission and
also apply it to the Spanish data. Interestingly,
in our experiments, BERT and and LSTM per-
form worst by a considerable margin. However,
the combination of LSTM and CNN shows to be
competitive with feature engineering approaches.

In Table 3, we show how our system performs
on the official test data. We observe a dramatic
drop of 30.5 percentage points between perfor-
mance on the English training and test set. We
attribute this loss to the over-fitting to the train-
ing data. Nevertheless, our system is able to out-
perform the most frequent class baseline substan-
tially and especially on the Spanish data the ab-
solute difference to the top-scoring system is low
(about 3 percentage points). This means that our
system is indeed effective in the task at hand, but
also that hate speech detection is a very challeng-

443

English Spanish

Most Frequent Class 0.367 0.370
SVM (baseline) 0.451 0.701
SVM (ours) 0.475 0.696
Top-scoring Team 0.651 0.730

Table 3: Results in Terms of macro-F1 on the English
and Spanish Testset.

Feature Set macro-F1

All Features 0.785

-N-grams 0.724
-Word Embeddings 0.778
-Hatefulness Ratio 0.785
-Boolean Hateful 0.785
-Sentiment 0.787
-Hatefulness Weights 0.787

Table 4: Feature Ablation for Our SVM Classifiers.

ing task.

Feature ablation To understand how important
the individual features are for our system’s perfor-
mance, we conduct an ablation test for our feature
set. We show the results of this ablation in Table 4.
The results show that the absence of all features
except n-grams and word embeddings leads to an
improvement in performance. Consequently, we
only use n-grams and word embeddings for our fi-
nal model. The results also show that n-grams are
the most important feature for our model.

4 Distribution of Hate Indicators

When comparing the performance of our system
between the training data and test data, we no-
tice a dramatic drop of 30.5 percentage points on
macro-F1. To better understand this drop, we ex-
amine the distribution of words for which we sus-
pect that they are good indicators for hate speech
– i.e. words which both occur frequently in the
data and are commonly seen as a highly offensive
words. We examine a frequency distribution of all
words and find that the word ‘bitch’ meet these
criteria. However, the distribution of this word is
significantly different in train data and test data.
To see whether this is a special case, we examine
another high frequency word ‘fuck’. The result is
shown in Table 5.

Furthermore, we inspect how these words are
distributed across the classes hate speech and not
hate speech in both the train and the test set. We
visualize this analysis in Table 6.

Train Test

Bitch 1,115 in 9,000 1,134 in 2,971
Fuck 675 in 9,000 260 in 2,971

Table 5: Distribution of postings contain Bitch and
Fuck.

Train Test

Hate Speech Hate Speech
Word Yes No Yes No

Bitch 0.78 0.22 0.44 0.57
Fuck 0.59 0.41 0.57 0.44

Table 6: Hate/not-hate Class Distribution of Postings
Contain Bitch and Fuck.

For the word ‘bitch’, we observe that – in the
training data – its occurrence is strongly correlated
(the probability is about 0.8) with the class hate
speech. In the test set, however, this correlation is
considerably weaker. As a result, it is very likely
that our classifier will learn that ‘bitch’ is a strong
evidence for hate speech. As the correlation is dif-
ferent in the test data, this heuristic is likely to lead
to misclassification. We conclude that our classi-
fier, which makes strong use of lexical features, is
too sensitive to such distributions. Note, that we
do not find such a shift for the word ‘fuck’.

5 Conclusion

We present ltl.uni-due our submission to SemEval
2019 Task 5 Multilingual Detection of Hate. For
building our system, We systematically compare a
wide range of approaches – including neural net-
work approaches such as LSTMs and BERT and
approaches which are based on feature engineer-
ing. In our experiments a comparably simple clas-
sifier – a SVM equipped with lexico-semantic fea-
tures (n-grams and word embeddings) – outper-
forms all other approaches. A comparison be-
tween performance on training and test data as
well as a quantitative analysis of the dataset shows
that our comparably simple classifier is prone to
over-fitting, but nevertheless delivers competitive
performance in this highly challenging task.

Acknowledgments

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) under grant No.
GRK 2167, Research Training Group “User-
Centred Social Media”.

444

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. 2015. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. SemEval-
2019 Task 5: Multilingual Detection of Hate Speech
Against Immigrants and Women in Twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Darina Benikova, Michael Wojatzki, and Torsten
Zesch. 2017. What Does This Imply? Examining
the Impact of Implicitness on the Perception of Hate
Speech. In International Conference of the Ger-
man Society for Computational Linguistics and Lan-
guage Technology, pages 171–179. Springer.

Chih-Chung Chang and Chih-Jen Lin. 2011. Lib-
svm: A Library for Support Vector Machines. Acm
Transactions on Intelligent Systems and Technology
(TIST), 2(3):27.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
Scalable Tree Boosting System. In Proceedings of
the 22Nd Acm Sigkdd International Conference on
Knowledge Discovery and Data Mining, pages 785–
794. ACM.

François Chollet et al. 2015. Keras. https://keras.io.

Johannes Daxenberger, Oliver Ferschke, Iryna
Gurevych, and Torsten Zesch. 2014. DKPro TC:
A Java-based Framework for Supervised Learning
Experiments on Textual Data. In Proceedings of
52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
61–66. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-Training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv preprint arXiv:1810.04805.

Tobias Horsmann and Torsten Zesch. 2018. DeepTC
– An Extension of DKPro Text Classification for
Fostering Reproducibility of Deep Learning Ex-
periments. In Proceedings of the International
Conference on Language Resources and Evaluation
(LREC), pages 2539 – 2545.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. arXiv
preprint:1412.6980, pages 1–13. Accessible at
https://arxiv.org/abs/1412.6980; last accessed November 27
2018.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in Pre-Training Distributed Word Represen-
tations. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improvedppart-of-Speech Tagging for
Online Conversational Text with Word Clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 380–390.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2017. Measuring the Reliability of Hate
Speech Annotations: The Case of The European
Refugee Crisis. arXiv preprint arXiv:1701.08118.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Processing
for Social Media, pages 1–10.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642.

William Warner and Julia Hirschberg. 2012. Detecting
Hate Speech on the World Wide Web. In Proceed-
ings of the Second Workshop on Language in Social
Media, pages 19–26. Association for Computational
Linguistics.

Zeerak Waseem and Dirk Hovy. 2016. Hateful Sym-
bols or Hateful People? Predictive Features for Hate
Speech Detection on Twitter. In Proceedings of the
NAACL Student Research Workshop, pages 88–93.

Michael Wiegand, Josef Ruppenhofer, Anna Schmidt,
and Clayton Greenberg. 2018. Inducing a Lexicon
of Abusive Words–a Feature-Based Approach. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), volume 1, pages 1046–
1056.

Ian H Witten, Eibe Frank, Mark A Hall, and Christo-
pher J Pal. 2016. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann.

445

Michael Wojatzki, Tobias Horsmann, Darina Gold, and
Torsten Zesch. 2018. Do Women Perceive Hate Dif-
ferently: Examining the Relationship Between Hate
Speech, Gender, and Agreement Judgments. In Pro-
ceedings of the Conference on Natural Language
Processing (KONVENS), pages 110–120.

446

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 447–452
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

MineriaUNAM at SemEval-2019 Task 5: Detecting Hate Speech in
Twitter using Multiple Features in a Combinatorial Framework

Luis Enrique Argota Vega
Posgrado en Ciencia e Ingenierı́a

de la Computación
Universidad Nacional Autónoma de México

Ciudad de México, México
luiso91@comunidad.unam.mx

Jorge Reyes-Magaña
Facultad de Matemáticas

Universidad Autónoma de Yucatán
Mérida, Yucatán, México

Universidad Nacional Autónoma de México
Ciudad de México, México

jorge.reyes@correo.uady.mx

Helena Gómez-Adorno
Instituto de Investigaciones
en Matemáticas Aplicadas

y en Sistemas
Universidad Nacional Autónoma de México

Ciudad de México, México
helena.gomez@iimas.unam.mx

Gemma Bel-Enguix
Grupo de Ingenierı́a Lingüı́stica

Instituto de Ingenierı́a
Universidad Nacional Autónoma de México

Ciudad de México, México
gbele@iingen.unam.mx

Abstract

This paper presents our approach to the Task
5 of Semeval-2019, which aims at detecting
hate speech against immigrants and women
in Twitter. The task consists of two sub-
tasks, in Spanish and English: (A) detection
of hate speech and (B) classification of hateful
tweets as aggressive or not, and identification
of the target harassed as individual or group.
We used linguistically motivated features and
several types of n-grams (words, characters,
functional words, punctuation symbols, POS,
among others). For task A, we trained a Sup-
port Vector Machine using a combinatorial
framework, whereas for task B we followed a
multi-labeled approach using the Random For-
est classifier. Our approach achieved the high-
est F1-score in sub-task A for the Spanish lan-
guage.

1 Introduction

Hate speech is defined as any communication that
disparages a person or a group based on some
characteristics. Given the enormous amount of
content generated by users on the web, and in par-
ticular in social networks, the problem of detect-
ing hate speech is becoming fundamental. Early
detection of this kind of language can help to limit
its dissemination over the web and to fight against
misogyny and xenophobia.

The goal of the task (Basile et al., 2019) is to
detect hate speech on Twitter in a multilingual per-

spective, for Spanish and English. The task is
divided into two related subtasks for each of the
languages: (task A) detection of hate speech, and
(task B) identifying whether the objective of ha-
tred is a person or group of people. In addition,
this second task questions if the author of the mes-
sage pretends to be aggressive, harmful or even in-
cites violence, in several aspects.

From a machine learning perspective, the task
can be seen as a binary classification problem. In
order to solve the tasks, we evaluated several ma-
chine learning algorithms: Support Vector Ma-
chines, Logistic Regression, Multinomial Naive
Bayes, Decision Trees and, Random Forest.

For text representation, we extracted linguisti-
cally motivated patterns and several types of n-
grams (characters, words, syntactic and, aggres-
sive words, among others). The pre-processing
steps and the experiments carried out to solve this
task are explained in the following sections.

2 Related work

In recent years, the automatic detection of aggres-
sive behavior in social media is gaining a lot of
attention. This is consistent with political and so-
cial concern about hatred and harassment through
these media. Several evaluation campaigns have
been recently organized related to hate speech de-
tection such as the hate speech identification task
at Evalita (Bosco et al., 2018), the aggressiveness

447

detection task at IberEval (Álvarez-Carmona et al.,
2018), and the misogyny identification task (An-
zovino et al., 2018) at Evalita (Fersini et al., 2018),
among many others.

Our work is based on previous work on ag-
gressive detection of tweets in Mexican Span-
ish (Gómez-Adorno et al., 2018), which was pre-
sented in the MEX-A3T 2018 Workshop (Álvarez-
Carmona et al., 2018). It follows a classical ma-
chine learning approach, a logistic regression al-
gorithm is trained on linguistically motivated char-
acteristics and various types of n-grams (charac-
ters, words, syntactic and aggressive words). Fur-
thermore, an oversampling technique (SMOTE) is
used to overcome the problem of unbalanced data,
which allowed them to achieve better results in the
training corpus, but did not generalize well in the
test corpus.

When concerning to hate speech detection re-
lated methodologies, Djuric et al. (2015) presented
a list of criteria based on the critical race theory to
identify racist and sexist slander, whereas Chatza-
kou et al. (2017) implemented a solid methodol-
ogy for the extraction of text, user and attributes
based on a social media network.

Djuric et al. (2015) used the generated list to
annotate a publicly available corpus of more than
16k tweets. They analyzed the impact of vari-
ous extra-linguistic features along with character
n-grams for the detection of hate speech. In turn,
they elaborated a dictionary based on the most in-
dicative words in their data.

Chatzakou et al. (2017) studied the properties
of bullies and aggressors, and the characteristics
that distinguish them from normal users. They
found that stalkers post with less frequency, par-
ticipate in fewer online communities and are less
popular than users with standard models of be-
haviour. Their research shows that machine learn-
ing classification algorithms can accurately detect
users who exhibit bullying and aggressive behav-
ior, with more than 90% of accuracy.

3 Corpus

For the development phase of the competition,
the organizers (Basile et al., 2019) distributed the
tweets in four files. Statistics referring the corpus
for Spanish and English are presented in Table 1.

For the competition evaluation phase, we have
put together the training and test corpus of the
competition development phase, in table 2 we

present details of the resulting corpus.The test cor-
pus of this phase consists of 1,600 tweets for Span-
ish and 3,000 for English.

4 Methodology

This section shows in detail how tweets are pro-
cessed for further classification. It is very im-
portant the text to be processed in an appropri-
ate format, so that its manipulation can be done
in a simpler and less complex way and an optimal
precision can be obtained for the automated meth-
ods. Additionally, there are several methods for
increasing the characteristics of the system, in or-
der to feed the classifier and have more elements
when it comes to analyzing your data.

4.1 Pre-processing

Several researchers show that pre-processing is
useful for several natural language processing
(NLP) tasks (Montes-y-Gómez, 2001; Justicia
de la Torre, 2017), especially when the corpus is
made of social network data (Pinto et al., 2012;
Gómez-Adorno et al., 2016b). Before the extrac-
tion of features, the following pre-processing steps
are applied in order to improve the representation
of n-grams and to reduce the errors of part-of-
speech (POS) labeling:

1. The type of single quotes in the English
tweets was standardized. This step was prior
to the substitution of abbreviations, thus al-
lowing a correct replacement of the equiva-
lent text.

2. All tweets were standardized to lowercase,
which avoids having multiple copies of the
same words.

3. The mentions to users (@user) were re-
moved.

4. Url’s were removed.

5. Emojis were removed.

6. Following the methodology of Gómez-
Adorno et al. (2016a), the abbreviations, con-
tractions and, slangs were replaced by the
equivalent text for both Spanish and English.
It is important to mention that the vocabulary
used in these lexical resources is based on so-
cial networks.

448

Hateful Individual target Aggressive Total

Spanish
Training 1,838 (41.12%) 1,117 (24.99%) 1,485 (33.22%) 4,469
Testing 222(44.4%) 137 (27.4 %) 176(35.19%) 500

English
Training 3,783 (42.03%) 1,341 (14.89%) 1,559 (17.32%) 9,000
Testing 427(42.7%) 219 (21.9 %) 204(20.40%) 1,000

Table 1: Corpus statistics for Task A and B in the development phase

Hateful Individual target Aggressive Total
Training Spanish 2,060 (41.45%) 1,254 (25.23%) 1,661 (33.42%) 4,969
Training English 4,210 (42.10%) 1,560 (15.60%) 1,763 (17.63%) 10,000

Table 2: Corpus statistics for Task A and B in the evaluation phase

7. Function words (or stopwords) were re-
moved.

8. We replaced the figures that appear in tweet
by a single digit (0), since the numbers do
not contain semantic information that could
be relevant for the task.

9. For hashtags, we had the following crite-
ria: if there was a word detected as hate-
ful/aggressive in the text of the hashtag,
the complete hashtag was replaced by that
word. If no sign of aggressiveness/hatred was
found, then the hashtag was removed.

10. Certain rare and special characters were de-
tected in the tweets and they were replaced
by a blank space.

11. In the tweets in English, words such as
”&” or the character ”&” were detected,
which represented a conjunction, in which
case it was replaced by the word ”and”.

12. We deleted punctuation, since it does not add
any additional information when processing
text data. Therefore, eliminating all cases
helps to reduce the size of the training and
test data.

13. The sequences of several blank spaces, tabs
and line breaks were standardized to a single
blank space.

4.2 Features
We took into account several features for the rep-
resentation of tweets:

• Character n-grams. Are capable of de-
tecting the morphological composition of a

word (Kulmizev et al., 2017). For natural lan-
guage processing tasks, where many words
are likely to be poorly written, the n-grams of
characters are especially powerful (Sanchez-
Perez et al., 2017) to detect patterns in such
spelling mistakes (Kulmizev et al., 2017).
For this approach, a variation of n from 3 to
5 is included.

• Word n-grams. Capture the identity of a
word and its possible neighbors (Kulmizev
et al., 2017). In the experiments, the com-
bination of the n-grams with n varying from
1 to 4 helps to improve the results.

• POS tags n-grams. Are sequences of con-
tinuous part-of-speech (POS) tags. They
capture syntactic information and are use-
ful, for example, to identify the user’s inten-
tions in tweets (Gómez-Adorno et al., 2018).
We have experimented with various combi-
nations of POS n-grams in the data, finding
that a range of 2 to 4 provides the best results
in the development set.

• Aggressive word n-grams. For this work,
we gathered a lexicon of aggressive words
containing those words obtained by (Gómez-
Adorno et al., 2018) and other words we ex-
tracted from the training corpus. We built bi-
grams and trigrams only with the words of
this lexicon.

• Skipgrams. We capture groups of 2 words
with skips of 2 to 4 words.

• Function words n-grams. The frequency of
this words is one of the best characteristics to
detect hate speech and aggressiveness. Prior

449

to the pre-processing of the corpus, we built
function words n-grams from 2 to 4 tokens
for both languages. We used the stopwords
list from NLTK.

• N -grams of punctuation symbols. With
this feature we approached the coherence and
cohesion to the written text. It helps to de-
tect certain patterns in the analysis of hatred
and aggressiveness. Prior to the corpus pre-
processing, we built n-grams of 2 to 4 punc-
tuation symbols.

• Language patterns. We performed a lin-
guistic analysis of the entire training corpus
to detect language patterns that can help to
distinguish if the tweets are directed to a per-
son or group of people. We considered two
types of patterns: morphological structures,
and recurrent lexical patterns.

– Gómez-Adorno et al. (2018) estab-
lished that certain morphological com-
binations can help the classification of
tweets. Taking into account this tech-
nique, the following combinations were
detected: verb + adjective, adjective +
verb, noun + adjective, adjective + noun
and pronoun + verb.

– Lexical patterns formed with the se-
ries of aggressive words detected in the
tweets.

4.3 Classifier

For task A, we used a combinatorial frame-
work (µTC) developed by Tellez et al. (2018).
The framework approaches any text classification
problem as a combinatorial optimization problem;
where there is a search space containing all possi-
ble combinations of different text transformations
(tokenizers) and weighting schemes with their re-
spective parameters, and, on this search space,
a meta-heuristic is used to search for a configu-
ration that produces a highly effective text clas-
sifier. Considering all the combinations estab-
lished in the implementation1 of (µTC), we added
the features described in Section 4.2 and the pre-
processing techniques in Section 4.1. Once, the
best feature space, we trained an SVM with linear
kernel.

1https://github.com/INGEOTEC/microtc

For task B, we used the sklearn.multiclass2

module that implements meta-estimators to solve
multi-class and multi-label classification prob-
lems, decomposing these problems in binary clas-
sification problems. In this sense, the multi-label
classification assigns a set of target labels to each
sample. In particular, we used the Random For-
est algorithm, which showed a better performance
than the other algorithms of machine learning
that we examined. We performed 10-fold cross-
validation experiments to select the best features,
weighting scheme and, frequency threshold. The
final configuration of the system implements a bi-
nary weighting scheme, and considers only those
characteristics that occur at least 10 times through-
out the corpus and that occur in at least 50 docu-
ments in the corpus.

5 Results

The performance measure used for task A is the
F1 score. Table 3 and Table 4 show the results us-
ing the SVM algorithm for both cases, the devel-
opment phase and the official results of the final
evaluation phase. We obtained the best overal F1
score for task A in Spanish, however, for task A in
English the results were much lower.

Position Team Dev Eva
1 Atalaya - 0.73
1 mineriaUNAM 0.80 0.73
3 MITRE - 0.729

Table 3: Results of task A in Spanish of the develop-
ment phase (Dev) and the official results of the final
evaluation phase (Eva).

Position Team Dev Eva
1 Fermi - 0.651
2 Panaetius - 0.571
3 YNU DYX - 0.546
...
60 mineriaUNAM 0.72 0.384

Table 4: Results of task A in English of the develop-
ment phase (Dev) and the official results of the final
evaluation phase (Eva)

The performance measure used for task B is the
Exact Match (EMR). Table 5 and Table 6 show the
results using the Random Forest algorithm in the

2https://scikit-learn.org/stable/

450

development phase, as well as the official results
of the final evaluation phase. For this sub-task
we achieved better results in the English language
than in Spanish.

Position Team Dev Eva
1 CIC-2 - 0.705
2 CIC-1 - 0.675
3 MITRE - 0.671
...
16 mineriaUNAM 0.73 0.596

Table 5: Results of task B in Spanish of the develop-
ment phase (Dev) and the official results of the final
evaluation phase (Eva).

Position Team Dev Eva
1 MFC baseline - 0.58
2 LT3 - 0.57
3 CIC-1 - 0.568
...
11 mineriaUNAM 0.54 0.368

Table 6: Results of task B in English of the develop-
ment phase (Dev) and the official results of the final
evaluation phase (Eva).

6 Conclusions

We presented an approach for the detection of hate
speech, aggressiveness and harassed objective as
individual or group in Twitter in Spanish and En-
glish.

We implemented a Support Vector Classifica-
tion algorithm since it presented a better predic-
tion with respect to other methods. In the case of
multi-label classification, the Random Forest al-
gorithm was used. Both algorithms were trained
on a combination of linguistic patterns features, a
lexicon of aggressive words and different types of
n-grams (characters, words, POS tags, aggressive
words, word jumps, function words, and punctua-
tion symbols).

The results obtained in Task A when using only
the µTC original implementation were improved
by the addition of extra features such as the ag-
gressive words n-grams, the punctuation symbols
n-grams, and the function words n-grams. Re-
member that the µTC framework is composed
of several easy-to-implement text transformations
which allowed us to obtain a high-performance
classification model. The main advantage of this

technique is that it automatically adjusts the pa-
rameters of the model.

Acknowledgments

This paper has been supported by project PA-
PIIT IA401219 from the Universidad Nacional
Autónoma de México.

References
Miguel Á Álvarez-Carmona, Estefanı́a Guzmán-

Falcón, Manuel Montes-y-Gómez, Hugo Jair Es-
calante, Luis Villaseñor-Pineda, Verónica Reyes-
Meza, and Antonio Rico-Sulayes. 2018. Overview
of mex-a3t at ibereval 2018: Authorship and ag-
gressiveness analysis in mexican spanish tweets. In
Notebook Papers of 3rd. SEPLN Workshop on Evalu-
ation of Human Language Technologies for Iberian
Languages (IBEREVAL), Seville, Spain, September.

Maria Anzovino, Elisabetta Fersini, and Paolo Rosso.
2018. Automatic identification and classification of
misogynistic language on twitter. In International
Conference on Applications of Natural Language to
Information Systems, pages 57–64. Springer.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on
Semantic Evaluation (SemEval-2019). ”Association
for Computational Linguistics.

Cristina Bosco, Dell’Orletta Felice, Fabio Poletto,
Manuela Sanguinetti, and Tesconi Maurizio. 2018.
Overview of the evalita 2018 hate speech detection
task. In EVALITA 2018 6th Evaluation Campaign of
Natural Language Processing and Speech Tools for
Italian, volume 2263, pages 1–9.

Despoina Chatzakou, Nicolas Kourtellis, Jeremy
Blackburn, Emiliano De Cristofaro, Gianluca
Stringhini, and Athena Vakali. 2017. Mean birds:
Detecting aggression and bullying on twitter. In
Proceedings of the 2017 ACM on web science con-
ference, pages 13–22. ACM.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th interna-
tional conference on world wide web, pages 29–30.
ACM.

Elisabetta Fersini, Debora Nozza, and Paolo Rosso.
2018. Overview of the evalita 2018 task on auto-
matic misogyny identification (ami). In Proceed-
ings of the 6th evaluation campaign of Natural
Language Processing and Speech tools for Italian
(EVALITA18), Turin, Italy.

451

Helena Gómez-Adorno, Gemma Bel-Enguix, Gerardo
Sierra, Octavio Sánchez, and Daniela Quezada.
2018. A machine learning approach for detect-
ing aggressive tweets in spanish. In In Proceed-
ings of the Third Workshop on Evaluation of Hu-
man Language Technologies for Iberian Languages
(IberEval 2018), CEUR WS Proceedings.

Helena Gómez-Adorno, Ilia Markov, Grigori Sidorov,
Juan Pablo Posadas-Durán, and Carolina Fócil
Arias. 2016a. Compilación de un lexicón de redes
sociales para la identificación de perfiles de autor.
Research in Computing Science, 115:19–27.

Helena Gómez-Adorno, Ilia Markov, Grigori Sidorov,
Juan-Pablo Posadas-Durán, Miguel A Sanchez-
Perez, and Liliana Chanona-Hernandez. 2016b. Im-
proving feature representation based on a neural net-
work for author profiling in social media texts. Com-
putational intelligence and neuroscience, 2016:2.

Artur Kulmizev, Bo Blankers, Johannes Bjerva, Malv-
ina Nissim, Gertjan van Noord, Barbara Plank, and
Martijn Wieling. 2017. The power of character n-
grams in native language identification. In Proceed-
ings of the 12th Workshop on Innovative Use of NLP
for Building Educational Applications, pages 382–
389.

Manuel Montes-y-Gómez. 2001. Minerı́a de texto: Un
nuevo reto computacional.

David Pinto, Darnes Vilarino, Yuridiana Alemán, He-
lena Gómez, and Nahun Loya. 2012. The soundex
phonetic algorithm revisited for sms-based informa-
tion retrieval. In II Spanish Conference on Informa-
tion Retrieval CERI.

Miguel A Sanchez-Perez, Ilia Markov, Helena Gómez-
Adorno, and Grigori Sidorov. 2017. Comparison
of character n-grams and lexical features on author,
gender, and language variety identification on the
same spanish news corpus. In International Confer-
ence of the Cross-Language Evaluation Forum for
European Languages, pages 145–151. Springer.

Eric S. Tellez, Daniela Moctezuma, Sabino Miranda-
Jiménez, and Mario Graff. 2018. An automated text
categorization framework based on hyperparameter
optimization. Knowledge-Based Systems, 149:110–
123.

Marı́a del Consuelo Justicia de la Torre. 2017. Nuevas
técnicas de minerı́a de textos: Aplicaciones.

452

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 453–459
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

MITRE at SemEval-2019 Task 5: Transfer Learning for Multilingual
Hate Speech Detection

Abigail S. Gertner, John C. Henderson, Amy Marsh,
Elizabeth M. Merkhofer, Ben Wellner and Guido Zarrella

The MITRE Corporation
202 Burlington Road

Bedford, MA 01730-1420, USA
{gertner,jhndrsn,amarsh,emerkhofer,wellner,jzarrella}@mitre.org

Abstract

This paper describes MITRE’s participation
in SemEval-2019 Task 5, HatEval: Multilin-
gual detection of hate speech against immi-
grants and women in Twitter. The techniques
explored range from simple bag-of-ngrams
classifiers to neural architectures with varied
attention mechanisms. We describe several
styles of transfer learning from auxiliary tasks,
including a novel method for adapting pre-
trained BERT models to Twitter data. Logis-
tic regression ties the systems together into an
ensemble submitted for evaluation. The result-
ing system was used to produce predictions for
all four HatEval subtasks, achieving the best
mean rank of all teams that participated in all
four conditions.

1 Introduction

The popularity of social media allows anyone to
post their thoughts and opinions for all to see.
While the vast majority of these communications
are benign, there are those who express hateful or
threatening messages online. The identification of
hate speech (Fortuna and Nunes, 2018; Schmidt
and Wiegand, 2017) on platforms like Twitter is
of particular interest for law enforcement and to
social media companies who wish to remove ac-
counts with offending content from their sites. Au-
tomating the identification of hate speech will al-
low platforms to flag and remove content much
more quickly and effectively.

In this effort we explored neural transfer learn-
ing techniques, including word embeddings and
fine-tuning of models trained with diverse auxil-
iary tasks. We built and compared models em-
ploying soft attention over sequences and multi-
headed self-attention. We also present a novel
task to aid in performing additional pre-training of
BERT (Devlin et al., 2018) for domain adaptation
to Twitter data.

2 Task, Data and Evaluation

HatEval was a shared task organized within
SemEval-2019 (Basile et al., 2019). The pri-
mary task was detection of hate speech in Twit-
ter, specifically against immigrants and women.
This multilingual shared task was organized into
two sub-tasks, each presented in both English and
Spanish, for a total of four sub-task evaluations.

Task A The first sub-task was simply to identify
tweets containing hate speech against immigrants
or women. The official metric used for this binary
classification task was macro-averaged F1 score,
in which the F1 scores are calculated for both the
positive hate speech and negative not hate speech
classes and then those two scores are averaged.

Task B The second sub-task involved the de-
tection of two specific aspects of hate speech:
whether it is targeted at an individual vs. a group
of people, and whether it expresses aggression on
the part of the author. In this annotation scheme,
there is a dependency between these two cate-
gories and the hate speech label used in Task A,
as tweets could only be labeled as positive for tar-
geting or aggression if they were positive for hate
speech. The official metric used for Task B was
Exact Match Ratio (EMR), which is the propor-
tion of tweets that are labeled correctly for all cat-
egories (hate speech, targeting, and aggression).
Another way to think of this is as a five-class
classification problem where the classes are (H=0,
T=0, A=0), (H=1, T=0, A=0), (H=1, T=0, A=1),
(H=1, T=1, A=0), (H=1, T=1, A=1). EMR on pre-
dicting the three classes separately is equivalent to
accuracy on this five-class classification.

Dataset Characteristics The English datasets
consisted of 9000 tweets for train, 1000 for dev,
and 3000 for test. The Spanish datasets were half
the size of the English, with 4500 tweets for train,
500 for dev, and 1500 for test.

453

Cursory examination revealed drastic differ-
ences between the training and test sets, partic-
ularly in English. The pejorative term bitch ap-
peared in 12% of the training tweets vs. 48% of
the test tweets. The hashtags #BuildThatWall or
#BuildTheWall appeared at rates of 6% and 23%
in train and test, respectively. Likewise, #MAGA
was in over 12% of the test set tweets but in under
3% of the training set messages. Thus the English
test set appears to be dominated by a handful of
heavily represented phenomena.

Different annotation strategies appear to have
been used on the training and test sets as
well. While tweets mentioning #BuildThatWall or
#BuildTheWall were annotated as hate speech 98%
of the time in the training set, this number is 35%
on the test set. Similarly, tweets containing bitch
were labeled as hate speech 78% of the time in the
training set vs. 43% of the time in the test set.

The use of hashtags differs markedly between
languages. Hashtags are much more frequent in
the English training data than the Spanish training
data, with English tweets 2.6 times more likely to
contain at least one tag, and with tags occurring in
English at 4.1 times the rate in Spanish. In the En-
glish training data, the most frequent ten hashtags
were 23% of the overall total and tended towards
American political topics. In Spanish, the top ten
tags account for only 8% of the total, exhibiting a
much longer and sparser tail.

3 System Overview

For each task, we created an ensemble of systems,
each of which independently predicted the classes.
The component systems are described in the fol-
lowing eight sections, after which we describe the
procedure for building and testing the ensembles.
All component systems described below treated
Task B as a five-class prediction problem, and with
the exception of two BERT-based systems, were
trained to address Task A and Task B simultane-
ously.

Data and resources SemEval organizers pro-
vided training and development sets for English
and Spanish. Planning to build ensembles, we
shuffled and split out 10% of the training for cal-
ibrating models in the ensembles (calibration set
from here on). Components were trained using
the remaining 90% of the training sets provided,
with hyperparameter search and validation using
the full development sets or via cross-validation.

We did not use any additional supervised datasets.
The BiLSTM, Name Embedding, and Hash-

tag Prediction models incorporated pre-trained
word2vec (Mikolov et al., 2013) language-
specific embeddings that we trained on 1558 bil-
lion English and 444 million Spanish tweets col-
lected from 2011 to 2018. In both cases we ap-
plied word2phrase twice to identify phrases of
up to four words, and trained a skip-gram model
of size 256, using a context window of 10 words
and 15 negative samples per example.

For Task A, all of our component systems and
ensembles included a post-processing step to se-
lect the best threshold score for classifying hate
speech in order to achieve the maximum macro-
averaged F1 score on the development set.

3.1 BiLSTM with Attention

We trained several heavily regularized single-layer
Bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) models to learn a tweet representa-
tion with soft attention (Bahdanau et al., 2014)
over a sequence of pre-trained token embeddings.
Hyperparameter experimentation with Spearmint
(Snoek et al., 2012) suggested that a shallow net-
work with attention outperformed deeper, stacked
networks and networks without attention. Our at-
tention layer learns to weight context-aware repre-
sentations of each timestep of the input.

We trained one architecture for the English
tasks and two architectures for Spanish, although
the second was ablated from our Task A ensem-
ble. The models were identical in structure and
differed only in hyperparameters. All models were
constructed with spatial dropout over a frozen em-
bedding layer, followed by an embedding trans-
form, one bi-directional LSTM layer with dropout,
an attention layer, and a fully-connected hidden
layer with dropout.

In each of these models, the NLP representation
was used as input to a small prediction network
of latent predictions and residual connections de-
scribed in Section 3.5.

3.2 Name embeddings

This model added a name embedding input to our
BiLSTM described above, in an effort to better
model the demographics of the individuals ad-
dressed within a tweet.

We trained our name vectors using the
word2vec objective. Each context was made up of

454

multiple usernames a single Twitter user had em-
ployed during a multi-year longitudinal sample of
random tweets streamed from the platform. This
resulted in a vocabulary of approximately two mil-
lion name pieces, which includes common names
as well as alternate spellings using special charac-
ters, symbols, emoji, and other text entered in the
user name field.

We extracted all substrings of at least length 3
from each username mention in a tweet and in-
cluded any of them that were in our name embed-
ding vocabulary as input to our model. We applied
a learned transformation to each embedding and
created a weighted combination with an attention
layer. This was concatenated with a hidden repre-
sentation constructed with the BiLSTM architec-
ture described in Section 3.1. This concatenation
was the input to the prediction network described
in Section 3.5.

The Spanish name embedding was comprised
of dropout over frozen embeddings, a dense em-
bedding transform, and an attention layer. For En-
glish, only an attention layer over the frozen em-
beddings was used. The hyperparameters from our
best English model were used in the BiLSTM ar-
chitecture for both languages.

3.3 DeepMoji

The DeepMoji model developed by Felbo et al.
(2017) predicts the emoji removed from an
English-language tweet text. The authors train
their RNN model on 1274 million tweets for a
set of 64 emojis. Using varying degrees of fine-
tuning and newly initialized layers, they test their
distantly supervised models on several benchmark
datasets for detecting emotion, sentiment, and sar-
casm. The model’s best results used their chain-
thaw fine-tuning method, which iteratively un-
freezes and trains layers for the new objective. The
authors distribute their trained model for the emoji
prediction task.

We experimented with both chain-thaw training
and models that were frozen until the final layer of
abstraction in DeepMoji. The pre-trained model
has a vocabulary that omits many of the hashtags
and usernames that were important for our task.
Our best model used 0.75 dropout over the output
of a frozen DeepMoji model and three fully con-
nected layers of sizes 512, 256, and 128 before the
annotation constraint adapter. Chain thaw mod-
els performed poorly and were ablated from our

Task A submission. DeepMoji models are only
included in our English ensembles.

3.4 Hashtag prediction network
Following Zarrella and Marsh (2016), we imple-
mented a recurrent neural network classifier that
was pre-trained via an auxiliary masked hashtag
prediction task. We extracted 30 of the top hash-
tags found in the training data, with 15 selected
from both the hate speech positive and negative
classes. Then we searched for the fifteen near-
est neighbors of each tag via cosine similarity in
embedding space, using vectors described in Sec-
tion 3. After removing duplicates, this resulted in
136 English and 132 Spanish hashtags. We down-
loaded up to 1,000 recent tweets containing each
hashtag from Twitter’s public search API, result-
ing in 11,539 English tweets and 12,504 Spanish
tweets. Tweets were stripped of the target hash-
tag(s), and each corpus was divided into a training
and development set using a 90/10 split.

The sequence of vector representations of the
tokens in each tweet served as the input to a neu-
ral network with a 128 LSTM units followed by
a dense softmax layer over the possible candidate
hashtags. Both the word embeddings and the re-
current layer were tuned. These models correctly
predicted development set hashtags with 50.3%
accuracy on the English data and 56.6% accuracy
on the Spanish data.

The trained weights were extracted from this
network and used to initialize the five-way hate
speech classifier for Task B, described in Sec-
tion 2, which additionally saw as input the one-hot
representations of the 600 most frequent unigrams
and 300 most frequent bigrams in the training data,
each followed by a fully-connected dense layer.
The size of each fully connected layer and amount
of dropout were experimentally determined using
Spearmint (Snoek et al., 2012) to maximize per-
formance on the competition metrics on our de-
velopment set.

3.5 Annotation constraint adapter
Both Task A and Task B had annotation con-
straints based on latent variables. In Task A, hate
speech (H) was not marked as true unless the tweet
was directed at women (W) or immigrants (I). In
Task B, aggression (A) and individual targeting
(T) were not marked as true unless hate speech di-
rected at women or immigrants was present. Even
though W and I are not directly represented in our

455

NLP

W

I
H A

T
dense

2xtanh

tanh

tanh

2xtanh
softmax(5)

Figure 1: An annotation constraint adapter.

datasets, we believe they are latent variables that
can be discovered in the NLP representation. Fig-
ure 1 shows an adapter we placed at the end of
several systems to encourage the network to learn
these constraints. While it doesn’t enforce the con-
straints, it sets up a principled graphical model
that encourages the network to learn them. Of
course, nothing prevents the network from learn-
ing to model other things with this topology. Fair
comparisons to stacked dense layers with the same
number of parameters showed that the network
with this topology performed better.

The upside to the design of a network like this is
that the removal of the H switch might yield more
general-purpose A and T classifiers.

3.6 Pre-training BERT with Twitter data

Pre-trained language models such as BERT (De-
vlin et al., 2018) have been demonstrated to
achieve state of the art performance on a range of
language understanding tasks. BERT uses a trans-
former encoder model (Vaswani et al., 2017) and
pre-trains the model using two complementary ob-
jectives: masked language model, and next sen-
tence prediction. The pre-trained model may then
be fine-tuned on labeled data (in this case the Hat-
Eval dataset) to perform a downstream task.

For English, we used the BERT-Large model,
which has 24 layers, 1024 hidden layer size, and
16 self-attention heads. For Spanish, we used
the smaller multilingual BERT, with 12 layers,
768 hidden layer size, and 12 self-attention heads.
The English BERT is trained on Wikipedia and
BooksCorpus (Zhu et al., 2015), while the multi-
lingual model is trained on Wikipedia from multi-
ple languages. As the language in these sources is
likely to be quite different from the language com-
monly used on Twitter, we elected to perform ad-
ditional pre-training using a corpus of tweets col-
lected during the same time period as the HatEval
training dataset (October 2017 - September 2018).
All of the pre-training experiments described be-
low started from the TensorFlow model check-
points downloaded from (Google Research, 2018).

Since the tweets in our collection are not se-

quential, they cannot be used for the next sen-
tence prediction that BERT uses to learn sentence
relationships. We therefore began by running
20k steps of additional pre-training using only the
masked language model task.

none MLM descriptions names
En A 79.1 81.2 79.7 NA
En B 66.4 69.0 67.9 NA
Es A 80.7 81.9 83.3 82.7
Es B 74.6 75.0 76.2 74.4

Table 1: Scores achieved with pre-training schemes.
Due to time constraints, the name-based training was
only done on Spanish models.

Next, we hypothesized that replacing the next-
sentence prediction task with a task involving pre-
dicting some attribute of the author of the tweet
would provide the model with latent information
about the nature of tweets that would allow it to
discriminate between different classes of tweets
more accurately. We performed 20k additional
pre-training steps with the user description from
the author’s Twitter profile standing in for the sec-
ond sequence in the sentence prediction task. In
other words, we trained the network to determine
whether a given pair of (tweet text, author de-
scription text) were sampled from the same tweet.
Finally, we pre-trained a BERT model with the
screen name of the Twitter user as the secondary
prediction task.

Table 1 shows the validation scores for our
five-class model under our different pre-training
schemes: No additional, pre-training on masked
LM only, pre-training MLM + Twitter user
descriptions, pre-training MLM + Twitter user
screen names. Additional pre-training resulted
in increased validation scores on all four tasks,
and incorporating user descriptions in place of the
next sentence prediction task further resulted in in-
creased scores for both Spanish tasks.

3.7 Maximizing ensemble diversity
During development, we noticed some of the neu-
ral network models with high capacity had sig-
nificantly variance in prediction accuracy based
on training with different subsets of the training
data, hyperparameter settings or just differences
in parameter initialization. Such variance would
suggest using model bagging (Breiman, 1996) or
other form of variance reduction. However, given
the relatively long training times for some of the
neural network models, especially those based on

456

σ|w| w feature
0.81 -2.57 bitch
0.30 -1.52 whore
0.29 -1.12 bitch
0.27 -0.97 women
0.26 0.53 URL
0.23 -1.37 hoe
0.23 -0.67 !
0.19 -0.91 her
0.19 0.72 immigrant
0.17 -0.88 #buildthatwall
0.17 0.34 //t.co/
0.15 0.74 [URL,URL]
0.15 -0.66 #BuildT
0.14 -0.77 she
0.14 -0.30 a
0.13 -0.61 woman
0.13 0.36 i
0.12 -0.63 Illegal
0.12 -0.62 immigrants
0.12 -0.40 this
0.12 -0.39 igrants
0.10 0.63 [not,all]
0.10 0.63 [all,men]

Table 2: Top LR word and character features.

BERT, using ensemble methods such as bagging
directly proved too cumbersome as part of the
model development workflow. Instead, we em-
ployed a form of negative correlation learning (Liu
and Yao, 1999) to train a small ensemble of neu-
ral network classifiers within a single architecture.
A term was added to the fine tuning cross entropy
loss function which encouraged diversity among
all pairs of classifiers following Opitz et al. (2016).

3.8 Logistic Regression

Logistic regression (LR) systems were developed
as a baseline against which the neural approach
would be compared. Had annotators used very
simple features such as words or phrases to make
decisions, they would have been found in the
course of LR training. Some of the systems were
good enough to include in the final ensembles.

The vocabulary of the LR system was limited to
the training set. Many feature sets were explored
during model search. The best models preferred
feature sets rather than counts or term frequencies.
Word n-grams of length 1-3 and character n-grams
to length 8 were all considered, along with skip
bigrams. The specifics of the best resulting fea-
ture sets are in Table 3. Table 2 shows the most
important features from an English Task A LR
system, sorted by feature influence, the product
of feature function standard deviation and model
weight. The second column is model weight, with
negative weights contributing to a (H=1) decision.

In all cases, a bias term was added and
Liblinear (Fan et al., 2008) was used to com-
pute the model. L2 regularization was used to en-
courage generalization. Cross-validation was used
to pick the regularization parameters.

3.9 Ensemble

Many systems were created, and final ensembles
were constructed by incremental ablations. An ini-
tial all-in ensemble was created and tested, then it
was tested with each component removed. This
process was iterated on the best performing ab-
lated sets until gains were no longer observed. Ap-
proximately two thousand total ensembles were
created through the ablative search. Two systems
were ablated in Task A EN, three in Task A ES,
one in both Task B conditions. Those systems are
not described in this paper.

Ensembles were constructed using logistic re-
gression on either the classifier outputs or the
classifier outputs and final probabilities from the
model. One oddity to note is that the ensembles
using the probabilities performed better for Task A
and the ensembles ignoring the probabilities per-
formed better in Task B.

Table 3 shows ensemble compositions for each
of the four tested conditions. The first column,
labeled influence, indicates the influence that the
particular component has on the ensemble. It is the
number of cases in which that component’s contri-
bution changes the outcome of the ensemble. It is
calculated by zeroing out all LR weights for that
particular component and noting the difference. In
English, the BERT models had the most influence,
while in Spanish, the influence was more evenly
distributed across the components.

4 Results

Table 3 shows performance of our component
models and ensembles. The calibration set fac-
tored column shows the performance of the com-
ponent on our calibration data. This is the macro
averaged F1 score for Task A and Exact Match
Ratio for Task B. The calibration set ablated col-
umn shows the performance of the ensemble when
that component is removed and the ensemble pa-
rameters are re-optimized. Finally there are the
scores we calculated after the evaluation period for
each of our components using the released refer-
ence sets.

The official scores achieved by our ensembles

457

calibration set test
language task influence factored ablated set component

En A 86.5 49.6 combo
369 84.1 84.6 58.5 BERT w/ MLM, 5-class, constraint adapter

65 78.6 85.7 42.1 BiLSTM+Attn
59 74.5 85.7 48.0 DeepMoji
51 82.6 86.2 52.9 BERT w/ descriptions, 1-class
21 81.3 86.3 47.0 BERT ensemble diversity
19 78.2 86.1 34.2 BiLSTM with name embeddings

8 76.4 85.9 48.0 LR, ngrams 1-3, len 7 chargrams, lowercase
6 75.5 85.8 44.2 Hashtag prediction
5 77.2 85.9 47.6 LR, ngrams 1-3, len 7 chargrams, lowercase

En B 77.3 39.9 combo
435 74.1 75.1 41.0 BERT w/ MLM
215 71.7 75.9 37.4 BERT w/ descriptions, constraint adapter

65 70.6 75.8 33.3 BiLSTM+Attn
55 67.9 76.6 43.1 DeepMoji chain-thaw
41 58.7 76.0 23.2 Hashtag prediction
35 69.3 76.4 29.2 BiLSTM with name embeddings
23 65.6 77.0 38.7 DeepMoji
23 68.6 76.9 41.0 LR, ngrams 1-2, len 7 chargrams, lowercase
16 68.2 76.7 41.1 LR, unigrams, len 5 chargrams, lc, skip bigrams

Es A 87.3 72.9 combo
90 81.1 84.9 74.3 BERT w/ names, 5-class
79 77.9 85.1 73.4 Hashtag prediction
50 82.1 86.6 73.4 BERT w/ names, 1-class
45 83.4 85.0 72.0 BiLSTM+Attn
39 84.8 85.3 74.3 BERT ensemble diversity
35 80.7 86.8 73.3 BERT w/ names, 5-class, constraint adapter
32 79.6 85.0 71.7 LR, ngrams 2-3, len 4 chargrams, lc
17 82.2 85.0 73.4 BiLSTM with name embeddings
15 81.4 86.0 73.7 BERT w/ descriptions, 1-class

Es B 84.7 67.1 combo
48 78.4 81.8 59.7 BERT ensemble diversity
42 77.3 80.7 65.3 BERT w/ descriptions
40 77.8 82.4 63.6 BiLSTM+Attn
26 75.8 80.2 66.8 BERT w/ names, constraint adapter
21 75.6 83.6 65.6 BERT w/ names
20 70.0 82.2 59.4 Hashtag predictions
20 78.4 82.9 67.4 BiLSTM+Attn
19 76.4 82.4 68.8 LR, ngrams 1-3, chargrams 4-7, lc
15 76.2 82.0 66.7 BERT w/ descriptions, constraint adapter
11 79.1 83.3 65.6 BiLSTM with name embeddings

Table 3: Ensembles and Components

are 49.6% and 72.9% Macro F1 on HatEval Task
A English and Spanish, respectively, and 39.9%
and 67.1% EMR on Task B English and Spanish.
A full reporting of results is present in Basile et al.
(2019). A breakdown of test results shows that
our system achieves hate speech detection F1 of
63.9 and 72.7 in English and Spanish, respectively,
which ranked 2nd (of 68) and 1st (of 39) within
Task A. The rankings within Task B were similar,
with mean macro F1 of 61.4 and 77.2 in English
and Spanish, respectively, ranking 2nd (of 42) and
1st (of 24). Finally, we note that only 22 out of the
74 participants submitted entries in all four sub-
tasks. Of those 22 teams, these results represent
the top mean rank across all subtasks.

5 Conclusion

An ensemble of models was used to classify tweets
according to whether they contained hate speech,
aggression, and targeting of individuals. The
novel contributions include using name embed-
dings, substituting twitter author profile prediction
for next sentence prediction in BERT pre-training,
and augmenting BERT’s fine-tuning loss function
with a diversity term to create an ensemble.

There is a discrepancy between the official test
set results and our held-out calibration set, partic-
ularly in the English subtasks, which we attribute
to dataset divergences like those called out in Sec-
tion 2.

Approved for Public Release; Distribution Unlimited.
Public Release Case Number 19-0700

458

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations Workshop.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. SemEval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in Twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019).

Leo Breiman. 1996. Bagging predictors. Machine
learning, 24(2).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Comput. Surv., 51(4):85:1–85:30.

Google Research. 2018. https://github.com/
google-research/bert.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yong Liu and Xin Yao. 1999. Ensemble learn-
ing via negative correlation. Neural networks,
12(10):1399–1404.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems.

Michael Opitz, Horst Possegger, and Horst Bischof.
2016. Efficient model averaging for deep neural net-
works. In Asian Conference on Computer Vision.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. In Advances in neural informa-
tion processing systems.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems.

Guido Zarrella and Amy Marsh. 2016. MITRE at
SemEval-2016 task 6: Transfer learning for stance
detection. In SemEval@NAACL-HLT.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. 2015 IEEE International Con-
ference on Computer Vision (ICCV).

459

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 460–463
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

OscarGaribo at SemEval-2019 Task 5: Frequency Analysis Interpolation
for Hate in Speech Detection

Òscar Garibo i Orts
Universitat Politècnica de València / 46025 València Spain

osgaor@alumni.upv.es

Abstract

This document describes a text change of rep-
resentation approach to the task of Multilin-
gual Detection of Hate Speech Against Im-
migrants and Women in Twitter, as part of
SemEval-20191. The task is divided in two
sub-tasks. Sub-task A consists in classifying
tweets as being hateful or not hateful, whereas
sub-task B requires fine tuning the classifica-
tion by classifying the hateful tweets as being
directed to single individuals or generic, if the
tweet is aggressive or not. Our approach con-
sists of a change of the space of representation
of text into statistical descriptors which char-
acterize the text. In addition, dimensional re-
duction is performed to 6 characteristics per
class in order to make the method suitable for
a Big Data environment. Frequency Analy-
sis Interpolation (FAI) is the approach we use
to achieve rank 5th in Spanish language and
9th in English language in sub-task B in both
cases.

1 Introduction

Social media has become a new standard of com-
munications in the last years. Every year more and
more people actively participate in the content cre-
ation, sometimes under the shield of anonymity.
Social media has become a complex communica-
tion channel in which usually offensive contents
are written. Supervising the content and banning
offensive messages currently is a subject of high
interest for social media administrators. Offensive
speech can be addressed to individuals or groups
due to the race, sexuality, religion and some other
characteristics. In this task two of these character-
istics will be used as target for offensive speech,
women and immigrants. This problem will be con-
sidered as an Author Profiling task, since the main

1alt.qcri.org/semeval2019/

goal is building a system which would ideally de-
tect author whose content is offensive to women
and/or immigrant. Author Profiling is widely stud-
ied and some new ideas arise from time to time
(Rangel et al., 2016). We have developed a new
representation method for text that reduces the di-
mensionality of the information for each author
to 6 characteristics per class. This representation,
Frequency Analysis Interpolation, is used to cod-
ify the texts for each user and this codified infor-
mation is used as input data to support vector ma-
chines with linear kernel. In a Big Data environ-
ment, reducing the number of characteristics from
thousands to 6 per class allows an efficient way to
deal with high volumes at high speed. With this
will in mind a previous method was tested which
can be checked at (Garibo, 2018).

2 Corpus

Two corpora have been created to be used in Se-
mEval Task5, HatEval (Basile et al., 2019). One
in each of the 2 different languages which are sub-
ject of study (i.e. English and Spanish). For each
language, a training and an evaluation datasets
have been provided. The contents of both datasets
are individual tweets, that have been collected and
manually annotated.
The goal of this task is to identify tweets which
contain hate against women and immigrants. The
task has two related subtasks:

1. Task A. Hate Speech Detection against Im-
migrants and Women: a two class classifica-
tion where systems have to predict whether
a tweet with a given target (women or immi-
grants) is hateful or not hateful. This is la-
beled as a 1 in HS column.

2. Task B. Agressive Behaviour and Target
Classification: where systems are asked first

460

Language Training Evaluation
English 10,000 3,000
Spanish 5,000 1,600

Table 1: Number of tweets per dataset.

Language Training Evaluation
English 4,210 1,260
Spanish 2,790 660

Table 2: Number of Hate tweets per language.

to classify hateful tweets (e.g., tweets where
Hate Speech against women or immigrants
has been identified) as agressive or not agres-
sive, labeled as AG column in the datasets,
and second to identify the target harassed as
individual or generic (i.e. single human or
group), labeled as TR column in the datasets.

3 Methodology

Our goal was to develop a method that was lan-
guage independent and that required no prior
knowledge of the language used by the authors.
We started implementing Term Frequency (TF)
representation for each tweet in the corpus, count-
ing how many times each word appears in each
author, each tweet in this case, and globally for all
tweets. We denote TFa as the term frequency vec-
tor for author a.

TF a = TF(w1,a), TF(w2,a), . . . , TF(wm,a) (1)

TF is used since this way we could represent a
priori class dependent probability for each term
for each class simply by counting the number of
times a term occurs for each class, and dividing
this amount by the number of times this term
shows for all classes. Let F be the frequency term
vector for all classes.

F =
∑

a∈A
TF a (2)

In order to achieve that, one vector per class is gen-
erated. The vector length is the number of words
in the vocabulary. For each word, we divide the
number of times this word shows for this class,
and divide it by the number of times the word
shows in all classes. We denote Ck as the term
frequency vector for class k that belong to the set
of all classes K.

HS AG TR Label
0 0 0 000
1 0 0 100
1 0 1 101
1 1 0 110
1 1 1 111

Table 3: Labels for the SVM.

Ck =
∑

a∈Ak

TF a∀k ∈ K (3)

These vectors are then used to codify the texts.
Each word in the text is substituted by the a pri-
ori probability for each class in as many arrays as
classes.
Once we have codified the text, six statistic values
are calculated for each of the classes:

1. Mean.

2. Standard Deviation.

3. Skewness.

4. First Tertile’s length.

5. Second Tertile’s length.

6. Third Tertile’s length.

At this point, for every author, 6 characteristics per
class are calculated and concatenated in a single
vector. This vector is used to feed the Support Vec-
tor Machines with Linear kernel. LinearSVC sup-
port vector machine from Pythons Sklearn library
is used to train the model and, of course, to pre-
dict the results. In order to provide with the labels
for the support vector machines to learn the dif-
ferent labels were concatenated to build a 5 class
classifier. In Table 4 the 5 classes which were pro-
vided to the support vector machine are shown.
The same encoding procedure has to be performed
for the test dataset. One vector is created for each
author. This vector contains the six characteristic
mentioned above for every class, concatenated.

4 Evaluation results

Task A is evaluated using standard evaluation met-
rics, including accuracy (Acc), precision (P), re-
call (R) and F1-score (F1), while submissions

461

were ranked by F1-score. The metrics were com-
puted as follows:

Acc =
numberofcorrectlypredictedinstances

totalnumberofinstances
(4)

P =
numberofcorrectlypredictedinstances

numberofpredictedlabels
(5)

R =
numberofcorrectlypredictedinstances

numberoflabelsinthegoldstandard
(6)

F1 =
2 ∗ P ∗R
P +R

(7)

FAI has not achieved great results for Task A.
Since the change of representation depends on the
vocabulary that is used, subtle sentences which
can denote hate in the speech but which are not us-
ing explicit offensive vocabulary might have been
mislabeled. For example, polysemic words can be
causing mislabelling, since FAI only considers the
per class term frequency, but no context is taken
into account. Because the method is language
independent, the differences of performance be-
tween both languages (English and Spanish) de-
pends on the term frequency for each class ob-
served for the train dataset.
Task B is evaluated using the Exact Match mea-
sure where all the dimensions to be predicted will
be jointly considered computing the Exact Match
Ratio . Given the multi-label dataset consisting of
n multi-label samples (xi,Yi), where xi denotes the
i-th instance and Yi represents the corresponding
set of labels to be predicted (HS 0,1, TR 0,1 and
AG 0,1), the Exact Match Ratio (EMR) will be
computed as follows:

EMR =
1

n

n∑

i=1

I(Y i, Zi) (8)

Where Zi denotes the set of labels predicted for
the i-th instance and I is the indicator function.
Our method has performed better in TASK B than
Task A. Once we provide with more refined label-
ing, the method tends to catch better the use of ag-
gressive language. This can be seen in the results
for both languages for Task B in tables 5 (English)
and 6 (Spanish).
As in Task A, the difference of performance of FAI
for Spanish and English datasets depends on the
term frequency for all classes. Different results
have to be expected for different languages.

Ranking Participant EM
MFC Baseline 0.58

1 ninab 0.57
2 iqaameer133 0.568
3 scmhl5 0.483
4 garain 0.482
5 gertner 0.399
6 amontejo 0.384
7 alonzorz 0.382
8 saagie 0.374
9 OscarGaribo 0.373
...

...
...

SVC Baseline 0.308
...

...
...

42 abaruah 0.159

Table 4: Task B classification for English language.

Ranking Participant EM
1 hammad.fahim57 0.705
2 iqaameer133 0.675
3 gertner 0.671
4 francolq2 0.657
5 OscarGaribo 0.6449
6 kwinter 0.638
...

...
...

12 choal 0.616
SVC Baseline 0.605

...
...

...
16 Taha 0.593

MFC Baseline 0.588
...

...
...

24 guzimanis 0.428

Table 5: Task B classification for Spanish language.

5 Conclusions and future work

We have used FAI, a method developed under the
scope of Author Profiling tasks to approach Hat-
Eval Task. FAI has shown to get better results
for multi-class classification in the context of this
task. Prior testing performed with our method has
been done under different environment, since there
were always lots of tweets (minimum 100) per au-
thor. Thus, there was much more vocabulary to
learn from, and more vocabulary per author. We
have to point that our method can easily be up-
dated with new data, since the only required task

462

to be done is recomputing the a priori probability
vectors once the new labeled data is available, and
train the machine learning algorithm, support vec-
tor machines in this specific case. As future work
we think of exploring new configurations of our
method. Since only the last submission was eval-
uated we still do not know if we can go any fur-
ther and do better with simple adjustments. One of
the immediate ones is to remove some of the vo-
cabulary from the vocabulary we use to codify the
tweets. We have seen in our in house testing that
some problems require the more the better vocabu-
lary, for example age identification, whereas some
others work better if low used words are removed
from the vocabulary, for example removing words
used by less than 1% of the authors.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Òscar Garibo. 2018. A big data approach to gender
classification in twitter. In CLEF 2018 Labs and
Workshops. Notebook Papers. CEUR Workshop Pro-
ceedings. CEUR-WS.org/Vol-2125/paper204.pdf.

Francisco Rangel, Marc Franco-Salvador, and Paolo
Rosso. 2016. A low dimensionality representation
for language variety representation. In Linguis-
tics and Intelligent Text Processing, CICLing-2016,
Springer-Verlag, Revised Selected Papers, Part II,
LNCS(9624), pages 156–169.

463

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 464–468
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

STUFIIT at SemEval-2019 Task 5: Multilingual Hate Speech Detection on
Twitter with MUSE and ELMo Embeddings

Michal Bojkovský
Faculty of Informatics and Information

Technologies STU in Bratislava
Ilkovičova 2, Bratislava

m.bojkovsky@protonmail.com

Matúš Pikuliak
Faculty of Informatics and Information

Technologies STU in Bratislava
Ilkovičova 2, Bratislava

matus.pikuliak@stuba.sk

Abstract
We evaluate the viability of multilingual learn-
ing for the task of hate speech detection. We
also experiment with adversarial learning as
a means of creating a multilingual model.
Ultimately our multilingual models have had
worse results than their monolignual counter-
parts. We find that the choice of word repre-
sentations (word embeddings) is very crucial
for deep learning as a simple switch between
MUSE and ELMo embeddings has shown a 3-
4% increase in accuracy. This also shows the
importance of context when dealing with on-
line content.

1 Introduction

The Internet has been surging in popularity as
well as general availability. This has consider-
ably increased the amount of user generated con-
tent present online. This has, however, brought up
a few issues. One of the issues is hate speech de-
tection, as manual detection has been made nearly
impossible by the quantity of data. The only real
solution is automated hate speech detection. Our
task is detection of hate speech towards immi-
grants and women on Twitter (Task A).

Hate speech can be defined as ”Any communi-
cation that disparages a person or a group on the
basis of some characteristic such as race, color,
ethnicity, gender, sexual orientation, nationality,
religion, or other characteristics.” (Basile et al.,
2019) This proves to be a very broad definition,
because utterances can be offensive, yet not hate-
ful (Davidson et al., 2017). Even manual labeling
of hate speech related data is notoriously difficult
as hate speech is very subjective in nature (Nobata
et al., 2016; Waseem, 2016).

The provided dataset consists of collected mes-
sages from Twitter in English or Spanish language.
Hate speech datasets are very prone to class im-
balances (Schmidt and Wiegand, 2017). The pro-

vided dataset does not suffer from this problem.
The English data contains 10,000 messages with
42.1% of the messages labeled as hate speech. The
Spanish data contains 4969 messages and simi-
larly to the English part, 41.5% were labeled as
hate speech. This gives us a dataset with 14969
messages of which 6270 are categorized as hate-
speech. We have not used any additional sources
of training data for our models. More informa-
tion about the data can be found in the Task defi-
nition (Basile et al., 2019).

Most research dealing with hate speech has
been done in English due to labelled dataset avail-
ability. However, this issue is not unique to
English-based content. In our work, we explore
multilingual approaches, as we recognize data im-
balance between languages as one of major chal-
lenges of NLP. Multilingual approaches could help
remedy this problem, as one could transfer knowl-
edge from a data-rich language (English) to a data-
poor language (Spanish).

1.1 Background

We focus on neural network approaches, as they
have been achieving better performance than tra-
ditional machine learning algorithms (Zhang et al.,
2018). We explore both monolingual and multilin-
gual learning paradigms. Multilingual approaches
enable us to use both English and Spanish datasets
for training.

The most popular input features in deep learn-
ing are word embeddings. Embeddings are
fixed length vectors with real numbers as com-
ponents, used to represent words in a nu-
meric way. The input layers to our mod-
els consist of MUSE (Conneau et al., 2017) or
ELMo (Peters et al., 2018) word embeddings.

MUSE embeddings are multilingual embed-
dings based on fastText. They are available in dif-
ferent languages, where the words are mapped into

464

the same vector space across languages, i.e. words
with similar meanings across languages have a
similar vector representation.

ELMo provide a deep representation of words
based on output of a three layer pre-trained neural
network. The representation for a word is based on
the context in which the word is used. However,
they are not multilingual representations.

To work around the monolinguality of ELMo,
we use a technique called adversarial learn-
ing (Ganin and Lempitsky, 2014). Adversarial
networks consist of three parts:

• Feature extractor responsible for creating
representations belonging to the same distri-
bution regardless of input data distribution
i.e. of the language the messages are in. This
transformation is learned during training.

• Classifier responsible for the classification
i.e. labeling hateful utterances.

• Discriminator responsible for predicting the
language of a given message.

During backpropagation, the loss from classi-
fier (Lcls) is computed the standard way. The loss
from discriminator (Ldis) has its sign flipped and
is multiplied by adversarial lambda (λ). The dis-
criminator works adversarialy to the classificator.

Loss = Lcls − λLdis (1)

The loss from the discriminator encourages the
feature extractor to create indistinguishable rep-
resentations for messages across languages. This
is most often implemented by a gradient reversal
layer.

2 Implementation details

2.1 Preprocessing
Traditionally, neural network models have a very
simple preprocessing pipeline. However, internet
communication is very bloated (URLs, mentions,
emoji etc.). As such we have decided to remove
all the noise from the messages.

At first, we remove URLs and name mentions
from messages. These contain no useful informa-
tion for our prediction. Afterwards, we transform
malformed markup characters such as > into
their one character representations (>). We also
remove the hash symbol from hashtags as it can
be problematic for tokenizers to work with. Next

we employ demojization. We use a Python library
called Emoji1. For example, this let us change the
unicode representation of a thumbs up emoji into
:thumbs up:, which is then parsed into usable text
’thumbs up’. The next step is tokenization and
stop words removal. For this step, we use a li-
brary called spaCy2. We chose this library as it
has support for both English and Spanish and we
aim to have the same preprocessing pipeline for
different languages. We also remove lone stand-
ing non-alphanumeric characters, which are often
found after tokenization. As the last few steps, we
change all characters into lowercase, change num-
bers into a number token. Sentence size is limited
to 64. This was enough for nearly all of the tweets
after preprocessing.

2.2 Tested architectures

For MUSE, we use pretrained embeddings made
available by Facebook research. We also use pre-
trained ELMo representations (Che et al., 2018;
Fares et al., 2017), which support English as well
as Spanish. Both can be found on GitHub 3 4. The
embeddings were not modified during training.

We examine two different model architectures:
LSTM based one and a CNN+LSTM hybrid.
The combination of two learning paradigms, two
model architectures and two different input repre-
sentations sum up to 8 different models. All of the
models use cross-entropy as the loss function.

2.2.1 Monolingual approaches
Monolingual models were used and trained
independently on English and Spanish parts of the
dataset.

LSTM-based approach
We use both word-level and char-level represen-

tations with ELMo. The representations are then
independently fed into a bidirectional LSTM layer
of size 64. The output of each of these layers is
then fed into an attention layer.

Next, the outputs are concatenated into a single
vector and used as an input of a fully connected
layer with 20 cells with ReLU activation function.
The last layer is a softmax layer with L1 and L2
regularization used for final predictions. The out-
put is then the probability of classes for predicted

1https://pypi.org/project/emoji/
2https://spacy.io/
3https://github.com/facebookresearch/MUSE
4https://github.com/HIT-SCIR/ELMoForManyLangs

465

Figure 1: LSTM-based ELMo monolingual model

variable (non hate speech or hate speech). The
model can be seen on Figure 1.

For MUSE, we have only word-level informa-
tion available. As we have only one input, we only
need one LSTM and attention layer. Otherwise,
the models are the same.

CNN-based approach
The input layer is fed into a convolutional layer.

This layer performs a 1d convolution with 100 fil-
ters and a kernel size of 4 with a relu activation
function. This is then max pooled with a pool size
of 4 and stride of 4. These layers can be under-
stood as a feature extrator part of the model. These
extracted features are then fed into a monodirec-
tional LSTM layer with size of 64. The output is
global max pooled and fed into the last softmax
layer. For ELMo we have used the average repre-
sentation of all its layers.

2.2.2 Multilingual approaches
Multilingual models were trained on concatenated
English and Spanish data.

Multilingual MUSE models
With MUSE embeddings a multilingual ap-

proach is straightforward. We use both the
approaches previously mentioned (LSTM and
CNN+LSTM) without any further changes, as
they are implicitly multilingual.

Multilingual ELMo models
The base architecture of our model can be seen

on Figure 2. After the input layer is a feature ex-
tractor. We have used either an LSTM with atten-
tion or a 1d convolutional layer with max-pooling

Figure 2: Base adversarial model

Architecture Acc Rec Prec F1
LSTMmono-elmo 0.733 0.676 0.697 0.683
CNNmono-elmo 0.69 0.698 0.640 0.655
LSTMmono-muse 0.675 0.694 0.606 0.645
CNNmono-muse 0.658 0.761 0.577 0.655
LSTMmulti-elmo 0.695 0.386 0.799 0.517
CNNmulti-elmo 0.673 0.448 0.693 0.52
LSTMmulti-muse 0.664 0.677 0.594 0.632
CNNmulti-muse 0.661 0.677 0.59 0.632

Table 1: Results on English dataset (Task A)

as described in previous sections. The discrimina-
tor and classifier include a single FCC layer with a
final softmax layer in both cases. The FCC layers
have 32 cells each.

The difference between them is the presence of
a gradient reversal layer in the discriminator. The
gradient is multiplied by -0.25 during backprop-
agation. This value for adversarial lambda was
found empirically. Both the classifier and discrim-
inator were trained simultaneously.

3 Results evaluation

We show detailed results in both English (Table 1)
and Spanish (Table 2). We use a subscript of mono
or multi to differentiate between learning methods
and muse or elmo to differentiate between archi-
tectures in the table. The table was completed
by computing the mean of 5 runs of each model
on the validation part of the datasets. The valida-
tion set consisted of 10% available data. Multilin-
gual models were trained with concatenated En-
glish and Spanish datasets.

None of the multilingual models were able to

466

Architecture Acc Rec Prec F1
LSTMmono-elmo 0.768 0.742 0.748 0.738
CNNmono-elmo 0.726 0.65 0.726 0.657
LSTMmono-muse 0.711 0.712 0.662 0.689
CNNmono-muse 0.72 0.731 0.673 0.699
LSTMmulti-elmo 0.556 0.123 0.419 0.173
CNNmulti-elmo 0.588 0.332 0.712 0.345
LSTMmulti-muse 0.723 0.701 0.684 0.692
CNNmulti-muse 0.718 0.688 0.681 0.685

Table 2: Results on Spanish dataset (Task A)

outperform the baseline monolingual LSTM based
model with ELMo. Not even in a multilingual set-
ting of averaging results between languages. Mul-
tilingual MUSE has not shown any significant in-
crease in performance compared to monolingually
trained MUSE.

The results show how potent ELMo embed-
dings are. Online content can often be offensive
and vulgar, while still being non-hateful. This is
often enough for a model to classify an utterance
as hate speech (Davidson et al., 2017; Hemker,
2018). In these situations, ELMo has an advan-
tage, as the representations are built entirely in the
context of a sentence as a whole.

The adversarial models achieved the worst per-
formance. On first glance, judging by accuracy,
the models seem to perform on a very average
level. After further analysis, we can see that
their performance was very poor and inconsistent,
e.g.the LSTM based model achieved only 0.123
recall on spanish dataset. The model labeled only
a few messages as hate speech and even those not
very successfully. The relatively high accuracy
was a result of data distribution, as 55.6% of the
data was non-hate speech.

We can also see that only in this category the
CNN based models outperformed LSTM based
models. This implies that for adversarial learn-
ing to work, one has to use a very robust feature
extractor. It is also the only time that the per-
formance on English was higher than on Spanish.
This is the result of data scarcity, as the extractor
had a hard time creating truly multilingual repre-
sentations. This could also be seen during train-
ing as the discriminator hovered around 90% ac-
curacy.

For our task submission, we have used the
monolingual LSTM model based on ELMo, which
we considered as our baseline model. We have

Language Acc Pre Rec F1 Place
English 0.47 0.59 0.54 0.42 44
Spanish 0.71 0.7 0.7 0.7 18

Table 3: Results on test dataset

achieved results shown in Table 3.

4 Conclusion and future work

In this paper we have evaluated a few simple neu-
ral network models in a monolingual and multilin-
gual context. We have included our unsuccessful
models to inspire further research in this direction.

We conclude that the quality of word represen-
tations used has a significant impact on the per-
formance of a model. Changing between MUSE
and ELMo resulted in a 3 - 4% increase in accu-
racy even when MUSE based models could benefit
from multilingual training. The contextual nature
of ELMo representations make them much more
flexible and less domain constrained than tradi-
tional word embeddings. Simple models (as the
one we proposed) are able to achieve decent re-
sults this way. We can also see that using adver-
sarial learning needs a lot of available data to be at
all viable.

We believe that more research should be put into
multilingual solutions. The feature extractor needs
more training data to create truly ambiguous rep-
resentations of utterances between languages. We
will look into testing our model with more train-
ing data to evaluate the value of adversarial learn-
ing for multilingual hate speech detection or pre-
training the feature extractor on a different task
with more data available.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics”, location = “Minneapo-
lis, Minnesota.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages

467

55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.

Murhaf Fares, Andrey Kutuzov, Stephan Oepen, and
Erik Velldal. 2017. Word vectors, reuse, and replica-
bility: Towards a community repository of large-text
resources. In Proceedings of the 21st Nordic Con-
ference on Computational Linguistics, pages 271–
276, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Yaroslav Ganin and Victor Lempitsky. 2014. Unsuper-
vised Domain Adaptation by Backpropagation. (i).

Konstantin Hemker. 2018. Data Augmentation and
Deep Learning for Hate Speech Detection.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive Lan-
guage Detection in Online User Content. Proceed-
ings of the 25th International Conference on World
Wide Web - WWW ’16, pages 145–153.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Anna Schmidt and Michael Wiegand. 2017. A Survey
on Hate Speech Detection using Natural Language
Processing. Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, (2012):1–10.

Zeerak Waseem. 2016. Are you a racist or am i seeing
things? annotator influence on hate speech detection
on twitter. In Proceedings of the First Workshop on
NLP and Computational Social Science, pages 138–
142. Association for Computational Linguistics.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech Using a Convolution-
GRU Based Deep Neural Network. 7185(June).

468

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 469–475
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Saagie at Semeval-2019 Task 5: From Universal Text Embeddings and
Classical Features to Domain-specific Text Classification

Miriam Benballa
Saagie / LITIS
Rouen, France

miriam.benballa@saagie.com

Sebastien Collet
Saagie

Rouen, France
sebastien.collet@saagie.com

Romain Picot-Clemente
Saagie

Rouen, France
romain.picotclemente@saagie.com

Abstract

This paper describes our contribution to Se-
mEval 2019 Task 5: Hateval. We propose to
investigate how domain-specific text classifi-
cation task can benefit from pretrained state of
the art language models and how they can be
combined with classical handcrafted features.
For this purpose, we propose an approach
based on a feature-level Meta-Embedding to
let the model choose which features to keep
and how to use them.

1 Introduction

In this paper, we describe our system for Task 5 of
SemEval 2019 (Basile et al., 2019), namely Mul-
tilingual detection of hate speech against immi-
grants and women in Twitter (HatEval). In this
task, participants were asked to automatically clas-
sify English and Spanish tweets as hateful or not
for Subtask A, and to predict if these tweets are
aggressive or not, then identify whether the target
is generic or individual for Subtask B. We partici-
pated in all subtasks for both English and Spanish.

Our main interest in this competition is to evalu-
ate how a domain-specific dataset can take advan-
tage of unsupervised data and moreover, how very
different features can be combined efficiently in a
deep neural network to improve classification. For
this purpose, we propose to exploit state of the art
pretrained deep learning models in text classifica-
tion and classical features into an architecture that
allows combining them dynamically.

Our work consists of three steps: features cre-
ation, dynamic meta-embedding and finally com-
bining this information to classify tweets. The
next sections are organized as follows: in section
2, we will briefly cover the related work, in sec-
tion 3 we will explain our model, then in section
4 we will expose our experiences, and finally we
will introduce our results in section 5.

2 Related Work

A successful classical approach for tweets clas-
sification and sentiment analysis is to use neural
networks on top of pre-trained word embeddings.
Word embeddings are trained with unsupervised
data with a method called distant supervision (Go
et al., 2009). Deriu et al. (2016) use Convolu-
tional neural networks on top of those word em-
beddings while Cliche (2017) is using an ensemble
of CNNS and LSTMs. Both solutions won respec-
tively SemEval task 4 in 2016 and 2017.

For tasks more closely related to SemEval Task
5, Sánchez Gómez (2018) won the IberEval 2018
Aggressiveness detection task with an Ensembling
of several SVMs models. The Ensembling is done
with a Genetic Algorithm. Cuza et al. (2018) pro-
pose a model with a Bi-LSTMs network with at-
tention layers on top of pre-trained word embed-
dings. Their solution got the 2nd place.

On the Mysogyny detection task in IberEval
2018, Pamungkas et al. (2018) won with an SVM
trained on a lot of handcrafted features. They used
stylistic, structural and lexical features to represent
information such as Hashtag Presence, Link Pres-
ence, Swear Word Count, Swear Word Presence,
Sexist Slurs Presence and Woman-related Words
Presence. SemEval 2019 Task 5 is a combination
of those two IberEval 2018 tasks.

However, a recent trend in Natural Language
Processing has been the use of Transfer Learning
from universal sentence embedders to tackle text
classification tasks such as Hate Speech detection.
This approach is particularly useful when little su-
pervised data is accessible.

The main goal of these universal sentence em-
bedding methods is to embed a sentence in a
fixed sized vector that encodes as best as possi-
ble the sentence semantic and syntactic informa-
tion. There are various universal sentence embed-

469

ding approaches such as the Skip-Thought Vectors
(Kiros et al., 2015) that adapt the skip-gram Model
of the original Word2Vec to the sentence level, or
Infersent (Conneau et al., 2017) that uses a model
trained in a supervised fashion on a Natural Lan-
guage Inference Task.

However, the most promising approaches are
probably those based on language models. Ope-
nAI (Radford et al., 2018) propose such a solu-
tion called GPT based on the Transformer archi-
tecture (Vaswani et al., 2017). In their work, a
Transformer is trained in a generative unsuper-
vised manner on a Language Modeling task. The
model tries to continuously predict the following
word of a text given the rest of the text. Another
approach, BERT (Devlin et al., 2018) is also based
on the Transformer architecture, but the unsuper-
vised learning scheme is a bit different. The idea
is to counter the left-right bias that may arise with
classical language modeling. During the train-
ing phase, the model tries to predict words hid-
den randomly in the text and it also tries to tell
whether two sentences are following each other or
not. These models are trained on datasets such as
Wikipedia and BooksCorpus (Zhu et al., 2015).

Both approaches give good results on the GLUE
benchmark (Wang et al., 2018), which is a lan-
guage understanding benchmark based on a di-
verse range of NLU tasks. Models that present
high scores on this benchmark should have a good
Transfer Learning capability.

Since the emergence of Word Embeddings with
the Word2Vec (Mikolov et al., 2013) in 2013, nu-
merous Word Embeddings approaches were devel-
oped such as Glove (Pennington et al., 2014), Fast-
Text (Bojanowski et al., 2017) or more recently
Elmo (Peters et al., 2018). Evaluating the quality
of such Word Embedding in a fair manner is a dif-
ficult task and these embeddings approaches may
perform best in various situations. Dynamic Meta-
Embeddings (Kiela et al., 2018) is a sentence rep-
resentation method that lets a neural network fig-
ure out which Word Embedding from an ensemble
to use depending on the situation.

3 Model Description

Universal sentence embedding is a way to share
knowledge across different tasks. It is particu-
larly helpful in situations with very small train-
ing dataset such as SemEval2019 Task 5 (10000
tweets in the training and development set). A pre-

trained sentence embedding model aims at a gen-
eral syntactic and semantic understanding of the
tweets.

However, the vocabulary and expressions used
in this task are really context-specific so it seems
necessary to be able to bring some of this specific
content into the universal model. Moreover, we
argue each sentence representation can potentially
bring additional information to the others. Hence,
instead of selecting the best sentence representa-
tion for our task, we propose to let a model find the
best combination of multiple sentence representa-
tions with a Dynamic Meta Embedding approach.
This latter works as follows.

From a sentence s, we have n sentence embed-
ding types with different length di, leading to a set
{si}ni=1 ∈ Rdi .

Similarly to (Kiela et al., 2018), each sentence
embedding is projected to a same d′-dimensional
space with a learned linear function s′i = Pisi +
bi. where Pi ∈ Rd′×di . These projections are then
combined with a weighted sum

sfinali =
n∑

i=1

αis
′
i

where αi = g(s′i) are scalar weights which depend
on projected sentence embeddings s′i:

αi = g(s′i) = φ(a · s′i + b)

where a ∈ Rd′ and b ∈ R are learned parameters
and φ is a softmax function, so that

∑n
i=1 αi = 1.

All αi can be seen as importance weights.
When averaging them on all the train dataset, they
can be exploited to select important features rep-
resentations.

For embedding sentences, we propose to use
state of the art pretrained models: Bert and GPT.
Since they are general sentence embeddings, we
finetuned them on our specific tasks to get more
specific embeddings (we also tried without fine-
tuning them but got very poor classification re-
sults).

Beside these sentence embeddings, we cre-
ated several classical sentence representations.
We constructed all the features suggested by Pa-
mungkas et al. (2018) (see the paper for more de-
tails) and some extra features as follows:
- Language Model Perplexity Perplexity score
of each tweet according to the language model
kenlm1 ;

1https://github.com/kpu/kenlm

470

- BayesianEncodingHashtag Probability of hash-
tag according to the target class ;
- hashtagUrlPresence One-Hot encoding on pres-
ence of urls and hashtags in tweets ;
- Abreviation Abreviation counting from a custom
lexicon ;
- BagOfPOSTagging Counting the different POS
tags in each tweet ;
- NMF Non-negative Matrix Factorization on the
co-occurrence matrix of words ;
- LDA Latent Dirichlet Allocation on the tweets ;
- BagOfEmojiFeatures One-Hot encoding on
presence of emojis in tweets ;
- nbWords Number of words in each tweet, nor-
malized by mean ;
- Textstat Readability features according to the
python package textstat2 ;
- nbChar Number of characters in each tweet, nor-
malized by mean.

However, the importance weights from the dy-
namic weighted sum of our model show that most
of these representations were not of interest for
the predictions, and were reducing the F1-score.
Hence, we made a feature selection based on these
weights for each subtask. In the next subsections,
we detail the different sentence representations we
used for each subtask.

3.1 Pre-processing

We didn’t use a lot of pre-processing besides low-
ercasing, in order to benefit from the representa-
tions capabilities of BERT and GPT. These mod-
els are using BPE encoding (Sennrich et al., 2015),
so the models are based on subword units and not
on words. This way, out of vocabulary words such
as those with spelling mistakes or very context-
specific ones may still be processed in a useful
way by the model. However, a kind of spelling
mistake correction might have been useful. The
main pre-processing scheme we used is the re-
placement of usernames and urls by a specific to-
ken.

We normalized the most frequent hashtags in
order to keep only one spelling (for instance
#buildthatwall and #buildthewall were processed
to have the same spelling). We also processed
the most frequent abbreviations by replacing them
with their full form. Finally we tried a splitting
words approach on the hashtags in order to help

2https://github.com/shivam5992/
textstat

the BPE encoding to get sensible of subword units.
This did not improve performance, so this pre-
processing was not kept in our final submission.

3.2 Subtask A en: Hateful or not
This subtask consists in classifying each English
tweet as hateful or non hateful. For each tweet, the
following features have been selected and given as
inputs to our model:

• Bert embeddings: 3 different finetuned pre-
trained Bert embeddings3, one for each target
class (HS, TR, AG). Leading to 3 sentence
representations of 768 features.

• GPT embeddings: 3 different finetuned pre-
trained GPT embeddings4, one for each tar-
get class (HS, TR, AG). Leading to 3 sen-
tence representations of 768 features.

• Hate Word Count: Count the presence of
words into a lexicon extracted from Hate-
Base5, leading to 1 feature

• Bag of Emojis: Count the presence of Emo-
jis grouped by type, leading to 155 features
(number of emojis)

3.3 Subtask B en: Target and Aggressivity
Subtask B consists in predicting in addition to the
hate speech, the target of the hate speech (TR
- a group or an individual) and the aggressive-
ness (AG). We used the same approach, archi-
tecture and features to predict the labels TR and
AG. Each label is predicted independently. How-
ever, we added a simple post-processing correc-
tion based on the predictions we made for HS: if
a tweet is classified as not hateful, we set the tar-
get to generic (TR prediction to 0) and labeled the
tweet as not aggressive (AG prediction to 0). This
rule has been deducted from the way tweets are la-
beled: non hateful tweets are always classified as
generic and not aggressive.

3.4 Subtask A/B es
We used the same model for the Spanish dataset
and translated Spanish tweets to English with ma-
chine translation. In doing this, we could employ
the same type of features as we used for English.

3https://github.com/huggingface/
pytorch-pretrained-BERT

4https://github.com/huggingface/
pytorch-openai-transformer-lm

5https://hatebase.org/

471

Dataset Total HS TR AG
Train EN 9000 3783 1341 1559
Dev EN 1000 427 219 204
Test EN 2970 1679 522 590
Train ES 4500 1857 108 1001
Dev ES 500 222 137 176
Test ES 1599 660 423 474

Table 1: Hate speech dataset.

For the subtask B, the same corrections were ap-
plied for TR and AG using HS predictions.

4 Experimental Setup

4.1 Data

For each language, a training, a development and
a test set were provided. These datasets were man-
ually annotated using Figur86 crowdsourcing plat-
form. Statistics on label distribution can be found
in Table 1.

4.2 Parameter settings

Our model is implemented in PyTorch7 and
trained on 2 GPU Tesla V100. For the finetun-
ing of Bert and GPT, we used the default parame-
ters of their respective repository but trained on 10
epochs.

For the learning of the Meta Embedding model,
we used a batch size of 64 and Adam optimizer
with a variable learning rate (the Noam decay in-
troduced in Vaswani et al. (2017)). The dropout
rate is set to 0.6. To avoid over-fitting issues and
to be able to reproduce and compare our results,
we used Scikit-learn8 implementation of Stratified
Shuffle Split, with 10 splits on the concatenated
train and dev dataset. Our results metrics are the
means of the values obtained on the 10 splits.

5 Results

This section presents the evaluation of the
SemEval-2019 Task 5: HatEval. The official mea-
sure for this task was the macro F1-measure. Note
that for the Subtask B, evaluation was based on
two criteria (each dimension evaluated indepen-
dently or jointly), however the final ranking was
based solely on the second criteria (Exact Match
Ratio on the three labels). More details about the

6https://www.figure-eight.com/
7https://pytorch.org/
8https://scikit-learn.org/stable/

evaluation system can be found in the task descrip-
tion paper (Basile et al., 2019).

We saved the best epoch model for each of the
10 splits and we used them to make our final pre-
diction for the test dataset. Then we used our 10
models to classify each tweet: to predict a tweet
as hateful, at least half (5) of the models have to
agree with this class. The same goes for subtask
B to predict TR and AG, with in addition the post-
processing described in subsection 3.3. Macro F1-
scores and EMR scores with this agreement rule
on the English development splits and test datasets
are respectively presented in Table 2 and Table 3.
This latter is our final submission for the competi-
tion. We can see a surprising decreasing of macro
F1-score for the predictions on the test dataset of
about 35 points compared to the predictions on our
experimentation splits. We discuss about this re-
sult in the next section.

Table 4 and Table 5 show the results on the
Spanish datasets. We can see that the finetuned
BERT model gives good results on the test dataset
(3 points better in macro F1 than the leader on
subtask A) whereas it was worse than the other
models on the splits dataset on our experiments.
Our hypothesis is that the other models may have
overfitted on the train dataset (especially the GPT
model). Our Meta-embedding model seems to
have been penalized by the GPT overfitting.

6 Discussion

6.1 Unsuccessful approaches
During this competition, we experimented many
additional methods that did not successfully im-
prove the results:

• We created an important quantity of features
manually as described in section 3. However,
most of them were not useful for the predic-
tion according to the weights extracted from
our model. We suppose this is either because
the features from finetuned BERT and GPT
models are able to capture most of the infor-
mation provided by the other features or be-
cause it is difficult to blend handcrafted fea-
tures with the ones obtained from BERT and
GPT.

• We tried others universal sentence embed-
ding models besides GPT and BERT such as
InferSent and ULMFiT (Howard and Ruder,
2018) but without very good results. As

472

Model HS (subtask A) TR AG EMR (subtask B)
GPT 82.33% 82.27% 71.10% 66.74%
BERT 82.87% 82.88% 74.11% 68.61%
Meta-Embedding (our submission) 84.16% 83.93% 75.01% 70.55%

Table 2: Mean results on English development splits.

Model HS (subtask A) TR AG EMR (subtask B)
GPT 51.50% 73.78% 60.42% 36.20%
BERT 48.84% 73.39% 59.16% 36.03%
Meta-Embedding (our submission) 49.60% 72.40% 57.80% 37.40%
Baseline SVM 45.00% 69.70% 58.70% 30.80%

Table 3: Final results on English test dataset.

SemEval task 5 is very specific vocabulary-
wise, it is possible that universal models such
as InferSent and ULMFit were not trained on
enough data to provide good features repre-
sentations of the tweets.

• For the Spanish dataset, we also tried the
BERT Multilingual model which was re-
leased during the competition, but we also
had lower results than using translation.

• We tried augmenting the dataset with external
resources, especially with a similar labeled
dataset9 of tweets with hate speech and of-
fensive language. Nevertheless, this method
was decreasing the results, probably due to
different labeling rules.

• Inspired from the back-translation proposed
in (Edunov et al., 2018), we augmented
the dataset by automatically translating each
tweet to an other language (French, Spanish,
Chinese) and back translated it to the initial
language (English). This method can be as-
similated to a transfer learning approach that
should bring more variability in the dataset,
and should improve the generalization ability
of the model. Our tests did not show relevant
improvement in F1-score but were decreas-
ing the variance. Nevertheless, we did not
develop enough this approach to conclude on
its potential benefits.

• About our post-processing choice for Task B,
we based it on the fact that our model for HS

9https://github.com/t-davidson/
hate-speech-and-offensive-language/tree/
master/data

prediction was better than the models for TR
and AG. Considering how much the perfor-
mance on the HS task decreased on the test
set compared with the decreasing on the TR
and AG tasks it was probably not the best
choice. A multi-label model might have been
useful for this task considering the evaluation
metric (each label prediction should not be
independent).

• Finally, we tried to train our model on both
English and translated Spanish datasets, but
that did not improve our results.

6.2 About the testing set

The previous section shows an important dif-
ference on HS in terms of prediction quality
(F1-score) between the development and the test
datasets. This score difference seems to be expe-
rienced by every participant according to the de-
velopment and test leaderboards. It seems that the
test dataset contains a lot more of difficult tweets
to classify in comparison with the train and de-
velopment datasets. Our hypothesis is that the
test dataset has not been collected like the other
datasets (train and development) or that data were
sorted in a particular way after the collection,
which could explain such results.

In this setup it is interesting to see that the fea-
tures extracted from the finetuned GPT generalize
a little better (with a HS F1-score of 51.50) than
our submited model (49.6 HS F1-score). Adding
more features might have induced more overfitting
on the training set.

Since the end of the competition, the state of
the art on Natural Language Understanding on the
GLUE Benchmark is a new model. It is a Multi-

473

Model HS (subtask A) TR AG EMR (subtask B)
GPT 81.67% 86.17% 79.77% 70.10%
BERT 78.21% 81.63% 75.48% 65.22%
Meta-Embedding (our submission) 83.19% 86.79% 81.01% 74.98%

Table 4: Mean results on Spanish development splits.

Model HS (subtask A) TR AG EMR (subtask B)
GPT 66.42% 74.17% 67.66% 51.53%
BERT 76.88% 81.08% 76.55% 65.85%
Meta-Embedding (our submission) 71.70% 80.90% 76.00% 63.50%
Baseline SVM 70.10% 78.10% 72.60% 60.50%

Table 5: Final results on Spanish test dataset.

Task Model based on BERT (Liu et al., 2019). It
seems that the Multi-Task Learning approach im-
proves the universality of BERT. We think that
such a model could also improve our architecture
on this task because a model trained in a Multi-
Task manner should in theory be more robust to
overfitting.

7 Conclusion

In this work, we investigated how a model could
merge features obtained from unsupervised lan-
guage models such as GPT and BERT with do-
main specific hand-crafted features. We pre-
sented an approach based on a feature-level Meta-
Embedding to let the model choose which features
to keep and how to use them. Our method system-
atically outperforms models based only on BERT
or GPT features on our evaluation datasets, how-
ever it is not always the case on the test datasets.
For instance, on the Spanish test dataset, BERT
alone gives better results and on the English test
dataset subtask A, GPT slightly outperforms our
submission.

Our idea was that the data used for SemEval
2019 Task 5 is very domain-specific and present
a peculiar vocabulary. We thought that univer-
sal sentence embeddings methods would not work
very well since such vocabulary was probably not
present during their unsupervised training and the
sentence quality is also probably different. How-
ever, our results tend to show that it is not the case.
For instance, a model using only BERT features
would have been 1st on the Spanish task A. The
BPE used as a pre-processing for these models is
probably helping to deal with out-of-vocabulary
words. On top of that, it seems that big unsuper-

vised language models are able to learn data repre-
sentation that generalize really well to unseen do-
mains.

Acknowledgments

This work is part of a French RAPID project called
SAPhIRS, in collaboration with LITIS Labora-
tory and Airbus Defence Space. The authors
would like to thank Alexandre Pauchet and Simon
Bernard for their help.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Mathieu Cliche. 2017. Bb twtr at semeval-2017 task
4: twitter sentiment analysis with cnns and lstms.
arXiv preprint arXiv:1704.06125.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Carlos Enrique Muniz Cuza, Gretel Liz De la Pena Sar-
racén, and Paolo Rosso. 2018. Attention mechanism
for aggressive detection. In CEUR Workshop Pro-
ceedings, volume 2150, pages 114–118.

474

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. Swisscheese at semeval-2016 task 4: Senti-
ment classification using an ensemble of convolu-
tional neural networks with distant supervision. In
Proceedings of the 10th international workshop on
semantic evaluation, CONF.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. CoRR,
abs/1801.06146.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018. Dynamic meta-embeddings for improved sen-
tence representations. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1466–1477.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks
for natural language understanding. arXiv preprint
arXiv:1901.11504.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Endang Wahyu Pamungkas, Alessandra Teresa
Cignarella, Valerio Basile, Viviana Patti, et al. 2018.
14-exlab@ unito for ami at ibereval2018: Exploit-
ing lexical knowledge for detecting misogyny in
english and spanish tweets. In 3rd Workshop on
Evaluation of Human Language Technologies for
Iberian Languages, IberEval 2018, volume 2150,
pages 234–241. CEUR-WS.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Claudia Nallely Sánchez Gómez. 2018. Ingeotec at
mex-a3t: Author profiling and aggressiveness anal-
ysis in twitter using µtc and evomsa. OPENAIRE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Alex Wang, Amapreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE
international conference on computer vision, pages
19–27.

475

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 476–479
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SINAI at SemEval-2019 Task 5: Ensemble learning to detect hate speech
against inmigrants and women in English and Spanish tweets

Flor Miriam Plaza-del-Arco, M. Dolores Molina-González,
M. Teresa Martı́n-Valdivia, L. Alfonso Ureña-López

Department of Computer Science, Advanced Studies Center in ICT (CEATIC)
Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
{fmplaza, mdmolina, maite, laurena}@ujaen.es

Abstract

Misogyny and xenophobia are some of the
most important social problems. With the in-
crease in the use of social media, this feeling of
hatred towards women and immigrants can be
more easily expressed, therefore it can cause
harmful effects on social media users. For this
reason, it is important to develop systems ca-
pable of detecting hateful comments automat-
ically. In this paper, we describe our system to
analyze the hate speech in English and Spanish
tweets against Immigrants and Women as part
of our participation in SemEval-2019 Task 5:
hatEval. Our main contribution is the integra-
tion of three individual algorithms of predic-
tion in a model based on Vote ensemble classi-
fier.

1 Introduction

With the growing prominence of social media like
Twitter or Facebook, more and more users are
publishing content and sharing their opinions with
others. Unfortunately, the content often contains
hate speech language that can have damaging ef-
fects on social media users. This fact concerns
to social media platforms like Facebook since ac-
cording to an EU’s report, it removes 82 percent
of illegal hate speech on the platform, up from 28
percent in 20161.

Normally, hate speech can be aimed at a per-
son or a group base on some characteristic such
as race, sexuality, color, ethnicity, physical ap-
pearance, religion, among others (Erjavec and
Kovačič, 2012). Currently, two of the targets
most affected by these types of offensive com-
ments are immigrants and women (Waseem and
Hovy, 2016). In particular, when the hate speech is
gender-oriented, and it specifically targets women,
we refer to it as misogyny (Manne, 2017) and

1https://cnb.cx/2RGmEwel

when the hate speech is against immigrants, we
refer to it as xenophobia (Sanguinetti et al., 2018).

Recently, a growing number of researchers have
started to focus on studying the task of automatic
detection of hateful language online (Fortuna and
Nunes, 2018; Fersini et al., 2018b), moreover,
some academic events and shared tasks have taken
place focusing on this issue (Fersini et al., 2018a).
It is consider as a difficult task for social media
platforms. For example, popular social media such
as Twitter, Instagram or Facebook are not able to
automatically solve this problem and depend on
their community to report hateful speech content.

The severe consequences of this problem, com-
bined with the large amount of data that users pub-
lish daily on the Web, requires the development of
algorithms capable of automatically detecting in-
appropriate online remarks.

In this paper, we describe our participation in
SemEval-2019 Task 5: Multilingual Detection of
Hate Speech Against Immigrants and Women in
Twitter (hatEval) (Basile et al., 2019). In particu-
lar, we participate in task A in English and Span-
ish. It is a binary classification task and the objec-
tive is predict whether a tweet with a given target
(women or immigrants) is hateful or not hateful.

The rest of the paper is structured as follows. In
Section 2 we explain the data used in our meth-
ods. Section 3 presents the details of the proposed
systems. In Section 4, we discuss the analysis and
evaluation results for our system. We conclude in
Section 6 with remarks and future work.

2 Data

To run our experiments, we used the Spanish and
English datasets provided by the organizers in Se-
mEval19 Task 5 : HatEval (Basile et al., 2019).
The datasets contain tweets with several fields.
Each tweet is composed for an identifier (id), the

476

text of the tweet (text), the mark of hate speech
(HS), being 0 if the text is not hateful and 1 if the
text is hateful, the mark of recipient of text (TR),
being 1 if the target is a single human and 0 if the
target is a group of persons and the last field (AG)
is the mark that identifies if the text is aggressive
whose value is 1, else 0 in the case opposite. Dur-
ing pre-evaluation period, we trained our models
on the train set, and evaluated our different ap-
proaches on the dev set. During evaluation period,
we trained our models on the train and dev sets,
and tested the model on the test set. Table 1 shows
the number of tweets used in our experiments for
Spanish and English.

Dataset train dev test
Spanish 4,500 500 1,600
English 9,000 1,000 3,000

Table 1: Number of tweets per HatEval dataset

We only take into account the fields text and HS
for our experiments because we participate in task
A in English and Spanish.

3 System Description

In this section, we describe the systems developed
for the Hateval task 5, subtask A in English and
Spanish.

3.1 Our classification model

In first place, we preprocessed the corpus of tweets
provided by the organizers. We applied the follow-
ing preprocessing steps: the documents were tok-
enized using NLTK library 2 and all letters were
converted to lower-case. In second place, an im-
portant step is converting sentences into feature
vectors since it is a focal task of supervised learn-
ing based sentiment analysis method. Therefore,
our chosen statistic feature for the text classifica-
tion was the term frequency (TF) taking into ac-
count unigrams and bigrams because it provided
the best perfomance.

During our experiments, the scikit-learn ma-
chine learning in Python library (Pedregosa et al.,
2011) was used for benchmarking. Our classi-
fication model based on Vote ensemble classifier
combined three individual algorithms: Logis-
tic Regression (LR), Decision Tree (DT) and Sup-
port Vector Machines (SVMs). We have tested

2https://www.nltk.org/

with other models such as naive bayes and mul-
tilayer perceptron but we have obtained better re-
sults with the combination of the three algorithms
mentioned above. In Figure 1, it can be seen our
model. We train our model with the train and dev
set and we evaluated it with the test set. There are
many combinations to implement a model when
we apply different classifiers with several parame-
ters. Therefore, one of the most important step was
to find the best individual classifiers for the prob-
lem. After doing several experiments with each
classifier independently, we came up with SVMs,
LR and DT classifiers. In order to improve the
performance of each classifier, we choose the best
optimization of the parameters in each of them.

Training set

SVM Logistic
Regression

Decision
Tree

P1 P2 P3

Voting

Pt

Predictive
Model

Test set

Figure 1: Systems architecture.

3.2 Classifiers

1. Logistic Regression is an statistical method
for prediction binary classes. It computes the
probability of an event occurrence utilizing a
logit function. In order to optimize the pa-
rameters of LR in our English and Spanish
experiments, we used the penalty parameter
equal to l1 regularization.

2. Decision Tree is a flowchart-like tree struc-
ture where an internal node represents fea-
tures, the branch represents a decision rule,
and each leaf node represents the outcome. In
order to optimize the parameters of DT in our
English and Spanish experiments, we leave

477

User name (r)
Test

P R F1 Acc

francolq2 (1) 0.734 0.741 0.73 0.731
luiso.vega (2) 0.729 0.736 0.73 0.734
fmplaza (14) 0.707 0.713 0.707 0.711
SVC baseline (21) 0.701 0.707 0.701 0.705
DA-LD-Hildesheim (40) 0.493 0.494 0.493 0.511

Table 2: System Results per team in subtask A of hatEval task in Spanish.

User name (ranking)
Test

P R F1 Acc

saradhix (1) 0.69 0.679 0.651 0.653
amontejo (5) 0.601 0.577 0.519 0.535
SVC baseline (35) 0.595 0.549 0.451 0.492
fmplaza (40) 0.627 0.555 0.443 0.493
sabino (71) 0.652 0.521 0.35 0.447

Table 3: System Results per team in subtask A of hatEval task in English.

the default parameters.

3. Support Vector Machines is a linear learn-
ing technique that finds an optimal hyper-
plane to separate our two classes (hateful
and not hateful speech). Many researchers
have reported that this classifier is perhaps
the most accurate method for text classifica-
tion (Moraes et al., 2013) and also is widely
used in sentiment analysis (Tsytsarau and
Palpanas, 2012). In order to optimize the pa-
rameters of SVMs in our English and Spanish
experiments, we used the parameter C equal
to 0.6 and the kernel used was linear.

4. Vote is one of the most straightforward en-
semble learning techniques in which per-
forms the decision process by applying sev-
eral classifiers. Voting classifier combines
machine learners by using a majority vote or
predicted probabilities for the classification
of samples. The predictions made by the sub-
models can be assigned weights. In our case,
the weights are distributed as follows: 2 for
LR and SVM and 1 for DT.

4 Experiments and analysis of results

During the pre-evaluation phase we carried out
several experiments and the best experiments were
taken into account for the evaluation phase. The

system has been evaluated using the official com-
petition metrics, including Accuracy (Acc), Preci-
sion (P), Recall (R) and F1-score (F1). The met-
rics have been computed as follows:

P =
number of correctly predicted instances

number of predicted labels
(1)

R =
number of correctly predicted labels
number of labels in the gold standard

(2)

F1 =
2 ∗ P ∗R
P +R

(3)

Acc =
number of correctly predicted instances

total number of instances
(4)

The results of our participation in the subtask
A of hatEval task during the evaluation phase can
be seen in Table 2 for Spanish and in Table 3 for
English.

In relation to Spanish results, it should be noted
that we achieve a high position in the ranking out-
performing the baseline result. Our position in the
ranking is 14th of 41 participating teams. There-
fore, we consider that the chosen individual classi-
fiers in the voting system are appropriate to build
the metaclassifier.

478

Therefore, our chosen statistic feature for the
text classification was the term frequency (TF) tak-
ing into account unigrams and bigrams because it
provided the best perfomance. One important fea-
ture to consider is the use of bigrams in TF, be-
cause during the pre-evaluation phase we noted
that our results outperformed when we took into
account the bigrams comparing it only to the uni-
grams.

In relation to English results, using the same
system as for Spanish we achieved worse results
and we did not outperform the baseline. However,
we are ranked 40th out of 71 participating teams.

5 Conclusions

In this paper, we present the system we devel-
oped for our participation in SemEval-2019 Task
5: Multilingual Detection of Hate Speech Against
Immigrants and Women in Twitter (hatEval). Spe-
cially, we have participated in subtask A in Span-
ish and English.

Our system was developed focus on Spanish.
Therefore, we achieve better results in this lan-
guage. On the one hand, one of the reasons could
be the different employment of misogynistic or
xenophobic words in one language with respect to
the other (Canós, 2018). For example, the word
“puta” in Spanish, can be consider a misogynis-
tic word or in a bigram like “puta madre” can be
similar to the word “fantastic”. On the other hand,
the way to insult women is not the same as the
way to insult immigrants. For these reasons, sys-
tems make mistakes and should be considered dif-
ferent systems for these targets (immigrants and
women).

Another important issue is that the participation
in Spanish subtask is lower than the participation
in English subtask. For this reason, we will con-
tinue developing systems in Spanish since it is one
of the most spoken languages in the world and we
consider a very challenging task.

Acknowledgments

This work has been partially supported by Fondo
Europeo de Desarrollo Regional (FEDER) and
REDES project (TIN2015-65136-C2-1-R) from
the Spanish Government.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Jose Sebastián Canós. 2018. Misogyny identification
through svm at ibereval 2018.

Karmen Erjavec and Melita Poler Kovačič. 2012. “you
don’t understand, this is a new war!” analysis of hate
speech in news web sites’ comments. Mass Commu-
nication and Society, 15(6):899–920.

Elisabetta Fersini, Debora Nozza, and Paolo Rosso.
2018a. Overview of the evalita 2018 task on au-
tomatic misogyny identification (ami). Proceed-
ings of the 6th evaluation campaign of Natural
Language Processing and Speech tools for Italian
(EVALITA18), Turin, Italy. CEUR. org.

Elisabetta Fersini, Paolo Rosso, and Maria Anzovino.
2018b. Overview of the task on automatic misogyny
identification at ibereval 2018.

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Computing Surveys (CSUR), 51(4):85.

Kate Manne. 2017. Down girl: The logic of misogyny.
Oxford University Press.

Rodrigo Moraes, JoãO Francisco Valiati, and Wilson
P GaviãO Neto. 2013. Document-level sentiment
classification: An empirical comparison between
svm and ann. Expert Systems with Applications,
40(2):621–633.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Manuela Sanguinetti, Fabio Poletto, Cristina Bosco,
Viviana Patti, and Stranisci Marco. 2018. An ital-
ian twitter corpus of hate speech against immigrants.
In Language Resources and Evaluation Conference-
LREC 2018, pages 1–8. ELRA.

Mikalai Tsytsarau and Themis Palpanas. 2012. Survey
on mining subjective data on the web. Data Mining
and Knowledge Discovery, 24(3):478–514.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

479

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 480–483
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SINAI-DL at SemEval-2019 Task 5: Recurrent networks and data
augmentation by paraphrasing

Arturo Montejo-Ráez, Salud María Jiménez-Zafra,
Miguel Ángel García-Cumbreras, Manuel Carlos Díaz-Galiano

CEATIC / Universidad de Jaén
Las Lagunillas s/n
23071 Jaén (Spain)

{amontejo, sjzafra, magc, mcdiaz}@ujaen.es

Abstract
This paper describes the participation of the
SINAI-DL team at Task 5 in SemEval 2019,
called HatEval. We have applied some classic
neural network layers, like word embeddings
and LSTM, to build a neural classifier for both
proposed tasks. Due to the small amount of
training data provided compared to what is ex-
pected for an adequate learning stage in deep
architectures, we explore the use of paraphra-
sing tools as source for data augmentation. Our
results show that this method is promising, as
some improvement has been found over non-
augmented training sets.

1 Introduction

We have participated in SemEval 2019 Task 5, na-
med HatEval (Basile et al., 2019), which encou-
rage participants to identify hate speech in tweets.
The small amount of training data provided makes
difficult to train a deep architecture, so strategies
like transfer learning and data augmentation are
explored in our work. A trained model for word
embeddings in the two languages targeted by the
tasks have been considered as transfer learning ap-
proach. Paraphrasing the tweets has also been tes-
ted for data augmentation, doubling the number of
tweets available for training the network.

Our results are promising for English, but no
improvements have been found for Spanish. Furt-
her analysis on the results and the quality of the
paraphrasing tools used is needed, but the scores
obtained in English encourage us to consider pa-
raphrasing as a promising help in deep learning
for natural language processing.

The paper is organized as follows: Section 2
introduces the two main strategies used to train
the neural network: data augmentation and trans-
fer learning. In Section 3, task data is analyzed in
order to define hyperparameters values. Section 4
describes the neural network architecture applied.

Section 6 gives more details on the paraphrasing
approach used to generate more training data. Ex-
periments and results are given in Section 7. Fi-
nally, Section 8 closes the contribution with some
conclusions and proposals for future work.

2 Data augmentation and transfer
learning

Nowadays, deep neural architectures are popu-
lating the scientific playground in many scena-
rios: image recognition speech recognition (Gra-
ves et al., 2013) and synthesis (Ze et al., 2013),
and, of course, text classification (Zhang et al.,
2015). But these supervised learning algorithms
demands for valid use different requirements that
sometimes are difficult to meet. One of the most
difficult to overcame in some cases is the need for
a large and varied learning dataset. When there is
lack of data, two main strategies can be followed:
transfer learning and data augmentation.

Transfer learning. This approach proposes to
train the network on different task that is lear-
ned over a large set of available data of si-
milar nature. For example, train a language
model over a Wikipedia dump. Then, last la-
yers can be replaced by those that fit the tar-
get task, for instance, sentiment analysis, and
then trained on the limited dataset for that
task.

Data augmentation. This approach is
commonly used in image recognition, by
applying different transformations over
training images (rotation, shearing, blurring,
mirroring...). In this way, we can augment
the size of the training data in several orders
of magnitude, making the learning process
more feasible and robust.

480

We will use both of them in our system for hate
speech detection.

3 Data analysis

Organizers provided data consisting of a set of
tweets annotated as hateful (1) or not hateful (0)
-HS label-, with a person (1) or group (0) as target
-TR label- and as aggresive (1) or not aggresive (0)
-AG label-. The distribution of tweets per language
and dataset is shown in Table 1.

Language Train Dev Test Total
EN 9,000 1,000 3,000 13,000
ES 4,500 500 1,600 6,600

Table 1: Distribution of tweets per dataset.

We analyzed training and development data to
see whether the distribution of labels were simi-
lar, obtaining a positive result, which is desirable
to guarantee the validity of the model fit. Figu-
re 1 presents ring charts corresponding to the re-
lative values of labels distribution across samples
and datasets. Labels are represented using a binary
codification of HS, TR and AG annotations. For
example, 111 codification corresponds to hateful
tweets towards a person and with aggressive con-
tent.

Figure 1: Datasets distribution per label.

In addition, we also analyzed the length of the
tweets to decide which window size to use in our
experiments. For this, a cumulative histogram for
each dataset was generated according to different
tweet lengths in order to select a size that would
cover a high rate of tweets.

The sizes that cover 80 % and 90 % of tweets
are summarize in Table 2 as quantiles 0.8 and 0.9
respectively. A value of 44 for quantile 0.8 means
that 80 % of the tweets have a length of 44 or less.
Taking into consideration the results we decided to
select a window size of 40 words.

Data Quantile 0.8 Quantile 0.9
train_EN 35 45
dev_EN 44 51
train_ES 37 46
dev_ES 38 49

Table 2: Length of tweets covering 80 % and 90 % of
cases.

4 System description

We have implemented the proposed neural net-
work using the Keras1 library for Python, running
on TensorFlow over a NVIDIA Titan X card. Each
model took approximately 25 minutes to get trai-
ned and few seconds to classify development or
test sets. The architecture of our neural network
follows a sequence of layers as follows:

1. First layer: An embedding layer that is loaded
with pre-trained weights, and converts each
word into a 200-dimensional vector for En-
glish or a 300-dimensional one for Spanish.

2. Second layer: A bi-directional LSTM recu-
rrent network with 512 activations and a dro-
pout value of 0.5.

3. Third layer: A dense network with 128 acti-
vations and the ReLU function as activation
function. A dropout of 0.5 is also applied af-
ter this network.

4. Fourth layer: last classification layer, with 3
activations on the sigmoid function, as we are
in a multi-label classification task.

The model has been trained with the hyperpara-
meters values specified in Table 3.

The text have been preprocessed as follows:

1. Lower case is applied.

2. Hashtags are splitted into several tokens ac-
cording to a camel case approach. For exam-
ple, “#MeToo” is converted into the terms
“<BOH>me too <EOH>”.

1http://keras.io

481

Parameter value
Batch size 512
Loss function binary cross-entropy
Optimization algorithm Adam
Sequence length 40 terms
No. Epochs 100

Table 3: Hyperparameters.

3. Mentions are replaced by the token
<MENTION>.

4. Unknown terms (those not found in the em-
bedding dictionary) are replaced by the token
<UNK>.

5. A final token <EOT> is added at the end of
the tweet.

5 Transfer learning

We have taken already trained word embeddings
for the first layer, allowing the weights of the these
foreign models to get retrained during the learning
process. We have used pre-trained GloVe (Global
Vectors for Word Representation) models (Pen-
nington et al., 2014) for the to targeted languages,
English2 and Spanish3. These are the models of
word embeddings that we have transferred to the
first layer in our architecture:

For English we have used the weights from
the GloVe Twitter model provided by the
Stanford NLP Group, which is built over
2 billion tweets (27B tokens, 1.2M vocab,
uncased, 200-dimensional vectors, 1.42 GB
download).

For For Spanish we have downloaded the
GloVe model of the Spanish Billion Word
Corpus(Cardellino, 2016), which generated
855,380 vectors of 300 dimensions.

Although FastText (Bojanowski et al., 2017) is
considered the state-of-the-art for word embed-
dings representation, as it considers character n-
grams instead of whole word forms, we have op-
ted for GloVe due to the amount of available pre-
trained models.

2https://nlp.stanford.edu/projects/
glove/

3https://github.com/uchile-nlp/
spanish-word-embeddings

6 Data augmentation

The main problem with the dataset mentioned in
the previous section is that there is a strong class
imbalance between the samples with labels ”000”
and the samples with a different labeling. As Fi-
gure 1 illustrates, most of the samples were labe-
led as not hateful tweets towards a group and with
not aggressive content, meaning that this class is
highly dominated. Class imbalance introduces two
key limitations: firstly, significant differences bet-
ween accuracy and recall for some classes; and se-
condly, many machine learning models are prone
to overfit on the majority class.

There are a number of ways to counter class
imbalance, such as down-sampling the majority
class, up-sampling the minority, and other hybrid
solutions.

For each tweet, our system expand the informa-
tion using paraphrasing. To express the same mes-
sage with different words, we applied a online tool
like RewriterTools4. For instance, the paraphrase
of the tweet “EU’s hailed migrant plan ’a road
to Hell’ Czech Republic refuses involvement” was
“EU’s hailed migrant layout ’a avenue to Hell’
Czech Republic refuses involvement”.

Different configurations were created with the
test data and the system, with the aim of obtaining
results and analyzing the behavior of the different
modules.

7 Experiments and results

We have performed several experiments to find
good hyperparameters, but also evaluated the two
main strategies proposed in our approach: transfer
learning and data augmentation. In order to verify
how transfer learning is good enough, i.e. how the
predefined weights for GloVe could be further ad-
justed or not, we have checked the performance of
the model trained on the official training set and
evaluated on the development dataset on. Results
in Table 4 shows that a small but consistent impro-
vement is obtained if weights can be readjusted.

Next, we have empirically evaluated how pa-
raphrasing helps to produce a better model or not.
On these experiments the embeddings are always
trainable. The paraphrasing tools allowed us to
double the number of tweets in the training data-
set. Thus, for English we have 18,000 tweets and

4https://www.rewritertools.com/
paraphrasing-tool

482

train eval embeddings F-Score
train_EN dev_EN fixed 0.697875
train_EN dev_EN trainable 0.707153
train_ES dev_ES fixed 0.770951
train_ES dev_ES trainable 0.781350

Table 4: Experiments on fixed/trainable embeddings
weights.

train eval F-Score
train_EN dev_EN 0.707153

train_aug_EN dev_EN 0.715593
train_ES dev_ES 0.781350

train_aug_ES dev_ES 0.767844

Table 5: Experiments on data augmentation

9,000 for Spanish. Table 5 shows the results obtai-
ned. Here different effects are noticiable. For En-
glish a slight improvement on macro F-Score me-
tric is reported, and for Spanish the effect is very
negative.

We have submitted predictions on the test set
on models trained only on task B, so for task A we
have submitted only predicted labels for HS co-
lumn. For English, the training data has been the
augmented official training set with paraphrased
tweets. For Spanish, only the training tweets pro-
vided by the organizers have been used to produce
the model. The official results obtained in this task
are shown in Table 6

8 Conclusions and future work

Our proposal explores how transferred embed-
dings and data augmentation may help in a text
classification task like HatEval. Paraphrashing
does not report clear benefits. This can be due to
the quality of the paraphrasing and the fact that
new generated tweets are not very realistic. Other
augmentation strategies could be explored, like
forward-backward translation. We have found al-
so the models trained exhibits high variance. That
means that we are overfitting the model on training
data, so despite the use of the dropout technique,

Subtask F1 (avg) EMR rank/total
EN_A 0.519 - 5/70
EN_B - 0.384 7/41
ES_A 0.686 - 26/39
ES_B - 0.583 17/23

Table 6: Official HatEval results for our submissions.

early stopping, fewer parameters or more training
data could help to produce a more robuts model.
Another possible improvement is on how final la-
bels are decided. Our system takes the final out-
puts of the last sigmoid layer as probabilities, so
when the value is higher than 0.5 for a class, then
the label is 1, 0 otherwise. We could try to set the
thresholds using a SVM classifier on this sigmoid
vector.

Acknowledgements

This research work is partially supported by a
grant from the Ministerio de Educación Cultura
y Deporte (MECD - scholarship FPU014/00983),
the project REDES (TIN2015-65136-C2-1-R) and
a grant from the Fondo Europeo de Desarrollo Re-
gional (FEDER).

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, De-

bora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Cristian Cardellino. 2016. Spanish Billion Words Cor-
pus and Embeddings.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recu-
rrent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

Jeffrey Pennington, Richard Socher, and Christop-
her D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Na-
tural Language Processing (EMNLP), pages 1532–
1543.

Heiga Ze, Andrew Senior, and Mike Schuster. 2013.
Statistical parametric speech synthesis using deep
neural networks. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013 IEEE International
Conference on, pages 7962–7966. IEEE.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

483

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 484–488
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

sthruggle at SemEval-2019 Task 5: An Ensemble Approach to Hate
Speech Detection

Aria Nourbakhsh, Frida Vermeer, Gijs Wiltvank, Rob van der Goot
University of Groningen

Groningen, the Netherlands
{a.nourbakhsh, f.h.vermeer, g.g.wiltvank}@student.rug.nl

r.van.der.goot@rug.nl

Abstract

In this paper, we present our approach to de-
tection of hate speech against women and im-
migrants in tweets for our participation in the
SemEval-2019 Task 5. We trained an SVM
and an RF classifier using character bi- and
trigram features and a BiLSTM pre-initialized
with external word embeddings. We combined
the predictions of the SVM, RF and BiLSTM
in two different ensemble models. The first
was a majority vote of the binary values, and
the second used the average of the confidence
scores. For development, we got the highest
accuracy (75%) by the final ensemble model
with majority voting. For testing, all models
scored substantially lower and the scores be-
tween the classifiers varied more. We believe
that these large differences between the higher
accuracies in the development phase and the
lower accuracies we obtained in the testing
phase have partly to do with differences be-
tween the training, development and testing
data.

1 Introduction

An unwanted phenomenon that can be found
across social media, is the publication of texts with
hateful content. In SemEval-2019 Task 5 (Basile
et al., 2019), it is defined as any communication
that disparages a person or group. We focused on
immigrants and women, which are two of the most
targeted groups of people who are victims to this
kind of discourse.

The micro-blogging service Twitter is a medium
on which posts containing hateful content can be
found in abundance. In order to filter out tweets
with such content, machine learning and neural
network techniques can be used to discriminate
tweets which do contain hate speech from tweets
which do not. Among the characteristics of Twit-
ter data we can point out its noisiness and the use

of emojis and hashtags, which can be taken into
account for the classification task.

In this paper, we tried to solve this problem
for English, by incorporating a variety of classi-
fication algorithms including Support Vector Ma-
chine (SVM), Random Forest (RF), and Bidirec-
tional Long Short-Term Memory (BiLSTM). For
the classical machine learning classification algo-
rithms (SVM and RF) we used character n-grams
and for the BiLSTM we used word embeddings
trained on a huge amount of Twitter data. By com-
bining these three models into an ensemble learn-
ing model, we achieved our best results on the de-
velopment data, so we submitted this model for
this shared task.

We start the paper by discussing some earlier
work done in this field. Then, we describe the
dataset we used for this task. In chapter 4, we
present our approach. In chapter 5, we continue
with the results of our methods and the discussion.
Finally, we end with a conclusion and future work
in chapter 7.

2 Related work

There has been done a lot of research regarding
the automatic detection of hate speech on social
media, in particular Twitter. A great deal of differ-
ent approaches to solve this task had been imple-
mented in different works. The majority of these
studies was done on English texts. It is clear that
there is quite some overlap between each of these
approaches. However, direct comparison of previ-
ous approaches is not straightforward, as different
datasets were used.

Most papers tried one or multiple different clas-
sifiers, albeit with different features, but in general
SVM classifiers usually achieve the best perfor-
mance (Saleem et al., 2016; Davidson et al., 2017).

Some papers divided the ‘hate’ class into two

484

classes. For example, Watanabe et al. (2018) and
Davidson et al. (2017) used the classes ‘offensive’
and ‘hate’, and Del Vigna et al. (2017) classified
comments as ‘weak hate’ and ‘strong hate’.

Both the j48graft algorithm in Watanabe et al.
(2018), and the SVM and LSTM in Del Vigna
et al. (2017) performed better on a binary clas-
sification rather than a multiclass classification.
Davidson et al. (2017) also tried different classi-
fiers including Naive Bayes, decision trees, SVM
and logistic regression. Their logistic regression
and SVM classifiers achieved the best results.
Waseem and Hovy (2016) tried different features
for a logistic regression classifier, among which
the character n-grams up to length of four in com-
bination with the user’s gender information per-
formed the best.

Other approaches are based on neural networks,
like Zhang and Luo (2018). Their base convolu-
tional neural network with a gap window (skipped
CNN) had higher results than their SVM.

3 Data

The data provided by the organizers were collected
from Twitter and manually annotated via the Fig-
ure Eight1 crowdsourcing platform. All tweets
contain a numeric ID, text of the tweet, and three
labels with binary values (0 or 1). The first la-
bel indicates whether it is hate speech or not, the
second if the target is a generic group of people
or a specific individual and the third whether the
tweeter is aggressive or not. The second and third
labels can only be 1 if the first tag (hate speech or
not) is 1 as well. However, we only used the first
tag, since we only participated in task A, which is
detecting hate speech.

The dataset for English contains 9,000 tweets
for training, 1,000 for development and 3,000 for
testing. Some tweets in the testing dataset were
duplicates and removed from the dataset, result-
ing in 2,971 tweets. For each dataset, 57% of the
tweets was labeled as non-hate speech and the rest
as hate speech. For the testing phase, both training
and development data were used for training the
models.

1https://www.figure-eight.com/
platform/

4 Method

4.1 Preprocessing
Before training the classifiers, we did some pre-
processing steps over the data.

One of the reasons we did these preprocessing
steps was that many words were not available in
our word embeddings for the BiLSTM. Also, we
could reduce the dimensionality of the character
n-gram features for the RF and SVM by the fol-
lowing deletions and changes:

• Lower casing text

• Removing usernames

• Removing punctuation (except ‘#’)

• Replacing each URL by ‘URL’

• Replacing each number by ‘0’

Tokenization was done based on whitespace, as
tokenization on tweets is non-trivial and wrong to-
kenization might actually hurt performance.

4.2 Models
Different machine learning models were evalu-
ated and compared, among which Naive Bayes, k-
nearest neighbours, RF, SVM, bagging and boost-
ing models, and BiLSTM. Out of these models,
the SVM, RF and BiLSTM proved to perform the
best. The SVM and RF were implemented us-
ing Python’s scikit-learn library (Pedregosa et al.,
2011) and the BiLSTM was implemented using
Python’s Keras2 library.

Finally, these models were combined in a ma-
jority voting ensemble model. The models are ex-
plained in more detail in the next sections, as well
as the baseline models.

The architecture of our approach is shown in
figure 1.

Figure 1: Architecture of our final approach.

2http://keras.io/

485

4.2.1 Baseline
We compared our results to two different baselines
provided by the shared task organizers: a linear
SVM with default parameters based on a tf-idf rep-
resentation, and a classifier which assigns the most
frequent label in the training set (MFC).

4.2.2 SVM
For the SVM, we tried different types of n-grams
as features, including character and word n-grams.
In the development phase, the combination of
character bi- and trigrams gave the best results.
These bi- and trigrams were represented as a tf-idf
vector as input for the classifier.

During development, we also fine tuned the hy-
perparameters of the SVM classifier. The parame-
ter values we changed for the final model were:

• C = 100

• kernel = ‘linear’

• probability = True

4.2.3 RF
Just like the SVM classifier, we tried several dif-
ferent features during training for the RF, and
again, the character level bi- and trigrams per-
formed the best.

While developing, we fine tuned the parameters
of the RF classifier. We experimented with differ-
ent values and ratios for the number of trees and
the maximum depth of the trees. Finally, we found
that the following combination of parameter val-
ues led to the best performance:

• number of trees = 100

• max tree depth = 49

4.2.4 BiLSTM
In the recent years, neural network algorithms
and its variants, proved to give excellent results
for many NLP tasks including classification prob-
lems. Considering this, we tried a BiLSTM clas-
sifier and we used word embeddings taken from
van der Goot and van Noord (2017) that were
specifically trained on Twitter data. The em-
beddings were trained with Google’s word2vec3

(Mikolov et al., 2013) tool with 100 dimensions.
In the process of training the model, we updated
the initial values. The words that were not in the
word embeddings were assigned values of 0 for

3https://code.google.com/archive/p/
word2vec/

their vector. Moreover, 6,515 words of all 26,026
unique tokens in the dataset (including the test
set) were not included in the word embeddings.
Among these words one can find unusual hashtags
with CamelCasing (e.g. #SendAllIllegalsHome),
use of repeated emojis and uncanonical usage of
words of which some of them can be related to
spelling errors.

Finally, we trained the model using a 3 layer
BiLSTM model ran with 8 epochs and the follow-
ing settings:

• 50 hidden units

• batch size = 300

• adam optimizer

• dropout rate = 0.2

4.2.5 Ensemble model
The predictions of the RF, SVM and BiLSTM
were used in an ensemble model. For each final
prediction, the majority vote (MV) of these pre-
dictions was taken. This means that the prediction
(0 or 1) with the most votes is chosen as final pre-
diction.

In addition to the previously described MV en-
semble model, another one was made which uses
the confidence scores of the SVM and RF, indi-
cating the chance of being a 0 or 1. Finally, the
average of these confidence values and the binary
value of the BiLSTM was used to determine the
final prediction.

5 Results and Discussion

Table 1 shows the accuracy, precision, recall and
F-score for task A (hate speech detection) of the
MFC, SVM (baseline), RF, SVM (character n-
grams) and BiLSTM separately, as well as the final
MV ensemble models and our official results. The
official results differ from the other MV because
after submission we did small changes in prepro-
cessing and aggregated the development and train-
ing data for training the models.

57.3% of the data in each of the datasets (train-
ing, development and testing), was annotated as
non-hate speech. Therefore, the accuracy of the
MFC baseline was 57.3% as well. However, only
one of the participants in this shared task managed
to beat this baseline.

The accuracies and F-scores were substantially
lower on the testing data than on the development
data and the scores between the classifiers varied

486

Table 1: Evaluation measures (in percentage) of all models for development and testing on task A (hate speech
detection). Precision and recall are averaged over the two classes.

Development Testing
Model Accuracy Precision Recall F-score Accuracy Precision Recall F-score
MFC baseline* 57.2 32.8 57.3 41.7 57.9 28.9 50.0 36.7
SVM baseline* 72.0 71.9 72.1 71.9 49.2 59.5 54.9 45.1
RF 73.6 73.8 73.6 72.9 42.7 50.0 42.7 29.9
SVM (char. n-grams) 74.0 73.9 74.0 73.9 47.0 63.3 47.0 37.3
BiLSTM 72.2 72.6 72.2 72.3 49.7 65.1 49.7 42.5
Ensemble (MV) 75.4 75.3 75.4 75.2 45.6 64.2 45.6 33.7
Ensemble (MV conf. scores) 74.0 74.2 74.0 74.1 48.2 65.8 48.2 39.2
Submitted ensemble (MV) - - - - 46.0 58.1 52.6 39.2

*The baselines for development are re-implemented, so they could be differently compared to the organizer’s baseline.

more. This phenomenon can be explained by the
fact that the testing data differed a lot from the
training data. The organizers stated that before
splitting the entire dataset, the data were not shuf-
fled, which can be an explanation for these differ-
ences. These differences between the training and
test data can lead to overfitting during training and
parameter optimization.

During the development phase, character n-
grams were the best features for the SVM, but in
the testing phase it scored lower than the base-
line SVM with a tf-idf representation of word un-
igrams. Furthermore, the MV ensemble model,
combining the binary predictions of the three clas-
sifiers, got the highest scores on the development
set. As a result, we submitted this MV ensemble
model, without confidence scores. In contrast to
the development phase, both ensemble models did
not perform better on the testing data than the BiL-
STM model alone. The BiLSTM performed the
best (50% accuracy and 43% F-score) on the test
data, but still below the baseline. Furthermore, all
models had a higher precision than recall for test-
ing, which also can be attributed to the imbalanced
distribution of the data.

Finally, there were some issues with the annota-
tion of the training and testing data. One could find
instances of tweets that contain hate speech but
were annotated incorrectly in our opinion. More-
over, as it was stated before, only one of the par-
ticipants outperformed the MFC baseline.

6 Conclusion and future work

For the task of hate speech detection, we incorpo-
rated a variety of classifiers (SVM, RF and BiL-
STM) and experimented with a range of different
features and parameters. At the end we combined
the predictions of these models in ensemble mod-

els. For development, the SVM, RF and BiLSTM
reached similar performances and the ensemble
model performed slightly better than these models
individually. However, all models scored substan-
tially lower on the test data than on the develop-
ment data. As a result, we think that our approach
led to overfitting on the development set without
being able to generalize on the test set.

For future work, there are some ways to im-
prove the results besides experimenting with dif-
ferent classification algorithms. Firstly, Twitter
data is noisy and there are many uncanonical
words and emojis. We tried to tackle this prob-
lem by using word embeddings that were trained
on Twitter data for the BiLSTM and character n-
grams for the RF and SVM. Another strategy to
try is to normalize the data into a more canonical
form and feed it to the classifiers. Furthermore,
more experiments could be done by incorporating
different features and exploiting other information
that is available in the data. For example, RF and
SVM classifiers trained on word embeddings and
the use of certain punctuation marks, emojis and
hashtags as separate features could be tried.

Finally, as it was stated in the previous section,
we believe there were some issues with the dataset.
Moreover, hate speech is hard to define and there
is no clear agreement on the definition. This is
why we can be skeptical about the annotation pro-
cedure. Therefore, we believe better datasets are
necessary for the hate speech detection task.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-

487

ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Thomas Davidson, Dana Warmsley, Michael W. Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
ICWSM, pages 512–515.

Fabio Del Vigna, Andrea Cimino, Felice DellOrletta,
Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate me, hate me not: Hate speech detection on
facebook. In Proceedings of the First Italian Con-
ference on Cybersecurity, pages 86–95.

Rob van der Goot and Gertjan van Noord. 2017.
MoNoise: Modeling noise using a modular normal-
ization system. Computational Linguistics in the
Netherlands Journal, 7:129–144.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Proceedings of Workshop at
ICLR.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Haji Mohammad Saleem, Kelly P. Dillon, Susan Be-
nesch, and Derek Ruths. 2016. A web of hate: Tack-
ling hateful speech in online social spaces. Proceed-
ings of the 1st Workshop on Text Analytics for Cyber-
security and Online Safety.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Hajime Watanabe, Mondher Bouazizi, and Tomoaki
Ohtsuki. 2018. Hate speech on twitter: A pragmatic
approach to collect hateful and offensive expressions
and perform hate speech detection. IEEE Access,
6:13825–13835.

Ziqi Zhang and Lei Luo. 2018. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. CoRR, abs/1803.03662.

488

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 489–493
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

The binary trio at SemEval-2019 Task 5: Multitarget Hate Speech
Detection in Tweets

Patricia Chiril
IRIT

Toulouse University
patricia.chiril@irit.fr

Farah Benamara
IRIT, CNRS

Toulouse University
benamara@irit.fr

Véronique Moriceau
LIMSI-CNRS

Univ. Paris-Sud
moriceau@limsi.fr

Abhishek Kumar
Indian Institute of Science

abhishekkumar12@iisc.ac.in

Abstract
The massive growth of user-generated web
content through blogs, online forums and most
notably, social media networks, led to a large
spreading of hatred or abusive messages which
have to be moderated. This paper proposes
a supervised approach to hate speech detec-
tion towards immigrants and women in En-
glish tweets. Several models have been de-
veloped ranging from feature-engineering ap-
proaches to neural ones. We also carried out a
detailed error analysis to show main causes of
misclassification.

1 Motivation

Social media networks such as Facebook, Twit-
ter, blogs and forums, have become a space where
users are free to relate events, personal expe-
riences, but also opinions and sentiments about
products, events or other people. This massive
growth of user generated web content, along with
the interactivity and anonymity the internet pro-
vides, may lead to a large spreading of hatred or
abusive messages which have to be moderated.

In spite of no universally accepted definition of
hate speech and the way it differs from offensive
language, there are some common elements that
seem to arise. In particular, these messages may
express threats, harassment, intimidation or ”dis-
parage a person or a group on the basis of some
characteristic such as race, color, ethnicity, gender,
sexual orientation, nationality, religion, or other
characteristic” (Nockleby, 2000).

In this paper, we focus on automatic hate
speech detection towards two different targets –
immigrants and women and we propose several
multi-target hate speech detection systems. The
task is performed over a collection of English
tweets annotated as conveying hate speech against
both immigrants and women, as part of HateE-
val@SemEval2019 (Basile et al., 2019). The first

challenge involves building a binary classifier able
to determine whether a tweet with a given target
(women or immigrants) is hateful or not hateful.
For this, we propose both features-based models
(relying on both language-dependent and language
independent features) and a neural model. We
also performed a detailed error analysis to iden-
tify main causes of misclassification. Our anal-
ysis shows that errors come from several factors,
which show the complexity of the task: the pres-
ence of irony and sarcasm, the lack of context and
implicit hate speech. We also identified tweets for
which we question the original label when taking
into account the class definition.

The paper is organized as follows. Section 2
briefly presents the current state of the art. Section
3 describes our data and models, while Section 4
analayses the experiments we carried out on multi-
target detection. We conclude by providing some
perspectives for future work.

2 Related work

Hateful speech can be expressed at different lin-
guistic granularity levels going from lexical to dis-
cursive (Cameron, 1992). Both sexism and racism
can be expressed explicitly or implicitly (see the
following tweets from our data) using different
pragmatic devices, including:

• Negative opinion, abusive message: Stop
tweeting about football. You’re a girl and you
opinion doesn’t count. #WomenSuck.

• Stereotype: Illegals are dumping their
kids heres o they can get welfare, aid
and U.S School Ripping off U.S Taxpayers
#SendThemBack ! Stop Alowing illegals to
Abuse the Taxpayer #Immigration.

• Humor, irony, sarcasm: Where is this?
Brazil? Uganda? Sudan? Nope, it is France.

489

Got to love that cultural enrichment thing go-
ing on. #openborders #refugeesnotwelcome
#slums.

For most of the harassment and hate speech de-
tection tasks, the classifiers still rely on supervised
learning, and when creating a new classifier, one
may directly feed different types of features to the
classical algorithms (Naive Bayes, Logistic Re-
gression, Random Forest, SVM) or use deep learn-
ing methods that will automatically learn abstract
features from data instances. Due to the noise
present in the data (especially on social media),
many authors choose to combine n-grams (due to
their high prediction rate) with a large selection
of additional features: linguistic features that take
into consideration the POS information, depen-
dency relations (long-distance relationship in be-
tween words), or word embeddings, which have
the advantage of having similar vector representa-
tions for different, but semantically similar words.
Several approaches incorporate sentiment analy-
sis as a supplementary classification step, assum-
ing that generally negative sentiment relates to a
hateful message (Dinakar et al., 2012; Sood et al.,
2012).

Although within the Automatic Misogyny Iden-
tification shared task at IberEval 2018 the best re-
sults were obtained with Support Vector Machine
models with different feature configurations, there
are also a few notable neural networks techniques
deployed in order to detect hate speech in tweets
that outperform the existing models: in (Badjatiya
et al., 2017) the authors used three methods (Con-
volutional Neural Network (CNN), Long short-
term memory and FastText) combined with either
random or GloVe word embeddings. In (Zhang
and Luo, 2018) the authors implemented two deep
neural network models (CNN + Gated Recurrent
Unit layer and CNN + modified CNN layers for
feature extraction) in order to classify social me-
dia text as racist, sexist, or non-hateful.

3 Multitarget hate speech detection
systems

Automatically labelling tweets as hateful or not
hateful is a challenging task because the language
of tweets is full of grammatically and/or syntactic
errors, it lacks conversational context, might con-
sist of only one or a few words and because they
can be indirectly hateful (by employing techniques

such as sarcasm, satire or irony) it makes the task
of text-based feature extraction difficult.

3.1 Data
Our data comes from two corpora. The first one,
is an already existing corpus containing English
tweets annotated for hate speech against immi-
grants and women, as part of the HatEval task at
SemEval2019 (Basile et al., 2019). The second
one was created as a result of the conclusions we
had drawn after analyzing the data, i.e. we ob-
served that for most of the tweets, even though the
message appeared to be positive, just by having
a certain hashtag used, it becomes negative. The
hashtag importance is also supported by a sim-
ple experiment that includes in the pre-processing
step hashtag removal. This leads to a decrease
in accuracy by 4% and F-score by 5%. Thus we
created a new dataset (DATASET++) by collecting
the most used hashtags (we used scrape-twitter1)
in both hateful (#buildThatWall) and non-hateful
tweets (#refugees), as well as the most used hash-
tags in the misclassified tweets2.

Table 1 shows the distribution of the tweets for
the task of hate speech detection.

Task #hate #nonHate Total
DATASET 5 512 7 559 13 071
DATASET++ 17 989 21 921 39 909

Table 1: Tweet distribution in the corpora

For the task at hand, several models have been
built, all tested using 10-cross-validation. In the
next sections, we detail our models and then pro-
vide our results.

3.2 Models
Baseline (B). In all the experiments, we used Bag
of Words (BoW) model as lexical features. Due
to the noise in the data, we performed standard
text pre-processing by removing user mentions,
URLs, RT, stop words, degraded stop words and
the words containing less than 3 characters, and
we stemmed all the remaining words by using the
Snowball Stemmer3.

Feature-based models. We experimented with
several state of the art features that have shown to

1https://www.npmjs.com/package/scrape-twitter
2#maga, #usa, #trump, #sendThemBack, #immigration,

#noDaca, #deportThemAll, #meToo, #stopTheInvasion, #il-
legalAliens, #apathyKills, #withImmigrants

3http://snowballstem.org

490

be useful in hate speech detection and we relied on
a manually built emoji lexicon that contains 1 644
emojis along with their polarity. We also tested
whether by identifying the users opinion we can
better classify his attitude as hateful or non-hateful
by making use of HurtLex (a multilingual hate
word lexicon divided in 17 categories) (Bassig-
nana et al., 2018) and a lexicon containing 1 818
profanity English words created by combining a
manually built offensive words list, the noswear-
ing dictionary 4 and an offensive word list5.

We experimented with several combinations of
the features above and we used the best perform-
ing ones for training four classifiers:

• C1 : combines the length of the tweet with
the number of words in the HurtLex lexicon
with a Baseline architecture

• C2 : combines the number of words in the
offensive lexicon, the number of positive and
negative emojis and emoticons and the pres-
ence of URLs with a Baseline architecture,
but applied on the extended dataset

• C3 : combines the number of words in the
offensive lexicon, the number of positive and
negative emojis and emoticons and performs
linear dimensionality reduction by means of
truncated Singular Value Decomposition and
used Random Forest only for intermediate
classification, whose output were then com-
bined and passed onto a final Extreme Gradi-
ent Booster classifier

• C4 : the same as C3 but applied on the ex-
tended dataset

Neural model. The last model (C5) used a
Bidirectional LSTM with an attention mechanism.
For the task at hand, we used pre-trained on tweets
Glove embeddings (Pennington et al., 2014).

4 Results

We tried several machine learning algorithms in
order to evaluate and select the best performing
one. Hereby, the hate speech system baseline is
a Random Forest classifier. Table 2 shows how
the experiments were set up and presents the re-
sults in terms of accuracy (A), macro-averaged F-
score (F), precision (P) and recall (R). For each of

4https://www.noswearing.com/dictionary
5http://www.cs.cmu.edu/ biglou/resources/bad-words.txt

the systems we present the results obtained on 10-
cross validation (using the provided train, trial and
dev datasets) and the official results.

Among the five systems, C2 represents our best
performing one during the development phase 6,
while C5 performed best in the evaluation phase.

Due to a significant decrease in both accuracy
and F-score on the official test data, we also in-
vestigated the influence of the data distribution in
the train and test datasets. The results obtained af-
ter shuffling and re-splitting the data (while keep-
ing the original distribution of the tweets) are also
presented in Table 2. It is important to realize
that these results were obtained by using a train-
test configuration on a random test, not by using
cross validation. These results are comparable to
the ones obtained during the development phase.

As we encountered a significant decrease in the
system’s performance in the official test, we de-
cided to conduct a deeper analysis in order to iden-
tify the main causes of errors.

5 Discussion

Error analysis shows that in the misclassification
of hateful instances intervene several factors: the
presence of off-topic tweets, the lack of context
(as some words that trigger hate in certain con-
texts may have different connotations in others)
and implicit hate speech that employs stereotypes
or metaphors in order to convey hatred.

Although the results of the system employed
on the extended dataset seemed promising, we
couldn’t see any improvement on the official test
dataset. This might be as a result of not having any
information on the actual distribution of the tweets
(the number of tweets that convey hate towards
immigrants and the number of tweets that convey
hate towards women, information that might have
been useful when extending the dataset), neither
on the way the annotation was done and our defi-
nition of hate speech (and the way it differs from
offensive language) might have been different. We
also identified tweets for which we question the
original label when taking into account the class
definition. Below, we have provided some exam-
ples.

Example 1: The first tweet (annotated as not
hateful), containing the users opinion on Poland

6As only the last submitted system was taken into con-
sideration, this also corresponds to the system used for the
official ranking

491

10-cross validation results Official results Train-test configuration
on a random test

A F P R A F P R A F P R
B 0.772 0.762 0.764 0.669 − − − − 0.756 0.747 0.730 0.671
C1 0.733 0.747 0.623 0.716 0.461 0.401 0.566 0.523 0.757 0.747 0.732 0.666
C2* 0.934 0.938 0.917 0.934 0.437 0.351 0.540 0.508 0.856 0.824 0.844 0.805
C3 0.711 0.707 0.607 0.700 0.450 0.393 0.532 0.513 0.750 0.743 0.701 0.704
C4 0.924 0.927 0.904 0.923 0.448 0.388 0.530 0.511 0.835 0.820 0.829 0.813
C5 0.736 0.727 0.709 0.646 0.5 0.471 0.581 0.551 0.793 0.779 0.830 0.773

Table 2: Hate speech detection results. Best results are presented in bold font while * marks the system
submitted for the official ranking.

receiving immigrants, seems more hateful than the
second tweet (hateful), in which the user depicts a
series of events.

• If Germans want rapefugees 7 they can keep
them. Poland will not accept a single
rapefugee. Not even one!!! Poland remains
proud and firm! https://t.co/VHoFrxFjB1

• GERAMNY: African rapefugee climbs into
house, steel expensive goods, rook a
knife and abuse a girl of the family.
https://t.co/fVXhWMYcE8

Example 2: Although in the first tweet (not
hateful) the user talks about Donald Trump, which
doesn’t fit in the targeted categories, the annota-
tion raises problems when trying to classify tweets
such as the second one (annotated as hateful).

• I love my religious brothers and sisters, but
@realDonaldTrump, FUCK YOU, YOU’RE
NOT EVEN A REAL THEOCRAT YOU
FAT USLESS BITCH.

• @menzemerized Worse i have proof. A pic-
ture i took of you and one you took of me on
the same night. Useless ungreatful kunt!

6 Conclusion

This paper proposed several models that can be
used in order to identify messages that convey
hate towards women and immigrants, incorporat-
ing a variety of features for capturing offensive
language. Our results revealed good classication
performance on the training dataset, but a lower
performance on the evaluation data, with a notable
decrease in both accuracy and F-score. Error anal-
ysis shows that this decrease is mainly due to the

7Accordind to Urban Dictionary, the term rapefugee is
usually used when referring to the Muslim refugees coming
into Europe in a derogatory way, as refugees are perceived as
being more likely to raping people.

lack of context to infer hateful intents, and the way
hate speech was defined in the manual annotation
of the dataset.

As the meaning of a message might change in
different contexts (as it can be highly dependent
on knowledge about the world), in our future work
we plan on studying ways to retrieve contextual
information.

Acknowledgments

This work has been funded by Maison des Sci-
ences de l’Homme et de la Société de Toulouse
under the project AMeSexTo.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Elisa Bassignana, Valerio Basile, and Viviana Patti.
2018. Hurtlex: A multilingual lexicon of words to
hurt. In 5th Italian Conference on Computational
Linguistics, CLiC-it 2018, volume 2253, pages 1–6.
CEUR-WS.

Deborah Cameron. 1992. Feminism and Linguistic
Theory. Palgrave Macmillan.

Karthik Dinakar, Birago Jones, Catherine Havasi,
Henry Lieberman, and Rosalind Picard. 2012. Com-
mon sense reasoning for detection, prevention, and
mitigation of cyberbullying. ACM Transactions on
Interactive Intelligent Systems (TiiS), 2(3):18.

492

John T. Nockleby. 2000. Hate speech. In Encyclo-
pedia of the American Constitution (2nd ed., edited
by Leonard W. Levy, Kenneth L. Karst et al., pages
1277–1279.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Sara Owsley Sood, Elizabeth F Churchill, and Judd
Antin. 2012. Automatic identification of personal
insults on social news sites. Journal of the Ameri-
can Society for Information Science and Technology,
63(2):270–285.

Ziqi Zhang and Lei Luo. 2018. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. arXiv preprint arXiv:1803.03662.

493

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 494–497
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

The Titans at SemEval-2019 Task 5: Detection of hate speech against
immigrants and women in Twitter

Avishek Garain
Computer Science and Engineering

Jadavpur University, Kolkata
avishekgarain@gmail.com

Arpan Basu
Computer Science and Engineering

Jadavpur University, Kolkata
arpan0123@gmail.com

Abstract

This system paper is a description of the sys-
tem submitted to “SemEval-2019 Task 5” Task
B for the English language, where we had to
primarily detect hate speech and then detect
aggressive behaviour and its target audience in
Twitter. There were two specific target audi-
ences, immigrants and women. The language
of the tweets was English. We were required to
first detect whether a tweet is containing hate
speech. Thereafter we were required to find
whether the tweet was showing aggressive be-
haviour, and then we had to find whether the
targeted audience was an individual or a group
of people.

1 Introduction

Hate speech attacks a person or a group on the ba-
sis of attributes such as race, religion, ethnic ori-
gin, national origin, sex, disability, sexual orienta-
tion or gender identity. In the same time, flames
(such as rants, taunts, and squalid phrases) are of-
fensive/abusive phrases which might attack or of-
fend the users for a variety of reasons. This is very
pertinent due to rise of text messaging through the
Internet or cellular phones, which has become a
major medium of personal and commercial com-
munication.

Aggression is overt, often harmful, social inter-
action with the intention of inflicting damage or
other unpleasantness upon another individual. It
may occur either in retaliation or without provo-
cation. In humans, frustration due to blocked
goals can cause aggression. Human aggression
can be classified into direct and indirect aggres-
sion; whilst the former is characterized by physi-
cal or verbal behavior intended to cause harm to
someone, the latter is characterized by behavior
intended to harm the social relations of an indi-
vidual or group.

Hate speech and offensive language are perva-
sive in social media. Online communities, social

media platforms, and technology companies have
been researching heavily in ways to cope with this
phenomena to prevent abusive behavior in social
media. This is due to text messaging through the
Internet or cellular phones, which has become a
major medium of personal and commercial com-
munication.

One of the most effective strategies for tack-
ling this problem is to use computational meth-
ods to identify hate speech and aggression in user-
generated content (e.g. posts, comments, tweets
etc.). This topic has attracted significant attention
in recent years of various Natural Language ana-
lysts.

The SemEval 2019 task 5 (Basile et al., 2019)
was a classification task where we were required to
classify a tweet as containing hate speech or other-
wise. However, there were some additional chal-
lenges presented, which involved automatic detec-
tion of aggression, and classification the target au-
dience as an individual or group of people.

To solve the task in hand we built a bidirectional
LSTM based neural network for prediction of the
three classes present in the provided dataset. In the
first subtask our system categorized the instances
into HS and NOT. In the second subtask our sys-
tem categorized instances into AGR and NOT. In
the third subtask our system categorized instances
into IN or GRP.

The paper has been organized as follows. Sec-
tion 2 describes a brief survey on the relevant work
done in this field. Section 3 describes the data,
on which, the task was performed. The method-
ology followed is described in Section 4. This is
followed by the results and concluding remarks in
Section 5 and 6 respectively.

2 Related Work

Papers which have been published in the last two
years include the surveys by (Schmidt and Wie-
gand, 2017) and (Fortuna and Nunes, 2018), the

494

paper by (Davidson et al., 2017) presenting the
Hate Speech Detection dataset used in (Malmasi
and Zampieri, 2017) and a few other recent papers
such as (ElSherief et al., 2018; Gambäck and Sik-
dar, 2017; Zhang et al., 2018).

We were guided by the work of (Zhang et al.,
2018) who used a CNN+GRU based approach for
a similar task. We use an approach which was in-
fluenced by this work but used an LSTM based
approach.

A proposal of typology of abusive language
sub-tasks is presented in (Waseem et al., 2017).
For studies on languages other than English see
(Su et al., 2017) on Chinese and (Fišer et al., 2017)
on Slovene. Finally, for recent discussion on iden-
tifying profanity vs. hate speech see (Malmasi and
Zampieri, 2018). This work highlighted the chal-
lenges of distinguishing between profanity, and
threatening language which may not actually con-
tain profane language.

Previous editions of related workshops are TA-
COS1, Abusive Language Online2, and TRAC3

and related shared tasks are GermEval (Wiegand
et al., 2018) and TRAC (Kumar et al., 2018).

3 Data

The dataset that was used to train the model is the
HatEval dataset (Basile et al., 2019). It was col-
lected from Twitter; the data being retrieved the
data using the Twitter API by searching for key-
words and constructions that are often included in
aggressive messages.

Label Meaning
HS Whether the tweet contains hate speech

or not
TR Whether the tweet containing profan-

ity is targeted against some individ-
ual/group/others

AG Whether the tweet contains aggressive
behaviour or not

Table 1: Labels used in the dataset

The dataset provided consisted of tweets in their
original form along with the corresponding HS, TR
and AG labels. The dataset had 9000 instances of

1http://ta-cos.org/
2https://sites.google.com/site/

abusivelanguageworkshop2017/
3https://sites.google.com/view/trac1/

home

training data and 1000 instances of development
data. Our approach was to convert the tweet into a
sequence of words and then run a neural-network
based algorithm on the processed tweet.

Value HS TR AG
0 5217 2442 2224
1 3783 1341 1559

All 9000 3783 3783

Table 2: Distribution of the labels in the training dataset

Value HS TR AG
0 573 208 223
1 427 219 204

All 1000 427 427

Table 3: Distribution of the labels in the development
dataset

The provided training and development data
were merged and shuffled to create a bigger train-
ing set, and we refer to the same as training data
when we discuss our methodology.

Value HS TR AG
0 5790 2650 2447
1 4210 1560 1763

All 10000 4210 4210

Table 4: Distribution of the labels in the combined
dataset

4 Methodology

The first stage in our pipeline was to preprocess
the tweet. This consisted of the following steps:

1. Removing mentions
2. Removing punctuations
3. Removing URLs
4. Contracting whitespace
5. Extracting words from hashtags

The last step (step 5) consists of taking ad-
vantage of the Pascal Casing of hashtags (e.g.
#PascalCasing). A simple regex can extract
all words; we ignore a few errors that arise in this
procedure. This extraction results in better perfor-
mance mainly because words in hashtags, to some
extent, may convey sentiments of hate. They play
an important role during the model-training stage.

We treat the tweet as a sequence of words with
interdependence among various words contribut-

495

ing to its meaning. Hence we use an bidirec-
tional LSTM based approach to capture informa-
tion from both the past and future context.

Our model is a neural-network based model.
First, the input tweet is passed through an em-
bedding layer which transforms the tweet into a
128 length vector. The embedding layer learns the
word embeddings from the input tweets. This is
followed by two bidirectional LSTM layers con-
taining 64 units each. This is followed by the
final output layer of neurons with softmax acti-
vation, each neuron predicting a label as present
in the dataset. For subtasks 1, 2 and 3, we train
separate models containing 2 neurons for predict-
ing HS(0/1), TR(0/1) and AG(0/1) respec-
tively. Between the LSTM and output layers, we
add dropout with a rate of 0.5 as a regularizer. The
model is trained using the Adam optimization al-
gorithm with a learning rate of 0.0005 and using
crossentropy as the loss.

We note that the dataset is highly skewed in na-
ture. If trained on the entire training dataset with-
out any validation, the model tends to completely
overfit to the class with higher frequency as it leads
to a higher accuracy score.

To overcome this problem, we took some mea-
sures. Firstly, the training data was split into two
parts — one for training and one for validation
comprising 70 % and 30 % of the dataset respec-
tively. The training was stopped when two consec-
utive epochs increased the measured loss function
value for the validation set.

Secondly, class weights were assigned to the
different classes present in the data. The weights
were approximately chosen to be proportional to
the inverse of the respective frequencies of the
classes. Intuitively, the model now gives equal
weight to the skewed classes and this penalizes
tendencies to overfit to the data.

5 Results

We participated in English Task B of Semeval
2019 task 5 (HatEval) and our system ranks fourth
among the competing participants.

We have included the automatically generated
tables with our results. We have also included the
provided baselines generated by MFC and SVC
classifiers respectively. The SVC baseline is gen-
erated by a linear SVM based on a TF-IDF rep-
resentation. The MFC baseline assigns the most
frequent label in the training set to all instances

present in the test set. We have used these base-
lines for comparison.

System Train (%) Validation (%)
Without 99.82 66.74

With 99.95 70.31

Table 5: Comparison of development phase accuracies
with and without hashtag preprocessing

System F1 (avg) EMR
MFC baseline 0.421 0.580
SVC baseline 0.578 0.308
BiLSTM 0.471 0.482

Table 6: Overall Metrics

System F1 Accuracy
MFC baseline 0.367 0.580
SVC baseline 0.45 0.491
BiLSTM 0.484 0.573

Table 7: HS Metrics

System F1 Accuracy
MFC baseline 0.452 0.824
SVC baseline 0.697 0.785
BiLSTM 0.464 0.817

Table 8: TR Metrics

System F1 Accuracy
MFC baseline 0.445 0.802
SVC baseline 0.587 0.692
BiLSTM 0.464 0.763

Table 9: AG Metrics

6 Conclusion

Here we have presented a model which performs
satisfactorily in the given tasks. The model is
based on a simple architecture. There is scope
for improvement by including more features (like
those removed in the preprocessing step) to in-
crease performance. Another drawback of the
model is that it does not use any external data other
than the dataset provided which may lead to poor
results based on the modest size of the data. Re-
lated domain knowledge may be exploited to ob-
tain better results.

496

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

497

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 498–502
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

TuEval at SemEval-2019 Task 5: LSTM Approach to Hate Speech
Detection in English and Spanish

Mihai Manolescu Denise Löfflad Adham Nasser Mohamed Saber
Masoumeh Moradipour Tari

{mihai.manolescu, denise.loefflad, adham-nasser.mohamed-saber,
masoumeh.moradipour-tari} @student.uni-tuebingen.de

Eberhard-Karls University of Tübingen

Abstract
The detection of hate speech, especially in on-
line platforms and forums, is quickly becom-
ing a hot topic as anti-hate speech legislation
begins to be applied to public discourse on-
line. The HatEval shared task was created with
this in mind; participants were expected to de-
velop a model capable of determining whether
or not input (in this case, Twitter posts in En-
glish and Spanish) could be considered hate
speech (designated as Subtask A), if they were
aggressive, and whether the tweet was target-
ing an individual, or speaking generally (Sub-
task B). We approached this Subtask by creat-
ing a LSTM model with an embedding layer.
We found that our model performed consid-
erably better on English language input when
compared to Spanish language input. In En-
glish, we achieved an F1-Score of 0.466 for
Subtask A and 0.462 for Subtask B; In Span-
ish, we achieved scores of 0.617 and 0.612 on
Subtask A and Subtask B, respectively.

1 Introduction

Social media plays an important role nowadays
and dominates everyday life. Social networks like
Facebook, Twitter and Instagram are platforms
where people express thoughts, feelings and
emotions regarding themselves or others. This can
lead to different opinions colliding and creating
conflicts. Often, feelings are not expressed objec-
tively and can be offensive to other users. In order
to make social media more comfortable, so called
hate speech needs to be detected and removed.
Hate speech is here defined as: Any communi-
cation that disparages a person or a group on the
basis of some characteristic such as race, color,
ethnicity, gender, sexual orientation, nationality,
religion, or other characteristics (Basile et al.,
2019). To assure there is no spread of illegal hate
speech, the EU has created a code of conduct for
social media platforms (European Union, 2018)

that needs to be followed. According to these EU
regulations, social media platforms must regulate
hateful speech. In addition, social media occupies
an increasingly larger portion of public discourse;
even without these EU regulations, it seems that
these platforms should have some methods for
controlling violent discourse.
For these reasons, the HatEval shared task (Basile
et al., 2019) was created. The task is divided
into two subtasks; Subtask A is hate speech
detection against immigrants and women, a binary
classification problem where a tweet is classified
as either hateful or not hateful. Subtask B is
determining whether a given tweet is aggressive,
and whether it is targeting an individual, or not
referring to any particular person. Further, each
of these Subtasks is evaluated on English tweets
and using Spanish tweets. We were provided
a 9000-tweet English training set, and a 5000
tweet Spanish training set. The training sets
were manually tagged as hateful or not hateful,
aggressive or not aggressive, and targeted or not
targeted - examples of tweets marked as hateful
can be seen in Figures 1 and 2 below.

Figure 1: Example of a hateful English tweet.

In this paper, we detail our methods for ap-
proaching these problems. We will first cover
related works before detailing our specific so-
lutions for Subtask A and Subtask B; we will
then cover our model (and previously attempted

498

Figure 2: Example of a hateful Spanish tweet.

models) and present our results. Hate speech
detection is naturally a far reaching topic, and in
conclusion we will discuss the implications of our
work for the field in general.

2 Related Work

To begin, we attempted to take a brief survey
of previous work in the field of hate speech de-
tection. Since this is, at heart, a binary classi-
fication task, we saw that there were many es-
tablished approaches to solving this problem -
various machine learning techniques, according
to our research, were shown to be valid, such
as Recurrent and Convolutional Neural Networks
(RNN and CNNs) (Stammbach et al., 2018),
Support Vector Machines (SVMs) (Malmasi and
Zampieri, 2017), Long Short Term Memory mod-
els (LSTMs) (Zhang et al., 2015; Risch et al.,
2018), as well as simpler linear regression ap-
proaches (Kent, 2018). In our estimation, we de-
termined that LSTM approaches were most suc-
cessful (Golem et al., 2018; Del Vigna12 et al.,
2017), and took such an approach in the creation
of our model. Some other approaches were too
computationally expensive; in addition, we felt
that, due to the nebulous nature of hate speech
determination, the additional information captured
by an LSTM model would be worthwhile in these
tasks. We also determined that, for such a task, the
use of non-word features would be superfluous, as
previous work had shown them to decrease per-
formance (Stammbach et al., 2018), and this was
supported by other works on simple classification
tasks, even when LSTMs or RNNs were not used
(Malmasi and Zampieri, 2017). Research showed
that various features, including emoticons, senti-
ment analysis, and number of characters tended to
hurt performance (Kent, 2018).
Predictably, most work done on this topic has fo-
cused on English language data; we found only
a few papers on Spanish language hate speech
detection (Álvarez-Carmona et al., 2018; Fersini

et al., 2018), which we attempted to use to ensure
our model would function across language bound-
aries.

3 Model

At the outset, we employed a simple unidirec-
tional, 1-layer LSTM model. As we saw prelimi-
nary results we altered our model accordingly. We
also attempted to use a 2-layer LSTM model, and
settled on a 1-layer LSTM model with a simple
embedding layer, using mainly the Keras (Chollet
et al., 2015) library.

3.1 Pre-Processing

Based on our research, we saw that limited pre-
processing of the data set could improve perfor-
mance; to that end, the following pre-processing
steps were taken:

• replace usernames with username markers

• remove punctuation and special characters
(@ / , ; . : ? ¿ ¡ ! $)

• lowercase

We made the decision not to omit hashtags; while
usernames do not necessarily convey information
pertinent to the tweet itself, it was determined that
hashtags are frequently used for meaningful pur-
poses and must be considered when attempting to
classify Twitter data. We attempted to expand our
pre-processing efforts when dealing with Spanish
language data after seeing early results (replacing
characters such as ‘ñ´ with ‘n´ for example), but
without success; such efforts hurt our model more
than they helped.

3.2 Recurrent Neural Network

Our model used character based representations of
all data. We used an embedding layer with in-
put dimension of 5000 and an output of 28; in-
put length was determined by finding the length
of the longest item in the data set, and padding
all representations to this length. Additionally, we
used an LSTM layer with 64 units, with a dropout
rate of 0.1 (determined after simple trial and er-
ror tests), and our model employed a sigmoid ac-
tivation function and a binary cross entropy loss
function. Our model was trained for 50 epochs on
the English language dataset, and 20 epochs on the
Spanish language dataset.

499

Models F1-score
1-Layer LSTM 0.31
2-Layer LSTM 0.42
1-Layer LSTM w/ Embedding 0.69

Table 1: Development set F1-scores for prelimi-
nary testing of models.

4 Evaluation

We first evaluated our preliminary models using
the development data set, specifically using results
of Subtask A in English to determine which of our
beginning approaches was most successful. Af-
ter this determination, we expanded upon our best
working model (the simple LSTM model with em-
bedding layer), and proceeded to use this approach
to handle all tasks in both languages. We cal-
culated the F1-score for each of our models, and
used this for our evaluations. As shown in Ta-
ble 1, the 1-Layer LSTM model with Embedding
outperformed our other two models significantly
and achieved an F1-Score of 0.69 on the develop-
ment set.

tasks Accuracy Precision Recall F1-score EMR
Subtask A (En.) 0.488 0.548 0.533 0.466 N/A
Subtask B (En.) 0.565 0.497 0.482 0.462 0.173
Subtask A (Sp.) 0.630 0.618 0.617 0.617 N/A
Subtask B (Sp.) 0.680 0.629 0.608 0.612 0.428

Table 2: Results for Tasks A and B in English and
Spanish.

The average results for each metric are shown in
Table 2. The final ranking for Subtask A for En-
glish, as well as Spanish, was based on the F1-
score. Our F1-score was 0.466 for English, which
ranked us 27th out of 69 teams that submitted a re-
sult for this Task. Since we had some problems
with the Spanish data set, we could only submit
one solution for Subtask A, which placed us 36th

out of 39 teams.
Evaluation for Subtask B was based on two criteria
- partial match and exact match. For partial match,
each dimension that needs to be predicted, is being
looked at independently and therefore the usual
evaluation metrics are being used (Precision, Ac-
curacy, Recall and F1-Score). For the exact match
all the dimensions to be predicted are jointly con-
sidered. Ranking was solely based on the score
of the Exact Match Ratio (EMR). For English we
achieved an EMR score of 0.173, which ranked
us second to last, even if our average F1-score was

higher than other systems’. Since we had the same
problems as in Subtask A, we again were only
able to submit one file in Subtask B for Spanish,
where we achieved an EMR of 0.428 and an av-
erage F1-Score of 0.612. The significant differ-
ence for the F1-Score between English and Span-
ish comes from the fact that there was less training
data for Spanish compared to English.

5 Conclusion & Future Work

We created a simple LSTM model and applied it
to all tasks - detecting hate speech, determining
aggression, and determining targeted or general
speech, achieving F1-scores of 0.466 and 0.462
for Subtask A and B in English, and scores of
0.617 and 0.612 for Tasks A and B in Spanish. In
our work, we saw that our model performed con-
siderably better on English language data when
compared to Spanish language data. We were
not able to reduce this discrepancy with additional
pre-processing of Spanish language data. The
difference in performance may be explained by
the nature of Spanish language discourse online
- perhaps there is greater accent- or dialect-based
difference in Spanish when compared to English
(Çöltekin and Rama, 2018), which could confound
attempts to train a model off of a Spanish lan-
guage corpus that does not specifically control for
dialect.
There is still much work to be done in the field of
hate speech evaluation. It is possible that a large
improvement in performance would be seen if
word representations were used instead of charac-
ter representations; much of the vocabulary of on-
line communication and discourse involves the use
of colloquialisms, informal speech, and metaphor-
ical language, which word based representations
could perhaps better capture. Further, contextual
information from the rest of a particular tweet
could also help in determining whether or not a
given word is being used in a malicious way; this
information could have been captured through the
use of n-gram models or contextual word repre-
sentation methods. Using meta-information about
a particular user, topic, or hashtag could have
also improve performance (Schmidt and Wiegand,
2017); such methods go outside the scope of the
shared task, but it is conceivable that a platform
such as Twitter could consider previous tweets of
a given user, or perhaps topic modelling methods,
in a commercial hate speech detection model (for

500

example, it seems rational to consider a tweet with
a topic such as ’right wing politics’ more likely to
be hate speech than a tweet with the topic ’gar-
dening’). The use of lexical resources like lists
of slurs have also shown to be effective in combi-
nation with other features (Schmidt and Wiegand,
2017; Davidson et al., 2017). Work could also be
done in hate speech detection in long form doc-
uments; it goes without saying that a model that
can effectively detect hate speech in short, one- to
three-sentence tweets will not necessarily perform
as well on longer corpora, such as articles. In these
cases, context-based word representations, n-gram
models, etc. could become even more valuable.

References

Álvarez-Carmona, M. Á., Guzmán-Falcón, E.,
Montes-y Gómez, M., Escalante, H. J.,
Villasenor-Pineda, L., Reyes-Meza, V., and
Rico-Sulayes, A. (2018). Overview of MEX-
A3T at IberEval 2018: Authorship and Ag-
gressiveness Analysis in Mexican Spanish
Tweets. In Notebook Papers of 3rd SE-
PLN Workshop on Evaluation of Human Lan-
guage Technologies for Iberian Languages
(IBEREVAL), Seville, Spain.

Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti,
V., Rangel, F., Rosso, P., and Sanguinetti,
M. (2019). Semeval-2019 Task 5: Multilin-
gual Detection of Hate Speech Against Im-
migrants and Women in Twitter. In Proceed-
ings of the 13th International Workshop on
Semantic Evaluation (SemEval-2019). Asso-
ciation for Computational Linguistics.

Chollet, F. et al. (2015). Keras. https://
keras.io.

Çöltekin, Ç. and Rama, T. (2018). Tübingen-Oslo
at Semeval-2018 task 2: SVMs perform bet-
ter than RNNs in Emoji Prediction. In Pro-
ceedings of The 12th International Workshop
on Semantic Evaluation.

Davidson, T., Warmsley, D., Macy, M., and Weber,
I. (2017). Automated Hate Speech Detection
and the Problem of offensive language. In
Eleventh International AAAI Conference on
Web and Social Media.

Del Vigna12, F., Cimino23, A., Dell’Orletta, F.,
Petrocchi, M., and Tesconi, M. (2017). Hate

me, hate me not: Hate speech detection on
Facebook.

European Union (2018). Code of Conduct
on countering illegal Hate Speech on-
line. https://ec.europa.eu/
info/sites/info/files/code_of_
conduct_on_countering_illegal_
hate_speech_online_en.pdf. [On-
line; accessed 16-February-2019].

Fersini, E., Rosso, P., and Anzovino, M. (2018).
Overview of the Task on Automatic Misog-
yny Identification at Ibereval 2018. Pro-
ceedings of the Third Workshop on Eval-
uation of Human Language Technologies
for Iberian Languages (IberEval 2018), co-
located with 34th Conference of the Span-
ish Society for Natural Language Processing
(SEPLN 2018). CEUR Workshop Proceed-
ings. CEUR-WS.org.

Golem, V., Karan, M., and Šnajder, J. (2018).
Combining Shallow and Deep Learning for
Aggressive Text Detection. In Proceedings
of the First Workshop on Trolling, Aggression
and Cyberbullying (TRAC-2018).

Kent, S. (2018). German Hate Speech Detection
on Twitter. Proceedings of the GermEval
2018 Workshop.

Malmasi, S. and Zampieri, M. (2017). Detect-
ing Hate Speech in Social Media. Proceed-
ings of the International Conference Recent
Advances in Natural Language Processing,
RANLP 2017.

Risch, J., Krebs, E., Löser, A., Riese, A., and
Krestel, R. (2018). Fine-Grained Classifi-
cation of Offensive Language. Proceedings
of the GermEval 2018 Workshop.

Schmidt, A. and Wiegand, M. (2017). A Sur-
vey on Hate Speech Detection using Natu-
ral Language Processing. In Proceedings of
the Fifth International Workshop on Natural
Language Processing for Social Media.

Stammbach, D., Zahraei, A., Stadnikova, P., and
Klakow, D. (2018). Offensive Language De-
tection with Neural Networks for Germeval
Task 2018. Proceedings of the GermEval
2018 Workshop.

501

Zhang, X., Zhao, J., and LeCun, Y. (2015).
Character-level Convolutional Networks for
Text Classification. In Advances in neural in-
formation processing systems.

502

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 503–507
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Tw-StAR at SemEval-2019 Task 5: N-gram embeddings for Hate Speech
Detection in Multilingual Tweets

Hala Mulki∗, Chedi Bechikh Ali∗∗, Hatem Haddad†§ and Ismail Babaoğlu∗

∗Department of Computer Engineering, Selcuk University, Turkey
∗∗LISI Laboratory, INSAT, Carthage University, Tunisia

†RIADI Laboratory, National School of Computer Sciences, University of Manouba, Tunisia
§iCompass Consulting, Tunisia

halamulki@selcuk.edu.tr,chedi.bechikh@gmail.com
haddad.Hatem@gmail.com,ibabaoglu@selcuk.edu.tr

Abstract

In this paper, we describe our contribution in
SemEval-2019: subtask A of task 5 “Multilin-
gual detection of hate speech against immi-
grants and women in Twitter (HatEval)”. We
developed two hate speech detection model
variants through Tw-StAR framework. While
the first model adopted one-hot encoding n-
grams to train an NB classifier, the second gen-
erated and learned n-gram embeddings within
a feedforward neural network. For both mod-
els, specific terms, selected via MWT patterns,
were tagged in the input data. With two fea-
ture types employed, we could investigate the
ability of n-gram embeddings to rival one-hot
n-grams. Our results showed that in English,
n-gram embeddings outperformed one-hot n-
grams. However, representing Spanish tweets
by one-hot n-grams yielded a slightly better
performance compared to that of n-gram em-
beddings. The official ranking indicated that
Tw-StAR ranked 9th for English and 20th for
Spanish.

1 Introduction

Under the guise of free speech, social media sys-
tems have been misused by some users who em-
bed hatred, offensive, racist or negative stereo-
typing contents within their shared posts. Unfor-
tunately, online Hate Speech (HS) is spreading
widely, forming a serious problem that can lead to
actual hate crimes (Matsuda, 2018). Many coun-
tries adopted laws prohibiting HS where people
convicted of using HS can face large fines and
even imprisonment. Although Twitter has its anti
HS policy∗, the increasing size of the daily-shared
tweets in addition to multilingualism and informal
writing issues evoke the necessity for automatic
HS detection in tweets.

∗support.twitter.com/articles/
20175050

Hate speech detection problem has been ad-
dressed as a machine learning classification task.
Recent studies proposed multiple HS detection
models with different characteristic in terms of
features, classification algorithms and implemen-
tation architectures. While some HS models em-
ployed hand-crafted features generated by NLP
tools and external semantic resources, other mod-
els adopted text embedding features that are auto-
matically learned from the corpus itself. Both fea-
ture types were fed to train either traditional clas-
sifiers such as Support Vector Machines (SVM),
Naive Bayes (NB) and so forth, or more compli-
cated deep learning-based classifiers such as Con-
volutional Neural Network (CNN), Long Short-
Term Memory (LSTM) and Recurrent Neural Net-
work (RNN) (Schmidt and Wiegand, 2017). The
variety of hand-crafted features enabled obtain-
ing reliable performances. However, generating
such features based on morphological NLP tools
or semantic resources remains laborious. In con-
trast, embedding features are easier to generate
and can yield good HS classification results when
used within deep learning architectures (Yuan
et al., 2016). Nevertheless, producing good perfor-
mances via deep neural systems requires provid-
ing large-sized labeled training data, tuning many
hyper parameters and high computation/time cost.
In line with Tw-StAR framework (Mulki et al.,
2017, 2018a), we propose, here, an HS model
based on the hypothesis that, pairing between n-
gram embeddings and less-complicated architec-
tures i.e. feedforward neural network can lead to
an efficient HS detection with least complexity.

2 Hate Speech Detection Models

According to the used features, HS detection mod-
els can be classified into hand-crafted-based and
text embeddings-based.

503

2.1 Hand-Crafted-based Models

Being a user-generated content, HS terms tend to
have variant writing shapes. (Waseem and Hovy,
2016) handled this issue by using char-grams to
train an LR classifier. Combining char-grams with
extra linguistic features such as word n-grams and
user’s gender improved the performance.

Additional user-related features were studied in
(Unsvåg and Gambäck, 2018) within a multilin-
gual HS detection task. Single and combined fea-
tures were fed into an LR classifier. The study
showed that specific user features favorably im-
pact the performance.

The winning system (Pamungkas et al., 2018)
in misogyny detection contest (Fersini et al., 2018)
examined several sets of hand-crafted features in-
cluding stylistic, lexical and structural. The fea-
tures were formulated within one-hot/sparse en-
coding vectors and fed into an SVM classifier. It
was noted that using features from HurtLex lexi-
con (Bassignana et al., 2018) enriched the lexical
features set and enhanced the performance.

2.2 Text Embeddings-based Models

In these models, the input text is represented us-
ing dense, low-dimentional and real-valued vec-
tors. In (Nobata et al., 2016), a comprehensive
comparison was conducted among three embed-
ding feature types: doc2vec (Le and Mikolov,
2014), word2vec and pretrained word embeddings
against hand-crafted features. Using a regression
model trained with the previous features, it could
be noted that while doc2vec embeddings outper-
formed the other embedding features, combining
them with all other features could further enhance
the HS content recognition.

(Badjatiya et al., 2017) explored CNN, LSTM
and FastText models to learn embedding features
needed to classify HS contents. These models
were trained by embedding features and evalu-
ated against each other and towards SVM, LR and
GBDT classifiers trained with hand-crafted fea-
tures. Moreover, the authors explored training an
GDBT classifier with word embeddings learned
via various deep models. While CNN was the best-
performing deep model, using the word embed-
dings learned via LSTM to train the simple less-
complicated GDBT classifier improved the results.

In (Gambäck and Sikdar, 2017), context-aware
word embeddings learned by word2vec, char 4-
grams and a combination of both were used to

train a CNN-based classifier. The proposed model
was compared with an LR classifier trained via
n-gram features (Waseem and Hovy, 2016). The
results showed that regardless of the used embed-
dings type, CNN model outperformed the baseline
model. Moreover, word2vec embeddings were
of the best classification performance among the
other embedding features.

3 Tw-StAR HS Detection Model

To detect HS in English and Spanish datasets pro-
vided by (Basile et al., 2019), Tw-StAR (see Fig-
ure 1) was applied through the following steps:

3.1 Preprocessing

• Initial preprocessing: includes removing the
non-sentimental content such as URLs, user-
names, digits, hashtag symbols and punctua-
tion from both datasets (Mulki et al., 2018b).

• Stopwords removal: for English and Span-
ish, we removed stopwords using 1,012 En-
glish stopwords and 731 Spanish stopwrods
derived from Terrier package† and snowball‡,
respectively.

• Lemmatization: we adopted Treetagger lem-
matizer (Schmid, 1999); as it was used suc-
cessfully for English and Spanish in (Mulki
et al., 2018a). TreeTagger forms a language-
independent tool to annotate texts with part-
of-speech and lemma information.

• Hate indicatives tagging: Multi-word terms
(MWT) are meaning indicators of a sen-
tence/document (Henry et al., 2018; Bechikh-
Ali et al., 2019). In our case, they can rep-
resent the entities discussed within a tweet.
As our objective is to infer HS in tweets,
we believe that recognizing MWT can as-
sist in identifying the important entities re-
lated to hate speech or victims of hate
speech. This has been practically noticed
among the MWT extracted from the train-
ing set as we can mention: african migrant,
Iraqi refugee terrorist, Muslim refugee, im-
migration negative effect. It should be noted
that, MWT were extracted from hate tweets
contained in the training set. Later, the ex-
tracted MWT were replaced in both training
†https://bitbucket.org/kganes2/
‡http://snowball.tartarus.org/

504

Figure 1: Tw-StAR framework

and dev/test sets with the tag “HateWord”.
MWT identification process was performed
through two steps: (a) Shallow syntactic pars-
ing where each word was tagged with its syn-
tactic category using Treetagger that supports
English and Spanish, and (b) MWT extrac-
tion conducted based on specific syntactic
patterns of noun and adjective combinations
using this schema:

MWT=(Adj|N)∗(N|NP)(N|Adj|NP)∗

where * denotes a list of 0 or more ele-
ments, the MWT length varies between 2 and
4 words. Adj, N and NP refer to adjective,
noun and proper noun, respectively.

3.2 Feature Extraction
Two types of features were generated to train both
model variants of Tw-StAR.

• One-hot n-grams: are generated by subject-
ing the preprocessed tweets to tokeniza-
tion. Three N-grams schemes including un-
igrams, bigrams and trigrams were adopted.
For a certain n-grams scheme, a tweet’s fea-
ture vector is constructed via examining the
presence/absence of this scheme among the
tweet’s tokens. Thus, the feature vectors are
formulated as one-hot encoding vectors with
binary values “1” (presence) or “0” (ab-
sence). Term frequency (TF) property was
employed to reduce the features size accord-
ing to predefined frequency thresholds.

• N-gram embeddings: Based on word embed-
dings initialized randomly at the embedding
layer of Tw-StAR Feedforward neural model,
n-gram embeddings are produced by apply-
ing a composition function over a specific
number of word embedding vectors. In our
experiments, we used the additive composi-
tion function, known as Sum Of Word Em-
beddings (SOWE). While composing an n-
gram embedding vector, by performing an

element-wise sum over word embedding vec-
tors, SOWE considers the co-occurrence in-
formation of the n-gram words and totally ig-
nores the local word order.

3.3 Hate Speech Classification
Using the generated features a Naive Bayes (NB)
classifier and a feedforward neural network model
were trained:

• Naive Bayes model: with one-hot n-gram
features, we used an NB classifier imple-
mented as a multinomial NB decision rule to-
gether with binary-valued features.

• Feedforward neural network : this model was
developed with the following layers:

– Embeddings layer receives the n-grams
generated for each input tweet and map
their constituent words into their cor-
responding word dense representations.
N-grams are produced by going through
the tweet using a sliding window of a
fixed size (N) such that each word of
the tweet is considered. All the result-
ing n-grams (shingles) are then fed to
the model with supervision information
included where each n-gram is associ-
ated with 2-dimension labels HS [1,0] or
NOT [0,1] that represent the polarity of
the tweet from which the n-gram is de-
rived.

– Lambda layer composes n-gram embed-
dings by applying SOWE over the word
embeddings resulting from the embed-
ding layer.

– Hidden layer introduces non-linear dis-
criminating features to the model with
Relu activation function.

– Output layer is equipped with a soft-
max function to induce the estimated
probabilities of each n-gram output la-
bel (HS/NOT). Considering the whole
tweet, HS scores and NOT scores pre-
dicted for all n-grams of the tweet are
summed, then each of which is divided
by the number of n-grams, contained in
a tweet, yielding two values for the po-
tential HS and NOT scores of the tweet.
The label of the tweet is, thus, decided
according to the greater among these
two values.

505

Lang. Features R. F1 Acc.
English uni+bi 0.85 0.87 0.89

8-gram emb. 0.98 0.94 0.95
Spanish uni+bi 0.77 0.77 0.78

8-gram emb. 0.72 0.72 0.72

Table 1: Unigrams+bigrams (TF threshold=2) and
8-gram embeddings results of NB/neural models for
train/dev sets.

4 Results and Discussion

Having the data preprocessed and hate indicatives
specified and tagged in both training and dev/test
sets, two HS models were used.

The first model is an NB classifier from
NLTK§ trained with one-hot n-gram features.
We generated three n-gram schemes: unigrams
(uni), unigrams+bigrams (uni+bi) and uni-
grams+bigrams+trigrams (uni+bi+tri). NB was
first trained using all n-gram features, then by
a reduced number of features obtained via term
frequency (TF) with two threshold: 2 and 3.
Among several runs with various n-gram schemes
and TF values, we adopted the best-performing
scheme: uni+bi and TF threshold: 2.

The second model combines n-gram embed-
dings within a feedforward neural network. The
window size 8 was, empirically, selected to pro-
duce 8-gram embeddings. Similarly, the embed-
dings dimension value was set to 100. For training,
backpropagation algorithm and “Adam” optimizer
(Kingma and Ba, 2014) were used.

Table 1 lists the results obtained using Train and
Dev sets of English and Spanish tweets where the
language, embeddings, average recall, average f-
measure and accuracy are referred to as (Lang.),
(emb.), (R.), (F1) and (Acc.), respectively.

Considering Table 1, both feature types per-
formed well for HS detection in English. How-
ever, n-gram embeddings were better with an F1
of 94% against 87% scored by one-hot n-grams.
We can explain that by the ability of n-gram em-
beddings to capture the semantic word regularities
regardless of the local word order; which is ap-
propriate to handle the informal English used on
Twitter; where varying word orders can infer the
same semantics (Iyyer et al., 2015).

Regarding the Spanish dataset, while the HS
classification performances produced by both fea-

§https://www.nltk.org

L. Team (F1 rank) P. R. F1 Acc.
Eng. saradhix (1) 0.69 0.68 0.65 0.65

Panaetius (2) 0.59 0.59 0.57 0.57

YunxiaDing (3) 0.64 0.603 0.55 0.56

Tw-StAR (9) 0.54 0.53 0.5 0.54

Sp. luiso.vega (1) 0.73 0.74 0.73 0.73
francolq2 (2) 0.73 0.74 0.73 0.73
gertner (3) 0.75 0.75 0.73 0.73
Tw-StAR (20) 0.70 0.71 0.70 0.70

Table 2: Tw-StAR official Codalab ranking.

ture types were quite comparable, one-hot n-
grams achieved slightly better results with an F1
77% and accuracy of 78% compared to 72% and
72% scored by n-gram embeddings, respectively.
This could be attributed to the differences in vo-
cabulary introduced by the different spoken va-
rieties of Spanish found in the tweets (Maier
and Gómez-Rodrı́guez, 2014). Hence, SOWE
may miss the synonymous and semantic relations
among such different words having same/close se-
mantics which, in turn, leads to less expressive n-
gram embeddings.

Having the best-performing features identified
for English and Spanish, we adopted one-hot n-
grams for Spanish and n-gram embeddings for En-
glish in the official submission. Table 2 lists the
official results of Tw-StAR against the top three
ranking systems where (L.), (Acc.), (Eng.), (Sp.),
(R.) and (F1) refer to language, accuracy, English,
Spanish, recall and f-measure, respectively.

Considering Table 1 and Table 2, we observe
that Tw-StAR exhibit a robust performance for the
Spanish dataset, while the evaluation measures de-
graded for the English dataset. We believe that,
this could be attributed to the lack of homogeneity
between the train/dev and test sets of English data.

5 Conclusion

We developed two HS detection models for mul-
tilingual tweets. With two feature types used, we
investigated how likely n-gram embeddings can ri-
val one-hot n-grams in HS detection. Upon train-
ing NB and a feedforward neural net with one-hot
n-grams and n-gram embeddings, respectively, n-
gram embeddings exhibited a better performance
in English while the vocabulary differences in
Spanish made n-gram embeddings less expressive.
For future work, we aim to target HS in underrep-
resented languages such as Arabic and Turkish.

506

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Elisa Bassignana, Valerio Basile, and Viviana Patti.
2018. Hurtlex: A multilingual lexicon of words to
hurt. In 5th Italian Conference on Computational
Linguistics, CLiC-it 2018, volume 2253, pages 1–6.
CEUR-WS.

Chedi Bechikh-Ali, Hatem Haddad, and Yahya Sli-
mani. 2019. Empirical evaluation of compounds in-
dexing for turkish texts. Computer Speech and Lan-
guage, 56(1):95–106.

Elisabetta Fersini, Paolo Rosso, and Maria Anzovino.
2018. Overview of the task on automatic misogyny
identification at ibereval 2018.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Sam Henry, Clint Cuffy, and Bridget T. McInnes. 2018.
Vector representations of multi-word terms for se-
mantic relatedness. Journal of Biomedical Informat-
ics, 77:111 – 119.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered com-
position rivals syntactic methods for text classifica-
tion. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), vol-
ume 1, pages 1681–1691.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Wolfgang Maier and Carlos Gómez-Rodrı́guez. 2014.
Language variety identification in spanish tweets. In
Proceedings of the EMNLP’2014 Workshop on Lan-
guage Technology for Closely Related Languages
and Language Variants, pages 25–35.

Mari J Matsuda. 2018. Public response to racist
speech: Considering the victim’s story. In Words
that wound, pages 17–51. Routledge.

Hala Mulki, Chedi Bechikh Ali, Hatem Haddad, and
Ismail Babaoglu. 2018a. Tw-star at semeval-2018
task 1: Preprocessing impact on multi-label emo-
tion classification. In Proceedings of The 12th Inter-
national Workshop on Semantic Evaluation, pages
167–171.

Hala Mulki, Hatem Haddad, Chedi Bechikh Ali, and
Ismail Babaoğlu. 2018b. Tunisian dialect sentiment
analysis: A natural language processing-based ap-
proach. Computación y Sistemas, 22(4).

Hala Mulki, Hatem Haddad, Mourad Gridach, and Is-
mail Babaoğlu. 2017. Tw-star at semeval-2017 task
4: Sentiment classification of arabic tweets. In
Proceedings of the 11th international workshop on
semantic evaluation (SEMEVAL-2017), pages 664–
669.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153. International World Wide
Web Conferences Steering Committee.

Endang Wahyu Pamungkas, Alessandra Teresa
Cignarella, Valerio Basile, Viviana Patti, et al. 2018.
14-exlab@ unito for ami at ibereval2018: Exploit-
ing lexical knowledge for detecting misogyny in
english and spanish tweets. In 3rd Workshop on
Evaluation of Human Language Technologies for
Iberian Languages, IberEval 2018, volume 2150,
pages 234–241. CEUR-WS.

Helmut Schmid. 1999. Improvements in part-of-
speech tagging with an application to german. In
Natural language processing using very large cor-
pora, pages 13–25. Springer.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media. Association for Computational Linguis-
tics, pages 1–10, Valencia, Spain.

Elise Fehn Unsvåg and Björn Gambäck. 2018. The ef-
fects of user features on twitter hate speech detec-
tion. In Proceedings of the 2nd Workshop on Abu-
sive Language Online (ALW2), pages 75–85.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Shuhan Yuan, Xintao Wu, and Yang Xiang. 2016. A
two phase deep learning model for identifying dis-
crimination from tweets. In EDBT, pages 696–697.

507

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 508–513
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UA at SemEval-2019 Task 5:
Setting a Strong Linear Baseline for Hate Speech Detection

Carlos Perelló♦ David Tomás♦ Alberto Garcia-Garcia♦
Jose Garcia-Rodriguez♦ Jose Camacho-Collados♣

♦ University of Alicante, Spain
♣ Cardiff University, United Kingdom

♦cpc69@alu.ua.es,dtomas@dlsi.ua.es,{agarcia,jgarcia}@dtic.ua.es,
♣camachocolladosj@cardiff.ac.uk

Abstract

This paper describes the system developed at
the University of Alicante (UA) for the Se-
mEval 2019 Task 5: Multilingual detection
of hate speech against immigrants and women
in Twitter. The purpose of this work is to
build a strong baseline for hate speech detec-
tion by means of a traditional machine learn-
ing approach with standard textual features,
which could serve as a reference to compare
with deep learning systems. We participated
in both task A (Hate Speech Detection against
Immigrants and Women) and task B (Aggres-
sive behavior and Target Classification) for
both English and Spanish. Given the text
of a tweet, task A consists of detecting hate
speech against women or immigrants in the
text, whereas task B consists of identifying the
target harassed as individual or generic, and
to classify hateful tweets as aggressive or not
aggressive. Despite its simplicity, our system
obtained a remarkable macro-F1 score of 72.5
(sixth highest) and an accuracy of 73.6 (sec-
ond highest) in Spanish (task A), outperform-
ing more complex neural models from a total
of 40 participant systems.

1 Introduction

Due to the massive rise of users in social me-
dia, the presence of verbal abuse, hate speech and
bully-attitudes has increased over the years. A
clear example is Twitter, where users find ways
to anonymously harass and offend other individ-
uals or collectives. This is especially troublesome
as hate speech and hate crime are strongly related.
Therefore, an early detection of hate speech could
help prevent the subsequent hate crime. Online
platforms like Twitter have been seeking to com-
bat hate speech on their site, but it still requires
a lot of manual work because there is not a reli-
able automatic method that can correctly identify
hate speech behaviour. Building such automatic

(or semi-automatic) systems is therefore essential
to effectively fight this problem.

Hate speech detection is still a challenging task
due to a number of reasons. First, hate speech con-
tent tends to be ambiguous and context-dependant
(Chatzakou et al., 2017). Moreover, hate speech
can cross sentence boundaries and be present in
sarcastic comments in the same voice as the peo-
ple that were producing abusive languages. These
and other issues for detecting hate speech are dis-
cussed in more detail in Nobata et al. (2016).

In order to deal with these issues, over the past
few years several techniques to detect hate speech
and abusive language online have been proposed.1

Previous works made use of heterogeneous fea-
tures such as bag of words, n-grams, punctuation,
as well as lexical features and user-related fea-
tures (Chatzakou et al., 2017). In addition to these
features, previous approaches showed the effec-
tiveness of using word embeddings to detect abu-
sive language in social media (Djuric et al., 2015)
and exposed how sentiment analysis can also con-
tribute to hate speech and offensive language de-
tection (Nahar et al., 2012).

In this paper we build on these earlier works and
propose a comprehensive framework to develop
a traditional machine learning-based approach to
hate speech detection, with the purpose of serving
as a strong baseline for future systems using deep
learning techniques. Our framework will be based
on a linear classifier with standard textual features.
As we will show throughout the paper, n-grams
provide a reliable starting point when facing hate
speech classification, and the performance can be
further improved when combined with word em-

1Although related, it is important to distinguish between
hate speech and abusive or offensive language. While the for-
mer is used to express hatred towards a targeted group based
on characteristics such as race, ethnicity, gender, and sexual
orientation, the latter can be used in the usual language of
some users without being hateful (Davidson et al., 2017).

508

beddings and sentiment analysis features.
In particular for this work, we focus on hate

speech against women and immigrants, follow-
ing the Task 5 of SemEval 2019 (Basile et al.,
2019). Indeed, race and gender hate speech has
become an increasingly important issue in social
media, as it stands for 50% of the targets of hate
speech in Twitter (Silva et al., 2016). Code and
pre-trained models are available at https://
github.com/CPerelloC/UA-SemEval.

2 Hate Speech Detection System

In this section we present our hate speech detec-
tion model. The main goal of our model is to iden-
tify hate speech given a piece of text, in this case a
tweet. A high-level overview of our model is pre-
sented in Section 2.1 and the set of features that
are used in our model are described in Section 2.2.

2.1 Model
Our model consists of a linear classifier based
on Support Vector Machines (SVM), which have
proved to provide competitive results in text
categorization since their conception (Joachims,
1998). The SVM classifier is trained on tweets
containing hate speech annotations. During train-
ing, the model is fed with features relevant to hate
speech detection. Then, in the test phase the goal
of our model is to classify unannotated tweets with
the categories learned during the training phase.
In the following section we describe the main fea-
tures used in our SVM classifier.

2.2 Features
For the main task A (hate speech detection), we
distinguish three groups of features2:

• Bag-of-n-grams: Bag-of-n-grams features,
which have been already used for hate speech
detection (Chatzakou et al., 2017), are of-
ten reported to be highly predictive and can
be combined with other features to improve
performance. We make use of unigrams, bi-
grams and trigrams, represented in the feature
vectors by their frequency in a tweet.

• Sentiment analysis: Hate speech and senti-
ment analysis are closely related, and we can
assume that negative sentiment usually per-
tains to a hate speech message (Schmidt and

2We use an extra standard feature to these three groups,
the length of the tweet in words.

Wiegand, 2017). To integrate this feature into
our model, we simply add the output of a pre-
trained sentiment analysis classifier.

• Word embeddings: Word embeddings are
low-dimensional vector representations of
words and are used extensively in natural lan-
guage processing (Goldberg, 2016). In par-
ticular, Bayot and Gonçalves (2016) showed
that word embeddings provide a useful gen-
eralization signal in text classification when
used in a similar setting. In our case, we add
the average of the embeddings in a tweet as
an additional feature in our SVM classifier.

For task B, we use two simple extra features
with specific information about each subtask:

• For target classification (individual or
group), we use the count of the plural nouns
in the tweet as a feature.

• For aggressive behaviour, we use the count
of the insults in the tweet as a feature. We hy-
pothesize that a high level of insults may in-
volve violent behaviour. To this end, we filter
a database from insults collected at https:
//hatebase.org/.

2.3 Feature selection
One of the main issues in text classification is the
high dimensionality of the feature space (Yang
and Pedersen, 1997). For instance, over 300K
and 150K features were initially obtained using
the bag-of-n-grams features alone on, respectively,
the English and Spanish training sets from Task A
(see Section 3.1). Besides the computational cost
to train a model with such a large amount of fea-
tures, an additional issue is the noise that could be
introduced by including many irrelevant features.
Thus, it is generally desirable to reduce the feature
space, without sacrificing classification accuracy.

The feature selection method used in our sys-
tem is based on word frequency, understanding a
word as an n-gram. The system first delimits the
n-grams by a frequency number to significantly re-
duce the feature space before preparing the vec-
tors for the SVM. Then, highly sparse features (i.e.
containing zero in more than 99.9% of the sam-
ples) are removed.3

3This was achieved by leveraging the VarianceThresh-
old tool from scikit-learn (Pedregosa et al., 2011):
https://scikit-learn.org/stable/modules/
feature_selection.html

509

3 Evaluation

In this section we describe the experimental setup
(Section 3.1) of our system along with the results
obtained (Section 3.2), including a brief analysis
of errors detected in the evaluation phase (Section
3.3).

3.1 Experimental setup

In the following we present the datasets consid-
ered, details about the text preprocessing and fea-
ture selection procedures, the pre-trained models
used as part of our model, and how parameter tun-
ing was performed.

Datasets. We used the two datasets made avail-
able as part of the SemEval-2019 Task 5 compe-
tition: one for English and another for Spanish.
The datasets consist of training, development and
test splits. For English, the number of tweets for
each split is 9100, 1000 and 2971 for training, de-
velopment and test, respectively. Conversely, the
Spanish splits contain 4600, 500 and 1600 tweets.

Preprocessing. Each tweet is tokenized using
the spaCy NLP library4. We experimented with
various preprocessing variants and decided to
work with raw words as tokens (i.e., without ap-
plying lemmatization), removing punctuation and
URLs but keeping emojis and stopwords (pro-
nouns and articles can be relevant in the context
of hate speech classification).

Feature selection. As explained in Section 2.3,
a feature selection procedure is applied on the n-
gram features to reduce their noise and size. Af-
ter the feature selection is performed for the bag-
of-n-grams features, the featured space is reduced
from 336,669 to 4,605 in English task A, and from
177,003 to 4,217 in Spanish task A.

Pre-trained models. Regarding sentiment anal-
ysis, we used as features the polarity [-1.0, 1.0]
and the subjectivity [0.0, 1.0] of a tweet accord-
ing to TextBlob5 (Loria et al., 2014). Note that
Textblob is only optimized for English input and
was not used for the Spanish tasks. We leave the
exploration of Spanish sentiment analysis systems
for future work.

4https://spacy.io/
5TextBlob is a public Python library for processing textual

data that provides an API for common NLP tasks such as sen-
timent analysis: https://textblob.readthedocs.
io/en/dev/index.html

As far as word embeddings are concerned, we
made use of Spanish and English 100-dimensional
FastText word embeddings (Bojanowski et al.,
2017) trained on two large Twitter corpus from
Spain and United States, respectively (Barbieri
et al., 2016).

Parameter tuning. We experimented with sev-
eral kernels and parameter configurations to train
the Support Vector Machines, including polyno-
mial and linear kernels. Since our system is
trained with a large amount of features, it is hard
to find an optimal parameter configuration for the
polynomial kernel. Therefore, we decided to use a
linear kernel, as the SVM training was faster and
implied tuning less parameters. We fine-tuned the
C parameter of the SVM using as validation the
development set of the task. This parameter tun-
ing was performed using bag-of-n-grams as fea-
tures and on the Spanish dataset only. The value
of C that achieved the highest accuracy in the de-
velopment set was C = 2−5 for Task A and Task
B-target classification, and C = 3 for Task B-
aggressive behaviour, which were fixed across all
experiments.

3.2 Results

In the following we present our results for Task A
(Section 3.2.1) and Task B (Section 3.2.2).

3.2.1 Task A
Task A consists of detecting hate speech (HS)
against women or immigrants in the text. Systems
were evaluated according to standard classification
metrics such as accuracy and macro-F1 score.

Table 1 shows our Task A results in the de-
velopment and evaluation sets comparing differ-
ent sets of features described in Section 2.2. As
can be observed in the table, the highest accu-
racy and macro-F1-score obtained in the develop-
ment phase were, respectively, 78.4 and 77.9 us-
ing all features (i.e., n-grams, tweet length and
word embeddings for Spanish) and 72.8 and 72.0
with n-grams for English (the same features in-
cluding sentiment analysis in this case). The sen-
timent analysis feature provided a small improve-
ment when combined with n-grams on the English
development set, but had a negligible influence on
the test set. In general, except for the word embed-
dings which seem to generalize better, all features
performed close to a random baseline in English.
A further analysis should be required to explain

510

Features
English Spanish

Dev Test Dev Test
Acc F1 Acc F1 Acc F1 Acc F1

All 72.8 72.0 50.1 48.1 78.4 77.9 73.1 72.2
N-grams 72.1 71.5 50.0 48.0 77.2 76.6 73.0 71.9
N-grams and sent. analysis∗ 72.5 71.8 50.1 48.0 77.4 76.8 73.0 71.9
Word embeddings 65.3 60.1 57.5 56.9 63.6 56.3 65.9 55.0
SVC baseline - - 49.2 45.1 - - 70.5 70.1
MFC baseline - - 57.9 36.7 - - 58.8 37.0

Table 1: Task A results using different sets of features. The row marked with ∗ was submitted to the task.

the difference between development and test re-
sults, which affected most participating systems.
Some possible explanations are discussed in the
Analysis section (Section 3).

Unlike in English, in Spanish our system ob-
tains the best result with the configuration that per-
formed best in the development set. Our official
submission (n-grams and tweet length as features)
ranked sixth in terms of macro-F1 and second in
terms of accuracy among all 40 participating sys-
tems. In the English task, with the addition of
word embeddings as feature, our system would
have ranked third in terms of macro-F1.

3.2.2 Task B

Task B consists of identifying the target harassed
as individual or generic (TR), and to classify hate-
ful tweets as aggressive or not aggressive (AG).
In addition to the individual macro-F1 scores for
these two subtasks (i.e., TR and AG), two global
scores based on the average macro-F1 scores and
Exact Match Ratio (EMR) (Kazawa et al., 2005)
are reported. The EMR score measures the per-
centage of instances which are correctly labeled in
all subtasks, i.e., HS (hate speech), TR (target) and
AG (aggressiveness). As previously explained,
our official submission consisted of n-grams and
sentiment analysis features, with the addition of
the two extra features mentioned in Section 2.2: a
count of plurals in each tweet for TR and a count
of insults for AG.

Table 2 displays the results of our system on
Task B. As can be observed, results for TR are
better for Spanish than English, which could be
attributed to the fact that Spanish uses more plu-
ral forms than English. Regarding AG, the reason
could be that the insult database was more accu-
rately filtered for Spanish than English. These re-
sults, however, show the general trend of partici-

pating systems in the task.
Finally, we noted that training only on the por-

tion of tweets where hate speech is present is ben-
eficial. In our official submission we used all
tweets for training, irrespective of whether they
were hateful or not. Using all tweets for training
was clearly adding a lot of noise to the training,
and without it, a significant increase in the per-
formance was obtained. Table 3 shows the results
using the full training set and the training set in-
cluding tweets considered as hateful. As an exam-
ple, in the Spanish test set, the macro-F1-scores
using only hateful tweets for training were 92.8
and 87.8, which means an absolute improvement
of 16.9 and 14.3 percentage points for target clas-
sification and aggressive behaviour, respectively.

3.3 Analysis

When analyzing the errors of our system, we
found a number of cases where irony was present.
It is worth noting that sometimes hate speech is ex-
pressed through irony, and therefore does not im-
ply an aggressive behaviour. Moreover, offensive
language does not necessarily imply hate speech,
which poses an additional challenge to these sys-
tems. Here are some sample tweets of hate speech
without aggressive behaviour from the develop-
ment set:

“Say it loud, say it clear, illegal #immi-
grants are not welcome here.”

“Poland: our country is safe because we
haven’t taken in refugees”

Finally, given the disparity of results between
English development and test sets, we analyzed
possible causes for this behaviour. In Task A, we
obtained the best performance by only using word
embeddings. One of the reasons for these results

511

F1(HS) F1(TR) F1(AG) F1(avg) EMR
English Dev 71.8 72.7 60.9 68.5 56.9
English Test 48.0 68.2 54.4 56.8 31.2
Spanish Dev 77.9 80.6 81.6 80.0 68.4
Spanish Test 72.2 75.9 73.5 73.9 62.9

Table 2: Task B results in the development and evaluation phases.

Training English Test Spanish Test
F1(TR) F1(AG) F1(TR) F1(AG)

Full 68.2 54.4 75.9 73.5
Only hateful 88.0 70.9 92.8 87.8

Table 3: Macro-F1 results in Task B by using dif-
ferent types of training data.

could be that, in the development set 64.8% of
the vocabulary of the test set was present in the
training set, whereas in the test set only 54.8% of
the vocabulary overlapped with the vocabulary of
the training set. This reduction in the overlapping
vocabulary between training and test handicaps
the performance of n-gram based systems, which
heavily relies in vocabulary overlap. Word em-
beddings are less affected by this condition since
they can capture synonymy relations and there-
fore are able to generalize better. This could ex-
plain why using word embeddings alone attained
the best performance in this experiment, as the n-
grams were not helpful.

4 Conclusion and future work

In this paper we described our system presented at
SemEval 2019 Task 5. The system follows a tra-
ditional machine learning approach based on fea-
ture engineering, making use of n-grams, senti-
ment analysis and word embeddings as its main
features. The results obtained show how word
embeddings, when combined with n-grams and
sentiment analysis, can improve the performance
of the system. In Spanish task A, our proposed
system obtained a remarkable macro-F1 score of
72.5 (sixth highest) and an accuracy of 73.6 (sec-
ond highest). In view of these results, we have
achieved our objective of building a strong base-
line for hate speech detection.

Future directions of this work include incorpo-
rating users’ features to the model, studying how
the pronouns and the context of the tweet may
affect hate speech classification, and comparing
the resulting system with deep neural network ap-

proaches, which have recently gained popularity
in text classification tasks.

Acknowledgments

We would like to thank Miguel Camacho and the
Hate Crime National Office in Spain for their sup-
port.

References
Francesco Barbieri, German Kruszewski, Francesco

Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Roy Bayot and Teresa Gonçalves. 2016. Author pro-
filing using svms and word embedding averages.
In Proceedeings of the International Conference on
Software, Knowledge, Information Management and
Applications (SKIMA). CEUR.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion of Computational Linguistics, 5(1):135–146.

Despoina Chatzakou, Nicolas Kourtellis, Jeremy
Blackburn, Emiliano De Cristofaro, Gianluca
Stringhini, and Athena Vakali. 2017. Mean birds:
Detecting aggression and bullying on twitter. In
Proceedings of the 2017 ACM on web science con-
ference, pages 13–22. ACM.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
arXiv preprint arXiv:1703.04009.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment

512

embeddings. In Proceedings of the 24th interna-
tional conference on world wide web, pages 29–30.
ACM.

Yoav Goldberg. 2016. A primer on neural network
models for natural language processing. Journal of
Artificial Intelligence Research, 57:345–420.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In European conference on machine
learning, pages 137–142. Springer.

Hideto Kazawa, Tomonori Izumitani, Hirotoshi Taira,
and Eisaku Maeda. 2005. Maximal margin labeling
for multi-topic text categorization. In Advances in
neural information processing systems, pages 649–
656.

Steven Loria, P Keen, M Honnibal, R Yankovsky,
D Karesh, E Dempsey, et al. 2014. Textblob: simpli-
fied text processing. Secondary TextBlob: Simplified
Text Processing.

Vinita Nahar, Sayan Unankard, Xue Li, and Chaoyi
Pang. 2012. Sentiment analysis for effective detec-
tion of cyber bullying. In Asia-Pacific Web Confer-
ence, pages 767–774. Springer.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153. International World Wide
Web Conferences Steering Committee.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

Leandro Silva, Mainack Mondal, Denzil Correa,
Fabrı́cio Benevenuto, and Ingmar Weber. 2016. An-
alyzing the targets of hate in online social media. In
Proceedings of the Tenth International AAAI Con-
ference on Web and Social Media.

Yiming Yang and Jan O Pedersen. 1997. A compara-
tive study on feature selection in text categorization.
In Proceedings of the International Conference on
Machine Learning, volume 97, page 35.

513

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 514–518
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UNBNLP at SemEval-2019 Task 5 and 6: Using Language Models to
Detect Hate Speech and Offensive Language

Ali Hakimi Parizi, Milton King and Paul Cook
Faculty of Computer Science, University of New Brunswick

Fredericton, NB E3B 5A3, Canada
ahakimi@unb.ca, milton.king@unb.ca, paul.cook@unb.ca

Abstract

In this paper we apply a range of approaches
to language modeling — including word-
level n-gram and neural language models, and
character-level neural language models — to
the problem of detecting hate speech and of-
fensive language. Our findings indicate that
language models are able to capture knowl-
edge of whether text is hateful or offensive.
However, our findings also indicate that more-
conventional approaches to text classification
often perform similarly or better.

1 Introduction

SemEval 2019 Task 5 focuses on detecting hate
speech in social media text, while Task 6 considers
identifying offensive language. Despite the dif-
ferences between hate speech and offensive lan-
guage, each of these tasks can be viewed as a bi-
nary classification problem. In each case, gold-
standard training data is provided on which super-
vised approaches can be trained.

In this paper we consider whether approaches
to classification based on language models — in-
cluding word- and character-level neural language
models, as well as more-conventional (word-level)
n-gram language models — are able to distinguish
between hateful and not hateful, and offensive and
not offensive, language. We find that these ap-
proaches outperform a most-frequent class base-
line, indicating that language models can capture
some knowledge of whether text is hateful or of-
fensive. However, for task 5 — for which the
testing data was made available for follow up ex-
periments — we also find that more-conventional
approaches to supervised classification, such as
naive Bayes and fastText (Joulin et al., 2017), of-
ten give similar or better results.

2 Related Work

Social media such as Twitter and Facebook are
widely used, and hate speech has become preva-
lent in these platforms. In response to this, a sub-
stantial amount of research has recently focused
on detecting such disturbing comments.

Prior work on hate speech and offensive lan-
guage detection has mostly focused on supervised
machine learning techniques (Mathur et al., 2018;
Davidson et al., 2017). A recent shared task
on identifying aggression in social media (Kumar
et al., 2018) observed there is no significant differ-
ence between the performance of neural networks
and linear classifiers. Furthermore, this shared
task received just one lexicon-based approach, and
its performance was not promising. Moreover, all
of these approaches required expensive feature en-
gineering and pre-processing.

Instead of engineering specific features to use
in supervised classifiers, we can instead employ
language models to model the type of text we
want to detect. Language models have previously
been applied for the purpose of text classification
(e.g., Bai et al., 2004; Howard and Ruder, 2018).
Among different types of language models,
recurrent neural network (RNN) language models
with LSTM and GRU units have shown promising
results for sequence modeling (Mikolov et al.,
2012). To the best of our knowledge, RNN
language models have not been widely used for
detecting hate speech or offensive language. The
most closely related work is that of Mehdad and
Tetreault (2016), which used both word-level and
character-level RNNs to detect abusive language.
In their experiments, Mehdad and Tetreault found
that character-level language models outper-
formed word-level language models. A further
advantage of character-level language models is
that they are able to model out-of-vocabulary

514

words (Mikolov et al., 2012).

3 Task 5: HatEval

SemEval 2019 Task 5 includes two sub-tasks:
(A) detecting hate speech in English and Spanish
tweets, and (B) classifying hate speech tweets as
aggressive or not, and as targeting an individual or
group. We only consider sub-task A. In Section
3.1, we describe the approaches we considered for
this task, and in Section 3.2 we present our results.

3.1 Approaches

3.1.1 Word-level LMs: n-gram and LSTM
For each language, we grouped the training in-
stances based on their gold standard labels — giv-
ing us two corpora per language — with one con-
sisting entirely of hateful tweets, and the other
consisting of not hateful tweets. For each lan-
guage, we then trained two language models
(LMs), one on the hateful instances, and the other
on the non-hateful instances. Given a test instance,
we calculate the probability of the tweet under
each LM. If the LM that was trained on the hate-
ful text gave a higher probability then we labeled
the instance as hateful, otherwise we labeled it as
non-hateful. The two word-level LMs that we con-
sidered are an n-gram LM and a long short-term
memory (LSTM) LM. The n-gram model was a
3-gram model with Kneser-Ney smoothing trained
using Kenlm (Heafield et al., 2013) with its default
settings. We tuned the parameters for the LSTM
model on the English development dataset using
grid search. Specifically we considered the fol-
lowing settings for the embedding size (256, 512,
1024), number of hidden units (128, 256, 512),
and number of epochs (1,2,3,4,5). The final pa-
rameters for the LSTMs used on the test datasets
were 1 hidden layer, an embedding size of 1024,
128 hidden units, and they were trained using a
batch size of 2 and 1 epoch.

3.1.2 Character-level LM
This approach is the same as the previous word-
level LM approach, except that character-level, as
opposed to word-level, LMs are trained. We use a
publicly available TensorFlow implementation of
a character-level RNN language model.1 The fol-
lowing parameters are used: a two-layer GRU with
one-hot character embeddings and a hidden layer

1https://github.com/crazydonkey200/
tensorflow-char-rnn

size of 64 dimensions. The batch size, learning
rate, and dropout are set to 20, 0.002, and 0, re-
spectively. The hidden layer size and unit were
tuned on the development data. Specifically we
considered hidden layer sizes of 64, 128, and 256,
and an LSTM and GRU for the unit. The other
parameters are their default settings.

3.1.3 Neural LMs with Class Token

In the previous approaches, two separate LMs are
trained — one on the hateful tweets, the other on
the non-hateful ones. In contrast, in this approach
a single LM is trained.

We append a special token to the end of each
tweet in the training data representing its gold
standard class. We randomly shuffle the order of
the tweets in the training data, and then train a
LM model on them. At test time, we feed a tweet
(which has not been augmented with a special to-
ken indicating its class) to the LM. We then query
the LM for the probability of the special tokens
representing the hateful and non-hateful classes,
and classify the tweet as the class corresponding
to the special token with higher probability.

We consider both word-level and character-
level neural LMs for this approach. For the word-
level LM we again use an LSTM. We performed
a grid search to tune its parameters using the En-
glish development dataset. Specifically we consid-
ered the following settings for the number of lay-
ers (1,2), embedding size (128, 256, 512), number
of hidden units (128, 256, 512), and number of
training epochs (1,2,3). The final model consisted
of two hidden layers, an embedding size of 512,
128 hidden units, and was trained using a batch
size of two for three epochs. For the character-
level LM we use the same model as in Section
3.1.2, with the same parameter settings.

3.1.4 Baselines

In addition to the most-frequent class and SVC
baselines provided by the shared task (Basile et al.,
2019), we also compare our approaches against
multinomial naive Bayes2 and fastText (Joulin
et al., 2017). We use the default settings for fast-
Text, and do not attempt to tune it to this task.

2Note that the likelihood term in multinomial naive Bayes
corresponds to a unigram LM for each class. As such it is
similar to the LM-based approaches we consider, but also in-
corporates a class prior.

515

English Spanish
Dev Test Dev Test

Method F P R A F P R A F P R A F P R A
n-gram 0.70 0.71 0.71 0.70 0.45 0.60 0.55 0.49 0.71 0.72 0.72 0.71 0.66 0.67 0.68 0.66
LSTM 0.60 0.61 0.61 0.60 0.48 0.53 0.52 0.49 0.68 0.68 0.68 0.69 0.64 0.64 0.64 0.65
Char 0.70 0.71 0.71 0.70 0.45 0.57 0.54 0.49 0.67 0.68 0.67 0.68 0.66 0.66 0.66 0.67
LSTM+CT 0.50 0.54 0.54 0.51 0.49 0.53 0.53 0.50 0.55 0.56 0.56 0.56 0.52 0.57 0.56 0.53
Char+CT 0.52 0.53 0.53 0.53 0.47 0.47 0.47 0.49 0.53 0.54 0.53 0.55 0.48 0.48 0.48 0.51
NB 0.70 0.73 0.72 0.70 0.41 0.60 0.54 0.47 0.74 0.77 0.73 0.75 0.69 0.70 0.69 0.71
fastText 0.64 0.66 0.64 0.66 0.47 0.59 0.55 0.50 0.70 0.72 0.70 0.71 0.70 0.69 0.70 0.70
SVC - - - - 0.45 0.60 0.55 0.49 - - - - 0.70 0.70 0.71 0.71
MFC 0.36 0.29 0.50 0.57 0.37 0.29 0.50 0.58 0.36 0.28 0.50 0.56 0.37 0.29 0.50 0.59

Table 1: Macro average F1-score (F), macro average precision (P), macro average recall (R), and accuracy (A)
on Task 5 subtask A using word-level n-gram and LSTM LMs, a character-level LM (Char), a word-level LSTM
and character-level LM augmented with a special class token (LSTM+CT and Char+CT), multinomial naive Bayes
(NB), and fastText on the development and test sets. The SVC and most-frequent class (MFC) baselines provided
by the shared task are also shown. The best result for each language, dataset, and evaluation measure is shown in
boldface.

3.2 Results

The English and Spanish training sets contain
9,000 and 4,500 tweets, respectively, labelled as
being hateful or non-hateful. The development
and test sets contain 1,000 and 2,971 tweets, re-
spectively, for English, and 500 and 1,600 tweets,
respectively, for Spanish. Further details of the
datasets are provided in Basile et al. (2019).

Results are shown in Table 1.3 The character-
level LM, which performed best on the devel-
opment data, corresponds to our official submis-
sion for the shared task. In terms of F-score,
for both languages, all LM-based approaches out-
perform the most-frequent class baseline. This
indicates that LMs are able to capture informa-
tion about whether a tweet is hate speech or not.
However, more-conventional approaches to clas-
sification perform similarly to, or better than, the
LM-based approaches. Focusing on the test data,
for English, although the LSTM with class to-
ken approach achieves the best F-score of 0.49,
fastText achieves only a slightly lower F-score of
0.47. For Spanish, fastText and SVC achieve the
best F-score of 0.70, while the best LM-based ap-
proaches, the n-gram and character LMs, obtain
an F-score of 0.66.

4 Task 6: OffensEval

SemEval 2019 Task 6 includes 3 sub-tasks. In con-
trast to Task 5, we participated in all subtasks of

3The SVC baseline was only provided for the test data.

Task 6. Sub-task A is a binary classification task to
determine if a tweet is offensive or non-offensive.
Sub-task B is to classify tweets that are offensive
into two groups of targeted — a post containing
an insult or threat to an individual, a group, or
others — or untargeted — a post containing non-
targeted profanity and swearing. Finally, sub-task
C is a three-way classification task in which tar-
geted tweets (from sub-task B) are classified as
targeting an individual, group of people, or other.

Because of the similarities between hate speech
and offensive language, we apply approaches that
we used for Task 5 to Task 6. We used the de-
velopment data for Task 5 for model tuning and
selection, and only considered the three best mod-
els for Task 6: the word-level n-gram and LSTM
language models and the character-level language
model. We describe these approaches in Section
4.1 and report results over the test data in Section
4.2.4

4.1 Approaches
4.1.1 Word-level LMs: n-gram and LSTM
Similar to Task 5, for each sub-task of Task 6, we
group the training instances based on their gold-
standard classes. We then train one LM on the
documents from each class. I.e., in the case of
sub-task A we train one LM on tweets labeled of-
fensive, and another LM on tweets labelled non-
offensive. At test time we measure the probability

4We do not report results for the development data be-
cause we used Task 5 data for model tuning and selection.

516

Sub-task A Sub-task B Sub-task C
Method F A F A F A
n-gram 0.62 0.66 0.45 0.50 0.43 0.44
LSTM 0.55 0.59 0.54 0.73 0.40 0.48
Char 0.59 0.63 0.61 0.88 - -
MFC 0.42 0.72 0.47 0.89 0.21 0.47

Table 2: Macro-average F1-score (F) and accuracy (A) for each sub-task of Task 6 using word-level n-gram and
LSTM LMs, a character-level LM (Char), and a most-frequent class baseline (MFC). The best result for each
sub-task and evaluation measure is shown in boldface.

of a test tweet under each LM, and then classify
it as the class corresponding to the LM giving the
highest probability. Note that sub-task C is a three-
way, as opposed to binary, classification task, and
so we therefore train three LMs for this sub-task.

We consider the same word-level LMs as for
Task 5 — an n-gram LM and an LSTM LM. We
tuned the parameters for the LSTM on the English
development dataset of Task 5, sub-task A, using
grid search as described in Section 3.1.1. We did
not further tune this model to Task 6. For the n-
gram model we again use a 3-gram model as de-
scribed in Section 3.1.1.

4.1.2 Character-level LM
We apply character-level LMs to each sub-task of
Task 6 in the same manner as we use the word-
level LMs described above. We use the same
character-level LM as for Task 5, described in Sec-
tion 3.1.2, with the same parameter settings. We
do not attempt to further tune the parameters to
Task 6.

4.2 Results

Details of the training and test data can be found
in Zampieri et al. (2019). Results for the LM-
based approaches described above, as well as a
most-frequent class baseline, are presented in Ta-
ble 2. In terms of F1-score, for each sub-task,
each LM-based approach outperforms the most-
frequent class baseline, with the exception of the
n-gram LM on sub-task B.5 These results, and in
particular those on sub-task A, demonstrate that
LMs can capture knowledge about whether text is
offensive.

On sub-task A the n-gram LM achieved the best
F1-score, while on sub-task B the character-level
LM did. One reason for his could be differences

5Due to an error in our submission for the character-level
model for sub-task C, we did not receive results for this ap-
proach on this sub-task.

in the size of the training data. For sub-task A,
we use all of the training data (13,240 instances)
to train our models. However, for sub-task B, we
are limited to just those tweets that were labeled
as offensive. There are only 4,400 such tweets.
Although this reduction in the amount of train-
ing data caused the F1-score of the word-level
LM-based approaches to decrease, the amount of
training data seems to still be sufficient to train a
character-level LM. The F1-scores on sub-task C
are lower than for the other sub-tasks. One pos-
sible explanation for this relatively poor perfor-
mance is that the training data for sub-task C is
smaller than that for the other sub-tasks (3,876 in-
stances), because the sub-task C training data is a
subset of that for sub-task B.

5 Conclusions

In this paper we employed language models to
the problems of detecting hate speech and offen-
sive language in social media text. We consid-
ered a range of approaches to language model-
ing including word-level n-gram and neural lan-
guage models, and a character-level neural lan-
guage model. Our results indicated that lan-
guage model-based approaches are able to cap-
ture knowledge of whether text is hateful or offen-
sive. However, further experiments on identifying
hate speech indicated that more-conventional ap-
proaches to text classification often perform com-
parably or better.

In this paper we only considered language mod-
els trained on the training data provided for the
shared tasks. In future work, we intend to con-
sider pre-training language models on other cor-
pora (e.g., Twitter corpora) in an effort to im-
prove the performance of language model-based
approaches to detecting hate speech and offensive
language.

517

References
Jing Bai, Jian-Yun Nie, and François Paradis. 2004.

Using language models for text classification. In
Proceedings of the Asia Information Retrieval Sym-
posium (AIRS).

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
InProceedings of ICWSM, pages 512–515.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690–696,
Sofia, Bulgaria.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339. Association for Com-
putational Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018. Detecting offensive tweets in
hindi-english code-switched language. In Proceed-
ings of the Sixth International Workshop on Natural
Language Processing for Social Media, pages 18–
26.

Yashar Mehdad and Joel Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 299–303.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. A Hierarchical Annotation of Offensive Posts
in Social Media: The Offensive Language Identifi-
cation Dataset. In arxiv preprint.

518

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 519–523
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UTFPR at SemEval-2019 Task 5:
Hate Speech Identification with Recurrent Neural Networks

Gustavo Henrique Paetzold1, Shervin Malmasi2, Marcos Zampieri3

1Universidade Tecnológica Federal do Paraná, Toledo-PR, Brazil
2Harvard Medical School, Boston, United States

3University of Wolverhampton, Wolverhampton, United Kingdom
ghpaetzold@utfpr.edu.br

Abstract

In this paper we revisit the problem of au-
tomatically identifying hate speech in posts
from social media. We approach the task us-
ing a system based on minimalistic compo-
sitional Recurrent Neural Networks (RNN).
We tested our approach on the SemEval-2019
Task 5: Multilingual Detection of Hate Speech
Against Immigrants and Women in Twitter
(HatEval) shared task dataset. The dataset
made available by the HatEval organizers con-
tained English and Spanish posts retrieved
from Twitter annotated with respect to the
presence of hateful content and its target. In
this paper we present the results obtained by
our system in comparison to the other entries
in the shared task. Our system achieved com-
petitive performance ranking 7th in sub-task A
out of 62 systems in the English track.

1 Introduction

Abusive and offensive content such as aggression,
cyberbulling, and hate speech have become per-
vasive in social media. The widespread of offen-
sive content in social media is a reason of concern
for governments worldwide and technology com-
panies, which have been heavily investing in ways
to cope with such content using human modera-
tion of posts, triage of content, deletion of offen-
sive posts, and banning abusive users.

One of the most common and effective strate-
gies to tackle the problem of offensive language
online is to train systems capable of recognizing
such content. Several studies have been published
in the last few years on identifying abusive lan-
guage (Nobata et al., 2016), cyber aggression (Ku-
mar et al., 2018), cyber bullying (Dadvar et al.,
2013), and hate speech (Burnap and Williams,
2015; Davidson et al., 2017). As evidenced in two
recent surveys (Schmidt and Wiegand, 2017; For-
tuna and Nunes, 2018) and in a number of other

studies (Malmasi and Zampieri, 2017; Gambäck
and Sikdar, 2017; ElSherief et al., 2018; Zhang
et al., 2018), the identification of hate speech is the
most popular of what Waseem et al. (2017) refers
to as “abusive language detection sub-tasks”.

This paper deals with the hate speech identi-
fication in English and Spanish posts from so-
cial media. We present our submissions to the
SemEval-2019 Task 5: Multilingual Detection of
Hate Speech Against Immigrants and Women in
Twitter (HatEval) shared task. We participated in
sub-task A which is a binary classification task in
which systems are trained to discriminate between
posts containing hate speech and posts which do
not contain any form of hate speech. Our ap-
proach, presented in detail in Section 4, com-
bines compositional Recurrent Neural Networks
(RNN) and transfer learning and achieved compet-
itive performance in the shared task.

2 Related Work

As evidenced in the introduction of this paper,
there have been a number of studies on automatic
hate speech identification published in the last few
years. One of the most influential recent papers
on hate speech identification is the one by David-
son et al. (2017). In this paper, the authors pre-
sented the Hate Speech Detection dataset which
contains posts retrieved from social media labeled
with three categories: OK (posts not containing
profanity or hate speech), Offensive (posts con-
taining swear words and general profanity), and
Hate (posts containing hate speech). It has been
noted in Davidson et al. (2017), and in other works
(Malmasi and Zampieri, 2018), that training mod-
els to discriminate between general profanity and
hate speech is far from trivial due to, for exam-
ple, the fact that a significant percentage of hate
speech posts contain swear words. It has been ar-

519

gued that annotating texts with respect to the pres-
ence of hate speech has an intrinsic degree of sub-
jectivity (Malmasi and Zampieri, 2018).

Along with the recent studies published, there
have been a few related shared tasks organized
on the topic. These include GermEval (Wiegand
et al., 2018) for German, TRAC (Kumar et al.,
2018) for English and Hindi, and OffensEval1

(Zampieri et al., 2019b) for English. The latter is
also organized within the scope of SemEval-2019.
OffensEval considers offensive language in gen-
eral whereas HatEval focuses on hate speech.

Waseem et al. (2017) proposes a typology of
abusive language detection sub-tasks taking two
factors into account: the target of the message and
whether the content is explicit or implicit. Con-
sidering that hate speech is commonly understood
as speech attacking a group based on ethnicity, re-
ligion, etc, and that cyber bulling, for example, is
understood as an attack towards an individual, the
target factor plays an important role in the iden-
tification and the definition of hate speech when
compared to other forms of abusive content.

The two SemEval-2019 shared tasks, HatEval
and OffensEval, both include a sub-task on tar-
get identification as discussed in Waseem et al.
(2017). HatEval includes the target annotation
in its sub-task B with two classes (individual or
group) whereas OffensEval includes it in its sub-
task C with three classes (individual, group or oth-
ers). Another important similarity between these
two tasks is that both include a more basic bi-
nary classification task in sub-task A. In HatEval,
posts are labeled as as to whether they contain hate
speech or not and in OffensEval, posts are labeled
as being offensive or not. As OffensEval consid-
ers multiple types of offensive contents, the hier-
archical annotation model used to annotate OLID
(Zampieri et al., 2019a), the dataset used in Offen-
sEval, includes an annotation level distinguishing
between the type of offensive content that posts
include with two classes: insults and threats, and
general profanity. This type annotation is used in
OffensEval’s sub-task B.

3 Task Description

HatEval (Basile et al., 2019) provides participants
with annotated datasets to create systems capable
of properly identifying hate speech in tweets writ-

1https://competitions.codalab.org/
competitions/20011

ten in both English and Spanish.
The training, development, trial, and test sets

provided for English are composed of 9,000,
1,000, 100 and 3,000 instances, respectively. The
training, development, trial and test sets provided
for Spanish are composed of 4,500, 500, 100 and
1,600 instances, respectively. Each instance is
composed of a tweet and three binary labels: One
that indicates whether or not hate speech is fea-
tured in the tweet, one indicating whether the hate
speech targets a group or an individual, and an-
other indicating whether or not the author of the
tweet is aggressive. HatEval has 2 sub-tasks:

• Sub-task A: Judging whether or not a tweet
is hateful.

• Sub-task B: Correctly predicting all three of
the aforementioned labels.

In this paper, we focus on Task A exclusively, for
both English and Spanish. We participated in the
competition using the team name UTFPR.

4 The UTFPR Models

The UTFPR models are minimalistic Recurrent
Neural Networks (RNNs) that learn compositional
numerical representations of words based on the
sequence of characters that compose them, then
use them to learn a final representation for the sen-
tence being analyzed. These models, of which the
architecture is illustrated in Figure 1, are some-
what similar to those of Ling et al. (2015) and
Paetzold (2018), who use RNNs to create compo-
sitional neural models for different tasks.

As illustrated, the UTFPR models take as input
a sentence, split it into words, then split the words
into a sequence of characters in order to pass them
through a character embedding layer. The charac-
ter embeddings are passed onto a set of bidirec-
tional RNN layers that produces word representa-
tions, then a second set of layers produces a final
representation of the sentence. Finally, this repre-
sentation is passed through a softmax dense layer
that produces a final classification label.

For each language, we created two variants of
UTFPR: one trained exclusively over the training
data provided by the organizers (UTFPR/O), and
another that uses a pre-trained set of character-to-
word RNN layers extracted from the models intro-
duced by Paetzold (2018) (UTFPR/W). The pre-
trained model was trained for the English multi-
class classification Emotion Analysis shared task

520

Figure 1: Architecture of the UTFPR models.

of WASSA 2018, which featured a training set
of 153, 383 instances composed of a tweet and
an emotion label. This pre-trained model for En-
glish was used for the UTFPR/W variant of both
languages, since we wanted to test the hypothe-
sis that pre-training a character-to-word RNN on a
large dataset for English can improve the perfor-
mance of compositional models for both English
and Spanish.

We use 25 dimensions for the size of our char-
acter embeddings, and two layers of Gated Re-
current Units for our bidirectional RNNs with 60
hidden nodes each and 50% dropout. We saved
a model after each training iteration and picked
the one with the lowest error on the develop-
ment set. The UTFPR/W model went through the
same training process as UTFPR/O, with the pre-
trained character-to-word RNN layers being fine-
tuned for the task at hand.

Table 1 showcases the F-scores obtained by the
UTFPR systems on the trial set of Task A. Because
of its superior performance, we chose to submit
the UTFPR/W variants as our official entry.

F-scores
System English Spanish

UTFPR/O 0.509 0.601
UTFPR/W 0.570 0.665

Table 1: F-scores obtained for the trial set at HatEval
Task A for both languages.

5 Results and Discussion

5.1 Shared Task Performance

Tables 2 and 3 feature the F-scores obtained by the
UTFPR systems and the 3 best and worst perform-
ing systems at HatEval Task A for English and
Spanish, respectively. Ultimately, the UTFPR/W
systems submitted ranked 7th out of 62 valid sub-

missions for English, and 31st out of 35 valid sub-
missions for Spanish.

System F-scores
FERMI 0.650

Panaetius 0.570
YNU DYX 0.550

UTFPR/O 0.524
UTFPR/W 0.513

MELODI 0.350
INGEOTEC 0.350

INAOE-CIMAT 0.340

Table 2: F-scores obtained at HatEval Task A for the
English language. At the top and bottom of the table
are featured the top and bottom 3 systems submitted to
the shared task, respectively.

System F-scores
mineriaUNAM 0.730

Atalaya 0.730
MITRE 0.730

UTFPR/O 0.664
UTFPR/W 0.636

jhouston .630
LU team 0.620
TuEval 0.620

Table 3: F-scores obtained at HatEval Task A for the
Spanish language. At the top and bottom of the table
are featured the top and bottom 3 systems submitted to
the shared task, respectively.

One of the aspects we wanted to test with our
participation in this shared task was the extent to
which pre-training a character-to-word RNN over
a larger dataset for an analogous task helped the
models. Our results show that, even though using
a pre-trained RNN considerably improved the per-
formance of our models in the trial experiments,
it actually compromised their performance for the

521

Figure 2: F-scores of our robustness experiments for English. The horizontal axis represents the proportion of
noisy words in the input sentence, and the vertical axis the F-scores.

Figure 3: F-scores of our robustness experiments for Spanish. The horizontal axis represents the proportion of
noisy words in the input sentence, and the vertical axis the F-scores.

test set a little. We believe that this was caused
because the development set was more represen-
tative of the trial than the test set. Overall, sub-
mitting UTFPR/W instead of UTFPR/O cost us 2
ranks for English and 3 for Spanish.

5.2 Robustness Assessment
In order to test the robustness of the UTFPR sys-
tems, we had to generate different noisy versions
of the test set with increasing volumes of noise ar-
tificially added to them.

To do so, we introduced a modification to N%
of randomly selected words in each sentence in
the datasets. The modifications could be either
the deletion of a randomly selected character (50%
chance) or its duplication (50% chance). We used
0 ≤ N ≤ 100 in intervals of 10, resulting in a
total of 11 increasingly noisy versions. The next
step was to create “frozen” versions of the UTFPR
models that act as if any word out of the training
set’s vocabulary is unknown. If a word of the test
set is not present in the vocabulary of the training
set, it produces a numerical vector full of 1’s that
represents an out-of-vocabulary word.

Figures 2 and 3 show the results obtained for
English and Spanish, respectively. As it can be

noticed, our compositional models are much more
robust than the frozen alternatives, suffering very
faint losses in F-score even when 100% of the
words in the input sentence are noisy.

6 Conclusions

In this contribution, we presented the UTFPR sys-
tems submitted to the HatEval 2019 shared task.
The systems are based on compositional RNN
models trained exclusively over the training data
provided by the organizers. We introduced two
variants of our models: one trained entirely on
the shared task’s data (UTFPR/O), and another
with a set of pre-trained character-to-word RNN
layers fine-tuned to the task at hand (UTFPR/W).
Our results show that, despite its simplicity, the
UTFPR/O model attained competitive results for
English, placing it 7th out of 62 submissions. Fur-
thermore, the results of this shared task indicate
that our models are very robust, being able to han-
dle even substantially noisy inputs. In the future,
we intend to test more reliable ways of re-using
pre-trained compositional models.

522

Acknowledgements

We would like to thank the organizers of the HatE-
val shared task for providing participants with this
dataset and for organizing this interesting shared
task. We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Ti-
tan V GPU used for this research.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Pete Burnap and Matthew L Williams. 2015. Cyber
hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving cyberbul-
lying detection with user context. In Advances in
Information Retrieval, pages 693–696. Springer.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
EMNLP, pages 1520–1530. Association for Compu-
tational Linguistics.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive
Language Detection in Online User Content. In
Proceedings of the 25th International Conference
on World Wide Web, pages 145–153. International
World Wide Web Conferences Steering Committee.

Gustavo Paetzold. 2018. Utfpr at iest 2018: Exploring
character-to-word composition for emotion analysis.
In Proceedings of the 9th EMNLP, pages 176–181.
Association for Computational Linguistics.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

523

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 524–528
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Vista.ue at SemEval-2019 Task 5: Single Multilingual Hate Speech
Detection Model

Kashyap Raiyani, Teresa Gonçalves, Paulo Quaresma and Vitor Beires Nogueira
Computer Science Department, University of Évora, Portugal

(kshyp,tcg,pq,vbn)@uevora.pt

Abstract

This paper shares insight from participating
in SemEval-2019 Task 5. The main propose
of this system-description paper is to facili-
tate the reader with replicability and to pro-
vide insightful analysis of the developed sys-
tem. Here in Vista.ue, we proposed a sin-
gle multilingual hate speech detection model.
This model was ranked 46/70 for English Task
A and 31/43 for English Task B. Vista.ue was
able to rank 38/41 for Spanish Task A and
22/25 for Spanish Task B.

1 Introduction

According to the article (Bosco et al., 2017),
nearly a quarter of a billion people, throughout
the world, currently live in a country other than
their place of birth. This is an increase of 41%
from 2000 to 2015. This figure includes more than
21 million refugees often vulnerable and dissat-
isfied. Since 2015, Europe is facing an unprece-
dented refugee crisis, the by-effect of the Syrian
civil war and the terrible living conditions in equa-
torial Africa. 1,300,000 people have generated
this increased migration flow to Europe which can
only but increase, putting European stable soci-
eties, so far, under pressure.

Therefore, the implications for the European so-
ciety and the way we behave towards immigra-
tion, immigrant integration and social inclusion
for newcomers and their children, are becoming
more decisive and must be addressed either at a
local or global level, considering a political and
social perspective. While this phenomenon stim-
ulates the generation and diffusion of hate speech
and hate crimes, at the same time several initia-
tives are promoted, but they should be further im-
proved to increase the awareness and empathy of
receiving populations while avoiding polarization
against immigrants.

Hate speech analysis and hate maps allow both a
greater understanding of social phenomena linked
to the integration of migrants, that more targeted
actions to improve it. The integration of mi-
grants is strongly linked to the new cultural con-
text where they try to rebuild their lives. The pro-
cess of acculturation depends on personal and so-
cial variables of the migrant, in large part in turn
dependent on the cultural context of his/her ori-
gin, on the characteristics of the context of reset-
tlement and on events occurring during this life
period. The different migrants strategies firstly af-
fect the different outcomes achieved. In particular,
he can decide whether or not to maintain the cul-
tural identity of origin and whether or not to es-
tablish and maintain new relationships within the
new contest. This gives rise to four possible dif-
ferent outcomes: integration, assimilation, separa-
tion/segregation, marginalization (Berry, 1997).

1.1 Motivation

Data released by European Community about pop-
ulation change (Union, 2015) show that from the
1990s onwards natural population change had a di-
minishing role in EU demographic developments,
while the role of net migration became increas-
ingly important. In the period 2011 to 2013,
net migration contributed more than 80% to total
population growth, drawing an overall pattern of
growth of EUs populations driven increasingly by
changes in migratory flows, which hides a range
of demographic situations among the EU Member
States. Between 2004 and 2013, indeed the pop-
ulation of 11 EU Member States decreased, with
the biggest reductions recorded in Germany and
Romania, but a high overall increase in popula-
tion numbers was recorded in the other countries
like UK (a gain of 4.51 million inhabitants), Spain
(3.96 million), France (3.54 million) and Italy
(3.29 million). Among these countries, character-

524

ized by a negative natural population change, also
compounded by negative net migration, Italy is af-
fected by a negative natural change, that was com-
pletely offset by net migration which accounted
for 108% of the total population change.

As a part of the motivation, we participated in
the shared task named ”SemEval-2019 Task 5:
Multilingual Detection of Hate Speech Against
Immigrants and Women in Twitter”. Section 2
outlines the existing approaches in a systematic
manner and the description of the task mentioned
in Section 3. Paper also provides a short, compre-
hensive and structured overview of automatic hate
speech detection in Section 4 followed my result
comparison and conclusion in Section 5 and 6 re-
spectively.

2 Related Work

For any text classification task, the most obvi-
ous information to utilize is surface-level features,
such as a bag of words. Indeed, unigrams and
larger n-grams are included in the feature sets by a
majority of authors (Chen et al., 2012; Sood et al.,
2012; Xu et al., 2012; Warner and Hirschberg,
2012; Van Hee et al., 2015). These features are
often reported to be highly predictive. Still, in
many works, n-gram features are combined with
a large selection of other features. For example,
in their recent work, (Nobata et al., 2016) report
that while token and character n-gram features are
the most predictive single features in their exper-
iments, combining them with all additional fea-
tures further improves performance.

Character level n-gram features might provide a
way to attenuate the spelling variation problem of-
ten faced when working with user-generated com-
ment text. For instance, the phrase ”ki11 yrslef
a$$hole”, which is regarded as an example of hate
speech, will most likely pose problems to token
based approaches since the unusual spelling vari-
ations will result in very rare or even unknown
tokens in the training data. While using Charac-
ter level approaches, on the other hand, are more
likely to capture the similarity to the canonical
spelling of these tokens. Author (Mehdad and
Tetreault, 2016) systematically compare charac-
ter n-gram features with token n-grams for hate
speech detection and found that character n-grams
prove to be more predictive than token n-grams.

Apart from word and character based features,
hate speech detection can also benefit from other

surface features (Chen et al., 2012; Nobata et al.,
2016), such as information on the frequency of
URL mentions and punctuation, comment and to-
ken lengths, capitalization, words that cannot be
found in English dictionaries, and the number of
non-alpha numeric characters present in tokens.

Hate speech and sentiment analysis are closely
related, and it is safe to assume that usually, neg-
ative sentiment pertains to a hate speech message.
Because of this, several approaches acknowledge
the relatedness of hate speech and sentiment anal-
ysis by incorporating the latter as an auxiliary clas-
sification. Author (Dinakar et al., 2012; Sood
et al., 2012; Njagi et al., 2015) followed a mul-
tistep approach in which a classifier dedicated to
detect negative polarity is applied prior to the clas-
sifier specifically checking for evidence of hate
speech. Further, (Njagi et al., 2015) run an addi-
tional classifier that weeds out non-subjective sen-
tences prior to the aforementioned polarity classi-
fication.

3 Task Description and Dataset

The main task (Basile et al., 2019) was to detect
Hate Speech in Twitter toward two different tar-
gets, immigrants and women. The data were avail-
able in a multilingual perspective, English, and
Spanish.

3.1 Task Description

The task was partition into two groups: Task A
and Task B. Making a total of four subtasks (En-
glish/Spanish task A/B).

TASK A - Hate Speech(HS) Detection against
Immigrants and Women: a two-class (or bi-
nary) classification where systems have to predict
whether a tweet in English or in Spanish with a
given target (women or immigrants) is hateful or
not hateful.

TASK B - Aggressive behavior(AG) and Target
Classification(TR): where systems are asked first
to classify hateful tweets for English and Spanish
(e.g., tweets, where Hate Speech against women
or immigrants has been identified,) as aggressive
or not aggressive, and second to identify the tar-
get harassed as individual or generic (i.e. single
human or group).

A binary value (1/0) indicating if HS is occur-
ring against one of the given targets (women or
immigrants). If HS occurs (i.e. the value for the
feature at point HS is 1), a binary value indicat-

525

ing if the target is a generic group of people (0)
or a specific individual (1) denoted as TR. And if
HS occurs (i.e. the value for the feature at point
HS is 1), a binary value indicating if the tweeter
is aggressive (1) or not (0) denoted as AG. Thus,
making 3 columns (named HS, TR and, AG) for
each tweet.

3.2 Dataset
As per detail provided by the organizing commit-
tee, all data for the competition were collected
from Twitter and manually annotated mainly via
the ”Figur8 crowdsourcing platform”. The Table
1 describes the distribution of the dataset.

Language Task Train Dev Test
English A 9000 1000 3000
English B 9000 1000 3000
Spanish A 5000 500 1600
Spanish B 5000 500 1600

Table 1: Task Dataset Distribution.

The Table 2 and 3 describes the Hate Speech
Tweet data distribution/property over training and
development dataset.

Task Non-HS HS
EN-A 5790 4210
EN-B 5790 1463 (TR=AG=0)
ES-A 2921 2579
ES-B 2921 315 (TR=AG=0)

Table 2: Task A/B Data Property of Non-HS/HS.

Lan TR(AG=0) AG(TR=0) AG=TR=1
EN 984 1187 576
ES 86 498 1180

Table 3: Task B Data Property (HS=1).

4 System Description

This section will talk about the preprocessing of
the data, the experimental setup, and the multilin-
gual system architecture.

4.1 Tweet Preprocessing
Here, for EN/ES tweets, we are only removing
”url” from each tweet. This is done with the help
of regular expression.

r"http\S+", "url", tweet

4.2 Experimental Setup

Here, a common architecture is used for all the
four subtasks. The only difference is the hyper-
parameter. The Table 4 shows the experimental
parameter values.

Task Paramter Value
EN/ES - A/B batch size 1
EN/ES - A/B epochs 2
EN/ES - A/B optimizer Adam
EN/ES - A/B validation split 0.20

Table 4: Experimental Parameter.

4.3 Single Multilingual System Architecture

Author (Raiyani et al., 2018) have used simple
feedforward dense architecture and able to achieve
beyond the average result for finding aggression
over social media (Facebook and Twitter). In par-
ticular, their model was able to stand the best
performing model for English Tweets. Using a
similar architectural concept, here, we are using
a character-based dictionary. First of all, all the
unique characters from the dataset are stored in the
form of a dictionary. Then, using this dictionary,
each character in the dataset are replaced by its
key value. Thus, this transforms the dataset into
an integer from the text. Finally, this integer data
is further transformed into a binary array and fed
to the Dense architecture. The Figure 1 shows the
flowchart of system process. Where as the Figure
2 shows the Dense Architecture.

Figure 1: System Flowchart.

To store the intermediate character into the dic-
tionary, pika library1 was used. The number of
unique characters found for English and Spanish

1https://pika.readthedocs.io/en/stable/

526

is respectively 169 and 172 (this also includes all
the special character and emojis).

Figure 2: Feedforward Dense Architecture.

The architectural hyper parameter were selected
based on trail and run. The same can be found
in the Table 5 . The code of the entire task could
be found in the online GitHub repository (Raiyani,
2019).

Task Dense Value Activation
EN-A/B layer 1 100 Relu
EN-A layer 2 200 Sigmoid
EN-B layer 2 200 Relu
ES-A/B layer 1/2 50 Relu
EN/ES-A/B layer 3 2 Softmax

Table 5: Architecture Parameter.

In the next section we will talk about the system
performance and its global standing in the task.

5 Result Comparison and Discussion

The Table 6 shows the English task A average
precision, recall, and F1 measure in reference to
the baseline (SVC and MFC). The same for Span-
ish task A is found in the Table 7. The Table 8
shows the F1 measure over all the three param-
eter (namely, Hate Speech (HS), Target Classifi-
cation(TR), and Aggressive(AG)). The ranking of
task B is done using the value of Exact Match Ra-
tio(EMR) (the evaluation formula could be found
here2). The Table 9 shows the EMR value in ref-
erence to the baseline SVC and MFC.

The provided final ranking among all the sub-
tasks are shown in Table 10.

6 Conclusion and Future Work

In this system description paper, we presented a
single multilingual model for hate speech detec-
tion among immigrant and women. Through the

2https://competitions.codalab.org/
competitions/19935

System P R F1
Heigh 0.690 0.679 0.651
SVC 0.595 0.549 0.451
Vista.ue 0.483 0.488 0.420
MFC 0.289 0.500 0.367

Table 6: English - Task A Result.

System P R F1
Heigh 0.734 0.741 0.730
SVC 0.701 0.707 0.701
Vista.ue 0.596 0.593 0.594
MFC 0.294 0.500 0.370

Table 7: Spanish - Task B Result.

System F1 Low High Obtain
EN B - HS 0.348 0.602 0.463
EN B - TR 0.372 0.752 0.596
EN B - AG 0.214 0.621 0.530
ES B - HS 0.370 0.761 0.573
ES B - TR 0.424 0.824 0.640
ES B - AG 0.413 0.760 0.578

Table 8: English/Spanish Task B F1 Result.

EMR MFC SVC High Obtain
EN B 0.580 0.308 0.580 0.284
ES B 0.588 0.605 0.635 0.536

Table 9: English/Spanish Task B EMR Result.

Task System Rank
EN A SVC 35

Vista.ue 46
MFC 68

EN B MFC 1
SVC 27
Vista.ue 31

ES A SVC 21
Vista.ue 38
MFC 41

ES B SVC 13
Vista.ue 23
MFC 18

Table 10: System Ranking.

527

system ranking, we can see that for task A of both
the languages, the system is performing better than
MFC baseline where on task B results could be
improved. Further, We consider that our system
can be grown, mainly due to the following facts:
(1) The system does not count any NLP feature
into account (2) Due to this, many hate tweets are
missed. (3) Especially, for task B, features like
Part of Speech (POS) tagging and Entity Extrac-
tion (EE) can improve the result. Lastly, how to
address these aspects and generate a more accu-
rate, comprehensive and fine-grained hate speech
detection remains our further work.

Acknowledgments

The authors would like to thank COMPETE
2020, PORTUGAL 2020 Programs, the European
Union, and ALENTEJO 2020 for supporting this
research as part of Agatha Project SI & IDT num-
ber 18022 (Intelligent analysis system of open
of sources information for surveillance/crime
control).

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

John W. Berry. 1997. Immigration, acculturation, and
adaptation. Applied Psychology, 46(1):5–34.

Cristina Bosco, Viviana Patti, Marcello Bogetti,
Michelangelo Conoscenti, Giancarlo Francesco
Ruffo, Rossano Schifanella, and Marco Stranisci.
2017. Tools and resources for detecting hate
and prejudice against immigrants in social media.
In SYMPOSIUM III. SOCIAL INTERACTIONS IN
COMPLEX INTELLIGENT SYSTEMS (SICIS) at
AISB 2017, pages 79–84. AISB.

Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu.
2012. Detecting offensive language in social me-
dia to protect adolescent online safety. In Proceed-
ings of the 2012 ASE/IEEE International Confer-
ence on Social Computing and 2012 ASE/IEEE In-
ternational Conference on Privacy, Security, Risk
and Trust, SOCIALCOM-PASSAT ’12, pages 71–
80, Washington, DC, USA. IEEE Computer Society.

Karthik Dinakar, Birago Jones, Catherine Havasi,
Henry Lieberman, and Rosalind Picard. 2012. Com-
mon sense reasoning for detection, prevention, and

mitigation of cyberbullying. ACM Trans. Interact.
Intell. Syst., 2(3):18:1–18:30.

Yashar Mehdad and Joel Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 299–303. Asso-
ciation for Computational Linguistics.

Dennis Njagi, Z Zuping, Damien Hanyurwimfura, and
Jun Long. 2015. A lexicon-based approach for hate
speech detection. International Journal of Multime-
dia and Ubiquitous Engineering, 10:215–230.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web, WWW ’16, pages 145–153, Republic and
Canton of Geneva, Switzerland. International World
Wide Web Conferences Steering Committee.

Kashyap Raiyani. 2019. Single multi-
lingual hate speech detection model.
https://github.com/kraiyani/
Single-Multilingual-Hate-Speech-
Detection-Model.

Kashyap Raiyani, Teresa Gonçalves, Paulo Quaresma,
and Vitor Beires Nogueira. 2018. Fully connected
neural network with advance preprocessor to iden-
tify aggression over facebook and twitter. In Pro-
ceedings of the First Workshop on Trolling, Aggres-
sion and Cyberbullying (TRAC-2018), pages 28–41.
Association for Computational Linguistics.

Sara Owsley Sood, Elizabeth F. Churchill, and Judd
Antin. 2012. Automatic identification of personal
insults on social news sites. J. Am. Soc. Inf. Sci.
Technol., 63(2):270–285.

European Union. 2015. People in the EU: who are we
and how do we live?, 2015 edition edition. Luxem-
bourg.

Cynthia Van Hee, Els Lefever, Ben Verhoeven, Julie
Mennes, Bart Desmet, Guy De Pauw, Walter Daele-
mans, and Véronique Hoste. 2015. Detection and
fine-grained classification of cyberbullying events.
In Proceedings of the 10th Recent Advances in Nat-
ural Language Processing (RANLP 2015), Hissar,
Bulgaria.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the world wide web. In Proceedings
of the Second Workshop on Language in Social Me-
dia, LSM ’12, pages 19–26, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and
Amy Bellmore. 2012. Learning from bullying traces
in social media. In Proceedings of the 2012 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL HLT ’12, pages 656–
666, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

528

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 529–534
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

YNU NLP at SemEval-2019 Task 5: Attention and Capsule Ensemble for
Identifying Hate Speech

Bin Wang, Haiyan Ding∗
School of Information Science and Engineering

Yunnan University, Yunnan, P.R. China
hyding@ynu.edu.cn

Abstract

This paper describes the system submitted to
SemEval 2019 Task 5: Multilingual detection
of hate speech against immigrants and wom-
en in Twitter (hatEval). Its main purpose is
to conduct hate speech detection on Twitter,
which mainly includes two specific different
targets, immigrants and women. We partici-
pate in both subtask A and subtask B for En-
glish. In order to address this task, we devel-
ope an ensemble of an attention-LSTM model
based on HAN and a BiGRU-capsule model.
Both models use fastText pre-trained embed-
dings, and we use this model in both subtasks.
In comparison to other participating teams, our
system is ranked 16th in the Subtask A for En-
glish, and 12th in the Subtask B for English.

1 Introduction

In recent years, the popularity of social network-
ing and microblogging sites has increased, attract-
ing more and more users. With this huge user base,
social media will continue to release a large num-
ber of user-generated content. As the use of social
media has grown, other undesirable phenomena
and behaviors have emerged. Social media users
often abuse this freedom to spread abuse or hate-
ful posts or comments. In many cases, these user-
generated content is inherently offensive or proac-
tive, and users may have to deal with threats such
as cyber attacks or cyberbullying, as well as oth-
er undesirable phenomena (Whittaker and Kowal-
ski, 2015). So the problem of detecting and possi-
bly limiting the spread of hate speech is becoming
more and more important.

In order to solve the problem of abuse of lan-
guage in social media platforms, some related
research has been published, such as cyberbul-
lying (Dadvar et al., 2013), hate speech (Warn-
er and Hirschberg, 2012) and abusive language

∗Corresponding author

(Chen et al., 2012), most methods are based
on surveillance methods (Schmidt and Wiegand,
2017). There are also some (racial discrimination)
bias towards specific goals. In (Waseem and Hov-
y, 2016), the authors proposed a series of criteria
based on critical race theory to identify racism and
gender discrimination, they use n-gram models for
research; Tulkens et al. studied racism detection
in Dutch social media (Tulkens et al., 2016). A
recent discussion of the challenge of identifying
hate speech was proposed by Kumar et al. (Kumar
et al., 2018). The results show that it is difficult
to distinguish between open and covert attacks in
social media.

SemEval 2019 Task 5 is proposed to identify
hate speech about immigrants and women in Twit-
ter for English or Spanish, and classify hate speech
and judge whether the target is an individual or
a group (Basile et al., 2019). Hate speech is of-
ten defined as any communication that attacks an
individual or group through certain characteristic-
s (such as gender, nationality, religion, or other
characteristics) in social media platforms. This
task gives us some text data from Twitter, we need
to classify the content through computational anal-
ysis. The task has two subtasks, in which Sub-
task A is Hate speech detection for immigrants
and women: It’s a binary classification task, the
system must judge whether a tweet with a specific
goal (female or immigrant) in English or Spanish
is hate speech; Subtask B is Aggressive behavior
and target classification: This subtask is to classify
the identified hate speech based on Subtask A, to
judge whether it is aggressive or non-aggressive,
and then to identify the target being harassed as an
individual or group.

In this paper, we developped a system stacked t-
wo different neural network models: an attention-
based model with LSTMs and an Capsule-based
model with BiGRUs. We make some changes to

529

Hierarchical Attention Network to make it more
suitable for this task, the detailed description of
the Attention-LSTM model is provided in Section
2.2. Next, we build a BiGRU-Capsule model using
the latest “Capsule” model proposed by (Sabour
et al., 2017), the detailed description is provided
in Section 2.3. In Section 2.4, we describe the use
of stacking as ensemble. In Section 3.1, some de-
tails about data preprocessing for this task are de-
scribed. In Section 3.2 and Section 3.3, the hyper-
parameter setting and result analysis used in the
whole experiment are introduced in detail.

2 Data and System Description

2.1 Data description

In this task, we only use the official training da-
ta set for training and trial data set to verify. In
Subtask A, the purpose is to distinguish whether
the tweet is hate speech, the data is divided into t-
wo categories(HS): 0 means non-hate speech, and
conversely, 1 is hate speech. Similarly, in Subtask
B, 0 is indicative of aggressiveness in categoriz-
ing hate speech(TR), 1 is non-aggressive, and in
the goal of judging hate speech(AG), 0 means in-
dividual and 1 means group. In this task, we only
participate in Subtask A and Subtask B in English.
There are 9000 tweets in training data set, 1000
tweets in development data set, and 2971 tweets
in final test data set. In the training data set, there
are 5,217 labels are 0s and 3,783 labels are 1s in
the label HS; in the label TR, 7659 labels are 0s
and 1341 labels are 1s; and in the label AG 7440
labels are marked as 0s, 1560 are marked as 1s.
Although the data of the label TR and the label
AG are very unbalanced, since the ratio of 0 and
1 in the label HS is close to balance, we have not
dealt with the data imbalance in this task.

2.2 Attention-LSTM Model

Here we have made some changes to HAN (Yang
et al., 2017). The overall structure is shown in
Figure 1. The replacement of BiGRU with LST-
M (Hochreiter and Schmidhuber, 1997) is found
to be significantly better than the original model
for this task. The architecture of Attention-LSTM
model is shown in Figure 1.

We use an LSTM to encode the sentences and
to get annotations of words by summarizing infor-
mation for word.

Not all words contribute equally to the expres-
sion of the emotion in the sentence. Emotion

Figure 1: The architecture of Attention-LSTM Model.

greatly influences whether the sentence is hate
speech, and also is helpful in identifying hate cat-
egories. There may be only a few words in a sen-
tence that are crucial for the judgment of the goal
of hate speech. So here we introduce the attention
mechanism so that the system can better focus on
words that are useful to identify hate speech, then
it extracts those words and aggregates the repre-
sentation of those important words to form a sen-
tence vector.

First, we feed the word annotation hi, and
through a one-layer MLP to get a deeper repre-
sentation ui.

ui = tanh(Ws ∗ hi + bs) (1)

Then, we compute the similarity between ui and
word-level context vector us, and obtain a normal-
ized weight αi of importance by softmax function.

αi =
exp(uTi ∗ us)∑
i exp(u

T
i ∗ us)

(2)

Finally, we compute the sentence vector s by a
weighted sum of the word annotations hi based on
the normalized importance weights. s summarizes
all the information of words in a context.

s =
∑

i

αi ∗ hi (3)

2.3 BiGRU-Capsule model

In order to improve the performance, in this sys-
tem we use BiGRU and the latest capsule model
(Sabour et al., 2017). The architecture of BiGRU-
Capsule model is shown in Figure 2.

530

Figure 2: The architecture of BiGRU-Capsule Model.

First, we use the BiGRU layer to encode the
sentences. As a variant of LSTM, GRU combines
the Forget Gate and the Input Gate into a single
Update Gate.

The bidirectional GRU is composed of two
GRUs stacked one on top of the other. The out-
put is determined by the state of the two GRUs.

In the capsule layer, the feature output by the
previous BiGRU layer as an input to feed to the
capsule network, to obtain deeper feature informa-
tion. Capsule network was proposed by (Sabour
et al., 2017), the main idea is to use neuron vec-
tors instead of single neuron nodes of traditional
neural networks, and finally train this new neural
network by means of Dynamic Routing.

First, the “prediction vectors” ûj|i are obtained
by multiplying the output ui of each capsule by a
weight matrix Wij .

ûj|i =Wij ∗ ui (4)

Then, all the “prediction vectors” are weighted
summed to obtain the capsule sj

sj =
∑

i

cij ∗ ûj|i (5)

where cij is the coupling coefficient between
the capsules determined by “routing softmax”, and
the sum of the coupling coefficient of all the cap-
sule is 1 in the layer.

Finally, we use the nonlinear “squashing” func-
tion to compress the length of the output vector of
capsule between 0 and 1.

vi =
||sj ||2

1 + ||sj ||2
sj
||sj ||

(6)

where vj is the output vector of capsule j.

2.4 Ensemble

Ensembling of several models is a widely used
method to improve the performance of the overall
system by combining predictions of several classi-
fiers (Hansen and Salamon, 2002). A combination
of all features leads to the best performance, they
provide complementary information. Several en-
sembling techniques have been proposed recently:
mixing experts (Jordan and Jacobs, 1991), model
Stacking (Wolpert, 1992), Bagging and Boosting
(Breiman, 1999) . We use Stacking in this task.
The main reason is that other methods are rela-
tively simple and may have large learning errors.
Stacking is like an upgraded version of Bagging.
The second layer of learning in Stacking is to find
the right weight or the right combination.

The Stacking algorithm is divided into two lay-
ers. The first layer uses different algorithms to for-
m n weak classifiers, and simultaneously gener-
ates a new data set of the same size as the original
data set. This new data set and a new algorithm
form the second layer classifier.

When using the Stacking strategy, we do not
execute a simple logical processing of the weak
learner, but add a layer of learner, that is, we
will use the learning result of the Attention-LSTM
model and the BiGRU-Capsule model as input,
building an MLP model as second layer classifier,
the MLP model has only one hidden layer, there
are 200 hidden nodes in the layer, and a Dense lay-
er as the output of the ensemble. The architecture
of the ensemble model is shown in Figure 3.

Figure 3: The architecture of the ensemble Model.

3 Experinment and Result analysis

3.1 Data Processing

The official data set is very noisy and needs to be
cleaned. Preprocessing the text makes it easy for

531

the model to extract features and representations.
We perform the following preprocessing.

• Hashtags are important markers for determin-
ing sentiment or user intention. The “#” sym-
bol is removed and the word itself is retained.
e.g.: in the sentence, “#BuildTheWall and
#BuildThatWall” are marked as 1 in most
cases in the training data set.

• Username mentions, e.g.: words starting with
“@”, generally provide no information in
terms of sentiment. Hence such terms are re-
moved completely from the tweets.

• Repeated full stops, question marks and ex-
clamation marks are replaced with a single
instance with a special token “repeat” added.

• All contractions are split into two tokens
by using regular expression (e.g.: “it’s” is
changed to “it” and “is”).

• All URLs, phone numbers and date numbers
are replaced respectively as “URL”, “PHO-
NENUMBER”, “NUMBER”.

• Emoticons (such as, ‘:(’, ‘:)’, ‘:P’ and emoji
etc.) are replaced as their own meanings by
emotion lexicons1.

• Tokens are converted to lower case.

3.2 Hyperparameter setting
We select the longest sentence in all cleaned da-
ta as the maximum sentence length, which is 58
characters. The processed text is then converted to
word embeddings. Converting text into word em-
beddings represents each word of the text with a
d dimensional vector (Mikolov et al., 2013). We
use available pre-trained embeddings which are
trained on large data set.

In the attention-LSTM model, there is mainly
one LSTM layer and one attention layer. There
are 300 hidden nodes in the LSTM layer. We al-
so use the Dropout layer with rate 0.25 between
the LSTM layer and the Attention layer. The pur-
pose is to prevent over-fitting. Finally, we also use
Batch normalization with a size of 0.1 behind the
Attention layer, this layer is normalized for each
neuron, even only need to normalize a certain neu-
ron, rather than normalize a whole layer of neu-
rons. The purpose is to make the model training

1https://emojipedia.org/

converge faster, and the distribution of model hid-
den output features is more stable, which is more
conducive to model learning.

In the capsule model, we build two layers of Bi-
GRU and one layer of Capsule. In the capsule
layer, our routing size is set to 5, the number of
capsules is set to 10, and the size of the capsule is
set to 16. For BiGRU, we set the hidden unit to
128, and a Dropout layer with size 0.25 is added
between the BiGRU layer and the Capsule layer
to prevent overfitting. Finally, in all models, the
loss function is binary crossentropy, and the op-
timizer is adam (Kingma and Ba, 2014).

3.3 Result analysis

For this task, we select fastText (Joulin et al.,
2017), because in this task we find that the result
of fastText is much better than other word vectors
such as Word2vec and Glove. Table 1 is the result
of different word vectors as embedding.

Word Vector Dim macro-F1 Result
Word2vec 300d 0.746

Glove-twitter 200d 0.763
BPEmb 300d 0.732
fastText 300d 0.761

Table 1: The result of different word vectors as em-
bedding in the attention-LSTM model for development
data set in Subtask A.

We think that the reason why fastText work-
s better than others is that Word2vec treats each
word in the corpus as an atom, and it generates
a vector for each word, which ignores the inter-
nal morphological features of the word, such as:
“apple” and “apples”, but fastText overcomes this
problem by using character-level n-grams to rep-
resent a word; fastText may have a higher dimen-
sion than Glove-twitter, indicating more features;
BPemb is based on Byte-Pair Encoding, the effect
of fastText is obviously better than it.

Here we compare the effects of BiGRU, LSTM
and BiLSTM and find that LSTM is superior to
BiGRU and BiLSTM in this model, and the results
are shown in Table 2.

We compare the results achieved by our individ-
ual approaches with the submitted ensemble sys-
tem in Table 3. For brevity, we only show the
macro-F1 scores on the development set.

The results of our test data set and the top three
results of the official rankings are shown in Table

532

Model macro-F1 Result
Attention-BiGRU 0.751

Attention-BiLSTM 0.742
Attention-LSTM 0.761

Table 2: The results of using BiGRU, LSTM, Bi-
LSTM with the attention mechanism for development
data set in Subtask A.

Model macro-F1 Result
Attention-LSTM 0.761
BiGRU-Capsule 0.758

Ensemble 0.782

Table 3: The result of different model for development
data set in Subtask A.

4 and Table 5. From the results of our model in the
test data for Subtask A, its macro-F1 is only 0.498,
which is 0.284 lower than the result of the training
data set at training phase of 0.782, indicating that
our model may have some over-fitting.

Team macro-F1 Result
saradhix 0.651
Panaetius 0.571

YunxiaDing 0.546
Our model 0.493

Table 4: The results of our test data set and the top
three results of the official rankings in Subtask A.

Team EMR Result
ninab 0.570

iqraameer133 0.568
scmhl5 0.483

Our model 0.344

Table 5: The results of our test data set and the top
three results of the official rankings in Subtask B.

4 Conclusion

In this paper, we propose a deep learning frame-
work to classify hate speech about immigrants and
women in tweets for English. The proposed ap-
proach is based on an ensemble of attention and
capsule, allowing us to explore the different di-
rections of a neural network based methodology.
Each individual approach is described in detail
with a view of making our experiments replicable.

In the future, we would like to experimen-
t with handcrafted features in addition to word-
vectors and lexicon features. We would also
experiment with AffectiveTweets package (Mo-
hammad and Bravo-Marquez, 2017) such as
TweetToSentiStrengthFeatureVector, TweetNLP-
Tokenizer etc., and try to extract the NER feature
to further improve the model performance.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Leo Breiman. 1999. Prediction games and arcing algo-
rithms. Neural Computation, 11(7):1493.

Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu.
2012. Detecting offensive language in social media
to protect adolescent online safety. In 2012 Inter-
national Conference on Privacy, Security, Risk and
Trust and 2012 International Confernece on Social
Computing, pages 71–80. IEEE.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving cyberbul-
lying detection with user context. In European Con-
ference on Information Retrieval, pages 693–696.
Springer.

L. K Hansen and P Salamon. 2002. Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10):993–1001.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Michael I. Jordan and Robert A. Jacobs. 1991. Hier-
archies of adaptive experts. In Advances in Neural
Information Processing Systems, pages 985–992.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Association for Computational
Linguistics.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. Computer Sci-
ence.

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the

533

First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. Advances in Neural Information Processing
Systems, 26:3111–3119.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. In
The Workshop on Computational Approaches To
Subjectivity, pages 34–49.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic routing between capsules. In Ad-
vances in Neural Information Processing Systems,
pages 3856–3866.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

Stéphan Tulkens, Lisa Hilte, Elise Lodewyckx,
Ben Verhoeven, and Walter Daelemans. 2016.
A dictionary-based approach to racism detection
in dutch social media. arXiv preprint arX-
iv:1608.08738.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the world wide web. In Proceed-
ings of the Second Workshop on Language in Social
Media, pages 19–26. Association for Computational
Linguistics.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Elizabeth Whittaker and Robin M Kowalski. 2015. Cy-
berbullying via social media. Journal of School Vi-
olence, 14(1):11–29.

David H Wolpert. 1992. Stacked generalization. Neu-
ral Networks, 5(2):241–259.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2017. Hierarchical
attention networks for document classification. In
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1480–1489.

534

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 535–539
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

YNU DYX at SemEval-2019 Task 5: A Stacked BiGRU Model Based on
Capsule Network in Detection of Hate

Yunxia Ding, Xiaobing Zhou∗, Xuejie Zhang
School of Information Science and Engineering

Yunnan University, Yunnan, P.R. China
yxding01@163.com, zhouxb@ynu.edu.cn, xjzhang@ynu.edu.cn

Abstract

This paper describes our system designed for
SemEval 2019 Task 5 “Shared Task on Mul-
tilingual Detection of Hate”. We only par-
ticipate in subtask-A in English. To address
this task, we present a stacked BiGRU mod-
el based on a capsule network system. In or-
der to convert the tweets into corresponding
vector representations and input them into the
neural network, we use the fastText tools to
get word representations. Then, the sentence
representation is enriched by stacked Bidirec-
tional Gated Recurrent Units (BiGRUs) and
used as the input of capsule network. Our sys-
tem achieves an average F1-score of 0.546 and
ranks 3rd in the subtask-A in English.

1 Introduction

Hate speech is an offensive language, a statemen-
t that a person or group attacks another person
or group based on characteristics such as gen-
der, race, religion, disability, or sexual orientation.
Nockleby (Nockleby, 2000) defines hate speech as
“any communication that disparages a person or a
group on the basis of some characteristic such as
race, color, ethnicity, gender, sexual orientation,
nationality, religion, or other characteristic.” Giv-
en the huge amount of user-generated content on
the Web, and in particular on social media, the
problem of detecting, and therefore possibly limit
the Hate Speech diffusion, is becoming fundamen-
tal, for instance for fighting against misogyny and
xenophobia (Basile et al., 2019).

Microblog today has become a very popular
communication tool among Internet users. Mil-
lions of users share opinions on different aspects
of life everyday. And Twitter1 is a social platform
that is very popular all over the word and million-
s of people share their experiences, moods, atti-

∗Corresponding author
1http://twitter.com

tudes toward life and discuss current issues (Pak
and Paroubek, 2010). Many of the content is re-
lated to people’s feelings, so many people begin to
conduct emotional analysis and research on tweet-
s. SemEval 2019 Task 5 is to detect hate speech
on tweets. Task A is a binary classification task
that predicts whether English or Spanish tweets for
specific goals (women or immigrants) are hateful
or not hateful (Basile et al., 2019). There are many
studies that currently use tweets as a corpus for
natural language processing (NLP). Text classifi-
cation using traditional machine learning methods
mainly includes Support Vector Machines (SVM-
s) (Gunn et al., 1998), Naive Bayes (McCallum
et al., 1998) and Random Forests (Cutler et al.,
2007), etc. In recent years, the use of deep neu-
ral networks for NLP has become mainstream,
such as Convolutional Neural Networks (CNNs)
for sentence classification (Kim, 2014) and Re-
current Neural Networks (RNNs) (Graves et al.,
2013).

This task aims to predict whether the tweet for
each ID is a hate speech about women or immi-
grants. Our system implements a stacked Bidi-
rectional Gated Recurrent Units (BiGRUs) (Cho
et al., 2014) based on a capsule network. The vec-
tor representations of words are obtained with fast-
Tex. The result of the classification is through the
output of a fully connected layer. The rest of this
paper is organized as follows: Data Processing and
analysis are discussed in section 2. Section 3 pro-
vides the details of the proposed model. Experi-
ments and results are described in Section 4. Fi-
nally, we draw conclusions in Section 5.

2 Data Processing

This part describes the experimental data and da-
ta processing analysis of SemEval 2019 Task 5
subtask-A in English.

535

Figure 1: Neural architecture of stacked BiGRU with capsule network.

2.1 Experimental Data

This is a binary classification task of hate speech
about immigrants or women. The task organizer-
s provide training sets, development sets and test
sets, respectively. Table 1 shows the data distri-
bution of hate speech and non-hate speech in each
data set. From Table 1, we can find that there are
9,000 tweets in training set, 1,000 tweets in devel-
opment set and 2,971 tweets in test set.

data hate speech non-hate speech
training set 3,783 5,217

dev set 427 573
test set 1,252 1,719

Table 1: Distribution of labels in each datasets.

2.2 Processing Data

We perform a series of standard processing on
datasets.

• All punctuation marks are removed.

• All characters are converted to lowercase.

• All hyperlinks are replaced by “url”.

• All sentences are tokenized by Natural Lan-
guage Toolkit (NLTK) (Bird et al., 2009).

• All numbers are replaced by “number”

• All contractions are normalized, like place
“shouldn’t” with “should not” and “dosen’t”
with “does not” and so on.

• All @specific user names are replaced with
usernames, for example “@PdxPatriot1” is
replaced with “username”.

We consider the specific length of the sentence in
the input model. If it is too long, the calculation
time of the training model will increase. If it is
too short, it will lose extra information. So we
choose twice the average value, which is 45, as
the final length of the sentence in the input model,
so that the lost information will not be too much,
and the calculation time will not be too long. In
the training set, the development set and the test
set have 473, 122, and 102 sentences respectively
longer than 45, and the maximum sentence length
is 65.

3 System Description

Our system can be roughly divided into two part-
s: the space vector representation of the words
and the learning of the tweet content by the cap-
sule network. We first map the words into a low-
dimensional space vector, then feed the sentence
vectors composed of these word vectors into a cap-
sule network to learn the sentence features, and fi-
nally classify the text of the test set by a softmax
function.

3.1 Word Representation

Representing a word by using a low-dimensional
vector is currently the most common method in
natural language processing. The fastText (Joulin
et al., 2017) tool is used in our system to get
the word representation of the sentences. A low-
dimensional vector in fastText is associated with
each word, and hidden representations can be
shared between different classes of classifiers so
that textual information can be used together in
different classes. So fastText is a very efficient,
word-based vectorization model for text classifica-
tion. The pre-trained fastText embedding is used

536

in our system2.

3.2 Model Description

In order to enrich the word vector representation
in the text, we use a stacked Bidirectional Gated
Recurrent Units (BiGRUs) (Cho et al., 2014). The
output of BiGRU is then used as the input to the
capsule network (Sabour et al., 2017). The final
result is obtained by the softmax activation func-
tion in the fully connected layer. The model archi-
tecture is show in Figure 1.

Targeted Dropout Layer: Dropout regulariza-
tion only activates some local neurons in each for-
ward propagation, so it adds sparsity properties
during training. This encourages the neural net-
work to learn a representation that is robust to s-
parsification, that is, to randomly delete a set of
neurons. Targeted Dropout (Gomez et al., 2018)
sorts weights or neurons based on some measure
of fast approximation weight importance and ap-
plies Dropout to those elements of lower impor-
tance. This approach encourages neural networks
to learn more important weights or neurons. In
other words, the network learns to be robust to our
choice of post hoc pruning strategy. At the same
time it is easy to implement with Keras 3.

Stacked BiGRU: To get more fine-grained sen-
tence information, we use stacked Bidirectional
Gated Recurrent Units (BiGRUs) to encode sen-
tence information. The “stack” here refers to 2,
which is 2 layers BiGRU. The information of the
sentence is directional. The forward GRU can on-
ly get the information from the front to the back
of the sentence, and can’t encode the information
from the back to the front. BiGRU better captures
semantic dependencies in both directions.

Capsule Layer: The capsule network (Sabour
et al., 2017) replaces a single neuron node of a tra-
ditional neural network with a neuron vector, and
trains a completely new neural network in the way
of Dynamic Routing, which effectively improves
the low efficiency and space insensitivity of the
CNN model. The capsule network is connected
the same way as a fully connected network. Each
capsule neuron in the previous layer is connect-
ed to each capsule neuron in the next layer. Each
connection of the capsule network is also weight-
ed. The difference is that there is a coupling coef-
ficient on the connection of the capsule network.

2https://fasttext.cc/docs/en/english-vectors.html
3https://pypi.org/project/keras-targeted-dropout/

The coupling coefficient is determined by the iter-
ative dynamic routing process.

4 Experiments and Results

4.1 Evaluation

To evaluate the performance of the classification
system, the system uses a standard evaluation met-
rics that includes accuracy, precision, recall, and
F1-score. In this task we use F1-score to measure
the performance of the proposed method. Accura-
cy is the most intuitive performance measure and
it is simply a ratio of correctly predicted observa-
tion to the total observations. Precision is the ratio
of correctly predicted positive observations to the
total predicted positive observations. Recall is the
ratio of correctly predicted positive observation-
s to the all observations in actual class. F1-score
is the weighted average of Precision and Recal-
l. Precision and recall have equal contributions to
F1-score. The formula for F1-score is defined as:

F1 − score =
(2 ∗ Precision ∗Recall)

(Precision+Recall)
(1)

4.2 Hyperparameter

The Targeted Dropout layer has two parameters,
drop rate and target rate. In this system, these t-
wo parameters are both set to 0.55.

For the stacked BiGRU, the first layer BiGRU
units = 64, and the second layer BiGRU units =
64.

The parameters of the capsule layer are set as
follows: routings = 5, the number of caspule is 10
and the dimension is 32.

Finally, at the full connection layer output,
we added two parameters, kernel regularizer
and activity regularizer, respectively.
Kernel regularizer uses l2 regularization with
a parameter of 0.001, activity regularizer is l1
regularization, and the parameter is also set to
0.001.

Usually the multi-classification problem uses
categorical crossentropy as the loss function. But
our system uses binary crossentropy in this binary
classification.

We set epochs = 6 and batch size = 64.

4.3 Experiments and Result Analysis

We conduct several experiments to gain insight in-
to the performance of the proposed model. First

537

we compare the normal Dropout and Targeted
Dropout performance.

It can be seen from Table 2 that the performance
of Targeted Dropout is significantly better than
that of Dropout. Model performance increases by
5% on average F1-score.

Sets Acc P R F1

Dropout 0.53 0.58 0.61 0.52
Targeted Dropout 0.56 0.64 0.60 0.55

Table 2: Experimental results on test set. The values
in the table are macro averages.

To determine the specific parameters of the Tar-
geted Dropout, we do a lot of comparison exper-
iments. As can be seen from Table 3, the best
parameter is 0.55. This is also the parameter we
submitted to the system in the competition.

Targeted Dropout Acc P R F1

0.40 0.53 0.58 0.63 0.50
0.45 0.56 0.60 0.63 0.54
0.50 0.53 0.59 0.64 0.49
0.55 0.56 0.64 0.60 0.55
0.60 0.55 0.60 0.63 0.54

Table 3: Experimental results of different Targeted
Dropouts on the test set.

We compare the four network architectures
based on a capsule network, LSTM, GRU, BiLST-
M and BiGRU. We observe that the performance
of BiGRU is better than the other three in this task.
Compared to MFC baseline and SVC baseline, our
method increases the average F1-score by 0.18 and
0.10, respectively, as is shown in Table 4.

The values of MFC baseline and SVC base-
line come from the data published by the orga-
nizer4. To ensure the fairness of the experiment,
the parameters of the capsule network remain un-
changed, using the parameters mentioned in sec-
tion 4.2.

5 Conclusion and Future Work

In this paper, we present a stacked BiGRU mod-
el based on a capsule network system in the task
“Shared Task on Multilingual Detection of Hate”.
We replace Dropout with Targeted Dropout, the
effect is more obvious, indicating that Targeted

4https://docs.google.com/spreadsheets/d/
1wSFKh1hvwwQIoY8 XBVkhjxacDmwXFpkshYzLx4bw-
0/edit#gid=0

Model Acc P R F1

MFC baseline 0.58 0.29 0.5 0.37
SVC baseline 0.49 0.60 0.55 0.45

LSTM 0.55 0.60 0.64 0.53
GRU 0.54 0.59 0.62 0.52

BiLSTM 0.53 0.58 0.62 0.51
BiGRU 0.56 0.64 0.60 0.55

Table 4: Each model is a stacked or two-layer model,
and the units in the model are all 64.

Dropout is effective in this system. At the same
time, we have conducted several experiments to
find the optimal parameters of Targeted Dropout.
Through comparative experiments, BiGRU is the
best model based on capsule networks.

Due to time limit, we don’t tune the parameters
of the capsule network. In the future, we will ad-
just the parameters of the capsule network to opti-
mize the performance of the model. Secondly, we
are going to try ensemble methods such as hard
voting, soft voting and stacking to find the one that
works best for our task. Finally, we would like to
explore transfer learning technology.

Acknowledgments

This work was supported by the Natural Sci-
ence Foundations of China under Grant Nos.
61463050, 61702443 and 61762091, and the
Project of Innovative Research Team of Yunnan
Province under Grant No. 2018HC019.

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. SemEval-
2019 Task 5: Multilingual Detection of Hate Speech
Against Immigrants and Women in Twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),

538

pages 1724–1734. Association for Computational
Linguistics.

D Richard Cutler, Thomas C Edwards Jr, Karen H
Beard, Adele Cutler, Kyle T Hess, Jacob Gibson,
and Joshua J Lawler. 2007. Random Forests for
Classification in Ecology. Ecology, pages 2783–
2792.

Aidan N Gomez, Ivan Zhang, Kevin Swersky, Yarin
Gal, and Geoffrey E Hinton. 2018. Targeted
Dropout. In International Conference on Neural In-
formation Processing Systems.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech Recognition with Deep Re-
current Neural Networks. In 2013 IEEE interna-
tional conference on acoustics, speech and signal
processing, pages 6645–6649. IEEE.

Steve R Gunn et al. 1998. Support Vector Machines for
Classification and Regression. ISIS technical report,
14(1):5–16.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of Tricks for Efficient
Text Classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751, Do-
ha, Qatar. Association for Computational Linguistic-
s.

Andrew McCallum, Kamal Nigam, et al. 1998. A
Comparison of Event Models for Naive Bayes Text
Classification. In AAAI-98 workshop on learning for
text categorization, volume 752, pages 41–48. Cite-
seer.

John T Nockleby. 2000. Hate Speech. Encyclopedia of
the American constitution, 3(2):1277–1279.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a Corpus for Sentiment Analysis and Opinion Min-
ing. In Proceedings of the Seventh conference on
International Language Resources and Evaluation
(LREC’10), volume 10, pages 1320–1326.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic Routing Between Capsules. In
Advances in neural information processing systems,
pages 3856–3866.

539

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 540–546
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Amrita School of Engineering - CSE at SemEval-2019 Task 6:
Manipulating Attention with Temporal Convolutional Neural Network for

Offense Identification and Classification

Murali Sridharan, Swapna T R
Department of Computer Science and Engineering

Amrita School of Engineering, Coimbatore,
Amrita Vishwa Vidhyapeetham, India

muralisridharan.10@gmail.com,tr swapna@cb.amrita.edu

Abstract

With the proliferation and ubiquity of smart
gadgets and smart devices, across the world,
data generated by them has been growing at
exponential rates, in particular social media
platforms like Facebook, Twitter and Insta-
gram have been generating voluminous data
on a daily basis. According to Twitter’s us-
age statistics, about 500 million tweets are
generated each day. While the tweets reflect
the users’ opinions on several events across
the world, there are tweets which are offen-
sive in nature that need to be tagged under
the hateful conduct policy of Twitter. Of-
fensive tweets have to be identified, captured
and processed further, for a variety of reasons,
which include i) identifying offensive tweets
in order to prevent violent/abusive behaviour
in Twitter (or any social media for that mat-
ter), ii) creating and maintaining a history of
offensive tweets for individual users (would
be helpful in creating meta-data for user pro-
file), iii) inferring the sentiment of the users
on particular event/issue/topic . We (CodaLab
Team/User Name: murali sr) have em-
ployed neural network models which manip-
ulate attention with Temporal Convolutional
Neural Network for the three shared sub-
tasks i) ATT-TCN (ATTention based Temporal
Convolutional Neural Network) employed for
shared sub-task A that yielded a best macro-
F1 score of 0.46, ii) SAE-ATT-TCN(Self At-
tentive Embedding-ATTention based Tempo-
ral Convolutional Neural Network) employed
for shared sub-task B and sub-task C that
yielded best macro-F1 score of 0.61 and 0.51
respectively. Among the two variants ATT-
TCN and SAE-ATT-TCN, the latter performed
better.

1 Introduction

In the prevailing digital era, Deep Learning
has penetrated almost all industry verticals and

afforded several researchers an effective tool, in
handling voluminous data and deriving mean-
ingful inferences. Initially, (LeCun et al., 1998)
invented Convolutional Neural Network (CNN)
model for extraction of local features, which later
proved to be the standard choice for Computer
Vision tasks. (Hochreiter and Schmidhuber, 1997)
the introduced LSTM (Long Short Term Mem-
ory) architecture, which went on to become the
standard choice for Natural Language Processing
(sequence) tasks due to the implicit ordering of
the sequence data in words and sentences. Then
several architectures, combining LSTM with
CNN were introduced that went on to become
successful for NLP tasks as well. Deep Learning
techniques have leaped forward through multiple
NLP tasks such as Modeling, Classification,
Translation, Summarization, etc., and have proved
to be better compared to traditional techniques.

Ever since social media has become ubiquitous
there have been individuals who take gratuitous
advantage of the anonymous nature of social me-
dia platforms, and engage themselves in rude and
offensive communications. Such behaviour that
prohibit free flow of communication and violate
acceptable usage policy has necessitated to iden-
tify and capture the offensive posts, comments,
etc., in order to prevent the dissemination of abu-
sive behaviour in social media. (Zampieri et al.,
2019b) focused on this aspect and organized a
classification task with a particular focus on Twit-
ter posts; unlike predictions of positive or negative
sentiments, this task has three shared sub-tasks, in-
tended to identify and capture the offense target as
an entity. The task includes three shared sub-tasks
that include:
i) Sub-Task A: Offensive language identification,
ii) Sub-Task B: Offense type categorization and

540

iii) Sub-Task C: Offense target identification.
i) Sub-Task A: Offensive language identifica-
tion in which posts are categorized into Offensive
or Not Offensive. Recently (Bai et al., 2018) em-
pirically concluded that the association between
sequence modeling and recurrent neural networks
should be reconsidered and established that con-
volutional networks are ought to be considered for
sequence modeling tasks. The TCN model can
be extended followed by introduction of Attention
to the output of Embedding layer and TCN layer
ii) Sub-Task B: Offense type categorization in
which the Offense type is categorized into either
targeted or untargeted. The objective here is to
understand sentence structure by emulating the re-
lationship between words. The sequence of words
is crucial to capture the essence of sentence unlike
the practice of mere focus on constituent parts of
a sentence in the previous model. Based on (Lin
et al., 2017), minor modifications are injected into
the previous model employed in sub-task A, and
introduced self-attention for embedding further to
aggregate the relationship between words in a sen-
tence and stacked attention layer, at the output of
each dilated convolution blocks. iii) Sub-Task
C: Identification of target offense in which the
who, the offense is aimed at is identified and cate-
gorized into Individual, Group or Other. The same
model used in the previous sub-task B is employed
for this sub-task as well.

2 Related Work

In the recent past, multiple NLP tasks and pa-
pers have explored Offense identification which
include (bullying, aggression, hate-speech, ob-
scenity, insults and identity threat). (Fortuna and
Nunes, 2018) has elaborately surveyed several
approaches employed for automatic detection of
hate speech.
(Yin et al., 2009) was one of the first to address
recognition of offensive language by employing
supervised classification technique along with
manually developed n-gram regex matches and,
contextual attributes that considered the intensity
of abuse in preceding sentences. (Sood et al.,
2012) indicated that certain banned words when
used in appropriate manner and context, does not
warrant to be categorized as abusive/offensive.
Further, they showed a considerably improved
scheme of profanity detection, by incorporating
lists and distance metric, which enabled identifi-

cation and categorization of un-normalized terms
like ”@$$” or ”m0r0n”. (Chen et al., 2012) used
lexical and parser features, for detecting com-
ments from YouTube that are offensive. Without
any preset semantics of toxic content, they came
up with the tool that could be manipulated through
a modifiable threshold. This threshold was to be
treated as a measure of toxicity, filtering the online
toxic content, prior to display of contents in the
client’s browser. Their work incorporated Support
Vector Machines (SVMs) classifiers, which
included regex (manually developed), n-gram,
black-lists and dependency parse features, which
achieved higher precision and recall values.
(Dadvar et al., 2013) affirmed that user context
was crucial in the bonafide detection of cyber-
bullying. (Djuric et al., 2015) highlighted the
effectiveness of comment embeddings in detection
of hate speech, by joint modelling comments and
words using Continuous-Bag of Words (C-BOW)
to generate a low dimensional embedding. The
embedding is passed to binary classifier for hate
speech detection. (Mehdad and Tetreault, 2016)
explored the significance of features to the extent
of character to word and weighed the importance
of each attribute. Since the style of comments, in
online forums, vary from person to person, and
often includes sub-standard profane English (i.e.
”f u c k e r”), learning how adjacent characters
communicate with each other reveal more about
the abusiveness of a comment as a whole.
(Vijayan et al., 2017) surveyed the pros and cons
of several techniques of machine learning and
deep learning in their comprehensive study of text
classification algorithms. (Malmasi and Zampieri,
2017) employed n-gram and skip gram based
SVM classifier, to detect and classify hate-speech,
into three categories: Hate, Offensive and Ok.
(Gambäck and Sikdar, 2017) employed multiple
CNN models totaling four for Hate-Speech
Classification of Twitter posts into one of the
following:sexism, racism, either(sexism and
racism) and not hate speech. The first model,
trained on character based n-grams (4-grams), the
next model trained on word vectors built using
word2vec. The third model was trained on word
vectors which were produced in random. The
fourth model was trained on word vectors in
addition to char n-gram for the classification task.
The fourth model performed comparatively better
in the classification task. (Waseem et al., 2017)

541

proposed a typology, to capture the similarity and
difference between sub-tasks, and discuss their
role, involved in annotating data and emulating
feature construction. Their work was instru-
mental in identifying if the offense was targeted
towards an individual or an entity, and whether
the offensive language was explicit or implicit.
(Zhang et al., 2018) introduced a new method,
combining Convolutional Neural Network (CNN)
and Gated Recurrent Unit (GRU) to perform a
compartive evaluation on public datasets, and set
new benchmarks, in Hate Speech Detection on
Twitter.

3 Methodology and Data

Besides being fast and parallel, the important as-
pect of TCN is causal convolution, its capability to
take any arbitrary length sequence and generate an
output sequence of the same arbitrary input length.

Figure 1: Temporal Convolutional Neural Network

Ever since (Bahdanau et al., 2014) introduced
attention mechanism in NLP, for machine transla-
tion there have been multiple advances in memory
related tasks. Further (Yin et al., 2016) established
that attention based CNN performed better than at-
tention based LSTM (Long Short Term Memory)
for the answer selection task.

Here in Sub-Task A:Offense Identification,
TCN was extended for sub-task A, with attention
mechanism. Instead of the conventional dropout
layer, a simple attention mechanism is applied at
the output of embedding layer and at the output
of TCN before classification layer, as illustrated
in Figure 2 and Figure 3. The intention is to
avoid random dropout of constituent data, which
might be crucial, and introduce a mechanism with
the ability, to selectively focus on input and capi-
talize on the crucial contributing parameters with

Figure 2: Temporal Convolutional Neural Network
with Attention layer at the output of Embedding layer

varying attention weights and contextual vectors.
ReLu (Nair and Hinton, 2010) activation is used
for DilatedConvolution1D (Yu and Koltun, 2015)
and softmax (Bridle, 1990) is used at the final clas-
sification layer.

Figure 3: Temporal Convolutional Neural Network
with Attention layer at the output of TCN before final
Classification

Parameters A B C
Features 100* 250* 250*
Filters 3* 5* 5*
Kernel Size 4 5 5
Dilation Range 11 11 11
Stack Count 1 1 1
Dropout Rate 0.05 0.01 0.01
Batch Size 32 32 32

Table 1: Hyper-parameters for each Sub-Task A, B and
C respectively. Parameters are in numbers. *x102

For Sub-Task B:Automatic Categorization of
Offense Type, a slight modification is introduced,
to the model used for the previous sub-task, by in-
corporating Self Attention at the output of Embed-
ding layer.

542

Figure 4: Temporal Convolutional Neural Network
with Attention layer at the output of each Dilated-
Conv1D and

Self-Attention is introduced for characteriza-
tion of multiple location of the tokens, a sentence
has, in addition to extraction of semantic features.
Additionally, Attention layer is stacked at the
output of every ’d’ dilated convolution blocks,
to augment the contextual vectors, as illustrated
in Figure 4. For Sub-Task C:Offense Target
Identification, the model used in the sub-task B
was employed to identify and categorize the target
of the posts into Individual (IND), Group (GRP)
and Other (OTH) classes. For all the variants,
binary cross-entropy loss function is employed
with the focus on categorical accuracy.

The methods employed for gathering the data,
preparation and compilation of dataset, used in Of-
fensEval shared task is described in Zampieri et al.
(2019a). Two additional datasets, Kaggle Toxic
Comment Classification dataset and TRAC-1 Ag-
gression Identification in Social Media Shared
Task dataset were used for sub-task A and sub-task
B respectively.

In 2018, Kaggle hosted a Toxic Comment Clas-
sification competition in association with Jigsaw,
which focused on classifying Wikipedia com-
ments into one of six categories: insult, obscene,
severe toxic, threat & identity hate and toxic. The
instances which do not fall into one of the six cat-
egories are clean. All the six toxic categories are
mapped to Offensive (OFF) class and the clean in-
stances are mapped to Not Offensive (NOT) class.

The mapped instances were combined with the
training dataset, provided for sub-task A, which
produced a total of 172811 instances, of which
20625 instances were Offensive and 152186 in-

Figure 5: Shared Sub-Task A, training data instance
share (OFF and NOT)

Figure 6: Shared Sub-Task B, training data instance
share (TIN and UNT)

stances were clean, as depicted in Figure 5. For the
training data of Sub-Task B, TRAC-1 data (Ku-
mar et al., 2018) was used, in addition to the pro-
vided training data, producing a total of 14174
instances containing 7799 Targeted Insults and
Threats (TIN), and 6375 Untargeted (UNT) in-
stances. No other additional training dataset was
used, apart from the provided dataset for Sub-Task
C. It comprised of 3876 Offensive instances, of
which 1074 Offensive instances belong to Individ-
ual (IND) category, 2407 Offensive instances be-
long to Group (GRP) category and 395 Offensive
instances target belong to (OTH) category.

4 Results

The macro averaged F1 was employed as the
official metric for all the sub-tasks involved in
this task accounting for the high class imbalance
ratio. Our first model (ATT-TCN), employed
for the shared Sub-Task A, produced an overall
accuracy of 65.81% (best of 3 for evaluation
test data @CodaLab). The second variant (SAE-
ATT-TCN), employed for the shared Sub-Task

543

Figure 7: Shared Sub-Task C, training data instance
share (IND, GRP and OTH)

B and Sub-Task C produced an overall accuracy
of 75.83% and 61.5% (best of 3 for Evaluation
Test data @CodaLab), respectively. The neural
network model generation, fine-tuning and the
evaluation test data prediction, all the activities
have been executed in Google Colaboratory
environment, utilizing the on hand GPU hardware
accelerator. The cross validation results, and the
detailed evaluation test data results have been
listed in the tables accordingly.

System Accuracy
Base ATT-TCN 0.9477
SAE-ATT-TCN1 0.7144
SAE-ATT-TCN2 0.7215

Table 2: Cross-Validation Results for Sub-Tasks A,1B
and 2C respectively.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Base ATT-TCN 0.4682 0.6581

Table 3: CodaLab Test Results for Sub-Task A.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
SAE-ATT-TCN 0.6164 0.7583

Table 4: CodaLab Test Results for Sub-Task B.

The confusion matrices for the best performing
variant of each Sub-Task have been depicted in Ta-
ble 6, Table 7 & Table 8. In Table 6, for Sub-

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
SAE-ATT-TCN 0.5132 0.615

Table 5: CodaLab Test Results for Sub-Task C.

NOT OFF
NOT 540 80
OFF 214 26

Table 6: Sub-Task A, Confusion Matrix for Base ATT-
TCN at threshold 0.45

TIN UNT
TIN 164 49
UNT 9 18

Table 7: Sub-Task B, Confusion Matrix for SAE-ATT-
TCN at threshold 0.70

GRP IND OTH
GRP 44 27 7
IND 10 81 9
OTH 14 15 6

Table 8: Sub-Task C, Confusion Matrix for SAE-ATT-
TCN at threshold 0.55

Task A, it is evident that the number of NOT Of-
fensive instances (540) have been predicted cor-
rectly attributing to the higher count of training
data instances for that class, and count of correct
Offensive (OFF) instances prediction is less at-
tributing to the less training instances for that cate-
gory. The higher number of false positives for the
Sub-Task A clearly indicate not so good classifi-
cation performance of the variant ATT-TCN. The
higher number of true positives for Targeted In-
sult and Threat (164 TIN instances), and the lesser
true negatives (18 UNT instances), in Table 7, in-
dicate the model has better generalization ability,
and performed significantly better, compared to
the previous model.

In Table 8, it is clear that the Group (GRP)
offense target classification is predicted correctly
compared to Other (OTH), and Individual (IND)
categories respectively.

5 Conclusion

Based on the results, it is evident that SAE-ATT-
TCN has performed significantly better than the

544

base model ATT-TCN. From Sub-Task A, we
learned that rather than going ahead with random
sampling for train and test split, proceeding with
a categorical split, to the best possible even ratio,
would increase the generalization ability. When
the dataset has class imbalance ratio, retaining
even number of instances for each class as much
as possible, would ensure normal distribution of
the instances for each class. Such data distribution
would not be skewed for a particular class which
ensure better generalization capability leading to
improved classification accuracy. We note that
processing the sequence in both the directions
(forward and backward) would further improve
the classification performance attributing to better
context and semantic representation learning
capabilities. We are working on Bi-Directional
Attention based Temporal Convolutional Network
model. Our participation in the SemEval 2019:
Task 6 competition has been a very good learning
experience for our team, and we are eager to learn
from other best performing entries.

Acknowledgement
Our team would like thank and appreciate the Se-
mEval 2019 organizing team for affording an op-
portunity to participate in such classification task.
We look forward to additional NLP classification
tasks.

References
Dzmitry Bahdanau, Yoshua Bengio, and Kyunghyun

Cho. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun.
2018. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence model-
ing. arXiv preprint arXiv:1803.01271.

John S. Bridle. 1990. Probabilistic interpretation of
feedforward classification network outputs, with re-
lationships to statistical pattern recognition. In Neu-
rocomputing.

Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu.
2012. Detecting offensive language in social media
to protect adolescent online safety. In 2012 Inter-
national Conference on Privacy, Security, Risk and
Trust and 2012 International Conference on Social
Computing, pages 71–80. IEEE.

Maral Dadvar, Franciska de Jong, Roeland Ordelman,
and Dolf Trieschnigg. 2013. Improving cyberbul-

lying detection with user context. In Advances in
Information Retrieval, pages 693–696. Springer.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th Interna-
tional Conference on World Wide Web Companion,
pages 29–30. International World Wide Web Con-
ferences Steering Committee.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ritesh Kumar, Shervin Malmasi, Atul Kr. Ojha, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC), Santa Fe, USA.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. 1998. Gradient-based learning ap-
plied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

Zhouhan Lin, Mo Yu, Cicero Nogueira dos San-
tos, Minwei Feng, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. 2017. A structured self-
attentive sentence embedding. arXiv preprint
arXiv:1703.03130.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Yashar Mehdad and Joel Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 299–303.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on International Conference on Machine Learning.

Sara Owsley Sood, Elizabeth Churchill, and Judd
Antin. 2012. Using crowdsourcing to improve pro-
fanity detection. In 2012 AAAI Spring Symposium
Series.

V. K. Vijayan, K. R. Bindu, and L. Parameswaran.
2017. A comprehensive study of text classification
algorithms. In 2017 International Conference on
Advances in Computing, Communications and In-
formatics (ICACCI), pages 1109–1113.

545

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Dawei Yin, Brian D Davison, April Kontostathis,
Zhenzhen Xue, Liangjie Hong, and Lynne Edwards.
2009. Detection of harassment on web 2.0. Pro-
ceedings of the Content Analysis in the WEB, 2:1–7.

Wenpeng Yin, Bowen Zhou, Bing Xiang, and Hinrich
Schütze. 2016. Abcnn: Attention-based convolu-
tional neural network for modeling sentence pairs.
Transactions of the Association for Computational
Linguistics, 4:259–272.

Fisher Yu and Vladlen Koltun. 2015. Multi-scale con-
text aggregation by dilated convolutions.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, Jonathan Tepper, and David Robinson.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

546

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 547–550
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

bhanodaig at SemEval-2019 Task 6: Categorizing Offensive Language in
social media

Ritesh Kumar
Department of CSE
IIT(ISM) Dhanbad

India, 826004
ritesh4rmrvs@gmail.com

Guggilla Bhanodai
Department of CSE
IIT(ISM) Dhanbad

India, 826004
bhanodaig@gmail.com

Rajendra Pamula
Department of CSE
IIT(ISM) Dhanbad

India, 826004
rajendra@iitism.ac.in

M. R. Chennuru
Department of CSE
IIT(ISM) Dhanbad

India, 826004
cmr.mahesh@gmail.com

Abstract

This paper describes the work that our team
bhanodaig did at Indian Institute of Technol-
ogy (ISM) towards OffensEval i.e. identifying
and categorizing offensive language in social
media. Out of three sub-tasks, we have par-
ticipated in sub-task B: automatic categoriza-
tion of offensive types. We perform the task of
categorizing offensive language, whether the
tweet is targeted insult or untargeted. We use
Linear Support Vector Machine for classifica-
tion. The official ranking metric is macro-
averaged F1. Our system gets the score 0.5282
with accuracy 0.8792. However, as new en-
trant to the field, our scores are encouraging
enough to work for better results in future.

1 Introduction

Social media has become most popular among
users in these days. Based on survey (Johnson
et al., 2011), it has been observed that 70% of
teenagers use social media sites on daily basis.
Users share their views with help of social media
like twitter, facebook, instagram, youtube. Ritesh
et al. (Kumar et al., 2018a) tried to identify hate
speech. On the one hand Users get benefited from
social media by learning or interacting with other
users on the other hand they face offensive online
contents. With exponential growth of social me-
dia it has become quite significant to identify and
categorize offensive language in social media.

A key challenge among researchers is to auto-
matically categorization of offense type languages
in social media. few research have been performed
but it is still a hot topic among researchers. keep-
ing it in mind, we develop a system that could cat-
egorize offensive language in social media. The
relevant shared task description, data and results
are described in the paper (Zampieri et al., 2019b).

In this paper, we use Linear Support Vector Ma-
chine (LSVM) for classifying and identifying of-
fensive language in social media. We use snowball

stemmer to find out root words. Also, we have
used unigram and bigram language models with-
out stopwords.

The rest of the paper is organized as follow.
Section 2 describes related work. The proposed
methodology and used data is described in section
3. Section 4 describes results obtained after ex-
periment. Finally, we conclude and future work in
section 5.

2 Related Work

The interest in identifying and categorizing ag-
gression, cyber-bullying and hate speech, partic-
ularly on social media, has been growing in recent
years. This topic has attracted attention from re-
searchers interested in linguistic and sociological
features of aggression, and from engineers inter-
ested in developing tools to deal with aggression
on social media platforms. In this section, we re-
view a number of studies and briefly discuss their
findings. For a recent and more comprehensive
survey on hate speech detection we recommend
(Schmidt and Wiegand, 2017) and (Fortuna and
Nunes, 2018).

Davidson et al. (Davidson et al., 2017) used
crowd source to label a sample of tweets into three
categories: hate speech, only offensive and those
with neither. The Hate Speech Detection dataset
used in (Malmasi and Zampieri, 2017) and a few
other recent papers such as (ElSherief et al., 2018;
Gambäck and Sikdar, 2017; Zhang et al., 2018).

A proposal of typology of abusive language
sub-tasks is presented in (Waseem et al., 2017).
For studies on languages other than English has
been described in (Su et al., 2017) on Chinese and
(Fišer et al., 2017) on Slovene. Finally, for re-
cent discussion on identifying profanity vs. hate
speech is discussed in (Malmasi and Zampieri,
2018). This work highlighted the challenges of
distinguishing between profanity, and threatening
language which may not actually contain profane

547

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
LSVM 0.5282 0.8792

Table 1: Results for Sub-task B using model LSVM and best result is highlighted with boldface.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

209 4

25 2

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: Sub-task B, LSVM

language.
Additionally, the related work has been per-

formed in the related workshops such as TA-
COS1, Abusive Language Online2, and TRAC3

and related shared tasks such as GermEval (Wie-
gand et al., 2018) and TRAC (Kumar et al.,
2018b).

3 Methodology and Data

The description of our system and different runs
has been described in this section. We have been
provided training dataset with 13,240 tweets, a
trial set with 320, and a test set with 860 (Zampieri
et al., 2019a). Each instance is composed of a
tweet and its respective labels for tasks A, B and
C. The three levels/subtasks are as follows:
Task A : Whether the tweet is offensive (OFF) or
non-offensive (NOT).
Task B : Whether the tweet is targeted (TIN) or
untargeted (UNT).
Task C : If the target is an individual(IND), group
(GRP) or other (OTH; e.g., an issue or an organi-

1http://ta-cos.org/
2https://sites.google.com/site/

abusivelanguageworkshop2017/
3https://sites.google.com/view/trac1/

home

sation).
We have focused on subtask B. In our methodol-
ogy, tweets are preprocessed by replacing follow-
ing words with corresponding words shown be-
low:
what’s→ what is
’ve→ have
can’t→ can not
n’t→ not
i’m→ i am
’re→ are
’d→ would
’ll→ will
’scuse→ excuse
followed by stemming words with snowball stem-
mer. LSVM is used for classification. We perform
the task for only categorizing offensive language
in social media, whether tweet is targeted insult
or untargeted. SVM is categorizing offensive lan-
guage in social media. For this, tf-idf of words un-
igrams and bigrams (without stopwords) that are
occured at least 3 times are considered as features
with 12 normalization.

548

4 Results

In this section, we describe our experimental
results. The official ranking metric is macro-
averaged F1. We have included accuracy here as
well for comparison. In table 1 , we see that we get
the best result 0.5282 with accuracy 0.8792 using
LSVM model. All TIN (targeted insult) baseline
has got the score 0.4702 with accuracy 0.8875 and
All untargeted baseline has got the score 0.1011
with accuracy 0.1125. The confusion matrix has
been shown in figure 1.

5 Conclusion and future work

This year we participated in OffensEval sub-task
B i.e. automatic categorizing offensive language
in social media. We use LSVM model for classifi-
cation. While there can be no denial of the fact that
our overall performance is average, initial results
are suggestive as to what should be done next. As
we have taken ngrams for training set, our model
unable to handle OOV (out of vocabulary) words.
Pretrained word embeddings would have handled
this problem. LSTM with these word embeddings
might give better results. We explore these models
in coming future.

References

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Timothy Johnson, Robert Shapiro, and R Tourangeau.
2011. National survey of american attitudes on sub-
stance abuse xvi: Teens and parents. The National
Center on Addiction and Substance Abuse, 2011.

Ritesh Kumar, Guggilla Bhanodai, Rajendra Pamula,
and Maheshwar Reddy Chennuru. 2018a. Trac-1
shared task on aggression identification: Iit (ism)
@ coling18. In Proceedings of the First Workshop
on Trolling, Aggression and Cyberbullying (TRAC-
2018), pages 58–65.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018b. Benchmarking Aggres-
sion Identification in Social Media. In Proceedings
of the First Workshop on Trolling, Aggression and
Cyberbulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

549

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

550

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 551–555
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

BNU-HKBU UIC NLP Team 2 at SemEval-2019 Task 6: Detecting
Offensive Language Using BERT model

Zhenghao Wu Hao Zheng Jianming Wang Weifeng Su Jefferson Fong

{l630003054,l630003067,l630003049}@mail.uic.edu.hk
{wfsu,jeffersonfong}@uic.edu.hk

Computer Science and Technology, Division of Science and Technology
BNU-HKBU United International College

Zhuhai, Guangdong, China

Abstract

In this study we deal with the problem of iden-
tifying and categorizing offensive language
in social media. Our group, BNU-HKBU
UIC NLP Team2, use supervised classification
along with multiple version of data generated
by different ways of pre-processing the data.
We then use the state-of-the-art model Bidirec-
tional Encoder Representations from Trans-
formers, or BERT (Devlin et al. (2018)), to
capture linguistic, syntactic and semantic fea-
tures. Long range dependencies between each
part of a sentence can be captured by BERT’s
bidirectional encoder representations. Our
results show 85.12% accuracy and 80.57%
F1 scores in Subtask A (offensive language
identification), 87.92% accuracy and 50% F1
scores in Subtask B (categorization of offense
types), and 69.95% accuracy and 50.47% F1
score in Subtask C (offense target identifica-
tion). Analysis of the results shows that distin-
guishing between targeted and untargeted of-
fensive language is not a simple task. More
work needs to be done on the unbalance data
problem in Subtasks B and C. Some future
work is also discussed.

1 Introduction

Social media is an essential part of human com-
munication today. People can share their opinions
in this platform with anonymity. Some people
use offensive language and hate speech casually
and frequently without taking any responsibility
for their behavior. For this reason, SemEval 2019
(Zampieri et al. (2019b)) set up the task Offen-
sEval: identifying and categorizing offensive
language in social media. This task is divided into
three subtasks: offensive language identification,
automatic categorization of offensive types, and
offence target identification.

Our group uses the Natural Language Process-
ing (NLP) latest model, Bidirectional Encoder
Representations from Transformers (BERT). It
is a general-purpose “language understanding”
model trained on a large text corpus such as
Wikipedia (Devlin et al. (2018)). After fine-
tuning, the model can be used for downstream
NLP tasks. Because BERT is very complex and
is the state-of-art model, it is prudent for us not
to change its internal structure. Hence, we focus
on preprocessing the data and error analysis.
After much experimentation with the data, such
as translating emoji into words, putting more
weight on some metaphorical words, removing
the hashtag and so on, we find that using the
original data will give the best performance. The
reason for this is perhaps if we remove some
information from the sentence, some features that
affect the prediction result will be lost. So we end
up using the original data to train our model.

2 Related Work

Much research has been done in detecting of-
fensive language, aggression, and hate speech
in user-generated content. In recent years, re-
searches tend to follow several approaches: use a
simple model with logistic regression to perform
detection, use a neural network model, or use
some other methods.

For the simple model, Davidson and Warmsley
(Davidson et al. (2017)) used a sentiment lexicon
designed for social media to assign sentiment
scores to each tweet. This is an effective way to
identify potentially offensive terms. Then they
use logistic regression with L2 regularization to
detect hate speech in social network.

551

Neural network models use n-gram, skip-gram
or some other methods to extract features from
the data. These features are used to train different
models. The results produced by these models
will be used as the input for training the meta-
classifier (e.g. Malmasi and Zampieri (2018))

For other methods, using bag-of-words is an
effective way to detect hate speech, but it is
difficult to distinguish hate speech from text with
offensive words that are not hate speech (Kwok
and Wang (2013)). For identifying the targets and
intensity of hate speech, syntactic features method
is a good method (Burnap and Williams (2015)).

3 Methodology and Data

Only the training data provided by the organizer
(Zampieri et al. (2019a)) are used in training our
model. The data contain 13,240 pieces of tweet
that had been desensitized (replacing the user
names and website URLs). There are three labels
that are labeled with crowdsourcing for each of
the three subtasks. Gold labels obtained through
crowdsourcing are confirmed by three annotators.
We segmented the training set by 90% for the
training set, 5% for the cross-validation set, and
5% for the test set.

Because some offensive language is subtle,
less ham-fisted, and sometimes cross sentence
boundary, the model trained for this task must
make full use of the whole sentence content in
order to extract useful linguistic, syntactic and
semantic features which may help to make a
deeper understanding of the sentences, while at
the same time less subjected by the noisiness of
speech. So, we use BERT in all three subtasks.
Unlike most of the other methods, BERT uses
bidirectional representation to make use of the left
and right context to gain a deeper understanding of
a sentence by capturing long range dependencies
between each part of the sentence.

The uncased base version of the pre-trained
model files 1 is used during the entire training.
The training data are processed in many ways
to fine-tune the model. Processing methods

1BERT-Base, Uncased: https://storage.
googleapis.com/bert_models/2018_10_18/
uncased_L-12_H-768_A-12.zip

include removing all username tags, URL tags
and symbols, converting all text to lowercase, and
translating emoji into text2. One or more of the
above methods is selected to process the training
data, and then use the processed data to train the
model.

In Subtask A, the accuracy after the various op-
erations is shown in the following table.

Preprocessing Accuracy
Original Data 0.8184
Remove tag & symbols 0.8126
Emoji translation v1 0.8081
Emoji translation v2 0.7960

Table 1: Training results for Sub-task A.

After all attempts, the best performing model
for Subtask A is the model trained by the original
data. Therefore, the original data are also used in
the training of the Subtasks B and C models.

4 Results

For Subtask A, The BERT-Base, Uncased, orig-
inal training data model get macro F1 score of
0.8057 and total accuracy of 0.8512.

For Subtask B, The BERT-Base, Uncased,
original training data model get macro F1 score of
0.50 and total accuracy of 0.8792.

For Subtask C, The BERT-Base, Uncased,
original training data model get macro F1 score of
0.5047 and total accuracy of 0.6995.

Results table and confusion matrices for Sub-
tasks A, B and C are shown below.

2In the process of translating emoji characters, v1 and v2
methods were used. v1: Translate all emoji characters into of-
ficial character name listed in the Unicode®11.0.0 Standard.
v2: In addition to ”v1” of processing of all emoji characters,
the selected 97 emotional emoji characters are translated into
manually determined emotional words.

552

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
BERT-Base,
Uncased,
original training data

0.8057 0.8512

Table 2: Results for Sub-task A.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
BERT-Base,
Uncased,
original training data,
0.5 threshold

0.5000 0.8792

BERT-Base,
Uncased,
orginal training data,
0.65 threshold

0.4702 0.8875

Table 3: Results for Sub-task B.

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
BERT-Base,
Uncased,
original training data

0.5047 0.6995

Table 4: Results for Sub-task C.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

574 46

82 158

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: Sub-task A, BNU-HKBU UIC NLP Team 2
CodaLab 527070 BERT-Base, Uncased, original train-
ing data

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

210 3

26 1

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Sub-task B, BNU-HKBU UIC NLP Team 2
CodaLab 531958 BERT-Base, Uncased, original train-
ing data

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

61 17

12 88

19 16

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Sub-task C, BNU-HKBU UIC NLP Team 2
CodaLab 535873 BERT-Base, Uncased, original train-
ing data

553

5 Conclusions

Our model for Subtask A ranked 6 out of the
103 groups. This shows that BERT can identify
offensive language. However, the results for
Subtasks B and C are not as good. We will try to
explain the possible reasons using error analysis.

First, some speech may be miss-labeled by
annotators. In our test set, some predictions were
judged as wrong, but our manual examination
shows the predictions seem correct. For example,
“@USER B***hhhhh I’m jell” and “@USER
Crazy Russian dude owns all your data” are
both labeled NOT (not offensive). The model, as
well as our manual examination, deem these as
offensive.

Second, we also notice a problem is that it is
hard for our model to understanding some specific
noun such as people name when our training data
is not enough. For example, our model predict
sentence “Hitler will be so proud of David Hogg”
as not offensive. The word “Hitler” has a very
special meaning that can makes an otherwise
innocent sentence to be offensive. Our model
presently can’t detect this.

Another problem is emoji characters in offen-
sive languages, which usually contains strong
emotions. And may be used to express irony. So
emoji characters are translated by two methods2

to help BERT model understand the meaning
of tweet posts. But the results show that both
translation methods lead to a drop in accuracy.
The main reason should be that some emoji
characters contain different meanings in different
contexts. For example, (Slightly Smiling Face)
can contain emotion of happy but also banter
as well. Thus, it is difficult to understand the
meaning of emoji characters in context.

Moreover, unbalanced data is a big problem.
In Subtask B, few sentences are predicted as
untargeted, and in Subtask C, no sentence is
predicted as in the Others category. This leads to a
low F1 score in these subtasks. Over-sampling in
less numerous categories would not work not well
in our task, and threshold moving only slightly
raises the F1 score. To deal with this problem as
future work, we may have to remove the labels
and use unsupervised learning.

Figure 4

For future work, we notice that offensive
languages often contain strong emotions such as
angry, banter or taunt. This emotion and other use-
ful contents may be improved by using DeepMoji
(Felbo et al. (2017)), which translates a sentence
into an emoji list to express a sentence’s hidden
information, such as sentiment and sarcasm. A
list of emoji related to the meaning of a sentence
produced by DeepMoji can be used to help BERT
to better classify the sentence categories, as show
in the Figure 4. The last step is to put the original
sentence and the encoded new sentence as input
for BERT’s sentence-pair classification task.

References
Pete Burnap and Matthew L. Williams. 2015. Cyber

hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making.

Thomas Davidson, Dana Warmsley, Michael W. Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
ICWSM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. CoRR, abs/1810.04805.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions

554

of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
Detecting tweets against blacks. In AAAI.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in discriminating profanity from hate speech.
J. Exp. Theor. Artif. Intell., 30:187–202.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

555

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 556–563
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CAMsterdam at SemEval-2019 Task 6: Neural and graph-based feature
extraction for the identification of offensive tweets

Guy Aglionby†, Christopher Davis†, Pushkar Mishra‡, Andrew Caines†,
Helen Yannakoudakis†, Marek Rei†, Ekaterina Shutova* & Paula Buttery†
† Department of Computer Science & Technology, University of Cambridge, U.K.

{ga384,ccd38,apc38,hy260,mr472,pjb48}@cam.ac.uk
‡ Facebook AI, London, U.K.
pushkarmishra@fb.com

* Institute for Logic, Language and Computation, University of Amsterdam, Netherlands
e.shutova@uva.nl

Abstract

We describe the CAMsterdam team entry to
the SemEval-2019 Shared Task 6 on offen-
sive language identification in Twitter data.
Our proposed model learns to extract tex-
tual features using a multi-layer recurrent net-
work, and then performs text classification us-
ing gradient-boosted decision trees (GBDT).
A self-attention architecture enables the model
to focus on the most relevant areas in the text.
We additionally learn globally optimised em-
beddings for hashtags using node2vec, which
are given as additional tweet features to the
GBDT classifier. Our best model obtains
78.79% macro F1-score on detecting offensive
language (subtask A), 66.32% on categorising
offence types (targeted/untargeted; subtask B),
and 55.36% on identifying the target of of-
fence (subtask C).

1 Introduction

The SemEval-2019 shared task 6 (‘OffensEval’)
involved three sub-parts: the classification of
tweets as offensive or not (subtask A), classify-
ing whether they are targeted insults or not (sub-
task B), and finally whether the targeted insults are
aimed at an individual, group or otherwise (sub-
task C). Further details may be found in the shared
task report (Zampieri et al., 2019b). Here we de-
scribe CAMsterdam’s competition entry.

In recent years, there has been a growing inter-
est in the automatic detection of offensive opinions
expressed in online texts, including those posted
in discussion forums, news article comment sec-
tions, and social networks. Such detection is not
straightforwardly a matter of identifying texts con-
taining obscene words (Malmasi and Zampieri,
2018); offensiveness often arises from the con-
text, current affairs, world knowledge, the use of
acronyms and slang, and the identity of the authors
and audience. Therefore the task is a challenging

one, but one with real world impact: if measures
can be taken to identify and curtail trolling, the
toxicity of the internet can to some extent be re-
duced. There is evidence that online harassment
is connected with oppression, violence and sui-
cide (Dinakar et al., 2011; Sood et al., 2012; Wul-
czyn et al., 2017), and there may moreover be rea-
sons for concern about the perpetrator’s wellbeing
along with that of the victims (Cheng et al., 2017).

Our approach to the task extends the work of
Mishra et al. (2018b), who extract features from
tweets using an RNN for subsequent use in a
gradient-boosted decision tree (GBDT) (Ke et al.,
2017). Firstly, we experiment with changes to
the RNN, including the use of self-attention (Rei
and Søgaard, 2019) and ELMo embeddings (Pe-
ters et al., 2018). Secondly, we add additional fea-
tures to the GBDT, including globally-optimised
hashtag embeddings learned from a graph of tweet
contents using node2vec (Grover and Leskovec,
2016). We show that this method of learning dis-
tributional information about hashtags improves
performance over just learning their embeddings
within a RNN.

2 Related Work

There has been much work characterising of-
fensive online discourse including hate speech
and cyberbullying (Warner and Hirschberg, 2012;
Kwok and Wang, 2013; Xu et al., 2013; Waseem
et al., 2017; Ribeiro et al., 2018). This work also
includes creating datasets for training and eval-
uating detection models, for example the Hate
Speech Twitter Annotations and Wikipedia Com-
ments Corpora (Waseem and Hovy, 2016; David-
son et al., 2017; Wulczyn et al., 2017). Most
work has been conducted on English data – tweets
in particular – with some extensions to other do-
mains (e.g. hacking forums (Caines et al., 2018))

556

and other languages (e.g. Arabic (Mubarak et al.,
2017), Chinese (Su et al., 2017), Slovene (Fišer
et al., 2017)).

Automated detection approaches have drawn
on traditional document classification methods for
spam detection and sentiment analysis, and tend
to use lexical and syntactic features (Nobata et al.,
2016; Li et al., 2017; Bourgonje et al., 2018). Ma-
chine learning techniques range from logistic re-
gression (Cheng et al., 2015) to support vector
machines (Yin et al., 2009) to neural networks
(Gambäck and Sikdar, 2017).

We draw on the work by Mishra and colleagues,
who used a character-based recurrent neural net-
work to form contextual word representations of
out-of-vocabulary words (Mishra et al., 2018b),
and moreover employed graph-based author em-
beddings to represent group behaviour within so-
cial networks, significantly improving abuse de-
tection (Mishra et al., 2018a). In this shared task,
we do not have access to author information, but
instead adapt the approach by building a graph
of the tokens which occur in the training data, a
method described in further detail in Section 4.4.

3 Data

The OffensEval shared task uses the Offen-
sive Language Identification Dataset (OLID)
(Zampieri et al., 2019a), which hierarchically la-
bels tweets according to whether or not they are
offensive, whether any offence is targeted, and if
so targeted at whom: an individual, a group or oth-
erwise. The three subtasks in this shared task cor-
respond to predicting labels at each level of gran-
ularity. The data is structured to allow this: all
tweets presented in subtask B are guaranteed to
be offensive, and all of those in subtask C are tar-
geted.

Tweets were collected by using the Twitter API
to search for terms that are frequently associated
with offensive behaviour. These included polit-
ical keywords, as political content may attract a
disproportionate amount of offensive comments.
The dataset is evenly split between tweets sourced
from these keywords and non-political ones. The
authors additionally found that an effective strat-
egy for gathering offensive tweets was to search
for those flagged by Twitter’s safe search feature.
All tweets were anonymised by replacing user-
names and URLs with placeholder tokens.

Each of the 14, 100 collected tweets were man-

A B C Train Test Total
OFF TIN IND 2, 407 100 2, 507
OFF TIN OTH 395 35 430
OFF TIN GRP 1, 074 78 1, 152
OFF UNT — 524 27 551
NOT — — 8, 840 620 9, 460

All 13, 240 860 14, 100

Table 1: Count of tweets in each category of OLID
(Zampieri et al., 2019a).

ually annotated by at least two annotators; where
the original two annotators disagreed on a tweet,
it was further annotated until agreement reached
66%. Table 1 presents the number of tweets in
each category.

4 Methodology

In this section, we extend the model proposed by
Mishra et al. (2018b) for offensive language clas-
sification. The architecture uses a 2-layer RNN,
optimised using Adam (Kingma and Ba, 2015), to
predict the class of a given tweet. The pre-softmax
activation values from the output layer are given as
input to a GBDT for final classification. Using the
GBDT for classification was found to give better
results compared with predicting from the RNN
directly, and allows us to include additional fea-
tures into the model. The RNN is initialised with
pre-trained word embeddings which are fine-tuned
during training. For previously unseen words,
we follow Mishra et al. (2018b) in using a neu-
ral character-based compositional model to gen-
erate plausible embeddings of unseen words. This
component is optimised to compose context-aware
character embeddings into word-level embeddings
that are similar to the pre-trained representations,
trained on words for which the embeddings are
available. This methodology is effective in gener-
ating reasonable quality embeddings in instances
where words were deliberately obscured to evade
detection.

Following common practice in named entity
recognition (Sang and De Meulder, 2003), where
fine-grained labels are used to improve perfor-
mance on the sequence labeling task, we take
advantage of the hierarchical labels available for
each tweet. For subtasks A and B we train a model
to predict all cascading labels, and sum the prob-
abilities of labels under the relevant class to make
a final prediction. For example, for subtask A the

557

model is trained to predict between 5 classes: not-
offensive (NOT), offensive but not targeted (UNT),
targeted towards an individual (IND), towards a
group (GRP), and towards any other target (OTH).
We classify a tweet as offensive if the cumulative
probability mass for UNT, IND, GRP, and OTH is
greater than NOT.

We also introduce several architectural exten-
sions to the Mishra et al. (2018b) model. Firstly,
we augment the core RNN with ELMo embed-
dings and a self-attention mechanism. Secondly,
we add both the post-softmax output from the
RNN as well as graph-based representations of
tweets as input features to the GBDT classifier.
We provide details of each extension in the fol-
lowing sections.

For each subtask, we experiment with combina-
tions of the above and additionally tune the RNN
type (between LSTM (Hochreiter and Schmidhu-
ber, 1997) and GRU (Cho et al., 2014)), dimen-
sion, and batch size, whether to use character n-
grams (n ∈ [1, 4]), and, when used, the size of
self-attention layers. We also run experiments
using the unmodified model to find which pre-
trained embeddings give the best performance. We
compare publicly available embeddings trained
using Word2Vec (Mikolov et al., 2013), FastText
(Mikolov et al., 2018), and GLoVe (Pennington
et al., 2014).

4.1 ELMo

We use embeddings generated from ELMo con-
catenated with pre-trained word embeddings as in-
put to the RNN. ELMo generates embeddings on a
character level, so does not share the same out-of-
vocabulary issue as pre-trained embeddings and is
always able to generate a word representation. We
used the largest pre-trained model available on-
line1, and learn a weighted linear combination of
its three layers.

4.2 Self-attention

The model proposed by Mishra et al. (2018b) uses
the last hidden state of the RNN as the feature
representation for each tweet; instead, we propose
the use of a self-attention mechanism to learn a
weighted combination of all intermediate hidden
states (Rei and Søgaard, 2019). The weights âi
for each hidden state hi are learned by passing
hi through two dense layers with tanh activation,

1https://allennlp.org/elmo

and a further 1-dimensional dense layer. The fi-
nal dense layer has either sigmoid or exponential
activation, corresponding to soft or sharp attention
respectively. The weights are normalised to sum
to 1, yielding final attention values ãi, which are
used to obtain the final sentential representation
s =

∑
i ãihi. The RNN is then trained using cat-

egorical cross-entropy on s passed through a final
tanh layer.

4.3 RNN Prediction
This modification includes the post-softmax out-
put of the RNN as an additional input feature to
the decision tree.

4.4 node2vec
We make use of node2vec to learn low-
dimensional continuous representations of hash-
tags used in tweets on the basis of whole-tweet
contexts. We first represent every token (including
all hashtags) and each tweet as nodes in a graph,
with edges formed between tweets and the tokens
they contain. node2vec first follows a tunable
sampling strategy to perform random walks from
each node, generating directed acyclic graphs with
a maximum out degree of 1 (i.e. a sequence
of nodes). It then applies the SkipGram model
(Mikolov et al., 2013) to learn a representation
of each node based on its neighbours in the sam-
pled sequences. Specifically, given a graph with
nodes V , node2vec maximises the log probability:∑

v∈V log(P (Ns(v)|v)), where Ns(v) is the set
of neighboring nodes for node v generated from a
sampling strategy s.

We train these node2vec representations on two
data sets: the OLID training data, and our own
scrape of Twitter using rtweet (Kearney, 2018).
We collect this additional data by searching for
each of the 24 hashtags which appear at least 10
times in the training set, with at least 1 in 4 oc-
currences in tweets labelled offensive. Intuitively,
these common and frequently offensive hashtags
are a more reliable signal of offensiveness than
less frequent hashtags. It remains to be seen
whether collecting more tweets with all hashtags
in OLID would help, but the strict rate limits on
the Twitter API meant that we ran out of time to
explore this.

We trained 200-dimensional embeddings on a
random sample of 10, 000 of the resulting tweets.
To represent each tweet we sum the embeddings
of each hashtag present, and normalised the re-

558

System F1 (macro)
Vanilla model 0.710
Vanilla model + ELMo 0.742
Vanilla model + ELMo + self attention 0.764
Vanilla model + ELMo + self attention + char. ngrams 0.763
Vanilla model + ELMo + self attention + node2vec 0.764
Vanilla model + ELMo + self attention + char. ngrams + node2vec 0.767

Table 2: Ablation test for features, with results reported on our held-out development set for subtask A.

sulting vector to unit length. These vectors, or a
200-dimensional 0-vector for tweets containing no
hashtags with trained embeddings, were then con-
catenated with the RNN features (either from self-
attention where it was used, or the last hidden state
if not) prior to being input into the GBDT.

5 Results

In this section, we present a sample of results ob-
tained during model selection, and results on each
of the official subtask test sets. Model selection is
carried out by evaluating each model on a consis-
tent 90% training and 10% validation split of the
provided training data. Before carrying out model
selection, we ran an unmodified version of Mishra
et al. (2018b)’s model on subtask A and found that
300-dimensional FastText embeddings trained on
Common Crawl gave the best performance2.

We submitted three models for each of the three
subtasks. We submit models that differ in two
ways. The first is the amount of data they are
trained on. Models labelled ALL-DATA are trained
on all of the provided data, while models tagged
TRAIN-SPLIT are trained on just the 90% training
split, but have a known performance via their re-
sults on the development set. It is beneficial to
know this as there is a large amount of variance
in model results due to stochasticity in the train-
ing process. The second way in which the models
differ is designed to handle this variance by en-
sembling three models via majority vote. Such
submissions are labelled with ENSEMBLE, while
those only using a single model are labelled BEST.

In all three subtasks we find that the best per-
forming system is that which ensembles three
identical models trained on the entire training set.

5.1 Subtask A
Subtask A concerns classifying a tweet as OFF (of-
fensive) or NOT (see Section 3). We experiment

2https://fasttext.cc/docs/en/english-vectors.html

with adaptations of the model from Mishra et al.
(2018b) to perform a 5-WAY classification be-
tween all categories, and select the most effective
feature combination for each subtask. We experi-
ment with features mentioned in Section 4: ELMo,
self-attention, character n-grams, and node2vec.
Results from ablation studies are presented in Ta-
ble 2.

We found that the best performing model used
features extracted from a RNN that used ELMo
embeddings in addition to FastText and compo-
sitional character-based word embeddings, with
sharp self-attention over a GRU with 256 hidden
units trained using a batch size of 64. These fea-
tures were used in a GBDT alongside the 10, 000
most frequently occurring character n-grams, and
node2vec representations of the tweets.

Table 3 shows our results for subtask A on the
test data. All three submissions use the model ar-
chitecture and hyperparameters described above.

System F1 Accuracy
All NOT baseline 0.419 0.721
All OFF baseline 0.218 0.279
TRAIN-SPLIT-BEST 0.776 0.835
ALL-DATA-ENSEMBLE 0.788 0.847
ALL-DATA-BEST 0.769 0.835

Table 3: Accuracy and macro F1 results on the official
subtask A test set. All three models have the same hy-
perparameters.

5.2 Subtask B

Subtask B involves a binary classification of
whether a tweet is untargeted (UNT) or targeted
(TIN). Following Subtask A, we maintain a finer
grained classifier using a 4-WAY classification
(TIN, IND, GRP, OTH), where we classify a tweet
as targeted if the probability for TIN is less than
the sum of probabilities for the 3 other labels.

We re-ran feature selection experiments to op-

559

System F1 Accuracy
All TIN baseline 0.470 0.888
All UNT baseline 0.101 0.113
TRAIN-SPLIT-BEST 0.577 0.717
ALL-DATA-ENSEMBLE 0.663 0.904
TRAIN-SPLIT-ENSEMBLE 0.657 0.900

Table 4: Accuracy and macro F1 results on the official
subtask B test set.

timise for this task. Development experiments
showed that the use of character n-grams does not
improve performance on this subtask, LSTM per-
forms better than a GRU, and that reducing the
RNN dimension to 64 and training batch size to 32
is beneficial. These smaller hyperparameter values
are likely more suitable due to the smaller amount
of available training data. We found that training
node2vec using the provided training data, rather
than the scraped dataset, gave better representa-
tions, with F1 scores on our held-out development
set of 0.635 for OLID data and 0.618 for the ex-
tra tweets we obtained from Twitter’s API (section
4.4).

Results on the test set are presented in Table
4, where we once again find that the ensemble of
classifiers trained on all of the data performs best.

5.3 Subtask C

Subtask C involves classifying the target of an of-
fensive tweet as either an individual, group, or
other. As this is the last subtask, only classification
between these three labels is possible: there are no
finer-grained labels that can be trained on. We find
that the best performing model is the same as that
in subtask B, except that a GRU is used and the
softmax from the RNN is included in the GBDT.
Results on the test data are presented in Table 5.

System F1 Accuracy
All GRP baseline 0.179 0.366
All IND baseline 0.213 0.470
All OTH baseline 0.094 0.164
ALL-DATA-ENSEMBLE 0.554 0.704
TRAIN-SPLIT-ENSEMBLE 0.544 0.709
TRAIN-SPLIT-BEST 0.534 0.695

Table 5: Accuracy and macro F1 results on the official
subtask C test set.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

590 30

102 138

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: Subtask A, ALL-DATA-ENSEMBLE model.

6 Discussion

In all subtasks, our best performing submission
was an ensemble of three identical models, inde-
pendently trained on all of the training data. En-
sembling helps to account for the high variance
observed during model training, which occurred
despite fixing random seeds.

Across all subtasks we find the inclusion of
node2vec features to be helpful. These features
offer contextualised representations of hashtags in
terms of the tokens they appear with across the
corpus, suggesting that features that share infor-
mation between tweets are useful in addition to
those derived from each individually.

We observe that performance drops from sub-
task A to C. This could be due to the decreasing
amounts of training data, from 13, 240 instances
in Subtask A, to 4, 400 in subtask B and 3, 876 in
subtask C. Very small amounts of data are avail-
able for two classes in particular – untargeted of-
fence (UNT) with only 524 training instances, and
offence targeted at those other than individuals and
groups (OTH) with 395.

As seen in Figures 1 and 2, our model achieves
high recall for the NOT class (0.952) in subtask
A and for TIN (0.986) in subtask B, but low re-
call for the other classes OFF (0.575) and UNT

(0.259). Figure 3 shows that in subtask C we per-
form worst on the OTH label, with a low recall of
0.086. In all cases, the model shows weakest per-
formance on the classes for which we have least
training data. Therefore, we expect that model
performance would improve given more training
instances of the minority classes.

Furthermore, in subtask C, the definition of the
‘other’ class is less clear-cut than the other two cat-

560

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

210 3

20 7

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Subtask B, ALL-DATA-ENSEMBLE model.

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

60 16 2

12 87 1

22 10 3

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Subtask C, ALL-DATA-ENSEMBLE model.

egories GRP and IND, including abstract concepts
such as events or issues, and serving as a catch-
all for targeted insults against anything other than
specific people or groups of people with a com-
mon characteristic. A manual inspection of the
data suggests that a large amount of the OTH data
includes politically-motivated insults, though sim-
ilar language also appears in the two other cate-
gories, which may make classification harder.

7 Conclusion

The CAMsterdam team attempted the OffensE-
val tasks taking inspiration from the approach of
Mishra and colleagues (2018b), feeding the pre-
softmax activation layer of an RNN into a GBDT
to classify tweets into one of the applicable fine-
grained classes for each subtask. The probabilities
of the fine-grained classes were summed to obtain
a probability for the desired class: for instance, in
subtask A, we summed the probabilities of UNT,
IND, GRP and OTH, and compared this sum with
the probability of NOT to classify a tweet as offen-

sive or not.
We extended the work of Mishra et al. by

using ELMo embeddings as additional input to
the RNN, and incorporating a self-attention mech-
anism following Rei and Søgaard (2019). We
also used node2vec to train graph-based represen-
tations of hashtags, using both tweets from the
OLID training set and new data obtained from the
Twitter API featuring hashtags frequently found
in the offensive subset. We focus on hashtags on
the intuition that they are employed by users to
reach those interested in similar topics, and are
thus indicative of tweet content. Their use encodes
this useful information directly, which we show
to be useful for classification. We take into ac-
count the fact that hashtags are used in many posi-
tions in a tweet by constructing the graph based on
co-occurrence across the whole tweet, rather than
only within a small window as other embedding
methods do.

During development, we found that our best
performing models were those formed from an en-
semble of three models trained in an identical fash-
ion, thereby smoothing random variation in the
training process. The results of the test phase show
that our model performed in line with expectations
set during development, with F1-scores which de-
crease from subtask A to C, and lowest precision
and recall on the minority classes.

In the future, we will seek to address the im-
balance in the training data, inspect the tweets
further to analyse the linguistic differences be-
tween targeted and untargeted insults, group- and
individual-targeted insults and so on. Further ar-
chitectural changes include collecting more in-
stances of hashtags frequently found in offensive
tweets as extra unsupervised data, and we can seek
to include author embeddings, a technique found
to greatly improve the performance of Mishra et
al’s system (Mishra et al., 2018a). Finally, we
would aim to evaluate our model on other offen-
sive text classification datasets, to discover how
well the design generalizes beyond OLID.

Acknowledgements

The 2nd author is supported by the EPSRC, U.K.
The 4th, 5th, 6th and 8th authors are members of
the ALTA Institute, supported by Cambridge As-
sessment, University of Cambridge. We thank the
NVIDIA Corporation for the donation of the Titan
GPU used in this research.

561

References
Peter Bourgonje, Julian Moreno-Schneider, Ankit Sri-

vastava, and Georg Rehm. 2018. Automatic clas-
sification of abusive language and personal attacks
in various forms of online communication. In Lan-
guage Technologies for the Challenges of the Digital
Age. Springer International Publishing.

Andrew Caines, Sergio Pastrana, Alice Hutchings, and
Paula Buttery. 2018. Aggressive language in an on-
line hacking forum. In Proceedings of the 2nd Work-
shop on Abusive Language Online (ALW2). Associ-
ation for Computational Linguistics.

Justin Cheng, Michael Bernstein, Cristian Danescu-
Niculescu-Mizil, and Jure Leskovec. 2017. Any-
one can become a troll: Causes of trolling behavior
in online discussions. In Proceedings of the 2017
ACM Conference on Computer Supported Coopera-
tive Work and Social Computing.

Justin Cheng, Cristian Danescu-Niculescu-Mizil, and
Jure Leskovec. 2015. Antisocial behavior in on-
line discussion communities. In The 9th Interna-
tional AAAI Conference on Web and Social Media
(ICWSM).

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
Phrase Representations using RNN EncoderDecoder
for Statistical Machine Translation. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1724–1734, Doha, Qatar. Association for Computa-
tional Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbul-
lying. In Fifth International AAAI Conference on
Weblogs and Social Media.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal framework, dataset and annotation schema for
socially unacceptable online discourse practices in
Slovene. In Proceedings of the First Workshop on
Abusive Language Online.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. 2017. Lightgbm: A highly efficient gradient
boosting decision tree. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30, pages 3146–3154.
Curran Associates, Inc.

Michael W. Kearney. 2018. rtweet: Collecting Twitter
Data. R package version 0.6.7.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
a Method for Stochastic Optimization. In Inter-
national Conference on Learning Representations,
pages 1–13.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
Detecting tweets against blacks. In Twenty-Seventh
AAAI Conference on Artificial Intelligence.

Tai Ching Li, Joobin Gharibshah, Evangelos E. Pa-
palexakis, and Michalis Faloutsos. 2017. TrollSpot:
Detecting misbehavior in commenting platforms. In
Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Anal-
ysis and Mining 2017.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Repre-
sentations in Vector Space. arXiv:1301.3781 [cs].
ArXiv: 1301.3781.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Pushkar Mishra, Marco Del Tredici, Helen Yan-
nakoudakis, and Ekaterina Shutova. 2018a. Au-
thor profiling for abuse detection. In Proceedings of
the 27th International Conference on Computational
Linguistics, Santa Fe, New Mexico, USA. Associa-
tion for Computational Linguistics.

Pushkar Mishra, Helen Yannakoudakis, and Ekaterina
Shutova. 2018b. Neural character-based composi-
tion models for abuse detection. In Proceedings
of the 2nd Workshop on Abusive Language Online
(ALW2), Brussels, Belgium. Association for Com-
putational Linguistics.

Hamdy Mubarak, Kareem Darwish, and Walid Magdy.
2017. Abusive language detection on Arabic so-
cial media. In Proceedings of the First Workshop
on Abusive Language Online.

562

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Marek Rei and Anders Søgaard. 2019. Jointly Learn-
ing to Label Sentences and Tokens. In Proceedings
of the Thirty-Third AAAI Conference on Artificial In-
telligence (AAAI 2019), Honolulu, USA.

Manoel Horta Ribeiro, Pedro H. Calais, Yuri A. San-
tos, and Wagner Meira J Virgı́lio A. F. Almeid and.
2018. “Like sheep among wolves”: Characterizing
hateful users on Twitter. In Proceedings of WSDM
workshop on Misinformation and Misbehavior Min-
ing on the Web (MIS2).

Erik F Sang and Fien De Meulder. 2003. Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint cs/0306050.

Sara Owsley Sood, Elizabeth F. Churchill, and Judd
Antin. 2012. Automatic identification of personal
insults on social news sites. Journal of the Ameri-
can Society for Information Science and Technology,
63:270–285.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the World Wide Web. In Proceed-
ings of the Second Workshop on Language in Social
Media.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on Twitter. In Proceedings of the
NAACL Student Research Workshop.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex Machina: Personal attacks seen at scale.
In Proceedings of the 26th International Conference
on World Wide Web.

Jun-Ming Xu, Benjamin Burchfiel, Xiaojin Zhu, and
Amy Bellmore. 2013. An examination of regret in
bullying tweets. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies.

Dawei Yin, Zhenzhen Xue, Liangjie Hong, Brian D.
Davison, April Kontostathis, and Lynne Edwards.
2009. Detection of harassment on Web 2.0. In
Proceedings of the Content Analysis in the WEB 2.0
(CAW2.0) Workshop at WWW2009.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

563

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 564–570
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CN-HIT-MI.T at SemEval-2019 Task 6: Offensive Language Identification
Based on BiLSTM with Double Attention

Yaojie zhang, Bing Xu, Tiejun Zhao
Laboratory of Machine Intelligence and Translation, Harbin Institute of Technology

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
yjzhang@hit-mtlab.net, hitxb@hit.edu.cn, tjzhao@hit.edu.cn

Abstract

Offensive language has become pervasive in
social media. In Offensive Language Iden-
tification tasks, it may be difficult to pre-
dict accurately only according to the surface
words. So we try to dig deeper semantic in-
formation of text. This paper presents use an
attention-based two layers bidirectional long-
short memory neural network (BiLSTM) for
semantic feature extraction. Additionally, a
residual connection mechanism is used to syn-
thesize two different deep features, and an
emoji attention mechanism is used to extract
semantic information of emojis in text. We
participated in three sub-tasks of SemEval
2019 Task 6 as CN-HIT-MI.T team. Our
macro-averaged F1-score in sub-task A is
0.768, ranking 28/103. We got 0.638 in sub-
task B, ranking 30/75. In sub-task C, we got
0.549, ranking 22/65. We also tried some other
methods of not submitting results.

1 Introduction

Recognition of Offensive information has research
and application value in many aspects. With the
popularity of social media, people’s comments on
social media has become an important part of pub-
lic opinion. Although freedom of speech is ad-
vocated, there are still some unacceptable words.
The study of offensive language has only recently
arisen. With the deepening of the research, we
need to consider the different sub-tasks of its de-
composition.

In OffensEval tasks (Zampieri et al., 2019b), of-
fensive content was divided into three sub-tasks
taking the type and target of offenses into account.
Sub-task A is offensive language identification.
We should identify a short text sentence as offen-
sive or non-offensive. Sub-task B is automatic cat-
egorization of offense types. We need to classify a
sentence as having an attack target or not, if this is

an offensive sentence. Sub-task C is offense target
identification. Its purpose is to identify the target
of an attack sentence with an attack target. The
target is individual, group or other.

User’s comments on Twitter are usually clut-
tered. In order to clean up the data, a series of pre-
processing for the data is necessary. Then, pre-
trained word vectors are helpful to extract seman-
tic features from deep learning model. For clas-
sification model, bidirectional long-short memory
neural network can catch the contextual informa-
tion in text, in order to get offensive semantics
from text. A residual connection cascade the first
layer’s output and the second layer’s output can
get features of text at different levels. Attention
mechanism is used for the final output. Besides,
referring to ZHANG et al. (2018), emojis in a sen-
tence have a significant impact on sentiment. We
assume them may affect the offensive semantics of
text too, and double attention mechanism can deal
with this semantic relationship.

The rest of this paper is organized as follows.
Section 2 introduces some research advances in
Aggression Identification and Hate Speech. Sec-
tion 3 describes the data we use and the detailed
introduction of our system. Section 4 shows the
performance of our system and comparison with
other models. Section 5 describes some of our
summaries and future work directions.

2 Related Work

Due to the universality of offensive language in
social media, in order to cope with offensive lan-
guage and prevent abuse in social media, research
on related aspects has gradually emerged in recent
years.

There have been several seminars on offensive

564

language research, such as TRAC1 which shared
task on Aggression Identification summarized in
Kumar et al. (2018), need to distinguish open,
secret and non-aggressive texts. And ALW2

which is work for Abusive Language. Fišer et al.
(2017) did some work on the legal framework,
dataset and annotation schema of socially unac-
ceptable discourse practices on social networking
platforms in Slovenia. Gambäck and Sikdar
(2017) introduced a deep learning based Twitter
Hate Speech text include racism, sexism, both and
non-hate-speech classification system. Waseem
et al. (2017) put forward a series of subtasks of
hate speech, cyberbullying, and online abuse. Su
et al. (2017) described a system for detecting
and modifying Chinese dirty sentences. And
GermEval is also shared related tasks (Wiegand
et al., 2018) which initiate and foster research
on the identification of offensive content in
German language microposts. Additionally, the
main work of Malmasi and Zampieri (2017) and
Malmasi and Zampieri (2018) is to approach the
problem of distinguishing general profanity from
hate speech. Zhang et al. (2018) tried to use a
Convolution-GRU for detecting hate speech on
Twitter.

3 Methodology and Data

3.1 Method

Our method is composed of 6 stages: Preprocess-
ing, Embedding, Bidirectional LSTM, Attention,
Double attention and Softmax. The whole archi-
tecture of the single model is shown in Figure 1.

3.1.1 Preprocessing
We have done some processing on the original
training data and test data. The main purpose is to
make the data cleaner, reduce the number of un-
known words in the dictionary, and do some pro-
cessing of error words. The first step is to convert
all words into lowercase. Our preliminary view
is that uppercase or lowercase has no direct im-
pact on offensive language recognition tasks. The
second step is to deal with punctuation symbols.
We use space as separator to divide sentences into
words. But in many cases in data sets, punctuation

1https://sites.google.com/view/trac1/
home

2https://sites.google.com/site/
abusivelanguageworkshop2017/

symbols and words, as well as punctuation sym-
bols and punctuation symbols are closely linked
without space. In this way, the system will not
be able to recognize them. Just like ”sloth.” or
”!!!”, and we turned them into ”sloth .” and ”!
! !”. The third step is abbreviation processing.
We converted ”don’t”, ”you’re” and so on into ”do
n’t” and ”you ’re”, because there is no ”don’t” or
”you’re” in the dictionary. We haven’t expanded
the abbreviations like ”do not” or ”you are”, be-
cause the results may not be unique just like ”I’d”
can represent ”I would” or ”I had”. Forth, we also
need to separate the emojis refer to the dictionary
of emojis. (We will introduce the word dictionary
and emoji dictionary in detail in embedding sec-
tion). In addition, we regard all numbers as one
word.

After completing the above preprocessing, if a
word is still detected as an unknown word, we
use ekphrasis3 tool (Baziotis et al., 2017) for fur-
ther processing. The first step is word segmen-
tation. We separate some words together may
be a customary expression by spaces. For exam-
ple, ”Googlearecorrupt” is turned into ”Google are
corrupt”. Second, if the word still does not exist in
the dictionary, we do an error correction operation.
After all operations, words that do not exist in the
dictionary are marked as unknown words.

Step-by-step processing instead of direct batch
processing without intermediate detection im-
proves reliability and avoids modifying correct ex-
pressions to errors.

3.1.2 Embedding Layer
We used a word embedding layer to represent
words as vectors. The 200 dimension word vec-
tors4 is pre-trained by GloVe based on a large cor-
pus of Twitter provided by Jeffrey et al. (2014). It
includes 1,193,514 words and their vector repre-
sentations.

A sentence sequence S(w1, w2, ..., wl) is rep-
resented as C(c1, c2, ..., cl), where wi(i ∈ [1, l])
represents a word, ci represents the vector corre-
sponding to the word. C is the matrix representa-
tion of the sequence S.

We also use emoji vectors provided by Eisner
et al. (2016) to represent the emoji that appears
in a sequence. It includes 1,661 emojis used in

3https://www.github.com/cbaziotis/
ekphrasis

4https://nlp.stanford.edu/projects/
glove/

565

Figure 1: The whole architecture of 2-layer BiLSTM with Double Attention Based Offensive Language Identifi-
cation. Where w is word, and e is emoji

Twitter and their 300 dimension vector representa-
tions. We have made a PCA dimension reduction
on emoji vectors, making 300 dimensions into 200
dimensions to suit word vectors. In addition, all
bottom feature representation vector are normal-
ized.

3.1.3 Bidirectional LSTM Layer
The structure of one cell in LSTM is shown in Fig-
ure 2. Three gated mechanisms of LSTM allows
LSTM memory unit to store and access informa-
tion for a long time. it express input gate, ft ex-
press forget gate and ot express output gate. ct
express memory cell, st express memory state and
ht express hidden state. Where t denotes at time t.
The forward pass of LSTM is shown in (1)-(6).

it = f(Wixt + Uiht−1 + Vict−1) (1)

ft = f(Wfxt + Ufht−1 + Vfct−1) (2)

ot = f(Woxt + Uoht−1 + Voct) (3)

ct = g(Wcxt + UCht−1) (4)

st = ft � ct−1 + it � ct (5)

ht = ot � g(ct) (6)

Where xt is the input at time t, f(.) is the sig-
moid function, g(.) is the hyperbolic function. W ,
U and V are trainable weight parameters. In or-
der to extract the semantic relationship features of

Figure 2: The structure of one cell in LSTM

sentences before and after, we use Bidirectional
LSTM to process a sentence. Forward and back-

ward LSTM obtains hidden states
→
ht and

←
ht:

→
ht=

−→
LSTM (wt,

→
ht−1) (7)

←
ht=

←−
LSTM (wt,

←
ht−1) (8)

566

Cascade the results of bidirectional hidden state as
the result of BiLSTM:

Ht =
→
ht ⊕

←
ht (9)

We stack two layers of BiLSTMs. The output of
the first layer BiLSTM is used as the input of the
second layer. Meanwhile, we consider that the first
layer can collect low-level semantic information
such as lexical or grammatical information, while
the second layer can collect high-level semantic
information such as sentiment or offensiveness in-
formation. So we added a residual connection be-
tween the two layers:

Hfinal
t = H layer1

t ⊕H layer2
t (10)

3.1.4 Attention Layer
We input the representation of hidden state ob-
tained by Bidirectional LSTM layer into attention
layer to get sentence coding:

si =
∑

t

αitH
final
it (11)

Where a is the weight value:

αit =
exp(uTituw)∑
t exp(u

T
ituw)

(12)

uit = tanh(WwH
final
it + bw) (13)

3.1.5 Double Attention Mechanism
We use another attention mechanism similar to
that of encoding sentences to encode emojis in
sentences, referring to (ZHANG et al., 2018). If
there are emojis in a sentence, we get the cor-
responding vector representation from the emojis
dictionary mentioned in Section 3.2.2. Then the
coding is obtained through the attention mecha-
nism:

sei =
∑

t

αeitEi (14)

Where E is the vector representation of emojis in
a sentence.

3.1.6 Softmax Layer
Finally, we concatenate sentence coding and emo-
jis coding through the full connection layer. We
use the softmax classifier to construct scoring vec-
tors for each category and convert them into prob-
abilities:

r = s⊕ se (15)

ŷ =
exp(Wr + b)∑

i∈[1,l] exp(Wir + bi)
(16)

Where W and b is the layer’s weights and biases.
We use cross-entropy loss function with L2 regu-
larization term:

L(ŷ, y) = −
N∑

i=1

C∑

j=1

yji log(
ˆ
yji) + λ(

∑

θ∈Θ

θ2) (17)

3.2 Data
We only use the training dataset which contains
13,240 tweets provided by SemEval 2019 Task
6 (Zampieri et al., 2019a). Table 1 shows three
different levels of tasks and their corresponding
amount of data.

A B C Train Test Total
OFF TIN IND 2,407 100 2,507
OFF TIN OTH 395 35 430
OFF TIN GRP 1,074 78 1,152
OFF UNT - 524 27 551
NOT - - 8,840 620 9,460
All 13,240 860 14,100

Table 1: Distribution of label combinations in the data
provided by OLID

We have 13,240 tweets to train subtask A. Of
these, 4,400 are offensive and 8,840 are non-
offensive. There are 4,400 tweets for subtask B.
Of these, 3,876 are targeted insult and threats and
524 are untargeted. In 3,876 targeted tweets, 2,407
of them are individual, 1,074 of them are group,
and 395 of them are other.

4 Results

In this part, some experimental settings are briefly
described. Additionally, we list the experimen-
tal results we submitted and compared them with
baseline. We use 5-fold cross validation to get 5
same models. Using the probability predicted by
these 5 models to do a soft-vote to get the final
probability distribution. The highest probability is
the predictive class of our system. What’s more,
we compare performance on offensive identifica-
tion detection of different models by 5-fold cross
validation.

The number of hidden units in 2-layer of BiL-
STM is 150 each layer for sub-task A, where it
is 100 for sub-task B and 80 for sub-task C. The
size of randomly initialized attention query vector
is 256 dimensions. We chose the adam optimizer,

567

and the learning rate starts at 7e − 4, decreases to
0.9 times per 20 epoch, always greater than 1e−4.
The λ of L2 regularization is 1e− 5

Tables 2, 3 and 4 show the performance of our
system on test dataset in subtasks A, B and C, re-
spectively. The first 2 or 3 rows of the table show
the baseline of the officially provided subtasks.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Submitted System 0.7684 0.8244

Table 2: The results of Sub-task A we submitted. The
system is a 2-layer BiLSTM with Double Attention
which is described in Section 3.2

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
Submitted System 0.6381 0.8417

Table 3: The results of Sub-task B we submitted. The
system is a 2-layer BiLSTM with Double Attention
which is described in Section 3.2. It has different hy-
perparameter settings from Sub-task A

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
Submitted System 0.5488 0.6338

Table 4: The results of Sub-task C we submitted. The
system is a 2-layer BiLSTM with Double Attention
which is described in Section 3.2. It has different hy-
perparameter settings from Sub-task A and Sub-task B

Figures 3, 4 and 5 show the confusion matrix of
the classification results of our system on the test
dataset in subtasks A, B and C, respectively.

We can clearly see from figures that our sys-
tem performs better in category has more training
data. This may be because more data in this cate-
gory makes the system more inclined to classify
these samples correctly in training, not because
some categories are easier to identify and others
are harder. We used the over-sampling method,
but the effect is not obvious. Categories with fewer
data quickly reach the state of over-fitting, while
those with more data are still under-fitting.

Table 5 shows some comparative experiments

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

566 54

97 143

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 3: The confusion matrix of the classification re-
sults in Sub-task A

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

191 22

16 11

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4: The confusion matrix of the classification re-
sults in Sub-task B

on closed validation sets. We use 5-fold cross val-
idation, and each data has the same category ratio.

We can see that if we only use the second layer’s
features, the performance is worse than using the
first layer’s. When using two layers features at the
same time, the effect is the best. In addition, Word
Attention can significantly improve system perfor-
mance, but Emoji Attention only improve system
performance a little. This may be because emojis
have little impact on text offensive semantics. It is
worth mentioning that the system performance is
improved obviously after data preprocessing, and
the F1 score has increased by 3.12%.

568

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

54 11 13

15 73 12

17 10 8

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5: The confusion matrix of the classification re-
sults in Sub-task C

Model A B C
1-layer BiLSTM 0.749 0.610 0.527
1-layer BiLSTM
with Attention

0.757 0.632 0.544

2-layer BiLSTM
with Attention

0.752 0.626 0.513

2-layer BiLSTM
(residual connected)
with Attention

0.764 0.643 0.549

2-layer BiLSTM
(residual connected)
with Double Attention
(Emojis)

0.766 0.643 0.550

Table 5: Some comparative experiments on closed val-
idation sets

5 Conclusion

This paper introduces a deep learning method
Attention-based residual connected BiLSTM with
Emojis Attention for SemEval 2019 Task 6: Iden-
tifying and Categorizing Offensive Language in
Social Media. Our system didn’t get the leading
score in the competition. Maybe there are the fol-
lowing reasons. Except for the corpus used for
pre-training word vectors, we do not use other data
for training. Some machine learning models may
achieve better results with fewer data. Addition-
ally, we think that hyperparameter adjustment in
our system is not perfect. Most importantly, we do
not associate the characteristics of offensive lan-
guage recognition tasks with our model.

The next step of this paper is to associate tasks
with models. We will try to constructing a dic-
tionary of offensive words for tasks. We will also
try other ways of using external dictionaries except
double attention mechanism such as Position Em-
bedding. In addition, we will try some language
models that are currently leading the NLP task
such as BERT proposed by Devlin et al. (2018).

569

References
C Baziotis, N Pelekis, and C Doulkeridis. 2017. DataS-

tories at SemEval-2017 Task 4: Deep LSTM with
Attention for Message-level and Topic-based Senti-
ment Analysis. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training
of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv e-prints, page
arXiv:1810.04805.

Ben Eisner, Tim Rocktäschel, Isabelle Augenstein,
Matko Bošnjak, and Sebastian Riedel. 2016.
emoji2vec: Learning Emoji Representations from
their Description. In Proceedings of the 4th Interna-
tional Workshop on Natural Language. In Proceed-
ings of the 4th International Workshop on Natural
Language Processing for Social Media at EMNLP
2016 (SocialNLP at EMNLP 2016).

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Pennington Jeffrey, Socher Richard, and D. Manning
Christopher. 2014. GloVe: Global Vectors for
Word Representation. In Proceedings of the Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Yangsen ZHANG, Jia ZHENG, Gaijuan HUANG, and
et al. 2018. Microblog sentiment analysis method
based on a double attention model. In Proceed-
ings of Tsinghua University(Science and Technol-
ogy), volume 58, pages 122–130.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

570

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 571–576
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ConvAI at SemEval-2019 Task 6: Offensive Language Identification and
Categorization with Perspective and BERT

John Pavlopoulos
Ion Androutsopoulos

Department of Informatics
Athens University of Economics

and Business, Greece
annis,ion@aueb.gr

Nithum Thain
Lucas Dixon

Jigsaw
nthain,ldixon@google.com

Abstract

This paper presents the application of two
strong baseline systems for toxicity detection
and evaluates their performance in identify-
ing and categorizing offensive language in so-
cial media. Perspective is an API, that serves
multiple machine learning models for the im-
provement of conversations online, as well as
a toxicity detection system, trained on a wide
variety of comments from platforms across the
Internet. BERT is a recently popular language
representation model, fine tuned per task and
achieving state of the art performance in mul-
tiple NLP tasks. Perspective performed bet-
ter than BERT in detecting toxicity, but BERT
was much better in categorizing the offensive
type. Both baselines were ranked surpris-
ingly high in the SEMEVAL-2019 OFFENSE-
VAL competition, Perspective in detecting an
offensive post (12th) and BERT in categoriz-
ing it (11th). The main contribution of this pa-
per is the assessment of two strong baselines
for the identification (Perspective) and the cat-
egorization (BERT) of offensive language with
little or no additional training data.

1 Introduction

Offensive language detection refers to computa-
tional approaches for detecting abusive language,
such as threats, insults, calumniation, discrimina-
tion, swearing (Pavlopoulos et al., 2017b), which
could be targeted (at an individual or group) or not
(Waseem et al., 2017). These computational ap-
proaches are often used by moderators who face an
increasing volume of abusive content and would
like assistance in managing it efficiently.1

Although offensive language detection is not a
new task (Dinakar et al., 2011; Dadvar et al., 2013;
Kwok and Wang, 2013; Burnap and Williams,
2015; Tulkens et al., 2016), the creation of large

1See, for example, https://goo.gl/VQNDNX.

corpora (Wulczyn et al., 2017), along with recent
advances in pre-training text representations (De-
vlin et al., 2018) allow for much more efficient ap-
proaches. Furthermore, while new competitions
and corpora are being introduced (Zampieri et al.,
2019a),2 there is a need for strong baselines to as-
sess the performance of more complex systems.
This paper assesses two systems for the detection
and categorization of offensive language, which
require few or no task-specific annotated training
instances.

The first baseline is a Convolutional Neural
Network (CNN) for toxicity detection, trained on
millions of user comments from different on-
line publishers, which is made publicly available
through the Perspective API.3 This model re-
quires no extra training or fine tuning and can be
directly applied to score unseen posts. The second
strong baseline is the recently popular Bidirec-
tional Encoder Representations from Transform-
ers (BERT), a pre-trained model that has been
reported to achieve state of the art performance
in multiple NLP tasks with limited fine-tuning on
task-specific training data (Devlin et al., 2018).

Section 2 below summarizes related work and
Section 3 discusses the SEMEVAL-2019 OFFEN-
SEVAL dataset we used. In Section 4 we describe
the two proposed baselines and we report experi-
mental results in Section 5. Section 6 concludes
our work and suggests future directions.

2 Related Work

Various forms of offensive language detection
have recently attracted a lot of attention (Nobata
et al., 2016; Pavlopoulos et al., 2017b; Park and
Fung, 2017; Wulczyn et al., 2017). Apart from
the growing volume of popular press concerning

2See also https://goo.gl/v7kA1K.
3https://www.perspectiveapi.com/

571

toxicity online, the increased interest in research
into offensive language is partly due to the re-
cent Workshops on Abusive Language Online,4

as well as other fora, such as GermEval for Ger-
man texts,5 or TA-COS6 and TRAC (Kumar et al.,
2018),7. The literature contains many terms for
different kinds of offensive language: toxic, abu-
sive, hateful, attacking, etc. Largely, these are de-
fined by different survey methods. In (Waseem
et al., 2017), abusive language is divided into ex-
plicit vs. implicit, and directed vs. generalized.
However, other researchers have created different
taxonomies based on sub-kinds of toxic language
(Table 2).

Although some previous research has consid-
ered several types of abuse and their relations
(Malmasi and Zampieri, 2018), detecting vari-
eties of hate has attracted more attention (Djuric
et al., 2015; Malmasi and Zampieri, 2017; ElSh-
erief et al., 2018; Gambäck and Sikdar, 2017;
Zhang et al., 2018). The first publicly avail-
able dataset for hate speech detection was that of
Waseem and Hovy (2016). It contained 1607 En-
glish tweets annotated for sexism and racism. A
larger dataset was published by Davidson et al.
(2017), containing approx. 25K tweets collected
by using a hate lexicon. Despite the popularity of
hate speech detection in literature, no larger pub-
licly available hate speech datasets seem to ex-
ist. For recent overviews of hate speech detection,
consult Schmidt and Wiegand (2017) and Fortuna
and Nunes (2018).

Research into the various kinds of offensive lan-
guage detection is mainly focused on English, but
some work in other languages also exists. Work
on a large dataset of Greek moderated news por-
tal comments is presented by Pavlopoulos et al.
(2017a). A dataset of obscene and offensive user
comments and words in Arabic social media was
presented by Mubarak et al. (2017). Previous work
includes a system to detect and rephrase profan-
ity in Chinese (Su et al., 2017), and an annotation
schema for unacceptable social media content in
Slovene (Fišer et al., 2017).

4https://goo.gl/9HmSzc
5https://goo.gl/uZEerk
6http://ta-cos.org/
7https://goo.gl/DTZquU

3 Data

The SEMEVAL-2019 OFFENSEVAL dataset that is
available to participants contains 13240 tweets;
the counts of the labels are shown in Table 1. The
OFFENSEVAL task consists of three subtasks, de-
scribed in detail by Zampieri et al. (2019b). Sub-
task A aims at the detection of offensive language
(OFF or NOT in Table 3). Subtask B aims at cat-
egorizing offensive language as targeting a spe-
cific entity (TIN) or not (UNT). Subtask C aims
to identify whether the target of an offensive post
is an individual (IND), a group (GRP), or unknown
(OTH). Table 1 also shows the size of the vocabu-
lary per class (label), which, unsurprisingly, is pro-
portional to the class size. It is worth noting that
offensive tweets targeting a group are the length-
ier texts, with 28 tokens on average (see Table 1,
column C, GRP column).

4 Baselines

We now describe the two baselines (Perspective,
BERT) that we implemented and evaluated.

4.1 Perspective
We employed the Perspective API, which was cre-
ated by Jigsaw and Google’s Counter Abuse Tech-
nology team in Conversation-AI,8 to facilitate bet-
ter conversations online and protect voices in con-
versations (Hosseini et al., 2017). Although open-
source code is available,9 we chose to use pre-
trained models, accessible through the API. For
offensive language detection in Subtask A, we
used the Toxicity model, which is a CNN based on
GLOVE word embeddings,10 trained over millions
of user comments from publishers such as the New
York Times and Wikipedia. This is a robust model,
which we expect to be somewhat adaptable to dif-
ferent datasets (and their labels for closely related
forms of offensive language), such as the offen-
sive tweets of OFFENSEVAL. For offensive lan-
guage categorization in Subtask B, we employed
other experimental models, also available via the
Perspective API, which detect various abuse types
including those of Table 2.

4.2 BERT
BERT (Devlin et al., 2018) is a deep bidirectional
network built using Transformers (Vaswani et al.,

8https://conversationai.github.io/
9https://goo.gl/yN196H

10https://goo.gl/rHYMqt

572

Subtask A B C
Label NOT OFF UNT TIN IND GRP OTH

Number of Tweets 8840 4400 524 3876 2407 1074 395
Class specific vocabulary size 29.2K 18.6K 3.5K 17.3K 11.5K 7.8K 3.5K

Average number of tokens / Tweet 22 24 19 24 22 28 25

Table 1: Number of tweets, size of vocabulary, and average number of tokens per tweet, for each label (class).
In Subtask A, the labels are ‘not offensive’ (NOT) or ‘offensive’ (OFF). In Subtask B, the labels are ‘not targeted
threat’ (UNT) and ‘targeted insult or threat’ (TIN). In Subtask C, they are ‘targeted insult or threat towards an
individual’ (IND), ‘towards a group’ (GRP), or ‘towards another target’ (OTH).

TOXICITY @user Fuck you, you fat piece of
shit

INSULT Hey @user , you are disgusting.
THREAT @user Kill the traitors.
PROFANITY My wrist been fucked up for

nearly a month now . This time
im really going to the hospital to
see what the fuck is wrong with it

IDENTITY

ATTACK

Okay everyone always talks aboht
the pathetic army and all the soy
boy branches and gay shit and
what not [...]

ATTACK

ON COM-
MENTER

@user You are all utterly delu-
sional. If you were really pro-
life” you would [...]

Table 2: The tweets with the highest Perspective score
per abusiveness type, on a trial dataset of 320 tweets
shared by the competition organizers.

2017). It is pre-trained to detect (a) a masked word
from its left and right context, and (b) the next
sentence. We used the publicly available BERT-
BASE version,11 with 12 Transformer layers, 768
hidden states size, which is pre-trained on a mono-
lingual corpus of 3.3B words. For a particular NLP

task, a task-specific layer is added on top of BERT.
In our case, the extra layer comprises dropout,
a linear transformation, and softmax.12 During
the task-specific ‘fine-tuning’, the extra layer is
trained jointly with BERT (refining the pre-trained
BERT model) on task-specific data. Previous re-
search demonstrated that fine-tuning BERT leads
to state of the art performance in several NLP tasks
(Devlin et al., 2018).

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Perspective 0.7933 0.8360
BERT 0.7705 0.8163
BEST 2019 0.8290 —

Table 3: Results for Subtask A.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
Perspective 0.4785 0.6292
BERT 0.6817 0.8708
BEST 2019 0.7550 —

Table 4: Results for Subtask B.

5 Results

5.1 Offensive Language Detection
For Subtask A, we used the toxicity score from
Perspective and returned the offensive label (OFF)
when the returned score was above 0.5. No fine
tuning was performed for Perspective. For BERT,
we split the dataset to training (10K tweets) and
development (3240) subsets, and fine-tuned BERT
for 3 epochs.13

In this subtask, Perspective outperformed
BERT and was ranked 12th out of 103 submis-
sions. The difference from the top-ranked model
was 3.5 F1 points. The performance of Perspec-
tive in this subtask is particularly interesting, con-
sidering that the training data for these models
were not labeled for offensiveness, but rather for
other attributes such as toxicity, threats, and in-
sults.14 Ignoring Perspective, BERT was ranked

11https://goo.gl/95mqhE
12We used default values for all hyper parameters.
13We used the uncased system with batch size 32, based

on preliminary experiments.
14https://goo.gl/Bmiogb

573

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

555 65

76 164

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 1: Confusion matrix for Perspective in Subtask
A (Offensive Language Detection).

27th. As shown in Table 3, both of our strong
baselines outperform the naive majority baselines
for this subtask.

The confusion matrix of Perspective is shown
in Fig. 1. Both recall and precision are high for
the NOT label (87.96% and 89.81%), but lower for
OFF (68.33% and 71.62%). This is explained by
the fact that NOT is two times the size of OFF (Ta-
ble 1). We also used Perspective to score the train-
ing data, since no fine-tuning was performed on
the training data for Perspective. Macro F1 was
78.01% (85.02% for NOT, 71% for OFF) and accu-
racy was 80.24%, which are lower but close to the
respective values on the test data (Table 3).

5.2 Offense Type Detection

For Subtask B, we used the experimental insult,
threat and attack on commenter models from Per-
spective. We averaged insult and attack on com-
menter and used this average to compare with
the threat score. The Perspective baseline re-
turned a targeted insult/threat (TIN) when the av-
erage was greater, and untargeted (UNT) other-
wise. The BERT baseline was fine-tuned on the
entire dataset that was available to participants, be-
cause we considered that dataset too small for a
training/development split.15 BERT clearly out-
performed the Perspective baseline (Table 4) and
ranked 11th in this subtask among 73 participants,
whereas the best system achieved 7.8 points higher

15We used the cased system with batch size 16, based on
preliminary experiments.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

197 16

15 12

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Confusion matrix for BERT in Subtask B
(Offense Type Detection).

in F1. The confusion matrix of BERT for this sub-
task is shown in Fig. 2. The large class imbal-
ance (TIN tweets are approx. 7 times than UNT,
see Table 1) significantly reduces both the recall
(44.44%) and precision (42.86%) of BERT for the
UNT class, compared to TIN (92.49% and 92.92%,
respectively).

5.3 Offense Target Detection

For Subtask C, Perspective has no suitable model
to respond yet and the BERT-based systems sub-
mitted were in an experimental phase, due to time
constraints.16 We consider the results we obtained
for this subtask as not relevant and leave the devel-
opment and evaluation of baselines for this subtask
as future work.

6 Conclusion

This paper proposed and evaluated two strong
baselines, based on the Perspective API and
BERT, for identifying and categorizing offensive
language in social media. Both baselines require
few (BERT) or no additional task-specific train-
ing data (Perspective) and this is the first work,
to our knowledge, to assess their performance in
the tasks we considered. The Perspective-based
baseline was ranked 12th among 103 submissions
for the task of classifying a post as offensive or
not. The BERT baseline was ranked 11th among

16BERT base and BERT large (trained on CPU) were ex-
amined for this subtask, but preliminary experiments showed
that the majority class was always returned.

574

73 submissions for the task of recognizing whether
an offensive post is targeted or not. Both baselines
were ranked surprisingly high in the correspond-
ing tasks, considering that they were given no or
few, respectively, additional task-specific training
instances. Furthermore, the Perspective baseline,
which required no fine tuning outperformed BERT
by a large margin in the task of detecting offensive
language. In future work, we intend to examine
stronger, yet easy to apply baselines, and release
source to make it easier to use them.

References
P. Burnap and M. L. Williams. 2015. Cyber hate

speech on twitter: An application of machine clas-
sification and statistical modeling for policy and de-
cision making. Policy & Internet, 7(2):223–242.

M. Dadvar, D. Trieschnigg, R. Ordelman, and
F. de Jong. 2013. Improving cyberbullying detec-
tion with user context. In European Conference on
Information Retrieval, pages 693–696.

T. Davidson, D. Warmsley, M. Macy, and I. Weber.
2017. Automated hate speech detection and the
problem of offensive language. In ICWSM, pages
512–515, Montreal, Canada.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
2018. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv.

K. Dinakar, R. Reichart, and H. Lieberman. 2011.
Modeling the detection of textual cyberbullying. In
The Social Mobile Web, pages 11–17.

N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Ra-
dosavljevic, and N. Bhamidipati. 2015. Hate speech
detection with comment embeddings. In ICWWW,
pages 29–30.

M. ElSherief, V. Kulkarni, D. Nguyen, W. Y. Wang,
and E. Belding. 2018. Hate lingo: A target-based
linguistic analysis of hate speech in social media.
arXiv preprint.

D. Fišer, T. Erjavec, and N. Ljubešić. 2017. Legal
framework, dataset and annotation schema for so-
cially unacceptable on-line discourse practices in
slovene. In 1st Workshop on Abusive Language On-
line, Vancouver, Canada.

P. Fortuna and S. Nunes. 2018. A survey on automatic
detection of hate speech in text. ACM Computing
Surveys (CSUR), 51(4):85.

B. Gambäck and U. K. Sikdar. 2017. Using convolu-
tional neural networks to classify hate-speech. In
1st Workshop on Abusive Language Online, pages
85–90, Vancouver, Canada.

H. Hosseini, S. Kannan, B. Zhang, and R. Poovendran.
2017. Deceiving google’s perspective api built for
detecting toxic comments. In arXiv preprint.

R. Kumar, A. K. Ojha, S. Malmasi, and M. Zampieri.
2018. Benchmarking aggression identification in
social media. In TRAC, Santa Fe, USA.

I. Kwok and Y. Wang. 2013. Locate the hate: Detecting
tweets against blacks. In AAAI, pages 1621–1622,
Whasington, USA.

S. Malmasi and M. Zampieri. 2017. Detecting hate
speech in social media. In RANLP, pages 467–472.

S. Malmasi and M. Zampieri. 2018. Challenges in dis-
criminating profanity from hate speech. Journal of
Experimental & Theoretical Artificial Intelligence,
30:1–16.

H. Mubarak, K. Darwish, and W. Magdy. 2017. Abu-
sive language detection on arabic social media. In
1st Abusive Language Workshop, pages 52–56, Van-
couver, Canada.

C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and
Y. Chang. 2016. Abusive language detection in on-
line user content. In ICWWW, pages 145–153.

J. H. Park and P. Fung. 2017. One-step and two-step
classification for abusive language detection on twit-
ter. In 1st Workshop on Abusive Language Online,
pages 41–45.

J. Pavlopoulos, P. Malakasiotis, and I. Androutsopou-
los. 2017a. Deep learning for user comment mod-
eration. In 1st Workshop on Abusive Language On-
line, pages 25–35.

J. Pavlopoulos, P. Malakasiotis, and I. Androutsopou-
los. 2017b. Deeper attention to abusive user content
moderation. In EMNLP, pages 1125–1135, Copeng-
hagen, Denmark.

A. Schmidt and M. Wiegand. 2017. A survey on hate
speech detection using natural language processing.
In Workshop on Natural Language Processing for
Social Media, pages 1–10, Valencia, Spain.

H.-P. Su, C.-J. Huang, H-T. Chang, and C.-J. Lin.
2017. Rephrasing profanity in chinese text. In 1st
Workshop on Abusive Language Online, Vancouver,
Canada.

S. Tulkens, L. Hilte, E. Lodewyckx, B. Verhoeven, and
W. Daelemans. 2016. A dictionary-based approach
to racism detection in dutch social media. In TA-
COS, Portoroz, Slovenia.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
2017. Attention is all you need. In NIPS, pages
5998–6008.

Z. Waseem, T. Davidson, D. Warmsley, and I. Weber.
2017. Understanding abuse: A typology of abusive
language detection subtasks. In 1st Workshop on
Abusive Langauge Online, Vancouver, Canada.

575

Z. Waseem and D. Hovy. 2016. Hateful symbols or
hateful people? predictive features for hate speech
detection on twitter. In NAACL SRW, pages 88–93,
San Diego, California.

E. Wulczyn, N. Thain, and L. Dixon. 2017. Ex
machina: Personal attacks seen at scale. In
ICWWW, pages 1391–1399.

M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal,
N. Farra, and R. Kumar. 2019a. Predicting the Type
and Target of Offensive Posts in Social Media. In
NAACL.

M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal,
N. Farra, and R. Kumar. 2019b. Semeval-2019 task
6: Identifying and categorizing offensive language
in social media (offenseval). In SemEval.

Z. Zhang, D. Robinson, and J. Tepper. 2018. Detecting
hate speech on twitter using a convolution-gru based
deep neural network. In Lecture Notes in Computer
Science. Springer Verlag.

576

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 577–581
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

DA-LD-Hildesheim at SemEval-2019 Task 6: Tracking Offensive Content
with Deep Learning using Shallow Representation

Sandip Modha
DA-IICT

Gandhinagar India
sjmodha

@gmail.com

Prasenjit Majumder
DA-IICT

Gandhinagar India
p majumder

@daiict.ac.in

Thomas Mandl
Uni. of Hildesheim

Hildesheim Germany
mandl

@uni-hildesheim.de

Daksh Patel
LDRP-ITR

Gandhinagar India
dakshpatel68
@gmail.com

Abstract
This paper presents the participation of team
DA-LD-Hildesheim of Information Retrieval
and Language Processing lab at DA-IICT, In-
dia in Semeval-19 OffenEval track. The aim
of this shared task is to identify offensive con-
tent at fined-grained level granularity. The task
is divided into three sub-tasks. The system is
required to check whether social media posts
contain any offensive or profane content or
not, targeted or untargeted towards any entity
and classifying targeted posts into the individ-
ual, group or other categories. Social media
posts suffer from data sparsity problem, There-
fore, the distributed word representation tech-
nique is chosen over the Bag-of-Words for the
text representation. Since limited labeled data
was available for the training, pre-trained word
vectors are used and fine-tuned on this clas-
sification task. Various deep learning models
based on LSTM, Bidirectional LSTM, CNN,
and Stacked CNN are used for the classifica-
tion. It has been observed that labeled data was
highly affected with class imbalance and our
technique to handle the class-balance was not
effective, in fact performance was degraded in
some of the runs. Macro F1 score is used as a
primary evaluation metric for the performance.
Our System achieves Macro F1 score = 0.7833
in sub-task A, 0.6456 in the sub-task B and
0.5533 in the sub-task C.

1 Introduction

NLP researchers are developing innovative sys-
tems based on the input of the text data. The
power of predictions has moved from simple sen-
timent classification task to much more advanced
labeling of the content. The task related to hate,
aggression, abusive or offensive speech currently
attracts research more to algorithms making deci-
sions which can also be ambiguous for humans.
Due to the availability of standard datasets, such
data collections are created based on social media

data and are offered at forum like TRAC 1 (Kumar
et al., 2018), GermEval 2, and SemEval OffenEval
2019 (Zampieri et al., 2019a)3.

The exponential rise in social media user-base
backed by the cutting edge mobile data technolo-
gies leads to the inorganic growth in the posts
related to hate speech or offensive speech. Re-
searchers working in the area of domain-specific
sentiment analysis move to the problem of domain
specific or open domain hate or offensive speech
detection. They are reshaping the hate speech
problem into the new notion like abusive, aggres-
sive, or offensive speech. Such categorization of
social media posts, help law-enforcement agencies
with the surveillance of the social media.

The shared task in SemEval-OffenEval 2019
was introduced as a 3-level classification task
(Zampieri et al., 2019b). In the first level, sub-task
A, systems are required to classify tweets into two
class, namely: Offensive (OFF) and Non-offensive
(NOT). In the second level, sub-task B, offen-
sive tweets are further required to be categorized
into two labels, namely :targeted (TIN)-post which
contain threat/insult to the targeted entity and un-
targeted (UNT), respectively. In the sub-task C,
target of insults and threats are further classified to
Individual (IND), Group (GRP), or Other (OTH)
classes. Table 1 presents the statistic about the
dataset. One can observe that classes in dataset,
particularly for the sub-task B and sub-task C, is
highly imbalanced.

Our approach for this shared task is based on
distributed word representation and deep learning.
fastText pre-trained word embedding (Mikolov
et al., 2018) is used to initialize embedding layer
or first layer of the model and fine tuned for classi-
fication task. The rest of the model is still needed

1https://sites.google.com/view/trac1/home
2http://https://projects.fzai.h-da.de/iggsa/
3https://competitions.codalab.org/competitions/20011

577

Details # Tweets Train Dataset # Tweets in Test Dataset
Total Posts in Sub-task A 13240 860
Offensive posts 4440 240
Non-offensive posts 8800 620
sub-task-B : Targeted (TIN) posts 3876 213
Non-Targeted (UNT) posts 524 27
Sub-task C: Individual 2407 100
Group 1074 78
Other 395 35

Table 1: Dataset statistics

to be trained from scratch.(Howard and Ruder,
2018) termed this techniques as shallow represen-
tation against the hierarchical representation.

The rest of this paper is organized as follows.
In section 2 we briefly discuss the related work in
this area. In section 3, we present our method and
model. In section 4, we present results and give
the brief analysis. In section 5, we will give our
final conclusion along with future works.

2 Related Work

Hate Speech Detection research attracts re-
searchers from diverse background like compu-
tational Linguistic, computer science, and social
science. The actual term hate speech was coined
by (Warner and Hirschberg, 2012). Various Au-
thors used different notion like offensive language
(Razavi et al., 2010), cyberbullying (Xu et al.,
2012), aggression (Kumar et al., 2018). (David-
son et al., 2017) studied tweet classification of
hate speech and offensive language and defined
hate speech as following: language that is used
to express hatred towards a targeted group or is
intended to be derogatory, to humiliate, or to in-
sult the members of the group. Authors observed
that offensive language is often miss-classified as
hate speech. They have trained a multi-class clas-
sifier on N-gram features weighted by its TF-IDF
weights and PoS tags. In addition to these, fea-
tures like sentiment score of each tweet, num-
ber of hashtags, and URLS, mentions are con-
sidered. Authors concluded that Logistic Regres-
sion and Linear SVM are better than NB, Deci-
sion Tree, and Random Forests. (Schmidt and
Wiegand, 2017) perform comprehensive survey on
hate speech. They have identified features like sur-
face features, sentiment, word generalization, lex-
ical, linguistics etc. can be used by classifier.

(Malmasi and Zampieri, 2018) tried to address
the problem of discriminating profanity from hate
speech in the social media posts. N-grams, skip-
gram and clustering based word representation
features are considered for the 3-class classifica-
tion. The author uses SVM and advance ensemble
based classifier for this task and achieved 80% ac-
curacy. (Gambäck and Sikdar, 2017) performed
4-class classification on Twitter messages using
CNN with word embedding generated through
Word2vec and character n-grams. Authors claim
that word embedding generated through Word2vec
outperformed random vector and n-gram charac-
ters. (Zhang et al., 2018) proposed a new method
based on CNN and LSTM with drop out and pool-
ing for hate speech detection. Authors concluded
that their method achieved improvement on F1
score of most of the hate speech datasets.

3 Methodology and Data

Since the social media data suffers from the data
sparsity problem, classifier based on the BoW fea-
tures might not be appropriate as compared to dis-
tributed word representation. Our previous work
(Majumder et al., 2018) also supported this intu-
ition. Empirical evidence (Majumder et al., 2018)
suggest that pre-trained vector trained on huge
corpus provides better word embedding than em-
bedding generated from a limited training corpus.
Some authors (Howard and Ruder, 2018) termed
it as a shallow-transfer learning approach. In this
method, first layer or embedding layer of deep
neural network is initialized with pre-trained vec-
tors and the rest of the network is trained from
scratch. Since fastText generates word embed-
ding for a word which is unseen during the train-
ing by using the subword or n-gram of the word,
it is the better choice than Word2vec and Glove.
As discussed in the previous section, there is sub-

578

stantial class imbalance particularly in sub-task B
and C. To address this issue, class weights are in-
corporated into the cost function of the classifier
which gives higher weight to minority class and
lower weights to the majority class. Four deep
learning based models: Bidirectional LSTM, Sin-
gle LSTM, CNN and stacked CNN are designed
for the classification.

Pre-processing : Track organizers have par-
tially pre-processed tweets in the dataset. User
mention, URL are replaced with standard tags. We
did not perform any sort of further pre-processing
or stemming on the texts.

Word embedding : fastText pre-trained word
vectors with dimension 300 are used to initialize
the embedding layer. This model is trained on
600B tokens of commonly crawled corpus.

3.1 Model Architecture and
Hyperparameters

In this sub-section, we briefly describe our mod-
els used for the classification. The first model
is based on Bidirectional LSTM model includes
the embedding layer with 300 dimensions, Bidi-
rectional LSTM layer with 50 memory units fol-
lowed by one-dimensional global max pooling and
dense layer with softmax/sigmoid activations. Hy-
perparameters are as follows: Sequence length is
fixed at 30. Number of features is equal to the
half of total vocabulary size in each task. Mod-
els are trained for 10 epoch. Adam optimization
algorithm is used to update network weights.

The second model is based on LSTM. The
model includes embedding layer with 300 dimen-
sions, LSTM layer with 64 memory units, fol-
lowed by two dense layers with softmax/sigmoid
activations. A dropout layer is added to the hidden
layer to counter the overfitting. Hyperparameters
of the model is the same as the first model.

Rest of the two models are based on Convolu-
tion Neural Network, includes embedding layer
with embed size of 300, followed by a one-
dimensional convolution layer with 100 filters of
height 2 and stride 1 to target biagrams. In addi-
tion to this, Global Max Pooling layer is added.
Pooling layer fetches the maximum value from
the filters which are feeded to the dense layer.
There are 256 nodes in the hidden layer with-
out any dropout. The last model is same as pre-
vious CNN model except three one-dimensional
convolution layer are stacked together. Different

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

580 40

98 142

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: Sub-task A, Confusion Matrix:BLSTM clas-
sifier

one-dimensional filters with height 2,3,4 to target
bigrams, trigrams, and four-grams features. Af-
ter convolution layers and max pool layer, model
concatenate max pooled results from each of one-
dimensional convolution layers, then build one
output layer on top of them. (Majumder et al.,
2018). Hyperparameters of the model is the same
as the first model.

4 Results

In this section, we report the results obtained by
the model discussed in the previous section. Table
2, 3, 4 display results of sub-task A, B, and C, re-
spectively. We have randomly splitted the dataset
into 80% training and 20% validation. By and
large, results on test dataset are better than cross-
validation. F1-macro score is the primary metric
for the evaluation. Results are comparable with
the top team and substantially outperforms all the
random baselines. Figure 1, 2, and 3, show the
confusion matrices for all the sub-tasks.

5 Conclusion

In this paper, we have presented our deep learn-
ing based approach for multi-level offensive text
classification. The system reports reasonable per-
formance. Macro f1 and accuracy score around
78.3% and 84% in sub-task A. In sub-task B, our
system performs the worst in UNT class(offensive
post without target). The reason behind this under-
performance is few number of training examples
for the UNT class. Similar case happened in the

579

Test Dataset Cross Validation
System F1 (macro) Accuracy F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Bidirectional
LSTM

0.7833 0.8395 0.75 0.79

CNN 0.7800 0.8337 0.76 0.7915
LSTM-balanced 0.7500 0.8047 0.74 0.7708
Top-run: pliu19 0.829

Table 2: Results for Sub-task A.

Test Dataset Cross Validation
System F1 (macro) Accuracy F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
CNN 0.6456 0.9042 0.60 0.8875
LSTM-balanced 0.5471 0.825 0.60 0.867
CNN-balanced 0.6455 0.8917 0.55 0.8943
Top Team jhan014 0.755

Table 3: Results for Sub-task B

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

211 2

21 6

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Sub-task B, Confusion matrix : CNN classi-
fier

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

59 19

14 83 3

20 11 4

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Sub-task C, Confusion Matrix:CNN Classi-
fier

580

Test Dataset Cross Validation
System F1 (macro) Accuracy F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
CNN-balanced 0.5533 0.6854 0.5231 0.695
BLSTM-balanced 0.4829 0.662 0.5223 0.6959
Stacked CNN 0.5198 0.662 0.5074 0.6920
Top Team vradi-
vchev

0.66

Table 4: Results for Sub-task C

sub-task C. We have set class weights in the cost
function of the model. Unfortunately, it did not
work. In the future, we will try to address imbal-
ance class problem using external vocabulary aug-
mentation. we would like to explore various trans-
fer learning model like BERT, ELMO and ULMFit
for this multi-level classification problem.

References
Thomas Davidson, Dana Warmsley, Michael Macy,

and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Prasenjit Majumder, Thomas Mandl, et al. 2018. Fil-
tering aggression from the multilingual social me-
dia feed. In Proceedings of the First Workshop
on Trolling, Aggression and Cyberbullying (TRAC-
2018), pages 199–207.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Amir H Razavi, Diana Inkpen, Sasha Uritsky, and Stan
Matwin. 2010. Offensive language detection using
multi-level classification. In Canadian Conference
on Artificial Intelligence, pages 16–27. Springer.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the world wide web. In Proceed-
ings of the Second Workshop on Language in Social
Media, pages 19–26. Association for Computational
Linguistics.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and
Amy Bellmore. 2012. Learning from bullying traces
in social media. In Proceedings of the 2012 confer-
ence of the North American chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 656–666. Association for Com-
putational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

581

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 582–586
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

DeepAnalyzer at SemEval-2019 Task 6:
A deep learning-based ensemble method for identifying offensive tweets

Gretel Liz De la Peña Sarracén and Paolo Rosso
PRHLT Research Center, Universitat Politècnica de València, Spain

Abstract

This paper describes the system we developed
for SemEval 2019 on Identifying and Cate-
gorizing Offensive Language in Social Media
(OffensEval - Task 6). The task focuses on of-
fensive language in tweets. It is organized into
three sub-tasks for offensive language identi-
fication; automatic categorization of offense
types and offense target identification. The ap-
proach for the first subtask is a deep learning-
based ensemble method which uses a Bidirec-
tional LSTM Recurrent Neural Network and a
Convolutional Neural Network. Additionally
we use the information from part-of-speech
tagging of tweets for target identification and
combine previous results for categorization of
offense types.

1 Introduction

The use of Internet has become an important me-
dia of personal and commercial communication.
In this scenario, some users take advantage of the
anonymity of this kind of communication, using
this to engage in behaviour that many of them
would not consider in real life. Therefore, much
of the offensive language is widespread in social
networks. Then, studying offensive language in
texts from the social media is an essential task for
security, the prevention of cyber-bullying, among
other abusive behavior.

To increase the research in this areas, several
workshops have been organized, such as ALW1

and TRAC2. Recently, OffensEval3 (Zampieri
et al., 2019b), which is a shared task at the
SemEval-20194 workshop has been launched on
the research community. The aim of OffensE-
val is to deal with offensive language detection in

1https://sites.google.com/site/abusivelanguageworkshop2017/
2https://sites.google.com/view/trac1/home
3https://competitions.codalab.org/competitions/20011
4http://alt.qcri.org/semeval2019/index.php?id=tasks

the English language focusing on messages from
Twitter.

In OffensEval, the treatment of offensive con-
tent is divided into three subtasks taking the type
and target of offenses into account:

• A: Offensive language identification.

• B: Automatic categorization of offense types.

• C: Offense target identification.

In this work, we present the methodology pro-
posed to each of these sub-tasks, which includes
an ensemble of a LSTM Recurrent Neural Net-
work and a Convolutional Neural Network, and
additionally linguistic features for the last two sub-
tasks. The architecture of the system will be more
detailed in the following sections.

The paper is organized as follows. Next section
briefly describes other works in this area. Then,
Section 3 describes the proposed metodology and
the dataset. Results are discussed in Section 4.
Finally, we draw our conclusions together with a
summary of our findings in Section 5.

2 Related Work

Some approaches have been proposed to tackle
the problem of offensive language detection. It
is the case of recent works (Waseem et al., 2017;
ElSherief et al., 2018; Gambäck and Sikdar, 2017;
Zhang et al., 2018) and surveys (Schmidt and Wie-
gand, 2017) and (Fortuna and Nunes, 2018). There
are even studies on languages other than English
such as (Su et al., 2017) on Chinese and (Fišer
et al., 2017) on Slovene.

Many of the last approaches rely on neural net-
work models. For instance, the work of (Ganesan
et al., 2018) presents a Multi-Layer Feedforward
Neural Networks. Moreover, (Park and Fung,
2017) proposes to implement three models based

582

on Convolutional Neural Networks (CNN) to clas-
sify sexist and racist abusive language: Char-
CNN, WordCNN, and HybridCNN. It work re-
ports that can boost the performance of simpler
models. Also, (Pitsilis et al., 2018) proposes a de-
tection scheme that is an ensemble of Recurrent
Neural Network classifiers. It incorporates various
features associated with user-related information.
They report that the scheme can successfully dis-
tinguish racism and sexism messages from normal
text.

3 Methodology and Data

The corpus provided by the organizers consists
of 14,100 tweets in English. The data collection
methods used to compile the dataset used in Of-
fensEval is described in Zampieri et al. (2019a).

The first step is the preprocessing of the tweets,
where texts are cleaned. All emoticons, hash-
tag and urls are removed. Then, the texts are
represented as vectors with word embedding vec-
tors. We used the pre-trained word vectors of
Glove (Pennington et al., 2014), trained on 2 bil-
lion words from Twitter.

The method proposed in this work is based on
an architecture that sequentially obtains the output
for each of the subtasks. In the first level we use
a model whose input is the word embeddings of
a tweet and the output is a vector (r vector) that
is taken as a compact representation of the input
and is used in the following steps. For the model,
two types of networks have been used. In a first
approach a Recurrent Neural Network (RNN) is
used, and as a second approximation a Convolu-
tional Neuronal Network (CNN). These two mod-
els are described below.

3.1 Convolutional Neural Network

The model is a version of the convolutional neural
networks presented in (Kim, 2014) for sentence-
level classification tasks. Here, the input of the
model is a matrix where each row corresponds to
the embedding vector of each word in the tweet.
Three different filters of sizes 3, 4 and 5 are ap-
plied in a 1D convolution step to capture informa-
tion from 3-grams, 4-grams and 5-grams. The fea-
ture maps produced by the convolution layer are
forwarded to a Maxpooling layer. We used 2x2
filters for this pooling function on a feature map to
reduce it to the single most dominant features.

Finally, the r vector is generated by the concate-

nation of the results for each of the filters.

3.2 Recurent Neural Network
In NLP problems, standard LSTM Recurrent Neu-
ral Networks receive sequentially (left to right or-
der) at each time step a word embedding wt and
produces a hidden state ht.

On the other hand, the bidirectional LSTM
makes the same operations as standard LSTM but,
processes the incoming text in a left-to-right and
a right-to-left order in parallel. Thus, the output
is a two hidden state at each time step

−→
ht and

←−
ht .

The proposed method uses a Bidirectional LSTM
network which considers each new hidden state as
the concatenation of these two ĥt = [

−→
ht ,
←−
ht]. The

idea of this Bi-LSTM is to capture long-range and
backwards dependencies.

3.3 Sub-task A
For the first sub-task, which consists in the iden-
tification of offensive language in tweets, r vector
is used as input of a Fully Connected Neural Net-
works (FCNN) of two layers with activation func-
tion relu. The class (offensive or not) is obtained
in a third layer of two units, that refer to the num-
ber of classes, with a softmax activation function.

Figure 1: Architecture. Sub-task A

The Figure 1 shows the general scheme com-
mented. Given this architecture, three weights

583

of both CNN and RNN models were made. In
the first weighting all the weight is for RNN
(RNN run). In contrast, in the second one, all the
weight is for CNN (CNN run). Finally, the third
one is the actual ensemble model where both mod-
els are assigned equal weight (Ensemble run). For
combining the results of both models, the system
gets the mean of the predictions of each one.

3.4 Sub-tasks B and C

In the sub-task of detecting the target of offensive
language, the information of the part-of-speech
tagging process of the tweets is used. This allows
us to make more fine-grained distinctions on the
words in texts which can identify to the target of
aggressiveness. For instance, this information al-
lows to discriminate between a proper noun and
other kind of noun, and if a noun is plural or sin-
gular. In this way the model can learn sequences
of tags which represent each type of target. The
POS labels are obtained with Standford CoreNLP
and they are represented as a one hot vectors. The
sequence of labels is analyzed with a LSTM RNN,
and a representation p vector is obtained. Then,
the concatenation of vectors r vector and p vector
is used as input to another FCNN of one hidden
layer with the activation function relu, and an out-
put layer with two neurons with a softmax acti-
vation function. In this way, the prediction cor-
responding to the offensive target in the tweets is
obtained. The Figure 2 shows this processing.

Finally, for the sub-task of classifying the types
of offensive tweet, the prediction is obtained in a
similar way to the previous sub-task. Here, a one
hot vector corresponding to the POS tags present
in the tweet is added to r vector. Then, the predic-
tion is calculated using another FCNN.

Finally, cross entropy is used as the loss func-
tion, which is defined as:

L = −
∑

i

yi ∗ log(ŷ) (1)

Where yi is the ground true classification of the
tweet and ŷ the predicted one.

4 Results

In the evaluation, the official ranking metric is
macro-averaged F1. The results obtained in each
subtask are shown in the next tables and confu-
sion matrices. For each case, each of the three
approaches discussed above (CNN run, RNN run

Figure 2: Architecture. Sub-task B

and Ensemble run) was evaluated and the results
are shown in the tables with the name that was in-
dicated. Also, random baseline generated by as-
signing the same labels for all instances are in-
cluded. For example, ”All OFF” in sub-task A
represents the performance of a system that labels
everything as offensive. It was used for compari-
son.

System macro F1
All NOT baseline 0.4189
All OFF baseline 0.2182

Best 0.829
RNN run 0.5984
CNN run 0.6600

Ensemble run 0.5925

Table 1: Results for Sub-task A

These results reveal a behavior not as good as
expected, since although the baselines were ex-
ceeded in each case, the results were relatively far
from the best results of the competition. Perhaps
this is due to the fact that the different linguistic
characteristics that could be extracted from tweets,
such as information related to emoticons, hashtags
and urls, were not analyzed in detail.

Another aspect to note is that for the three tasks

584

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

483 137

107 133

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3: Sub-task A: CNN run

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

162 51

10 17

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Sub-task B: RNN run

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

35 19 24

12 69 19

8 16 11

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5: Sub-task C: CNN run

System macro F1
All TIN baseline 0.4702
All UNT baseline 0.1011

Best 0.755
RNN run 0.5997
CNN run 0.5704

Ensemble run 0.5587

Table 2: Results for Sub-task B.

System macro F1
All GRP baseline 0.1787
All IND baseline 0.2130
All OTH baseline 0.0941

Best 0.660
RNN run 0.3848
CNN run 0.4833

Ensemble run 0.4174

Table 3: Results for Sub-task C.

the best approach is based on simple models in-
stead of a combination of models that in our case
was obtained with an ensemble of models based
on neural networks. So that, for two of the tasks
the best results were obtained only with the use of
CNN and for the other one with the RNN.

5 Conclusion

In this paper our solution for the OffensEval chal-
lenge in SemEval 2019 was presented. We used an
ensemble of models based on deep learning, and
compared the results obtained to those ob- tained
with each of the models independently. As a con-
clusion, it can be said that it may be more impor-
tant for this kind of tasks to search for properly
linguistic characteristics instead of designing com-
plex models with a lot of parameters.

References
Mai ElSherief, Vivek Kulkarni, Dana Nguyen,

William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

585

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Aishwarya Ganesan, Sneha Birajdar, Shivani Dalvi,
and Jagruti Dandekar. 2018. Offensive language de-
tection using ai technique.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Ji Ho Park and Pascale Fung. 2017. One-step and two-
step classification for abusive language detection on
twitter. arXiv preprint arXiv:1706.01206.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Georgios K Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language
in tweets using deep learning. arXiv preprint
arXiv:1801.04433.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In

Lecture Notes in Computer Science. Springer Ver-
lag.

586

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 587–592
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NLP at SemEval-2019 Task 6: Detecting Offensive language using Neural
Networks

Prashant Kapil*, Asif Ekbal* and Dipankar Das+

*Department of Computer Science and Engineering
Indian Institute of Technology Patna, India

+ Department of Computer Science and Engineering
Jadavpur University Kolkata, India
*{prashant.pcs17, asif }@iitp.ac.in

+ddas@cse.jdvu.ac.in

Abstract

In this paper we built several deep learning
architectures to participate in shared task Of-
fensEval: Identifying and categorizing Offen-
sive language in Social media by semEval-
2019 (Zampieri et al., 2019b). The dataset was
annotated with three level annotation schemes
and task was to detect between offensive and
not offensive, categorization and target iden-
tification in offensive contents. Deep learn-
ing models with POS information as feature
were also leveraged for classification. The
three best models that performed best on in-
dividual sub tasks are stacking of CNN-Bi-
LSTM with Attention, BiLSTM with POS in-
formation added with word features and Bi-
LSTM for third task. Our models achieved a
Macro F1 score of 0.7594, 0.5378 and 0.4588
in Task(A,B,C) respectively with rank of 33rd,
54th and 52nd out of 103, 75 and 65 submis-
sions.

1 Introduction

Due to the exponential rise in the usage of inter-
net user generated content in the form of blogs,
posts, comments etc. have been increased mani-
fold. Some users also using this platform to tar-
get any individual or any particular group on so-
cial media on the basis of certain attributes, shar-
ing different views. Many studies have been con-
ducted on offensive language, hate speech, cyber-
bullying, profanity, aggression detection. These
contents are major concern for governments, so
robust computational systems need to be devel-
oped to tackle these posts to maintain social har-
mony. This paper is organized as follows. Related
work have been discussed in section 2, Methodol-
ogy have been described in Section 3 followed by
data sets and other settings used to solve the tasks
in Section 4. Results and analysis of the models
is described in Section 5 with the limitation of the

models in Error Analysis in section 6. Section 7
contains the conclusion and Future scope.

1.1 Problem Definition

The organizers proposed a hierarchical three level
annotation model and divided into three sub tasks.
Task A: This task consist of classifying between
offensive and not offensive comments
Task B: The Offensive language was further
needs to be classified into Targeted(TIN) and
UnTargeted(UNT).
Task C: The targeted offensive needs to be further
classified into Individual(IND), Group(GRP) and
Other(OTH).

2 Related Work

(Nockleby, 2000) defined hate speech as any com-
munication that demean any person or any group
on the basis of race, color, gender, ethnicity, sex-
ual orientation, and nationality. (Kowalski et al.,
2014) defined cyber aggression as using digi-
tal media to intentionally harm another person.
(Schmidt and Wiegand, 2017) presents a survey
on the existing research in this field and different
set of features used in machine learning and Deep
learning were discussed. (Silva et al., 2016) pro-
posed and validated sentence structure to detect
hate speech and also used this to construct hate
speech datasets. They also provided the charac-
teristics study to identify the main targets of hate
speech in Twitter and Whisper. They designed
two rules i.e I<intensity><user intent><hate
Target> and <one word> people ex:”black peo-
ple”,”maxican” people. (Waseem, 2016) exam-
ined the performance of classification based on
training performed on amateur and expert anno-
tations. (Ross et al., 2017) concluded that hate
speech requires significantly better definitions and

587

guidelines. (Sood et al., 2012) detected profan-
ity by identifying offensive words using list based
methods and incorporated edit distance to find
similar obscene words. (Davidson et al., 2017) ob-
served that seperating offensive and hate speech
is very challenging task. nigga, hoe , bitch, fag
are very offensive in nature but can be used in
different manner. They reported Logistic Regres-
sion as their best classifier in detecting approx.
25K Tweets by using N-grams weighted by TF-
IDF, POS n-grams and using sentiment score as
their features.(Samghabadi et al., 2017) used sur-
face level features like word n-grams and char n-
grams, LIWC and SentiWordNet to get the sen-
timent score as well as some domain related fea-
tures. (Malmasi and Zampieri, 2017) used char
n-grams, word n-grams and word skip grams to
get accuracy of 78% on Data set of 14509 tweets
classified into 3 classes. (Waseem et al., 2017)
tried to capture similarities between different sub
tasks. They proposed a typology to differentiate
language on the basis of individual or group attack
or if the content is explicit or implicit. (Gambäck
and Sikdar, 2017) used random vector, word vec-
tors and also concatenated word based CNN and
character based CNN to classify 6909 tweets into
4 classes. (Xu et al., 2012) used LDA to find
out relevant and useful sentiment in bullying texts.
(Zhang et al., 2018) proposed a CNN-GRU based
structure which outperformed 6 out of 7 datasets
by at most 13 F1 points. They have used sur-
face level features, linguistic features, sentiment
features as well as number of misspellings , per-
centage of capitalisation for SVM. (Aroyehun and
Gelbukh, 2018) implemented several neural net-
works and also found that char n-grams is more
superior than word n-grams in NBSVM. They also
used data augmentation, pseudo labeling and sen-
timent score as feature. (Kumar et al., 2018) dis-
cuss the task of developing a classifier to discrimi-
nate Overtly,Covertly and Non Aggressive text us-
ing 15000 annotated social media data in both En-
glish and Hindi(in Roman and Devanagri script)
as part of TRAC-1. (Badjatiya et al., 2017) ex-
perimented with several deep neural architecture
and found that it outperformed state of the art
word/char n-grams.(Djuric et al., 2015) proposed
paragraph to vector for modelling of comments.
(Gao and Huang, 2017) discusses the Bi-LSTM
with attention mechanism with learning compo-
nents context improved the classifier performance.

Figure 1: Sub Task A:CNN-BiLSTM-Attention

(Founta et al., 2018) studied different forms of
abusive behaviour and made public annotated cor-
pus of 80K Tweets categorized into 8 labels like
Hate, aggressive, cyber bullying, normal , Spam.

3 Methodology

3.1 Task A:CNN-BiLSTM-Attention

In this model first we converted all the words
to their unique index. Then all the unique in-
dex in the sentences were mapped to their real
valued vectors of Dimensions 100 using Glove
by (Pennington et al., 2014) from Embedding
Matrix. Convolution layers is used to extract
useful information by convolving i words at a
time using learnable kernel of size i*h where i =
[2,3,4] and h is of size equal to the dimensions.
The element wise dot product is performed to get
the feature map f1. N numbers of filters are used
to get feature map = [f1,f2...fn]. Pooling reduces
the size of representation by selecting max value
from each feature map which is then passed to
the BiLSTM layer with 100 hidden units. The
sentence level representation is then passed to
activation layers to capture the important key-
words informations. This vector representation
is then passed to softmax classification to get the
probability values of each class.
Attention It tries to make RNN better by letting
the network to know the weight of important
keywords. It produces state of the art results
on several NLP tasks. We used the approach
followed by (Ding et al., 2018) for sentence level
attention which follows the following equation.

et = tanh(Wht + b) (1)

αt = softmax(et) (2)

output =

t=n∑

t=1

αtht (3)

588

Figure 2: Sub Task B:BiLSTM(Word+POS)

3.2 Task B:BiLSTM(Word+POS)

In this model two layers of BiLSTM were used
with hidden nodes of 100 where the sentences
were being represented by Glove embedding.
BiLSTM uses 2 LSTM that is useful for keeping
both the past and future information. The input
sequence (i1,i2,...in) is converted to (h1i ,h2i ...hni)
taking into account each words. Each word was
tagged with its POS Tag and embedding for each
Tag was calculated. Each sequence was then con-
verted to their POS Tag real valued vector of Di-
mensions of 20 using embedding matrix. The in-
put sequence is then passed to BiLSTM layer with
hidden nodes of 100. The outputs of both the chan-
nels were concatenated and passed to the Fully
connected layer followed by softmax Classifica-
tion.

3.3 Task C: BiLSTM

We used BiLSTM using 100 dimensions to repre-
sent sequences by fixing the maximum length to
40 . Post padding with 0 was used for shorter se-
quences as it helps in preserving the information
at the borders. After getting desired hidden rep-
resentation from 2 layers it is passed to the Fully
Connected layers followed by softmax Classifier
for getting probability distribution among classes.

4 Data Sets

The Datasets provided by organisers (Zampieri
et al., 2019a) were three level annotated social
media text. The task was divided into three
parts,description of their data sets is in Table1, Ta-
ble 2 and Table 3 .

Figure 3: Sub Task C:BiLSTM

Class #Training #Test
Offensive 4400 240
Not Offensive 8840 820

Table 1: Data set:Task A

Class #Training #Test
Off Targeted 3876 213
Off Untargeted 524 27

Table 2: Data set: Task B

Class #Training #Test
Off Tar IND 2407 100
Off Tar GRP 1074 78
Off Tar OTH 395 35

Table 3: Data set:Task C

4.1 Parameter Tuning,Word embedding and
evaluation Metrics

We use Keras with Tensorflow as backend,Scikit-
learn library for implementation. For every dataset
we use 80:20 for 80% to use in Training and using
grid search to learn batch size and epochs. Ex-
periments were performed using stratified 5-fold
cross validation to train all the classes according to
their proportion and 20% of remaining data were
used as testing the model. We are reporting our
results on Training data provided by orgainsers by
standard Precision, Recall and F-score by averag-
ing all the cross fold results. Categorical cross en-
tropy loss function and Adam optimiser were used
for training . In the experiment we use publicly
available Glove embedding by (Pennington et al.,
2014). We used batch size of(16,32,64) and drop
out of (0.1,0.2,0.3).

589

4.2 Preprocessing
As the datasets are collected from social media it
contains lots of noise and inconsistencies in the
form of urls, typos and abbreviations. So we start
by applying light preprocessing by expanding all
appostrophes containing words and then removing
characters like : , & ! ? and also all the tokens
were tranformed to lower case to avoid capitalized
versions of same word being treated as different
words. We also used dictionary to expand the mis-
spelled words to its original form. The POS tags
were obtained from NLTK.

Class OFF NOT F1 Acc.
OFF 2614 1786

74.96 78.95NOT 1006 7834

Table 4: Cross validation: Task A

Class TIN UNT F1 Acc.
TIN 3839 37

51.56 88.43
UNT 472 52

Table 5: Cross validation: Task B

Class IND GRP OTH F1 Acc.
IND 2103 303 1

47.69 71.18GRP 423 649 2
OTH 208 182 5

Table 6: Cross validation: Task C

Class OFF NOT F1 Acc.
OFF 131 109

75.94 82.44
NOT 42 578

Table 7: Test Set: Task A

Class TIN UNT F1 Acc.
TIN 212 1

53.78 89.17
UNT 25 2

Table 8: Test Set: Task B

5 Results and Analysis

We have reported the cross validation split accu-
racy and F-score in Table 4, Table 5 and Table 6
for all the three subtasks. The results for test set is
also included in Table 7 .Table 8 and Table 9. For

Class GRP IND OTH F1 Acc.
GRP 48 30 0

45.88 64.32IND 11 89 0
OTH 15 20 0

Table 9: Test Set: Task C

our systems we got almost comparable results for
both training and test datasets. We got F-score of
75.94%, 53.78% and 45.88% in sub task A, B, C
respectively. Table 10 shows the performance of
our system compared with best systems.

Task Ours Best
A 75.94% 82.9%
B 53.78% 75.5%
C 45.88% 66%

Table 10: System Performance

6 Error analysis

Error analysis was carried out to analyze the errors
that we encountered in our system by quantitative
analysis using Confusion matrix of our best mod-
els for each task.

6.1 Quantitative Analysis
From Table 7 it can be seen that false negative rate
of offensive class is 45% where as for Not Offen-
sive True Positive rate is 93.22% in Task 1. 42 in-
stances of Not Offensive also got misclassified as
Offensive showing evidence of challenges in clas-
sification. For Task2 Table 8 shows that TIN True
positive rate is almost 100% but system fails to
classify UNT class with only 0.08% true positive
rate. For Task3 Table 9 shows that system com-
pletely fails to detect OTH class with false nega-
tive rate of 100%. However GRP and IND class
obtained True positive rate of 61.5% and 89% re-
spectively . The misconversion instances of GRP
and IND to each other is 30 and 11.

7 Conclusion and Future Scope

In this paper we have explored the effectiveness of
deep neural network for Offensive speech detec-
tion. We can conclude that fine grained analysis of
offensive language detection needs careful atten-
tion. Linguistic features can also be leveraged for
improvement in classifier.

590

References
Segun Taofeek Aroyehun and Alexander Gelbukh.

2018. Aggression detection in social media: Us-
ing deep neural networks, data augmentation, and
pseudo labeling. In Proceedings of the First Work-
shop on Trolling, Aggression and Cyberbullying
(TRAC-2018), pages 90–97.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Zixiang Ding, Rui Xia, Jianfei Yu, Xiang Li, and Jian
Yang. 2018. Densely connected bidirectional lstm
with applications to sentence classification. arXiv
preprint arXiv:1802.00889.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th Interna-
tional Conference on World Wide Web Companion,
pages 29–30. International World Wide Web Con-
ferences Steering Committee.

Antigoni-Maria Founta, Constantinos Djouvas,
Despoina Chatzakou, Ilias Leontiadis, Jeremy
Blackburn, Gianluca Stringhini, Athena Vakali,
Michael Sirivianos, and Nicolas Kourtellis. 2018.
Large Scale Crowdsourcing and Characterization
of Twitter Abusive Behavior. arXiv preprint
arXiv:1802.00393.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Lei Gao and Ruihong Huang. 2017. Detecting on-
line hate speech using context aware models. arXiv
preprint arXiv:1710.07395.

Robin M Kowalski, Gary W Giumetti, Amber N
Schroeder, and Micah R Lattanner. 2014. Bully-
ing in the digital age: A critical review and meta-
analysis of cyberbullying research among youth.
Psychological bulletin, 140(4):1073.

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in

Natural Language Processing (RANLP), pages 467–
472.

John T Nockleby. 2000. Hate speech. Encyclopedia of
the American constitution, 3:1277–79.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2017. Measuring the reliability of hate
speech annotations: The case of the european
refugee crisis. arXiv preprint arXiv:1701.08118.

Niloofar Safi Samghabadi, Suraj Maharjan, Alan
Sprague, Raquel Diaz-Sprague, and Thamar
Solorio. 2017. Detecting nastiness in social media.
In Proceedings of the First Workshop on Abusive
Language Online, pages 63–72.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Leandro Silva, Mainack Mondal, Denzil Correa,
Fabrı́cio Benevenuto, and Ingmar Weber. 2016. An-
alyzing the targets of hate in online social media.
In Tenth International AAAI Conference on Web and
Social Media.

Sara Sood, Judd Antin, and Elizabeth Churchill. 2012.
Profanity use in online communities. In Proceed-
ings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1481–1490. ACM.

Zeerak Waseem. 2016. Are you a racist or am i seeing
things? annotator influence on hate speech detection
on twitter. In Proceedings of the first workshop on
NLP and computational social science, pages 138–
142.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and
Amy Bellmore. 2012. Learning from bullying traces
in social media. In Proceedings of the 2012 confer-
ence of the North American chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 656–666. Association for Com-
putational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. A Hierarchical Annotation of Offensive
Posts in Social Media: The Offensive Language
Identification Dataset. In arxiv preprint.

591

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. Semeval-2019 task 6: Identifying and cat-
egorizing offensive language in social media (offen-
seval). arXiv preprint arXiv:1903.08983.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

592

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 593–599
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Duluth at SemEval-2019 Task 6:
Lexical Approaches to Identify and Categorize Offensive Tweets

Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812 USA
tpederse@d.umn.edu

Abstract

This paper describes the Duluth systems that
participated in SemEval–2019 Task 6, Identi-
fying and Categorizing Offensive Language in
Social Media (OffensEval). For the most part
these systems took traditional Machine Learn-
ing approaches that built classifiers from lexi-
cal features found in manually labeled training
data. However, our most successful system for
classifying a tweet as offensive (or not) was
a rule-based black–list approach, and we also
experimented with combining the training data
from two different but related SemEval tasks.
Our best systems in each of the three OffensE-
val tasks placed in the middle of the compara-
tive evaluation, ranking 57th of 103 in task A,
39th of 75 in task B, and 44th of 65 in task C.

1 Introduction

Social media is notorious for providing a platform
for offensive, toxic, and hateful speech. There is a
pressing need for NLP tools that can identify and
moderate this type of content.

The OffensEval task (Zampieri et al., 2019b) fo-
cuses on identifying offensive language in tweets,
and determining if specific individuals or groups
are being targeted. Our approach was to rely
on traditional Machine Learning methods as im-
plemented by Scikit (Pedregosa et al., 2011) to
build classifiers from manually labeled examples
of offensive tweets. Our models relied on lexical
features, including character ngrams, words, and
word ngrams. We also included a dictionary based
black–list approach, and experimented with com-
bining training data from two related yet different
SemEval-2019 tasks.

Offensive language is an umbrella term that
covers hate speech, cyber-bullying, abusive lan-
guage, profanity, and so on. Recognizing offen-
sive language is an important first step in deal-
ing with different kinds of problematic text. Lan-

guage that is offensive may simply violate com-
munity standards regarding the use of profanity,
but in other cases may cross over to become abu-
sive, threatening, or dangerous. Detecting such
language has proven to be a challenging prob-
lem, at least in part because it remains diffi-
cult to make distinctions between the casual and
even friendly use of profanity versus more serious
forms of offensive language (Fortuna and Nunes,
2018; Schmidt and Wiegand, 2017).

2 Experimental Data

OffensEval is made up of three tasks that were
carried out in stages during January 2019. Task
A is to classify a tweet as being offensive (OFF)
or not (NOT). Task B takes the offensive tweets
from task A and decides if they are targeted insults
(TIN) or not (UNT). Task C looks at the targeted
insults from task B and classifies them as being
directed against an individual (IND), group (GRP)
or other entity (OTH).

Task A provides 13,240 training tweets, of
which 8,840 (66.7%) were not offensive (NOT).
Task B is made up of the 4,400 training tweets
that were offensive (OFF), where 3,876 (88.1%)
of these are targeted insults (TIN). Task C includes
the targeted insults from task B, of which 2,407
(62.1%) were targeted against individuals (IND)
and 1,074 (27.7%) were against groups (GRP).
Additional details about the task data can be found
in (Zampieri et al., 2019a)

The distribution of classes in the evaluation data
was similar. Task A has 860 evaluation tweets of
which 620 (72%) were not offensive. Task B in-
cludes 240 offensive evaluation tweets, where 213
(89%) were targeted insults. These made up the
evaluation data for task C, where 100 (47%) were
against individuals, and 78 (37%) were against
groups.

593

The amount of training data is modest, partic-
ularly for tasks B and C. In addition, the classes
in Task B are quite skewed. Given these factors
we decided to rely on traditional Machine Learn-
ing techniques, since these have the potential to
perform well even with limited training data.

3 System Descriptions

We created three systems for each of the three
tasks. Preprocessing was very simple : tweets
were converted to lower case and then tokenized
into character ngrams, words, or word ngrams.

In task A we relied on unigram models. How-
ever, for tasks B and C we focused on charac-
ter ngrams in order to try and find regularities in
the smaller amounts of training data available for
these tasks.

3.1 Task A

The goal of Task A was to classify a tweet as of-
fensive (OFF) or not (NOT). We relied on the de-
fault settings for vectorization and Machine Learn-
ing as provided in Scikit, except as noted below.
This results in tokenization based on space sep-
arated strings where punctuation and other non-
alphanumeric characters are discarded.

A-Sub1 is a Logistic Regression classifier that
weighs unigram features using tf-idf.

A-Sub2 is the same as A-Sub1 except that
the training data is augmented with the training
data from Semeval-2019 Task 5 HatEval (Basile
et al., 2019), a task that identifies hate speech. It
provides 22,240 training examples where 14,057
(65.2%) are not hate speech. We made the obvi-
ously incorrect assumption that tweets that aren’t
hate speech would also not be offensive. We
had hoped that doubling the amount of training
data would improve our performance despite our
flawed assumption (although it did not).

A-Sub3 is a very simple rule based on a black–
list created by merging the following sources:

• words or terms used in offensive tweets five
or more times in the OffensEval training data,
• words or terms used in hateful tweets five or

more times in the HatEval training data, and
• black–lists found via web search said to be

used by WordPress, Google, Facebook, and
Youtube1.

1https://www.freewebheaders.com/

Any word or term that appears in two or more
of these lists is selected, leading to a master black–
list of 563 words. Any tweet that includes any of
these words is labeled as offensive (OFF).

3.2 Task B

Task B seeks to identify if an offensive tweet is a
targeted insult (TIN) or not (UNT). All three sys-
tems relied on character-based ngrams and the de-
fault Scikit settings for vectorization and the spe-
cific learning method.

B-Sub1 learns a random forest classifier, and B-
Sub2 learns a decision tree. Both represent fea-
tures as 3 alphanumeric character sequences.

B-Sub3 learns a linear Support Vector Machine
from the training data. Features are represented as
3 non-space character sequences. We used non-
space characters in this case in order to capture
special characters that would be discarded by B-
Sub1 and B-Sub2. We were particularly interested
in retaining # (hashtags) and @ (user ids).

3.3 Task C

All tweets in task C are targeted insults (TIN).
The goal is to identify if the target is an individual
(IND), group (GRP), or some other entity (OTH).

All of these systems used the default settings
from Scikit for vectorization and Machine Learn-
ing, except as noted below.

C-Sub1 learns a multinomial Naive Bayesian
classifier from the training data. Features are sim-
ple unigrams made up of alpa-numeric charac-
ters. During development we noticed that Naive
Bayes tended to find more balanced distributions
of classes than our other approaches.

C-Sub2 learns a decision tree classifier from the
training data. Features are 3 character sequences.
During development we observed that this was
the only method that assigned tweets to the other
(OTH) category.

C-Sub3 learns a logistic regression classifier
from the training data. Features are word ngrams
made up of sequences of 1, 2 and 3 words that oc-
cur in more than 10 tweets in the training data.

4 Experimental Results

The official rankings in OffensEval were based
on macro–averaged F1, and accuracy was also re-
ported. The performance of individual classes was
measured by Precision, Recall, and the F1 score.

594

System F1-Macro Accuracy
A-TOP .83
A-Sub3 .73 .80
A-Sub2 .69 .80
A-Sub1 .68 .80
A-Baseline .42 .72
B-TOP .76
B-Sub1 .60 .88
B-Sub2 .57 .82
B-Sub3 .52 .77
B-Baseline .47 .89
C-TOP .66
C-Sub1 .48 .67
C-Sub3 .45 .62
C-Sub2 .42 .53
C-Baseline .21 .47

Table 1: Duluth OffensEval Results

The results of the Duluth Systems are summa-
rized in Table 1. X-TOP is the 1st ranked system
in each task. X-Baseline assigns each test tweet to
the most frequent class in the training data.

Next, we’ll examine the results from each task
in more detail. In the confusion matrices provided,
the distribution of gold answers (ground truth) is
shown on the rows, and the system predictions are
on the columns.

4.1 Task A

Task A asks whether a tweet is offensive (or not).
It had the largest amount of training data (13,240
examples), of which 33% were considered offen-
sive (OFF) and 67% were not (NOT). In Table 2
and the discussion that follows a true positive is
a tweet that is known by ground truth to be not
offensive (NOT) and that is predicted to be not of-
fensive (NOT). A true negative is a tweet that is
known to be offensive (OFF) and is predicted to
be offensive (OFF).

4.2 Confusion Matrix Analysis

A-Sub3 had a modest advantage over the other two
systems. A-Sub3 was a simple rule-based black–
list approach, while A-Sub1 and A-Sub2 used Ma-
chine Learning. All three systems scored identical
accuracy (80%), but in looking at their confusion
matrices some interesting differences emerge.

Table 2 shows that the rule based method A-
Sub3 has a much smaller number of false nega-
tives (112 versus 160 and 152). It also has a larger

NOT OFF P R F1
NOT 609 11 620 .79 .98 .88
OFF 160 80 240 .88 .33 .48

769 91 860 .82 .80 .77

A-Sub 1: Logistic Regression

NOT OFF P R F1
NOT 602 18 620 .80 .97 .88
OFF 152 88 240 .83 .37 .51

754 106 860 .81 .80 .77

A-Sub 2: Logistic Reg + HatEval

NOT OFF P R F1
NOT 558 62 620 .83 .90 .87
OFF 112 128 240 .67 .53 .60

670 190 860 .79 .80 .79

A-Sub3 : Rule Based, black–list

Table 2: Task A Confusion Matrices

number of true negatives (128 versus 80 and 88).
Overall the rule based system finds more tweets
offensive (190) than the Machine Learning meth-
ods (91 and 106). This happens because our rule
based system only needs to find a single occur-
rence of one of our 563 black–listed terms to con-
sider a tweet offensive, no doubt leading to many
non-offensive tweets being considered offensive
(62 versus 11 and 18).

The only difference between A-Sub1 and A-
Sub2 was that A-Sub2 had approximately double
the number of training tweets. The extra tweets
were from the SemEval-2019 hate speech task
(HatEval). We hypothesized that more training
data might help improve the results of a logistic
regression classifier (which was used for both A-
Sub1 and A-Sub2). After increasing the training
data, A-Sub2 is able to classify exactly one more
tweet correctly (690 versus 689). We were some-
what surprised at this very limited effect, although
the HateEval corpus is focused on a particular do-
main of hate speech where the targets are women
and immigrants. This does not appear to have
matched well with the OffensEval training data.

595

NOT offensive OFFensive
user SHIT
antifa FUCK
url BITCH
best STUPID
thank ASS
conservatives FUCKING
new IDIOT
beautiful LIAR
here DISGUSTING
brexit SUCKS
thanks SICK
love CRAP
she RACIST
day DUMB
awesome FASCIST
adorable NIGGA
safe FUCKED
voting CRAZY
funny IGNORANT
stand FOOL
justice COWARD
idea IDIOTS
there SUCK
right KILL
join PUSSY
well UGLY
amazing WORST
twitter DAMN
welcome BULLSHIT
trying ASSHOLE

Table 3: Task A Feature Analysis - A-Sub1

4.2.1 Feature Analysis

Table 3 shows the top 30 most heavily weighted
features according to the A-Sub1 logistic regres-
sion classifier (which was trained on 13,240 in-
stances). We will have the convention of upper
casing features indicative of an offensive tweet
and lower casing not offensive features. There are
some stark differences between these feature sets,
where the offensive ones are for the most part pro-
fanity and insults.

In Table 4 we show the top 30 weighted features
in A-Sub2, a logistic regression classifier trained
on the combination of OffensEval and HatEval
data. Terms relating to hatred of women and im-
migrants abound, and include numerous hash tags
(recall that our tokenization only used alphanu-
merics so # are omitted).

NOT offensive OFFensive
https BITCH
co BUILDTHATWALL
immigrant SHIT
men WOMENSUCK
antifa FUCK
url ASS
user ILLEGAL
ram BITCHES
thank SUCKS
best NODACA
new BUILDTHEWALL
conservatives STUPID
when LIAR
son IDIOT
you DISGUSTING
stand WHORE
beautiful FUCKING
kunt HOE
love SUCK
justice ILLEGALS
facebook SICK
ho FASCIST
tonight CRAP
thanks IGNORANT
wondering THESE
day RACIST
accused KILL
brexit CRAZY
alone DUMB
twitter WHITE

Table 4: Task A Feature Analysis - A-Sub2

In Tables 3 and 4 we bold face the 18 fea-
tures that were shared between A-Sub1 and A-
Sub2. This gives us some insight into the impact
of merging the OffensEval and HatEval training
data. Some generic offensive features remain in
Table 4 but are strongly augmented by HatEval
features that are oriented against women and im-
migrants.

The 13 shared terms that were indicative of the
not offensive class are shown in italics. Some
features are what we’d expect for non-offensive
tweets : love, beautiful, thanks, thank, justice and
best. Others are more artifacts of the data, user is
an anonymized twitter id and url is an anonymized
web site. Others are less clearly not offensive, and
seem related to political conversation : antifa, con-
servatives, and brexit.

596

Ratio Feature OFF NOT
61.0 BITCH 61 0
17.5 IDIOT 35 2
14.0 ASSHOLE 14 0
10.6 FUCK 106 10
10.2 STUPID 92 9
10.0 DICK 10 1
10.0 BITCHES 10 0
9.0 SHIT 278 31
9.0 RAPIST 9 1
7.3 FUCKED 22 3
6.3 FUCKING 82 13
5.8 SUCKS 35 6
5.5 CRAP 33 6
5.3 IDIOTS 16 3
5.0 SCUM 10 2
5.0 MORON 10 2
4.9 ASS 108 22
4.8 IGNORANT 19 4
4.5 LOSER 9 2
4.3 SHITTY 13 3
4.2 BUTT 17 4
4.0 UGLY 12 3
3.8 DUMB 23 6
3.2 PUSSY 13 4
3.2 NIGGA 16 5
3.0 PORN 9 3
2.9 HELL 38 13
2.9 BULLSHIT 23 8
2.6 SUCK 21 8
2.5 KILL 32 13

Table 5: Task A Feature Analysis - A-Sub3

However, there are some inconsistencies to
note. In Table 3 NIGGA is not necessarily an of-
fensive term and points to the need for annotators
to have subtle understandings of culture (Waseem
et al., 2018). In Table 4 kunt is a deliberate mis-
spelling meant to disguise intent (c.f. (Gröndahl
et al., 2018)).

Table 5 shows the top 30 terms from our black–
list system A-Sub3 that proved to be most discrim-
inating in identifying an offensive tweet. Recall
that A-Sub3 had the highest F1-Macro score of our
task A systems. The first column shows a simple
ratio of the number of times a feature is used in
an offensive tweet (OFF in 3rd column) versus a
not offensive one (NOT in 4th column). The most
discriminating feature BITCH occurred in 61 of-
fensive tweets and in 0 that were not offensive.

TIN UNT P R F1
TIN 206 7 213 .90 .97 .93
UNT 22 5 27 .42 .19 .26

228 12 240 .85 .88 .86

B-Sub1 : Random Forest

TIN UNT P R F1
TIN 188 25 213 .90 .88 .89
UNT 20 7 27 .21 .26 .24

208 7 32 240 .83 .81 .82

B-Sub2 : Decision Tree

TIN UNT P R F1
TIN 179 34 213 .90 .84 .87
UNT 21 6 27 .15 .22 .18

200 40 240 .81 .77 .79

B-Sub3 : Linear SVM

Table 6: Task B Duluth Systems

4.3 Task B

Task B includes 4,400 training tweets, all of which
are judged by ground truth to be offensive. This
is a fairly modest amount of training data, partic-
ularly given how noisy tweets tend to be. As a
result we shifted from using unigrams as features
(as in Task A) and moved to the use of character
ngrams, in the hopes of identifying patterns that
may not exist at the unigram level.

The data in Task B is also the most skewed of
all the tasks. Nearly 90% of the tweets belonged to
the class of targeted insult (TIN). Our three Task
B systems used different Machine Learning clas-
sifiers, and all tended to produce very skewed re-
sults, where most tweets were judged to be tar-
geted insults (TIN). This is clearly illustrated in
Table 6, which shows that the random forest classi-
fier (B-Sub1) was better in terms of Precision and
Recall for TIN, whereas all three classifiers strug-
gled with the UNT class.

4.4 Task C

Task C had an even smaller amount of training
data (3,876 instances). Given a targeted insult,
systems were asked to decide if the target an in-
dividual (IND), group (GRP) or other (OTHER).
These appear as I, G, and O in Table 7. The Other

597

G I O P R F1
G 53 25 0 78 .70 .68 .68
I 9 90 1 100 .66 .90 .76
O 14 21 0 35 .00 .00 .00

76 136 1 213 .57 .67 .61

C-Sub1 : Multinomial Naive Bayes

G I O P R F1
G 39 27 12 78 .51 .50 .50
I 21 70 9 100 .63 .70 .66
O 17 15 3 35 .13 .09 .10

77 112 24 213 .50 .53 .51

C-Sub2 : Decision Tree

G I O P R F1
G 48 25 5 78 .61 .62 .61
I 13 85 2 100 .67 .85 .75
O 18 17 0 35 .00 .00 .00

79 127 7 213 .54 .62 .58

C-Sub3 : Logistic Regression

Table 7: Task C Duluth Systems

class is very sparse, and C-Sub1 and C-Sub3 did
very poorly on it. However, C-Sub2 (a decision
tree) had slightly more success. C-Sub1 and C-
Sub2 rely on character ngrams, while C-Sub3 uses
word unigrams, bigrams, and trigrams as features.

5 Qualitative Review of Training Data

Finally, we qualitatively studied some of the train-
ing data for task A and saw that there is poten-
tial for some noise in the gold standard labeling.
We found various tweets labeled as offensive that
seemed innocuous:

• She should ask a few native Americans what
their take on this is.
• gun control! That is all these kids are asking

for!
• Tbh these days i just don’t like people in gen-

eral i just don’t connect with people these
days just a annoyance..
• Dont believe the hype.
• Ouch!
• Then your gonna get bitten
• there is no need to be like That

We also found tweets labeled as not offensive
despite the presence of insults and profanity.

• Ppl who say I’m not racist are racist. You Are
A Racist. Repeat after me
• I’M SO FUCKING READY
• Great news! Old moonbeam Just went into a

coma!
• No fucking way he said this!
• Yep Antifa are literally Hitler.
• Any updates re ending your blatant #racism

as #Windrush #Grenfell proves you are

The annotation guidelines from the OffensEval
organizers seem relatively clear in stating that all
profanity should be considered offensive, although
an annotator may intuitively wish to make a more
nuanced distinction. Resolving these kinds of in-
consistencies seems important since the data from
task A is also used for task B and C, and so there
is a danger of unintended downstream impacts.

6 Conclusion

Offensive language can take many forms, and
some words are offensive in one context but not
another. As we observed, profanity was often very
indicative of offensive language, but of course can
be used in much more casual and friendly con-
texts. This quickly exposes the limits of black–
listing, since once a word is on a black–list it use
will most likely always be considered offensive.
Identifying targeted targeted individuals or organi-
zations using lexical features and Machine Learn-
ing was extremely difficult, particularly given the
small amounts of training data. Incorporating the
use of syntactic analysis and named entity recog-
nition seem necessary to make progress.

We also encountered the challenging impact of
domain differences in identifying offensive lan-
guage. Our attempt to (naively) increase the
amount of available training data by combining
the OffensEval and HatEval data had no impact on
our results, and our feature analysis made it clear
that the two corpora were different to the point
of not really providing much shared information
that could be leveraged. That said, we intend to
explore more sophisticated approaches to transfer
learning (e.g., (Karan and Šnajder, 2018; Park and
Fung, 2017; Waseem et al., 2018)) since there are
quite a few distinct corpora where various forms
of hate speech have been annotated.

598

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019).

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Comput. Surv., 51(4):85:1–85:30.

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro
Conti, and N Asokan. 2018. All you need is l̈ove:̈
Evading hate speech detection. In Proceedings of
the 11th ACM Workshop on Artificial Intelligence
and Security, pages 2–12. ACM.

Mladen Karan and Jan Šnajder. 2018. Cross-domain
detection of abusive language online. In Proceed-
ings of the 2nd Workshop on Abusive Language On-
line (ALW2), pages 132–137.

Ji Ho Park and Pascale Fung. 2017. One-step and two-
step classification for abusive language detection on
twitter. In Proceedings of the First Workshop on
Abusive Language Online, pages 41–45.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10, Valencia, Spain. Associa-
tion for Computational Linguistics.

Zeerak Waseem, James Thorne, and Joachim Bingel.
2018. Bridging the gaps: Multi task learning for
domain transfer of hate speech detection. In Online
Harassment, pages 29–55. Springer.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of the An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

599

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 600–603
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Emad at SemEval-2019 Task 6: Offensive Language Identification using
Traditional Machine Learning and Deep Learning approaches

Emad Kebriaei1, Samaneh Karimi2, Nazanin Sabri3, Azadeh Shakery4

1234School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Iran
4School of Computer Science and Institute for Research in Fundamental Sciences (IPM)

{emad.kebriaei,samanekarimi,nazaninsabri,shakery}@ut.ac.ir

Abstract
In this paper, the used methods and the results
obtained by our team, entitled Emad, on the
OffensEval 2019 shared task organized at Se-
mEval 2019 are presented. The OffensEval
shared task includes three sub-tasks namely
Offensive language identification, Automatic
categorization of offense types and Offense
target identification. We participated in sub-
task A and tried various methods including
traditional machine learning methods, deep
learning methods and also a combination of
the first two sets of methods. We also pro-
posed a data augmentation method using word
embedding to improve the performance of our
methods. The results show that the augmen-
tation approach outperforms other methods in
terms of macro-f1.

1 Introduction

With the growth of social networking platforms,
the need for automatic methods that manages the
emerging issues or facilitate using them is rising.
One of the rising trends in social networks such as
Twitter is offensive behavior that can cause the of-
fended users leave their social network. Therefore,
the need for effective automatic methods for iden-
tifying offensive language in textual data is impor-
tant.

The OffensEval shared task has been organized
in order to give a boost to computational methods
for identifying and categorizing offensive content
on social media. Three sub-tasks defined in the of-
fensEval shared task are identification of offensive
language(sub-task A), categorization of offense
types(sub-task B) and identification of the offense
target(sub-task C) (Zampieri et al., 2019b).

The main goal in sub-task A is to identify of-
fensive tweets from non-offensive ones. By defi-
nition, a post is labeled as offensive if it contains
any form of non-acceptable language (profanity)
or a targeted offense, which can be veiled or di-
rect.

This year, we participated in sub-task A. Our
methods for this sub-task include two approaches.
In the first approach, traditional machine learning
methods, deep learning methods and also a com-
bination method are employed for the task. In the
second approach, a data augmentation method is
proposed to improve the performance of the meth-
ods of the first approach.

2 Related Work

Offenseive language identification which is also
known as aggression, cyberbullying, hate speech
and abusive language has been widely stud-
ied in previous works(Davidson et al., 2017;
Malmasi and Zampieri, 2017, 2018).

Based on a survey conducted by Fortuna
and Nunes (2018), the majority of previous
works are on English and the researchers mainly
use machine learning for this task and most
proposed methods on abusive content detec-
tion have modeled the problem as a binary
classification task. Based on another survey
(Schmidt and Wiegand, 2017), different types of
features have been employed by previous works
including surface features, word generalization
features such as word embeddings, sentiment-
based features, lexical features, linguistic features,
knowledge-based features and multimodal infor-
mation features. The methods utilized for of-
fensive language identification are mainly super-
vised learning methods including SVM, Random
Forest, Naive Bayes and also deep learning ap-
proaches (Gambäck and Sikdar, 2017) As an ex-
ample, (Gambäck and Sikdar, 2017) proposed a
model based on convolutional neural networks
which takes word embedding vectors of a docu-
ment as input and decides whether the document
contains hate-speech content or not.

600

3 Methodology and Data

3.1 Datasets

The dataset used in this competition is avail-
able as part of the OffensEval 2019 Shared Task
Zampieri et al. (2019a). The training set contains
13240 tweets and the test set contains 860 tweets.
We have also employed two external datasets in-
cluding TRAC-1 data (Kumar et al., 2018) and
50K tweets collected by (Founta et al., 2018) in
our experiments.

3.2 Features

In our methods, we make use of the following fea-
tures:

Content-based Features Tweet text contains
words which are the most prominent features to
convey feelings. Therefore, based on the content
of each tweet, we extract the following features as
content-based features: the number of mentions,
the number of links, the number of hashtags, the
average word length, the number of punctuation
marks, the average sentence length(based on the
number of words in a each sentence), the total
number of words, the number of uppercase and the
number of emoticons in each tweet.

Sentiment-based Features Usually hate
speech has negative sentiment. Thus, using the
sentiment information of tweets may improve the
performance of our methods. We use three types
of sentiment-based features including polarity,
subjectivity and emotion. In order to find the
emotion label, we trained a random forest classi-
fier on an external dataset annotated for emotions
and polarity which contains 40K tweets and 13
classes of emotion (such as happiness, sadness,
and anger)1.

TF-IDF Features TF-IDF is one of the most
popular term-weighting approaches which shows
the importance of a term in a document or a col-
lection. We use this feature in combination with
other features.

Hate-based Feature Hate-based dictionary is a
lexicon that can be used to identify hate speech
and offensive language (Davidson et al., 2017).
We considered the number of hate words and the
number of hate n-grams of length 1 to 4 as hate-
based features. Hate-base lexicon is available at
www.hatebase.org.

1https://www.crowdflower.com/

3.3 Methods

In this section, the methods employed by our team
for sub-task A are explained. We used several
methods including traditional machine learning
methods such as SVM, Random Forest and Naive
Bayes in additions to a deep learning method and
a combination method. In addition to the meth-
ods mentioned above, we proposed an augmenta-
tion method in order to improve the performance
of our methods.

3.3.1 Traditional Machine Learning Methods
Traditional machine learning methods, in particu-
lar, supervised classification methods is known as
the most effective approach for offensive language
identification. Therefore, in our experiments we
applied three classifiers including SVM, Naive-
Bayes and Random Forest. Among the most re-
cent methods in the literature, deep learning meth-
ods has shown to be an effective approach for of-
fensive language detection. Hence, we employed
CNN, as our deep learning solution.

3.3.2 Combination Method
In this method, we employed majority voting rule
to combine the results of our best performing sys-
tems on the training set. Precisely speaking, for
each tweet we find the majority label of three sys-
tems which are SVM, CNN trained on over 50k
+ 13k tweets and another CNN which trained on
50k + 13k + 10k tweets. The results are shown in
Table 1.

CNN Architecture: The word-level CNN
model has 1D convolution layer with 150 filters
and kernel size 6, dropout 0.2, cross entropy loss
funtion and four dense layers with ReLU, tanh,
sigmoid and softmax activation respectively.

3.3.3 Data Augmentation Method
A common technique to enhance model gener-
alization is data augmentation. In this method,
we employed an external dataset containing 50K
tweets labeled as hateful, aggressive, normal and
spam, in two different ways as follows. In direct
augmentation, we added all tweets to the train-
ing set such that the tweets labeled as hateful or
aggressive are added as offensive and normal or
spam labeled tweets as non-offensive.

In indirect augmentation, first of all, the aver-
age word embedding of each tweet in the train-
ing set is calculated. Then, the average of the
embedding vectors in each class is calculated to

601

be used as the representative (or center) of of-
fensive and non-offensive class. Finally, the av-
erage word embedding vector of each tweet in
the external dataset is calculated and compared
with the offensive and non-offensive representa-
tive vectors through cosine similarity computation
between each tweet and two centers. We defined
a threshold for labeling new tweets. If the abso-
lute difference of the distances between tweet’s
vector and each of the class center is higher than
the threshold, we assign tweet to the nearest class.
Thus, the tweets of the external dataset are la-
beled as their most similar class and added to the
training set. During the indirect augmentation pro-
cess, we used word2vec pre-trained Google News
model (GoogleNews-vectors-negative300) to cal-
culate embedding vectors of tweets. The threshold
is determined 0.03 by experiments.

4 Results

4.1 Models’ Performance Evaluation

In this section, the performance of all methods ex-
plained in section 3.3 on the training set using 5-
fold cross validation is reported. The results of all
of the used models on the training set are shown in
Table 1. According to table 1, SVM outperforms
other two methods in terms of macro-F1. Compar-
ing the results of SVM and CNN shows that these
two methods have close performance on the train-
ing set.

System F1 (macro) Accuracy
Naive Bayes 0.54 (+/- 0.02) 0.70 (+/- 0.02)
Random Forest 0.64 (+/- 0.02) 0.74 (+/- 0.01)
SVM 0.68 (+/- 0.01) 0.73 (+/- 0.01)
CNN 0.67 0.74

Table 1: Results for all methods on the training set us-
ing 5-fold cross validation (the variance of the scores
for each fold are shown in parentheses)

4.2 Features’ Evaluation

In this section, the impact of using the features ex-
plained in section 3.2 on the performance of the
SVM method is studied. The results are noted in
Table 2.

We perform 5-fold cross-validation on the train-
ing set and report the results for SVM using
different combinations of the feature sets. The
first observation is that TF-IDF features outper-
form other three sets of features in the first sec-

tion of table 2 which corresponds to using only
one feature set. The combination of TFIDF and
sentiment-based features, TFIDF and hate-based
features and TFIDF, content-based and hate-based
features equally show the best performance among
all combinations.

4.3 Augmentation Method Evaluation
In this section, the impact of the augmentation
method on the performance of our classifier is
evaluated. Table 3 shows the results of SVM on
the training set using 5-fold cross validation in
three different settings; when no augmentation is
done, when the external dataset is used directly
and when the augmentation method (i.e. using the
external data indirectly) is employed. As table 3
shows, the augmentation method produces the best
results.

4.4 Results on the Test Set
In this section, the results of three systems that
we submitted to OffensEval 2019 is reported. Ta-
ble 4 shows the results of SVM using augmen-
tation method with two external datasets (SVM-
50k+13k), CNN using augmentation method with
three external datasets (CNN-50k+13k+10k) and
the majority voting method using the outputs of
two mentioned methods on the test set. Further-
more, the results of two random baseline gener-
ated by assigning the same labels for all instances
(all offensive and all non-offensive) are reported
for comparison. According to the table, the com-
bination of first two method using majority voting
has the best performance.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
SVM-50k+13k 0.7076 0.7884
CNN-50k+13k+10k 0.7155 0.7814
Majority Vote 0.7325 0.8186

Table 4: Results for Sub-task A.

5 Conclusion

In this paper, we address the challenge of automat-
ically detecting offensive and non-offensive lan-
guage in textual content spread in twitter. We con-
ducted experiments with SVM with varying fea-
ture sets and CNN model. We also proposed an
augmentation method to improve the performance
our classifiers.

602

System F1 (macro) Accuracy
TF-IDF features 0.68 (+/- 0.02) 0.74 (+/- 0.01)
Content features 0.42 (+/- 0.01) 0.73 (+/- 0.02)
Sentiment features 0.50 (+/- 0.01) 0.69 (+/- 0.01)
Hatebased features 0.49 (+/- 0.01) 0.69 (+/- 0.01)
TF-IDF + Content 0.67 (+/- 0.03) 0.73 (+/- 0.02)
TF-IDF + Sentiment 0.71 (+/- 0.02) 0.76 (+/- 0.01)
TF-IDF + Hatebased 0.71 (+/- 0.02) 0.76 (+/- 0.01)
Content + Sentiment 0.54 (+/- 0.02) 0.68 (+/- 0.01)
Content + Hatebased 0.49 (+/- 0.01) 0.68 (+/- 0.01)
Sentiment + Hatebased 0.51 (+/- 0.04) 0.70 (+/- 0.02)
TF-IDF + Content + Sentiment 0.68 (+/- 0.02) 0.73 (+/- 0.01)
TF-IDF + Content + Hatebased 0.68 (+/- 0.03) 0.74 (+/- 0.02)
TF-IDF + Content + Hatebased 0.71 (+/- 0.02) 0.76 (+/- 0.01)
Content + Sentiment + Hatebased 0.56 (+/- 0.02) 0.70 (+/- 0.01)
TF-IDF + Content + Sentiment + Hatebased 0.68 (+/- 0.01) 0.73 (+/- 0.01)

Table 2: Results for SVM method using different sets of features on the training set using 5-fold cross validation
(the variance of the scores for each fold are shown in parentheses)

System F1 (macro) Accuracy
Without using the external dataset 0.68 0.73
With using the external dataset directly 0.73 0.89
With using the external dataset indirectly (augmentation method) 0.76 0.88

Table 3: Results for SVM method on the training set without using the external dataset, with using the external
dataset directly and with using the external dataset indirectly(the augmentation method)

References

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Antigoni-Maria Founta, Constantinos Djouvas,
Despoina Chatzakou, Ilias Leontiadis, Jeremy
Blackburn, Gianluca Stringhini, Athena Vakali,
Michael Sirivianos, and Nicolas Kourtellis. 2018.
Large Scale Crowdsourcing and Characterization
of Twitter Abusive Behavior. arXiv preprint
arXiv:1802.00393.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the type and target of offensive
posts in social media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

603

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 604–610
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Embeddia at SemEval-2019 Task 6: Detecting Hate with Neural Network
and Transfer Learning Approaches

Andraž Pelicon, Matej Martinc, Petra Kralj Novak
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

{Andraz.Pelicon, Matej.Martinc, Petra.Kralj.Novak}@ijs.si

Abstract

SemEval-2019 Task 6 was OffensEval: Iden-
tifying and Categorizing Offensive Language
in Social Media. The task was further divided
into three sub-tasks: offensive language iden-
tification, automatic categorization of offense
types, and offense target identification. In this
paper, we present the approaches used by the
Embeddia team, who qualified as fourth, eigh-
teenth and fifth on the three sub-tasks. A dif-
ferent model was trained for each sub-task.
For the first sub-task, we used a BERT model
fine-tuned on the provided dataset, while for
the second and third tasks we developed a cus-
tom neural network architecture which com-
bines bag-of-words features and automatically
generated sequence-based features. Our re-
sults show that combining automatically and
manually crafted features fed into a neural
architecture outperform transfer learning ap-
proach on more unbalanced datasets.

1 Introduction

Over the years, computer-mediated communica-
tion, like the one on social media, has become
one of the key ways people communicate and
share opinions. Computer-mediated communica-
tion differs in many ways, both technically and
culturally, from more traditional communication
technologies (Kiesler et al., 1984). However, the
ability to fully or partially hide our identity behind
an internet persona leads people to type things
they would never say to someone’s face (Shaw,
2011). Not only is hate speech more likely to
happen on the Internet, where anonymity is eas-
ily obtained and speakers are psychologically dis-
tant from their audience, but its online nature also
gives it a far-reaching and determinative impact
(Shaw, 2011). Although most forms of intolerance
are not criminal, hate speech and other speech
acts designed to harass and intimidate (rather than

merely express criticism or dissent), deteriorate
public discourse and opinions, which can lead to
a more radicalized society.

Online communities, social media platforms,
and technology companies have been investing
heavily in ways to cope with offensive language to
prevent abusive behavior in social media. Social
media companies Facebook, Twitter and Google’s
YouTube have greatly accelerated their removal
of online hate speech, and report reviewing over
two-thirds of complaints within 24 hours. It has
been proven in practice that naive word filtering
systems do not manage to scale well to different
forms of hate and aggression (Schmidt and Wie-
gand, 2017). The most promising strategy for de-
tecting abusive language is to use advanced com-
putational methods. This topic has attracted sig-
nificant attention in recent years as evidenced in
recent publications (Waseem et al., 2017; David-
son et al., 2017; Malmasi and Zampieri, 2018).

The SemEval-2019 Task 6 — OffensEval: Iden-
tifying and Categorizing Offensive Language in
Social Media (Zampieri et al., 2019b) is to use
machine learning text classification methods to
identify offensive content and hate speech. The
task organizers have provided a new dataset
(Zampieri et al., 2019a) comprised of Twitter posts
which employs a three-level hierarchical label-
ing scheme, according to the three hierarchically
posed sub-tasks, where each sub-task serves as
a stepping stone for the next sub-task. Sub-task
A aims to identify offensive content, Sub-task B
aims to classify offensive content as a targeted or
untargeted offense, while Sub-task C aims to iden-
tify the target of the offense.

In this paper, we present the approaches used by
the Embeddia team to tackle the three sub-tasks of
SemEval-2019 Task 6: OffensEval. The Embed-
dia team qualified as fourth, eighteenth and fifth on
Sub-tasks A, B and C, respectively. The Embed-

604

dia team used different neural architectures and
transfer learning techniques (Devlin et al., 2018).
We also explore if combining automatically gen-
erated sequence-based features with more tradi-
tional manual feature engineering techniques im-
proves the classification performance and how dif-
ferent classifiers perform on unbalanced datasets.
Our results show that a combination of automati-
cally and manually crafted features fed into a neu-
ral architecture outperforms the transfer learning
approach on the more unbalanced datasets of Sub-
tasks B and C.

This paper is organized as follows. In Section
2, we present related work in the area of offensive
and hate speech detection. Section 3 describes in
more detail the provided dataset and the methodol-
ogy used for the task. Section 4 reviews the results
we obtained on the three sub-tasks with our mod-
els. Section 5 concludes the paper and presents
some ideas for future work.

2 Related Work

A number of workshops that dealt with offensive
content, hate speech and aggression were orga-
nized in the past several years, which points to
the increasing interest in the field. Due to impor-
tant contributions of publications from TA-COS1,
Abusive Language Online2, and TRAC3, hate
speech detection became better understood and es-
tablished as a hard problem. The report on shared
task from the TRAC workshop (Kumar et al.,
2018) shows that of 45 systems trying to iden-
tify hateful content in English and Hindi Facebook
posts, the best-performing ones achieved weighted
macro-averaged F-scores of just over 0.6.

Schmidt and Wiegand (2017) note in their
survey that supervised learning approaches are
predominantly used for hate speech detection.
Among those, the most widespread are sup-
port vector machines (SVM) and recurrent neu-
ral networks, which are emerging in recent times
(Pavlopoulos et al., 2017). Zhang et al. (2018)
devised a neural network architecture combining
convolutional and gated recurrent layers for de-
tecting hate speech, achieving state-of-the-art per-
formance on several Twitter datasets. Malmasi
and Zampieri (2018) used SVMs with different

1http://ta-cos.org/
2https://sites.google.com/site/

abusivelanguageworkshop2017/
3https://sites.google.com/view/trac1/

home

surface-level features, such as surface n-grams,
word skip-grams and word representation n-grams
induced with Brown clustering. They concluded
that surface n-grams perform well for hate speech
detection but also noted that these features might
not be enough to discriminate between profan-
ity and hate speech with high accuracy and that
deeper linguistic features might be required for
this scenario.

A common difficulty that arises with supervised
approaches for hate speech and aggression de-
tection is a skewed class distribution in datasets.
Davidson et al. (2017) note that in the dataset used
in the study only 5% of tweets were labeled as
hate speech. To counteract this, datasets are often
resampled with different techniques to improve
on the predictive power of the systems over all
classes. Aroyehun and Gelbukh (2018) increased
the size of the used dataset by translating examples
to four different languages, namely French, Span-
ish, German, and Hindi, and translating them back
to English. Their system placed first in the Ag-
gression Detection in Social Media Shared Task
of the aforementioned TRAC workshop.

A recently emerging technique in the field of
natural language processing (NLP) is the employ-
ment of transfer learning (Howard and Ruder,
2018; Devlin et al., 2018). The main idea of these
approaches is to pretrain a neural language model
on large general corpora and then fine-tune this
model for a task at hand by adding an additional
task-specific layer on top of the language model
and train it for a couple of additional epochs.
A recent model called Bidirectional encoder rep-
resentations from transformers (BERT) (Devlin
et al., 2018) was pretrained on the concatenation
of BooksCorpus (800M words) (Zhu et al., 2015)
and English Wikipedia (2,500M words) and then
successfully applied to a number of NLP tasks
without changing its core architecture and with
relatively inexpensive fine-tuning for each specific
task. According to our knowledge, it has not been
applied on a hate speech detection task yet, how-
ever it reached state-of-the-art results in the ques-
tion answering task on the SQuAD dataset (Ra-
jpurkar et al., 2016) as well as beat the baseline
models in several language inference tasks.

3 Methodology and Data

This section describes the tasks, the dataset, the
methodology used and the experiments.

605

Figure 1: Schema of SemEval-Task 6: OffensEval: Identifying and Categorizing Offensive Language in Social
Media. The hierarchy of the sub-tasks and respective dataset sizes.

3.1 Dataset

The SemEval-2019 Shared Task 6: Identifying
and Categorizing Offensive Language in Social
Media was divided into three sub-tasks, namely
offensive language identification (Sub-task A),
automatic categorization of offense types (Sub-
task B) and offense target identification (Sub-task
C). The organizers provided a new dataset called
OLID (Zampieri et al., 2019a) which includes
tweets labeled according to the three-level hierar-
chical model. On the very first level, each tweet is
labeled as offensive (OFF) or not offensive (NOT).
All the offensive tweets are then labeled as tar-
geted insults (TIN) or as untargeted insults (UNT),
which simply contain profanity. On the last level,
all targeted insults are categorized as targeting an
individual (IND), a group (GRP) or other entity
(OTH). The dataset contains 14,100 tweets split
into training and test sets. The training set con-
taining 13,240 tweets and the test set without la-
bels were made available to the participants for
the task. The inspection of the dataset reveals that
the classes at first level are slightly imbalanced
with the imbalances between classes getting more
prominent with each subsequent level. A more de-
tailed breakdown of the dataset is presented in Fig-
ure 1. We didn’t use any additional datasets in any
of the three sub-tasks.

3.2 Methodology

According to the findings from the related work,
we decided to test two different types of architec-
tures. First was a pretrained BERT model, which
was fine-tuned on the provided dataset for distin-
guishing offensive and not offensive posts in the

Sub-task A. For the sub-tasks B and C, a neural
network architecture was developed, which tried
to achieve synergy between two types of features
that both proved successful in the past approaches
to the task at hand, by basing its predictions on
a combination of classical bag-of-words features
and automatically generated sequence-based fea-
tures. The three models, as well as their source
code, are available for download in a public repos-
itory4.

Three models were trained using the provided
dataset, one for each sub-task. In the Sub-task
A, the large pretrained BERT transformer with 24
layers of size 1024 and 16 self-attention heads was
used for generating predictions on the official test
set. A linear sequence classification head respon-
sible for producing final predictions was added
on top of the pretrained language model and the
whole classification model was fine-tuned on the
SemEval input data for 3 epochs. For training, a
batch size of 8 and a learning rate of 2e-5 were
used. The training dataset for the Sub-task A was
randomly split into a training set containing 80%
of the tweets and a validation set containing 20%
of the tweets. Only a small amount of text prepro-
cessing was needed on the data for the Sub-task A
since the dataset already had all Twitter user men-
tions replaced by @USER tokens and all URLs
by URL tokens. Additionally, we lowercased and
tokenized the tweets using BERT’s built-in tok-
enizer.

For Sub-task B, the non-offensive tweets were
first filtered out of the original dataset. The re-

4https://gitlab.com/Andrazp/embeddia-
semeval2019

606

duced dataset had 4400 tweets. To offset the lower
quantity of data, we decided to split the dataset
into a training set containing 90% of the data and a
validation set containing 10% of the data. The sec-
ond issue with the data was a severe class imbal-
ance as only 12% of tweets in the filtered dataset
were labeled as untargeted insults. We decided
to resample the dataset in order to minimize the
impact of the imbalance on our training. The ap-
proach that yielded the best results based on the
validation set performance was to randomly re-
move the instances of the majority class until the
classes were balanced. The remaining instances
were lowercased and tokenized with the tweet tok-
enizer from the NLTK package (Bird et al., 2009).
Stopwords were also removed from every tweet
using an English stopwords list provided in the
NLTK package.

As the BERT model was showing worse per-
formance on the resampled data according to the
validation set results, a new neural network ar-
chitecture was devised for this sub-task (Figure
2). The neural architecture takes two inputs. The
first input is a term frequency-inverse document
frequency (tf-idf) weighted bag-of-words matrix
calculated on 1- to 5-grams and character 1- to
7- grams using sublinear term frequency scaling.
N-grams with document frequencies less than 5
were removed from the final matrix. Furthermore,
the following additional features are generated for
each tweet in the training set and added to the tf-
idf matrix:

• The number of insults: using a list of English
insults,5 the insults in each tweet are counted
and their number is added to the matrix as a
feature.

• The length of the longest punctuation se-
quence: for every punctuation mark that ap-
pears in the Python built-in list of punctua-
tions, its longest sequence is found in each
tweet. The length of the sequence is then
added as a feature.

• Sentiment of the tweets: the sentiment of
each tweet is predicted by an SVM model
(Mozetič et al., 2016) pretrained on English
tweets. The model classifies each tweet as

5http://metadataconsulting.blogspot.
com/2018/09/Google-Facebook-Office-365-
Dark-Souls-Bad-Offensive-Profanity-key-
word-List-2648-words.html

positive, neutral or negative. The predictions
are then encoded and added as features.

The second input is word sequences, which are
fed into an embedding layer with pretrained 100-
dimensional GloVe (Pennington et al., 2014) em-
bedding weights trained on a corpus of English
tweets. The pretrained embeddings are addition-
ally fine-tuned during the training process on the
dataset for the task. The resulting embeddings are
fed to an LSTM layer with 120 units, on the output
of which we perform global max pooling. We per-
form a dropout operation on the max pooling out-
put and the resulting vectors are concatenated with
the tf-idf vectors. The resulting concatenation is
sent to a fully-connected hidden layer with 150
units, the output of which is fed to a rectified linear
unit (RELU) activation function. After performing
dropout, final predictions are produced by a fully-
connected hidden layer with a sigmoid activation
function. For training, we use a batch size of 16
and Adam optimizer with a learning rate of 0.001.
We trained the model for a maximum of 10 epochs
and validated its performance on the validation set
after every epoch. The best performing model was
later used for generating predictions on the official
test set.

For Sub-task C, the dataset was additionally fil-
tered by removing the tweets that were labeled as
non-targeted insults. The class imbalance for this
task was even more prominent with only 28% of
tweets being labeled as insults targeted towards
groups and 10% as targeted insults that do not tar-
get an individual or a specific group of people.
In light of such class imbalance, the dataset was
again undersampled by removing 75% of tweets
from the majority class and 50% percent of tweets
from the middle class. Due to the dataset being
even more aggressively filtered, the 90-10% split
from the previous sub-task was kept. A modified
version of the neural architecture from Sub-task B
was used for prediction. We tried to capture the
relationship between insults and their targets us-
ing sentence structure information. To this end, we
added a third input to the neural architecture that
accepts sequences of part-of-speech (POS) tags.
First, all the tweets were POS-tagged using the
POS tagger from the NLTK package and the re-
sulting POS tag sequences were then fed to a ran-
domly initialized embedding layer. Output em-
beddings are then fed to an LSTM layer with 120
units, on the output of which we performed global

607

Word sequence POS sequence

Word embedding (100) POS embedding (128)

LSTM (120)LSTM (120)

Max pooling (120) Max pooling (120)

Concatenation layer

Dense (150) + RELU activation

Dropout (0.5)

Dense (num. classes) + Sigmoid activation

TF-IDF + custom features matrix

Dropout (0.5) Dropout (0.5)

Figure 2: System architecture used in Sub-tasks B and C. Parts of the infrastructure depicted in blue were only
used in Sub-task C.

max pooling. Next, dropout was applied, and
the resulting vector matrix was then concatenated
with the matrices from other inputs and sent to the
fully-connected layer (see Figure 2).

4 Results

The results on the official test sets for all three
tasks are presented in Table 1. In the Sub-task
A, our BERT model, fine-tuned on the provided
dataset, achieved a macro-averaged F1 score of
0.808. When we compare this result to other
teams participating in the SemEval-2019 OffensE-
val Sub-task A, we rank fourth.

As the dataset was filtered and the class imbal-
ances became more prominent in the subsequent
tasks, the performance of our models started to de-
teriorate. Even though the undersampling of the
dataset to offset class imbalances further reduced
the available data, it proved to be the best way to
ensure somewhat reliable predictions. The mod-
els for Sub-task B and C had macro-averaged F1
scores of 0.663 and 0.613 respectively and placed
eighteenth and fifth overall in the SemEval-2019
OffensEval official ranking.

A closer look at the confusion matrices further
confirms our claim about the impact of class im-
balances on our systems’ performance. While the
predictions for both classes were fairly accurate in
the Sub-task A (Figure 3a), we can see a dwindling

performance on the untargeted insults (UNT) class
in Sub-task B (Figure 3b) where approximately
two thirds of the instances were misclassified as
targeted insults (TIN) class on the test set.

The confusion matrix for Sub-task C (Figure 3c)
paints a very similar picture. Even though the ma-
jority individual (IND) and middle group (GRP)
classes were heavily imbalanced in the original
dataset, our model was still able to successfully
discriminate between them. However, it again per-
formed subpar on the minority other entity (OTH)
class, which was heavily underrepresented com-
pared to the other two. Of the 35 instances in the
test set, three out of four were misclassified.

5 Conclusion

In this paper, we presented the results of the Em-
beddia team on the SemEval-2019 Task 6: Of-
fensEval: Identifying and Categorizing Offensive
Language in Social Media using the dataset pro-
vided by the organizers of the task. The task was
further divided into three sub-tasks, namely of-
fensive language identification (Sub-task A), auto-
matic categorization of offense types (Sub-task B)
and offense target identification (Sub-task C). We
trained three models, one for each sub-task. For
Sub-task A, we used a BERT model fine-tuned on
the OLID dataset, while for the second and third
tasks we developed a neural network architecture

608

Sub-task System F1 (macro) Accuracy
A BERT 0.8078 0.8465
B BOW+GloVeLSTM 0.6632 0.9042
C BOW+GloVeLSTM+POS LSTM 0.6133 0.7042

Table 1: Results of the submitted systems for each sub-task.
NO

T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

557 63

69 171

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Confusion matrix for the BERT system, fine-
tuned on the provided dataset for Sub-task A.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

210 3

20 7

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

(b) Confuaion matrix of the two-input neural net-
work with a LSTM based on word sequences and a
bag-of-words matrix for Sub-task B.

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

63 10 5

14 78 8

18 8 9

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Confusion matrix of the three-input neural net-
work with an LSTM based on word sequences,
LSTM based on part-of-speech tags sequences and
a bag-of-words matrix for Sub-task C.

which combines bag-of-words features and auto-
matically generated sequence-based features. Our
models ranked fourth, eighteenth and fifth in Sub-
tasks A, B and C, respectively.

We noticed that the class imbalances in the
datasets had a significant impact on the perfor-
mance of our systems and were especially dete-
riorating for the performance of the BERT sys-
tem. To counteract the impact of class imbal-
ances we used various techniques to resample the
original datasets. While randomly removing in-
stances from the majority classes proved to be the
most consistent approach to improve the predic-
tive power of our systems, the effect of the class
imbalance persisted.

Our aim for the future is to make the systems
more robust to imbalanced data to better general-
ize over all the classes. Since we already have sev-
eral models that perform adequately, a good next
step would be to implement an ensemble model
using a plurality voting or a gradient boosting
scheme. We will also conduct an ablation study
to identify which features work particularly well
for offensive content and hate speech detection.

Acknowledgments

This paper is supported also by the European
Unions Horizon 2020 research and innovation pro-
gramme under Grant No. 825153, EMBEDDIA
(Cross-Lingual Embeddings for Less-Represented
Languages in European News Media). The results
of this publication reflect only the authors views
and the Commission is not responsible for any use
that may be made of the information it contains.
The authors acknowledge also the financial sup-
port from the Slovenian Research Agency core re-
search programme Knowledge Technologies (P2-
0103). The Titan Xp used for this research was
donated by the NVIDIA Corporation.

References
Segun Taofeek Aroyehun and Alexander Gelbukh.

2018. Aggression detection in social media: Us-

609

ing deep neural networks, data augmentation, and
pseudo labeling. In Proceedings of the First Work-
shop on Trolling, Aggression and Cyberbullying
(TRAC-2018), pages 90–97.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Sara Kiesler, Jane Siegel, and Timothy W McGuire.
1984. Social psychological aspects of computer-
mediated communication. American psychologist,
39(10):1123.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Igor Mozetič, Miha Grčar, and Jasmina Smailović.
2016. Multilingual twitter sentiment classifica-
tion: The role of human annotators. PloS one,
11(5):e0155036.

John Pavlopoulos, Prodromos Malakasiotis, and Ion
Androutsopoulos. 2017. Deeper attention to abu-
sive user content moderation. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 1125–1135.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

LaShel Shaw. 2011. Hate speech in cyberspace: bitter-
ness without boundaries. Notre Dame JL Ethics &
Pub. Pol’y, 25:279.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE
international conference on computer vision, pages
19–27.

610

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 611–616
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Fermi at SemEval-2019 Task 6: Identifying and Categorizing Offensive
Language in Social Media using Sentence Embeddings

Vijayasaradhi Indurthi1,3, Bakhtiyar Syed1, Manish Shrivastava1

Manish Gupta1,2, Vasudeva Varma1

1 IIIT Hyderabad, 2 Microsoft, 3 Teradata
1{vijaya.saradhi, syed.b}@research.iiit.ac.in
1{m.shrivastava, manish.gupta, vv}@iiit.ac.in

2gmanish@microsoft.com
3vijayasaradhi.indurthi@teradata.com

Abstract

This paper describes our system (Fermi) for
Task 6: OffensEval: Identifying and Cate-
gorizing Offensive Language in Social Me-
dia of SemEval-2019. We participated in all
the three sub-tasks within Task 6. We evalu-
ate multiple sentence embeddings in conjunc-
tion with various supervised machine learn-
ing algorithms and evaluate the performance
of simple yet effective embedding-ML combi-
nation algorithms. Our team (Fermi)’s model
achieved an F1-score of 64.40%, 62.00% and
62.60% for sub-task A, B and C respectively
on the official leaderboard. Our model for sub-
task C which uses pretrained ELMo embed-
dings for transforming the input and uses SVM
(RBF kernel) for training, scored third position
on the official leaderboard.

Through the paper we provide a detailed de-
scription of the approach, as well as the results
obtained for the task.

1 Introduction

Social media provides anonymity which can be
misused to target offensive comments to targeted
parties. Users may engage in generating offen-
sive content on social media which may show
aggressive behaviour and may also include hate
speech. As a result, it is imperative for social
media platforms to invest heavily in creating so-
lutions which can identify offensive language and
to prevent such behaviour on social media.

Using computational methods to identify of-
fense, aggression and hate speech in user gener-
ated content has been gaining attention in the re-
cent years as evidenced in (Waseem et al., 2017;
Davidson et al., 2017; Malmasi and Zampieri,
2017; Kumar et al., 2018) and workshops such as
Abusive Language Workshop (ALW) 1 and Work-

1https://sites.google.com/view/alw2018

shop on Trolling, Aggression and Cyberbullying
(TRAC) 2.

2 Related Work

In this section we briefly describe other work in
this area.

Papers published in the last two years include
the surveys by (Schmidt and Wiegand, 2017) and
(Fortuna and Nunes, 2018), the paper by (David-
son et al., 2017) which presented the Hate Speech
Detection dataset used in (Malmasi and Zampieri,
2017) and a few other recent papers such as (ElSh-
erief et al., 2018; Gambäck and Sikdar, 2017;
Zhang et al., 2018; Badjatiya et al., 2017).

A proposal of typology of abusive language
sub-tasks is presented in (Waseem et al., 2017).
For studies on languages other than English
see (Su et al., 2017) on Chinese and (Fišer et al.,
2017) on Slovene. Finally, for recent discussion
on identifying profanity vs. hate speech see (Mal-
masi and Zampieri, 2018). This work highlighted
the challenges of distinguishing between profan-
ity, and threatening language which may not actu-
ally contain profane language.

Some of the similar and related previous work-
shops are Text Analytics for Cybersecurity and
Online Safety (TA-COS) 3, Abusive Language
Workshop 4, and TRAC 5. Related shared tasks
include GermEval (Wiegand et al., 2018) and
TRAC (Kumar et al., 2018).

3 Methodology

3.1 Word Embeddings

Word embeddings have been widely used in mod-
ern Natural Language Processing applications as

2https://sites.google.com/view/trac1
3http://ta-cos.org/
4https://sites.google.com/site/alw2018
5https://sites.google.com/view/trac1

611

they provide vector representation of words. They
capture the semantic properties of words and
the linguistic relationship between them. These
word embeddings have improved the performance
of many downstream tasks across many do-
mains like text classification, machine comprehen-
sion etc. (Camacho-Collados and Pilehvar, 2018).
Multiple ways of generating word embeddings ex-
ist, such as Neural Probabilistic Language Model
(Bengio et al., 2003), Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), and more
recently ELMo (Peters et al., 2018).

These word embeddings rely on the distribu-
tional linguistic hypothesis. They differ in the
way they capture the meaning of the words or the
way they are trained. Each word embedding cap-
tures a different set of semantic attributes which
may or may not be captured by other word em-
beddings. In general, it is difficult to predict the
relative performance of these word embeddings on
downstream tasks. The choice of which word em-
beddings should be used for a given downstream
task depends on experimentation and evaluation.

3.2 Sentence Embeddings

While word embeddings can produce representa-
tions for words which can capture the linguistic
properties and the semantics of the words, the idea
of representing sentences as vectors is an impor-
tant and open research problem (Conneau et al.,
2017).

Finding a universal representation of a sentence
which works with a variety of downstream tasks
is the major goal of many sentence embedding
techniques. A common approach of obtaining a
sentence representation using word embeddings is
by the simple and naı̈ve way of using the sim-
ple arithmetic mean of all the embeddings of the
words present in the sentence. Smooth inverse fre-
quency, which uses weighted averages and modi-
fies it using Singular Value Decomposition (SVD),
has been a strong contender as a baseline over tra-
ditional averaging technique (Arora et al., 2016).
Other sentence embedding techniques include p-
means (Rücklé et al., 2018), InferSent (Conneau
et al., 2017), SkipThought (Kiros et al., 2015),
Universal Encoder (Cer et al., 2018).

We formulate each of the sub-tasks of Offen-
sEval as a text classification task. In this paper,
we evaluate various pre-trained sentence embed-
dings for identifying the offense, hate and aggres-

sion. We train multiple models using different ma-
chine learning algorithms to evaluate the efficacy
of each of the pre-trained sentence embeddings for
the downstream sub-tasks as defined in this task.
In the following, we discuss various popular sen-
tence embedding methods in brief.

• InferSent (Conneau et al., 2017) is a set
of embeddings proposed by Facebook. In-
ferSent embeddings have been trained using
the popular language inference corpus. Given
two sentences the model is trained to infer
whether they are a contradiction, a neutral
pairing, or an entailment. The output is an
embedding of 4096 dimensions.

• Concatenated Power Mean Word Embedding
(Rücklé et al., 2018) generalizes the concept
of average word embeddings to power mean
word embeddings. The concatenation of dif-
ferent types of power mean word embeddings
considerably closes the gap to state-of-the-
art methods mono-lingually and substantially
outperforms many complex techniques cross-
lingually.

• Lexical Vectors (Salle and Villavicencio,
2018) is another word embedding similar
to fastText with slightly modified objective.
FastText (Bojanowski et al., 2016) is another
word embedding model which incorporates
character n-grams into the skipgram model of
Word2Vec and considers the sub-word infor-
mation.

• The Universal Sentence Encoder (Cer et al.,
2018) encodes text into high dimensional
vectors. The model is trained and optimized
for greater-than-word length text, such as
sentences, phrases or short paragraphs. It is
trained on a variety of data sources and a va-
riety of tasks with the aim of dynamically ac-
commodating a wide variety of natural lan-
guage understanding tasks. The input is vari-
able length English text and the output is a
512 dimensional vector.

• Deep Contextualized Word Representations
(ELMo) (Peters et al., 2018) use language
models to get the embeddings for individ-
ual words. The entire sentence or paragraph
is taken into consideration while calculating
these embedding representations. ELMo uses

612

Model LR RF SVM-RBF XGB
Acc. F1 Acc. F1 Acc. F1 Acc. F1

InferSent 70.32 70.46 70.77 67.26 65.45 60.12 75.52 74.21
Concat-p 69.82 69.95 71.60 70.68 70.37 71.11 75.41 75.23
Lexical Vectors 82.80 82.11 74.42 81.55 79.3 68.3 81.87 81.92
Universal Encoder 74.57 71.07 58.52 74.90 69.67 56.43 75.44 71.37
ELMo 80.00 78.72 73.54 85.20 82.66 73.44 83.27 80.90

Table 1: Dev Set Accuracy and Macro-F1 scores (in percentage) for Sub-Task A

Model LR RF SVM-RBF XGB
Acc. F1 Acc. F1 Acc. F1 Acc. F1

InferSent 82.98 80.47 82.29 82.00 80.49 84.02 85.30 83.99
Concat-p 83.17 82.13 80.29 83.64 80.37 82.39 85.17 84.14
Lexical Vectors 76.80 74.16 77.47 81.30 79.3 79.84 79.36 77.63
Universal Encoder 78.57 76.75 58.52 84.90 69.67 56.43 82.41 81.28
ELMo 78.24 76.67 83.54 82.20 82.66 80.72 81.27 79.68

Table 2: Dev Set Accuracy and Macro-F1 scores (in percentage) for Sub-Task B

Model LR RF SVM-RBF XGB
Acc. F1 Acc. F1 Acc. F1 Acc. F1

InferSent 66.92 64.98 69.29 65.24 60.49 32.51 68.30 69.03
Concat-p 55.37 60.40 60.29 66.93 66.17 64.35 70.37 68.93
Lexical Vectors 62.80 61.80 64.48 63.44 41.30 29.29 71.87 66.83
Universal Encoder 64.57 60.68 58.52 69.55 61.67 63.47 62.14 69.55
ELMo 80.00 60.48 73.54 64.65 71.66 67.00 69.47 67.76

Table 3: Dev Set Accuracy and Macro-F1 scores (in percentage) for Sub-Task C

a pre-trained bi-directional LSTM language
model. For the input supplied, the ELMo ar-
chitecture extracts the hidden state of each
layer. A weighted sum is computed of the
hidden states to obtain an embedding for each
sentence.

Using each of the sentence embeddings we have
mentioned above, we seek to evaluate how each
of them performs when the vector representations
are supplied for classification with various off-the-
shelf machine learning algorithms. For each of
the evaluation tasks, we perform experiments us-
ing each of the sentence embeddings mentioned
above and show our classification performance on
the dev set given by the task organizers.

4 Dataset

The data collection methods used to compile
the dataset used in OffensEval is described
in (Zampieri et al., 2019). Sub-task A (Offen-
sive language Detection) deals with classifying

Figure 1: Distribution of label combinations in the data
(taken from (Zampieri et al., 2019))

posts as offensive (OFF) vs not (NOT). Sub-
task B (Categorization of Offensive Language)
deals with categorization of offense as: targeted
(TIN) and untargeted (INT). Sub-task C (Offen-
sive Language Target Identification) categorizes
the targets of insults and threats as individual
(IND), group (GRP), and other (OTH). The over-
all dataset across the three sub-tasks consists of
14100 posts. Fig. 1 (reproduced from (Zampieri
et al., 2019)) shows dataset size details.

613

Tr
ue

L
ab

el Predicted Label
NOT OFF

NOT 605 15
OFF 172 68

Table 4: Sub-task A, ELMo sentence embeddings with
SVM classifier using RBF kernel

Tr
ue

L
ab

el Predicted Label
TIN UNT

TIN 198 15
UNT 19 8

Table 5: Sub-task B, Concatenated p mean sentence
embeddings with XGBoost classifier

5 Results and Analysis

Note that we have not used any external datasets
to augment the data for training our models.

In Tables 1, 2, and 3, we provide the dev set
macro-averaged F-1 and accuracy for each of the
three sub-tasks A, B and C respectively.

We notice the best performance across tasks
with ELMo embeddings with SVM (using the
RBF kernel).

The confusion matrices for our test set classifi-
cations are also given in Tables 4, 5, 6 respectively
for each of the sub-tasks A, B and C.

Similar trends are observed for the final classifi-
cation results on the test set (scored on CodaLab)
for the sub-tasks A, B and C in Tables 7, 8, 9 re-
spectively. Our system performed the third best in
sub-task C of the 2019 SemEval task.

Overall, this work shows how different set
of pre-trained embeddings trained using different
state-of-the-art architectures and methods when
used with simple machine learning classifiers per-
form very well for the classification task of cate-
gorizing text as offensive or not.

Tr
ue

L
ab

el Predicted Label
GRP IND OTH

GRP 52 18 8
IND 9 85 6
OTH 11 12 12

Table 6: Sub-task C, Universal Encoder sentence em-
beddings with XGBoost classifier

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Lexvec 0.4317 0.7233
Concat p-means 0.5572 0.7558
ELMo 0.6436 0.7826

Table 7: Results for Sub-task A using LexVec, Con-
catenated p-mean and ELMo sentence embeddings
with SVM classifier using RBF kernel

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
Concat p-means 0.6205 0.8583
InferSent 0.5953 0.8792
Universal 0.5950 0.775

Table 8: Results for Sub-task B. using Concatenated
p-mean, InferSent and Universal sentence embeddings
with XGBoost classifier

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
InferSent 0.4425 0.6009
Universal 0.6258 0.6995
ELMo 0.5176 0.6103

Table 9: Results for Sub-task C. using InferSent, Uni-
versal and ELMo embeddings with XGBoost classifier

6 Conclusions and Future Work

It is also important to note that the experiments are
performed using the default parameters, so there is
further scope for improvement with a lot of fine-
tuning, which we plan on considering for future re-
search purposes. Further, we observe that the class
distribution is highly imbalanced due to which
there might be a bias introduced by the training
algorithms. We plan to explore SMOTE (Chawla
et al., 2002) for making the class labels balanced
and then train the classification which will prevent
the bias towards the unbalanced classes.

614

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016.

A simple but tough-to-beat baseline for sentence em-
beddings.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In WWW.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jose Camacho-Collados and Mohammad Taher Pile-
hvar. 2018. From word to sense embeddings: A sur-
vey on vector representations of meaning. Journal
of Artificial Intelligence Research, 63:743–788.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-Thought Vectors.
arXiv preprint arXiv:1506.06726.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Andreas Rücklé, Steffen Eger, Maxime Peyrard, and
Iryna Gurevych. 2018. Concatenated p-mean word
embeddings as universal cross-lingual sentence rep-
resentations. arXiv preprint arXiv:1803.01400.

Alexandre Salle and Aline Villavicencio. 2018. In-
corporating subword information into matrix fac-
torization word embeddings. arXiv preprint
arXiv:1805.03710.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

615

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

616

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 617–621
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based
Approach to Offensive Language Identification

Ehsan Doostmohammadi♣,♠, Hossein Sameti♣, Ali Saffar♠

♣Speech Processing Lab, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

♠NazarBin, Tehran, Iran
e.doostm72@student.sharif.edu, sameti@sharif.edu,

saffar@nazarbin.com

Abstract

This paper presents the models submitted by
Ghmerti team for subtasks A and B of the Of-
fensEval shared task at SemEval 2019. Offen-
sEval addresses the problem of identifying and
categorizing offensive language in social me-
dia in three subtasks; whether or not a content
is offensive (subtask A), whether it is targeted
(subtask B) towards an individual, a group, or
other entities (subtask C). The proposed ap-
proach includes character-level Convolutional
Neural Network, word-level Recurrent Neural
Network, and some preprocessing. The per-
formance achieved by the proposed model for
subtask A is 77.93% macro-averaged F1-score.

1 Introduction

The massive rise in user-generated web content,
alongside with the freedom of speech in social me-
dia and anonymity of the users has brought about
an increase in online offensive content and anti-
social behavior. The consequences of such behav-
ior on genuine users of the social media have be-
come a serious concern for researchers in Natural
Language Processing and related fields in recent
years.

The shared task number 6 at SemEval 2019,
OffensEval (Zampieri et al., 2019b), proposes to
model the task of offensive language identification
hierarchically, which means identifying the offen-
sive content, whether it is targeted, and if so, the
target of the offense. In OffensEval, offensive lan-
guage is defined as “any form of non-acceptable
language (profanity) or a targeted offense, which
can be veiled or direct” which includes “insults,
threats, and posts containing profane language or
swear words” (Zampieri et al., 2019b).

We have participated in the first two subtasks (A
and B) of OffensEval with the proposed approach
of a deep model consisting of a Recurrent Neural
Network (RNN) for word-level and Convolutional

Neural Network (CNN) for character-level pro-
cessing1. Character-level processing is beneficial,
as offensive comments are likely to follow un-
orthodox writing styles, contain obfuscated words,
or have irregular word separation which leads to
tokenization issues (Mehdad and Tetreault, 2016;
Nobata et al., 2016). We also experimented with
two other methods, a Support Vector Machine
(SVM) with TFIDF and count features and another
SVM with BERT (Devlin et al., 2018) -encoded
sentences as input, both with lower performances
comparing with the deep model.

After overviewing the related work in section 2,
we discuss the methodology and the data in details
in section 3, and the results in section 4. In section
5, we analyze the results and conclude the paper
in section 6.

2 Related Work

Offensive language identification has been of in-
terest for researchers in recent years. Early work
in the related fields include detection of online
trolling (Cambria et al., 2010), racism (Greevy and
Smeaton, 2004), and cyberbullying (Dinakar et al.,
2012).

Papers published in recent years include
(Davidson et al., 2017), which introduces the Hate
Speech Detection dataset and experiments with
different machine learning models, such as logistic
regression, naı̈ve Bayes, random forests, and lin-
ear SVMs to investigate hate speech and offensive
language, (Malmasi and Zampieri, 2017) which
experiments further on the same dataset using
SVMs with n-grams and skip-grams features, and
(Gambäck and Sikdar, 2017) and (Zhang et al.,
2018), both exploring the performance of neural
networks and comparing them with other machine

1You can find the code of the deep model on this project’s
repository on github: github.com/edoost/offenseval

617

learning approaches. Also, there has been pub-
lished a couple of surveys covering various work
addressing the identification of abusive, toxic, and
offensive language, hate speech, etc., and their
methodology including (Schmidt and Wiegand,
2017) and (Fortuna and Nunes, 2018).

Additionally, there were several workshops and
shared tasks on offensive language identification
and related problems, including TA-COS2, Abu-
sive Language Online3, and TRAC4(Kumar et al.,
2018), and GermEval (Wiegand et al., 2018),
which shows the significance of the problem.

3 Methodology and Data

The methodology used for both subtask A, offen-
sive language identification, and subtask B, au-
tomatic categorization of offense types, consists
of a preprocessing phase and a deep classification
phase. We first introduce the preprocessing phase,
then elaborate on the classification phase.

3.1 Preprocessing

The preprocessing phase consists of (1) replacing
obfuscated offensive words with their correct form
and (2) tweet tokenization using NLTK tweet tok-
enizer (Bird et al., 2009). In social media, some
words are distorted in a way to escape the of-
fense detection systems or to reduce the imperti-
nence. For instance, ‘asshole’ may be written as
‘a$$hole’, ‘a$sh0le’, ‘a**hole’, etc. Having a list
of English offensive words, we can create a list
containing most of the possible permutations. Us-
ing such a list will ease the job for the classifier
and searching in it is computationally cheap. Fur-
thermore, replacing contractions, e.g. ‘I’m’ with ‘I
am’, and replacing common social media abbrevi-
ations, e.g. ‘w/’ with ‘with’, were not helpful and
were not used to train the final model.

3.2 Deep Classifier

Given a tweet, we want to know if its offensive or
not (subtask A), and if the offense is targeted (sub-
task B). Regarding that both subtasks are problems
of binary classification, we used one architecture
to tackle both. To define the problem, if we have
a tweet x, we want to predict the label y, OFF or
NOT in subtask A, and TIN or UNT in subtask

2http://ta-cos.org/
3https://sites.google.com/site/

abusivelanguageworkshop2017/
4https://sites.google.com/view/trac1/

home

B. Two representations are therefore created for
each input x:

1. xc which is the indexed representation of
the tweet based on its characters padded to
the length of the longest word in the corpus.
The indices include 256 of the most common
characters, plus 0 for padding and 1 for un-
known characters.

2. xw which is the embeddings of the words
in the input tweet based on FastText’s 600B-
token common crawl model (Mikolov et al.,
2018).

Then, xc is fed into an embedding layer with
output size of 32 and a CNN layer after that. xc
is then concatenated with xw and both are fed to
a unidirectional RNN with LSTM cell of size 256,
the output of which is the input to two consecu-
tive fully-connected layers that map their input to
an R128 and an R2 space, respectively. We also ap-
plied dropout of keeping rate 0.5 on CNN’s output,
xw, RNN’s output, and the first fully-connected
layer’s output.

The CNN layer consists of four consecutive
sub-layers:

1. CNN consisting of 64 filters with kernel size
of 2, stride of 1, same padding and RELU ac-
tivation;

2. max-pooling layer with pool size and stride
of 2;

3. another CNN, same as the first one, but with
128 filters;

4. the same max-pooling again.

Finally, we used an AdamOptimizer (Kingma
and Ba, 2014) with learning rate of 1e−3 and
batch size of 32 to train the model.

3.3 Baseline Methods
We used two baseline methods for subtask A:

• an SVM with 1- to 3-gram word TFIDF and
1- to 5-gram character count feutrue vectors
as input;

• an SVM with BERT representations of the
tweets (using average pooling (Xiao, 2018))
as input using BERT-Large, Uncased
model.

618

The SVMs were trained for 15 epochs
with stochastic gradient descent, hinge loss,
alpha of 1e−6, elasticnet penalty, and
random state of 5. The SVMs were imple-
mented using Scikit-learn (Pedregosa et al., 2011).

3.4 Data

The main dataset used to train the model is Of-
fensive Language Identification Dataset (OLID)
Zampieri et al. (2019a). The dataset is annotated
hierarchically to identify offensive language (OF-
Fensive or NOT), whether it is targeted (Targeted
INsult or UNTargeted), and if so, its target (INDi-
vidual, GRouP, or OTHer). We divided the 13,240
samples in the training set into 12,000 samples for
training and 1,240 samples for validation.

As neural networks require huge amount of
training data, we tried adding more data from the
dataset of the First Workshop on Trolling, Aggres-
sion, and Cyberbullying (TRAC-1) (Kumar et al.,
2018) which was not helpful. However, adding
the training data from Toxic Comment Classifica-
tion Challenge on Kaggle (Conversation AI, 2017)
increased the macro-averaged F1-score on the val-
idation set by ∼ 2%. This data comprises tweets
with positive and negative tags in six categories:
toxic, severe toxic, obscene, threat,
insult, identity hate. We only used
toxic and severe toxic positive samples
as OFF and the ones with no positive label in any
category as NOT. None of the data from other cat-
egories, either positive or negative, were included
in the additional training data. After that, we were
left with 109,236 samples, most of which were la-
beled as NOT. To balance OFF and NOT samples,
84,626 of NOT samples were randomly removed.
In the end, 12,305 OFF and 12,305 NOT samples
were added to the training data.

4 Results

Finally, we trained the baseline models in 3.3 and
the model described in 3.2 using the combination
of the OLID training data and the data from Toxic
Comment Classification Challenge (which is de-
scribed in 3.4).

You can see the macro-averaged F1-score and
accuracy on the test set for the baseline scores
provided by task organizers, baseline methods we
used (on both training and validation data), and
the deep classifier model (DeepModel) in table 1.
DeepModel is trained on the training data (not in-

cluding the validation data) and DeepModel+val
on the combination of the training and validation
data. The best performance is in bold.

System Macro F1 Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
SVM 0.7452 0.8011
BERT-SVM 0.7507 0.8011
DeepModel 0.7788 0.8326
DeepModel+val 0.7793 0.8337

Table 1: Results for subtask A

The best performance belongs to Deep-
Model+val by a margin of more than 2.8 percent,
with the best baseline performance, BERT-SVM.
However, it should be mentioned that the results in
the first two rows belong to a model trained only
on OLID. You can see the confusion matrix for the
best performance in figure 1.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

572 48

95 145

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: The confusion matrix for DeepModel+val in
subtask A

From the confusion matrix we can see that the
performance of DeepModel+val on NOT is quite
good, but not on OFF. You can see the detailed
results of DeepModel+val in table 2.

Precision Recall F1-score
NOT 0.8576 0.9226 0.8889
OFF 0.7513 0.6042 0.6697

Table 2: Detailed DeepModel+val results in subtask A

In subtask B, DeepModel+val outperformed the

619

baseline results by a large margin, like subtask A.
The results for subtask B are presented in table 3.

System Macro F1 Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
DeepModel 0.6065 0.8583
DeepModel+val 0.6400 0.8875

Table 3: Results for subtask B

This time, adding the validation data made a
considerable difference, as the training data for
subtask B is fewer. You can see the confusion ma-
trix for DeepModel+val in figure 2.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

206 7

20 7

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: The confusion matrix for the DeepModel+val
in subtask B

The confusion matrix shows that the perfor-
mance of the model is good for TIN, but poor for
UNT. Table 4 shows the detailed results for Deep-
Model+val in subtask B, which indicates that the
imbalance is worse than subtask A and the poor
performance on UNT is mainly due to low recall.

Precision Recall F1-score
TIN 0.9115 0.9671 0.9385
UNT 0.5000 0.2593 0.3415

Table 4: Detailed DeepModel+val results in subtask B

5 Analysis

In subtask A, DeepModel+val outperformed the
second best method, BERT-SVM, by 2.86%
Macro F1-score. BERT-SVM results, however,

were not much better than the SVM with TFIDF
and count features, probably due the fact that the
BERT model requires fine-tuning for more task-
specific representations.

The majority of DeepModel+val’s errors are in
OFF class and can be categorized into (1) sar-
casm: the model is unable to detect sarcastic lan-
guage which is even difficult for humans to detect;
(2) emotion: discerning emotions, such as anger,
seems to be a challenge for the model; (3) eth-
nic and racial slurs, etc. Solving these problems
require a more comprehensive knowledge of the
context and the language, which was examined in
works such as (Poria et al., 2016) and improved
the results. However, experimenting with emotion
embeddings in the current work was not helpful
and did not appear in the final results. Being aware
of the emotion of the text, personality of the au-
thor, and sentiment of the sentences is helpful to
detect offensive language, as many offensive con-
tents have an angry tone (ElSherief et al., 2018)
or do not contain profane language (Malmasi and
Zampieri, 2018). One can also make use of the
benefits of BERT’s context and sentence sequence
awareness by fine-tuning it on the training data,
which is computationally expensive and was not
feasible for the authors of this paper.

6 Conclusion

In this paper, we introduced Ghmerti team’s ap-
proach to the problems of ‘offensive language
identification’ and ‘automatic categorization of of-
fense type’ in shared task 6 of SemEval 2019, Of-
fensEval. In subtask A, the neural network-based
model outperformed the other methods, including
an SVM with word TFIDF and character count
features and another SVM with BERT-encoded
tweets as input. Furthermore, analysis of the re-
sults indicates that sarcastic language, inability to
discern the emotions such as anger, and ethnic and
racial slurs constitute a considerable portion of the
errors. Such deficiencies demand larger training
corpora and variety of other features, such as in-
formation on sarcasm, emotion, personality, etc.

References

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

620

Erik Cambria, Praphul Chandra, Avinash Sharma, and
Amir Hussain. 2010. Do not feel the trolls. ISWC,
Shanghai.

Conversation AI. 2017. Toxic comment classification
challenge: Identify and classify toxic online com-
ments.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Karthik Dinakar, Birago Jones, Catherine Havasi,
Henry Lieberman, and Rosalind Picard. 2012. Com-
mon sense reasoning for detection, prevention, and
mitigation of cyberbullying. ACM Transactions on
Interactive Intelligent Systems (TiiS), 2(3):18.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Edel Greevy and Alan F Smeaton. 2004. Classifying
racist texts using a support vector machine. In Pro-
ceedings of the 27th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 468–469. ACM.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Yashar Mehdad and Joel Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 299–303.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive
Language Detection in Online User Content. In
Proceedings of the 25th International Conference
on World Wide Web, pages 145–153. International
World Wide Web Conferences Steering Committee.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika,
and Prateek Vij. 2016. A deeper look into sarcas-
tic tweets using deep convolutional neural networks.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 1601–1612.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Han Xiao. 2018. bert-as-service. https://
github.com/hanxiao/bert-as-service.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

621

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 622–627
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

HAD-Tübingen at SemEval-2019 Task 6: Deep Learning Analysis of
Offensive Language on Twitter: Identification and Categorization

Himanshu Bansal1
University of Tübingen

Daniel Nagel2
University of Tübingen

himanshu.bansal1, daniel.nagel2, anita.soloveva3@student.uni-tuebingen.de

Anita Soloveva3

University of Tübingen,
Lomonosov MSU

Abstract

This paper describes the submissions of our
team, HAD-Tübingen, for the SemEval 2019
- Task 6: “OffensEval: Identifying and Cat-
egorizing Offensive Language in Social Me-
dia”. We participated in all the three sub-tasks:
Sub-task A - “Offensive language identifica-
tion”, sub-task B - “Automatic categorization
of offense types” and sub-task C - “Offense
target identification”. As a baseline model we
used a Long short-term memory recurrent neu-
ral network (LSTM) to identify and categorize
offensive tweets. For all the tasks we exper-
imented with external databases in a postpro-
cessing step to enhance the results made by our
model. The best macro-average F1 scores ob-
tained for the sub-tasks A, B and C are 0.73,
0.52, and 0.37, respectively.

1 Introduction

The use of offensive language is an ubiquitous
problem one faces when using social networking
services like Twitter. Users of such services often
take advantage of the anonymity of the individ-
ual platforms for using the computer-mediated
communication to engage in offensive behaviour
against individuals, groups and/or organizations.
Due to increasing problems with offensive
language and a raising demand for offensive
language detection on platforms like Twitter,
tasks, similar to the current one have already
become popular for several different languages:
English (Waseem et al., 2017), German (Wiegand
et al., 2018) and Spanish (Rosso et al., 2018).
With increasing popularity of Twitter, over 1.48
billion users (June 2013) and still new accounts
signing up every day, the need for improvement
on tackling the well known problem of insults
inside the platform has become more and more
necessary.

The Twitter platform1 describes itself as a
connection to “what’s happening in the world and
what people are talking about right now”. For
this reason alone, its data attracts more and more
NLP researchers all over the world. “Tweets”,
the messages one can send over this platform
can be described as micro-texts, limited to 280
characters, over which users can interact with
each other or simply post statements. Since
the input is up to the user, one could include
misspellings, emoticons, hashtags but also slang
and abusive words, what makes those messages a
valuable source for different analyses.

As was mentioned in the beginning, the goal of
this paper is to consider our approach for the Se-
mEval 2019 - Task 6: “OffensEval: Identifying
and Categorizing Offensive Language in Social
Media”, for task information (see Zampieri et al.
2019b) and for dataset description (see Zampieri
et al. 2019a). We took part in all of the three sub-
tasks, using an LSTM based classifier. In the re-
mainder of the paper, we describe our methods and
discuss both our results and suggestions for further
work.

2 System description

Neural network models have recently gained more
and more popularity for text classification tasks,
since they perform quite efficiently in modeling of
sequences and offer advantages for computation.
For this competition, we used unidirectional
LSTM, where the recurrent component took a
sequence of words as an input. We set the basic
parameters in the model as follows: 30 as the
number of epochs, a batch size of 43 for sub-task
A, since it was the smallest batch size that the
860 tweets could be divided by, where our model

1https://twitter.com/

622

still performed well. For the other sub-tasks we
went with 30 and 71 as batch sizes for the test
sets of 240 and 213 tweets, accordingly. We
used 4 hidden layers with 50 neurons per each,
since our overall score declined by decreasing and
increasing their number. Our dropout ratio was set
to 0.95, the embedding size to 100, learning rates
varied between submissions from 0.003 to 0.005.

The model was implemented in Python and
makes use of Tensorflow (Abadi et al., 2015) and
Scikit-learn (Pedregosa et al., 2011) libraries for
training the classifier. We optimized our archi-
tecture parameters by predictions of support vec-
tor machine (SVM) model, described in (Rama
and Çöltekin, 2017) and (Çöltekin and Rama,
2018). It used ‘bag of n-grams’ as features, and
took not only word n-grams, as in our LSTM
based model, but combined character and word
n-grams, weighted by sublinear TF-IDF scaling.
We picked the epoch with the best F1-score for
each parameter setting according to these SVM
predictions. Our repository can be found on
github https://github.com/cicl2018/semeval-2019-
task-6-HAD.

2.1 Preprocessing

For neural network classification, data preprocess-
ing has a great impact on the system’s perfor-
mance. Thus, at least one step from the following
procedure was applied for all the submissions:

• lowercasing, since uppercased words can be
both offensive and not

• hashtag parsing (e.g. #retrogaming → #
retro gaming) (see, Baziotis et al. 2017)
This tool is trained on 2 big corpora:

– English Wikipedia
– a collection of 330 million English Twit-

ter messages

• removing tokens, containing “@USER”
The user names are not given, thus this infor-
mation is irrelevant for the classification task.

• character normalization
We removed all the following charachters “ :
. , — ˜ ”, digits and single quotation marks
except for abbreviations and possessors (e.g.
u’re→ u’re, but about’→ about)

• using ‘=’, ‘!’, ‘?’ and ‘/’ as token splitters
(e.g. something!important→ something im-
portant)

2.2 Sub-task A - Offensive language
identification

Sub-task A was a binary classification task. The
goal was to identify whether the post is offensive
(OFF) or not (NOT). The provided tweets were la-
beled as OFF if they contained any form of non-
acceptable language or a targeted offense, and la-
beled as NOT in any other case.

2.2.1 System pipeline for sub-task A
Figure 1 describes the system architecture for sub-
task A. For each of the three submissions we tried
different approaches.

1. All the preprocessing steps (Section 2.1) +
LSTM classifier with the use of SVM predic-
tions, (see Section 2.2.2 and green arrows in
Figure 1).

2. All the preprocessing steps + LSTM classifier
with SVM predictions + additional manually
created offensive word list, (see Section 2.2.3
and black arrows in Figure 1).

3. Hashtag parsing as a single preprocessing
step + LSTM classifier with SVM predic-
tions, (see Section 2.2.4 and red arrows in
Figure 1).

Tweet

All
prepro-
cessing
steps

LSTM
predic-
tions

SVM
predic-
tions

Lexical
lookup

OFF
or

NOT

hashtag parsing

Figure 1: Pipeline of sub-task A

2.2.2 Submission 1, Sub-task A
In our first submission, we fed the preprocessed
data into our LSTM model, setting the configura-
tions (e.g. a learning rate of 0.003), according to
the outcome of SVM predictions (Figure 1: green
arrows).

623

2.2.3 Submission 2, Sub-task A
For the second submission we used a manually
created additional offensive word list. After all
the preprocessing steps, we ran the model with
the same configurations as in the first submission
except for the learning rate of 0.005, picking the
epoch with the best F1-score regarding SVM pre-
dictions. Then we postprocessed the results by us-
ing external manually collected offensive vocabu-
lary, reannotating the tweets as offensive, if they
contained abusive words from this list, but were
labeled as not offensive by our model (Figure 1:
black arrows).

2.2.4 Submission 3, Sub-task A
As a third submission, we preprocessed raw tweets
only by hashtag parsing and let an LSTM model
with a learning rate of 0.005 classify the data,
choosing the epoch with the best F1-score, accord-
ing to the SVM predictions (Figure 1: red arrows).

2.3 Sub-task B - Automatic categorization of
offense types

Sub-task B was a classification task of targeted
(TIN) vs. untargeted (UNT) tweets. The test set
contained only offensive (OFF) posts from the first
sub-task. Tweets were considered as targeted, if
they were insults/ threats to an individual or group,
untargeted in any other case. For this sub-task we
reduced the initial training set of 13.240 tweets
to 4300, removing the tweets labelled with NOT,
since non-offensive tweets would not add any im-
provement to the learning model and might even
distort the learning process.

2.3.1 System pipeline for sub-task B
The system architecture for this sub-task is illus-
trated in Figure 2. Since the number of the rep-
resentative tweets in the training data differed be-
tween categories a lot (i.e. 524 and 3876 for UNT
and TIN, respectively), we used a weighted cross
entropy to balance the data. Like in sub-task A,
our approaches varied between submissions but
this time we handed in 2 submissions.

OFF
Tweet

All
prepro-
cessing
steps

LSTM
predic-
tions

SVM
predic-
tions

Lexical
lookup

UNT
or TIN

Figure 2: Pipeline of sub-task B

2.3.2 Submission 1, Sub-task B
The architecture of the first submission in this sub-
task is very much similar to the first submission
in sub-task A with the only difference being that
a learning rate was changed to 0.005 (Figure 2:
green arrows).

2.3.3 Submission 2, Sub-task B
For the second submission we added a postpro-
cessing step, where we reannotated the tweets that
comprised particular word forms from a manually
created list of potential insult victims as targets
(Figure 2: black arrows). This database included
following four parts:

• Names of representatives of top twitter pro-
files from the USA, the UK, Saudi Arabia,
Brazil, India and Spain, since these countries
have the most Twitter users2 and Iran, Iraq,
Turkey, Russia and Germany, because we
predicted a possible aggression towards the
users from these countries. The data was ob-
tained from https://www.socialbakers.

com/statistics/twitter/profiles/.

• A list of ethnic slurs, mostly extracted from
https://en.wikipedia.org/wiki/List_

of_ethnic_slurs

• A list of name-callings, primarily collected
from https://www.urbandictionary.com/

• A list of 2nd and 3rd personal pronouns and
abbreviations with them (e.g. you, they’ve
etc.)

2This statistic can be found on https:
//www.statista.com/statistics/242606/
number-of-active-twitter-users-in-sele\
protect\discretionary{\char\hyphenchar\
font}{}{}cted-countries/

624

2.4 Sub-task C - Offense target identification
The third sub-task addressed offense target iden-
tification. This time we had three categories to
choose from: Individual (IND), group (GRP), or
other (OTH). The tweets were labeled as individ-
ually targeted, if a potential victim was a famous
person, a named IND or an unnamed person in-
teracting in the conversation. It was labeled as
GRP, if the tweet was offensive with respect to a
group of people considered as a unity due to the
same ethnicity, gender or sexual orientation, polit-
ical affiliation, religious belief, or similar, and was
labelled as OTH, if the tweet intended to abuse an
organization, a situation, an event, or an issue. The
test data contained 213 offensive targeted tweets
from sub-task B. The training set of 4300 offen-
sive tweets was reduced to 3909 targeted ones for
this sub-task.

2.4.1 System pipeline for sub-task C
The system architecture for this sub-task is illus-
trated in Figure 3.

Tweet
TIN

All
prepro-
cessing
steps

LSTM
pre-

diction

SVM
pre-

diction

pronouns

top
twitter

accounts
+

ethnic
slurs

+
name-

callings

lexical
lookup

IND,
GRP

or
OTH

Figure 3: Pipeline of sub-task C

2.4.2 Submission 1, Sub-task C
This submission is reminiscent of the two previ-
ous first submissions, but the batch size was set to
71 and the learning rate to 0.003 (Figure 3: red
arrows).

2.4.3 Submission 2, Sub-task C
In the second submission, we postprocessed the
classified data, using the following datasets:

• Names of representatives of top twitter pro-
files from the USA, the UK, Saudi Ara-
bia, Brazil, India, Spain, Iran, Iraq, Turkey,
Russia and Germany. The data was ob-
tained from https://www.socialbakers.

com/statistics/twitter/profiles/:

– celebrities and society/politics indus-
tries for identifying individual targets

– community/political and commu-
nity/religion industries for recognizing
group targets

– places, brands and entertainment/event
industry for other targets

• A list of ethnic slurs, (see Section 2.3.3), for
identifying group targets

• A dataset of name-callings, (see Section
2.3.3), for recognizing individual victims

These datasets helped to classify the categories
IND, GRP or OTH by looking them up in our lists.
(Figure 3: green arrow).

2.4.4 Submission 3, Sub-task C
The third submission differed from the previous
one only in adding a list of 2nd and 3rd personal
pronouns including their contractions to the exist-
ing database for the postprocessing step. We de-
cided to try an approach with personal pronouns
despite the fact, that they can both target individ-
uals (e.g. “Take it out, you fucking wanker, or
I’ll take you out”.) and groups (e.g. “All you
democrats suck, and your momma’s fat!”).

3 Results

The results presented below were obtained using
the macro-averaged F1-score, provided by the or-
ganisers of OffensEval 2019. They included ac-
curacy as well for comparison. Random baseline
generated results by assigning the same labels for
all instances were also added to the result Table 1.
For example, “All OFF” in sub-task A represented
the performance of a system that labels everything
as offensive.

625

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
LSTM + Prepr. 0.6652 0.7337
LSTM + Prepr. +
Lex. lookup

0.6487 0.7349

LSTM + Hashtag
parsing

0.7327 0.7977

Table 1: Results for Sub-task A.

The best results for the first sub-task were pro-
duced by the simplest approach, which included
only hashtag parsing as a preprocessing step and
an LSTM based classifier with configurations,
set according to SVM predictions. A plausible
explanation to the bad performance of the second
submission with a lexical lookup is that a task-
specific lexicon should better be used as an input
feature, which can only influence data classifica-
tion, rather than as a decisive postprocessing step.

For sub-task B one can see the scores of our two
submissions in Table 2. As before, the organizers
have also included random baseline generated re-
sults by assigning the same labels for all instances.

System (Sumbis-
sion)

F1 (macro) Accuracy

All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
LSTM + Prepr. 0.5246 0.8417
LSTM + Prepr. +
Lex. lookup

0.5022 0.8833

Table 2: Results for Sub-task B.

The best results for this sub-task were also
achieved only by applying preprocessing steps to
an LSTM model. Most likely, the problem was
that our external dataset largely aimed to recog-
nize names of top twitter accounts, which most
frequently occur as usernames in tweets. How-
ever, in our case they were anonymized in both
training and test sets (@USER). Last table shows
the scores of our submissions for sub-task C:

System (Submis-
sion)

F1 (macro) Accuracy

All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
LSTM + Prepr. 0.2027 0.3099
LSTM + Prepr. +
Lex. lookup with-
out Pronouns

0.3582 0.3709

LSTM + Prepr. +
Lex. lookup with
Pronouns

0.3769 0.4883

Table 3: Results for Sub-task C.

For the last sub-task, which was devoted to cate-
gorizing targets of offense, a considerable increase
in F1-score can be observed by using the exter-
nal datasets for postprocessing. Hence, the results
showed that using a lexical lookup could be much
more efficient in categorizing the possible victims
than in identifying the presence of aggression per
se. Below one can also find the confusion matrices
of our best runs:

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

555 65

109 131

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4: Sub-task A, HAD-Tübingen LSTM + Hash-
tag parsing.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

199 14

24 3

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 5: Sub-task B, HAD-Tübingen LSTM + Prepro-
cessing.

626

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

18 53 7

13 81 6

3 27 5

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: Sub-task C, HAD-Tübingen LSTM + Prepro-
cessing + Lexical lookup with Pronouns.

It is also worth mentioning that a model choice
and its settings should be made according to the
training set size. In our case, the volume dif-
fered significantly for all the sub-tasks. However,
a significantly lower performance of all the sub-
missions can be observed on the last sub-task with
the smallest training set.

4 Conclusion and future work

In our paper we presented the contribution of
HAD-Tübingen to the OffensEval 2019 (SemEval
2019 - Task 6). Our approach combines sentence
simplification as a preprocessing step and a lexi-
cal lookup as a postprocessing step with an unidi-
rectional LSTM with 4 hidden layers. We picked
the epochs according to the best F1-score for our
model configurations, according to SVM predic-
tions. We found out that simple LSTM models
are not likely to outperform SVM in such classi-
fication tasks. However, as a next possible step in
working with an LSTM based classifier, could be
using an external task-specific lexicon as an input
feature to our model, but not as a postprocessing
step. We would also like to make use of the pre-
trained vectors from Fastext library that are based
on sub-word character n-grams for improving our
model.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mane, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-

van, Fernanda Viegas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. 2015. Tensorflow: Large-scale
machine learning on heterogeneous distributed sys-
tems.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at SemEval-2017 task 4:
Deep LSTM with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Çağrı Çöltekin and Taraka Rama. 2018. Tübingen-
oslo at Semeval-2018 task 2: Svms perform better
than rnns in emoji prediction. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 34–38. Association for Computational
Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Taraka Rama and Çağrı Çöltekin. 2017. Fewer features
perform well at native language identification task.
In Proceedings of the 12th Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 255–260. Association for Computational Lin-
guistics.

Paolo Rosso, Julio Gonzalo, Raquel Martı́nez, Soto
Montalvo, and Jorge Carrillo de Albornoz, editors.
2018. Proceedings of the Third Workshop on Evalu-
ation of Human Language Technologies for Iberian
Languages. Sevilla, Spain.

Zeerak Waseem, Wendy Hui Kyong Chun, Dirk Hovy,
and Joel Tetreault, editors. 2017. The First Work-
shop on Abusive Language Online: Proceedings of
the Workshop. Association for Computational Lin-
guistics (ACL), Vancouver, Canada.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of the GermEval 2018
Workshop, pages 1–10, Vienna, Austria. Austrian
Academy of Sciences.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

627

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 628–634
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

HHU at SemEval-2019 Task 6: Context Does Matter - Tackling Offensive
Language Identification and Categorization with ELMo

Alexander Oberstrass1 Julia Romberg1 Anke Stoll2 Sefan Conrad1

1Institute of Computer Science, Heinrich Heine University Düsseldorf, Germany
alexander.oberstrass@hhu.de

{romberg,conrad}@cs.uni-duesseldorf.de
2Department of Social Sciences, Heinrich Heine University Düsseldorf, Germany

anke.stoll@hhu.de

Abstract

We present our results for OffensEval: Iden-
tifying and Categorizing Offensive Language
in Social Media (SemEval 2019 - Task 6).
Our results show that context embeddings are
important features for the three different sub-
tasks in connection with classical machine and
with deep learning. Our best model reached
place 3 of 75 in sub-task B with a macro
F1 of 0.719. Our approaches for sub-task A
and C perform less well but could also deliver
promising results.

1 Introduction

User generated content in social media platforms
such as Twitter often includes high levels of rude,
offensive, or sometimes even hateful language.
The increasing vulgarity in online discussions and
user comment sections have recently been dis-
cussed as relevant issues in society as well as in
science.

The identification of offensiveness, aggression,
and hate speech in user-generated content has been
addressed in recent research (Waseem et al., 2017;
Davidson et al., 2017a; Malmasi and Zampieri,
2018) and previous shared tasks (Wiegand et al.,
2018; Kumar et al., 2018). However, detect-
ing such content automatically is still challenging.
We developed classification models to identify of-
fensive language, different categories of offense
types, and targets of offensive language through-
out the SemEval-2019 challenge on Identifying
and Categorizing Offensive Language in Social
Media (Zampieri et al., 2019b).

2 Methodology and Data

In this section, we introduce the datasets, the fea-
tures and classifiers we use.

2.1 Datasets

The training dataset provided for this task is fur-
ther described in Zampieri et al. (2019a). For
sub-task A: Offensive Language Detection 4.400
offensive (OFF) and 8.840 not offensive (NOT)
tweets are given for the training and 240 offensive
plus 620 not offensive tweets are given as test data.
Sub-task B: Categorization of Offensive Language
is provided with a training set of 3876 targeted in-
sult (TIN) and 524 untargeted (UNT) tweets and
a test set of 213 targeted insult plus 27 untargeted
tweets. The train data distribution for sub-task C:
Offensive Language Target Identification are 2407
tweets targeting an individual (IND), 1074 target-
ing a group (GRP) and 395 targeting any other cat-
egory (OTH). The test data given counts 100, 78
and 35, respectively.

We use Davidson et al. (2017b)’s dataset for
hate speech detection as an additional source of
knowledge and to address the problem of overfit-
ting in our deep learning models. Tweets were col-
lected and filtered using a lexicon of common hate
speech terms. The remaining tweets were then
each classified by at least 3 CrowdFlower users
into the three categories hate speech, offensive lan-
guage or none. Each tweet was assigned a label,
which was chosen based on a majority vote. In
order to match the labels to this task, we merged
the categories: hate speech and offensive language
into a single offensive label OFF and renamed the
label none to NOT. This resulted in 20620 OFF
and 4163 NOT labeled additional tweets. It should
be noted that our assumption to equate hate speech
and offensive language does not apply in general.

2.2 Features

Word and Char-Level Features We transformed
the tweet texts into tf-idf weighted bag of words
and bag of chars representations using scikit-learn

628

(Pedregosa et al., 2011). The feature CHARS is
built from bigrams to 6-grams on character level.
For the feature WORDS we use unigrams and bi-
grams on word level, excluding stop words. In or-
der to reduce variance in the text data, we also
built the feature STEMS with unigrams and bi-
grams. For this, we applied the TweetTokenizer
from NLTK (Bird et al., 2009) that removes user
name handles from a tweet and replaces repeated
characters with a sequence of only 3. Afterwards,
the word tokens are reduced to their stems using
the Snowball Stemming algorithm (Porter et al.,
2002).

Named Entities Named entities in a tweet can
indicate whether this tweet is person-related or re-
lates to e.g. religious or political groups or or-
ganizations. This information might help with
the target identification. The feature NE is im-
plemented using the named entity recognition of
spacy1, building a bag of named entities for ev-
ery tweet preserving all OntoNotes5 (Weischedel
et al., 2013) named enity types, which results in an
18-dimensional feature vector per tweet.

Grammatical Number of Nouns and Pro-
nouns The grammatical number of a noun might
also indicate if a tweet insults a specifiable target.
We use spacy’s part-of-speech tagger, which uses
the OntoNotes5 tagging scheme. The feature ND
models the noun distribution of singular and plu-
ral nouns and is implemented building a bag of
tags for the tags NNS, NN, NNP and NNPS, nor-
malized by the tweets’ token count. Contrarily,
feature SPNR describes the ratio of singular noun
tags (NN and NNP) and plural noun tags (NNPS
and NNS) per tweet. The first value is divided
by the latter one, smoothing both by adding 1.
Another feature to separate single person targets
from groups is the absolute count of single pro-
noun words (he, she, him, her, his, hers, himself,
herself) per tweet, hereinafter referred to as SPC.
It should be noted that the corresponding proce-
dure for plural pronouns could not bring any ben-
efit in our evaluations and is therefore not further
described.

Dependencies Another consideration was
whether syntactic dependency relations could
provide information for one of the three sub-tasks.
For the feature DEP, every tweet is transformed
into the corresponding list of dependency labels.
These representations are subsequently used to

1
https://spacy.io/

build n-grams in the range (2,4) which are then
vectorized using tf-idf.

Global Vectors for Word Representation
(GloVe) Feeding words into machine learning
models often requires a meaningful vector repre-
sentation that captures syntactic and semantic in-
formation. We use GloVe word embeddings (Pen-
nington et al., 2014), an unsupervised learning
algorithm for obtaining vector representations of
words. A set of pre-trained word vectors, trained
on over 2 billion tweets, containing vector repre-
sentations for over 1.2 million words in various di-
mensions (25, 50, 100, 200) is publicly available
on the author’s website2. In this work, we use 200
dimensions.

Embeddings from Language Models (ELMo)
Traditional pre-trained word representations
merely contain meaning based on statistical in-
formation and therefore struggle with word-sense
disambiguation. Since offensive words change
their meaning greatly depending on their context,
a contextualizing method would help to tackle
this task. ELMo (Peters et al., 2018) is a novel
approach on creating word representations and
shows a significant improvement of state of the
art systems on many benchmarks. It models a
function using character-based word representa-
tions and bidirectional long-short term memories
of not only each single word, but also the entire
input sentence. Thus, it can be useful for solving
the problem of processing ambiguous words that
are not offensive by themselves but could point to
offensive language depending on the context they
are used in. For these reasons, we expect ELMo
to increase the results of this task. The pre-trained
model can be downloaded from TensorFlow
Hub3.

χ2 Feature Selection To quantify the contribu-
tion of a feature, we choose the χ2 test statistic,
that excludes features that are most likely to be in-
dependent from a class, and keep the k features
with the highest values for χ2.

2.3 Classifier

We use logistic regression (Nelder and Wedder-
burn, 1972), support vector machines (Cortes and
Vapnik, 1995) and neural networks with long
short-term memory units (Hochreiter and Schmid-
huber, 1997) for the different classification prob-

2
https://nlp.stanford.edu/projects/glove/

3
https://tfhub.dev/google/elmo/2

629

lems. The classifiers are implemented with scikit-
learn and TensorFlow (Abadi et al., 2015).

Logistic regression has been used by several
teams of the GermEval shared task on offensive
language identification (Wiegand et al., 2018) with
promising results. We therefore decided to use it
as a baseline approach. In the multiclass case the
one-vs-rest scheme is used.

Support vector machines (SVM) are also known
to perform well on a variety of classification tasks
and have been used in the context of hate and of-
fensive speech and abusive language detection in
recent years (Malmasi and Zampieri, 2017; Wie-
gand et al., 2018). We use the rbf kernel. In the
multiclass case the one-vs-one scheme is used.

To overcome class imbalances, class weights
are adjusted inversely proportional to the train data
class frequencies for both classifiers.

As seen in recent challenges focused on offen-
sive language detection in social media like TRAC
(Kumar et al., 2018), long-short term memories
(LSTM) play an important role and are often used
among the best classifiers. Their ability of se-
quential data iteration and of memorizing recent
content across time provides them with a good
opportunity not only to analyze individual words,
but also to find problem-specific dependencies be-
tween them.

3 Models

This chapter describes the development of the
models for the submissions and how they perform
on the training data.

3.1 Sub-task A

The training data was split into a training set con-
taining 3400 OFF and 7840 NOT labels and a val-
idation set, which consists of the remaining 1000
OFF and 1000 NOT labels. To establish a base-
line for this sub-task, we used the features CHARS,
WORDS and STEMS, which were the features that
were mainly used by the most powerful systems in
the TRAC challenge that did not use deep learn-
ing. We opted for logistic regression, because
it performed better than the SVM. C was set to
the default value 1. Table 1 gives an overview of
all model results for sub-task A. The baseline ap-
proach, denoted as Baseline A, reaches a macro F1

of 0.712 on the validation set.
Our first deep learning model architecture

LSTM A1 uses ELMo context embeddings as in-

System F1 (macro) Accuracy
Baseline A 0.712 0.718
LSTM A1 0.742 0.745
LSTM A2 0.753 0.753
LSTM A3 0.759 0.759
LSTM A4 0.729 0.731
LSTM A5 0.764 0.764
LSTM A6 0.767 0.768
Feature Union A 0.760 0.760

Table 1: Overview of the performance by different
models for sub-task A

puts into a bidirectional LSTM layer with a size
of 64 cells. For classification, we used the hid-
den states of the LSTM cells generated when pass-
ing the last token from each tweet to the LSTM.
A fully connected layer was used to compute the
two class scores that were normalized using soft-
max. Its highest macro F1 value of 0.742 on the
validation set was reached after only two epochs,
which means that the network tends to overfit very
quickly. To overcome this problem, we placed
an additional fully connected layer with a dimen-
sionality of 64 and L2 loss between the high-
dimensional ELMo output (1000 dimensions) and
the LSTM layer to insert a relatively strong regu-
larization loss to the system. We expected this to
force the system to look for more universal pat-
terns in the embeddings before passing them to
the LSTM layer. While improving the F1 score
by 1%, this architecture, named LSTM A2, still
started overfitting after two epochs. As a further
adjustment against overfitting we used an extra
heavy dropout layer with a 70% dropout between
the ELMo embeddings and the fully connected
layer. We also tried other dropout rates (30%,
40%, 50%, 60%, 80%, 90%), but 70% worked
best. A higher percentage did not yield meaning-
ful results. Through this modification of the ar-
chitecture, LSTM A3, the overfitting was delayed
until the 16th epoch. The F1 score also showed a
slight improvement.

Comparing non-contextualized to contextual-
ized word embeddings, the developed architec-
ture was also evaluated with GloVe (LSTM A4) as
well as with a vector concatenation of GloVe and
ELMo Embeddings LSTM A5. It turned out that
ELMo embedding inputs alone exceed the GloVe
embedding inputs in this model and that they work
together even better than each one on its own.

630

Due to the remaining problem of overfitting,
we used the additional data described in Sec-
tion 3.1. Pre-training the network with this addi-
tional data and then training it with our training
set, a small but no significant improvement was
achieved. With a macro F1 of 0.767, this model
(LSTM A6) shows the best performance on the val-
idation set and was therefore used for our first sub-
mission. We used a learning rate of 0.001 and a
batch size of 64 for all models. The number of
epochs was chosen dependent on the stagnating
progress on the validation set.

We used logistic regression with the default
C = 1 for the second submission system. As fea-
ture representation for each tweet, we combined
CHARS, WORDS and STEMS with the output of
the already trained LSTM of LSTM A6 as 128-
dimensional fixed features. This system Feature
Union A could not surpass LSTM A6, but achieves
nevertheless a F1 of 0.760. It should also be noted,
that the χ2 feature selection could reduce the fea-
tures used in this feature union to only four of
them without affecting the accuracy of the classi-
fication. All of them derived from the LSTM out-
put features. The full architecture of this model,
including all the models described earlier in this
section, is illustrated in Figure 1.

Figure 1: Model architecture for the Feature Union A
system

3.2 Sub-task B

System F1 (macro) Accuracy
Baseline B 0.615 0.869
LSTM B1 0.602 0.745
LSTM B2 0.628 0.809
Feature Union B 0.653 0.825

Table 2: Overview of the performance by different
models for sub-task B

In sub-task B we split the data into 80% train-
ing and 20% validation set. We trained the same
baseline model as in sub-task A, which reached a
macro F1 of 0.615 on the validation set and forms
the baseline for the list of all models build for this
sub-task shown in Table 2.

For our first deep learning approach on this sub-
task, we used the same structure as in LSTM A6,
but with smaller layer sizes as another way to re-
duce overfitting, because the training data given
for this sub-task was even smaller than for sub-
task A. The dense layer between the dropout layer
and the bidirectional LSTM consists of 8 and the
LSTM of 32 cells. This system named LSTM B1
achieves 0.623 on the validation set.

Pseudo Labeling was used on the additional
data described in Section 3.1 to generate the miss-
ing labels for this task. For this, we first labeled the
additional data using LSTM B1, which had already
been trained on the training data. Then the result-
ing labels are used to extend the training data. In
addition, we have focused only on the labels which
softmax class score was higher than 0.7 for the
predicted label to reduce noisy labels. This results
in about 2000 UNT and 17500 TIN labeled tweets.
The resulting system named LSTM B2 reaches a
macro F1 of 0.628 on the validation set.

As first classifier Feature Union B, we used
the same structure as in sub-task A and combined
CHARS, WORDS and STEMS and the output of
LSTM B2 as feature input. The value for C in the
logistic regression was selected using grid search
and was set to 0.51. Together these features im-
proved the macro F1 even further and reached our
best result 0.653 for sub-task B on the validation
set.

For the second submission, we trained addi-
tional four models of LSTM B2 and we used the
Feature Union B from the first submission as a
fifth classifier. We then performed a majority vote
on all five resulting labels.

631

All deep learning models in sub-task B are
trained with a learning rate of 0.001 and a batch
size of 32 for all models. The number of epochs
was defined in the same way as in sub-task A.

3.3 Sub-task C

The evaluation for sub-task C is done on a 80%-
20% train-validation split making sure that the test
data set contains a 20% proportion of each class.
Additionally, the train data was enriched with the
trial data, where all occurrences of class ORG
were replaced by class OTH. Deep learning was
not used for the implementation of this sub-task
due to the small amount of training data. To se-
lect the best feature sets for the used classifiers, lo-
gistic regression and SVM all combinations were
tested including grid search to find the best param-
eter values for C and γ, respectively.

Class Features Prec. Recall F1

GRP ELMo 0.566 0.679 0.617
ELMo+NE 0.573 0.674 0.62
ELMo+ND 0.567 0.61 0.614
ELMo+NE+ND 0.58 0.674 0.623
all 0.582 0.674 0.625

IND ELMo 0.820 0.789 0.804
ELMo+NE 0.821 0.795 0.808
ELMo+ND 0.567 0.67 0.614
ELMo+NE+ND 0.823 0.795 0.809
all 0.825 0.798 0.811

OTH ELMo 0.360 0.237 0.286
ELMo+NE 0.365 0.250 0.297
ELMo+ND 0.370 0.263 0.308
ELMo+NE+ND 0.375 0.276 0.318
all 0.386 0.29 0.331

macro ELMo 0.582 0.568 0.57
ELMo+NE 0.587 0.573 0.575
ELMo+ND 0.586 0.574 0.575
ELMo+NE+ND 0.593 0.582 0.584
all 0.598 0.587 0.589

Table 3: Overview of feature impact on the logistic re-
gression system with C = 0.011

Logistic regression classifies best on the vali-
dation set using C = 0.011 and the combination
of the features WORDS, NE, SPC, DEP, SPNR,
ND and the ELMo embeddings trained for sub-
task B achieving a macro F1 of 0.589. Table 3
gives an overview of the model performance for
the three classes. The features are broken down
by influence, where all denotes the entire feature
set used. ELMo is the most important feature here
and gives a macro F1 of 0.57. The further two per-
cent are largely due to the use of named entities
and the noun distribution. The additional features
(WORDS, SPC, DEP, SPNR) have only little in-

fluence of the classification. A closer look reveals
that the class performances differ widely depend-
ing on class size. Underrepresented classes benefit
the most from adding other features to the embed-
dings, OTH in particular: Precision and recall in-
crease by two and five percent, which leads to a
rise in F1 of about four percent.

Class Features Prec. Recall F1

GRP ELMo 0.537 0.729 0.618
ELMo + SPNR 0.554 0.715 0.625
all 0.554 0.715 0.625

IND ELMo 0.871 0.706 0.78
ELMo + SPNR 0.873 0.706 0.781
all 0.874 0.708 0.782

OTH ELMo 0.296 0.342 0.317
ELMo + SPNR 0.317 0.434 0.367
all 0.32 0.434 0.369

macro ELMo 0.568 0.592 0.572
ELMo+SPNR 0.582 0.618 0.591
all 0.583 0.619 0.592

Table 4: Overview of feature impact on the SVM sys-
tem with C = 6, γ = 0.0001

Table 4 depicts the results for the best SVM
model, using a feature set of WORDS, DEP,
SPNR, ND and the ELMo embeddings trained for
sub-task B. The best parameter values we found
are C = 6 and γ = 0.0001 and lead to a macro
F1 of 0.592 on the validation set. As in the previ-
ous setting, ELMo is the key feature and achieves
0.572 macro F1. The union with feature SPNR
leads to 0.591 macro F1. As with logistic regres-
sion, the addition has a positive effect on the less
common classes.

In addition, we use a majority vote as third sub-
mission. For this, we build a voting classifier
out of the previously developed logistic regression
and SVM classifiers and a further logistic regres-
sion classifier which uses CHARS, WORDS and
STEMS and the output of LSTM B2 as feature in-
put. It should be noted, that the LSTM has not
been re-trained on the sub-task C data. Subse-
quently, a majority decision is taken and in case
of doubt, the label prediction of the latter logistic
regression classifier is given preference.

4 Results

After the previous description of the submission
models, an overview of the test results follows in
this section.

632

4.1 Sub-task A
In order to prepare the LSTM A6 system for sub-
mission, we re-trained it with the complete avail-
able training data. This classifier reached a macro
F1 of 0.768, as shown in Table 5 on the test set,
which is comparable to the result reached on the
validation set in Table 1.

As a second submission we chose the Feature
Union A classifier, but took the output of the
LSTM from the first submission for the LSTM
output features in the feature union instead. With
0.742, it reached a somewhat lower macro F1 on
the test set than on our validation set as shown in
comparison of Table 1 and Table 5.

System F1 (macro) Accuracy
All NOT baseline 0.419 0.721
All OFF baseline 0.218 0.279
LSTM A6 0.768 0.807
Feature Union A 0.742 0.788

Table 5: Test results for sub-task A

4.2 Sub-task B
The Feature Union B system reached a macro F1

score of 0.671. Comparing the results from Table
2 and Table 6, the classifier works equally well on
the train and on the test data.

The majority vote classifier achieved our best
result with a macro F1 score of 0.719 (Table 6).
This result is remarkably good which we think is
caused by a high robustness resulting from the dif-
ferent strengths of the incorporated classifiers.

System F1 (macro) Accuracy
All TIN baseline 0.470 0.888
All UNT baseline 0.101 0.113
Feature Union B 0.671 0.871
Majority Vote B 0.719 0.850

Table 6: Test results for sub-task B

4.3 Sub-task C
On the test data, all systems perform inferior than
on the validation set. The best macro F1 is ob-
tained by the SVM having 0.571, followed by the
logistic regression with 0.551 and then the voting
classifier with 0.539. Overall, the performance is
fairly stable compared to the validation set and the
fact that no cross validation was used in the model
selection process.

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

54 10 14

11 71 18

16 8 11

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2: Confusion matrix for sub-task C and the best
performing model SVM

Figure 2 shows the confusion matrix for the
best performing system. As can be seen, most
tweets of GRP and IND are classified correctly,
whereas almost half of the OTH tweets are in-
correctly recognized as GRP. On the one hand,
the rare class occurence in the training seems to
obstruct the classifier in learning. On the other
hand, it was challenging for us as humans to dif-
ferentiate between the classes GRP and OTH in
the data set: For instance ”Liberals are mentally
ill!” is labeled as GRP, whereas ”@USER republi-
cans/conservatives are the most disgusting people”
has label OTH.

5 Conclusion

We showed that contextualized embeddings work
well in the context of offensive language identifi-
cation and the two different categorization tasks.
Other language and linguistic features could de-
liver only small improvements.

The main problems in using deep learning are
the model size and the dimensionality and num-
ber of parameters resulting in fast overfitting. We
plan to address this problem through strategies to
reduce model size (primarily in reducing the high-
dimensional ELMo output without loosing rele-
vant information before connecting it to the less
high-dimensional LSTMs using a fully connected
layer), or to include more data when available.
Another consideration for sub-task A would be the
use of the majority vote model from sub-task B,
which showed good results. For sub-task C, the
development of deep learning models would be in-
teresting.

633

References
Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2015. Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available
from tensorflow. org, 1(2).

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017a. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017b. Automated hate speech
detection and the problem of offensive language. In
Proceedings of the 11th International AAAI Confer-
ence on Web and Social Media, ICWSM ’17.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

John Ashworth Nelder and Robert WM Wedderburn.
1972. Generalized linear models. Journal of
the Royal Statistical Society: Series A (General),
135(3):370–384.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christoper
Manning. 2014. Glove: Global vectors for word
representation. volume 14, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations.

Martin F Porter, Richard Boulton, and Andrew Mac-
farlane. 2002. The english (porter2) stemming algo-
rithm. Retrieved, 18:2011.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium, Philadel-
phia, PA.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

634

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 635–638
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Abstract

User’s content share through social media

has reached huge proportions nowadays.

However, along with the free expression

of thoughts on social media, people risk

getting exposed to various aggressive

statements. In this paper, we present a

system able to identify and classify

offensive user-generated content.

1 Introduction

With the constant spread of social media, users

are spending increasing amounts of time on

various social networking sites aiming to connect

with peers, to share information or common

interests. While users benefit from their use of

social media by interacting with and learning

from others, they are also at the risk of being

exposed to large amounts of offensive contents.

Considering that people are negatively affected

by harmful contents, detecting online offensive

language to protect users online safety becomes

an urgent task. To address concerns on people’s

access to offensive content over the internet,

social media administrators often need to

manually review online texts to detect and delete

offensive materials. However, manually

reviewing and identifying offensive messages is a

highly human and time consuming task. Some

automatic content filtering software packages

have been developed to detect and filter offensive

WebPages or paragraphs, mostly word-based

approaches.

The “OffensEval: Identifying and Categorizing

Offensive Language in Social Media” task at the

SemEval 2019 competition (Zampieri et al.,

2019a) focuses on detecting and classifying

offenses, pervasive in social media.

In this paper, we present a system able to

identify whether a tweet is abusive language or

not, and if abusive, if it is offensive or not. We

trained a model to differentiate between these

categories and then analyzed the results to better

understand how we can improve the system.

The rest of the paper is organized as follows:

section 2 presents other projects related to

offensive language identification, section 3

presents the project’s data set and methods,

section 4 presents the results we have obtained

and a short analysis, followed by our last point

represented by section 5 with the conclusions.

2 Related Work

This topic has attracted significant attention in

recent years, evidenced by increasing number of

recent publications and a several scientific events

such as ALW and TRAC workshops.

Offensive language is often subdivided into

various intercalated categories, since different

subtasks have been grouped under this label. One

of the most analyzed such language is “hate

speech”, i.e. discriminative remarks, such as the

racist or sexist ones (Norbata et al., 2016).

Based on work on hate speech, cyberbullying

and online abuse, Waseem et al., 2017 proposses a

typology that captures central similarities and

differences between subtasks and discuss its

implications for data annotation and feature

construction. Additionally, Waseem et al. (2017)

emphasize the practical actions that can be taken

by researchers to best approach their abusive

language detection subtask of interest.

Lexical detection methods for the offensive

language tend to have low precision because they

fail to classify messages not containing listed

offensive terms. On the other hand, various

Hope at SemEval-2019 Task 6: Mining social media language

to discover offensive language

Gabriel-Florentin Pătraș
1
, Diana-Florina Lungu

1

Daniela Gîfu
1,2,3

, Diana Trandabăț
1

1
Alexandru Ioan Cuza University of Iași, Romania

2
Institute of Computer Science of the Romanian Academy, Iași Branch, Romania

3
Cognos Business Consulting S.R.L., Romania

{patras.gabriel.florentin, lungu.diana.florina,

daniela.gifu, dtrandabat}@info.uaic.ro

635

machine learning methods are used in the

literature, from Logistic regression, Naïve Bayes,

Decision Trees, Random forests, SMVs to neural

networks. Previous analysis of hate speech

modeling (Schmidt and Wiegand, 2017) shows

that there is a too wide range of features used, and

a more advanced feature relevance analysis was

needed (Waseem et al., 2017).

A first shared task on aggression identification

aiming to classify aggressive speech into overt,

covert or no aggression was held at the TRAC

Workshop collocated with COLING 2018 (Kumar

et al., 2018). 130 teams registered to participate in

the task, 30 teams submitted their test runs and 20

teams sent their system description paper, which are

included in the TRAC workshop proceedings.

The problem of distinguishing general

profanity from hate speech is not a trivial task

(Malmasi and Zampieri, 2018) and requires

features that capture a deeper understanding of the

text not always possible with surface grams.

3 Data set and Methods

The data set for SemEval 2019 task 6 was formed

from 14100 tweets, 13240 training instances,

retrieved from social media and distributed in tab-

separated format and 860 tweets for testing

(Zampieri et al., 2019b). Using this data set, we

were able to identify offense, aggression and hate

speech in user generated content.

This section presents our approach for the

different subtask, for each submission we

uploaded.

Sub-task A: Offensive language identification

Submission 1. We analyzed the training data to

identify specific words or expressions for

offensive, respectively non-offensive tweets.

Based on these expressions, we crafted a set of

rules consisting in exact or partial matches of

these expressions in the test corpus. Tweets that

have complied with these rules have been

annotated as offensive. Tweets containing such

expression only in a negated form were annotatd

as non-offensive. The rest of the tweets were

randomly classified in offensive or non-offensive.

The application code was written in the Java

programming language and the results are

presented in Table 1.1.

Submission 2. We created a lexicon based on

two lists of words of offensive lexicons
1
, freely

available online, along with the list resulted from

the analysis of the set of training tweets, as

described above. Using these offensive words or

expressions, we developed patterns and we

classified the tweets in offensive tweets and non-

offensive tweets. If the tweet was containing at

least one word from the lists, it means that the

tweet is offensive, otherwise the tweet would be

considered not offensive. The results are

presented in Table 1.2.

Submission 3: For this submission, we used

the same lists of offensive words obtained from

external sources, along with the list of offensive

words found in the training data, but we put a

restriction on the size of the words (more than 4

letters). This constraint was considered due to the

fact that we noticed that they introduced noise in

the non-offensive tweets. Additionally, we used

WordNet to obtain the synonyms of the words we

had in our lists. The results are presented in Table

1.3.

Sub-task B: Automatic categorization of

offense types

Submission 1: We tokenized the tweets

annotated with targeted offensive words and

collected different lists of cue words. Additionally,

we noticed that if the tweet contained a proper

name towards the middle of the sentence, the

tweet was marked as a targeted tweet; otherwise it

was marked as an untargeted tweet. We used this

restriction and made the first submission, with the

results presented in Table 2.1.

Submission 2: For the second submission, we

tokenized the test tweets and checked if those

words were found in the list of pronouns
2
. If a

tweet was containing a pronoun from that list,

then that tweet was marked as a targeted offensive

one, otherwise it was marked as an untargeted

offensive tweet. The results are presented in Table

2.2.

1 One available at the GitHub repository for the paper

(Davidson et al., 2017) and one from Luis von Ahn (2018),

consisting on English terms that could be found offensive

on websites.
2
 https://www.really-learn-english.com/list-of-

pronouns.html

636

Submission 3: We separated the tweets in

words and counted how many words begin with a

capital letter. We didn’t take into consideration the

"#" (hashtags) and @(@USER) because the vast

majority were written with a capital letter. If a

tweet was containing at least 2 words with capital

letter, then the tweet was marked as being a

targeted offensive tweet, otherwise was marked as

an untargeted offensive tweet. The results are

presented in Table 2.3.

Sub-task C: Offense target identification

We created two lists with pronouns. One list

was used for the personal pronouns in singular for

and the second one for the personal pronouns in

plural. Therefore, we obtained 3 scenarios:

- If the tweet contains a personal pronoun from

the singular pronoun list, then the tweet is marked

IND.

- If the tweet contains a personal pronoun from

the plural pronoun list, the tweet is marked GRP.

- If the tweet does not contain any pronouns

from the above lists then the tweet is marked as

OTH. The results are presented in Table 3.

4 Results

Below are the results for each individual level

using the test set. We report Precision (P), Recall

(R), and F-measure (F) for each baseline on all

classes along with weighted averages and Macro-

F1. The result for sub-task A are presented in table

1, the results for sub-task B are presented in table

2 and the results for sub-task C are presented in

Table 3.

Sub-Task A: Offensive language identification

 P R F Samples

NOT 0.7398 0.4952 0.5932 620

OFF 0.2966 0.5500 0.3854 240

Avg./

Total
0.6161 0.5105 0.5352 860

Table 1.1: Results Sub-Task A – Submission 1.

 P R F Samples

NOT 0.7876 0.5323 0.6352 620

OFF 0.7324 0.6292 0.4435 240

Avg./

Total
0.6634 0.5593 0.5817 860

Table 1.2: Results Sub-Task A – Submission 2.

 P R F Samples

NOT 0.7718 0.6984 0.7333 620

OFF 0.3746 0.4667 0.4156 240

Avg./

Total

0.6610 0.6337 0.6446 860

Table 1.3: Results Sub-Task A – Submission 3.

Sub-Task B: Automatic categorization of

offense types

 P R F Samples

TIN 0.8571 0.4789 0.6145 213

UNIT 0.0826 0.3704 0.1351 27

Avg./

Total
0.7700 0.4667 0.5605 240

Table 2.1: Results Sub-Task B – Submission 1.

 P R F Samples

TIN 0.9091 0.4695 0.6192 213

UNIT 0.1308 0.6296 0.2166 27

Avg./

Total
0.8215 0.4875 0.5739 240

Table 2.2: Results Sub-Task B – Submission 2.

 P R F Samples

TIN 0.9211 0.3286 0.4844 213

UNIT 0.1280 0.7778 0.2199 27

Avg./

Total
0.8318 0.3792 0.4547 240

Table 2.3: Results Sub-Task B – Submission 3.

Sub-Task C: Offense target identification

 P R F Samples

GRP 0.3333 0.0128 0.0247 78

IND 0.4815 0.3900 0.4309 100

OTH 0.1860 0.6857 0.2927 35

Avg./

Total
0.3787 0.3005 0.2595 213

Table 3: Results Sub-Task C.

5 Conclusions

The offensive language in social media

commonly comes from an unpleasant condition or

something that is disgusting or forbidden. We

discussed the challenges in detecting offensive

language including the abusive words writing

patterns in social media.

637

This paper presents our system participating at

SemEval Task 6. We present simple baseline

scores on all classes in all of the three sub-tasks.

In the future, we would like to make a

comparison between our system and datasets

annotation for similar tasks such as aggression or

abusive identification and hate speech detection.

As further work, we have already started to

study how to use the datasets for applying deep

learning techniques to improve our results, based

on word embedding, similar to the work presented

in (Badjatiya et al., 2017).

Acknowledgments

This survey was partially supported by a grant of

the Romanian Ministry of Research and

Innovation, CCCDI – UEFISCDI, project number

PN-III-P1-1.2-PCCDI-2017-0818/73PCCDI

(ReTeRom), within PNCDI III and by the

README project "Interactive and Innovative

application for evaluating the readability of texts

in Romanian Language and for improving users'

writing styles", contract no. 114/15.09.2017,

MySMIS 2014 code 119286.

References

Badjatiya, P., Gupta, S., Gupta, M., and Varma, V.

2017. Deep learning for hate speech detection in

tweets. In Proceedings of the 26th International

Conference on World Wide Web Companion,

pages 759–760

Davidson, T., Warmsley, D., Macy, M. and Weber, I.

2017. Automated Hate Speech Detection and the

Problem of Offensive Language. In Proceedings of

ICWSM.

Kumar, R., Ojha, A.K., Malmasi, S. and Zampieri, M.

2018. Benchmarking Aggression Identification in

Social Media. In: Proceedings of the First

Workshop on Trolling, Aggression and

Cyberbullying (TRAC), pages 1-11.

Luis von Ahn Research Group (accessed 2018)

Offensive/Profane Word List, available online at

https://www.cs.cmu.edu/~biglou/resources/bad-

words.txt?fbclid=IwAR3yLdiB5lsgoQjWIJXgYLP

b6Pl4jK-MCT5INw_Lfkfet6A8mvHsB-hyJVY

Malmasi, S., Zampieri, M. 2018. Challenges in

Discriminating Profanity from Hate Speech.

Journal of Experimental & Theoretical Artificial

Intelligence, Vol. 30, Issue 2, pages 187-202.

Taylor & Francis.

Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and

Chang, Y. 2016. Abusive language detection in

online user content. In Proceedings of the 25th

International Conference on World Wide Web.

pages 145–153.

Schmidt, A. and Wiegand, M. 2017. A survey on hate

speech detection using natural language

processing. In Proceedings of the Fifth

International Workshop on Natural Language

Processing for Social Media. Association for

Computational Linguistics, Valencia, Spain, pages

1–10.

Waseem, Z., Davidson, T., Warmsley, D. and Weber,

I. 2017. Understanding Abuse: A Typology of

Abusive Language Detection Subtasks. In:

Proceedings of the Abusive Language Online

Workshop.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S.,

Farra, N., Kumar, R. (2019a) SemEval-2019 Task

6: Identifying and Categorizing Offensive

Language in Social Media (OffensEval) in

Proceedings of The 13th International Workshop

on Semantic Evaluation (SemEval) 2019.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S.,

Farra, N., Kumar, R. (2019b) Predicting the Type

and Target of Offensive Posts in Social Media, in

Proceedings of N AACL 2019.

638

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 639–644
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

INGEOTEC at SemEval-2019 Task 5 and Task 6:
A Genetic Programming Approach for Text Classification

Mario Graff and Sabino Miranda-Jiménez and Eric S. Tellez
CONACyT - INFOTEC, Aguascalientes, México

{mario.graff,sabino.miranda,eric.tellez}@infotec.mx

Daniela Moctezuma
CONACyT - CentroGEO, Aguascalientes, México

dmoctezuma@centrogeo.edu.mx

Abstract

This paper describes our participation in
HatEval and OffensEval challenges for En-
glish and Spanish languages. We used
several approaches, B4MSA, FastText, and
EvoMSA. Best results were achieved with
EvoMSA, which is a multilingual and domain-
independent architecture that combines the
prediction from different knowledge sources
to solve text classification problems.

1 Introduction

Social media platforms, like Twitter and Face-
book, are spaces where people interact with oth-
ers and express themselves; while these plat-
forms encourage free speech, other issues could
emerge such as the usage of offensive language
that could mock or insult individuals or groups of
people. Thus, detecting offenses and misbehav-
ior expressed in text form is interesting to measure
the people’s feelings and warn them about pos-
sible attacks on others such as abusive language,
hate speech, cyberbullying, trolling, among others
(Waseem et al., 2017).

In order to tackle these text classifications prob-
lems, SemEval-2019 proposed two tasks: mul-
tilingual detection of hate speech against immi-
grants and women in Twitter HatEval, task 5
(Basile et al., 2019), and identification and cate-
gorization of offensive language in social media
OffensEval, task 6 (Zampieri et al., 2019b). In this
paper, we present the results from our participating
in these two tasks.

The HatEval challenge consists in detecting
hate speech for two targets, immigrants and
women, in Twitter for Spanish and English lan-
guages. There are two subtasks, subtask A is a bi-
nary classification where systems have to predict
whether a tweet with a given target (immigrants
or women) is hateful or not hateful; subtask B is

about aggressive behavior and target classification,
systems are asked to classify hateful tweets as ag-
gressive or not aggressive, and identify the target
harassed (individual or group).

On the other hand, OffensEval challenge con-
sists in determining if a given message has offen-
sive content. It is divided into three subtasks. Sub-
task A is dedicated to identifying the offensive lan-
guage, i.e., determine if a message is offensive or
not offensive. Subtask B is about categorizing of-
fense types; that is, a tweet containing an insult
or threat to someone, or a tweet containing non-
targeted profanity and swearing. Finally, subtask
C focus on identifying the target, i.e., whether the
offensive post is about an individual, a group, or
others.

Both HatEval and OffensEval are related tasks
to abusive language, Waseem et al. (Waseem et al.,
2017) describe tasks on this theme; authors focus
their analysis on two primary factors that could
guide the modeling of systems: i) language is di-
rected towards a specific individual, entity, or gen-
eralized group; ii) the abusive content may be ex-
plicit or implicit.

For instance, Schmidt and Wiegand (Schmidt
and Wiegand, 2017) present a collection of works
on hate speech detection highlighting the features
commonly used such as surface-level features. For
instance, authors use bag of words (n-grams) and
character-level n-grams to attenuate the spelling
variation issue on informal text, frequency of URL
mentions, punctuation, token lengths, capitaliza-
tion, among others; word generalization such as
topic identification (LDA) and word embeddings
(Mikolov et al., 2013); outcomes from sentiment
analysis classifiers (for example, samples pre-
dicted as negative polarity) as auxiliary evidence
of hate for multi-step approaches; usage of lex-
ical resources containing specific negative words
(slurs, insults, etc.); linguistic aspects such as parts

639

of speech and syntactic information; knowledge
information such as ontologies and taxonomies
(ConcepNet, WordNet, etc.).

For both tasks, we use the same approach for fi-
nal runs. Our approach takes into account several
features mentioned above. For example, the ef-
fects of character-level n-grams are broadly stud-
ied for related tasks in (Tellez et al., 2017b). In
particular, text modeling is a crucial factor in our
approach; therefore we used the approach pre-
sented in (Tellez et al., 2018) that selects the best
configuration on the datasets concerned. We also
use external knowledge to the given training set
to support the classification task; in this sense, our
approach named EvoMSA (§2.1) is a stacking sys-
tem based on genetic programming, and particu-
larly on the use of semantic genetic operators, that
focus on sentiment analysis, and, in general, on
text classification.

2 System Description

We used our framework based on genetic pro-
gramming named EvoMSA to evaluate HatEval
and OffensEval tasks. EvoMSA is composed of
a stack of B4MSA classifiers to produce predic-
tions, and EvoDAG combines the predictions into
the final one.

2.1 EvoMSA

EvoMSA1 (Graff et al., 2018a,b) is a Generic Sen-
timent Analysis System based on B4MSA and
EvoDAG. It is an architecture of two phases to
solve classification tasks, see Figure 1. EvoMSA
improves the performance of a global classifier
combining the predictions of a set of classifiers
with different models on the same text to be clas-
sified. Roughly speaking, in the first stage, a set
of B4MSA classifiers (see Sec. 2.1.1) are trained
from several views of the same datasets; datasets
provided by SemEval. It creates a decision func-
tions space with mixtures of values coming from
different views of knowledge, one coming from
B4MSA trained with the training set of the com-
petition (it is used as generic classifier), a lexicon-
based model (it only counts affective words: pos-
itive and negative, based on several lexicons (Liu,
2017; Albornoz et al., 2012; Sidorov et al., 2013;
Perez-Rosas et al., 2012)), an emoji-based space
(the sixty-four most probable emoticons for the
message) (Graff et al., 2018b), and the output of

1https://github.com/INGEOTEC/EvoMSA

FastText (Grave et al., 2018) (word embeddings
of dimension of 100) trained with the training set.
Finally, EvoDAG’s inputs are the concatenation of
all the decision functions predicted, and EvoDAG
produces a final value or prediction. The fol-
lowing subsections describe the internal parts of
EvoMSA. The precise configuration of our bench-
marked system is described in Sec. 4.

Figure 1: EvoMSA Architecture

2.1.1 B4MSA
B4MSA2 focus on multilingual sentiment analy-
sis. For complete details of the model see (Tellez
et al., 2017a,b). The core idea behind B4MSA is to
tackle the sentiment analysis problem as a model
selection problem, using a different view of the
underlying combinatorial problem, i.e., B4MSA
combines a bunch of different text tokenization,
text transformations, weighting methods, and in-
ternally uses an SVM with a linear kernel to
classify. Also, B4MSA takes advantage of sev-
eral domain-specific particularities like emojis and
emoticons and makes explicit handling of nega-
tion statements expressed in texts. Nonetheless,
EvoMSA avoids the sophisticated use of B4MSA
fixing the model for each language in favor of per-
forming an optimization process at the level of
the decision functions of several models (Miranda-
Jiménez et al., 2017). Table 1 shows text transfor-
mation parameters used in our system for English
and Spanish languages.

2.1.2 EvoDAG
EvoDAG3 (Graff et al., 2016, 2017) is a Genetic
Programming system specifically tailored to tackle
classification and regression problems on very
high dimensional vector spaces and large datasets.
In particular, EvoDAG uses the principles of Dar-
winian evolution to create models represented as a
directed acyclic graph (DAG). An EvoDAG model

2https://github.com/INGEOTEC/b4msa
3https://github.com/mgraffg/EvoDAG

640

has three distinct node’s types; the inputs nodes,
that as expected received the independent vari-
ables, the output node that corresponds to the la-
bel, and the inner nodes are the different numerical
functions such as sum, product, sin, cos, max, and
min, among others. Due to lack of space, we refer
the reader to (Graff et al., 2016) where EvoDAG is
broadly described.

3 Experimental Settings

As we mentioned, to determine the best configura-
tion of parameters for text modeling, B4MSA in-
tegrates a hyper-parameter optimization phase that
ensures the performance of the classifier based on
the training data. The text modeling parameters
for B4MSA were set for all process as we show in
Table 1 for English and Spanish languages. A text
transformation feature could be binary (yes/no)
or ternary (group/delete/none) option. Tokenizers
denote how texts must be split after applying the
process of each text transformation to texts. Tok-
enizers generate text chunks in a range of lengths,
all tokens generated are part of the text representa-
tion. B4MSA allows selecting tokenizers based on
n-words, q−grams, and skip-grams, in any com-
bination. We call n-words to the popular word n-
grams; in particular, we allow to use any combi-
nation of unigrams, bigrams, and trigrams. Also,
the configuration space allows selecting any com-
bination of character, q-grams, for q = 1 to 9.
Finally, we allow skip-grams such as (3, 1) and
(2, 2), three words separated by one word (gap),
and two words separated by two gaps.

We use two baselines B4MSA and the Fast-
Text’s classifier (Bojanowski et al., 2016) for both
contests. FastText represents sentences with a
weighted bag of words, and each word is repre-
sented as a bag of character n-gram to create text
vectors based on word embeddings. Our custom
FastText searches automatically the best param-
eters, e.g., for OffensEval with parameters such
as window size = 9, learning rate = 0.01,
epochs = 10, size of word vectors = 10, min-
imum and maximum length of character n-grams,
2 and 5, respectively; and some other preprocess-
ing steps such as group numbers and reduce dupli-
cated characters.

3.1 Datasets

SemEval contests provide datasets to train systems
for each task. Table 2 presents the data distribu-

Text transformation English (HE) Spanish (HE) English (OE)

remove diacritics yes yes yes
remove duplicates yes yes yes
remove punctuation yes yes yes
emoticons group group group
lowercase yes yes false
numbers group delete delete
urls group none group
users group group none
hashtags none none none
entities none none none
stemming yes yes yes

Term weighting

TF-IDF yes yes yes
Entropy no no no

Tokenizers

n-words {1, 3} {1, 2} {1, 2, 3}
q-grams {3, 5, 9} {2, 5, 7, 9} {3, 4, 5, 9}
skip-grams {(3, 1)} {(3, 1)} {(3, 1), (2, 2)}

Table 1: Example of set of configurations for text modeling,
HatEval (HE), and OffensEval (OE)

tion of the HatEval dataset. Hate class (HATE) de-
fines tweets that convey hate against immigrants or
women; its complement correspond to these mes-
sages not having hate content (NO-H), aggressive
(AGGR) and no aggressive (NO-A), and target ha-
rassed (TARG) as individual and group.

Table 3 shows the OffensEval data distribution.
In Task A, class OFF defines tweets that have
offenses or insults; while class NOT describes
tweets with no offensive content. Messages with
labeled as TIN contain an insult or threat to an en-
tity; UNT defines the opposite. Group (GRP), in-
dividual (IND), and others (OTH) classes contain
the target of the offensive messages. The Offen-
sEval collection is described in detail in Zampieri
et al. (2019a).

DataSet NO-H HATE NO-A AGGR NO-T TARG

training (English) 5,217 3,783 7,441 1,559 7,659 1,341
development (English) 573 427 796 204 781 219
training (Spanish) 2,643 1,857 2,998 1,502 3,371 1,129
development (Spanish) 278 222 324 176 363 137

Table 2: Statistics of HatEval datasets.

DataSet Task A Task B Task C
NOT OFF TIN UNT GRP IND OTH

training 8,840 4,400 3,876 524 1,074 2,407 395
development 243 77 34 39 4 30 2

Table 3: Statistics of OffensEval datasets for English lan-
guage.

4 Results

We present the results of our approaches for HatE-
val contest in Table 4 and Table 5. We performed
our experimentation on the development dataset

641

provided by HateEval. Table 4 shows the results
of task A, given a tweet is hateful or not hateful
for English and Spanish languages. In the case of
task A, the macro-F1 score is used to measure the
performance. Table 5 shows the results of task B,
classify tweets as aggressive or not aggressive and
the target harassed.

In the case of OffenseEval, Table 6 shows the
results for the three task proposed offensive lan-
guage identification (Task A), categorization of of-
fense types (Task B), and offense target identifica-
tion (Task C).

We present three system configurations for both
tasks. B4MSA uses only the training data pro-
vided by the contest as the knowledge base to
classify texts, i.e., B4MSA is our baseline, but
it is also its outcome is an additional input for
our more sophisticated classifier (EvoMSA). Fast-
Text generates word embeddings from the pro-
vided dataset. We do not use pre-training vectors,
using pre-trained vectors did not provide any sig-
nificant improvement in this case, but increased
the complexity of the models and the processing
pipeline. EvoMSA (Graff et al., 2018a) combines,
using EvoDAG, the output of different text models
such as B4MSA, a lexicon-based model, an emoji-
space model, and FastText.

As we can see the performance in all results
Tables, EvoMSA is systematically better than our
other systems; under these circumstances, we de-
cided to use EvoMSA firstly in the evaluation
phase. Following the rules of HatEval, only
the last run would be valid; therefore we used
EvoMSA for this chance. In the case of Offen-
sEval, up to three predictions were allowed on
the test dataset, but only the best one was com-
pared with other systems. As we can see, Table
6 shows the performance of our three systems on
gold standards; EvoMSA stays ahead in all tasks
including the baselines from the contest. The table
also shows the performance of two baselines, “All
NOT” and “ALL OFF”, that correspond to label-
ing all tweets as NOT or OFF, respectively; simi-
larly, the rest of the tasks have baselines for “All
TIN”, “All UNT”, “All GRP”, “ALL IND”, and
“ALL OTH” labeling strategies.

5 Conclusions

In this paper was presented our solution for Hat-
Eval and OffensEval, two campaigns of SemEval
2019. We show the competitiveness of our ap-

System F1 Accuracy

English

B4MSA 0.736 0.752
EvoMSA 0.736 0.733
FastText 0.728 0.756

Performance on gold standard

EvoMSA 0.350 0.447

Spanish

B4MSA 0.812 0.838
EvoMSA 0.821 0.834
FastText 0.822 0.801

Performance on gold standard

EvoMSA 0.710 0.710

Table 4: Results of HateEval: Task A

proach in both training and test phases. EvoMSA
and B4MSA are designed to be multilingual and
language and domain independent as much as pos-
sible. For the training step, we used extra knowl-
edge from datasets out of any specific emotion of
the contests, but categories or emotions related to
sentiment-analysis information. Our solution per-
forms well in Spanish and some task for English
languages; however, there is room for further im-
provements in performance for tasks in English
language using another sort of knowledge for spe-
cific domains.

References
Jorge Carrillo De Albornoz, Laura Plaza, and Pablo

Gerv. 2012. Language Resources and Evaluation
SentiSense : an affective lexicon for sentiment anal-
ysis SentiSense : An easily scalable concept-based
affective lexicon for sentiment analysis. In Interna-
tional Conference on Language Resources and Eval-
uation, pages 3562–3567, Istanbul, Turkey. Euro-
pean Language Resources Association (ELRA).

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

M. Graff, E. S. Tellez, S. Miranda-Jiménez, and H. J.
Escalante. 2016. Evodag: A semantic genetic pro-
gramming python library. In 2016 IEEE Interna-

642

System Aggressiveness Hate Target Avg-F1
F1 Accuracy F1 Accuracy F1 Accuracy

English

B4MSA 0.495 0.814 0.736 0.752 0.659 0.858 0.630
EvoMSA 0.556 0.746 0.736 0.733 0.711 0.851 0.668
FastText 0.536 0.806 0.729 0.752 0.710 0.866 0.658

Performance on gold standard

EvoMSA 0.515 0.542 0.348 0.445 0.653 0.699 0.506

Spanish

B4MSA 0.820 0.726 0.785 0.810 0.767 0.880 0.791
EvoMSA 0.755 0.818 0.821 0.834 0.810 0.890 0.795
FastText 0.744 0.818 0.796 0.824 0.791 0.888 0.777

Performance on gold standard

EvoMSA 0.737 0.765 0.71 0.71 0.816 0.862 0.754

Table 5: Results of HateEval: Task B

System F1 Accuracy

Task A

B4MSA 0.767 0.831
EvoMSA 0.774 0.828
FastText 0.741 0.803

Performance on gold standard.

All NOT baseline 0.419 0.721
All OFF baseline 0.218 0.279
B4MSA 0.729 0.801
EvoMSA 0.731 0.791
FastText 0.697 0.797

Task B

B4MSA 0.398 0.507
EvoMSA 0.694 0.699
FastText 0.618 0.644

Performance on gold standard.

All TIN baseline 0.470 0.888
All UNT baseline 0.101 0.113
B4MSA 0.507 0.892
EvoMSA 0.671 0.871
FastText 0.634 0.896

Task C

B4MSA 0.418 0.833
EvoMSA 0.392 0.611
FastText 0.550 0.806

Performance on gold standard.

All GRP baseline 0.179 0.366
All IND baseline 0.213 0.470
All OTH baseline 0.094 0.164
B4MSA 0.486 0.653
EvoMSA 0.576 0.676
FastText 0.504 0.639

Table 6: Results of OffensEval: Offensive language identifi-
cation (Task A), categorization of offense types (Task B), and
offense target identification (Task C).

tional Autumn Meeting on Power, Electronics and
Computing (ROPEC), pages 1–6.

Mario Graff, Sabino Miranda-Jiménez, Eric S Tellez,
and Daniela Moctezuma. 2018a. Evomsa: A mul-
tilingual evolutionary approach for sentiment analy-
sis. arXiv preprint arXiv:1812.02307.

Mario Graff, Sabino Miranda-Jiménez, Eric Sadit
Tellez, and Daniela Moctezuma. 2018b. Evomsa:
A multilingual evolutionary approach for sentiment
analysis. CoRR, abs/1812.02307.

Mario Graff, Eric S. Tellez, Hugo Jair Escalante, and
Sabino Miranda-Jiménez. 2017. Semantic Genetic
Programming for Sentiment Analysis. In Oliver
Schtze, Leonardo Trujillo, Pierrick Legrand, and
Yazmin Maldonado, editors, NEO 2015, number
663 in Studies in Computational Intelligence, pages
43–65. Springer International Publishing. DOI:
10.1007/978-3-319-44003-3 2.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learn-
ing Word Vectors for 157 Languages. In Proceed-
ings of the 11th Language Resources and Evalua-
tion Conference, pages 3483–3487. Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC-2018).

Bing Liu. 2017. English Opinion Lexicon.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Sabino Miranda-Jiménez, Mario Graff, Eric S Tellez,
and Daniela Moctezuma. 2017. INGEOTEC at Se-
mEval 2017 Task 4: A B4MSA Ensemble based on
Genetic Programming for Twitter Sentiment Analy-
sis. In Proceedings of the 11th International Work-
shop on Semantic Evaluations (SemEval-2017),
pages 771–776. Association for Computational Lin-
guistics.

643

Veronica Perez-Rosas, Carmen Banea, and Rada Mi-
halcea. 2012. Learning Sentiment Lexicons in Span-
ish. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC-2012), pages 3077–3081.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Grigori Sidorov, Sabino Miranda-Jiménez, Francisco
Viveros-Jiménez, Alexander Gelbukh, No Castro-
Sánchez, Francisco Velásquez, Ismael Dı́az-Rangel,
Sergio Suárez-Guerra, Alejandro Treviño, and Juan
Gordon. 2013. Empirical Study of Machine Learn-
ing Based Approach for Opinion Mining in Tweets.
In Proceedings of the 11th Mexican International
Conference on Advances in Artificial Intelligence -
Volume Part I, MICAI’12, pages 1–14, Berlin, Hei-
delberg. Springer-Verlag.

Eric S. Tellez, Sabino Miranda-Jiménez, Mario Graff,
Daniela Moctezuma, Ranyart R. Suárez, and Os-
car S. Siordia. 2017a. A simple approach to mul-
tilingual polarity classification in Twitter. Pattern
Recognition Letters, 94:68–74.

Eric S. Tellez, Sabino Miranda-Jimnez, Mario Graff,
Daniela Moctezuma, Oscar S. Siordia, and Elio A.
Villaseor. 2017b. A case study of spanish text trans-
formations for twitter sentiment analysis. Expert
Systems with Applications, 81:457 – 471.

Eric S. Tellez, Daniela Moctezuma, Sabino Miranda-
Jiménez, and Mario Graff. 2018. An automated text
categorization framework based on hyperparameter
optimization. Knowledge-Based Systems, 149:110–
123.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

644

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 645–651
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Abstract

In this paper, we describe our submissions

to SemEval-2019 task 6 contest. We tackled

all three sub-tasks in this task “OffensEval -

Identifying and Categorizing Offensive

Language in Social Media”. In our system

called JCTICOL (Jerusalem College of

Technology Identifies and Categorizes

Offensive Language), we applied various

supervised ML methods. We applied

various combinations of word/character n-

gram features using the TF-IDF scheme. In

addition, we applied various combinations

of seven basic preprocessing methods. Our

best submission, an RNN model was

ranked at the 25th position out of 65

submissions for the most complex sub-task

(C).

1 Introduction

Offensive language is frequent in social media. For

instance, ScanSafe's monthly "Global Threat

Report" reported that up to 80% of blogs contained

offensive contents and 74% included porn in the

format of the image, video, or offensive language

(Cheng, 2007). There are people that take

advantage of the perceived anonymity of

computer-mediated communication, using this to

write in behavior that many of them would not

consider in real life.

Online news and social networking services,

online communities, social media platforms, and

various computer companies have been investing a

lot of effort, time and money to cope with offensive

language in order to prevent abusive behavior.

Computational methods are among the most

effective strategies to identify various types of

aggression, offense, and hate speech in user-

generated content (e.g., comments, microblogs,

posts, and tweets). Detection of offensive

language has been investigated in recent years in

various studies (Waseem et al. 2017; Davidson et

al., 2017, Malmasi and Zampieri, 2018, Kumar et

al. 2018) and various workshops such as

ALW (Abusive Language Online) and TRAC

(Trolling, Aggression, and Cyberbullying).

In this paper, we describe our submissions to

SemEval-2019 task 6 contest. In Task-6,

OffensEval, there are three different sub-tasks.

Sub-task A deals with offensive language

identification. Sub-task B deals with the

automatic categorization of offense types. Sub-

task C deals with offense target identification.

The report of the OffensEval task is described

in Zampieri et al. (2019A) and the description of

the OLID dataset that was used for the

competition is in Zampieri et al. (2019B).

The structure of the rest of the paper is as

follows. Section 2 discusses work related to

offensive language in social media, tweet

classification, and data preprocessing. Section 3

presents, in general, the task description. In

Section 4, we describe the submitted models and

their experimental results. Section 6 summarizes

and suggests ideas for future research.

2 Background

2.1 Offensive Language in Social Media

In recent years, there has been an increase in the

number of studies dealing with Offensive

language in social media. Nobata et al. (2016)

developed a machine learning based method to

detect hate speech on online user comments from

two domains. They also built a corpus of user

comments annotated accordingly to three

subcategories (hate speech, derogatory,

 JCTICOL at SemEval-2019 Task 6: Classifying Offensive Language

in Social Media using Deep Learning Methods,

Word/Character N-gram Features, and Preprocessing Methods

XXX at SemEval-2019 Task 6: OffensEval –

Identifying and Categorizing Offensive Language in Social Media

Yaakov HaCohen-Kerner, Ziv Ben-David, Gal Didi,

Eli Cahn, Shalom Rochman, and Elyashiv Shayovitz

Department of Computer Science, Jerusalem College of Technology, Lev Academic Center

21 Havaad Haleumi St., P.O.B. 16031, 9116001 Jerusalem, Israel

kerner@jct.ac.il,benda1237@gmail.com,

galdd8@gmail.com, eli.cahn@gmail.com,

shal.rochman@gmail.com, elyashiv12@gmail.com

Yaakov HaCohen-Kerner, Ziv Ben-David, Gal Didi, Eli Cahn, Shalom Rochman, and Elyashiv Shayovitz

Department of Computer Science, Jerusalem College of Technology, Lev Academic Center

21 Havaad Haleumi St., P.O.B. 16031, 9116001 Jerusalem, Israel

kerner@jct.ac.il,benda1237@gmail.com,galdd8@gmail.com,

eli.cahn@gmail.com, s.r.63914@gmail.com, elyashiv12@gmail.com

645

profanity). Waseem and Hovy (2016) introduced

a list of criteria founded in critical race theory and

used them to label a publicly available corpus of

more than 16k tweets with tags about both racial

and sexist offenses.

A survey on hate speech detection is presented

by Schmidt and Wiegand (2017). The authors

introduced various NLP methods that were

developed in order to detect hate speech.

Davidson et al. (2017) presented a multi-class

classifier to distinguish between three categories:

hate speech, offensive language, and none of these

two. The analysis of the predictions and the errors

show when we can reliably separate hate speech

from other offensive language and when this

differentiation is more difficult. Anzovino et al.

(2018) built a labelled corpus containing 2,227

misogynous (hate speech against women) tweets

and no-misogynous tweets and explored various

NLP features and ML models for detecting and

classifying misogynistic language.

2.2 Tweet Classification

Sriram et al. (2010) presented a new classification

model that uses a small set of domain-specific

features extracted from the author‟s profile and

text. Experimental results showed that the

classification accuracy of their model is better

than the classification accuracy of the traditional

Bag-Of-Words model. Batool et al. (2013)

introduced a system that extracts knowledge from

tweets and then classifies the tweets based on the

semantics of knowledge contained in them. For

avoiding information loss, knowledge enhancer is

applied that enhances the knowledge extraction

process from the collected tweets.

Stance classification of tweets was investigated

by HaCohen-Kerner et al. (2017). Given test

datasets of tweets from five various topics, they

classified the stance of the tweet authors as either

in FAVOR of the target, AGAINST it, or NONE.

Their algorithm used a few tens of features mainly

character-based features where most of them are

skip char ngram features. The experimental

results showed that this algorithm significantly

outperforms the traditional ‘bag-of-words’ model.

2.3 Data preprocessing

Data preprocessing is an important step in data

mining (DM) and ML processes. In tweets, it is

1 https://github.com/phatpiglet/autocorrec.

common to find typos, emojis, slang, HTML tags,

spelling mistakes, irrelevant and redundant

information. Analyzing data that has not been

carefully cleaned or pre-processed might lead to

misleading results.

Not all of the preprocessing types are

considered effective in the text classification

community. For instance, Forman (2003), in his

study on feature selection metrics for text

classification, claimed that stop words occurring

frequently and are ambiguous and therefore

should be removed, However, HaCohen-Kerner et

al. (2008) demonstrated that the use of word

unigrams including stop words lead to improved

text classification results compared to the results

obtained using word unigrams excluding stop

words in the domain of Hebrew-Aramaic Jewish

law documents.

In our system, we applied various combinations

of seven basic preprocessing types: C - spelling

Correction1 using a dictionary of containing 479k

English words2, L – converting to Lowercase

letters, P – Punctuation removal, S – Stopwords

Removal, R – Repeated characters removal, T –

sTemming, and M - leMmatizion) in order to

employ the best combination.

3 The Competition of Task 6

SemEval-2019 Task 6 consists of three subtasks:

1. Subtask A: Given a tweet, predict whether it

contains offensive language or a targeted

(veiled or direct) offense or it does not contain

offense or profanity.

2. Subtask B: Given a tweet containing

offensive language, predict whether it

contains an insult or threat to an individual, a

group, or others, or contains non targeted

profanity and swearing.

3. Subtask C: Given a tweet containing an insult

or threat, predict whether the target is an

individual or a group of people considered as

a unity due to the same ethnicity, gender or

sexual orientation, political affiliation,

religious belief, or something else, or does not

belong to any of the previous two categories

(e.g., an organization).

The dataset of Task 6 contains tweets that were

annotated using crowdsourcing. The dataset of

sub-task A contains 13,240 tweets: 4,404 OFF

(Offensive language) tweets (about 33%) and

8,836 NOT (Not Offensive) tweets (about 67%).

2 https://github.com/dwyl/english-words.

646

The dataset of sub-task B contains 4,400 offensive

tweets: 3,876 TIN (Targeted Insult) tweets (about

88%) and 524 UNT (Untargeted) tweets. The

dataset of sub-task C contains 3,876 tweets: 2,407

IND (Individual) tweets (about 62%), 1,074 GRP

(Group) tweets (about 28%), and 395 OTH

(Other) (about 10%). The test data of sub-tasks A,

B, and C contain 860, 240, and 213 unlabeled

tweets, respectively.

4 The Submitted Models and

Experimental Results

We have submitted 17 models: 6 models to task

6-A, 6 models to task 6-B, and 5 models to task 6-

C. We applied the Python module called Scikit-

learn (Pedregosa et al., 2011) using the TF-IDF

scheme called TfidfTransformer3 and we applied

various supervised ML methods with various

numbers of n-gram features, skip word/char n-

grams (HaCohen-Kerner et al., 2017) and

combinations of pre-processing types.

While all teams’ submissions in all three sub-

tasks of task 6 were ranked according to their F-

Measure scores, we were wrong in all these sub-

tasks in the sense that we submitted models

according to their accuracy scores.

Most of our submitted models were RNN models.

Each RNN model was a bidirectional RNN with 4

hidden layers, with different numbers of LSTMs,

values of Dropout, and number of vectors of GloVe

(Pennington et al., 2014). Additional explanations

to our RNN models, which are given in the next

paragraphs are mainly based on the explanations

given by Nikolai Janakiev in “Practical Text

Classification with Python and Keras”4.

We used the Tokenizer utility class, which

converts a text corpus into a list of integers. Each

3 https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.

text.TfidfTransformer.html#sklearn.feature_extraction.text.Tfi

dfTransformer

integer maps to a value in a dictionary that encodes

the entire corpus, with the dictionary’s keys being

the vocabulary terms themselves.

We chose to use the Twitter-aware tokenizer,

designed to be flexible and easy to adapt to new

domains and tasks (e.g., for tweet processing).

We used the word embeddings method. This

method represents words as dense word vectors,

which are trained, unlike the one-hot encoding

which is hardcoded. The word embeddings map

the statistical structure of the language used in the

corpus. Their aim is to map semantic meaning into

a geometric space. This geometric space is then

called the embedding space. This method would

map semantically similar words close on the

embedding space.

There are two options to get such a word

embedding. One way is to train the word

embeddings during the training of our neural

network. The other way is to use a precomputed

embedding space that utilizes a larger corpus.

Among the most popular methods are GloVe

(Global Vectors for Word Representation)

developed by the Stanford NLP Group

(Pennington et al., 2014) and

Word2Vec developed by Mikolov et al. (2013).

GloVe applies a co-occurrence matrix and by

using matrix factorization while Word2Vec

applies neural networks. Word2Vec is more

accurate and GloVe is faster to compute. We used

the GloVe method for our model.

4.1 Results of Task 6-A

Table 1 presents the main characteristics and results

of our six submitted models to task 6-A. The

models are presented in descending order

according to their F-measure score on the test set.

4 https://realpython.com/python-keras-text-

classification/#author

647

Table 1: Results of our 6 models in task-A.

The main results and conclusions that can be

derived from Table 1 are as follows:

 The best submitted model is an RNN

model with F-measure of 0.74 and

accuracy of 0.81 obtaining the 43rd

position out of 103 submissions.

 The best combination of N-gram features

for this model contains 5000 word

unigrams and 100 word bigrams (without

any word trigrams).

 In addition, this model used 512 LSTMs

and in its FC layer, it used seven different

ML methods.

 This model did not use any combination

of pre-processing types.

 Simpler RNN models and non RNN

models e.g. the SVM-linear model (last

row in Table 1) as well as other models

5 DFS – Decision Function Shape.

that were tested but not submitted, were

less successful.

4.2 Results of Task 6-B

Table 2 presents the main characteristics and results

of our six submitted models to task 6-B. The

models are presented in descending order

according to their F-measure score on the test set.

It should be noted that the train set for sub-task b

contains imbalanced sets of tweets. The number of

tweets classified as UNT is 524 (about 12%) while

the number of tweets classified as TIN is 3,876

(about 88%). The main results and conclusions that

can be derived from Table 2 are as follows:

 Our best submitted model is a SVC - support

vector classifier with F-measure of 0.49 and

accuracy of 0.85 obtaining the 62nd position

The first

name of the

model

authors

Pre-

proc-

essing

 Model Score

ML

Meth

od

N-Gram

Features

Additional

Features

(for RNN

only)

FC Layer

(for RNN only)

CV Test Scores

Acc. F-M Acc. Rank

JCTICOL-

Ziv Ben-

David

- RNN

5000 word

unigrams, 100

word bigrams

512 LSTMs,

0.2 Dropout.

GloVe:

100d.

Logistic Regression

Random Forest

SVM-linear

SVC (kernel=linear)

SVC (kernel=rbf)

SVC (DFS5=ovo)

KNeighbors

0.85 0.74 0.81
49/

103

JCTICOL-

Eli Cahn
CLS RNN None

512 LSTMs,

0.2 Dropout.

GloVe:

100d.

- 0.77 0.73 0.8
50/

103

JCTICOL-

Gal Didi
- RNN

5000 word

unigrams, 100

word bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

100d.

Logistic Regression

Random Forest

 SVM-linear

0.85 0.73 0.79
52/

103

JCTICOL-

Shalom

Rochman

L RNN None

512 LSTMs,

0.2 Dropout.

GloVe:

100d.

- 0.75 0.73 0.81
59/

103

JCTICOL-

Elyashiv

Shayovitz

- RNN

5000 word

unigrams, 100

word bigrams

512 LSTMs,

0.2 Dropout.

GloVe:

100d.

SVC (kernel=rbf) 0.86 0.72 0.81
62/

103

JCTICOL-

Yaakov

HaCohen-

Kerner

-
SVM-

linear

5000 word

unigrams, 200

word bigrams,

100 words

trigrams

- - 0.72 0.72 0.78
67/

103

648

out of 75 submissions. This model used a

combination of the MPR pre-processing types.

 This model used 10,000 char trigrams where

for each character trigram we allow up to a

maximum of 7 skipped characters in-between

the chosen ones.

 As mentioned before, while the submitted

models were ranked according to their F-

Measure results, we were wrong and submit

models according to their accuracy results.

Table 2: Results of our 6 models in task-B.

4.3 Results of Task 6-C

Table 3 presents the main characteristics and results

of our six submitted models to task 6-C. The

models are presented in descending order

according to their F-measure score on the test set.

The main results and conclusions that can be

derived from Table 3 are as follows:

 Our best submitted model is an RNN

model with F-measure of 0.53 and accuracy of

0.64 obtaining the 25th position out of 65

submissions.

 The best combination of N-gram features

for this model contains 5000 word unigrams

and 200 word bigrams (without any word

trigrams).

 In addition, this model used 512 LSTMs

and in its FC layer it used only the SVC ML

method.

 This model did not use any combination of

pre-processing types.

 Simpler RNN models and non RNN models

such as the SVC-linear model (last row in

Table 3) as well as other models that were

tested but not submitted to the competition,

were less successful.

User
Pre-

processing

Model Score

ML Method N-Gram Features

CV Test Score

Acc.
Macro-

F1
Acc. Rank

JCTICOL-

Eli Cahn
MPR

SVC - Support

vector classifier

10000 char trigrams

with 7 skips
0.87 0.49 0.85 62 / 75

JCTICOL-

Ziv Ben- David
L

MLP - Multilayer

perceptron

10000 char

unigrams

with 4 skips

0.87 0.48 0.85 63 / 75

JCTICOL-

Gal Didi
MPRS

SVC - Support

vector classifier

7000 word bigrams

with 0 skips
0.87 0.47 0.82 65 / 75

JCTICOL-

Elyashiv

Shayovitz

CMPR
LR - Logistic

regression

10000 char bigrams

with 7 skips
0.87 0.47 0.89 66 / 75

JCTICOL-

Yaakov

HaCohen-

Kerner

CLS
SVC - Support

vector classifier

1000 char trigrams

with 9 skips
0.87 0.47 0.89 67 / 75

JCTICOL-

Shalom

Rochman

CMP
RF - Random

forest

7000 word

unigrams

with 0 skips

0.87 0.47 0.81 69 / 75

649

Table 3: Results of our 6 models in task-C.

5 Conclusions and Future Research

In this paper, we describe our submissions to three

sub-tasks of Task 6 of SemEval-2019 contest. Our

system JCTICOL (Jerusalem College of

Technology Identifies and Categorizes Offensive

Language) includes 17 formal submissions: 6 for

sub-task A, 6 for sub-task B, and 5 for sub-task C.

We used the TF-IDF scheme and we applied

various supervised ML methods with various

numbers of n-gram features and combinations of

pre-processing types. Our best submission was

ranked at the 25th position out of 65 submissions

for the most complex sub-task (C).

Future research proposals that may contribute

to better classification are as follows. (1) Using

additional feature sets such as stylistic feature sets

(HaCohen-Kerner et al., 2010B) and keyphrases

that can be extracted from the text corpora

(HaCohen-Kerner et al., 2007); (2) Using

acronym disambiguation (e.g., HaCohen-Kerner

et al., 2010A), i.e., selecting the correct long form

of the acronym depending on its context will

enrich the tweet’s text; and (3) Using other deep

learning models.

Acknowledgments

This research was partially funded by the

Jerusalem College of Technology, Lev Academic

Center.

References

Rabia Batool, Asad Masood Khattak, Jahanzeb

Maqbool, and Sungyoung Lee 2013. Precise tweet

classification and sentiment analysis. In Computer

and Information Science (ICIS), 2013 IEEE/ACIS

12th International Conference on (pp. 461-466).

IEEE.

Jacqui Cheng. 2007. Report: 80 percent of blogs

contain "offensive" content, in ars technica. vol.

2011.

Thomas Davidson, Dana Warmsley, Michael Macy,

and Ingmar Weber. 2017. Automated hate speech

detection and the problem of offensive language.

In Eleventh International AAAI Conference on Web

and Social Media, pages 512-515.

User

Pre

proc

essi

ng

Model Score

ML

Method

N-Gram

Features

Additional

Features

(for RNN

only)

FC Layer

(for RNN only)

CV Test Scores

Acc. F-M Acc. Rank

JCTICOL-

Gal Didi
- RNN

5000 word

unigrams,

200 word

bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

200d special

for Tweeter

SVC

(kernel=linear)
0.88 0.53 0.64 25 / 65

JCTICOL-

Ziv Ben-

David

- RNN

8000 word

unigrams,

200 word

bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

200d special

for Tweeter

Logistic

Regression
0.89 0.51 0.64 33 / 65

JCTICOL-

Elyashiv

Shayovitz

- RNN

5000 word

unigrams,

200 word

bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

200d special

for Tweeter

- 0.68 0.50 0.67 40 / 65

JCTICOL-

Yaakov

HaCohen-

Kerner

- RNN

5000 word

unigrams,

200 word

bigrams

512 LSTMs,

0.3 Dropout.

GloVe:

200d special

for Tweeter

SVM-linear 0.88 0.49 0.62 42 / 65

JCTICOL-

Shalom

Rochman

-

SVC_

(kernel=

linear)

5000 word

unigrams,

200 word

bigrams

- - 0.64 0.42 0.54 58 / 65

650

George Forman. 2003. An extensive empirical study of

feature selection metrics for text

classification. Journal of machine learning

research, 3(Mar), 1289-1305.

Yaakov HaCohen-Kerner, Ittay Stern, David Korkus,

and Erick Fredj. 2007. Automatic machine learning

of keyphrase extraction from short html documents

written in Hebrew. Cybernetics and Systems: An

International Journal, 38(1), 1-21.

Yaakov HaCohen-Kerner, Dror Mughaz, Hananya

Beck, and Elchai Yehudai 2008. Words as classifiers

of documents according to their historical period

and the ethnic origin of their authors. Cybernetics

and Systems: An International Journal, 39(3), 213-

228.

Yaakov HaCohen-Kerner, Ariel Kass, and Ariel Peretz.

2010A. HAADS: A Hebrew Aramaic abbreviation

disambiguation system. Journal of the American

Society for Information Science and

Technology, 61(9), 1923-1932.

Yaakov HaCohen-Kerner, Hananya Beck, Elchai

Yehudai, and Dror Mughaz. 2010B. Stylistic feature

sets as classifiers of documents according to their

historical period and ethnic origin. Applied

Artificial Intelligence, 24(9), 847-862.

Yaakov HaCohen-Kerner, Ziv Ido, and Ronen

Ya’akobov. 2017. Stance classification of tweets

using skip char Ngrams. In Joint European

Conference on Machine Learning and Knowledge

Discovery in Databases (pp. 266-278). Springer,

Cham.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and

Marcos Zampieri. 2018. Benchmarking aggression

identification in social media. In Proceedings of the

First Workshop on Trolling, Aggression, and

Cyberbullying (TRAC-2018) (pp. 1-11).

Shervin Malmasi and Marcos Zampieri. 2018.

Challenges in discriminating profanity from hate

speech. Journal of Experimental & Theoretical

Artificial Intelligence, 30(2), 187-202.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey

Dean. 2013. Efficient estimation of word

representations in vector space. arXiv preprint

arXiv:1301.3781.

Chikashi Nobata, Joel Tetreault, Achint Thomas,

Yashar Mehdad, and Yi Chang. 2016. Abusive

language detection in online user content. In:

Proceedings of the 25th International Conference on

World Wide Web, pp. 145–153. International World

Wide Web Conferences Steering Committee.

Fabian Pedregosa, Varoquaux, G., Gramfort, A.,

Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R. and Dubourg, V. and

Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., and Duchesnay, E. 2011. Scikit-

learn: Machine learning in Python. Journal of

machine learning research, 12(Oct), 2825-2830.

Jeffrey Pennington, Richard Socher, and Christopher

D. Manning. 2014. GloVe: Global Vectors for Word

Representation.

Anna Schmidt and Michael Wiegand. 2017. A survey

on hate speech detection using natural language

processing. In Proceedings of the Fifth International

Workshop on Natural Language Processing for

Social Media. Association for Computational

Linguistics, Valencia, Spain, pages 1–10.

Bharath Sriram, David Fuhry, Engin Demir, Hakan

Ferhatosmanoglu. 2010. Short text classification in

twitter to improve information filtering.

In Proceedings of the 33rd international ACM

SIGIR conference on Research and development in

information retrieval (pp. 841-842). ACM.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,

and Ingmar Weber. 2017. Understanding abuse: A

typology of abusive language detection

subtasks. arXiv preprint arXiv:1705.09899.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,

Sara Rosenthal, Noura Farra, and Ritesh Kumar.

2019A. SemEval-2019 Task 6: Identifying and

Categorizing Offensive Language in Social Media

(OffensEval). In Proceedings of the 13th

International Workshop on Semantic Evaluation

(SemEval).

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,

Sara Rosenthal, Noura Farra, and Ritesh Kumar.

2019B. Predicting the Type and Target of Offensive

Posts in Social Media. In Proceedings of NAACL.

651

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 652–656
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

jhan014 at SemEval-2019 Task 6: Identifying and Categorizing Offensive
Language in Social Media

Jiahui Han
University of Ottawa

jhan014@uottawa.ca

Shengtan Wu
Jackson State University

shengtan.wu
@students.jsums.edu

Xinyu Liu
Purdue University

liu1957@purdue.edu

Abstract

In this paper, the team jhan014 presents two
methods to identify and categorize the offen-
sive language in Twitter. In the first method,
we develop a deep neural network consisting
of bidirectional recurrent layers with Gated
Recurrent Unit (GRU) cells and fully con-
nected layers. In the second method, we estab-
lish a probabilistic model, modified sentence
offensiveness calculation (MSOC) to evalu-
ate the sentence offensiveness level and target
level according to different sub-tasks. Based
on task results, We evaluate the performance
of each method based on F1 score and analyze
the advantages and disadvantages of these two
methods with the type I error and type II error.
In conclusion, deep neural network behaves
well in all subtasks but has more type I er-
ror and fails to categorize subclasses with mi-
nor data or less character, while MSOC model
does better in target categorizing but has more
type II error in offensive identifying.

1 Introduction

With the popularity of social media like Twitter,
offensive language has become a serious prob-
lem(Zampieri et al., 2019b) on these media plat-
forms. People have to face with abusive behav-
ior from others in social media from time to time.
To solve this problem, finding a method to iden-
tify and categorize offensive languages is an ur-
gent need.

In this paper, two different methods, deep
learning method and modified sentence offensive-
ness calculation method, are used to categorize
the type and target of offensive language and the
difference of results are revealed and analyzed.

2 Related Work

Deep learning method: Deep learning methods
are widely used in natural language processing
(Liu et al., 2016). Models like Recursive neural
network are commonly used to identify if a
sentence contain certain emotion. In our work,
a deep neural network with GRU layers and all
connection layers is built.

Offensiveness Content Filtering: Offensive lan-
guage targets can be understood through the sen-
tence structure (Silva et al., 2016) or lexical analy-
sis (ElSherief et al., 2018). We take both sentence
structure and the offensiveness level of words into
consideration. Furthermore, we also concentrate
on the special punctuation (like @ and #) in on-
line social media.

3 Methodology and Data

3.1 Deep Neural Network
In the offensive language detection task, we de-
veloped a deep neural network based system with
binary cross-entropy output.

System Design The system consists of bidi-
rectional recurrent layers with Gated Recur-
rent Unit(GRU) cells and fully connected layers
(Chung et al., 2014). Because the output of the
last time-step is used as the embedding of a sen-
tence, we conduct zero padding in the beginning
of each sequence to construct the feature matrix.
The system architecture is shown in Table 1.

Optimization Steps Parameters in both RNN
layers and Dense layers are initialized by Xiaver
initialization method (Glorot and Bengio, 2010).
The model is optimized by Adam optimization
method with 0.01 learning rate. While training the

652

Layer Name Output
Dimension

Parameter #

Embedding 100 1000000
GRU 128 63360
GRU 128 74112
GRU 128 74112
GRU 128 74112
Dense 256 33024
Dense 128 32896
Dense 64 8256
Dense 32 2080
Dense 2 66

Table 1: System Architecture

neural network, an early stopping method with 2-
iteration tolerance is applied to monitor the pro-
cess. Once the early stopping method is triggered,
we manually lower the learning rate by 1/10 to
overcome the vibration and search for a smaller
minimum loss.

3.2 Modified Sentence Offensiveness
Calculation

Based on the sentence offensiveness calculation
method in this paper(Chen et al., 2012), we de-
velop a model to evaluate the sentence offensive-
ness.

Offensiveness Dictionary Construction We
can always find pejoratives, profanities, or obscen-
ities in offensive twitters. Strongly profanities are
always undoubtedly offensive when at users or re-
lated to some topics (like #) directly; but there
are many other weakly pejoratives and obscenities
that may also be offensive.
Word offensiveness is defined(Chen et al., 2012)
as: for each offensive word, w, its offensiveness

Ow =




a1 if w is a strongly offensive word
a2 if w is a weakly offensive word
0 otherwise

where 0 < a1 < a2 < 1, for the offensiveness
of strongly offensive words is higher than weakly
offensive words.

Syntactic Intensifier Detection We also built
the syntactic features by an intensifier(Zhang
et al., 2009). In a sentence, words syntactically
related to offensive word, w, are categorized in an
intensifier set, iw = {c1, . . . , ck}, for each word

cj , its intensify value, dj , is defined as

dj =




b1 if cj is @ or #
b2 if cj is an offensive word
1 otherwise

where 0 < b1 < b2 < 1, for offensive words used
to describe users are more offensive than the words
used to describe other offensive words. Thus, the
value of intensifier, Iw, for offensive word, w, can
be calculated as

∑k
j=1 dj .

Sentence Level Offensiveness Value Conse-
quently, the offensiveness value of sentence, s, be-
comes a determined linear combination of words’
offensiveness

Os =
∑

OwIw

From the training data, we learn two thresholds
θ1, θ2. For each sentence, s, we apply these two
values

P (s = OFF) =





1 if Os > θ2
Os−θ1
θ2−θ1 if θ1 ≤ Os ≤ θ2
0 if Os < θ1

If the offensiveness value is greater than θ1, the
language will be seen as offensive, while if it is
smaller than θ2 then the language will be not of-
fensive. Otherwise, the result will follow a proba-
bilistic distribution.

When solving other sub-tasks, this method can
also be used with changing the dictionary and re-
define the target words list.

3.3 Data
We use the datasets in Zampieri et al. (2019a) and
apply following methods to preprocess or trans-
form the data.

3.3.1 Preprocessing
The raw twitter data is preprocessed by a data
pipeline. All the information which has nothing
to do with word vectors such as stop words and
emojis are stripped and the output of the pipeline
are lower-case stemmed word sequencies.

3.3.2 Word Embedding
A word embedding step is applied to transform the
text into numerics for deep neural networks. 100-
dimensional Global Vectors(GloVe) word embed-
dings trained with twitter data are applied in this
study considering the trade-off between perfor-
mance and efficiency of the training process (Pen-
nington et al., 2014). We also explore embed-
ding layers in this study and the pretrained embed-
ding out-performs the embedding layer because of

653

the immense amount of information brought by
GloVe’s training set with 27-billion tweets.

4 Results

4.1 Sub-task A - Offensive language
identification

When identifying whether a sentence is offensive
or not, two methods show great difference while
the accuracy and F1-score are close (see Table 2).
In RNN method, there is more type I error (see
Figure 1) which means the model classifies some
non-offensive sentences as offensive ones. Since
origin dataset is unbalanced, the neural network
may not have enough non-offensive training ex-
amples to learn. Consequently, it cannot catch
the feature and structure of the non-offensive sen-
tences.
In MSOC method, this problem is improved. Due
to fixed human defined offensiveness dictionary,
the non-offensive sentence is not easily misclas-
sified as offensive one. However, since there are
still some offensive words appeared in dataset that
are not defined in the dictionary, there is still much
type II error (see Figure 2).

System F1 (macro) Accuracy
All NOT 0.4189 0.7209
All OFF 0.2182 0.2790
RNN 0.6899 0.7395
MSOC 0.6761 0.7895

Table 2: Results for Sub-task A.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

490 130

94 146

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: Sub-task A,RNN method

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

594 26

155 85

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Sub-task A,MSOC method

4.2 Sub-task B - Automatic categorization of
offense types

The behavior of MSOC method defeats RNN
method from all aspects (see Table 3 and Figure 3,
4) when categorizing the types of offense. This is
because usually targeted offensive language have
different sentence structure with untargetted ones,
this make it a really high accuracy approach to
categorize offensive type. In details, a target sen-
tence always contains third-person pronouns like
him her it them. And in most target tweets, the
sentence has some special punctuation like @ and
also related to some hot topics #.

System F1 (macro) Accuracy
All TIN 0.4702 0.8875
All UNT 0.1011 0.1125
RNN 0.6153 0.8667
MSOC 0.7545 0.925

Table 3: Results for Sub-task B.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

201 12

20 7

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 3: Sub-task B,RNN method

654

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

211 2

16 11

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 4: Sub-task B,MSOC method

4.3 Sub-task C - Offense target identification
In offense target identification, RNN method, al-
though has the similar accuracy and F1 score with
MSOC method (see Table 4), fails to classify any
of the test sentences into ’OTH’ class.(see Figure
5) The main reason of this result is ’OTH’ class is
not as characteristic as other two classes and the
partition of this class is the smallest as well. On
contrast, MSOC method can successfully classify
some test sentences in ’OTH’ class. (see Figure 6)
This may contribute to the predefined dictionary
and sentence structure.

System F1 (macro) Accuracy
All GRP 0.1787 0.3662
All IND 0.2130 0.4695
All OTH 0.0941 0.1643
MSOC 0.5149 0.6432
RNN 0.4630 0.6432

Table 4: Results for Sub-task C.

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

54 24

17 83

16 19

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5: Sub-task C,RNN method

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

60 15 3

15 74 11

24 8 3

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6: Sub-task C,MSOC method

5 Conclusion

RNN is an easy-implemented and high-efficiency
method to solve classification problem in natural
language processing. In this case, RNN shows an
acceptable result but it has many obvious draw-
backs. Such as high recall rate when handling un-
balanced data, fail to classify certain class if the
class is lack of obvious character. The MSOC
mehod, on the contrary, can give classification re-
sult of same quality. Even though MSOC cannot
improve the accuracy or the F1 score of classifica-
tion to a great extend, we believe we can combine
this method with deep learning method to get a
better result in similar problems in the future.

References
Y. Chen, Y. Zhou, S. Zhu, and H. Xu. 2012. Detecting

offensive language in social media to protect adoles-
cent online safety. In 2012 International Conference
on Privacy, Security, Risk and Trust and 2012 In-
ternational Confernece on Social Computing, pages
71–80.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR, abs/1412.3555.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International
Conference on Artificial Intelligence and Statistics
(AISTATS10). Society for Artificial Intelligence and
Statistics.

655

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. CoRR, abs/1605.05101.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In In EMNLP.

Leandro Araújo Silva, Mainack Mondal, Denzil Cor-
rea, Fabrı́cio Benevenuto, and Ingmar Weber. 2016.
Analyzing the targets of hate in online social media.
CoRR, abs/1603.07709.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Changli Zhang, Daniel Zeng, Jiexun Li, Fei-Yue Wang,
and Wanli Zuo. 2009. Sentiment analysis of chinese
documents: From sentence to document level. Jour-
nal of the American Society for Information Science
and Technology, 60(12):2474–2487.

656

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 657–661
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

JTML at SemEval-2019 Task 6:
Offensive Tweets Identification using Convolutional Neural Networks

Johnny Torres
ESPOL University

jomatorr@espol.edu.ec

Carmen Vaca
ESPOL University

cvaca@fiec.espol.edu.ec

Abstract

In this paper, we propose the use of a Convo-
lutional Neural Network (CNN) to identify of-
fensive tweets. We use an end-to-end model
(i.e., no preprocessing) and fine-tune pre-
trained embeddings (FastText) during training
for learning words’ representation. We com-
pare the proposed CNN model to a baseline
model, such as Linear Regression, and several
neural models. The results show that CNN
outperforms other models, and stands as a sim-
ple but strong baseline in comparison to other
systems submitted to the Shared Task.

1 Introduction

The fast growth of online social networks (OSNs)
has provided a medium for users to express their
ideas and opinions about any topic. However,
some users post offensive content which may de-
ter other users from engaging in online discus-
sions. Despite the tools provided by some OSNs to
block other users and report offensive content, the
manual verification of these events are limited in
scale and costs due to a large number of malicious
events performed by users or bots. Therefore, it
is critical to developing automated tools to mod-
erate the content that are robust to ambiguity, sar-
casm, and adversarial attacks (Fortuna and Nunes,
2018).

Offensive language detection is an active re-
search area, and several research efforts aim to
contribute datasets, propose taxonomies, and im-
prove current models to identify offensive con-
tent. In this direction, Zampieri et al. (2019b)
proposed a shared task for Identifying and Cat-
egorizing Offensive Language in Social Media.
The shared task is composed of the following sub-
tasks: a) Offensive language identification, b) Au-
tomatic categorization of offense types, and c) Of-
fense target identification.

tweet
Subtask

A B C

If the tournament of shit
ain’t on here. . .

OFF UNT -

He is so full of BS! OFF TIN IND

swear niggas make me
wanna turn this phone
off

OFF TIN GRP

Kick the absolute shite
out of the car.

OFF TIN OTH

Table 1: Examples of Offensive Tweets in the dataset.

Table 1 shows some examples in the dataset of
the shared task, and the labels in each of the sub-
tasks. The labels indicate if the tweet is Offensive
(OFF) and if it is an untargeted (UNT) or targeted
(TIN) offense. The targets of the offensive tweets
are individual (IND), group (GRP), other (OTH).
This paper contributes specifically to the subtask
A in the shared task.

The unstructured and noisy nature of user-
generated content on OSNs poses a challenge for
classification models. Traditional approaches use
a sparse representation for text data, such as the
bag of words (BOW) or TF-IDF (Manning et al.,
2008).

We propose a model based on Convolutional
Neural Networks (CNN) to identify and catego-
rize offensive language on tweets. The learning
representation relies on FastText pre-trained word
embeddings (Mikolov et al., 2018). Although, this
paper focus only on the first subtask, it can be ex-
tended to learn the other subtasks.

The rest of the paper describes related work in
section 2. Then, we explain in detail our proposed
model in section 3, and section 4 shows the re-
sults. Finally, we outline the conclusions and fu-
ture work in section 5.

657

2 Related Work

Previous work has studied several types of on-
line misbehavior such as aggression (Cheng et al.,
2015), cyberbullying (Pieschl et al., 2015), hate
speech (Saleem et al., 2017), offensive, and abu-
sive language identification (Waseem et al., 2017).

The major challenge in studying online mis-
behavior is the several forms it can take and the
lack of a standard definition (Saleem et al., 2017).
(Waseem et al., 2017) proposed a typology of abu-
sive language sub-tasks. Similarly, a taxonomy
proposed to detect toxic messages on Wikipedia
discussion pages demonstrated the impact on com-
munity health both on and offline (Wulczyn et al.,
2017). Wikimedia Foundation found that 54% of
contributors decreased participation in the activi-
ties when they suffer harassment 1. The same im-
pact could happen on social media when aggres-
sion and offensive language deter other users from
engaging in online discussions.

Previous works introduced several datasets like
the Internet Argument Corpus (Walker et al.,
2012) and the ”Hate Speech Twitter Annota-
tions” corpus (Waseem and Hovy, 2016). Most
datasets are small in comparison to the Wikipedia
dataset (Wulczyn et al., 2017), which enables to
train neural models on a large-scale dataset.

In the multilingual aspect, several studies tackle
languages other than English like Chinese (Su
et al., 2017), Slovene (Fišer et al., 2017), and re-
lated shared tasks such as GermEval (Wiegand
et al., 2018). However, the studies tackle each lan-
guage individually due to the difficulty for auto-
mated systems to handle multiple languages as id-
iomatic expressions are dependent on the location
and culture. Recent research on identifying pro-
fanity vs. hate speech highlighted the challenges
of distinguishing between profanity and threaten-
ing language which may not contain profane lan-
guage (Malmasi and Zampieri, 2018).

Recent surveys by (Schmidt and Wiegand,
2017) and (Fortuna and Nunes, 2018) summa-
rizes the taxonomies and methods proposed for
detecting abusive language. Also, recent work by
(Davidson et al., 2017) introduces the Hate Speech
Detection dataset used in several studies (Malmasi
and Zampieri, 2017; ElSherief et al., 2018; Zhang
et al., 2018).

1https://upload.wikimedia.org/
wikipedia/commons/5/52/Harassment_
Survey_2015_-_Results_Report.pdf

3 Methodology

The model architecture, shown in Figure 1, is a
slight variant of the CNN architecture proposed
by Kim (2014). We define xi ∈ Rk as the k-
dimensional word vector (i.e., word embeddings)
corresponding to the i-th word in the tweets. We
padded the tweets to make all equal length, and
represent a tweet of length n as

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn, (1)

where ⊕ is the concatenation operator. In gen-
eral, we refer xi:i+j to the concatenation of words
xi,xi+1, . . . ,xi+j . Then, we apply a convolution
operation that uses a filter w ∈ Rhk, over a win-
dow of h words to produce a new feature. For ex-
ample, we generate feature ci from a window of
words xi:i+h−1 by

ci = f(w · xi:i+h−1 + b). (2)

We denote b ∈ R as the bias term and f as
a RELU activation function defined as f(x) =
x+ = max(0, x), where x in the input to the neu-
ron (Glorot et al., 2011) . The convolution layer
applies the filter to each possible window of words
in the sentence {x1:h,x2:h+1, . . . ,xn−h+1:n} to
produce a feature map

c = [c1, c2, . . . , cn−h+1], (3)

with c ∈ Rn−h+1. Then, we apply a max-
over-time pooling operation over the feature map
and take the maximum value ĉ = max{c} as the
feature corresponding to this particular filter. The
goal is to capture the essential feature (the highest
feature value) for the feature maps. The pooling
scheme allows us to deal with variable sentence
lengths.

dsfdsdd

Embedding Layer

@USER She should ask a few native Americans what their take on this is.

Offensive

Input Layer (tweets)

Type Target
Output Layer

Dropout Dropout Dropout Dropout Layer

Convolutional 1D Layer

Global Max Pooling 1D

Dense Layer + Dropout + RELU

Dense Layer + SIGMOID

Figure 1: The CNN architecture used to identify offen-
sive tweets using binary output layer.

658

We have described the process by which we ex-
tract one feature from one filter. The model uses
multiple filters to obtain multiple features. These
features feed a fully connected layer with a RELU
activation function, and finally a sigmoid layer that
outputs the probability distribution over labels.

For regularization, we employ a dropout layer
with rate r = 0.2, constrained on l2-norms of the
weight vectors. We apply the dropout after the
embeddings and the penultimate layer. Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out (i.e., set to zero) a propor-
tion of p of the hidden units during forward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z+ b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z ◦ r) + b, (5)

where ◦ is the element-wise multiplication op-
erator and r ∈ Rm is a masking vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

4 Experiments

In this section, we describe the experimental set-
tings and the results for the subtask A: identify-
ing offensive tweets. We use the data provided in
the shared task OffensEval described in Zampieri
et al. (2019a). Table 2 describe the label distribu-
tion for each of the subtasks. We use the F1 score
as an evaluation metric for the models, and it is
the official ranking metric for the shared task is
macro-averaged F1.

Subtask A tweets

NOT 8840
OFF 4400

Table 2: Distribution of the labels in the training
dataset.

4.1 Embeddings

We evaluate the CNN model with several word
embeddings such as: a) Random Uniform initial-
ized, b) Word2Vec (Mikolov et al., 2013), and
c) FastText (Mikolov et al., 2018).

During training, we fine-tune the embedding
layer for each type of embeddings. Table 3 shows
that FastText embeddings provide the best results,
and we use it in further experiments.

Embedding Precision Recall F1

Random 71.69 69.47 70.23
Word2Vec 70.67 70.15 70.38
FastText 71.76 71.97 71.86

Table 3: Evaluation of different embeddings.

4.2 Models

We compare the CNN model against baseline
models such.

Logistic Regression (LR) with liblinear solver
and class weight to account for the imbalance
of the labels.

FastText as a simple and efficient baseline for
text classification, and often on par with deep
learning classifiers regarding the accuracy but
orders of magnitude faster for training and
evaluation (Joulin et al., 2016).

LSTM in its vanilla implementation (Tang et al.,
2015), with one LSTM layer after the Em-
beddings Layer.

Bi-LSTM implements a bi-directional LSTM ar-
chitecture (Zhou et al., 2016).

Table 4 shows the performance of cross-
validation data for the proposed CNN model and
the baseline models. For evaluation purposes, we
split the training dataset in 80% for training sub-
set and 20% testing subset. We use k fold cross
validation (k = 10) on the training subset. The
CNN model outperforms other models in detect-
ing Offensive Tweets and the overall Macro F1

but detecting Not Offensive tweets works better
with Bi-LSTM. We found that the non-neural LR
model outperforms neural models such as Fast-
Text and LSTM. Bi-LSTM and CNN performance

659

Not Offensive Offensive Macro

Model Precision Recall F1 Precision Recall F1 Precision Recall F1

LR 81.80 75.90 78.74 58.27 66.59 62.15 70.03 71.24 70.45
CNN 81.33 80.50 80.91 62.18 63.44 62.81 71.76 71.97 71.86
LSTM 77.73 78.97 78.34 57.03 55.23 56.11 67.38 67.10 67.23
Bi-LSTM 80.68 81.92 81.30 63.11 61.19 62.14 71.90 71.56 71.72
FastText 77.87 79.02 78.44 57.24 55.57 56.39 67.56 67.30 67.42

Table 4: Benchmark of supervised learning models. CNN yields the best performance based on the metric F1.

are on pair, and further evaluation of the hyper-
parameters (e.g., number of layers/neurons, acti-
vation functions) is required to determine which
of them performs better.

Table 5 show the results in the shared task eval-
uated on the testing dataset for subtask A. We in-
clude a random baseline generated by assigning
the same labels for all instances. For example,
”All OFF” in sub-task A represents the perfor-
mance of a system that labels everything as of-
fensive. The CNN model outperforms by a large
margin the random baseline.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
CNN 0.7591 0.8105

Table 5: Results for Sub-task A using CNN model
compared to simple baseline.

Figure 2 shows the confusion matrix for the re-
sults with our CNN model. Due to the imbalance
in the labels, the False Negatives in the results af-
fects by a large margin the F1 macro score.

5 Conclusion

In this paper, we proposed a neural model based
on Convolutional Neural Networks to identify and
categorize offensive tweets on social media. The
model outperforms baseline models and other Se-
quential Models such as LSTM and Bi-LSTM.
The reason CNN perform better than sequential
models could be due to the noisy and unstructured
form of the tweets.

In future work, we plan to use several variations
of CNN such as multi-channel and multi-view ar-
chitectures. Also, we will use recent advances in
learning representations based on deep contextu-
alized embeddings such as ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2018).

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

547 73

90 150

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Confusion matrix for Sub-task A, JTML Co-
daLab CNN model.

References
Justin Cheng, Cristian Danescu-Niculescu-Mizil, and

Jure Leskovec. 2015. Antisocial behavior in online
discussion communities. In Icwsm, pages 61–70.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

660

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Pro-
ceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 315–
323.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Christopher D Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Scoring, term weighting and
the vector space model. Introduction to information
retrieval, 100:2–4.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Stephanie Pieschl, Christina Kuhlmann, and Torsten
Porsch. 2015. Beware of publicity! perceived dis-
tress of negative cyber incidents and implications for
defining cyberbullying. Journal of School Violence,
14(1):111–132.

Haji Mohammad Saleem, Kelly P. Dillon, Susan Be-
nesch, and Derek Ruths. 2017. A web of hate: Tack-
ling hateful speech in online social spaces. CoRR,
abs/1709.10159.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 1422–1432.

Marilyn A Walker, Jean E Fox Tree, Pranav Anand,
Rob Abbott, and Joseph King. 2012. A corpus for
research on deliberation and debate. In LREC, pages
812–817.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Language Online.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex machina: Personal attacks seen at scale.
In Proceedings of the 26th International Conference
on World Wide Web, pages 1391–1399. International
World Wide Web Conferences Steering Committee.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classification
improved by integrating bidirectional lstm with two-
dimensional max pooling. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
3485–3495.

661

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 662–667
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

JU ETCE 17 21 at SemEval-2019 Task 6: Efficient Machine Learning
and Neural Network Approaches for Identifying and Categorizing

Offensive Language in Tweets

Mainak Pal*, Preeti Mukherjee∗, Somnath Banerjee, Sudip Kumar Naskar
Jadavpur University, Kolkata, India

{mainak.pal08,preetimukherjee08,sb.cse.ju}@gmail.com
sudip.naskar@cse.jdvu.ac.in

Abstract

This paper describes our system submissions
as part of our participation (team name:
JU ETCE 17 21) in the SemEval 2019 shared
task 6: “OffensEval: Identifying and Catego-
rizing Offensive Language in Social Media”.
We participated in all the three sub-tasks: i)
Sub-task A: offensive language identification,
ii) Sub-task B: automatic categorization of of-
fense types, and iii) Sub-task C: offense target
identification. We employed machine learn-
ing as well as deep learning approaches for
the sub-tasks. We employed Convolutional
Neural Network (CNN) and Recursive Neu-
ral Network (RNN) Long Short-Term Memory
(LSTM) with pre-trained word embeddings.
We used both word2vec and Glove pre-trained
word embeddings. We obtained the best F1-
score using CNN based model for sub-task A,
LSTM based model for sub-task B and Lo-
gistic Regression based model for sub-task C.
Our best submissions achieved 0.7844, 0.5459
and 0.48 F1-scores for sub-task A, sub-task B
and sub-task C respectively.

1 Introduction

Today, very large amounts of information are
available in online documents. As part of the ef-
fort to better organize this information for users,
researchers have been actively investigating the
problem of automatic text categorization. Tweets
are short length pieces of text, usually writ-
ten in informal style that contain abbreviations,
misspellings and creative syntax (like emoticons,
hashtags etc). In this paper we show that our

∗These two authors have contributed equally

multi-view ensemble approach that leverages sim-
ple representations of texts may achieve good re-
sults in the task of message polarity classification.
We used different machine learning algorithm and
neural network approaches for all the tasks which
are explained in the subsequent sections. The pa-
per is organized as follows: Section 2 lists down
the related work and Section 3 describes our ap-
proach. Section 4 presents the experiments, results
on the development set and discussion about the
confusion matrix and Section 5 details about the
observation. Section 6 concludes the paper with
possible future work.

OffensEval@SemEval-2019 shared task de-
scription, data and results are described in the
overview paper (Zampieri et al., 2019b).

2 Related Work

Papers published in the last two years include
the surveys by (Schmidt and Wiegand, 2017)
and (Fortuna and Nunes, 2018), the paper by
(Davidson et al., 2017) presenting the Hate
Speech Detection dataset used in (Malmasi and
Zampieri, 2017) and a few other recent papers
such as (ElSherief et al., 2018; Gambäck and
Sikdar, 2017; Zhang et al., 2018).

A proposal of typology of abusive language
sub-tasks is presented in (Waseem et al., 2017).
For studies on languages other than English see
(Su et al., 2017) on Chinese and (Fišer et al.,
2017) on Slovene. Finally, for recent discussion
on identifying profanity vs. hate speech see
(Malmasi and Zampieri, 2018). This work high-

662

lighted the challenges of distinguishing between
profanity, and threatening language which may
not actually contain profane language.

In addition, we would also like to mention
the previous editions of related workshops such
as TA-COS1, Abusive Language Online2, and
TRAC3 and related shared tasks such as GermEval
(Wiegand et al., 2018) and TRAC (Kumar et al.,
2018).

3 Methodology and Data

3.1 Data Description
The organizers provided a dataset of 13,240 tweets
which were annotated with the following task-
specific categories.

• Sub-task A: Offensive language identifica-
tion.

1. Not Offensive (NOT): These posts do
not contain offense or profanity.

2. Offensive (OFF): These posts contain
offensive language or a targeted (veiled
or direct) offense.

• Sub-task B: Automatic categorization of of-
fense types.

1. Targeted Insult and Threats (TIN): A
post containing an insult or threat to an
individual, a group, or others (see cate-
gories in sub-task C).

2. Untargeted (UNT): A post containing
non-targeted profanity and swearing.

• Sub-task C: Offense target identification.

1. Individual (IND): The target of the of-
fensive post is an individual: a famous
person, a named individual or an un-
named person interacting in the conver-
sation.

2. Group (GRP): The target of the offen-
sive post is a group of people consid-
ered as a unity due to the same ethnic-
ity, gender or sexual orientation, politi-
cal affiliation, religious belief, or some-
thing else.

1http://ta-cos.org/
2https://sites.google.com/site/

abusivelanguageworkshop2017/
3https://sites.google.com/view/trac1/

home

3. Other (OTH): The target of the offensive
post does not belong to any of the pre-
vious two categories (e.g., an organiza-
tion, a situation, an event, or an issue).

Table 1: Statistics of the training dataset

NOT 8040

OFF

UNT 524

TIN
IND 2407

3876GRP 1074
OTH 395

TOTAL 12440

The data collection methods used to compile
the dataset used in OffensEval is described in
Zampieri et al. (2019a). Table 1 provides statis-
tics of the training dataset.

3.2 Preprocessing
Raw tweets scraped from twitter generally result
in a noisy dataset. This is due to the casual nature
of people’s usage of social media. Tweets have
certain special characteristics such as re-tweets,
emoticons, user mention, etc. which have to be
suitably extracted. Therefore, raw twitter data has
to be normalized to create a dataset which can
be easily learned by various classifiers. We ap-
plied an extensive number of pre-processing steps
to standardize the dataset and reduce its size. Ini-
tially, we performed basic pre-processing opera-
tions on tweets which are as follows:

1. Convert the tweets to lower case.

2. Selective removal of special twitter features
like URL, User mention, Hash-tags etc. (Cf.
Table 2)

3. Converting abbreviated negative english
words to common negative verbs.

4. Removing special characters and numbers.

5. Tokenization.

Table 2: Regex used for pre-processing

Twitter Feature Regex pattern
URL https?://[ˆ]+ | www.[ˆ]+
Mention @[A-Za-z0-9]+
Hashtags #[A-Za-z0-9]+

663

3.3 Machine Learning

Most of the machine learning (ML) algorithms are
heavily reliant on hand crafted features designed
by experts. This makes ML algorithms less gen-
eralizable. So we did not use any language spe-
cific features. We used various Machine Learning
techniques to classify the tweets. When compar-
ing various machine learning algorithms, baseline
provides a point of reference to compare. While
developing the models, we employed TextBlob4 as
baseline. We compared the validation result with
TextBlob. Textblob is a python library for process-
ing textual data. Apart from useful tools such as
POS tagging, n-gram,etc. it has a built-in senti-
ment classification tool. We also tried a variation
for the fine-grained classification task where the
predicted output from task A was also added as
a feature to the TF-IDF and list specific features.
We validated our models using 15% of the train-
ing data. We built an ensemble (voting) classifier
with top 5 models for different types of vectoriz-
ers, number of features, n-grams, etc.

3.4 Convolutional Neural Network

Word embedding: We used Glove5 as the vector
representation of the words in tweets. The dimen-
sion of the embedding is 300. We fine-tuned the
word embedding during the network training.

Network Architecture: As shown in the Fig-
ure 1 embedding layer is used to provide word
embedding. We used 300 dimensional word vec-
tors for each words. We used 1D CNN on text
data represented in word vectors. Filter column
width is same as the data column width. It will
ensure that matrix will stride vertically only. The
padded data of the input text is of size 65x300 for
each sentences. Therefore, filter’s column width
will be 300. Height is similar to the concept of n-
gram. If the filter height is 2, the filter will stride
through the document computing the calculations
with all the bigrams; if the filter height is 3, it will
go through all the trigrams in the document, and
so on. The output height is measured by the fol-
lowing mathematical expression :

Output height = ((H − hf)/s) + 1

where, H: Input data height hf: Filter height s:
Stride size

4https://textblob.readthedocs.io/en/dev/
5https://nlp.stanford.edu/projects/glove/

Figure 1: Convolutional Neural Network

Global Max Pooling layer extracts the maxi-
mum value from each filter, and the output dimen-
sion is 1-dimensional vector with length as same
as the number of filters we applied. This can be
directly passed on to a dense layer without flatten-
ing.

We implemented the above with bi-gram, tri-
gram and four-gram filters. However, this is not
linearly stacked layers, but parallel layers. And
after convolutional layer and max-pooling layer, it
simply concatenated max pooled result from each
of bi-gram, tri-gram, and four-gram, then build
one output layer on top of them. We added one
fully connected hidden layer with dropout just be-
fore the output layer. Output layer has just one
output node with Sigmoid activation.

3.5 Recurrent Neural Networks

Long Short-Term Memory networks are an exten-
sion for RNN. We employed LSTM as RNN ar-
chitecture.

Word embedding: Here, we also used Glove
as the vector representation of the words in tweets.
The dimension of the embedding is 200. We fine-

664

tuned the word embedding during the network
training.

Network Architecture: The matrix contains
400,000 word vectors, each with a dimensionality
mentioned above. We imported two different data
structures, one was a Python list with the 400,000
words, and another was a 400, 000 × 200 dimen-
sional embedding matrix that holds all of the word
vector values. We defined the necessary hyper-
parameters and specified the two placeholders, one
for the inputs into the network, and one for the la-
bels. The most important part about defining these
placeholders was understanding each of their di-
mensionality. For both tasks, the output layer con-
tained nodes equal to the number of class labels(2
for task A and B, 3 for task C).

Figure 2: Vectorized tweets and corresponding la-
bels

Each row in the integerized input placeholder
represents the integerized representation of each
training example that we included in our batch.
Hidden state vector can be represented as :

ht = σ(wHht−1 + wXxt)

where,wH andwX are weight metrics, xt is a vec-
tor that encapsulates all the information of a spe-
cific word.

We also used LSTM network as a module in
RNN for better understanding of a sentence. All
the vectors are given as a sequence of vectors
for a bidirectional LSTM. The representation of
a tweet is the representation learned after pass-
ing the whole sequence of tokens through the biL-
STM. We defined a standard cross entropy loss
with a softmax layer put on top of the final pre-
diction values. For the optimizer, we used Adam
and the default learning rate of 0.001.

4 Results

This section presents the obtained results for the
three sub-tasks.

Figure 3: LSTM unit

4.1 Sub-task A:

We implemented all the three systems for this
sub-task. For Machine learning, we obtained
best results for Count-vectorizer with tri-gram
and 90,000 features and with Logistic Regression
Classifier. We achieved best results for CNN-
Glove with Macro-F1 0.7844 and overall Accu-
racy 0.8419. However, due to paucity of time, we
were unable to extract the output from our RNN
model in the stipulated time frame.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
ML model 0.7231 0.8105
CNN-glove 0.7844 0.8419

Table 3: Results for Sub-task A.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

584 36

100 140

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 4: Confusion matrix of CNN-glove model
for Sub-task A

665

4.2 Sub-task B:
Our approach was similar to that in the previous
Sub-task. We changed the training set and la-
bels of the same appropriately, and got our results.
We used 2 class layers for training.We observed
that the model gives better validation accuracy
while fitted with cleaned data parsing with @user.
While training the RNN network, we used alterna-
tive targeted and non-targeted tweets from anno-
tated data. We obtained best results for RNN with
Macro-F1 0.54587543782 and overall Accuracy
0.804166666667. The Hyper-parameters of this
model are: Batchsize:24, LSTM Units:64, Epochs
Number:1,00,000, Glove embeddings:200D, Opti-
mizer:Adam. In Machine Learning, we used sev-
eral traditional techniques. Best validation accu-
racy was found for Logistic Regression as classi-
fier, countvectorizer - trigram - 50k feature.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
ML model 0.5378 0.8917
RNN-LSTM 0.5459 0.8042

Table 4: Results for Sub-task B.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

187 26

21 6

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5: Confusion matrix of RNN-LSTM model
for Sub-task B

4.3 Sub-task C:
This task was the most challenging among the
three tasks because of the small training data. The
training data contains only 3876 tweets and the
3 sub-classes are unevenly distributed. First of

all, since this was a ternary classification task, we
could only pursue a handful of machine learn-
ing algorithms and secondly for neural network
architectures, there is a paucity of huge dataset
to train the model properly. We used 10% of
training dataset for testing and validation pur-
poses, while the rest used for training. We con-
verted our text documents to a matrix of to-
ken counts (CountVectorizer), then transformed a
count matrix to a normalized tf-idf representation
(tf-idf transformer). After that, we trained sev-
eral classifiers from Scikit-Learn6 library. Now
among the various classifiers, we built an en-
semble (voting) classifier with top 5 models and
found the best accuracy result for Logistic Re-
gression. To make the vectorizer transformer-
classifier easier to work with, we used Pipeline
class in Scikit-Learn that behaves like a com-
pound classifier. For RNN, the same previous sys-
tem was used but with some alterations as change
in labels and change in iterative conditions for
output prediction as this was a ternary classifi-
cation task. We obtained best results for Ma-
chine Learning with Logistic Regression Classifier
with 0.480057590252,0.577464788732 in terms
of Macro-F1 and overall Accuracy respectively.

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
RNN-LSTM 0.4580 0.5681
CNN-glove 0.4352 0.6056
ML Model 0.4801 0.5775

Table 5: Results for Sub-task C.

5 Observations

We noticed that both the F1(macro) and accuracy
are high, in Sub-task A. This is probably due to
relatively large size of training data. In sub-task
B, we have found that, though the accuracy is op-
timum, F1(macro) is surprisingly low. This is due
to imbalanced dataset. Many classes have fewer
samples to create robust models. This goes same
for the sub-task C .

6https://scikit-learn.org/stable/

666

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

37 34 7

12 80 8

11 18 6

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6: Confusion matrix of ML model for Sub-
task C

6 Conclusions

In this paper, we have briefly described our sub-
missions to SemEval2019 Task 6 on Identifica-
tion and Categorization of Offensive Language on
Twitter data. Our systems ranked 21st out of 103
participants for Sub-task A, 50th out of 75 partic-
ipants for Sub-task B and 47th out of 66 partici-
pants for Sub-task C.Although our validation ac-
curacy was high, the F1-score primarily dropped
due to unequal distribution of opposite polarity
data.

We could have made the system work better by
training our model with additional tweets which
we could have annotated manually. We could have
also used Siamese Network to train our model,
which has been generally used for image data.

References
Thomas Davidson, Dana Warmsley, Michael Macy,

and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

667

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 668–671
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

KMI−Coling at SemEval-2019 Task 6: Exploring N-grams for Offensive
Language detection

Priya Rani
Dr. Bhimrao Ambedkar University

Agra, India
pranijnu@gmail.com

Atul Kr. Ojha
Jawaharlal Nehru University

New Delhi, India
shashwatup9k@gmail.com

Abstract

In this paper, we present the system descrip-
tion of offensive language detection tool which
is developed by the KMI−Coling Group under
the OffensEval Shared task. The OffensEval
Shared Task was conducted in SemEval 2019
workshop. To develop the system, we have
explored n-grams up to 8-gram and trained
three different systems namely A, B and C
system for three different sub tasks within the
OffensEval task which achieves the accuracy
of 79.76%, 87.91% and 44.37% respectively.
The task was completed using the data set pro-
vided to us by OffensEval organisers, which
was the part of OLID data set. It consists of
13,240 tweets extracted from twitter and were
annotated at three levels using crowd sourcing.

1 Introduction

The very first question which arises in one’s mind
when one starts working in the area of computa-
tional sociolinguistics research related to the lan-
guage usage in social media and networking sites
is what is offensive language and its related terms
such as hate speech, aggression and all? The sec-
ond question arises is related to the definition of
this terminology. We would suggest that offen-
sive language is still not a very well-defined phe-
nomenon. As we know that the natural language
is productive in nature. These aspect of the lan-
guage use has always existed as part of the speech
repertoire of the speaker. In the area of scientific
study, we need to move forward with a definition.
Therefore we will go by the definition given by Jay
and Janschwetiz which states that Offensive lan-
guage is vulgar, pornography and hateful language
(Chen et al., 2012). But even this definition does
not incorporate the many more structure which is
neither vulgar nor pornography nor hateful but are
definitely offensive. Such type of structure is what
leads to challenges in the detection of offensive

language in the discourse. With the increase in
the culture of social media and social networking
sites, the use of offensive language has increased
rapidly. Moreover, it has also given a very good
platform to conduct different research in the given
area.

2 Literature review

This section gives a brief outline of the existing
literature and approaches that are available for of-
fensive language detection. Lots of research works
are being done to detect offensive language and
there has been significant progress over time. Lex-
ical Syntactic based framework was used for sen-
tence offensive detection and user offensive detec-
tion by Chen et al. (2012). Another study by Xiang
et al. (2012) which uses keyword matching tech-
nique that performed very well in literature do-
main. Razavi et al. (2010) uses auxiliary weighted
repository by matching the text to its graded en-
tries with the help of both rule-based and statisti-
cal pattern to detect flames from the text. Maisto
et al. (2017) uses a lexicon-based method for the
automatic identification and classification.

3 System Overview

We built three different systems for three sub tasks
in the shared task. The system was built using a
supervised machine learning approach trained on
different classifiers using n-gram model.

3.1 System A
The very first was developed to detect whether the
tweets are offensive or not. The system uses uni-
gram and bigram in the feature set and was trained
on Linear SVM classifier.

3.2 System B
The second system was developed to detect
whether the tweets are targeted or non-targeted

668

only if the tweets are offensive in nature. This sys-
tem has also been trained on linear SVM with n-
gram language model which consisted of unigram,
bigram, trigram and 4-gram.

3.3 System C
The third system was one step ahead to detect
whether the tweets are targeted to an individual,
group or other. In which the third category ’other’
includes a wide range of categories such as entity,
organisation, place, country and many more. The
system is trained on decision tree with n-gram fea-
ture starting from uni-grams to 8-grams.

4 Experiments

In this section, we briefly describe the experimen-
tal settings which are used to develop offensive
language detection tool.

4.1 Data set
The data we used to train and test the system was
provided by SemEval shared task 2019 under task
6 called OffensEval (Zampieri et al., 2019a). The
data set consists of 13,240 annotated tweets which
were extracted from OLID, Offensive Language
Identification Dataset (Zampieri et al., 2019a).
The data set was further divided into training and
testing set in the ratio 80:20. We have used the
same data set to train and test all the three systems
developed to participate in the sub task of Task 6
in SemEval 2019.

4.2 Annotation
The data was hierarchically annotated using crowd
sourcing. The gold labels were assigned by tak-
ing inter-annotator agreement into consideration.
No correction has been carried out on the crowd
sourcing annotations. The tweets were annotated
at three levels. Level A differentiates the tweets
between offensive and non-offensive. Level B cat-
egory the offensive tweets in another level that
whether the offensive tweets are targeted or non-
targeted insults or threat. Level C category further
categorise the targets of the insult into three dif-
ferent categories as an individual, group or other
(Zampieri et al., 2019a).

4.3 Development of systems for sub tasks
In the next step, we developed three offensive de-
tection systems to detect offensive tweets, targeted
insults and to categorise the targeted insults using
n-gram language model.

Training and development of system for sub
task A
The systems were trained independently on SVM.
To explore the role of n-gram feature in the detec-
tion of offensive language we have used the scikit-
learn toolkit to experiment with unigram, bigram,
trigram and 4-gram. We used the tweets and only
Label A to train the system for development of
system A.

Training and development of system for sub
task B
Like system A, system B is trained on SVM with
the scikit-learn toolkit to experiment with uni-
gram, bigram, trigram and 4-gram. The system
was trained and tested using tweets, Label A and
Label B.

Training and development of system for sub
task C
The third system was trained on two different clas-
sifier SVM and Decision tree with the same scikit-
learn toolkit. The feature set for the system con-
sists of n-gram ranging from unigrams to 8-gram.s
In order to train the system, we have used the
tweets, Label B, and Label C.

5 Detailed Error Reports of the
KMI−Coling System

This section presents a detailed study of the result
that is achieved by the developed systems.
System A performs well with the only unigram
when trained with SVM. We also weighted the
feature set with TF-IDF but that turned out to give
very disappointing results and thus was discarded
from the final feature set. Similarly, bigram, tri-
gram and 4-gram decrease the accuracy of the sys-
tem. The final trained system gave the precision
of 78.72%, recall of 79.77% with an F1 score of
78.58%. The confusion matrix of the system pro-
viding the detail error is given in figure 1, which
shows that 122 offensive tweets were called as
non-offensive. Whereas 568 tweets were recog-
nised correct by the system. On the other hand,
52 non-offensive tweets were labelled as offensive
tweets and 118 offensive tweets were marked cor-
rectly by the system (Zampieri et al., 2019b).

System B, unlike system A, performed well in
terms of accuracy, but the recall of non-targeted
offensive tweets is lowered when trigram and 4-
gram are implemented. Weighting the feature set
using TF-IDF also did not work well as it de-

669

Figure 1: Confusion matrix of sub task A

creases the accuracy of the system. Finally, the
system was trained only with unigram and bigram.
The overall precision of the system is 84.38%, re-
call is 87.92% and F1 score is 85.37%. Figure 2
shows the confusion matrix of the system. The
matrix gives the error report such that 23 non-
targeted tweets were label targeted by the system
whereas only 6 targeted tweets were marked as
non-targeted.

Figure 2: Confusion matrix of sub task B

As we have mentioned above system c was
trained on two classifiers SVM and Decision Tree.
We will be only reporting the final confusion ma-
trix of the system C which was trained on Decision
Tree. The precision of the system is 52.84%, re-
call is 59.15% and F1 score is 55.31%. We can
easily detect and study the error from the con-
fusion matrix given in Figure 3. Twenty tweets
which originally belong to other group categorised

Figure 3: Confusion matrix of sub task C

in GROUP, 14 tweets in INDIVIDUAL. Secondly,
13 tweets which belong to INDIVIDUAL were put
into GROUP and 6 of them in OTHER. Thirdly, 30
tweets which were targeted towards a group were
labelled in INDIVIDUAL and 4 tweets in OTHER.

6 Conclusion

In this paper, we propose an offensive detection
tool which is only based on the n-gram model. We
have experimented with n-gram model where n =
1,2,3,4,5,6,7,8 via statistical model. The n-gram
model has been shown to perform well in very
less amount of time in comparison to other mod-
els. The accuracy of system A is 79.76%, system
B is 87.91% and of system C is 44.37% in our ex-
periment. In addition to this, it is very easy to im-
plement n-gram and consume very less amount of
time. Our system can be further improved with
the help of neural network. As we can see that the
n-gram model also accommodate the phrase level
structure from the given text. Therefore, imple-
menting simple sentence feature would not help in
increasing the accuracy. The sentence level feature
would work only when there is a language specific
feature.

Acknowledgments

We are grateful to the organizers of Offsemeval-
2019 for providing us with the tweet Corpus and
evaluation scores.

References
Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu.

2012. Detecting offensive language in social me-

670

dia to protect adolescent online safety. In Privacy,
Security, Risk and Trust (PASSAT), 2012 Interna-
tional Conference on and 2012 International Con-
fernece on Social Computing (SocialCom), pages
71–80. IEEE.

Maral Dadvar, Dolf Trieschnigg, and Franciska
de Jong. 2014. Experts and machines against bul-
lies: A hybrid approach to detect cyberbullies.
In Canadian Conference on Artificial Intelligence,
pages 275–281. Springer.

H Vinutha Divyashree and NS Deepashree. 2016. An
effective approach for cyberbullying detection and
avoidance. International Journal of Innovative Re-
search in Computer and Communication Engineer-
ing, 14.

Love Engman. 2016. Automatic detection of cyberbul-
lying on social media.

Altaf Mahmud, Kazi Zubair Ahmed, and Mumit Khan.
2008. Detecting flames and insults in text.

Alessandro Maisto, Serena Pelosi, Simonetta Vietri,
Pierluigi Vitale, and Via Giovanni Paolo II. 2017.
Mining offensive language on social media. In
Proocedings of CLiC-it 2017 4th Italian Conference
on Computational Linguistics.

Georgios K Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language
in tweets using deep learning. arXiv preprint
arXiv:1801.04433.

Amir H Razavi, Diana Inkpen, Sasha Uritsky, and Stan
Matwin. 2010. Offensive language detection using
multi-level classification. In Canadian Conference
on Artificial Intelligence, pages 16–27. Springer.

Caitlin Elizabeth Ring. 2013. Hate speech in social
media: An exploration of the problem and its pro-
posed solutions.

Semiu Salawu, Yulan He, and Joanna Lumsden. 2017.
Approaches to automated detection of cyberbully-
ing: A survey. IEEE Transactions on Affective Com-
puting, (1):1–1.

Joni Salminen, Hind Almerekhi, Milica Milenkovic,
Soon-gyo Jung, Jisun An, Haewoon Kwak, and
Bernard J Jansen. 2018. Anatomy of online hate:
Developing a taxonomy and machine learning mod-
els for identifying and classifying hate in online
news media. In ICWSM, pages 330–339.

Sasha Sax. 2016. Flame wars: Automatic insult detec-
tion.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

Cynthia Van Hee, Gilles Jacobs, Chris Emmery, Bart
Desmet, Els Lefever, Ben Verhoeven, Guy De Pauw,
Walter Daelemans, and Véronique Hoste. 2018. Au-
tomatic detection of cyberbullying in social media
text. arXiv preprint arXiv:1801.05617.

Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and
Carolyn Rose. 2012. Detecting offensive tweets
via topical feature discovery over a large scale twit-
ter corpus. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge
management, pages 1980–1984. ACM.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

671

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 672–677
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

LaSTUS/TALN at SemEval-2019 Task 6: Identification and
Categorization of Offensive Language in Social Media with

Attention-based Bi-LSTM model

Lutfiye Seda Mut Altin, Àlex Bravo, Horacio Saggion
Large Scale Text Understanding Systems Lab / TALN Research Group
Department of Information and Communication Technologies (DTIC)

Universitat Pompeu Fabra
Tanger 122, Barcelona (08018), Spain

lutfiyeseda.mut01@estudiant.upf.edu, {alex.bravo, horacio.saggion}@upf.edu

Abstract

This paper describes a bidirectional Long-
Short Term Memory network for identifying
offensive language in Twitter. Our system
has been developed in the context of the Se-
mEval 2019 Task 6 which comprises three dif-
ferent sub-tasks, namely A: Offensive Lan-
guage Detection, B: Categorization of Offen-
sive Language, C: Offensive Language Target
Identification. We used a pre-trained Word
Embeddings in tweet data, including informa-
tion about emojis and hashtags. Our approach
achieves good performance in the three sub-
tasks.

1 Introduction

As the amount of user generated content in so-
cial media is increasing at an exponential pace,
detecting offensive language and harmful content
automatically in an efficient way is a very impor-
tant issue for the society. Recent work has shown
that offensive language in various forms such as
hate speech, cyberbullying, profanity and harass-
ment has negative effects especially in adolescents
(Hamm et al., 2015).

The shared task, Categorizing Offensive Lan-
guage in Social Media (SemEval 2019 - Task 6),
focuses on improving identification of offensive
language by considering type and target of the of-
fense into account (Zampieri et al., 2019b). The
task is composed of three sub-tasks. Sub-task A
aims to identify if a given tweet is offensive or
not (annotated as OFF or NOT). Sub-task B aims
to categorize the offense type in offensive tweets
into two categories: targeted (TIN) or untar-
geted (UNT) meaning that if a tweet contains an
insult or threat to an individual, a group or some-
thing else or if a tweet contains non-targeted of-
fense such as general profanity or non-acceptable
language. Lastly, Sub-task C aims to identify the

target type of targeted offensive posts. The tar-
get type is supposed to be classified as individ-
ual, group or other for the rest (annotated as IND,
GRP or OTH). We submitted three different runs
for each sub-task.

The training dataset released by the shared task
organizers, consists of 14,100 English tweets with
one annotation layer per task with a hierarchical
annotation scheme where each annotation level is
related to an independent sub-task. The meth-
ods used to collect this dataset is described in
(Zampieri et al. (2019a)). Examples from the
dataset with annotations at the end are given be-
low:

”@USER That shit weird! Lol OFF (of-
fensive) - -”

”@USER @USER You are an embar-
rassing citizen!! OFF TIN -”

”@USER @USER Liberals ruin every-
thing! OFF TIN GRP”

This paper describes a bidirectional Long Short
Term Memory network (biLSTM) model with an
Attention layer to identify offensive language in
Twitter. The rest of the paper is organized as fol-
lows: In section 2, we introduce an overview of
the work related to identification of offensive lan-
guage. In Section 3 we describe our model struc-
ture and differences between the different runs
submitted for each sub-task. In Section 4 we pro-
vide the results and discuss the performance of the
system. Finally, in Section 5 we conclude giving
an outline for the future work.

2 Related Work

Identification of offensive language in user-
generated content can essentially be considered
as a classification task. Previous research on the

672

issue has been carried out with approaches from
different perspectives such as abusive language
(Waseem et al., 2017) (Chu et al., 2017), hate
speech (Davidson et al., 2017) (Schmidt and Wie-
gand, 2017) (Fortuna and Nunes, 2018) and cyber-
bullying (Hee et al., 2018).
It has been referred by (Kumar et al., 2018) that for
identification of aggression in a more general man-
ner, classifiers such as SVM and logistic regres-
sion can equalize the results of neural networks-
based systems if the right features are selected.
On the other hand, (Zhang et al., 2018) pointed
out that a deep neural network model combining
convolutional neural network and long short term
memory network, performed better than state of
the art, including SVM. Furthermore, indicated
that automatically selected features performed bet-
ter than manual features.

Recent research also includes the work of
(ElSherief et al., 2018) focusing on the target of
the hate speech found that in terms of word charac-
teristics, such as frequency of specific words, dif-
ferences can be observed between hate to individ-
uals or to groups.

(Gambäck and Sikdar, 2017) investigated clas-
sification of different sub-categories of hate
speech with different Convolutional Neural Net-
work models founding that word2vec embeddings
performed best. Davidson et al. worked on dis-
tinguishing hate speech and offensive language by
training a multi-class classifier showing that using
lexicons is useful in agreement with the previous
research (Davidson et al., 2017).

Both for English and other languages similar
shared tasks have been organized. At GermEval
that aims to identify offensive language in German
tweets; popular features were lexicons of offensive
words, word embeddings and character n-grams.
Between deep learning approaches and traditional
supervised classifiers there was not a clear supe-
rior system in terms of the scores (Wiegand et al.,
2018). EVALITA 2018 Hate Speech Detection
Shared Task focused on Italian text on Facebook
and Twitter. Best performed system in this shared
task utilized polarity and subjectivity lexicon with
word embeddings (Caselli et al., 2018).

3 Methodology and Data

This paper describes a neural network based on
the model proposed by Zhou et al. (2016) for re-
lation extraction. The model consist of a bidirec-

tional Long Short-Term Memory Networks (biL-
STM) model with an Attention layer on top. The
model capture the most important semantic infor-
mation in a tweet, including emojis and hashtags,
to face the three sub-tasks. In Figure 1 a simplified
schema of our model can be seen. In the following
we explain how the model works.

Figure 1: Simplified schema of the model

First, the tweets were tokenized removing punc-
tuation marks and keeping emojis and full hash-
tags because can contribute to define the meaning
of a tweet.

Second, the embedding layer transforms each
element in the tokenized tweet (such as words,
emojis and hashtags) into a low-dimension vec-
tor. The embedding layer, composed of the vocab-
ulary of the task, was randomly initialized from
a uniform distribution (between -0.8 and 0.8 val-
ues and with 300 dimensions). Recent studies
have reported that pre-trained word embeddings
are far more satisfactory than the randomly initial-
ized embeddings (Erhan et al., 2010; Kim, 2014).
For that reason, the initialized embedding layer
was updated with the word vectors included in a
pre-trained model based on all the tokens, emojis
and hashtags from 20M English tweets (Barbieri
et al., 2016), which were updated during the train-
ing.

Then, a biLSTM layer gets high-level features
from previous embeddings. The LSTM were in-
troduced by Hochreiter and Schmidhuber (1997)
and were explicitly designed to avoid the long-
term dependency problem. LSTM systems keep
relevant information of inputs by incorporating a
loop enabling data to flow from one step to the
following. LSTM gets a word embedding sequen-
tially, left to right, at each time step, produces
a hidden step and keeps its hidden state through

673

time. Whereas, biLSTM, does the same process
as standard LSTM, but processes the text in a left-
to-right as well as right-to-left order in parallel.
Therefore, gives two hidden state as output at each
step and is able to capture backwards and long-
range dependencies.

A critical and apparent disadvantage of seq2seq
models (such as LSTM) is that they compress all
information into a fixed-length vector, causing the
incapability of remembering long tweets. Atten-
tion mechanism aims to overcome the limitation
of fixed-length vector keeping relevant informa-
tion from long tweet sequences. In addition, atten-
tion techniques have been recently demonstrated
success in multiple areas of the Natural Language
Processing such as question answering, machine
translations, speech recognition and relation ex-
traction (Bahdanau et al., 2014; Hermann et al.,
2015; Chorowski et al., 2015; Zhou et al., 2016).
For that reason, we added an attention layer, which
produces a weight vector and merge word-level
features from each time step into a tweet-level fea-
ture vector, by multiplying the weight vector. Fi-
nally, the tweet-level feature vector produced by
the previous layers is used for classification task
by a fully-connected layer.

Furthermore, we applied dropout regularization
in order to alleviate overfitting. Dropout operation
sets randomly to zero a proportion of the hidden
units during forward propagation, creating more
generalizable representations of data. As in Zhou
et al. (2016), we employ dropout on the embed-
ding layer, biLSTM layer and before the output
layer. The dropout rate was set to 0.5 in all cases.

We used an additional annotated dataset for
the sub-task A. This additional dataset was re-
leased with Shared Task on Aggression Identifi-
cation organized as part of the First Workshop on
Trolling, Aggression and Cyberbullying (TRAC
- 1) (Kumar et al., 2018). This dataset is com-
posed of 15,000 aggression-annotated Facebook
Posts that were annotated as Overtly Aggressive,
Covertly Aggressive, and Non-aggressive texts.
For this sub-task A, posts with aggressive anno-
tations were considered as offensive (OFF) and
Non-aggressive annotation as not (NOT).

For every sub-task, three different runs were
submitted following the same scheme of the neu-
ral network. Specifically, for sub-task A, we sub-
mitted 2 runs taking into account the additional
dataset (using Adam in the Run1A and RMSProp

optimizer in the Run3A). The third run (Run2A)
was obtained using only the dataset provided by
the organizers and using Adam as optimizer.

For sub-tasks B and C, we did not use addi-
tional data for training. Instead, we weighted the
classes in the training giving major relevance to
unbalanced classes. For the rest of the runs, some
parameters were changed in order to obtain differ-
ent results. Specifically, the Run1B and Run1C
the Adam optimizer was used with 50 units in the
LSTM. The RMSProp optimizer was used in the
Run2B and RUN2C with the previous number of
LSTM units. Finally, in the Run3B and Run3C
was also applied the RMSProp optimizer but with
100 units in the LSTM. Additionally, to improve
the model performance and reducing the overfit-
ting for sub-task C, which contains the smallest
number of instances for training, the LSTM layer
included a weight regularization (L1 and L2).

4 Results

F1 scores and accuracies of our three different sub-
missions for sub-task A are shown in Table 1. For
this sub-task we have achieved the highest score
with the system we did not train with an additional
dataset. F1 scores and accuracies of all submis-
sions for the subsequent tasks are seen in Table 2
and 3 respectively.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

569 51

99 141

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Confusion matrix of our best performed
model for Sub-task A (biLSTM with specific config-
uration - Run2A)

The confusion matrix of our best performed
model for the first task (see Figure 2) illustrates
that between the two classes, NOT (not offensive)
class achieves the best result where the majority of
the data being correctly classified.

For sub-task B, classification of TIN (targeted

674

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
LaSTUS/TALN - Run1A 0.7406 0.7860
LaSTUS/TALN - Run2A 0.7682 0.8256
LaSTUS/TALN - Run3A 0.7411 0.7872

Table 1: Results of different submissions for Sub-task A.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
LaSTUS/TALN - Run1B 0.6425 0.8458
LaSTUS/TALN - Run2B 0.6150 0.8292
LaSTUS/TALN - Run3B 0.6618 0.8542

Table 2: Results of different submissions for Sub-task B.

insult and threads) and UNT (untargeted) con-
tent from a sub-set of offensive tweets, the confu-
sion matrix demonstrates that our best performed
model has the highest precision for class TIN as
shown in Figure 3.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

193 20

15 12

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 3: Confusion matrix of our best performed
model for Sub-task B (biLSTM with specific config-
uration - Run3B)

The confusion matrix of our best performed
model for sub-task C can be seen in Figure 4. It
includes three classes as GRP (group), IND (in-
dividual) and OTH (other) for a sub-set of tweets
containing targeted offense. The system achieves
the highest precision for IND. The color range also
shows the level of precision from darker to lighter.

Overall, we have achieved competitive results
and rankings for each sub-task. Out of all our sub-
missions, best performed ones for each sub-task
and their comparison with the winner system of
the shared task are given in Table 4.

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l
45 24 9

15 80 5

16 8 11

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4: Confusion matrix of our best performed
model for Sub-task C (biLSTM with specific config-
uration - Run3C)

5 Conclusion

In this paper, participation of LaSTUS/TALN to
OffensEval: Identifying and Categorizing Offen-
sive Language in Social Media (SemEval 2019
- Task 6) has been presented. We described
and evaluated our system which is a bidirectional
LSTM (biLSTM) model with an Attention layer
on top, to classify if a tweet contains offensive lan-
guage and the type and target of the offense for the
offensive content.

For the future work, more detailed analyses on
integration of linguistic annotations into neural
network can be considered. In addition, a larger
amount of data and also meta-data such as whether
a tweet is a response to another tweet can repre-
sent contextual information and used to improve

675

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
LaSTUS/TALN - Run1C 0.5631 0.6432
LaSTUS/TALN - Run2C 0.5686 0.6385
LaSTUS/TALN - Run3C 0.5480 0.6150

Table 3: Results of different submissions for Sub-task C.

sub-task A sub-task B sub-task C
Best performer - F1(macro) 0.829 0.755 0.660
LaSTUS/TALN - F1(macro) 0.768 0.662 0.569
LaSTUS/TALN Ranking/Submissions 30 / 104 21 / 79 16 / 66

Table 4: Overall results and best rankings

performance.

Acknowledgements

Our work is partly supported by the Spanish Min-
istry of Economy and Competitiveness under the
Maria de Maeztu Units of Excellence Programme
(MDM-2015-0502). We thanks two reviewers for
their constructive comments.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Francesco Barbieri, German Kruszewski, Francesco
Ronzano, and Horacio Saggion. 2016. How cos-
mopolitan are emojis?: Exploring emojis usage and
meaning over different languages with distributional
semantics. In Proceedings of the 2016 ACM on Mul-
timedia Conference, pages 531–535. ACM.

Tommaso Caselli, Nicole Novielli, Viviana Patti, and
Paolo Rosso. 2018. Evalita 2018: Overview
on the 6th evaluation campaign of natural lan-
guage processing and speech tools for italian. In
EVALITA@CLiC-it.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy
Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
2015. Attention-based models for speech recogni-
tion. In Advances in neural information processing
systems, pages 577–585.

T. Y. Chu, Kylie Jue, and Max L. Wang. 2017. Com-
ment abuse classification with deep learning.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. 2010. Why does unsupervised pre-training
help deep learning? Journal of Machine Learning
Research, 11(Feb):625–660.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Michele P. Hamm, Amanda S. Newton, Annabritt
Chisholm, Jocelyn Shulhan, Andrea Milne, Purnima
Sundar, Heather Ennis, Shannon D. Scott, and Lisa
Hartling. 2015. Prevalence and effect of cyberbul-
lying on children and young people: A scoping re-
view of social media studies. JAMA pediatrics, 169
8:770–7.

Cynthia Van Hee, Gilles Jacobs, Chris Emmery, Bart
Desmet, Els Lefever, Ben Verhoeven, Guy De Pauw,
Walter Daelemans, and Véronique Hoste. 2018. Au-
tomatic detection of cyberbullying in social media
text. In PloS one.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

676

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the germeval 2018 shared
task on the identification of offensive language.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-
based bidirectional long short-term memory net-
works for relation classification. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
volume 2, pages 207–212.

677

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 678–682
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

LTL-UDE at SemEval-2019 Task 6:
BERT and Two-Vote Classification for Categorizing Offensiveness

Piush Aggarwal, Tobias Horsmann, Michael Wojatzki and Torsten Zesch
Language Technology Lab

University of Duisburg-Essen
piush.aggarwal@stud.uni-due.de,

{tobias.horsmann, michael.wojatzki, torsten.zesch}@uni-due.de

Abstract

This paper describes LTL-UDE’s systems for
the SemEval 2019 Shared Task 6. We present
results for Subtask A and C. In Subtask A, we
experiment with an embedding representation
of postings and use a Multi-Layer Perceptron
and BERT to categorize postings. Our best re-
sult reaches the 10th place (out of 103) using
BERT. In Subtask C, we applied a two-vote
classification approach with minority fallback,
which is placed on the 19th rank (out of 65).

1 Introduction

The Internet is frequently used for online debates
and discussions, where individuals or groups are
increasingly often verbally attacked. Online plat-
form providers aim to remove such attacking posts
or ideally, prevent them from being published.
Manual verification of each posting by a human
moderator is infeasible due to the high amount of
postings created every day. Consequently, auto-
mated detection of such attacking postings is the
only feasible way to counter this kind of hostility.

In this work, we present our results for the
SemEval 2019 Shared Task 6: Identifying and
Categorizing Offensive Language in Social Me-
dia (Zampieri et al., 2019b) on the OLID dataset
(Zampieri et al., 2019a). Subtask A focuses on
the binary distinction if a post is offensive or not,
while Subtask C determines if the target is an indi-
vidual, group, or other entity. Our submission for
Subtask A ranks 10th, for Subtask C ranks 19th.

For Subtask A, we experiment with word list-
based classification, using classifiers such as SVM
or logistic regression based on sentence embed-
dings, and neural network-based models such
as a Multi-layer Perceptron (MLP) and Bidirec-
tional Encoder Representations from Transform-
ers (BERT) (Devlin et al., 2018). We find that the
SVM performs best on our development set, but

BERT reaches the best result on the test dataset.
Moreover, a learning curve experiment suggests
that more training data will lead only to minor im-
provements. In Subtask C, we choose a two-vote
classification approach, where we let two systems
compete with a fallback to the minority class in
case the systems disagree. This fallback approach
has a high robustness between our development
and the official test dataset.

2 Related Work

Detection of offensive or potentially hurtful on-
line postings is investigated under a variety of
names. Waseem et al. (2017) focuses on abusive
language, Kumar et al. (2018) tackles the prob-
lem as aggression while Macbeth et al. (2013) ap-
proaches this problem as cyberbullying to mention
just a few. Furthermore, the field of hate speech
detection is strongly related, which aims at detect-
ing a similar kind of online statements (Waseem
and Hovy, 2016; Wojatzki et al., 2018).

Common approaches to detecting such socially
unacceptable statements utilize rich feature sets
consisting of word ngrams, surface forms and syn-
tactical features (Warner and Hirschberg, 2012;
Nobata et al., 2016). Human-knowledge is pro-
vided by word lists containing offenses as key
words or phrases (Bassignana et al., 2018; Wie-
gand et al., 2018b). Xiang et al. (2012) approaches
the task as topic modelling problem using Latent
Dirichlet Allocation (Blei et al., 2003).

These tasks are tackled with feature
engineering-based approaches such as SVM
or regression models but also with convolutional
neural networks (Wiegand et al., 2018b).

3 Subtask A: Offensiveness

Subtask A is a binary classification task. A posting
is either offensive or not offensive. For this task,

678

we experiment with the following approaches:

Preprocessing We lowercase all postings and
use the Ark Tokenizer (Gimpel et al., 2011) for
word splitting. These preprocessing steps are used
in all experiments.

Lexical Matching We use the following hand-
crafted word lists of abusive words: (i) Profane
Word List1 containing more than 1,300 English to-
kens, (ii) UdS Lexicon of Abusive Words2 hav-
ing 1,651 entries (Wiegand et al., 2018a), and
(iii) Multilingual Lexicon of Words to Hurt from
HurtLex (Bassignana et al., 2018) with 9,313
terms.3 A posting is classified as offensive if it
contains any words in the before mentioned lists.

Posting Embeddings We represent each post-
ing by a dense embedding, which we create from
word embeddings by summing up the vector val-
ues of the word representations. The resulting
posting vector is re-scaled into the range zero to
one. We use the pre-trained embeddings provided
by Mikolov et al. (2018), which are trained on the
common crawl corpus.

Classifiers We apply the following classifiers:
SVM (Chang and Lin, 2011), Logistic Regression
(Fan et al., 2008), Random Forest (Breiman, 2001)
and a Decision Tree (Breiman et al., 1984). We use
the implementation provided by scikit-learn (Pe-
dregosa et al., 2011) using default parameters.

Multi-Layer-Perceptron (MLP) With the same
pre-processing and feature extraction steps used
as for shallow models described above, we train
a MLP with 100 hidden units in Scikit-Learn with
ReLu as activation function and Adam optimizer
(Kingma and Ba, 2014). We initialize the neural
network with the fasttext word embeddings pro-
vided by Mikolov et al. (2018).

BERT We use the provided pre-trained BERT-
base model (Devlin et al., 2018) to create a vec-
tor representation of a posting. We fine-tune the
model on the training data set using a sequence-
length of 128 and batches of 32. We also inves-
tigate the impact of enriching the training dataset
with additional data by using machine translation.
We back and forth translate the training data to
obtain paraphrases of the original training data,

1https://www.cs.cmu.edu/∼biglou/resources/
2https://github.com/uds-lsv/lexicon-of-abusive-words
3http://hatespeech.di.unito.it/resources.html

Set Approach F1 Acc

dev

SVM .795 .814
BERT .771 .799
Ensemble .767 .789
BERT-trans .732 .768
Logistic Reg. .704 .728
MLP .687 .705
Random Forest .641 .678
Lexical Matching .619 .680
Decision Tree .567 .585
Baseline - all NOT .400 .667

test

Ensemble .748 .782
BERT .798 .839
SVM .729 .761
Baseline - all NOT .418 .720

Table 1: Subtask A: Results in term of macro F1 on a
held-back development dataset containing 1,048 offen-
sive postings and 2,192 not offensive (NOT) ones.

which we expect to improve model performance.
We translated the data into Russian, Chinese, and
Arabic and back to English using Google’s trans-
lation service. We repeated the fine-tuning with
this enriched dataset.

Ensemble We combine the best three ap-
proaches (BERT, SVM, and Logistic Regression)
in an ensemble, which was reported to often ac-
count for improvements in a similar shared task
for German (Wiegand et al., 2018c). We use the
majority vote of these classifiers as the prediction.

3.1 Results

Table 1 shows the results for Subtask A. We re-
port results on a self-created development dataset
(25% of the original training data, 3,240 postings
of which 1,048 postings are labeled as offensive
and 2,192 as not offensive). We use the majority
class as a baseline. On our dev dataset, we find
that a SVM with the posting vector-representation
achieves the best F-Score, followed by BERT.
Contrary to our expectation, BERT’s performance
decreased by adding the machine-translated data.
On the test dataset, we find BERT to perform best
followed by the ensemble, which seems to add
some additional robustness to the classification.

Learning curve A central question for shared
tasks such as this one is if the amount of provided
training data is sufficient to train a reliable clas-

679

10 20 30 40 50 60 70 80 90 100
0.6

0.65

0.7

0.75

0.8

training data size in %

F
1

Figure 1: Learning curve on the training dataset. F-
Score performance for adding an increasing amount of
training data evaluated against the development set.

Set Approach F1 Acc

dev

MLP+MLP .565 .708
SVM+MLP .550 .688
MLP+SVM .541 .699
SVM+SVM .535 .701
MLP .523 .699
SVM .480 .733
BERT .492 .730
Random Forest ..461 .676
Decision Tree .462 .604
Logistic Regression .508 .707
Baseline - all IND .255 .621

test
MLP+MLP .556 .666
SVM+MLP .498 .615
Baseline - all IND .213 .469

Table 2: Subtask C results

sifier. Figure 1 shows a learning curve computed
over the provided training data with testing against
the hold-out development set. We split the training
data into equal-sized data blocks which are ran-
domly distributed over labels and add an increas-
ing number of data blocks to see the performance
improvement by adding more data. The results
shows that improving the machine learning model
is a more promising strategy than providing even
more data as the slope indicates only minor im-
provements if more data is added.

4 Subtask C: Offense Targets

The goal in this subtask is to identify the kind of
target at which a tweet is directed at (i.e. at this

point it is already known that the tweet is a tar-
geted offense, just the target itself is not yet deter-
mined). A target is either an individual (IND), a
group (GRP), or other (OTH), if none of the previ-
ously mentioned two categories apply. We apply
the same approaches as already used in Subtask A.

Two-Vote Classification with Minority Fallback
Furthermore, an analysis of the class distribu-
tion showed that the class for other has compar-
atively few instances. This makes it challenging
for a classifier to reliably detect such an under-
represented class. Therefore, we attempt to re-
define the problem as a binary classification prob-
lem using two classifiers. If the two classifiers
agree in their prediction, we take the predicted
class (either individual or group). In case of an
disagreement, we select the minority class, other,
as prediction. Thus, we also alter the training
data to contain only two classes. The labels of
the under-represented other class are mapped for
one classifier to individual and for the other one
to group, which creates a kind of minority-class
noise. Our intuition is, if both classifier overcome
the uncertainty added by the (small) amount of
noise, the prediction is considered reliable. Con-
sequently, we consider a disagreement as evidence
for assigning the minority class.

Results Table 2 shows the results. We find that
our two vote classification approach, using two
MLPs, reaches the highest F-Score on the devel-
opment and test set. On the development set, we
reach the best accuracy result with an SVM but the
considerably lower F-Score shows a strong bias to-
wards a single class. Moreover, MLP+MLP shows
a high robustness when comparing the F-Score
performance between development and test set.

5 Conclusion

In this paper, we presented our approach on identi-
fying and categorizing offensive language in social
media. We mostly rely on lexical and semantic
features for all subtasks. Results shows that se-
mantic features have a significant impact on sys-
tem performance. In general, our system leaves
much room for improvement. Detection of offen-
siveness could probably benefit from more seman-
tically oriented features that go beyond the surface
form of words. We make the source code of our
experiments publicly available4.

4https://github.com/aggarwalpiush/OffensEval2019

680

References
Elisa Bassignana, Valerio Basile, and Viviana Patti.

2018. Hurtlex: A Multilingual Lexicon of Words
to Hurt. In Proceedings of the Fifth Italian Confer-
ence on Computational Linguistics (CLiC-it 2018),
Torino, Italy, December 10-12, 2018.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. J. Mach. Learn.
Res., 3:993–1022.

Leo Breiman. 2001. Random Forests. Mach. Learn.,
45(1):5–32.

Leo Breiman, Jerome H Friedman, Richard A Ol-
shen, and Charles J Stone. 1984. Classifica-
tion and regression trees. The Wadsworth statis-
tics/probability series. Wadsworth and Brooks/Cole
Advanced Books and Software, Monterey, CA.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A Library for Support Vector Machines. ACM
Trans. Intell. Syst. Technol., 2(3):27:1–27:27.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv preprint arXiv:1810.04805.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A Library for Large Linear Classification. J. Mach.
Learn. Res., 9:1871–1874.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-Speech Tagging
for Twitter: Annotation, Features, and Experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 42–47. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. CoRR,
abs/1412.6980.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11. Association for
Computational Linguistics.

Jamie Macbeth, Hanna Adeyema, Henry Lieberman,
and Christopher Fry. 2013. Script-based story
matching for cyberbullying prevention. In ACM
SIGCHI Conference on Human Factors in Comput-
ing Systems, pages 901–906.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in Pre-Training Distributed Word Represen-
tations. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive Lan-
guage Detection in Online User Content. In Pro-
ceedings of the 25th International Conference on
World Wide Web, WWW ’16, pages 145–153, Re-
public and Canton of Geneva, Switzerland. Interna-
tional World Wide Web Conferences Steering Com-
mittee.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830.

William Warner and Julia Hirschberg. 2012. Detecting
Hate Speech on the World Wide Web. In Proceed-
ings of the Second Workshop on Language in Social
Media, pages 19–26, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse:
A Typology of Abusive Language Detection Sub-
tasks. In Proceedings of the First Workshop on Abu-
sive Language Online, pages 78–84. Association for
Computational Linguistics.

Zeerak Waseem and Dirk Hovy. 2016. Hateful Sym-
bols or Hateful People? Predictive Features for Hate
Speech Detection on Twitter. In Proceedings of the
NAACL Student Research Workshop, pages 88–93.
Association for Computational Linguistics.

Michael Wiegand, Josef Ruppenhofer, Anna Schmidt,
and Clayton Greenberg. 2018a. Inducing a Lexi-
con of Abusive Words – a Feature-Based Approach.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1046–1056. Associ-
ation for Computational Linguistics.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018b. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018c. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage.

Michael Wojatzki, Tobias Horsmann, Darina Gold, and
Torsten Zesch. 2018. Do Women Perceive Hate
Differently: Examining the Relationship Between
Hate Speech, Gender, and Agreement Judgments.
In Proceedings of the Conference on Natural Lan-
guage Processing (KONVENS), pages 110–120, Vi-
enna, Austria.

Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and
Carolyn Rose. 2012. Detecting Offensive Tweets

681

via Topical Feature Discovery over a Large Scale
Twitter Corpus. In Proceedings of the 21st ACM In-
ternational Conference on Information and Knowl-
edge Management, CIKM ’12, pages 1980–1984,
New York, NY, USA. ACM.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

682

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 683–690
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

MIDAS at SemEval-2019 Task 6: Identifying Offensive Posts and
Targeted Offense from Twitter

Haimin Zhang,1 Debanjan Mahata,1 Simra Shahid,2 Laiba Mehnaz,2

Sarthak Anand,3 Yaman Kumar,5 Rajiv Ratn Shah,4 Karan Uppal1

1Bloomberg, USA, 2DTU-Delhi, India, 3NSIT-Delhi, India, 4IIIT-Delhi, India, 5Adobe, India
hzhang449@bloomberg.net, dmahata@bloomberg.net, simrashahid bt2k16@dtu.ac.in,

laibamehnaz@dtu.ac.in, sarthaka.ic@nsit.net.in, ykumar@adobe.com,
rajivratn@iiitd.ac.in, kuppal8@bloomberg.net

Abstract
In this paper, we present our approach and
the system description for Sub-task A and Sub
Task B of SemEval 2019 Task 6: Identify-
ing and Categorizing Offensive Language in
Social Media. Sub-task A involves identify-
ing if a given tweet is offensive or not, and
Sub Task B involves detecting if an offensive
tweet is targeted towards someone (group or
an individual). Our models for Sub-task A is
based on an ensemble of Convolutional Neu-
ral Network, Bidirectional LSTM with atten-
tion, and Bidirectional LSTM + Bidirectional
GRU, whereas for Sub-task B, we rely on a
set of heuristics derived from the training data
and manual observation. We provide a de-
tailed analysis of the results obtained using
the trained models. Our team ranked 5th out
of 103 participants in Sub-task A, achieving a
macro F1 score of 0.807, and ranked 8th out
of 75 participants in Sub Task B achieving a
macro F1 of 0.695.

1 Introduction

The unrestricted use of offensive language in so-
cial media is disgraceful for a progressive society
as it promotes the spread of abuse, violence, ha-
tred, and leads to other activities like trolling. Of-
fensive text can be broadly classified as abusive
and hate speech on the basis of the context and tar-
get of the offense. Hate speech is an act of offend-
ing, insulting or threatening a person or a group
of similar people on the basis of religion, race,
caste, sexual orientation, gender or belongingness
to a specific stereotyped community (Schmidt and
Wiegand, 2017; Fortuna and Nunes, 2018). Abu-
sive speech categorically differs from hate speech
because of its casual motive to hurt using gen-
eral slurs composed of demeaning words. Both of
them are the popular categories of offensive con-
tent, widespread in different social media chan-
nels.

With the democratization of the web, the usage
of offensive language in online platforms is a clear
indication of misuse of our right to ‘Freedom of
Speech’. While censorship of free moving online
content curtails the freedom of speech, but unreg-
ulated opprobrious tweets discourage free discus-
sions in the virtual world making the problem of
identifying and filtering out offensive content from
social media an important problem to be solved for
creating a better society, both in and out of the In-
ternet.

Detecting offensive content from social media
is a hard research problem due to variations in
the way people express themselves in a linguis-
tically diverse social setting of the web. A major
challenge in monitoring online content produced
on social media websites like Twitter, Facebook
and Reddit is the humongous volume of data be-
ing generated at a fast pace from varying demo-
graphic, cultural, linguistic and religious commu-
nities. Apart from the problem of information
overload, social media websites pose challenges
for automated information mining tools and tech-
niques due to their brevity, noisiness, idiosyncratic
language, unusual structure and ambiguous rep-
resentation of discourse. Information extraction
tasks using state-of-the-art natural language pro-
cessing techniques, often give poor results when
applied in such settings (Ritter et al., 2011). Abun-
dance of link farms, unwanted promotional posts,
and nepotistic relationships between content cre-
ates additional challenges. Due to the lack of ex-
plicit links between content shared in these plat-
forms it is also difficult to implement and get use-
ful results from ranking algorithms popularly used
for web pages (Mahata et al., 2015).

Interests from both academia and industry has
led to the organization of related workshops such

683

as TA-COS1, Abusive Language Online2, and
TRAC3, along with shared tasks such as GermEval
(Wiegand et al., 2018) and TRAC (Kumar et al.,
2018). The task 6 of SemEval 2019 (Zampieri
et al., 2019b) is one such recent effort containing
short posts from tweets collected from the Twit-
ter platform and annotated by human annotators
with the objective of identifying expressions of of-
fensive language, categorization of offensive lan-
guage and identifying the target against whom the
offensive language is being used, leading to three
sub tasks (A, B and C). We only participate in two
of them for which we define the problems.
Problem Definition Sub-task A - Given a labeled
dataset D of tweets, the objective of the task is
to learn a classification/prediction function that
can predict a label l for a given tweet t, where
l ∈ {OFF,NOT}, OFF - denoting a tweet being
offensive, and NOT - denoting a tweet being not
offensive.
Problem Definition Sub Task B - Given a labeled
dataset D of tweets, the objective of the task is
to learn a classification/prediction function that
can predict a label l for a given tweet t, where
l ∈ {TIN,UNT}, TIN - denoting an offensive
tweet targeted towards a group or an individual,
and UNT - denoting a tweet that does not contain
a targeted offense although it might use offensive
language.

Towards this objective we make the following
contributions in this work:

• Train deep learning models of different ar-
chitectures - Convolutional Neural Networks,
Bidirectional LSTM with attention and Bidi-
rectional LSTM + Bidirectional GRU, and re-
port their results on the provided dataset. Our
best model which ranked 5th in Sub-task A,
is an ensemble of all the three deep learning
architectures.

• We perform an analysis of the dataset, point
out certain discrepancies in annotation and
show how undersampling directed by error
analysis could be sometimes useful for in-
creasing the performance of the trained mod-
els.

1http://ta-cos.org/
2https://sites.google.com/site/

abusivelanguageworkshop2017/
3https://sites.google.com/view/trac1/

home

Next, we present previous works related to the
task.

2 Related Work

Most of the previous works in this domain deals
with the identification and analysis of the use
of hate speech (Davidson et al., 2017), and abu-
sive languages in online platforms (Nobata et al.,
2016). Abusive speech categorically differs from
hate speech because of its casual motive to hurt us-
ing general slurs composed of demeaning words.
A proposal of typology of abusive language sub-
tasks is presented in (Waseem et al., 2017). Both
abusive as well as hate speech are sub-categories
of offensive language. Detailed surveys of the
works related to hate speech could be found in
(Schmidt and Wiegand, 2017) and (Fortuna and
Nunes, 2018).

One of the earliest efforts in hate speech de-
tection can be attributed to (Spertus, 1997) who
had presented a decision tree based text classifier
for web pages with a 88.2 % accuracy. Contem-
porary works on Yahoo news pages were done
(Sood et al., 2012), and later taken up by (Yin
et al., 2016). (Xiang et al., 2012) detected offen-
sive tweets using logistic regression over a tweet
dataset with the help of a dictionary of 339 of-
fensive words. Offensive text classification in on-
line textual content have been tried previously for
languages other than English, like German (Ross
et al., 2017), Chinese (Su et al., 2017), Slovene
(Fišer et al., 2017), Arabic (Mubarak et al., 2017),
and in challenging cases of code-switched lan-
guages such as Hinglish (Mathur et al., 2018).
However, despite the various endeavors by lan-
guage experts and online moderators, users con-
tinue to disguise their abuse through creative mod-
ifications that contribute to multidimensional lin-
guistic variations (Clarke and Grieve, 2017).

(Badjatiya et al., 2017) used CNN based clas-
sifiers to classify hateful tweets as racist and sex-
ist. (Park and Fung, 2017) introduced a combi-
nation of CharCNN and WordCNN architectures
for abusive text classification. (Gambäck and Sik-
dar, 2017) explored four CNN models trained on
character n-grams, word vectors based on seman-
tic information built using word2vec, randomly
generated word vectors, and word vectors com-
bined with character n-grams to develop a hate-
speech text classification system. (Pitsilis et al.,
2018) used an ensemble of RNNs in order to iden-

684

tify hateful content in social media.
Some of the recent works in this domain has

been on identifying profanity vs. hate speech
(Malmasi and Zampieri, 2018), which highlights
the challenges of distinguishing between profan-
ity, and threatening language which may not ac-
tually contain profane language. On a similar di-
rection there has been work on understanding the
main intentions behind vulgar expressions in so-
cial media (Holgate et al., 2018). Various ap-
proaches have been taken to tackle both textual as
well as multimodal data from Twitter and social
media in general, in order to build deep learning
classifiers for similar tasks (Baghel et al., 2018;
Kapoor et al., 2018; Mahata et al., 2018a,b; Jangid
et al., 2018; Meghawat et al., 2018; Shah and Zim-
mermann, 2017).

3 Dataset

Figure 1: Distribution of classes (OFF - Offensive and
NOT - Not Offensive) for Sub-task A.)

Figure 2: Distribution of classes (TIN - Targeted Of-
fense and UNT - Untargeted Offense) for Sub Task B.)

The dataset provided for the tasks was collected
through Twitter API by searching for tweets con-
taining certain selected keyword patterns popular
in offensive posts. Around 50% of the keyword
patterns were political in nature such as ‘MAGA’,

‘antifa’, ‘conservative’ and ‘liberal’. The other
half were based on keyword patterns such as ‘he
is’, ‘she is’, in combination with metadata pro-
vided by the Twitter API that marks a tweet to
be ‘unsafe’. The annotation of the collected data
was done using figure eight, which is a popular
crowdsourcing platform. 14,100 tweets were se-
lected in the final dataset with 13,240 provided as
the training data and 860 as the test data. The de-
tails of the dataset, its collection process and an-
notation agreements could be found in (Zampieri
et al., 2019a).

Figures 1 and 2, shows the distribution of the
classes in the subsets of the data provided for Sub-
task A and Sub Task B, respectively. The distribu-
tions show the imbalance in class labels. We also
took a detailed look at the dataset and found dis-
crepancies between the definition of the classes as
provided by the organizers and the actual annota-
tions. The mislabeling was more prominent as an
offensive post being labeled as not offensive. We
observed such wrong annotations when perform-
ing manual error analysis on the predictions pro-
vided by an initially trained classifier, which was
a simple Convolutional Neural Network. About
4 % of the posts seemed to have been mislabeled,
which we found through manual inspection and re-
moved them from the training data. Here are few
such examples.

• @user @user @user @user @user @user
@user what a stupid incompetent devious
and toxic pm ! may haven’t you forgotten
17.4 million voters ? betray us at your peril !
you are eroding faith in democracy + destroy-
ing tory party ! you should go url. (Original
Label: NOT)

• angelina is so funny at rhe wrong times im-
ngonna shoot this bitch uppdoals. (Original
Label: NOT)

• @user @user so and accusation by a lib-
tarded trump hating liberal activist against
a trump appointee doesnt make u wonder if
the accusation was politically motivated in
the slightest ? no ? this is why conserva-
tives think u are all stupid . because u are .
(Original Label: NOT)

This increased the performances of our trained
models and could be considered as a heuristic
based undersampling of the provided dataset.

685

4 Experiments and Results

We train different deep learning models for the
Sub-task A and rely on heuristics learnt from the
training data for Sub-task B. In this section we ex-
plain the steps taken for pre-processing data and
training the predictive models and give a short de-
scription of the heuristics that we came up with
after analyzing the data.

4.1 Data Preprocessing

Before feeding the dataset to any machine learn-
ing model we took some steps to process the data.
For all our experiments we used Keras4 as the ma-
chine learning coding library. Some of the pre-
processing steps that we took are:
Tokenization - Tokenization is a fundamental pre-
processing step and could be one of the important
factors influencing the performance of a machine
learning model that deals with text. As tweets
include wide variation in vocabulary and expres-
sions such as user mentions and hashtags, the to-
kenization process could become a challenging
task. We used the nltk’s5 tweet tokenizer in order
to tokenize the tweets provided in the dataset by
overriding the default tokenizer provided in keras.
Cleaning and Normalization - Normalization of
tokens were also done using some hand-crafted
rules. The # symbol was removed from the tweets
along with mapping few popular offensive words
to a standard form. For example, ‘bi*ch’, ‘b**ch’,
‘bi**h’, ‘biatch’ were all mapped to ‘bitch’, and
‘sob’, ‘sobi*ch’, were mapped to ‘son of bitch’.
The @user tokens were removed. The hashtags
that contained two or more words were segmented
into their component words. For example #fatbas-
tard was converted to fat bastard.

4.2 Training Deep Learning Models

In order to train deep learning models we need to
provide the input as a matrix and the input words
need to be mapped to their embeddings which pro-
vides richer semantic representation of words in
comparison to the one-hot vectors. Each tweet is
treated as a sequence of words and may vary in
their lengths. We fix 200 as the max length and pad
the input sequences in order to make their lengths
fixed to 200. For, our experiments we used the 200
dimensional Glove embeddings6 trained on tweets

4https://keras.io/
5https://www.nltk.org/api/nltk.tokenize.html
6https://github.com/plasticityai/magnitude

and 400 dimensional Godin embeddings7. There
was no significant difference in the results while
training our initial models by using one over the
other. Therefore for all our models as presented
in this work we selected the Glove embeddings as
the pre-trained word embedding of our choice due
to its lower dimensions resulting in lesser training
of weights in the neural network.

We train the following architectures for Sub-
task A having the parameters as explained next.
Convolutional Neural Network - Convolutional
neural networks are effective in text classification
tasks primarily because they are able to pick out
salient features (e.g., tokens or sequences of to-
kens) in a way that is invariant to their position
within the input sequence of words. In our model,
we use three different filters with sizes 2, 3 and 4.
For each filter size, 256 filters are used. A max
pooling layer is then applied for each filter size.
The resultant vectors are concatenated to form the
vector that represents the whole tweet. A drop out
layer with drop out rate 0.3 is applied before the
input to the Multi Layer Perceptron with 256 neu-
rons for classification. We also use a dropout layer
after the embedding with dropout rate 0.3 to ran-
domly drop words, which we find helpful to re-
solve overfitting issue. Sigmoid activation func-
tion is applied to the final layer.
Bidirectional LSTM with Attention - Bidirec-
tional LSTM (BLSTM) is an extension of LSTM
in which two LSTM models are trained on the in-
put sequence. The first on the input sequence as-is
and the second on its reversed copy. This can pro-
vide additional context to the network and result
in faster and sometimes better learning. They have
shown very good results in sequence classification
tasks. We use 64 LSTM units with 0.2 drop out,
one attention layer is added on the sequence of re-
sult vectors from BLSTM. 128 neurons are used
in the final Multi Layer Perceptron layer for clas-
sification. Sigmoid activation function is applied
to the final layer.
Bidirectional LSTM followed by Bidirectional
GRU - We use 64 LSTM units wrapped by a Bidi-
rectional layer, 0.3 was the dropout rate, followed
by a Bidirectional GRU with 64 GRU units also
with 0.3 dropout. Then a max pooling and aver-
age pooling are used and concatenated before in-
put to the final Multi Layer Perceptron layer with
128 neurons for classification. Sigmoid activation

7https://fredericgodin.com/software/

686

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Convolutional Neural Network (on training data) 0.8020 0.8387
Bidirectional LSTM with Attention (on training data) 0.7851 0.8246
Bidirectional LSTM + Bidirectional GRU (on training data) 0.7893 0.8301
MIDAS Submission 1 on test data (CNN) 0.7964 0.8395
MIDAS Submission 2 on test data (Ensemble of CNN, BLSTM with Attention, BLSTM + BGRU) 0.8066 0.8407

Table 1: Results for Sub-task A.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
MIDAS Submission 1 0.6952 0.8667

Table 2: Results for Sub-task B.

function is applied to the final layer.
For all three models we add a drop out layer af-

ter the embedding to randomly drop words, which
we find helpful to address overfitting issue, and
early stop is used with restoring the best model
weights. Grid search is used to find the best pa-
rameters for each model. Table 1 presents the per-
formance of each of these networks on the modi-
fied dataset as already explained in Section 3.

Often, one solution to a complex problem does
not fit to all scenarios. Thus, researchers use en-
semble techniques to address such problems. His-
torically, ensemble learning has proved to be very
effective in most of the machine learning tasks in-
cluding the famous winning solution of the Net-
flix Prize. Ensemble models can offer diversity
over model architectures, training data splits or
random initialization of the same model or model
architectures. Multiple average or low perform-
ing learners are combined to produce a robust and
high performing learning model. We do the same
in our experiments. We combine the trained deep
learning models having different architectures as
an ensemble by averaging their final predictions.
We had also tried the stacked ensemble approach
as explained in (Mahata et al., 2018b). But it
didn’t give promising results in first few iterations.
Moreover, it was computationally expensive and
due to lack of sufficient time we, did not go fur-
ther in that route.

Our ensemble model performed better than
the individual models and was also submitted to
the competition, which was finally ranked 5th
amongst 103 participants. Figure 3 presents the
confusion matrix of our submission for Sub-task
A. Some of the samples from the training dataset,

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

542 78

59 181

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Confusion Matrix for MIDAS submission 2
for Sub-task A.

which were very hard for our final model to predict
are:

• More like #Putin every day. #MAGA URL
(OFF)

• @USER Hitler would be so proud of David
Hogg trying to disarm American citizen so
when Democrats come to power-we are help-
less And cannot defend ourselves-; that’s
why we have they AR15’s (NOT)

• @USER good job (sarcasm). Also great they
have gun control laws its saving lives! (More
sarcasm). (OFF)

4.3 Heuristics for Sub-task B
Due to lack of time from our part, we were not able
to train good machine learning models for Sub-
task B. The preliminary models that we trained
showed performances that was similar to that of
a random model biased by the class distribution of
the training data. The training dataset for Sub-task
B was highly imbalanced which was a major chal-
lenge. We would like to have an in depth look at
Sub-task B in the near future.

For the sake of submission to the competition
we came up with certain heuristics in order to de-
cide whether an offensive post is targeted or not.

687

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

194 19

13 14

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 4: Confusion Matrix for MIDAS submission 1
for Sub-task B.

We skipped the pre-processing part of the tweets
that we did before training the machine learning
models as described in Section 4.1. We looked at
the frequency distribution of words and hashtags
in the training dataset as well as observed the pat-
terns of the posts. After doing that we did find
that some of the hashtags like ‘#maga’, ‘#liber-
als’, ‘#kavanaugh’, ‘#qanon’, etc were frequently
occurring. and so are some of the tokens like ‘an-
tifa’, ‘president’, ‘trump’, ‘potus’, ‘liberals’, ‘con-
servatives’, ‘democrat’, ‘nigga’, ‘gay’, ‘jew’. Top
100 such tokens and hashtags were compiled after
eliminating some of them manually if they didn’t
make any sense, for example some unwanted stop
words. We also extracted POS tags of the tweets
using TweeboParser8 and extracted named entities
(only PERSON, ORG, LOCATION, FACILITY)
using SpaCy9. We framed our final heuristic based
on the following rules:

• If the post includes any of the 100 hash-
tags then it is considered as targeted offense
(TIN).

• else if the post includes any of the 100 to-
kens then it is considered as targeted offense
(TIN).

• else if no named entity in the post and no Per-
sonal Pronoun and Proper Nouns are present
in the post then it is a untargeted offense
(UNT).

• else if the post has he/she is, you are, he
she then it is considered as targeted offense
(TIN).

8http://www.cs.cmu.edu/ ark/TweetNLP/
9https://spacy.io

• else if the post has pattern ’ Starts with hash-
tag followed by verbs and named entity’ then
it is considered as targeted offense (TIN).

• else If there is a named entity then it is con-
sidered as targeted offense (TIN).

• all other cases are considered as untargeted
offense (UNT).

We do not think this to be a robust model and it
was only possible to come up with the heuristics
because there were certain patterns in the dataset
that was very obvious to bare human eye. Given
that the dataset is very small, these heuristics can
never scale well. One of the reasons behind dis-
covering such patterns could also be because of
the way the dataset was collected. Now that we
know how it was collected as explained in Sec-
tion 3, these patterns make more sense and it does
explain why we could perform reasonably well
even though we came up with such naive patterns
in haste. Figure 4 presents the confusion ma-
trix of our submission for Sub-task B and Table
2 presents the performance on the test dataset.

5 Conclusion and Future Work

In this work, we report our models and their re-
spective performances in Sub-task A and B of
SemEval-2019 Task 6 OffensEval: Identifying and
Categorizing Offensive Language in Social Me-
dia. We showed how an ensemble of deep learning
models performed well in the provided dataset and
was ranked 5th in the competition in Sub-task A.
Due to the inherent biases in collecting the dataset
we believe that we were able to come up with
naive heuristics for Sub-task B and was able to
rank 8th in the competition.

In the future we would like to solve Sub-task
B using a machine learning approach. We would
also like to look at other machine learning archi-
tectures and ensemble methods for the different
sub tasks in the competition. Out of three sub
tasks, we were able to attempt only two of them.
In the near future we would like to tackle the prob-
lem posed in Sub-task C. Some of the other areas
that could be explored are cleaning the dataset by
correcting the annotations and studying the prob-
lem of inherent biases that can occur in samples
collected based on keyword patterns.

688

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Nupur Baghel, Yaman Kumar, Paavini Nanda, Ra-
jiv Ratn Shah, Debanjan Mahata, and Roger Zim-
mermann. 2018. Kiki kills: Identifying dangerous
challenge videos from social media. arXiv preprint
arXiv:1812.00399.

Isobelle Clarke and Jack Grieve. 2017. Dimensions of
abusive language on twitter. In Proceedings of the
first workshop on abusive language online, pages 1–
10.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Eric Holgate, Isabel Cachola, Daniel Preoţiuc-Pietro,
and Junyi Jessy Li. 2018. Why swear? analyzing
and inferring the intentions of vulgar expressions.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4405–4414.

Hitkul Jangid, Shivangi Singhal, Rajiv Ratn Shah, and
Roger Zimmermann. 2018. Aspect-based financial
sentiment analysis using deep learning. In Compan-
ion of the The Web Conference 2018 on The Web
Conference 2018, pages 1961–1966. International
World Wide Web Conferences Steering Committee.

Raghav Kapoor, Yaman Kumar, Kshitij Rajput, Ra-
jiv Ratn Shah, Ponnurangam Kumaraguru, and
Roger Zimmermann. 2018. Mind your language:
Abuse and offense detection for code-switched lan-
guages. arXiv preprint arXiv:1809.08652.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Debanjan Mahata, Jasper Friedrichs, Rajiv Ratn Shah,
and Jing Jiang. 2018a. Detecting personal intake
of medicine from twitter. IEEE Intelligent Systems,
33(4):87–95.

Debanjan Mahata, Jasper Friedrichs, Rajiv Ratn Shah,
et al. 2018b. # phramacovigilance-exploring deep
learning techniques for identifying mentions of
medication intake from twitter. arXiv preprint
arXiv:1805.06375.

Debanjan Mahata, John R Talburt, and Vivek Kumar
Singh. 2015. From chirps to whistles: discover-
ing event-specific informative content from twitter.
In Proceedings of the ACM web science conference,
page 17. ACM.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018. Detecting offensive tweets in
hindi-english code-switched language. In Proceed-
ings of the Sixth International Workshop on Natural
Language Processing for Social Media, pages 18–
26.

Mayank Meghawat, Satyendra Yadav, Debanjan Ma-
hata, Yifang Yin, Rajiv Ratn Shah, and Roger Zim-
mermann. 2018. A multimodal approach to pre-
dict social media popularity. In 2018 IEEE Con-
ference on Multimedia Information Processing and
Retrieval (MIPR), pages 190–195. IEEE.

Hamdy Mubarak, Kareem Darwish, and Walid Magdy.
2017. Abusive language detection on arabic social
media. In Proceedings of the First Workshop on
Abusive Language Online, pages 52–56.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive
Language Detection in Online User Content. In
Proceedings of the 25th International Conference
on World Wide Web, pages 145–153. International
World Wide Web Conferences Steering Committee.

Ji Ho Park and Pascale Fung. 2017. One-step and two-
step classification for abusive language detection on
twitter. arXiv preprint arXiv:1706.01206.

Georgios K Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language
in tweets using deep learning. arXiv preprint
arXiv:1801.04433.

Alan Ritter, Sam Clark, Oren Etzioni, et al. 2011.
Named entity recognition in tweets: an experimental
study. In Proceedings of the conference on empiri-
cal methods in natural language processing, pages
1524–1534. Association for Computational Linguis-
tics.

689

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2017. Measuring the reliability of hate
speech annotations: The case of the european
refugee crisis. arXiv preprint arXiv:1701.08118.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Rajiv Shah and Roger Zimmermann. 2017. Multi-
modal analysis of user-generated multimedia con-
tent. Springer.

Sara Owsley Sood, Elizabeth F Churchill, and Judd
Antin. 2012. Automatic identification of personal
insults on social news sites. Journal of the Ameri-
can Society for Information Science and Technology,
63(2):270–285.

Ellen Spertus. 1997. Smokey: Automatic recognition
of hostile messages. In AAAI/IAAI, pages 1058–
1065.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and
Carolyn Rose. 2012. Detecting offensive tweets
via topical feature discovery over a large scale twit-
ter corpus. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge
management, pages 1980–1984. ACM.

Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mi-
anwei Zhou, Hua Ouyang, Jianhui Chen, Changsung
Kang, Hongbo Deng, Chikashi Nobata, et al. 2016.
Ranking relevance in yahoo search. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
323–332. ACM.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

690

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 691–695
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Nikolov-Radivchev at SemEval-2019 Task 6:
Offensive Tweet Classification with BERT and Ensembles

Victor Radivchev
Sofia University, FMI

victor.radivchev@gmail.com

Alex Nikolov
Sofia University, FMI

alexnickolow@gmail.com

Abstract

This paper examines different approaches and
models towards offensive tweet classification
which were used as a part of the OffensE-
val 2019 competition. It reviews Tweet pre-
processing, techniques for overcoming unbal-
anced class distribution in the provided test
data, and comparison of multiple attempted
machine learning models.

1 Introduction

The purpose of this paper is to explore different
approaches towards classifying tweets based
on whether they are offensive or not, whether
offensive tweets are targeted, and identifying
the target group of offensive tweets either an
individual, a group, or other. Those are the
terms of the OffensEval 2019 competition in
which we participated. Each of the described
activities constituted a separate subtask from the
competition. A maximum of three submissions
were allowed per subtask which required careful
preliminary analysis of the model results during
the training phase. A training set of over 13,000
tweets, containing labels for all three subtasks.
Each of the subtasks was scored using macro F1
score.

2 Related Work

One of the most effective strategies for tackling
this problem is to use computational methods to
identify offense, aggression, and hate speech in
user-generated content (e.g. posts, comments, mi-
croblogs, etc.). This topic has attracted significant
attention recently as evidenced in publications
from the last two years.

Survey papers describing key areas that have
been explored for this task include (Schmidt and

Wiegand, 2017), (Fortuna and Nunes, 2018) and
(Malmasi and Zampieri, 2017). The dataset for
this competition is explained in (Zampieri et al.,
2019a) and different approaches to the same
problem are reported in (Zampieri et al., 2019b).

In order to classify correctly abusive language
it is important to analyze its types. A proposal
of typology of abusive language sub-tasks is
presented in (Waseem et al., 2017) and (ElSherief
et al., 2018) examines the target of the speech:
either directed towards a specific person or entity,
or generalized towards a group of people sharing
a common protected characteristic. (Fišer et al.,
2017) proposes a legal framework, dataset and
annotation schema of socially unacceptable dis-
course practices on social networking platforms
in Slovenia. Finally, a recent discussion on
identifying profanity vs. hate speech is presented
in (Malmasi and Zampieri, 2018). This work
highlighted the challenges of distinguishing be-
tween profanity, and threatening language which
may not actually contain profane language.

Approaches to detecting hate speech on Twit-
ter using convolutional neural networks and
convolution-GRU based deep neural network are
discussed in (Gambäck and Sikdar, 2017) and
(Zhang et al., 2018) respectively.

Additional related work is presented in work-
shops such as TA-COS1, Abusive Language
Online2, and TRAC3 and related shared tasks
such as GermEval (Wiegand et al., 2018) and
TRAC (Kumar et al., 2018).

1http://ta-cos.org/
2https://sites.google.com/site/

abusivelanguageworkshop2017/
3https://sites.google.com/view/trac1/

home

691

3 Methodology and Data

The data was split into a training and validation
set in a ratio of 10:1. All tasks had similar pre-
processing and multiple models were trained on
the training set. Depending on their performance
on the validation set each time the best 3 were
submitted.

3.1 Preprocessing

We started our tweet preprocessing by removing
most punctuation marks which do not include any
useful information for text classification. The
symbols ’@’ and ’#’ were excluded from the list
due to their specific semantics in tweets. After-
wards the tweets were subjected to tokenization
and lowercasing.

All occurrences of tokens beginning with
a hashtag were split into the separate words
comprising the token, provided that each separate
word is uppercased. For example, the token
#HelloThere is split into two tokens hello and
there.

Afterwards we proceeded with removing a
variety of different stop words. When training
models for the second and third subtask, we
excluded personal and possessive pronouns from
the list of stop words, as they can contain valuable
information for classifying a tweet as targeted or
not, or identifying the target group of a targeted
tweet. We also attempted lemmatization and spell
correction but the results were slightly worse or
on par with the ones achieved without using these
two techniques.

Pre-trained word vectors on Twitter from
project GloVe (Pennington et al., 2014) were
used for encoding words to a vector space. Four
different vector dimensions were available for
use 25, 50, 100, and 200. Although results were
slightly better when using higher dimensional
vectors, using 200-dimensional vectors proved to
have no significant advantage in achieved results
over 100-dimensional ones, and proved to be
more computationally expensive, which lead us to
use 100-dimensional vectors for each subtask.

3.2 Models
We trained a large variety of different models
and combined the best of them in ensembles.
For all models the embedding layer was freezed,
becaused that proved less prone to overfitting.

• Standard Nave Bayes and Support Vector
Machine (SVM) from scikit-learn library in
python.

• Convolutional Neural Network (CNN) with
GlobalMaxPooling and hidden dense layer
on top.

• Multilayer Perceptron Network (MLP) with
two hidden layers.

• FastText models with n-grams of size 2.

• Recurrent Neural Network (RNN) with GRU
units and attention layer and hidden dense
layer on top.

• Deep Pyramid Convolutional Neural Net-
work (DPCNN) (Johnson and Zhang, 2017).

• Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018).

• Soft Voting Classifier (SVC) - averages the
predictions of the single models.

• Logistic Regression - meta model trained on
half of the validation set with predictions
from the single classifiers as features.

3.3 Class imbalance
One of the challenges of the competition was
the imbalance of classes for the second and
third subtask. We experimented with different
techniques for overcoming this challenge:

• Oversampling duplicating some of the exam-
ples from the poorly represented classes.

• Class weights assigning lower weights to ex-
amples from classes which are better repre-
sented and higher weights to examples from
classes with a lower overall count.

• Modification of the thresholds used for clas-
sifying an example. For example, for a stan-
dard binary classification a threshold of 0.5 is
applied to the predicted probability in order

692

to distinguish between the two classes. We
attempted to lower this threshold to different
levels.

For all model apart from BERT the class weight
option was chosen. Only for BERT on subtask C
the thresholds were changed instead. For classes
OTH and GRP we used thresholds of 0.2 and 0.3
respectively and if any of them was exceeded we
would directly assign that class. If both were ex-
ceeded we would assign OTH as the class. The
coefficients were derived via cross-validation.

4 Results

The results from the test sets for each subtask are
displayed below. We have also provided the re-
sults from our validation sets, those were the basis
upon which we decided which models predictions
to submit.

The individual model with the best performance
on subtask A was BERT-Large, Uncased with a
macro F1 score of 0.781 on the validation set and
was selected as one of the models for submission.
The other two submitted models were the soft vot-
ing classifier with score of 0.788 and the logistic
regression model 0.800. The scores of the other
trained models are displayed below.

System F1 (macro)
Logistic Regression 0.800
SVC 0.788
BERT-Large 0.781
RNN 0.773
DPCNN 0.768
CNN 0.765
FastText 0.759
Nave Bayes 0.744
MLP 0.742
SVM 0.705

Table 1: Results on the validation set for Sub-task A.

The ensemble models proved to have overfit on
the training data and out of the models we have
submitted BERT had the highest score, ranking
second overall amongst all participants.

In subtask B the highest scoring models on the
validation set was the soft voting classifier with
a score of 0.64, closely followed by RNN and
CNN 0.63. BERT-Base, Uncased performed sur-
prisingly poorly and achieved a score of 0.59.

The soft voting classifier scored the highest on
the test set and ranked 16th overall.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
SVC 0.7252 0.8105
Logistic Regression 0.7867 0.8453
BERT-Large 0.8153 0.8547

Table 2: Results on the test set for Sub-task A.

System F1 (macro)
SVC 0.642
RNN 0.633
CNN 0.631
DPCNN 0.630
Logistic Regression 0.629
MLP 0.614
FastText 0.612
BERT-Base 0.599
Nave Bayes 0.596
SVM 0.576

Table 3: Results on the validation set for Sub-task B.

In subtask C BERT-Base, Uncased was by
far the best individual model, achieving a score
of 0.64, surpassing its closest contender (Multi-
Layered Perceptron) by approximately 0.045. The
third model which we submitted was the soft vot-
ing classifier with a score of 0.60.

BERT significantly outperformed every other
submitted model, securing us first place in subtask
C.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

566 54

71 169

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: Sub-task A, vradivchev anikolov CodaLab
BERT

693

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
RNN 0.6354 0.7667
SVC 0.6674 0.8208
CNN 0.6248 0.7833

Table 4: Results on the test set for Sub-task B.

System F1 (macro)
BERT-Base 0.644
SVC 0.603
MLP 0.595
Logistic Regression 0.590
RNN 0.586
CNN 0.571
FastText 0.570
DPCNN 0.568
Nave Bayes 0.567
SVM 0.546

Table 5: Results on the validation set for Sub-task C.

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
BERT-Base 0.6597 0.7277
MLP 0.5591 0.6808
SVC 0.6107 0.6948

Table 6: Results on the test set for Sub-task C.

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

180 33

10 17

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Sub-task B, vradivchev anikolov CodaLab
Soft Voting Classifier

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

56 11 11

11 85 4

15 6 14

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Sub-task C, vradivchev anikolov CodaLab
BERT

694

5 Conclusion

Google’s BERT model proved to be a powerful
tool for text classification. Not only did it out-
perform common models on the validation set, but
based on the results from the test set it did so with-
out overfitting on the data.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In ACL.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In In EMNLP.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

695

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 696–703
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NIT Agartala NLP Team at SemEval-2019 Task 6:
An Ensemble Approach to Identifying and Categorizing

Offensive Language in Twitter Social Media Corpora

Steve Durairaj Swamy1, Anupam Jamatia1, Björn Gambäck2 and Amitava Das3

1National Institute of Technology, Agartala, India
2Norwegian University of Science and Technology, Trondheim, Norway

3Mahindra École Centrale,Hyderabad, Telangana, India
{steve050798,anupamjamatia}@gmail.com,gamback@ntnu.no,amitava.das@mechyd.ac.in

Abstract

The paper describes the systems submit-
ted to OffensEval (SemEval 2019, Task 6)
on ‘Identifying and Categorizing Offen-
sive Language in Social Media’ by the
‘NIT Agartala NLP Team’. A Twitter anno-
tated dataset of 13,240 English tweets was pro-
vided by the task organizers to train the indi-
vidual models, with the best results obtained
using an ensemble model composed of six dif-
ferent classifiers. The ensemble model pro-
duced macro-averaged F1-scores of 0.7434,
0.7078 and 0.4853 on Subtasks A, B, and C,
respectively. The paper highlights the over-
all low predictive nature of various linguistic
features and surface level count features, as
well as the limitations of a traditional machine
learning approach when compared to a Deep
Learning counterpart.

1 Introduction

Offensive language has been the scourge of the in-
ternet since the rise of social media. Social me-
dia provides a platform for everyone and anyone
to voice their opinion. This has empowered peo-
ple to make their voices heard and to speak out on
global issues. The downside to this, however, is
the misuse of such platforms to attack an individ-
ual or a minority group, and to spread hateful opin-
ions. Pairing this with the perceived anonymity
the internet provides, there has been a massive up-
swing in the use of social media for cyberbullying
and hate speech, with technology giants coming
under increased pressure to address the issue.

Most of what we may be interested in detect-
ing can be broadly labelled as hate speech, cyber-
bullying or abusive use of swearing. The union of
these three subsets form what can be identified as
‘Offensive Language on Social Media’. However,
what we consider offensive is often a grey area,
as is evident by the low inter-annotator agreement

rates when labelling data for offensive language
(Waseem et al., 2017b).

Detecting offensive language has proven to be
difficult, due to the broad spectrum in which lan-
guage can be used to convey an insult. The na-
ture of the abuse can be implicit — drawing from
sarcasm and humour rather than offensive terms
— as well as explicit, by making extensive use of
traditional offensive terms and profanity. It does
not help that the reverse is also entertained, with
profanity often being used to imply informality
in speech or for emphasis. Coincidentally, these
are also the reasons why lexical detection methods
have been unfruitful in classifying text as offensive
or non-offensive.

The OffensEval 2019 shared task (Zampieri
et al., 2019b) is one of several endeavours to fur-
ther the state-of-the-art in addressing the offen-
sive language problem. The paper describes the
insights obtained when tackling the shared task
using an ensemble of traditional machine learn-
ing classification models and a Long Short-Term
Memory (LSTM) deep learning model. Section 2
first discusses other related approaches to detect-
ing hate speech and offensive language. Then Sec-
tion 3 describes the dataset and Section 4 the ideas
and methodology behind our approach. Section 5
reports the results obtained, while Section 6 dis-
cusses those results with a particular eye towards
the errors committed by the models. Finally, Sec-
tion 7 sums up the key results and points to ways
the work can be extended.

2 Related Work

Most datasets for offensive language detec-
tion represent multiclass classification problems
(Davidson et al., 2017; Founta et al., 2018;
Waseem and Hovy, 2016), with the annotations
often obtained via crowd-sourcing portals, with

696

varying degrees of success. Waseem et al. (2017b)
state that annotation via crowd-sourcing tends to
work best when the abuse is explicit (Waseem
and Hovy, 2016), but is considerably less reliable
when considering implicit abuse (Dadvar et al.,
2013; Justo et al., 2014; Dinakar et al., 2011).
They propose a typology that can synthesise
different offensive language detection subtasks.
Zampieri et al. (2019a) expand on these ideas
and propose a hierarchical three-level-annotation
model, which is used in the OffensEval 2019
shared task. Another issue is whether the datasets
should be balanced or not (Waseem and Hovy,
2016), since there are much fewer offensive com-
ments than benign comments in randomly sam-
pled real-life data (Schmidt and Wiegland, 2017).

Classical Machine learning algorithms have
been wielded to some success in automated offen-
sive language detection, mainly Logistic Regres-
sion (Davidson et al., 2017; Waseem and Hovy,
2016; Burnap and Williams, 2015) and Support
Vector Machines (Xu et al., 2012; Dadvar et al.,
2013). Recently, however, deep learning mod-
els have outperformed their traditional machine
learning counterparts, with both Recurrent Neu-
ral Networks (RNN) — such as LSTM (Pitsilis
et al., 2018) and Bi-LSTM (Gao and Huang, 2017)
— and Convolutional Neural Networks (CNN)
having been used. Gambäck and Sikdar (2017)
utilised a CNN model with word2vec embeddings
to obtain higher F1-score and precision than a
previous logistic regression model (Waseem and
Hovy, 2016), while Zhang et al. (2018) combined
a CNN model with a Gated Recurrent Unit (GRU)
layer. Malmasi and Zampieri (2018) used an en-
semble system much like ours to separate profan-
ity from hate speech, but reported no significant
improvement over a single classifier system.

In terms of features, simple bag of words mod-
els have proven to be highly predictive (Waseem
and Hovy, 2016; Davidson et al., 2017; Nobata
et al., 2016; Burnap and Williams, 2015). Mehdad
and Tetreault (2016) endorsed the use of charac-
ter n-grams over token n-grams citing their abil-
ity to glaze over the spelling errors that are fre-
quent in online texts. Nobata et al. (2016); Chen
et al. (2012) showed small improvements by in-
cluding features capturing the frequency of dif-
ferent entities such as URLs and mentions, with
other features such as part-of-speech (POS) tags
(Xu et al., 2012; Davidson et al., 2017) and sen-

timent scores (Van Hee et al., 2015; Davidson
et al., 2017) also having been used (Schmidt and
Wiegland, 2017). More recently, meta informa-
tion about the users have been suggested as fea-
tures, but no consistent correlation between user
information and tendency for offensive behaviour
online has been shown, with Waseem and Hovy
(2016) claiming gender information leading to im-
provements in classifier performance, but with
Unsvåg and Gambäck (2018) challenging this and
reporting user-network data to be more important
instead. Wulczyn et al. (2017) concluded that
anonymity leads to an increase in the likelihood
of a comment being an attack.

3 Data

The training dataset used for the shared task,
the Offensive Language Identification Dataset
(Zampieri et al., 2019a), contains 13,240 tweets,
with each tweet having been annotated on the basis
of a hierarchical three-level model. An additional
860 tweets were used as the test set for the shared
task. The three levels/subtasks are as follows:
A – Whether the tweet is offensive (OFF) or non-

offensive (NOT).
B – Whether the tweet is targeted (TIN) or untar-

geted (UNT).
C – If the target is an individual (IND), group

(GRP) or other (OTH; e.g., an issue or an or-
ganisation).

The dataset does not have an equal number of of-
fensive and non-offensive tweets. Only about one-
third of the tweets are marked offensive, to par-
tially account for the fact that most online dis-
course mainly is non-offensive. The corpus ex-
hibits a larger number of male (∼3000) than fe-
male pronouns (∼2500), but is reasonably bal-
anced.

Noticeably, the annotators were very conser-
vative in their classification of tweets as non-
offensive. It is unclear whether this was due to
a more strict definition provided by the task or-
ganisers. For example, it is not immediately clear
why tweets such as:1 “@USER Ouch!” (23159),
“@USER He is a beast” (50771), and “@USER
That shit weird! Lol” (31404) were annotated as
offensive.

The annotators furthermore seemed to disagree
over the cathartic and emphatic use of swearing,
as in “@USER Oh my Carmen. He is SO FRICK-

1In the examples, tweet IDs are given in parenthesis.

697

ING CUTE” (39021), “@USER GIVE ME A
FUCKING MIC” (60566), and “@USER why are
you so fucking good.” (80097). These tweets do
not really seem to be offensive except for them
containing varying degrees of profanity. However,
this is inconsistent, with some other tweets anno-
tated not offensive, as expected: “@USER No
fucking way he said this!” (47427), and “@USER
IT’S FUCKING TIME!!” (59465), although most
tweets that contained profanity were included in
the offensive class.

Another thing to note is a large amount of po-
litical criticism within the tweets in the corpus.
Whether it be left wing or right wing, extreme
cases seem to be correctly annotated as offensive,
while a healthy amount of criticism and political
discourse correctly is annotated as non-offensive.
The dataset also exhibits a dearth of racist tweets.

4 Methodology

Initially, a suite of features was composed based
on those used successfully in previous work such
as Waseem and Hovy (2016), Davidson et al.
(2017), Nobata et al. (2016) and Burnap and
Williams (2015): surface-level token unigrams,
bigrams, and trigrams, weighted by TF-IDF; POS
tags obtained through the CMU tagger2 (Gim-
pel et al., 2011), which was specifically developed
for the language used on Twitter; sentiment score
assigned using a pre-trained model included in
TextBlob3; and count features for URLs, men-
tions, hashtags, punctuation marks, words, sylla-
bles, and sentences.
Scikit-learn4 (Pedregosa et al., 2011) was

used as the primary library for modelling and
training. L1-regularised Logistic Regression and a
Linear Support Vector Classifier stood out initially
as the best models. Further experimentation dis-
played that while those two models exhibited the
highest accuracy, their recall of offensive tweets
in subtask A and of untargeted insults in sub-
task B were lower than other classifiers provided
in the Scikit-learn library, such as the Passive-
Aggressive (PA) classifier (Crammer et al., 2006)
and stochastic gradient descent (SGD).

Further exploration showed that the classifiers
were not in agreement on certain tweets. This
led to the idea of a vote-based ensemble model

2www.cs.cmu.edu/˜ark/TweetNLP/
3textblob.readthedocs.io/en/dev/
4scikit-learn.org/stable/

built on the following five classifiers combined by
plurality voting (Kuncheva, 2004): L1-regularised
Logistic Regression, L2-regularised Logistic Re-
gression, Linear SVC, SGD, and PA. The en-
semble model exhibited the best results in sub-
tasks A and B. In subtask C, the multi-class clas-
sification problem and a severe reduction of the
size of the training set led to much lower macro-
averaged F1-scores, with the ensemble model per-
forming badly. A deep learning approach, based
on an LSTM architecture (Hochreiter and Schmid-
huber, 1997), was adopted specifically for this
subtask. The model used a 200 dimensional
GloVe embedding5 pre-trained on 2 billion
tweets (Pennington et al., 2014), with trainability
set to False. The embedding layer was followed by
a 1D convolution layer with 64 output filters and a
Rectified Linear Unit (ReLU) activation function.
The output of this layer was down-sampled using a
max pooling layer of size 4. These inputs were fed
into an LSTM layer of 200 units and subsequently
a dense layer of 3 units with a softmax activation
function. The model used the ‘Adam’ optimiser
and the categorical cross entropy loss function.
Due to the less amount of data, overfitting was
quite common on as few as 3 epochs. Therefore,
the model benefited from larger dropout values (up
to 0.5). This model exhibited a better result than
the ensemble model in subtask C, although only
by a small margin.

5 Results

The experiments were run in three stages. First,
before choosing the models, a mini ablation study
was carried out on how various features affected
the accuracy and F1-score metrics of different
models. The selected models were then optimised
on the training set, before being evaluated on the
test dataset.

5.1 Feature Engineering

The initial ablation study was carried out on a
small sample space of models: the Linear SVC
and L1/L2-penalised Logistic Regression. The re-
sults are represented in Table 1.

The ablation analysis revealed that surface-level
token/character n-grams are by far the most pre-
dictive of the features. An interesting observa-
tion is the significantly improved recall of offen-
sive tweets when character n-grams are included.

5nlp.stanford.edu/projects/glove/

698

Features Linear SVC Logistic Regression L1 Logistic Regression L2

Acc F1 Rec Acc F1 Rec Acc F1 Rec

(1,3) word n-gram .7694 .7257 .4884 .7671 .7309 .5938 .7583 .7193 .5684
+ POS tags .7647 .7192 .4650 .7584 .7155 .5659 .7482 .7072 .5502

+ Sentiment Score .7635 .7188 .4920 .7399 .7057 .5997 .7261 .6894 .5752
+ Sentiment Score - POS Tags .7694 .7265 .5068 .7558 .7226 .6161 .7384 .7033 .5929

+ Count Features .7673 .7234 .4925 .7422 .7096 .6125 .7327 .7004 .6075
+ Count Features - POS Tags .7710 .7286 .5115 .7587 .7260 .6209 .7478 .7149 .6138

(2,5) char n-gram .7532 .7185 .6032 .7376 .7080 .6288 .7487 .7203 .6459
+ Sentiment Score .7539 .7189 .6015 .7315 .7060 .6490 .7503 .7240 .6604
+ Count Features .7534 .7191 .6068 .7323 .7077 .6557 .7523 .7262 .6636

Table 1: Ablation analysis on subtask A, with the training set.

Subtask Subtask Subtask
A B C

All All Linear Ensemble All All Ensemble All All All Ensemble LSTM
NOT OFF SVC model TIN UNT model GRP IND OTH model network

F1 .4189 .2182 .7369 .7434 .4702 .1011 .7079 .1787 .2130 .0941 .4854 .5056
Acc. .7209 .2790 .8012 .8023 .8875 .1125 .8833 .3662 .4695 .1643 .6291 .6385

Table 2: Test set results (macro-F1 and accuracy) for all subtasks, with class baselines (“All X”).

However, the best F1-score/accuracy was never
achieved with the character n-gram model, and
hence only token n-grams were included on the
final feature list. Other features provided only
small improvements in accordance with previous
observations (Wiegand et al., 2018). The addi-
tion of POS information seems to cause a reduc-
tion in performance, so this feature was dropped,
except for in subtask C, where a small positive ef-
fect could be observed. Furthermore, artificially
balancing the classes by modifying class weights
helped alleviate the low recall issue to some ex-
tent.

5.2 Training Set
A 10-fold cross-validation was performed on each
model used in the ensemble, with the metrics ob-
tained in each fold averaged to obtain a median for
each model’s performance on the dataset. These
initial results were obtained only for subtask A, to
decide which models would be a part of the en-
semble. Most models used in the ensemble ex-
hibited similar accuracy, but varied in the recall of
offensive tweets. It was also observed that models
with the higher recall of offensive tweets exhibited
equivalently lower recall of non-Offensive tweets.
These observations are graphically represented in
Figure 1. Small improvements in F1-score and ac-
curacy were achieved while using the ensemble
model (F1-score: .7338 and Accuracy: .7720)

NB LR L1 LR L2 LSVC Ridge PA SGD
0

0.2

0.4

0.6

0.8

Accuracy F1-Score Recall

Figure 1: Performance of individual classifiers

over any other single classifier model.

5.3 Test Set

After the models were trained, their performance
was measured on a separate set of 860 unseen
tweets. All F1-scores provided by the OffensEval
organising team were macro-averaged. Baselines
for each metric were also provided.

Subtask A: The best single model, Linear SVC
came in at .7369 F1-score and .8012 accuracy,
while the ensemble model achieved a slightly im-
proved .7434 F1 and .8023 accuracy, as high-
lighted in Table 2. Most models used in the ensem-
ble exhibited similar F1 and accuracy, but recall
of offensive tweets varying in the 0.4–0.7 range,

699

with models with high offensive recall exhibit-
ing equivalent decrease in recall of non-offensive
tweets. On the unseen test data, the ensemble
model reached a .5792 recall on offensive tweets
and .8887 on non-offensive tweets.

Subtask B: This subtask represented a highly
imbalanced dataset, with the number of targeted
instances (213) dwarfing the number of untargeted
instances (27). Here the ensemble model per-
formed the best by far, while the different indi-
vidual models exhibited high disparity on separa-
tion into the two classes. Though the ensemble at
.7079 exhibited the highest F1-score, its accuracy
still trailed behind the baseline targeted (TIN) ac-
curacy by a small margin (.8833 vs .8875). The
recall of the targeted and untargeted (UNT) tweets
were .9343 and .4815, respectively.

Subtask C: Subtask C entailed multi-class clas-
sification over the target type of insult. This was
the only subtask which exhibited improvement
through the inclusion of POS data. As seen in Ta-
ble 2, the ensemble model achieved .4854 F1 and
.6291 accuracy. The LSTM network provided bet-
ter results, coming in at .5056 F1-score and .6385
accuracy, when using a 200-dimensional GloVe
embedding. In this subtask, as expected, classi-
fication of the minority class, OTH, proved to be
the most troublesome. Both the ensemble model
and the LSTM exhibited very low recall on that
class: .0571 and .0857, respectively. The recall of
the IND and GRP classes were .7800 and .6923,
respectively.

6 Error Analysis

This section gives a short qualitative analysis of
the misclassifications in each subtask and hypoth-
esises potential reasons for the errors.

Subtask A: As seen in Figure 2a, the ensem-
ble model had more difficulty identifying offen-
sive tweets than the non-offensive ones. As also
noted in previous work by Davidson et al. (2017)
and others, we see that the classifier finds it diffi-
cult to identify offensive tweets that lack profanity
such as “@USER Get back on your peanut farm
old man” (24726) and “@USER She is such a
witch. All she needs is a broom” (49813). The
classifier also faced issues in classifying political
discourse, as it may have learned trends of words
such as ‘MAGA’, ‘Trump’, ‘Liberals’ and ‘Con-
servatives’ being appearing relatively often under

the OFF (offensive) label. This leads to misclassi-
fication of tweets such as “@USER Up next: liber-
als calling us out for calling him guilty.” (59807)
and “@USER there is a point where even liberals
must question motives” (15788) as offensive.

Subtask B: Due to the highly imbalanced data
set, the minority class (UNT) as expected ac-
counted for most of the misclassifications, as seen
in Figure 2b. The simple trend deduced was that
tweets with pronouns such as ‘she’, ‘your’, ‘he’,
and ‘I’ were biased to be classified as targeted
(TIN). This leads to misclassification of untar-
geted insults such as, “@USER @USER Still no
excuse... Where TF are her parents??? They are
using him & he is using her” (10641) and
“@USER If someone is being too nice to you at
happy hour and asking probing questions about
what you do at Pub Citizen....make sure to troll
them and say you’re with Antifa or something.”
(58699), “@USER I hate him im so fucking sorry”
(91969). The opposite is also true, with targeted
insults that contain no pronouns being misclassi-
fied as untargeted: “@USER Google go to hell!”
(52798), “@USER and bale is shit” (47806).

Subtask C: Most misclassification in this sub-
task occurred on the Other (OTH) label; see Fig-
ure 2c. Here most tweets labelled OTH were
classified under the Group (GRP) class, due to
close similarity between the two labels. Con-
sider the following examples: “@USER @USER
Because 45% of Americans are too lazy to vote.
Non-voters skew liberal. And too many liberals
who do vote throw their vote away on 3rd party
losers. Next question?” (82171) and “@USER
@USER @USER @USER Connections are vital
with all of the crap Twitter forces on conserva-
tives.” (89193). Both these tweets are classified
as GRP insults, probably due to the presence of
terms such as ‘Americans’, ‘liberals’, and ‘conser-
vatives’ that tend to relate to groups, while actually
being annotated as OTH as they address an issue
rather than a group.

There were also a considerable number of mis-
classifications of OTH class tweets as IND. These
misclassifications are justified on similar grounds.
Examples include “@USER Google go to hell!”
(52798), and “@USER get your shit together”
(18315).

700

(a) Sub-task A: Ensemble model (b) Sub-task B: Ensemble model (c) Sub-task C: LSTM network

Figure 2: Confusion matrices (X-axis = predicted label; Y-axis = true label)

7 Conclusion

The idea of a hierarchical classification of offen-
sive language is a step in the right direction in
reducing the ambiguity existing between various
similar subtasks. It is yet to be seen, however,
how effective this method would be in synthesis-
ing more specific subsets of offensive language.
For example, the cyberbullying subtask instances
may yield either OFF, TIN or IND labels at each
level of classification, but we are unaware of how
effectively models developed for the OffensEval
subtask perform on cyberbullying data sets. Some
issues that have plagued offensive language detec-
tion — such as the problem of ambiguity and over-
lap between various subtasks — could effectively
be solved if the idea of hierarchical classification
achieves what it sets out to do.

Consistent with previous work, we find that it is
difficult to classify non-offensive tweets contain-
ing profanity and offensive tweets lacking profan-
ity. We also found that a similar issue persists with
tweets that are politically motivated and valid crit-
icism incorrectly classified as offensive and sim-
ilarly, political hate incorrectly classified as non-
offensive.

On the topic of selecting a classification model,
it is noteworthy that even a simple and crude deep
learning model such as the one used here can ob-
tain better results than a more polished ensemble
model. Except for surface level n-grams, most fea-
tures are not as predictive as we would like them
to be.

The data analysis showed that even though the
annotators of the OLID data set were experienced
with the platform, there still exist quite a few cases
of erroneous classification by the annotators, just
as noted for other datasets (Waseem and Hovy,

2016; Davidson et al., 2017; Nobata et al., 2016),
for which amateur annotators were found unreli-
able.

Offensive language detection has proven to be
a more layered issue than was initially expected,
but with various developments in research the task
seems surmountable. Future work must focus on
building upon previous endeavours, to reduce the
redundancy between subtasks and publications.
The OffensEval shared task is a significant step
forward in achieving this goal and we look for-
ward to seeing how future research will be affected
by the work that has been done here.

References
Peter Burnap and Matthew Leighton Williams. 2015.

Hate speech, machine classification and statistical
modelling of information flows on Twitter: Interpre-
tation and communication for policy decision mak-
ing. Policy and Internet, 7(2):223–242.

Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu.
2012. Detecting offensive language in social me-
dia to protect adolescent online safety. In Proceed-
ings of the 2012 ASE/IEEE International Confer-
ence on Social Computing and 2012 ASE/IEEE In-
ternational Conference on Privacy, Security, Risk
and Trust, pages 71–80, Amsterdam, Netherlands.
IEEE.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. Journal of Machine
Learning Research, 7:551–585.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving cyber-
bullying detection with user context. In Advances
in Information Retrieval, pages 693–696. Springer.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In

701

Proceedings of the 11th International Conference on
Web and Social Media, pages 512–516, Montréal,
Québec, Canada. AAAI Press.

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyber-
bullying. In The Social Mobile Web, pages 11–17.

Antigoni-Maria Founta, Constantinos Djouvas, De-
spoina Chatzakou, Ilias Leontiadis, Jeremy Black-
burn, Gianluca Stringhini, Athena Vakali, Michael
Sirivianos, and Nicolas Kourtellis. 2018. Large
scale crowdsourcing and characterization of Twitter
abusive behavior. CoRR, abs/1802.00393.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In (Waseem et al., 2017a), pages 85–90.

Lei Gao and Ruihong Huang. 2017. Detecting online
hate speech using context aware models. CoRR,
abs/1710.07395.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flani-
gan, and Noah A. Smith. 2011. Part-of-speech tag-
ging for Twitter: annotation, features, and experi-
ments. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies, volume 2, short pa-
pers, pages 42–47, Portland, Oregon, USA. ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Raquel Justo, Thomas Corcoran, Stephanie M. Lukin,
Marilyn Walker, and M. Inés Torres. 2014. Extract-
ing relevant knowledge for the detection of sarcasm
and nastiness in the social web. Knowledge-Based
Systems, 69(1):124–133.

Ludmila I. Kuncheva. 2004. Combining Pattern
Classifiers: Methods and Algorithms. Wiley-
Interscience, New York, New York, USA.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in discriminating profanity from hate speech.
Journal of Experimental & Theoretical Artificial In-
telligence, 30:1–16.

Yashar Mehdad and Joel R. Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 299–303, Los
Angeles, California, USA. ACL/SIGDIAL.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Pro-
ceedings of the 25th International Conference on
World Wide Web, pages 145–153, Montréal, Québec,
Canada. IW3C2.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1532–1543, Doha, Qatar.
ACL.

Georgios Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Effective hate-speech detection in
twitter data using recurrent neural networks. Ap-
plied Intelligence, 48(12):47304742.

Anna Schmidt and Michael Wiegland. 2017. A sur-
vey on hate speech detection using natural language
processing. In Proceedings of the 5th International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10, Valencia, Spain. ACL.

Elise Fehn Unsvåg and Björn Gambäck. 2018. The ef-
fects of user features on Twitter hate speech detec-
tion. In Proceedings of the 2nd Workshop on Abu-
sive Language Online, pages 75–86, Brussels, Bel-
gium. ACL.

Cynthia Van Hee, Els Lefever, Ben Verhoeven, Julie
Mennes, Bart Desmet, Guy De Pauw, Walter Daele-
mans, and Veronique Hoste. 2015. Detection and
fine-grained classification of cyberbullying events.
In Proceedings of Recent Advances in Natural Lan-
guage Processing, Proceedings, pages 672–680.

Zeerak Waseem, Wendy Hui Kyong Chung, Dirk Hovy,
and Joel Tetreault, editors. 2017a. Proceedings of
the First Workshop on Abusive Language Online.
ACL, Vancouver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017b. Understanding abuse: A
typology of abusive language detection subtasks. In
(Waseem et al., 2017a), pages 78–84.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? Predictive features for hate
speech detection on Twitter. In Proceedings of
the North American Chapter of the Association for
Computational Linguistics, Student Research Work-
shop, pages 88–93, San Diego, California, USA.
ACL.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the GermEval 2018 shared
task on the identification of offensive language. In
Proceedings of the GermEval 2018 Workshop, Aus-
trian Academy of Sciences, Vienna, Austria.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex machina: Personal attacks seen at scale.
In Proceedings of the 26th International Conference
on World Wide Web, pages 1391–1399, Perth, Aus-
tralia. IW3C2.

702

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and
Amy Bellmore. 2012. Learning from bullying traces
in social media. In Proceedings of the 2012 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 656–666, Montréal,
Canada. ACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the type and target of offensive
posts in social media. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Minneapolis, Minnesota,
USA. ACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval). ACL.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on Twitter using a
convolution-GRU based deep neural network. In
Proceedings of the 15th International Semantic Web
Conference, pages 745–760, Heraklion, Greece.
Springer Verlag.

703

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 704–711
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NLP@UIOWA at SemEval-2019 Task 6: Classifying the Crass using
Multi-windowed CNNs

Jonathan Rusert and Padmini Srinivasan
Department of Computer Science

University of Iowa
Iowa City, IA, USA

{jonathan-rusert, padmini-srinivasan}@uiowa.edu

Abstract

This paper proposes a system for OffensEval
(SemEval 2019 Task 6), which calls for a sys-
tem to classify offensive language into several
categories. Our system is a text based CNN,
which learns only from the provided training
data. Our system achieves 80 - 90% accu-
racy for the binary classification problems (of-
fensive vs not offensive and targeted vs untar-
geted) and 63% accuracy for trinary classifica-
tion (group vs individual vs other).

1 Introduction

Background. Social media (e.g. Twitter, Face-
book) is widely used today. For example, 68% of
all Americans report owning a Facebook account
in 2018 (Smith and Anderson, 2018), while 71%
of Americans (within the ages of 18-24) report us-
ing Twitter. Online gaming is a second popular
use of the internet, reaching upwards of 80 - 100
million monthly users depending on game (Goslin,
2018). These uses demonstrate the internet as a
way for humans to connect with others. How-
ever, connecting with others can carry a downside.
More than 1 in 3 young people have been cyber-
bullied online (cyb, 2018), this extends to around
half of teens. Besides cyberbullying, offensive
language, on a public forum, can cause users to
stay away from certain platforms. Because of this,
companies have increased their efforts to remove
offensive language from their platforms (Terdi-
man, 2018). With the large amount of traffic these
platforms see, a purely manual approach to detect-
ing/removing offensive language is impossible,
which means an automated approach is needed to
help. OffensEval (Zampieri et al., 2019b) provides
a community driven opportunity to build such sys-
tems. We approach this problem of classifying of-
fensive tweets with a CNN architecture trained on
the provided training dataset.

2 Proposed Approach

Our system is a variation of a Convolutional Neu-
ral Network (CNN), which was chosen since it has
seen success previously with classification tasks
CNN Infrastructure. We experimented with
two different Convolutional Neural Networks.
The first whose architecture is based on the CNN
originally proposed in (Kim, 2014) (CNN 1),
and the second a combination of multiple CNNs
(CNN 2). We further discuss each of these CNNs
and their comparison on the training data. The vi-
sual structure for CNN 1 and CNN 2 can be found
in figure 1 and figure 2 respectively.
Preprocessing. Both CNN 1 and CNN 2 begin
by preprocessing the text of the tweet. As noted
in section 3, URLs and user mentions are already
denoted as URL and USER. Basic cleaning of the
text is applied, includes removal of punctuation,
converting text to lowercase, and filtering of stop-
words via NLTK’s stopword list1. Finally, all sep-
arated words are tokenized via nltk’s tokenize()
function2.
Embedding Layer. CNN 1 and CNN 2 encode
the text of a tweet as a word embedding with di-
mension j. We experimented with several j arriv-
ing at j = 100. Word embeddings for Non-Out
of Vocabulary (OOV) words are obtained from
Glove (Pennington et al., 2014) which has been
trained on Twitter data3. Experiments were also
conducted with Glove common crawl data, but no
visible improvement was found. OOV words are
randomly initialized as a word embedding. The
embedding layer takes in i word embeddings of
length j, where the i word embeddings are com-
bined in the same sequential order as they appear
in the tweet. We choose i as the length of the

1nltk.org/api/nltk.corpus.html
2nltk.org/api/nltk.tokenize.html
3nlp.stanford.edu/projects/glove/

704

Embedding
Layer

“@USER you are a lying corrupt traitor!!! Nobody wants to
hear anymore of your lies!!!”Input (Tweet)

i

j

Convolutional
Layer 3

j

4

j

5

j

10
0

10
0

10
0

Merge/Flatten
Layer 1

300

MaxPooling
Layer i - 3 + 1 i - 4 + 1 i - 5 + 1

1
1

110
010

0

10
0

Dense Layer
128

Output/Softmax
Layer

n

Figure 1: CNN 1 ’s Architecture

longest tweet (i.e. number of words after prepro-
cessing). Any tweets less than i length are padded
with zero embeddings at the end. CNN 1 and
CNN 2 differ at this point and will be examined
separately.

CNN 1 Convolutional Layer. CNN 1 applies
three k × j convolutional windows to the embed-
ding layer: a 3 x j, a 4 x j, and a 5 x j window.
Applying each window to the embedding layer re-
sults in a (i−k+1)×1 output, where k = {3,4,5}
and corresponds to the length of the window. 100
filters of each window are applied to the embed-
ding layer resulting in 100 (i− k+1)× 1 outputs
for each k.

CNN 1 Max pooling/Merge Layer A max
pooling of size (i − k + 1) × 1 is applied to each
separate filter output from the convolutional layer.
The resulting outputs from all three max pooling
streams are merged together then flattened to a 300
neuron layer.

CNN 1 Dense Layer/Output Layer The flat-
tened layer is fed into a dense layer consisting of
128 neurons. ReLu is chosen as the activation
function. Finally, the output of the dense layer
is passed to the output layer of size n where n =

number of classes. The output layer uses a soft-
max function as activation.

CNN 2 Convolutional Layer. CNN 2 applies
three sets of three convolution windows to the em-
bedding layer, each window in the format k × j.
The first set of convolution windows are k =
[2, 3, 4], the second are k = [3, 4, 5], and third are
k = [4, 5, 6]. Similar to CNN 1 , applying these
filters results in a (i− k + 1)× 1 output, and 100
filters exist for each k for each set of windows.

CNN 2 Max pooling/Merge Layer. Max pool-
ing, in this instance, behaves similarly to CNN 1 .
However, instead of merging all the pooled layers,
only those in the same set are merged. This results
in three separate flattened 300 neuron layers.

CNN 2 Separate Dense layers The three sepa-
rate merged layers are fed through two dense lay-
ers consisting of 128 neurons each. ReLu activa-
tion function is used for all dense layers. Each
merged layer is fed to their own respective dense
layers. The second dense layers are finally merged
together.

CNN 2 Final Dense/Output Layers The
merged layer is fed through two more 128 dense
layers with ReLu activation. Finally, the result is

705

Embedding
Layer

“@USER you are a lying corrupt traitor!!! Nobody wants to
hear anymore of your lies!!!”Input (Tweet)

i

j

Convolutional
Layer 2

j

3

j

4

j10
0

10
0

10
0

Merge/Flatten
Layer

1
300

MaxPooling
Layer

i - 2 + 1 i - 3 + 1 i - 4 + 1
1

1
110

010
0

10
0

Dense Layer
128

Output/Softmax
Layer

n

128

3

j

4

j

5

j10
0

10
0

10
0

1
300

i - 3 + 1 i - 4 + 1 i - 5 + 1
1

1
110

010
0

10
0

128

128

4

j

5

j

6

j10
0

10
0

10
0

1
300

i - 4 + 1 i - 5 + 1 i - 6 + 1
1

1
110

010
0

10
0

128

128
Dense Layer

Merge Layer

Dense Layer

Dense Layer

128

128

Figure 2: CNN 2 ’s Architecture

fed to the output layer of size n with softmax acti-
vation.
Hyperparameters/Training We experimented
with different epochs and batch sizes and ended
up finding epochs=30 and batch size = 50 worked
best for our models. The only data trained on
was the training data provided. More on this data
in section 3. The system was implemented with
Keras4 and Tensorflow as the backend.

3 Dataset

Training Set. The data collection methods used
to compile the dataset provided in OffensEval is
described in Zampieri et al. (2019a). The training
data set provided consists of 13,240 tweets. Each
tweet, consists of up to three classifications, which
correspond to subtasks further described in section
4. The classifications are as follows:

i. OFF - This post contains offensive language
or a targeted (veiled or direct) offense

ii. NOT - This post does not contain offense or
profanity.

4https://keras.io/

iii. TIN - A post containing an insult or threat to
an individual, a group, or others

iv. UNT - A post containing non-targeted profan-
ity and swearing.

v. IND - The target of the offensive post is an in-
dividual: a famous person, a named individual
or an unnamed person interacting in the con-
versation.

vi. GRP - The target of the offensive post is a
group of people considered as a unity due to
the same ethnicity, gender or sexual orienta-
tion, political affiliation, religious belief, or
something else.

vii. OTH - The target of the offensive post does
not belong to any of the previous two cate-
gories (e.g., an organization, a situation, an
event, or an issue)

A tweet which is classified as OFF, can be further
classified into TIN or UNT. If classified as TIN,
the tweet can be further classified into IND, GRP,
or OTH. A breakdown of the frequency of each
class label can be found in table 1.

706

OFF NOT
4400 8840

TIN UNT
3876 524

IND GRP OTH
2407 1074 395

Table 1: A breakdown of frequency of labels of tweets,
the classes underneath are further classifications of
classes above (e.g. a tweet labeled IND is also labeled
TIN and OFF)

Test Set. The test set provided follows the same
classification rules as training and consists of 860
tweets. The 860 tweets can be classified into OFF
or NOT, then 240 OFF tweets can be classified as
TIN or UNT, and finally 213 TIN tweets can be
classified as IND, GRP or OTH.

4 Subtasks

OffensEval divided the overall task of identify-
ing/classifying offensive language into three sub-
tasks, subtask A, B, and C.

Subtask A. Subtask A requires a system to clas-
sify tweets as either offensive (OFF) or not offen-
sive (NOT). An example of a tweet marked as OFF
(in provided training):

@USER you are a lying corrupt traitor!!! No-
body wants to hear anymore of your lies!!!.

An example of a tweet marked as NOT:
@USER Buy more icecream!!!.
A more expanded look at the training data can

be found in section 3.

Subtask A Results. As our system only trained
on the provided gold standard, this data set was
used to gauge the effectiveness of our two sys-
tems. Five fold cross validation was used for pre-
dicting training data. The results for subtask A
on training data can be found in table 2. CNN 1
and CNN 2 achieve similar results, an accuracy
of 0.7468 and 0.7555, and a macro F1 score of
0.7130 and 0.7114, respectively. The results for
our systems’ performance on OffensEval test data
subtask A can be found in table 3. As with the
training data, CNN 1 and CNN 2 perform simi-
larly on this task, with CNN 1 achieving 0.8 ac-
curacy and a macro F1 score of 0.73.

Subtask B. Subtask B requires further classifi-
cation of OFF tagged into two categories, targeted
(TIN) and untargeted (UNT). An example of un-
targeted tweet is:

System Acc. Pr. Re. F1
CNN 1 0.7469 0.7145 0.7117 0.7130
CNN 2 0.7555 0.7256 0.7036 0.7114

Table 2: Subtask A Training Data Results, Pr.=Macro
Precision, Re.=Macro Recall, F1=Macro F1 Score

System Acc. Pr. Re. F1
CNN 1 0.7988 0.7552 0.7175 0.7314
CNN 2 0.7767 0.7250 0.7379 0.7306

All NOT 0.7209 0.4189
All OFF 0.2790 0.2182

Table 3: Subtask A Test Results, Pr.=Macro Precision,
Re.=Macro Recall, F1=Macro F1 Score. All OFF, NOT
are baselines where that specific label was assigned to
all tweets.

@USER @USER My favourite part of this is
watching all the conservatives lose their minds as
usual. Once again the Democrats a re being mean
to us boo-hoo. LOL.

An example of targeted:
@USER You are a complete knob! It’s ppl like

you who are messing up this country. More details
on data in section 3.
Subtask B Results. The results for cross valida-
tion on subtask B’s training data are found in table
4. CNN 2 achieves a greater accuracy over CNN
1 on this subtask, 0.8723 compared to 0.8222, but
still achieves a smaller macro F1 score of 0.5673
compared to 0.5827. Subtask B test results for our
systems are found in table 5. Similar to training,
CNN 2 outperforms CNN 1 in accuracy, 0.8958
to 0.8750, but achieves a similar trend in macro F1
scores, 0.6511 and 0.6528.
Subtask C. Subtask C requires further classifi-
cation of those tweets tagged are targeted (TIN),
into three classes, Individual (IND), Group (GRP),
and Other (OTH). Examples:

IND tweet -@USER You are a complete knob!
It’s ppl like you who are messing up this country

GRP tweet - @USER Assuming liberals are
unarmed would be a grave mistake by the de-
plorables.

System Acc. Pr. Re. F1
CNN 1 0.8222 0.5815 0.5839 0.5827
CNN 2 0.8723 0.6442 0.5545 0.5673

Table 4: Subtask B Training Data Results, Pr.=Macro
Precision, Re.=Macro Recall, F1=Macro F1 Score

707

System Acc. Pr. Re. F1
CNN 1 0.8750 0.6732 0.6385 0.6528
CNN 2 0.8958 0.7478 0.6179 0.6511
All TIN 0.8875 0.4702
All UNT 0.1125 0.1011

Table 5: Subtask B Test Results, Pr.=Macro Precision,
Re.=Macro Recall, F1=Macro F1 Score. All TIN, UNT
are baselines where that specific label was assigned to
all tweets.

System Acc. Pr. Re. F1
CNN 1 0.6925 0.5372 0.5224 0.5282
CNN 2 0.6772 0.5147 0.5136 0.5140

Table 6: Subtask C Training Data Results, Pr.=Macro
Precision, Re.=Macro Recall, F1=Macro F1 Score

OTH tweet - @USER Shooting in USA is so
common no one is talking about gun control any
more.

More details on subtask C data in section 3.

Subtask C Results. The results for subtask C’s
cross validation on training data can be found
in table 6. CNN 1 slightly outperforms CNN
2 in this task, achieving an accuracy of 0.6925
over 0.6772 and a macro F1 score of 0.5282 over
0.5140. Subtask C’s test data results can be found
in table 7. As subtask C is a three class prob-
lem (compared to the two class problem of A, B),
the accuracy and macro F1 scores are lower over-
all. As with training, CNN 1 slightly outperforms
CNN 2 in both accuracy, 0.6291 to 0.6197, and
macro F1 score, 0.5061 to 0.4939.

5 Discussion

Systems outperform single labels. On test data,
for all three subtasks, our system outperforms the
baseline, provided by organizers, for assigning a

System Acc. Pr. Re. F1
CNN 1 0.6291 0.5513 0.5148 0.5061
CNN 2 0.6197 0.5079 0.5014 0.4939
All GRP 0.3662 0.1787
All IND 0.4695 0.2130
All OTH 0.1643 0.0941

Table 7: Subtask C Test Results, Pr.=Macro Preci-
sion, Re.=Macro Recall, F1=Macro F1 Score. All GRP,
IND, OTH are baselines where that specific label was
assigned to all tweets.

NOT OFF

Key
NOT 559 61 620
OFF 112 128 240

System 860

Table 8: CNN 1 ’s Confusion matrix for subtask A

TIN UNT

Key
TIN 201 12 213
UNT 18 9 27

System 240

Table 9: CNN 1 ’s Confusion matrix for subtask B

single label for all tweets. Outperforming the best
baseline (labeling tweets with highest frequent la-
bel) in terms of F1 by 0.32 in subtask A, 0.18
in subtask B, and 0.29 in subtask C. Outperfor-
mances in accuracy are seen in all three subtasks
as well.

Results follow data distribution. The test con-
fusion matrices for the higher scoring system
(CNN 1), for subtask A, B, and C, can be found in
table 8, table 9, and table 10 respectively. Train-
ing data for OFF and NOT make up 67% and 33%
respectively. For test data, the percentages are
28% for OFF and 78% for NOT. As expected, our
system identifies better identifies NOT (559/620
tweets) compared to OFF (128/240 tweets). Sim-
ilar results occur for subtask B, TIN (201/213)
compared to UNT(9/27), and subtask C, GRP
(33/78) compared to (95/100) compared to (6/35).
These results all follow distribution of training
data, which might point to lack of training data for
poorer results for smaller classes since deep learn-
ing systems depend on a good amount of training
data.

Added complexity of CNN 2 adds little to no
improvement. Although CNN 2 shows greater
performance in accuracy on the training data for
subtasks A and B, the performance does not follow
through in the test data, as CNN 1 outperformed
CNN 2 in subtask A and C for accuracy and all

GRP IND OTH

Key
GRP 33 34 11 78
IND 3 95 2 100
OTH 12 17 6 35

System 213

Table 10: CNN 1 ’s Confusion matrix for subtask C

708

three subtasks for macro F1 score. Although CNN
2 performs slightly worse, this may not be due to
the structure itself, CNN 2 is currently trained the
traditional way (updates all weights as once) but
it may be necessary for the branches to be trained
separately. This requires further testing in the fu-
ture.

6 Related Work

Offensive language detection and classification
has become increasingly relevant in recent years
with the rise of social media. Subsequently, re-
searchers have also begun to look at aggression,
cyberbullying, hate speech, and abusive language
identification.
Cyberbullying. Cyberbullying detection has
been approach by several teams. Dinakar et al.
(2011) show that binary classifiers for individual
labels outperforms multi-label classifiers. Xu
et al. (2012) demonstrate that social media is a
rich environment for studying cyberbulling with
NLP. Dadvar et al. (2013) show the effectiveness
of including context around a comment.
Abusive Language. Abusive language has also
seen increase in study. Nobata et al. (2016)
construct a machine learning algorithm and test
with different lexical features, outperforming at
the time state-of-the-art methods. Mubarak et al.
(2017) expand abusive language identification to
Arabic social media. Fišer et al. (2017) propose
a legal framework, dataset and anotation schema
for abusive online language in Slovene. Su et al.
(2017) propose a system which can not only de-
tect, but also rephrase abusive language in Chi-
nese. Waseem et al. (2017) propose breaking abu-
sive language identification into further subtasks.
Founta et al. (2018) leverage crowd sourcing to
produce a large (80,000) annotated data set of abu-
sive Twitter language.
Hate speech. Hate speech identification has
come to the forefront for research as it deals with
current hot button issues (e.g. racism, sexism).
Schmidt and Wiegand (2017) and Fortuna and
Nunes (2018) compile a surveys of current hate
speech detection.

Other teams have brought to question how we
view and handle hate speech. Ross et al. (2016)
show the difficulty of annotating hate speech
and propose handling classification as non-binary.
Malmasi and Zampieri (2017) establish lexical
baselines for hate speech detection by applying

supervised classification methods and Malmasi
and Zampieri (2018) show the problems which
can arise when distinguishing profanity from hate
speech. ElSherief et al. (2018) further look to un-
derstand hate speech by looking into the target of
hate speech (i.e. at a individual or more general
group).

Machine learning classifiers are leveraged in
this field as well. Kwok and Wang (2013) em-
ploy a machine learning classifier to identify racist
tweets. Burnap and Williams (2015) test a ma-
chine learning system on different n-gram fea-
tures to identify hate speech on Twitter. Tulkens
et al. (2016) use hate speech dictionaries along
with support vector machines to identify racism
on Dutch social media. Schofield and Davidson
(2017) demonstrate three standard methods for
producing features for text classification, targeting
specifically the problem of automatic hate speech
identification.

Subsequently, deep learning is seen in hate
speech detection as well. Djuric et al. (2015)
train and leverage comment embeddings to help
identify hate speech. Gambäck and Sikdar (2017)
show the effectiveness of convolutional neural
networks (CNN) when identifying hate speech.
Zhang et al. (2018) identify hate speech using a
convolution-GRU based deep neural network.

Offensive Language. Offensive language iden-
tification aims to broaden the scope of negative
language identification. Wiegand et al. (2018) pro-
posed and ran a GermEval task similar to OffensE-
val, which had participants classify offensive lan-
guage as offensive or other, then further classify
the offensive tagged language.

7 Conclusion/Future Work

We have proposed and tested two different CNN
architectures for identifying offensive language.
Future work would aim to improve the current
CNN design by testing different word windows
and training techniques. Furthermore, since deep
learning performs better with large amounts of
training data, increasing the training data, perhaps
even with silver standards if not gold, should help
further improve the system’s predictions.

References

2018. Cyber Bullying Statistics.

709

Pete Burnap and Matthew L Williams. 2015. Cyber
hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving cyberbul-
lying detection with user context. In Advances in
Information Retrieval, pages 693–696. Springer.

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbully-
ing. In The Social Mobile Web, pages 11–17.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th Interna-
tional Conference on World Wide Web Companion,
pages 29–30. International World Wide Web Con-
ferences Steering Committee.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Antigoni-Maria Founta, Constantinos Djouvas,
Despoina Chatzakou, Ilias Leontiadis, Jeremy
Blackburn, Gianluca Stringhini, Athena Vakali,
Michael Sirivianos, and Nicolas Kourtellis. 2018.
Large Scale Crowdsourcing and Characterization
of Twitter Abusive Behavior. arXiv preprint
arXiv:1802.00393.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

A. Goslin. 2018. Fortnite has 78.3 million monthly
players, according to Epic.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Irene Kwok and Yuzhou Wang. 2013. Locate the
hate: Detecting Tweets Against Blacks. In Twenty-
Seventh AAAI Conference on Artificial Intelligence.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in

Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Hamdy Mubarak, Darwish Kareem, and Magdy Walid.
2017. Abusive Language Detection on Arabic So-
cial Media. In Proceedings of the Workshop on Abu-
sive Language Online (ALW), Vancouver, Canada.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive
Language Detection in Online User Content. In
Proceedings of the 25th International Conference
on World Wide Web, pages 145–153. International
World Wide Web Conferences Steering Committee.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2016. Measuring the Reliability of Hate
Speech Annotations: The Case of the European
Refugee Crisis. In Proceedings of the Workshop
on Natural Language Processing for Computer-
Mediated Communication (NLP4CMC), Bochum,
Germany.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Alexandra Schofield and Thomas Davidson. 2017.
Identifying Hate Speech in Social Media. XRDS:
Crossroads, The ACM Magazine for Students,
24(2):56–59.

A. Smith and M. Anderson. 2018. Social Media Use in
2018.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

D. Terdiman. 2018. Heres How Facebook Uses AI To
Detect Many Kinds Of Bad Content.

Stéphan Tulkens, Lisa Hilte, Elise Lodewyckx, Ben
Verhoeven, and Walter Daelemans. 2016. A
Dictionary-based Approach to Racism Detection in
Dutch Social Media. In Proceedings of the Work-
shop Text Analytics for Cybersecurity and Online
Safety (TA-COS), Portoroz, Slovenia.

710

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and
Amy Bellmore. 2012. Learning from bullying traces
in social media. In Proceedings of the 2012 confer-
ence of the North American chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 656–666. Association for Com-
putational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

711

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 712–721
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NLPR@SRPOL at SemEval-2019 Task 6: Linguistically enhanced deep
learning offensive sentence classifier

Alessandro Seganti1, Helena Sobol1, Iryna Orlova1, Hannam Kim2,
Jakub Staniszewski1, Tymoteusz Krumholc1, Krystian Koziel1

1 Samsung R&D Institute Poland
2 Samsung Electronics, Korea

a.seganti@samsung.com

Abstract

The paper presents a system developed for
the SemEval-2019 competition Task 5 hat-
Eval Basile et al. (2019) (team name: LU
Team) and Task 6 OffensEval Zampieri et al.
(2019b) (team name: NLPR@SRPOL), where
we achieved 2nd position in Subtask C. The
system combines in an ensemble several mod-
els (LSTM, Transformer, OpenAI’s GPT, Ran-
dom forest, SVM) with various embeddings
(custom, ELMo, fastText, Universal Encoder)
together with additional linguistic features
(number of blacklisted words, special charac-
ters, etc.). The system works with a multi-tier
blacklist and a large corpus of crawled data,
annotated for general offensiveness. In the pa-
per we do an extensive analysis of our results
and show how the combination of features and
embedding affect the performance of the mod-
els.

1 Introduction

In 2017 two-thirds of all adults in the United States
have experienced some form of online harassment
(Duggan, 2017).1 This, together with various
episodes of online harassment, boosted research
on the general problem of recognizing and/or fil-
tering offensive language on the Internet. Still,
recognizing if a sentence expresses hate speech
against immigrants or women, understanding if a
sentence is offensive to a group of people, an indi-
vidual or others – these tasks continue to be very
difficult for neural networks and machine learn-
ing models to accomplish. In order to do this,
various implementations have been proposed; for
the most successful recent approaches see Pitsilis
et al. (2018); Founta et al. (2018); Wulczyn et al.

1Due to the topic of the SemEval-2019 Tasks 5 and 6,
the present paper contains offensive expressions spelled out
in full. These are solely illustrations of the problems under
consideration. They should not be interpreted as expressing
our views in any way.

(2017); Waseem and Hovy (2016); Park and Fung
(2017); Davidson et al. (2017). Most of them use
various combination of features to recognize these
characteristics.

This article presents a system that we have im-
plemented for recognizing if a sentence is offen-
sive. The system was developed for two SemEval-
2019 competition tasks: Task 5 hatEval “Multilin-
gual detection of hate speech against immigrants
and women in Twitter” Basile et al. (2019) (team
name: LU Team) and Task 6 OffensEval “Identi-
fying and categorizing offensive language in so-
cial media” (Zampieri et al., 2019b) (team name:
NLPR@SRPOL). Table 1 shows the results that
we achieved with our system in the SemEval-2019
competitions.

Competition Placement
Task 6-A 8th position
Task 6-B 9th position
Task 6-C 2nd position
Task 5-A 8th position (ex aequo)

Table 1: SemEval-2019 results.

In order to create a highly accurate classifier,
we combined state-of-the-art AI with linguistic
findings on the pragmatic category of impolite-
ness (Culpeper, 2011; Jay and Janschewitz, 2008;
Brown and Levinson, 1987). We achieved this by
deciding on the factors that point to the impolite-
ness of a given expression (for the blacklists) or
the entire sentence (for corpus annotation). Such
factors led us to divide the blacklist into “offen-
sive” and “offensive in context”, as most linguistic
studies of impoliteness focus on various aspects of
the context. Furthermore, linguistic research made
it possible to arrive at a maximally general defini-
tion of offensiveness for the crowdsourced anno-
tators.

712

The article is organized as follows. Section 2
presents the current state of the art for offensive
sentence classification. Section 3 explains the ar-
chitecture of our system (features, models and en-
sembles). Section 4 describes the datasets and how
they were created. Section 5 shows the results
of the SemEval-2019 tasks in detail, motivating
which combination of features and models was the
best. Finally, section 6 offers conclusions together
with our plans for future research.

2 Related work

In recent years, the problem of recognizing if a
sentence is offensive or not has become an impor-
tant topic in the machine learning literature. The
problem itself has different declinations depend-
ing on the point of view. Currently there are three
main areas of research in this topic in the ma-
chine/deep learning community:

1. Distinguishing offensive language from non-
offensive language;

2. Solving biases in deep learning systems;
3. Recognizing more specific forms of offensiv-

ness (e.g. racism, sexism etc.).

The main problem with each of the tasks is the
amount of data available to researchers for exper-
imenting with their systems. This – together with
the fact that it is difficult to clearly define what
is offensive/racist/sexist or not – makes the three
problems listed above very difficult for a deep
learning system to solve.

Articles have showed that there is a strong bias
in text and embeddings, and have tried to solve this
bias using different techniques (Zhao et al., 2018;
Dixon et al.; Bolukbasi et al., 2016). Furthermore,
thanks to a dataset defined in Waseem and Hovy
(2016) and Waseem (2016), various works have
gone in the direction of recognizing sexism and
racism in tweets (Pitsilis et al., 2018; Park and
Fung, 2017).

Another field of work was recognizing offen-
siveness in the Wikipedia internal discussion fo-
rum dataset (Wulczyn et al., 2017). This dataset
has led to other articles making systems for distin-
guishing between offensive and non-offensive lan-
guage (Founta et al., 2018; Pitsilis et al., 2018; Ku-
mar et al., 2018; Gröndahl et al., 2018; Li, 2018;
Park and Fung, 2017; Aken et al., 2018).

Linguistic expertise enhanced the functionality
at two stages: sentence annotation (described in

detail in Section 4) and active creation of black-
lists (Section 3). The completion of these tasks
breaks new ground, as there exist no corpus lin-
guistic studies on the generality of offensive lan-
guage, to the best of our knowledge. Recent ap-
proaches of narrower scope are Dewaele (2015)
and McEnery (2006).

3 System description

Our system is composed of three major elements,
described below:

• Features – common to all models;
• Various models – neural networks or not;
• Ensemble.

3.1 Features

This section describes the features that we used
and explains their role. We implemented the fol-
lowing features:

• Number of blacklisted words in the sentence;
• Number of special characters, uppercase

characters, etc.;
• A language model taught to recognize offen-

sive and not offensive words.

Blacklisted We used two kinds of blacklisted
expressions: “offensive” and “offensive in con-
text”. The “offensive in context” expressions are
offensive in specific contexts and unoffensive oth-
erwise, e.g. bloody or pearl necklace. This dic-
tionary was compiled by crowdsourcing and con-
tains about 2,300 words (+ variations). The black-
list consists of swear words, invectives, profani-
ties, slurs and other impolite expressions.

Special characters, uppercase, etc. We
checked the graphemic characteristics of the
written text and we gave this as a feature to the
model. We mainly used the non user related
features defined in Founta et al. (2018).

Language model Inspired by the work of Yu
et al. (2018), we decided to train a language model
on both offensive and non-offensive words. For
this purpose, we trained two character based lan-
guage models, one on the offensive dictionary (de-
scribed above) and the other from a corpus of non-
offensive words. After training them we used the
difference in perplexity of each input word as a
feature for the model.

713

3.2 Models
We trained various models and then combined
them in an ensemble. This section outlines the
models that were part of the ensemble.

Embeddings Both the Neural networks and the
machine learning models used embeddings. We
used the following embeddings: ELMo (Peters
et al., 2018), fastText (Bojanowski et al., 2017),
custom embeddings, and Universal Sentence En-
coder (Cer et al., 2018). For fastText, we used
the 1 million word (300d) vectors trained on
Wikipedia 2017, below called fastText 1M.

The custom embedding was built by training a
fastText embedding on our corpus. We then com-
bined the 1M fastText embeddings with these cus-
tom embeddings using Truncated SVD after con-
catenating their columns (this was done inspired
by the work (Speer et al., 2017)). Building custom
embeddings was important for the offensive word
classification because the original version of the
fastText 1M embeddings contained around 50% of
the words in the corpus while after adding the cus-
tom embeddings, only 30% of the words were out
of the vocabulary. Below, this combination of em-
beddings is called “combined”.

Neural networks We used two types of neural
network models:

• LSTM models (Hochreiter and Schmidhuber,
1997);

• Transformer models (Vaswani et al., 2017).

For both models, we used multi-head attention
and we tried different embeddings. In most cases,
the Transformer models had better results than the
LSTM models, and this is what we used in the sub-
missions. The parameters of the models are de-
scribed in Appendix A.1. In both models, the Fea-
tures described in Section 3.1 are concatenated to
the output of the model.

OpenAI GPT One of the models that we used
was the OpenAI GPT (Radford et al., 2018). We
used the GPT model in its original form, without
changing any parameters. Our results show that
this model works very well when there is enough
data for finetuning. However, small classes – as in
Task 6 Subtask C – pose a problem (see Section
5).

Machine learning models We used two ma-
chine learning models:

Figure 1: Pipeline for the offensive sentence classifier.

• Random forest;
• SVM.

For these models, we built a pipeline where:

• In a first step we either compute the embed-
dings of the sentences or get the Td-Idf score.

• In a second step we concatenate the result of
the first step with the Features described in
Section 3.1 (if used).

• We run the classifier.

As embeddings we used only the Universal En-
coder, and with good results.

Ensemble For the ensemble we used a voting
classifier with soft voting (based on the probabil-
ity returned by each model). For each subtask, we
show which combination of models gave the best
results.

The pipeline for the entire offensive sentence
classifier is shown in Figure 1.

4 Data/Datasets

4.1 Preprocessing
Preprocessing plays a crucial role in the analysis
of potentially offensive sentences, because most
inputs use highly non-standard language. Hence,
preprocessing was mainly focused on normalizing
the language for simplifying the model work. We
applied the following preprocessing:

• Substituting user names with <USER> to-
kens;

• Removing all links;
• Normalizing words and letters;

714

• Normalizing spacing and non-standard char-
acters;

• Over/Downsampling of the classes;

After the preprocessing, we split by space and
used each token as an input to the models.

Normalizing words and letters We have a dic-
tionary containing common spelling variants of
words found in our corpus. We used this to change
words to the “canonical” form. Examples of such
variants can be seen in Table 2.

Word Common variants
fuck fvck, fok, fucc, phuk

nigger n1gga, n1gr, niigr, nuggah, nigg3r
boob booob, booooooob

motherfucker Mutha Fukker, Motha Fuker
ass a55, 455 (“leetspeak” variants)

assclown a̋šs.̧ ĺσẇη (vulgarity obfuscation)

Table 2: Common spelling variants.

Over/Downsampling For each Task/Subtask,
we systematically oversampled the classes to ob-
tain a balanced dataset. This was especially im-
portant for Task 6/Subtask C, which introduced 3
highly unbalanced classes. For most subtasks we
did two things at the same time:

• Downsampled the majority class when there
was too much difference from the other
classes;

• Oversampled the minority class after down-
sampling.

4.2 Datasets
In this section we give a high level overview of the
datasets we used for training our models for the
SemEval-2019 tasks. Detailed statistics are pre-
sented in Appendix A.2. For training the model,
we used several openly available datasets:

• Hate Sonar gathered from Twitter (Davidson
et al., 2017);

• 2 related hate speech datasets from Twitter
(Waseem and Hovy, 2016), (Waseem, 2016);

• Insulting internet comments (Impermium,
2012);

• Attacking, aggressive, toxic and neutral com-
ments from Wikipedia Talk Pages (Wulczyn
et al., 2017);

• Vulgar Twitter (Cachola et al., 2018);

our own custom-built corpora and datasets pro-
vided by the SemEval organizers.

From the sources listed above, we added a total
of 20,399 sentences to the SemEval-2019 corpus
for Task 5, and 97,759 sentences to the one for
Task 6.

Custom Offensive language corpus Our cus-
tom dataset was built by crowdsourcing and by
crawling content from the Internet. The dataset
is balanced, with 49,179 not offensive and 48,580
offensive comments. Around half of the dataset
was labeled by linguists, who were asked to look
for “general offensiveness”. This could take vari-
ous forms:

• Expletives, swear-words, offensive terms;
• Rude meaning;
• Meaning that is harsh politically/ethically/

emotionally, and hence expression of hate/
disgust/disrespect;

• Uncomfortable topics related to the human
genitals in a gross way;

• Hate speech, sarcasm, sexism, racism, vio-
lence, etc.;

• Discussion of drug use or other illegal ac-
tions;

• For any other reasons, children should not
have access to the sentence.

To each sentence, the linguists assigned one of
the three labels:

• OFF – offensive sentence,
• NOT – not offensive sentence,
• Nonsense – random collection of words or

non-English (removed from the corpus).

In cases of disagreement between linguists,
we chose the most popular label, if applicable,
or obtained an expert annotation. We calcu-
lated Fleiss’ kappa for inter-annotator agreement
(Fleiss, 1971), which extends Cohen’s kappa to
more than two raters (Cohen, 1960). For random
ratings Fleiss’ κ = 0, while for perfect agreement
κ = 1. Our κ was equal to 0.62, which falls in
the “substantial agreement” category, according to
Landis and Koch (1977).

The remaining part of the corpus was assessed
automatically with a blacklist-based filter.

Dataset for Task 6 The OLID dataset (Zampieri
et al., 2019a) contains Offensive and Not Offen-
sive sentences. The Offensive sentences are fur-
ther categorized into:

715

• TIN – targeted insults and threats,
• UNT – untargeted.

and the targeted (TIN) category was further subdi-
vided into:

• IND – individual target,
• GRP – group target,
• OTH – a target that is neither an individual

nor a group.

Our full offensive language corpus, described
in the previous subsection, was used for this task.
The OFF sentences were further annotated for the
two categories while the NOT sentences were not
further annotated. All the additional classes were
added automatically by a wordlist-based annota-
tor.

Dataset for Task 5 The dataset for Task 5
(Basile et al., 2019) contained the classes:

• HATE – hate speech against women or immi-
grants,

• NOHATE – no hate speech against women or
immigrants.

together with other subclasses. Given that we par-
ticipated in the Task 5 Subtask A, we annotated
our corpus only with these two labels. Using a
mixture of automated and manual annotation, we
were able to add around 30k sentences from our
dataset for this task.

5 Results

SemEval In Table 3 we show the average F1 of
our models for all the SemEval-2019 Tasks and
Subtasks. These results were obtained by using
an ensemble of models and in Table 4 we show
which model was used inside which ensemble.
The acronyms used in the table correspond to:

• GPT : OpenAI’s GPT model
• RF: Random Forest
• T: Transformer model
• U: Universal encoder
• EL: ELMo embeddings
• CO: Combined embeddings (see 3.1 for an

explanation of this)
• F: Features.

Given the short amount of time, during the
SemEval competition we were unable to test all
the combinations of models and data preparation

Ensemble Competition Macro F1
6-A Task 6-A 0.80
6-B Task 6-B 0.69
6-C Task 6-C 0.63
5-A Task 5-A 0.51

Table 3: SemEval-2019 results breakdown.

Task 6-A 6-B 6-C 5-A
GPT X X* X
RF X X X X

RF+U X X X
T+EL X X X

T+CO+U X X* X
T+EL+U+F X

Table 4: Ensemble detail. The models marked with *
have been trained with an unbalanced dataset.

types to choose the best combination for the En-
semble. We thus selected the models in the en-
semble by experimenting with part of the models.
This is the main reason why only one model used
in Task 5 contains additional features (the TELUF
model).

After the competition, we tried the models con-
tained in the Ensembles on all the tasks; detailed
results are presented in Table 9 in the Appendix.
It is important to note though that the results in
the Appendix cannot be directly compared with
the ones of the SemEval competition because al-
though the models were the same, the Test data
was different (the golden data has not been re-
leased yet).

From the results we clearly see that we have two
“data regimes”: in the low data regime (Task 6
Subtask B and C), Random forest (with or with-
out the Universal embeddings) is the best choice.
However, in the big(ger) data regime, Fine tune is
the best model. Also in the low data regime each
model works best with a different data preparation
strategy: GPT with unbalanced data, the Trans-
former with oversampled and downsampled data
while Random forest with oversampled data.

Ablation studies In this part we show the results
of ablation studies on the transformer and random
forest models. In this study, we want to under-
stand how far the final result was influenced by
the linguistically based features and preprocessing
we defined in this article. All the results obtained
in this section have been computed on a Test set

716

Model Task 6 A Task 6 C
T + CO 0.73 0.44

T + CO + U 0.71 0.52
T + CO + F 0.75 0.45

T + CO + U + F 0.74 0.47
RF 0.7 0.54

RF + F 0.68 0.43
RF + U 0.72 0.48

RF + U + F 0.69 0.38

Table 5: Macro F1 for selected Transformer models
with different combinations of features

created from the Train set shared in the SemEval-
2019 tasks (as in Appendix A.3). As we discussed
in the previous section, the Tasks were character-
ized by a “low” (Task 6 C) and a “big” data regime
(Task 6 A), thus we compare the ablation study re-
sults for these two extreme regimes.

In a first study we wanted to understand how the
features influenced the results. For this reason, we
tried some combinations of Features, Embeddings
and Models on both Task 6 Subtask A and Task 6
Subtask C; the relevant macro F1 results are shown
in Table 5. The table shows that, in the big data
regime, the Random Forest works best when only
the Universal Encoder is used, while the Trans-
former model improves its performance when the
features are added. On the other hand, in the low
data regime, we see that the plain Random For-
est outperforms all the other combinations. This
is probably because the more things we add, the
more the model needs to learn, and with little data
this is simply not possible.

In a second study we wanted to understand how
much the normalization defined in Section 4.1 af-
fected the performance of the model. For this rea-
son, we trained again the best models in Table 5
for both Subtasks with an unnormalized version
of the dataset. The results are that for Subtask A,
the model T + CO + F F1 decreased from 0.75
to 0.73 while for Subtask C, the RF F1 decreased
from 0.54 to 0.44.

The results of this section seem to point to the
fact that the features we added and the normaliza-
tion we used are beneficial for the performance of
the models. Further work will be devoted to un-
derstanding this point though.

6 Conclusions

The article presented our approach to making
a classifier recognizing offensive expressions in
text. It showed how our architecture is suitable
for multiple (related) offensive sentence classifi-
cation tasks. It also showed how we built the fea-
tures and the data that the model used for learn-
ing. Thanks to our system, we were 2nd in the
SemEval-2019 Task 6/Subtask C. In the article we
also showed with ablation studies that the linguis-
tic features proposed and the embeddings added
improve the performance of the models we used.

In the future, we will extend our system to rec-
ognize a wider set of features. We are currently
working on analyzing the linguistic differences be-
tween the offensive corpus and the non-offensive
corpus. Specifically, we think that by analyz-
ing the differences, we should be able to build a
“white-list” of terms that can be used as features
that will help the classifier understand which sen-
tences are less likely to be offensive.

Acknowledgments

We would like to thank G. Knor, P. Przybysz, P.
Andruszkiewicz, P. Bujnowski and most of the AI
Team in Samsung R&D Institute Poland for all the
helpful discussions that made this article possible.

References
Betty van Aken, Julian Risch, Ralf Krestel, and

Alexander Löser. 2018. Challenges for toxic com-
ment classification: An in-depth error analysis.
arXiv:1809.07572.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics, location = Minneapolis,
Minnesota.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou,
Venkatesh Saligrama, and Adam T. Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? Debiasing word embeddings. In Ad-
vances in Neural Information Processing Systems,
pages 4349–4357.

717

Penelope Brown and Stephen C. Levinson. 1987. Po-
liteness: Some Universals in Language Usage.

Isabel Cachola, Eric Holgate, Daniel Preoiuc-Pietro,
and Junyi Jessy Li. 2018. Expressively vulgar: The
socio-dynamics of vulgarity and its effects on sen-
timent analysis in social media. In Proceedings
of the 27th International Conference on Computa-
tional Linguistics, pages 2927–2938.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal Sentence Encoder.
arXiv:1803.11175.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20(1):37–46.

Jonathan Culpeper. 2011. Politeness and impoliteness.
In Pragmatics of Society, pages 391–436.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
In Proceedings of the Eleventh International AAAI
Conference on Web and Social Media (ICWSM
2017), pages 512–515.

Jean-Marc Dewaele. 2015. British bollocks versus
American jerk: Do native British English speakers
swear more – or differently – compared to Ameri-
can English speakers? Applied Linguistics Review,
6(3):309–339.

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain,
and Lucy Vasserman. Measuring and mitigating un-
intended bias in text classification. In Proceedings
of the AAAI/ACM Conference on AI, Ethics, and So-
ciety.

Maeve Duggan. 2017. Online harassment 2017.

Joseph L. Fleiss. 1971. Measuring nominal scale
agreement among many raters. Psychological Bul-
letin, 76(5):378–382.

Antigoni-Maria Founta, Despoina Chatzakou, Nicolas
Kourtellis, Jeremy Blackburn, Athina Vakali, and Il-
ias Leontiadis. 2018. A unified deep learning archi-
tecture for abuse detection. arXiv:1802.00385.

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro
Conti, and N. Asokan. 2018. All you need is “love”:
Evading hate speech detection. arXiv:1808.09115.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural computation,
9(8):1735–1780.

Impermium. 2012. Detecting insults in social com-
mentary.

Timothy Jay and Kristin Janschewitz. 2008. The prag-
matics of swearing. Journal of Politeness Research,
4:267–288.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying, pages 1–11.

J. Richard Landis and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, 33(1):159–174.

Siyuan Li. 2018. Application of recurrent neural net-
works in toxic comment classification. Master’s the-
sis, University of California, Los Angeles.

Tony McEnery. 2006. Swearing in English. Bad lan-
guage, purity and power from 1586 to the present.
Routledge, London and New York.

Ji Ho Park and Pascale Fung. 2017. One-step and two-
step classification for abusive language detection on
Twitter. arXiv:1706.01206.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT 2018,
pages 2227–2237.

Georgios K. Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language in
tweets using deep learning. arXiv:1801.04433.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. Technical re-
port, OpenAI.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence
(AAAI-17), pages 4444–4451.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Zeerak Waseem. 2016. Are you a racist or am I seeing
things? Annotator influence on hate speech detec-
tion on Twitter. In Proceedings of the First Work-
shop on NLP and Computational Social Science,
pages 138–142.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? Predictive features for hate
speech detection on Twitter. In Proceedings of the
NAACL Student Research Workshop, pages 88–93.

718

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex machina: Personal attacks seen at scale.
In Proceedings of the 26th International Conference
on World Wide Web, pages 1391–1399.

Xiaodong Yu, Stephen Mayhew, Mark Sammons, and
Dan Roth. 2018. On the strength of character lan-
guage models for multilingual named entity recogni-
tion. In Proceedings of the 2018 conference on em-
pirical natural language processing (EMNLP 2018).

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-
Wei Chang. 2018. Learning gender-neutral word
embeddings. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 4847–4853.

719

A Supplementary Materials

A.1 Model parameters

The following parameters were used for all LSTM
and Transformer models in the results Section 5:

• keep probability: 0.8;
• LSTM units: 100;
• L2 regularization: 0;
• fully connected size: 256 or 128;
• multihead attention:

– attention size: 5 or 2,
– attention head: 4

For GPT, we used a learning rate of 6.25e-5 and
an L2 regularization of 0.01.

A.2 Data

In Table 6 we show the amount of data that was
contained in our corpus (overall). In Table 7 and
8 we show the data for Task 5 and Task 6. For
a description of how these corpora were built and
annotated, see Section 4.2.

Source NOT OFF Total
Custom corpus 16,545 12,938 29,483

Kaggle 2,629 3,463 6,092
Twitter 917 23,438 24,355

Wikipedia 29,088 8,741 37,829
Total 49,179 48,580 97,759

Table 6: Statistics for our offensive language cor-
pus. The Kaggle dataset was collected by Impermium
(2012). The Twitter dataset was compiled from 4
sources: Davidson et al. (2017), Cachola et al. (2018),
Waseem and Hovy (2016) and Waseem (2016). The
Wikipedia dataset was collected by Wulczyn et al.
(2017).

Class Total
HATE 16,508

NOHATE 11,154

Table 7: Statistics for the additional corpus for
SemEval-2019 Task 5.

A.3 Model results

In this section we show the detailed results of all
the models for all the SemEval-2019 tasks. For
each Task, we extracted a test set from the Train
data released by SemEval. We compared the mod-
els to one of the current state of the art defined in

Class Targeting Target Total

OFF
TIN

IND 18,506
GRP 6,761
OTH 1,025
Total 34,669

UNT – 6,234
Total – 59,837

NOT – – 64,773

Table 8: Statistics for the additional corpus for
SemEval-2019 Task 6.

Park and Fung (2017); the results shown here are
obtained by averaging the best F1 for each class
(not a single model). The data by Waseem and
Hovy (2016) for comparing to the state-of-the-art
model has been kindly shared by the authors of
Park and Fung (2017). In the table we marked with

• No additional mark: the normalized data
with oversampling and downsampling as de-
scribed in Section 4.

• FULL: the normalized data with oversam-
pling but no downsampling.

• UNB: the normalized data without oversam-
pling or downsampling.

The model acronyms are the same as the ones used
in Section 5.

720

Model 5-A 6-A 6-B 6-B FULL 6-C 6-C FULL 6-C UNB SOTA
RF 0.7 0.62 0.61 0.58 0.44 0.54 0.45 0.78

RF + F 0.68 0.68 0.59 0.54 0.32 0.43 0.41 -
RF + U 0.72 0.69 0.6 0.55 0.39 0.48 0.46 0.74

GPT 0.77 0.77 0.58 0.6 0.42 0.49 0.51 0.81
T + CO + U 0.74 0.71 0.58 0.6 0.52 0.45 0.5 0.73

T + EL 0.73 0.73 0.58 0.58 0.49 0.5 0.45 0.74
SOTA - - - - - - - 0.78

Table 9: Macro F1 for all the models on all the Tasks and on the state-of-the-art (SOTA) data.

721

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 722–726
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

nlpUP at SemEval-2019 Task 6: A Deep Neural Language Model for
Offensive Language Detection

Jelena Mitrović, Bastian Birkeneder, Michael Granitzer
Faculty of Computer Science and Mathematics

University of Passau, Germany

jelena.mitrovic@uni-passau.de | birkeneder@fim.uni-passau.de
michael.granitzer@uni-passau.de

Abstract

This paper presents our submission for the
SemEval shared task 6, sub-task A on the
identification of offensive language. Our pro-
posed model, C-BiGRU, combines a Convolu-
tional Neural Network (CNN) with a bidirec-
tional Recurrent Neural Network (RNN). We
utilize word2vec to capture the semantic sim-
ilarities between words. This composition al-
lows us to extract long term dependencies in
tweets and distinguish between offensive and
non-offensive tweets. In addition, we evaluate
our approach on a different dataset and show
that our model is capable of detecting online
aggressiveness in both English and German
tweets. Our model achieved a macro F1-score
of 79.40% on the SemEval dataset.

1 Introduction

The ever-increasing amount of user-generated data
introduces new challenges in terms of automatic
content moderation, especially regarding hate
speech and offensive language detection. User
content mostly consists of microposts, where the
context of a post can be missing or inferred only
from current events. The challenge of automatic
identification and detection of online aggressive-
ness has therefore gained increasing popularity in
the scientific community over the last years.
Several recent workshops and conferences such
as TRAC (Kumar et al., 2018), ALW2 (Fišer
et al., 2018), and GermEval (Wiegand et al., 2018)
show the growing importance of this subject. The
SemEval 2019 shared task 6 (Zampieri et al.,
2019b) further addresses this topic by introduc-
ing the Offensive Language Identification Dataset
(OLID), which consists of tweets, labeled with
a three-level annotation model (Zampieri et al.,
2019a). Sub-task A is composed of a binary clas-
sification problem of whether a tweet in the dataset
is offensive or not. Sub-task B focuses on differ-
ent categories of offensive language and the goal

of sub-task C is to identify the targeted individual
of an offensive tweet.

In the following paper, we present our contri-
bution to sub-task A. After the related work sec-
tion, we outline our conducted experiments in
section 3 and further describe the used baseline
model, as well as the submitted model. In sec-
tion 4 we report the results of our experiments
on the OLID dataset and the additionally used
GermEval dataset. Section 5 discusses our results
and section 6 concludes our work and describes
possible future work.

2 Related Work

Several methods and models have been presented
in literature over the last decade to address the
predicament of identifying hate speech, offensive
language, and online aggressiveness. In the fol-
lowing section, we present the most notable con-
tributions related to our work.
The tweets collected by Davidson et al. (2017)
were divided into Hate, Offensive, and Neither.
Their proposed algorithm uses unigram, bigram,
and trigram tokens as features, weighted by the re-
spective TF-IDF, as well as Part-of-Speech (POS)
tagging and different metrics to determine the
readability and sentiment of a tweet. Logistic-
regression and linear SVM result in the best per-
formance for a wide range of assessed classifiers.
Nobata et al. (2016) collected comments from Ya-
hoo! Finance and News articles over a time period
of one year and labeled them as either ’Abusive’
or ’Clean’. They experimented with various dif-
ferent features, including n-gram, linguistic, syn-
tactic, and distributional semantics features.

Various approaches utilized deep learning mod-
els for text categorization. Zhang et al. (2015) pro-
posed a character-level convolutional network for
text classification on large-scale datasets. Their
network uses 1-dimensional convolutional filters
to extract features from different character embed-

722

dings. Gambäck and Sikdar (2017) further exper-
imented with convolutional networks in the con-
text of online hate speech classification. Their re-
search work compares different types of convolu-
tional models, namely character-level, word vec-
tors with a pretrained word2vec (w2v) model, ran-
domly generated word vectors, and w2v in combi-
nation with character n-grams. The results of their
experiments suggest that w2v embeddings are the
most suitable for this task. Zhang et al. (2018) sug-
gest an architecture similar to our network, where
a convolutional filter extracts features from pre-
trained word embeddings. After max pooling, the
feature maps are processed using a unidirectional
GRU. Their model is compared to a bag-of-n-gram
model on various multi-class hate speech datasets
and shows promising results. A detailed survey
on different architectures, methods and features
for offensive language detection is provided by
Schmidt and Wiegand (2017).

3 System Description

In addition to Twitter data provided by the or-
ganizers of the SemEval shared task, we further
evaluate our approach on German tweets from the
GermEval (2018) shared task. The OLID dataset
contains 13,240 tweets, with 4,400 offensive and
8,840 non-offensive tweets (66.77% offensive,
33.23% non-offensive). Similarly, the GermEval
dataset contains 5,009 tweets, divided into 1,688
offensive and 3,321 non-offensive tweets (66.30%
offensive, 33.70% non-offensive). To compensate
for the imbalanced class distributions and weigh
each class equally, we choose the macro averaged
F1-score of both classes as our main evaluation
metric. From both data sets we use 10% of our
tweets as test set. The remaining tweets are split
into 90% training set and 10% validation set. We
conduct a stratified 10-fold cross-validation on the
training and validation set to prevent overfitting
and to validate our model.

The pretrained w2v model, which is used to
initialize the weights of our embedding layer, re-
sulted from the work of Godin et al. (2015). The
w2v model for the GermEval dataset originates
from our previous work (2018).

For comparison to our proposed model, a token
bag-of-n-gram model composed of unigrams, bi-
grams, and trigrams weighted by their TF-IDF is
used as baseline approach. We subsequently ana-
lyze the performance of different classifiers on the

resulting feature space.
We have used the packages keras, scikit-learn,
gensim, and nltk for preprocessing and the imple-
mentation of our models.

3.1 Preprocessing

Tweets are first tokenized and converted to lower-
case. We constrain repeated character sequences
to length 3 and replace all longer character se-
quences. HTML character encodings are replaced
by their corresponding literal or token representa-
tion (e.g. ‘&’ translates to ‘and’). Tokens are
further split if they enclose a set of special char-
acters (‘\’, ‘/ ’, ‘&’, ‘-’). Since hashtags are of-
ten used to replace contextually important words
mid-sentence, we split hashtags in the actual hash-
symbol and the following string to keep the se-
mantic information of a hashtag (e.g. ‘Brainless
#Liberal Stooge Ocasio-Cortez’).

3.2 Baseline Model

A TF-IDF bag-of-words model as baseline ap-
proach is chosen to evaluate the performance of
our model. We limit our feature space to the
10,000 most frequently used unigrams, bigrams,
and trigrams in a corpus. Furthermore, we stem
each token in the preprocessing phase and remove
stopwords. We compare the performance of sev-
eral classifiers, namely multinomial Naive Bayes
(NB), SVM, Decision Tree (DT), and Logistic Re-
gression (LogR) and conduct a grid search to opti-
mize our hyper-parameters.

3.3 C-BiGRU

After the preprocessing step, we construct a dictio-
nary which maps all unique tokens to their num-
ber of occurrences in the respective corpus. To-
kens which appear only once in a corpus are dis-
regarded and treated as unknown token. As a next
step, we construct the weighting matrix Wm×dim

for our embedding layer, where dim is the dimen-
sion of the used w2v model and m the number of
unique tokens ti, i ∈ {1, ...,m}. The word vector
of ti is stored in W if the token is represented in
the w2v model. If ti has no pretrained word vector,
we generate a random vector drawn from the uni-
form distribution within

[
−
√

6
dim ,

√
6

dim

]
as sug-

gested by He et al. (2015). We fix the maximum
length of a sentence to 150 tokens, longer se-
quences are clipped at the end and shorter se-
quences are padded with a masking token.

723

The convolutional layer of our classifier con-
sists of (k × 128) 1-dimensional filters, where k
is the number of different window sizes. These
window sizes range from 2 to 5 and allow the ex-
traction of n-gram features. The padding of the
input is kept constant, resulting in the same output
sequence length as the input. We further choose
ReLu as activation function. The resulting feature
maps are concatenated and passed towards the re-
current layer.

Gated Recurrent Units (GRU) as initially pro-
posed by Cho et al. (2014) are used in RNNs
to capture long-term dependencies of input se-
quences. Similar to Long Short-Term Mem-
ory (LSTM) units (Hochreiter and Schmidhuber,
1997) GRU are able to overcome the vanishing
gradient problem by using a gating mechanism.
GRU have shown to achieve comparable results to
LSTM in sequence modeling tasks and are able to
outperform the latter on smaller data sets (Chung
et al., 2014). The recurrent layer in our model
consists of a bidirectional GRU, where the con-
catenated feature maps, which resulted from the
convolutional layer, are used as input for the GRU
layer. Simultaneously, the reversed copy of the in-
put sequence is used for the second GRU layer.
Both GRU layers return a hidden state for each
processed feature map. The output of both lay-
ers is then concatenated. We set the length of the
returned hidden states to 64 for both layers, result-
ing in an output space of (150× 128) neurons.

Afterwards, a global max pooling layer reduces
the output space to (1 × 128) nodes. The follow-
ing fully-connected layer consists of 32 neurons,
which connect to a single output neuron. The out-
put neuron utilizes the sigmoid activation function.

To additionally prevent overfitting, we include
two dropout layers with a dropout rate of 0.2; one

after the embedding layer and another one after
the fully-connected layer. Furthermore, we adopt
early stopping and use 10% of the training data
as validation split. We use cross entropy as error
function for our model and the optimizer ‘adam’
to update our network weights (Kingma and Ba,
2014). The batch size for the gradient update is
set to 32. A schema of our proposed model is il-
lustrated in Figure 1.

4 Results

For the comparison model, the SVM performs best
on the OLID dataset with an F1-score of 70.22%
averaged over a 10-fold cross-validation. The
SVM also shows the best results on the GermEval
dataset with an F1-score of 66.61%. The evalua-
tion on the test set results in 66.78% F1-score for
the GermEval gold test set. The evaluation of the
baseline model for the OLID gold test set is not
possible at the time of writing, since the gold test
data have not yet been released.

The C-BiGRU achieved a 76.28% F1-score on
the OLID and a 71.13% F1-score on the GermEval
dataset on average over a 10-fold cross-validation.
On the OLID gold test set, our model achieved
an F1-score of 79.40%. The evaluation on the
GermEval gold test data resulted in a 72.41% F1-
score. An overview of all results can be found in
Table 1. Figure 2 shows the confusion matrix of
our submitted predictions for the SemEval shared
task.

Baseline C-BiGRU
CV gold CV gold

OLID 70.22% - 76.28% 79.40%
GermEval 66.61% 66.78% 71.13% 72.41%

Table 1: All results in table form (CV = cross-
validation; gold = gold test set).

Figure 1: Representation of the proposed classifier.

724

Figure 2: Confusion Matrix of the OLID gold test set,
sub-task A. Depicted are instances and normalized val-
ues.

5 Discussion

The presented model continues our work on the
identification of offensive German tweets (2018).
We were able to improve our proposed model by
adjusting the architecture of the recurrent layer in
our neural network. By using a bidirectional GRU
instead of a unidirectional LSTM, we are able to
capture past and future information about the in-
put sequence and exploit the better performance
of GRU networks on smaller datasets. Further-
more, we return the hidden states for each feature
map instead of returning only the last hidden state.
This allows us to extract higher-level sequentially
dependent features from each concatenated feature
map.

Our experiments show that our suggested model
outperforms the baseline model on both datasets.
The difference between the F1-scores for the En-
glish and German dataset might be attributed to
the smaller size of the German training set, which
contains only about 5,000 tweets. The discrepancy
between the results of our cross-validation and
achieved score on the OLID test set might be ex-
plained by the small amount of test tweets, which
may lead to imprecise results for the submitted
runs.

By utilizing w2v as features, we are able to limit
extensive and language specific preprocessing.

“@USER Lolol God he is such an
a**hole.”

In this example, the vector representation of
“a**hole” has a high cosine similarity (0.63) to the

vector representation of “asshole”, which allows
our model to classify this tweet as offensive. On
the contrary, our approach falls short when con-
fronted with indirect insults.

“@USER @USER Im sure the air that
he is breathing is also bad.”

Our model wrongly predicts a non-offensive tweet
in this instance.

The detection of offensive, hateful, racist,
and/or sexist user behavior in social media still
proves to be a challenge. Even for humans, it
can be problematic to identify offensive microp-
osts, since these posts can be ambiguous and de-
pendant on the personal mindset of a reader. Ross
et al. (2017) show that it can be difficult to mea-
sure the agreement of annotators about hate speech
in the light of the European refugee crisis. They
conclude that instead of a classification problem,
a regression model with an average offensiveness
score of multiple annotators might be more suit-
able for this task. Furthermore, it can be difficult
to grasp the full context of an arbitrary tweet. With
only excerpts of a conversation, the context and
true intention of the author may be difficult to de-
termine.

6 Conclusion and Future Work

In this paper, we describe our submitted model for
the SemEval shared task 6 and evaluation meth-
ods for the identification of online aggressiveness
in social media microposts. Our model achieves
good results in the two evaluated datasets. For
the OLID dataset which contains English tweets,
a macro F1-score of 79.40% is reached, while our
network resulted in an F1-score of 72.41 % on
the GermEval dataset, which consists of German
tweets.

We plan to evaluate our approach on more
datasets to further investigate the potential of our
model for different languages. One such set is
the TRAC dataset, which contains aggression-
annotated Facebook posts and comments in Hindi.
Furthermore, we want to examine whether addi-
tional features such as character-level embeddings
or POS tagging will improve our results. Inclusion
of figurative language detection has proved to en-
hance many NLP tasks, such as argument mining
and so-called hidden hate speech (Mitrović et al.,
2017), which is also one of our future directions.

725

References
Bastian Birkeneder, Jelena Mitrović, Julia Niemeier,

Leon Teubert, and Siegfried Handschuh. 2018. up-
Inf - Offensive Language Detection in German
Tweets. In Proceedings of the GermEval 2018
Workshop, pages 71 – 78.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078v3.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
arXiv preprint arXiv:1703.04009.

Darja Fišer, Ruihong Huang, Vinodkumar Prab-
hakaran, Rob Voigt, Zeerak Waseem, and Jacqueline
Wernimont. 2018. Proceedings of the 2nd workshop
on abusive language online (alw2). In Proceedings
of the 2nd Workshop on Abusive Language Online
(ALW2).

Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Multimedia
lab @ acl wnut ner shared task: Named entity recog-
nition for twitter microposts using distributed word
representations. In Proceedings of the Workshop on
Noisy User-generated Text, pages 146–153.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classifi-
cation. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ritesh Kumar, Atul Kr. Ojha, Marcos Zampieri, and
Shervin Malmasi. 2018. Proceedings of the first
workshop on trolling, aggression and cyberbullying
(trac-2018). In Proceedings of the First Workshop
on Trolling, Aggression and Cyberbullying (TRAC-
2018). Association for Computational Linguistics.

Jelena Mitrović, Cliff O’Reilly, Miljana Mladenović,
and Siegfried Handschuh. 2017. Ontological repre-
sentations of rhetorical figures for argument mining.
Argument & Computation, 8(3):267–287.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153. International World Wide
Web Conferences Steering Committee.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2017. Measuring the reliability of hate
speech annotations: The case of the european
refugee crisis. arXiv preprint arXiv:1701.08118.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the germeval 2018 shared
task on the identification of offensive language. Aus-
trian Academy of Sciences, Vienna September 21,
2018.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on twitter using a
convolution-gru based deep neural network. In Eu-
ropean Semantic Web Conference, pages 745–760.
Springer.

726

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 727–734
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Pardeep at SemEval-2019 Task 6: Identifying and Categorizing Offensive
Language in Social Media Using Deep Learning

Pardeep Singh
School of Computer & Systems Sciences

Jawaharlal Nehru University
New Delhi-110067

pardeepsinghinfo@gmail.com

Satish Chand
School of Computer & Systems Sciences

Jawaharlal Nehru University
New Delhi-110067

schand20@gmail.com

Abstract
The rise of social media has made informa-
tion exchange faster and easier among the peo-
ple. However, in recent times, the use of of-
fensive language has seen an upsurge in so-
cial media. The main challenge for a service
provider is to correctly identify such offensive
posts and take necessary action to monitor and
control their spread. In this work, we try to ad-
dress this problem by using sophisticated deep
learning techniques like LSTM, Bidirectional
LSTM and Bidirectional GRU. Our proposed
approach solves 3 different Sub-tasks provided
in the SemEval-2019 task 6 which incorpo-
rates identification of offensive tweets as well
as their categorization. We obtain significantly
better results in the leader-board for Sub-task
B and decent results for Sub-task A and Sub-
task C validating the fact that the proposed
models can be used for automating the offen-
sive post-detection task in social media.

1 Introduction

Social media has revolutionized the way of com-
munication among the people. It is an instant
communication medium which connects people
all over the world and shares their views. But,
some people misuse this freedom by using the of-
fensive language through posts or comments to de-
fame, insult or target an individual or a group of
individuals. The mainstream media have reported
various cases of suicide and depression due to
trolling and cyberbullying in social media. Hence
it becomes worrisome for the corporates, govern-
ment organizations and security agencies to ei-
ther stop or mitigate this type of behavior of the
users. Manually it is impossible to check the neg-
ative behavior of users due to the volume, veloc-
ity and variety of data coming from the social net-
works. Hence there is an utmost need to develop a
system which automatically identifies and catego-
rizes the offensive language in social networks. To

tackle these issues SemEval-2019 (Zampieri et al.,
2019b) aimed exactly at that need and organized a
task in identifying and categorizing offensive lan-
guage in social media. This task is divided into
three Sub-tasks.
Sub-task A - Offensive language identification.
Sub-task B - Categorization of offense types.
Sub-task C - Offense target identification.
All the three Sub-tasks are related to each other.
In Sub-task A, we have to identify whether a given
set of tweets is offensive or not. It is a binary clas-
sification task based on tweet text. In Sub-task
B, the main challenge is to categorize the tweets
which are offensive in Sub-task A into targeted or
untargeted. Sub-task C is comparatively challeng-
ing than other two Sub-tasks due to the multi-class
nature. Its goal is to identify the tweets which
are targeted in Sub-task B and categorized those
tweets into individual, group or others.
Our approach for the SemEval-2019 task 6 (identi-
fying and categorizing offensive language in social
media) comprises of deep learning models: Bidi-
rectional LSTM, Bidirectional GRU and standard
LSTM. These are popularly used deep learning se-
quence models applied in many text classification
tasks. We used the pre-trained word level embed-
ding GloVe (Global Vectors for Word Representa-
tion) to get vector representations for words that
appeared in tweets and used these representations
as features for training the models. To check the
performance of models, 10 fold cross-validation
was applied on the given training data. We com-
pared the results of the above-mentioned models
with various baselines such as Logistic Regres-
sion, Support Vector Machine, Gradient Boosting
and XGBoost. The baseline models are reason-
ably good but they have poor classification Accu-
racy as compared to deep learning models. This
paper presents the description of our approaches
and results for SemEval-2019 task 6.

727

2 Related Work

This section discusses some existing work related
to identifying and categorizing offensive language
in social media. Researchers have applied various
computational methods to deal with hate speech,
aggression, offensive language, racist and sexist
language, and cyberbullying.
Hate Speech: Detection of hate speech is mod-
eled in (Zhang et al., 2018). The authors applied
CNN and GRU deep neural networks along with
pre-trained Google Word2vec word embedding to
detect the hate speech on Twitter. (Zhang and
Luo, 2018) proposed Skip Gram Extraction CNN
(SKIP-CNN) deep neural network model to iden-
tify hate speech present in social media text. It is
discussed in this paper that hate speech lacks dis-
tinctive and unique features in a dataset which is
hard to discover. The proposed model serves as
a feature extractor for capturing the semantics of
hate speech in social media.
Aggression: A method to detect aggression in so-
cial media is proposed in (Madisetty and Desarkar,
2018). The authors applied CNN, LSTM and Bidi-
rectional LSTM on Facebook comment dataset.
The output of these three deep learning models are
used as an input to the majority based ensemble
method for detection of aggression in social me-
dia. Another paper (Kumar et al., 2018) presents
the system description report of shared task on
identification of aggression in social media as a
part of the 1st workshop on trolling, aggression
and cyberbullying (TRAC1). The aggression an-
notated dataset of Facebook posts and comments
in English and Hindi language were provided to
the participants for training and validation. Six
models out of the top ten best performing models
were trained using LSTM, Bidirectional LSTM,
CNN, and RNN deep neural networks.
Racist and Sexist Language: (Davidson et al.,
2017) focused on classifying homophobic and
racist tweets as hate speech and sexist remarks
tweets as offensive. They use Logistic Regression
with L2 regularization to predict the class mem-
bership. (Pitsilis et al., 2018) proposed an en-
semble LSTM deep learning classifier that utilizes
the user behavior metric to show each user view-
point towards racism and sexism captured by their
tweeting history.
Cyberbullying: (Dadvar et al., 2013) studied
about the Cyberbullying detection. They combine
individual comments, user characteristics and user

profile information for training the Support Vector
Machine classifier. It is also reported that the ad-
dition of user history with text features improves
cyberbullying detection accuracy. (Rafiq et al.,
2018) proposed a multi-stage cyberbullying detec-
tion mechanism by two novel components. First
is dynamic priority scheduler which drastically re-
duces the classification time, and second is incre-
mental classification method which is highly re-
sponsive regarding time to raise alerts.
Until now there have been many publications and
studies on offensive language, aggression and hate
speech in social media. Examples include (Wie-
gand et al., 2018), (ElSherief et al., 2018) and
(Fortuna and Nunes, 2018). All these methods
have some pros and cons associated with them.
Therefore this paper proposed the idea of using
deep learning sequence models for better accuracy
in results for SemEval-2019 task 6.

3 Methodology and Data

In this section, we first describe the dataset used in
the competition and then we explain the descrip-
tion of approaches used for solving the problem.

3.1 Dataset Used
The dataset provided by the task organizers is
OLID (Offensive Language Identification). The
details of data and annotation are available in
(Zampieri et al., 2019a). For Sub-task A, this
dataset contains tweets labeled into the following
two categories: offensive (OFF) and not offensive
(NOT). For Sub-task B, tweets are labeled into
the following two categories: targeted input (TIN)
and untargeted (UNT). For Sub-task C, the given
tweets are classified into the following three cate-
gories: group (GP), individual (IND) and others
(OTH). Out of 13,240 training samples of Sub-
task A, 4404 samples have been allocated to Sub-
task B and 3,877 samples have been allocated to
Sub-task C. All the tweets are in English language.
The statistics of the dataset and some instances of
tweets with their labels are shown in Table 1 and
Table 2.

Training Set
samples

Testing Set
samples

Sub-task A 13240 860
Sub-task B 4404 240
Sub-task C 3877 213

Table 1: Statistics of the offensive dataset

728

Tweet Sub-task A Sub-task B Sub-task C
Its not my fault you support gun control. NOT - -
Someone should’veTaken” this piece of shit to a vol-
cano.

OFF UNT -

you are a lying corrupt traitor!!! Nobody wants to
hear anymore of your lies!!! #DeepStateCorruption.

OFF TIN IND

Kind of like when conservatives wanna associate ev-
eryone to their left as communist antifa members?

OFF TIN GRP

why report this garbage. We don’t give a crap. OFF TIN OTH

Table 2: Some tweets from the training dataset with their labels.

3.2 Methodology

Here we discuss our proposed approach in details.
Our initial approach was to check with standard
machine learning algorithms like Logistic Regres-
sion (Hosmer Jr et al., 2013), Random Forest (Xu
et al., 2012), Support Vector Machines (Chang and
Lin, 2011), XGBoost (Chen and Guestrin, 2016)
and Gradient Boosting (Natekin and Knoll, 2013).
We use TF-IDF vectorization for vectorizing our
text and then apply the above-mentioned algo-
rithms for the model development. Performance
of these algorithms were not quite acceptable as it
gave low Accuracy in results. To overcome above
mentioned issues, we use deep learning algorithms
for classifying the text. First we convert the text
into vector representations with the help of GloVe
(Pennington et al., 2014) word level embeddings
and then use these representations as an input to
the deep learning models described in the subse-
quent sections for classification tasks.

Figure 1: Architecture of the proposed deep
learning models.

The multi-layered architecture of our approach
presented in Figure 1. It comprised of various
components in the form of layers. Since the data
is in the form of text and the first step is to vec-
torize the text. To achieve this, we first make the
tokens of the text W1, W2, W3,..., Wn and apply
pre-trained GloVe word embeddings to get vector
representations R1, R2, R3,..., Rn from it. Next
layer can be LSTM, Bidirectional LSTM or Bidi-
rectional GRU Block described in the next subsec-
tions. To overcome the problem of overfitting, we
add a small amount of dropout. Finally, we use a
Dense layer and Softmax/Sigmoid layer to get the
output of the models.

3.2.1 Long Short Term Memory (LSTM)
We first try LSTM (Hochreiter and Schmidhuber,
1997) which have been used successfully in many
text classification tasks (Madisetty and Desarkar,
2018). LSTM is special kind of RNN which cap-
tures the long contexts and long-range dependen-
cies very efficiently in the sentences and takes care
of the vanishing gradient problem of RNN (Lipton
et al., 2015) with the help of carefully regulated
structures named gates. The main components of
the LSTM model are input gate, forget gate, output
gate and candidate memory state. All these gates
are single layered neural networks with the Sig-
moid activation function except candidate memory
state which uses tanh as the activation function.

3.2.2 Gated Recurrent Unit (GRU)
Gated Recurrent Unit (Tjandra et al., 2016) is an
improvisation over LSTM. They also take care of
the vanishing gradient problem of the RNN and
tries to capture long-range connections better but
with a less number of gates than LSTM. This
leads to a less amount of parameters for the model
which enables a faster and efficient model devel-
opment in comparison to the LSTM based model.

729

The main components of GRU are reset gate, up-
date gate and current memory content. Similar to
LSTM, both reset gate and update gate are sin-
gle layered neural networks with the Sigmoid ac-
tivation function except current memory content
which use tanh as the activation function. The ba-
sic function of the reset gate is to determine how
much of the past information to be lost whereas the
update gate decides how much of the information
the model should pass to the next states.

3.2.3 Bidirectional LSTM and GRU
Both LSTM and GRU uses sequential information
of the textual data for the processing and capture
much longer range dependencies. But, the catch
is that they use the sequence of only one direction
while the Bidirectional version of the same consid-
ers a reverse copy of the provided input. In certain
problems, this reversal helps to a better feature un-
derstanding and improved model performance.
In our work, we mainly use standard LSTM and
Bidirectional version of both LSTM and GRU for
the model developments. The detailed experimen-
tal setup is described in the next section.

4 Experimental Setting

For implementing the models, we use Keras
(Ketkar, 2017) and Scikit-learn (Pedregosa et al.,
2011) python framework libraries. The experi-
mental details and model configuration are shown
in Table 3. For the effectiveness of models, we add
a small proportion of dropout. For GRU model,
we specify the number of Recurrent Units. In
terms of training, we use categorical cross Entropy
as a loss function with ADAM as the optimization
function. All the models are tested using 10 fold
cross-validation.

Model Configuration Value
sentences length 32
batch size 64
recurrent units (for GRU) 64
dense size 16
dropout rate 0.5
number of epochs 300

Table 3: Configuration of the proposed models.

4.1 Impact of Batch Size on Model
Performance

We checked our proposed approach with three dif-
ferent batch sizes 64, 128 and 256 to check its im-

pact on model performance. It is found experi-
mentally that batch size 64 provides optimal re-
sults.

0.773

0.606

0.723

0.524

0.817
0.769

0.583

0.733

0.487

0.815
0.766

0.567

0.74

0.464

0.81

M
e

tr
ic

 V
a

lu
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy F1(Macro) Precision Recall AUC

64 128 256

 Batch Size

Figure 2: Performance comparisons with different
batch Sizes.

Performance metrics: The official evaluation
metric for all the three Sub-tasks are the macro-
averaged F1 score. For additional analysis, we use
the Accuracy, Precision, Recall and ROC-AUC.

5 Results and Discussions

This section contains the detailed experimental re-
sults that we performed on the proposed models
including the baselines. It is quite familiar that
multiple baselines approaches are helpful for com-
paring the performance of models on validation
sets. To observe this, we apply various compu-
tational models on the training data released for
Sub-task A so that we figure out which models
give better results on the training data. Table 4
presents each model results in terms of Accuracy,
F1(Macro), Precision, Recall and Roc-Auc score.
It is evident from this Table that the deep learn-
ing models like LSTM, Bidirectional LSTM and
Bidirectional GRU with GloVe word embeddings
outperformed TF-IDF based machine learning al-
gorithms. The LSTM model provides better re-
sults in terms of Accuracy among all the mod-
els. Bidirectional LSTM provides better results in
terms of F1 macro and the Random Forest with
TF-IDF gives better results in terms of Precision.
The Bidirectional GRU provides better results for
Recall matrix. The standard LSTM and Bidirec-
tional LSTM performs equally good in terms of
ROC-AUC.

730

Classifier Accuracy F1(Macro) Precision Recall ROC-AUC
Logistic Regression + TF-IDF 0.7610 0.5563 0.5070 0.4463 0.6832
Random Forest + TF-IDF 0.7567 0.5189 0.7718 0.3908 0.6662
SVM with linear Kernel + TF-IDF 0.7658 0.5579 0.7613 0.4403 0.6853
Xgboost + TF-IDF 0.7323 0.5248 0.6493 0.4403 0.6601
Gradient Boosting + TF-IDF 0.7525 0.5750 0.6785 0.4988 0.6897
BI-LSTM + GloVe 0.7686 0.6089 0.7026 0.5459 0.8100
BI-GRU + GloVe 0.7524 0.6021 0.6501 0.5672 0.7963
LSTM + GloVe 0.7695 0.5942 0.7191 0.5081 0.8100

Table 4: Results of the proposed deep learning approaches including baselines on the Sub-task A training data
using 10-fold cross validation

5.1 Results for Sub-task A

The official results of our proposed models on the
test set for Sub-task A is shown in Table 5. As
it is evident from these results that Bidirectional
GRU performed better than other two deep learn-
ing models with F1 Score of 0.69. To analyze the
correct label of a tweet, we also show the confu-
sion matrix which shows correct class predictions
along diagonal lines. Our team ranked 74 out of
104 participating teams.

System F1
(macro)

Accuracy

All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
BI-LSTM 0.6617 0.7535
BI-GRU 0.6992 0.7744
LSTM 0.6785 0.7477

Table 5: Results for Sub-task A (Binary Classification)

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

548 72

122 118

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Confusion Matrix shows results for
Sub-task A using Bidirectional GRU

5.2 Results for Sub-task B

As comparison to Sub-task A, the official results
for Sub-task B shown in Table 6 are significantly
better. Our team ranked 7 out of 76 participating
teams with F1 Score of 0.69. Again the Bidirec-
tional GRU outperforms both LSTM and Bidirec-
tional LSTM deep learning models in terms of F1
and Accuracy.

System F1
(macro)

Accuracy

All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
BI-LSTM 0.6511 0.8958
BI-GRU 0.6997 0.9
LSTM 0.6455 0.8917

Table 6: Results for Sub-task B (Binary classification)

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

206 7

17 10

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 4: Confusion Matrix shows results for
Sub-task B using Bidirectional GRU

731

5.3 Results for Sub-task C

Table 7 presents our results on the test set for
Sub-task C. For this multi-class classification chal-
lenge, the results are lower as compared to other
two Sub-tasks. All the participating teams had a
lower performance with highest F1 score of 0.66,
demonstrating the difficulty of the Sub-task. Our
team ranked 41 out of 65 participating teams and
Bidirectional LSTM give better results with F1
score of 0.49.

System F1
(macro)

Accuracy

All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
BI-LSTM 0.4903 0.6056
BI-GRU 0.4635 0.5775
LSTM 0.4810 0.6197

Table 7: Results for Sub-task C (Multi-Class
Classification)

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

47 26 5

19 78 3

14 17 4

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5: Confusion Matrix shows results for
Sub-task C using Bidirectional LSTM

5.4 Class Label results

Besides the combined results of our proposed
models on the test set for three Sub-tasks, we also
present per class results in Tables 8, 9 and 10. The
results in these tables show how well our models
performed on each class label.
Table 8 shows each class label results for Sub-task
A which comprises of two classes offensive (OFF)

and not offensive (NOT). Bidirectional GRU per-
formed better on both classes with F1 score of 0.54
and 0.84 respectively validating the fact that offen-
sive class are relatively difficult to classify.
Table 9 shows each class label results for Sub-task
B which comprises of two classes targeted input
(TIN) and untargeted (UNT). Bidirectional GRU
performed better on both classes with F1 score of
0.94 and 0.45 respectively which shows that untar-
geted class are much harder to classify.
Table 10 shows each class label results for Sub-
task C which is a multi-class classification chal-
lenge having three classes individual (IND), group
(GRP) and others (OTH). LSTM provides bet-
ter results with F1 score of 0.72 and 0.63 for
both (IND) and (GRP) classes while Bidirectional
LSTM performed better on (OTH) class with F1
score of 0.17, justifies that (OTH) class is rela-
tively harder to classify.

6 Conclusion

In this paper, we address the challenge of identi-
fication of offensive tweets as well as their cate-
gorization. Our proposed approach comprises of
three deep learning based techniques for efficient
classification of offensive posts in social media. In
this work, we show that applying word embedding
over social media text followed by the application
of a sequence to sequence models like LSTM,
Bidirectional LSTM and Bidirectional GRU leads
to a better classification of the text. This proposed
approach can also be incorporated in an end-to-
end framework. Overall, our approach provides an
efficient way of text classification in social media.
For future work, we want to include character-
based embeddings along with pre-trained word
level embeddings for better representation of text.
Also, the addition of attention layer to the deep
networks sometimes increases performance even
further.

Acknowledgements
The aforementioned work is funded by the Univer-
sity Grants Commission (UGC), New Delhi under
Senior Research Fellowship (SRF). We would also
like to acknowledge Dr. Srijith P.K. and Uddipta
Bhattacharjee from the Department Of Computer
Science IIT Hyderabad for their support and valu-
able suggestion.

732

OFF NOT
P R F1 P R F1

BI-LSTM 0.5814 0.4167 0.4854 0.7965 0.8839 0.8379
BI-GRU 0.6211 0.4917 0.5488 0.8179 0.8839 0.8496
LSTM 0.5520 0.5083 0.5293 0.8153 0.8403 0.8276

Table 8: Shows per-class performance of our proposed models for Sub-task A.

TIN UNT
P R F1 P R F1

BI-LSTM 0.9123 0.9765 0.9433 0.5833 0.2593 0.3590
BI-GRU 0.9238 0.9671 0.9450 0.5882 0.3704 0.4545
LSTM 0.9119 0.9718 0.9409 0.5385 0.2593 0.3500

Table 9: Shows per-class performance of our proposed models for Sub-task B.

IND GRP OTH
P R F1 P R F1 P R F1

BI-LSTM 0.6446 0.7800 0.7059 0.5875 0.6026 0.5949 0.3333 0.1143 0.1702
BI-GRU 0.6389 0.6900 0.6635 0.5667 0.6538 0.6071 0.2000 0.0857 0.1200
LSTM 0.6508 0.8200 0.7257 0.6575 0.6154 0.6358 0.1429 0.0571 0.0816

Table 10: Shows per-class performance of our proposed models for Sub-task C.

References

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm: a
library for support vector machines. ACM transac-
tions on intelligent systems and technology (TIST),
2(3):27.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pages 785–794.
ACM.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving cyberbul-
lying detection with user context. In Advances in
Information Retrieval, pages 693–696. Springer.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Lstm
can solve hard long time lag problems. In Ad-
vances in neural information processing systems,
pages 473–479.

David W Hosmer Jr, Stanley Lemeshow, and Rodney X
Sturdivant. 2013. Applied logistic regression, vol-
ume 398. John Wiley & Sons.

Nikhil Ketkar. 2017. Introduction to keras. In Deep
Learning with Python, pages 97–111. Springer.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Zachary C Lipton, John Berkowitz, and Charles
Elkan. 2015. A critical review of recurrent neu-
ral networks for sequence learning. arXiv preprint
arXiv:1506.00019.

Sreekanth Madisetty and Maunendra Sankar Desarkar.
2018. Aggression detection in social media using
deep neural networks. In Proceedings of the First
Workshop on Trolling, Aggression and Cyberbully-
ing (TRAC-2018), pages 120–127.

Alexey Natekin and Alois Knoll. 2013. Gradient boost-
ing machines, a tutorial. Frontiers in neurorobotics,
7:21.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier

733

Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Georgios K Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language
in tweets using deep learning. arXiv preprint
arXiv:1801.04433.

Rahat Ibn Rafiq, Homa Hosseinmardi, Richard Han,
Qin Lv, and Shivakant Mishra. 2018. Scalable and
timely detection of cyberbullying in online social
networks. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, pages 1738–
1747. ACM.

Andros Tjandra, Sakriani Sakti, Ruli Manurung, Mirna
Adriani, and Satoshi Nakamura. 2016. Gated recur-
rent neural tensor network. In 2016 International
Joint Conference on Neural Networks (IJCNN),
pages 448–455. IEEE.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Baoxun Xu, Joshua Zhexue Huang, Graham Williams,
Qiang Wang, and Yunming Ye. 2012. Classify-
ing very high-dimensional data with random forests
built from small subspaces. International Journal of
Data Warehousing and Mining (IJDWM), 8(2):44–
63.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang and Lei Luo. 2018. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. Semantic Web, (Preprint):1–21.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

734

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 735–738
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SINAI at SemEval-2019 Task 6: Incorporating lexicon knowledge into
SVM learning to identify and categorize offensive language in social media

Flor Miriam Plaza-del-Arco, M. Dolores Molina-González,
M. Teresa Martı́n-Valdivia, L. Alfonso Ureña-López

Department of Computer Science, Advanced Studies Center in ICT (CEATIC)
Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
{fmplaza, mdmolina, maite, laurena}@ujaen.es

Abstract

Offensive language has an impact across so-
ciety. The use of social media has aggravated
this issue among online users, causing suicides
in the worst cases. For this reason, it is impor-
tant to develop systems capable of identifying
and detecting offensive language in text auto-
matically. In this paper, we developed a sys-
tem to classify offensive tweets as part of our
participation in SemEval-2019 Task 6: Offen-
sEval. Our main contribution is the integra-
tion of lexical features in the classification us-
ing the SVM algorithm.

1 Introduction

In recent years, with the emergence of social me-
dia, the user-generated content on the Web has
grown exponentially. This content has the poten-
tial to be transmitted quickly, reaching anywhere
in the world in a matter of seconds. Due to the ex-
change of ideas between users, we find not only
positive comments, but also a wide diffusion of
aggressive and potentially harmful content. Con-
sequently, this type of remarks affects millions of
online users. In fact, it has been reported that
these incidents have not only created mental and
psychological agony to the online users, but have
forced people to deactivate their accounts and, in
severe cases like cyberbullying, to commit sui-
cides (Hinduja and Patchin, 2018). One of the
strategies used to deal with aggressive behavior in
social media is to monitor or report this type of
content. However, this strategy is not entirely fea-
sible due to the huge amount of data that is gen-
erated daily by users. Therefore, it is necessary to
develop systems capable of identifying this type of
content on the Web.

In order to tackle this problem, firstly it is im-
portant to define the toxic language. The toxic lan-
guage can be broadly divided into two categories:

hate speech and offensive language (Cheng, 2007;
Davidson et al., 2017; Gaydhani et al., 2018). Ac-
cording to Cambridge Dictionary, hate speech is
defined as “public speech that expresses hate or
encourages violence towards a person or group
based on something such as race, religion, sex, or
sexual orientation”. Offensive language is defined
as the text which uses hurtful, derogatory or ob-
scene terms made by one person to another person.

In this paper, we present the system we devel-
oped as part of our participation in SemEval-2019
Task 6 OffensEval: Identifying and Categorizing
Offensive Language in Social Media) (Zampieri
et al., 2019b). In particular, we participated in sub-
task A: Offensive language identification. It is a
binary classification task and consists of identify-
ing if a post contains or not offense or profanity
language.

The rest of the paper is structured as follows. In
Section 2, we explain the data used in our meth-
ods. Section 3 introduces the lexical resources
used for this work. Section 4 presents the details
of the proposed systems. In Section 5, we discuss
the analysis and evaluation results for our system.
We conclude in Section 6 with remarks on future
work.

2 Data

To run our experiments, we used the English
dataset provided by the organizers in SemEval19
Task 6 OffensEval: Identifying and Categorizing
Offensive Language in Social Media (Zampieri
et al., 2019a).

The datasets contain tweets with five fields.
Each tweet comprises an identifier (id), the tweet
text (tweet), field for subtask A (subtask a), field
for subtask B (subtask b) and field for subtask C
(subtask c). Since we have only participated in
sub-task A, we are interested in the fields id, tweet

735

and subtask a.
In sub-task A, we are interested in the identifica-

tion of offensive tweets and tweets containing any
form of (untargeted) profanity. In this sub-task,
there are 2 categories in which the tweet could be
classified:

(NOT) Not Offensive - This post does not con-
tain offense or profanity.

(OFF) Offensive - This post contains offensive
language or a targeted (veiled or direct) offense.
In the annotation, this category includes insults,
threats, and posts containing profane language and
swear words.

During pre-evaluation period, we trained our
models on the train set, and evaluated our differ-
ent approaches on the trial set. During evaluation
period, we trained our models on the train and trial
sets, and tested the model on the test set. Table 1
shows the number of tweets per class for English
language used in our experiments.

Dataset NOT OFF Total
Train 8840 4400 13,240
Trial 243 77 320
Test - - 860

Table 1: Number of tweets per class in OffensEval
dataset.

3 Resources

For this subtask A, we used different lexicons that
we explain in detail below.

VADER (Valence Aware Dictionary and sEn-
timent Reasoner) (Gilbert, 2014). The VADER
sentiment lexicon is a rule-based sentiment anal-
ysis tool. This is sensitive both to the polarity
and the intensity of sentiments expressed in social
media contexts, and is also generally applicable
to sentiment analysis in other domains. VADER
has been validated by multiple independent human
judges. The tool return four values: positive, neg-
ative, neutral and compound. The first three scores
represent the proportion of text that falls in these
categories. The compound score is computed by
summing the valence scores of each word in the
lexicon, adjusted according to the rules, and then
normalized between -1 (most extreme negative)
and +1 (most extreme positive).

Offensive/Profane Word List (von Ahn,
2009). A list of 1,384 English terms (unigrams and
bigrams) that could be found offensive. The list

contains some words that many people won’t find
offensive, but it’s a good start for anybody wanting
to detect offensive or profane terms.

4 System Description

In this section, we describe the systems devel-
oped for the subtask A in OffensEval task. During
our experiments, scikit-learn machine learning in
Python library (Pedregosa et al., 2011) was used
for benchmarking. A general scheme of the sys-
tem can be seen in Figure 1.

Training Tweets Test Tweets

Step 1:
Preprocessing

Prepared
corpus

Step 2: Obtain
statistic and

lexical features

SVM
training

SVM
model

SVM
classifier

Test
predictions

Figure 1: Systems architecture.

4.1 Data Preprocessing
In first place, we preprocessed the corpus of tweets
provided by the organizers. We applied the fol-
lowing preprocessing steps: the documents were
tokenized using NLTK, the URLs and mentions
users are removed and all letters were converted
to lower-case.

4.2 Feature Extractor
Converting sentences into feature vectors is a focal
task of supervised learning based sentiment analy-
sis. Therefore, the features we chose in our system
can be divided into two parts: statistic features and
lexical features.

736

• Statistic features. We employed the features
that usually perform well in text classifica-
tion: Term Frequency (TF) taking into ac-
count unigrams.

• Lexical features. As we explained in Section
3, we used two lexicons to obtain our features
in the following way:

1. VaderSentiment. We use the senti-
ment.vader module1 provided by the
Natural Language Toolkit (NLTK).
With this module, we analyze each
sentence and we obtained a vector
of four scores: negative sentiment,
positive sentiment, neutral sentiment
and compound polarity.

2. Offensive/Profane Word List. We
checked the presence of each word of
offensive/profane word list in the tweet
and if it exists we assigned 1 as Con-
fidence Value (CV). Then, we summed
the CV of all the words finding in the
tweet and this value is divided for the
total number of words of tweet. As a re-
sult, we obtained a parameter that will
be used as a feature applied for the clas-
sifier.

4.3 Classifier
The concatenation of the features described before
are applied for the classification using the SVM
algorithm. We selected the Linear SVM formu-
lation, known as C-SVC and the value of the C
parameter was 1.0.

5 Analysis of results

During the pre-evaluation phase we carried out
several experiments and the best experiment were
taken into account for the evaluation phase. The
system has been evaluated using the official com-
petition metric, the macro-averaged F1-score. The
metric has been computed as follows:

Macro-F1 =
2 ∗Macro-Prec ∗Macro-Rec

Macro-Prec + Macro-Rec
(1)

The results of our participation in the subtask A
of OffensEval task during the evaluation phase can
be seen in Table 2.

1https://www.nltk.org/_modules/nltk/
sentiment/vader.html

Class precision recall f1-score
NOT 0.81 0.95 0.88
OFF 0.77 0.44 0.56
avg / total 0.8 0.81 0.79

Table 2: System test results per class in subtask A of
OffensEval task.

User name (ranking) Macro-F1
pliu19 (1) 0.83
DA-LD-Hildesheim (22) 0.78
fmplaza (68) 0.72
gretelliz92 (80) 0.67
AyushS (102) 0.42

Table 3: System Results per participating team in sub-
task A of OffensEval task.

In relation to our results, it should be noted that
we achieve better score in case of the class NOT
offensive (F1: 0.88). However, our system is not
able to classify well the OFF class (F1: 0.56). This
issue may be due to overtraining for the NOT class
since as we can see in the Table 1 of Section 2,
around 67% of the total tweets belong to that class
in the training set in comparison to 33% of OFF
class.

With respect to other users, we were ranked in
the 68th position as can be seen in Table 3.

6 Conclusions and Future Work

In this paper, we present the system we have devel-
oped as part of our participation in SemEval-2019
Task 6: OffensEval: Identifying and Categorizing
Offensive Language in Social Media. Specifically,
we have participated in subtask A. To solve this
task, we have developed a classifier system based
on SVM incorporating lexical features from a po-
larity lexicon and a offensive/profane word list.

Our next study will focus on exploring more
features from lexicons because in SemEval-2018
Task 1 (Mohammad et al., 2018), most of the top-
performing teams relied on features derived from
existing affective lexicons. Also, we will continue
working on classifying offensive tweets because
today it is a very important task due to the large
amount of offensive data generated by users on
the Web and we need to prevent the serious conse-
quences it can have on other users.

737

7 Acknowledgments

This work has been partially supported by Fondo
Europeo de Desarrollo Regional (FEDER) and
REDES project (TIN2015-65136-C2-1-R) from
the Spanish Government.

References
Luis von Ahn. 2009. Offensive/profane word list. Re-

trieved June, 24:2018.

J Cheng. 2007. Report: 80 percent of blogs contain
offensive content. Ars Technica, 2011.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
In Eleventh International AAAI Conference on Web
and Social Media.

Aditya Gaydhani, Vikrant Doma, Shrikant Kendre, and
Laxmi Bhagwat. 2018. Detecting hate speech and
offensive language on twitter using machine learn-
ing: An n-gram and tfidf based approach. arXiv
preprint arXiv:1809.08651.

CJ Hutto Eric Gilbert. 2014. Vader: A parsimo-
nious rule-based model for sentiment analysis of so-
cial media text. In Eighth International Confer-
ence on Weblogs and Social Media (ICWSM-14).
Available at (20/04/16) http://comp. social. gatech.
edu/papers/icwsm14. vader. hutto. pdf.

Sameer Hinduja and Justin W Patchin. 2018. Connect-
ing adolescent suicide to the severity of bullying and
cyberbullying. Journal of School Violence, pages 1–
14.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of
The 12th International Workshop on Semantic Eval-
uation, pages 1–17.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

738

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 739–744
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SSN NLP at SemEval-2019 Task 6: Offensive Language Identification in
Social Media using Traditional and Deep Machine Learning Approaches

D. Thenmozhi, B. Senthil Kumar, Chandrabose Aravindan, S. Srinethe
Department of CSE, SSN College of Engineering, India
{theni d,senthil,aravindanc}@ssn.edu.in

srinethe16108@cse.ssn.edu.in

Abstract

Offensive language identification (OLI) in user
generated text is automatic detection of any
profanity, insult, obscenity, racism or vulgar-
ity that degrades an individual or a group. It
is helpful for hate speech detection, flame de-
tection and cyber bullying. Due to immense
growth of accessibility to social media, OLI
helps to avoid abuse and hurts. In this pa-
per, we present deep and traditional machine
learning approaches for OLI. In deep learning
approach, we have used bi-directional LSTM
with different attention mechanisms to build
the models and in traditional machine learn-
ing, TF-IDF weighting schemes with classi-
fiers namely Multinomial Naive Bayes and
Support Vector Machines with Stochastic Gra-
dient Descent optimizer are used for model
building. The approaches are evaluated on the
OffensEval@SemEval2019 dataset and our
team SSN NLP submitted runs for three tasks
of OffensEval shared task. The best runs of
SSN NLP obtained the F1 scores as 0.53, 0.48,
0.3 and the accuracies as 0.63, 0.84 and 0.42
for the tasks A, B and C respectively. Our ap-
proaches improved the base line F1 scores by
12%, 26% and 14% for Task A, B and C re-
spectively.

1 Introduction

Offensive language identification (OLI) is a pro-
cess of detecting offensive language classes
(Razavi et al., 2010) such as slurs, homopho-
bia, profanity, extremism, insult, disguise, obscen-
ity, racism or vulgarity that hurts or degrades an
individual or a group from user-generated text
like social media postings. OLI is useful for
several applications such as hate speech detec-
tion, flame detection, aggression detection and
cyber bullying. Recently, several research work
have been reported to identify the offensive lan-
guages using social media content. Several work-

shops such as TA-COS1, TRAC2 (Kumar et al.,
2018a), Abusive Language Online3 and GermEval
(Wiegand et al., 2018) have been organized re-
cently in this research area. In this line, Of-
fensEval@SemEval2019 (Zampieri et al., 2019b)
shared task focuses on identification and catego-
rization of offensive language in social media. It
focuses on three subtasks namely offensive lan-
guage detection, categorization of offensive lan-
guage and offensive language target identification.
Sub Task A aims to detect text as offensive (OFF)
or not offensive (NOT). Sub Task B aims to cat-
egorize the offensive type as targeted text (TIN)
or untargeted text (UNT). Sub Task C focuses on
identification of target as individual (IND), group
(GRP) or others (OTH). Our team SSN NLP par-
ticipated in all the three subtasks.

2 Related Work

Several research work have been reported since
2010 in this research field of hate speech detection
(Kwok and Wang, 2013; Burnap and Williams,
2015; Djuric et al., 2015; Davidson et al., 2017;
Malmasi and Zampieri, 2018; Schmidt and Wie-
gand, 2017; Fortuna and Nunes, 2018; ElSherief
et al., 2018; Gambäck and Sikdar, 2017; Zhang
et al., 2018; Mathur et al., 2018). Schmidt and
Wiegand (2017) & Fortuna and Nunes (2018) re-
viewed the approaches used for hate speech detec-
tion. Kwok and Wang (2013) used bag of words
and bi-gram features with machine learning ap-
proach to classify the tweets as “racist” or “non-
racist”. Burnap and Williams (2015) developed
a supervised algorithm for hateful and antagonis-
tic content in Twitter using voted ensemble meta-

1http://ta-cos.org/
2https://sites.google.com/view/trac1/

home
3https://sites.google.com/site/

abusivelanguageworkshop2017/

739

classifier. Djuric et al. (2015) learnt distributed
low-dimensional representations of social media
comments using neural language models for hate
speech detection. Davidson et al. (2017) used
n-gram (bigram, unigram, and trigram) features
with TF-IDF score along with crowd-sourced hate
speech lexicon and employed several classifiers
including logistic regression with L1 regulariza-
tion to separate hate speech from other offensive
languages. Malmasi and Zampieri (2018) used
n-grams, skip-grams and clustering-based word
representations as features with ensemble classi-
fier for hate speech detection. ElSherief et al.
(2018) performed linguistic and psycholinguistic
analysis to detect the hate speech is either “di-
rected” towards a target, or “generalized” towards
a group. Gambäck and Sikdar (2017) used deep
learning using CNN models to detect the hate
speech as “racism”, “sexism”, “both” and “non-
hate-speech”. They used character 4-grams, word
vectors based on word2vec, randomly generated
word vectors, and word vectors combined with
character n-grams as features in their approach.
Zhang et al. (2018) used convolution-GRU based
deep neural network for detecting hate speech.

Many research work have been carried out
in aggression detection (Aroyehun and Gelbukh,
2018; Madisetty and Desarkar, 2018; Raiyani
et al., 2018; Kumar et al., 2018b). Aroyehun
and Gelbukh (2018) & Raiyani et al. (2018) used
LSTM and CNN respectively to detect aggression
in text. Kumar et al. (2018b) presented the find-
ings of the shared task on aggression identification
which aims to detect different scales of aggression
namely “Overtly Aggressive”, “Covertly Aggres-
sive”, and “Non-aggressive”. Madisetty and De-
sarkar (2018) used CNN, LSTM and Bi-LSTM to
detect the above scales of aggression. Waseem
et al. (2017) & Park and Fung (2017) presented the
methodologies on abusive language identification
using deep neural networks.

Research on identifying offensive languages has
been focused on non-English languages like Ger-
man (Wiegand et al., 2018), Hindi (Kumar et al.,
2018b), Hinglish: Hindi-English (Mathur et al.,
2018), Slovene (Fišer et al., 2017) and Chinese
(Su et al., 2017). Wiegand et al. (2018) pre-
sented an overview of GermEval shared task on
the identification of offensive language that fo-
cused on classification of German tweets from
Twitter. Kumar et al. (2018b) focused on the

shared task to identify aggression on Hindi text.
Mathur et al. (2018) applied transfer learning to
detect three classes namely “nonoffensive”, “abu-
sive” and “hate-speech” from Hindi-English code
switched language. Fišer et al. (2017) presented a
framework to annotate offensive labels in Slovene.
Su et al. (2017) rephrased profanity in Chinese text
after detecting them from social media text.

3 Data and Methodology

In our approach, we have used OLID dataset
(Zampieri et al., 2019a) given by OffensE-
val@SemEval2019 shared task. The dataset is
given in .tsv file format with columns namely,
ID, INSTANCE, SUBA, SUBB, SUBC where ID
represents the identification number for the tweet,
INSTANCE represents the tweets, SUBA consists
of the labels namely Offensive (OFF) and Not
Offensive (NOT), SUBB consists of the labels
namely Targeted Insult and Threats (TIN) and Un-
targeted (UNT) and SUBC consists of the labels
namely Individual (IND), Group (GRP) and Other
(OTH). The dataset has 13240 tweets. All the in-
stances are considered for Sub Task A. However,
we have filtered and considered the data that are la-
belled with “TIN/UNT” and “IND/GRP/OTH” for
Sub Task B and Sub Task C respectively by ig-
noring the instances labelled with “NULL”. Thus,
we have obtained 4400 and 3876 instances for
Sub Task B and Sub Task C respectively. We
have preprocessed the data by removing the URLs
and the text “@USER” from the tweets. Tweet
tokenizer 4 is used to obtain the vocabulary and
features for the training data.

We have employed both traditional machine
learning and deep learning approaches to identify
the offensive language in social media. The mod-
els that are implemented for the three sub-tasks
are given in Table 1.

In deep learning (DL) approach, the tweets
are vectorized using word embeddings and are
fed into encoding and decoding processes. Bi-
directional LSTMs are used for encoding and de-
coding processes. We have used 2 layers of LSTM
for this. The output is given to softmax layer by in-
corporating attention wrapper to obtain the Offen-
sEval class labels. We have trained the deep learn-
ing models with a batch size 128 and dropout 0.2
for 300 epochs to build the model. We have em-

4https://www.nltk.org/

740

Tasks Models Description
Task A Task A DL NB Deep learning with Normed Bahdanau attention

Task A DL SL Deep learning with Scaled Luong attention
Task B DL NB Deep learning with Normed Bahdanau attention

Tak B Task B DL SL Deep learning with Scaled Luong attention
Task B TL MNB Traditional Machine Learning with Multinomial Naive Bayes
Task C DL NB Deep learning with Normed Bahdanau attention

Task C Task C DL SL Deep learning with Scaled Luong attention
Task C TL SVM Traditional Machine Learning with Support Vector Machine

and Stochastic Gradient Descent optimizer

Table 1: Models for the Tasks

ployed two attention mechanisms namely Normed
Bahdanau (NB) (Sutskever et al., 2014; Bahdanau
et al., 2014) and Scaled Luong (SL) (Luong et al.,
2015, 2017) in this approach. These two variations
are implemented to predict the class labels for all
the three sub tasks. These attention mechanisms
help the model to capture the group of input words
relevant to the target output label. For example,
consider the instance in Task C: “we do not watch
any nfl games this guy can shove it in his pie hole”.
This instance clearly contains the offensive slang
“pie hole” and about watching the “nfl games”.
The attention mechanism captures these named
entities or group of words and correctly map to the
label “GRP”. Also, it is evident from the earlier
experiments (Sutskever et al., 2014; Thenmozhi
et al., 2018) that bi-directional LSTM with atten-
tion mechanism performs better for mapping input
sequences to the output sequences.

In traditional learning (TL) approach, the fea-
tures are extracted from the tokens with minimum
count of two. The feature vectors are constructed
using TF-IDF scores for the training instances.
We have chosen the classifiers namely Multino-
mial Naive Bayes (MNB) and Support Vector Ma-
chine (SVM) with Stochastic Gradient Descent
optimizer to build the models for Task B and Task
C respectively. These classifiers have been chosen
based on the cross validation accuracies. The class
labels namely “TIN/UNT” and “IND/GRP/OTH”
are predicted for Task B and Task C using the re-
spective models.

4 Results

We have evaluated our models using the test
data of OffensEval@SemEval2019 shared task for
the three sub tasks. The performance was an-
alyzed using the metrics namely precision, re-

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Task A DL NB 0.5166 0.614
(527733)
Task A DL SL 0.5341 0.6349
(527740)

Table 2: Results for Sub-task A.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
Task B DL NB 0.4800 0.8375
(532649)
Task B DL SL 0.4558 0.8375
(532651)
Task B TL MNB 0.4558 0.7792
(532654)

Table 3: Results for Sub-task B.

call, macro-averaged F1 and accuracy. The re-
sults of our approaches are presented in Ta-
bles 2, 3 and 4 for Task A, Task B and
Task C respectively. We have obtained the
best results for Task A DL SL, Task B DL NB,
Task C TL SVM models for Task A, Task B and
Task C respectively.

741

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
Task C DL NB 0.2462 0.4507
(536200)
Task C DL SL 0.2663 0.4178
(536201)
Task C TL SVM 0.3001 0.4178
(536203)

Table 4: Results for Sub-task C.

The attention mechanism Scaled Luong per-
forms better when more data is available for train-
ing. Normed Bahdanau attention mechanism per-
forms better even for a small dataset. However,
deep learning gives poor results than traditional
learning approach for Task C, because only 3876
instances were considered for model building. The
deep learning model could not learn the features
appropiately due to less domain knowledge im-
parted by the smaller data set. Thus, traditional
learning performs better with the given data size
when compared to deep learning for Task C. The
confusion matrix for our best run in the three sub
tasks are depicted in Tables 5, 6 and 7. These
tables show that the true positive rate of “NOT”,
“TIN” and “IND” classes are good as the number
of samples for those classes are more in training
set. Our approaches show improvement over the
base line systems for all the three tasks. We have
obtained 12% and 14% improvement on F1 and
accuracy respectively for Task A when compared
with the base line. For Task B, we have obtained
26% and 34% improvement on F1 and accuracy
respectively. Also, Task C results have been im-
proved by 14% and 7% for F1 and accuracy when
compared to base line results.

OFF NOT
OFF 73 147
NOT 167 473

Table 5: Confusion Matrix for Task A DL SL.

TIN UNT
TIN 200 26
UNT 13 1

Table 6: Confusion Matrix for Task B DL NB.

GRP IND OTH
GRP 16 26 7
IND 62 71 27
OTH 0 3 2

Table 7: Confusion Matrix for Task C TL SVM.

5 Conclusion

We have implemented both traditional machine
learning and deep learning approaches for iden-
tifying offensive languages from social me-
dia. The approaches are evaluated on OffensE-
val@SemEval2019 dataset. The given instances
are preprocessed and vectorized using word em-
beddings in deep learning models. We have em-
ployed 2 layered bi-directional LSTM with Scaled
Luong and Normed Bahdanau attention mecha-
nisms to build the model for all the three sub tasks.
The instances are vectorized using TF-IDF score
for traditional machine learning models with min-
imum count two. The classifiers namely Multi-
nomial Naive Bayes and Support Vector Machine
with Stochastic Gradient Descent optimizer were
employed to build the models for sub tasks B and
C. Deep learning with Scaled Luong attention,
deep learning with Normed Bahdanau attention,
traditional machine learning with SVM give bet-
ter results for Task A, Task B and Task C respec-
tively. Our models outperform the base line for all
the three tasks. The performance may be improved
further by incorporating external datasets (Kumar
et al., 2018a; Davidson et al., 2017), lexicons and
dictionaries.

References
Segun Taofeek Aroyehun and Alexander Gelbukh.

2018. Aggression detection in social media: Us-
ing deep neural networks, data augmentation, and
pseudo labeling. In Proceedings of the First Work-
shop on Trolling, Aggression and Cyberbullying
(TRAC-2018), pages 90–97.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Pete Burnap and Matthew L Williams. 2015. Cyber
hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech

742

Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th Interna-
tional Conference on World Wide Web Companion,
pages 29–30. International World Wide Web Con-
ferences Steering Committee.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018a. Benchmarking Aggres-
sion Identification in Social Media. In Proceedings
of the First Workshop on Trolling, Aggression and
Cyberbulling (TRAC), Santa Fe, USA.

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018b. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11.

Irene Kwok and Yuzhou Wang. 2013. Locate the
hate: Detecting Tweets Against Blacks. In Twenty-
Seventh AAAI Conference on Artificial Intelligence.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao.
2017. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Sreekanth Madisetty and Maunendra Sankar Desarkar.
2018. Aggression detection in social media using
deep neural networks. In Proceedings of the First
Workshop on Trolling, Aggression and Cyberbully-
ing (TRAC-2018), pages 120–127.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018. Detecting offensive tweets in
hindi-english code-switched language. In Proceed-
ings of the Sixth International Workshop on Natural
Language Processing for Social Media, pages 18–
26.

Ji Ho Park and Pascale Fung. 2017. One-step and two-
step classification for abusive language detection on
twitter. arXiv preprint arXiv:1706.01206.

Kashyap Raiyani, Teresa Gonçalves, Paulo Quaresma,
and Vı́tor Nogueira. 2018. Fully connected neural
network with advance preprocessor to identify ag-
gression over facebook and twitter. In Proceedings
of the First Workshop on Trolling, Aggression and
Cyberbullying (TRAC-2018). TRAC-2018-ACL.

Amir H Razavi, Diana Inkpen, Sasha Uritsky, and Stan
Matwin. 2010. Offensive language detection using
multi-level classification. In Canadian Conference
on Artificial Intelligence, pages 16–27. Springer.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

D Thenmozhi, B Senthil Kumar, and Chandrabose Ar-
avindan. 2018. Ssn nlp@ iecsil-fire-2018: Deep
learning approach to named entity recognition and
relation extraction for conversational systems in in-
dian languages. CEUR, 2266:187–201.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

743

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

744

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 745–752
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Stop PropagHate at SemEval-2019 Tasks 5 and 6:
Are abusive language classification results reproducible?

Paula Fortuna1,2 Juan Soler-Company2 Sérgio Nunes1,3

(1) INESC TEC and (3) FEUP, University of Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal

paula.fortuna@fe.up.pt, sergio.nunes@fe.up.pt
(2) Pompeu Fabra University

Carrer de Roc Boronat 138, 08018 Barcelona, Spain
juan.soler@upf.edu

Abstract
This paper summarizes the participation of
Stop PropagHate team at SemEval 2019. Our
approach is based on replicating one of the
most relevant works on the literature, using
word embeddings and LSTM. After circum-
venting some of the problems of the original
code, we found poor results when applying it
to the HatEval contest (F1=0.45). We think
this is due mainly to inconsistencies in the data
of this contest. Finally, for the OffensEval the
classifier performed well (F1=0.74), proving
to have a better performance for offense de-
tection than for hate speech.

1 Introduction

In the last few years, several evaluation tasks in
the context of hate speech detection and catego-
rization have been created. Some of these tasks
include e.g., EVALITA (Bosco et al., 2018) and
TRAC-1 (Kumar et al., 2018). These type of
initiatives promote the development of different
but comparable solutions for the same problem,
within a short period of time, which is an inter-
esting contribution for a research field. In this pa-
per, we describe the participation of team “Stop
PropagHate” in the HatEval and OffensEval tasks
of SemEval 2019.

The main goal of both tasks is to improve the
classification of Hate Speech and Offensive Lan-
guage. Some of the works in the literature achieve
a very competitive performance, e.g. Badjatiya
et al. (2017) obtain an F1 score of 0.93 when us-
ing deep learning for classifying hate speech in
one of the most commonly used baseline datasets
(e.g. Waseem (2016)). In this context, we have a
specific objective with our approach: we aim to
reproduce a state-of-the-art classifier as described
in the literature of this topic.

We choose to reproduce the study by Badjatiya
et al. (2017), not only because of the good perfor-

mance of the developed models, but also because
in this work the authors published their code. Con-
sidering the amount of parameters available for
definition and tuning in a machine learning classi-
fication pipeline, a precise and extensive definition
of an experiment’s parameters is not simple and is
hardly ever provided. Thus, having the code of the
experiment is the best way to understand not only
which steps were conducted, but also how those
steps were indeed executed. This is a highly cited
paper, which can be regarded as an indicator of its
relevance in the area.

In this paper, we describe our journey in the
process of replication and the results achieved
when applying this classifier in both shared tasks.
The paper is structured as follows: Section 2
briefly reviews the literature, Section 3 presents
our methodology, Section 4 describes the tasks
and preliminary experiences with the data, Sec-
tion 5 shows our official results in the shared tasks,
and we report the conclusions of our work in Sec-
tion 6.

2 Related Work

Previous research in the field of automatic detec-
tion of hate speech and offensive language can
give us insight on how to approach this prob-
lem. Two surveys summarize previous research
and conclude that the approaches rely frequently
on Machine Learning techniques (Schmidt and
Wiegand, 2017; Fortuna and Nunes, 2018). Differ-
ent methods are used, such as word and character
n-grams (Liu and Forss, 2014), perpetrator char-
acteristics (Waseem and Hovy, 2016) or “othering
language” (Burnap and Williams, 2016). Word
embeddings (Djuric et al., 2015) are often used
in this field because they can feed deep learn-
ing classification algorithms and obtain high per-
formances. Usually, when traditional Machine

745

Learning classifiers are used, the most frequent al-
gorithms are SVM (Del Vigna et al., 2017) and
Random Forests (Burnap and Williams, 2014),
but Deep Learning techniques are quickly gaining
ground in the area (Yuan et al., 2016; Gambäck
and Sikdar, 2017; Park and Fung, 2017). Dif-
ferent studies proved that deep learning algo-
rithms outperform previous approaches (Mehdad
and Tetreault, 2016; Park and Fung, 2017; Bad-
jatiya et al., 2017; Del Vigna et al., 2017; Pitsilis
et al., 2018; Founta et al., 2018; Zhang et al., 2018;
Gambäck and Sikdar, 2017).

Other sources of solutions are previous shared
tasks. For EVALITA, the best performing system
achieved an F1 score of 0.83 on Facebook data and
0.80 on Twitter data. The best team tested three
different classification models: one based on a lin-
ear SVM, another one based on a 1-layer BiLSTM
and a 2-layer BiLSTM which exploits multi-task
learning with additional data. For TRAC-1, the
system that achieved the best performance with a
F1 value of 0.64 used an LSTM and resorted to
translation as a data augmentation strategy.

During the last 2 years, many articles have been
published in this area, and one of the main focal
points is to find accurate classifiers for the detec-
tion and characterization of hate speech. One main
dataset is now used (Waseem, 2016), allowing per-
formance comparison between systems. However,
it is still not trivial to compare and reproduce the
different approaches. Machine learning classifica-
tion systems involve a long, complex set of steps
and parameters and not every paper gives clear
and transparent specifications. A precise specifi-
cation is fundamental for replicating and improv-
ing a system.

With this idea in mind, we tried to replicate a
paper with promising results as a baseline for our
work. We found a paper which describes several
classifiers with good performance and that also
provides a GitHub repository for the code of the
classifiers (as stated before, the work from Bad-
jatiya et al. (2017). In this paper, the authors
propose and use different methods. They inves-
tigate three neural network architectures applied
to the problem of automatic hate speech detec-
tion: CNN, LSTM and FastText. In each one of
the methods they initialize the weights with either
random embeddings or GloVe embeddings. They
use a dataset with messages classified as contain-
ing sexist hate speech, racist or none (Waseem,

2016). Additionally, they use 10-fold cross val-
idation. The set of experiments achieving better
performance consists in using a deep learning ar-
chitecture, then taking the weights of the last layer
and feeding it into a standard machine learning
classifier. More particularly, embeddings learned
from LSTM model were combined with gradient
boosted decision trees and led to the best perfor-
mance (F1 score of 0.93).

Regarding our specific approach in this shared
task, the main research question of our work con-
cerns if it is possible to replicate the results of
the aforementioned paper. After trying to repli-
cate their results, we then apply the approach to
the two new datasets provided by the shared tasks.

In the next sections, we present our methodol-
ogy and approach to these shared tasks.

3 Methodology

For conducting this study, we follow a methodol-
ogy of 10-fold cross-validation with holdout val-
idation (Chollet, 2017). This consists in divid-
ing the data into two sets. One part of the data
is used for cross-validation and parameter tuning
with grid search on several classification parame-
ters. The second part of the data is used for es-
timating the performance of this model when ap-
plied to classify new data.

In terms of pipeline, we tried to replicate the
study by Badjatiya et al. (2017), and we started by
downloading the version of the code1 in December
2018. We then faced some difficulties that we list
here:

• Unspecified versions of Python and of some
of the used libraries.

• The authors use the fact that they provide the
code as a reason not to specify the parameters
in detail.

• The code contains only some of the classi-
fiers described in the paper. The set of classi-
fiers using xgBoost together with deep learn-
ing as features were not provided. These are
the classifiers with the best performance.

• No validation data is hold out for the model
to be tested after the tuning during the cross
validation.

1 https://github.com/pinkeshbadjatiya/
twitter-hatespeech

746

• In the provided code, the 10-fold cross-
validation procedure has a bug. With a more
detailed analysis of the code we have found
out that the method used for classification
is train on batch from Keras2, that runs a
single gradient update on a single batch of
data. Successive calls to this method are
done through the 10 iterations of the cross-
validation procedure, without instantiating a
new model. This means that, during the 10
iterations, the model will successively up-
date the gradient values without resetting it.
The effect of using 10-fold cross-validation
is then eliminated because only in the first it-
eration the testing is conducted in data never
seen previously by the model. As a conse-
quence of this problem, we can see that the
successive values of F1 score found in the 10
iterations increases every time. See Table 1
for the specific F1 score values per cross-
validation phase.

CV Iteration Macro F1
1 0.76
2 0.78
3 0.8
4 0.83
5 0.87
6 0.88
7 0.89
8 0.91
9 0.92
10 0.89

Average 0.89

Table 1: F1 score over the different iterations of the
cross-validation procedure. Experiment conducted for
replicating the paper from Badjatiya et al. (2017).

In order to overcome these limitations, we pro-
vide all the information required to replicate the
experiment. We use Python 3.6, Keras (Chollet
et al., 2018), Gensim (Řehůřek and Sojka, 2010)
and Scikit-learn (Pedregosa et al., 2011) as main
libraries, and we make available our project and
code3.

The following subsections describe specific in-
dications on how we implement each step per-
formed by our system.

2Line 204 at the file https://github.com/
pinkeshbadjatiya/twitter-hatespeech/
blob/master/lstm.py

3https://github.com/paulafortuna/
SemEval_2019_public

3.1 Text pre-processing
In terms of text pre-processing, we remove stop
words using Gensim, and punctuation using the
default string library. We transform our tweets to
lower case.

3.2 Feature extraction
Regarding the features that we use in our experi-
ment, we extract Glove Twitter word embeddings,
sentiment and frequencies of words from Hate-
base. The last is a set of features developed in our
work. In Table 2 we present an overview of the
features.

Used features Dimensions Abbreviation
Glove twitter
word embeddings 200 glove

Sentiment Vader 4 sentiment
Hatebase 2 hatebase

Table 2: Experiment features.

3.2.1 Word embeddings
Regarding the pre-trained word embeddings, we
use Twitter Glove pre-trained word embeddings
with 200 dimensions. We then use the methods
provided by Keras to map each token in the input
to an embedding.

3.2.2 Sentiment Features
Another set of features that we use is the sentiment
analysis provided by the Vader library (Hutto and
Gilbert, 2014). We extract the negative (‘neg’),
neutral (‘neu’), positive (‘pos’) and compound
(‘compound’) dimensions. Each text is then rep-
resented as a 4-dimensional vector with these val-
ues.

3.2.3 Hatebase Features
Finally, we use word frequencies from the Hate-
base platform (Hatebase, 2019). This platform
provides different data regarding hateful words
usually connected to hate speech. For each
method, we count two set of words:

• Hateful words - corresponds to one or two
words and are defined as “terms” in Hatebase
(e.g. bitch);

• Hate topic words - corresponds to a definition
of the hateful terms and are defined as “hate-
ful meaning” (e.g. a human female). We ex-
cluded the stop words and counted for each
message if there would be any reference to

747

words used to explain hatebase terms, so that
we could approximate reference to hate re-
lated topics.

For every message, we store the frequencies of
total hateful words in the text and also the frequen-
cies of hate topic words.

3.3 Classification

Regarding the classifiers we used LSTM and xg-
Boost.

3.3.1 Deep Learning
For the deep learning model, we used LSTM as
implemented in the code from the paper by Bad-
jatiya et al. (2017). This contains an Embedding
Layer with the weights from the word embeddings
extraction procedure, an addtional LSTM layer
with 50 dimensions, and dropouts at the end of
both layers. We used Adam as optimizer, binary
cross-entropy as loss function, 10 epochs and 128
for batch size. With this model we classify the
data into binary classes and we save the last layer
before the classification to extract 50 dimensions
for giving it as input to the xgBoost algorithm, in
a similar manner as described in the paper we are
replicating. Additionally, we tested with higher di-
mensionality, but we find no improvement when
we kept the remaining parameters.

3.3.2 xgBoost
We used the gradient boosting algorithm from the
Python library xgboost (Chen and Guestrin, 2016).
In terms of parameters, we used the default except
for the eta and gamma. In this case we conducted a
grid search combining several values of both (eta:
0, 0.3, 1; and gamma: 0.1, 1, 10). Additionally, we
ran all the possible combinations of the three avail-
able sets of features: hatebase words frequencies,
sentiment, and weights extracted from the LSTM
model.

4 Tasks, systems and results

We conduct different experiments following the
procedure described in Section 3.

4.1 Standard Dataset

In our methodology, we use a standard
dataset (Waseem, 2016), so that we could
compare our results with the original paper we are
replicating.

4.1.1 Data
We randomly divided the data into 90% training
and 10% testing datasets, having 15,214 messages
for training and 1,691 messages for testing.

4.1.2 Results for Tuning and Validation
In Table 3 we present the results of the experi-
ments with the baseline dataset. Some patterns
of the results are in accordance with the original
study (Badjatiya et al., 2017). Indeed, classify-
ing the data with xgBoost after extracting 50 di-
mensions with the LSTM brought improvement
when compared to directly classify it with LSTM.
However, the results presented here are far from
the 0.93 reported in the original paper. We ob-
tained an F1 score of 0.72 using cross validation
and 0.78 using the test set, when combining LSTM
last layer with sentiment, hatebase, and xgBoost
as classifier. One explanation for the differences
between our results and the cited paper can be the
fact that in this experiment we developed and clas-
sified hate speech as binary classes and for that we
converted the sexism and racism, to a single hate
speech class. On the other hand, the original work
was conducted with the three original classes of
the dataset. Another possible explanation may be
the different problems found in the code, mainly
the bug in the cross-validation. The results re-
ported in the original paper may be classification
models that were not tested in new data, and can
be overfitted.

We can also conclude that the sentiment and
hatebase features did not work well for our clas-
sification tasks either when used alone or together
with the 50 dimensions extracted from the LSTM
last layer to feed the xgBoost model.

4.2 HatEval (Task 5)

The proposed task (Basile et al., 2019) consists in
the detection of Hate Speech targeting immigrants
and women in Twitter, using texts in Spanish and
English. There are two different tasks but our team
participated only in the first. In Task A, the teams
predict whether a tweet is hateful or not hateful as
a binary classification task. This task is composed
of two different subtasks, one in English and an-
other in Spanish. The systems are evaluated and
ranked using macro averaged F1 score.

4.2.1 Data
All the data provided for the competition was
collected from Twitter and manually annotated

748

via the Figure Eight crowdsourcing platform.
The data is organized and especially released for
the competition. More specifically, there are
two datasets including tweets about hate against
women and immigrants, in English and Spanish.
The task dataset contains 9,000 messages for train-
ing, 1,000 messages for testing during develop-
ing phase and 3,000 messages for final testing and
evaluation of the different teams.

4.2.2 Results for Tuning and Validation
Our team participated in the Task A for En-
glish and, during the model development phase,
achieved the results presented in Table 4. We ob-
tained similar results when applying the classi-
fier to this dataset, when compared to the baseline
dataset. Again, using the xgBoost to classify and
the 50 dimensions of the last layer of LSTM as
features, brought improvement. We achieved an
F1 score of 0.75 using cross validation and 0.68
using the test set. We noticed that in the base-
line the testing results improve, when compared to
the cross-validation while when using the HatEval
dataset those results decreased.

4.3 OffensEval (Task 6)

In OffensEval (Zampieri et al., 2019b), there are
three sub-tasks and one of the main goals is to
take into account the type and target of offenses.
Our team participated in the Task A, about Offen-
sive language identification. Again, Classification
systems in all tasks are evaluated using the macro-
averaged F1 score.

4.3.1 Data
The data used for the contest were previously pre-
sented in another work (Zampieri et al., 2019a).
Participants were allowed to use external re-
sources and other datasets for this task. Our team
received 13,240 messages for training, 320 mes-
sages for testing during model development phase,
and 860 messages for final testing and ranking of
the different teams.

4.3.2 Results for Tuning and Validation
Our team participated in Task A and, during the
model development phase, achieved the results
presented in Table 5. We obtained similar re-
sults to the baseline dataset and HatEval contest.
Again, using the xgBoost to classify brought im-
provement when compared to just use LSTM to
directly classify the data (F1 score of 0.78 using

cross validation and 0.80 using the test set). Ad-
ditionally, we can see that the classification of Of-
fensive discourse achieved a better performance,
when compared to the classification of hate speech
in previous tasks. This may indicate that offen-
sive language is easier to identify when compared
with hate speech, which is consistent with previ-
ous studies (Kumar et al., 2018).

5 Shared Task Results

In Table 6 we present the results of the team “Stop
PropagHate” in the two contests. Regarding the
HatEval, we conclude that the results drastically
dropped in the F1 metric from 0.77 in the test-
ing phase to 0.45 in the contest. We believe that
this result is due to the sampling procedure used
for building the datasets, we noticed that the train-
ing was conducted with a very balanced dataset
which is an uncommon situation for hate speech
automatic detection. We also find strange that the
winning team only achieved 0.65 which is a re-
sult much lower than the current state of art (F1 of
around 0.80). The low performances of the sys-
tems and our drop in score from the development
phase indicates that there should be important dif-
ferences in the evaluation dataset with respect to
the training material. However, we checked the
proportion of hate speech in both datasets and it is
equivalent (around 42%).

For the OffensEval task, we achieved more con-
sistent results in all the phases, with a F1 of 0.74
more similar to the 0.80 from the testing phases.
The consistency in this case might indicate that
the evaluation set is similar to the training mate-
rial. The winner of the competition scored 0.83,
so we can see that our approach is not far from
that performance.

6 Conclusion

In this paper, we entered a shared task in the field
of hate speech detection and characterization. Our
approach was based on replicating one of the most
relevant works on the state-of-the-art literature.
One of our initial conclusions was that it was not
possible to replicate the study and the results we
aimed at. Our main difficulty was the lack of spec-
ification of the method. Additionally, the incom-
plete available code contained a bug that brought
doubt on the validity of the reported results in the
original paper. This allowed us to see the impor-
tance of sharing code in this field. This is the

749

Features Classifier Number of
features Parameters CV training

F1 macro
testing
F1 macro

glove LSTM 28 batch: 128, epochs: 10 0.66 -
hatebase xgBoost 2 eta: 0, gamma: 0.1 0.44 0.45
sentiment xgBoost 4 eta: 0, gamma: 1 0.50 0.49
hatebase, sentiment xgBoost 6 eta: 0, gamma: 0.1 0.50 0.51
LSTM layer xgBoost 50 eta: 0, gamma: 0.1 0.71 0.77
LSTM layer, hatebase xgBoost 52 eta: 0, gamma: 1 0.71 0.78
LSTM layer, sentiment xgBoost 54 eta: 0, gamma: 0.1 0.71 0.77
LSTM layer, hatebase, sentiment xgBoost 56 eta: 0, gamma: 1 0.72 0.78

Table 3: Achieved F1 score during cross validation (CV) and testing for the baseline experiments.

Features Classifier Number of
features Parameters CV training

F1 macro
testing
F1 macro

glove LSTM 52 batch: 128, epochs: 10 0.67 -
hatebase xgBoost 2 eta: 0, gamma: 10 0.59 0.54
sentiment xgBoost 4 eta: 0, gamma: 1 0.61 0.53
hatebase, sentiment xgBoost 6 eta: 0, gamma: 1 0.56 0.36
LSTM layer xgBoost 50 eta: 0, gamma: 0.1 0.74 0.68
LSTM layer, hatebase xgBoost 52 eta: 0, gamma: 0.1 0.75 0.68
LSTM layer, sentiment xgBoost 54 eta: 0, gamma: 0.1 0.74 0.66
LSTM layer, hatebase, sentiment xgBoost 56 eta: 0, gamma: 0.1 0.74 0.67

Table 4: Achieved F1 score during cross validation (CV) and testing for the HatEval experiments.

Features Classifier Number of
features Parameters CV training

F1 macro
testing
F1 macro

glove LSTM 79 batch: 128, epochs: 10 0.74 -
hatebase xgBoost 2 eta: 0, gamma: 0.1 0.47 0.50
sentiment xgBoost 4 eta: 0, gamma: 1 0.65 0.68
hatebase, sentiment xgBoost 6 eta: 0, gamma: 0.1 0.41 0.47
LSTM layer xgBoost 50 eta: 0, gamma: 1 0.78 0.80
LSTM layer, hatebase xgBoost 52 eta: 0, gamma: 0.1 0.78 0.80
LSTM layer, sentiment vader xgBoost 54 eta: 0, gamma: 0.1 0.78 0.80
LSTM layer, hatebase, sentiment xgBoost 56 eta: 0, gamma: 0.1 0.78 0.80

Table 5: Achieved F1 score during cross validation (CV) and testing for the OffensEval experiments.

Metrics HatEval
Task A

OffensEval
Task A

Model 1 (A) 0.48 0.82
Model 2 (A) - 0.82
Model 3 (A) - 0.82
Model 1 (F1) 0.45 0.74
Model 2 (F1) - 0.74
Model 3 (F1) - 0.74
Classification # 35 44
Number of teams 67 103
1st place (F1) 0.65 0.83
last place (F1) 0.35 0.17

Table 6: Achieved performance in the shared tasks.
Model 1 corresponds to the original classifier from the
replicated paper (LSTM 50d + xgBoost). Model 2 cor-
responds to the same as Model 1 plus adding hatebase
features, and finally, Model 3 corresponds to the same
as Model 1 plus adding hatebase and sentiment fea-
tures.

only way to exactly replicate the reported results
to then apply the same approach in other scenar-
ios. A posteriori, we received an answer from
the authors explaining that the available GitHub

repository does not correspond to the final version
of the project. Nevertheless, the it remained not
updated at the moment of the submission of this
paper. Another work could also not replicate this
results (Lee et al., 2018).

After circumventing some of the aforemen-
tioned problems of the original code, we explained
our specific version and used it to enter the shared
task. We show that using the same classifier we
found poor results when applied to the HatEval
contest. Due to the results achieved on the base-
line dataset and testing set before contest, we think
this is due to inconsistencies between the charac-
teristics of the training set and the final test set. Fi-
nally, for the OffensEval we believe that the classi-
fier performed well, and with a better performance
for offense detection than for hate speech.

Acknowledgments

This work was partially funded by the Google DNI
grant Stop PropagHate.

750

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-
ora Nozza, Viviana Patti, Francisco Rangel, Paolo
Rosso, and Manuela Sanguinetti. 2019. Semeval-
2019 task 5: Multilingual detection of hate speech
against immigrants and women in twitter. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019). Association for
Computational Linguistics.

Cristina Bosco, Felice DellOrletta, Fabio Poletto,
Manuela Sanguinetti, and Maurizio Tesconi. 2018.
Overview of the EVALITA 2018 Hate Speech De-
tection Task. In Proceedings of the 6th evalua-
tion campaign of Natural Language Processing and
Speech tools for Italian (EVALITA’18), Turin, Italy.
CEUR.org.

Pete Burnap and Matthew L. Williams. 2016. Us and
them: identifying cyber hate on Twitter across mul-
tiple protected characteristics. EPJ Data Science,
5(1):11.

Peter Burnap and Matthew L. Williams. 2014. Hate
speech, machine classification and statistical mod-
elling of information flows on Twitter: Interpreta-
tion and communication for policy decision making.
In Proceedings of Internet, Policy & Politics, pages
1–18.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
pages 785–794, New York, NY, USA. ACM.

Francois Chollet. 2017. Deep learning with python.
Manning Publications Co.

François Chollet et al. 2018. Keras: The python deep
learning library. Astrophysics Source Code Library.

Fabio Del Vigna, Andrea Cimino, Felice Dell’Orletta,
Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate me, hate me not: Hate speech detection on
facebook. In Proceedings of the First Italian Con-
ference on Cybersecurity, pages 86–95.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, pages 29–30.
ACM2.

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Computing Surveys (CSUR), 51(4):85.

Antigoni-Maria Founta, Despoina Chatzakou, Nico-
las Kourtellis, Jeremy Blackburn, Athena Vakali,
and Ilias Leontiadis. 2018. A unified deep learn-
ing architecture for abuse detection. arXiv preprint
arXiv:1802.00385.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Hatebase. 2019. Hatebase. Available in https:
//www.hatebase.org/, accessed last time in
January 2019.

Clayton J. Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth international AAAI
conference on weblogs and social media.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Younghun Lee, Seunghyun Yoon, and Kyomin Jung.
2018. Comparative studies of detecting abusive lan-
guage on twitter. arXiv preprint arXiv:1808.10245.

Shuhua Liu and Thomas Forss. 2014. Combining n-
gram based similarity analysis with sentiment anal-
ysis in web content classification. In Interna-
tional Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Manage-
ment, pages 530–537.

Yashar Mehdad and Joel Tetreault. 2016. Do charac-
ters abuse more than words? In Proceedings of the
SIGdial 2016 Conference: The 17th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue, pages 299–303.

Ji Ho Park and Pascale Fung. 2017. One-step and Two-
step Classification for Abusive Language Detection
on Twitter. In Proceedings of the First Workshop on
Abusive Language Online.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Georgios K. Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language
in tweets using deep learning. arXiv preprint
arXiv:1801.04433.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

751

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. SocialNLP 2017, page 1.

Zeerak Waseem. 2016. Are you a racist or am i see-
ing things? annotator influence on hate speech de-
tection on Twitter. In Proceedings of the 1st Work-
shop on Natural Language Processing and Compu-
tational Social Science, pages 138–142.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on Twitter. In Proceedings of
NAACL-HLT, pages 88–93.

Shuhan Yuan, Xintao Wu, and Yang Xiang. 2016. A
two phase deep learning model for identifying dis-
crimination from tweets. In International Con-
ference on Extending Database Technology, pages
696–697.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on Twitter using a
convolution-gru based deep neural network. In Eu-
ropean Semantic Web Conference, pages 745–760.
Springer.

752

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 753–758
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

TECHSSN at SemEval-2019 Task 6: Identifying and Categorizing
Offensive Language in Tweets using Deep Neural Networks

Logesh Balasubramanian, Harshini Sathish Kumar,
Geetika Bandlamudi, Dyaneswaran Sivasankaran,
Rajalakshmi Sivanaiah, Angel Deborah Suseelan,

Sakaya Milton Rajendram, Mirnalinee Thanka Nadar Thanagathai
Department of Computer Science and Engineering

SSN College of Engineering
Chennai 603 110, Tamil Nadu, India

{logesh16054, harshini16040}@cse.ssn.edu.in,
{geetika16032, dyaneswaran16028}@cse.ssn.edu.in,

{rajalakshmis, angeldeborahs}@ssn.edu.in
{miltonrs, mirnalineett}@ssn.edu.in

Abstract
Task 6 of SemEval 2019 involves identify-
ing and categorizing offensive language in
social media. The systems developed by
TECHSSN team uses multi-level classification
techniques. We have developed two systems.
In the first system, the first level of classifica-
tion is done by a multi-branch 2D CNN classi-
fier with Google’s pre-trained Word2Vec em-
bedding and the second level of classification
by string matching technique supported by of-
fensive and bad words dictionary. The second
system uses a multi-branch 1D CNN classi-
fier with Glove pre-trained embedding layer
for the first level of classification and string
matching for the second level of classification.
Input data with a probability of less than 0.70
in the first level are passed on to the second
level. The misclassified examples are classi-
fied correctly in the second level.

1 Introduction

The growth of social media networks in recent
days has been phenomenal and Twitter is no ex-
ception. However, this rapid growth of social me-
dia also poses a serious challenge of maintaining
ethics in social media because of the degradation
of moral values in society. Offensive micro tweets
are generated on a daily basis targeting a partic-
ular person, organization, race, caste, community,
religion, gender and so forth. For this reason, our
task for the SemEval2019 (Zampieri et al., 2019b)
mainly focuses on the detection of offensive lan-
guage in tweets and classify them.

In Subtask-A, we tried to classify the tweets into
two classes, namely offensive and non-offensive.
The offensive tweets in the Subtask-A are then
categorized in Subtask-B into targeted and untar-
geted tweets, where targeted tweets are aimed at

a specific person, organization, religion or politi-
cal parties. Further, Subtask-C deals with the fine-
grained classification of offensive tweets into three
classes viz person, organization and others.

The training dataset provided by the organiz-
ers contains 13240 tweets. The given dataset is
used as the preliminary dataset to train our model.
In addition, Impermium dataset from Kaggle and
TRAC dataset are added to improve the accuracy
of the model. We have also used a dictionary of
offensive words in the second level of classifica-
tion. Manually classifying the tweets is ambigu-
ous and highly subjective, and is one of the biggest
challenges. The mix of colloquial slang in tweets,
veiled references, missing data, usage of symbols
and emojis are further hurdles that lowered the
prediction accuracy (Founta et al., 2018).

2 Related Work

Many researchers in the field of Artificial Intelli-
gence and Natural Language Processing have been
working to detect offensive speech in tweets us-
ing sentiment analysis. Pang et al. (2002) used a
three level classification system with Naive Bayes
classifier in the first level, Multinomial Updatable
Naive Bayes in the second level and a rule based
classifier named DTNB in the third level. The sec-
ond level of classification increased the accuracy
by 7% while the third level results showed an im-
provement in performance by a 6% rise in accu-
racy. The results were boosted by the usage of an
insulting and abusive language dictionary.

Stammbach et al. (2018) developed an en-
semble model of Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN) and
CNN+RNN that gave a macro averaged F1-score
of 77.7%, 78.6% and 77.6% respectively on 10-

753

fold cross validation. It is stated that the correct
words generated by the spell-checker did not oc-
cur in the embeddings and this might be one of
the reasons for the low performance of the model.
Che et al. (2017) presented a review of the recent
deep neural networks used for text classification
and a comparison of word embeddings to Support
Vector Machine (SVM) classifiers. It points out
that a critical issue with CNN is the restriction of
a fixed input size and hence the inability to handle
sentences of variable length as input, and there-
fore, focuses on RNN. It is also mentioned that
n-grams with syntactic and semantic information
achieve significantly better results than the stan-
dard n-grams.

(Le and Mikolov, 2014) uses paragraph vectors
instead of Bag-of-Words (BOW) feature represen-
tation and reduces the classification error by ap-
proximately 39%. Dinakar et al. (2011) and ElSh-
erief et al. (2018) discuss the problem of overlap-
ping classes in target identification. Malmasi and
Zampieri (2018) discuss the various challenges in
discriminating hate, offensive and non-offensive
text using ensemble techniques and stacked gen-
eralization meta learning methods.

Razavi et al. (2010) discuss about the multilevel
classification for flame detection using comple-
ment naive Bayes on first level to select discrim-
inative features and multinomial updatable naive
Bayes classifier on second level to enhance the
model with new features for adaptive learning.
They have used rule-based classifier named DTNB
(Decision Table/Naive Bayes hybrid classifier) as
the last level to classify the text into Flame/Not.

3 Methodology and Data

The task of classifying offensive tweets is difficult
as it needs to discover the intention of the user.
Moreover, people who follow the chatting con-
vention use offensive words to express their feel-
ings. The architecture diagram for the offensive
text classification is shown in Figure 1.

3.1 Acquiring Datasets

The classifier can make a well-informed decision
if we procure and supply more data to it. For good
performance, deep learning requires sufficiently
large amount of data. Therefore, in addition to
the dataset given by Zampieri et al. (2019a), we
also compiled a variety of datasets for our tweet
classification. We have added the TRAC training

TRAC data

Input data

SVM with TF-IDF

Predictions

1D-CNN with
GloVe

String
Comparison

Model
(Subtask A)

2D-CNN with
Word2Vec
Embeddings

Test data

Data
Preprocessing

Impermium
data

Training
data

Figure 1: Architecture of Proposed System

dataset (Kumar et al., 2018) consisting of online
posts from Facebook, the Impermium Dataset of
Kaggle (Impermium, 2013), and used a compre-
hensive list of known offensive words banned by
Google in all their different forms. TRAC dataset
is based on multiclass classification (OAG, CAG,
NAG). We have considered OAG and CAG class
labels as OFF label and NAG as NOT for the sub-
task A.

3.2 Data Preprocessing

Data preprocessing critical for the success of any
machine learning solution. The given dataset
shows many signs of irregularities which is a clas-
sic signature of any collection of tweets. Normal-
izing the data involves flattening the dimensions of
data into textual form. The dataset is cleaned and
processed using functions from NLTK and spacy
toolkit.

During preprocessing, we

(a) remove URLs,
(b) annotate emojis, emoticons,
(c) convert uppercase to lowercase,
(d) expand contractions,
(e) remove stopwords,
(f) remove special characters,
(g) remove accented characters,
(h) reduce lengthened words,
(i) lemmatize text, and

754

(j) remove extra whitespace

Among the steps listed above, step (e) is omitted
for subtask-B and subtask-C, since stopwords are
significant for target identification.

3.3 Model Description

We classified the text using these three models and
compare the results:

1. 2D-CNN with Word2Vec Learned Embed-
dings

2. 1D-CNN with GloVe
3. SVM with BOW

3.3.1 2D-CNN with Word2Vec Learned
Embeddings

Even though it is unconventional to use a two di-
mensional convolutional network to work on text
sequences, it has proved its usefulness quite sat-
isfactorily (Prusa and Khoshgoftaar, 2017). The
model is built by taking the pre-trained Google’s
Word2Vec weights and learn more with the fol-
lowing additional layers.

1. Input layer
2. Embedding layer
3. Convolutional layer with kernel size 2
4. Convolutional layer with kernel size 3
5. Convolutional layer with kernel size 4
6. Respective pooling layers for CNN layers
7. Fully connected dense layer
8. Output layer

We have used an embedding layer which learns
the weights of the embedding matrix during train-
ing. The bigrams, trigrams and fourgrams of the
words are obtained by applying filters and kernels
of the right size on the embedding layer output.
After applying the filters, a max pooling operation
is performed on each CNN layer to scale down the
output vectors into dense feature vectors, each of
size 100. The three dense vectors are concatenated
and flattened into a single dense vector of size 300
in the fully connected layer. The final output is ob-
tained through a dense layer with 2 output units.

The main ideabehind the concatenation of the
word grams is to compute n-grams in parallel, add
them together and extract as much information as
possible from the vectors. This enables the clas-
sifier to learn and understand the relationships be-
tween the underlying words. The parameters for
the model are as set as follows: sequence length

of the model is 43, learning rate is set as 0.001
and dropout is set as 0.5, Softmax activation func-
tion for output layer and Relu activation function
in other layers.

3.3.2 1D-CNN with GloVe
GloVe embeddings with 1 million word vectors of
200 dimension from twitter is used as an alterna-
tive method to create the embedding matrix of the
embedding layer in the network. We used a con-
ventional convolutional neural network in single
dimension and extracted the skip-grams in paral-
lel by using filters of size 2, 3 and 4, each vector
of size 100, in three different branches and con-
catenated them to form one flattened dense vector
of size 300. We have used 100 filters and dropout
value as 0.2. Softmax activation function is used
in output layer and Relu function is used in other
layers. To increase the representational power of
the neural network, a couple of dense layers are
added before the final output layer. This model
has fewer trainable parameters, takes less time to
train, yet performs on par with 2D-CNN.

3.3.3 SVM with Bag-Of-Words
We implemented a Support Vector Machine us-
ing Term Frequency-Inverse Document Frequency
(TF-IDF) model and found it to be as good as neu-
ral networks. The input document is converted
into binary vectors using TF-IDF method. These
feature vectors are fed as input to the SVM which
uses a linear function as the kernel. The confu-
sion matrix for SVM is shown in Table 1. Lin-
ear SVM is found to be better for text classifica-
tion since most of the text classification problems
are linearly separable (Joachims, 1998). For our
model, BOW vector size is 98807.

Actual
OFF NOT

Predicted
OFF 689 618
NOT 75 1880

Table 1: Linear SVM with TF-IDF model

3.3.4 Logistic Regression and RNN Models
We also trained Logistic Regression (Davidson
et al., 2017) and RNN + LSTM (Long Short-Term
Memory) models (Pitsilis et al., 2018). Table 2
shows macro average F1-scores for the various
models developed. These models do not perform
well compared to CNN and SVM. We used 75%

755

Model Used F1 (Macro)
1D-CNN with GloVe 0.751
2D-CNN with Word2Vec 0.740
Linear SVM with TF-IDF 0.722
RNN+LSTM and GloVe 0.719
Logistic Regression with BoW 0.703
RNN+LSTM and Word2Vec 0.702

Table 2: Comparison of F1-scores of the Models Used

of the instances for training and 25% for testing
the accuracy of the models.

The Logistic Regression using count vectoriza-
tion model predicts more offensive tweets cor-
rectly than the previous models specified here.
However, since the model could not classify non-
offensive tweets effectively, its performance is
low. The reason is that the bag of words model
using count vectorization does not take the con-
text or the semantics of the tweet into account and
hence contextually non-offensive tweets with an
offensive word in them are misclassified. Table 3
shows the confusion matrix for logistic regression
model.

Actual
OFF NOT

Predicted
OFF 831 476
NOT 250 1705

Table 3: Logistic Regression using BoW

3.3.5 Second Level Classification for
Subtask-A

Most of the models we have described in the pa-
per classify non-offensive tweets more correctly
than offensive ones. To overcome the misclassi-
fication of offensive tweets, a second level of clas-
sification using string comparison model is done.
Tweets predicted offensive with a probability less
than 0.70 are passed on to a string comparison
model which checks for any occurrence of offen-
sive words. As an aid, a dictionary of 1384 words
is constructed with the offensive words banned by
Google and a list of bad words. This two level
classification system proves to be very effective
and increases the performance of the system by
5% in the macro average F1-score. The second
level of classification is used to find whether the
tweet is offensive or not. There is no need for a
second level in subtasks B and C since they do not

involve this classification.

4 Results

Table 4 shows the accuracy (Acc) results for sub-
task A. Three models were developed and tested
for the given dataset. 2D-CNN model with en-
hanced dataset has better F1 score for both offen-
sive and non-offensive tweets in comparison to the
2D-CNN with given dataset alone and 1D-CNN.
1D-CNN has better accuracy than other models.
Since the given dataset is biased, some models
classify non-offensive tweets more correctly than
offensive tweets. Such a model has better accuracy
than other models, but lower F1 score.

System F1 (macro) Acc
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
2D-CNN (28000 Data) 0.7382 0.8058
2D-CNN (13240 Data) 0.7351 0.8035
1D-CNN 0.7281 0.8174

Table 4: Results for Subtask A

Table 5 shows the results for subtask B. We de-
veloped SVM and 2D-CNN model for subtask B.
SVM classifies tweets into targeted and untargeted
ones more effectively than 2D-CNN model.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
SVM with TF-IDF 0.6602 0.8208
2D-CNN 0.5588 0.775

Table 5: Results for Subtask B

Table 6 shows the results for subtask C. SVM
with TF-IDF, 1D-CNN with GloVe and 2D-CNN
with learned Word2Vec embeddings are used to
build models for subtask C. 1D-CNN model has
better F1 macro score than other models.

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
SVM with TF-IDF 0.5095 0.6808
1D-CNN 0.5633 0.6714
2D-CNN 0.4846 0.6479

Table 6: Results for Subtask C

756

The confusion matrix for the best model in sub-
tasks A, B and C are shown in Figure 2, 3 and 4
respectively.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

565 55

112 128

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: SubTask A: Confusion Matrix for 2D-CNN
with Word2Vec embeddings

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

181 32

11 16

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Subtask B: Confusion Matrix for SVM with
bag of words model

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

57 15 6

17 80 3

12 17 6

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4: SubTask C: Confusion Matrix for 1D-CNN
with GloVe

5 Conclusion

We have built three models for the tasks of of-
fensive language detection and classification in
tweets. The models are 2D-CNN with Word2Vec
learned embeddings, 1D-CNN with GloVe and
SVM with TF-IDF. All the models use data pre-

processed with NLTK, which we think is an im-
portant factor for improved accuracy. In addition,
we also made use of a dictionary of offensive and
banned words for a second level of classification.

Meaning of a tweet varies with an individual’s
perception and cannot be judged by simple con-
ventional models. This is one reason for the re-
duced precision of classification. The concepts of
irony, sarcasm, humor and other tones of a conver-
sation are too intuitive and implicit for the models
to detect them accurately. We intend to investi-
gate further by adding multiple hidden layers and
building complex network structure which will, in
parallel, look for the tell-tale signs of the target
tone of the tweets.

1D-CNN model achieved less F1-score in the
target identification (subtask C) than in subtasks A
and B, due to smaller dataset, which can improved
by augmenting the dataset.

References
Hao Che, Susan McKeever, and Sarah Jane Delany.

2017. Abusive text detection using neural networks.
In AICS Conference, Dublin Institute of Technology.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbully-
ing. In The Social Mobile Web, pages 11–17.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Antigoni-Maria Founta, Constantinos Djouvas,
Despoina Chatzakou, Ilias Leontiadis, Jeremy
Blackburn, Gianluca Stringhini, Athena Vakali,
Michael Sirivianos, and Nicolas Kourtellis. 2018.
Large Scale Crowdsourcing and Characterization
of Twitter Abusive Behavior. arXiv preprint
arXiv:1802.00393.

Impermium. 2013. Detecting Insults in Social Com-
mentary. https://www.kaggle.com/c/
detecting-insults-in-social-comme\
ntary/data/.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In European conference on machine
learning, pages 137–142. Springer.

757

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188–
1196.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in discriminating profanity from hate speech.
Journal of Experimental & Theoretical Artificial In-
telligence, 30(2):187–202.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. As-
sociation for Computational Linguistics.

Georgios K Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language
in tweets using deep learning. arXiv preprint
arXiv:1801.04433.

Joseph D Prusa and Taghi M Khoshgoftaar. 2017.
Deep neural network architecture for character-level
learning on short text. In The Thirtieth International
Flairs Conference.

Amir H Razavi, Diana Inkpen, Sasha Uritsky, and Stan
Matwin. 2010. Offensive language detection using
multi-level classification. In Canadian Conference
on Artificial Intelligence, pages 16–27. Springer.

Dominik Stammbach, Azin Zahraei, Polina Stad-
nikova, and Dietrich Klakow. 2018. Offensive lan-
guage detection with neural networks for germeval
task 2018. In 14th Conference on Natural Language
Processing KONVENS 2018.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

758

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 759–762
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

The Titans at SemEval-2019 Task 6: Offensive Language Identification,
Categorization and Target Identification

Avishek Garain
Computer Science and Engineering

Jadavpur University, Kolkata
avishekgarain@gmail.com

Arpan Basu
Computer Science and Engineering

Jadavpur University, Kolkata
arpan0123@gmail.com

Abstract

This system paper is a description of the sys-
tem submitted to “SemEval-2019 Task 6”,
where we had to detect offensive language in
Twitter. There were two specific target audi-
ences, immigrants and women. The language
of the tweets was English. We were required to
first detect whether a tweet contains offensive
content, and then we had to find out whether
the tweet was targeted against some individ-
ual, group or other entity. Finally we were re-
quired to classify the targeted audience.

1 Introduction

Offensive language is pervasive in social media.
Individuals frequently take advantage of the per-
ceived anonymity of computer-mediated commu-
nication, using this to engage in behavior that
many of them would not consider in real life.
Online communities, social media platforms, and
technology companies have been investing heavily
in ways to cope with offensive language to prevent
abusive behavior in social media.

One of the most effective strategies for tack-
ling this problem is to use computational meth-
ods to identify offense in user-generated content
(e.g. posts, comments, microblogs, etc.). This
topic has attracted significant attention in recent
years of various Natural Language analysts.

The SemEval 2019 task 6 (Zampieri et al.,
2019b) was a classification task where we were re-
quired to classify a tweet, as hate speech or other-
wise. However, there were some additional chal-
lenges presented, which involved automatic cate-
gorization of offense target types and the specific
detection of the target audience, namely, women
or immigrants.

The task was divided into three parts. In the
first subtask our system categorized the instances
into OFF and NOT. In the second subtask our sys-
tem categorized instances into TIN and UNTwhile

in the third subtask systems should categorize in-
stances into IND, GRP, and OTH.

To solve the task in hand we built a bidirectional
LSTM based neural network for prediction of the
classes present in the provided dataset.

The paper has been organized as follows. Sec-
tion 2 describes a brief survey on the relevant work
done in this field. Section 3 describes the data,
on which, the task was performed. The method-
ology followed is described in Section 4. This is
followed by the results and concluding remarks in
Section 5 and 6 respectively.

2 Related Work

Papers published in the last two years include the
surveys by Schmidt and Wiegand (2017) and For-
tuna and Nunes (2018). The paper by Davidson
et al. (2017) presenting the Hate Speech Detec-
tion dataset were used in (Malmasi and Zampieri,
2017) and a few other recent papers such as (ElSh-
erief et al., 2018; Gambäck and Sikdar, 2017;
Zhang et al., 2018).

A proposal of typology of abusive language
sub-tasks is presented in (Waseem et al., 2017).
For studies on languages other than English see
work by Su et al. (2017) on Chinese and Fišer et al.
(2017) on Slovene. Finally, for recent discussion
on identifying profanity vs. hate speech see the
work by Malmasi and Zampieri (2018). This work
highlighted the challenges of distinguishing be-
tween profanity, and threatening language which
may not actually contain profane language.

Previous editions of related workshops are TA-
COS1, Abusive Language Online2, and TRAC3

and related shared tasks such as GermEval (Wie-
gand et al., 2018) and TRAC (Kumar et al., 2018).

1http://ta-cos.org/
2https://sites.google.com/site/

abusivelanguageworkshop2017/
3https://sites.google.com/view/trac1/

home

759

3 Data

The dataset that was used to train the model is the
OLID dataset (Zampieri et al., 2019a). It was col-
lected from Twitter; the data being retrieved the
data using the Twitter API by searching for key-
words and constructions that are often included in
offensive messages. The vast majority of content
on Twitter is not offensive so different strategies
were tried to keep a reasonable number of tweets
in the offensive class amounting to around 30% of
the dataset.

The dataset provided consisted of tweets in their
original form along with the corresponding labels.
Subtask A consisted of the labels OFF and NOT;
subtask B consisted of the labels TIN and UNT;
and finally subtask C consisted of the labels IND,
GRP and OTH.

Label Meaning
OFF Tweet containing offensive language
NOT Tweet not containing offensive lan-

guage
TIN Tweet containing profanity and tar-

geted against individual/group/others
UNT Tweet with profanity, but non-targeted
IND Offensive tweet targeting an individual
GRP Offensive tweet targeting a group
OTH Offensive tweet targeting neither group

or individual

Table 1: Meaning of the labels used in the dataset

The dataset had 14100 instances which were di-
vided into 13240 training data instances and 860
test data instances.

A B C Train Test Total
OFF TIN IND 2407 100 2507
OFF TIN OTH 395 35 430
OFF TIN GRP 1074 78 1152
OFF UNT - 524 27 551
NOT - - 8840 620 9460
All 13240 860 14100

Table 2: Distribution of the labels in the dataset

4 Methodology

Our approach was to convert the tweet into a se-
quence of words and then run a neural-network
based algorithm on the processed tweet.

The first stage in our pipeline was to preprocess
the tweet. This consisted of the following steps:

1. Removing mentions
2. Removing punctuation
3. Removing URLs
4. Contracting white space
5. Extracting words from hash tags

The last step consists of taking advantage
of the Pascal Casing of hash tags (e.g.
#PascalCasing). A simple regex can ex-
tract all words; we ignore a few errors that arise
in this procedure. This extraction results in
better performance mainly because words in hash
tags, to some extent, may convey sentiments of
hate. They play an important role during the
model-training stage.

We treat the tweet as a sequence of words with
interdependence among various words contribut-
ing to its meaning. Hence we use an bidirec-
tional LSTM based approach to capture informa-
tion from both the past and future context.

Our model is a neural-network based model.
First, the input tweet is passed through an em-
bedding layer which transforms the tweet into a
128 length vector. The embedding layer learns the
word embeddings from the input tweets. This is
followed by two bidirectional LSTM layers con-
taining 64 units each. This is followed by the final
output layer of neurons with softmax activation,
each neuron predicting a label as present in the
dataset. For subtasks 1 and 2, it contains 2 neu-
rons for predicting OFF/NOT and TIN/UNT re-
spectively; for subtask 3 it contains 3 neurons for
predicting IND/GRP/OTH. Between the LSTM
and output layers, we add dropout with a rate of
0.5 as a regularizer. The model is trained using the
Adam optimization algorithm with a learning rate
of 0.0005 and using crossentropy as the loss.

We note that the dataset is highly skewed in na-
ture. If trained on the entire training dataset with-
out any validation, the model tends to completely
overfit to the class with higher frequency as it leads
to a higher accuracy score.

To overcome this problem, we took some mea-
sures. Firstly, the training data was split into two
parts; one for training and one for validation com-
prising 70 % and 30 % of the dataset respectively.
The training was stopped when two consecutive
epochs increased the measured loss function value
for the validation set.

Secondly, class weights were assigned to the
different classes present in the data. The weights
were approximately chosen to be proportional to

760

the inverse of the respective frequencies of the
classes. Intuitively, the model now gives equal
weight to the skewed classes and this penalizes
tendencies to overfit to the data.

In general, we took 0.5 as the boundary between
predictions of 0 and 1 — essentially rounding the
predicted values. However, for subtask B, we try
different values for this parameter (thresh) to
achieve better results. Values less than thresh
are converted to 0 while the remaining values are
converted to 1.

5 Results

We have included the automatically generated ta-
bles with our results. We have also included some
baselines generated by assigning the same labels
for all instances. For example, “All OFF” in sub-
task A represents the performance of a system that
labels everything as offensive. We have used this
for comparison.

We have also added the relevant confusion ma-
trices that were provided together with the results.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
BiLSTM 0.4650 0.5651

Table 3: Sub-task A, garain CodaLab 528038 (Bi-
Directional LSTM)

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
BiLSTM(*) 0.4702 0.8875
BiLSTM(thresh=0.50) 0.5733 0.9
BiLSTM(thresh=0.40) 0.5796 0.8833

Table 4: Sub-task B, garain CodaLab 533103 (Bi-
Directional LSTM threshold = 0.40)
* - class weights not used

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
BiLSTM 0.3262 0.4601

Table 5: Sub-task C, garain CodaLab 535813 (Bi-
Directional LSTM)

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

429 191

183 57

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: Sub-task A, garain CodaLab 528038 (Bi-
Directional LSTM)

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

208 5

23 4

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Sub-task B, garain CodaLab 533103 (Bi-
Directional LSTM threshold = 0.4)

761

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

34 44

36 64

17 18

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3: Sub-task C, garain CodaLab 535813 (Bi-
Directional LSTM)

6 Conclusion

Here we have presented a model which performs
satisfactorily in the given tasks. The model is
based on a simple architecture. There is scope
for improvement by including more features (like
those removed in the preprocessing step) to in-
crease performance. Another drawback of the
model is that it does not use any external data other
than the dataset provided which may lead to poor
results based on the modest size of the data. Re-
lated domain knowledge may be exploited to ob-
tain better results.

References

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Darja Fišer, Tomaž Erjavec, and Nikola Ljubešić. 2017.
Legal Framework, Dataset and Annotation Schema
for Socially Unacceptable On-line Discourse Prac-
tices in Slovene. In Proceedings of the Workshop
Workshop on Abusive Language Online (ALW), Van-
couver, Canada.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Huei-Po Su, Chen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing Profanity in Chi-
nese Text. In Proceedings of the Workshop Work-
shop on Abusive Language Online (ALW), Vancou-
ver, Canada.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

762

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 763–769
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

TüKaSt at SemEval-2019 Task 6: Something Old, Something Neu(ral):
Traditional and Neural Approaches to Offensive Text Classification

Madeeswaran Kannan Lukas Stein
Department of Linguistics

University of Tübingen, Germany
{mkannan,lstein}@sfs.uni-tuebingen.de

Abstract

We describe our system (TüKaSt) submitted
for Task 6: Offensive Language Classifica-
tion, at SemEval 2019. We developed multi-
ple SVM classifier models that used sentence-
level dense vector representations of tweets
enriched with sentiment information and term
weighting. Our best results achieved F1 scores
of 0.734, 0.660 and 0.465 in the first, second
and third sub-tasks respectively. We also de-
scribe a neural network model that was devel-
oped in parallel but not used during evaluation
due to time constraints.

1 Introduction

We live in a day and age where social media
pervades through every aspect of lives. Constant
growth of social media platforms and rapid
exposure to them are changing how human
communication is perceived and working (Sticca
and Perren, 2013). As much as social media and
the general web help its users stay connected and
informed, misuse of these channels grows with
them. As long as anonymity continues to play
a central role in online interactions, one must
contend with individuals and entities who feel
empowered to behave aggressively for that very
reason (Burnap and Williams, 2015). Recent
events have forced social media platforms to
take a renewed interest in limiting the negative
influence of such users for commercial and
practical reasons. However, the sheer size of data
on social media makes it impossible to manually
observe, thereby calling the creation of systems
that automatically detect potentially offensive
content.

The SemEval 2019 - OffensEval Shared Task
(Zampieri et al., 2019b) is aiming exactly at that
need, calling for system able to detect offensive

language in social media data. The task is split into
three sub-tasks: Detecting offensive language, de-
termining whether it is offensive directly towards
a target, and target specification. This paper fol-
lows our approach of applying both traditional and
more sophisticated neural models to the task of of-
fensive text classification.

2 Preprocessing

All tweets were converted to lowercase and to-
kenised. Stop-words were removed uncondition-
ally, but hashtags and user mentions were removed
during the training of certain model variants.

3 Training Data

The SVM models were trained and evaluated
exclusively on the training data provided by
Zampieri et al. (2019a) with ten-fold cross-
validation. For the RNN models, we also used the
trail data that was provided before the start of the
training phase. The samples were shuffled before
each training run, and a 80-20 split was performed
to generate training and validation sets.

300-dimensional, pre-trained FastText embed-
dings (Mikolov et al., 2018) were used to train
the SVM models. The FastText embeddings
were chosen due to their subword-information
(Bojanowski et al., 2017), making it easier to
deal with social media data, which is prone
to contain spelling errors and abbreviations.
100-dimensional Glove vectors trained on the
Twitter corpus (Pennington et al., 2014) were used
to initialise the word embeddings in the RNN
models.

For sentiment data, we used the Vader senti-
ment lexicon (Gilbert, 2014) to retrieve polarity
scores for each word in the vocabulary. Scores

763

range from -4 (extremely negative) to +4 (ex-
tremely positive). A neutral score of zero was
assigned to out-of-vocabulary words.

4 Models

4.1 Support Vector Machines Classifier

Support Vector Machines (SVMs) have been
used successfully in many classification problems
concerning natural language (Aggarwal and Zhai,
2012). In the proceedings of the First Workshop
on Trolling, Aggression and Cyberbullying,
Kumar et al. (2018) report on several teams using
SVMs to identify aggressive texts. Moreover,
SVMs with traditional features can still outper-
form neural networks in natural language tasks
(Medvedeva et al., 2017; Çöltekin and Rama,
2017, 2018). However, traditional features like
TF-IDF, character and word n-grams, bag of
words/n-grams, and sentiment lookups dominate
the majority of models used for identifying
aggressive language.

Contrasting the use of traditional features used
in natural language processing is the prominent
research on neural networks using dense vector
representations (word embeddings) as input.
Since embeddings are able to capture syntactic
and semantic features and represent them in a
distributed manner, it makes them perfect for
language modelling (Bojanowski et al., 2017).
We chose to experiment with embeddings in
SVMs for this classification task in order to keep
pre-processing and feature-engineering to a mini-
mum. Moreover, we wanted to see how the SVM
could improve with the dense representations
over sparse representations. However, we also
experimented with combinations of continuous
features and traditional features in some of our
models.

The SVM models’ dense sentence representa-
tion was composed by summing the respective
embeddings of every word in the tweet and
normalising over the length of the tweet. We
chose not to weight them by their TF-IDF scores
to achieve an even combination of all constituents.
Mikolov et al. (2013) report that adding vectors
in a linear fashion yields meaningful phrase
representations.

For the first of three SVM models
(combined fixed), we created vectors for the
TF-IDF and the retrieved sentiment values in
the following manner: The TF-IDF vectors
were constructed with length |V |, where V is
the vocabulary constructed from the corpus and
each dimension is corresponding to a specific
word in the model’s vocabulary. The sentiment
vector was constructed with length |V ′|, where
V ′ corresponds to the Vader lexicon (Gilbert,
2014) and each dimension corresponds to a
specific word in the lexicon. Both vectors were
initialised with zeros and respective dimensions
were replaced with the retrieved/computed values.
Both vectors were then appended to the dense
sentence representation.

The second model (combined positioned) was
trained with a word-order sensitive representation
of the aforementioned features. Both the TF-
IDF vector and the sentiment vectors were con-
structed with length |word count(t)|, where t is
the longest tweet in the trainings set and where
each the dimension corresponds to the word en-
countered at the respective index in the tweet. The
third and final SVM model was only trained on the
composed sentence embeddings (emb only).

4.2 Recurrent Neural Classifier

In addition to the SVM classifier, we paral-
lelly trained a recurrent neural classifier using
both Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997) and Gated Recurrent Unit
(Cho et al., 2014) cells.

Figure 1: RNN Classifier Architecture.

The architecture of our model is illustrated in
figure 1. It accepts token and character n-gram

764

sequences as inputs. The embedding layer
consists of individual embedding matrices for
each input type. The word embedding matrix
is initialised with pre-trained word embeddings
while the character embedding matrix is randomly
initialised, both of which are subsequently learned
as parameters of the model during the training
phase.

The embedding sequence is used as the input
to a stacked bi-directional RNN layer. We used
both LSTM (with peepholes) and GRU cells for
the individual units in each RNN layer (trained
as separate models). Dropout is additionally
added to each layer during the training phase. The
hidden states of the forward and backward RNNs
of the top-most layer are concatenated to produce
the sentential representation of the sequence. This
is performed for both types of input sequences.

In addition to the output of the biRNN layers,
we calculate TF-IDF (Term Frequency - Inverse
Document Frequency) scores for all words in
the corpus. This lets us construct a fixed-length
dense vector of normalised TF-IDF values for
each tweet. Similarly, we use a sentiment lexicon
to lookup human-assigned polarity scores of indi-
vidual words and construct a second fixed-length
vector with sentiment information for each tweet.

The outputs of the above components are con-
catenated into a single, final representation. We
expect the TF-IDF and sentiment vectors to en-
code relevant information about the importance of
discriminating words in the input sequence. This
final representation is used as the logits for a Soft-
Max layer that outputs the predicted label of the
tweet.

5 Parameters & Training

We used sklearn-kittext (Pedregosa et al., 2011) to
build our SVM models. For both Sub-task A and
B, a binary classifier was trained and for Sub-task
C a one-versus-one, multi-class classifier was
trained on the three different labels. All three
models use sklearn’s default RBF-kernel with
C=2 and gamma=0. The final hyper-parameters
used by the neural classifier are listed in table 7.
Training was performed with early stopping.

During our initial tests, the neural network clas-

sifier particularly had trouble generalising to the
training data. We found that the class imbalance in
the data caused the classifier to be biased towards
the majority class and to over-fit the training data.
To mitigate this, we weighted the output of the loss
function with the ratios of the different classes in
each dataset and performed L2 regularisation on
the losses of each mini-batch.

6 Results

The results that follow are those only those of
the SVM models evaluated during the evaluation
phase of the OffenEval task (Zampieri et al.,
2019b). Since we were unable to train the RNN
classifier in time for the official evaluation phase,
we will instead be reporting the scores of the
classifier on the validation set (mean and best
macro-F1 scores and their corresponding accura-
cies) in section A.

The model using the sentence embedding on
its own is denoted by emb only, the combination
of sentence embedding and multiple-hot TF-IDF
and sentiment vectors by combined fixed and the
position sensitive combination of the vectors by
combined positioned.

For Sub-task B and C, all three models were
submitted and for sub-task A, only the emb only
and the combined fixed were submitted.

System F1 (macro) Accuracy

All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790

combined fixed 0.7340 0.7942
emb only 0.7127 0.7849

Table 1: Results for Sub-task A.

The results for Sub-task A (Table 1) reveal
a slight improvement for adding traditional
features to the dense sentence representation.
This improvement is likely to be due to the
sentiment vector, whose values should be very
discriminative for tweets containing offensive
language. Nevertheless, this information should
be encoded in the embeddings as well.

For Sub-task B (Table 2) and Sub-task C, the
emb only model actually outperforms the com-
bined vectors. This might be due to the fact that

765

tasks are more fine-grained than Task A and these
nuances are captured by the word embeddings,
while the sentiment and TF-IDF vectors end up
contributing more to the noise than information
in the signal. Nevertheless, the SVM seems to
be able to handle the data from the composed
sentence embeddings quite well.

System F1 (macro) Accuracy

All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125

combined positioned 0.6470 0.8
combined fixed 0.4702 0.8875
emb only 0.6602 0.8208

Table 2: Results for Sub-task B.

System F1 (macro) Accuracy

All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643

combined positioned 0.4421 0.5305
combined fixed 0.4213 0.4695
emb only 0.4652 0.5164

Table 3: Results for Sub-task C.

The results obtained for Sub-task B reveal that
the model trained on combined fixed performs
remarkably badly when evaluated on the F1
score. Moreover, the accordance on Accuracy
with the All-TIN-Baseline indicates that our
model over-fits the training data and classifies
all samples as being targeted, which is actually
the case. This problem and general performance
could probably be improved by spending more
time on hyper-parameter training.

The per-class scores of the best performing
model in each sub-task are listed in tables 4-6.

Precision Recall F1-score Samples

NOT 0.8413 0.8806 0.8605 620
OFF 0.6493 0.5708 0.6075 240

Table 4: Per-class performance in Sub-task A, SVM
model combined fixed

Precision Recall F1-score Samples

TIN 0.9427 0.8498 0.8938 213
UNT 0.3333 0.5926 0.4267 27

Table 5: Per-class performance in Sub-task B, SVM
model emb only

Precision Recall F1-score Samples

GRP 0.5306 0.6667 0.5909 78
IND 0.7424 0.4900 0.5904 100
OTH 0.1837 0.2571 0.2143 35

Table 6: Per-class performance in Sub-task C, SVM
model emb only

7 Conclusion

In this paper, we demonstrate the use of both Sup-
port Vector Machine models and Recurrent Neu-
ral models to classify offensive tweets. We show
how sentential representations derived from word
and character n-gram embeddings can be enriched
by including term salience and sentiment infor-
mation for certain tasks. For more fine-grained
tasks, dense vector representations of sentences
work well with SVM classifiers. While our results
show that traditional methods still outperform neu-
ral network models, there is much room for im-
provement. Future work could investigate the use
of more sophisticated mechanisms like attention to
potentially increase performance even further.

References
Charu C Aggarwal and ChengXiang Zhai. 2012. A sur-

vey of text classification algorithms. In Mining text
data, pages 163–222. Springer.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Pete Burnap and Matthew L Williams. 2015. Cyber
hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Çağrı Çöltekin and Taraka Rama. 2017. Tübingen
system in vardial 2017 shared task: Experiments

766

with language identification and cross-lingual pars-
ing. In Proceedings of the Fourth Workshop on NLP
for Similar Languages, Varieties and Dialects (Var-
Dial), pages 146–155.

Çağrı Çöltekin and Taraka Rama. 2018. Tübingen-
oslo at semeval-2018 task 2: Svms perform better
than rnns in emoji prediction. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion, pages 34–38.

CJ Hutto Eric Gilbert. 2014. Vader: A parsimo-
nious rule-based model for sentiment analysis of so-
cial media text. In Eighth International Confer-
ence on Weblogs and Social Media (ICWSM-14).
Available at (20/04/16) http://comp. social. gatech.
edu/papers/icwsm14. vader. hutto. pdf.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Maria Medvedeva, Martin Kroon, and Barbara Plank.
2017. When sparse traditional models outperform
dense neural networks: the curious case of discrimi-
nating between similar languages. In Proceedings of
the Fourth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial), pages 156–163.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Fabio Sticca and Sonja Perren. 2013. Is Cyberbul-
lying Worse than Traditional Bullying? Examin-
ing the Differential Roles of Medium, Publicity, and
Anonymity for the Perceived Severity of Bullying.
Journal of Youth and Adolescence, (4):739–750.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

767

A Appendix

Epochs 50
Batch size 512
L2 Beta 0.001
RNN per-layer dropout 0.15
Character n-gram size 3
RNN output dimension 100
Auxiliary vector dimension 30

Table 7: RNN Model Hyper-parameters

A.1 Recurrent Neural Classifier Validation
Results

The -hm suffix denotes the models that were
trained on tweets from which hash tags and user
mentions were removed. -aux denotes the models
that did not use the fixed-length TF-IDF and
sentiment vectors in the final representation. In
all other models, both of the aforementioned
features were preserved. We also report the val-
idation results of the SVM models for comparison.

In Sub-task A (Table 8), the full-LSTM model
with TF-IDF and sentiment vectors scored best,
followed very closely by the model without hash-
tags or user mentions. Removing the auxiliary
vectors resulted in a net decrease in perfor-
mance, which shows that sentiment and [term]
salience-related information do indeed help the
model learn and generalise better. Interestingly,
removing hash tags/mentions along with the
auxiliary vectors increased performance relative
to the previous case. The GRU scored the lowest;
this could potentially be attributed to its weakness
with long-distance dependencies.

The full-LSTM model continued to outperform
the other models in Sub-task B (Table 9) as well.
Removing hash tags and user mentions caused a
more substantial drop in performance compared
to the first sub-task. This follows logically as
the given task is to identify targetted tweets;
removing information that is intrinsically indica-
tive of the same results in a worse-performing
model. Removing the auxiliary vectors causes
performance to drop further, further corroborating
their informativity. And as before, the GRU
finished in the last place.

Sub-Task C (Table 10) saw a reversal of roles
between the GRU and full-LSTM models. Be-
tween the different variants of the LSTM-based
models, the general trend seen in Sub-task A
re-emerged. It must, however, be noted that all
models performed poorly at this sub-task. We
conjecture that this is partly due to the limited
amount of training data available for this sub-task.
It is also likely that the chosen architecture of the
classifier is not sophisticated enough to model the
non-linearities in the training data.

768

Mean Best

System F1 (macro) Accuracy F1 (macro) Accuracy

SVM combined positioned 0.7215 0.7540 0.7441 0.7751
SVM combined fixed 0.6171 0.7045 0.6321 0.7177
SVM emb only 0.7160 0.7483 0.7373 0.7691

GRU 0.6240 0.6584 0.6442 0.6941
LSTM 0.6958 0.7332 0.7121 0.7629
LSTM -hm 0.6941 0.7360 0.7126 0.7488
LSTM -aux 0.6830 0.7361 0.6873 0.7559
LSTM -hm -aux 0.6852 0.7166 0.6997 0.7309

Table 8: Validation results for Sub-task A.

Mean Best

System F1 (macro) Accuracy F1 (macro) Accuracy

SVM combined positioned 0.5877 0.8117 0.6341 0.8616
SVM combined fixed 0.4677 0.8791 0.4737 0.9002
SVM emb only 0.6128 0.8129 0.6676 0.8594

GRU 0.5949 0.6350 0.6129 0.6578
LSTM 0.6527 0.7065 0.6642 0.7039
LSTM -hm 0.6322 0.6880 0.6372 0.6859
LSTM -aux 0.6267 0.6696 0.6527 0.6809
LSTM -hm -aux 0.6258 0.6528 0.6655 0.6973

Table 9: Validation results for Sub-task B.

Mean Best

System F1 (macro) Accuracy F1 (macro) Accuracy

SVM combined positioned 0.4003 0.5788 0.4934 0.6340
SVM combined fixed 0.4919 0.6129 0.5163 0.6417
SVM emb only 0.5086 0.6273 0.5672 0.6494

GRU 0.2953 0.5748 0.3109 0.5746
LSTM 0.2878 0.6045 0.2961 0.6164
LSTM -hm 0.2868 0.6365 0.3390 0.6152
LSTM -aux 0.2586 0.6432 0.2637 0.6762
LSTM -hm -aux 0.2617 0.5370 0.2896 0.4605

Table 10: Validation results for Sub-task C.

769

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 770–774
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

TUVD team at SemEval-2019 Task 6: Offense Target Identification

Elena Shushkevich
Social Media

Research Group
Technological University

Dublin, Ireland
e.shushkevich
@yandex.ru

John Cardiff
Social Media

Research Group
Technological University

Dublin, Ireland
john.cardiff

@it-tallaght.ie

Paolo Rosso
PRHLT Research Center
Universitat Politecnica

de Valencia, Spain
prosso@dsic.upv.es

Abstract

This article presents our approach for detect-
ing a target of offensive messages in Twit-
ter, including Individual, Group and Others
classes. The model we have created is an en-
semble of simpler models, including Logistic
Regression, Naive Bayes, Support Vector Ma-
chine and the interpolation between Logistic
Regression and Naive Bayes with 0.25 coeffi-
cient of interpolation. The model allows us to
achieve 0.547 macro F1-score.

1 Introduction

Nowadays aggressive language on social media
occurs more and more often. Categories of hate
speech can be very diverse and can deal with a
wide range of issues such as misogyny, sexual
orientation, religion and immigration. Such
types of speech can be found in posts in social
networks, in Internet discussions, in comments
on various articles and in responses to posts of
famous persons.

This problem is receiving increasing amounts
of attention and researchers are making attempts
to build systems capable of recognizing such
kinds of aggressive speech, offenses and insults in
social networks.

This article presented our approach to hate
speech detection, which we used for the challenge
SemEval-2019 Task 6: OffensEval - Identifying
and Categorizing Offensive Language in Social
Media (Zampieri et al., 2019a),(Zampieri et al.,
2019b).

The task consisted of three sub-tasks and
proposed to investigate the data extracted from
Twitter for creating a classification system.

Sub-task A had the aim to identify offensive
language and there were 860 unmarked English
tweets for testing. The post had to be non offen-
sive if it did not contain any offense or profanity.

The main goal of the Sub-task B was to cat-
egorize offensive posts from Sub-task A (there
were 240 English tweets for testing) to different
offensive types:

- Targeted Insults and Threats in cases when a
post insults or treats to an individual, a group or
an organization;

- Untargeted in cases where a post has a
non-targeting profanity and swearing.

Sub-task C focused on offense target identifica-
tion. There were 213 English tweets which were
marked as offensive in Sub-task A and Targeted
Insult and Threats in Sub-task B for testing. The
classification was for three different groups:

- Individual, when the target of the offensive
post was a person;

- Group, when the target of the offensive
message was a group of people considered as a
unit;

- Other, when the target of the offensive
tweet did not belong to any of the previous cate-
gories (e.g., a situation, an event, or another issue).

There are two datasets in English and in Span-
ish languages for analysis, and our team worked
with English only. The training dataset included
13200 tweets, 4400 of them were offensive ones,
3876 messages were labeled as ’Target Insult
and Threats’ and 524 ones as ’Untargeted’. We

; ; ;

770

focused our efforts on Sub-task C only, and the
training dataset for it consisted of 2407 ’individ-
ual’ offensive posts, 1074 ’group’ ones and 395
tweets marked as ’other’.

The paper is organized as follows. Some rele-
vant related works in the area are described in Sec-
tion 2. Section 3 presents the preprocessing we ap-
plied for the dataset and the methodology we used
for the model creating. In Section 4 the results are
described and analyzed. In Section 5 we summa-
rize our work and plan some steps for the future
researches.

2 Related Work

Today there are a lot of promising works in the
area of the hate speech recognition As was shown
in (Fasoli et al., 2015), offensive language can
be very diverse and the level of the messages
offensiveness can depend on the context and the
relationships between users who take part in the
conversation.

For example, insults delivered in a sexual
context are less offensive in cases where there is
a conversation between partners. Some slurs have
more offensive meaning in cases of conversations
between a superior and a subordinate compared
with conversations between friends and some
groups of slurs are more acceptable then others.

Expanding the point that offensive speech is
heterogeneous, the work (Clarke and Grieve,
2017) presented results which showed that there
is a difference between racist and sexist posts:
the sexist messages were more interactive (more
personal) and more attitudinal (with authors
opinion) than racist ones. From this article we can
make a conclusion that the most popular linguistic
feature in offensive language are question marks
and question DO (when a sentence stars with the
word do).

The work (Saleem et al., 2017) demonstrated
that messages may not include slurs, but still
be offensive. The authors took as training
dataset messages from potentially vulnerable
communities (like groups of Afro-American and
plus-size users) and messages from haters of these
communities (not included slurs only) and showed
that the system of hate speech recognition based

on traditional methods like Logistic Regression
could indicate insult meaning on the posts without
slurs. .

In addition, this work shows that it is possible
to test dataset from one source using training set
from another one. Authors checked this fact,
used the training dataset from one source and
the testing dataset from the another source. The
results were quite good and it is allow us to say
that it could be useful to add to our training dataset
some comments from another social media to
make predictions better.

At the Automated Misogyny Detection (AMI)
Shared Tasks IBEREVAL-2018 (Fersini et al.,
2018) and EVALITA-2018 (Caselli et al., 2018),
some interesting approaches for offensive lan-
guage detecting were presented. The main goal
in these challenges was to detect misogynistic
tweets and to classify tweets for different groups
depending on a misogyny type (stereotypes and
objectification, dominance, derailing, sexual
harassment and threats of violence and discredit)
and an insults target (the idea of this type of
classification was to recognize misogynous tweets
which offend a specific person and tweets which
insult a group of people).

In (Pamungkas et al., 2018) it was shown that
the results of the model based on Support Vector
Machine were quite good and in the research
(Frenda et al., 2018) the ensemble of models
allow to achieve a high level of accuracy. In work
(Shushkevich and Cardiff, 2018) it was presented
the ensemble of Logistic Regression. Support
Vector Machine and Naive Bayes model which
shown quite good results.

It is necessary to add that models based on
neural networks show good results of offensive
language recognition, as it was shown in (Bad-
jatiya et al., 2017), where the authors created
the model based on Long Short-Term Networks
(LSTMs) which use internal memory for capture
the long range dependencies in sentences and it
could be important for the hate speech detection.
This approach allowed them to achieve very
high results in sexist and racist tweets detection
in comparison with classifiers such as Logistic
Regression, Random Forest, SVMs and Gradient

771

Boosted Decision Trees (GBDTs).

3 Methodology and Data

As the preprocessing step we:

- converted the words to the lower case;

- used TF-IDF (Term Frequency - Inverse
Document Frequency) for the vectorization;

- marked emojis with the word ’EMOJI’;

- labeled some combinations of symbols like
’!!! ’ and ’??? ’, because they look like emotional
expressions and could be presented as emojis too,
and replaced them with the word ’EMOJI’

Our model presents an ensemble of some
classic machine learning models:

- The model based on Logistic Regression (LR)
(Wright, 1995; Genkin et al., 2007), this type of
classifiers apply an exponential function to a lin-
eal combination of objects extracted from the data.

- The model based on Naive Bayes (NB),
whose advantages are an absence of big training
dataset and speed calculations requirement (Hi
and Li, 2007).

- The model presented an interpolation between
LR and NB with 0.25 coefficient of interpolation
as a form of regulation: trust NB unless the LR.
This type of interpolation was shown in (Wang
and Manning, 2012) where NB was combined
with Support Vector Machine, but in our case the
combination LR+NB worked better.

- The model based on Support Vector Machine
(SVM), the effectiveness of which in the work
with texts was described in (Joachims, 2002).

We blended all above-described models into
one which indicated the belonging of a tweet to
the classes according to the rule: we summa-
rized probabilities of belonging to all three classed
which all four models presented and divided this
number by 4. A post was assigned a class with the
highest average probability.

4 Results

The predicted results of F1-macro for the all 5
models are presented in Table 1.

As it shown the Blended model achieves the
highest score (0.68), so we could conclude that
our hypothesis was correct and an ensemble of
models presented the best results for the task of
offense target identification.

Also, the model which combine Logistic
Regression and Naive Bayes achieves good result
(0.65), and the worst model for this type of
classification was Logistic Regression one.

The results of the challenge are presented in
Table 2. Overall Accuracy for the test set was
equal to 0.6478 and Macro-F1 was 0.547.

As we can see, the macro F1-score is less
when predicted with the training dataset macro
F1-score by 0.133, and this difference could be
connected with the small number of tweets for
training. Also it should be noted, that the results
of classification have a strict correlation with the
number of testing examples: the IND classifier
works better then GRP one and much better then
OTH classifier, because in the testing dataset there
were more data about individual target of offenses
then about group and other targets.

5 Conclusion

To sum up, we created an ensemble of models,
which allow as to achieve quite good results being
placed 25th out of a total of 65 participants. We
showed that the idea of blending simple models
based on Logistic Regression, Naive Bayes and
Support Vector Machine gives a perspective
in the area of hate speech recognition in the
identification of the target of offensive messages.

As the next steps in our research, we are
planning to expand the preprocessing step and use
some dictionaries and lists of offensive language,
which could help us to achieve better results.
We also intend to additional data for the training
datasets.

It is interesting to add, that in these datasets all
links were replaced with URL and all usernames

772

Model F1 (macro)
Logistic Regression 0.50
Naive Bayes 0.63
LR+NB 0.65
Support Vector Machine 0.60
Blended Model 0.68

Table 1: Results for each model with training dataset for the Subtask C

Type of classification F1-score
GRP 0.6047
IND 0.7615
OTH 0.2759
avg/totall 0.6243

Table 2: Results of the classification with testing dataset for the Subtask C

in tweets were replaced with USER. It could be
useful to investigate, for example, links, which
were mentioned in offensive messages. It could
be possible to expand our dataset in cases when
link was a respond for another offensive post
or we could lable tweets which have links for a
blocked content.

In this challenge we faced the problem of the an
insufficient quantity of tweets to make our classi-
fier work better: for example, for the class Other
there were only 395 post for training. We be-
lieve that an increase in the volume of data could
make our modeling more effective, and external
data sources could be helpful. Also, we intend to
experiment with the use of LSTMs.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion pp. 759760.

Tommaso Caselli, Nicole Novielli, Viviana Patti, and
Paolo Rosso. 2018. Overview of the Evalita 2018
Task on Automatic Misogyny Identification (AMI)).
In Proceedings of the 6th evaluation campaign of
Natural Language Processing and Speech tools for
Italian (EVALITA’18) CEUR Workshop Proceed-
ings. CEUR.org, volume 2263, Turin, Italy.

Isobelle Clarke and Jack Grieve. 2017. Dimensions of
abusive language on twitter. In American Psycho-
logical Association, Washington, DC.

Fabio Fasoli, Andrea Carnaghi, and Maria Paola Pal-
adino. 2015. Social acceptability of sexist deroga-

tory and sexist objectifying slurs across contexts. In
Language Sciences, 52.

Elisabetta Fersini, Maria Anzovino, and Paolo Rosso.
2018. Overview of the Task on Automatic Misog-
yny Identification at IberEval). In Proceedings
of the Third Workshop on Evaluation of Hu-
man Language Technologies for Iberian Languages
(IberEval 2018), co-located with 34th Conference of
the Spanish Society for Natural Language Process-
ing (SEPLN 2018) CEUR Workshop Proceedings.
CEUR-WS.org, volume 2150, Seville, Spain.

Simona Frenda, Bilal Ghanem, and Manuel Montes-y
Gomez. 2018. Exploration of Misogyny in Spanish
and English tweets. In CEUR Workshop Proceed-
ings. CEUR-WS.org, volume 2150, Seville, Spain.

Alexander Genkin, David Lewis, and David Madi-
gan. 2007. Large-scale bayesian logistic regres-
sion for text categorization. In Technometrics,
49(3):291304.

Zhang Hi and Di Li. 2007. Naive bayes text classifier.
granular computing. In IEEE International Confer-
ence on, pages 708708. IEEE.

Thoarsten Joachims. 2002. Learning to classify text
using support vector machines: Methods, theory and
algorithms. In Kluwer Academic Publishers.

Endang Wahyu Pamungkas, Alessandra Teresa
Cignarella, Valerio Basile, and Viviana Patti. 2018.
P14-ExLab@UniTo for AMI at IberEval2018: Ex-
ploiting Lexical Knowledge for Detecting Misogyny
in English and Spanish Tweets. In CEUR Workshop
Proceedings. CEUR-WS.org, volume 2150, Seville,
Spain.

Haji Mohammad Saleem, P. Dillon Kelly, Susan Be-
nesch, and Derek Ruths. 2017. A web of hate: Tack-
ling hateful speech in online social spaces. In CoR
abs/1709.10159.

773

Elena Shushkevich and John Cardiff. 2018. Classify-
ing Misogynistic Tweets Using a Blended Model:
The AMI Shared Task in IBEREVAL 2018. In
CEUR Workshop Proceedings. CEUR-WS.org, vol-
ume 2150, Seville, Spain.

Sida Wang and Christopher D. Manning. 2012. Base-
lines and bigrams: simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers, ACL, vol. 2, pp. 9094.

Robert Wright. 1995. Logistic regression. In Proceed-
ings of the 26th International Conference on World
Wide Web Companion pp. 759760. L.C.Grimm.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

774

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 775–781
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UBC-NLP at SemEval-2019 Task 6:
Ensemble Learning of Offensive Content With Enhanced Training Data

Arun Rajendran Chiyu Zhang Muhammad Abdul-Mageed
Natural Language Processing Lab

University of British Columbia
muhammad.mageed@ubc.ca

Abstract

We examine learning offensive content on
Twitter with limited, imbalanced data. For the
purpose, we investigate the utility of using var-
ious data enhancement methods with a host of
classical ensemble classifiers. Among the 75
participating teams in SemEval-2019 sub-task
B, our system ranks 6th (with 0.706 macro F1-
score). For sub-task C, among the 65 partici-
pating teams, our system ranks 9th (with 0.587
macro F1-score).

1 Introduction

With the proliferation of social media, millions of
people currently express their opinions freely on-
line. Unfortunately, this is not without costs as
some users fail to maintain the thin line between
freedom of expression and hate speech, defama-
tion, ad hominem attacks, etc. Manually detecting
these types of negative content is not feasible, due
to the sheer volume of online communication. In
addition, individuals tasked with inspecting such
types of content may suffer from depression and
burnout. For these reasons, it is desirable to build
machine learning systems that can flag offensive
online content.

Several works have investigated detecting un-
desirable (Alshehri et al., 2018) and offensive
language online using traditional machine learn-
ing methods. For example, Xiang et al. (2012)
employ statistical topic modelling and feature en-
gineering to detect offensive tweets. Similarly,
Davidson et al. (2017) train multiple classifiers
(e.g., logistic regression, decision trees, and sup-
port vector machines) to detect hate speech from
general offensive tweets. More recently, deep ar-
tificial neural networks (i.e., deep learning) has
been used for several text classification tasks, in-
cluding detecting offensive and hateful language.
For example, Pitsilis et al. (2018) use recurrent

neural networks (RNN) to detect offensive lan-
guage in tweets. Mathur et al. (2018) use trans-
fer learning with convolutional neural networks
(CNN) for offensive tweet classification on Twit-
ter data.

Most of these works, however, either assume
relatively balanced data (traditional classifiers)
and/or large amounts of labeled data (deep learn-
ing). In scenarios where only highly imbalanced
data are available, it becomes challenging to learn
good generalizations. In these cases, it is useful to
employ methods with good predictive power for
especially minority classes. For example, meth-
ods capable of enhancing training data (e.g., by
augmenting minority categories) are desirable in
such scenarios. In the literature, some works have
been undertaken to address issues of data imbal-
ance in language tasks. For example, Moun-
tassir et al. (2012) propose different undersam-
pling techniques that yield better performance
than common random undersampling on senti-
ment analysis. Along similar lines Gopalakrish-
nan and Ramaswamy (2014) propose a modified
ensemble based bagging algorithm and sampling
techniques that improve sentiment analysis. Fur-
ther, Li et al. (2018) present a novel oversampling
technique that generates synthetic texts from word
spaces.

In addition to data enhancement, combining
various classifiers in an ensemble fashion can
be useful since different classifiers have different
learning biases. Past research has shown the ef-
fectiveness of ensembling classifiers for text clas-
sification (Xia et al., 2011; Onan et al., 2016).
Omar et al. (2013), for example, study the perfor-
mance of ensemble models for sentiment analysis
of Arabic reviews. Da Silva et al. (2014) exploit
ensembles to boost the accuracy on twitter senti-
ment analysis. Wang and Yao (2009) demonstrate
the utility of combining sampling techniques with

775

ensemble models for solving the data imbalance
problem.

In this paper, we describe our submissions
to SemEval-2019 task 6 (OffenseEval) (Zampieri
et al., 2019b). We focus on sub-tasks B and
C. The Offensive Language Identification Dataset
(Zampieri et al., 2019a), the data released by the
organizers for each of these sub-tasks, is extremely
imbalanced (see Section 2). We propose effec-
tive methods for developing models exploiting the
data. Our main contributions are: (1) we exper-
iment with a number of simple data augmenta-
tion methods to alleviate class imbalance, and (2)
we apply a number of classical machine learning
methods in the context of ensembling to develop
highly successful models for each of the compe-
tition sub-tasks. Our work shows the utility of
the proposed methods for detecting offensive lan-
guage in absence of budget for performing feature
engineering and/or small, imbalanced data.

The rest of the paper is organized as follows:
We describe the datasets in Section 2. We intro-
duce our methods in Section 3. Next, we detail
our models for each sub-task (Sections 4 and 5).
We then offer an analysis of the performance of
our models in Section 6, and conclude in Section
7.

2 Data

As mentioned, OffenseEval is SemEval-2019
task 6. The task is focused on identifying and cat-
egorizing offensive language in social media and
involves three different sub-tasks. These are:

• Sub-task A is offensive language identifica-
tion, e.g. classifying the given tweets into
offensive or non-offensive. In our work, we
only focus on sub-tasks B and C and so we
do not cover sub-task A further.

• Sub-task B is automatic categorization of of-
fensive content types, which involves cate-
gorizing tweets into targeted and untargeted
threats. The dataset for this sub-task consists
of 4,400 tweets (3,876 targeted and 524 un-
targeted). Table 1 provides one examples of
each of these two classes.

• Sub-task C is offense target identification
and includes the 3 classes of targets. These
classes are in the set {individual, group, oth-
ers}. The dataset for this sub-task consists of

3,876 tweets (2,407 individual, 1,074 group,
and 395 other). We similarly provide one ex-
ample for each of these classes in Table 1.

We use 80% of the tweets as our training set
and the remaining 20% as our validation set for
both sub-tasks B and C. We also report our best
models on the competition test set, as returned to
us by organizers. Table 2 provides statistics of our
data for sub-tasks B and C.

3 Methods

3.1 Pre-Processing
We utilize a simple data pre-processing pipeline
involving lower-casing all text, filtering out URLs,
usernames, punctuation, irrelevant characters and
emojis, and splitting text into word-level tokens.

3.2 Data Intelligence Methods
We employ multiple machine learning methods
and combine them with different sampling and
data generation techniques to enhance our training
set. From a data sampling perspective, the most
common approaches to deal with imbalanced data
is random oversampling and random undersam-
pling (Lohr, 2009; Chawla, 2009). Learning with
these basic techniques is usually effective due to
possibly reducing model bias towards the major-
ity class. We employ a number of data sampling
techniques, as described next.

Random oversampling technique randomly
duplicates the minority samples to obtain a bal-
anced dataset. Despite the naive approach, this
method is reported to perform well (as compared
to other sophisticated oversampling methods) in
the literature. One major drawback of this method
is that it does not add any new data to the training
set (since it only duplicates minority-class training
data) (Liu et al., 2007).

Synthetic minority over-sampling (SMOTE)
is a sophisticated oversampling technique where
synthetic samples are generated and added to the
minority class. For each data point, one of k mi-
nority class neighbours is randomly selected and
the new synthetic point is a random point on the
line joining the actual data point and this randomly
selected neighbour. This method has been shown
to be effective compared to some other oversam-
pling methods (Chawla et al., 2002; Batista et al.,
2004).

Random undersampling removes instances
from the majority class in a random manner to ob-

2
776

Task Label Example

Sub-task B targeted Liberals are all Kookoo !!!
untargeted Dont believe the hype.

Sub-task C
individual Good move...he is the big loser
group The Liberals are mentally unstable!!
other Google go to hell!

Table 1: Examples of each class in sub-tasks B and C

Task Label Train Dev Total

Sub-task B targeted 3,101 775 3,876
untargeted 419 105 524

Sub-task C
individual 1,925 482 2,407
group 859 215 1,074
other 316 79 395

Table 2: Distribution of classes over our data splits

tain a balanced dataset. One possible disadvantage
of this method is that it might remove valuable in-
formation from training data since, due to its ran-
domness, it does not pay consideration to the data
points removed (Liu et al., 2007).

kNN-based undersampling is an alternative
undersampling technique (Mani and Zhang, 2003)
which uses distance between points within a class.
We use three different methods to select near-miss
samples, as described in Mani and Zhang (2003).
NearMiss-1 selects majority class samples whose
average distance to three closest minority class
samples is smallest. In NearMiss-2, the samples
of the majority class are selected such that their av-
erage distances to three farthest samples of minor-
ity class are smallest. NearMiss-3 picks a given
number of the closest majority class samples from
each minority class sample, which guarantees ev-
ery minority class sample is surrounded by some
majority class points. Mani and Zhang (2003)
choose the majority class samples whose average
distances to the three closest minority class sam-
ples are farthest.

Synthetic Data Generation. We experiment
with adding information to the minority class
by generating synthetic samples employing a
word2vec-aided paraphrasing technique. Initially,
we train a word2vec model on the entire training
data and use this word2vec model to generate sam-
ples for the minority class by randomly replacing
words in tweets (with a probability of 0.9). We

randomly pick one word from k word2vec most
similar words. We fix k=5 words and probabil-
ity value as 0.9, but these are hyperparameters that
can be optimized. In this way, we generate a bal-
anced dataset in an attempt to overcome the prob-
lem of imbalance. In this technique, we draw in-
spiration from (Li et al., 2018) where authors pro-
pose a sentiment lexicon generation method us-
ing a label propagation algorithm and utilize the
generated lexicons to obtain synthetic samples for
the minority class by randomly replacing a set of
words with words that have similar semantic con-
tent.

3.3 Classifiers

We apply a number of machine learning classi-
fiers that are proven to work well for text cate-
gorization. Namely, we use logistic regression,
support vector machines (SVM) and Naive Bayes.
We also experiment with boosting algorithms such
as random forest, AdaBoost, bagging classifier,
XGBoost, and gradient boosting classifier. We de-
ploy ensembles of our best performing models in
two ways: (1) ensembles based on majority rule
classifiers that use predicted class labels for ma-
jority rule voting and (2) soft voting classifiers that
predict the class label based on the argmax of the
sums of the predicted probabilities of various clas-
sifiers.

4 Sub-Task B Models

For sub-task B, we have one minority class, so we
generate samples for this minority class to obtain
a new, balanced dataset. We use this balanced data
as well as the the imbalanced (ORG) dataset for
our first iteration of experiments. The goal of it-
eration is to identify the best (1) input n-gram set-
tings (explained next), (2) classifier (from our clas-
sifiers listed in Section 3.3, and (3) sampling tech-
niques (listed in 3.2). For n-gram settings, we
use a combination of bag of words and TF-IDF to

3
777

extract features from the tweets and run with un-
igrams and all different combinations of unigram,
bigrams, trigrams, and four grams. We run on all
combinations across all the three variables above
(n-grams, classifiers, and sampling methods) on
both the imbalanced (ORG) and balanced datasets.
Since our datasets are small, this iteration of ex-
periments is not very costly. We acquire best re-
sults on the balanced dataset, identifying the com-
bination of unigrams and bigrams as our best n-
gram settings, XGBoost as the best classifier, and
SMOTE as the best sampling technique. We pro-
vide these best results in Table 3 in Macro-F1
score. We use two baselines. Baseline 1 is the
majority class in training data (i.e., targeted of-
fense class, 0.46827 Macro F1-score). The sec-
ond baseline is the best model with no data sam-
pling, a logistic regression model. The best model,
XGBoost with SMOTE sampling, acquires an F1-
score of 0.61248. This is a sizeable gain over the
baselines. We now describe how we leverage en-
sembles to improve over this XGBoost model.

Sampling
Type

Sampling
Technique Macro F1

NA Baseline 1 0.46827
Baseline 2 0.5547

Oversampling
Random

Oversampling 0.56705

SMOTE 0.61248

Undersampling

Random
Undersampling 0.49739

Near Miss-1 0.32533
Near Miss-2 0.4376
Near Miss-3 0.46158

Table 3: Sub-Task B: XGBoost performance with
sampling methods. Baseline 1 is our majority class in
training data. Baseline 2 is a logistic regression model
with no data sampling.

4.1 Ensembles for Sub-Task B
Our best performance with the XGBoost model in
the previous section was acquired with SMOTE
oversampling. However, we note that oversam-
pling in general performed better than other sam-
pling methods. For this reason, we experiment
with a number of ensemble methods across our
two oversampling techniques (SMOTE and ran-
dom oversampling [ROS]). We provide our best
results from this iteration of experiments (for both
the dev and the competition test set) in Table 4. In

addition to the same XGBoost model reported ear-
lier (in Table 3, reproduced in Table 4), we iden-
tify and report our two best models: (1) Model A:
An ensemble with soft voting over XGBoost, Ad-
aBoost, and logistic regression with random over-
sampling (ROS) and (2) Model B: The average
of our XGBoost model (with SMOTE) and the
best model with synthetic oversampling (which is
a Naive Bayes classifier). We submitted the three
models in Table 4 to the competition. Although
Model B performs best on the dev set, it was
model A that performed highest on the competi-
tion test set. This suggests that the dev and test sets
are different in some aspects. Importantly, even
though the three models in Table 4 perform com-
parably on dev, only the ensemble models (Model
A and Model B) seem to generalize better on the
test set. This further demonstrates the utility of
ensembles on the task.

5 Sub-Task C Models

Sub-Task C is 3-way classification, with 2 minor-
ity classes. Again, we run all our classifiers with
unigram and bigram combinations across all sam-
pling methods (including no sampling) on this im-
balanced dataset. In addition, we use 4 differ-
ent configurations to generate samples for each
of the two minority classes to obtain 4 balanced
datasets. C1 is created with random oversam-
pling of the two minority classes; C2 is created
with synthetic oversampling of the two minority
classes; C3 is created with random oversampling
of minority class group (GRP) and synthetic over-
sampling of minority class other (OTH); and C4 is
random oversampling of minority class OTH and
synthetic oversampling of minority class GRP.

We report our best results in Table 5, with two
baselines: Baseline 1 is the majority class in train-
ing data and Baseline 2 is our best model with-
out sampling (a logistic regression classifier). Our
best model on C2 is a logistic regression classi-
fier, whereas our best models on C1, C3, and C4
are acquired with the same soft voting ensemble in
Table 4 (an ensemble of logistic regression, Ad-
aBoost, and XGBoost).

Our next step is to investigate whether we can
further improve performance by averaging classi-
fication probabilities of models described in Table
5. The result of this iteration is shown in Table 6.
Models in Table 6 are the 3 models we submitted
to the SemEval-2019 competition, which are as

4
778

Dataset Models Targeted Untargeted

Precision Recall F1 Precision Recall F1 Macro
F1 score

DEV
XGBoost (SMOTE) 0.90158 0.95742 0.92866 0.42105 0.22857 0.2963 0.61248

Model A 0.90945 0.89419 0.90176 0.30508 0.34286 0.32287 0.61231
Model B 0.94065 0.90447 0.9222 0.26667 0.37838 0.31285 0.61753

TEST
XGBoost (SMOTE) 0.9004 0.9765 0.9369 0.4444 0.1481 0.2222 0.57958

Model A 0.9378 0.9202 0.9289 0.4516 0.5185 0.4828 0.70583
Model B 0.9079 0.9718 0.9388 0.5000 0.2222 0.3077 0.62323

Table 4: Sub-Task B: Best ensemble model results. We reproduce XGBoost results from Table 3 for comparison.

Sampling Type Best Model Macro F1

NA NA Baseline-1 0.21300
NA Baseline-2 0.51580

Sampling

C1 Model 1 0.56822
C2 Log Reg 0.54319
C3 Model 1 0.54665
C4 Model 1 0.56216

Table 5: Sub-Task C: Best results with various sam-
pling methods.

follows: Model 1: our best model with C1; Model
2: a prediction based on the average of classifica-
tion probabilities of the best classifiers on C1, C2,
and C4; Model 3: the prediction acquired from the
average of tag probabilities of the best classifiers
on C1 and C4. Table 6 shows that performance of
all the models on the dev set is very comparable,
with model 3 performing slightly better than the
two other models. Similarly, results of the three
models are not very different on the competition
test set.

6 Model Analysis

In order to further understand the results on the
test set, we investigate the predictions made by our
models across the two sub-tasks. For the purpose,
we provide simple visualizations of the confusion
matrices of predictions acquired by our best mod-
els as released by organizers.

Sub-Task B. Figure 1 shows that our model has
higher precision for the targeted threats, which is
also clear from Table 4 presented earlier. Figure
1 also shows that our model has slightly higher
false negatives as compared to false positives. In
other words, the chances of our model mislabeling
a targeted tweet as untargeted is slightly higher
as compared to predicting an untargeted tweet as
targeted.

Sub-Task C We visualize model errors in Fig-
ure 2. Figure 2 shows that our model has

Figure 1: Confusion matrix of soft voting
ensemble model (Model A in Table 4) for Sub-Task B.

Figure 2: Confusion matrix of soft voting
ensemble model (Model 1 in Table 6) for Sub-Task C.

5
779

Dataset Models GRP IND OTH Macro F1 score

DEV
Model 1 0.60538 0.82476 0.27451 0.56822
Model 2 0.61504 0.8204 0.28931 0.57492
Model 3 0.61207 0.8203 0.29577 0.57605

TEST
Model 1 0.7101 0.8116 0.2400 0.58722
Model 2 0.686 0.8098 0.2041 0.56663
Model 3 0.6946 0.819 0.2449 0.58619

Table 6: Sub-Task C: Results of our 3 final submitted models

higher precision for the group (GRP) and individ-
ual (IND) categories, but only higher recall for
the other (OTH) class. Again, this means that the
chances of our model predicting a GRP tweet or
IND tweet as OTH is much higher as compared
to OTH tweet being predicted as IND or GRP. In
other words, the model is biased towards predict-
ing one of the two categories GRP and IND

7 Conclusion

In this paper, we described our contributions to Of-
fenseEval, the 6th shared task of SemEval-2019
. We explored the effectiveness of different sam-
pling techniques and ensembling methods com-
bined with different classical and boosting ma-
chine learning algorithms. We find simple data en-
hancement approaches (i.e., sampling techniques)
to work well, especially when coupled with the
right ensemble methods. In general, ensemble
models decrease errors by leveraging the differ-
ent strengths of the various underlying models and
hence are useful in absence of balanced data.

8 Acknowledgement

We acknowledge the support of the Natural
Sciences and Engineering Research Council of
Canada (NSERC) and the Social Sciences Re-
search Council of Canada (SSHRC). The re-
search was partially enabled by WestGrid (www.
westgrid.ca) and Compute Canada (www.
computecanada.ca).

References
Ali Alshehri, AlMoetazbillah Nagoudi, Alhuzali Has-

san, and Muhammad Abdul-Mageed. 2018. Think
before your click: Data and models for adult content
in arabic twitter. The 2nd Text Analytics for Cyber-
security and Online Safety (TA-COS-2018), LREC.

Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and
Maria Carolina Monard. 2004. A study of the be-
havior of several methods for balancing machine

learning training data. SIGKDD Explor. Newsl.,
6(1):20–29.

Nitesh V Chawla. 2009. Data mining for imbalanced
datasets: An overview. In Data mining and knowl-
edge discovery handbook, pages 875–886. Springer.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Nadia FF Da Silva, Eduardo R Hruschka, and Este-
vam R Hruschka Jr. 2014. Tweet sentiment analy-
sis with classifier ensembles. Decision Support Sys-
tems, 66:170–179.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
In Eleventh International AAAI Conference on Web
and Social Media.

Vinodhini Gopalakrishnan and Chandrasekaran Ra-
maswamy. 2014. Sentiment learning from imbal-
anced dataset: an ensemble based method. Int. J.
Artif. Intell, 12(2):75–87.

Yijing Li, Haixiang Guo, Qingpeng Zhang, Mingyun
Gu, and Jianying Yang. 2018. Imbalanced text sen-
timent classification using universal and domain-
specific knowledge. Knowledge-Based Systems,
160:1–15.

Alexander Liu, Joydeep Ghosh, and Cheryl E Martin.
2007. Generative oversampling for mining imbal-
anced datasets. In DMIN, pages 66–72.

Sharon L Lohr. 2009. Sampling: design and analysis.
Nelson Education.

Inderjeet Mani and I Zhang. 2003. knn approach to un-
balanced data distributions: a case study involving
information extraction. In Proceedings of workshop
on learning from imbalanced datasets, volume 126.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018. Detecting offensive tweets in
hindi-english code-switched language. In Proceed-
ings of the Sixth International Workshop on Natural
Language Processing for Social Media, pages 18–
26.

6
780

Asmaa Mountassir, Houda Benbrahim, and Ilham
Berrada. 2012. Addressing the problem of unbal-
anced data sets in sentiment analysis. In KDIR,
pages 306–311.

Nazlia Omar, Mohammed Albared, Adel Qasem Al-
Shabi, and Tareq Al-Moslmi. 2013. Ensemble of
classification algorithms for subjectivity and senti-
ment analysis of arabic customers’ reviews. Interna-
tional Journal of Advancements in Computing Tech-
nology, 5(14):77.

Aytuğ Onan, Serdar Korukoğlu, and Hasan Bulut.
2016. Ensemble of keyword extraction methods and
classifiers in text classification. Expert Systems with
Applications, 57:232–247.

Georgios K Pitsilis, Heri Ramampiaro, and Helge
Langseth. 2018. Detecting offensive language
in tweets using deep learning. arXiv preprint
arXiv:1801.04433.

Shuo Wang and Xin Yao. 2009. Diversity analysis
on imbalanced data sets by using ensemble models.
In 2009 IEEE Symposium on Computational Intelli-
gence and Data Mining, pages 324–331. IEEE.

Rui Xia, Chengqing Zong, and Shoushan Li. 2011. En-
semble of feature sets and classification algorithms
for sentiment classification. Information Sciences,
181(6):1138–1152.

Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and
Carolyn Rose. 2012. Detecting offensive tweets
via topical feature discovery over a large scale twit-
ter corpus. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge
management, pages 1980–1984. ACM.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

7
781

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 782–787
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UHH-LT at SemEval-2019 Task 6: Supervised vs. Unsupervised
Transfer Learning for Offensive Language Detection

Gregor Wiedemann Eugen Ruppert* Chris Biemann
Language Technology Group / *Base.Camp

Department of Informatics
University of Hamburg, Germany

{gwiedemann, ruppert, biemann}@informatik.uni-hamburg.de

Abstract

We present a neural network based approach
of transfer learning for offensive language de-
tection. For our system, we compare two types
of knowledge transfer: supervised and unsu-
pervised pre-training. Supervised pre-training
of our bidirectional GRU-3-CNN architecture
is performed as multi-task learning of parallel
training of five different tasks. The selected
tasks are supervised classification problems
from public NLP resources with some over-
lap to offensive language such as sentiment
detection, emoji classification, and aggressive
language classification. Unsupervised transfer
learning is performed with a thematic cluster-
ing of 40M unlabeled tweets via LDA. Based
on this dataset, pre-training is performed by
predicting the main topic of a tweet. Results
indicate that unsupervised transfer from large
datasets performs slightly better than super-
vised training on small ‘near target category’
datasets. In the SemEval Task, our system
ranks 14 out of 103 participants.

1 Introduction

The automatic detection of hate speech, cyberbul-
lying, abusive, aggressive or offensive language
has become a vital field of research in natural lan-
guage processing (NLP) during recent years. Es-
pecially in social media, the tone of conversations
escalates in a disturbing way that often threatens
a free, democratic and argumentative discourse of
users. Concerning the tremendous amount of digi-
tal texts posted on platforms such as Twitter, Face-
book or in comments sections of online newspa-
pers, automatic approaches to offensive language
detection are of high relevancy for moderation and
filtering of content as well as for studying the phe-
nomenon of offensive language use in social me-
dia at large scale.

To take account of this development, a shared
task on ”offensive language detection” was con-

ducted at the SemEval 2019 workshop. This paper
describes our approach to the shared task 6 (Of-
fensEval) as organized and described in detail by
Zampieri et al. (2019b). The task contains three hi-
erarchically ordered sub-tasks: Task A requires a
classification of tweets into either offensive (OFF)
or not offensive (NOT), Task B subdivides all of-
fensive tweets into either targeted insults (TIN) or
generally offensive expressions not targeted to any
specific entity (UNT), and Task C finally asks to
assign one out of three specific target labels to all
targeted insults: groups (GRP, e.g. ethnic groups),
individuals (IND, e.g. a politician or a specific
Twitter user), or other (OTH, e.g. the media in-
dustry). The dataset consisting of 14,100 exam-
ples (13,240 in the training set, 860 in the test set)
was annotated via crowdsourcing (Zampieri et al.,
2019a). Each tweet was labeled by at least two an-
notators who must reach an agreement of at least
66% for including the tweet in the dataset. The
dataset is characterized by a high imbalance of la-
bel distributions, especially for Tasks B and C.

There are several challenges for automatic of-
fensive language detection that render simple
dictionary-based approaches unusable. First, label
distribution in the dataset is highly skewed for all
sub-tasks. Although offensive language is a grow-
ing problem for social media communication, it
still accounts for only a small fraction of all con-
tent posted. Second, language characteristics in
social media pose a severe challenge to standard
NLP tools. Misspellings, slang vocabulary, emoti-
cons and emojis, as well as ungrammatical punc-
tuation must be taken into account for a success-
ful solution. Third, offensive language is highly
context-dependent. For instance, swear words are
often used to mark overly positive emotion (“This
is fucking great!!!”), and actually neutral and de-
scriptive sentences can be conceived as derogatory
if they refer to a specific individual (“@Barack-

782

Obama he is a Muslim”).
Our approach to the OffensEval shared task is

based on two main contributions: First, we in-
troduce a BiGRU-3CNN neural network architec-
ture in combination with pre-trained sub-word em-
beddings that are able to handle social media lan-
guage robustly. Second, we investigate two types
of knowledge transfer: supervised and unsuper-
vised pre-training. Supervised pre-training of our
neural network architecture is performed as multi-
task learning of parallel training of five different
NLP tasks with some overlap to offensive lan-
guage detection. Unsupervised transfer learning
is performed with a thematic clustering of a large
dataset of unlabeled tweets via LDA. After shortly
referencing related work (Section 2), we introduce
both approaches in detail in Section 3 and present
the results in Section 4.

2 Related Work

Two recent survey papers, Schmidt and Wiegand
(2017) and Fortuna and Nunes (2018), summa-
rize the current state of the art in offensive lan-
guage detection and related tasks such as hate
speech or abusive language detection. Specifi-
cally for offensive language detection, the paper
by Davidson et al. (2017) introduced a publicly
available dataset which was reused in (Malmasi
and Zampieri, 2017, 2018; ElSherief et al., 2018;
Zhang et al., 2018) as well as in our approach of
supervised pre-training.

A predecessor of our transfer learning approach
has already successfully been applied at GermEval
2018 (Wiegand et al., 2018), a shared task on of-
fensive language detection in German language
tweets. In our paper (Wiedemann et al., 2018), we
tested different types of knowledge transfer and
transfer learning strategies. We further found that
latent semantic clusters of user handles in tweets
(e.g. user accounts run by media companies or
politicians) are a very helpful feature to predict of-
fensive language since they provide valuable con-
text information how to interpret otherwise am-
biguous tweets. Unfortunately, this feature can-
not be used for the SemEval 2019 Task 6 since
user mentions have all been unified to the token
‘@USER’ in the training data. Thus, we base our
approach on the best performing transfer learning
strategy from Wiedemann et al. (2018) but imple-
ment several minor improvements, which will be
described in detail in the following.

Input
(sub word embeddings)

Bi-GRU (100 units)

CNN
(200 units,
kernel=3)

CNN
(200 units,
kernel=4)

CNN
(200 units,
kernel=5)

Global
Max-

Pooling

Global
Max-

Pooling

Global
Max-

Pooling

Dense
(100 units)

Dense
(n units)

1

2

3

4

Figure 1: BiGRU-3-CNN model architecture. We use
a combination of recurrent and convolutional cells for
learning. As input, we rely on (sub-)word embeddings.
Dashed lines indicate dropout with rate 0.5 between
layers. The last dense layer contains n units for pre-
diction of the probability of each of the n classification
labels per sub-task.

3 Methodology

We utilize a neural network architecture for text
classification with randomly initialized weights as
a baseline, and together with two types of pre-
training layer weights for transfer learning: super-
vised and unsupervised pre-training. Evaluation
for model selection is performed via 10-fold cross-
validation to determine submission candidates for
the SemEval shared task.

Preprocessing: Tweets are tokenized with an
extended version of the NLTK (Bird et al., 2009)
tweet tokenizer. In addition to correct tokenization
of emoticons and shortening of repeated character
sequences (e.g. ‘!!!!!!’) to a maximum length of
three, we separate # characters as individual token

783

from hashtags. If hashtags contain camel casing,
we split them into separate tokens at each upper-
case letter occurrence (e.g. ’#DemocratsForPeace’
is tokenized into ’# democrats for peace’). Finally,
all tokens are reduced to lower case. In order to
account for atypical language, we use sub-word
embeddings to represent the input of token se-
quences to our model. FastText embeddings (Bo-
janowski et al., 2017) are derived from character
n-grams and, thus, provide meaningful word vec-
tors even for words unseen during training, mis-
spelled words and words specifically used in the
context of social media such as emojis. We uti-
lize a pre-trained model for the English language
published by Bojanowski et al. (2017).

Model architecture: We employ a neural net-
work architecture implemented with the Keras
framework for Python1 as shown in Fig. 1. It com-
bines a bi-directional Gated Recurrent Unit (GRU)
layer (Cho et al., 2014) with 100 units followed
by three parallel convolutional layers (CNN), each
with a different kernel size k ∈ 3, 4, 5, and a filter
size 200. The outputs of the three CNN blocks are
reduced by global max-pooling and concatenated
into a single vector. This vector is then fed into
a dense layer with LeakyReLU activation produc-
ing a final feature vector of length 100, which is
forwarded into the prediction layer (softmax acti-
vation). For regularization, dropout is applied to
the recurrent layer and to each CNN block after
global max-pooling (dropout rate 0.5). For train-
ing, we use categorical cross-entropy loss and the
Nesterov Adam optimization with a learning rate
of 0.002. To account for imbalance in the train-
ing set, we set class weights to pay more attention
to samples from the under-represented class in the
loss function.

Supervised Pre-training: Instead of end-to-end
text classification based on a random initialization
of the parameters weights of our model, we seek
to increase performance from knowledge trans-
fer. For the supervised approach, we pre-train
the model weights in a multi-task learning setup
with related semantic categories. Instead of one
prediction layer (see layer 4 in Fig. 1), we use
m prediction layers connected to layer 3 to train
m tasks in parallel. The following four publicly
available datasets were compiled into one train-
ing set: offensive language tweets by (Davidson

1https://keras.io

et al., 2017), flamewar comments from the Ya-
hoo news annotated corpus (Napoles et al., 2017),
sentiments of tweets from (Go et al., 2009), ag-
gressive tweets and Facebook comments from the
TRAC shared task (Kumar et al., 2018). A fifth
dataset was compiled from about 30,000 randomly
sampled tweets in our unsupervised background
collection (see next Section) containing either a
happy or an angry emoji. The merged dataset con-
tains ca. 115k partially labeled instances for pre-
training from which a sample of 5k was used as
validation set. Missing labels for the combined set
were filled by training a separate model for each
of the m individual tasks on the respective dataset
and predict a label for each instance in the other
four datasets. Multi-task pre-training is performed
with a batch-size of 256 for 15 epochs.

Unsupervised Pre-training: For the unsuper-
vised approach, we utilize a large background cor-
pus of tweets that were collected from the Twit-
ter streaming API in 2018. Since the API pro-
vides a random fraction of all tweets (1%), lan-
guage identification is performed to filter for En-
glish tweets only. From this tweet collection, we
sample 20 million non-duplicate tweets containing
at least two non-URL tokens as our background
corpus. As a pre-training task, we first compute
a Latent Dirichlet Allocation (LDA) model (Blei
et al., 2003) with K = 1, 000 topics to obtain se-
mantic clusters of our background corpus.2 From
the topic-document distribution of the resulting
LDA model, we determine the majority topic id
for each tweet as a target label for prediction dur-
ing pre-training our neural model. Pre-training of
the neural model is performed with a batch-size of
256 for 10 epochs.

Transfer learning: Once the neural model has
been pre-trained, we can apply it for learning our
actual target task. For this, we need to remove
the final prediction layer of the pre-trained model
(i.e. Layer 4 in Fig. 1) and add a new dense layer
for prediction of one of the actual label sets. To
prevent the effect of “catastrophic forgetting” of
pre-trained knowledge during task-specific model
training, we apply a specific layer weight freez-
ing strategy as suggested in Wiedemann et al.
(2018). First, the newly added final prediction
layer is trained while all other model weights re-

2For LDA, we used Mallet (http://mallet.cs.
umass.edu) with Gibbs Sampling for 1,000 iterations and
priors α = 10/K and β = 0.01.

784

Task No transfer Supervised Unsupervised
A 76.26 77.46 77.36
B 58.87 61.24 60.57
C 56.66 54.16 58.26

Table 1: Model selection (cross-validation, macro-F1)

main frozen. Training is conducted for 15 epochs.
After each epoch performance is tested on the vali-
dation set. The best performing model state is then
used in the next step of fine-tuning the pre-trained
model layers. Employing a bottom-up strategy,
we unfreeze the lowest layer (1) containing the
most general knowledge first, then we continue
optimization with the more specific layers (2 and
3) one after the other. During fine-tuning of ev-
ery single layer, all other layers remain frozen and
training is performed again for 15 epochs select-
ing the best performing model at the end of each
layer optimization. In a final round of fine-tuning,
all layers are unfrozen.

Ensemble: For each sub-task A, B and C, the
cross-validation results in 10 best performing
models from transfer learning per configuration.
For submission to the shared task, we select
the model with the highest average performance
across all folds. Moreover, as a simple ensem-
ble classification, predictions of these 10 models
on the test set instances are combined via majority
vote.

4 Results

Model selection: To compare different types of
pre-training for knowledge transfer, we use the of-
ficial shared task metric macro-averaged F1. Ta-
ble 1 displays the averaged results of 10-fold
cross-validation for all three tasks with no transfer
as baseline compared to supervised transfer from
multi-task learning and pre-training on unsuper-
vised LDA clustering. The results indicate that
transfer learning is able to improve performance
for offensive language detection for all tasks. With
the exception of supervised transfer for task C, the
relative improvements are larger the smaller the
training datasets get for each of the hierarchically
ordered tasks. In general, for the lower level tasks
B and C, a severe performance drop can be ob-
served compared to task A.

The comparison between unsupervised and su-
pervised pre-training delivers a mixed result.
While the performance of the supervised trans-

System F1 (macro) Accuracy
Task A

All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Supervised 0.7887 0.8372
Unsupervised 0.7722 0.8337

Task B
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
Unsupervised 0.6608 0.8917

Task C
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
Unsupervised 0.5752 0.6761

Table 2: Official test set performance results

fer approach slightly exceeds the unsupervised ap-
proach for task A and B, for task C, containing
only very small numbers of positive examples for
each class in the training dataset, the unsupervised
approach clearly beats the network pre-training by
supervised near-target category tasks. Supervised
transfer even fails to beat the baseline of no trans-
fer learning at all. We assume that this type of
pre-training tends to over-fit the model if there is
only little training data to learn from. Unsuper-
vised pre-training on very large datasets, in con-
trast, better captures generic language regularities
which is beneficial for arbitrary categories.

Shared task submissions: Table 2 displays our
best official results of ensemble classifications
submitted to the shared tasks A, B, and C. A sys-
tematic comparison between the two compared
approaches of pre-training would have required
submission of two classifications per sub-task,
one for supervised and one for unsupervised pre-
training. Unfortunately, the official shared task
website only allowed for three submissions per
sub-task3. This policy led to the decision to submit
only variations / repeated runs of the best classifier
we had until the task submission deadline.

Our supervised pre-training approach ranks 14
out of 103 for sub-task A. For sub-tasks B and
C, only classifiers pre-training with the unsuper-
vised approach have been submitted. They rank
21 out of 75 for B, and 13 out of 65 for C (see

3Also, the official test set was not released yet, so we can-
not report a systematic comparison at this point.

785

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

566 54

86 154

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Sub-task A, supervised

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

206 7

19 8

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 3: Sub-task B, unsupervised

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

60 12 6

15 77 8

19 9 7

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Sub-task C, unsupervised

Zampieri et al. (2019b) for a detailed comparison
of all submissions). Fig. 2 to 4 show confusion
matrices for the three best runs. The ratio be-
tween false positives and false negatives for sub-
task A is fairly balanced. False positives mainly
comprise hard cases where, for instance, swear
words are used in a non-offensive manner. In
the highly unbalanced annotations for sub-task B,
more tweets were wrongly predicted as targeted
insults than true yet unpredicted targeted insults.
Here we observe many cases which contain offen-
sive language and some mentioning of individu-
als or groups but both are not directly linked. A
similar situation, where actually characteristics of
two categories are contained in a tweet, can be ob-
served for task C in which the classifier falsely
predicts a group target instead of ‘other’.

5 Conclusion

We systematically compared to types of knowl-
edge transfer for offensive language detection:
supervised and unsupervised pre-training of a
BiGRU-3-CNN neural network architecture. The
former uses a set of near-target category labeled
short texts while the latter relies on a very large
set of unlabeled tweets. On average, our system
performs among the top 20% of all submissions
of the OffensEval 2019 shared task. From our ex-
periments, we can draw the following three main
conclusions:

• Supervised pre-training with annotated near-
target category data is beneficial if the target
training data is fairly large.

• Unsupervised pre-training with unlabeled
data from LDA clustering processes im-
proves learning for arbitrary tasks even for
fairly small target training datasets.

• For unsupervised pre-training, the benefit of
transfer learning compared to the baseline
without transfer is larger the smaller the tar-
get training dataset gets.

In future work, we plan to further investigate
the differences between the two types of transfer
learning by systematically investigating the influ-
ence of different near-target category datasets, and
unsupervised topic clustering methods other than
LDA for pre-training deep neural network archi-
tectures.

References

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python: An-
alyzing Text with the Natural Language Toolkit.
O’Reilly.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. ACL.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of the 11th International AAAI Con-
ference on Web and Social Media (ICWSM), pages
512–515, Montreal, Canada. AAAI.

786

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85:1–85:30.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12):1–6.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), pages 1–11, Santa Fe, NM, USA.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the 2017 International Conference Recent Ad-
vances in Natural Language Processing (RANLP),
pages 467–472, Varna, Bulgaria. ACL.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Courtney Napoles, Joel Tetreault, Enrica Rosata, Brian
Provenzale, and Aasish Pappu. 2017. Finding Good
Conversations Online: The Yahoo News Annotated
Comments Corpus. In Proceedings of The 11th Lin-
guistic Annotation Workshop, pages 13–23, Valen-
cia, Spain. ACL.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media., pages 1–10, Valencia, Spain.
ACL.

Gregor Wiedemann, Eugen Ruppert, Raghav Jindal,
and Chris Biemann. 2018. Transfer Learning from
LDA to BiLSTM-CNN for Offensive Language De-
tection in Twitter. In Proceedings of GermEval Task
2018, 14th Conference on Natural Language Pro-
cessing (KONVENS), pages 85–94, Vienna, Austria.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval Task 2018, 14th
Conference on Natural Language Processing (KON-
VENS), pages 1–10, Vienna, Austria.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offen-
sive Posts in Social Media. In Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistics
(NAACL), Minneapolis, MN, USA.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval), Min-
neapolis, MN, USA. ACL.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
The Semantic Web (ESWC 2018), pages 745–760,
Iraklio, Greece. Springer.

787

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 788–795
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UM-IU@LING at SemEval-2019 Task 6: Identifying Offensive Tweets
Using BERT and SVMs

Jian Zhu
Department of Linguistics

University of Michigan
Ann Arbor, MI, USA

lingjzhu@umich.edu

Zuoyu Tian
Department of Linguistics

Indiana University
Bloomington, IN, USA
zuoytian@iu.edu

Sandra Kübler
Department of Linguistics

Indiana University
Bloomington, IN, USA

skuebler@indiana.edu

Abstract
This paper describes the UM-IU@LING’s sys-
tem for the SemEval 2019 Task 6: OffensEval.
We take a mixed approach to identify and cate-
gorize hate speech in social media. In subtask
A, we fine-tuned a BERT based classifier to
detect abusive content in tweets, achieving a
macro F1 score of 0.8136 on the test data, thus
reaching the 3rd rank out of 103 submissions.
In subtasks B and C, we used a linear SVM
with selected character n-gram features. For
subtask C, our system could identify the tar-
get of abuse with a macro F1 score of 0.5243,
ranking it 27th out of 65 submissions.

1 Introduction

With the increased influence of social media on
modern society, large amounts of user-generated
content emerge on the internet. Besides the ex-
change of ideas, we also see an exponential in-
crease of aggressive and potentially harmful con-
tent, for example, hate speech. If we consider the
amount of user-generated data, it is impractical
to manually identify the malicious speech. Thus
we need to develop methods to detect offensive
speech automatically through computational mod-
els. However, this task is challenging because nat-
ural language is fraught with ambiguities, and lan-
guage in social media is extremely noisy. Here
we present our method to automatically identify-
ing offensive content in tweets.

We primarily focus on detecting whether a
tweet contains offensive content or not (subtask
A), and then determining the target of the offen-
sive content (subtask C). For subtask A, we use
pre-trained word embeddings by fine-tuning the
BERT model (Devlin et al., 2018) for detecting of-
fensive tweets. For subtasks B and C, BERT did
not perform well, either because of limited train-
ing data or because we did not find the appropriate
hyperparameters. Thus we use an SVM classifier

with character n-grams as features. We acciden-
tally flipped the predicted labels in our submission
to subtask B, which is why we do not report results
of subtask B here. Among all teams participating
in OffensEval, our models ranks 3rd out of 103 on
subtask A and 27th out of 65 on subtask C. (see
Zampieri et al., 2019b).

2 Related Work

Detecting offensive language online is becom-
ing more and more important (Schmidt and Wie-
gand, 2017; Founta et al., 2018; Malmasi and
Zampieri, 2018). To build an effective classi-
fier, one of the major problems is to find the ap-
propriate features. Normally, two types of fea-
tures are utilized: surface features like n-grams
and word representations trained by neural net-
work. Most offensive language classifiers are
trained on different types of surface features with
approaches like SVM (Malmasi and Zampieri,
2018; Arroyo-Fernández et al., 2018), Random
Forest (Burnap and Williams, 2015), and Logis-
tic Regression (Davidson et al., 2017). Recently,
word embeddings trained in neural networks have
been shown to achieve good performance in offen-
sive language identification tasks (Badjatiya et al.,
2017). Benchmarks of the first shared task on ag-
gression identification (Kumar et al., 2018) show
that half of the top 15 systems are trained on neural
networks.

Using pre-trained word embeddings for feature
extraction has been shown to be highly effective in
multiple NLP tasks. Traditional word embeddings
are extracted from shallow neural networks trained
on a large swathes of texts required to learn the
contextual representations of words. Examples in-
clude skip-grams (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014). However, these embed-
dings are learned from an aggregation of all possi-

788

ble word contexts, which may gloss over semantic
nuances in representations.

Recent models like ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018) significantly ad-
vanced the state-of-the-art in language modeling
by learning context-sensitive representations of
words. ELMo goes beyond word embeddings by
learning representations that are functions of the
entire input sentence (Peters et al., 2018). How-
ever, ELMo is still considered shallow with two
bidirectional LSTM layers, and more recent trans-
former based language models such as the OpenAI
Generative Pre-trained Transformer (GPT) (Rad-
ford et al., 2018) and Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2018) have been extended to a depth of
up to twelve layers. The OpenAI GPT is still
a unidirectional language model while BERT is
trained to be bidirectional with two novel predic-
tion tasks, Masked LM and Next Sentence Pre-
diction. The pre-trained BERT model has been
shown to give significant improvements in a se-
ries of downstream tasks over ELMo and OpenAI
GPT (Devlin et al., 2018).

However, identifying offensive language is not
a simple task. Challenges during identification in-
clude but are not limited to the fact that surface
language features fail to capturing subtle semantic
difference, and the shortage of undisputed anno-
tated data (Malmasi and Zampieri, 2018). Most of
previous studies focus on distinguishing between
offensive and non-offensive language (Kwok and
Wang, 2013; Djuric et al., 2015), which is the goal
of subtask A in the current shared task. But part
of challenge consists of the intertwined nature of
such messages having negative connotations and
profanity. Dinakar et al. (2011) show that it is im-
portant to tease these two factors apart. Malmasi
and Zampieri (2018) first address the issue of dis-
tinguishing hate speech from general profanity.

3 Methodology and Data

The subtasks in the shared task are rather differ-
ent. In subtask A, the goal is to identify offensive
tweets; in subtask B and C, the aim is to distin-
guish targeted and untargeted offense and to clas-
sify the targeted ones into different types. Subtask
A requires sensitivity to subtle changes in word
meaning in context while the other subtasks are
more categorical in nature. However, both suffer
from data sparsity. Therefore, we decided, backed

by empirical validation on the trial data, to utilize
different methods for the subtasks, namely, BERT
embeddings for subtask A, and an SVM classifier
for subtasks B and C.

The data collection method used to compile the
dataset in OffensEval is described by Zampieri
et al. (2019a). We used the official training data
and trial data provided by the shared task to train
the classifier. Our implmentations can be found at:
https://github.com/zytian9/SemEval-2019-Task-6.

3.1 Subtask A: Identifying Abusive Content

The goal of subtask A is to identify whether
a tweet contains offensive content by training a
model to perform binary classification. There are
13,240 tweet instances in the training data, in
which each instance has been labeled as either ’of-
fensive’ (’OFF’) or ’not offensive’ (’NOT’). The
model takes a tweet as input and predicts the cor-
responding label of that tweet. We used the trial
data as development data.

3.1.1 Model Details
For subtask A, we trained a classifier by fine-
tuning a pre-trained BERT Transformer (Devlin
et al., 2018) with a linear layer for text sequence
classification on top.

The input sentences1 were first tokenized with
the BERT basic tokenizer to perform punctuation
splitting, lower casing and invalid characters re-
moval. Then this was followed by WordPiece tok-
enization (Wu et al., 2016) to split words into sub-
word units, in accordance with the original BERT
approach (Devlin et al., 2018). The maximum se-
quence length was defined as 80, with shorter se-
quences padded and longer sequences truncated to
this length. The order of the input sequence was
represented by the learned positional embeddings.
The input representation for each tweet is the sum
of these token, segment, and position embeddings.
As only one sentence serves as input, only the sen-
tence A embeddings are used as the segment em-
beddings (Devlin et al., 2018).

We selected the BERTbase-uncased as the under-
lying BERT model. The BERTbase consists of
12 Transformer blocks, 12 self-attention heads,
and 768 hidden dimension with a total parame-
ters of 110M. It was trained on the BookCorpus
(800M words) and the English Wikipedia (2,500M

1In BERT, a “sentence” can be a text sequence of arbitrary
length. In our case, a “sentence” refers to a tweet even if it
may span multiple linguistic sentences.

789

words). Though the BERTlarge model was reported
to outperform the BERTbase in a variety of tasks,
training and fine tuning BERTlarge was too com-
putationally intensive given the time limit. Thus
we used BERTbase for accelerated training. The
BERTbase model includes a special classification
embedding [CLS] at the beginning of every sen-
tence, and this token in the final layer was ex-
tracted as the aggregate sequence representation
for the current classification task. Then a lin-
ear layer of 768 dimensions was added on top of
BERTbase, using the [CLS] embeddings of the
whole input sequence to predict a binary label. Bi-
nary cross-entropy was used as the loss function to
fine-tune the classifier.

3.1.2 Implementation
The neural network was implemented in Py-
Torch (Paszke et al., 2017), and we used the
tokenizer, pretrained WordPiece, and positional
embeddings and pre-trained BERT from the li-
brary pytorch-pretrained-bert2. Fol-
lowing the recommendation for fine-tuning in the
original BERT approach (Devlin et al., 2018), we
trained our classifier with a batch size of 32 for 2
epochs. The dropout probability was set to 0.1 for
all layers. Adam optimizer was used with a learn-
ing rate of 2e-5. The training was carried out on an
Nvidia 1070Ti GPU; only taking about 6 minutes
in total.

3.2 Subtask B: Categorizing Offense Types
For subtasks B and C, we adopted an SVM clas-
sifier. For these two tasks, the BERT classifier
performed close to the baseline on the trial data.
This could be caused by the limited amount of the
training data for these two tasks or inappropriate
selection of hyperparameters. Thus, we built a lin-
ear SVM classifier to identify the offense type and
target.

Subtask B requires the distinction between tar-
geted and untargeted offense. We used an SVM
classifier with selected character n gram features
for subtask B. For the trial data of subtask B, the
classifier achieved a macro F1 score of 0.5333 and
accuracy of 0.5714; both of them considerably
higher than the baseline. But since the labels of
two classes were accidentally flipped in our sub-
mission, our results were not competitive. We also
reconstructed test F1 from the flipped confusion

2https://github.com/huggingface/pytorch-pretrained-
BERT

matrix. If the labels were not flipped, the test F1

should be 0.5946.

3.3 Subtask C: Identifying the Target of
Abuse

Subtask C requires the classifier to identify three
types of offense target, ’Individual’ (’IND’),
’Group’(’GRP’) and ’Other’(’OTH’). The training
set is rather imbalanced: The minority class OTH
constitutes around 10 percent of all the instances,
and only occurs once in the trial data. We origi-
nally were planning to use the same approach as
for subtasks A. However, experiments on the trial
data showed a weak performance. For this reason,
we decided to use a linear SVM classifier to iden-
tify the offense target with three sub-classes since
previous studies indicate that SVM classifiers per-
form well on classification tasks and at par with
deep neural networks when features are well se-
lected (Founta et al., 2018; Kumar et al., 2018).
For this classifier, we used the Scikit-learn (Pe-
dregosa et al., 2011) implementation, and we used
only the training data provided by the shared task.

3.3.1 Model Details

Given that character-level n-gram could reduce
the effect of spelling errors and variations in
tweets (Schmidt and Wiegand, 2017), we used a
bag of character n-grams (with n ranging from
2 to 7 characters) as features in order to charac-
terize the users’ language features as robustly as
possible. Since in subtask C, we need to iden-
tify different types of offense target, we assume
that named entity information will be effective for
identifying target types. Named entities informa-
tion was extracted by spaCy, which is based on
the entity types from OntoNotes 5 corpus3. Given
that this task aims to identify three types of tar-
gets, namely individual, group and other, we used
the named entity information by classifying all the
entity types into three major types and counting
the number of each type separately. The first type
only includes PERSON entities, the second type
consists of entity types related to a group sense,
for example ORG, NORG, and GPE, and the last
type includes all occurrences of the other entity
types.

Nobata et al. (2016) found that linguistic fea-
tures such as tweet length, average word length,

3https://spacy.io/api/annotation#
named-entities

790

System F1 macro Accuracy
All OFF baseline 0.2182 0.2790
All NOT baseline 0.4189 0.7209
BERTbase-uncased 0.8136 0.8570

Table 1: The official UM-IU@LING result for subtask
A, in comparison to the baselines.

System F1 macro Accuracy
All OFF baseline 0.1934 0.2399
All NOT baseline 0.4319 0.7601
SVMcharacter-ngram 0.8267 0.8782
BERTbase-uncased 0.8388 0.8722
BERTbase-cased 0.8094 0.8500
BERTbase-multiling-unc. 0.4300 0.7625
BERTbase-multiling-cased 0.8179 0.8718

Table 2: Results on the trial data for subtask A.

number of punctuation, number of discourse con-
nectives can be useful for detecting abusive lan-
guage. In this study, we adopt 9 features from
their work. Besides the n-gram features, named
entity, and linguistic features, we also adopted
emoji and emoticons as additional features, which
have been shown to be useful in sentiment analysis
tasks (Kouloumpis et al., 2011; Shiha and Ayvaz,
2017). Emoticons are extracted using the s regu-
lar expressions by C. Potts4. We also added three
emoji sentiment features, which consist of the pos-
itive, negative, and overall sentiment scores based
on the Emoji Sentiment Ranking (Novak et al.,
2015).

We performed feature selection for the n-gram
features using a filtering approach with informa-
tion gain, which has proven to be effective in so-
cial media sentiment classification (Kübler et al.,
2018).

Our final submission is a linear SVM clas-
sifier (C=0.1, squared-hinge loss function) with
1000 selected character n-grams of length 2-7.
Adding linguistic and emoji features resulted in
small gains on the trial data and was that not con-
sidered useful for the official version.

4 Results

4.1 Subtask A

Our best result for subtask A along with the of-
ficial baselines are summarized in Table 1. The

4http://sentiment.christopherpotts.net/tokenizing.html
#emoticons

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

576 44

79 161

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: The UM-IU@LING confusion matrix for
subtask A.

BERT classifier achieved a macro F1 score of
0.8136, clearly exceeding the baseline of 0.4189
and ranking the system 3rd out of 103 submis-
sions. This demonstrates that our model can ef-
fectively identify whether a given tweet contains
offensive content or not. The confusion matrix
in Figure 1 further illustrates the error pattern of
our classifier, which more often misclassified of-
fensive tweets as being not offensive. One expla-
nation of the results may be the classifier’s prefer-
ence for the majority class. But it is possible that
our classifier may not capture some of the subtle
nuances in meaning and contexts. However, the
results also show that the macro F1 score is only
about 4.5 percent points lower than the accuracy
(0.8136 vs. 0.8570). This is a clear indication that
the classifier is successful in modeling the minor-
ity class of offensive tweets.

4.1.1 Ablation Analysis

We performed an ablation analysis on our BERT
classifier using the training and the trial data. First,
we retrained the classifier by varying the learn-
ing rate. The macro F1 dropped to the baseline
of 0.4318 with a learning rate of either 2e-8 or 2e-
3, which indicates that the system is sensitive to
change in learning rates.

The selection of sequence length only has a
minimal influence on the final performance, with
a tendency for longer sequence length to improves
prediction accuracy: Setting the input sequence
length to 60 reduces the macro F1 minimally to
0.8212, and decreasing the input length to 40 de-
creases the macro F1 to 0.8126.

791

ID Tweet Label Prediction
50 okay but it actually sucks so much that the first year I COULD go to

every Reeperbahn Festival day, I’m in Strasbourg and can only attend
the last day

NOT OFF

263 My mom just called me and said she is joining the NFL boycott. How
many of yall are with us? F that league #NFLBoycott

OFF NOT

126 @User @User @User They don’t. The GOP will keep supporting rack-
eteer, illegitimate Trump. They never will stop the corruption of tRump.
They are in it for the money. They want to destroy American democracy.

NOT OFF

Table 3: Misclassified examples for subtask A from the trial data. Usernames are anonymized.

There are several versions of pre-trained
BERTbase

5. We compared the performance of
these different versions of BERTbase and the re-
sults are summarized in Table 2. Generally, these
variants of BERTbase tend to give similar perfor-
mance but BERTbase-uncased achieved the best per-
formance on the trial data. It is unclear why
BERTbase-multilingual-uncased did not learn to perform
the task beyond the baseline. Additional hyper-
parameter tuning might be necessary in this case.
Overall, these results demonstrate that though
BERT can give superior performance in detect-
ing hate speech, it is somewhat sensitive to the
change of hyperparameters. We also find that the
SVM classifier achieved a higher accuracy on the
trial data, but there is a significant drop in macro
F1 when compared with the BERT model. This
shows that the BERT model performs better on the
minority class.

4.1.2 Error Analysis
We show examples of misclassified tweets in Ta-
ble 3. In example 263, the BERT classifier failed
to identify the offensive word “F”. It is com-
mon for people to use euphemisms to tone down
swear words in certain situations. The classifier
could miss these word variants, especially when
the word variant is the only offensive word in the
given tweet. For tweet 50, the word “sucks” is
the only word that is often used offensively. How-
ever, the given tweet is not offensive because the
author only describes their mood instead of insult-
ing someone else. These misclassifications seem
to indicate that the classifier reacts to trigger words
with negative connotations but may not be capable
of interpreting the words with respect to the larger
context.

When examining the prediction errors, we con-

5https://github.com/google-research/bert

System F1 macro Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
SVM classifier 0.5243 0.6854

Table 4: The official UM-IU@LING results (SVM) for
subtask C.

System F11 macro Acc.
All IND baseline 0.3041 0.8387
All GRP baseline 0.0762 0.1290
All OTH baseline 0.0208 0.0323
SVMcharacter-ngram 0.3915 0.8065
SVMword-ngram 0.3554 0.6774
SVMchar+ling+emoji 0.3971 0.8065
SVMchar+ling+emoji+entity 0.3901 0.7742

Table 5: Results on the trial data for subtask C.

sistently noticed that the BERT classifier is highly
effective in identifying tweets with words that are
negative or offensive in most linguistic contexts.
The real challenge is that not all tweets containing
negative or potentially insulting words are offen-
sive; there are subtle differences between a nega-
tive opinion and an insult towards someone. How-
ever, the model cannot distinguish these subtle
differences in meaning in the proper cultural or
socio-political contexts. Additionally, it is not ro-
bust enough to detect swear word variants or atyp-
ical spellings common in social media.

4.2 Subtask C
Table 4 shows our best result for subtask C in
comparison to the official baselines. The macro
F1 score of the SVM classifier is 0.5243, which
is considerably higher than the baseline and ranks
the system 27th out of 65 submissions. The con-
fusion matrix in Figure 2 indicates that our classi-

792

ID Tweet Label Prediction
17 @User Obama fed the country shit sandwiches for 8 years. Maybe Jim

just has his addled mind confused about dates and who fed who what..
GRP IND

22 @User The Catholic Church is really screwed up. Nothing new here. GRP OTH
31 @User Yeah thanks to your Nobel Emmy award winning idiot chief flip

flopping on everything from Iran to gun control.
IND GRP

Table 6: Misclassified examples from the trial data for subtask C.

fier performed well on identifying the IND class,
was effective for the GRP class, but often failed
to distinguish the OTH class from the other two
classes. This clearly shows that the sparsity of
training data for the minority class OTH affects
the performance of our classifier negatively.

The performance of the classifier with differ-
ent features is shown in Table 5. Since there are
only 31 instances in the trial set and it is rather im-
balanced, we can see that the highest accuracy is
reached by classifying all examples as IND, i.e.,
the all IND baseline. Even though none of the
classifiers outperformed the baseline in terms of
accuracy, all the classifiers achieved significantly
higher macro F1 scores, which shows that they are
better at identifying the other two classes. After
adding linguistic and emoji features, the charac-
ter n-gram model showed a slight improvement in
macro F1 score and achieved the highest accuracy
along with the simple character n-gram model.
But both macro F1 and accuracy dropped when en-
tity information was added.

Table 6 presents examples of misclassified
tweets in the trial set. In example 17, two per-
sons are mentioned, “Obama” and “Jim’, and both
of them are insulted, however not as a group but
individually. The classifier labeled this exam-
ple as IND. In example 22, the classifier is mis-
guided by the word ’Church’ and wrongly classi-
fies it as OTH. Example 31 is similar to example
17. Here, there are two potential targets, ’Nobel
Emmy award winning idiot’ and ’Iran’ that could
trigger the group sense, which significantly affects
the classifier’s judgment.

The errors analysis indicates that the classifier
has the ability to distinguish individual and group
targets, but it fails to capture the relation between
different entities and sometimes misidentifies the
target category of offensive language.

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH
Tr

ue
 la

be
l

53 23 2

8 91 1

15 18 2

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Confusion matrix for the SVM classifier for
subtask C.

5 Conclusion

In this study, we report our systems for OffensEval
subtasks A and C. In subtask A, we trained a neu-
ral network based classifier by fine-tuning the pre-
trained BERTbase model to detect offensive tweets.
In subtask C, we used a linear SVM with charac-
ter n-gram features to identify the target of hate
speech.

The evaluation results indicate that our sys-
tem is capable of detecting offensive language ro-
bustly, and it has a good chance of identifying the
target. However, there is room for improvement.
In the future, in order to capture subtle meaning
and overcome the data sparsity, we plan to take
syntactic and semantic features into consideration
and investigate the combination of selected sur-
face features and pre-trained word embeddings.

References
Ignacio Arroyo-Fernández, Dominic Forest, Juan-

Manuel Torres-Moreno, Mauricio Carrasco-Ruiz,
Thomas Legeleux, and Karen Joannette. 2018. Cy-
berbullying detection task: The EBSI-LIA-UNAM
system (ELU) at COLING’18 TRAC-1. In Proceed-

793

ings of the First Workshop on Trolling, Aggression
and Cyberbullying (TRAC-2018), pages 140–149.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760, Perth, Australia.

Pete Burnap and Matthew L Williams. 2015. Cyber
hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
Proceedings of ICWSM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbully-
ing. In The Social Mobile Web, pages 11–17.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th Interna-
tional Conference on World Wide Web Companion,
pages 29–30.

Antigoni Maria Founta, Constantinos Djouvas, De-
spoina Chatzakou, Ilias Leontiadis, Jeremy Black-
burn, Gianluca Stringhini, Athena Vakali, Michael
Sirivianos, and Nicolas Kourtellis. 2018. Large
scale crowdsourcing and characterization of twit-
ter abusive behavior. In Twelfth International AAAI
Conference on Web and Social Media.

Efthymios Kouloumpis, Theresa Wilson, and Johanna
Moore. 2011. Twitter sentiment analysis: The good
the bad and the OMG! In Fifth International AAAI
Conference on Weblogs and Social Media.

Sandra Kübler, Can Liu, and Zeeshan Ali Sayyed.
2018. To use or not to use: Feature selection for
sentiment analysis of highly imbalanced data. Nat-
ural Language Engineering, 24(1):3–37.

Ritesh Kumar, Atul Kr Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking aggression
identification in social media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pages 1–11.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
Detecting tweets against blacks. In Twenty-Seventh
AAAI Conference on Artificial Intelligence.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in discriminating profanity from hate speech.
Journal of Experimental & Theoretical Artificial In-
telligence, 30:1–16.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web, pages 145–153.

Petra Kralj Novak, Jasmina Smailović, Borut Sluban,
and Igor Mozetič. 2015. Sentiment of emojis. PloS
One, 10(12).

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS-W.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2227–2237.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL:
https://s3-us-west-2.amazonaws.
com/openai-assets/research-covers/
languageunsupervised/
languageunderstandingpaper.pdf.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10, Valencia, Spain.

Mohammed Shiha and Serkan Ayvaz. 2017. The ef-
fects of emoji in sentiment analysis. International
Journal of Computer and Electrical Engineering
(IJCEE.), 9(1):360–369.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin

794

Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the
gap between human and machine translation. arXiv
preprint arXiv:1609.08144.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

795

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 796–800
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

USF at SemEval-2019 Task 6: Offensive Language Detection Using LSTM
With Word Embeddings

Bharti Goel and Ravi Sharma
Department of Computer Science and Engineering, University of South Florida, USA

Emails: bharti@mail.usf.edu, ravis@mail.usf.edu

Abstract

In this paper, we present a system description
for the SemEval-2019 Task 6 submitted by our
team. For the task, our system takes tweet
as an input and determine if the tweet is of-
fensive or non-offensive (Sub-task A). In case
a tweet is offensive, our system identifies if
a tweet is targeted (insult or threat) or non-
targeted like swearing (Sub-task B). In tar-
geted tweets, our system identifies the target as
an individual or group (Sub-task C). We used
data pre-processing techniques like splitting
hashtags into words, removing special charac-
ters, stop-word removal, stemming, lemmati-
zation, capitalization, and offensive word dic-
tionary. Later, we used keras tokenizer and
word embeddings for feature extraction. For
classification, we used the LSTM (Long short-
term memory) model of keras framework. Our
accuracy scores for Sub-task A, B and C are
0.8128, 0.8167 and 0.3662 respectively. Our
results indicate that fine-grained classification
to identify offense target was difficult for the
system. Lastly, in the future scope section, we
will discuss the ways to improve system per-
formance.

1 Introduction

In recent years, there has been a rapid rise in social
media platforms and surge in the number of users
registering in order to communicate, publish con-
tent, showcase their skills and express their views.
Social media platforms like Facebook and Twit-
ter have millions of registered users influenced by
the countless user-generated posts on daily basis
(Zeitel-Bank and Tat, 2014). While on one hand
social media platforms facilitate the exchange of
views, effective communication and can be seen as
a helping mode in crisis. On the other hand, they
open up the window for anti-social behavior such
as bullying, stalking, harassing, trolling and hate
speech (Malmasi and Zampieri, 2018; Wiegand

et al., 2018; ElSherief et al., 2018; Zhang et al.,
2018). These platforms provide the anonymity
and hence aid users to indulge in aggressive be-
havior which propagates due to the increased will-
ingness of people sharing their opinions (Fortuna
and Nunes, 2018).
This aggression can lead to foul language which is
seen as “offensive”, “abusive”, or “hate speech”,
terms, which are used interchangeably (Waseem
et al., 2017). In general, offensive language is de-
fined as derogatory, hurtful/ obscene remarks or
comments made by an individual (or group) to
an individual (or group) (Wiegand et al., 2018;
Baziotis et al., 2018). The offensive language can
be targeted towards a race, religion, color, gen-
der, sexual orientation, nationality, or any char-
acteristics of a person or a group. Hate Speech
is slowly plaguing the social media users with de-
pression and anxiety (Davidson et al., 2017; Zhang
et al., 2018), which can be presented in the form
of images, text or media such as audio, video, etc.
(Schmidt and Wiegand, 2017).
Our paper presents the data and task description
followed by results, conclusion and future work.
The purpose of Task 6 is to address and pro-
vide an effective procedure for detecting offen-
sive tweets from the data set provided by shared
task report paper (Zampieri et al., 2019b). The
shared task is threefold. The Sub-task A ask us
to identify whether the given tweet is offensive
or non-offensive. In Sub-task B offensive tweets
are to be classified as targeted (person/group) or
non-targeted (general). Sub-task C ask us to do
classification of the offensive tweets into individ-
ual, group or others. We apply the LSTM with
word embeddings in order to perform the multi-
level classification.

796

2 Related Work

Technological giants like Facebook, Google,
YouTube and Twitter have been investing a
significant amount of time and money towards
the detection and removal of offensive and hate
speech posts that give users a direct or indirect
negative influence (Fortuna and Nunes, 2018).
However, lack of automation techniques and
ineffectiveness of manual flagging has lead to a
lot of criticism for not having potent control for
the problem (Zhang et al., 2018). The process
of manual tagging is not sustainable or scalable
with the large volumes of data exchanged in
Social media. Hence, the need of the hour is to
do automatic detection and filtering of offensive
posts to give the user quality of service (Fortuna
and Nunes, 2018).
The problem of automatic Hate Speech Detection
is not trivial as offensive language may or may
not be meant to insult or hurt someone and can
be used in common conversations. Different
language contexts are rampant in social media
(Davidson et al., 2017). In recent years, linguis-
tics, researchers, computer scientists, and related
professionals have conducted research towards
finding an effective yet simple solution for the
problem. In papers, (Schmidt and Wiegand, 2017;
Fortuna and Nunes, 2018), authors survey the
state of the art methods along with the description
of the nature of hate speech, limitations of the
methods proposed in literature and categorization
of the hate speech. Further, authors mainly classi-
fied the features as general features like N-grams,
Part-Of-Speech (POS) and sentiment scores and,
specific features such as othering language, the
superiority of in-group and stereotype. In (Silva
et al., 2016), authors list categories of hate speech
and possible targets examples.
The research carried over the years has employed
various features and classification techniques. The
features include the bag of words (Greevy and
Smeaton, 2004; Kwok and Wang, 2013), dictio-
naries, distance metrics, N-grams, IF-IDF scores,
and profanity windows (Fortuna and Nunes,
2018). Authors in (Davidson et al., 2017) used
a crowdsourced hate speech lexicon to collect
tweets and train a multi-class classifier to distin-
guish between hate speech, offensive language,
and non-offensive language. The authors in paper
(Waseem et al., 2017) presents a typology that
gives the relationship between various sub-tasks

such as cyber-bullying, hate speech, offensive,
and online abuse. They synthesize the various
literature definitions and contradiction together
to emphasize the central affinity among these
sub-tasks. In (Gambäck and Sikdar, 2017), au-
thors used a Convolutional Neural Network model
for Twitter hate speech text classification into 4
classes: sexism, racism, both sexism-racism and
neither. Similar approaches using deep learning
have been employed in (Agrawal and Awekar,
2018; Badjatiya et al., 2017) for detecting hate
speech and cyberbullying respectively.
Authors in (Zhang et al., 2018) have proposed
Deep Neural Network (DNN) structures which
serve as a feature extractor for finding key se-
mantics from hate speech. Prior to that, they
emphasize the linguistics of hate speech, that it
lacks discriminative features making hate speech
difficult to detect. Authors in (ElSherief et al.,
2018) have carried out the analysis and detection
of the hate speech by classifying the target as
directed towards a specific person/identity or
generalized towards a group of people sharing
common characteristics. Their assessment states
that directed hate consists of informal, angrier and
name calling while generalized hate consists of
more religious hate and use of lethal words like
murder, kills and exterminate.

3 Problem Statement

In Task 6, three level offensive language identi-
fication is described as three Sub-tasks A, B and
C. For Sub-task A, tweets were identified as of-
fensive (tweet with any form of unacceptable lan-
guage, targeted/non-targeted offense) or not of-
fensive. For Sub-task B, the offensive tweets are
further categorized into targeted or non-targeted
tweets. The targeted offense is made for an in-
dividual or group while the untargeted offense is a
general use of offensive language. Later for Sub-
task C, targeted tweets are further categorized ac-
cording to the target, individual, group or others.
This step by step tweet classification will lead to
the detailed categorization of offensive tweets.

4 Data

The data collection methods used to compile
the dataset used in OffensEval are described in
Zampieri et al. (2019a). The OLID dataset col-
lected from Twitter has tweet id, tweet text, and

797

labels for Sub-task A, B, and C. We have also
used Offensive/Profane Word List (Ahn, 2019)
with 1,300+ English terms that could be found of-
fensive for lexical analysis of tweets to see check
probability of tweet being offensive if a tweet has
an offensive word.

4.1 Data Pre-processing

The data is raw tweet data from Twitter and hence
data cleaning and pre-processing is required. We
used the following steps for data pre-processing:

1. Split hashtags over Capital letters: In
this step hashtags are divided into separate words
(for example, “#TweetFromTheSeat” will be con-
verted to “Tweet from the seat”). Generally, while
writing hashtags multiple words are combined to
form single hashtag, where each word is started
with a capital letter. Here, we take advantage of
this property of hashtag and generate a string of
words from it.

2. Remove special characters: In this step
we removed all special characters from the tweet
and resultant tweet will contain only alphabets and
number. In Twitter domain “#” is important spe-
cial character. Splitting of hashtags,“#Text” into
“#” and “Text”, retains the purpose of the hashtags
after removal of “#” . Other special characters (for
e.g. “,”, “.”,“!”, etc) are not much informative for
given context.

3. Removal of stop-words, Stemming and
Lemmatization: In this step we used NLTK
(Loper and Bird, 2002) list of stop-words to re-
move stopwords, classic Porter Stemmer (Porter,
1980) for stemming and NLTK (Loper and Bird,
2002) Word Net Lemmatizer for lemmatization.

4. Capitalization: This is the last step for data
pre-processing and all characters are converted to
capital letters. In Twitter domain uppercase char-
acters are said to portray expression, but this is not
true for all cases. Also, keeping cases intact may
lead to over-fitting during training.

5. Embedding “Offensive”: This is an op-
tional step. We used offensive word list (Ahn,
2019) to find offensive words in the tweet. Later
for tweets with matched offensive words were em-
bedded with “Offensive” as a word.

5 System Description

We used a four-layer neural network with each
layer detailed below:

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
LSTM (5,0.2) 0.7382 0.8128

Table 1: Results for Sub-task A.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
LSTM (5,0.2) 0.5925 0.8167
LSTM (20,0.2) 0.5291 0.6125
LSTM (20,0.2) and 0.6171 0.7667
word list

Table 2: Results for Sub-task B.

The first layer of our network is an embed-
ding layer, which takes tokens as inputs (each sen-
tence is converted into index sequences using to-
kenizer). This layer convert sequences to dense
vector sequences generating embedding table used
by the next layer. We used tokenizer for top 1000
words and embedding dimension of 128 for our
system. The second layer is SpatialDropout1D
layer which helps promote independence between
feature maps. We used 0.1 as rate or Fraction
of the input units to drop. This layer is mainly
used to covert multi-dimensional input to one-
dimensional input using dropout method.

Third layer is LSTM (Hochreiter and Schmid-
huber, 1997) layer with dropout and recurrent
dropout as 0.2. This layer serves as a recurrent
neural network layer which was only for short
term memory. LSTM (long short-term memory)
takes care of longer dependencies. The dimension
of LSTM hidden states is 200 for our system. Fi-
nally, we used a dense layer with Softmax func-
tion for binary classification in-case of Sub-task A
and B, and three class classification for Sub-task
C. The dimension of the dense layer is 200.

For hyperparameter selection, we used different
train and validation splits. The batch size is 64,
and the maximal training epoch is varied with dif-
ferent system ranging from 5 to 50 (Performance
was decreasing for higher epochs). We used RM-
SProp as the optimizer for network training. The
performance is evaluated by macro-averaged F1-
score and Accuracy by task organizers.

798

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

579 41

120 120

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

167 46

10 17

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

37 19 22

43 32 25

20 6 9

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

Figure 1: a) Sub-task A, LSTM (epoch=5, dropout= 0.2), b) Sub-task B, LSTM (dropout=0.2, epochs=20), c)
Sub-task C, LSTM(dropout=0.2, epochs=50)

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
LSTM (20,0.2) and 0.1849 0.1878
word list
LSTM (50,0.2) 0.3404 0.3662
LSTM (50,0.2) and 0.2832 0.3521
word list

Table 3: Results for Sub-task C.

6 Results

Tables 1, 2 and 3 shows F1 (macro) and Accuracy
scores for the submitted systems. We can see that
for all the sub-tasks our system has F1 (macro) and
as described in (Zampieri et al., 2019a) F1 (macro)
is used for performance analysis by task coordina-
tors. Best results are highlighted in bold ink in ta-
bles and confusion matrix for them is also shown
in Figure 1 for Sub-tasks A, B and C. In Sub-task
A we achieved 0.8128 and 0.7382 as accuracy and
F1 respectively. For this task we submitted only
one system with LSTM network dropout 0.2 and 5
epochs. For Sub-task B we submitted three runs
but, the best performance is achieved by system
with LSTM dropout of 0.2, 20 epochs and offen-
sive word list described in Section 4. Later in Sub-
task C we submitted three runs and best perfor-
mance was LSTM with 50 epochs and 0.2 dropout.

7 Conclusion

In this paper we used LSTM network to identify
offensive tweets and categorize offense in subcate-
gories as described in Section 3 for Task 6: Identi-
fying and Categorizing Offensive Language in So-
cial Media. We used an embedding layer followed

by LSTM layer for tweet classification. Three
tasks of OffensEval Sub-task A, B, and C were of
varied difficulty level. The main reason can be de-
creasing amount of data for each of them, where
Sub-task A has more data followed by Sub-task
B categorizing offensive tweets identified by Sub-
task A and, Sub-task C categorizing targeted of-
fense identified by Sub-task B. Data was also un-
balanced leading to more importance for major-
ity class but after applying cost function we found
that accuracy was decreased with increased errors
in identification of majority class.

8 Future Work

For future work, we would like to use additional
datasets like TRAC-1 data (Kumar et al., 2018),
(Davidson et al., 2017), and would collect data
from Twitter to get diverse data. To be consis-
tent with substantial research done in recent years
we want to employ a combination of textual fea-
tures like the bag of words n-grams, capitalized
characters, sentiment scores, e.t.c. Also, we want
to focus more on specific features like semantics
and linguistic features intrinsic to hate/offensive
rather than just generic text-based features. For
that, we want to use character level deep LSTM
which can be used to extract the semantic and syn-
tactic information. Finally, we want to explore
more about the similarities and dissimilarities be-
tween the profanity and hate speech, establishing
more profound way of extracting features in order
to make the detection system more responsive.

References

Sweta Agrawal and Amit Awekar. 2018. Deep learn-
ing for detecting cyberbullying across multiple so-
cial media platforms. CoRR, abs/1801.06482.

799

Luis von Ahn. 2019. Offensive/profane word list.
Carnegie Mellon School of Computer Science.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, WWW ’17 Companion, pages 759–
760, Republic and Canton of Geneva, Switzerland.
International World Wide Web Conferences Steer-
ing Committee.

Baziotis, Christos, Athanasiou, Nikos, Athana-
sia, Paraskevopoulos, Georgios, Ellinas, Nikolaos,
Alexandros, and et al. 2018. Ntua-slp at semeval-
2018 task 3: Tracking ironic tweets using ensembles
of word and character level attentive rnns.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Edel Greevy and Alan F. Smeaton. 2004. Classifying
racist texts using a support vector machine. In Pro-
ceedings of the 27th Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, SIGIR ’04, pages 468–469,
New York, NY, USA. ACM.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Irene Kwok and Yuzhou Wang. 2013. Locate the
hate: Detecting Tweets Against Blacks. In Twenty-
Seventh AAAI Conference on Artificial Intelligence.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

M.F. Porter. 1980. An algorithm for suffix stripping.
Program, 14(3):130–137.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Silva, Leandro, Mondal, Correa, Denzil, Benevenuto,
Fabricio, Weber, and Ingmar. 2016. Analyzing the
targets of hate in online social media.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Natascha Zeitel-Bank and Ute Tat. 2014. Social Me-
dia and Its Effects on Individuals and Social Sys-
tems, Human Capital without Borders: Knowledge
and Learning for Quality of Life; Proceedings of
the Management, Knowledge and Learning Inter-
national Conference 2014, pages 1183–1190. To-
KnowPress.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

800

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 801–805
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UTFPR at SemEval-2019 Task 6:
Relying on Compositionality to Find Offense

Gustavo Henrique Paetzold
Universidade Tecnológica Federal do Paraná / Toledo-PR, Brazil

ghpaetzold@utfpr.edu.br

Abstract

We present the UTFPR system for the Of-
fensEval shared task of SemEval 2019: A
character-to-word-to-sentence compositional
RNN model trained exclusively over the train-
ing data provided by the organizers. We find
that, although not very competitive for the task
at hand, it offers a robust solution to the ortho-
graphic irregularity inherent to tweets.

1 Introduction

Text classification tasks can take a wide variety of
forms, and some of them, such as sentiment and
emotion analysis, have managed to grab a lot of
attention from researchers in recent years. More
recently, however, the public’s growing engage-
ment in debates on the topics of free speech and
politics has led the Natural Language Processing
(NLP) and Machine Learning (ML) communities
to take an interest in classification tasks related
to identifying and categorizing patterns of profan-
ity, hate speech and offense. The prominence of
shared tasks held on these topics, such as those of
Fersini et al. (2018) and Wiegand et al. (2018), are
great examples of the research community com-
ing together to attempt to create more reliable so-
lutions for these challenges.

While hate speech is commonly characterized
by specific slurs and other offensive expressions
that convey prejudice against a certain group or
individual, offensive speech is often more chal-
lenging to identify because it encompasses a more
broad spectrum of language, featuring expressions
that do not necessarily convey prejudice (Malmasi
and Zampieri, 2018). Technologies that identify
these types of patterns could, for instance, help a
social media platform on profiling users and take
appropriate action whenever someone breaks user
agreements and/or terms of use.

Identifying offensive language within the con-
tent of social media platforms is particularly chal-
lenging, since this type of content is usually lit-
tered with irregular orthography, meta-characters,
slang and others. Since a lot of the effort from the
research community focuses on identifying offen-
sive language in social media platforms, an NLP
approach for such a task must be able to overcome
those hurdles in some way. Some of the preferred
methods for handling the orthographic irregular-
ity of social media content are using word embed-
dings trained over tweets (Rozental et al., 2018) or
regularizing unusual spellings (Bertaglia and das
Graças Volpe Nunes, 2017), but neither of them
ensure that every possible orthographically irreg-
ular word will be understood by the NLP model
in question. Recently, however, there have been
a lot of contributions that present compositional
neural models that learn numerical representations
of words based on the sequence of characters that
compose them (Kim et al., 2016; Ling et al., 2015;
Balazs et al., 2018; Paetzold, 2018). These mod-
els have been demonstrated to be both effective in
text classification, and robust when faced with or-
thographic irregularity.

In this paper, we present the UTFPR system
submitted to the OffensEval shared task of Se-
mEval 2019, which employs compositional neural
models to identify offensive language in tweets. In
the following sections we describe the task (sec-
tion 2), our model (section 3) and experiments
(sections 4 to 5).

2 Task Summary

The UTFPR systems described herein are a con-
tribution to the OffensEval shared task held at the
SemEval 2019 workshop (Zampieri et al., 2019b).
In this shared task, participants were tasked with
creating innovative classifiers capable of identify-

801

ing and categorizing offensive tweets. This shared
tasks has 3 sub-tasks:

• Task A: Binary classification task that con-
sists in judging whether a tweet is offensive
or not.

• Task B: Binary classification task that con-
sists in identifying whether or not an offen-
sive tweet was targeted towards a specific
person or group.

• Task C: Consists in identifying whether an
offensive tweet was targeted at a person,
group or something else (3-class classifica-
tion).

We decided to focus our efforts on Task A ex-
clusively. The organizers provided participants a
training set with 13, 240 instances, a trial set with
320, and a test set with 860. Each instance is com-
posed of a tweet and its respective labels for tasks
A, B and C. The datasets were annotated by hu-
mans of undisclosed background (Zampieri et al.,
2019a).

3 The UTFPR Model

As we have previously mentioned, ours is a com-
positional Recurrent Neural Network (RNN) in-
spired by the ones introduced by Ling et al. (2015)
and Paetzold (2018). Our RNN learns word rep-
resentations based on the sequence of characters
that compose them, then learns sentence represen-
tations based on the word representations previ-
ously learned. Figure 1 illustrates the architecture
of our model in detail.

The model takes as input a potentially offensive
tweet. It first produces character embeddings for
the characters of each word in the sentence, then
passes them through a sequence of bidirectional
RNN layers in order to produce character-to-word
numerical representations for them. These word
representations are then passed onto another se-
quence of bidirectional RNN layers, which in turn
produce a single word-to-sentence numerical rep-
resentation for the sentence. A dense layer con-
nected to a softmax layer produces the final binary
class, which can be OFF (for offensive) and NOT
(for not offensive).

Because the dataset provided for training is
rather small, we suspected that the character-to-
word representations produced through this train-
ing data would not be reliable enough for the task.

Because of that, we decided to train two different
model variants:

• UTFPR-Scratch: The model depicted in
Figure 1 trained from scratch over the shared
task’s training set exclusively.

• UTFPR-Reuse: The same model depicted
in Figure 1, except instead of training its
character-to-word RNN layers from scratch
along with the rest of the model, they are
taken from a similar compositional model
pre-trained by Paetzold (2018) over a much
larger dataset for the Emotion Analysis
shared task held at WASSA 2018 (Klinger
et al., 2018). The training set of the WASSA
2018 shared task has 153, 383 instances, each
composed of a tweet with a target emotion
word replaced with a [#TRIGGERWORD#]
marker, and an emotion label that could be ei-
ther joy, sad, disgust, anger, surprise, or fear.

The architecture of our models is identical, and
their specifications are:

• Size of character embeddings: 15

• RNN layer type: Gated Recurrent Units

• RNN layer depth: 2 (for all layers sets)

• RNN layer size: 60 (for all layers)

• Dropout proportion: 25%

• Loss function: Cross-entropy

• Framework used: PyTorch1

We chose to use the PyTorch framework due
to the fact that it employs dynamic computational
graphs, and hence they do not require us to set a
fixed maximum size for the words in the dataset.
This feature of PyTorch only allows us to cre-
ate a much more flexible model that can handle
any word size, but also disregards the needs for
padding.

To train our models, we split the training set
into a training portion (10, 000 instances) and a de-
velopment portion (3, 240 instances). The models
were left training for hundreds of iterations, and
after each iteration a version of each model was
saved. The final selected models were the ones
with the lowest attained error on the development

1https://pytorch.org

802

Figure 1: Architecture of the UTFPR system.

portion of the data. We conducted a preliminary
evaluation over the trial set to determine which
of the variants to submit. The macro-averaged
F-scores, which are illustrated in Table 2, show
that using pre-trained character-to-word RNN lay-
ers actually compromised the performance of our
model in this instance, hence we opted to submit
the UTFPR-Scratch variant.

System F-score
UTFPR-Scratch 0.770
UTFPR-Reuse 0.599

Table 1: Macro-averaged F-scores for the trial set

4 Performance on Shared Task

The systems submitted to the shared task were
evaluated through their macro-averaged F1-score.
The results on Table 2 showcase the results ob-
tained by UTFPR-Scratch, as well as the top 3
and bottom 3 systems submitted to Task A. As it
can be noticed, our system did not perform very
well, placing 93rd out of 103 teams. The confu-
sion matrix of UTFPR-Reuse in Figure 3 shows
that the main reason behind this poor showing
was the large amount of false negatives predicted.

Upon inspecting the labels predicted, we found
that the UTFPR-Scratch system would predict of-
fense mostly for tweets with a lot of profanity and
with hashtags associated with the Donald Trump
administration, such as “#BuildTheWall”.

Rank System F-score
1 pliu19 0.829
2 anikolov 0.815
3 lukez 0.814

93 UTFPR 0.528

101 hamadanayel 0.458
102 magnito60 0.422
103 AyushS 0.171

Table 2: Macro-averaged F-scores for the trial set

5 Robustness Assessment

As we’ve already mentioned, one of the main ad-
vantages of compositional RNN models that learn
word representations from character sequences is
the fact that they handle low-frequency and out-
of-vocabulary words in an elegant way, since they
are able to produce a numerical representation for
any word. Because of that, these models tend to
be much more resilient when presented with noisy

803

Figure 2: Results of our robustness experiments. The vertical and horizontal axes presents macro-averaged F-
scores and the percentage of words with noise introduced to them, respectively. The dots represent the scores
obtained by the regular UTFPR-Scratch model and a frozen version that treats all words outside of the training set
as out-of-vocabulary words.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

602 18

209 31

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 3: Confusion matrix of the UTFPR-Scratch
model on the test set.

input that differs considerably from the input pre-
sented during training.

In this experiment, we assess the robustness
of our UTFPR models. First, we generated
“jammed” versions of the shared task’s trial set
(since the test set was not made available) with
increasing volumes of noise introduced to them.
To create a jammed test set, we simply added a
noise-inducing modification to N% randomly se-
lected words of each sentence. The modifications
were randomly selected between either removing
a randomly selected character form the word (50%
chance) or duplicating it (50% chance). We cre-
ated 11 jammed versions by using 0≤N ≤100 in
intervals of 10. Words with a single character that
were subjected to removal were simply discarded

from the sentence.

We compared the regular UTFPR-Scratch
model (Regular) with a modified version with
frozen character-to-word RNN layers (Frozen).
The frozen version only produces a numerical rep-
resentation of a word if it is present in the train-
ing set, otherwise, it produces a vector full of 1’s
signaling an out-of-vocabulary word. The results
in Figure 2 show that using the frozen version is
much less robust than the regular model, specially
when the input sentence has 70% or more of its
words out of the training set vocabulary.

6 Conclusions

In this paper we presented the UTFPR system for
the OffensEval shared task held at SemEval 2019,
which is a compositional RNN model that learns
numerical representations of words based on its
characters. Our experiments reveal that, although
our model is not very competitive for this task
specifically (placing 93rd out of 103 participants),
it offers a very robust solution to the problem of
out-of-vocabulary words. Inspecting the model’s
output we found that the main cause for its poor
performance was the fact that it learned a bias to-
wards the “not offensive” label, which caused it to
predict a lot of false negatives. Also, we found that
our model was actually better at identifying pro-
fanity and controversial topics rather than offense
itself. In the future, we intend to explore combin-
ing our numerical word representations with richer
semantic features in order to train more reliable
compositional models for this task.

804

7 Acknowledgments

We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Ti-
tan V GPU used for this research.

References
Jorge Balazs, Edison Marrese-Taylor, and Yutaka Mat-

suo. 2018. Iiidyt at iest 2018: Implicit emotion clas-
sification with deep contextualized word representa-
tions. In Proceedings of the 9th WASSA, pages 50–
56.

Thales Felipe Costa Bertaglia and Maria das Graças
Volpe Nunes. 2017. Exploring word embeddings for
unsupervised textual user-generated content normal-
ization. CoRR, abs/1704.02963.

Elisabetta Fersini, Debora Nozza, and Paolo Rosso.
2018. Overview of the evalita 2018 task on auto-
matic misogyny identification (ami). In Proceedings
of the 6th EVALITA.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of the 2016 AAAI, pages
2741–2749.

Roman Klinger, Orphee De Clercq, Saif Mohammad,
and Alexandra Balahur. 2018. Iest: Wassa-2018 im-
plicit emotions shared task. In Proceedings of the
9th WASSA, pages 31–42.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
EMNLP, pages 1520–1530.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in discriminating profanity from hate speech.
Journal of Experimental & Theoretical Artificial In-
telligence, 30(2):187–202.

Gustavo Paetzold. 2018. Utfpr at iest 2018: Exploring
character-to-word composition for emotion analysis.
In Proceedings of the 9th EMNLP, pages 176–181.

Alon Rozental, Daniel Fleischer, and Zohar Kelrich.
2018. Amobee at iest 2018: Transfer learning from
language models. In Proceedings of the 9th WASSA,
pages 43–49.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the germeval 2018 shared
task on the identification of offensive language. In
Proceedings of GermEval 2018.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

805

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 806–811
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UVA Wahoos at SemEval-2019 Task 6:
Hate Speech Identification using Ensemble Machine Learning

Murugesan Ramakrishnan
Data Science Institue
University of Virginia

mr6rx@virginia.edu

Wlodek Zadrozny
Computer Science

UNC-Charlotte
wzadrozn@uncc.edu

Narges Tabari
Data Science Institute
University of Virginia

ns5kn@virginia.edu

Abstract
With the growth in the usage of social media,
it has become increasingly common for peo-
ple to hide behind a mask and abuse others.
We have attempted to detect such tweets and
comments that are malicious in intent, which
either targets an individual or a group. Our
best classifier for identifying offensive tweets
for SubTask A (Classifying offensive vs. non-
offensive) has an accuracy of 83.14% and a f1-
score of 0.7565 on the actual test data. For
SubTask B, to identify if an offensive tweet is
targeted (If targeted towards an individual or
a group), the classifier performs with an accu-
racy of 89.17% and f1-score of 0.5885. The
paper talks about how we generated linguis-
tic and semantic features to build an ensem-
ble machine learning model. By training with
more extracts from different sources (Face-
book, and more tweets), the paper shows how
the accuracy changes with additional training
data.

1 Introduction

Internet is now accessed by over half of the
world’s population 1. In fact, almost 1 million
new users are added each day. With social media
platforms, people find it a lot easier to get away
with the abuse they spew around, in comparison
to the offline world. This brings a lot of onus
on the Social Network websites to tackle such ac-
tivities. Majority of the countries have laws to
control hate speech which puts tremendous pres-
sure on the concerned websites to curb such activ-
ities. Since manual monitoring or defining a spe-
cific rule-set might be time consuming, an ensem-
ble machine learning approach has been discussed
to avoid complexity and increase interpretability.

The paper focuses on providing solutions to
SubTask A and SubTask B for the SemEval 2019

1https://news.itu.int/
itu-statistics-leaving-no-one-offline/

competition. Previous works and papers focus on
identifying if a tweet is offensive or not. Here,
in addition to that, it is identified if an offensive
tweet is targeted towards a particular individual or
a group (SubTask B). Such granular information
would help the Social Media to make better deci-
sions.

2 Related Work

This issue has gathered a lot of attention over the
past few years with various types of hate speech
detection models.

Papers published in the last two years include
the surveys by Schmidt and Wiegand (2017) and
Fortuna and Nunes (2018) where the authors
extract features from the text like sentiment,
linguistic features, utilize different lexical re-
sources to tag an offensive tweet, and another
paper by Davidson et al. (2017) presenting the
Hate Speech Detection data set used in Malmasi
and Zampieri (2017) where the authors perform a
three way classification - Hate Speech, Offensive
and None. By classifying these, the authors
talk about specific patterns related to offensive
terms. It is found that the usage of cuss words
like b*tch and n*gga is fond in both offensive
and casual setting, while f*ggot and n*gger were
predominantly used in hateful contexts. One of
the major takeaways was that lexical methods are
effective to identify potentially offensive terms,
but are inaccurate at identifying hate speech Other
work include: ElSherief et al. (2018); Gambäck
and Sikdar (2017); Zhang et al. (2018).

A proposal of typology of abusive language
sub-tasks is presented in Waseem et al. (2017)
where the author talks about how an offensive
tweet can be categorized into four segments - Ex-
plicit, Implicit, Directed and Generalized abuse.

806

These help in creating segment wise features to
capture them separately. Finally, methods in iden-
tifying profanity vs. hate speech is talked by Mal-
masi and Zampieri (2018). This work highlighted
the challenges of distinguishing between profan-
ity, and threatening language which may not actu-
ally contain profane language.

The description of the current task is presented
in detail in Zampieri et al. (2019b), which clearly
provides the context and underlying problem state-
ment for this paper.

3 Data

For this project, the data set provided by the orga-
nizers of OffensEval 2019 was used.The data col-
lection methods used to compile the data set used
is described in Zampieri et al. (2019a). The data
set consisted of 13,241 records of training obser-
vations with the following types of response vari-
ables : 1) If a tweet is offensive or not 2) If an
offensive tweet is targeted towards an individual
(IND) or a group (GRP).

To validate if the performance would increase,
an additional data source was also used. The
main hypothesis behind including the data was
that more data would result in a better accuracy.
So, the data set that closely aligned with the cur-
rent objective was considered for the analysis.
This data set was used as a part of the competi-
tion organized by TRAC 2. This contained the re-
sponse variable with the categories - ’Covertly Ag-
gressive’, ’Overtly Aggressive’ and ’Non Aggres-
sive’. To maintain consistency with the current
data set, ’Covertly Aggressive’ and ’Overtly Ag-
gressive’ were tagged as ’Offensive’ and the rest
as ’Not Offensive’.

Including both the data sets, there were a total
of 25,239 observations.

The distribution of variables of the original data
set is as follows,

SubTask A: Offensive (33%), and Non-
offensive (67%). SubTask B: Out of the 33%
offensive tweets, it is seen that there are Targeted
(88%), and Untargeted (12%)

4 Methodology

The Methodology involved two sub-works - Fea-
ture Engineering and Ensemble Model building.

2https://sites.google.com/view/trac1/
shared-task/

Various features were extracted to get the seman-
tics of the words and tweets.

4.1 Feature Engineering

Character n-grams
Inspired from earlier works, character n-grams
were used especially to tackle misspelled words
or words without spaces like ’fu*koff’ and
’fu*kasdf’. In both of these cases, character
4-gram would detect the sub-word ’fu*k’.

Word n-grams
Apart from using just 1-gram, 3-gram and 4-gram
really helped in identifying the context of the
tweet and focus on words like ’not good’ where
’not’ negates the next word.

Cuss-word Dictionary and Profanity Checker
A list of cuss words were scraped from
www.noswearing.com. This helped in identi-
fying such cuss words in tweets which occurred
only once or twice in the whole corpus. Profanity
checker libraries like profanity were also used
along with the scraped list. These helped in creat-
ing features like cuss-word count and cuss-word
position.

GloVe Embedding
The use case of GloVe embedding were two-fold.
One, average embedding could be found for a
tweet which can then be used as a feature space.
Two, once the top-30 features were obtained from
the initial training, GloVe model was used to find
most similar words to them thereby creating a
feature representing potential offensive terms.

Part of Speech
Parts of Speech of the tweets were extracted using
spaCy, especially the pronouns which could be
used for identifying an individual (SubTask B).

Others
Other features like tweet polarity (positive, nega-
tive or neural score), of hash-tags, of user tags
were also used.

4.2 Model Building

Required pre-processing steps like stop-word re-
moval (high and low frequency), stemming, case
correction were done. Post which, various features
as mentioned above were generated.

807

Figure 1: Final Model Architecture

An Ensemble Model was then built by aggregat-
ing the results of 5 different models with varying
feature set provided as input to each model.

Logistic Regression
Three basic logistic regression models with L2

regularization were developed:
Model 1 was built with Bag of Words (1 - 4

grams) which amounted to 107,445 number of fea-
tures

Model 2 was built with Tweet Polarity, Word
Embedding, Cuss Word Count, and Cuss Word
Position

Model 3 was built with character - 4 grams. Var-
ious tests with cross validation were performed to
arrive at this result with a final count of 100,122
features

Tree Based Models
Model 4 was built using Random forest with

Bag of Words (1,2,3,4 grams) containing a total
feature size of 107,237.

Model 5 using XG Boost, with Bag of Words
(1,2,3,4 grams) containing a feature size of
107,237.

The combined architecture looked as follows,
Vote count was made to arrive at the final deci-

sion using the outputs from each of these models

5 Results

5.1 Results - SubTask A

Model results with respect to the validation data
set (part of the training sample) are discussed here.
Results of the validation data set with respect to
the 80-20 split are shown,

Ensemble Model was able to perform with an
accuracy gain of 1.5% with respect to the best in-
dividual model (Model 1)

Similarly, the results for the model using the

Model Accuracy F1 (macro)
Model1 - Logistic (BOW) 0.78 0.73
Model 2- Logistic (Semantic features) 0.77 0.70
Model 3 - Logistic (Char n gram) 0.76 0.71
Model 3 - Random Forest (BOW) 0.77 0.70
Model 4 - XG Boost (BOW) 0.77 0.71
Ensemble Model 0.80 0.74

Table 1: Results for SubTask A without additional data

given data with an addition of training data pro-
vided by TRAC are,

Model (Additional Data) Accuracy F1 (macro)
Model1 - Logistic (BOW) 0.73 0.72
Model 2- Logistic (Semantic features) 0.70 0.69
Model 3 - Logistic (Char n gram) 0.72 0.71
Model 3 - Random Forest (BOW) 0.71 0.69
Model 4 - XG Boost (BOW) 0.71 0.71
Ensemble Model 0.74 0.73

Table 2: Results for SubTask A with additional data

Comparing the results, it can be seen that addi-
tion of data in fact reduces the model accuracy.

Features Analysis- Logistic Regression
For better intuitive understanding, top features
from logistic regression model trained without ad-
ditional data were extracted to understand what
words constitutes a tweet to be offensive,

Variable Coefficient
stupid 1.798
sucks 1.513
Cuss word 1.453
crap 1.415
clown 1.274
idiots 1.274
bitch 1.272
sex 1.231

Table 3: Coefficients with higher values

It is clear that words like stupid, sucks, crap and
idiots increases the probability of a tweet to be of-
fensive. However, it has been identified that some
non-offensive tweets are mis-classified as offen-
sive just because of the presence of such words.

Looking at the coefficients with least weights,
it is seen that although the above words have a
mild negative connotation, majority of their use-
cases are not in an offensive setting which makes
a tweet with these to have higher probability of
non-offensive class.

Validating the results using actual test data:

808

Variable Coefficient
bad -1.57
mean -1.08
woman -1.02
brexit -0.87
hell -0.84
fact -0.76
holy shit -0.72
pissed -0.70

Table 4: Coefficients with lower values

The results using ensemble model were submitted
to the competition and compared against the actual
test data. The table shows the baseline results and
the model’s performance

System Accuracy F1 (macro)
All NOT baseline 0.7209 0.4189
All OFF baseline 0.2790 0.2182
Ensemble - No additiona data 0.8314 0.7565
Ensemble with additional data 0.8093 0.7433

Table 5: SubTask A result on actual test data

It was surprising to see that by training the
model with additional data, model’s accuracy de-
creased by 3%. This can be mainly attributed to
the difference in data sources and difference in re-
sponse variable definition.

The results between the models trained with
and without additional data are to be compared
to see the difference between them. Looking at
the tweets tagged as Offensive by Model without
additional data, but as non-offensive by the other
: @USER Zuckerberg lies., SerenaWilliams is so
full of herself...she is just as painful to watch as to
listen to..., and ”50 Cent Calls Out Joe Budden’s
Bullshit”” On Instagram URL URL. Looking at
the tags, it can be hypothesized that words like
’lies’,’painful’ and ’bullshit’ which had very high
positive score (offensie), got reduced because of
the additional data where these words were not
used in an offensive setting. Difference in usage
of such words is the reason behind reduction in
prediction accuracy for new tweets.

Confusion Matrix
The primary problem is seen with predicting the
offensive tweets, where almost half of them are
were predicted incorrectly, while a majority of the
non-offensive tweets are predicted correctly.

Error Analysis

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

596 24

121 119

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: SubTask A, Ensemble - No additional data

Analyzing the two cases of mis-classification,
i) Offensive tweet tagged non-offensive - While

a few of the tweets target an individual or a
group, many of them seem to be ambiguous like -
”@USER @USER @USER @USER Kick the ab-
solute shite out of the car”, ”@USER @USER
@USER @USER Yes. Yes he is!”, and ”Shits
about to Hit the Fan. MAGA URL”

ii) Non offensive being tagged as offensive -
The most common reason is the presence of cuss
word in a non-offensive sense. Examples are - Am
I a dickhead ???? Probably yes,@USER I’ve al-
ready listened to it like 5 times it’s so fucking well
made More features related to the sequence of the

sentence, and dependency parsing might help in
understanding the syntactic structure

5.2 Results - SubTask B

The model architecture remained similar to the
earlier SubTask, except that Model 2 was trained
with additional features like Parts of Speech to
help detect the target.

The cross-validation results obtained are,

Model (SubTask B) Accuracy F1 (macro)
Model1 - Logistic (BOW) 0.87 0.46
Model 2- Logistic (Semantic features) 0.87 0.46
Model 3 - Logistic (Char n gram) 0.87 0.45
Model 3 - Random Forest (BOW) 0.86 0.46
Model 4 - XG Boost (BOW) 0.87 0.46
Ensemble Model 0.88 0.47

Table 6: Results for SubTask B with no additional data

It is clear that the ensemble model performs bet-

809

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

210 3

23 4

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 3: SubTask B,Confusion matrix for final model

ter than all the other individual models. Now, as-
sessing the performance on actual test data,

System Accuracy F1 (macro)
All TIN baseline 0.8875 0.4702
All UNT baseline 0.1125 0.1011
Ensemble Model 0.8917 0.5885

Table 7: SubTask B result on actual test data

Confusion Matrix
Looking at the confusion matrix in Figure 3, the

main issue is seen with predicting a targeted tweet,
where almost all of them are predicted incorrectly.
This can be ascribed to insufficient number of fea-
tures that would identify an individual or organi-
zation.

6 Conclusion

The proposed ensemble model leverages the best
of each of the individual models, where each of
the models was experimented with a varying set
of features. Some features like word and charac-
ter n-grams, tweet polarity, cuss word count were
more helpful in capturing offensive tweets. The
performance for SubTask B is not appreciable be-
cause less number of features related to identify-
ing a target were used. With our best scores for
SubTask A, we were placed 36th out of 103 par-
ticipants, and were placed 42nd out of 75 submis-
sions in the SemEval-2019 competition. The top
team achieved a F1(macro) score of 0.829 in Sub-
Task A, while we obtained 0.756. Similarly, for
SubTask B the top team had a F1(macro) score

of 0.755, while we obtained 0.588. Features like
identifying the presence of a person’s name using
nltk libraries, and the presence of an individual
or an organization using Named Entity Recogni-
tion with spaCy is highly recommended for further
studies.

Moreover, there was a pattern associated with
the coefficients having least weights - most of
them had a slightly negative connotation. This can
justified because of the overall theme of tweets
used for training, as most of them were inclined
towards politics. This lead to overall less number
of ’positive words’. Having more training ex-
amples especially with a range of tweet polarity
from more positive to more negative would help
in building better models. As seen from our re-
sults, an additional data set should be in the same
space (Twitter data) to avoid worse performance.

Talking about the offensive tweet categories,
there are four types - explicit, implicit, targeted at
individuals and groups. The techniques mentioned
in this paper using a variety of feature engineering
tries to capture most of these categories. How-
ever, advanced syntactic features should be in-
troduced to capture patterns like ”Pronoun-Verb-
Cuss word”. Especially, if a exploratory data
analysis is performed on analyzing the patterns of
Parts of Speech in offensive tweets, it would help
in building additional useful variables.

The main goal of this paper is to show that sim-
pler models which have understandable features
can produce good results. More complex methods
like introducing polynomial or intricate features,
deep learning models using Recurrent Neural Net-
work are other approaches for potentially better
accuracy but at the risk of losing interpretability.
In conclusion, it is believed that with additional
robust features as discussed earlier, the current
ensemble machine learning model’s performance
might increase. Moreover, such features would
also be really helpful in interpreting why a tweet
could be offensive, which will help in taking nec-
essary actions and remedial measures for social
media companies.

References
Thomas Davidson, Dana Warmsley, Michael Macy,

and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,

810

William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Process-
ing for Social Media. Association for Computational
Linguistics, pages 1–10, Valencia, Spain.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse: A
Typology of Abusive Language Detection Subtasks.
In Proceedings of the First Workshop on Abusive
Langauge Online.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

811

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 812–817
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

YNU-HPCC at SemEval-2019 Task 6: Identifying and Categorising
Offensive Language on Twitter

Chengjin Zhou, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact: xjzhang@ynu.edu.cn

Abstract
This document describes the submission of
team YNU-HPCC to SemEval-2019 for three
Sub-tasks of Task 6: Sub-task A, Sub-task B,
and Sub-task C. We have submitted four sys-
tems to identify and categorise offensive lan-
guage. The first subsystem is an attention-
based 2-layer bidirectional long short-term
memory (BiLSTM). The second subsystem is
a voting ensemble of four different deep learn-
ing architectures. The third subsystem is a s-
tacking ensemble of four different deep learn-
ing architectures. Finally, the fourth subsys-
tem is a bidirectional encoder representation-
s from transformers (BERT) model. Among
our models, in Sub-task A, our first subsys-
tem performed the best, ranking 16th among
103 teams; in Sub-task B, the second subsys-
tem performed the best, ranking 12th among
75 teams; in Sub-task C, the fourth subsystem
performed best, ranking 4th among 65 teams.

1 Introduction

Identifying offensive language (Zampieri et al.,
2019b) on Twitter is a particularly challenging
task because of the informal and creative writing
style, with the improper use of grammar, figu-
rative language, misspellings and slang, etc. In
previous attempts of the task, OffensEval was
generally tackled using hand-crafted features
and/or sentiment lexicons by feeding them to
classifiers such as Support Vector Machines
(SVM). These approaches require a laborious
feature-engineering process, which may also need
domain-specific knowledge, usually resulting in
both redundant and missing features. However, in
recent years, artificial neural networks for feature
learning have achieved good results in this field
(Christos Baziotis, 2017).

SemEval-2019 Task 6 consists of three Sub-
tasks (Symeon Symeonidis, 2017):

• Sub-task A: Offensive language identifica-
tion;

• Sub-task B: Automatic categorisation of of-
fense types;

• Sub-task C: Offense target identification.

In this document, we present four systems that
competed at SemEval-2019 Task 6 (Zampieri
et al., 2019b). The first model is a 2-layer
BiLSTM, equipped with an attention mechanism.
The second is voting scheme that combines
a 2-layer BiLSTM, Capsule Network, 2-layer
bidirectional gated recurrent unit (BiGRU), and
the first model. The third model is a stacking
scheme that combines a 2-layer BiLSTM, Capsule
Network, 2-layer bidirectional gated recurrent
unit (BiGRU), and the first model. In addition, the
above three models, for the word representation,
we have used the glove vector. The fourth model
is BERT-BASE (Jacob Devlin, 2018), which was
released last year by Google AI Language.

The remainder of this document is organised as
follows. The related work is described in Section
2. Section 3 reports our methodology and data.
Section 4 reports our result. The conclusions are
summarised in Section 5.

2 Related Work

In recent years, with the rapid development of
social media, the use of aggressive and offensive
language as well as hate speech has gradually
increased. To tackle this problematic behaviour,
one of the most common strategies is to train
systems capable of recognising them and either
deleting them or setting them aside for human
moderation.

812

Aggression can be divided into three categories:
overt aggression, covert aggression, and non-
aggression (Kumar et al., 2018). Last year, in a
shared task, several participants used deep neural
networks and traditional machine learning meth-
ods for aggression identification. The best per-
forming systems in this competition used deep-
learning approaches based on convolutional neural
networks (CNN), BiLSTM, and long short-term
memory (LSTM). Offensive Language is com-
monly defined as hurtful, derogatory or obscene
comments made from one person to another. Cur-
rently, there is an increasing amount of such lan-
guage online. Manually monitoring these posts
would incur significant costs (Mathur et al., 2018).
Therefore, the automatic identification of suspi-
cious posts has emerges as a trend. In recent years,
many researchers have studied the use of deep-
learning and traditional machine learning method-
s for this purpose. Their results indicate that, al-
though several deep-learning approaches produce
good scores, traditional supervised classifiers can
produce similar scores. Word embeddings, char-
acter n-grams and lexicons of offensive words are
popular features, but all three components are not
necessary for a robust system. Ensemble meth-
ods mostly help (Wiegand et al., 2018). Many
previous studies still tend to equate offensive lan-
guage and hate speech. However, through this
method, we may erroneously classify many peo-
ple as hate speakers by failing to differentiate be-
tween commonplace offensive language and gen-
uine hate speech (Davidson et al., 2017; Fortuna
and Nunes, 2018). In recent years, the recogni-
tion of hate speech has mainly focused on deep-
learning methods, such as CNNs (Gambäck and
Sikdar, 2017) and Convolution-GRU (Zhang et al.,
2018).

3 Methodology and Data

3.1 Data

The datasets contain data from Twitter and were
provided by the organisers. For Sub-task A,
Sub-task B, and Sub-task C, the available datasets
(Zampieri et al., 2019a) comprised all the training
and testing data. In addition, because the organ-
isers did not provide development, we decided to
split 0.2 from the training as development. Table
1 shows the data provided by the organisers.

As shown in Table 1, there the data of the three

Sub-tasks shows a significant imbalance.

A B C Train Test Total
OFF TIN IND 2,407 100 2,507
OFF TIN OTH 395 35 430
OFF TIN GRP 1,074 78 1,152
OFF UNT — 524 27 551
NOT — — 8,840 620 9,460
ALL 13,240 860 14,100

Table 1: Distribution of label combinations in the data

3.2 Preprocessing

Initially, we received the training and testing data
that had been preprocessed by the organisers. Sub-
sequently, on this basis, we preprocessed the train-
ing and testing data again and finally applied it to
a neural network. For preprocessing, we removed
and replaced strings from the tweets that did not
show any sentiments, irregularities, or abbrevia-
tions. We also removed duplicates and Unicode
strings. These were implemented as follows:

• Removing consecutive duplicates while re-
taining one item: we found that some in-
stances of text were duplicates, e.g. ”????”
→ ”?”.

• Replacing the emojis on Twitter with the cor-
responding English definition and replacing
abbreviations: There were several emojis in
the data conveying different emotions. In ad-
dition, the abbreviations in the data also re-
strict the corresponding emotional categories,
e.g. ”don’t”→ ”do not”.

• Replacing irregular words: we found that
there were many irregular words in the data,
e.g. ”bro”→ ”brother”.

• Removing some punctuation: preliminary
experiments showed better results when we
removed some punctuation; however, we de-
tected emotive punctuation signs such as ”!”
and ”?” and retained them.

• Converting lowercase: the final tweets were
converted to lowercase (after detecting word-
s that had all of their character capitalised,
which were retained).

• Using Stanford toolkit: After comparing the
use of the word segmentation in the NLTK

813

and Stanford toolkits, we finally decided to
use the Stanford toolkit, because of its better
performance.

3.3 System
For SemEval-2019 Task 6, we used five basic
models:

• BiLSTM: BiLSTM is a combination of for-
ward LSTM (LSTM is an artificial recurrent
neural network (RNN) architecture; a com-
mon LSTM unit comprises a cell, an input
gate, an output gate, and a forget gate.) and
backward LSTM. Because BiLSTM can bet-
ter represent bidirectional semantic depen-
dencies, it is often used to model contextual
information in natural language processing.
In the three Sub-tasks, after several trial com-
parisons and time factors, we finally selected
a 2-layer BiLSTM. In addition, the parame-
ters of our model were chosen to maximise
development performance: in Sub-task A, we
initialised the hidden dimension, recurrent
dropout, and batch size as 120, 0.25, and 128,
respectively; in Sub-task B, we initialised
the hidden dimension, recurrent dropout, and
batch size as 120, 0.25, and 100, respectively;
and in Sub-task C, we initialised the hidden
dimension, recurrent dropout, and batch size
as 140, 0.35, and 64, respectively.

• BiGRU: similarly, BiGRU is a combination
of forward GRU (GRU, a variant of LST-
M, has a simpler structure than LSTM and
works well; there are only two gates in the
GRU model, namely the update gate and
the reset gate) and backward GRU. For the
three Sub-tasks, we used a 2-layer BiGRU.
The parameters of our model were chosen to
maximise development performance: in Sub-
tasks A and B, we initialised the hidden di-
mension, recurrent dropout, and batch size as
120, 0.25, and 100, respectively; in Sub-task
C, we initialised the hidden dimension, recur-
rent dropout, and batch size as 120, 0.25, and
128, respectively.

• BiLSTM with attention: For this, an at-
tention layer was added to the 2-layer BiL-
STM. In BiLSTM, we used the output vec-
tor of the last time sequence as the feature
vector and then performed softmax classifi-
cation. The attention layer is used to first

calculate the weight of each time sequence,
then take the weighted sum of all the time
sequence vectors as feature vectors, and fi-
nally perform softmax classification. Sim-
ilar to the previous models, the parameters
of our model were as follows: in Sub-tasks
A and B, we initialised the hidden dimen-
sion, recurrent dropout, and batch size as 120,
0.25, and 256, respectively; in Sub-task C,
we initialised the hidden dimension, recur-
rent dropout, and batch size as 180, 0.3, and
128, respectively.

• Capsule Network: In the deep-learning
model, the spatial patterns are summarised
at the lower level, thus helping represent the
concept of higher layers. For example, when
a CNN models spatial information, it need-
s to copy the feature detector, which reduces
the efficiency of the model. However, spa-
tially insensitive methods are inevitably lim-
ited by rich text structures (such as the p-
reservation of word location information, se-
mantic information, and grammatical struc-
ture), which are difficult to encode effectively
and lack text expression ability. Hinton et al.
(Sara Sabour, 2017) proposed a Capsule Net-
work, which replaces a single neuron node
of a traditional neural network with a neu-
ron vector and trains this new neural network
through dynamic routing, effectively improv-
ing the shortcomings of the above two meth-
ods. The parameters of our model were as
follows: in Sub-tasks A and B, we initialised
the hidden dimension, batch size, and routing
as 64, 120, and 15, respectively; in Sub-task
C, we initialised the hidden dimension, batch
size, and routing as 64, 140, and 15, respec-
tively.

• BERT: The BERT model is a language mod-
el proposed by Google based on a bidirec-
tional transformer. It is quite different from
ELMo (Peters et al., 2018). In existing
pre-training models (including word2vec and
ELMo), word vectors are generated. This
type of pre-training model belongs to domain
transfer. The GPT (Karthik Narasimhan and
Sutskever, 2018), BERT, etc. proposed in
recent years are all examples of model mi-
gration. Furthermore, the BERT model com-
bines the pre-training model with the down-

814

stream task model. In other words, it is
still utilised when performing downstream
tasks, and text classification tasks are natural-
ly supported. The model does not need to be
modified when performing text classification
tasks. The BERT model has two versions on
the English datasets, namely Base and Large,
and we used the Base version. The param-
eters of our model were as follows: trans-
former blocks (L) was set as 12, hidden size
(H) as 768, number of self-attention head-
s (A) as 12, total parameters as 110M, train
batch size as 32, predict batch size as 8, and
learning rate as 0.00002.

For the four models of BiLSTM, BiGRU, BiL-
STM with attention, and Capsule Network, first,
the processed Twitter text was converted into a
word vector matrix. Then the word vector ma-
trix was processed by the embedded layer. Sub-
sequently, the word vector matrix was converted
to a computable vector matrix. Finally, the four
models could utilise the vector matrix for training
and prediction.

3.4 K-Fold Cross-Validation

We know from Section 3.1 that data imbalance
exists in the public datasets published by the or-
ganisers. This would lead to unstable or inaccu-
rate experimental results. To manage this problem,
we used k-fold (k = 5) cross-validation: the train-
ing sample was randomly partitioned into 5 equal
sized subsamples. Of the 5 subsamples, a single
subsample was retained as validation data to test
the model, and the remaining 4 subsamples were
used as training data.

4 Results

4.1 Task A

Sub-task A includes 13240 training instances and
860 testing instances, as well as OFF and NOT la-
bels. We used four models for predictions on the
testing sets. These four models were BERT (sys-
tem ID: 528280), voting (system ID: 528117), s-
tacking (system ID: 528015), and BiLSTM with
attention (system ID: 528232). In the voting mod-
el, we performed soft voting ensemble on four ba-
sic models: BiLSTM, BiGRU, BiLSTM with at-
tention, and Capsule Network. In the stacking
model, we performed stacking ensemble on four
basic models: BiLSTM, BiGRU, BiLSTM with

attention, and Capsule Network. Our team results
according to those provided by the task organiser-
s are shown in Table 2. Among the results of the
four models submitted by our team, the BiLSTM
with attention model performed the best, and its
F1 (macro) was 0.7877. The accuracy was 0.843,
ranking 16th among all participants. In addition,
from the confusion matrix in Figure 1, it is ob-
served that when the classifier predicts two classes
of labels, namely NOT and OFF, it is more specif-
ic to the NOT label, and the precision for the NOT
label is higher than that for the OFF label.

System ID F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
528015 0.7258 0.7872
528117 0.7817 0.836
528280 0.7667 0.8174
528232 0.7877 0.843

Table 2: Results for Sub-task A

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

582 38

97 143

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 1: Sub-task A, YNU-HPCC CodaLab 528232

4.2 Task B
Sub-task B continues on the OFF label of Sub-task
A. It includes 4400 training instances and 240 test-
ing instances, as well as TIN and UNT labels. We
used BERT (system ID: 533313), voting (system
ID: 533291), and BiLSTM with attention (system
ID: 533311) for predictions on the testing sets.
The results of our team according to those pro-
vided by the task organisers are shown in Table 3.
Among the results of the three models submitted

815

by our team, the voting model performed best; its
F1 (macro) was 0.6811, its accuracy was 0.8625,
and it ranked 12th among all participants. Similar
to the previous Sub-task, the confusion matrix in
Figure 2 indicates that, for the TIN and UNT la-
bels, the classifier is more sensitive to TIN labels.
In terms of precision, the value for the TIN label
is also higher than that for the UNT label.

System ID F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
533291 0.6811 0.8625
533311 0.6248 0.7833
533313 0.6530 0.8375

Table 3: Results for Sub-task B

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

194 19

14 13

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Sub-task B, YNU-HPCC CodaLab 533291

4.3 Task C
Sub-task C continues on the TIN label of Sub-task
B. It includes 3876 training instances and 213
testing instances, as well as IND, OTH, and GRP
labels. We used BERT (system ID: 536705) and
voting (system ID: 537472) for predictions on the
testing sets. The results of our team according
to those provided by the task organisers are
shown in Table 4. Among the results of the two
models submitted by our team, the BERT model
performed the best; its F1 (macro) was 0.6212,
its accuracy was 0.7089, and it ranked 4th among
all participants. Additionally, as shown in Figure
3, among the IND, OTH, and GRP labels, the
highest recall and precision are for the IND labels,

and the lowest are for the OTH labels.

For the three Sub-tasks, misclassifications of the
classifier are likely due to data imbalance.

System ID F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
536705 0.6212 0.7089
537472 0.5377 0.6667

Table 4: Results for Sub-task C

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l
57 13 8

10 84 6

14 11 10

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: Sub-task C, YNU-HPCC CodaLab 536705

5 Conclusion

Identifying and categorising offensive language is
a task that is drawing increasing attention. In this
document, we described our four models submit-
ted for Task 6 of the SemEval-2019 Workshop,
which involved identifying and categorising offen-
sive language on Twitter. These four models com-
prise not only traditional neural network model-
s but also popular language models. Our model
exhibited good performance in terms of the ex-
perimental results. In the three Sub-tasks, there
appears to be significant room for improvement
compared to the top-ranked participating systems.
Therefore, in future work, we will focus on using
more word embedding methods and managing da-
ta imbalance issues.

816

Acknowledgments

This work was supported by the National Nat-
ural Science Foundation of China (NSFC) un-
der Grants No.61702443 and No.61762091, and
in part by Educational Commission of Yunnan
Province of China under Grant No.2017ZZX030.
The authors would like to thank the anonymous
reviewers and the area chairs for their constructive
comments.

References
Christos Doulkeridis Christos Baziotis, Nikos Pelekis.

2017. DataStories at SemEval-2017 Task 4:Deep L-
STM with Attention for Message-level and Topic-
based Sentiment Analysis. In Proceedings of the
11th International Workshop on Semantic Evalua-
tions (SemEval-2017), pages 747–754, Vancouver,
Canada.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Kenton Lee Kristina Toutanova Jacob Devlin, Ming-
Wei Chang. 2018. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understand-
ing. arXiv:1810.04805 [cs.CL].

Tim Salimans Karthik Narasimhan, Alec Radford and
Ilya Sutskever. 2018. Improving Language Under-
standing by Generative Pre-Training. OpenAI.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
First Workshop on Trolling, Aggression and Cyber-
bulling (TRAC), Santa Fe, USA.

Puneet Mathur, Rajiv Shah, Ramit Sawhney, and De-
banjan Mahata. 2018. Detecting offensive tweets in
hindi-english code-switched language. In Proceed-
ings of the 6th International Workshop on Natural
Language Processing for Social Media, pages 18–
26.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Geoffrey E Hinton Sara Sabour, Nicholas Frosst.
2017. Dynamic Routing Between Capsules. arX-
iv:1710.09829 [cs.CV].

John Kordonis Avi Arampatzis Symeon Symeonidis,
Dimitrios Effrosynidis. 2017. DUTH at SemEval-
2017 Task 4: A Voting Classification Approach for
Twitter Sentiment Analysis. In Proceedings of the
11th International Workshop on Semantic Evalua-
tions (SemEval-2017), pages 704–708, Vancouver,
Canada.

Michael Wiegand, Melanie Siegel, and Josef Rup-
penhofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

817

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 818–822
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average
meta-embedding for identifying offensive language

Bin Wang, Xiaobing Zhou∗ ,Xuejie Zhang
School of Information Science and Engineering

Yunnan University, Yunnan, P.R. China
∗Corresponding authorzhouxb@ynu.edu.cn

Abstract

This paper describes the system submitted to
SemEval 2019 Task 6: OffensEval 2019. The
task aims to identify and categorize offen-
sive language in social media, we only par-
ticipate in Sub-task A, which aims to iden-
tify offensive language. In order to address
this task, we propose a system based on a
K-max pooling convolutional neural network
model, and use an argument for averaging as a
valid meta-embedding technique to get a meta-
embedding. Finally, we use a cyclic learn-
ing rate policy to improve model performance.
Our model achieves a Macro F1-score of 0.802
(ranked 9/103) in the Sub-task A.

1 Introduction

In the past ten years, with the popularity of the
Internet, social media platforms such as facebook
and twitter have gradually become important tools
for people’s daily communication, and users can
publish their own content on these platforms. As
the number of people interacting on social medi-
a platforms increases, online aggression language
behavior also grows, and now it has become a ma-
jor source of social conflict.

Semeval 2019 Task 6 is proposed for identify-
ing online offensive languages (Zampieri et al.,
2019b). Its goal is to use computational method-
s to identify offense, aggression and hate speech
in user-generated content on online social medi-
a platforms. We can prevent abuse of offensive
language by using this approach in social media
platforms. This task gives us some data from the
social media platform, and classifies the content
through computational analysis.

In this competition, we only participate in Sub-
task A: identification of offensive language. For
this task, we use a deep learning method to build
a K-max pooling convolutional neural network
model which uses convolutional neural networks

of different filters to extract features and preserves
k largest eigenvalues during the pooling phase.
We use two different pre-training vector model-
s (fastText and Glove) to obtain a more accurate
meta-embedding with a simple averaging tech-
nique (Coates and Bollegala, 2018). In addition,
we have adopted a Cyclic Learning Rate (CLR)
strategy (Smith, 2017), which avoids the process
to find the optimal learning rate, and the learning
rate varies within a reasonable interval rather than
monotonically. Unlike the Adative Learning Rate,
the CLR does not require additional calculations.

The rest of the paper is structured as follows:
In section 2, we describe some of the relevant
research work. In section 3, we describe the task
data and how to build the model. In section 4, we
describe the experimental results.

2 Related Work

In recent years, offensive language has prevailed
in social media, and people are increasingly inter-
ested in identifying offensive speech, especially on
social media platforms. This topic has attracted
the attention of a large number of researchers in
industry and academia. The field of Hate Speech
Automatic Detection in the text has unquestion-
able social impact potential, especially in online
communities and digital media platforms (Fortuna
and Nunes, 2018). In this section, we will review
some of the studies and briefly discuss their find-
ings.

Dinakar et al. decomposed the overall detec-
tion problem into detection of sensitive topics, in-
corporated itself into the text classification sub-
question, and solved the problem of text cyberbul-
lying detection by constructing a separate topic-
sensitive classifier(Dinakar et al., 2011). Burnap
et al. used probabilities, based on the combina-

818

tion of rules and space-based classifiers and voting
element classifiers to predict the possible spread
of network hatred in Twitter data samples (Bur-
nap and Williams, 2015). Kwok et al. used super-
vised machine learning methods to obtain tagged
data from different Twitter accounts in an inex-
pensive way, and to learn the binary classifier-
s of the “racist” and “nonracist” tags (Kwok and
Wang, 2013). Gambäck et al. built a convolution-
al neural network model based on word2vec em-
bedding(Gambäck and Sikdar, 2017). And a new
method for deep neural networks based on convo-
lution and gated recursive networks was proposed
by Zhang et al. (Zhang et al., 2018). In the field
of research on hate speech, originally Xu et al. in-
troduced the social study of bullying and formu-
lated it as NLP tasks(Xu et al., 2012), then Ross
et al. suggested that the existence of hate speech
should not be considered as a binary yes or no
decision, and the evaluator needs a more detailed
commentary(Ross et al., 2016), and now ElSherief
et al. believed that it is necessary to further deepen
the understanding of online hate language to de-
termine whether the target is individual or group
(ElSherief et al., 2018).

3 Methodology and Data

3.1 Data description

In this task, we only use the official training data
set for training and trial data set to verify. The of-
ficial data provided by OLID is mainly from Twit-
ter (Zampieri et al., 2019a). In Sub-task A, the
purpose is to distinguish whether the tweet is of-
fensive, so the data is divided into two categories:
Not Offensive (NOT): Posts that do not contain of-
fensive or defamatory; and Offensive (OFF): This
category includes insults, threats, and posts that
contain defamatory or cursed words. The training
data set has a total of 13240 tweets, in which there
are 8840 of NOT and 4400 of OFF, the ratio is
about 2:1. The data is slightly unbalanced, but we
have not dealt with the data imbalance problem.

3.2 K-max pooling CNN model

Our network architecture is shown in Figure 1. It
is a variant of the CNN model structure proposed
by Yoon Kim (Kim, 2014). Next we explain the
details of our system.

• Input layer: This layer mainly inputs all the
preprocessed text data into the model.

• Embedding layer: Converting text into word
embeddings represents each word of the text
with a d dimensional vector by using a pre-
trained word vector model.

• Convolutional layer: In this layer, the ob-
tained word vectors are subjected to convo-
lution operations to obtain multiple feature
maps. The specific operation is: a sentence
contains L words, each of which has a dimen-
sion of d after the embedding layer, and form-
s a L ∗D sentence representation by splicing
L words. There are several convolution k-
ernels in the convolutional layer, the size of
which is N ∗ d, and N is the filter window
size. The convolution operation is to apply a
convolution kernel to create a new feature in
a matrix that is spliced by words. Its formula
is as follows:

Cl = f(w ∗ x(l:l+N−1) + b) (1)

where l represents the lth word, cl is the fea-
ture, w is the convolution kernel, b is the bias
term, and f is a nonlinear function. After the
convolution operation of the whole sentence,
a feature map is obtained, which is a vector
of size L+N − 1.

• Pooling layer: The main function of this lay-
er is to perform dimensionality reduction on
the features of filter to form the final feature
with a K-max pooling operation, which takes
the value of the scores in Top K among al-
l the feature values, and retains the original
order of these feature values. Obviously, K-
max Pooling can express the same type of
feature multiple times, that is, it can express
the intensity of a certain type of feature; In
addition, because the relative order of these
Top K eigenvalues is preserved, it should be
said that it retains part of the position infor-
mation. However, this location information is
only the relative order between features, not
absolute location information. For example:
“I think the scenery in this place is not bad,
but there are too many people.” Although the
first half reflects the positive emotions, the
global text expresses the negative emotions,
and K-max pooling can capture such infor-
mation.

819

Figure 1: The architecture of K-max pooling CNN model

• Fully connected layer: In this model archi-
tecture, there are two layers of fully connect-
ed layers. The first layer receives the feature
vectors obtained by the pooling layer, and the
last layer is used for classification and predic-
tion.

3.3 Word embedding

We use two different pre-trained word embed-
dings, fastText and Glove. FastText is provided
by Mikolov et al. (Mikolov et al., 2018), it is a 2
million word vector trained using subword infor-
mation on Common Crawl with 600B tokens, and
its dimension is 300. Glove is provided by Jeffrey
Pennington et al. (Pennington et al., 2014), it is
a 2.2 million word vector trained using subword
information on Common Crawl with 840B tokens,
and its dimension is also 300.

We use a mathematical mean of the word vec-
tors by fastText and Glove to produce a high per-
formance word vector. Since the principles be-
tween fastText and Glove are different, the word
vector representation of the same word is also s-
lightly different, and the average embedding set
retains semantic information through preservation
of the relative distances between words (Coates
and Bollegala, 2018).

3.4 CLR

In this article, we use the cyclic learning rate strat-
egy provided by Leslie N . Smith (Smith, 2017),
which is a new method of setting the global learn-
ing rate. The advantage is that it avoids a lot of
experiments to find the optimal learning rate and
can be faster. We set the base learning rate and the
maximum learning rate so that the learning rate
fluctuates cyclically within this interval. The wave
method we use is exp range, which is a triangle

loop that scales the loop magnitude by a factor
while keeping the initial learning rate constant.

4 Experiment and results

4.1 Data preprocessing
Text from tweets are inherently noisy. Tweets are
processed using tweettokenize tool. Cleaning the
text before further processing helps to generate
better features and semantics. We perform the fol-
lowing preprocessing steps.

• The “#” symbol is removed and the word it-
self is retained for hashtags.

• All of “@user” is replaced with username.
Username mentions, i.e. words starting with
“@”, generally provide no information in
terms of sentiment. Hence such terms are re-
moved completely from the tweet.

• Repeated full stops, question marks and ex-
clamation marks are replaced with a single
instance with a special token ”repeat” added.

• All contractions are split into two tokens(e.g.:
“it’s” is changed to “it” and “is”).

• Emoticons (for example, ‘:(’, ‘:)’, ‘:P’ and e-
moji etc) are replaced with their own mean-
ings by emotion lexicons.

• Lemmatization, restoring language vocabu-
lary to general form (can express complete
semantics) by WordNetLemmatizer.

• Tokens are converted to lower case.

4.2 Experiment setting
We use 4-fold cross validation on the training data,
because in this experiment we experimented with

820

cross-validation of different k values, and found
that the 4-fold cross-validation effect is the best.
In addition the batch size is to 512 and the epoch
to 20. In our model, the dimension of embeding
is 300. Between the embedding layer and the con-
volution layer we add the SpatialDropout1D layer
with a value of 0.2. In the convolution layer, we
set up four convolution kernels of different win-
dow sizes, which are 1, 2, 3 and 4, the number of
filters is 180, the kernel initializer is normal, the
activation function is relu; in the pooling layer we
set the k value to 3. Before the fully connected
layer, we add a dropout layer, and the rate is 0.6.
The activation function of the final output layer is
sigmoid for binary classification. The loss func-
tion of this model is binary crossentropy, and
the optimizer is adam.

For the cyclical learning rate, we set the base
learning rate to 0.001, the maximum learning rate
to 0.002, the step size to 300, and the scaling factor
gamma to 0.99994.

4.3 Result analysis

This Sub-task A is to evaluate the classification
system by calculating the marco F1 score. Ac-
cording to the official ranking of Sub-task A, our
model has a marco F1 score of 0.8024, ranked
9th, and our result is much higher than the offi-
cial baseline. The results of the official baseline
and our model are shown in Table 1.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Our model 0.8024 0.8453

Table 1: Results for Sub-task A

The confusion matrix of our model prediction
results in Sub-task A is shown in Figure 2. There
are 620 NOT tags in the test dataset, and 240 OFF
tags. As can be seen from the confusion matrix,
our model has a lot of OFF prediction errors into
NOT, about 32% of OFF are predicted to be NOT,
while only about 9% of NOT are predicted to be
OFF.

4.4 Influence of Word Embedding

The effect of the average meta-embedding tech-
nique is shown in Table 2. In this table, the results
of fastText, Glove, the word vector generated by
concatenating fastText and Glove and the vector

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

564 56

77 163

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Confusion matrix of K-max pooling CNN
model for Sub-task A

generated by the average meta-embedding tech-
nique are compared, and the result is obtained in
the trial data set. The results show that this av-
erage meta-embedding technique can improve the
performance of the model.

word vector F1 (macro)
fastText 0.8138
Glove 0.7895
concatenated 0.8165
average meta-embedding 0.8242

Table 2: Influence of word embedding in trial data set
for Sub-task A

As can be seen from Table 2, the concatenated
can also improve the performance of the model,
but increases the dimension of word embeddings
to 600. While the meta-embedded dimension will
not exceed the maximum dimension existing in the
source embedding.

5 Conclusion

In this paper, we present a K-max pooling con-
volutional neural network model based on aver-
age meta-embedding technology for offensive lan-
guage detection, which relies solely on the da-
ta sets provided to generate competitive result-
s. However, the data imbalance problem will af-
fect the performance of the model, which makes
the model prediction tend to be biased towards a
high amount of data. In the future work, we will
strengthen the processing of data imbalance prob-
lems, and try to extract some NER features from
the data to further improve the performance of the
model.

821

Acknowledgments

This work was supported by the Natural Sci-
ence Foundations of China under Grant Nos.
61463050, 61702443 and 61762091, and the
Project of Innovative Research Team of Yunnan
Province under Grant No. 2018HC019.

References
Pete Burnap and Matthew L Williams. 2015. Cyber

hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 7(2):223–242.

Joshua Coates and Danushka Bollegala. 2018. Frus-
tratingly easy meta-embedding computing meta-
embeddings by averaging source word embeddings.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers).

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbully-
ing. In The Social Mobile Web, pages 11–17.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis of
Hate Speech in Social Media. arXiv preprint arX-
iv:1804.04257.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Computing Surveys (CSUR), 51(4):85.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Yoon Kim. 2014. Convolutional neural network-
s for sentence classification. arXiv preprint arX-
iv:1408.5882.

Irene Kwok and Yuzhou Wang. 2013. Locate the
hate: Detecting Tweets Against Blacks. In Twenty-
Seventh AAAI Conference on Artificial Intelligence.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wojatz-
ki. 2016. Measuring the Reliability of Hate Speech
Annotations: The Case of the European Refugee
Crisis. In Proceedings of the Workshop on Natural
Language Processing for Computer-Mediated Com-
munication (NLP4CMC), Bochum, Germany.

Leslie N Smith. 2017. Cyclical learning rates for train-
ing neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 464–472. IEEE.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and
Amy Bellmore. 2012. Learning from bullying traces
in social media. In Proceedings of the 2012 confer-
ence of the North American chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 656–666. Association for Com-
putational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

822

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 823–828
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Zeyad at SemEval-2019 Task 6: That’s Offensive! An All-Out Search For
An Ensemble To Identify And Categorize Offense in Tweets

Zeyad El-Zanaty
Faculty of Engineering
Alexandria University

zeyadzanaty@gmail.com

Abstract

The objective of this paper is to provide a
description for a classification system built
for SemEval-2019 Task 6: OffensEval. This
system classifies a tweet as either offensive
or not offensive (Sub-task A) and further
classifies offensive tweets into categories
(Sub-tasks B - C). The system consists of
two phases; a brute-force grid search to find
the best learners amongst a given set and an
ensemble of a subset of these best learners.
The system achieved an F1-score of 0.728,
ranking in subtask A, an F1-score score of
0.616 in subtask B and an F1-score of 0.509
in subtask C.

1 Introduction

In OffensEval we break down offensive content
into three sub-tasks taking the type and target of
offenses into account. Sub-task A - Offensive lan-
guage identification; In this sub-task we are inter-
ested in the identification of offensive posts and
posts containing any form of (untargeted) profan-
ity. In this sub-task there are 2 categories in which
the tweet could be classified Not Offensive - This
post does not contain offense or profanity. Non-
offensive posts do not include any form of offense
or profanity. Sub-task B - Automatic categoriza-
tion of offense types; In this sub-task we are inter-
ested in categorizing offenses. Tweets are labeled
from one of the following categories Targeted In-
sult - A post containing an insult or a threat to an
individual, group, or others; Untargeted - A post
containing non-targeted profanity and swearing.
Posts containing general profanity are not targeted
but they contain non-acceptable language. On the
other hand, insults and threats are targeted at an
individual or group. Sub-task C - Offense target
identification. Finally, in sub-task C we are inter-
ested in the target of offenses. Only posts which

are either insults or threats are included in this sub-
task. The three categories included in sub-task C
are the following: Individual - The target of the
offensive post is an individual: a famous person,
named individual or an unnamed person interact-
ing in the conversation. Group - The target of the
offensive post is a group of people considered as
a unity due to the same ethnicity, gender or sexual
orientation, political affiliation, religious belief, or
something else. Other The target of the offen-
sive post does not belong to any of the previous
two categories (e.g. an organization, a situation,
an event, or an issue).(Zampieri et al., 2019b)

To work with such complicated tasks our ap-
proach is an exhaustive one. We try combinations
of many techniques in pre-processing, feature
extraction and classification while tuning their
hyper-parameters to find the best models with the
leading F1-scores. With the gained information an
ensemble of the top three models is formed to get
the optimum result. Along side to this approach
we try a deep-learning method with a simple 1D
- CNN consisting of 3 convolutional layers and a
softmax layer just to compare results.

2 Related Work

Offensive language on social media hardly
remains unnoticed. Contents involving hateful
messages vary from hate speech to group-based
racism and could target anyone irrespective of
their status, identity, location and so forth. Even
when it is not materialized into a hate-motivated
crime, the damage is done victims are being
labeled, marginalised and exposed to negative
stereotyping. The overall consequences of online
hate can be the dehumanisation of individuals
or groups of individuals. The need for proper
strategies to tackle hate speech on social media

823

is unquestionable. The core focus of the thesis is
not to find a solution to the challenge, but rather
to identify central problems that have contributed
to the formation of the existing reality. To unrave
the contributing factors, a holistic analysis of both
international human rights principles regarding
hate speech and the practical application of those
standards is necessary.(Schofield and Davidson,
2017)

There have been many studies and publication
on the topic of offensive language and hate
speech over the last few years. Examples on such
studies include (Davidson et al., 2017), (Malmasi
and Zampieri, 2017), (ElSherief et al., 2018),
(Gambäck and Sikdar, 2017), (Zhang et al.,
2018). Also there have been challenges on how to
distinguish profanity from hate-speech presented
by (Malmasi and Zampieri, 2018).

3 Methodology and Data

The used dataset in this assignment is the one
provided in SemEval-2019 task 6. The dataset has
been collected from Twitter. It was retrieved by
searching offensive terms that could be present
in a tweet. It consists of 14,100 tweets in total.
It was annotated using crowdsourcing. The gold
labels were assigned taking the agreement of three
annotators into consideration. No correction has
been carried out on the crowdsourcing annota-
tions. The dataset was presented in two phases;
Training data: already labeled tweets used to train
the classifiers. Each tweet was provided with a
binary classification label and an index. Testing
data: unlabeled tweets to test the classifiers
against. Zampieri et al. (2019a).

The system is a combination of three essential
layers. First, pre-processing which is a necessary
step in NLP as textual data could and most likely
is not clean, thus will affect further stages and
create an incoherent model. Second, feature
extraction or vectorization, which translates
words to a number or a series of numbers with
different weights to represent this word. Finally,
classification, features extracted from the previous
step is fed into a learner and a model is created
that could classify tweets.

For our approach we implemented a heap

of pre-processors, vectorizers and classifiers and
with the help of brute-froce search ranked all the
resulting models according to their F1-scores. All
implemented techniques are available in Table 1.
For the implementation see: github.com/
zeyadzanaty/offenseval

Phase Implemented Techniques

Pre-processing
Stopwords Removal

Lemmatization - Stemming

Feature
Extraction

TFIDF - Count - Word
Embedding

Classification
KNN - Naive Bayes - Decision
Trees - SVM -Random Forest
Logistic Regression - MLP

Table 1: Multiple techniques implemented in our
system.

3.1 Pre-processing

A tweet contains many unwanted data that would
take extra computational power and decrease
the accuracy of the model. So, noise removal
and some normalization techniques must be
applied to the corpus in-order to generate more
consistent models. Stopword Removal is a noise
removal method by filtering words that dont
have significance in the context of the sentence,
without them the semantics of the tweet wont
be affected. Lemmatization is the process of
getting the linguistic root of a word. First, words
are part-of-speech tagged , then converted to
their roots. Stemming is the process of stripping
a word of it’s prefixes and suffixes using the
porter-stemmer algorithm (Porter, 1980).

For this step, a list of all combinations of
pre-processing techniques is used. For example
it would look something like: [(Stopwords Re-
moval), (Stowords Removal, Lemmatization),
(Stopwords Removal, Stemming), (Lemmatiza-
tion), etc..]

3.2 Feature Extraction

Now that we’ve got our clean, almost noise-free
textual data, we cant simply feed a classifica-
tion model a bunch of text words, most models
only work with numerical data. This is where
we convert words to numerical features using

824

one the methods mentioned below to create our
classification-ready data.
We use three word embedding models of embed-
ding dimension 100 (which gave adequate results
after experimenting with other dimensions) along
side to the standard TFIDF/Count models.

• Word2Vec model trained on our
dataset.(Mikolov et al., 2013)

• fastText model trained on our dataset.(Joulin
et al., 2016)

• Pre-trained GloVe model trained on 2 Billion
tweets - 27 Billion tokens - 1.2 million vo-
cabulary.(Pennington et al., 2014)

All three models mentioned are zero-padded
with the maximum length of a tweet present in
the dataset to resolve the uneven dimensionality
issue. A list of all techniques is initialized for
later usage in the search for the best model.

3.3 Classification and Tuning
This is where all the previous work comes to-
gether for the final phase of the system. Seven
models where chosen and tuned using sci-kit
learns (Pedregosa et al., 2011) GridSearchCV,
which does a cross validation search on a list
of hyper-parameters for a given model. The
parameters grids that were tested are available in
Table 2.

Model Parameters Grid
KNN n neighbours: [1, 3, 5, 7]

Naive Bayes fit prior: [True, False]

SVM
C: [0.1,10,100]

kernel: [rbf, poly]

Decision Trees criterion: [gini, entropy]

Random Forest n estimators: [10 - 200]

Logistic
Regression

penalty : [l2]
solver: [sag, lbfgs, newton]

MLP
activation:[tanh, relu]

solver: [sgd,adam, lbfgs]

Table 2: Classification models and their corresponding
parameters to tune.

Again, a list of classifiers and their parameters
grids is initialized to tune them with a 3-fold cross
validation.

3.4 All-Out Search

This is the body of all the work. We try every
possible combination of pre-processing, vectoriza-
tion and classification to ensure the output has the
best possible F1-score for the given subtask. We
start by cleaning the data using a certain combina-
tion of pre-processors, then extracting features us-
ing one of the vectorizers and finally to complete
the pipeline, tune a classifier’s hyper-parameters
on the resulting data-matrix. And repeat for the
next combination.

1: procedure SEARCH(preprocessors,
vectorizers, classifiers)

2: models← {}
3: for prp ∈ preprocessors do
4: clean-data(prp)
5: for vec ∈ vectorizers do
6: vectorize-data(vec)
7: for clf ∈ classifiers do
8: models[clf]← tune(clf)

9: sort(models)

The resulting set ‘models‘ is a set of each classi-
fier and a list of parameters and their correspond-
ing preprocessors, vectroizers and F1-scores. The
results could be plotted to help visualize the per-
formance of each model seen in Figure 1, which

Figure 1: F1-scores of logistic regression model on
subtask A, each bar is a model with it’s own
pre-processing, vectorizer and parameters.

shows the top 3 models for the logistic regres-
sion classifier. Each 3 bars represent the hyper-
parameters combination and the top 3 combina-
tions of pre-processing and vectorization. The best
F1-score (0.683) came from a pre-processing of
stopwords removal followed by lemmatization, a
count vectroizer and hyper-parameters [penalty:
l2, solver: sag]. Following this search, now that

825

Subtask Phase 1st 2nd 3rd

Pre-processing
Stopwords Removal
& Lemmatization

Stopwords Removal
& Stemming

Lemmatization

A Vectorization Count Count Count
Classification Logistic Regression Naive Bayes Random Forest

Pre-processing Lemmatization Lemmatization
Stopwords-
Removal

B Vectorization TFIDF TFIDF
GloVe-
Embeddings

Classifiaction Naive Bayes Random Forest MLP

Pre-processing Lemmatization Stopwords Removal Stemming
C Vectorization Count Count Count

Classification Random Forest Logistic Regression Naive Bayes

Table 3: Top 3 models for each subtask, these 3 models will form an ensemble to enhance the performance.

we have the scores of each model, we can model
an ensemble of the top 3 models to give us a bet-
ter overview of the data available in Table 3. And
just to add an extra layer we can re-tune the classi-
fier parameters in case of any error that could have
appeared in the previous step.

4 Results

We submitted with a couple of models, for subtask
A, an ensemble of the three top models mentioned
in Table 3, the Random Forest model and a 1-D
CNN. The ensemble did its best in subtask A but
the Random Forest (RF) model came a very close
second. Results can be viewed in Table 4, and con-
fusion matrix Figure 2.

System F1 (macro) Accuracy
All NOT baseline 0.4189 0.7209
All OFF baseline 0.2182 0.2790
Ensemble 0.7289 0.8151
Random Forest 0.7143 0.8128
1D-CNN 0.5506 0.6977

Table 4: Results for Sub-task A. The ensemble
approach gave the best results.

As for subtask B, the ensemble submission un-
fortunately failed, but it didn’t look good anyway.
The best model was as simple Naive Bayes (NB)-
TFIDF model which got a very good F1-score of
0.887. Results can be viewed in Table 5, and con-
fusion matrix Figure 3.

System F1 (macro) Accuracy
All TIN baseline 0.4702 0.8875
All UNT baseline 0.1011 0.1125
1D-CNN 0.4436 0.5542
Naive Bayes 0.6161 0.8542

Table 5: Results for Sub-task B. The best performer
was a simple TFIDF - Naive Bayes model.

Finally, for subtask C, we chose to let go of
the CNN model as it didn’t get an acceptable re-
sult, and went for the ensemble, which got the
best accuracy but came second for F1-scores and
the RF model which also got a good accuracy but
a poor F1-score, and the best model was a lo-
gistic regression-count model with an F1-score of
0.5093. Results can be viewed in Table 6, and con-
fusion matrix Figure 4.

System F1 (macro) Accuracy
All GRP baseline 0.1787 0.3662
All IND baseline 0.2130 0.4695
All OTH baseline 0.0941 0.1643
Ensemble 0.4973 0.6479
Random Forest 0.4763 0.6432
Logistic Regression 0.5093 0.6056

Table 6: Results for Sub-task C. The ensemble got the
best accuracy but, LR got a better F1-score.

Looking at these results, we hypothesize that
the systems performance can be improved by com-

826

bining all word embedding features instead of us-
ing them individually. It was also remarkable
that the for most subtasks a simple Naive Bayes
- TFIDF model came close to being the best
amongst all others. We also believe better results
can be achieved if there was the dataset was more
balanced and having more offensive tweets, and if
we had sufficient time to perform grammar check-
ing on the tokens and other operations that can
reduce noise. The problem of out-of-vocabulary
(OOV) words which we unfortunately didn’t at-
tempt to solve, could be later be solved by using
a character-level embedding model rather than a
word embedding one.

NO
T

OF
F

Predicted label

NOT

OFF

Tr
ue

 la
be

l

593 27

132 108

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Sub-task A, Ensemble of LR-NB-RF

TIN UN
T

Predicted label

TIN

UNT

Tr
ue

 la
be

l

197 16

19 8

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 3: Sub-task B, Naive Bayes - TFIDF -
Lemmatization

GR
P

IN
D

OT
H

Predicted label

GRP

IND

OTH

Tr
ue

 la
be

l

47 25 6

18 76 6

16 13 6

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Sub-task C, Logistic Regression - Count -
Stopwords Removal

5 Conclusion

This paper describes our offensive tweets identi-
fication and categorization system that was built
in the framework of SemEval-2019 Task 6. We
used a brute-force search technique to find the
best model that could be generated from a list of
prepocessing techniques, feature extraction mod-
els and classifiers and got an F1-sore of 0.728
in subtask A, 0.6161 in subtask B and 0.5093
in subtask C. In future work, we aim to focus
more on word embedding features by concatenat-
ing all 3 word vector models and experiment with
character-level/sentence-level models.

References
Thomas Davidson, Dana Warmsley, Michael Macy,

and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
In Proceedings of ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018.
Hate Lingo: A Target-based Linguistic Analysis
of Hate Speech in Social Media. arXiv preprint
arXiv:1804.04257.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Using
Convolutional Neural Networks to Classify Hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

827

Shervin Malmasi and Marcos Zampieri. 2017. Detect-
ing Hate Speech in Social Media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing (RANLP), pages 467–
472.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in Discriminating Profanity from Hate
Speech. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 30:1–16.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In In EMNLP.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Alexandra Schofield and Thomas Davidson. 2017.
Identifying Hate Speech in Social Media. XRDS:
Crossroads, The ACM Magazine for Students,
24(2):56–59.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). In Proceedings of The 13th International
Workshop on Semantic Evaluation (SemEval).

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting Hate Speech on Twitter Using a
Convolution-GRU Based Deep Neural Network. In
Lecture Notes in Computer Science. Springer Ver-
lag.

828

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 829–839
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval-2019 Task 4: Hyperpartisan News Detection

Johannes Kiesel1 Maria Mestre2,3 Rishabh Shukla2 Emmanuel Vincent2

Payam Adineh1 David Corney4 Benno Stein1 Martin Potthast5

1 Bauhaus-Universität Weimar
<first>.<last>@uni-weimar.de

2 Factmata Ltd.
<first>.<last>@factmata.com

3 mariarmestre@gmail.com
4 dpacorney@gmail.com

5 Leipzig University
martin.potthast@uni-leipzig.de

Abstract

Hyperpartisan news is news that takes an ex-
treme left-wing or right-wing standpoint. If
one is able to reliably compute this meta in-
formation, news articles may be automatically
tagged, this way encouraging or discouraging
readers to consume the text. It is an open ques-
tion how successfully hyperpartisan news de-
tection can be automated, and the goal of this
SemEval task was to shed light on the state of
the art. We developed new resources for this
purpose, including a manually labeled dataset
with 1,273 articles, and a second dataset with
754,000 articles, labeled via distant supervi-
sion. The interest of the research community
in our task exceeded all our expectations: The
datasets were downloaded about 1,000 times,
322 teams registered, of which 184 configured
a virtual machine on our shared task cloud ser-
vice TIRA, of which in turn 42 teams sub-
mitted a valid run. The best team achieved
an accuracy of 0.822 on a balanced sample
(yes : no hyperpartisan) drawn from the manu-
ally tagged corpus; an ensemble of the submit-
ted systems increased the accuracy by 0.048.

1 Introduction

Yellow journalism has established itself in so-
cial media, nowadays often linked to phenomena
like clickbait, fake news, and hyperpartisan news.
Clickbait has been its first “success story” (Potthast
et al., 2016): When the viral spreading of pieces of
information was first observed in social networks,
some investigated how to manufacture such events
for profit. Unlike for “natural” viral content, how-
ever, readers had to be directed to a web page
containing the to-be-spread information alongside
paid-for advertising, so that only teasers and not
the information itself could be shared. Then, to
maximize their virality, data-driven optimization
revealed that teaser messages which induce curios-

ity, or any other kind of strong emotion, spread best.
The many forms of such teasers that have emerged
since are collectively called clickbait. New pub-
lishing houses arose around viral content, which
brought clickbait into the mainstream. Traditional
news publishers, struggling for their share of the
attention market that is a social network, adopted
clickbait into their toolbox, too, despite its violation
of journalistic codes of ethics.

The content spread using clickbait used to be
mostly harmless trivia—entertainment and distrac-
tion to some, spam to others—, but in the wake of
the 2016 United States presidential election, “fake
news” came to widespread public attention. While
certainly not a new phenomenon in yellow journal-
ism, its viral success on social media was a surprise
to many. Part of this success was then attributed
to so-called hyperpartisan news publishers (Bhatt
et al., 2018), which report strongly in favor of one
political position and in fierce disagreement with
its opponents. Clinging to hyperpartisanship often
entails stretching the truth, if not breaking it with
fake news, whose highly emotional content makes
them spread exceptionally fast, like clickbait.

Given the hype surrounding fake news, activists,
industry, and research are now paying a lot of at-
tention to mitigating the problem, such as trying
to check facts in news items. Clickbait and hyper-
partisan news, however, have been less studied. In
previous work, we sought to help close this gap
from both ends: for clickbait detection (Potthast
et al., 2016), part of our group created a large-scale
evaluation dataset (Potthast et al., 2018b) and set
up an ongoing competition for the best detection
approach (Potthast et al., 2018a). For hyperpartisan
news detection (Potthast et al., 2018c), we teamed
up to follow a similar approach that led to the Hy-
perpartisan News Detection task at SemEval-2019.
This paper reports on the results of this task.

829

2 Task Definition

We define hyperpartisan news detection as follows:

Given the text and markup of an online
news article, decide whether the article
is hyperpartisan or not.

Hyperpartisan articles mimic the form of regular
news articles, but are one-sided in the sense that
opposing views are either ignored or fiercely at-
tacked. We deliberately disregard the distinction
between left and right, since previous work has
found that, in hyperpartisan form, both are more
similar to each other in terms of style than either
are to the mainstream (Potthast et al., 2018c). The
challenge of this task is to unveil the mimicking
and to detect the hyperpartisan language, which
may be distinguishable from regular news at the
levels of style, syntax, semantics, and pragmatics.

3 Data

Our focus is on news articles published online, and
we provide two datasets with this task. One has
1,273 articles, each labeled manually, while the sec-
ond, larger dataset of 754,000 articles is labeled in
a semi-automated manner via distant supervision at
the publisher level. These datasets are further split
into public and private sets. We released the public
set for the model training, tuning, and evaluation,1

while the unreleased private set is used to enable
blind, cloud-based evaluation.

As online news articles are published mainly
in the HTML format, both datasets use a unified
HTML-like format (see Figure 1). We restricted the
markup for the article content to paragraphs (<p>),
links (<a>), and quotes (<q>). We distinguished
internal links to the other pages of the same do-
main, from which we removed the href-attribute
value to avoid classifiers fitting to them; and links
to external domains, for which we kept the attribute.
An XML schema that exactly specifies the format
is distributed along the datasets.

3.1 Dataset Annotated By Article
We gathered a crowdsourced dataset of 1,273 arti-
cles, each labeled manually by 3 annotators (Vin-
cent and Mestre, 2018). These articles were pub-
lished by active hyperpartisan and mainstream web-
sites and were all assured to contain political news.
Annotators were asked to rate each article’s bias on
the following 5-point Likert scale:
1https://doi.org/10.5281/zenodo.1489920

1. No hyperpartisan content
2. Mostly unbiased, non-hyperpartisan content
3. Not Sure
4. Fair amount of hyperpartisan content
5. Extreme hyperpartisan content

We removed all articles from the dataset with
low agreement score and the aggregated rating of
“not sure” (see Vincent and Mestre for more de-
tails). We then binarized the labels to hyperpar-
tisan (average rating of 4 or 5) and not (average
rating of 1 or 2). The final by-article set achieved
an inter-annotator agreement of 0.5 Krippendorff’s
alpha. Of the remaining 1,273 articles, 645 were
published as a training dataset, whereas the other
628 (50% hyperpartisan and 50% not) were kept
private for the evaluation. To ensure that classifiers
could not profit from overfitting to publisher style,
we made sure there was no overlap between the
publishers of the articles between these two sets.

3.2 Dataset Annotated By Publisher
To allow for methods that require huge amounts of
training data, we compiled a dataset of 754,000 arti-
cles, each labeled as per the bias of their respective
publisher. To create this dataset, we cross-checked
two publicly available news publisher bias lists
compiled by media professionals from BuzzFeed
news2 and Media Bias Fact Check.3 The former
was created by BuzzFeed journalists as a basis for a
news article, whereas the latter is Media Bias Fact
Check’s main product. While both lists contain sev-
eral hundred news publishers, they disagree only
for nine, which we removed from our dataset.

We then crawled, archived, and post-processed
the articles available on the publishers’ web sites
and Facebook feeds. We archived all articles us-
ing a specialized tool (Kiesel et al., 2018) that re-
moves pop-overs and similar things preventing the
article content from being loaded. After filtering
out publishers that did not mainly publish politi-
cal articles or had no political section to which we
could restrict our crawl, we were left with 383 pub-
lishers. For each of the publishers’ web sites we
wrote a content-wrapper to extract the article con-
tent and relevant meta data from the HTML DOM.
We then removed all articles that were too short
to contain news,4 that are not written in English,
2https://github.com/BuzzFeedNews/
2017-08-partisan-sites-and-facebook-pages

3https://mediabiasfactcheck.com
4Based on manual inspection of a hundred short articles, we
set the threshold to 40 words.

830

<article id="0182515" published-at="2007-01-22" title="They’re crumbling">
<p>What a pleasant surprise to see Jacques Leslie, a journalist and real expert on
dams, with a long <a href="http://www.nytimes.com/2007/01/22/opinion/22leslie.2.html
?ex=1327122000&amp;en=42caf99f05e4cba8&amp;ei=5090&amp;partner=
rssuserland&amp;emc=rss" type="external">op-ed on the hallowed pages of the
New York Times. Leslie, author of Deep Water: The Epic
Struggle Over Dams, Displaced People and the Environment, highlights the threat
posed by poorly maintained and increasingly failing dams around the country:</p>
<p>Unlike, say, waterways and sanitation plants, a majority of dams - 56 percent of
those inventoried - are privately owned, which is one reason dams are among the
country’s most dangerous structures. Many private owners can’t afford to repair
aging dams; some owners go so far as to resist paying by tying up official repair
demands in court or campaigning to weaken state dam safety laws.</p>
<p>Kinda makes you want to find out what is upstream.</p> </article>

Figure 1: Example of a non-hyperpartisan article in our dataset. An archived version of the original article is
available at https://web.archive.org/web/20121006194050/https://grist.org/article/remember-the-dams/.

or that contain obvious encoding errors. The final
dataset consisted of 754,000 articles, split into a
public training set (600,000 articles), a public vali-
dation set (150,000 articles) and a non-public test
set (4,000 articles). Like for the by-article dataset,
we ensured that there is no overlap of publishers
between the sets. Each set consists of 50% arti-
cles from non-hyperpartisan publishers and 50%
articles from hyperpartisan publishers, the latter
again being 50% from left-wing and 50% from
right-wing publishers.

4 Fairness and Reproducibility

In this shared task, we asked participants to submit
their software instead of just its run output. The
submissions were executed at our site on the test
data, enabling us to keep the test data entirely se-
cret. This has two important advantages over tradi-
tional shared task setups: first, software submission
gives rise to blind evaluation; and second, it max-
imizes the replicability and the reproducibility of
each participant’s approach. To facilitate software
submission and to render it feasible in terms of
work overhead and flexibility for both participants
and organizers, we employ the TIRA Integrated
Research Architecture (Potthast et al., 2019).

A shortcoming of traditional shared task setups
is that typically the test data are shared with partici-
pants, albeit without ground truth. Although partic-
ipants in shared tasks generally exercise integrity
and do not analyze the test data other than running
their software on it, we have experienced cases to
the contrary. Such problems particularly arise in
shared tasks where the stakes are higher than usual;
when monetary incentives are offered or winning
results in high visibility. A partial workaround is
to share the test data only very close to the final
submission deadline, minimizing analysis oppor-

tunities. But if sharing the test data is impossi-
ble for reasons of sensibility and proprietariness,
or because the ground truth can be easily reverse-
engineered, a traditional shared task cannot be held.

Another shortcoming of traditional shared tasks
(and many computer science publications in gen-
eral) is their lack of reproducibility. Although shar-
ing the software underlying experiments as well as
the trained models is easy, and although it would
greatly aid reproducibility, this is still rare. Typ-
ically, all that remains after a shared task are the
papers and datasets published. Given that shared
tasks often establish a benchmark for the task in
question, acting normative for future evaluations,
this outcome is far from optimal and comparably
wasteful. All of the above can be significantly im-
proved upon by asking participants not to submit
their software’s run output, but the software itself.
However, this entails a significant work overhead
for organizers, especially for larger tasks.

In order to mitigate the work overhead, we em-
ploy TIRA. In a nutshell, TIRA implements eval-
uation as a service in the form of a cloud-based
evaluation platform. Participants deploy their soft-
ware into virtual machines hosted at TIRA’s cloud,
and then remotely control the machines and the
software within, executing it on the test data. The
test data are available only within the cloud, and
made accessible on demand so that participants can-
not access it directly. At execution time, the virtual
machine is disconnected from the internet, copied,
and only the copy gets access to the test data. Once
the automatically executed software terminates, its
run output is saved and the virtual machine copy
is destroyed so as to prevent data leaks. This way,
all submitted pieces of software can be archived in
working condition, and be re-evaluated at a later
time, even on new datasets.

831

5 Participating Systems

This task attracted a very diverse and interesting
set of solutions from the participating teams. The
teams employed very different sets of features,
a wide variety of classifiers, and also employed
the large by-publisher dataset in different ways.
Around half of the submissions used hand-crafted
features. In the following, we give an overview
of the submitted approaches. For a more readable
and condensed form, we only use the team names
here, which were chosen from fictional journalistic
characters or entities (see Table 1 for references).

5.1 Features

The teams that participated in this task employed
a variety of features, including standard word n-
grams (also unigrams, i.e., bag-of-words), word
embeddings, stylometric features, HTML features
like the target of hyperlinks, and a meta data feature
in the form of the publication date.

N-Grams Most teams that used hand-crafted fea-
tures also included word n-grams: Pioquinto Man-
terola and Tintin used them as their only features.
Character and part-of-speech n-grams were, for
example, used by Paparazzo.

Word embeddings Many teams integrated word
embeddings into their approach. Frequently used
were Word2Vec, fastText, and GloVe. Noticeably,
Tom Jumbo Grumbo relied exclusively on them.
Bertha von Suttner relied on ELMo embeddings
(Peters et al., 2018), which have the advantage of
modeling polysemy. Where the aforementioned
word embeddings all rely on neural networks, Doris
Martin employed a document representation based
on word clusters as part of their approach.

BERT (Devlin et al., 2018), which jointly con-
ditions on both left and right context in all layers,
is a rather new technique that was used by several
teams. Peter Parker directly applied a freely avail-
able pre-trained BERT model to the task, whereas
Howard Beale and Clint Buchanan trained their
own BERT models on the by-publisher dataset and
then performed fine-tuning on the by-article dataset.
Despite the fine-tuning, Howard Beale reported
overfitting issues for this strategy. Going one step
further, Jack Ryder and Yeon Zi integrated BERT
in their neural network architectures.

Stylometry Many teams used stylometric fea-
tures including punctuation and article structure

(Steve Martin, Spider Jerusalem, Fernando Pessa,
Ned Leeds, Carl Kolchak, Orwellian Times), read-
ability scores (Ned Leeds, Pistachon, Steve Martin,
Orwellian Times, D X Beaumont), or psycholin-
guistic lexicons (Ned Leeds, Spider Jerusalem,
Steve Martin, Pistachon). Borat Sagdiyev em-
ployed a self-compiled list of trigger words that
contains mostly profanities. They noticed that such
words are used more often in hyperpartisan articles.

Emotionality Several teams used sentiment and
emotion features, either based on libraries (Borat
Sagdiyev, Steve Martin, Carl Kolchak) or lexicons
(Spider Jerusalem, D X Beaumont). Notably, Ker-
mit the Frog uses sentiment detection only. Vernon
Fenwick and D X Beaumont used subjectivity and
polarity metrics as features.

Named entities Borat Sagdiyev used named en-
tity types as features. In preliminary tests only
the type of “nationalities or religious and political
groups” was found to be predictive.

Quotations A few teams treated quotations sep-
arately. Whereas Spider Jerusalem and Borat
Sagdiyev created separate features from quotations,
the Ankh Morpork Times filtered them out for not
necessarily representing the views of the author.

Hyperlinks Only few teams considered hyper-
links. Both Borat Sagdiyev and Steve Martin used
external lists of partisan web pages to count how
often an article links to partisan and non-partisan
pages. They assume that articles tend to link other
articles on the same side of the political spectrum.

Publication date Based on the conjecture that
months around American elections could see more
hyperpartisan activity, Borat Sagdiyev used the pub-
lication month and year as separate features.

5.2 Classifiers
While many different classifiers were used overall,
neural networks were the most frequent, which
mirrors the current trend in text classification.

The most popular type of neural networks among
the participants were convolutional ones (CNNs),
which employ convolving filters over neighboring
words. Many teams cited the architecture by Kim
(2014). Xenophilius Lovegood added a second
layer to their CNN in order to encode more in-
formation about the articles, using both available
and custom-learned embeddings. While Pioquinto
Manterola experimented with a CNN, it suffered

832

from overfitting and was thus not used for the final
submission. Peter Brinkmann built a submission
using available embeddings. Brenda Starr com-
bined a CNN with a sentence-level bidirectional
recurrent neural network and an attention mecha-
nism to a complex architecture. A similar approach
was employed by the Ankh Morpork Times. An
ensemble of three CNN-based models was used by
Bertha von Suttner. Steve Martin used a character
bigram CNN as part of their approach.

Next to CNNs, long short term memory net-
works (LSTM) were employed by Kit Kittredge
and Miles Clarkson. The latter extended the net-
work with an attention model. Moreover, Joseph
Rouletabille used the hierarchical attention network
of Yang et al. (2016).

Besides neural networks, a wide variety of classi-
fiers were used. A few teams opted for SVMs (e.g.,
the Orwellian Times), others for random forests
(e.g., Fernando Pessa), linear models (e.g., Pista-
chon), the Naive Bayes model (e.g., Carl Kolchak),
XGBOOST (Clark Kent), Maxent (Doris Martin),
and rule-based models (Harry Friberg). Morbo
used ULMFit (Howard and Ruder, 2018) to adapt
a language model pre-trained on Wikipedia articles
to the articles and classes of this task.

5.3 Usage of the By-publisher Dataset

The submitted systems can also be distinguished by
whether and how they used the large, distantly-su-
pervised by-publisher dataset. Though much larger
than the by-article set, its labels are noisy, whereas
the opposite holds for the by-article dataset. One of
the key challenges faced by many teams was how
to train a powerful expressive model on the smaller
dataset without overfitting. Most teams made use
of the larger dataset in some form or another. A
challenge faced by some of the teams was that the
test split of the by-article dataset was balanced be-
tween classes, whereas the corresponding training
dataset was not.

Several systems trained the whole or part of their
system on the by-publisher dataset. Some extracted
features like n-grams (e.g., Sally Smedley), word
clusters (Doris Martin), or neural network word
embeddings (e.g., Clint Buchanan). Others used
the larger dataset to perform hyperparameter search
(e.g., Miles Clarkson). Many teams trained their
models using the by-publisher dataset only (Pista-
chon, Joseph Rouletabille, Xenophilius Lovegood,
Peter Brinkmann, and Kit Kittredge).

To reduce the noise in the distantly-supervised
data, some teams used only a subset of it. Yeon Zi,
Borat Sagdiyev and the Anhk Morpork Times fitted
a model on the by-article dataset and ran it on the
by-publisher one: the articles of the by-publisher
dataset that were misclassified by this model, were
presumed to be noisy and filtered out.

6 Results

A total of 42 teams completed the task, representing
more than twenty countries between them, includ-
ing India, China, the USA, Japan, Vietnam, and
many European countries. Table 1 shows the accu-
racy, precision, recall, and F1 score for each team,
sorted by accuracy. This task used accuracy as the
main metric to represent a filtering scenario. The
accuracy scores ranged from 0.462 up to 0.822.

The results show a range of trade-offs be-
tween precision and recall and the resulting F1

scores. The highest F1 was 0.821 with a precision
of 0.815 and a recall of 0.828; the highest precision
was 0.883 with a recall of 0.672 (F1: 0.763); and
the highest recall was 0.971 with a relatively low
precision of 0.542 (F1: 0.696).

6.1 Methods Used by the Top Teams
While the winning team, Bertha von Suttner, used
deep learning (sentence-level embeddings and a
convolutional neural network) the second-placed
team, Vernon Fenwick, took a different approach
and combined sentence embeddings with more
domain-specific features and a linear model. Out
of the top five teams, only two used “pure” deep
learning models of neural networks without any
domain-specific, hand-crafted features, showing no
single method has a clear advantage over others.

Bertha von Suttner used a model based on ELMo
embeddings (Peters et al., 2018) and trained on
the by-article dataset. After minimal preprocess-
ing, a pre-trained ELMo was applied onto each
token of each sentence, and then averaged, to
obtain average sentence embeddings. The sen-
tence embeddings were later passed through a
CNN, batch-normalized, followed by a dense layer
and a sigmoid function to obtain the final prob-
abilities. The final model was an ensemble of
the 3 best-performing models of a 10-fold cross-
validation. The authors tried to include the by-
publisher dataset, but found in their preliminary
tests no approach to profit from the large data.

833

Submission By-article dataset By-publisher dataset

Team name Authors Code Rank Acc. Prec. Recall F1 Rank Acc. Prec. Recall F1

Bertha von Suttner Jiang et al. � 1 0.822 0.871 0.755 0.809 8 0.643 0.616 0.762 0.681
Vernon Fenwick Srivastava et al. 2 0.820 0.815 0.828 0.821
Sally Smedley Hanawa et al. 3 0.809 0.823 0.787 0.805 11 0.625 0.640 0.571 0.603
Tom Jumbo Grumbo Yeh et al. � 4 0.806 0.858 0.732 0.790 13 0.619 0.592 0.762 0.667
Dick Preston Isbister and Johansson 5 0.803 0.793 0.818 0.806 27 0.514 0.520 0.352 0.420
Borat Sagdiyev Palić et al. 6 0.791 0.883 0.672 0.763 19 0.592 0.644 0.412 0.502
Morbo Isbister and Johansson 7 0.790 0.772 0.822 0.796 16 0.601 0.587 0.679 0.630
Howard Beale Mutlu et al. 8 0.783 0.837 0.704 0.765 9 0.641 0.606 0.806 0.692
Ned Leeds Stevanoski and Gievska 9 0.775 0.865 0.653 0.744 22 0.573 0.546 0.857 0.667
Clint Buchanan Drissi et al. � 10 0.771 0.832 0.678 0.747
Yeon Zi Lee et al. 11 0.758 0.744 0.787 0.765 5 0.663 0.635 0.766 0.694
Tony Vincenzo Staykovski 12 0.750 0.764 0.723 0.743
Paparazzo Nguyen et al. � 13 0.747 0.754 0.732 0.743 24 0.530 0.530 0.541 0.535
Steve Martin Joo and Hwang 14 0.745 0.853 0.592 0.699 18 0.597 0.625 0.483 0.545
Eddie Brock S̆ajatović et al. 15 0.744 0.782 0.675 0.725 10 0.631 0.681 0.491 0.571
Ankh Morpork Times Almendros et al. 16 0.742 0.811 0.631 0.710 21 0.588 0.646 0.389 0.486
Spider Jerusalem Alabdulkarim and Alhindi � 17 0.742 0.814 0.627 0.709
Carl Kolchak Chen et al. 18 0.739 0.729 0.761 0.745
Doris Martin Agerri � 19 0.737 0.754 0.704 0.728
Pistachon Saleh et al. 20 0.729 0.724 0.742 0.733 15 0.608 0.638 0.499 0.560
Joseph Rouletabille Moreno et al. 21 0.725 0.788 0.615 0.691 2 0.680 0.640 0.827 0.721
Fernando Pessa Cruz et al. � 22 0.717 0.806 0.570 0.668 17 0.600 0.585 0.681 0.630
Pioquinto Manterola Sengupta and Pedersen � 23 0.704 0.741 0.627 0.679
Miles Clarkson Zhang et al. 24 0.683 0.745 0.557 0.638 6 0.652 0.612 0.832 0.705
Xenophilius Lovegood Zehe et al. 25 0.675 0.619 0.914 0.738 4 0.663 0.632 0.781 0.699
Orwellian Times Knauth 26 0.672 0.654 0.729 0.690 23 0.537 0.530 0.658 0.587
Tintin Bestgen 27 0.656 0.642 0.707 0.673 1 0.706 0.742 0.632 0.683
D X Beaumont Amason et al. 28 0.653 0.597 0.939 0.730
Jack Ryder Shaprin et al. 29 0.646 0.646 0.646 0.646 7 0.645 0.600 0.869 0.710
Kermit the Frog Anthonio and Kloppenburg 30 0.621 0.582 0.860 0.694 20 0.589 0.575 0.681 0.623
Billy Batson Kreutz et al. 31 0.615 0.568 0.962 0.714
Peter Brinkmann Färber et al. � 32 0.602 0.560 0.955 0.706 28 0.497 0.496 0.344 0.406
Anson Bryson Stiff and Medero 33 0.592 0.720 0.303 0.426
Sarah Jane Smith Chakravartula et al. 34 0.591 0.554 0.933 0.695 14 0.612 0.586 0.765 0.664
Kit Kittredge Cramerus and Scheffler 35 0.578 0.547 0.908 0.683
Brenda Starr Papadopoulou et al. 36 0.575 0.542 0.971 0.696 3 0.664 0.627 0.807 0.706
Harry Friberg Afsarmanesh et al. 37 0.565 0.537 0.949 0.686
Robin Scherbatsky Marx and Akut 38 0.551 0.542 0.662 0.596 25 0.524 0.822 0.062 0.116
Clark Kent Gupta et al. � 39 0.548 0.683 0.178 0.283 26 0.519 0.565 0.170 0.261
Murphy Brown Sen and Jiang 40 0.529 0.518 0.822 0.635 12 0.623 0.615 0.659 0.636
Peter Parker Ning et al. 41 0.503 0.502 0.771 0.608
John King Bansal et al. 42 0.462 0.460 0.443 0.451

Table 1: For each team and dataset, the performance of the submission that reached the highest accuracy is shown.
If a team published their code, the � links to the respective repository. We forked all repositories for archival.6

The second and third best teams used linear mod-
els as their main predictor and embeddings as fea-
tures, training on the by-article dataset only. Ver-
non Fenwick extracted sentence embeddings with
the Universal Sentence Encoder (USE) (Cer et al.,
2018), while Sally Smedley used BERT to gener-
ate contextual embeddings. Both teams also em-
ployed hand-crafted, domain-specific features. Ver-
non Fenwick extracted article-level and sentence-
level polarity, bias, and subjectivity, among others,
while Sally Smedley used the by-publisher dataset
to extract key discriminative phrases, which they
later looked up in the training data.

6https://github.com/hyperpartisan-news-challenge

6.2 Overall Insights

The results reveal several insights into the suitabil-
ity of different features and approaches for the task
of hyperpartisan news detection.

Word-embeddings have been reported to be
a very efficient feature by many teams. Tom
Jumbo Grumbo achieved an accuracy of 0.806
with GloVe embeddings and a classifier trained
on the by-article dataset. The application of a pre-
trained BERT model by Peter Parker performed
very poorly (acc. 0.503). However, the same BERT
embeddings were used for great effect by Sally
Smedley, using techniques like word-dropout and
informative phrase identification (acc. 0.809).

834

Also standard word n-grams were found to be
suitable for the task, though not as strong as em-
beddings. While n-grams where used in several
well-performing approaches, Pioquinto Manterola
reached an accuracy of 0.704 with unigrams alone.

Several teams reported an increase in accuracy
through sentiment or similar features (e.g., Borat
Sagdiyev). Kermit the Frog used sentiment detec-
tion alone to reach an accuracy of 0.621.

Besides textual features, a few teams also an-
alyzed HTML and article meta-features. Borat
Sagdiyev performed a detailed analysis in this re-
gard, which helped them to achieve the highest
precision of all teams. For example, they found
that both the publication date and the number of
links to known hyperpartisan pages could each im-
prove the overall accuracy by about 0.01 to 0.02.

Of the top teams, only Sally Smedley used the
by-publisher dataset, and only to select n-grams.
Based on the reports of several teams, the utiliza-
tion of this dataset thus seems more difficult than
we expected. We conjecture that this is due to the
mis-classification of what should be the most in-
formative articles: non-hyperpartisan articles from
mainly hyperpartisan publishers, and hyperpartisan
articles from non-hyperpartisan publishers. These
articles are especially suited to distinguish features
that identify hyperpartisanship from features that
identify publisher style. While we assumed that
the advantages of big data would outweigh this
drawback, the results suggest that it might be more
worthwhile to put effort in larger datasets where
each article is annotated separately. Still, some
teams managed to use the by-publisher dataset as a
large dataset of in-domain texts. For example, Clint
Buchanan reported that pre-training embeddings
on the by-publisher dataset increased the accuracy
of their system on the by-article dataset.

Moreover, the ranking of teams for the two test
datasets is quite different. Bertha von Suttner, who
ranked first for by-article, reached only rank eight
for the by-publisher dataset. Conversely, Tintin,
who optimized for by-publisher, ranked first there
but only 27th for the by-article dataset. This dis-
crepancy highlights the unexpected large differ-
ences between the datasets.

7 Meta-Classification Task

Inspired by successes of meta classifiers in past
SemEval tasks (e.g., Hagen et al. (2015)), we en-
abled and encouraged participants to devise meta

Vernon Fenwick

Bertha von Suttner Borat Sagdiyev

yes noyes no

yes no

Howard Beale

yes no

Ned Leeds

yes no

13 1932160 17 26

22 5

10 223 6

Figure 2: Meta-classification decision tree J48-M10
learned on the predictions of the submitted systems (hy-
perpartisan: yes or no; by-article dataset). The numbers
show the training class-distribution at the leafs.

classifiers that learn from the classifications of the
submitted approaches. For this meta-classification
task, we split the test datasets further into new train-
ing (66%) and test sets (33%). We again made sure
that there are an equal amount of non-hyperpartisan
and hyperpartisan articles, as well as an equal share
of left-wing and right-wing articles within the hy-
perpartisan sets. Furthermore, we again assured
that no publisher had articles in both the training
and the test sets. An instance in these datasets
corresponds to the classifications (hyperpartisan or
not) of the best-performing software of each team
(42 classifications for the by-article dataset and
30 for the by-publisher one) of one article from the
original test data.

We provide two simple classification systems for
baselines, majority voting and an out-of-the-box de-
cision tree, which both outperform the best single
submitted software and which were both outper-
formed by the meta-classifiers submitted. Majority
voting refers to a system that outputs the classi-
fication (hyperpartisan or not) that the most base
classifiers selected. As it does not learn a deci-
sion boundary, it is—strictly speaking—not a meta
classifier. For the decision tree, we used the J48
implementation of WEKA (Frank et al., 2016). We
tested two variants: standard settings (J48-M2) and
restricting leaf nodes to contain at least 10 articles
(J48-M10) to force a simpler decision tree. Simpler
trees often generalize better to unseen data.

Figure 2 shows the J48-M10 tree for the by-
article dataset. For every leaf of the tree, more
than 75% of the corresponding training articles
are from the same class. This shows that even
with as few as 5 decision nodes, the training set

835

Team or system name Acc. Prec. Recall F1

Fernando Pessa 0.899 0.895 0.904 0.900
Spider Jerusalem 0.899 0.903 0.894 0.899

Majority Vote 0.885 0.892 0.875 0.883
J48-M10 0.880 0.916 0.837 0.874
J48-M2 0.856 0.863 0.846 0.854

Bertha von Suttner alone 0.851 0.901 0.788 0.841

Table 2: Accuracy, precision, recall, and F1-measure
for the by-article meta learning test dataset.

could be fitted reasonably well. The meta clas-
sifier was thus able to use the submitted systems
as predictive and distinct features, which shows
that some submitted systems performed well on
some articles where other systems did not and vice
versa. Even more, the 5 systems employed by the
meta-classifier are all within the top 10 systems
of the task, which shows that there is considerable
variation even among the top performers. This is
reasonable, given the variety of approaches used.

In addition to our approaches, two teams submit-
ted their own classifiers in the short time span they
had. Fernando Pessa used a random forest classi-
fier trained on the single predictions as well as the
average vote. Spider Jerusalem used a weighted
majority voting algorithm, where they weighted
each single prediction by the precision of the re-
spective classifier on the training set.

Table 2 shows the performance of the approaches
on the meta learning test dataset. Note that the best
single system, Bertha von Suttner, reaches an in-
creased accuracy of 0.851 on the meta learning test
set. This is due to variations in the small dataset.
Still, all ensemble approaches reach a higher ac-
curacy. The majority voting approach reaches an
accuracy of 0.885, and thus outperforms the J48
classifiers. This is somewhat surprising, but shows
that there is a lot to gain by integrating also the
systems that performed less well—team Fernando
Pessa came to a similar insight in their paper (Cruz
et al., 2019). The approaches of the two partici-
pants performed very similar, despite their method-
ological differences, and outperformed the majority
vote. They managed to achieve an accuracy 0.048
points above Bertha von Suttner and therefore a
considerable increase in performance.

We also repeated the experiments for the by-
publisher dataset, but could not produce decisive
results there, yet. We assume that this is due to
most teams focusing on the other dataset and both
datasets being more different than expected.

8 Conclusion

This paper reports on the setup, participation, re-
sults, and insights gained from the first task in hy-
perpartisan news detection, hosted as Task 4 at
SemEval-2019. We detailed the construction of
both a manually annotated dataset of 1,273 arti-
cles as well as a large dataset of 754,000 articles,
compiled using distant supervision. Moreover, it
provides a systematic overview of the 34 papers
submitted by the participants, insights gathered
from single teams, by comparing their approaches,
and by an ad-hoc meta classification.

Through the use of TIRA (Potthast et al., 2019),
we were able to establish a blind evaluation setup,
so that future approaches can be compared on same
grounds. For this, we continue to accept new
approaches in ongoing submissions.7 Moreover,
through the use of TIRA we can directly evalu-
ate the submitted approaches on new datasets for
hyperpartisan news detection, provided they are
formatted like the datasets presented here.

Very promising results were achieved during the
task, with accuracy values above 80% on a bal-
anced test set—and even up to 90% using meta
classification on all submissions. Like in many
other NLP tasks, word embeddings could be used
to great effect, but hand-crafted features also per-
formed well. The differences between the two em-
ployed datasets were larger than anticipated, which
suggests a focus on by-article annotations in the
future. A larger dataset of this kind will probably
assist in improving the accuracy of future models
even beyond the already very good level.

It thus seems that hyperpartisan news detection is
already sufficiently developed to take the next step
and demand human-understandable explanations
from the approaches. The most obvious use cases
of hyperpartisan news detectors are for filtering ar-
ticles, which always requires a careful handling to
avoid unwarranted censorship. Especially in the
current political climate, it therefore seems neces-
sary that hyperpartisanship detectors not only reach
a high accuracy, but also reveal their reasoning.

Acknowledgements
Our thanks go out to all participating teams; your
contributions made this task a success. We hope
we have been able to do your work justice, and
are looking forward to doing so in the future. Our
special thanks go out to the SemEval organizers for
providing perfect organizational support.
7https://webis.de/events/semeval-19/

836

References
Nazanin Afsarmanesh, Jussi Karlgren, Peter Sumbler,
and Nina Viereckel. 2019. Team Harry Friberg at
SemEval-2019 Task 4: Identifying Hyperpartisan
News through Editorially Defined Metatopics. In
Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Rodrigo Agerri. 2019. Doris Martin at SemEval-2019
Task 4: Hyperpartisan News Detection with Generic
Semi-supervised Featuresl. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Amal Alabdulkarim and Tariq Alhindi. 2019.
Spider-Jerusalem at SemEval-2019 Task 4:
Hyperpartisan News Detection. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Carla Perez Almendros, Luis Espinosa Anke, and
Steven Schockaert. 2019. Cardiff University at
SemEval-2019 Task 4: Linguistic Features for
Hyperpartisan News Detection. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Evan Amason, Jake Palanker, Mary Clare Shen, and
Julie Medero. 2019. Harvey Mudd College at
SemEval-2019 Task 4: The D.X. Beaumont
Hyperpartisan News Detector. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Talita Anthonio and Lennart Kloppenburg. 2019.
Team Kermit-the-frog at SemEval-2019 Task 4: Bias
Detection Through Sentiment Analysis and Simple
Linguistic Features. In Proceedings of The 13th
International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Yves Bestgen. 2019. Tintin at SemEval-2019 Task 4:
Detecting Hyperpartisan News Article with only
Simple Tokens. In Proceedings of The 13th
International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Shweta Bhatt, Sagar Joglekar, Shehar Bano, and
Nishanth Sastry. 2018. Illuminating the ecosystem of
partisan websites. In Proceedings of the 27th
International Conference on World Wide Web
Companion, WWW ’18 Companion. International
World Wide Web Conferences Steering Committee.

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal Sentence Encoder.

Nikhil Chakravartula, Vijayasaradhi Indurthi, and
Bakhtiyar Syed. 2019. Fermi at SemEval-2019 Task 4:
The sarah-jane-smith Hyperpartisan News Detector.
In Proceedings of The 13th International Workshop on

Semantic Evaluation. Association for Computational
Linguistics.

Celena Chen, Celine Park, Jason Dwyer, and Julie
Medero. 2019. Harvey Mudd College at
SemEval-2019 Task 4: The Carl Kolchak
Hyperpartisan News Detector. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Rebekah Cramerus and Tatjana Scheffler. 2019. Team
Kit Kittredge at SemEval-2019 Task 4. In Proceedings
of The 13th International Workshop on Semantic
Evaluation. Association for Computational
Linguistics.

André Cruz, Gil Rocha, Rui Sousa-Silva, and
Henrique Lopes Cardoso. 2019. Team Fernando-Pessa
at SemEval-2019 Task 4: Back to Basics in
Hyperpartisan News Detection. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding. CoRR, abs/1810.04805.

Mehdi Drissi, Pedro Sandoval Segura, Vivaswat Ojha,
and Julie Medero. 2019. Harvey Mudd College at
SemEval-2019 Task 4: The Clint Buchanan
Hyperpartisan News Detector. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Michael Färber, Agon Qurdina, and Lule Ahmedi.
2019. Team Peter Brinkmann at SemEval-2019 Task 4:
Detecting Biased News Articles Using Convolutional
Neural Networks. In Proceedings of The 13th
International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Eibe Frank, Mark A. Hall, and Ian H. Witten. 2016.
Data Mining: Practical Machine Learning Tools and
Techniques, 4th edition, chapter The WEKA
Workbench. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Viresh Gupta, Baani Leen Kaur Jolly, Ramneek Kaur,
and Tanmoy Chakraborty. 2019. Clark Kent at
SemEval-2019 Task 4: Stylometric Insights into
Hyperpartisan News Detection. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Matthias Hagen, Martin Potthast, Michel Büchner, and
Benno Stein. 2015. Webis: An Ensemble for Twitter
Sentiment Detection. In 9th International Workshop
on Semantic Evaluation (SemEval 2015), pages
582–589. Association for Computational Linguistics.

Kazuaki Hanawa, Shota Sasaki, Hiroki Ouchi, Jun
Suzuki, and Kentaro Inui. 2019. The Sally Smedley
Hyperpartisan News Detector at SemEval-2019 Task 4.
In Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

837

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
CoRR, abs/1801.06146.

Tim Isbister and Fredrik Johansson. 2019.
Dick-Preston and Morbo at SemEval-2019 Task 4:
Transfer Learning for Hyperpartisan News Detection.
In Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Ye Jiang, Johann Petrak, Xingyi Song, Kalina
Bontcheva, and Diana Maynard. 2019. Team Bertha
von Suttner at SemEval-2019 Task 4: Hyperpartisan
News Detection using ELMo Sentence Representation
Convolutional Network. In Proceedings of The 13th
International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Youngjun Joo and Inchon Hwang. 2019. Steve Martin
at SemEval-2019 Task 4: Ensemble Learning Model
for Detecting Hyperpartisan News. In Proceedings of
The 13th International Workshop on Semantic
Evaluation. Association for Computational
Linguistics.

Johannes Kiesel, Florian Kneist, Milad Alshomary,
Benno Stein, Matthias Hagen, and Martin Potthast.
2018. Reproducible Web Corpora: Interactive
Archiving with Automatic Quality Assessment.
Journal of Data and Information Quality (JDIQ),
10(4):17:1–17:25.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Jürgen Knauth. 2019. Orwellian-times at
SemEval-2019 Task 4: A Stylistic and Content-based
Classifier. In Proceedings of The 13th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics.

Nayeon Lee, Zihan Liu, and Pascale Fung. 2019.
Team yeon-zi at SemEval-2019 Task 4: Hyperpartisan
News Detection by De-noising Weakly-labeled Data.
In Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Jose G. Moreno, Yoann Pitarch, Karen
Pinel-Sauvagnat, and Gilles Hubert. 2019.
Rouletabille at SemEval-2019 Task 4: Neural Network
Baseline for Identification of Hyperpartisan Publishers.
In Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Osman Mutlu, Ozan Arkan Can, and Erenay Dayanik.
2019. Team Howard Beale at SemEval-2019 Task 4:
Hyperpartisan News Detection with BERT. In
Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Duc-Vu Nguyen, Thin Dang, and Ngan Nguyen. 2019.
NLP@UIT at SemEval-2019 Task 4: The Paparazzo
Hyperpartisan News Detector. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Zhiyuan Ning, Yuanzhen Lin, and Ruichao Zhong.
2019. Team Peter-Parker at SemEval-2019 Task 4:
BERT-Based Method in Hyperpartisan News
Detection. In Proceedings of The 13th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics.

Niko Palić, Juraj Vladika, Dominik Cubelić, Ivan
Lovrencic, and Jan Snajder. 2019. TakeLab at
SemEval-2019 Task 4: Hyperpartisan News Detection.
In Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Olga Papadopoulou, Giorgos Kordopatis-Zilos,
Markos Zampoglou, Symeon Papadopoulos, and
Yiannis Kompatsiaris. 2019. Brenda Starr at
SemEval-2019 Task 4: Hyperpartisan News Detection.
In Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word
Representations. Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers).

Martin Potthast, Tim Gollub, Matthias Hagen, and
Benno Stein. 2018a. The Clickbait Challenge 2017:
Towards a Regression Model for Clickbait Strength.
CoRR, abs/1812.10847.

Martin Potthast, Tim Gollub, Kristof Komlossy,
Sebastian Schuster, Matti Wiegmann, Erika Patricia
Garces Fernandez, Matthias Hagen, and Benno Stein.
2018b. Crowdsourcing a Large Corpus of Clickbait on
Twitter. In 27th International Conference on
Computational Linguistics (COLING 2018), pages
1498–1507. The COLING 2018 Organizing
Committee.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research
Architecture. In Nicola Ferro and Carol Peters, editors,
Information Retrieval Evaluation in a Changing World
- Lessons Learned from 20 Years of CLEF. Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018c. A
Stylometric Inquiry into Hyperpartisan and Fake
News. In 56th Annual Meeting of the Association for
Computational Linguistics (ACL 2018), pages
231–240. Association for Computational Linguistics.

Martin Potthast, Sebastian Köpsel, Benno Stein, and
Matthias Hagen. 2016. Clickbait Detection. In

838

Advances in Information Retrieval. 38th European
Conference on IR Research (ECIR 2016), volume
9626 of Lecture Notes in Computer Science, pages
810–817, Berlin Heidelberg New York. Springer.

Abdelrhman Saleh, Ramy Baly, Alberto
Barrón-Cedeño, Giovanni Da San Martino, Mitra
Mohtarami, Preslav Nakov, and James Glass. 2019.
Team QCRI-MIT at SemEval-2019 Task 4:
Propaganda Analysis Meets Hyperpartisan News
Detection. In Proceedings of The 13th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics.

Saptarshi Sengupta and Ted Pedersen. 2019. Duluth at
SemEval-2019 Task 4: The Pioquinto Manterola
Hyperpartisan News Detector. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Daniel Shaprin, Giovanni Da San Martino, Alberto
Barrón-Cedeño, and Preslav Nakov. 2019. Team Jack
Ryder at SemEval-2019 Task 4: Using BERT
Representations for Detecting Hyperpartisan News. In
Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Vertika Srivastava, Ankita Gupta, Divya Prakash,
Sudeep Sahoo, Rohit R. R., and Yeon Hyang Kim.
2019. Vernon-fenwick at SemEval-2019 Task 4:
Hyperpartisan News Detection using Lexical and
Semantic Features. In Proceedings of The 13th
International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Bozhidar Stevanoski and Sonja Gievska. 2019. Team
Ned Leeds at SemEval-2019 Task 4: Exploring
Language Indicators of Hyperpartisan Reporting. In
Proceedings of The 13th International Workshop on
Semantic Evaluation. Association for Computational
Linguistics.

Emmanuel Vincent and Maria Mestre. 2018.
Crowdsourced Measure of News Articles Bias:
Assessing Contributors’ Reliability. In Proceedings of
the 1st Workshop on Subjectivity, Ambiguity and
Disagreement (SAD) in Crowdsourcing, pages 1–10.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alexander J. Smola, and Eduard H. Hovy. 2016.
Hierarchical Attention Networks for Document
Classification. In NAACL HLT 2016, The 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1480–1489.

Chia-Lun Yeh, Babak Loni, and Anne Schuth. 2019.
Tom Jumbo-Grumbo at SemEval-2019 Task 4:
Hyperpartisan News Detection with GloVe vectors and
SVM. In Proceedings of The 13th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics.

Albin Zehe, Lena Hettinger, Stefan Ernst, Christian
Hauptmann, and Andreas Hotho. 2019. Team
Xenophilius Lovegood at SemEval-2019 Task 4:
Hyperpartisanship Classification using Convolutional
Neural Networks. In Proceedings of The 13th
International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

Chiyu Zhang, Arun Rajendran, and Muhammad
Abdul-Mageed. 2019. UBC-NLP at SemEval-2019
Task 4: Hyperpartisan News Detection With
Attention-Based Bi-LSTMs. In Proceedings of The
13th International Workshop on Semantic Evaluation.
Association for Computational Linguistics.

839

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 840–844
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Bertha von Suttner at SemEval-2019 Task 4: Hyperpartisan News
Detection using ELMo Sentence Representation Convolutional Network

Ye Jiang, Johann Petrak, Xingyi Song, Kalina Bontcheva, Diana Maynard
Department of Computer Science

University of Sheffield
Sheffield , UK

{yjiang18,johann.petrak,x.song,
k.bontcheva,d.maynard}@sheffield.ac.uk

Abstract

This paper describes the participation of team
“bertha-von-suttner” in the SemEval2019 task
4 Hyperpartisan News Detection task. Our
system1 uses sentence representations from
averaged word embeddings generated from the
pre-trained ELMo model with Convolutional
Neural Networks and Batch Normalization for
predicting hyperpartisan news. The final pre-
dictions were generated from the averaged pre-
dictions of an ensemble of models. With this
architecture, our system ranked in first place,
based on accuracy, the official scoring metric.

1 Introduction

Hyperpartisan news is typically defined as news
which exhibits an extremely biased opinion in
favour of one side, or unreasoning allegiance
to one party (Potthast et al., 2017). SemEval-
2019 Task 4 on “Hyperpartisan News Detection”
(Kiesel et al., 2019) is a document-level classifica-
tion task which requires building a precise and re-
liable algorithm to automatically discriminate hy-
perpartisan news from more balanced stories.

One of the major challenges of this task is that
the model must have the ability to adapt to a large
range of article sizes. In one of the training data
sets, the by-publisher corpus, the average article
length is 796 tokens, but the longest document has
93,714 tokens. Most state-of-the-art neural net-
work approaches for document classification use a
token sequence as network input (Kim, 2014; Yin
and Schütze, 2016; Conneau et al., 2016). This
implies either a high computational cost when a
very large maximum sequence length is used to
fully represent the longest articles, or alternatively
potentially a significant loss of information if the

1The code is available at
https://github.com/GateNLP/semeval2019-
hyperpartisan-bertha-von-suttner

sequence length is restricted to a manageable num-
ber of initial tokens from the document.

In this paper, we introduce the ELMo Sentence
Representation Convolutional (ESRC) Network.
We first pre-calculate sentence level embeddings
as the average of ELMo (Peters et al., 2018) word
embeddings for each sentence, and represent the
document as a sequence of such sentence embed-
dings. We then apply a lightweight convolutional
Neural Network (CNN), along with Batch Nor-
malization (BN), to learn the document represen-
tations and predict the hyperpartisan classification.

Two types of data set have been made avail-
able for the task. The by-publisher corpus con-
tains 750K articles which were automatically clas-
sified based on a categorization of the political bias
of the news source. This dataset was split into a
training set of 600K articles and a validation set of
150K articles, where all the articles in the valida-
tion set originated from sources not in the training
set. The second set, by-article, contains just 645
articles which were labelled manually. The final
evaluation (Potthast et al., 2019) was carried out
on a dataset of 628 articles which were also la-
belled manually.

We created several models based on the two
datasets and evaluated them using cross-validation
on the by-article training set (as the final test set
was not available to the participants and it was
only available for a maximum of three evalua-
tions). In order to investigate the usefulness of
the by-publisher training data for training a model
that performs well on the manually annotated
by-article corpus, we experimented with various
kinds of pre-training and fine-tuning, and found
that any kind of use of the by-publisher corpus
was actually harmful and decreased the usefulness
of the model. A CNN model which used ELMo-
based sentence embeddings to represent the arti-
cle, and was trained on the by-article set only,

840

Figure 1: System architecture, F/B vector denotes Forward/Backward hidden state from BiLSTM layers.

turned out to outperform all other attempts.

2 System Description

In our model, we represent each article as a
sequence of sentence embeddings, where each
sentence embedding is calculated as the aver-
aged word embeddings generated from a pre-
trained ELMO model. The network consists of
5 parallel convolutional layers with kernel sizes
2,3,4,5,6 and 512 output features, each followed
by a ReLU non-linearity, batch normalization, and
max-pooling. All the results of the max-pooling
layers are combined and go through a final fully
connected layer with a sigmoid activation function
for the final binary classification. Our model ar-
chitecture is shown in Figure 1.

2.1 Data

The maximum, mean, and minimum numbers of
tokens in the by-article corpus are: 6470, 666, 19
respectively, and in the by-publisher are: 93714,
796, 10 respectively. This makes it impractical to
directly use word level representations as the in-
put for our models. As a simple and easy to cal-
culate compromise between representing the de-
tails of the article and as much of a longer article
as possible, we represent the article as a sequence
of sentence embeddings which are calculated as
the average of the word embeddings of a sentence.
This can be done using any pre-trained word em-
beddings and does not require a large training set

for training or pre-training, so can be easily ap-
plied to even the small by-article corpus. To form
the input sequence for our network, a maximum
of the 200 initial tokens per sentence was used for
each sentence embedding and a maximum of 200
sentences was used per article. The title of the ar-
ticle was used as the first article sentence for each
document.

2.2 Preprocessing

Our model is character-based, which enabled us to
only perform minimal pre-processing. We extract
the title and article text from the original XML
representation. All the original HTML paragraphs
in the text cause a sentence break; the remain-
ing text paragraphs have been split into sentences
using Spacy. The original case of the text was
maintained.

Whitespace is normalized to a single space be-
tween tokens; numbers are replaced by a special
number token; and all punctuation and other spe-
cial characters are preserved as input to the pre-
trained ELMo model.

2.3 Deep Contextualized Word
Representation

Traditionally, the input to CNNs is a set of pre-
trained word vectors such as Word2Vec (Mikolov
et al., 2013), Glove (Pennington et al., 2014), or
Fasttext (Bojanowski et al., 2017). In our model,
we use the AllenNLP library to generate ELMo

841

embeddings, in which the word representation is
learned from character-based units as well as con-
textual information from the news articles. These
character-based word representations allow our
model to pick up on morphological features that
word-level embeddings could miss, and a valid
word representation can be formed even for out-
of-vocabulary words. Furthermore, ELMo uses
two bi-directional LSTM (Gers et al., 1999) lay-
ers to learn the contextual information from the
text, which makes it capable of disambiguating the
same word into different representations based on
its context.

We use the original2 pre-trained ELMo model
to output three vectors for each word. Each vec-
tor corresponds to a layer output from the ELMo
pre-trained model. Then, we take the average of
all three vectors to form the final word vector,
and compute the sentence vector by averaging the
word vectors in the sentence.

2.4 Convolutional Layers

We combine 5 convolutional layers for different
kernel sizes. Each layer is then followed by a non-
linear activation function ReLU.

2.5 Batch Normalization

Batch Normalization (BN) is a method for re-
ducing internal covariate shift in neural networks
(Ioffe and Szegedy, 2015). BN normalizes the
input distribution by subtracting the batch mean
and dividing by the batch standard deviation, so
that the ranges of input distribution between each
layer stay the same. This allows the model to have
a higher learning rate, so that the training speed
is accelerated. It also reduces overfitting by de-
creasing the dependence of weight initialization
between each layer. The original paper suggested
that BN should be applied before the activation
layer, but we apply it after the activation layer, af-
ter observing better performance in our model this
way round. We also applied weighted moving-
mean and moving-variance to avoid updating the
mean and variance so aggressively in the mini-
batch during training time.

2.6 Fully Connected Layer

We perform max-pooling on the output of the
batch-normalization layers. Then the outputs of
the max-pooling for all convolution layers are

2elmo_2x4096_512_2048cnn_2xhighway

combined to form the input to a fully connected
layer, which maps to a single output, followed by
the Sigmoid function for the binary classification
task.

3 Experiments and Results

The generated ELMo embedding contains three
vectors for each word, where each vector corre-
sponds to one of the output layers from the pre-
trained model. We average the three vectors to
generate word representations which contain mor-
phological and contextual information, and com-
pute the sentence vectors by averaging all the word
vectors in each sentence. We take a maximum of
200 words for each sentence and a maximum of
200 sentences for each article. If a document has
fewer than 200 sentences, we pad the number of
sentences out to 200.

Our models are built by using the Keras library
with a Tensorflow backend. All the results are
shown in Table 1. The table shows for each model
the accuracy obtained on the by-article training
set, and for the submitted models, the by-publisher
test set, and the hidden by-article test set (which
unlike the other two, was not available to partici-
pants).

In order to investigate the correlation be-
tween the two datasets, we first built the
ESRC-publisher model which is trained on a
randomly selected 100K out of the 750K articles
from the by-publisher corpus, as it is impractical
to generate ELMo embeddings for the entire cor-
pus. We also fine-tuned the ESRC-publisher
model based on the by-article set to obtain the
ESRC-publisher-article model by freez-
ing the weights of all but the last layer of the
model. Finally we trained the ESRC-article
model only on the by-article set, one version with-
out and one version (ESRC-article-BN) with
the additional batch normalization (BN) layer.
The accuracy for the ERC-publisher model
is from evaluating on the whole by-article
training set, while all other evaluations on the
by-article training set were carried out using
a 10-fold cross validation. However, because of
the very limited size of that corpus, the evaluation
part of each fold was also used for early stopping
and model selection within each fold.

For the evaluation on the hidden test set, we se-
lected the best three models from the 10-folds, ac-
cording to the accuracy on the evaluation set of

842

each fold to form an averaged ensemble model,
ESRC-article-BN-Ens.

For comparison, the table also shows the
results for an earlier version of the model,
GloVe-article, which used GloVe word em-
beddings (6 billion words, 300 dimensional) to
represent up to the first 400 words of the article
and did not use batch normalization.

Models By-Article Training
GloVe-article 0.7963
ESRC-publisher 0.5643
ESRC-publisher-article 0.8189
ESRC-article 0.8182
ESRC-article-BN 0.8387
ESRC-article-BN-Ens 0.8404
Submitted Models By-Article Test
GloVe-article 0.7659
ESRC-article-BN-Ens 0.8216
Submitted Models By-Publisher Test
GloVe-article 0.6435
ESRC-article-BN-Ens 0.5947

Table 1: System comparison (accuracy).

The parameters in our models are as follows:
we used 5 convolutional layers with kernel sizes
(k = 2, 3, 4, 5, 6) and 512 output features. The
momentum in the batch normalization is set to
0.7.3 We used the default Adam algorithm as the
optimizer, and Binary Cross-Entropy as the loss
function. The batch size was set to 32 and the
fixed number of epochs used was 30. The final
best model after 30 epochs was used.

4 Discussion and Conclusion

The ESRC-publisher model performs ex-
tremely badly on the by-article evaluation data.
Even fine-tuning the ESRC-publisher model
on the by-article corpus produces models which
perform worse than a model that is trained only on
the by-article data. This confirms results from ear-
lier experiments with simpler models that any use
of the by-publisher data only hurts the model. We
assume that the algorithm used for assigning the
labels to this dataset just does not reflect any infor-
mation about hyperpartisan articles sufficiently to
be helpful. For this reason, the GloVe-article

3This was determined by exploring values from 0.1 to 0.9
at an earlier stage of the experiments and kept, so it may not
be the optimal value.

model also outperforms the ESRC-article-BN-Ens
model on the by-publisher dataset.

A quick manual inspection of the data showed
that the source of an article is insufficient by far to
identify articles as hyperpartisan or not. It would
be interesting to know how the algorithm used for
creating the by-publisher corpus actually performs
on the by-article corpus. To get maximum perfor-
mance on the by-article dataset, we therefore de-
cided to completely ignore the by-publisher data
for our final model. The use of BN also showed
significant improvement.

Since we use a CNN with a comparatively large
number of parameters in relation to the size of
the training set which is rather small, we expect
significant variance in the generated models and
therefore use the average of an ensemble of sev-
eral models for the final predictions.

5 Acknowledgements

Research partially supported by a Grantham Cen-
tre for Sustainable Future Scholarship, a Google
Faculty Research Award 2017, and projects
funded by the European Commissions Horizon
2020 research and innovation programme under
grant agreements No. 654024 SoBigData and No.
825297 WeVerify.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
1999. Learning to forget: Continual prediction with
lstm.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

843

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2017. A sty-
lometric inquiry into hyperpartisan and fake news.
arXiv preprint arXiv:1702.05638.

Wenpeng Yin and Hinrich Schütze. 2016. Multichan-
nel variable-size convolution for sentence classifica-
tion. arXiv preprint arXiv:1603.04513.

844

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 845–854
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

RumourEval 2019: Determining Rumour Veracity
and Support for Rumours

Genevieve Gorrell1 and Elena Kochkina3,4 and Maria Liakata3,4 and Ahmet Aker1 and
Arkaitz Zubiaga5 and Kalina Bontcheva1 and Leon Derczynski2

1University of Sheffield, UK
(g.gorrell,a.aker,k.bontcheva)@sheffield.ac.uk

2IT University of Copenhagen, Denmark
ld@itu.dk

3University of Warwick, UK
(e.kochkina,m.liakata)@warwick.ac.uk

4Alan Turing Institute, UK

5Queen Mary University of London, UK
a.zubiaga@qmul.ac.uk

Abstract

Since the first RumourEval shared task in
2017, interest in automated claim validation
has greatly increased, as the danger of “fake
news” has become a mainstream concern.
However automated support for rumour verifi-
cation remains in its infancy. It is therefore im-
portant that a shared task in this area continues
to provide a focus for effort, which is likely to
increase. Rumour verification is characterised
by the need to consider evolving conversations
and news updates to reach a verdict on a ru-
mour’s veracity. As in RumourEval 2017 we
provided a dataset of dubious posts and ensu-
ing conversations in social media, annotated
both for stance and veracity. The social me-
dia rumours stem from a variety of breaking
news stories and the dataset is expanded to
include Reddit as well as new Twitter posts.
There were two concrete tasks; rumour stance
prediction and rumour verification, which we
present in detail along with results achieved by
participants. We received 22 system submis-
sions (a 70% increase from RumourEval 2017)
many of which used state-of-the-art methodol-
ogy to tackle the challenges involved.

1 Introduction

1.1 Background
Since the first RumourEval shared task in 2017
(Derczynski et al., 2017), interest in automated
verification of rumours has deepened, as research
has demonstrated the potential impact of false
claims on important political outcomes (Allcott
and Gentzkow, 2017). Living in a “post-truth

world”, in which perceived truth can matter more
than actual truth (Dale, 2017), the dangers posed
by unchecked market forces and cheap platforms,
as well as poor ability by many readers to discern
credible information, are evident. As a result the
importance of educating young people about crit-
ical thinking is increasingly emphasised.1. More-
over the European Commission’s High Level Ex-
pert Group on Fake News provides tools to em-
power users and journalists to tackle disinforma-
tion as one of the five pillars of their recommended
approach.2 Platforms are increasingly motivated
to engage with the problem of damaging con-
tent that appears on them, as society moves to-
ward a consensus regarding their level of respon-
sibility. Independent fact checking efforts, such
as Snopes3, Full Fact4, Chequeado5, are also be-
coming valued resources (Konstantinovskiy et al.,
2018). Zubiaga et al. (2018) present an exten-
sive list of projects. Effort so far is often manual,
and struggles to keep up with the large volume of
online material.

Within NLP research the tasks of stance clas-
sification of news articles and social media posts
and the creation of systems to automatically iden-
tify false content are gaining momentum. Work
in credibility assessment has been around since
2011 (Castillo et al., 2011), making use initially

1http://www.bbc.co.uk/mediacentre/latestnews/2017/fake-
news

2http://ec.europa.eu/newsroom/dae/document.cfm?doc id=50271
3https://www.snopes.com/
4https://fullfact.org/
5http://chequeado.com/

845

Veracity prediction. Example 1:

u1: Hostage-taker in supermarket siege killed, reports say. #ParisAttacks LINK [true]

Veracity prediction. Example 2:

u1: OMG. #Prince rumoured to be performing in Toronto today. Exciting! [false]

Table 1: Examples of source tweets with veracity value

of local features. Fact checking is a broad com-
plex task, challenging the resourcefulness of even
a human expert. Claims such as ”we send the
EU 350 million a week” which is partially true
would need to be decomposed into statements to
be checked against knowledge bases and multiple
sources. Ways of automating fact checking has
inspired researchers (Vlachos and Riedel, 2015)
and has resulted in a new shared task FEVER.6

Other research has focused on stylistic tells of un-
trustworthiness in the source itself (Conroy et al.,
2015; Singhania et al., 2017). Rumour verifica-
tion is a particular case of fact checking. Rumours
are “circulating stories of questionable veracity,
which are apparently credible but hard to verify,
and produce sufficient skepticism and/or anxiety
so as to motivate finding out the actual truth” (Zu-
biaga et al., 2016). One can distinguish several
component to a rumour resolution pipeline such
as rumour detection, rumour tracking and stance
classification, leading to the final outcome of de-
termining the veracity of a rumour (Zubiaga et al.,
2018). Thus what characterises rumour verifica-
tion compared to other types of fact checking is
time sensitivity and the importance of dynamic in-
teractions between users, their stance and infor-
mation propagation. Initial work on rumour de-
tection and stance classification (Qazvinian et al.,
2011) was succeeded by more elaborate systems
and annotation schemas (Kumar and Geethaku-
mari, 2014; Zhang et al., 2015; Shao et al., 2016;
Zubiaga et al., 2016). Vosoughi (2015) demon-
strated the value of making use of propagation in-
formation, i.e. the ensuing discussion, in rumour
verification. Stance detection is the task of clas-
sifying a text according to the position it takes
with respect to a statement. Research supports
the importance of this subtask as a first step to

6https://sheffieldnlp.github.io/fever/

veracity identification. (Ferreira and Vlachos,
2016; Enayet and El-Beltagy, 2017). Crowd re-
sponse, stance and the details of rumour propaga-
tion feature in the work by Chen et al. (2016) as
well as the most successful system in RumourEval
2017 (Enayet and El-Beltagy, 2017), and the high-
est performing systems in RumourEval 2019.

1.2 Datasets for rumour verification

The UK fact-checking charity Full Fact provides
a roadmap7 for development of automated fact
checking. They cite open and shared evaluation as
one of their five principles for international collab-
oration, demonstrating the continuing relevance of
shared tasks in this area. Shared datasets are a cru-
cial part of the joint endeavour. Datasets for ru-
mour resolution are still relatively few, and likely
to be in increasing demand. In addition to the
data from RumourEval 2017, the dataset released
by Kwon et al. (2017) is also suitable for verac-
ity classification. It includes 51 true rumours and
60 false rumours, where each rumour includes a
stream of tweets associated with it. Twitter 15 and
16 datasets (Ma et al., 2018) contain claim propa-
gation trees and combine tasks of rumour detec-
tion and verification in one four-way classifica-
tion task (Non-rumour, True, False, Unverified).
A Sina Weibo corpus is also available (Wu et al.,
2015), in which 5000 posts are classified for ve-
racity, but responses are not available. Partially
generated statistical claim checking data is now
becoming available in the context of the FEVER
shared task, mentioned above, but is not suitable
for this type of work. Twitter continues to be a
highly relevant platform for rumour verification,
being popular with the public as well as politi-
cians. RumourEval 2019 also includes Reddit

7https://fullfact.org/media/uploads/full fact-
the state of automated factchecking aug 2016.pdf

846

data, thus providing more diversity in the types of
users, more focussed discussions and longer texts.

1.3 RumourEval 2017 vs 2019

RumourEval 2019 furthers progress on stance de-
tection and rumour verification, both still unbested
NLP tasks. They are currently moderately well
performed for English short texts (tweets), with
data existing in a few other languages (notably
as part of IberEval). In 2019, many more teams
took part, demonstrating the rising relevance of the
tasks. Specifically, as in 2017, RumourEval 2019
comprises two subtasks:

• In subtask A, given a source tweet, tweets
in a conversation thread discussing the claim
are classified as either supporting, denying,
querying or commenting on the rumour men-
tioned by the source tweet

• In subtask B, the rumour introduced by the
source tweet that spawned the discussion is
classified as true, false or unverified.

In 2017 we had two variants of the task, a closed
and an open one.

• In the open variant, a system could consider
the source tweet itself, the discussion as well
as additional background information.

• In the closed variant, only the source tweet
and the ensuing discussion were used by sys-
tems.

Eight teams entered subtask A, achieving accu-
racies ranging from 0.635 to 0.784. In the open
variant of subtask B, only one team participated,
gaining an accuracy of 0.393 and demonstrating
that the addition of a feature for the presence of
the rumour in the supplied additional materials
does improve their score. Five teams entered the
closed variant of task B, scoring between 0.286
and 0.536. Only one of these made use of the
discussion material, specifically the percentage of
responses querying, denying and supporting the
rumour but scored joint highest on accuracy and
achieved the lowest RMSE. A variety of machine
learning algorithms were employed. Among tra-
ditional approaches, a gradient boosting classifier
achieved the second best score in task A, and a
support vector machine achieved a fair score in
task A and first place in task B. However, deep

learning approaches also fared well; an LSTM-
based approach took first place in task A and an
approach using CNN took second place in task
B, though performing less well in task A. Other
teams used different kinds of ensembles and cas-
cades of traditional and deep learning supervised
approaches.

For 2019 we wanted to encourage participants
to be more innovative in the information they
make use of, particularly in exploiting the output
of task A in their task B approaches.

We extended the challenges through the addi-
tion of new data and by including Reddit posts.

In order to encourage more information-rich ap-
proaches, we combined variants of subtask B into
a single task, allowing participants to use addi-
tional material. This was selected to provide a
range of options whilst being temporally appropri-
ate to the rumours in order to mimic the conditions
of a real world rumour checking scenario.

1.4 Subtask A - SDQC support classification
Related to the objective of predicting a rumour’s
veracity, and as a first step in a rumour verification
pipeline, Subtask A deals with the complementary
objective of tracking how other sources orient to
the accuracy of the rumourous story. A key step in
the analysis of the surrounding discourse is to de-
termine how other users in social media regard the
rumour (Procter et al., 2013). Given a source post
containing a rumourous claim and a conversation
thread discussing the rumour as input, the objec-
tive is to label each of the posts in the conversa-
tion thread with respect to their stance towards the
rumour.

Success on this task supports success on task B
by providing additional context and information;
for example, where the discussion ends in a num-
ber of agreements, it could be inferred that hu-
man respondents have verified the rumour. In this
way, task A provides an intermediate challenge in
which a larger number of data points can be pro-
vided. See Table 2 for an example conversation
thread and refer to Derczynski et al. (2017) for
more details about the task definition.

1.5 Subtask B - Veracity prediction
As in RumourEval 2017 (Derczynski et al., 2017),
the goal of subtask B is to predict the veracity of a
given rumour, where the latter is presented in the
form of a post reporting an update associated with
a newsworthy event. Given such a claim as input,

847

SDQC support classification. Example 1:

u1: We understand that there are two gunmen and up to a dozen hostages inside the cafe under siege at
Sydney.. ISIS flags remain on display #7News [support]

u2: @u1 not ISIS flags [deny]
u3: @u1 sorry - how do you know its an ISIS flag? Can you actually confirm that? [query]

u4: @u3 no she cant cos its actually not [deny]
u5: @u1 More on situation at Martin Place in Sydney, AU LINK [comment]
u6: @u1 Have you actually confirmed its an ISIS flag or are you talking shit [query]

SDQC support classification. Example 2:

u1: These are not timid colours; soldiers back guarding Tomb of Unknown Soldier after today’s shoot-
ing #StandforCanada PICTURE [support]

u2: @u1 Apparently a hoax. Best to take Tweet down. [deny]
u3: @u1 This photo was taken this morning, before the shooting. [deny]
u4: @u1 I dont believe there are soldiers guarding this area right now. [deny]

u5: @u4 wondered as well. Ive reached out to someone who would know just to confirm
that. Hopefully get response soon. [comment]

u4: @u5 ok, thanks. [comment]

Table 2: Examples of tree-structured threads discussing the veracity of a rumour, where the label associated with
each tweet is the target of the SDQC support classification task.

plus additional data such as stance data classified
in task A and any other information teams chose
to use from the selection provided, systems return
a label describing the anticipated veracity of the
rumour. Examples are given in Table 1. In addi-
tion to returning a classification of true, or false, a
confidence score was also required, allowing for a
finer grained evaluation. A confidence score of 0
should be returned if the rumour is unverified.

2 Data & Resources- RumourEval 2019

The data are structured as follows. Source posts
introduce a rumour, and may be true, false or un-
verified. These are accompanied by an ensuing
discussion (tree-shaped) in which users support,
deny, comment or query (SDCQ) the rumour in
the source text. This is illustrated in figure 1 with
an example rumour about Putin. Note that source
posts also need to be annotated for stance, as the
way a post presents a rumour usually gives stance
information also. For example, when introduc-
ing a rumour, an implicit “support” stance may
be present, in that the rumour is assumed to con-
vey valid information. In the Reddit data, rumours
were often introduced with an implicit “query”, as

they were presented for discussion/debunking.
The RumourEval 2017 corpus contains 297

source tweets grouped into eight breaking news
events, and a total of 7100 discussion tweets. This
became training data in 2019, and was augmented
with new Twitter test data and new Reddit mate-
rial. The Reddit material was split into training
and test sets. Each are discussed in turn below.

In RumourEval 2017 along with the tweet
threads, we also provided additional context that
participants could make use of (Derczynski et al.,
2017). However, only one system had made use
of this additional context. Due to lack of time
such context data was not provided in RumourEval
2019 but we would look into re-introducing this in
future editions of the task.

2.1 English Twitter data about natural
disasters

The additional English Twitter testing data is
about natural disasters. In such events, where
chaos dominates the situation, rumours are spread
on various issues and false rumours have the po-
tential to increase the chaos. Detecting such false
rumours are important to plan actions that will

848

Figure 1: Structure of the first rumours corpus

eliminate the additional negative impact on the al-
ready existing chaotic situation. Therefore, for
this year we decided to introduce such a dataset
as test data. To collect this dataset rumours about
natural disasters were chosen manually through
Snopes.com and Politifact.com: we searched man-
ually for rumours about known natural disasters
such as hurricanes, floods, etc. If the search re-
turned some results, we quickly scanned this result
list for social media posts (specifically tweets) that
people had created about the disaster and which
had been verified by the debunking web-site.

Once we collected the rumour introducing
tweets (the source tweets) we aimed to collect
also the cascades, i.e. the reactions/replies to the
source tweet. The replies encode the reactions
(stance information) of other users to the rumour
and can be of importance when verifying the ru-
mour. To collect the replies we used an existing
scraper (Zubiaga et al., 2016). The number of
source tweets of different veracities and replies of
different stances are given in Tables 3 and 4.8

2.1.1 Annotation of new English Twitter data
As noted above a rumour consists of a source
tweet and a thread of tweets that respond to the
source one, where the source tweet contains the
rumour. The veracity of each source tweet is al-
ready known a priori. However, the dataset is
missing stance labels for the replies. To get also

8The labels were taken from the debunking web-sites. As
in the RumourEval2017 test data the false rumours dominate.
However, unlike the previous dataset the number of unveri-
fied rumours is proportionally smaller compared to the other
two classes. In the 2017 dataset the test data included 12 false
rumours, 8 true and 8 unverified ones.

the stance labels we performed annotation through
crowd sourcing. Zubiaga et al. (2016) distinguish
between the following stance labels for each reply-
ing tweet: supporting, denying, questioning and
commenting.

Following the same strategies and design re-
ported by Zubiaga et al. (2016) we posted
our datasets for stance annotation to FigureEight
(F8)9. We applied a restriction so that annota-
tion could be performed only by people from the
USA and UK. We also made sure that each an-
notation was performed maximum by 10 annota-
tors and that an annotator agreement of min. 70%
was met. Note if the agreement of 70% was met
with fewer annotators then the system would not
force an annotation to be done by 10 annotators
but would finish earlier. The system requires 10
annotators if the minimum agreement requirement
is not met. Each annotator saw five source tweets
on a page. The source tweets were accompanied
by replying tweets followed by the stance labels to
choose from. Each page showed also instructions
and definitions about the stance labels. We paid
for each tweet annotation 3 US Dollar Cents.

The agreement among the annotators is directly
taken from F8s aggregated scores and is computed
based on percentage agreement. On the entire
dataset we have 76.2% agreement.

We also computed the distribution of stances
provided for the replying tweets (see Tables 3 and
4). As we see from the tables, overall the distri-
bution of stances is skewed towards the comment
category. This is also the case with the PHEME
dataset reported by Zubiaga et al. (2016).

9www.figure-eight.com

849

2.2 Reddit Data

Rumours were identified on Reddit by manually
searching debunking forums and current affairs fo-
rums to identify suitable threads. Reddit discus-
sions are deeper than Twitter discussions, with of-
ten a complex conversational structure exploring
the topic. They are usually introduced by a post
implicitly querying the rumour, unlike Twitter ru-
mours which are more often presented as valid in-
formation and therefore the source tweets usually
support the rumour. The Reddit material is less
time-sensitive than the Twitter material, and may
discuss long-standing conspiracy theories, for ex-
ample. Threads were downloaded using a bespoke
script.

2.2.1 Annotation of Reddit discussions

Since the Reddit discussions are complex, there is
more of a danger that careless annotators won’t
distinguish between posts that disagree with the
immediately preceding comment and posts that
disagree with the rumour. A response such as “ab-
solutely!” might therefore get a high agreement
from annotators who all made the mistake of anno-
tating it as “support”, even if it was in response to a
preceding comment which denied the rumour. To
avoid this, an extensive quiz of 51 test questions
was used to ensure that annotators understood the
task properly. Reddit threads tend to be longer and
more diverse, leading to a more challenging task
as discussion may be only loosely related to the
main topic, leading to a preponderance of “com-
ments” (88% overall compared with 67% in the
Twitter data). Tables 3 and 4 give totals in training
and test data for both tasks alongside the figures
for Twitter data.

Up to five judgements were collected, or an
agreement of 0.7, whichever came first. Since
Reddit annotators were highly trained by the time
they were accepted on the task, this was found
sufficient. Four US dollar cents per post was of-
fered, which is higher than usual for a Figure Eight
task, in order to attract annotators to this rela-
tively hard task. The final macro-agreement for
the entire Reddit set is 78%, and an average of
3.84 annotations annotated each item. For “sup-
port” items, more annotations were required, at
4.22 on average, and a lower macro agreement was
achieved of 67%. Similarly for deny items, 4.04
judgements were obtained on average and a macro
agreement of 63% was achieved. For query items,

Supp. Deny Query Com. Total
Twitter Train 1004 415 464 3685 5568
Reddit Train 23 45 51 1015 1134
Total Train 1027 460 515 4700 6702
Twitter Test 141 92 62 771 1066
Reddit Test 16 54 31 705 806
Total Test 157 146 93 1476 1872
Total Task A 1184 606 608 6176 8574

Table 3: Task A corpus

True False Unver. Total
Twitter Train 145 74 106 325
Reddit Train 9 24 7 40
Total Train 154 98 113 365
Twitter Test 22 30 4 56
Reddit Test 9 10 6 25
Total Test 31 40 10 81
Total Task B 185 138 123 446

Table 4: Task B corpus

4.36 judgements on average were obtained and a
macro agreement of 64% was achieved.

For Task B, rumours were annotated for ve-
racity with the aid of Snopes and similar sites.
This is a change from RumourEval 2017, where
manually-annotated veracity was assigned. In-
stead, we used community experts working pro-
fessionally in a range of organisations to construct
the Task B veracity judgments. The volume of
data was also significantly extended beyond e.g.
the 21 stories in the test set of RumourEval 2017
Task B.

3 Evaluation

In task A, stance classification, care must be taken
to accommodate the skew towards the “comment”
class, which dominates, as well as being the least
helpful type of data in establishing rumour verac-
ity. Therefore we used macro-averaged F1 to eval-
uate performance on task A.

In task B participants supply a true/false classi-
fication for each rumour, as well as a confidence
score. Macro-averaged F1 was again the score of
choice to evaluate the overall classification. For
the confidence score, a root mean squared error
(RMSE, a popular metric that differs only from the
Brier score in being its square root) was calculated
relative to a reference confidence of 1. Unveri-
fied rumours were considered correctly annotated
if they received a confidence score of zero regard-
less of true/false classification.

850

The previous RumourEval task used accuracy
as the evaluation metric, but that approach allowed
higher scores to be obtained through less sensitiv-
ity to minority classes. For the stance task, 80%
of test items were comments, and this is the least
interesting class. For the verification task, class
imbalance is not so extreme, with 50%“false” in
the dataset and close to 40% “true” (the remainder
are “unverified”).

Whilst participants weren’t evaluated on accu-
racy for task A, we note that generally speak-
ing, teams that obtained higher macro F1 scores
also obtained higher accuracies, and that around
50% of the teams obtained accuracies higher than
might be obtained simply by assigning all items
to the comment class (majority baseline). How-
ever, the correlation between accuracy and macro
F1 was only 0.47, and use of macro F1 revealed
that three teams surged ahead. For task B, where
class imbalance was less pronounced, the relation-
ship between accuracy and macro F1 was much
closer, with a correlation of 0.87, though again, F1
was the better differentiator. Interestingly, RMSE
showed a stronger relationship with macro F1 than
with accuracy (correlations -0.92 vs -0.77).

4 Baselines

We provided participants with our implementation
of several baseline systems10, described below.

4.1 Stance classification baseline
For subtask A we released a Keras (Chollet et al.,
2015) implementation of branchLSTM, the win-
ning system of RumourEval 2017 Task A (Kochk-
ina et al., 2017). This system uses the conversa-
tion structure by splitting it into linear branches.
It is a neural network architecture that uses LSTM
layer(s) to process sequences of tweets, outputting
a stance label at each time step. Each tweet is rep-
resented by the average of its word vectors 11 con-
catenated with a number of extra features. This
baseline was outperformed by 3 submitted sys-
tems (BLCU NLP, BUT-FIT, eventAI).

4.2 Veracity classification baselines
For subtask B we provided two baselines.

1. A model which is an extension of
branchLSTM (Kochkina et al., 2018)

10https://github.com/kochkinaelena/
RumourEval2019

11We are using word2vec (Mikolov et al., 2013) model pre-
trained on the GoogleNews dataset (300d)

User or Team name
Subtask B,
MacroF

Subtask B,
RMSE

Subtask A,
Macro F

eventAI 0.5765 (1) 0.6078 (1) 0.5776 (3)
WeST (CLEARumor) 0.2856 (2) 0.7642 (2) 0.3740 (11)
GWU NLP LAB 0.2620 (3) 0.8012 (3) 0.4352 (7)
BLCU NLP 0.2525 (4) 0.8179 (5) 0.6187 (1)
shaheyu 0.2284 (5) 0.8081 (4) 0.3053 (17)
Columbia 0.2244 (6) 0.8623 (7) 0.3625 (13)
mukundyr 0.2244 (6) 0.8623 (7) 0.3404 (15)
Xinthl 0.2238 (7) 0.8623 (7) 0.2297 (18)
lzr 0.2238 (7) 0.8678 (8) 0.3404 (15)
UPV-28-UNITO 0.1996 (8) 0.8264 (6) 0.4895 (4)
NimbusTwoThousand 0.0950 (9) 0.9148 (9) 0.1272 (19)
nx1 (deanjjones) - - 0.3267 (16)
jurebb - - 0.3537 (14)
UI-AI - - 0.3875 (10)
LECS - - 0.4384 (6)
magc - - 0.3927 (9)
BUT-FIT - - 0.6067 (2)
HLT(HITSZ) - - 0.4792 (5)
wshuyi - - 0.3699 (12)
SINAI-DL - - 0.4298 (8)
FINKI NLP
2018/2019 (late)

0.3326 0.6846 0.2165

IASBS (late) 0.1845 0.7857 0.2530
baseline
branchLSTM

0.3364 0.7806 0.4929

baseline
NileTMRG

0.3089 0.7698 -

baseline
Majority class

0.2241 0.7115 0.2234

Table 5: Results table. Ranking is in brackets.

uses the same features as the stance classi-
fication system but produces a single output
per branch. The veracity prediction for the
thread is then decided using majority voting
over per-branch outcomes.

2. The NileTMRG baseline (Enayet and El-
Beltagy, 2017) is a linear SVM that uses
a bag-of-words representation of the source
tweet, concatenated features defined by the
presence of URL, presence of hashtag and
proportion of supporting, denying and query-
ing tweets in the thread. In our implemen-
tation of NileTMRG e use the branchLSTM
model to obtain stance labels for the tweets
in the testing set rather than the model origi-
nally used in (Enayet and El-Beltagy, 2017).

Baseline systems in subtask B were outper-
formed by the winning system eventAI (outper-
forms both baselines) and a late submission by
FINKI NLP (outperforms NileTMRG and reaches
similar result to branchLSTM, see Table 5). If par-
ticipants made their own run of the baseline sys-

851

tems, their outcome might differ from ours due to
variation in random seeds, package versions and
hardware used.

5 Participant Systems and Results

We have had 22 system submissions at Ru-
mourEval 2019 (70% up from RumourEval 2017),
confirming the significant increase in interest in
this area. All submissions tackled subtask A (Ru-
mour SDQC) and 13 systems attempted both tasks
(more than a 100% increase). The participating
systems and the results achieved can be found in
Table 5. Note that system ranking is presented ac-
cording to macro-F1 score in subtask B, which is
considered the core task and the more challenging
of the two. As in RumourEval 2017 subtask A was
the more popular task of the two and whilst partic-
ipation in both tasks has significantly increased,
it is still the case that systems seem to focus and
do better in one of the two tasks. Specifically,
the best performing system in substask B (even-
tAI) ranked third in subtask A and the best per-
forming system in subtask A (BLCU NLP) ranked
fourth in subtask B. Three systems outperformed
the branchLSTM subtask A baseline (BLCU NLP,
BUT-FIT, eventAI), whereas almost all systems
outperformed the majority baseline macro-F1 in
this task. In subtask B, over 60% of systems out-
performed the majority baseline in macro-F1, two
systems outperformed the NILETMRG baseline
(eventAI,FINKI-NLP–late) and one system (even-
tAI) beat both the NILETMRG and branchLSTM
baselines.

The trend for neural approaches has demonstra-
bly increased with almost all systems adopting a
neural network (NN) architecture for their mod-
els, with the exception of the best performing sys-
tem in subtask B (eventAI), which implemented an
ensemble of classifiers (SVM,RF,LR), including a
NN with three connected layers, where individual
post representations are created using an LSTM
with attention. This also considered a range of
other features and postprocessing module to find
similarities between source tweets. A similar en-
semble model also considering sophisticated fea-
tures and feature selection using RF would have
ranked second in this task (FINKI-NLP, submit-
ted late) as it outperformed the NILETMRG base-
line. The second best performing system in sub-
task A (BUT-FIT) uses an ensemble of BERT (De-
vlin et al., 2018) models, which allows the pre-

training of bidirectional representations to provide
additional context. They experiment with differ-
ent parameter settings and if the model increased
overall performance it was added to the classi-
fier. Interestingly the best performing system in
task A (BLCU-NLP) and the third best (CLEARu-
mor) also use pre-trained contextual embedding
representations with BLCU-NLP using OpenAI
GPT (Radford et al., 2018) and ClEARumor us-
ing ELMo (Peters et al., 2018). While most sys-
tems use single tweets or pairs of tweets (source-
response) as their underlying structure to operate
on, BLCU-NLP employ an inference chain-based
system for this paper. Thus they consider the con-
versation thread starting with a source tweet, fol-
lowed by replies, in which each one responds to
an earlier one in time sequence. They take each
conversation thread as an inference chain and con-
centrate on utilizing it to solve the problem of class
imbalance in subtask A and training data scarcity
in subtask B. They also have augmented the train-
ing data with external public datasets. Other popu-
lar neural models among participants include BiL-
STM and LSTM. Judging from the approaches of
two best performing systems in each of subtask
A and B (BLCU-NLP and eventAI respectively)
one could infer that: (1) for subtask A considering
the sequence of earlier posts is important to iden-
tifying correctly the stance of a post towards the
rumour (2) for rumour verification it is more im-
portant to consider a variety of different features.

6 Conclusion

We evaluated multiple teams in the tasks of ru-
mour stance detection and rumour veracity evalu-
ation. Interest in these tasks continues to increase,
driving performance of systems higher and push-
ing the sophistication of systems, which are now
often using state-of-the-art neural network meth-
ods and beyond. Further challenges include use
of the rich context available, in terms of both
time, conversation, and broader discourse during
the evolution of rumours. Additionally, we need to
work better with other languages. While we tried
to make more available in this task, framing the
task and annotating the data proved challenging
and demanding. On the other hand, leaving stance
detection just to English leaves the majority of the
world without this important technology.

852

Acknowledgements

This work is supported by the European Com-
missions Horizon 2020 research and innovation
programme under grant agreements No. 654024
SoBigData and No. 687847 COMRADES.
This work was also partially supported by The
Alan Turing Institute under the EPSRC grant
EP/N510129/1. Cloud computing resources were
kindly provided through a Microsoft Azure for Re-
search Award. Work by Elena Kochkina was par-
tially supported by the Leverhulme Trust through
the Bridges Programme and Warwick CDT for Ur-
ban Science & Progress under the EPSRC Grant
Number EP/L016400/1.

References
Hunt Allcott and Matthew Gentzkow. 2017. Social me-

dia and fake news in the 2016 election. Journal of
Economic Perspectives, 31(2):211–36.

Carlos Castillo, Marcelo Mendoza, and Barbara
Poblete. 2011. Information credibility on twitter. In
Proceedings of the 20th international conference on
World wide web, pages 675–684. ACM.

Weiling Chen, Chai Kiat Yeo, Chiew Tong Lau, and
Bu Sung Lee. 2016. Behavior deviation: An
anomaly detection view of rumour preemption. In
Information Technology, Electronics and Mobile
Communication Conference (IEMCON), 2016 IEEE
7th Annual, pages 1–7. IEEE.

François Chollet et al. 2015. Keras. https://
keras.io.

Niall J Conroy, Victoria L Rubin, and Yimin Chen.
2015. Automatic deception detection: Methods for
finding fake news. Proceedings of the Association
for Information Science and Technology, 52(1):1–4.

Robert Dale. 2017. Nlp in a post-truth world. Natural
Language Engineering, 23(2):319–324.

Leon Derczynski, Kalina Bontcheva, Maria Liakata,
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz
Zubiaga. 2017. Semeval-2017 task 8: Rumoureval:
Determining rumour veracity and support for ru-
mours. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 69–76.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Omar Enayet and Samhaa R El-Beltagy. 2017.
Niletmrg at semeval-2017 task 8: Determining ru-
mour and veracity support for rumours on twitter. In
Proceedings of the 11th International Workshop on

Semantic Evaluation (SemEval-2017), pages 470–
474.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In
Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: Human language technologies,
pages 1163–1168.

Elena Kochkina, Maria Liakata, and Isabelle Augen-
stein. 2017. Turing at semeval-2017 task 8: Sequen-
tial approach to rumour stance classification with
branch-lstm. In Proceedings of SemEval.ACL.

Elena Kochkina, Maria Liakata, and Arkaitz Zubiaga.
2018. All-in-one: Multi-task learning for rumour
verification. arXiv preprint arXiv:1806.03713.

Lev Konstantinovskiy, Oliver Price, Mevan Babakar,
and Arkaitz Zubiaga. 2018. Towards automated
factchecking: Developing an annotation schema and
benchmark for consistent automated claim detec-
tion. arXiv preprint arXiv:1809.08193.

KP Krishna Kumar and G Geethakumari. 2014. De-
tecting misinformation in online social networks us-
ing cognitive psychology. Human-centric Comput-
ing and Information Sciences, 4(1):14.

Sejeong Kwon, Meeyoung Cha, and Kyomin Jung.
2017. Rumor detection over varying time windows.
PloS one, 12(1):e0168344.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor
detection on twitter with tree-structured recursive
neural networks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
1980–1989.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Rob Procter, Farida Vis, and Alex Voss. 2013. Read-
ing the riots on twitter: methodological innovation
for the analysis of big data. International journal of
social research methodology, 16(3):197–214.

Vahed Qazvinian, Emily Rosengren, Dragomir R
Radev, and Qiaozhu Mei. 2011. Rumor has it: Iden-
tifying misinformation in microblogs. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 1589–1599. Asso-
ciation for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Time Salimans,
and Ilya Sutskever. 2018. Improving language un-
derstanding with unsupervised learning. Technical
report, Technical report, OpenAI.

853

Chengcheng Shao, Giovanni Luca Ciampaglia,
Alessandro Flammini, and Filippo Menczer.
2016. Hoaxy: A platform for tracking online
misinformation. In Proceedings of the 25th in-
ternational conference companion on world wide
web, pages 745–750. International World Wide Web
Conferences Steering Committee.

Sneha Singhania, Nigel Fernandez, and Shrisha Rao.
2017. 3han: A deep neural network for fake news
detection. In International Conference on Neural
Information Processing, pages 572–581. Springer.

Andreas Vlachos and Sebastian Riedel. 2015. Identi-
fication and verification of simple claims about sta-
tistical properties. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2596–2601. Association for Com-
putational Linguistics.

Soroush Vosoughi. 2015. Automatic detection and ver-
ification of rumours on Twitter. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Ke Wu, Song Yang, and Kenny Q Zhu. 2015. False ru-
mors detection on sina weibo by propagation struc-
tures. In Data Engineering (ICDE), 2015 IEEE 31st
International Conference on, pages 651–662. IEEE.

Qiao Zhang, Shuiyuan Zhang, Jian Dong, Jinhua
Xiong, and Xueqi Cheng. 2015. Automatic detec-
tion of rumor on social network. In Natural Lan-
guage Processing and Chinese Computing, pages
113–122. Springer.

Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva,
Maria Liakata, and Rob Procter. 2018. Detection
and resolution of rumours in social media: A survey.
ACM Computing Surveys (CSUR), 51(2):32.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geral-
dine Wong Sak Hoi, and Peter Tolmie. 2016.
Analysing how people orient to and spread rumours
in social media by looking at conversational threads.
PloS one, 11(3):e0150989.

854

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 855–859
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

.

Abstract

This paper describes our system for
SemEval 2019 RumorEval: Determining
rumor veracity and support for rumors
(SemEval 2019 Task 7). This track has two
tasks: Task A is to determine a user’s stance
towards the source rumor, and Task B is to
detect the veracity of the rumor: true, false
or unverified. For stance classification, a
neural network model with language
features is utilized. For rumor verification,
our approach exploits information from
different dimensions: rumor content,
source credibility, user credibility, user
stance, event propagation path, etc. We use
an ensemble approach in both tasks, which
includes neural network models as well as
the traditional classification algorithms.
Our system is ranked 1st place in the rumor
verification task by both the macro F1
measure and the RMSE measure.

1 Introduction

Social media platforms, such as Twitter, Reddit
and Facebook, do not always poses authentic
information. Rumors sometimes may spread
quickly over these platforms (Castillo et al., 2011;
Derczynski and Bontcheva, 2014; Qazvinian et
al., 2011). A rumor may be defined as a statement
whose truth value is unverified or deliberately
false (Qazvinian et al., 2011). Rumors usually
spread fear or even euphoria, and they may
confuse people and cause them to make wrong
decisions. Therefore, rumor detection has gained
great interest recently. In this paper, we describe
the approaches we used in SemEval 2019
RumourEval: Determining rumor veracity and
support for rumors (SemEval 2019 Task 7). This
task has two subtasks: Task A - user stance
classification and Task B - rumor verification.

Stance classification is to determine the
attitude of the author of a post message towards a
target (Mohammad et al., 2016). In task A, we

focus on stance classification of messages
towards the truthfulness of rumors in Twitter or
Reddit conversations. Each conversation is
defined by a source post that initiates the
conversation, and a set of replies to it, which form
a conversation thread. The goal is to classify each
post into one of the four categories: supporting,
denying, querying or commenting (SDQC). For
this task, we use an ensemble approach, which
combines the prediction results from both the
traditional learning models, such as SVM, and a
neural network model, using the language
features extracted from the message text. Task B
predicts the veracity of a rumor: true, false, or
unverified (i.e., its veracity cannot be verified
based on the given information). Each rumor
consists of a source post that makes a claim, and
a set of replies, directly or indirectly towards the
source post. We also employed an ensemble
approach on this task, which uses multiple models
together to do the veracity prediction.

For more details about these two tasks, please
check the task description paper from the task
organizers (Gorrell et al., 2019).

2 Related Studies

Rumor detection on social media has been a
popular research topic in recent years. The early
exploration of this issue started from two special
case studies on rumor propagation during natural
disasters like earthquakes and hurricanes (Gupta
et. al., 2013; Mendoza et al., 2010). Many existing
algorithms (Liu et al., 2015; Wu et. al., 2015;
Yang et. al., 2012) for debunking rumors
followed the work of Castillo et al. (2011). They
studied information credibility and proposed a set
of features that are able to retrospectively predict
if an event is credible.

Stance classification is also an active research
area that has been studied in previous work
(Lukasik et al., 2016; Zubiaga et al., 2016;
Kochkina et al., 2017). A time sequence
classification technique has been proposed for

 eventAI at SemEval-2019 Task 7: Rumor Detection on Social Media by
Exploiting Content, User Credibility and Propagation Information

Quanzhi Li, Qiong Zhang, Luo Si
Alibaba Group, US

Bellevue, WA 98004, USA
{quanzhi.li, qz.zhang, luo.si}@alibaba-inc.com

855

.

detecting the stance against a rumor (Lukasik et
al., 2016). Zubiaga et al. (2016) used sequence of
label transitions in tree-structured conversations
for classifying stance.

Several studies have applied neural networks
on the verification of rumors (Ma et al., 2016;
Kochkina et al., 2017; Ma et al., 2017); They
mainly focus on analyzing the information
propagation structure, and have not utilized much
information on user credibility. User stance plays
an important role in rumor detection. Recent
works have employed multi-task learning
approaches to jointly learn stance detection and
veracity prediction, in order to improve
classification accuracy by utilizing the
interdependence between them (Ma et al.,; 2018;
Kochkina et al., 2018).

3 System Description

We first describe the data set, the word embedding,
our message representation method, and then our
systems for the two tasks.
Data set quality: Regarding the annotation of the
data set, as the task description already pointed
out: the overall inter-annotator agreement rate of
63.7% showed the task to be challenging, and
easier for source tweets (81.1%) than for replying
tweets (62.2%). This means that there are many
conflicting or inconsistent labels. This will
confuse the learning based models, and make the
model and prediction result unstable. When we
analyzed the training data set, we found many
such examples. To make the labels more
consistent, we run an analysis to find the posts that
are basically the same or highly similar, but their
labels are different. We then mark these posts, and
use the same label, the one labeled on the
majority of these posts, on them during training.
The similarity between two posts is calculated by
cosine measure, and the post/message embedding
is used in the calculation. The similarity threshold
for being considered as similar posts is
empirically set as 0.75.
Word embeddings: A popular word embedding
data set used by many previous studies is one that
is created from Google news articles using
word2vec (Mikolov et al., 2013). Because the
data in this task are social media messages,
mainly tweets, we think a embedding model built
specifically from tweets will be more appropriate.
Therefore, we used tweets collected from Twitter
to train a word embedding model. Only English
tweets are used, and about 200 million tweets are

used to build the embedding model. Totally, 3
billion words are processed, and word
embeddings are generated for 3.5 million unique
terms using the word2vec model (Mikolov et al.,
2013) and data from (Li et al, 2017). In this task,
although some messages are from Reddit, they
are similar to tweets, in terms of language style
and message structure, since both are social media
messages.

Figure 1. Message embedding based on the attention-

based LSTM
Message representation: A tweet (or Reddit
message) is usually very shot, consisting of only
one sentence. In our models where a whole post
is used, such as the stance detection, a message
embedding is used as the message representation.
We generate the message representation through
an attention-based LSTM network for messages
that have only one sentence. A post is first
preprocessed, such as removing URLs, before it
is fed into the LSTM network. Figure 1 shows the
network structure for generating the message
embedding.

3.1 Stance Detection

Similar to (Kochkina et al., 2017), we use a set of
features that include the word embeddings and
features generated from the message. They are
listed below:
• Message role: it is the source message or a

reply.
• Message embedding: this the message

representation presented in Figure 1.
• Presence of link: has at least one link or not
• Link type: the types of the links. Types

include image, video, and article.
• Relation to source message: whether this is a

reply to the source message
• Stance of parent message: if this is a reply

message, then the stance of the message it

856

.

replies to. In other words, we also check the
stance of a message’s parent in the
propagation path.

• Similarity with the source message:
Measured by cosine similarity using message
embedding.

• Punctuations: we check if it has a question
mark or exclamation mark.

• Content length: the message length after
removing links and mentions

• Mentions: if the mentions are special accounts,
e.g. @cnn, @theonion

• Hashtags: if it contains some special hashtags,
e.g. #fakenews, #lying

These features are used by the following
classification modules: A neural network model.
The message embedding and other features are
concatenated together and fed into the neural
model, which consists of two fully connected
layers and a softmax layer for the final label output;
Models based on SVM, Random Forest and
Logistic Regression, respectively; A rule based
model.

The rule-based model handles some special
case. Two examples are: 1. For source tweet stance:
by default, label the source message as support,
except A. if it is a Reddit message and it has
“debunk this”, then label it as query. B. if the
source message has a question mark, and the
sentence has the pattern of asking a question, label
it as query. For example, the Yes/No questions:
“did, do, does, have, has, am, is, are, can, could,
may, would, will”, and the WH-questions: “what,
why, how, when, where”, and the as well as their
negations. 2. If the message is very short, and
mainly contains a couple of keywords or hashtags
expressing a very strong opinion, e.g. #fakenews or
“not true”, then a corresponding label is assigned
to it.

3.2 Rumor Verification

Our approach for rumor verification utilizes rumor
information from several dimensions: text content,
user credibility information, rumor propagation
path, user stance, etc. Text content is utilized by
almost all the previous studies on rumor
verification. According to the deception style
theory, the content style of deceptive information
that aims to deceive readers should be somewhat
different from that of the truth, e.g., using
exaggerated expressions. An early study from
(Castillo et al., 2011) uses many text features in

their model. These features and other additional
text features are also used in other studies (Liu et
al., 2015; Enayet and El-Beltagy, 2017; Ma et al.,
2017). Many previous studies have shown that user
credibility information is very important in rumor
verification (Castillo et al., 2011; Yang et al., 2012;
Gupta et al., 2012; Liu et al., 2015; Li et al., 2016;
Liu and Wu, 2018). Based on 421 false rumors and
1.47 million related tweets, Li et al. (2016) study
various semantic aspects of false rumors, and
analyze their spread and user characteristics. Their
study shows that user credibility information is a
good indicator for judging the credibility of a
rumor story. To verify a rumor, we analyze the
information from several dimensions:
• Source content analysis: whether the source

message has links pointing to an article, video
or image; length of the source message after
removing URLs and mentions; number of
named entities, verbs and nouns in the source
message; whether the source message contains
time expression.

• Source account credibility: the following
information are considered: is a news agent
account; profile has link pointing to top
domains; account type: individual or
organization (company, government agent,
organization); profile has location
information; profile has description; profile
has image; profile has profession information;
is verified user; number of followers, number
of posts authors, account age, etc. How they
are generated is similar to (Liu et al, 2015).

• Source account credibility score: calculated
from the information listed in the Source
account credibility category, and normalized to
0 to 1 (Liu et al, 2015).

• Reply account credibility: the profile
information to check are similar to the ones in
the Source account credibility category.

• Reply account credibility score: calculated
from the information in the Reply account
credibility category, and normalized to 0 to 1.

• Stance of the source message: get from Task
A

• Stance of replies: percentage of each stance
type; the overall stance score for each stance
class, calculated by integrating each reply’s
account credibility score with its stance.

• Rumor topic domain: the topic area of the
rumor, e.g. politics, business, science, etc. (Liu
et al., 2015; Li et al., 2016).

857

.

These data are fed into different models for
veracity prediction.

Propagation path analysis: Rumors spread
through social media in the form of shares and re-
shares of the source post and shared posts, resulting
in a diffusion cascade or tree. Each source message
has many replies, and they are either direct replies,
or replies to other messages in the conversion
thread. Take the rumors on Twitter as an example,
the training data set contains 327 tweet rumors, and
these rumors have 4017 branches and 5570 tweets,
which means we have quite a lot replies that are not
toward directly to the source message. The
structure of the conversion thread is important for
understanding the real stance of the user of a reply.
For example, given a message “This is fake” and
a reply to this message “ I totally agree”, if we do
not know the reply is toward to the first message,
then we will give a wrong label “support” to this
reply. But actually this reply is denying the rumor
claim. This is very important in rumor verification.

Models: We also use the ensemble approach in this
task, where multiple models are used to predict
rumor veracity, and stacking is employed for the
final decision. Similar to the stance detection, we
have following classification modules: A neural
network model. All the features described above
are concatenated together and fed into the neural
model, which consists of two fully connected
layers and a softmax layer for the final veracity
prediction; Three models based on SVM, Random
Forest and Logistic Regression, respectively; and a
post-processing module that is described below.

Post-processing module
In this component, we consider some special
characteristics of rumors and the data sets. We built
some simple modules in this components, which
may change the prediction results in previous steps.
Some of them are described below:
Topics with multiple rumors: Some topics have
multiple rumors, and in most cases, the rumors
from the same topic have the same veracity, i.e.
they are all true, false or unverified. To utilize this
characteristic, for a given topic, after each rumor is
processed and a prediction is generated, we use this
post-process to re-evaluate their veracities, to see if
any of them needs to be changed. The rumors from
the same topic may or may not talk about the same
claim, although in many cases, they are. We
calculate the cosine similarity between two source
posts, if it is greater than the threshold (set as 0.65
empirically), then the two rumors are considered as

basically talking about the same claim, and their
veracities are set as the same value. In similarity
calculation, a source message is represented by its
embedding, already described in previous section.
The final veracity is chosen based on the
distribution of the veracity values in these rumors,
and their corresponding confidence scores.
Rumors originated from special accounts: due
to the limited size of training data and annotation
quality, some patterns or knowledge may not be
caught by the trained models. But when we
analyzed the data set, we found some patterns or
signals that can provide very strong evidence on
rumor veracity, especially for the false rumors. For
example, TheOnion is a website usually publishing
satirical news and opinions. A source message
from this account usually is a false rumor. We
check the source post and also the replies in the
conversation thread, to see if there is evidence that
the claim is from certain special accounts. Another
example: if a rumor is from a very credible source,
such as news agency NPR or a government agency,
then it is very likely its veracity is true.
Rumors debunked or endorsed by special
accounts: Similar to the last point, we also check
the replies of a source messages, to see if some
special accounts have expressed very strong
opinion on that claim. For example, if a response is
from Snopes.com, a rumor verification website,
and it says “#fakenews”, or its response is cited by
a post in the conversation thread, we can
confidently classify this rumor as false. The
account information are obtained by analyzing the
training data.

Table 1. Rumer verification result

4 Experiments and Results

The evaluation metric of Task A is the average
macro F measure of the four stance categories.
Task B uses two evaluation metrics: the average
macro F measure of the three veracity types, and
also RMSE. Regarding the model training, for
the neural network model, the stochastic gradient
descent, shuffled mini-batch, AdaDelta update,
back-propagation and dropout are used. The word

Rumor Veracity Precision Recall F measure

True 0.733 0.710 0.721
False 0.828 0.600 0.696

Unverifies 0.227 0.500 0.313
Average 0.596 0.603 0.577

858

.

embeddings were fine-tuned during the training
process.

For the stance detection task, the result of our
system is 0.578 , based on the macro F measure
of SDQC. Table 1 shows the rumor detection
result of our system. It shows that the unverified
category got a very low precision, 0.227, and
consequently, its F value is also pretty low, which
is 0.313. And this value drags down the average F
value of the three categories to 0.577.

References
C. Castillo, M. Mendoza, and B. Poblete. Information

credibility on twitter. In Proc. WWW 2011

Ju-han Chuang and Shukai Hsieh. 2015. Stance
classification on ptt comments. In Proceedings of
the 29th Pacific Asia Conference on Language,
Information and Computation.

Genevieve Gorrell, Kalina Bontcheva, Leon
Derczynski, Elena Kochkina, Maria Liakata, and
Arkaitz Zubiaga, 2019, RumourEval 2019:
Determining Rumour Veracity and Support for
Rumours. SemEval 2019

Gupta, H. Lamba, P. Kumaraguru, and A. Joshi. Faking
sandy: characterizing and identifying fake images
on twitter during hurricane sandy. WWW 2013

Elena Kochkina, Maria Liakata, Isabelle Augenstein,
2017, Turing at SemEval-2017 Task 8: Sequential
Approach to Rumour Stance Classification with
Branch-LSTM, SemEval 2017

Quanzhi Li, Sameena Shah, Xiaomo Liu, Armineh
Nourbakhsh, Rui Fang, TweetSift: Tweet Topic
Classification Based on Entity Knowledge Base and
Topic Enhanced Word Embedding, CIKM 2016

Quanzhi Li, Xiaomo Liu, Rui Fang, Armineh
Nourbakhsh, Sameena Shah, User Behaviors in
Newsworthy Rumors: A Case Study of Twitter. The
10th International AAAI Conference on Web and
Social Media (ICWSM 2016)

Quanzhi Li, Sameena Shah, Xiaomo Liu, Armineh
Nourbakhsh, 2017, Data Set: Word Embeddings
Learned from Tweets and General Data, The 11th
International AAAI Conference on Web and Social
Media (ICWSM-2017).

Xiaomo Liu, Armineh Nourbakhsh, Quanzhi Li, Rui
Fang, Sameena Shah, 2015, Real-time Rumor
Debunking on Twitter, CIKM 2015.

Yang Liu and Yi-fang Brook Wu. 2018. Early
Detection of Fake News on Social Media Through
Propagation Path Classification with CNN. AAAI
2018

Michal Lukasik, P. K. Srijith, Duy Vu, Kalina
Bontcheva, Arkaitz Zubiaga, and Trevor Cohn.
2016. Hawkes processes for continuous time
sequence classification: an application to rumour
stance classification in twitter. In Proceedings of the
54th Meeting of the Association for Computational
Linguistics. Association for Computer Linguistics,
pages 393–398.

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon,
Bernard J Jansen, Kam-Fai Wong, and Meeyoung
Cha. 2016. Detecting rumors from microblogs with
recurrent neural networks. In Proceedings of IJCAI

Jing Ma, Wei Gao, Kam-Fai Wong, 2017, Detect
rumors in microblog posts using propagation
structure via kernel learning, ACL 2017

Jing Ma, Wei Gao, Kam-Fai Wong, Detect Rumor and
Stance Jointly by Neural Multi-task Learning,
WWW 2018

M. Mendoza, B. Poblete, and C. Castillo. Twitter under
crisis: Can we trust what we rt? In Proc. First
Workshop on Social Media Analytics, 2010.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. Distributed
Representations of Words and Phrases and their
Compositionality. In Proceedings of NIPS, 2013.

Saif M Mohammad, Svetlana Kiritchenko, Parinaz
Sobhani, Xiaodan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the International Workshop on
Semantic Evaluation, SemEval . volume 16.

V. Qazvinian, E. Rosengren, D. R. Radev, and Q. Mei.
Rumor has it: Identifying misinformation in
microblogs. EMNLP 2011

Sarvesh Ranade, Rajeev Sangal, and Radhika Mamidi.
2013. Stance classification in online debates by
recognizing users’ intentions. In Proceedings of the
SIGDIAL 2013 Conference . pages 61–69.

Arkaitz Zubiaga, Maria Liakata, Rob Procter,
Geraldine Wong Sak Hoi, and Peter Tolmie. 2016.
Analysing how people orient to and spread rumours
in social media by looking at conversational
threads. PloS one 11(3):e0150989.

K. Wu, S. Yang, and K. Q. Zhu. False rumors detection
on sina weibo by propagation structures. In IEEE
International Conference of Data Engineering,
2015.

F. Yang, Y. Liu, X. Yu, and M. Yang. Automatic
detection of rumor on sina weibo. In Proc. of the
ACM SIGKDD Workshop on Mining Data
Semantics, page 13, 2012.

859

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 860–869
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval-2019 Task 8:
Fact Checking in Community Question Answering Forums

Tsvetomila Mihaylova,1 Georgi Karadzhov,2 Pepa Atanasova,3
Ramy Baly,4 Mitra Mohtarami,4 Preslav Nakov5

1 Instituto de Telecomunicações, Lisbon, Portugal, 2 SiteGround Hosting EOOD, Bulgaria
3 University of Copenhagen, Denmark

4 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
5 Qatar Computing Research Institute, HBKU

{tsvetomila.mihaylova, georgi.m.karadjov}@gmail.com,
pepa@di.ku.dk, {baly,mitram}@mit.edu, pnakov@qf.org.qa

Abstract

We present SemEval-2019 Task 8 on Fact
Checking in Community Question Answering
Forums, which features two subtasks. Subtask
A is about deciding whether a question asks
for factual information vs. an opinion/advice
vs. just socializing. Subtask B asks to pre-
dict whether an answer to a factual question
is true, false or not a proper answer. We re-
ceived 17 official submissions for subtask A
and 11 official submissions for Subtask B. For
subtask A, all systems improved over the ma-
jority class baseline. For Subtask B, all sys-
tems were below a majority class baseline, but
several systems were very close to it. The
leaderboard and the data from the competition
can be found at http://competitions.
codalab.org/competitions/20022.

1 Overview

The current coverage of the political landscape
in both the press and in social media has led to
an unprecedented situation. Like never before,
a statement in an interview, a press release, a
blog note, or a tweet can spread almost instanta-
neously. The speed of proliferation leaves little
time for double-checking claims against the facts,
which has proven critical in politics, e.g., during
the 2016 presidential campaign in the USA, which
was dominated by fake news in social media and
by false claims.

Investigative journalists and volunteers have
been working hard to get to the root of a claim
and to present solid evidence in favor or against
it. Manual fact-checking is very time-consuming,
and thus automatic methods have been proposed
to speed-up the process, e.g., there has been work
on checking the factuality/credibility of a claim,
of a news article, or of an information source (Ba
et al., 2016; Zubiaga et al., 2016; Ma et al., 2016;
Castillo et al., 2011; Baly et al., 2018).

The process starts when a document is made pub-
lic. First, an intrinsic analysis is carried out in
which check-worthy text fragments are identified.
Then, other documents that might support or re-
but a claim in the document are retrieved from
various sources. Finally, by comparing a claim
against the retrieved evidence, a system can deter-
mine whether the claim is likely true or likely false
(or unsure, if no strong enough evidence either
way could be found). For instance, Ciampaglia
et al. (2015) do this using a knowledge graph de-
rived from Wikipedia. The outcome could then be
presented to a human expert for final judgement.1

For our two subtasks, we explore factuality in
the context of Community Question Answering
(cQA) forums. Forums such as StackOverflow,
Yahoo! Answers, and Quora are very popular
these days, as they represent effective means for
communities around particular topics to share in-
formation. However, the information shared by
the users is not always correct or accurate. There
are multiple factors explaining the presence of in-
correct answers in cQA forums, e.g., misunder-
standing of the question, ignorance or malicious-
ness of the responder. Also, as a result of our
dynamic world, the truth is time-sensitive: some-
thing that was true yesterday may be false today.
Moreover, forums are often barely moderated and
thus lack systematic quality control.

Here we focus on checking the factuality of
questions and answers in cQA forums. This aspect
was ignored in recent cQA tasks (Ishikawa et al.,
2010; Nakov et al., 2015, 2016a, 2017a), where
an answer is considered GOOD if it addresses the
question, irrespective of its veracity, accuracy, etc.

1As of present, fully automatic methods for fact checking
still lag behind in terms of quality, and thus also of credibility
in the eyes of the users, compared to what high-quality man-
ual checking by reputable sources can achieve, which means
that a final double-checking by a human expert is needed.

860

Q: HI ;; IF WIFE IS UNDER HER HUSBAND’S SPON-
SORSHIP AND IS WILLING TO COME QATAR ON
VISIT; HOW LONG SHE CAN STAY AFTER EX-
TENDING THE VISA EVERY MONTH? I HAVE
HEARD ITS NOT POSSIBLE TO EXTEND VISIT
VISA MORE THAN 6 MONTHS? CAN U PLEASE
ANSWER ME.. THANKZZZ...

a1: Maximum period is 9 Months....

a2: 6 months maximum

a3: This has been answered in QL so many times. Please
do search for information regarding this. BTW answer
is 6 months.

Figure 1: Example from the Qatar Living forum.

Figure 1 presents an excerpt of an example from
the Qatar Living Forum, with one question and
three answers selected from a longer thread. Ac-
cording to SemEval-2016 Task 3 (Nakov et al.,
2016a), all three answers would be considered
GOOD since they are formally answering the
question. Nevertheless, a1 contains false informa-
tion, while a2 and a3 are correct, as can be estab-
lished from an official government website.2

Checking the veracity of answers in a cQA fo-
rum is a hard problem, which requires putting to-
gether aspects of language understanding, mod-
elling the context, integrating several information
sources, uisng world knowledge and complex in-
ference, among others. Moreover, high-quality
automatic fact-checking would offer better expe-
rience to users of cQA systems, e.g., the user
could be presented with veracity scores, where low
scores would warn the user not to completely trust
the answer or to double-check it.

2 Related Work

Fact-checking of answers was not studied before
in the context of community Question Answering,
apart from our own recent work (Mihaylova et al.,
2018). Yet, in the context of cQA and general QA,
there has been work on credibility assessment,
which has been modelled primarily at the feature
level, with the goal of improving GOOD answer
identification. A notable exception are (Nakov
et al., 2017b; Mihaylov et al., 2018), where credi-
bility was a task on its own right. However, credi-
bility is different from veracity (our focus here) as
it is a subjective perception about whether a state-
ment is credible, rather than actually truthful.

2http://portal.moi.gov.qa/wps/portal/
MOIInternet/departmentcommittees/
visasentrypermeits/

Jurczyk and Agichtein (2007) modelled author au-
thority using link analysis. Agichtein et al. (2008)
looked for high-quality answers using PageRank
and HITS, in addition to intrinsic content quality,
e.g., punctuation and typos, syntactic and seman-
tic complexity, and grammaticality.

Lita et al. (2005) studied three qualita-
tive dimensions for answers: source credibility
(e.g., does the document come from a govern-
ment website), sentiment analysis, and contradic-
tion compared to other answers. Su et al. (2010)
looked for verbs and adjectives that cast doubt.
Banerjee and Han (2009) used language modelling
to validate the reliability of an answer’s source.
Jeon et al. (2006) focused on non-textual features
such as click counts, answer activity level, and
copy counts. Pelleg et al. (2016) curated social
media content using syntactic, semantic, and so-
cial signals. Unlike this research, we (i) target fac-
tuality rather than credibility, (ii) address it as a
task in its own right, and on a specialised dataset.

Information credibility was also studied in so-
cial computing. Castillo et al. (2011) modeledd
user reputation. Canini et al. (2011) analyzed the
interaction of content and social network structure.
Morris et al. (2012) studied how Twitter users
judge truthfulness. Lukasik et al. (2015) used tem-
poral patterns to detect rumors, and Zubiaga et al.
(2016) focused on conversations.

Other authors have been querying the Web to
gather support for accepting or refuting a claim
(Popat et al., 2016; Karadzhov et al., 2017b). In
social media, there has been research targeting the
user, e.g., finding malicious users (Mihaylov and
Nakov, 2016; Mihaylova et al., 2018; Mihaylov
et al., 2018), sockpuppets (Maity et al., 2017), In-
ternet water army (Chen et al., 2013), and seminar
users (Darwish et al., 2017).

Finally, there has been work on credibility, trust,
and expertise in news communities (Mukherjee
and Weikum, 2015). Dong et al. (2015) proposed
that a trustworthy source is one that contains very
few false claims. Recent work has also focused
on evaluating the factuality of reporting of entire
news outlets (Baly et al., 2018, 2019).3 However,
none of this work was about QA or cQA.

3Knowing the reliability of a medium is important when
fact-checking a claim (Popat et al., 2017; Nguyen et al., 2018)
and when solving article-level tasks such as “fake news” and
click-bait detection (Hardalov et al., 2016; Karadzhov et al.,
2017a; Pan et al., 2018; Pérez-Rosas et al., 2018).

861

3 Subtasks and Data Description

SemEval-2019 Task 8 has two subtasks:

• Subtask A: Given a question from a cQA fo-
rum, predict whether this question asks for
factual information vs. opinion/advice vs.
just socializing.

• Subtask B: Given a factual question from a
cQA forum, together with its answer thread,
predict whether each answer provides true
vs. false vs. non-factual information as a re-
sponse to the question.

3.1 Data and Resources
We retrieved the data from the Qatar Living web
forum4. We then cleaned it and we annotated it
with the labels described in Sections 3.2 and 3.3.

For subtask A, we annotated the questions us-
ing Amazon Mechanical Turk5. To ensure high
quality of the annotation, we went through all an-
notations and manually double-checked them.

For subtask B, we did not use an external anno-
tation service, but instead we annotated all the data
ourselves. Each answer was processed by three in-
dependent annotators, and we made sure we had
proof for the label from reliable sources on the
Web. Then, the annotations were consolidated af-
ter a discussion until agreement was achieved for
each example.

All data is freely available under a Creative
Commons Attribution 3.0 Unported (CC BY 3.0)
license, and is accessible on the competition’s
website6.

In addition to the provided annotated data, we
also allowed the participants to use unlabelled
data from the Qatar Living forum footnotehttp:
//alt.qcri.org/semeval2016/task3/
data/uploads/QL-unannotated-data-
subtaskA.xml.zip, as well as additional
external resources, which they had to mention
explicitly in their submissions.

Note that the class distribution in the training,
development and test sets differs, especially for
Subtask B. The reason for this is the way the data
was prepared. The different datasets (training, de-
velopment and test) were prepared on stages, be-
cause of the very time-consuming data annotation
process.

4http://www.qatarliving.com
5http://www.mturk.com/
6http://competitions.codalab.org/

competitions/20022

For each dataset annotation stage, we had to
choose between releasing all the available anno-
tated data or aim at releasing sets with similar label
distribution. At the end, we decided to release the
available data, although we were aware that this
would result in releasing sets with different distri-
bution and, in some cases, unbalanced categories.

3.2 Training Data for Subtask A
To create the dataset for the task, we chose to aug-
ment a pre-existing dataset for cQA with factuality
annotations; this allowed us to stress the difference
between (a) distinguishing a good vs. a bad an-
swer, and (b) distinguishing a factually-true vs. a
factually-false one. In particular, we added anno-
tations for factuality to the CQA-QL-2016 dataset
from SemEval-2016 Task 3 on Community Ques-
tion Answering (Nakov et al., 2016a).

In CQA-QL-2016, the data is organized in
question–answer threads (from the Qatar Living
forum). Each question has a subject, a body,
and meta information: question ID, date and
time of posting, user name and ID, and cate-
gory (e.g., Computers and Internet and Moving to
Qatar).

We analyzed the forum questions and we de-
fined three categories, related to their factuality.
We then annotated the questions using Amazon
Mechanical Turk. The three factuality categories
are as follows:

∗ FACTUAL: The question asks for factual in-
formation, which can be answered by check-
ing various information sources, and it is not
ambiguous (e.g., “What is Ooredoo customer
service number?”).

∗ OPINION: The question asks for an opinion
or an advice, not for a fact. (e.g., “Can any-
one recommend a good Vet in Doha?”)

∗ SOCIALIZING: Not a real question, but rather
socializing/chatting. This can also mean ex-
pressing an opinion or sharing some informa-
tion, without really asking anything of gen-
eral interest. (e.g., “What was your first
car?”)

Table 1 shows the distribution of the labels for
the question labels in the training, in the develop-
ment and in the testing datasets. Overall, there are
1118, 239 and 953 questions annotated with the
above-described labels.

862

Label Train Dev Test

FACTUAL 311 62 299
OPINION 563 126 167
SOCIALIZING 244 51 487

TOTAL 1118 239 953

Table 1: Subtask A: Distribution of the factuality la-
bels for the questions.

3.3 Training Data for Subtask B

For subtask B, we annotated for veracity the an-
swers to the questions with a FACTUAL label for
subtask A. Note that in CQA-QL-2016, each an-
swer has a subject, a body, meta information (an-
swer ID, user name, and ID), the question that it
answers, and a judgement about how well it an-
swers the question of its thread (GOOD , BAD or
POTENTIALLY USEFUL).

We annotated the GOOD answers for factual-
ity based on the assumption that a GOOD answer
means it provides factual information, whether it
is true or false. All BAD and POTENTIALLY

USEFUL answers are automatically considered as
NON-FACTUAL. The factuality labels are de-
scribed as follows:

∗ FACTUAL – TRUE: The answer is True and
can be proven with an external resource.
(Q: “I wanted to know if there were any spe-
cific shots and vaccinations I should get be-
fore coming over [to Doha].”; A: “Yes there
are; though it varies depending on which
country you come from. In the UK; the doctor
has a list of all countries and the vaccinations
needed for each.”).7

∗ FACTUAL – FALSE: The answer gives a fac-
tual response, but it is False and this can be
proven using an external resource. (Q: “Can
I bring my pitbulls to Qatar?”; A: “Yes you
can bring it but be careful this kind of dog is
very dangerous.”).8

∗ FACTUAL – PARTIALLY TRUE: The answer
contains more than one claim, and only some
of these claims could be manually verified.

7The answer is factually true and this can be
seen at http://wwwnc.cdc.gov/travel/
destinations/traveler/none/qatar

8The answer is incorrect since pitbulls are included
in the list of breeds banned in Qatar. See http:
//canvethospital.com/pet-relocation/
banned-dog-breed-list-qatar-2015/

Label Train Dev Test

TRUE 166 29 34
FALSE 135 31 45
NONFACTUAL 194 52 231

TOTAL 495 112 310

Table 2: Subtask B: Distribution of the factuality la-
bels for the answers.

(Q: “I will be relocating from the UK to
Qatar [...] is there a league or TT clubs /
nights in Doha?”; A: “Visit Qatar Bowling
Center during thursday and friday and you’ll
find people playing TT there.”).9

∗ FACTUAL – CONDITIONALLY TRUE: The
answer is True in some cases, and False in
others, depending on some conditions that
the answer does not mention. (Q: “My wife
does not have NOC from Qatar Airways; but
we are married now so can i bring her legally
on my family visa as her husband?”; A: “Yes
you can.”).10

∗ FACTUAL - RESPONDER UNSURE: The per-
son giving the answer is not sure about the
veracity of his/her statement. (e.g., “Possible
only if government employed. That’s what I
heard.”)

∗ NON-FACTUAL: When the answer does not
provide factual information to the question; it
can be an opinion or an advice that cannot be
verified. (e.g., “Its better to buy a new one.”).

We further discarded answers whose factual-
ity was very time-sensitive and it makes no sense
to check whether the statements are true or false
(e.g., “It is Friday tomorrow.”, “It was raining last
week.”).

Moreover, many answers are arguably some-
what time-sensitive, e.g., “There is an IKEA in
Doha.” is true only after IKEA opened, but not
before that. In such cases, we just used the present
situation as a point of reference. We further dis-
carded the answers for which the annotators could
not find any information.

9The place mentioned in the answer has table
tennis, but we do not know on which days. See
http://www.qatarbowlingfederation.com/
bowling-center/

10This answer can be true, but this depends upon some con-
ditions. See http://www.onlineqatar.com/info/
dependent-family-visa.aspx

863

Ultimately, we consolidated the above fine-
grained labels into the following coarse-grained
labels, which we used for subtask B:

∗ FACTUAL – TRUE: Contains answers with
proven true, non-contradictory statements.
This includes the answers with the label FAC-
TUAL – TRUE from above. This label is used
for answers one can trust as a true statement.

∗ FACTUAL – FALSE: Contains answers with
statements that are proven to be false or
not completely true. This includes answers
with the following fine-grained factuality la-
bels: FACTUAL – FALSE, FACTUAL – PAR-
TIALLY FALSE, FACTUAL – CONDITION-
ALLY TRUE, FACTUAL – RESPONDER UN-
SURE. We also use this label for answers that
contain a statement for which the person giv-
ing the answer expresses uncertainty in the
claim.

∗ NON-FACTUAL: These are either non-factual
statements or statements that could be fac-
tual, but no information about them could
be found, i.e., we could find no way to
check whether the statement was true or false.
This category also includes some statements
that have been incorrectly annotated as a
GOOD answer. It also includes the very time-
sensitive statements described before, such as
”It is Friday tomorrow?”. The BAD and the
POTENTIALLY USEFUL answers from CQA-
QL-2016 also fall in this category.

As we have mentioned above, we have anno-
tated the answers to the FACTUAL questions se-
lected from the Qatar Living forum. We targeted
very high quality annotation, and thus we did
not use crowd-sourcing, as a pilot experiment has
shown that the task was very difficult and that it
was not possible to guarantee that Turkers would
do all the necessary verification and gather evi-
dence from trusted sources. Instead, all examples
were first annotated independently by three of us,
and then, we carefully discussed each example to
come up with a final label. The distribution of the
labels on the training, on the development, and on
the testind dataset are shown in Table 211.

11Although not very big, our dataset is larger than datasets
used for similar problems, e.g., Ma et al. (2015) experimented
with 226 rumors for rumor detection, and Popat et al. (2016)
used 100 Wiki hoaxes for credibility assessment of textual
claims.

3.4 Evaluation
Both subtasks are three-way classification prob-
lems. In subtask A, the questions were to be clas-
sified as FACTUAL, OPINION, or SOCIALIZING.
Similarly, in subtask B there were also three tar-
get categories for the answers: FACTUAL - TRUE,
FACTUAL - FALSE, and NON-FACTUAL.

We further scored the submissions based on Ac-
curacy, macro-F1, and average recall (AvgRec).12

For subtask B, we also report mean average pre-
cision (MAP), where the FACTUAL - TRUE in-
stances were considered to be positive, and the re-
maining ones were negative. The official evalua-
tion measure for both subtasks was Accuracy.

4 Participants and Results

We received 17 official submissions for Subtask A
and 11 official submissions for Subtask B. Below
we report the evaluation results.

Table 3 presents the results for subtask A on
question classification. The results are based the
official submissions in the evaluation phase. In
this subtask, all of the submitted systems man-
aged to improve over the majority class baseline,
and several teams achieved similarly good results.
Whenever a number of teams achieve the same re-
sult with respect to the main evaluation measure,
i.e., Accuracy, we rank them according to the F1
score, and then by AvgRec if a tie still appears.

Table 4 presents the results based on the eval-
uation phase on the test set for predicting answer
factuality labels. This subtask was more difficult
as the majority class baseline was very high due
to label unbalance. No team managed to improve
over that baseline, but several teams had results
that were very close to it.

5 Discussion

In the evaluation phase of the competition, the par-
ticipants had to specify one official submission
and were allowed up to two contrastive submis-
sions. In the post-evaluation phase, they could
upload an unlimited number of contrastive sub-
missions. Below, we will only discuss the offi-
cial submissions. The contrastive submissions, the
ablation studies, and the experiments with differ-
ent techniques are described by the participants in
their respective system description papers.

12Average recall has some attractive properties and has
been used in previous SemEval tasks, e.g., (Nakov et al.,
2016b; Rosenthal et al., 2017).

864

Team ID Affiliation Accuracy F1 AvgRec

Fermi (Syed et al., 2019) IIIT Hyderabad, Microsoft, Teradata 0.840 0.7182 0.7353

TMLab (Niewiński et al., 2019) Samsung R&D Institute, Warsaw,
Poland

0.834 0.7251 0.7641

SolomonLab (Gupta et al., 2019) Samsung R&D Institute India, Banga-
lore

0.831 0.7094 0.7284

ColumbiaNLP (Chakrabarty and Muresan, 2019) Columbia University, Department Of
Computer Science and Data Science In-
stitute

0.828 0.6457 0.6629

DOMLIN (Stammbach et al., 2019) Deutsches Forschungszentrum für
Künstliche Intelligenz (DFKI), Saar-
brucken, Germany

0.823 0.7103 0.7552

BLCU NLP (Xie et al., 2019) Beijing Language and Culture Univer-
sity, Beijing, China

0.820 0.6965 0.7235

pjetro Warsaw University of Technology 0.790 0.6616 0.6986

LP0606 0.768 0.6378 0.6798

PP08 0.766 0.6379 0.6847

AUTOHOME-ORCA (Lv et al., 2019) Autohome Inc., Beijing, China and Bei-
jing University of Posts and Telecom-
munications, Beijing, China

0.745 0.58310 0.59611

DUTH (Bairaktaris et al., 2019) Democritus University of Thrace, Xan-
thi, Greece

0.711 0.56311 0.60410

cococold 0.702 0.54312 0.59412

nothing 0.702 0.54312 0.59412

chchao 0.630 0.45413 0.52313

CodeForTheChange (Avvaru and Pandey, 2019) International Institute of Information
Technology, Hyderabad, Teradata and
Qubole

0.630 0.44214 0.51314

Tuefact (Juhasz et al., 2019) University of Tübingen, Tübingen, Ger-
many

0.599 0.36015 0.34815

Reem06 0.549 0.26316 0.34316

Majority Class Baseline 0.450 0.009 0.333

Table 3: Subtask A: Results for question classification based on the official submissions, evaluated on the test set.
(Some teams did not submit system description papers, and thus we have no citations for their systems.)

Team ID Affiliation Accuracy F1 AvgRec MAP

AUTOHOME-ORCA Autohome Inc., Beijing, China and Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China

0.815 0.5112 0.5122 0.1557

ColumbiaNLP Columbia University, Department Of Computer
Science and Data Science Institute

0.791 0.5241 0.6351 0.1348

DOMLIN Deutsches Forschungszentrum für Künstliche Intel-
ligenz (DFKI), Saarbrucken, Germany

0.718 0.4023 0.4453 0.2673

SolomonLab Samsung R&D Institute India, Bangalore 0.686 0.3754 0.4034 0.3332

CodeForTheChange International Institute of Information Technology,
Hyderabad, Teradata and Qubole

0.654 0.3255 0.3265 0.1566

BLCU NLP Beijing Language and Culture University, Beijing,
China

0.611 0.2966 0.3176 0.2224

LP0606 0.548 0.2717 0.3417 0.1219

PP08 0.548 0.2717 0.3417 0.1219

Tuefact University of Tübingen, Tübingen, Germany 0.527 0.2608 0.3478 0.5711

cococold 0.439 0.1339 0.2419 0.2085

nothing 0.439 0.1339 0.2419 0.2085

Majority Class Baseline 0.830 0.285 0.333 0.156

Table 4: Subtask B: Results for answer classification based on the official submissions, evaluated on the test set.

The best system for Subtask A was by team
Fermi (IIIT Hyderabad). They used Google’s Uni-
versal Sentence representation (Cer et al., 2018),
and XGBoost (Chen and Guestrin, 2016).

The best system for Subtask B was by team
AUTOHOME-ORCA (Autohome Inc. and Bei-
jing University of Posts and Telecommunications),
who used BERT (Devlin et al., 2019).

865

They achieved their best results by using an
ensemble, and by also using question meta-
information (category and subject) in addition to
the question and the answer text. They con-
catenated the category, the subject and the body
of the questions into the first part separated by
[SEP]. The replier’s username and statement were
concatenated as the second part. The two parts
separated by [SEP] were pushed into the BERT
model for answer classification. Then, based on
the sequential outputs of the BERT model, some
variant methods such as average-pooling, and bi-
LSTM were adopted to produce the final results.
To tackle the problem with insufficient training
data, they further used data augmentation based
on translation with Google Translate: in particu-
lar, they performed consecutive English-Chinese
and Chinese-English translation to generate more
synthetic training data.

Overall, the submitted systems for the two sub-
tasks used a number of pre-processing steps to
clean the text of the question and of the answer. As
shown by the DOMLIN team, the pre-processing
of the data turns out to be crucial. They reported
up to 5% improvement in terms of accuracy when
cleaning the unannotated forum data before fine-
tuning a BERT model. Common preprocessing
steps included removing or replacing the URLs,
the numbers, the punctuation, the symbols, spell-
checking, expansion of contractions, HTML tags,
etc. DUTH also used lemmatization and stopword
removal.

The submitted systems used a wide range of
strategies for training their models. A sizable part
of the systems used manually crafted features such
as linguistic, syntactic, stylistic, and semantic fea-
tures. Moreover, the systems used task-specific
information such as answer ranking and rating.
ColumbiaNLP also computed an average cosine
similarity of one answer with respect to the other
answers in the thread for subtask B, assuming that
bad answers would differ substantially from the
remaining answers.

While some of the approaches used charac-
ter and word n-gram information, the teams also
used word- and sentence-level embeddings. Code-
ForTheChange evaluated different classification
algorithms fed with Skip-Thought vectors, and
ultimately found that neural networks performed
best for both subtasks with either concatenation or
averaging over the vectors of the available texts.

Fermi performed evaluation of different embed-
ding models - InferSent, Concatenated Power
Mean Word Embedding, Lexical Vectors, ELMo
and The Universal Sentence Encoder, used
in subtask A to feed an XGBoost classifier.
ColumbiaNLP used ULMFiT, but performed addi-
tional unsupervised tuning of the language model
on questions, answers and question-answer pairs
from the Qatar Living Forum. TMLab’s system
used the Universal Sentence Encoder.

A common neural network architecture was
LSTM, where YNU-HPCC combined LSTM with
an attention mechanism. TueFact used comment
chain embeddings. Other machine learning algo-
rithms that participants tried include Random For-
est, Adaboost, Perceptron, and SVM, inter alia.

While for question classification (subtask A),
all the necessary information was contained in the
question text and in the metadata, subtask B re-
quired additional resources. Most teams used the
provided additional unannotated forum data in or-
der to pre-train their language models or to extract
more data with weak supervision (DOMLIN). Fur-
thermore, several teams used other means for data
augmentation such as SQuAD (BLCU NLP) or ex-
ternal Web information (SolomonLab).

6 Conclusion

We have described SemEval 2019 Task 8 on Fact
Checking in Community Question Answering Fo-
rums. We received 17 and 11 submissions for Sub-
task A and B, respectively. Overall, subtask A
(question classification) was easier and all submit-
ted systems managed to improve over the majority
class baseline. However, Subtask B (answer clas-
sification) proved to be much more challenging,
and no team managed to improve over the major-
ity class baseline, even though several teams came
very close. For this latter subtask, using external
resources and preprocessing proved to be crucial.

Acknowledgments

This research is part of the Tanbih project,13 which
aims to limit the effect of “fake news”, propa-
ganda and media bias by making users aware of
what they are reading. The project is developed
in collaboration between the Qatar Computing
Research Institute (QCRI), HBKU and the MIT
Computer Science and Artificial Intelligence Lab-
oratory (CSAIL).

13http://tanbih.qcri.org/

866

References
Eugene Agichtein, Carlos Castillo, Debora Donato,

Aristides Gionis, and Gilad Mishne. 2008. Finding
high-quality content in social media. In Proceedings
of the 2008 International Conference on Web Search
and Data Mining, WSDM ’08, pages 183–194, Palo
Alto, CA, USA.

Adithya Avvaru and Anupam Pandey. 2019. Code-
ForTheChange at SemEval-2019 task 8: Skip-
thoughts for fact checking in community question
answering. In Proceedings of the International
Workshop on Semantic Evaluation, SemEval ’19,
Minneapolis, MN, USA.

Mouhamadou Lamine Ba, Laure Berti-Equille, Kushal
Shah, and Hossam M Hammady. 2016. VERA: A
platform for veracity estimation over web data. In
Proceedings of the 25th International Conference
Companion on World Wide Web, pages 159–162,
Montreal, Canada.

Anastasios Bairaktaris, Symeon Symeonidis, and Avi
Arampatzis. 2019. DUTH at SemEval-2019 task 8:
Part-of-speech features for question classification.
In Proceedings of the International Workshop on Se-
mantic Evaluation, SemEval ’19, Minneapolis, MN,
USA.

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,
James Glass, and Preslav Nakov. 2018. Predict-
ing factuality of reporting and bias of news media
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP ’18, pages 3528–3539, Brussels, Bel-
gium.

Ramy Baly, Georgi Karadzhov, Abdelrhman Saleh,
James Glass, and Preslav Nakov. 2019. Multi-task
ordinal regression for jointly predicting the trustwor-
thiness and the leading political ideology of news
media. In Proceedings of the 17th Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT ’19, Minneapo-
lis, MN, USA.

Protima Banerjee and Hyoil Han. 2009. Answer credi-
bility: A language modeling approach to answer val-
idation. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, NAACL-HLT ’09, pages 157–
160, Boulder, CO, USA.

Kevin R. Canini, Bongwon Suh, and Peter L. Pirolli.
2011. Finding credible information sources in so-
cial networks based on content and social structure.
In Proceedings of the IEEE International Confer-
ence on Privacy, Security, Risk, and Trust, and the
IEEE International Conference on Social Comput-
ing, SocialCom/PASSAT ’11, pages 1–8, Boston,
MA, USA.

Carlos Castillo, Marcelo Mendoza, and Barbara
Poblete. 2011. Information credibility on Twitter. In
Proceedings of the 20th International Conference on
World Wide Web, WWW ’11, pages 675–684, Hy-
derabad, India.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Tuhin Chakrabarty and Smaranda Muresan. 2019.
ColumbiaNLP at SemEval-2019 task 8: The answer
is language model fine-tuning. In Proceedings of
the International Workshop on Semantic Evaluation,
SemEval ’19, Minneapolis, MN, USA.

Cheng Chen, Kui Wu, Venkatesh Srinivasan, and
Xudong Zhang. 2013. Battling the Internet Water
Army: detection of hidden paid posters. In Proceed-
ings of the 2013 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and
Mining, ASONAM ’13, pages 116–120, Niagara,
Canada.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
scalable tree boosting system. In Proceedings of the
22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16,
pages 785–794, San Francisco, California, USA.

Giovanni Luca Ciampaglia, Prashant Shiralkar,
Luis M. Rocha, Johan Bollen, Filippo Menczer, and
Alessandro Flammini. 2015. Computational fact
checking from knowledge networks. PLOS ONE,
10(6):1–13.

Kareem Darwish, Dimitar Alexandrov, Preslav Nakov,
and Yelena Mejova. 2017. Seminar users in the
Arabic Twitter sphere. In Proceedings of the
9th International Conference on Social Informatics,
SocInfo ’17, pages 91–108, Oxford, UK.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Annual Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics, NAACL-
HLT ’19, Minneapolis, MN, USA.

Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy,
Van Dang, Wilko Horn, Camillo Lugaresi, Shao-
hua Sun, and Wei Zhang. 2015. Knowledge-based
trust: Estimating the trustworthiness of web sources.
Proc. VLDB Endow., 8(9):938–949.

Ankita Gupta, Sudeep Kumar Sahoo, Divya Prakash,
Rohit R R, Vertika Srivastava, and YEON
HYANG KIM. 2019. SolomonLab at SemEval-
2019 task 8: Question factuality and answer veracity
prediction in community forums. In Proceedings of
the International Workshop on Semantic Evaluation,
SemEval ’19, Minneapolis, MN, USA.

867

Momchil Hardalov, Ivan Koychev, and Preslav Nakov.
2016. In search of credible news. In Proceedings
of the 17th International Conference on Artificial In-
telligence: Methodology, Systems, and Applications,
AIMSA ’16, pages 172–180, Varna, Bulgaria.

Daisuke Ishikawa, Tetsuya Sakai, and Noriko Kando.
2010. Overview of the NTCIR-8 Community QA
Pilot Task (Part I): The Test Collection and the
Task. In Proceedings of NTCIR-8 Workshop Meet-
ing, pages 421–432, Tokyo, Japan.

Jiwoon Jeon, W. Bruce Croft, Joon Ho Lee, and Soyeon
Park. 2006. A framework to predict the quality of
answers with non-textual features. In Proceedings
of the 29th Annual International ACM SIGIR Con-
ference on Research and Development in Informa-
tion Retrieval, SIGIR ’06, pages 228–235, Seattle,
WA, USA.

Reka Juhasz, Franziska-Barbara Linnenschmidt, and
Teslin Roys. 2019. TueFact at SemEval 2019 Task
8: Fact checking in community question answering
forums: context matters. In Proceedings of the In-
ternational Workshop on Semantic Evaluation, Se-
mEval ’19, Minneapolis, MN, USA.

Pawel Jurczyk and Eugene Agichtein. 2007. Discov-
ering authorities in question answer communities by
using link analysis. In Proceedings of the Sixteenth
ACM Conference on Conference on Information and
Knowledge Management, CIKM ’07, pages 919–
922, Lisbon, Portugal.

Georgi Karadzhov, Pepa Gencheva, Preslav Nakov, and
Ivan Koychev. 2017a. We built a fake news & click-
bait filter: What happened next will blow your mind!
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing,
RANLP ’17, pages 334–343, Varna, Bulgaria.

Georgi Karadzhov, Preslav Nakov, Lluı́s Màrquez, Al-
berto Barrón-Cedeño, and Ivan Koychev. 2017b.
Fully automated fact checking using external
sources. In Proceedings of the International Confer-
ence on Recent Advances in Natural Language Pro-
cessing, RANLP ’17, pages 344–353, Varna, Bul-
garia.

Lucian Vlad Lita, Andrew Hazen Schlaikjer, We-
iChang Hong, and Eric Nyberg. 2005. Qualitative
dimensions in question answering: Extending the
definitional QA task. In Proceedings of the National
Conference on Artificial Intelligence, volume 20 of
AAAI ’05, pages 1616–1617, Pittsburgh, PA, USA.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Point process modelling of rumour dynam-
ics in social media. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing, ACL-
IJCNLP ’15, pages 518–523, Beijing, China.

Zhengwei Lv, Duoxing Liu, Haifeng Sun, Xiao Liang,
Tao Lei, Zhizhong Shi, Feng Zhu, and Lei Yang.
2019. AUTOHOME-ORCA at SemEval-2019 task
8: Application of BERT for fact-checking in com-
munity forums. In Proceedings of the International
Workshop on Semantic Evaluation, SemEval ’19,
Minneapolis, MN, USA.

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon,
Bernard J. Jansen, Kam-Fai Wong, and Meeyoung
Cha. 2016. Detecting rumors from microblogs with
recurrent neural networks. In Proceedings of the
Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence, IJCAI ’16, pages 3818–3824,
New York, NY, USA.

Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and
Kam-Fai Wong. 2015. Detect rumors using time se-
ries of social context information on microblogging
websites. In Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowl-
edge Management, CIKM ’15, pages 1751–1754,
Melbourne, Australia.

Suman Kalyan Maity, Aishik Chakraborty, Pawan
Goyal, and Animesh Mukherjee. 2017. Detection of
sockpuppets in social media. In Proceedings of the
ACM Conference on Computer Supported Coopera-
tive Work and Social Computing, CSCW ’17, pages
243–246, Portland, OR, USA.

Todor Mihaylov, Tsvetomila Mihaylova, Preslav
Nakov, Lluı́s Màrquez, Georgi Georgiev, and Ivan
Koychev. 2018. The dark side of news community
forums: Opinion manipulation trolls. Internet Re-
search, 28(5):1292–1312.

Todor Mihaylov and Preslav Nakov. 2016. Hunting for
troll comments in news community forums. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL ’16, pages
399–405, Berlin, Germany.

Tsvetomila Mihaylova, Preslav Nakov, Lluı́s Màrquez,
Alberto Barrón-Cedeño, Mitra Mohtarami, Georgi
Karadjov, and James Glass. 2018. Fact checking in
community forums. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
AAAI ’18, pages 879–886, New Orleans, LA, USA.

Meredith Ringel Morris, Scott Counts, Asta Roseway,
Aaron Hoff, and Julia Schwarz. 2012. Tweeting
is believing?: Understanding microblog credibility
perceptions. In Proceedings of the ACM 2012 Con-
ference on Computer Supported Cooperative Work,
CSCW ’12, pages 441–450, Seattle, WA, USA.

Subhabrata Mukherjee and Gerhard Weikum. 2015.
Leveraging joint interactions for credibility analy-
sis in news communities. In Proceedings of the
24th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’15, pages
353–362, Melbourne, Australia.

868

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017a. SemEval-
2017 task 3: Community question answering. In
Proceedings of the 11th International Workshop on
Semantic Evaluation, SemEval ’17, pages 27–48,
Vancouver, Canada.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
SemEval-2015 task 3: Answer selection in com-
munity question answering. In Proceedings of the
9th International Workshop on Semantic Evaluation,
pages 269–281, Denver, CO, USA.

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim
Freihat, Jim Glass, and Bilal Randeree. 2016a.
SemEval-2016 task 3: Community question answer-
ing. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval ’16, pages
525–545, San Diego, CA, USA.

Preslav Nakov, Tsvetomila Mihaylova, Lluı́s Màrquez,
Yashkumar Shiroya, and Ivan Koychev. 2017b. Do
not trust the trolls: Predicting credibility in commu-
nity question answering forums. In Proceedings of
the International Conference on Recent Advances in
Natural Language Processing, RANLP ’17, pages
551–560, Varna, Bulgaria.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016b. SemEval-
2016 task 4: Sentiment analysis in Twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation, SemEval ’16, pages 1–18, San
Diego, CA, USA.

An T. Nguyen, Aditya Kharosekar, Matthew Lease,
and Byron C. Wallace. 2018. An interpretable joint
graphical model for fact-checking from crowds. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, AAAI ’18, New Orleans,
LA, USA.

Piotr Niewiński, Aleksander Wawer, Maria Pszona,
and Maria Janicka. 2019. TMLab SRPOL at
SemEval-2019 Task 8: Fact checking in commu-
nity question answering forums. In Proceedings of
the International Workshop on Semantic Evaluation,
SemEval ’19, Minneapolis, MN, USA.

Jeff Z. Pan, Siyana Pavlova, Chenxi Li, Ningxi Li,
Yangmei Li, and Jinshuo Liu. 2018. Content based
fake news detection using knowledge graphs. In
Proceedings of the International Semantic Web Con-
ference, ISWC ’18, pages 669–683, Monterey, CA,
USA.

Dan Pelleg, Oleg Rokhlenko, Idan Szpektor, Eugene
Agichtein, and Ido Guy. 2016. When the crowd is
not enough: Improving user experience with social
media through automatic quality analysis. In Pro-
ceedings of the 19th ACM Conference on Computer-
Supported Cooperative Work & Social Computing,

CSCW ’16, pages 1080–1090, San Francisco, CA,
USA.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2018. Automatic de-
tection of fake news. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, COLING ’18, pages 3391–3401, Santa Fe, NM,
USA.

Kashyap Popat, Subhabrata Mukherjee, Jannik
Strötgen, and Gerhard Weikum. 2016. Credi-
bility assessment of textual claims on the web.
In Proceedings of the 25th ACM International
on Conference on Information and Knowledge
Management, CIKM ’16, pages 2173–2178,
Indianapolis, IN, USA.

Kashyap Popat, Subhabrata Mukherjee, Jannik
Strötgen, and Gerhard Weikum. 2017. Where the
truth lies: Explaining the credibility of emerging
claims on the Web and social media. In Proceedings
of the 26th International Conference on World Wide
Web Companion, WWW ’17, pages 1003–1012,
Perth, Australia.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twit-
ter. In Proceedings of the 11th Internationafon, Se-
mEval ’17, pages 502–518, Vancouver, Canada.

Dominik Stammbach, Stalin Varanasi, and Guenter
Neumann. 2019. DOMLIN at SemEval-2019 Task
8: Automated fact checking exploiting user ratings
in community question answering forums. In Pro-
ceedings of the International Workshop on Semantic
Evaluation, SemEval ’19, Minneapolis, MN, USA.

Qi Su, Helen Kai yun Chen, and Chu-Ren Huang.
2010. Incorporate credibility into context for the
best social media answers. In Proceedings of the
24th Pacific Asia Conference on Language, Informa-
tion and Computation, PACLIC ’10, pages 535–541,
Sendai, Japan.

Bakhtiyar Syed, Vijayasaradhi Indurthi, Manish Shri-
vastava, Manish Gupta, and Vasudeva Varma. 2019.
Fermi at SemEval-2019 task 8: An elementary
but effective approach to question discernment in
community qa forums. In Proceedings of the In-
ternational Workshop on Semantic Evaluation, Se-
mEval ’19, Minneapolis, MN, USA.

Wanying Xie, Mengxi Que, Ruoyao Yang, Chunhua
Liu, and Dong Yu. 2019. BLCU NLP at SemEval-
2019 task 8: A contextual knowledge-enhanced
GPT model for fact checking. In Proceedings of
the International Workshop on Semantic Evaluation,
SemEval ’19, Minneapolis, MN, USA.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geral-
dine Wong Sak Hoi, and Peter Tolmie. 2016.
Analysing how people orient to and spread rumours
in social media by looking at conversational threads.
PloS one, 11(3):e0150989.

869

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 870–876
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

AUTOHOME-ORCA at SemEval-2019 Task 8: Application of BERT for
Fact-Checking in Community Forums

Zhengwei Lv1 Duoxing Liu1 Haifeng Sun2 Xiao Liang1

Tao Lei1 Zhizhong Shi1 Feng Zhu1 Lei Yang1

1 Autohome Inc., Beijing, China
2 Beijing University of Posts and Telecommunications, Beijing, China

{lvzhengwei,liuduoxing,liangxiao12030,leitao,shizhizhong,zhufeng,yanglei}@autohome.com.cn
hfsun@bupt.edu.cn

Abstract
Fact checking is an important task for main-
taining high quality posts and improving user
experience in Community Question Answer-
ing forums. Therefore, the SemEval-2019 task
8 is aimed to identify factual question (subtask
A) and detect true factual information from
corresponding answers (subtask B). In order to
address this task, we propose a system based
on the BERT model with meta information
of questions. For the subtask A, the outputs
of fine-tuned BERT classification model are
combined with the feature of length of ques-
tions to boost the performance. For the subtask
B, the predictions of several variants of BERT
model encoding the meta information are com-
bined to create an ensemble model. Our sys-
tem achieved competitive results with an ac-
curacy of 0.82 in the subtask A and 0.83 in
the subtask B. The experimental results vali-
date the effectiveness of our system.

1 Introduction

The Community Question Answering (CQA) fo-
rums are gaining more and more popularity be-
cause they can offer great opportunity for users
to get appropriate answers to their questions from
other users. Meanwhile, the accumulated mas-
sive questions and answers in CQA forums present
a new challenge to provide valuable information
for users more effectively. Therefore, researchers
have shown an increased interest in CQA systems
(Srba and Bielikova, 2016; Wang et al., 2018),
aiming to facilitate efficient knowledge acquisi-
tion and circulation. Specifically, a large por-
tion of researches mainly focus on the two tasks:
find relevant questions to a new question to reuse
corresponding answers (Question Retrieval), and
search for relevant answers among existing an-
swers to other questions (Answer Selection).

Despite a great deal of research on CQA, there
are relatively few studies focusing on the quality

of questions and answers. Actually, the credibility
of answers is an important aspect, which can di-
rectly affect the user experience for CQA forums.
In order to check the veracity of answers automat-
ically, some recent works (Karadzhov et al., 2017;
Mihaylova et al., 2018) attempt to utilize external
sources and extract appropriate features for classi-
fication. Considering the importance of informa-
tion veracity in CQA forums, the fact checking of
answers is still an issue that is worth investigating
further.

Therefore, the SemEval-2019 task 8 aims to
conduct fact checking in CQA forums. In order
to detect the veracity of answers, it is necessary to
identify whether the questions are factual firstly.
The task is comprised of two subtasks: the subtask
A is targeted to identify whether a question is ask-
ing for factual information, an opinion/advice or
socializing. Given factual questions, the subtask
B is aimed to determine whether the correspond-
ing answers are true, false or not factual.

In order to address the SemEval-2019 task 8,
we propose a system based on the BERT model
(Devlin et al., 2018). In our system, we extend
BERT for integrating some meta information of
questions into the BERT encoder, and generate an
ensemble model from some potential classification
models to achieve very competitive results. To be
specific, in subtask A, two outputs of fine-tuned
BERT classifiers are obtained from subjects and
bodies of questions respectively. Then by com-
bining both outputs with the length of questions as
features, the AdaBoost method (Schapire, 1999) is
utilized to boost the performance of question clas-
sification. As for subtask B, while encoding ad-
ditional meta information (category and subject of
questions) into BERT model, we adopt the bag-
ging method for some variants of BERT model
produced by adding additional layers. The exper-
imental results in both subtasks demonstrate the

870

effectiveness of our system.
The rest of our paper is organized in the follow-

ing way. The related work about CQA is summa-
rized in Section 2. Section 3 gives a more detailed
description of our system. The results and analy-
sis of experiments are demonstrated in Section 4.
Finally, Section 5 presents the main conclusions.

2 Related Work

So far, most studies about CQA mainly pay at-
tention to two tasks: Question Retrieval and An-
swer Selection. In previous works, some tradi-
tional methods treat questions or answers as bag
of words and measure their similarities based on
weighted matching between the words (Robert-
son et al., 1994) or translation probability learn-
ing from language model (Xue et al., 2008). In
fact, similar questions often are not phrased with
exactly same words, but related words, while there
is very little token overlap between questions and
answers. These methods essentially consider the
question or answer as a bag of words, neglect-
ing semantic information. So it is not surprising
that the performance of traditional methods is not
very well on aforementioned tasks. Recently, the
neural-based models (He et al., 2015; Feng et al.,
2015; Tan et al., 2016; Bachrach et al., 2017; Tay
et al., 2018), which can capture some semantic re-
lations, are proposed and become mainstream in
the research about CQA gradually. The basic idea
behind them is to learn the representation of ques-
tions and answers based on CNN or LSTM mod-
els, then conduct text matching by regarding both
tasks as classification or learning to rank.

Furthermore, there are also public CQA
datasets and competitions available, which pro-
mote relevant researches substantially. The pub-
lic datasets are collected from various CQA web-
sites, including Quora1 , Yahoo! Answers2, Qatar
Living3, etc. As for competitions, there is a kag-
gle competition4 to identify the duplicated ques-
tion pairs collecting from the Quora website. In
SemEval-2015 Task 3 ”Answer Selection in Com-
munity Question Answering” (Nakov et al., 2015),
it is mainly targeted on the answer selection task.
And there is a more comprehensive competition
in SemEval-2016 Task 3 (Nakov et al., 2016)

1https://www.quora.com
2https://answers.yahoo.com
3https://www.qatarliving.com
4https://www.kaggle.com/c/quora-question-pairs

designed for both Question Retrieval and An-
swer Selection, which is consisted of four sub-
tasks: Question-Comment Similarity, Question-
Question Similarity, Question-External Comment
Similarity and Reranking the correct answers for a
new question. In contrast, in SemEval-2017 task 3
(Nakov et al., 2017), a new duplicate question de-
tection subtask is incorporated on the basis of the
SemEval-2016 Task 3.

Although much work has been done in CQA
researches, few attentions have been paid on im-
proving the quality of questions and answers. In
order to detect true factual answers automatically,
Karadzhov et al. (Karadzhov et al., 2017) pro-
pose a general framework using external sources,
which adopts the LSTM model (Hochreiter and
Schmidhuber, 1997) to learn text representation
of answers and external sources. Mihaylova et al.
(Mihaylova et al., 2018) extract features from mul-
tiple aspects (the answer content, the author pro-
file, the rest of the community forum and external
authoritative sources) and demonstrate the effec-
tiveness of fact checking of answers. At the same
time, the lack of large-scale dataset also restricts
the progress on fact checking in CQA forums fur-
ther.

Recently, there are some of key milestones
in the NLP field, such as ELMo (Peters et al.,
2018), ULMFiT (Howard and Ruder, 2018), Ope-
nAI GPT (Radford, 2018) and BERT (Devlin
et al., 2018). These large-scale models have pro-
vided great performance on various NLP tasks,
which can be pre-trained on a massive corpus
of unlabeled data, and then fine-tuned to down-
stream tasks. Especially, the BERT model has
achieved state-of-the-art results on a variety of
language tasks, which allows us to obtain signif-
icantly higher performance than models that are
only able to leverage a small task-specific dataset.
Therefore, we build a system based on the BERT
model for the SemEval2019 task 8 and achieve sat-
isfactory results.

3 System Description

3.1 System Overview

The pipeline of our system is shown in Fig-
ure 1. Firstly, original input files with ques-
tions and answers are preprocessed, including re-
moving redundant information (e.g., HTML tags,
URLs and strings exceeding maximum length
limit) and extracting the structured contents and

871

CQA corpus

Questions
xml file

Preprocessing

Feature extraction

Answers
xml file

BERT pretrained
model

Fine-tuned BERT
classifer

Ensemble

Variant BERT
classifiers

Length
of questions

Adaboost model

Prediction for
Subtask A

Prediction for
Subtask B

Meta information
of questions

Figure 1: Pipeline of our system.

meta information. Secondly, some important fea-
tures are obtained from structured information,
such as the length and category of questions.
Thirdly, based on the pre-trained BERT model
released by Google5, we conduct unsupervised
training on specific CQA corpus further to make
the model more suitable for the following classifi-
cation tasks. Finally, the pre-trained BERT model
and extracted features are fed into two subsystems
to obtain predictions for the subtask A and the
subtask B respectively. In the subsystem for sub-
task A (detailed in Subsection 3.2), the AdaBoost
model is adopted to predict the classification of
questions by combining the outputs of fine-tuned
BERT classifier and the feature of length of ques-
tions. In the subsystem for subtask B (described
in Subsection 3.3), some variant BERT models
which encode meta information of questions are
combined to generate an ensemble model for pred-
ication of labels of answers.

3.2 Subsystem for Subtask A

In this Subsection, the subsystem for subtask A is
described in detail below.

Firstly, the subject and body of questions are en-
coded into two BERT models separately for fine-
tuning on the question classification. The different
inputs for both BERT models are represented as

[CLS] + text1 + [SEP]

[CLS] + text2 + [SEP]

5https://github.com/google-research/bert

Label Subject of ques-
tions

Body of questions

Opinion e.g., does anyone
know good dentist?

e.g., can anybody
recommend me a
dentist? a good
one.

Factual e.g., when is eid
gonna start?

e.g., when will eid
start? like holidays

Socializing e.g., What do you
like about the per-
son above you?

e.g., Hello peo-
ple...let’s play this
game...you have
to write something
good about the per-
son whose ’post’
is above you on
QL.You can write
anything and you
can write multiple
times. For ex;the
person who will
respond to my post
will write about me
;) and so on. This
will be fun...

Table 1: Samples of questions with different labels.

where text1 and text2 are the subject and body of
question respectively.

Secondly, the outputs of two fine-tuned BERT
models are concatenated with the length of ques-
tions’ body as features for classification. As illus-
trated in Table 1, it is rather intuitive that the body
length of questions for socializing is inclined to
be longer than ones for factual or opinion. There-
fore, it is reasonable to consider the body length
of questions as a suitable feature for classification.
In addition, the results of each BERT model are
probabilities of questions belonging to different
classes (Factual, Opinion and Socializing). Then
the feature vector xvector for question classifica-
tion is represented as follows

xvector = [Ps1, Ps2, Ps3, Pb1, Pb2, Pb3, Lb] (1)

where Ps1, Ps2, Ps3 are the output of a BERT
model encoding the question subject. Similarly,
Pb1, Pb2, Pb3 are the output of another BERT
model encoding the question body, and Lb is the
body length of a question.

Finally, based on the generated feature vector
xvector, the AdaBoost algorithm is adopted to ob-
tain the final results of classification. AdaBoost is
a typical Boosting algorithm that aims to convert a
set of relative weak classifiers to a strong classifier.
Therefore, the performance of classification can be
strengthened by considering additional length fea-
ture, compared to the one that the BERT models

872

have achieved.

3.3 Subsystem for Subtask B
The Subsection describes the details of the subsys-
tem for subtask B as follows.

Firstly, the subject and body of question, corre-
sponding reply (i.e., answer) and meta information
of question are combined to generate sequences
for BERT encoders. In order to identify the true
factual reply, the content of corresponding ques-
tions and auxiliary information (e.g., the category
of question, username of a questioner or replier)
should be necessary for classifiers. So in the sub-
system, we investigate the influence of different
information for the classification performance (see
Table 4 for details), including the subject of ques-
tion (F-subject), the usernames of questioner and
replier (F-username) and the category of question
(F-category). Ultimately, the text of answer and
the information of F-subject and F-category are
employed for our BERT based models. The gener-
ated sequence for inputs of models are represented
as following:

[CLS] + text1 + [SEP] + text2 + [SEP]

We use [SEP] to separate between the information
of question and answer. text1 is composed of F-
subject, F-category and the body of question sepa-
rated by the special symbol (∼), while text2 is the
text of corresponding reply.

Secondly, based on the generated sequences
as inputs, we design three different categories of
BERT based models for ensemble. As shown in

Figure 2: Architecture of BERT based models.

Figure 2, the specific structures of the three kinds
of models are described as follows:

• BERT-CLS. The final hidden state for the first
token [CLS] in the input is employed for
fine-tuning the pre-trained BERT model by
adding a classification layer and a standard
softmax.

• BERT-AVG. Different from BERT-CLS, the
final hidden states for all tokens are utilized
for classification by conducting an average
pooling, and then adding a full connected
layer and a standard softmax.

• BERT-LSTM. Compared with BERT-AVG,
a Bi-LSTM network is added between the
pooling layer and the pre-trained BERT en-
coder. It must be noted that we only obtain
the outputs of BERT encoder and the param-
eters of BERT encoder are not updated when
training.

Thirdly, we select a set of competitive classi-
fiers in the training process by the three kinds of
BERT based models respectively. The method of
five-fold cross-validation is employed. To be spe-
cific, the original samples are randomly divided
into five sub-samples with equal size. And one of
the five sub-samples is retained for validating the
performance of classifier, and the rest of four sub-
samples are used as training data. For each kind of
BERT based model, the cross-validation process
is repeated five times and each time no more than
five optimal classifiers are obtained. Therefore, we
get a total of sixty-five competitive classifiers fil-
tered by certain threshold value on accuracy met-
ric from three kinds of BERT based models for
ensemble.

Finally, an effective integration strategy is ap-
plied to produce a strong classifier for the subtask.
There are two candidate integration strategies:

• Strategy 1 (Vote-ensemble): Each classifier
casts a vote, the label of a sample is decided
according to the majority of votes.

• Strategy 2 (Distribution-ensemble): If the
number of votes for any label exceeds one-
half of the total number of classifiers, the
sample is classified as the corresponding la-
bel. Otherwise, the label of the sample will
be determined by considering the actual label
distribution of the training data and the label
distribution of votes together. For example,
if one sample’s votes for different labels are
very close, then the sample is classified as the

873

label with the largest proportion of data dis-
tribution.

At last, the strategy 2 is employed in our subsys-
tem because it seems that Distribution-ensemble
strategy is more robust for variance error, espe-
cially for small dataset, which will be discussed
in Subsection 4.2 further.

4 Experiment

4.1 Dataset

The dataset is organized in question-answer
threads from the Qatar Living forum. Each ques-
tion, which is annotated by labels: Opinion, Fac-
tual and Socializing, has a subject, a body and
meta information including question ID, category,
posting time, user’s ID and name. And each an-
swer, which is classified as Factual-True, Factual-
False and Non-Factual, has a body and meta in-
formation (answer ID, posting time, user’s ID and
name). The detailed statistics of the dataset in this
task are illustrated in the task description paper
(Mihaylova et al., 2019).

4.2 Experimental Results and Analysis

As for pre-training the BERT model, it is trained
based on the BERT-Base-Cased model by the fo-
rum corpus provided by organizer6. The training
batch size is 32, the number of train steps is 1e+5
and the learning rate is 2e-5. The detailed exper-
imental results for both subtasks are described as
following.

4.2.1 Results for Subtask A
In the subsystem for subtask A, the AdaBoost al-
gorithm is employed to boost the performance on
question classification. The number of estimators
for the AdaBoost method is 10. To evaluate the
performance of question classification, we com-
pare our proposed method against the following
models:

• Text-CNN (Kim, 2014): a simple CNN with
one layer of convolution on top of word vec-
tors. The subject and body of each question
are concatenated as the input of Text-CNN
model. When training, the number of epoch
is 80, the initial learning rate is 0.001 and the
dropout rate is set to 0.4.

6http://alt.qcri.org/semeval2016/task3/data/uploads/QL-
unannotated-data-subtaskA.xml.zip

• BERT without pre-training: the BERT-Base
cased model release by Google. The input of
the model is the concatenation of the subject
and the body of each question with the sym-
bol [SEP], which is represented as follows:

[CLS] + text1 + [SEP] + text2 + [SEP]

text1 and text2 are the subject and body
of a question separately. When training the
model, the batch size of training is 32, the
initial learning rate is 2e-5 and the number of
epoch is 9.

• BERT with pre-training: the BERT model
pre-trained by CQA corpus. The settings of
hyper-parameters is the same as the BERT
model without pre-training.

Models Acc. (Dev) Acc. (Test)
Text-CNN 0.6569 0.6502
BERT without
pre-training

0.6862 0.7370

BERT with pre-
training

0.7197 0.7922

Our method 0.7283 0.8181

Table 2: Performance of different models in the
subtask A.

The comparison results are shown in Table 2.
From the table, it can be observed that the ac-
curacy of the Text-CNN model is much lower
than the other three BERT-based models. Even
if only the BERT model without pre-training is
used to predict the final result, it is 2.93% and
8.68% higher than Text-CNN model on develop-
ment dataset and test dataset, respectively. Con-
sidering the size of dataset is relative small, it
seems to demonstrate the potential advantage of
BERT based models. Compared with the BERT
model without pre-training, the BERT model with
pre-training has 3.35% and 5.52% increase respec-
tively. It is illustrated that the step of pre-training
the BERT model is very important. Furthermore,
the accuracy achieved by our method is 0.86%
and 2.59% higher than the one by the BERT with
pre-training model on two datasets separately. It
shows that the AdaBoost algorithm can make bet-
ter use of the probability outputs from the fine-
tuned BERT models for prediction. What’s more,
the body length of questions can be considered as
an effective feature for training model and predict-
ing results.

874

4.2.2 Results for Subtask B
In the experiments for subtask B, the three kinds
of BERT based models are implemented with Ten-
sorFlow and trained with Adam optimizer. The
maximum length of sequence is set to 150 and the
batch size is 4. The initial learning rates are 3e-5
for parameters of BERT encoder and 1e-3 for oth-
ers.

Models Acc.(Dev) Acc.(Test)
BERT-AVG 0.6732 –
BERT-CLS 0.6667 –
BERT-LSTM 0.656 –
Vote-ensemble 0.6693 0.7935
Distr.-ensemble 0.6845 0.8322

Table 3: Performance of different models in the
subtask B.

The experimental results of different kinds of
models are shown in Table 3. From the table, it can
be observed that the BERT-AVG model achieves
the best performance in the three single models.
By conducting average pooling operation on final
hidden states of all tokens, the BERT-AVG model
can capture more semantic information than the
BERT-CLS model which can only pay attention
to the hidden state of the [CLS] token. As for
the BERT-LSTM model, it performs the worst,
which may be caused by the highest model com-
plexity and the lack of adequate training dataset,
resulting in somewhat overfitting. In addition,
it is indicated that ensemble models can obtain
higher accuracy than single models and the strat-
egy of Distribution-ensemble is more robust than
the strategy of Vote-ensemble. This is because that
when the numbers of votes for different labels are
close to each other, it is difficult to identify the
correct class only by the majority. By considering
actual classification distribution in training dataset
additionally, the Distribution-ensemble can show
its potential advantage.

Feature Acc.(Dev)
Baseline 0.6559
+F-category 0.6606(+0.47)
+F-username 0.6547(-0.12)
+F-subject 0.6642(+0.83)
+F-category, +F-subject 0.6667(+1.08)

Table 4: Performance of different features on de-
velopment dataset in the subtask B. “+” means to
add current features to the main feature.

In order to explore the effectiveness of differ-

ent information for classification, a series of ex-
periments based on the BERT-CLS model are con-
ducted. The baseline model (BERT-CLS) is es-
tablished only by encoding the information of the
body of question and the corresponding answer.
Therefore, the influence of other information can
be discussed individually. By considering differ-
ent information, the performance of the model val-
idated on development dataset is shown in Table
4. It is observed that the F-username can not con-
tribute to the increase of accuracy, which may be
caused by existing many anonymous users in the
forum. By encoding the information F-subject and
F-category into the model, it can achieve the best
performance.

5 Conclusion

Detecting the veracity of answers is vital to main-
tain high quality information in CQA forums. In
order to address this problem, a system based on
BERT model is developed for participating in the
SemEval-2019 Task 8. In the system, the meta in-
formation of questions is encoded into the BERT
model and an ensemble with multiple variants of
BERT model are produced to accomplish better
performance. In subtask A, we utilize the Ad-
aBoost algorithm to the features that is consisted
of fine-tuned results of BERT models and length
of questions. In subtask B, after encoding the aux-
iliary information of questions and answers into
the BERT model, fine-tuned BERT model and
two variant models by adding average-pooling or
LSTM layers are combined to reduce the variance
error. Finally, our system achieved great perfor-
mance with an accuracy of 0.82 and 0.83 in the
two subtasks respectively.

To our surprise, the system has impressive re-
sults in the subtask B without using external
sources. It may be explained by the potential ad-
vantage of BERT model over other models only
trained on a small task-specific dataset. In the fu-
ture, we will explore to retrieve relevant informa-
tion from the Web efficiently and then integrate the
external information into our BERT based model.

References
Yoram Bachrach, Andrej Zukov Gregoric, Sam Coope,

Ed Tovell, Bogdan Maksak, José Rodrı́guez, Conan
McMurtie, and Mahyar Bordbar. 2017. An atten-
tion mechanism for neural answer selection using a
combined global and local view. 2017 IEEE 29th

875

International Conference on Tools with Artificial In-
telligence (ICTAI), pages 425–432.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Minwei Feng, Bing Xiang, Michael R. Glass, Li-
dan Wang, and Bowen Zhou. 2015. Applying
deep learning to answer selection: A study and
an open task. 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU),
pages 813–820.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with con-
volutional neural networks. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1576–1586. Associa-
tion for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339. Association for Com-
putational Linguistics.

Georgi Karadzhov, Preslav Nakov, Lluı́s Màrquez,
Alberto Barrón-Cedeño, and Ivan Koychev. 2017.
Fully Automated Fact Checking Using External
Sources. In Proceedings of the International Con-
ference Recent Advances in Natural Language Pro-
cessing, RANLP 2017, pages 344–353. INCOMA
Ltd.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751. As-
sociation for Computational Linguistics.

Tsvetomila Mihaylova, Georgi Karadzhov, Atanasova
Pepa, Ramy Baly, Mitra Mohtarami, and Preslav
Nakov. 2019. SemEval-2019 task 8: Fact checking
in community question answering forums. In Pro-
ceedings of the International Workshop on Semantic
Evaluation, SemEval ’19, Minneapolis, MN, USA.

Tsvetomila Mihaylova, Preslav Nakov, Lluı́s Màrquez,
Alberto Barrón-Cedeño, Mitra Mohtarami, Georgi
Karadzhov, and James Glass. 2018. Fact Checking
in Community Forums. In AAAI Conference on Ar-
tificial Intelligence.

Preslav Nakov, Lluı́s Arquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak Abed, Alhakim
Freihat, James Glass, Bilal Randeree, and Qatar
Living. 2016. SemEval-2016 Task 3: Community
Question Answering. In Proceedings of SemEval-
2016, pages 525–545.

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. SemEval-2017
Task 3: Community Question Answering. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 27–48.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
Semeval-2015 task 3: Answer selection in com-
munity question answering. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 269–281. Association for
Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline Hancock-Beaulieu, and Mike Gatford.
1994. Okapi at TREC-3. In Proceedings of
The Third Text REtrieval Conference, TREC 1994,
Gaithersburg, Maryland, USA, November 2-4, 1994,
pages 109–126.

Robert E. Schapire. 1999. A brief introduction to
boosting. In Proceedings of the 16th International
Joint Conference on Artificial Intelligence - Volume
2, IJCAI’99, pages 1401–1406, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Ivan Srba and Maria Bielikova. 2016. A Comprehen-
sive Survey and Classification of Approaches for
Community Question Answering. ACM Transac-
tions on the Web, 10(3):1–63.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Improved representation learning for
question answer matching. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
464–473. Association for Computational Linguis-
tics.

Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018.
Multi-cast attention networks. In Proceedings of
the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD
’18, pages 2299–2308, New York, NY, USA. ACM.

Xianzhi Wang, Chaoran Huang, Lina Yao, Boualem
Benatallah, and Manqing Dong. 2018. A survey on
expert recommendation in community question an-
swering. Journal of Computer Science and Technol-
ogy, 33(4):625–653.

Xiaobing Xue, Jiwoon Jeon, and W. Bruce Croft. 2008.
Retrieval models for question and answer archives.
In Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’08, pages
475–482, New York, NY, USA. ACM.

876

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 877–887
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval-2019 Task 9: Suggestion Mining from Online Reviews and
Forums

Sapna Negi
Genesys Telecommunication

Laboratories
Galway, Ireland
sapna.negi1

@gmail.com

Tobias Daudert
National University

of Ireland
Galway, Ireland

tobias.daudert
@insight-centre.org

Paul Buitelaar
National University

of Ireland
Galway, Ireland

paul.buitelaar
@insight-centre.org

Abstract

We present the pilot SemEval task on Sugges-
tion Mining. The task consists of subtasks A
and B, where we created labeled data from
feedback forum and hotel reviews respectively.
Subtask A provides training and test data from
the same domain, while Subtask B evaluates
the system on a test dataset from a differ-
ent domain than the available training data.
33 teams participated in the shared task, with
a total of 50 members. We summarize the
problem definition, benchmark dataset prepa-
ration, and methods used by the participating
teams, providing details of the methods used
by the top ranked systems. The dataset is made
freely available to help advance the research in
suggestion mining, and reproduce the systems
submitted under this task.

1 Introduction

State of the art opinion mining systems provide
numerical summaries of sentiments and tend to
overlook additional descriptive and potentially
useful content present in the opinionated text.
We stress that such content also encompass
information like suggestions, tips, and advice,
which is otherwise explicitly sought by the
stakeholders. For example, hotel reviews often
contain room tips, i.e., which room should be
preferred in a hotel. Likewise, tips on restaurants,
shops, sightseeing, etc. are also present within the
hotel reviews. On the other hand, platforms like
Tripadvisor1, which collect hotel and restaurant
related opinions, request the reviewers to fill up
the room tips section in addition to the hotel
review. Likewise, sentences expressing advice,
tips, and recommendations relating to a target
entity can often be present in text available
from different types of data sources, like blogs,
microblogs, discussions, etc. Such sentences can

1https://www.tripadvisor.com

be collectively referred to as suggestions. With
the increasing availability of opinionated text,
methods for automatic detection of suggestions
can be employed for different use cases. Some
example use cases are the extraction of sugges-
tions for brand improvement, the extraction of tips
and advice for customers, the extraction of the
expressions of recommendations from unstruc-
tured data in order to aid recommender systems,
or the summarisation of suggestion forums where
suggestion providers often tend to provide context
in their responses (Figure 1) which gets repetitive
over a large number of responses relating to the
same entity. The task of automatic identification
of suggestions in a given text is referred to as
suggestion mining (Brun and Hagege, 2013).

Studies performed on suggestion mining have
defined it as a sentence classification task, where
class prediction has to be made on each sentence
of a given text, classes being suggestion and non
suggestion (Negi, 2016). State of the art opinion
mining systems have mostly focused on identi-
fying sentiment polarity of the text. Therefore,
suggestion mining remains a very less explored
problem as compared to sentiment analysis,
specially in the context of recent advancements
in neural network based approaches for feature
learning and transfer learning.

As suggestion mining is still an emerging re-
search area, it lacks benchmark datasets and well
defined annotation guidelines. A few early works
were mostly rule based methods, mainly targeted
towards the use case of extracting suggestions for
product improvements (Brun and Hagege, 2013;
Ramanand et al., 2010; Moghaddam, 2015). In
our prior work, we performed early investigations
on the problem definition and datasets, aiming for
the statistical methods which also require bench-
mark train datasets in addition to the evaluation

877

Figure 1: A post from the suggestion forum for Microsoft developers

datasets(Negi and Buitelaar, 2015; Negi et al.,
2016). A few other works also evaluated statistical
classifiers (Wicaksono and Myaeng, 2012; Dong
et al., 2013), which employed mostly manually
identified features, however only two other works
(Wicaksono and Myaeng, 2012; Dong et al.,
2013) provided their datasets. Suggestion mining
still lacks well defined annotation guidelines,
a multi-domain and cross-domain approach to
the problem and benchmark datasets, which we
address in our recent work (Negi et al., 2018).
Therefore, we introduce this pilot shared task to
disseminate suggestion mining benchmarks and
evaluate state of the art methods for text classifica-
tion on domain specific and cross domain training
scenarios. The datasets released as a part of the
shared task include the domains hotel reviews and
software developers suggestion forum (see Table
1).

Suggestion mining faces similar text processing
challenges as other sentence or short text clas-
sification tasks related to opinion mining and
subjectivity analysis, such as stance detection
(Mohammad et al., 2016), or tweet sentiment
classification (Rosenthal et al., 2015). Some of
the observed challenges in suggestion mining are
elaborated below:

• Class imbalance: Usually, suggestions tend
to appear sparsely among opinionated text,
which leads to higher data annotation costs
and results in a class distribution bias in the
trained models.

• Figurative expressions: Text from social
media and other sources usually contains
figurative use of language, which demands
pragmatic understanding from the models.
For example, ‘Try asking for extra juice at
breakfast - its 22 euros!!!!!’ is more of a
sarcasm than a suggestion. Therefore, a sen-
tence framed as a typical suggestions may not
always be a suggestion and vice versa. A va-
riety of linguistic strategies used in sugges-
tions also make this task interesting from a
computational linguistics perspective and la-
beled datasets can be leveraged for linguistic
studies as well.

• Context dependency: In some cases, con-
text plays a major role in determining
whether a sentence is a suggestion or not.
For example, ‘There is a parking garage on
the corner of the Forbes showroom.’ can be
labeled as a suggestion (for parking space)
when it appears in a restaurant review and
a human annotator gets to read the full re-
view. However, the same sentence would not
be labeled as a suggestion if the text is aimed
to describe the surroundings of the Forbes
showroom.

• Long and complex sentences: Often, a sug-
gestion is expressed in either one part of a
sentence, or it is elaborated as a long sen-
tence, like, ‘I think that there should be a nice
feature where you can be able to slide the sta-
tus bar down and view all the push notifica-
tions that you got but you didn’t view, just like

878

Source Sentence Label
Hotel reviews Be sure to specify a room at the back of the hotel. suggestion
Hotel reviews The point is, don’t advertise the service if there are caveats

that go with it.
non-suggestion

Suggestion forum Why not let us have several pages that we can put tiles on and
name whatever we want to

suggestion

Suggestion forum It fails with a uninformative message indicating deployment
failed.

non-suggestion

Table 1: Examples of suggestions found in reviews and the labels assigned to the suggestion sentences

android and IOS, but the best part is that it
fixes many problems like when people wanted
a short cut to turn WiFi on and off and data
on and off so that would be a nice feature to
have 2’. This poses challenges to the training
of algorithms in terms of learning effective
features, as well as for certain pre-processing
steps like part of speech tagging.

Investigating the development of high perfor-
mance suggestion mining systems could drive the
engagement of both, commercial entities (like
brand owners) as well as the research communi-
ties, working on problems such as opinion mining,
supervised learning, or representation learning. A
suggestion mining component can empower both,
public and private sectors, to extract and lever-
age suggestions which are constantly expressed on
various online platforms like Twitter2 , TripAdvi-
sor, or Reddit3 for developing innovative services
and products.

2 Task Definition

The early rule based approaches towards sug-
gestion mining assumed that suggestions are
always expressed using standard expressions like
‘I recommend’, ‘I suggest that’, ‘You should’,
and created small evaluation datasets which
were labeled in-house (Brun and Hagege, 2013;
Ramanand et al., 2010). Only two of the pre-
vious studies released training datasets, which
cover travel discussion forums (Wicaksono and
Myaeng, 2013) and microblogs (Dong et al.,
2013), while the review datasets from the previous
works remain proprietary (Ramanand et al.,
2010; Moghaddam, 2015). In our recent work,
we perform a qualitative analysis of datasets
from different sources, which includes inves-
tigation of linguistic properties of suggestions,
relationship between sentiments and suggestions,
and a laymans perception of suggestions (Negi,

2https://www.twitter.com
3https://www.reddit.com

2019). We also observed a low inter-annotator
agreement in labeling sentences as suggestions
and non-suggestions, and formulate a typology
for sentences in context to suggestion detection,
and design an annotation procedure based on this
typology (Negi et al., 2018; Negi, 2019). For this
shared task, we extend datasets from our previous
studies, following the same task description and
annotation method.
The Oxford dictionary defines suggestion as, An
idea or plan put forward for consideration, and
some of the listed synonyms of suggestions are
proposal, proposition, recommendation, advice,
hint, tip, clue. Many linguistic studies define how
suggestions should be expressed in a standard
use of language. However, in the context of
text mining, we are dealing with user generated
text on the web, which can be associated with
multiple contexts, like the end user, domain etc.
We observed in our layman annotation study,
context may affect an annotator’s judgment. In the
absence of context, different annotators associate
different contexts to a candidate sentence. We
observed that the following concepts form an
integral part of defining a suggestion in the
context of suggestion mining and proposed an
empirically driven and context-based definition of
suggestions.

• Surface structure: Different surface struc-
tures (Chomsky, 1957; Crystal, 2011) can
be used to express the underlying intention
of giving the same suggestion. For exam-
ple, The nearby food outlets serve fresh local
breakfast and are also cheaper and You can
also have breakfast at the nearby food outlets
which are cheaper and equally good.

• Context: When dealing with specific use
cases, context plays an important role in
distinguishing a suggestion from a non-
suggestion. Context may be present within

879

a given sentence. It can be a set of values
corresponding to different variables that are
provided explicitly and in addition to a given
sentence. One or more of the following vari-
ables can constitute the context:
Domain: In this work, we refer to the source
of a text as domain, which should not be con-
sidered in-line with the standard definition of
domain. For example, in this shared task, we
used hotel and suggestion forum domains.
Source text: The text in the entire source doc-
ument to which a sentence belongs may also
serve as a context, giving an insight into the
discourse where the suggestion appeared.
Application or use case: Suggestions may
sometimes be sought only around a specific
topic, for example, room tips from hotel re-
views. Suggestions can also be selectively
mined for a certain class of users, for exam-
ple, suggestions for future customers. All
non-relevant suggestions in the data may be
regarded as non-suggestions in this case.

Given that

• s denotes the surface structure of a sentence,

• C denotes additional context provided with
s, where the context can be a set of values
corresponding to certain variables, and

• a(s, C) denotes the annotation agreement for
the sentence, and t denotes a threshold value
for the annotation agreement,

we write S(s, C) to denote the suggestion func-
tion, which is defined as

S(s, C) =

{
Suggestion, if a(s, C) ≥ t

Non-suggestion, if a(s, C) < t.
(1)

Depending on the choice of C, and, hence, on the
value of a(s, C), we identify four categories of
sentences that a suggestion mining system is likely
to encounter.

Explicit suggestions. Explicit suggestions are
sentences for which S always outputs
Suggestion, whether C is the empty set or
not. They are like the direct and conven-
tionalised forms of suggestions as defined
by (Martı́nez Flor, 2005). It may also be
the case that such sentences have a strong
presence of context within their surface

form, as in illustrated by If you do end up
here, be sure to specify a room at the back of
the hotel.

Explicit non-suggestions. These are the sen-
tences for which S always outputs Non-
suggestion, whether C is the empty set or not.
For example, Just returned from a 3 night
stay.

Implicit suggestions. These are sentences for
which S outputs Non-suggestion only when
C is the empty set. Typically, implicit sug-
gestions do not posses the surface form of
suggestions but the additional context helps
the readers to identify them as suggestions.
For example, There is a parking garage on
the corner of Forbes, so its pretty conve-
nient is labeled as a suggestion by the an-
notators when the context is revealed as that
of a restaurant review. A sentence such
as Malahide is a pleasant village-turned-
dormitory-town near the airport can be con-
sidered as a suggestion given that it is ob-
tained from a travel discussion thread for
Dublin. These kind of sentences are observed
to have a lower inter annotator agreement
than the above two categories.

Implicit non-suggestions. These are sentences
for which S outputs Suggestion only when C
is an empty set. Typically, an implicit non-
suggestion posses the surface form of sug-
gestions but the context leads readers to iden-
tify them as non-suggestions. Such sentences
may contain sarcasm. Examples include Do
not advertise if you don’t know how to cook
appearing in a restaurant review and The iPod
is a very easy to use MP3 player, and if you
can’t figure this out, you shouldn’t even own
one appearing in a MP3 player review.

The proposed categories provide the flexibility to
change the scope of classes in a well defined man-
ner, as well as to define context as per the ap-
plication and use case. Based on the above four
categoriese can define the scope of suggestion
and non-suggestion classes for suggestion mining
tasks. For open domain and cross domain sugges-
tion mining, we proposed to limit the scope of sug-
gestions to the explicit suggestions. Therefore, we
set the definition of suggestion for this shared task
as:

880

Let s be a sentence. If s is an explicit sugges-
tion, assign the label Suggestion. Otherwise,
assign the label Non-suggestion.

3 Dataset Annotation

A two phase annotation methodology, as proposed
in our previous works (Negi et al., 2018; Negi,
2019) is followed.

3.1 Phase 1: Crowdsourced Annotations

This phase is performed using paid crowdsourc-
ing, where each sentence is annotated by multiple
layman annotators, and the set of annotators
do not necessarily remain the same for all the
sentences. We used Figure Eight4 to collect
layman annotations.
Annotators were also provided with the context,
i.e. source text from where the sentence is
extracted. They were simply asked to choose to
label a sentence as suggestions if it contained
expressions of suggestion, advice, tip, and rec-
ommendation. We aimed to collect implicit and
explicit suggestions in this phase.
For quality control, before being allowed to
perform a job, the annotators were presented with
a set of test sentences which are similar to the
actual questions except that their answers have
already been provided by us to the system. We
also submitted the explanation behind the correct
answer. This way the test questions serve two
purposes: test the annotators competency and
understanding of the job, and train the annotator
for the job. Crowdflower recommends certain
best practices to prepare effective test questions.5.
We submitted 30 test questions for each dataset.
Each starting annotator was presented with 10
test questions, and only the annotators achieving
an accuracy of 70% or more were allowed to
proceed with the job. If an annotator passed the
test and started the job, the remaining unseen
test questions were presented to them in between
the regular sentences without being notified.
One sentence out of every 8 was a hidden test
question. The accuracy score of a contributor
on test questions is referred to as Trust score
in a job. If an annotator’s trust score dropped
below a certain threshold during the course of

4Earlier known as Crowdflower. https://www.
figure-eight.com/

5https://success.crowdflower.
com/hc/en-us/articles/
213078963-Test-Question-Best-Practices

the annotation, the system did not allow them to
proceed further with the job. This threshold score
was set to 70% in our case.
In addition to the hidden test questions, a min-
imum time for each annotator to stay on one
page of the job was set. We set this time to 40
seconds (5 seconds on average for each sentence).
If annotators appeared to be faster than that, they
were automatically removed from the job. We
restricted access to annotators from countries
where English is a popular language and that
are also likely to have a large crowdsourcing
workforce. Most of the annotators came from
Australia, Canada, Germany, India, Ireland, the
United Kingdom, and the USA.

Annotation agreement: Crowdflower’s con-
fidence score describes the level of agreement
between multiple contributors and the confidence
in the validity of the result at the same time,
we used a threshold confidence score of 0.6.
However, it can be the case that a sentence is very
ambiguous and cannot achieve the confidence
score even after a large number of workers
answered it. A maximum limit to the number
of annotators is set in such case, and no further
judgements are collected even if the threshold
confidence is not reached. We set this limit to
5 annotators. Sentences that do not pass the
confidence threshold of 0.6 are not included in the
dataset.

3.2 Phase 2: Expert Annotations

This phase is performed by two in-house expert
annotators, who are provided with the detailed an-
notation guidelines as compared to the phase 1 an-
notation guidelines, and the annotators are familiar
with the problem definition and the task at hand.
However, the annotators are not provided with the
source text in this case. Phase 2 of the annota-
tion is only applied to sentences that were labeled
as suggestions in Phase 1, which drastically re-
duces the number of annotations to be performed
in Phase 2.
Annotation Agreement: The inter-annotator
agreement for Phase 2 was calculated by hav-
ing two annotators label a subset of sentences for
each domain (50 sentences). Cohen’s kappa co-
efficient was used to measure the inter-annotator
agreement. The remainder of the data instances
were annotated by only one annotator. The fol-

881

Subtask Domain Suggestion/Non-suggestion IA agreement
(phase 2)

Training Trial Test Test
A Software developer

suggestion forums
(Uservoice)

1428 / 4296 296 / 742 87/746 0.81

B Hotel reviews (Trip Ad-
visor)

448 / 7086 404 / 3000 348/476 0.86

Table 2: Details of released datasets

lowing guidelines were provided to the annotators
in Phase 2 :

• The intent of giving a suggestion and the sug-
gested action or recommended entity should
be explicitly stated in the sentence. Try the
cup cakes at the bakery next door is a positive
example. Other explicit forms of this sugges-
tion could be: I recommend the cup cakes at
the bakery next door or You should definitely
taste the cup cakes from the bakery next door.
An implicit way of expressing the suggestion
could be The cup cakes from the bakery next
door were delicious.

• The suggestion should have the intent of ben-
efiting a stakeholder and should not be mere
sarcasm or a joke. For example, If the player
doesn’t work now, you can run it over with
your car would not pass this test.

Following are some of the scenarios of conflicting
judgments observed in this phase of annotation:

• In the case of suggestion forums for specific
domains, like a software developer forum,
domain knowledge is required to distinguish
an implicit non-suggestion from an explicit
suggestion. Consider, for example, the two
sentences, It needs to be an integrated part
of the phones functionality, that is why I put
it in Framework and Secondly, you need to
limit the number of apps that a publisher can
submit with a particular key word. The first
sentence is a description of already existing
functionality and is a context sentence in the
original post, while the second is suggestion
for a new feature.

• No concrete mention of what is being advised
such as in It’d be great if you would work on
a solution to improve the situation.

• At times, there was a confusion between in-
formation (fact) or suggestion (opinion). For
example, You can get a ticket that covers 6

of the National Gallery sites for only about
US$10.

In the final dataset, the sentences that are labeled
as suggestions in Phase 2 of the annotation pro-
cess are labeled as suggestions, while all other sen-
tences are labeled as non-suggestions.

4 SemEval 2019 Shared Task

This is the pilot shared task on suggestion mining,
the task is set as a binary sentence classifi-
cation task, where the classes are suggestion
and non-suggestion. As explained previously,
explicit suggestions are deemed as the suggestion
class, and rest of the sentences are considered
as non-suggestions. The task is further split into
two subtasks, named as A and B. Participating
teams were to participate in at-least one of the two
subtasks.

Datasets: Table 2 lists the details of the cur-
rently datasets released under this task and the
inter-annotator agreement in the phase 2 of
annotations. The class distribution is retained as
obtained from a random sample of the source
dataset used for annotation.
Software suggestion forum: The sentences for
this dataset were scraped from the Uservoice
platform6. Uservoice provides customer en-
gagement tools tobrands, and therefore hosts
dedicated suggestion forums for certain prod-ucts.
The Feedly mobile application forum and the
Windows developer forum are openly accessible.
A sample of posts were scraped and split into
sentences using the Stanford CoreNLP toolkit.
Many suggestions are in the form of requests,
which is less frequent in other domains. The text
contains highly technical vocabulary related to the
software which is being discussed.
Hotel reviews: Wachsmuth et al. (2014) provide
a large dataset of hotel reviews collected from
the TripAdvisor website7. They segmented the

6https://www.uservoice.com/
7https://www.tripadvisor.com/

882

reviews into statements so that each statement
has only one sentiment label and have manually
labeled the sentiments. Statements are equiva-
lent to sentences, and comprise of one or more
clauses. We further annotated these segments as
suggestion and non-suggestion.

Sub-Task A: Train and test dataset belong
to the same domain. The provided domain is sug-
gestion forum sentences for software developers.
Title of the posts are excluded, which are at times
summary of the suggestion.
Sub-Task B: No training dataset is provided,
and the test dataset belongs to a different domain
than the subtask A, i.e. hotel reviews. The
participants could use the training dataset from
subtask A. Participants were not allowed to use
the trial test set for subtask B as a training dataset,
however they were allowed to use trial test set as
a validation dataset.
Additional resources: Participants were allowed
to use additional language resources, with one
exception. Participants will be prohibited from
using additional hand labeled training datasets for
any of the domain.
Evaluation Metrics: Classification performance
of the submitted systems if evaluated on the
basis of F-1 score for the positive class, i.e. the
suggestion class, which ranges from 0 to 1.
Precision suggestion (Psugg): The fraction of
instances which are actually suggestions out of
the ones which are predicted as suggestions.
Psugg = True Positives / (True Positives + False
Positives)

Recall suggestion (Rsugg): The fraction of
suggestion class instances which are correctly
identified out of the total number of suggestions.
Rsugg = True Positives / (True Positives + False
Negatives)

F1 score for the suggestion class is:
F1sugg = 2 * (Psugg * Rsugg) / (Psugg + Rsugg)

Baseline System A rule based classifier is
employed using the existing rules from some of
the related works, the rules which were dependent
on the domain specific variables were excluded
from the baseline. Table 4 provides the rules used
in the baseline system.

Trial vs Test phase: A trial test dataset was

released prior to the final test/evaluation dataset.
The class distribution in the trial set was deliber-
ately balanced in order to not bias the participants
towards a specific class distribution for the
evaluation phase, and keep the class distribution
of trial set different from that of the final test
set. This was because the trial test dataset labels
were released prior to the final evalaution phase,
and it was used as a validation dataset by the
participants.

5 Participating Systems

A total of 33 teams participated in the evaluation
phase, where all teams participated in the subtask
A, and 16 of these also participated in subtask B.
This number is lower than the trial phase submis-
sions, where a total of 50 teams submitted their
results on trial test dataset. Out of 33, 20 teams
also submitted their system description papers. A
summary of these 20 systems is provided in Table
3, listing results and corresponding methods.
The highest F-score achieved was reasonably
high i.e. 0.78 for subtask A, given a very low
number of suggestion sentences in the test dataset
2. The highest F-score for subtask B was 0.858,
where the ratio of suggestion and non-suggestion
sentences in the test set was higher than subtask A.

Top 3 systems: BERT (Devlin et al., 2018)
pre-trained language model remains the common
method in the top three systems submitted in
subtask A, which is one of the state of the art
statistical language models. However, the most
interesting results are provided by the best per-
forming system in subtask B, which uses a rule
based classifier, where rules comprise of both
words and POS tags. The devised rule-based
classifier (Potamias et al., 2019) assigns confi-
dence scores to sentences on the basis of lexical
patterns organised in pre-specified categories and
lexical lists corresponding to each subtask. This
rule based system also performed fairly well in
subtask A, where it achieved rank 5.

Transfer and Unsupervised Learning: While
a variety of pre-trained word embeddings and
language models were employed, BERT remains
the most popular means of transfer learning in the
submitted systems, where 7 out of top 13 systems
for subtask A used BERT.
For subtask B, only two systems used additional

883

Rank Team Name F-score Method Used
Subtask
A

Subtask
B

Subtask A Subtask B

1 2 OleNet@Baidu (Ji-
axiang et al., 2019)

0.7812 0.8579 Ensemble classifier
(Logistic, GRU, FFA,
CNN), with BERT

2 12 ThisIsCompetition
(Park et al., 2019)

0.7778 0.6486 Ensemble classifier.
Attention sentence
encoder. BERT, CNN
based word encoder.

3 5 m y (Yamamoto
and Sekiya, 2019)

0.7761 0.793 Distant supervision
on unlabeled hotel re-
views. BERT, ULMfit

4 NA Yimmon (Zhuang,
2019)

0.7629 NA Customised network,
combination of con-
volution, self-attention
and feed-forward
layers. BERT

5 1 NTUA-ISLab
(Potamias et al.,
2019)

0.7488 0.858 Automatically learned
rules

6 13 YNU-HPCC (Ping
et al., 2019)

0.735 0.503 Ensemble classifier
CNN, BILSTM and
GRU. BERT

7 4 DS (Cabanski,
2019)

0.7273 0.8187 Ensemble classifier
CNN and LSTM.
BERT

9 NA ZQM (Zhou et al.,
2019)

0.715 NA CNN. BERT

10 NA MIDAS (Anand
et al., 2019)

0.7011 Naive Bayes, Logis-
tic Regression, SVM,
LSTM. ULMFit

12 11 NL-FIIT (Pecar
et al., 2019)

0.6816 0.685 Bi-LSTM. ELmO

13 3 Zoho (Prasanna and
Seelan, 2019)

0.6807 0.8194 CNN. GloVe, BERT

14 NA Lijunyi (Li and
Ding, 2019)

0.6776 NA Ensemble classifier,
LSTM (attention-
based), TextCNN,
C-LSTM, Bi-LSTM.
Word2Vec

19 7 WUT (Kli-
maszewski and
Andruszkiewicz,
2019)

0.6293 0.7778 Domain-Adversarial
Neural Networks
(DANN). ELMo

23 6 Taurus (Oostdijk
and Halteren, 2019)

0.5845 0.7925 Rules

27 NA YNU DYX (Ding
et al., 2019)

0.5659 NA BiLSTM, LSTM.
Word2Vec, GloVe

28 9 INRIA (Markov
and De la Clergerie,
2019)

0.5118 0.733 SVM, Logistic Regres-
sion. Hand crafted fea-
tures.

29 17 SSN-SPARKS (S
et al., 2019)

0.494 0.155 MultiLayer Perceptron,
Random Forest and
Convolutional Neural
Network

30 14 DBMS-KU
(Fatyanosa et al.,
2019)

0.473 0.369 SVM, Linear Regres-
sion, Naive Bayes,
CNN. GloVe

31 NA UOL Artificial In-
telligence Research
Group (Ahmed
et al., 2019)

0.3537 NA Containment similarity,
maximum common
subgraph, Tree-based
Pipeline Optimization
Tool (TPOT)

NA 8 Hybrid RNN
(Ezen-Can and
F. Can, 2019)

NA 0.7449 Rule-based patterns,
Glove, Bi-LSTM

32 10 Baseline 0.268 0.7329 Manually observed
rules

Table 3: A summary of systems which are available as system description papers.884

Keywords and phrases
needs to, need to
suggest, recommend, if, i wish, go for,should have,
would, could have been
i would like, i’d like, i would love, I’d love, love to see
there should be, I wish, allow us to
Syntactic clues
If a modal verb or a base form of verb is present in the
sentence. Eg, I would prefer the unit to have a simple
on off switch.

Table 4: Rules for the baseline system

domain specific unlabeled data, i.e. hotel reviews,
and were ranked as 3 and 5. All other submissions
for subtask B relied on pre-trained word embed-
dings and language models.

Class Imbalance: Given that there was a
major difference in the class distribution between
training, trial test, and final test datasets, a mi-
nority of the top ten systems explicitly handle
class imbalance by methods like oversampling
(team MIDAS) and assigning weights to the
predicted probability which are in proportion to
the class distribution of the training data (team
Yimmon). Other top 10 systems performed fairly
well without any additional configuration for class
imbalance in their classifiers.

Types of Classifiers: All systems except
two used statistical classifiers, with most of
them using neural network classifiers. Classifier
ensembles also remain a favoured approach
among the top ten systems. The neural network
classifiers clearly outperformed SVM, Naive
Bayes and Logistic regression. For subtask B,
rule based classifier seem to do fairly well. The
state of the art deep learning classifiers achieved
a similar performance without any manual feature
engineering, as compared to the carefully hand
crafted rules.

6 Summary

We organised the pilot shared task on suggestion
mining, which was framed as a binary text classi-
fication task, with two subtasks representing do-
main dependent and cross-domain/open domain
evaluation. The task achieved a high level of par-
ticipation, and most importantly a wide coverage
in terms of methods and algorithms. The ap-
proaches covered automatically learned rule, care-
fully crafted linguistic features and rules, SOTA
neural network classifiers, and SOTA transfer

learning approaches. This shared task acted as a
catalyst in pushing forward the state of the art for
Suggestion Mining which otherwise received We
plan to extend the task in future years with larger
datasets, and the problem framed as the extraction
of suggestion sentences from source texts in place
of sentence classification. The problem definition
here a better availability of document level context
as compared to the sentence level context.

References
Usman Ahmed, Humera Liaquat, Luqman Ahmed, and

Syed Jawad Hussain. 2019. Suggestion miner at
semeval-2019 task 9: Suggestion detection in on-
line forum using word graph. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sarthak Anand, Debanjan Mahata, Kartik Aggarwal,
Laiba Mehnaz, Simra Shahid, Haimin Zhang, Ya-
man Kumar, Rajiv Ratn Shah, and Karan Uppal.
2019. Midas at semeval-2019 task 9: Suggestion
mining from online reviews using ulmfit. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019).

Caroline Brun and Caroline Hagege. 2013. Suggestion
mining: Detecting suggestions for improvement in
users comments. Research in Computing Science.

Tobias Cabanski. 2019. Ds at semeval-2019 task 9:
From suggestion mining with neural networks to ad-
versarial cross-domain classification. In Proceed-
ings of the 13th International Workshop on Seman-
tic Evaluation (SemEval-2019), Minneapolis, Min-
nesota.

Noam Chomsky. 1957. Syntactic Structures. Mouton
and Co., The Hague.

D. Crystal. 2011. A Dictionary of Linguistics and Pho-
netics. The Language Library. Wiley.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Yunxia Ding, Xiaobing Zhou, and Xuejie Zhang. 2019.
Ynu dyx at semeval-2019 task 9: A stacked bilstm
model for suggestion mining classific. In Proceed-
ings of the 13th International Workshop on Semantic
Evaluation (SemEval-2019).

Li Dong, Furu Wei, Yajuan Duan, Xiaohua Liu, Ming
Zhou, and Ke Xu. 2013. The automated acquisition
of suggestions from tweets. In Twenty-Seventh AAAI
Conference on Artificial Intelligence. AAAI Press.

Aysu Ezen-Can and Ethem F. Can. 2019. Hybrid rnn at
semeval-2019 task 9: Blending information sources

885

for domain-independent suggestion mining. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019).

Tirana Noor Fatyanosa, Al Hafiz Akbar, Maulana Sia-
gian, and Masayoshi Aritsugi. 2019. Dbms-ku at
semeval-2019 task 9: Exploring machine learning
approaches in classifying text as suggestion or non-
suggestion. In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval-2019).

Liu Jiaxiang, Wang Shuohuan, and Sun Yu. 2019.
Olenet at semeval-2019 task 9: Bert based multi-
perspective models for suggestion mining. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019).

Mateusz Klimaszewski and Piotr Andruszkiewicz.
2019. Wut at semeval-2019 task 9: Domain-
adversarial neural networks for domain adaptation
in suggestion mining. In Proceedings of the 13th
International Workshop on Semantic Evaluation
(SemEval-2019).

Junyi Li and Haiyan Ding. 2019. Lijunyi at semeval-
2019 task 9: An attention-based lstm model and en-
semble of different models for suggestion mining
from online reviews and forums. In Proceedings of
the 13th International Workshop on Semantic Eval-
uation (SemEval-2019).

Ilia Markov and Eric Villemonte De la Clergerie. 2019.
Inria at semeval-2019 task 9: Suggestion mining
using svm with handcrafted features. In Proceed-
ings of the 13th International Workshop on Semantic
Evaluation (SemEval-2019).

Alicia Martı́nez Flor. 2005. A theoretical review of the
speech act of suggesting: Towards a taxonomy for
its use in flt. Revista alicantina de estudios ingleses,
No. 18 (Nov. 2005); pp. 167-187.

Samaneh Moghaddam. 2015. Beyond sentiment anal-
ysis: mining defects and improvements from cus-
tomer feedback. In European Conference on Infor-
mation Retrieval, pages 400–410. Springer.

Saif M Mohammad, Svetlana Kiritchenko, Parinaz
Sobhani, Xiaodan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets.
pages 31–41.

Sapna Negi. 2016. Suggestion mining from opinion-
ated text. In Alberto Pozzi, Elisabetta Fersini, Enza
Messina, and Bing Liu, editors, Sentiment Analysis
in Social Networks, chapter 8. Elsevier.

Sapna Negi. 2019. Suggestion mining from text. Ph.D.
thesis, NUI Galway.

Sapna Negi, Kartik Asooja, Shubham Mehrotra, and
Paul Buitelaar. 2016. A study of suggestions in
opinionated texts and their automatic detection. In
Proceedings of the Fifth Joint Conference on Lexi-
cal and Computational Semantics, pages 170–178.
Association for Computational Linguistics.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167, Lisbon,Portugal. Association
for Computational Linguistics.

Sapna Negi, Maarten de Rijke, and Paul Buite-
laar. 2018. Open domain suggestion mining:
Problem definition and datasets. arXiv preprint
arXiv:1806.02179.

Nelleke Oostdijk and Hans van Halteren. 2019. Team
taurus at semeval-2019 task 9: Expert-informed pat-
tern recognition for suggestion mining. In Proceed-
ings of the 13th International Workshop on Semantic
Evaluation (SemEval-2019).

Cheoneum Park, Juae Kim, Hyeon-gu Lee,
Reinald Kim Amplayo, Harksoo Kim, Jungyun
Seo, and Changki Lee. 2019. Thisiscompetition
at semeval-2019 task 9: Bert is unstable for out-
of-domain samples. In Proceedings of the 13th
International Workshop on Semantic Evaluation
(SemEval-2019).

Samuel Pecar, Marian Simko, and Maria Bielikova.
2019. Nl-fiit at semeval-2019 task 9: Neural model
ensemble for suggestion mining. In Proceedings of
the 13th International Workshop on Semantic Eval-
uation (SemEval-2019).

Yue Ping, Jin Wang, and Xuejie Zhang. 2019. Ynu-
hpcc at semeval-2019 task 9: Using a bert and cnn-
bilstm-gru model for suggestion mining. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation (SemEval-2019).

Rolandos Alexandros Potamias, Alexandros Neofytou,
and Georgios Siolas. 2019. Ntua-islab at semeval-
2019 task 9: Mining suggestions in the wild. In
Proceedings of the 13th International Workshop on
Semantic Evaluation (SemEval-2019), Minneapolis,
Minnesota.

Sai Prasanna and Sri Ananda Seelan. 2019. Zoho
at semeval-2019 task 9: Semi-supervised domain
adaptation using tri-training for suggestion mining.
In Proceedings of the 13th International Workshop
on Semantic Evaluation (SemEval-2019).

J Ramanand, Krishna Bhavsar, and Niranjan
Pedanekar. 2010. Wishful thinking - finding
suggestions and ’buy’ wishes from product reviews.
In Proceedings of the NAACL HLT 2010 Workshop
on Computational Approaches to Analysis and
Generation of Emotion in Text, pages 54–61.
Association for Computational Linguistics.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter, and Veselin Stoyanov.
2015. Semeval-2015 task 10: Sentiment analysis
in twitter. In Proceedings of the 9th International
Workshop on Semantic Evaluation, pages 451–463,
Denver, Colorado. Association for Computational
Linguistics.

886

Rajalakshmi S, Angel Deborah S, S Milton Rajendram,
and Mirnalinee T T. 2019. Ssn-sparks at semeval-
2019 task 9: Mining suggestions from online re-
views using deep learning techniques on augmented
data. In Proceedings of the 13th International Work-
shop on Semantic Evaluation (SemEval-2019).

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
Gregor Engels, and Tsvetomira Palakarska. 2014.
A review corpus for argumentation analysis. In
Proceedings of the 15th International Conference
on Computational Linguistics and Intelligent Text
Processing, volume 8404 of LNCS, pages 115–127,
Kathmandu, Nepal. Springer.

Alfan Farizki Wicaksono and Sung-Hyon Myaeng.
2012. Mining advices from weblogs. In Proceed-
ings of the 21st ACM International Conference on
Information and Knowledge Management, CIKM
’12, pages 2347–2350. ACM.

Alfan Farizki Wicaksono and Sung-Hyon Myaeng.
2013. Automatic extraction of advice-revealing sen-
tences for advice mining from online forums. In
Proceedings of the Seventh International Confer-
ence on Knowledge Capture, K-CAP ’13, pages 97–
104. ACM.

Masahiro Yamamoto and Toshiyuki Sekiya. 2019. m y
at semeval2019 task 9: Exploring bert for suggestion
mining. In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval-2019).

Qimin Zhou, Zhengxin Zhang, Hao Wu, and Linmao
Wang. 2019. Zqm at semeval-2019 task9: A single
layer cnn based on pre-trained model for suggestion
mining. In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval-2019),
Minneapolis, Minnesota.

Yimeng Zhuang. 2019. Yimmon at semeval-2019 task
9: Suggestion mining with hybrid augmented ap-
proaches. In Proceedings of the 13th International
Workshop on Semantic Evaluation (SemEval-2019).

887

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 888–892
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

m y at SemEval-2019 Task 9: Exploring BERT for Suggestion Mining

Masahiro Yamamoto
Sony Corporation, Tokyo, Japan.

Masahiro.A.Yamamoto@sony.com

Toshiyuki Sekiya
Sony Corporation, Tokyo, Japan.

Toshiyuki.Sekiya@sony.com

Abstract

This paper presents our system to the
SemEval-2019 Task 9, Suggestion Mining
from Online Reviews and Forums. The goal
of this task is to extract suggestions such as the
expressions of tips, advice, and recommenda-
tions. We explore Bidirectional Encoder Rep-
resentations from Transformers (BERT) focus-
ing on target domain pre-training in Subtask A
which provides training and test datasets in the
same domain. In Subtask B, the cross domain
suggestion mining task, we apply the idea of
distant supervision. Our system obtained the
third place in Subtask A and the fifth place in
Subtask B, which demonstrates its efficacy of
our approaches.

1 Introduction

In SemEval2019 Task 9, participants are required
to build a model which can classify given sen-
tences into suggestion and non-suggestion classes.
We participate in two sub-tasks: domain specific
suggestion mining task (Subtask A1) and cross do-
main suggestion mining task (Subtask B2). In Sub-
task A, the test dataset belongs to the same domain
as the training and development datasets. These
datasets are extracted from the suggestion forum
for windows platform. In Subtask B, training and
test datasets belong to separate domains. More
specifically, the domain of the training dataset is
entries from the windows forum and that of the
test dataset is hotel reviews. Example sentences
used in these tasks are listed in Table 1. For a de-
scription of these tasks please refer to (Negi et al.,
2019).

Subtask A can be viewed as a binary text classi-
fication task. Recently, pre-training models, such
as OpenAI GPI (Radford et al., 2018) and BERT

1https://competitions.codalab.org/competitions/19955
2https://competitions.codalab.org/competitions/19956

Subtask A (windows platform)
P: xbox dev mode companion work ipv6 please...
N: I do not want to convert MSIs.
Subtask B (hotel review)
P: If you can, upgrade to an Ocean Front Room.
N: it doesn’t have a very clean look.

Table 1: Example sentences in the test dataset. P means
a positive sentence, i.e. suggestion sentence and N de-
notes a negative sentence, i.e. non-suggestion sentence.

(Devlin et al., 2018), have gained much attention
with their ability to improve a number of down-
stream tasks. These models are pre-trained using
unlabeled corpora and then fine-tuned on labeled
datasets. We apply BERT to this task because it
has achieved state-of-the-art performance in sev-
eral text classification tasks. The difference to the
original BERT model is that we further pre-train
BERT model using an unlabeled corpus related to
this domain. More concretely, we extract docu-
ments from a windows forum and run additional
steps of pre-training using these documents, start-
ing from the pre-trained BERT model.

In Subtask B, we apply the idea of distant
supervision which has been firstly proposed by
(Mintz et al., 2009). Distant supervision is a
weakly supervised learning framework which tries
to automatically generate noisy training examples.
Specifically, we use the rule based system which is
provided by the task organizer for creating a noisy
training dataset and train the model based on them.

Our system significantly outperforms baseline
methods on two subtasks. These results demon-
strate its efficacy of our approaches, target domain
pre-training in Subtask A and distant supervision
in Subtask B.

888

2 System Description

Our model is built using a recent development of
pre-training model, BERT. In the following, we
describe details of this model first and then explain
our systems in Subtask A and Subtask B.

2.1 BERT

BERT, proposed by (Devlin et al., 2018), has been
shown to improve several tasks such as sentiment
classification, calculating semantic textual similar-
ity task, and recognizing textual entailment task.
This model consists of several Transformer mod-
els (Vaswani et al., 2017) whose parameters are
pre-trained on unlabeled corpora, Wikipedia and
BooksCorpus (Zhu et al., 2015). Pre-training con-
sists of two tasks, masked language modeling and
next sentence prediction, and trained models of
these unsupervised tasks are available.3

For the classification task, we added one layer to
output predictions, suggestion or non-suggestion.
These model parameters were then fine-tuned
based on the labeled training dataset.

2.2 Subtask A

Subtask A is a classical document classifica-
tion task, where training/development/test datasets
consist of the same domain. The data has been col-
lected from feedback posts on universal windows
platform. We mainly use BERT in this task, how-
ever, in the following we describe several tech-
niques to improve the score.

2.2.1 Target Domain Pre-training
The major difference between BERT and our sys-
tem is the target domain pre-training. Typically,
BERT training consists of two parts: pre-training
on the general domain corpus and fine-tuning on
the target task. On the other hand, our system
consists of three training steps: pre-training on
the general domain corpus, pre-training on the
target domain corpus, and fine-tuning on the tar-
get task. More concretely, we further pre-train
the model using a task specific unlabeled corpus
scraped from the universal windows platform de-
veloper feedback site.4 These documents are split
into sentences and the model is then trained on two
unsupervised tasks (i.e. masked language model-
ing and next sentence prediction). We should note

3https://github.com/google-research/bert
4https://wpdev.uservoice.com/forums/110705-universal-

windows-platform

here that we use officially provided pre-trained pa-
rameters as initial model parameters and further
train the model based on target domain documents
to obtain better network parameters.

This target domain pre-training can be consid-
ered as a similar framework of Universal Lan-
guage Model Fine-Tuning (ULMFiT), proposed
by (Howard and Ruder, 2018). In their frame-
work, the model is firstly trained on general do-
main corpus to capture general features. In ad-
dition, the model is further trained on target task
data to learn task specific features, and fine-tuned
on the target task. This procedure is similar to our
system. In other words, our work can be viewed
as the extension of BERT model by using the idea
of ULMFiT.

2.2.2 Model Averaging
(Reimers and Gurevych, 2017) showed that train-
ing deep neural network is sensitive to the initial
weights and (Che et al., 2018) showed the effec-
tiveness of ensembling models trained with dif-
ferent initialization. Furthermore, (Devlin et al.,
2018) empirically showed that ensembling BERT
models trained with different pre-training check-
point leads to performance improvement. We fol-
low this work and train three models with differ-
ent pre-training checkpoint, then ensemble these
models by simply averaging output scores.

2.3 Subtask B

Subtask B is cross-domain suggestion mining,
where train and development datasets belong to
windows platform domain, while the test dataset
belongs to the hotel review domain. In this task,
we do not use the datasets provided in Subtask
A, because we find that models trained on these
datasets tend to have poor performance (see also
Sec. 3.2.2). We instead apply the paradigm of dis-
tant supervision.

Distant supervision is a framework to generate
noisy annotated data automatically and use them
as a training dataset. This idea has been firstly pro-
posed by (Mintz et al., 2009) and well studied in
the field of relation extraction (Riedel et al., 2010;
Hoffmann et al., 2011).

2.3.1 Rule Based Labeling
For distant supervision, the initial labeling method
is needed. In this work, we make use of the of-
ficially provided baseline method as an initial la-
beling tool. This system is based on a rule based

889

Subtask A Subtask B
Train Dev Test Train Dev Test

Suggestions 2,085 296 87 - 404 348
Non Suggestions 6,415 296 746 - 404 476

All 8,500 592 833 - 808 824

Table 2: Statistics of datasets.

method. For example, if a specific word such as
”suggest” is in the sentence, then the sentence is
predicted as a suggestion sentence. For more de-
tails, please see the code in the official repository.5

2.3.2 Model Training Procedure
After the labeled corpus is generated, we trained
a model using this corpus. Here, we do not label
all of the unlabeled sentences via the rule based
system. Instead, we split the sentences into sev-
eral pieces and label one of them by using the rule
based system. A model is trained on the noisy la-
beled dataset and we label another piece through
the trained model. We apply this procedure itera-
tively until the model is trained on the last piece.
More specifically, our training procedure can be
summarized as follows:

1. We prepare the unlabeled hotel review corpus
and split it into N pieces (corpus C1, C2, C3,
..., CN).

2. We apply the baseline method which is pro-
vided by the task organizer to the corpus C1

and treat predicted labels as true labels.
3. The model is then trained using the labeled

corpus C ′
1.

4. We apply the trained model to the corpus C2

and treat predicted labels as true labels.
5. A new model is trained using the labeled cor-

pus C ′
2 and labels of sentences in C3 are pre-

dicted by this model.
6. We iteratively apply the above procedure un-

til the model is trained on the corpus CN .

3 Experiments

Table 2 shows the statistics of datasets which are
used in Subtask A and Subtask B. These datasets
are available at the official repository.6 For evalu-
ating systems, F1 score for the positive class, i.e.
the suggestion class, is employed.

5https://github.com/Semeval2019Task9/Subtask-
B/blob/master/semeval-task9-baseline.py

6https://github.com/Semeval2019Task9

System Dev F1 Test F1
Baseline 0.721 0.267
BERT BASE (Single) 0.845 0.731
BERT BASE (Sgl. + Tgt.) 0.866 0.755
BERT LARGE (Single) 0.867 0.737
BERT LARGE (Sgl. + Tgt.) 0.882 0.759
BERT LARGE (Ens. + Tgt.) 0.890 0.776

Table 3: Results of Subtask A. Single or Sgl. denotes
the single model and Ens. means the ensembled mod-
els. Tgt. denotes the pre-training on the target domain
corpus.

3.1 Subtask A

3.1.1 Settings
We employed the official BERT model. We used
both BASE model which has 12 Transformer lay-
ers, 12 self-attention heads, and 768 hidden size,
and LARGE model which has 24 Transformer
layers, 16 self-attention heads, and 1024 hidden
size. There are 110 million parameters in total
in BASE model and 340 million parameters in
LARGE model.

As for the target domain pre-training, we ob-
tained the windows review corpus and split it into
sentences using NLTK.7 The number of scraped
documents is 2,325 and we used these documents
as the unlabeled corpus for further pre-training the
BERT model.

3.1.2 Results and Discussions
Table 3 shows the results of the experiment. Here,
the baseline method is a rule based method as ex-
plained in Sec. 2.3.1. From Table 3, we can con-
clude the following four things:

First, BERT LARGE model outperformed
BERT BASE model despite of the small size of
the dataset. In general, it has been known that in-
creasing the model size leads to an improvement
on large scale tasks such as machine translation,
and this does not be applied to small scale tasks

7https://www.nltk.org/

890

except for (Devlin et al., 2018). They showed a
similar tendency in another small scale task. These
results demonstrate that large size models improve
results not only on large scale tasks but also on
small scale tasks, if the model has been well pre-
trained.

Second, the effect of the target domain pre-
training is not trivial. The improvement can be
observed in both BASE and LARGE model. In
BASE model, the F1 score is pushed from 0.845 to
0.866 in the development dataset and from 0.731
to 0.755 in the test dataset. In LARGE model, the
score is improved from 0.867 to 0.882 in the de-
velopment dataset and from 0.737 to 0.759 in the
test dataset. These results show that better models
are produced by target domain pre-training even if
we do not have large, domain-specific documents.

Third, ensembling models leads to further per-
formance improvement.

Fourth, Test F1 score is much lower than Dev F1
score. This has also been observed by other teams.
In concrete, many teams have achieved over 0.850
F1 score on the development dataset, however, no
team has achieved over 0.800 F1 score on the test
dataset. It might have something to do with the
small size of the development dataset size or the
difference in the label distribution.

3.2 Subtask B

3.2.1 Settings

In Subtask B, we got unlabeled hotel review docu-
ments provided by (Wachsmuth et al., 2014).8 We
split documents into sentences using the NLTK
package and randomly extracted 500,000 sen-
tences. These sentences were further split into 5
pieces.

We firstly ran the baseline method and automat-
ically labeled 100,000 sentences. These sentences
were used as a training dataset to train the machine
learning model. We used the BERT BASE model
and set the default hyperparameters except for the
training epochs. To avoid over-fitting, we trained
the model for only one epoch.

As described in Sec. 2.3, another 100,000
sentences were automatically labeled using the
trained model and we trained a new model using
this labeled data. We iteratively applied this pro-
cedure and submitted results predicted by the final
model.

8http://argumentation.bplaced.net/arguana/data

System Dev F1 Test F1
Baseline 0.774 0.732
BERT BASE (windows) 0.308 0.419
BERT BASE (1st model) 0.800 0.785
BERT BASE (5th model) 0.817 0.793

Table 4: Results of Subtask B. BERT BASE (win-
dows) is the model trained on windows corpus pro-
vided in Subtask A.

3.2.2 Results and Discussions
Table 4 shows the results of the experiment.
As you can see in Table 4, BERT BASE (win-
dows), the model trained on the other domain cor-
pus, shows poor performance while the baseline
method has achieved a much better score. This
motivated us to apply the idea of distant supervi-
sion.

The model based on distant supervision signif-
icantly outperformed the baseline model. This re-
sult shows that the distant supervision idea can be
applied successfully in the cross domain sugges-
tion mining task. Furthermore, we can see that
our iterative approach leads to more performance
improvement (from 0.800 to 0.817 in the develop-
ment dataset and 0.785 to 0.793 in the test dataset).
We currently do not know why the F1 score has
been improved, however, one interpretation could
be that our iterative framework avoids over-fitting
to the one model and learns more general decision
boundaries. A detailed study of this effect is future
work.

4 Conclusion

This paper explains our submission to Se-
mEval2019 Task 9, Subtask A and Subtask B. We
explored BERT models focusing on the target do-
main pre-training in Subtask A and the idea of
the distant supervision in Subtask B. Our approach
obtained the third place in Subtask A and the fifth
place in Subtask B.

In the future, we will further investigate the ef-
fect of these approaches in other tasks.

References

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better ud pars-
ing: Deep contextualized word embeddings, ensem-
ble, and treebank concatenation. arXiv preprint
arXiv:1807.03121.

891

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies-
Volume 1, pages 541–550. Association for Compu-
tational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 328–339.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 2-Volume 2, pages 1003–1011. Association for
Computational Linguistics.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Alec Radford, Karthik Narasimhan, Time Salimans,
and Ilya Sutskever. 2018. Improving language un-
derstanding with unsupervised learning. Technical
report, OpenAI.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. arXiv
preprint arXiv:1707.09861.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 148–163. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
Gregor Engels, and Tsvetomira Palakarska. 2014. A
review corpus for argumentation analysis. In In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 115–127.
Springer.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE
international conference on computer vision, pages
19–27.

892

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 893–899
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval 2019 Task 10: Math Question Answering
Mark Hopkins

Department of Mathematics
Reed College

hopkinsm@reed.edu

Ronan Le Bras and Cristian Petrescu-Prahova
Allen Institute for Artificial Intelligence

{ronanlb,cristipp}@allenai.org

Gabriel Stanovsky and Hannaneh Hajishirzi and Rik Koncel-Kedziorski
Allen School of Computer Science and Engineering

University of Washington
{gabis, hannaneh,kedzior}@uw.edu

Abstract

We report on the SemEval 2019 task on math
question answering. We provided a question
set derived from Math SAT practice exams, in-
cluding 2778 training questions and 1082 test
questions. For a significant subset of these
questions, we also provided SMT-LIB logical
form annotations and an interpreter that could
solve these logical forms. Systems were eval-
uated based on the percentage of correctly an-
swered questions. The top system correctly
answered 45% of the test questions, a con-
siderable improvement over the 17% random
guessing baseline.

1 Overview

Over the past four years, there has been a surge
of interest in math question answering. Research
groups from around the globe have published pa-
pers on the topic, including MIT (Kushman et al.,
2014), University of Washington (Hosseini et al.,
2014; Koncel-Kedziorski et al., 2015), National
Institute of Informatics, Japan (Matsuzaki et al.,
2014), University of Illinois (Roy and Roth, 2015),
Microsoft Research (Shi et al., 2015; Upadhyay
and Chang, 2016), Baidu (Zhou et al., 2015), Ari-
zona State University (Mitra and Baral, 2016), KU
Leuven (Dries et al., 2017), Carnegie Mellon Uni-
versity (Sachan et al., 2017), Tencent (Wang et al.,
2017), and DeepMind (Ling et al., 2017).

Math question answering has several attractive
properties that have rekindled this interest:

1. It is easy to evaluate. Usually there is a sin-
gle correct answer for a given question, either
numeric or multiple-choice.

2. In order to achieve robust results, systems
require some (explicit or implicit) seman-
tic representation of the question language.
Consider the first question in Figure 1. The

Closed-vocabulary algebra: Suppose 3x +
y = 15, where x is a positive integer. What
is the difference between the largest possible
value of y and the smallest possible value of
x, assuming that y is also a positive integer?

Open-vocabulary algebra: At a basketball
tournament involving 8 teams, each team
played 4 games with each of the other teams.
How many games were played at this tourna-
ment?

Geometry: The lengths of two sides of a tri-
angle are (x − 2) and (x + 2), where x > 2.
Which of the following ranges includes all
and only the possible values of the third side
y? (A) 0 < y < x (B) 0 < y < 2x (C)
4 < y < 2x

Figure 1: Example math questions from different gen-
res.

correct answer (11) has a subtle relationship
to the other quantities mentioned in the text
(3 and 15). There is no obvious shortcut (like
word association metrics on a bag-of-words
representation of the question) to guessing
11.

3. Math questions exhibit interesting semantic
phenomena like cross-sentence coreference
and indirect coreference (e.g. in the geom-
etry question from Figure 1, “the third side”
refers to a triangle introduced in a previous
sentence).

This task sought to unify the somewhat divergent
research efforts and to address certain recognized
data issues that have developed in the nascent

893

Figure 2: Sample of questions of the AQuA dataset.

Closed Open Geometry Total
Algebra Algebra

test questions 476 216 335 1082
training questions 1068 353 701 2778

Table 1: Data resources for the three subtasks. Note that the fourth column (“Total”) also includes a small minority
of questions that do not fall into the three major categories.

phase of this subfield. We discuss these issues in
the next section.

2 Existing Resources

Existing datasets are either scraped from the web
and filtered (Kushman et al., 2014; Hosseini et al.,
2014; Roy and Roth, 2015; Shi et al., 2015) or
crowdsourced (Ling et al., 2017).

The scraped datasets have been observed to be
narrow in semantic scope, and to exhibit consid-
erable lexical overlap from question to question
(Koncel-Kedziorski et al., 2015; Roy and Roth,
2016). Also, they tend to be curated to showcase
proposed models (e.g. by requiring every quantity
present in the semantic representation to be explic-
itly mentioned in the question).

DeepMind (Ling et al., 2017) provided a public,
large-scale dataset called AQuA, consisting of ap-
proximately 100,000 questions. This dataset was
created by using crowdsourcing to augment a nu-
cleus of web-scraped questions. Unfortunately,
the result is extremely redundant and noisy. Fig-
ure 2 shows a typical excerpt from the sorted list
of AQuA questions. Note the amount of repeated
boilerplate and the low quality of the language.
While AQuA may prove useful for training, it is
inappropriate as an evaluation set.

3 Resource: Train/Test Data from Math
SAT practice tests

Over the course of the Euclid project (Hosseini
et al., 2014; Seo et al., 2014, 2015; Koncel-
Kedziorski et al., 2015; Hopkins et al., 2017) at
the Allen Institute for Artificial Intelligence, we

curated a sizable collection of practice exams for
Math SAT study guides. These were originally
used as training and test in a paper that appeared
at EMNLP (Hopkins et al., 2017). At the time,
this dataset consisted of 648 training questions (12
practice tests) and 1082 test questions (21 practice
tests). For this task, we expanded the training set
to include 2778 training questions (over 50 prac-
tice tests).

Because the data is a compilation of SAT prac-
tice exams in their entirety, its distribution of top-
ics corresponds to (at least one authority’s idea of)
the breadth of knowledge expected of an incom-
ing college student. It is curated by impartial third
parties (the study guide publishers) and is thus not
a priori biased towards any particular model. The
language is high quality and diverse.

3.1 Data Collection Process and Format

First, practice exams were scanned from physi-
cal printed copies of SAT study guides by Kaplan,
McGraw-Hill, and the Princeton Review, among
others. We also processed official PDF practice
exams issued by the College Board. Then, trained
workers manually encoded each exam as a LaTeX
document, attempting to preserve the original for-
matting as much as possible. PDFs generated from
the LaTeX documents were compared against the
original scans to ensure quality and corrections
were made as necessary.

Finally, the LaTeX documents were automati-
cally converted into the JSON format shown in
Figure 3. Diagrams from the exams are stored as
Portable Network Graphics (PNG) files in a com-

894

Figure 3: JSON representation of a math SAT question.

mon directory. If a question refers to a diagram,
then this is captured by the “diagramRef” field.
Not all questions are multiple-choice. For non-
multiple choice questions, the “answer” field con-
tains the answer itself (as a string) rather than the
choice key.

3.2 Subtasks

The Math SAT contains three broadly discernible
subcategories (examples of which are provided in
Figure 1):

1. Closed-vocabulary algebra (approxi-
mately 44% of the questions): Algebra
word problems described with a circum-
scribed mathematical vocabulary. Note that
the language and semantics can still be quite
involved (see the first example in Figure 1).

2. Open-vocabulary algebra (approximately
20% of the questions): Algebra word prob-
lems described with an open-ended vocabu-
lary, often involving real-world situation de-
scriptions.

3. Geometry (approximately 31% of the
questions): In contrast to the algebra subdo-
mains, these often involve diagrams and thus
require methods that perform joint reasoning

over language and images, e.g. (Seo et al.,
2014).

As part of the digitization process described in the
previous section, we have also tagged the ques-
tions based on this categorization. A small mi-
nority (approximately 5%) of questions do not fall
into any of these categories.

This categorization provides the basis for three
subtasks: (1) closed algebra QA, (2) open alge-
bra QA, and (3) geometry QA. Note that the al-
gebra subtasks do not involve diagrams (algebra
questions involving diagrams are classified into
the small “other” category). Table 1 shows the
number of questions collected, organized by sub-
task.

4 Additional Resource: Logical Forms
for Closed Algebra

To make it easier for researchers to build systems,
we provided logical form annotations for a major-
ity of the training questions in the closed algebra
subtask, as well as an engine that solves these log-
ical forms. The logical form language was intro-
duced in (Hopkins et al., 2017). Figure 4 shows an
example logical form for the question “The sum
of a two-digit number and its reverse is 121. What
is the number?” The logical form language adopts

895

Figure 4: Logical form annotation for the question
“The sum of a two-digit number and its reverse is 121.
What is the number?”

the popular SMT-LIB syntax (Barrett et al., 2017),
to facilitate language expansion and the building
of alternate engines.

As part of the SemEval task, we provided:

• Logical form annotations for 50% of the
closed algebra training data.

• Thorough documentation of the logical form
language.

• An interpreter that can solve all provided an-
notations.

The logical form interpreter is an extended version
of the one described in (Hopkins et al., 2017). This
interpreter is written in Scala. We provide Scala,
Java, and Python APIs.

Note: the logical form annotations and inter-
preter were provided to help lower the barrier to
entry, but participants were not required to use
them.

5 Evaluation Methodology and Baseline

For each subtask, the main evaluation metric was
simply question accuracy, i.e. the number of cor-
rectly answered questions. We provided a Python
script that took as input a list of JSON datum { id:
<id>, response: “<response>” }, where <id> is
the integer index of a question and <response> is
the guessed response (either a choice key or a nu-
meric string). Its output was the number of correct
responses divided by the total number of questions
in the subtask.

While the main evaluation metric included no
penalties for guessing, we also computed a sec-
ondary metric that implements the actual evalua-
tion metric used to score these SATs. This metric
is the number of correct questions, minus 1/4 point
for each incorrect guess. We include this met-
ric to challenge participants to investigate high-
precision QA systems.

For each subtask, we provided a simple Python
baseline that reads in a JSON file containing

the evaluation questions, and randomly guesses a
choice key for each multiple choice question, and
“0” for each numeric-answer question.

To train their systems, participants were per-
mitted to use the following public resources: (a)
the provided SAT training data and annotations,
(b) data collected in MAWPS (Koncel-Kedziorski
et al., 2016), (c) AQuA. Participants were also
welcome to use standard public corpora for train-
ing word vector representations, language models,
etc.

6 Evaluation

Table 2 shows the teams (and their affiliations) that
submitted systems that beat the baseline in at least
one task. Tables 3, 4, 5, and 6 compares the perfor-
mance of these systems. The AiFu systems (Ding
et al., 2019) outperformed the other entries by a
wide margin.

6.1 The AiFu System

The AiFu system (Ding et al., 2019), like other
math question answering systems designed for
complex domains (Shi et al., 2015; Hopkins et al.,
2017), followed the architecture in Figure 5. First,
a natural language question is transformed into a
logical form via a “translator” (semantic parser),
then this logical form is given to a symbolic solver
(after a suitable format conversion).

Like the previous semantic parsing approaches,
the AiFu semantic parser is engineered manually,
using the training set as a guide.

AiFu also incorporates a neural network-based
system trained to guess the answer to a multiple
choice question based on its question word se-
quence. Although this system does not work well
independently, it boosts the performance of the
overall system when used as a fallback for ques-
tions that go unanswered by the symbolic system.

The AiFu team submitted two variants of their
system, referred to in the comparison tables as
AiFu 1 and AiFu 2.

6.2 The ProblemSolver System

The ProblemSolver system (Luo et al., 2019) com-
bines two approaches.

The first approach is a neural sequence-to-
sequence translator that maps a question, e.g. “If
x + 345 = 111, what is the value of x”, to a re-
sponse, e.g. “-234”. Because the provided data
is insufficiently large for training the sequence-

896

Team Name Affiliation Citation
AiFu iFLYTEK Research, Shanghai Research Center (Ding et al., 2019)

for Brain Science and Brain-Inspired Intelligence,
Fudan University, Massey University,

University of Science and Technology of China
ProblemSolver University of Tuebingen, Germany (Luo et al., 2019)

FAST National University of Computer
and Emerging Sciences, Pakistan

Table 2: Teams whose entries exceeded baseline performance on at least one subtask. FAST (and the two
anonymous systems) did not provide system description papers.

Figure 5: The architecture of AiFu. Figure taken from (Ding et al., 2019).

Team Accuracy Penalized
AiFu 1 .454 (1) .368 (1)
AiFu 2 .376 (2) .280 (2)

Anonymous 1 .208 (3) .089 (3)
Anonymous 2 .196 (4) .074 (4)

FAST .173 (5) .007 (6)
baseline .170 (6) .043 (5)

ProblemSolver .149 (7) -.021 (7)

Table 3: Results on the overall task (only showing
entries that exceeded baseline performance on at least
one subtask). System rank on each metric is shown in
parentheticals.

Team Accuracy Penalized
AiFu 1 .706 (1) .658 (1)
AiFu 2 .632 (2) .576 (2)

Anonymous 2 .196 (3) .075 (3)
Anonymous 1 .187 (4) .064 (4)

FAST .183 (5) .020 (5)
ProblemSolver .157 (6) -.012 (7)

baseline .146 (7) .015 (6)

Table 4: Results on the closed-vocabulary algebra sub-
task (only showing entries that exceeded baseline per-
formance on at least one subtask). System rank on each
metric is shown in parentheticals.

to-sequence model, they use data augmentation
methods to increase the data size to over 600K
questions.

The second approach is an adaptation of the
arithmetic tree approach of (Roy and Roth, 2015)

Team Accuracy Penalized
AiFu 1 .251 (1) .145 (1)
AiFu 2 .247 (2) .140 (2)

Anonymous 2 .247 (2) .140 (2)
Anonymous 1 .196 (4) .079 (4)

baseline .174 (5) .052 (5)
FAST .146 (6) -.025 (6)

ProblemSolver .146 (6) -.025 (6)

Table 5: Results on the open-vocabulary algebra sub-
task (only showing entries that exceeded baseline per-
formance on at least one subtask). System rank on each
metric is shown in parentheticals.

Team Accuracy Penalized
AiFu 1 .265 (1) .145 (1)

Anonymous 1 .216 (2) .099 (2)
baseline .212 (3) .095 (3)
FAST .159 (4) -.009 (6)

Anonymous 2 .152 (5) .023 (4)
ProblemSolver .152 (6) -.018 (7)

AiFu 2 .134 (7) -.003 (5)

Table 6: Results on the geometry subtask (only show-
ing entries that exceeded baseline performance on at
least one subtask). System rank on each metric is
shown in parentheticals.

to Math SAT question answering.

The combination of these techniques provides
a minor improvement over the random guessing
baseline.

897

Figure 6: Example diagram accompanying the ques-
tion “In the circle above, the length of an arc is 10, and
there are two radii shown extended by 5 units outside
the circle. If the length of arc Q is x, what must x
equal?”

7 Discussion

Lately, math question answering seems to have bi-
furcated into two distinct approaches:

1. Simple, elegant machine learning approaches
that work mainly on narrowly-scoped
datasets with considerable redundancy.

2. Engineering-heavy, rule-based approaches
that significantly outperform ML approaches
on more realistic datasets, but are laborious
to scale to new domains.

This SemEval task provides additional examples
of these two approaches. As NLP researchers, we
could focus on narrow-scope datasets for the time
being1, improving the performance of scalable
ML approaches on these datasets. However the
challenges presented by more difficult datasets,
like the Math SAT data provided in this task, are
intriguing and important. For instance:

How do we synthesize information that comes
from heterogenous sources (e.g. from text and
diagrams)?

Many of the geometry questions require a gener-
alized notion of coreference resolution that spans

1Indeed, this seems to be the prevailing opinion of the
hundredsome task participants who abandoned the task after
obtaining the data.

language and vision. Figure 6 shows an example
diagram that accompanies the question “In the cir-
cle above, the length of an arc is 10, and there
are two radii shown extended by 5 units outside
the circle. If the length of arc Q is x, what must
x equal?”. It remains an open question how to
reliably resolve textual references like “the circle
above” and “two radii shown” with diagram com-
ponents. (Seo et al., 2014, 2015) provide a start-
ing point for this area, but their dataset consisted
of less than 100 diagrams. Hopefully our larger
resource can help spur research into this research
question.

How can machine learning be leveraged to
reduce (or eliminate) the burden of
engineering semantic parsers for complicated
domains?

Given that the only techniques that have so far
found success on Math SAT question answering
(Hopkins et al., 2017; Ding et al., 2019) have in-
volved semantic parsers with engineered rules, it
suggests that one path forward might be to use ma-
chine learning to facilitate the engineering or elici-
tation of such rules for low-resource QA domains.

How do we create ML systems for diverse
datasets for which we do not (and will never
have) millions of training instances?

Despite the huge industry surrounding the Math
SAT, it was still challenging to find and digitize
over 50 distinct practice exams. Having millions
of instances is not feasible. We argue that there
will always be a long tail of domains for which we
do not have millions of training instances, and we
need ways to induce performant systems on this
scale of data.

8 Conclusion

We have digitized over 70 SAT practice exams as
a resource for driving research in math (and low-
resource) question answering. We have also pro-
vided logical form annotations for approximately
half of the closed-vocabulary algebra questions in
the training data. The top system in our compe-
tition, AiFu, correctly answered 45% of the test
questions, compared to a random guessing base-
line of 17%. Our data and logical forms are avail-
able at https://github.com/allenai/semeval-2019-
task-10, subject to the terms and conditions speci-
fied in that repository.

898

References
Clark Barrett, Pascal Fontaine, and Cesare Tinelli.

2017. The SMT-LIB Standard: Version 2.6.
Technical report, Department of Computer Sci-
ence, The University of Iowa. Available at
www.SMT-LIB.org.

Keyu Ding, Yifan Liu, Yi Zhou, Binbin Deng,
Chaoyang Peng, Dinglong Xue, Qinzhuo Wu,
Qi Zhang, and Enhong Chen. 2019. Aifu at semeval-
2019 task 10: A symbolic and sub-symbolic inte-
grated system for sat math question answering. In
SemEval-2019 Task 10.

Anton Dries, Angelika Kimmig, Jesse Davis, Vaishak
Belle, and Luc De Raedt. 2017. Solving probability
problems in natural language. In International Joint
Conference on Artificial Intelligence.

Mark Hopkins, Cristian Petrescu-Prahova, Roie Levin,
Ronan Le Bras, Alvaro Herrasti, and Vidur Joshi.
2017. Beyond sentential semantic parsing: Tack-
ling the math sat with a cascade of tree transducers.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
795–804.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In EMNLP.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. TACL, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1152–1157.

Nate Kushman, Luke S. Zettlemoyer, Regina Barzilay,
and Yoav Artzi. 2014. Learning to automatically
solve algebra word problems. In ACL.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Xuefeng Luo, Alina Baranova, and Jonas Biegert.
2019. Problemsolver at semeval-2019 task
10: Sequence-to-sequence learning and expression
trees. In SemEval-2019 Task 10.

Takuya Matsuzaki, Hidenao Iwane, Hirokazu Anai,
and Noriko H Arai. 2014. The most uncreative ex-
aminee: A first step toward wide coverage natural
language math problem solving. In AAAI, pages
1098–1104.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems.
In ACL.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In EMNLP.

Subhro Roy and Dan Roth. 2016. Unit dependency
graph and its application to arithmetic word problem
solving. arXiv preprint arXiv:1612.00969.

Mrinmaya Sachan, Avinava Dubey, and Eric P. Xing.
2017. From textbooks to knowledge: A case study
in harvesting axiomatic knowledge from textbooks
to solve geometry problems. In EMNLP.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and
Oren Etzioni. 2014. Diagram understanding in ge-
ometry questions. In AAAI.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren
Etzioni, and Clint Malcolm. 2015. Solving geome-
try problems: Combining text and diagram interpre-
tation. In EMNLP.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In EMNLP.

Shyam Upadhyay and Ming-Wei Chang. 2016. An-
notating derivations: A new evaluation strategy
and dataset for algebra word problems. CoRR,
abs/1609.07197.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In
EMNLP.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using
quadratic programming. In EMNLP.

899

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 900–906
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

AiFu at SemEval-2019 Task 10: A Symbolic and Sub-symbolic Integrated
System for SAT Math Question Answering

Keyu Ding1,2,6, Yifan Liu1,2, Yi Zhou3,5, Binbin Deng1,2, Chaoyang Peng1,2,
Dinglong Xue1,2, Qinzhuo Wu3, Qi Zhang3

and Enhong Chen5

1iFLYTEK Research
2State Key Laboratory of Cognitive Intelligence, iFLYTEK, P.R. China

3Shanghai Research Center for Brain Science and Brain-Inspired
Intelligence/ZhangJiang Lab

4School of Computer Science, Shanghai Key Laboratory of Intelligent
Information Processing, Fudan University

5School of Natural and Computational Sciences, Massey University
6University of Science and Technology of China
{kyding,yfliu7,bbdeng,zypeng,dlxue}@iflytek.com

yzhou@bsbii.cn
{qzwu17,qz}@fudan.edu.cn

cheneh@ustc.edu.cn

Abstract

AiFu has won the first place in the SemEval-
2019 Task [10] - ”Math Question Answer-
ing”(Hopkins et al.) competition. This paper
is to describe how it works technically and to
report and analyze some essential experimen-
tal results.

1 Introduction

Recently, math question answering has attracted
a lot of attention in the AI community, both in
academia and in industry (Matsuzaki et al., 2017)
(Wang et al., 2017) (Huang et al., 2016) (Wang
et al., 2018) (Hosseini et al., 2014)(Huang et al.,
2018a) (Huang et al., 2018b) (Kushman et al.,
2014) (Liang et al., 2017) (Mitra and Baral, 2016)
(Zhou et al., 2015) (Roy and Roth, 2017)(Hopkins
et al., 2017). On one side, it raises a difficult yet
workable challenge for the current development
of AI research. In order to tackle this challenge,
one has to integrate and advance many subareas
in AI including knowledge representation and rea-
soning, machine learning, natural language under-
standing and image understanding. On the other
side, math question answering itself has important
commercial value in the AI+Education industry.

Against this backdrop, SemEval-2019 orga-
nizes a competition on math question answering,
namely Task 10 (Hopkins et al.). In this task,

an opportunity is provided for Math Question-
Answering systems to test themselves on a bench-
mark that consists of many math questions col-
lected from the US Math Scholastic Achievement
Test (SAT).

We have implemented a prototype system,
called AiFu, to tackle this challenge, and it has
won the first place at the end. AiFu is an in-
tegrated system that combines the state-of-the-art
approaches from many important subareas in AI,
and more importantly, it also develops and justifies
some new ideas and techniques.

This paper is to describe how AiFu works tech-
nically and to report and analyze some essential
experimental results. In the next section, we go
through the technical details of AiFu that consists
of many essential components including represen-
tation, reasoning and natural language understand-
ing. In Section 3, we report our experimental re-
sults and shed new insights on why AiFuworks in
some cases but not in others. Finally, we conclude
this paper and point out some future directions.

2 Method

Figure 1 depicts the overall architecture of AiFu.
Given a mathematical question, a translator is used
to convert it into its internal representation, which
is sent to an encoder to further convert it into a
math representation that can be directly used by

900

the SMT solver Z3 (De Moura and Bjørner, 2008).
Finally, by calling Z3, the solution of the original
mathematical question is obtained.

2.1 Internal Representation
We use an internal representation language, called
Verb Connection Formula (VCF), to bridge the
gap between mathematical questions and their for-
mal mathematical counterparts.

VCF is based on assertional logic (Zhou, 2017),
in which all mathematical objects are formalized
as either individuals (constants and variables), or
concepts, or operators (functions and relations).
For instance, the natural language sentence “the
integer x equals to 3” is transformed to “Inte-
ger(x), Equal(x,3)” in VCF, where “x” and “3” are
individuals, “Integer” is a concept and “Equal” is a
Boolean operator, i.e., relation. Meta level math-
ematical concepts such as equation and inequal-
ity are represented as concepts in VCF too. For
instance, an equation 9 + 3n+2 = m in the ques-
tion is transformed to “Equation(9+3**(n+2)=m)”
in VCF, and an inequality xyz 6= 0 is trans-
formed into “Inequality(x*y*z!=0)”. VCF uses
the symbol : − for representing the implica-
tion relationship between statements. For in-
stance, the VCF representation of the natural lan-
guage sentence “When n is a positive integer,
9 + 3n+2 = m” is “(Equation(9+3**(n+2)=m)):-
(Positive(n),Integer(n))”.

2.2 Translator
The translator transforms mathematical questions
to corresponding statements in VCF.
Segmentation and POS tagging: Our translator
uses the Stanford NLP parser (Chen and Man-
ning, 2014) for segmentation and POS tagging.
In order to handle Math questions, we introduce
two new POS taggers, namely ”FORM” for in-
dicating Math formula and ”VAL” for indicating
variable. For example, the result of POS tagging
of ”When n is a positive integer, 9 + 3n+2 =
m” is ”When/WRB n/VAL is/VBZ a/DT posi-
tive/JJ integer/NN ,/PUNCTUATION 9 + 3n+2 =
m/FORM”.
Semantic parsing:

We adopt a top-down rule-based template ap-
proach for semantic parsing, i.e., translating math
questions in English to statements in VCF. As
shown in Table 1, we consider five basic clause
types, corresponding to five syntactic structures
respectively.

Type Description Examples
LEAF a single word ”If”,”percent”,

”of”
NOUN entity with ad-

junct words
”125 percent”

PREP relation with
multiple entities

125 percent of x

PRED clause with oper-
ators

”125 percent of x
is 150”

CONJ causal connec-
tion between two
clauses

”if 125 percent
of x is 150,what
is x percent of
75”

Table 1: Clause types

Algorithm 1 illustrates how to construct the se-
mantic parsing tree for each sentence in the ques-
tion from top to down. The root must be the sen-
tence itself. Each node is assigned with one of
the five types according to hand-crafted rule-based
templates. Based on which, we decompose it into
several child nodes correspondingly as different
clause types result in different kinds of decompo-
sition according to the templates. Note that each
leaf node must be assigned with LEAF.

Algorithm 1: Semantic parsing algorithm
input : a sentence in the question
output: a list of VCF statements

1 root = original sentence;
2 Stack = Empty;
3 VCF Stack = Empty;
4 Stack.push(root);
5 while Stack is not Empty do
6 current node = Stack.pop();
7 templates = get valid templates(current node);
8 template = choose template(templates);
9 current node.VCF template = get VCF template(template);

10 VCF Stack.push(current node);
11 nodes = get child nodes(template,current node);
12 for node in nodes do
13 current node.child nodes.add(node);
14 if type(node) != LEAF then
15 Stack.push(node);
16 end
17 end
18 end
19 while VCF Stack is not Empty do
20 current node = VCF Stack.pop();
21 current node.VCF=get VCF from template and child node();
22 end
23 return root.V CF

Figure 2 illustrates a semantic parsing tree
example, in which each node is associated
with one of the five basic types. Accord-
ing to this semantic parsing tree, we compute
the resulting VCF statements from bottom to
up recursively. For instance, the node “125
percent/NOUN” is converted into “NumberPer-

901

Question Translator
Internal

Representation Encoder
Math

Representation Z3 Solver Solution

Figure 1: The architecture of AiFu

Figure 2: Semantic parsing tree: a case study

cent(125)”, while the node “What is x per-
cent of 75/PRED” is converted into “NumberPer-
cent(x), Of(75,x,rs a), Be(rs b,rs a), What(rs b)”.
Finally, the root node, i.e., the original sen-
tence, is converted into “(NumberPercent(x),
Of(75,x,rs a), Be(rs b,rs a), What(rs b)) :- (Num-
berPercent(125), Of(x,125,rs c), Be(rs c,150))”.

2.3 Encoder
The encoder further converts statements in VCF
to formulas that can be accepted by Z3. Again,
we use a rule based template approach for this
purpose. There are two types of encoding tem-
plates. One is used to unify all different kinds of
concepts/operators in VCF to a set of predefined
concepts/operators that are accepted by Z3. For
instance, a VCF statement “add(3,5,x)” is normal-
ized as “Equal(3+5,x)”. While the operator “add”
is not a Z3 acceptable one, “Equal” and “+” are.
Another type of template is to unify new entities
that are created by VCF. For instance, the sentence
“x is an integer” is converted to VCF statements
“Be(rs a,x),Integer(rs a)” in the translator, which
is further encoded as “Integer(x)” in the encoder
by unifying the two entities “x” and “rs a”. At first
glance, it seems tedious to introduce extra entities
in the translator. However, this is exactly the rea-
son why we need an intermediate representation
language VCF because machines cannot directly

understand what “x is an integer” really means.
By using the encoding templates, the VCF

statements obtained in Figure 2 is converted into
“Var: x:Real, Equations: x*125% = 150, Tar-
get: x%*75”, which can be directly sent to the Z3
solver.

A large portion of SAT math questions can be
done in this way, thus are suitable to use Z3 as the
solver. Nevertheless, for some mathematical con-
cepts such as progression, set, list and odd/even
numbers, we need to make extra effort to formal-
ize them in the modulo theory linear arithmetic.
For instance, Odd(x) (“x is an odd number”) can
be converted into Equation(x%2 = 1). While the
former cannot be directly encoded in linear arith-
metic, the latter can.

2.4 Z3 Solver

Similar to some previous approaches (Hopkins
et al., 2017), we also call the Z3 solver1 as our
reasoning engine. Z3 is a widely used Satisfia-
bility Modulo Theories (SMT) solver, for solv-
ing problems that are represented in classical logic
augmented with modulo theories, e.g., linear arith-
metic.

However, Z3 has inherited difficulties on solv-
ing nonlinear equations, e.g., 3

√
x − 7 = 20. In

1https://github.com/Z3Prover/z3

902

this case, we use SymPy 2 (Meurer et al., 2017),
a Python library for symbolic mathematics, as the
backup.

2.5 More on Geometry and Open Categories

For answering geometry questions, one has to un-
derstand diagrams. For this purpose, we first
use the Optical Character Recognition (OCR)
tool pytesseract3 to obtain character information.
Then, we follow the combined text and diagram
understanding approach GeoS (Seo et al., 2015).

Understanding open-vocabulary algebra ques-
tions is a critical challenge. At first glance, it
seems that the SAT open-vocabulary algebra sub-
dataset is quite similar to Math23k (Wang et al.,
2017). Hence, we attempted to use a Seq2Seq ap-
proach (Wang et al., 2017) that transforms math
questions directly to their corresponding mathe-
matical meanings. However, this attempt was not
successful, mainly because of the following two
reasons. First, questions in Math23k are much
simpler. Second, Math23k is much larger in terms
of volume.

Hence, we shifted back to a rule-based ap-
proach. We first use SVM to classify the type
of questions. Based on which, regular expres-
sions are used to transform questions in natural
languages to statements in VCF, similar to that
for the closed category described above. It turns
out that its performance is slightly better than the
Seq2Seq approach, yet still far from satisfactory.

2.6 Sub-symbolic System

We call the framework (see Figure 1) described
above the “symbolic system” as it mainly uses a
symbolic approach. However, some math ques-
tions remain unsolved. Hence, we also implement
a guess system as a complementary counterpart.
A simple guess system would be just a random
guesser. Nevertheless, in AiFu, we use a neural-
network based sub-symbolic approach, called the
“sub-symbolic system” instead based on sentence
embedding.

We treat the math question answering problem
as a classification problem. We combine the ques-
tion as well as a candidate choice into one sen-
tence, and use a sentence embedding approach In-
ferSent (Conneau et al., 2017) to embed it into a
vector of 4096 dimensions. Then, we construct

2https://www.sympy.org/en/index.html
3https://pypi.org/project/pytesseract/

a simple four-layer fully-connected feed-forward
neural network, in which the input is the 4096-
dimension sentence embedding, the output is the 5
classes of answers and the two hidden layers both
contain 1024 nodes. Finally, we train the network
with the training dataset provided by the organizer.

3 Results

Table 2 reports the overall final results of AiFu
on the test dataset. “Symb” is the symbolic sys-
tem described from Sections 2.2 to 2.5, “Sub-S”
is the sub-symbolic system described in Section
2.6, and “Integ” is the integrated system AiFu
that combines them both by answering those ques-
tions not answered by the symbolic system with
the sub-symbolic system. While “Acc” refers to
the standard accuracy, “Pena Acc” refers to the pe-
nalized accuracy by deducting 0.25 points each for
a wrong answer.

All in all, AiFu achieves an overall accuracy
of 45% as well as an overall penalized accuracy
of 36%. In particular, on the closed-vocabulary
algebra category, it achieves a relatively high ac-
curacy 70% (66% for penalized accuracy in con-
trast). The symbolic system plays a more criti-
cal role as it alone achieves 63% on answering
closed-vocabulary algebra questions. More impor-
tantly, the symbolic system has a very high preci-
sion of 96%, thus has almost no penalization on all
categories. In addition, unlike the sub-symbolic
system, the symbolic system is fully explainable.
However, it can be observed that all of these sys-
tems still perform poor on the Geometry and the
open categories, especially when measured by pe-
nalized accuracy.

Table 3 illustrates the semantic parsing accuracy
rate on closed-vocabulary algebra questions. It can
be observed that, on the training and development
datasets, we can achieve a relatively high accuracy
of 84%. Nevertheless, it drops down to 71% on the
test dataset. This is mainly because of the gener-
alizability issue of templates.

In order to further analyze the genrealizability
issue of templates, we consider the effects on the
number of templates. Figure 3 shows how the
template number affects the semantic parsing ac-
curacy. It can be observed that, on the training
dataset, the accuracy rates rapidly goes up to 50
% by the first 400 templates, then reaches 70% by
900 templates. Then, it slowly climbs up to 80%
with 500 templates more. However, the growth

903

Version Acc
(overall)

Acc
(closed)

Acc
(geo)

Acc
(open)

Pena
Acc
(overall)

Pena
Acc
(closed)

Pena
Acc
(geo)

Pena
Acc
(open)

Symb 0.29 0.63 0.08 0.03 0.29 0.62 0.07 0.03
Sub-S 0.23 0.22 0.20 0.25 0.11 0.10 0.09 0.14
Integ 0.45 0.70 0.26 0.26 0.36 0.66 0.14 0.16

Table 2: Overall Results

Dataset Closed
Training 84% (711/846)

Development 84% (187/222)
Test 71% (326/459)

Table 3: Semantic parsing accuracy

rate drops down dramatically afterwards, making
it very difficult to improve. The main reason is that
SAT math questions have many long-tail questions
that cannot be covered by ordinary templates.

300 600 900 1,200 1,500 1,800
0

10

20

30

40

50

60

70

80

90

100

the Number of Templates

A
cc

ur
ac

y
ra

te

train
test
dev

Figure 3: Effects on the number of templates

There are some questions that can be correctly
parsed by our translator and encoder but failed to
be solved by Z3. Among all, nearly 12% (100
out of 846) belong to this case in the training
dataset. We further analyze their features. Among
them, 49% need to use new math concepts, e.g.,
prime number, that cannot be represented in Z3.
Around 19% of the questions are non-linear equa-
tions, which are very difficult for Z3. Finally, there
are 9% of the questions need to define new ob-
jects, and the rest 23% are other kinds of tricky
questions.

Error Analysis Training
Non-linear question 19%

Contain math concept 49%
Contain definition 9%

Other tricky question 23%

Table 4: Questions that cannot be solved by Z3

4 Conclusion

In this paper, we presents AiFu, a system that
has won the first place in the SemEval-19 “Math
Question Answering” competition. AiFu is a
combined system that enhances a symbolic sys-
tem with a sub-symbolic guesser. In AiFu, the
symbolic system plays the most vital role, which
itself can achieve a relatively high accuracy with
many merits on closed-vocabulary algebra ques-
tions. Many state-of-the-art approaches are used
and integrated in AiFu. Some new techniques
are proposed including our new internal represen-
tation language VCF and our template structures.

For future work, the most important task is to
improve the translator, which is the bottleneck, es-
pecially on geometry and open-vocabulary alge-
bra questions. We believe that new foundations
are needed, possibly requiring a deep integration
of symbolic and sub-symbolic approaches.

References
Danqi Chen and Christopher Manning. 2014. A fast

and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750. Association for Compu-
tational Linguistics.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loı̈c Barrault, and Antoine Bordes. 2017. Su-
pervised learning of universal sentence representa-
tions from natural language inference data. CoRR,
abs/1705.02364.

Leonardo De Moura and Nikolaj Bjørner. 2008.
Z3: An efficient smt solver. In Proceedings

904

of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms
for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Hei-
delberg. Springer-Verlag.

Mark Hopkins, Ronan Le Bras, Cristian Petrescu-
Prahova, Gabriel Stanovsky, Hannaneh Hajishirzi,
and Rik Koncel-Kedziorski. Semeval-2019 task 10:
Math question answering.

Mark Hopkins, Cristian Petrescu-Prahova, Roie Levin,
Ronan Le Bras, Alvaro Herrasti, and Vidur Joshi.
2017. Beyond sentential semantic parsing: Tack-
ling the math sat with a cascade of tree transduc-
ers. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
pages 795–804. Association for Computational Lin-
guistics.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb cat-
egorization. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special In-
terest Group of the ACL, pages 523–533.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018a. Neural math word problem solver with rein-
forcement learning. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, COLING 2018, Santa Fe, New Mexico, USA,
August 20-26, 2018, pages 213–223.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do comput-
ers solve math word problems? large-scale dataset
construction and evaluation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers.

Danqing Huang, Jin-Ge Yao, Chin-Yew Lin, Qingyu
Zhou, and Jian Yin. 2018b. Using intermediate rep-
resentations to solve math word problems. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long
Papers, pages 419–428.

Nate Kushman, Luke Zettlemoyer, Regina Barzilay,
and Yoav Artzi. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2014, June 22-27, 2014,
Baltimore, MD, USA, Volume 1: Long Papers, pages
271–281.

Chao-Chun Liang, Yu-Shiang Wong, Yi-Chung Lin,
and Keh-Yih Su. 2017. A goal-oriented meaning-
based statistical multi-step math word problem
solver with understanding, reasoning and explana-
tion. In Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence,

IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pages 5235–5237.

Takuya Matsuzaki, Takumi Ito, Hidenao Iwane, Hi-
rokazu Anai, and Noriko H. Arai. 2017. Semantic
parsing of pre-university math problems. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2017, Van-
couver, Canada, July 30 - August 4, Volume 1: Long
Papers, pages 2131–2141.

Aaron Meurer, Christopher P. Smith, Mateusz Pa-
procki, Ondřej Čertı́k, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Ja-
son K. Moore, Sartaj Singh, Thilina Rathnayake,
Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats,
Fredrik Johansson, Fabian Pedregosa, Matthew J.
Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh
Saboo, Isuru Fernando, Sumith Kulal, Robert Cim-
rman, and Anthony Scopatz. 2017. Sympy: sym-
bolic computing in python. PeerJ Computer Sci-
ence, 3:e103.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1:
Long Papers.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA., pages 3082–
3088.

Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren
Etzioni, and Clint Malcolm. 2015. Solving geome-
try problems: Combining text and diagram interpre-
tation. In EMNLP.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018. Math-
dqn: Solving arithmetic word problems via deep re-
inforcement learning. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5545–5552.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using
quadratic programming. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 817–822.

905

Yi Zhou. 2017. From first-order logic to assertional
logic. In Artificial General Intelligence - 10th In-
ternational Conference, AGI 2017, Melbourne, VIC,
Australia, August 15-18, 2017, Proceedings, pages
87–97.

906

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 907–916
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SemEval-2019 Task 12: Toponym Resolution in Scientific Papers

Davy Weissenbacher†, Arjun Magge‡, Karen O’Connor†, Matthew Scotch‡,
Graciela Gonzalez-Hernandez†

†DBEI, The Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA 19104, USA

‡Biodesign Center for Environmental Health Engineering, Arizona State University,
Tempe, AZ 85281, USA

†{dweissen, karoc, gragon}@pennmedicine.upenn.edu
‡{amaggera, Matthew.Scotch}@asu.edu

Abstract

We present the SemEval-2019 Task 12 which
focuses on toponym resolution in scientific ar-
ticles. Given an article from PubMed, the
task consists of detecting mentions of names
of places, or toponyms, and mapping the
mentions to their corresponding entries in
GeoNames.org, a database of geospatial loca-
tions. We proposed three subtasks. In Sub-
task 1, we asked participants to detect all to-
ponyms in an article. In Subtask 2, given to-
ponym mentions as input, we asked partici-
pants to disambiguate them by linking them
to entries in GeoNames. In Subtask 3, we
asked participants to perform both the de-
tection and the disambiguation steps for all
toponyms. A total of 29 teams registered,
and 8 teams submitted a system run. We
summarize the corpus and the tools created
for the challenge. They are freely available
at https://competitions.codalab.
org/competitions/19948. We also an-
alyze the methods, the results and the errors
made by the competing systems with a focus
on toponym disambiguation.

1 Introduction

Toponym resolution, also known as geoparsing,
geo-grounding or place name resolution, aims
to assign geographic coordinates to all location
names mentioned in documents. Toponym res-
olution is usually performed in two independent
steps. First, toponym detection or geotagging,
where the span of place names mentioned in a doc-
ument is noted. Second, toponym disambiguation
or geocoding, where each name found is mapped
to latitude and longitude coordinates correspond-
ing to the centroid of its physical location. To-
ponym detection has been extensively studied in
named entity recognition: location names were
one of the first classes of named entities to be
detected in text (Piskorski and Yangarber, 2013).

Disambiguation of toponyms is a more recent task
(Leidner, 2007).

With the growth of the internet, the public adop-
tion of smartphones equipped with Geographic In-
formation Systems and the collaborative devel-
opment of comprehensive maps and geographi-
cal databases, toponym resolution has seen an im-
portant gain of interest in the last two decades.
Not only academic but also commercial and open
source toponym resolvers are now available. How-
ever, their performance varies greatly when ap-
plied on corpora of different genres and domains
(Gritta et al., 2018). Toponym disambiguation
tackles ambiguities between different toponyms,
like Manchester, NH, USA vs. Manchester, UK
(Geo-Geo ambiguities), and between toponyms
and other entities, such as names of people or
daily life objects (Geo-NonGeo ambiguities). Ad-
ditional linguistic challenges during the resolution
step may be metonymic usage of toponyms, “91%
of the US didn’t vote for either Hilary or Trump”
(a country does not vote, thus the toponym refers
to the people living in the country), elliptical con-
structions, “Lakeview and Harrison streets” (the
phrase refers to two street names Lakeview street
and Harrison street), or when the context simply
does not provide enough evidences for the resolu-
tion.

Although significant progress has been made in
the last decade on toponym resolution, it is still
difficult to determine precisely the current state-
of-the-art performances (Leidner and Lieberman,
2011). As emphasized by several authors (To-
bin et al., 2010; Speriosu, 2013; Weissenbacher
et al., 2015; Gritta et al., 2018; Karimzadeh and
MacEachren, 2019), the main obstacle is that few
corpora of large size exist or are freely available.
Consequently, researchers create their own (lim-
ited) corpora to evaluate their system, with the
known drawbacks and biases that this implies.

907

Moreover, one corpus is not sufficient to evaluate
a toponym resolver thoroughly, as the domain of a
corpus strongly impacts the performance of a re-
solver. A disambiguation strategy can be optimal
on one domain and damaging on another. In (Spe-
riosu, 2013), Speriosu illustrates that toponyms
occurring in historical literature will tend to re-
solve within a local vicinity, whereas toponyms
occurring in international press news refer to the
most prominent places by default. Otherwise ad-
ditional information is provided to help the reso-
lution (ex. Paris, the city in Texas).

In this article we first define the concept of to-
ponym and detail the subtasks of this challenge
(Section 3). Then, we summarize how we ac-
quired and annotated our data (Section 4). In Sec-
tion 5, after describing the evaluation metrics, we
briefly describe the resources and the baseline sys-
tem provided to the participants. In the last Sec-
tion 6 we discuss the results obtained and the po-
tential future direction for the task of toponym res-
olution.

2 Related Work

The Entity Linking task aims to map a name of
an entity with the ID of the corresponding en-
tity in a predefined Knowledge database (Bada,
2014). Entity linking has been largely studied by
the community (Shen et al., 2015). Toponym res-
olution is a special case of the entity linking task
where strategies dedicated to toponyms can im-
prove overall performances. Three main strate-
gies have been proposed in the literature. The first
exploits the linguistic context where a toponym
is mentioned in a document. The vicinity of the
toponym often contains clues that help the read-
ers to interpret it. These clues can be other to-
ponyms (Tobin et al., 2010), other named entities
(Roberts et al., 2010), or even more generally, spe-
cific topics associated more often with a particular
toponym than with others (Speriosu, 2013; Adams
and McKenzie, 2013; Ju et al., 2016). The sec-
ond strategy relies on the physical properties of
the toponyms to disambiguate their mentions in
documents. The population heuristic or the min-
imum distance heuristic are popular heuristics us-
ing such properties. The population heuristics dis-
ambiguates toponyms by taking, among the am-
biguous candidates, the candidate with the largest
population, whereas the minimum distance heuris-
tic disambiguates all toponyms in a document by

taking the set of candidates that are the closest
to each other (Leidner, 2007). A recent heuris-
tic computes from Wikipedia a network express-
ing important toponyms and their semantic rela-
tion with other entities. The network is then used
to disambiguate jointly all toponyms in a doc-
ument (Hoffart and Weikum, 2013; Spitz et al.,
2016). The last strategy is less frequently used
as it depends on metadata describing the doc-
uments where toponyms are mentioned. These
metadata are of various kinds, but they all indi-
cate, directly or not, geographic areas to help in-
terpret toponyms mentioned in documents. Such
metadata can be geotagging of social media posts
(Zhang and Gelernter, 2014) or external databases
structuring the information detailed in a document
(Weissenbacher et al., 2015). These three strate-
gies are complementary and can be unified with
machine learning algorithms as shown by (Santos
et al., 2015) or (Kamalloo and Rafiei, 2018).

3 Task Description

The definition of toponym is still in debate among
researchers. In its simpler definition, a toponym is
a proper name of an existing populated place on
Earth. This definition can be extended to include a
place or geographical entity that is named, and can
be designated by a geographical coordinate1. This
encompasses cities and countries, but also lakes
or monuments. In this challenge we consider the
extended definition of toponyms and exclude all
indirect mentions of places such as “30 km north
from Boston”, as well as metonymic usage and el-
liptical constructions of toponyms.

Subtask 1: Toponym Detection Toponym de-
tection consists of detecting the text boundaries of
all toponym mentions in full PubMed articles. For
example, given the sentence An H1N1 virus
was isolated in 2009 from a child
hospitalized in Nanjing, China., a
perfect detector, regardless how, would return two
pairs encoding the starting and ending positions
of Nanjing and China, i.e. (64, 70) and (73, 77).
Despite major progress, toponym detection is
still an open problem and it was evaluated in a
separate subtask since it determines the overall
performance of the resolution. Toponym mentions
missed during the detection cannot be disam-
biguated (False Negative, FN) and, inversely,

1https://unstats.un.org/unsd/geoinfo/
UNGEGN/

908

phrases wrongly detected as toponyms will re-
ceived geocoordinates during the disambiguation
(False Positive, FP). Both FNs and FPs degrade
the quality of the overall resolution.

Subtask 2: Toponym Disambiguation The
second subtask focuses on the disambiguation of
the toponyms only. In this subtask, all names of
locations in articles are known by a disambigua-
tor but not their precise coordinates. The disam-
biguator has to select the GeoNames IDs corre-
sponding to the expected places among all pos-
sible candidates. GeoNames2 is a crowdsourced
database of geospatial locations and freely avail-
able. Following with our previous example, given
the position of Nanjing in the sentence, a per-
fect disambiguator, regardless how, would have to
choose among 12 populated places named Nanjing
located in China in GeoNames and return the en-
try 7843770 in GeoNames. The disambiguator has
to infer the expected place based on all informa-
tion available in the article and not only based on
the sentence. This subtask allows one to measure
the performance of the disambiguation algorithms
independently from the performances of the to-
ponym detector used upstream.

Subtask 3: End-to-end, Toponym Resolution
The last subtask evaluates the toponym resolver as
it would be when deployed in real-world applica-
tions. Only the full PubMed articles are given to
the resolver and all toponyms detected and disam-
biguated by the resolver are evaluated.

4 Data and Resources

4.1 A Case Study: Epidemiology of Viruses

The automatic resolution of the names of places
mentioned in textual documents has multiple ap-
plications and, therefore, has been the focus of re-
search for both industrial and academic organiza-
tions. For this challenge, we chose a scientific do-
main where the resolution of the names of places
is key: epidemiology.

One aim in epidemiology might be to create
maps of the locations of viruses and their migra-
tion paths, a tool which is used to monitor and
intervene during disease epidemics. To create
maps of viruses, researchers often use geospatial
metadata of individual sequence records in public
databases such as NIH’s GenBank (Benson et al.,

2https://www.geonames.org/

2017)3. The metadata provides the location of the
infected host. With more than 3 million virus se-
quences4, GenBank provides abundant informa-
tion on viruses. However, previous work has sug-
gested that geospatial metadata, when it is not sim-
ply missing, can be too imprecise for local-scale
epidemiology (Scotch et al., 2011). In their ar-
ticle Scotch et al., 2011 estimate that only 20%
of GenBank records of zoonotic viruses contain
detailed geospatial metadata such as a county or
a town name (zoonotic viruses are viruses able
to infect naturally hosts of different species, like
rabies). Most GenBank records provide generic
information, such as Japan or Australia, without
mentioning the specific places within these coun-
tries. However, more specific information about
the locations of the viruses may be present in arti-
cles which describe the research work. To create a
complete map, researchers are then forced to read
these articles to locate in the text these additional
pieces of geospatial metadata for a set of viruses of
interest. This manual process can be highly time-
consuming and labor-intensive.

This challenge was an opportunity to assess
the development and evaluation of automated ap-
proaches to retrieve geospatial metadata with finer
level of granularity from full-text journal arti-
cles, approaches that can be further transferred or
adapted to resolve names of places in other scien-
tific domains.

4.2 Corpus Collection

Our corpus is composed of 150 full text journal
articles downloaded from the subset of PubMed
Central (PMC) in open access5. All articles in this
subset of PMC are covered by a Creative Com-
mons license and free to access. We built our cor-
pus using three queries on GenBank.

Subset A: For the first 60 articles, we down-
loaded 102,949 GenBank records that were linked
to NCBI taxonomy id 197911 for influenza A. The
downloaded records were associated with 1,424
distinct PubMed articles and 598 of them had links

3For this competition we chose to work with PubMed ar-
ticles and the GenBank database as they provide more com-
plete and detailed information for epidemiology than public
health reports.

4Last accessed April 2019 with the query:
https://www.ncbi.nlm.nih.gov/nuccore/
?term=txid10239[Organism:exp]

5https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

909

to an open access journal article in PubMed Cen-
tral (PMC). We randomly sampled 60 articles from
this set of 598 articles for manual annotation.

Subset B: We selected 60 additional articles by
expanding our search to GenBank records linked
to influenza B and C, rabies, hantavirus, west-
ern equine encephalitis, eastern equine encephali-
tis, St. Louis encephalitis, and West Nile virus.
Our query returned a total of 544,422 GenBank
records. We randomly selected a subset of records
associated with 1,915 unique open access PMC
articles. From these 1,915 articles, we randomly
selected for toponym annotation a stratified sam-
ple of 60 articles, where strata were based on the
number of GenBank records associated with the
articles.

Subset C: We completed our corpus with 30
biomedical research articles to decrease bias and
increase the generalizability of our corpus beyond
toponym mentions in virus related research arti-
cles. From the 1,341 research articles returned by
the search in PMC of the journal titles with the
Article Attribute of Open access, we randomly se-
lected 30 articles from top epidemiology journals,
as determined by their impact factor in September
2018.

Since the 60 articles from Subset A had been
used in our prior publications (Weissenbacher
et al., 2015, 2017), we kept them all for training.
We randomly selected half of the articles from
Subset B and Subset C for training and left the sec-
ond half for testing. The resulting corpus of 105
articles for training and 45 for testing was used for
all three subtasks of the competition. The corpus
is available for download on the Codalab used for
the competition: https://competitions.
codalab.org/competitions/20171#
learn_the_details-data_resources.

4.3 Annotation Process

To perform the annotation, we manually down-
loaded the PDF versions of the PMC articles and
converted them to text files using the freely avail-
able tool, Pdf-to-text6. We formatted the output to
be compatible with the BRAT annotator7 (Stene-
torp et al., 2012). We manually detected and
disambiguated the toponyms using GeoNames.
We annotated toponyms in titles, bodies, tables

6http://www.foolabs.com/xpdf/download
7http://brat.nlplab.org/index.html

and captions sections of the documents. We re-
moved contents that would not contain virology-
related toponyms, such as the names of the au-
thors, acknowledgments and references, this was
done manually. In cases where a toponym could
not be found in GeoNames, we set its coordinates
to a special value N/A. Prior to beginning annota-
tion, we developed a set of annotation guidelines
after discussion among three annotators. The re-
sulting guidelines are also available in the Codalab
of the competition. Two annotators were under-
graduate students in biomedical informatics and
biology, respectively, and our senior annotator has
a M.S. in biomedical informatics.

Two annotators annotated independently 58 ar-
ticles of Subset B to estimate the inter-annotator
agreement. Since the detection task is a named-
entity recognition task, we followed the recom-
mendations of Rothschild and Hripcsak (2005)
and used precision and recall metrics to estimate
the inter-annotator rate. The inter-annotator agree-
ment rate on the toponym detection was .94 preci-
sion (P) and .95 recall (R) which indicates a good
agreement between the annotators. The inter-
annotator agreement rate on the toponym disam-
biguation was 0.857 Accuracy. Subset C was also
annotated by two annotators, although not inde-
pendently, to ensure the quality of the annotation
of all documents occurring in the test set of the
competition.

The corpus contains a total of 1,506 distinct to-
ponyms for a total of 8,360 occurrences. 1,228
of these toponyms occur in only one document (a
document may include multiple occurrences). The
average number of occurrences for a toponym is
5.5 with China being the most mentioned toponym
with a total of 417 occurrences. The average ambi-
guity is about 26.3 candidates per toponym which
is comparable to the average ambiguity found in
existing corpora (Speriosu, 2013). The location
San Antonio was the most ambiguous with 2633
possible candidates. 232 toponyms (531 occur-
rences) were not found in GeoNames using a strict
match, this was caused by multiple reasons, like
misspellings, non standard-abbreviations, missing
entries in GeoNames, etc. 142 countries and con-
tinents are mentioned in our corpus with a total of
3,105 occurrences. The resolution of country and
continent names are easier than other places but
they represent only 37% of the total of the occur-
rences, making our corpus challenging.

910

5 Evaluation

5.1 Toponym Resolution Metrics
When a gold standard corpus and a toponym
resolver are aligned on the same geographical
database, here the database GeoNames, the stan-
dard metrics of precision, recall and F-measure
can be used to measure the performance of the
resolver. For this challenge, we report all results
by using two common variations of these metrics:
strict and overlapping measures. In the strict mea-
sure, resolver annotations are considered matching
with the gold standard annotations if they hit the
same spans of text; whereas in overlapping mea-
sure, both annotations match when they share a
common span of text.

We computed the P and R for toponym detec-
tion with the standard equations: Precision =
TP/(TP +FP) and Recall = TP/(TP +FN),
where TP (True Positive) is the number of to-
ponyms correctly identified by a toponym detec-
tor in the corpus, FP (False Positive) the number
of phrases incorrectly identified as toponyms by
the detector, and FN (False Negative) the number
of toponyms not identified by the detector.

To evaluate the toponym disambiguation, we
modified the equations computing the P and R
used for toponym detection in order to account
for both detection and disambiguation errors. The
precision of the toponym disambiguation is given
by the equation: Pds = TCD/TCD + TID,
where TCD is the number of toponyms correctly
identified and disambiguated by the toponym dis-
ambiguator in the corpus and TID is the number
of toponyms incorrectly identified or incorrectly
disambiguated in the corpus. The recall of the to-
ponym disambiguation was computed by the equa-
tion: Rds = TCD/TN , where TN is the total
number of toponyms in the corpus. F1ds is the har-
monic mean of Pds and Rds. Since the resolvers
competing and the gold corpus annotations were
aligned on GeoNames, toponyms correctly identi-
fied were known by a simple match between the
place IDs retrieved by the resolvers and those an-
notated by the annotators.

5.2 Baseline System
We released an end-to-end system to be used as
a strong baseline. This system performs sequen-
tially the detection and the disambiguation of the
toponyms in raw texts. To detect the toponyms
the system uses a feedforward neural network

described in (Magge et al., 2018). The disam-
biguation of all toponyms detected is then per-
formed using a common heuristic, the population
heuristic. Using this heuristic, the system always
disambiguates a toponym by choosing the place
which has the highest population in GeoNames.
The baseline system can be downloaded from the
Codalab website of the competition. We also
made available to the participants a Rest service to
search a recent copy of GeoNames, the documen-
tation and the code to deploy the service locally
can be found on the Codalab website.

6 Systems

6.1 Results

Twenty nine teams registered to participate in the
shared-task and eight teams submitted. 21/8/13
submissions from 8/4/6 teams were included in the
final evaluations of sub-task 1/2/3 respectively. All
systems which attempted to resolve the toponyms
in Subtask 3 opted for a pipeline architecture
where the detection and the disambiguation steps
were performed independently and sequentially.
Table 1 summarizes the characteristics of the sys-
tems along with their use of external resources.
Tables 2, 3 and 4 presents the performances for
each team. Team DM NLP achieved the best per-
formances on all sub-tasks (Wang et al., 2019).

Toponym Detection: With all systems but one,
Deep Recurrent Neural Networks were the most
commonly used and efficient technology to detect
toponyms in our corpus. Their architectures varied
with respect to the integration of character embed-
ding layers, mechanisms of attention, integration
of external features (such as POS tagging or other
Named Entities) or the choice of a general or in
domain corpus for pre-training their word and sen-
tence embeddings. In our epidemiological corpus,
toponyms were not only mentioned in the body
of the articles but also in tables. And interest-
ingly, top ranked systems detected the toponyms
with two different algorithms, one dedicated to the
body and one to the tables of the articles. The
top ranking system outperformed other competi-
tors for Subtask 1 significantly, with a margin of
4 points separating it from the second ranked sys-
tem, even though the same technology was used.
Both teams used dedicated algorithms for bodies
and tables but Team DM NLP implemented sev-
eral strategies to improve the pre-training of their

911

Toponym Detection
Rank Team System details
1 DM NLP Architecture: Ensemble of C biLSTM + W biLSTM + FF + CRF

(Alibaba Group) Details: word2vec/ELMo embeddings, POS + NE + Chunk features
Resources: OntoNote5.0, CoNLL’13 and Weakly labeled training corpora

3 UniMelb Architecture: W biLSTM + FF + SoftMax
(University of Melbourne) Details: Glove/ELMo embeddings, Self-Attention

Resources: WikiNER, inhouse gazetteer of place name abbreviations
& organization names classifier

4 UArizona Architecture: C biLSTM + W biLSTM + CRF
(University of Arizona) Details: Glove embeddings, affixes features

Resources: Weakly labeled training corpus
5 THU NGN Architecture: Ensemble of C CNN + W biLSTM + CRF

(Tsinghua University) Details: Glove/Word2Vect/FastText/ELMo/Bert embeddings,
LM + POS + Lexicon features

6 UNH Architecture: 1. W biLSTM + CRF; 2. W CNN + FF + sigmoid;
(University of New Hampshire) 3. W FF + sigmoid

Details: word2vec/ELMo embeddings, orthographic + lexicon features
8 RGCL-WLV Architecture:1. W biGRU + capsule + FF + sigmoid;

(University of Wolverhampton/ 2. W biLSTM + W biGRU + FF + sigmoid; 3. traditional classifiers
Universidad Politecnica de Madrid) Details: word2vec embeddings, Self-attention

Resources: ANNIE’s gazetteer of regions
& inhouse gazetteer of US regions and abbreviations

Toponym Disambiguation
Rank Team System details
1 DM NLP Strategy: Ranking candidates + Stacking LightGBM classifiers

External Resources: Wikipedia
3 UniMelb Strategy: Ranking candidates + SVM Classifier
4 UArizona Strategy: Population heuristic
6 THU NGN Strategy: Toponym frequencies + population heuristic

Table 1: System and resource descriptions for toponym resolution8.
8 We use C biLSMT and C CNN to denote bidirectonal LSTMs or CNNs encoding sequences of characters, W biLSTM,

W biGRU and W FF to denote bidirectional LSTMs/GRUs or Feed Forward encoders of word embeddings.

Strict macro Strict micro Overlap macro Overlap micro
Team P R F1 P R F1 P R F1 P R F1

DM NLP .9265 .9060 .9161 .9292 .8564 .8913 .9456 .9238 .9346 .9539 .8797 .9153
DM NLP .9214 .9010 .9111 .9222 .8512 .8853 .9447 .9224 .9334 .9510 .8776 .9128
DM NLP .9201 .9000 .9100 .9117 .8479 .8786 .9419 .9204 .9311 .9412 .8756 .9072
UniMelb .8827 .8598 .8711 .8469 .7748 .8092 .9222 .8911 .9064 .9135 .8283 .8688

QWERTY .9015 .8426 .8710 .8935 .7808 .8333 .9277 .8622 .8937 .9258 .8096 .8638
UArizona .8869 .8073 .8452 .8797 .7068 .7838 .9084 .8268 .8657 .9114 .7357 .8142
UArizona .8803 .8079 .8426 .8792 .7131 .7875 .9027 .8279 .8637 .9099 .7412 .8169
UArizona .8897 .7960 .8403 .8825 .6972 .7790 .9112 .8152 .8606 .9144 .7262 .8095

THU NGN .8897 .7818 .8323 .8647 .6615 .7496 .9221 .8125 .8639 .9136 .7025 .7943
THU NGN .8951 .7743 .8303 .8745 .6489 .7450 .9257 .8015 .8592 .9186 .6849 .7847
THU NGN .8966 .7699 .8284 .8715 .6497 .7444 .9254 .7961 .8559 .9197 .6892 .7879

UNH .8616 .7810 .8193 .8354 .6500 .7312 .9100 .8189 .8620 .8968 .7035 .7885
UniMelb .8402 .7967 .8179 .8023 .6768 .7342 .8866 .8398 .8626 .8795 .7440 .8061

UNH .8360 .7374 .7836 .8073 .6175 .6998 .9079 .7882 .8438 .9132 .6971 .7906
Baseline .8246 .7345 .7770 .8032 .5973 .6851 .8989 .7810 .8358 .9038 .6719 .7708

UNH .8111 .7403 .7741 .7819 .6459 .7074 .8859 .7984 .8399 .8904 .7372 .8066
NLP IECAS .8111 .6944 .7482 .7807 .5414 .6394 .8601 .7187 .7831 .8421 .5808 .6874
NLP IECAS .7527 .7226 .7373 .7298 .5796 .6461 .8209 .7700 .7946 .8155 .6457 .7207
NLP IECAS .7395 .7334 .7364 .7270 .5853 .6485 .8101 .7824 .7960 .8143 .6553 .7262
RGCL-WLV .8392 .4911 .6196 .8210 .3505 .4913 .9032 .5117 .6533 .8926 .3743 .5274
RGCL-WLV .8200 .4844 .6090 .8021 .3464 .4839 .8928 .5082 .6477 .8850 .3746 .5264
RGCL-WLV .8280 .4746 .6034 .8168 .3396 .4798 .8980 .4969 .6398 .8936 .3654 .5187

Table 2: Results of the toponym detection task, Subtask 1.

912

system which, according to their ablation study
(Wang et al., 2019), proved to be effective9. Note
that the performance of the first system is close to
our IAA for toponym detection.

Toponym Disambiguation: All systems re-
lied on handcrafted features to disambiguate to-
ponyms. Their features described the lexical con-
text of the toponyms and their importance. The
importance of the toponyms was estimated by
the frequencies of the candidates in the training
data or by their populations. While the two top
ranked systems combined such features with ma-
chine learning, SVM for UniMelb and a gradient
boosting algorithm for DM NLP, others just en-
coded them into hard rules leading to suboptimal
disambiguation.

6.2 Analysis

We analyzed a sample of errors to understand the
remaining challenges for toponym disambiguation
systems based on the results of Sub-task 2. We
randomly selected 10 articles and analyzed 103
mentions of toponyms disambiguated incorrectly
by all systems. We manually found 5 distinct cat-
egories of errors. For the largest category of er-
rors, with 62 cases, the systems missed context
clues used by the authors of the articles to con-
vey the correct interpretation of the toponym and
chose the wrong candidates. Such clues include
the mention of a country in the header of a table or
the explicit mention of a district after an ambigu-
ous toponym. 17 errors were due to the systems
not complying with the guidelines, selecting in-
stead populated places or cities when the expected
choices were toponyms with a higher administra-
tive level. 8 candidates were not found in GeoN-
ames by strict or fuzzy matching because of their
surface forms. These were unconventional abbre-
viations, rare acronyms or words split by a hyphen.
Despite our efforts to limit annotation errors, 15
were found in our sample10. The last error was a
toponym where the choice made by the annotators
can be argued.

9Team QWERTY did not describe their system at the time
of writing. We were therefore unable to compare it with other
systems.

10Since we analyzed entire articles, this count includes
multiple mentions of the same toponym repeatedly annotated
with the same error

7 Conclusion

In this paper we presented an overview of the re-
sults of SemEval 2019 Task 12 which focuses on
toponym resolution in scientific articles. Given an
article from PubMed, the task consists of detect-
ing all mentions of place names, or toponyms, in
the article and mapping them to their correspond-
ing entry in GeoNames, a database of geospatial
locations. All systems resolved the toponyms in
our corpus sequentially, detecting the toponyms
before disambiguating them. Among the 21 sys-
tems submitted for toponym detection, neural net-
work based approaches were the most popular and
the most efficient to detect toponyms with scores
approaching the Inter-Annotator agreement. One
key to success for the top ranked systems was
to design two different algorithms to detect to-
ponyms in the body and in the tables of the ar-
ticles. The disambiguation of the toponyms re-
mains challenging. Despite a clever use of rules or
machine learning to combine features describing
the lexical context of the toponyms and their im-
portance from the 4 competing systems, the strict
macro F1ds score of .82 of the best system sig-
nals space for improvement. Our analysis of com-
mon disambiguation errors reveals that it is still
difficult for the systems to capture linguistic evi-
dence in the context of the toponyms that dictate
their disambiguation, causing 60% of the errors of
the systems. The end-to-end performance of the
best toponym resolver was .77 F1ds strict macro, a
score high enough for scientists to benefit from au-
tomation to reduce their workload when extracting
toponyms from the voluminous and quickly grow-
ing literature, while still leaving room for techni-
cal improvement.

Funding

Research reported in this publication was sup-
ported by the National Institute of Allergy and
Infectious Diseases of the National Institutes of
Health under Award Number R01AI117011 to
M.S. and G.G. The content is solely the respon-
sibility of the authors and does not necessarily
represent the official views of the National Insti-
tutes of Health.

913

Strict macro Strict micro
Team F1ds F1ds

DM NLP .8234 .7781
DM NLP .8215 .7821
UniMelb .8180 .7759
UniMelb .8180 .7759
DM NLP .8070 .7521
Baseline .7400 .6768

NLP IECAS .7233 .6582
NLP IECAS .7230 .6607
THU NGN .6721 .5886

Table 3: Results of the toponym disambiguation task, Subtask 2.

Toponym Detection
Strict macro Strict micro Overlap macro Overlap micro

Team P R F1 P R F1 P R F1 P R F1
DM NLP (run 2) .9265 .9060 .9161 .9292 .8564 .8913 .9456 .9238 .9346 .9539 .8797 .9153
QWERTY (run 1) .9203 .9095 .9148 .9214 .8706 .8953 .9438 .9311 .9374 .9501 .8972 .9229
DM NLP (run 1) .9214 .9010 .9111 .9222 .8512 .8853 .9447 .9224 .9334 .9510 .8776 .9128
DM NLP (run 3) .9201 .9000 .9100 .9117 .8479 .8786 .9419 .9204 .9311 .9412 .8756 .9072
UniMelb (run 2) .8821 .8598 .8708 .8464 .7748 .8090 .9215 .8911 .9061 .9130 .8283 .8686
UniMelb (run 1) .8884 .8124 .8487 .8767 .6986 .7776 .9349 .8442 .8872 .9322 .7448 .8280
UArizona (run 3) .8869 .8073 .8452 .8797 .7068 .7838 .9084 .8268 .8657 .9114 .7357 .8140
UArizona (run 2) .8803 .8079 .8426 .8792 .7131 .7875 .9027 .8279 .8637 .9099 .7412 .8169
UArizona (run 1) .8897 .7960 .8403 .8825 .6972 .7790 .9112 .8152 .8606 .9144 .7262 .8095

THU NGN (run 1) .8951 .7743 .8303 .8745 .6489 .7450 .9257 .8015 .8592 .9186 .6849 .7847
Baseline .8246 .7345 .7770 .8032 .5973 .6851 .8989 .7810 .8358 .9038 .6719 .7708

NLP IECAS (run 2) .8111 .6944 .7482 .7807 .5414 .6394 .8601 .7187 .7831 .8421 .5808 .6874
NLP IECAS (run 3) .8111 .6944 .7482 .7807 .5414 .6394 .8601 .7187 .7831 .8421 .5808 .6874
NLP IECAS (run 1) .7527 .7226 .7373 .7298 .5796 .6461 .8209 .7700 .7946 .8155 .6457 .7207

Toponym Disambiguation
Strict macro Strict micro Overlap macro Overlap micro

Team Pds Rds F1ds Pds Rds F1ds Pds Rds F1ds Pds Rds F1ds
DM NLP (run 2) .7840 .7661 .7749 .7601 .7005 .7291 .7887 .7715 .7800 .7646 .7060 .7341
DM NLP (run 1) .7762 .7587 .7674 .7513 .6934 .7212 .7840 .7667 .7753 .7593 .7019 .7295
QWERTY (run 1) .7597 .7506 .7551 .7336 .6931 .7128 .7677 .7586 .7631 .7417 .7016 .7211
UniMelb (run 2) .7437 .7276 .7355 .6848 .6268 .6545 .7510 .7368 .7438 .6964 .6399 .6670
UniMelb (run 1) .7286 .6711 .6987 .6876 .5479 .6098 .7331 .6777 .7043 .6941 .5564 .6177
UArizona (run 3) .6773 .6225 .6487 .6514 .5233 .5804 .6761 .6242 .6491 .6507 .5253 .5813
UArizona (run 2) .6739 .6243 .6482 .6533 .5299 .5852 .6725 .6256 .6482 .6521 .5313 .5855
UArizona (run 1) .6823 .6149 .6468 .6600 .5214 .5826 .6807 .6164 .6470 .6586 .5231 .5831

Baseline .6605 .5912 .6240 .6252 .4649 .5333 .6787 .6071 .6409 .6505 .4857 .5561
THU NGN (run 1) .6581 .5738 .6131 .6052 .4491 .5156 .6605 .5784 .6167 .6070 .4537 .5193

NLP IECAS (run 2) .6527 .5584 .6019 .6339 .4395 .5191 .6631 .5666 .6111 .6504 .4510 .5326
NLP IECAS (run 3) .6529 .5582 .6018 .6378 .4423 .5223 .6633 .5664 .6110 .6543 .4537 .5359
NLP IECAS (run 1) .5852 .5626 .5737 .5634 .4474 .4988 .5935 .5717 .5824 .5772 .4603 .5120

DM NLP (run 3) .0279 .0278 .0279 .0305 .0284 .0294 .0314 .0312 .0313 .0354 .0330 .0342

Table 4: Results of the toponym resolution task, Subtask 3.

914

References
Benjamin Adams and Grant McKenzie. 2013. In-

ferring Thematic Places from Spatially Referenced
Natural Language Descriptions. Springer Nether-
lands.

Michael Bada. 2014. Mapping of biomedical text to
concepts of lexicons, terminologies, and ontologies.
Methods in Molecular Biology: Biomedical Litera-
ture Mining, 1159:33–45.

Dennis A. Benson, Mark Cavanaugh, Karen Clark,
Ilene Karsch-Mizrachi, David J. Lipman, James Os-
tell, and Eric W. Sayers. 2017. Genbank. Nucleic
Acids Research, 45(D):37–42.

Milan Gritta, Mohammad T. Pilehvar, Nut Lim-
sopatham, and Nigel Collier. 2018. What’s missing
in geographical parsing? Language Resources and
Evaluation, 52(2):603–623.

Johannes Hoffart and Gerhard Weikum. 2013. Dis-
covering and disambiguating named entities in text.
In Proceedings of the 2013 SIGMOD/PODS Ph.D.
Symposium, SIGMOD’13 PhD Symposium, pages
43–48. ACM.

Yiting Ju, Benjamin Adams, Krzysztof Janowicz,
Yingjie Hu, Bo Yan, and Grant Mckenzie. 2016.
Things and strings: Improving place name disam-
biguation from short texts by combining entity co-
occurrence with topic modeling. In 20th Interna-
tional Conference on Knowledge Engineering and
Knowledge Management - Volume 10024, EKAW
2016, pages 353–367. Springer-Verlag New York,
Inc.

Ehsan Kamalloo and Davood Rafiei. 2018. A coherent
unsupervised model for toponym resolution. In Pro-
ceedings of the 2018 World Wide Web Conference,
WWW ’18, pages 1287–1296. International World
Wide Web Conferences Steering Committee.

Morteza Karimzadeh and Alan M. MacEachren. 2019.
Geoannotator: A collaborative semi-automatic plat-
form for constructing geo-annotated text corpora.
ISPRS International Journal of Geo-Information,
8(4).

Jochen L. Leidner. 2007. Toponym Resolution in Text:
Annotation, Evaluation and Applications of Spatial
Grounding of Place Names. Ph.D. thesis, Insti-
tute for Communicating and Collaborative Systems
School of Informatics, University of Edinburgh.

Jochen L. Leidner and Michael D. Lieberman. 2011.
Detecting geographical references in the form of
place names and associated spatial natural language.
SIGSPATIAL, 3(2):5–11.

Arjun Magge, Davy Weissenbacher, Abeed Sarker,
Matthew Scotch, and Graciela Gonzalez-Hernandez.
2018. Deep neural networks and distant supervision
for geographic location mention extraction. Bioin-
formatics, 34(13):i565–i573.

Jakub Piskorski and Roman Yangarber. 2013. Informa-
tion extraction: Past, present and future. In Thierry
Poibeau, Horacio Saggion, Jakub Piskorski, and Ro-
man Yangarber, editors, Multi-source, Multilingual
Information Extraction and Summarization, Theory
and Applications of Natural Language Processing,
pages 23–49. Springer Berlin Heidelberg.

Kirk E. Roberts, Cosmin A. Bejan, and Sanda M.
Harabagiu. 2010. Toponym disambiguation using
events. In FLAIRS Conference.

Adam S. Rothschild and George Hripcsak. 2005.
Agreement, the f-measure, and reliability in infor-
mation retrieval. Journal of the American Medical
Informatics Association, 12(3):296–298.

João Santos, Ivo Anastácio, and Bruno Martins. 2015.
Using machine learning methods for disambiguating
place references in textual documents. GeoJournal,
80(3):375–392.

Matthew Scotch, Indra N. Sarkar, Changjiang Mei,
Robert Leaman, Kei-Hoi Cheung, Pierina Ortiz,
Ashutosh Singraur, and Graciela Gonzalez. 2011.
Enhancing phylogeography by improving geograph-
ical information from genbank. Journal of Biomed-
ical Informatics, 44(44-47).

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. En-
tity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE Transaction on Knowl-
edge and Data Engineering, 27(2).

Michael A. Speriosu. 2013. Methods and Applications
of Text-Driven Toponym Resolution with Indirect Su-
pervision. Ph.D. thesis, University of Texas.

Andreas Spitz, Johanna Geiß, and Michael Gertz. 2016.
So far away and yet so close: Augmenting toponym
disambiguation and similarity with text-based net-
works. In Proceedings of the Third International
ACM SIGMOD Workshop on Managing and Min-
ing Enriched Geo-Spatial Data, GeoRich ’16, pages
2:1–2:6. ACM.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: A web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL’12, pages 102–107. Association for Compu-
tational Linguistics.

Richard Tobin, Claire Grover, Kate Byrne, James Reid,
and Jo Walsh. 2010. Evaluation of georeferencing.
In Proceedings of the 6th Workshop on Geographic
Information Retrieval, GIR ’10, pages 7:1–7:8.

Xiaobin Wang, Chunping Ma, Huafei Zheng, Chu Liu,
Pengjun Xie, Linlin Li, and Luo Si. 2019. Dm nlp
at semeval-2018 task 12: A pipeline system for to-
ponym resolution. In Proceedings of The 13th Inter-
national Workshop on Semantic Evaluation. Associ-
ation for Computational Linguistics.

915

Davy Weissenbacher, Abeed Sarker, Tasnia Tahsin,
Matthew Scotch, and Graciela Gonzalez. 2017. Ex-
tracting geographic locations from the literature for
virus phylogeography using supervised and distant
supervision methods. In In Proceedings of AMIA
Joint Summits on Translational Science.

Davy Weissenbacher, Tasnia Tahsin, Rachel Beard,
Mari Figaro, Robert Rivera, Matthew Scotch,
and Graciela Gonzalez. 2015. Knowledge-driven
geospatial location resolution for phylogeographic
models of virus migration. Bioinformatics,
31(12):i348–i356.

Wei Zhang and Judith Gelernter. 2014. Geocoding lo-
cation expressions in twitter messages: A preference
learning method. J. Spatial Information Science,
9:37–70.

Abbreviations

POS: Part-Of-Speech
NER: Named Entity Recognition
LM: Language Model
ANNIE: A Nearly-New Information Extraction
SVM: Support Vector Machine
CRF: Conditional Random Field
FF: Feedforward
CNN: Convolutional Neural Network
biLSTM: bidirectional Long Short-Term Memory
biGRU: bidirectional Gated Recurrent Unit

916

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 917–923
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

DM NLP at SemEval-2019 Task 12: A Pipeline System for Toponym
Resolution

Xiaobin Wang, Chunping Ma, Huafei Zheng, Chu Liu, Pengjun Xie, Linlin Li, Luo Si
Alibaba Group, China

{xuanjie.wxb, chunping.mcp, huafei.zhf, chuci.lc,
chengchen.xpj, linyan.lll, luo.si}@alibaba-inc.com

Abstract

This paper describes DM-NLP’s system for to-
ponym resolution task at Semeval 2019. Our
system was developed for toponym detec-
tion, disambiguation and end-to-end resolu-
tion which is a pipeline of the former two.
For toponym detection, we utilized the state-
of-the-art sequence labeling model, namely,
BiLSTM-CRF model as backbone. A lot
of strategies are adopted for further improve-
ment, such as pre-training, model ensemble,
model averaging and data augment. For to-
ponym disambiguation, we adopted the widely
used searching and ranking framework. For
ranking, we proposed several effective features
for measuring the consistency between the de-
tected toponym and toponyms in GeoNames.
Eventually, our system achieved the best per-
formance among all the submitted results in
each sub task.

1 Introduction

The toponym resolution task is aimed to detect to-
ponyms in scientific papers and link them to en-
tities in a geographical knowledge base (GeoN-
ames1 in this task). A toponym is a proper name of
a place or geographical entity that is named, and
can be designated by a geographical coordinate,
including cities, countries, lakes or monuments.

We developed an end-to-end toponym resolu-
tion system (for subtask 3) which is a pipeline
of toponym detection (for subtask 1) and disam-
biguation (for subtask 2). We model the detection
task as a Named Entity Recognition (NER) and
address it with popular sequence labeling frame-
work. For disambiguation task, we adopted the
searching and ranking framework which is widely
used in Entity linking task.

Toponym is a special type of entity similar to
the location entity in the general NER task. Thus,

1https://geonames.org

the well-studied NER models may be effective for
detecting toponyms. The most successful NER
models (Chen et al., 2006; Lample et al., 2016;
Huang et al., 2015; Yao and Huang, 2016) are se-
quence labeling models, including the traditional
CRF (Conditional Random Field (Lafferty et al.,
2001)) and some variants of RNNs (Recurent Neu-
ral Networks) proposed recently, like LSTM-CRF,
BiLSTM-CRF, BiLSTM-CNN-CRF, etc. In this
paper, We utilize the most popular model, i.e.,
BiLSTM-CRF for toponym detection. Beyond the
model, a prevalent pre-training embedding named
ELMo is used after fine-tuning. Model averaging
and model ensemble are used for avoiding over-
fitting. Data sets from other NER tasks are ex-
ploited to augment the training data. We also pro-
posed a dictionary based method for detecting to-
ponyms in tables separately. Since tables have
some peculiarities, i.e., well formatted yet without
meaningful context for toponyms in them.

Toponym disambiguation can be seen as a vari-
ant of entity linking (EL) problem, which links
entity mentions in articles to entities in knowl-
edge base (KB) like Wikipedia. A typical EL sys-
tem consists of candidate entity generation and
ranking as well as unlinkable mention prediction
(Shen et al., 2015). The major challenge is that
the KB of toponym lacks of background informa-
tion other than toponym names, types and coordi-
nates. Therefore, we follow the typical EL method
(Hoffart et al., 2011) for toponym disambiguation
and propose a classification based ranking method.
Specifically, We recast the problem as a binary
classification task asking that whether a toponym
in GeoNames is a link for given toponym. If
more than one positives exist, they are ranked ac-
cording to their confidence scores. Coupled with
the classifier, We introduce many features which
measure the consistency between toponyms effec-
tively, including name string similarity, candidate

917

attributes, contextual features and mention list fea-
tures.

Our contributions to this task can be summa-
rized as follows:

• Proposing an approach to process tables sep-
arately from the main body.

• Proposing a novel data augment approach to
exploit external data.

• Designing many novel and effective features
for disambiguation.

2 Methodology

2.1 Overview

Our system for toponym resolution consists of to-
ponym detection and disambiguation. The for-
mer is based on a sequence labeling model and is
enhanced with pre-training, model ensemble and
data augment. The later is a two-stage approach
which obtains candidates by searching and does
disambiguation via classification.

2.2 Toponym Detection

A scientific article usually contains a main body
and tables. Detecting toponyms in these two types
of content are different due to toponyms in tables
lack of contextual information. Consequently, we
adopt two different approaches.

2.2.1 Detection in Main Body
We recast the problem the Toponym Detection in
main body as a Named Entity Recognition task
and we make use of the BiLSTM-CRF model with
the contextual information as input. To allevi-
ate over-fitting, we apply model averaging train-
ing strategies. Finally, a voting method is utilized
to benefit from multiple models.

Input Information Based upon our previous
work (Ma et al., 2018) on sequence labeling, our
system incorporates four types of linguistic infor-
mation: Part-of-Speech (POS) tags, NER labels,
Chunking labels and ELMo (Peters et al., 2018).
The former three are generated by open source
tools. In detail, we use Stanford CoreNLP (Man-
ning et al., 2014) to annotate POS tags and NER
labels, and use OpenNLP 2 to annotate Chunk-
ing labels. These information are represented as
distributional vectors which are randomly initial-
ized and trained with the entire model. ELMo

2https://opennlp.apache.org/

Figure 1: Architecture of BiLSTM-CRF model

is a deep contextualized word representation that
models both complex characteristics of word use,
and how these uses vary across linguistic con-
texts. These word vectors are learned functions of
the internal states of a deep bidirectional language
model (biLM), which is pre-trained on a large cor-
pus of texts. We fine tuned ELMo on the weakly
labeled data provided by the organizers, so that the
vectors will be adapted to this domain.

BiLSTM-CRF Model As illustrated in Figure
1, the entire model consists of five layers: word
representation layer, input layer, feature extraction
layer, output layer and CRF layer. The word repre-
sentation layer is a group of BiLSTM with shared
parameters. Each BiLSTM corresponds to a word.
The BiLSTM takes a sequence of character (char-
acters in a word) embedding as input and concate-
nates the final hidden states (forward and back-
ward) as the representation of the word. Designing
a neural network architecture with character repre-
sentation as input is appealing for several reasons.
Firstly, words which have the same morphological
properties (like the prefix or suffix of a word) often
share the same grammatical function or meaning.
Secondly, a character-level analysis can help to ad-
dress the out-of-vocabulary problem, Thirdly, cap-
italization may provide additional information. A
recent study (Lample et al., 2016) has shown that
BiLSTM is an effective approach to extract mor-
phological information from characters of words,
and consequently help to improve the performance

918

in NER and POS tagging.
The input layer generates the final representa-

tion of each word by concatenating three types of
vectors, the pre-trained word embedding, the word
vector given by the character BiLSTM and the
vector of linguistic information (POS label, NE la-
bel, chunking label and ELMo vector).

The feature extraction layer is another BiLSTM.
RNNs are well-studied solutions for a neural net-
work to process variable length input and have a
long term memory. As a variant of RNNs, the
long-short term memory (LSTM) unit with three
multiplicative gates allows highly non-trivial long-
distance dependencies to be easily learned. There-
fore, we use a bidirectional LSTM network as pro-
posed in (Graves et al., 2013) to efficiently make
use of past features (via forward states) and future
features (via backward states) for a specific time
frame.

The output layer is a fully connected feed for-
ward network which outputs the probability distri-
bution over all labels.

The CRF Layer is use on the top to decode the
appropriate label sequence. For sequence label-
ing tasks, such as POS tagging or NER, the adja-
cent labels are often strongly related (e.g. I-ORG
cannot follow B-PER or I-LOC in NER tasks like
CoNLL2003). CRF model is good at modeling
these constraints.

Model Averaging Random initialization and
shuffling order of training sentences introduce
randomization when training a model. During
our experiments, we found that model predictions
vary considerably even when the same pre-trained
data and parameters are used. In order to uti-
lize the power of model ensemble and avoid over-
fitting problem, we use a script provided by ten-
sor2tensor to average values of variables in a list of
checkpoint files generated by BiLSTM-CRF net-
works.

Ensemble By using different pre-trained word
embeddings or using different linguistic informa-
tion, we trained multiple models, we apply an av-
erage voting strategy to compute the final decision
of our system from all models. Experimental re-
sult shows that voting indeed boosts the overall
performance.

2.2.2 Detection in Tables

As important components of a scientific article, ta-
bles have specific formats:

• They usually begin with the word ’Table’.

• The first line is called the header which indi-
cates the meaning of each column.

• All rows follow the schema defined by the
header of the tables.

According to our analysis of the training data,
many toponyms are mentioned in tables. Nev-
ertheless, the contexts of these toponyms differ
significantly from contexts of toponyms in main
body. The later are always meaningful sentences.
As a result, performances may drop significantly
if a model trained to recognize toponyms in the
sentences of the main body is used to recognized
toponyms occuring in tables. Thus, we propose a
novel approach for detecting toponyms in tables
which are processed separately with details as fol-
lows:

1. Analyze the mean and variance of words
counts (split by space), within a window of
text. Decreasing the size of window until the
variance is smaller than a threshold.

2. If the word ’Table’ is found in the context
of the window, take the n-gram within this
window as toponym if it exists in GeoNames
database.

2.2.3 Postprocess
Rule based postprocessing is applied in the end of
the detection step to avoiding errors which occur
frequently in development set. The following rules
are applied to a toponym for generating possible
corrections, which are confirmed and used to re-
place the original mention by figuring out whether
a correction exists in GeoNames.

• If a word of locality, such as eastern, ap-
pears before a toponym within three words,
we correct the candidate predicted by adding
the word of locality to the toponym.

• If a toponym ends with a suffix word (e.g.,
Province) which indicates an administrative
division, we make a candidate correction by
removing the suffix when the suffix occurs in
a predefined black list.

• If an abbreviation appears after a toponym
and the abbriviation consists of of all the cap-
ital letters of the words composing the name
of the toponym, we include the abbreviation
as a new candidate toponym.

919

2.3 Toponym Disambiguation
Our approach for disambiguation has two stages.
First, we retrieve possible candidate toponyms
from GeoNames database using a search engine
with a toponym mention as query. Second, a bi-
nary classifier with carefully designed features are
applied to each candidate to figure out whether it
is the appropriate place that the mention refers to.

2.3.1 Candidate Generation
This stage is based on an offline search engine im-
plemented with Lucene3. All GeoNames records
were indexed in advance. Then, we search the
index with the toponym mentions given by the
detection module as queries. In order to ensure
higher recall rate, we addressed the alias issue. We
expand the query by alternate names and enable
fuzzy matching searching.

Alternative names of given toponym mentions
are obtained by the following ways:

1. Alternative names recorded in GeoNames
dump files, including allCountries, alternate-
names, countryInfo.

2. Abbreviations of state names in America
given by Wikipedia4.

3. Alternative names mined by pattern match-
ing from the article where the mention ap-
peared. For example, by using the pattern
’<mention>, (<abbr>)’ we can get the al-
ternate name ’RSA’ of mention ’Republic
of South Africa’ from sentence ’Republic of
South Africa, (RSA)’.

Fuzzy matching is enabled since there are some
incorrect spellings in source articles which lead
to empty results. However, fuzzy matching intro-
duces noises, so it is enable only if the original
query recalls nothing.

2.3.2 Candidate Ranking
We formulate the candidate ranking problem as a
binary classification problem. Given a mention
detected, several potential candidates are retrieved
during candidate generation stage. We take every
mention and a candidate pair as input for a binary
classifier to decide whether the mention refers to
the candidate. We consider the classification con-
fidence as the candidate ranking score score〈m, e〉

3https://lucene.apache.org/
4https://en.wikipedia.org/wiki/List_

of_U.S._state_abbreviations

to select the most likely candidate. To deal with
context-poor KB problem, we design information
rich features and use the ensemble of model strat-
egy.

Features We divide all the features into four
groups, i.e., Name String Similarity, Candidate
Attributes, Contextual Features and Mention List
Features.

1. Name String Similarity Following previous
work (Shen et al., 2015), we developed fea-
tures capturing similarity between the can-
didate’s and the mention’s name, including
Exact Match, Mention Substring of Candi-
date, Candidate Substring of Mention, Men-
tion Starts Candidate Name, Candidate Starts
Mention Name, Jaccard Similarity, Leven-
shtein Similarity. All names are lowercased
in advance and the name of candidate may
change into its alternate names if exist.

2. Candidate Attributes This set of features
are based on target KB’s (GeoNames) records
and capture some priority of candidate, in-
cluding Popularity, Number of Ancestors,
Code Level.

3. Contextual Features Inspired by previous
work (Guo et al., 2013), We designed this set
of features to measure the contextual similar-
ity between the mention and the candidate.
Firstly, for mentions, we take multiple lev-
els of context around mentions in documents
as mention-side context, including senten-
ceparagraph and document level. Secondly,
since target KB (GeoNames) lacks context
information, we resort to Wikipedia to re-
quest candidate’s page via API 5. Consider-
ing computation efficiency and avoiding the
noise introduced by whole wiki page, we just
use the summary (first description paragraph)
of the page as candidate-side context, instead
of multiple levels. Finally, Bag-of-words
representation is employed to mention-side
and candidate-side context. Several similar-
ity methods have been explored, including
word overlap, cosine similarity and Jaccard
similarity.

4. Mention List Features We found that the
true candidate (or it’s ancestor candidates)

5https://github.com/goldsmith/
Wikipedia

920

may also refer to another mention in the same
document. This makes sense because to-
ponyms often co-occur with their child or
parent toponyms in medical articles or just
occur repeatedly in the same document. We
developed so called Mention Neighbors Fea-
tures, which take all mentions in a docu-
ment as mention list. Similar to mention-
side context, every mention has its sentence,
paragraph, and document mention list. We
encode the relationship between multi-level
mention lists and by checking whether the
candidate name, its ancestor name or alter-
nate names occur in the mention lists. This
set of features can capture the coherence to
some extent.

Classification Model We use LightGBM (Ke
et al., 2017) as our base model, which gets higher
performance compared with other gradient boost-
ing models such as gbdt, xgboost and more tradi-
tional models like LR and SVM.

Ensemble & Stacking We select different hy-
per parameters of LightGBM to build a set of base
models. Hyper parameters vary in number of esti-
mators, number of leaves, and learning rate. Fur-
thermore, We add a soft-vote classifier as model
ensemble, which returns the class label as argmax
of the sum of predicted probabilities. Based on
all the base models (several LightGBMs, two vote
classifiers), we apply a model stacking strategy
that takes the outputs (probabilities and labels) of
all base models as input and train a simple lin-
ear classifier called stacking model and return the
stacking model output as the final output.

3 Experiments

3.1 Toponym Detection
3.1.1 Dataset and Settings
Given 105 medical papers from PubMed Central6

for developing system, we randomly divided the
data into training, development and test set by a
ratio of 5:1:1. To avoiding instability of experi-
mental results, we repeat this process 5 times and
yield different distributions. All the results shown
below are average values among these five distri-
butions.

Data Augment The official training data is
smaller than the dataset used in general NER
task. Therefore, we expanded the training data

6https://www.ncbi.nlm.nih.gov/pmc/

by selecting external data from CONLL2003 and
ontonotes5.0. Sentence containing GPE or LOC
entities were selected. A binary classifier 7 was ap-
plied to distinguish the external sentences from the
official sentences and outputs a confidence score.
If the score lower than a threshold, in other words,
the external sentence is similar to the official sen-
tence, we add the external sentence into training
data. Finally, we obtained 8000 extra training sen-
tences, about 32% of the total training data.

Preprocessing Articles are segmented into sen-
tences by NLTK and segmentation errors are
corrected based on NER results (generated by
CoreNLP). For example, ”St. Louis” is split by
’.’ incorrectly. But it is a location according to
NER Results.

3.1.2 Ablation Study
Table 1 shows the ablation study of the detec-
tion model. As mentioned above, the baseline
model is a Char-LSTM-LSTM-CRF model (Lam-
ple et al., 2016). We tried two types of pre-trained
embeddings, GloVe (Pennington et al., 2014) and
PubMed 8. Since the PubMed is trained on in-
domain data, it achieves better results. Thus, all
the rest results are based on embeddings trained
on PubMed dataset.

Among the four linguistic information, adding
ELMo yields the most improvement, while adding
the other three yield a little. we successfully use
voting, a simple ensemble method to take advan-
tage of multiple models trained by using different
linguistic information, and it works.

All techniques proposed contribute to the per-
formance according to the results. Bring in more
training data indeed works but the improvement is
feeble. Processing tables separately increases the
recall since there are many tables containing to-
ponyms.

The best result is obtained by leveraging all
the approaches in combination, it outperforms the
baseline model significantly.

3.2 Toponym Disambiguation

3.2.1 Dataset and Settings
Data The distributions of articles is the same as
those experiments of Toponym Detection. Exter-

7The training data for this classifier is obtained by mixing
the official and external sentences with source information
kept. The threshold is chosen by intuition.

8trained on PubMed and Wikipedia articles, downloaded
from http://bio.nlplab.org/

921

Model Precision Recall F1-score
Baseline+PE GloVe 85.61 82.81 84.19

PubMed 87.60 83.24 85.37
Baseline+PE+LF POS 87.73 83.19 85.40

NER 87.38 83.55 85.42
Chunking 87.92 83.47 85.64

ElMo 89.40 88.34 88.87
Baseline+PE+LF+ME 89.63 88.51 89.06
Baseline+PE+DA 88.25 83.73 85.93
Baseline+PE+TP 88.36 84.78 86.53
Baseline+PE+PP 87.96 83.41 85.62
+All 90.69 89.74 90.21

Table 1: Experiment results of Detection. Abbreviations: DA, Data Augment; PPE, Pubmed Pre-trained Embed-
ding; PP, Post Process; TP, Table Process; LF, Linguistic Features; ME, Model Ensemble

nal data is not included since they contains no an-
notation for disambiguation task.

Hyper-parameters LightGBM models trained
with different hyper-parameters constitute the base
model set. The number of estimators varies from
200 to 800, number of leaves from 30 to 50, and
the learning rate takes one of 0.05, 0.1. Variance
threshold is set as 0.9 at feature selection phase.

3.2.2 Candidate Ranking Results
Table 2 shows the experimental results. We
compare the baseline method, single LightGBM
model, soft-vote method, and stacking method.
The baseline method take the candidate with most
population as output.

From Table 2, we can see the LightGBM model
beat the baseline method, and model combination
strategy improve the performance further. We take
outputs of all LightGBM models and soft-vote
model as input samples for training a stacking LR
model and get the best performance of 89.85%.

For the final run in competition, we chose the
stacking method and retrained all base models on
the entire train set and predicted on the test set.

3.2.3 Ablation Study
We also conducted an ablation study to investigate
the impact of each group of features. From Ta-
ble 3, we can see Name String Similarity is far
below the baseline method(80.45%) and and us-
ing the population as a feature is a strong heuristic
in fact. Although attribute features take the popu-
lation as one feature but the classifier using these
features still fail to beat the baseline. A reasonable
explanation is some other attributes act as noise.

Not surprisingly, Contextual Features play a

Model Prec. Rec. F1
baseline 79.96 80.94 80.45

lightGBM-single 89.30 87.03 88.15
soft-vote 89.44 87.83 88.63
stacking 90.57 89.14 89.85

Table 2: Main results of Candidate Ranking on entire
trainset

Prec. Rec. F1
+name similarity 60.40 63.06 61.70

+ attribute 75.98 76.75 76.36
+ contextual 86.56 85.31 85.93

+ mention list 89.30 87.03 88.15

Table 3: Ablation study for Ranking features

great role and bring an essential improvement sur-
passing the baseline. Interestingly, Mention List
features, allow a bigger progress over Contextual
Features. We think they capture the particularity
of toponym disambiguation and some coherence.

4 Conclusion and Future works

This paper introduces our system for toponym res-
olution which is a pipeline of sequence labeling
model based detection and classification model
based disambiguation. More works are worthy to
be done in the future, such as developing a more
sophisticated approach for detection toponyms in
table, adopting graph-based disambiguation meth-
ods and address this task in an end-to-end manner.

922

References
Wenliang Chen, Yujie Zhang, and Hitoshi Isahara.

2006. Chinese named entity recognition with con-
ditional random fields. In Proceedings of the Fifth
SIGHAN Workshop on Chinese Language Process-
ing, pages 118–121.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal process-
ing, pages 6645–6649. IEEE.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman.
2013. To link or not to link? a study on end-to-
end tweet entity linking. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1020–1030.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, pages 782–792. Association for Computational
Linguistics.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Informa-
tion Processing Systems, pages 3146–3154.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL-HLT, pages 260–270.

Chunping Ma, Huafei Zheng, Pengjun Xie, Chen Li,
Linlin Li, and Luo Si. 2018. Dm nlp at semeval-
2018 task 8: neural sequence labeling with linguistic
features. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 707–711.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd annual
meeting of the association for computational lin-
guistics: system demonstrations, pages 55–60.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for

word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), volume 1,
pages 2227–2237.

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. En-
tity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE Transactions on Knowl-
edge and Data Engineering, 27(2):443–460.

Yushi Yao and Zheng Huang. 2016. Bi-directional lstm
recurrent neural network for chinese word segmen-
tation. In International Conference on Neural Infor-
mation Processing, pages 345–353. Springer.

923

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 924–928
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Brenda Starr at SemEval-2019 Task 4: Hyperpartisan News Detection

Olga Papadopoulou, Giorgos Kordopatis-Zilos, Markos Zampoglou,
Symeon Papadopoulos, Yiannis Kompatsiaris

Centre for Research and Technology Hellas, Information Technologies Institute,
Thessaloniki, Greece

(olgapapa,georgekordopatis,markzampoglou,papadop,ikom)@iti.gr

Abstract

In the effort to tackle the challenge of Hyper-
partisan News Detection, i.e., the task of de-
ciding whether a news article is biased towards
one party, faction, cause, or person, we experi-
mented with two systems: i) a standard super-
vised learning approach using superficial text
and bag-of-words features from the article title
and body, and ii) a deep learning system com-
prising a four-layer convolutional neural net-
work and max-pooling layers after the embed-
ding layer, feeding the consolidated features to
a bi-directional recurrent neural network. We
achieved an F-score of 0.712 with our best ap-
proach, which corresponds to the mid-range of
performance levels in the leaderboard.

1 Introduction

The emerging issue of online disinformation has
lately attracted the public attention and is per-
ceived as a major risk for democracy and society.
Media content (text, images, videos) is often dis-
seminated on the Internet with the purpose of ma-
nipulating public opinion. Hyperpartisan news de-
tection is a problem arising as a result of the inten-
tion of publishers to influence readers in favour of
a given party, idea or person. The SemEval 2019
Task 4 (Kiesel et al., 2019) seeks solutions to this
challenge, in particular text-based approaches that
can detect hyperpartisan news articles.

We experimented with two approaches: i) a
standard supervised learning approach using su-
perficial text and bag-of-words features, and ii)
a deep learning system. We deployed the devel-
oped systems on TIRA (Potthast et al., 2019) (a
platform that supports software submissions) and
its evaluation was conducted on unseen news ar-
ticles. The results of our submissions, which are
presented in Table 1, are promising, yet there is
still considerable room for improvement. Our

best resulting approach was the deep learning sys-
tem, which scored an F-score of 0.712. The im-
plemented approaches are described below along
with additional experiments that were conducted
on the provided training and validation datasets.

2 Data

The dataset provided by the organizers of the
task (Kiesel et al., 2019) consists of news arti-
cles, half of which are labelled as hyperpartisan.
It is split into two sets, the training and the vali-
dation set, where for each article the article title,
body and published date are provided. The train-
ing set consists of 500.000 news articles and it is
used as training set for the presented experiments
and the provided validation set (150.000 news ar-
ticles) is used for validating the approaches. A
small dataset of 645 news articles, manually anno-
tated, is also provided but not used in the following
experiments neither as training nor as validation
data. For the evaluation phase, two small datasets
of 628 and 4000 articles are provided. The first,
called by-article test dataset, is labeled through
crowdsourcing on an article basis while the latter,
named by-publisher test dataset, is labeled by the
overall bias of the publisher as provided by Buz-
zFeed journalists and MediaBiasFactCheck.com.

A pre-processing step is applied on both the
article title and body in order to clean the text
and prepare it for the subsequent machine learn-
ing steps. The Natural Language Toolkit (NLTK)
(Bird et al., 2009) was used to implement this step.
First, the text is split into sentences and then each
sentence is split in tokens. Lemmatization is ap-
plied on each token in order to group together the
inflected forms of a word and subsequently re-
move the stop words based on a list of commonly
agreed stop words provided by the NLTK.

924

By article test set By publisher test set
Precision Recall F-score Precision Recall F-score

SuCla 0.556 0.643 0.596 0.535 0.809 0.644
BOW 0.542 0.971 0.696 0.627 0.808 0.706
DL 0.592 0.895 0.712 0.608 0.860 0.712

Table 1: Evaluation results on the two unseen test sets provided by SemEval-2019 Task 4.

3 Proposed Approach

We experimented with three approaches:

• SuCla: a simple classifier based on super-
ficial features extracted from the article text
(e.g. number of words, contains pronouns,
number of explanation marks) and building
supervised machine learning models;

• BOW: a ‘bag-of-words’ text classifier;

• DL: a deep learning system based on con-
volutional neural networks (CNN) (LeCun
et al., 2015) and recurrent neural networks
(RNN) (Medsker and Jain, 1999).

These are further detailed in the next sections.
In the experiments reported here, the training

set was used for building the models and the
validation set for calculating the evaluation mea-
sures: precision, recall and F-score1. The deci-
sion threshold is set to 0.5 where probabilities ≥
0.5 indicate hyperpartisan articles and < 0.5 non
hyperpartisan. Regarding the submissions to the
task through the TIRA platform, training was con-
ducted offline by concatenating the training and
validation sets as input and then, the trained mod-
els were deployed to TIRA to classify the new, un-
seen news articles.

3.1 Superficial Features Classifier (SuCla)
This simple approach is an adaptation of the one
introduced in (Boididou et al., 2018), which was
used to assess the credibility of Twitter posts. We
extracted a set of superficial features from the arti-
cle title, which are a subset of the tweet-based fea-
tures presented in (Boididou et al., 2018). These
are listed in Table 2. In (Boididou et al., 2018),
further information about the Twitter user who
posted the tweet was used, but such information is
not available for the article publisher in this task.

We extracted the title-based features on the
training and validation sets. The extracted 15-
dimensional feature vectors were first normalized

1https://en.wikipedia.org/wiki/Precision and recall

Title-based features
01 Text length
02 Number of words
03 Contains question mark (Boolean)
04 Contains exclamation mark (Boolean)
05 Contains 1st person pronoun (Boolean)
06 Contains 2nd person pronoun (Boolean)
07 Contains 3rd person pronoun (Boolean)
08 Number of uppercase characters
09 Number of positive sentiment words
10 Number of negative sentiment words
11 Number of slang words
12 Has : symbol (Boolean)
13 Number of question marks
14 Number of exclamation marks
15 Number of nouns

Table 2: List of features extracted from the article title.

in the [0,1] range and then fed to a Radial Ba-
sis Function (RBF) kernel SVM. The model pa-
rameters were calculated using a grid searching
method. The software was deployed to TIRA
and evaluated on the unseen articles of the test
set. The normalization of test article features was
conducted using the scaling parameters computed
from the training set. Then, articles were classified
as hyperpartisan or not with a score in the [0,1]
range: the higher the score the more likely the ar-
ticle is hyperpartisan. The precision, recall and F-
measure of this run are presented in Table 1 for the
two test sets of unseen articles (by-pyblisher and
by-article). The resulting F-scores of 0.596 and
0.644 for the by-article and by-publisher test set
respectively indicate that this approach performs
better than random but requires more distinctive
features to further improve the accuracy.

3.2 Bag-of-words Classifier (BOW)

A text item, in our case the article title or body, can
be represented as a vector of word occurrences.
This is the well-known and widely used ‘bag-of-
words’ (BOW) model. For building the BOW, we

925

Precision Recall F-measure
Title Body Title Body Title Body

MNB 0.54 0.54 0.66 0.79 0.59 0.65
RF 0.56 0.54 0.74 0.68 0.64 0.60
LR 0.58 0.56 0.79 0.81 0.67 0.66

Table 3: Evaluation results for Bag of Words on article title and body. Three classifiers are evaluated: Multinomial
Naive Bayes (MNB), Random Forest (RF) and Logistic Regression (LR).

started with the clean text resulting from the pre-
processing step described in Section 2 and counted
the number of occurrences of each word from two
vocabularies that were created based on the train-
ing set, and had a size of 64,663 and 364,359
words for the title and the body respectively. Three
classifiers were evaluated: a) Multinomial Naive
Bayes (MNB), b) Random Forest (RF) and c) Lo-
gistic Regression (LR). The obtained test results
are presented in Table 3. According to it, LR out-
performs the other two, irrespective of whether the
article title or body is used as input. The result-
ing F-scores are 0.67 (title) and 0.66 (body). The
BOW counts the number of times a word appear in
the text of an article (term frequency) regardless of
its appearance in other articles. In addition, we ap-
plied the Term Frequency-Inverse Document Fre-
quency (TF-IDF), which adapts the term weight in
relation to the times that this term appears in all
articles. However, the resulting F-score of 0.58
(title) and 0.66 (body) for LR indicated that clas-
sification performance would suffer. Additionally,
in the attempt to take advantage of both the title
and body text, we implemented a fusion step based
on averaging the prediction scores of the individ-
ual models. As a result, a minor increase of the
F-score to 0.69 was obtained at the expense of ad-
ditional complexity.

The LR classifier was finally trained on the full
set of articles (both training and validation sets)
and article title. The new BOW model was de-
ployed to TIRA to classify the unseen news ar-
ticles. This led to slightly better results as pre-
sented in Table 1. Compared to the SuCla ap-
proach, the BOW performance is significantly bet-
ter, especially on the by-article dataset.

3.3 Deep Learning System (DL)

An overview of the employed network architec-
ture, which was devised for the task, is presented
in Figure 1.

The input to the network is the vectorized form

of the articles’ title and body. The input text is
pre-processed as described in Section 2. An addi-
tional step is applied in order to form the text so
that the inputs to the network have the same shape
for each article. More specifically, for each article
we retain the first 64 sentences, and for each sen-
tence the first 64 words. This results in a (64x64)-
dimensional tensor that is provided as input to the
network. Zero padding is applied in order to fill
missing words and/or sentences.

The input of the network is provided to an Em-
bedding layer, to map each word of the input text
to a word embedding. We used the pre-trained
FastText word embeddings (Mikolov et al., 2018)
of size 300. The weights of this layer are not up-
dated during learning. In that way, we overcome
the limitation of a bounded vocabulary, imposed
by the training set, and the network can process
words outside the training sets since they exist in
the vocabulary of FastText. The output of this
layer is a tensor of (64x64x300) for each article.

Then, we apply multiple convolution filters with
different kernel sizes on the output of the Em-
bedding layer. In that way, the network can cap-
ture word sequence structure in different granu-
larity levels. The convolutional layers are used
with kernel sizes of (1x1), (1x3), (1x5), and (1x7)
and in combination with a ReLU activation func-
tion. The output of each convolutional layer is
a (64x64x128)-dimensional tensor. The outputs
of the four convolutional layers are then concate-
nated on the channel axis (the last tensor dimen-
sion) to form a (64x64x512)-dimensional tensor
per article. Finally max-pooling is performed over
the word axis, i.e., the maximum value per channel
and sentence is extracted. To this end, the Embed-
ding and Convolutional layers of the network cap-
ture word-level information from the article text.

After max-pooling on the outputs of the Convo-
lutional layers, the (64x512)-dimensional tensors
are given to a bidirectional Recurrent Neural Net-
work (bi-RNN) (Schuster and Paliwal, 1997) that

926

Figure 1: The deep learning architecture developed for classifying a news item as hyperpartisan or not.

calculates sentence vectors by taking into account
the neighbor sentences. More precisely, for every
article sentence i, the hidden vector hi summarizes
the neighbor sentences around sentence i but still
focuses on that sentence. We employed the bidi-
rectional Gated Recurrent Units (bi-GRU) (Cho
et al., 2014) as the recurrent unit of the bi-RNN,
which is an improved version of the standard re-
current unit. The output of the bi-GRU layer is
provided to an attention mechanism (Yang et al.,
2016) that weights each sentence vectors based
on their similarity to a sentence-level context vec-
tor, and then averages the weighted vectors to sin-
gle vector. The result of the Attention layer is a
(1x256)-dimensional vector.

At the final stage, the network captures article-
level information. The output of the Attention
layer is fed to a fully connected layer to get the
final prediction of the network. In this layer, we
apply Sigmoid activation to map the output to the
[0,1] range, which represents the probability of the
article being hyperpartisan. Finally, the network
is trained with the binary cross-entropy loss func-
tion, weight decay with a 5 ∗ 10−4 regularization
factor, Adam (Kingma and Ba, 2014) optimizer,
and 10−3 learning rate. Training is done for 100
epochs with a batch size of 32 articles, and the
best network is selected based on the performance
on the validation set.

This method performs better than the other two
approaches, achieving an F-score of 0.712 (Table
1) for both test sets.

3.4 Ideal Fusion
We implemented an ideal fusion method in order
to examine the complementarity between the three

proposed approaches. This is a theoretical scheme
(oracle) which takes the outputs of the individ-
ual approaches and selects the correct classifier:
at least one model needs to classify correctly an
article. An F-score of 0.85 is achieved on the vali-
dation set, far better than the individual classifiers
accuracy (SuCla: 0.51, BOW: 0.67, DL: 0.65) in-
dicating that the models bring complementary in-
formation, which make them good components of
a combined model.

4 Conclusions

This paper summarized our participation in
SemEval-2019 Task 4, where we aimed at the
challenge of Hyperpartisan News Detection. We
tried to approach the problem from the perspec-
tive of standard supervised learning techniques, as
well as more complex deep learning approaches.
While none of the methods gave groundbreaking
results, our set of experiments and observations
provides a solid basis for future research on the
problem. In particular, we intend to conduct more
extensive analysis on the annotated data and ex-
tract patterns that will be more representative and
distinctive for the problem at hand. Moreover, we
will consider combining the three proposed ap-
proaches with the aim of creating a stronger and
more accurate combined model. The significant
increase in performance of the ideal fusion method
points out the benefits of such a strategy.

5 Acknowledgments

This work is supported by the WeVerify project,
which is funded by the European Commission un-
der contract number 825297.

927

References
Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Christina Boididou, Symeon Papadopoulos, Markos
Zampoglou, Lazaros Apostolidis, Olga Pa-
padopoulou, and Yiannis Kompatsiaris. 2018.
Detection and visualization of misleading content
on twitter. International Journal of Multimedia
Information Retrieval, 7(1):71–86.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. nature, 521(7553):436.

Larry Medsker and Lakhmi C Jain. 1999. Recurrent
neural networks: design and applications. CRC
press.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the International Confer-
ence on Language Resources and Evaluation (LREC
2018).

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

928

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 929–933
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Cardiff University at SemEval-2019 Task 4: Linguistic Features for
Hyperpartisan News Detection

Carla Pérez-Almendros, Luis Espinosa-Anke and Steven Schockaert
School of Computer Science and Informatics

Cardiff University, UK
{perezalmendrosc,espinosa-ankel,schockaerts1}@cardiff.ac.uk

Abstract

This paper summarizes our contribution to
the Hyperpartisan News Detection task in Se-
mEval 2019. We experiment with two differ-
ent approaches: 1) an SVM classifier based
on word vector averages and hand-crafted lin-
guistic features, and 2) a BiLSTM-based neu-
ral text classifier trained on a filtered training
set. Surprisingly, despite their different nature,
both approaches achieve an accuracy of 0.74.
The main focus of this paper is to further ana-
lyze the remarkable fact that a simple feature-
based approach can perform on par with mod-
ern neural classifiers. We also highlight the ef-
fectiveness of our filtering strategy for training
the neural network on a large but noisy train-
ing set.

1 Introduction

In the era of misinformation, the challenge of dif-
ferentiating reality from frames, facts from opin-
ions, is becoming increasingly important. Con-
cepts such as Fake News, Fact Checking or Post-
Truth Era, generally unknown a few years ago
(Lewandowsky et al., 2017), started to play an
important part in media, academic papers and
even in Natural Language Processing (NLP) tasks
(Rashkin et al., 2017; Shu et al., 2017; Wang,
2017). Nowadays, strongly opinionated news sto-
ries can offer biased information, as is the case
with hyperpartisan articles. A text is considered
hyperpartisan when it is highly polarized towards
an extreme position. Potthast et al. (2018) ana-
lyzed hyperpartisanism in relation to fake news,
to discover that a very similar writing style could
be associated both with right-wing and left-wing
polarized stories. This shared style of biased arti-
cles was different from that of mainstream articles.
Task 4 in SemEval 2019 (Kiesel et al., 2019) con-
sisted in a classification challenge where news ar-
ticles had to be sorted out as hyperpartisan or non-

hyperpartisan. Our approach addressed this chal-
lenge via two different models, which included
1) an SVM classifier based on word embeddings
averages and handcrafted linguistic features and
2) a recurrent BiLSTM neural network classifier
trained on filtered data. The reason and process
for filtering data will be explained in section 3.2.

Word embeddings have remained central to the
state-of-the-art approaches in NLP since the intro-
duction of Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) models. In ad-
dition to modelling word meaning, embeddings
can also be applied to longer units of signifi-
cance, such as phrases, sentences, paragraphs or
entire documents (Le and Mikolov, 2014). How-
ever, although such vector representations often
enable the best results in a variety of NLP chal-
lenges, some tasks still benefit from linguisti-
cally inspired approaches. In fact, recent work
has proved how linguistic features and stylome-
try could improve the performance of deep learn-
ing techniques. The already mentioned work in
Hyperpartisan and Fake News detection (Potthast
et al., 2018) applied stylometry based on linguistic
features to identify strongly biased articles. Bag of
words, stop words, part of speech and readability
scores are some of the features analyzed by the au-
thors. They also focus on quotes, measuring their
length and counting their appearances in a text.
Rhetorical questions or the appearance of personal
pronouns, among many others linguistic features,
also helped to classify suspicious vs trusted news
posts on Twitter (Volkova et al., 2017). The num-
ber of adverbs or swear words has also been used
for fact checking purposes (Rashkin et al., 2017).
Inspired by these previous works and their results,
these linguistic features are some of the ones we
apply in our first model.

The second model is based on word embed-
dings as input for a neural network. Specifically,

929

we used a Convolutional Neural Network (CNN)
combined with a Bidirectional Long-Short Term
Memory (BiLSTM) network. The main novelty of
this approach lies in the preprocessing step which
filters the training data. This strategy is used be-
cause the bulk of the training data only provides
a weak supervision signal, which we found too
noisy to use directly.

2 Data

The data provided for this task consisted of a train-
ing set of 645 news articles, manually labeled
as hyperpartisan or non-hyperpartisan. In addi-
tion to this gold standard data, a larger dataset of
600,000 training articles and 150,000 validation
articles was provided. These complementary doc-
uments were labeled automatically depending on
their source media. If the media was considered
hyperpartisan, the article was labeled as such, but
without analyzing its content. These automatically
tagged articles also included further labels (refer-
ring to the publisher rather than the article itself),
which have not been used in our system. Our first
model exclusively relied on the manually labeled
articles (645) for training, while the second model
also took advantage of the larger set of weakly la-
beled articles (750000).

3 Our Approach

The dataset was preprocessed by changing the
text to lower case and then applying tokenization.
For our first model, sentence tokenization was ap-
plied and articles were preprocessed with part-
of-speech tagging (PoS), using the NLTK library
(Bird et al., 2009). While Potthast et al. (2018)
kept and analyzed quotes in texts, we chose to
delete them in both datasets. Our first experiments
showed that, in a small number of cases, keep-
ing quotes drove our system to misclassification
because while an article could quote hyperparti-
san statements of others, the document itself did
not necessarily have an extreme position towards
a topic or event. In both approaches, we only con-
sidered the main text of the article, discarding its
title.

3.1 Model 1: Combining Document
Embeddings with Linguistic Features

Document embeddings were built for each article.
For doing so, we first computed embeddings for
all sentences by averaging the pre-trained GloVe

vectors (Pennington et al., 2014) for all the words
occurring in them. To this end, we used the un-
cased Common Crawl pretrained GloVe embed-
dings, with 300 dimensions and a vocabulary of
1.9 million words. The average of all the sentences
in an article was then computed to obtain a sin-
gle vector representation of the news article. To
complement this document vector, we identified a
number of document-level discriminant linguistic
features to classify a text as hyperpartisan or non-
hyperpartisan. The selected features are as follow:

• excl: total number of exclamation marks

• quest: total number of question marks

• adj: percentage of tokens which are adjec-
tives

• adv: percentage of tokens which are adverbs

• insults: total number of insults or swear
words1

• first pers: total number of times that the
first person personal pronoun I was used

• sent length: average length of sentences

• min sent: length of the shortest sentence

• max sent: length of the longest sentence

These feature values were concatenated with the
document vector to provide the input for a linear
SVM classifier.

To experiment with different configurations of
our method, we used the 645 manually labeled ar-
ticles with 5-fold cross-validation. Document em-
beddings and linguistic features vectors were con-
sidered both separately and concatenated as input
for different classifiers, namely Random Forest,
Logistic Regression and Support Vector Machine
(SVM), with different parameters. In all cases,
we used the implementations from the Scikit-
Learn Machine Learning Library (Pedregosa et al.,
2011). After testing the different options, a con-
catenated vector of document embeddings and lin-
guistic features as input for an SVM proved to ob-

1A file containing swear words and insults was
provided as input for a swear words count function.
The file was created with a list of such words ex-
tracted from https://www.digitalspy.com/tv/a809925/ofcom-
swear-words-ranking-in-order-of-offensiveness/, and then
augmented with 2,500 similar insults coming from their
word2vec nearest neighbours.

930

tain the best results. We finally trained our com-
bined model as a linear SVM on the entire set of
645 gold standard documents.

3.2 Model 2: Neural Text Classification
Neural networks need large amounts of data to be
able to learn. The small dataset of 645 manually
labeled articles was clearly too small to train a
competitive neural network model. However, we
noticed that the large training set of 750K docu-
ments, which was labeled based on the publisher,
was too noisy, yielding a performance which was
far worse than that of the first model. We at-
tempted to surmount this issue via a two-step strat-
egy, in which we first trained a classifier on the
small training set, which we used to filter the larger
but noisy training set. The goal was to automati-
cally extract from the 750K labeled-by-publisher
articles only those which were correctly predicted
as hyperpartisan or non-hyperpartisan by this ini-
tial classifier. The strategy which we found to per-
form best was the following:

1. Using half of the 645 labeled articles, we
trained three classifiers:

• a linear SVM based on the linguistic fea-
ture set described in Section 3.1,
• a linear SVM based on the document

embedding
• and a standard neural classifier using a

convolutional layer followed by a bi-
LSTM layer (CBLSTM).

The two first classifiers were included after
they had been tested in our first model, and
with the parameters previously explained.
The choice of using a combination of CNN
and LSTM for our third classifier stems from
previous work where either or both architec-
tures combined proved to be useful in doc-
ument classification (Kim, 2014; Xiao and
Cho, 2016). Concerning the choice of hyper-
parameters, we used 100 convolutional filters
of size 5, and one-token strides. The output
of the CNN layer was then passed to a max-
pooling layer (where pool size was set to 4),
and this output was passed to a bidirectional
LSTM layer which produces two 100d vec-
tor outputs, which after concatenation, were
passed to a final 2d softmax layer. We imple-
mented this model using the keras2 library.

2https://keras.io/

2. We then trained a meta-classifier on the re-
maining half of the 645 articles, which used
the predictions of these three individual clas-
sifiers as features, and which finally gen-
erated a final prediction. For this meta-
classifier we used a linear SVM.

3. Once trained, the meta-classifier was ap-
plied to the 750K labeled-by-publisher arti-
cles. Whenever the ground-truth label agreed
with the prediction of our metaclassifier, the
article was retained in our filtered dataset.

4. Through this process, we obtained around
150K refined labeled articles that we used
for training another CBLSTM, replicating the
same process and parameters used in step 1.
This last refined model was the one applied
to the test set.

4 Analysis

We will focus our analysis on the first model,
given that its result is perhaps most surprising.
We observed that exclamation and question marks
were present in non-hyperpartisan and mainstream
articles, but a high occurrence of these features
is nonetheless clearly correlated with hyperpar-
tisanism. Adjectives and adverbs tended to be
more frequent in hyperpartisan texts as well. In-
sults or swear words were extremely scarce in non-
hyperpartisan articles, so their presence is a strong
indicator for hyperpartisanism. The personal pro-
noun I denotes a personal text, and for this reason
is more common in strongly opinionated articles.
Average sentence length was not found to be par-
ticularly informative. On the other hand, we found
that the shortest sentences in hyperpartisan articles
tend to be shorter than those in non-hyperpartisan
articles. In a similar way, the longest sentences
were also slightly longer in extreme news stories.
These results have been summarized in Table 1.

Further experiments to assess the discrimina-
tory power of each linguistic feature were per-
formed, although these took place after the sub-
mission for this SemEval task. A 5-fold cross val-
idation on the 645 gold-standard articles dataset
was applied to estimate the performance of the
model in each case. As can be seen in Table 2, the
linguistic features on their own are sufficient for
achieving an accuracy of 66%. Combining them
with document embeddings, the results reached
73.2%. However, a deeper analysis showed that

931

Hyp. Non Hyp.
excl (avg) 1.30 0.63
quest (avg) 2.43 1.20
adj (avg) 9.00 8.40
adv (avg) 4.10 3.20
insults (avg) 0.07 0.01
first pers (avg) 3.26 1.78
sent length (avg) 22.47 24.43
min sent(median) 2.00 4.00
max sent(median) 52.00 47.00

Table 1: Linguistic features extracted from 645 articles
dataset.

some linguistic features were actually deteriorat-
ing the general performance of the system. For
instance, the linguistic features model alone per-
formed better when excl were not accounted for.
On the other hand, insults, adj and adv, re-
spectively, were the most discriminant features,
leading to the biggest drop in performance when
discarded. Here, we would like to highlight that,
surprisingly, the feature adv reduces the perfor-
mance of the combined model, where eliminating
it allows the system to reach 75% of accuracy. The
feature first person is also reducing the score
of the combined system. However, whenever we
omitted two or more linguistic features, the per-
formance of the combined model dropped below
72.7%, which is the accuracy achieved by the doc-
ument vectors on their own. Therefore it seems
safe to conclude that our linguistic features share
some information that, combined, provide com-
plementary evidence for document embeddings.

Ling. Feat. Comb. model
complete
model .660 .732

- excl .666 .738
- quest .663 .730
- adj .642 .730
- adv .651 .750
- insults .640 .738
- first pers .662 .742
- sent length .660 .735
- min sent .662 .730
- max sent .662 .736
only document
embeddings - .727

Table 2: Ablation results for the first model in terms of
accuracy.

5 Results and Discussion

Both our systems obtained around 74% accuracy
in SemEval 2019 task 4: Hyperpartisan News De-
tection under the team name of Ankh-Morpork
Times (Potthast et al., 2019). This constitutes an
improvement of 28 percentage points over the pro-
vided baseline. In the SemEval competition, our
team got the 16th position out of 42 participants.
Our main contribution was to show that a simple
approach, based on document embeddings and lin-
guistic features, can obtain the same accuracy as a
typical neural text classifier.

Overall, there are several lessons learned from
our participation in this task, which we will try
to develop in future work. For example, we con-
firmed that, although the community tends to rely
on the performance of word vectors, linguistic fea-
tures can complement word vector based repre-
sentations in a meaningful way in text classifi-
cation. In addition, further analysis in our work
showed that we could have improved our perfor-
mance with a better selection of linguistic features.
Therefore, for future work, we aim at providing
a more reliable model which takes into account
more complex linguistic features. For instance,
we believe that looking at sentences’ modality and
sentiment, as well as assessing the polarity of ad-
jectives and adverbs in a text, should give valuable
extra information for the task.

As a secondary contribution, we also proposed
a technique for filtering noisy data. It is known
that neural networks perform well for large train-
ing sets, but sometimes a large accurately labeled
dataset cannot be obtained. To this end, we created
a meta-classifier trained on a smaller gold standard
dataset and applied to larger, noisy data for obtain-
ing a filtered higher-quality training set.

6 Namesake

Ankh-Morpork is the biggest city in the Disc-
world, the fictional world that gives name to the
famous fantasy book series by Sir Terry Pratchett.
And Ankh-Morpork Times is its first, biggest and
most famous newspaper, and covers in a peculiar
and surreal way the no less surreal events happen-
ing in this flat world. And sometimes, we must
admit, with quite a hyperpartisan point of view.

932

References
Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Stephan Lewandowsky, Ullrich KH Ecker, and John
Cook. 2017. Beyond misinformation: Understand-
ing and coping with the post-truth era. Journal
of Applied Research in Memory and Cognition,
6(4):353–369.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying

shades: Analyzing language in fake news and polit-
ical fact-checking. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2931–2937.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and
Huan Liu. 2017. Fake news detection on social me-
dia: A data mining perspective. ACM SIGKDD Ex-
plorations Newsletter, 19(1):22–36.

Svitlana Volkova, Kyle Shaffer, Jin Yea Jang, and
Nathan Hodas. 2017. Separating facts from fiction:
Linguistic models to classify suspicious and trusted
news posts on twitter. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2,
pages 647–653.

William Yang Wang. 2017. ” liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648.

Yijun Xiao and Kyunghyun Cho. 2016. Efficient
character-level document classification by combin-
ing convolution and recurrent layers. arXiv preprint
arXiv:1602.00367.

933

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 934–938
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Clark Kent at SemEval-2019 Task 4: Stylometric Insights into
Hyperpartisan News Detection

Viresh Gupta, Baani Leen Kaur Jolly, Ramneek Kaur, Tanmoy Chakraborty
Indraprastha Institute of Information Technology, Delhi (IIIT-Delhi), India

{viresh16118, baani16234, ramneekk, tanmoy}@iiitd.ac.in

Abstract

In this paper, we present a news bias predic-
tion system, which we developed as part of
a SemEval 2019 task. We developed an XG-
Boost based system which uses character and
word level n-gram features represented using
TF-IDF, count vector based correlation matrix,
and predicts if an input news article is a hyper-
partisan news article.

Our model was able to achieve a precision of
68.3% on the test set provided by the contest
organizers. We also run our model on the Buz-
zFeed corpus and find XGBoost with simple
character level N-Gram embeddings to be per-
forming well with an accuracy of around 96%.

1 Introduction

The problem of hyperpartisan news detection (Pot-
thast et al., 2018) is based on predicting whether a
news article is biased towards a specific political
wing or not. The problem falls under the category
of classification problems, and the task is to clas-
sify an article as being extremely one-sided or not.
A closely related problem is that of fake new de-
tection wherein the task is to analyze the veracity
of an article, and classify it based on some prede-
fined degrees of truthfulness.

Our problem has a high societal relevance,
since one-sided news poses a great threat to
democracy, particularly in the context of conduct-
ing fair elections. In this paper, we discuss our
approach to solving this problem used during the
contest Hyper Partisan News Detection, a com-
petition task at SemEval 2019 (Kiesel et al., 2019).

More formally, our problem definition is:

Definition 1 (Hyperpartisan News Detection)
We are given a set of news articles A, where each
article ai is marked with two labels: a Boolean
label hyperpartisan hi which indicates if article

ai is biased towards a political wing, and a bias
label bi ∈ {left, right, left-center, right-center,
least} which indicates which wing the article is
biased towards. If hi = True, then bi ∈ {left,
right}; if hi = False, then bi ∈ {least, left-center,
right-center}. The objective is to learn a classifier
C which predicts the hyperpartisan label hj for
an unknown news article aj .

In this work, we identify the role of various tra-
ditional NLP features in determining the degree of
partisanship. We utilise standard term-frequency
and inverse document frequency vector features
computed for uni, bi and tri-grams obtained from
the corpus. We do this feature extraction at both
character and word level and then train a gradi-
ent boosted decision tree as a classifier for identi-
fying partisanship. We also compare other meth-
ods of classification such as SVM, KNN, Naive
Bayes and Logistic Regression for the task using
the same vector features. Furthermore, experi-
ments exploiting the metadata information were
also performed (explained in detail in the scalar
features in section 3.2).

The experiments were performed on two cor-
pora, the BuzzFeed corpus (created in (Potthast
et al., 2018)) and the training corpus released by
the task organisers (the SemEval corpus). Fur-
ther we also discuss the results obtained on the
final test corpus released for the final evaluation
of the task in section 4.1. Due to computation in-
feasibility over the larger training corpus, we do
not compute vector features for the SemEval cor-
pus.

2 Related Work

The work done on hyperpartisan and fake news
detection can be broadly classified into three cat-
egories – knowledge-based (Etzioni et al., 2008;
Ginsca et al., 2015), context-based (Long et al.,

934

Figure 1: Variation in feature value w.r.t. time for true and false hyperpartisan articles in SemEval Corpus (a) Title
length w.r.t. time (b) Content length w.r.t. time (c) Article polarity value w.r.t. time (d) Title polarity value w.r.t
time . Red and green colors depict articles from hyperpartisan publishers and other publishers respectively.

2017a; Mocanu et al., 2015), and style-based
(Bourgonje et al., 2017).

While the knowledge-based and context-based
features may take some time to detect hyper-
partisanship (after the news starts spreading on so-
cial media), the style-based features can be used to
detect partisanship of a news article well in time
before the damage happens (Potthast et al., 2018).

For exploiting style based features, (Long et al.,
2017b) uses deep learning based methods, and
(Shu et al., 2017) performs fake news detection on
social media data using a data mining oriented ap-
proach.

2.1 Baseline

We take as our baseline the work done by (Pot-
thast et al., 2018). Their work uses the au-
thor’s writing style as features to detect hyper-
partisanship. The stylometric features used in
their work include POS-unigrams, POS-bigrams,
POS-trigrams, char-unigrams, char-bigrams, char-
trigrams, stopword-uniGrams, stopword-bigrams,
stopword-trigrams, general inquirer categories,
readability scores, quotation ratio, link amount
and average paragraph length. A random forest
classifier was used to make predictions.

We use their classifier as the baseline for the
BuzzFeed corpus. For the SemEval corpus, we
use the random baseline provided in the task as
our baseline. The baseline results are mentioned
in Tables 1 and 3 for both the datasets.

3 Methodology

In this section, we describe the dataset, the fea-
tures that we selected and the models we trained
using the selected features. A visual overview is
shown in Figure 2.

3.1 Corpus

We used two corpora, which we name as Buz-
zFeed corpus and SemEval corpus.

BuzzFeed corpus: This corpus was produced
by the baseline work. The dataset comprised 1,627
articles that were manually checked by four Buz-
zFeed journalists. Of these, 826 articles belong to
the main-stream category of publishers, 256 be-
long to the left-wing category of publishers, and
the remaining 545 to the right-wing category of
publishers.

SemEval corpus: This corpus has been re-
leased for the SemEval 2019 Task 4 on Hyper-
partisan News Detection. It comprises 800,000

935

Baseline Results
Model Precision Recall F1 score Accuracy

RF 0.75 0.77 0.75 0.75
Count Vector Results

Model Precision Recall F1 score Accuracy
XGB 0.92 0.93 0.92 0.93
LR 0.92 0.92 0.92 0.93
SVM 0.89 0.90 0.89 0.91
KNN 0.75 0.78 0.76 0.76
GNB 0.75 0.77 0.73 0.73
RF 0.71 0.70 0.62 0.62

Word N-gram Vector Results
Model Precision Recall F1 score Accuracy
XGB 0.95 0.95 0.95 0.96
SVM 0.89 0.91 0.91 0.91
LR 0.87 0.90 0.88 0.89
GNB 0.82 0.85 0.82 0.82
RF 0.74 0.73 0.64 0.64
KNN 0.72 0.70 0.62 0.61

Character N-gram Vector Results
Model Precision Recall F1 score Accuracy
XGB 0.95 0.96 0.95 0.96
SVM 0.89 0.91 0.90 0.91
GNB 0.87 0.89 0.88 0.89
RF 0.87 0.89 0.87 0.89
LR 0.85 0.88 0.85 0.86
KNN 0.67 0.57 0.40 0.43

Table 1: Vector feature results (BuzzFeed Corpus
only).

training articles and 200,000 test articles. These
articles are annotated based on the publisher of the
articles.

3.2 Feature Selection
Prior to the selection of features, we pre-processed
our datasets to clean the text in articles to han-
dle the encoding errors, perform text normalisa-
tion and stop word removal. The features we se-
lected can be categorized into two categories, viz.
scalar features and vector features. We train two
sets of models, one for each category of features.
Scalar features: Here, we select four features, all
used at the same time since they encode different
information:

• Article length: This feature denotes the
length of the articles in terms of the number
of characters.

• Title length: The title length features denotes

Precision Recall F1 score Accuracy
RF 0.81 0.64 0.72 0.74
LR 0.63 0.76 0.69 0.65
KNN 0.62 0.66 0.64 0.62
GNB 0.57 0.93 0.71 0.61
SVM 0.52 0.90 0.66 0.58

(a) BuzzFeed Corpus.

Precision Recall F1 score Accuracy
KNN 0.64 0.59 0.62 0.63
RF 0.55 0.76 0.64 0.58
SVM 0.62 0.08 0.15 0.52
GNB 0.51 0.94 0.66 0.51
LR 0.48 0.57 0.52 0.47

(b) SemEval Training Corpus.

Table 2: Scalar features results.

the length of the title of an article in terms of
the number of characters.

• Article polarity: The article polarity denotes
the sentiment score of the article text in the
range [−1, 1]. A score value less than zero
implies a negative sentiment, and a positive
sentiment otherwise.

• Title polarity: Similar to the article polarity,
the title polarity feature denotes the sentiment
score of the article title in the range [−1, 1].

Vector features: These include three kinds of fea-
tures (considered separately since they encode the
same information):

• Word count vectors: The count vector for
a document denotes the vector of counts of
words in the document from the set of possi-
ble words in a corpus/vocabulary.

• Word level n-gram vectors: The word level
vector for a document denotes the vector of
tf-idf values of words level n-grams in the
document. We used unigrams, bigrams and
trigrams for this feature.

• Character level n-gram vectors: The charac-
ter vector for a document denotes the vector
of counts of character level ngrams. For this
feature too, we use unigrams, bigrams and
trigrams.

Visual inspection of the data: In Figure 1
we provide a visual insight into the corpus based

936

Dataset Method Precision Recall F1 score Accuracy

By Article
Ours 68.3 17.8 28.3 54.8
Baseline 46.2 46.0 44.3 45.1

By Publisher
Ours 56.5 17.0 26.1 51.95
Baseline 51.1 51.1 50.0 50.5

Table 3: Results for the submitted model. Figure 2: System Overview.

on the features selected. The figure depicts scat-
ter plots showing variation in feature values w.r.t.
time for both true and false hyperpartisan articles.

3.3 Models Used

We use the following learning models for our
scalar features of the BuzzFeed corpus: K Near-
est Neighbours (KNN), Gaussian Naive Bayes
(GNB), Random Forest (RF), Logistic Regression
(LR) and Support Vector Machine (SVM). For the
vector features of the BuzzFeed corpus, we use:
KNN, GNB, RF, LR, SVM and XGBoost (XGB).

4 Experiments

We divide this section into three parts – experi-
mental setup, results on the BuzzFeed corpus, and
results on the SemEval corpus.

4.1 Experimental Setup

The article polarity and title polarity features
were computed using SentiWordNet1 (Baccianella
et al., 2010). All the vector features were com-
puted using the scikit-learn package. To split the
data into training and testing sets, we used 5-fold
cross-validation.

4.2 Results on the BuzzFeed Corpus

The results for the scalar features for models
trained on the BuzzFeed corpus are shown in Table
2a(a). The RF model performs the best with an ac-
curacy of 74%. The scalar features, however, are
insufficient in beating the baseline. We therefore
train models on our vector features. The results for
the vector features are shown in Table 1.

As evident from table 1 and 2a(a), vector fea-
tures perform much better and are able to beat the
baseline (Table 1) easily.

1https://github.com/anelachan/sentimentanalysis

Various sections in Table 1 represent the results
when using different kinds of vector represen-
tations as features, with character level n-grams
yielding the top results.

4.3 Results on the SemEval Corpus
Results on the SemEval corpus are shown in Table
2b(b). From all models, KNN performs the best,
followed by RF, SVM, and GNB (in that order).

Since computing vector features and tf-idf fea-
tures was computationally infeasible on this cor-
pus, we did not train the vector features, however,
based on our observations from buzzfeed dataset
(i.e the character level vectors outperforming all
others), we trained a supervised classifier using
FastText (Joulin et al., 2016), (Bojanowski et al.,
2016). The accuracy achieved for this model is
65%.

The results of our model using all the scalar fea-
tures on the final evaluations (testing by article
and testing by publisher corpus) of this competi-
tion are shown in Table 3. These results show that
our model suffered from the inability to draw out
more of the relevant results (low recall).

5 Conclusion

In this work, we have explored traditional sets of
features and models for the Hyper-partisan News
Detection problem. We worked on two corpora,
of which one has been used in the state-of-the-art
literature. For this corpus, we beat the baseline
and achieve a remarkable accuracy of 96%. For
the other corpus, we achieve an accuracy of 65%
(with a fast text character level embedding based
model).

From the results of the contest (Table 3), we
were able to beat the baseline easily. Though our
system did not achieve as high accuracy as other
systems, we observe that this is due to a bad re-
call, i.e even though the features that we selected

937

are very useful for the model to produce relevant
results, it cannot capture some of the correct re-
sults.

6 Code and Reproducibility

We provide all our code for both Buzzfeed
and Semeval Corpus as a github repository lo-
cated at https://github.com/virresh/hyperpartisan-
semeval19-task4 . The same code was uploaded
on TIRA (Potthast et al., 2019) and run for sub-
mission to the contest.

Acknowledgement

Part of the research was supported by the Ramanu-
jan Fellowship, Early Career Research Award
(SERB, DST), and the Infosys Centre for AI at II-
ITD.

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.
volume 10.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching Word Vectors
with Subword Information. arXiv e-prints, page
arXiv:1607.04606.

Peter Bourgonje, Julian Moreno Schneider, and Georg
Rehm. 2017. From clickbait to fake news detec-
tion: An approach based on detecting the stance
of headlines to articles. In Proceedings of the
2017 EMNLP Workshop: Natural Language Pro-
cessing meets Journalism, pages 84–89. Association
for Computational Linguistics.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S. Weld. 2008. Open information extraction
from the web. Commun. ACM, 51(12):68–74.

Alexandru L. Ginsca, Adrian Popescu, and Mihai
Lupu. 2015. Credibility in information retrieval.
Foundations and Trends in Information Retrieval,
9(5):355–475.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
and Tomas Mikolov. 2016. Bag of Tricks for Ef-
ficient Text Classification. arXiv e-prints, page
arXiv:1607.01759.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Yunfei Long, Qin Lu, Rong Xiang, Minglei Li, and
Chu-Ren Huang. 2017a. Fake news detection
through multi-perspective speaker profiles. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 252–256. Asian Federation of
Natural Language Processing.

Yunfei Long, Qin Lu, Rong Xiang, Minglei Li, and
Chu-Ren Huang. 2017b. Fake news detection
through multi-perspective speaker profiles. In IJC-
NLP.

Delia Mocanu, Luca Rossi, Qian Zhang, Marton Kar-
sai, and Walter Quattrociocchi. 2015. Collective at-
tention in the age of (mis)information. Computers
in Human Behavior, 51:1198 – 1204. Computing
for Human Learning, Behaviour and Collaboration
in the Social and Mobile Networks Era.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and
Huan Liu. 2017. Fake News Detection on Social
Media: A Data Mining Perspective. arXiv e-prints,

page arXiv:1708.01967.

938

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 939–943
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Dick-Preston and Morbo at SemEval-2019 Task 4:
Transfer Learning for Hyperpartisan News Detection

Tim Isbister
Swedish Defence Research Agency

Stockholm, Sweden
tim.isbister@foi.se

Fredrik Johansson
Swedish Defence Research Agency

Stockholm, Sweden
fredrik.johansson@foi.se

Abstract

In a world of information operations, influence
campaigns, and fake news, classification of
news articles as following hyperpartisan argu-
mentation or not is becoming increasingly im-
portant. We present a deep learning-based ap-
proach in which a pre-trained language model
has been fine-tuned on domain-specific data
and used for classification of news articles,
as part of the SemEval-2019 task on hyper-
partisan news detection. The suggested ap-
proach yields accuracy and F1-scores around
0.8 which places the best performing classifier
among the top-5 systems in the competition.

1 Introduction

In today’s polarized media and political land-
scapes, the challenge of determining whether a
news article is biased or not is highly topical.
In the hyperpartisan news detection task (Kiesel
et al., 2019) of the International Workshop on Se-
mantic Evaluation (SemEval) 2019, the task is to
predict whether a given news article text follows a
hyperpartisan (extreme one-sided) argumentation
or not, i.e., whether it exhibits blind or prejudiced
allegiance to one party, cause, or person (Potthast
et al., 2019). As part of this challenge, participat-
ing research teams got access to two datasets:

1. by-publisher: A well-balanced dataset con-
sisting of 750,000 articles in which the data
have been labeled by the overall bias of the
publisher, as provided by journalists or fact-
checking sites.

2. by-article: A smaller dataset consisting of
645 articles for which crowdsourcing work-
ers have agreed on the labeling of the articles
as being hyperpartisan (37%) or not (63%).
A similar but more well-balanced test dataset
(to which the participating teams have not got

direct access) has been used for evaluating
the accuracy, precision, recall, and F1-score
of systems developed by the participating re-
search teams.

In this system description paper we present the
results for the two participating research teams
from the Swedish Defence Research Agency
(FOI): 1) dick-preston and 2) morbo.

The teams contributed with separate systems for
the early-bird deadline and for the final submis-
sion. In the early phase we used traditional ma-
chine learning classifiers such as logistic regres-
sion and support vector machines (SVMs), built
upon traditional text features such as word and
character n-gram term frequencies (weighted with
inverse document frequency). These classifiers
have been used as baselines to which more “mod-
ern” NLP classifiers have been compared. For the
final submission both teams made use of transfer
learning-based Universal Language Model Fine-
Tuning (ULMFiT) models. The difference in the
teams’ final systems is the percentage of data used
for training/validation splits when fine-tuning the
models and the number of epochs for which the
models were trained. Despite that only a few
hundred examples were used for fine-tuning the
pre-trained ULMFiT-models, accuracies and F1-
scores of approximately 0.8 were achieved on the
unseen test data. This resulted in a fifth place for
the team dick-preston and seventh place for the
team morbo out of 42 participating teams, as re-
ported on the competition leaderboard1.

The rest of this paper is structured as follows.
In Section 2, we present the machine learning al-
gorithms and features which have been used for
building the hyperpartisan news article classifiers
used in the competition. In Section 3 we outline

1https://pan.webis.de/semeval19/semeval19-
web/leaderboard.html

939

the conducted experiments, present the used hy-
perparameters, and describe the obtained results.
Finally, we present overall conclusions and dis-
cuss ideas for future work in Section 4.

2 Method

In the early phase of the competition, both
FOI teams experimented with traditional machine
learning algorithms such as Naı̈ve Bayes, logistic
regression, and support vector machines (SVMs),
taking sparse text features such as word and char-
acter n-grams as input. These methods have been
used as baselines to which more novel algorithms
have been compared. The FOI baseline methods
are briefly presented in Section 2.1.

For the final system submission we have used
more “modern” NLP methods. More specifically,
Universal Language Model Fine-Tuning (ULM-
FiT) was utilized. ULMFiT is a natural language
processing (NLP) transfer learning algorithm in-
troduced in (Howard and Ruder, 2018). ULMFiT
is one of several language model-based transfer
learning algorithms developed in 2018 which have
been shown to yield state-of-the-art results on sev-
eral NLP tasks. Approaches such as ELMo (Peters
et al., 2018), OpenAI GPT (Radford et al.), and
BERT (Devlin et al., 2018) have arguably received
more attention than ULMFiT, but we selected to
implement our final systems using ULMFiT due
to its straightforward implementation in the fas-
tai library2, and its promising results also on small
datasets (Howard and Ruder, 2018). ULMFiT is
presented in more detail in Section 2.2.

2.1 Baseline Classifiers

As baseline classifiers we have made use of tradi-
tional “shallow” machine learning algorithms like
logistic regression, SVMs, etc. An extensive list
of the tested algorithms can be found in the ex-
periment descriptions in Section 3. A detailed ex-
planation of such classifiers is outside the scope
of this paper but we refer the interested reader to
(Hastie et al., 2001) for an excellent introduction
to such approaches.

As input features to our baseline classifiers we
have used term frequencies of n-grams. In the
most basic case of 1-grams (unigrams), this means
that for each token in the dataset (tested on charac-
ter as well as word level) we count the number of
times the specfic token (e.g., the word “Trump”)

2https://github.com/fastai/fastai

appears. In the case of 2-grams (bigrams) we do
the same, but then for pairs of tokens (e.g., “Presi-
dent Trump”). To account for tokens which appear
frequently in all kinds of news articles (thereby
making them less valuable for prediction of the
target class) we weigh the term frequencies by
their inverse document frequency. Various strate-
gies such as only including the most frequently oc-
curing tokens have also been utilized. Details of
which strategies that have been tested in our ex-
periments are given in Section 3.

2.2 ULMFiT
As the basis of our ULMFiT models we have
used a pre-trained language model trained on
the English Wikitext-103 (Merity et al., 2016),
which in total consists of more than 28,000 pre-
processed Wikipedia articles and over 100 mil-
lion words. The pre-trained language model con-
sists of a word embedding layer connected to
a three-layered unidirectional left-to-right AWD-
LSTM (Merity et al., 2017). The AWD-LSTM
utilizes several regularizations strategies such as
a DropConnect mask on the hidden-to-hidden re-
current weights and variable length backpropaga-
tion through time (BPTT) sequences. Given a se-
quence of N tokens, a left-to-right language model
can be used to compute the probability of the se-
quence of tokens:

P (t1, t2, . . . , tN) =
N∏

k=1

P (tk|t1, t2, . . . , tk−1)

(1)
Language models are powerful in that they can
“teach themselves” a lot about language by sim-
ply letting them iteratively predict the next word
in a sequence on large amounts of (otherwise un-
labeled) training data. Throughout this process,
the parameters in the ULMFiT AWD-LSTM lay-
ers implicity learn about both syntax and seman-
tics as these are helpful for predicting the next
word in a sequence.

In next step, the pre-trained language model has
been fine-tuned on the 645 articles in the man-
ually crowdsourced by-article dataset. The rea-
son for this fine-tuning is that the news articles
most likely stem from a different data distribu-
tion, compared to the Wikipedia articles on which
the language model originally have been trained.
During the language model fine-tuning, discrim-
inative learning and slanted triangulated learning
rates (SLTR) was used, as outlined in the original

940

ULMFiT paper (Howard and Ruder, 2018). The
language model could most likely have been im-
proved upon more by making use of the larger by-
publisher dataset. However, we were interested in
how good the ULMFiT model would perform on
a very limited dataset.

In the last step, the fine-tuned language model
has been augmented with two linear blocks sepa-
rated by a rectified linear unit (ReLU) activation
function. The last linear block consists of just
two output nodes with a softmax activation, giv-
ing as output a probability of the current news arti-
cle being hyperpartisan or not given the fine-tuned
model. Regularization in the form of dropout and
batch normalization is applied to the linear blocks
in order to allow for better generalization. More-
over, gradual unfreezing is used in order to avoid
catastrophic forgetting, a phenomenon which pre-
viously has been common when trying to fine-tune
pre-trained language models.

3 Experiments and Results

For the first part of the competition we experi-
mented with baseline classifiers to which we later
on could compare the classification accuracy of
more advanced algorithms on hold-out validation
datasets constructed from the training data. The
experiments with the baseline classifiers were per-
formed using scikit-learn, while latter experiments
have been carried out using various deep learning
frameworks (including TensorFlow and Keras).
The final ULMFiT classifier implementations and
experiments have been carried out using PyTorch
and the fastai library.

3.1 FOI Baseline Classifier Experiments
We first experimented with a number of simple
classifiers which were used as baselines:

• SVM (LinearSVC)

• Logistic Regression

• Random Forest

• Gradient Boosting

• Naı̈ve Bayes

• NBSVM

We used scikit-learn to conduct a grid-search over
various hyperparameters for these classifiers in or-
der to find suitable optimized baseline models. In

this section we will focus on the hyperparame-
ters of the SVM classifier and its input features as
this performed the best among the evaluated clas-
sifiers.

A consistent result for all the tested classifiers
was that they performed better when creating the
n-gram features described in last section from the
text context of the news articles rather than only
using the shorter titles. As input to the classi-
fier we combined the 1000 word unigrams and
bigrams ranked highest in terms of TF-IDF and
the 1000 character unigrams and bigrams ranked
highest in terms of TF-IDF. For the SVM we used
a linear kernel and the regularization parameter C
was set to 0.38. Using these parameters we ob-
tained a weighted F1-score of 0.78 when applying
stratified 10-fold cross validation on the training
data. When the same model was trained on 100 %
of the training data and submitted for evaluation
on the test data as part of the early-bird deadline
we obtained an accuracy of 0.77. This is a rather
strong baseline as it would have resulted in a top-
10 result in the final leaderboard (if the final FOI
classifiers would not have been submitted).

3.2 FOI ULMFiT Classifier Experiments

The embedding layer of our ULMFiT classifiers
uses word embeddings with an embedding size
of 400. For the sequential linear layers that have
been attached to the pre-trained LSTM layers we
have used a momentum of 0.1 for the BatchNorm
and a dropout probability p of 0.2 for the first lin-
ear layer and 0.1 the last linear layer. We have
gradually unfreezed different blocks of the model
to avoid catastrophic forgetting. Different slanted
learning rates and number of training epochs have
been used for the different submitted FOI classi-
fiers, but we have in general found learning rates
around 0.01 to work well for fine-tuning just the
last layer, and then using lower magnitude learn-
ing rates when unfreezing earlier layers.

We evaluated the fine-tuned ULMFiT classifiers
by splitting the available by-article dataset into a
training set (85 %) and a validation set (15 %).
This was attempted on a few random splits for
which we consistently reached accuracies on the
validation set over 0.95. In the end we submitted
models trained on 85 % and 100 % of the train-
ing data but the one trained on 85 % performed the
best, probably due to overfitting of the other model
(which is natural since it was hard to know how

941

Winner

FOI ULMFiT*

FOI SVC*

Random Baseline

82.16

80.25

76.59

46.17

7.12

0.84

6.3 · 10−3

0
Accuracy(%)
Runtime(h)

Figure 1: Accuracy and runtime of FOI classifiers in
comparison to a random baseline and the winner of the
hyperpartisan news detection competition.

many epochs the model should be trained for when
not having any separate validation data to evaluate
on). When the best performing model was sub-
mitted for evaluation on the test set it obtained an
accuracy of 0.80 which resulted in a fifth place in
the final leaderboard.

In Figure 3.2 we compare the accuracy and run-
ning time of our best performing ULMFiT classi-
fier on the test data and contrast them to the corre-
sponding measures for our FOI linear SVM clas-
sifier, a random baseline provided by the task or-
ganizers, and the classifier developed by the win-
ning team. As can be seen, the accuracy of the
ULMFiT classifier is marginally lower than the
winning classifier, while the running time seems
to be much lower3.

4 Conclusions

In this paper we have described the ULMFiT clas-
sifiers developed by the FOI teams dick-preston
and morbo for the SemEval-2019 challenge of hy-
perpartisan news article detection. By first fine-
tuning a pre-trained language model on the texts
and titles of a small dataset consisting of 645 news
articles and then fine-tuning two additional linear
blocks on humanly annotated labels of these ar-
ticles, we have achieved accuracy and F1-scores
around 0.80 on the task organizers’ test dataset.
The obtained accuracies resulted in a fifth and
seventh place, respectively, out of a total of 42
research teams who submitted their classifiers to
the competition. This demonstrates the applicabil-
ity of novel transfer learning approaches such as
ULMFiT to domains for which only very limited
amounts of data is available. To the best of our

3The submissions were evaluated on a rather slow vir-
tual machine (Potthast et al., 2018) which impact the running
times.

knowledge, this is the first time on which ULM-
FiT has been attempted on such a small dataset.

4.1 Future Work

The obtained results could have been im-
proved upon by utilizing the larger available by-
publisher training set for improving the fine-
tuning of the language model on the target domain.
It is also possible that this larger dataset could have
been used for further fine-tuning of the classifier.

Another interesting idea for future research on
this dataset would be to train a classifier based
on Google AI’s BERT, which make use of a
deep bidirectional transformer instead of a multi-
layered LSTM.

Acknowledgments

This work was supported by the R&D programme
of the Swedish Armed Forces.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2001. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York
Inc., New York, NY, USA.

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. CoRR,
abs/1801.06146.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing LSTM
language models. CoRR, abs/1708.02182.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. CoRR, abs/1609.07843.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. CoRR, abs/1802.05365.

942

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Alec Radford, K. Narasimhan, T. Salimans, and
I. Sutskever. Improving language understand-
ing by generative pre-training. Available:
https://blog.openai.com/language-unsupervised/.

943

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 944–948
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Doris Martin at SemEval-2019 Task 4: Hyperpartisan News Detection
with Generic Semi-supervised Features

Rodrigo Agerri
IXA NLP Group, University of the Basque Country UPV/EHU

rodrigo.agerri@ehu.eus

Abstract
In this paper we describe our participation to
the Hyperpartisan News Detection shared task
at SemEval 2019. Motivated by the late ar-
rival of Doris Martin, we test a previously de-
veloped document classification system which
consists of a combination of clustering fea-
tures implemented on top of some simple shal-
low local features. We show how leverag-
ing distributional features obtained from large
in-domain unlabeled data helps to easily and
quickly develop a reasonably good performing
system for detecting hyperpartisan news. The
system and models generated for this task are
publicly available.

1 Introduction

The definition of hyperpartisan according to the
Hyperpartisan News Detection shared task at Se-
mEval 2019 (Kiesel et al., 2019) is the following:
“Given a news article text, decide whether it fol-
lows a hyperpartisan argumentation, i.e., whether
it exhibits blind, prejudiced, or unreasoning alle-
giance to one party, faction, cause, or person”.1

Putting it simply, the task is, given a news arti-
cle, to decide whether such document is hyperpar-
tisan (true) or not (false). This task is related to
the Stance Detection (Mohammad et al., 2016) and
automatic detection of fake news (Pérez-Rosas
et al., 2018) tasks, which are getting increasing
attention within the Natural Language Processing
community (Potthast et al., 2018). In this sense,
it could be the case that hyperpartisanism is con-
veyed by some elements of fake news within the
article, usually with the objective of spreading pro-
paganda and manipulate readers towards a partic-
ular stance on a specific topic.

The SemEval 2019 task 4 aims to address the
problem of hyperpartisan news detection at docu-

1https://pan.webis.de/semeval19/
semeval19-web/index.html

ment level, without trying to distinguish specific
elements or indicators of hyperpartisanism in each
article. Two sets of data were released to partici-
pants. The first part (bypublisher) is annotated at
publisher level. This means that if a publisher is
thought to be spreading hyperpartisan news, then
all its articles are annotated as hyperpartisan. The
bypublisher set contains 750K articles divided in
600K documents for training and a validation set
of 150K documents. The second part (byarticle)
has been annotated at article level via crowdsourc-
ing and consists of 645 articles for training and
628 documents for the test. The test set is hidden
in TIRA (Potthast et al., 2019) and it is used for the
official evaluation scores of the task. It should be
noted that, unlike the byarticle test set, the byarti-
cle training set was not balanced (407 false vs 238
true).

We address this task using an existing document
classification system, mostly due to the fact that
we joined the task just a week before the final sub-
mission deadline. However, and despite the lack
of time to implement specific features for the task,
we obtained quite good results with a simple and
very general feature set in which the most mean-
ingful feature was the use of pre-trained clusters
obtained from the English Wikipedia and the Gi-
gaword 5th edition. Out of 42 participants, our of-
ficial submission obtained 0.737 accuracy whereas
the winner of the task scored 0.822.

In addition to our official participation, in this
paper we also describe a second round of ex-
periments performed after the official submission
deadline. The objective was to establish whether
using clusters trained on domain-specific data
would improve the results with respect to those
obtained by using clusters based on general do-
main text such as Wikipedia and Gigaword. As
it turned out, this second round of experiments
allowed us to considerably improve the results

944

(0.761) with respect to our official scores in the
task (0.737), confirming that training clusters on
domain-specific data, although smaller, helps to
address the hyperpartisan news detection task.

2 Methodology

We parsed the given data in XML format extract-
ing the title and the document body for training.
We experimented with the original corpus version
and with a cleaned (HTML tags removed) and to-
kenized version. All the pre-processing was done
using the IXA pipes tools (Agerri et al., 2014).

Our system learns language independent mod-
els which consist of a set of local, shallow features
complemented with semantic distributional fea-
tures based on clusters obtained from a variety of
out-of-domain and domain-specific data sources.
We show that our approach, despite the lack of
hand-engineered, language- and task-specific fea-
tures, obtains competitive results in the hyperpar-
tisan news detection task.

For the official results we trained only on the
byarticle training set. The best settings of our
system were chosen via 5-fold cross validation.
The chosen models and software were uploaded to
TIRA (Potthast et al., 2019) to annotate and evalu-
ate the test data. For the official runs, we used pre-
trained clusters from the Wikipedia and the En-
glish Gigaword, as described by Agerri and Rigau
(2016).

For the second round of experiments, we used
the large bypublisher data set and a Fake News
Kaggle set2 in order to train clusters. The motiva-
tion was to test whether using data sources closer
to the task domain, as opposed to using general
text data from Wikipedia and Gigaword, helped to
obtained better word representations for this task.

3 ixa-pipe-doc

Our document classification system is ixa-pipe-
doc, which aims to establish a simple and shal-
low feature set, avoiding any linguistic motivated
features, with the objective of removing any re-
liance on costly extra gold annotations (POS tags,
lemmas, semantics) and/or cascading errors if au-
tomatic language processors are used. The un-
derlying motivation is to obtain robust models to
facilitate the development of document classifica-
tion systems for several languages, datasets and
domains while obtaining state of the art results.

2https://www.kaggle.com/c/fake-news

The system consists of: (i) Local, shallow fea-
tures based mostly on orthographic, word shape
and n-gram features plus their context; (ii) three
types of simple clustering features, based on uni-
gram matching; (iii) publicly available gazetteers,
such as sentiment lexicons. Specifically, ixa-pipe-
doc implements, on top of the local features, a
combination of word representation features: (i)
Brown (1992) clusters, taking the 4th, 8th, 12th
and 20th node in the path; (ii) Clark (2003) clus-
ters and, (iii) Word2vec (Mikolov et al., 2013)
clusters, based on K-means applied over the ex-
tracted word vectors using the skip-gram algo-
rithm. The implementation of the clustering fea-
tures looks for the cluster class of the incoming
token in one or more of the clustering lexicons in-
duced following the three methods listed above.
If found, then we add the class as feature. The
Brown clusters only apply to the token related fea-
tures, which are duplicated.

ixa-pipe-doc, as a component of IXA pipes, in-
cludes a simple method to combine various types
of clustering features induced over different data
sources or corpora. This method has already ob-
tained state of the art results in several tasks such
as newswire Named Entity Recognition (Agerri
and Rigau, 2016) and Opinion Target Extraction
(Agerri and Rigau, 2019), both in out-of-domain
and in-domain evaluations.

Clusters of words provide denser document rep-
resentations. Although still a one-hot vector rep-
resentation, the dimensions of the representation
gets reduced to the number of clustering classes
used. This is done by mapping the words in the
document to the words in each of the cluster-
ing lexicons thereby obtaining a denser represen-
tations than the traditional one-hot representation
based bag of words (Turian et al., 2010).

Finally, ixa-pipe-doc learns supervised models
via the Maxent algorithm (Ratnaparkhi, 1999).
To avoid duplication of efforts, the system uses
the Apache OpenNLP project implementation of
Maxent 3 customized with the features described
in this section.

4 Experiments

We train ixa-pipe-doc with the default parameters,
performing 100 iterations with a 5 count cutoff.4

3http://opennlp.apache.org/
4Only features that occur more than 5 times are consid-

ered (Ratnaparkhi, 1999).

945

Features F1 True F1 False Accuracy
token 0.655 0.810 0.755
char26 0.643 0.806 0.749
pref04 0.662 0.810 0.757
token + pref04 0.669 0.809 0.758
token + char26 0.652 0.807 0.752
pref04 + char 0.655 0.812 0.757
(local) Token + char26 + pref04 0.665 0.813 0.759
local + CW600 0.672 0.814 0.763
local + W2VG200 0.674 0.817 0.766
local + CW600+W2VG200 0.671 0.816 0.764

Table 1: 5-fold cross validation for official results on the byarticle training set. CW600: Clark Wikipedia 600
clusters; W2VG200: Word2vec Gigaword 200 clusters.

Features Accuracy P R F1
Local + W2VG200 0.737 0.754 0.704 0.728
Local + CW600+W2VG200 0.714 0.773 0.608 0.680

Table 2: Official results on TIRA test set. CW600: Clark Wikipedia 600 clusters; W2VG200: Word2vec Gigaword
200 clusters.

We only tested three types of local features which
were already implemented in the system: the cur-
rent token, the character ngrams of each token (2:6
range) and word prefixes (0-4 characters of each
token).

Due to our late arrival to the task, we com-
bined the best local features with our pre-trained
clusters from Wikipedia and Gigaword for the of-
ficial results described in section 4.1. For the
second round of experiments of section 4.2, we
used the clusters trained using the bypublisher
and Fake News datasets. The number of clusters
trained with each algorithm and data source was
the following: 100-800 clusters using the Clark
and Word2vec methods, and 1000 classes with the
Brown algorithm. The best combination of fea-
tures were obtained by performing every possible
permutation between them in a 5-fold cross vali-
dation setting using the byarticle training data.

4.1 Official Results

Table 1 provides the 5-fold cross validation results
used to choose the two best runs that we submit-
ted for testing on TIRA. As it can be seen, the per-
formance for the true and the false classes greatly
differ. This could be due to the unbalanced nature
of the byarticle training set or because classifying
articles that are hyperpartisan is actually more dif-
ficult.

The official results obtained by our system are

shown in Table 2. These results show that the main
weakness of the system is its lower recall. The lo-
cal features used usually obtain high precision and
lower recall whereas the clustering features reduce
sparsity thereby improving the recall. The excep-
tion was the Brown clusters, which were detrimen-
tal to performance. This is consistent with previ-
ous experiments using clusters trained in out-of-
domain data (Agerri and Rigau, 2019). Finally,
although TIRA did not show the results per class
(true or false) we believe that our system repro-
duced, for the official test data, the behaviour ob-
served in the cross validation experiments.

Therefore, our results seem to indicate that the
data used in our pre-trained clusters, Wikipedia
and Gigaword, does not allow us to create good
word representations for the hyperpartisan news
data. Still, it can be said that our official results
were promising, obtaining 0.737 versus the 0.822
accuracy of the best system.5

4.2 Second Round
This second round of experiments consisted of re-
placing the out-of-domain cluster lexicons from
Wikipedia and Gigaword with those trained on the
bypublisher and Fake News data. These are the
“local + clusters” models in Table 3, which shows
the results of performing 5-fold cross validation

5https://pan.webis.de/semeval19/
semeval19-web/leaderboard.html

946

Features F1 True F1 False Accuracy
local + W2VHP300 0.675 0.819 0.769
local + W2VFN400 0.670 0.813 0.761
local + W2VHP300+W2VFN400 (clusters) 0.677 0.825 0.773
local + clusters + polarity 0.675 0.824 0.772
local-token + clusters 0.677 0.826 0.774
local-token + clusters + polarity 0.678 0.827 0.775

Table 3: 5-fold cross validation for the second round of results on the byarticle training set. W2VHP300: Word2vec
Hyperpartisan bypublisher 300 clusters; W2VFN400: Word2vec Fake News 400 clusters.

Features Accuracy P R F1
local 0.707 0.768 0.592 0.669
local + W2VHP300+W2VFN400 (clusters) 0.754 0.719 0.834 0.772
local + clusters + polarity 0.754 0.717 0.840 0.774
local-token + clusters 0.756 0.731 0.808 0.768
local-token + clusters + polarity 0.761 0.734 0.818 0.774

Table 4: Second round results. W2VHP300: Word2vec Hyperpartisan bypublisher 300 clusters; W2VFN400:
Word2vec Fake News 400 clusters.

on the byarticle training set in order to choose the
best models for testing.

Furthermore, Table 3 reports the results of three
additional experiments: (1) adding three polarity
lexicons to the local + clusters model; (2) remov-
ing the current token feature from the local fea-
ture set (local-token + clusters) and, (3) adding the
three polarity lexicons to experiment (2). The mo-
tivation of removing the current token feature was
to see if that helped the system to generalize better
over unseen words. The features based on polarity
add a polarity value (positive or negative) if a word
in training or testing gets matched in one of the
three polarity lexicons used. More specifically, we
used three different lexicons (Hu and Liu, 2004;
Riloff and Wiebe, 2003; Mohammad et al., 2009),
resulting in three different features for each token.
As in the previous section, in this phase we real-
ized that our system consistently performs much
better, for every experiment, for the “false” class.
Experimenting with a balanced training set is left
for future work.

As we expected, using domain-specific
clustering-based word representations substan-
tially improved the recall results, which in turn led
to substantial improvements in terms of accuracy
and F1 score. This improvements are reflected
also on the evaluation on the test data hidden in
TIRA. Thus, Table 4 reports considerable gains
obtained by using clustering features in terms of
recall with respect to the model based on local

features only. The final reported score is 0.761
in accuracy, still lower than the top score in the
task (0.822), but a significant result obtained
by the simple method of providing better word
representations (closer to the task domain) based
on clustering. The improvements of this second
round of experiments are larger in terms of F1
score, which goes up to 0.774, closer to the
winner’s F1 score of 0.809.

Most importantly, our experiments show that
our system, even though generic, simple and lack-
ing task-specific features, allows to easily obtain
competitive results for a document classification
task such as hyperpartisan news detection.

5 Concluding Remarks

This paper describes our first experiments on the
Hyperpartisan News Detection task organized at
SemEval 2019 (Kiesel et al., 2019). We aim
to improve our work in the task by using other
techniques such as denser word representations
based on continuous vectors (word embeddings)
and deep learning architectures for document clas-
sification. We would also like to investigate the
relation with other tasks such as Stance Detection
(Mohammad et al., 2016) and automatic detec-
tion of fake news (Pérez-Rosas et al., 2018). The
system and models can be found in https://
github.com/ixa-ehu/ixa-pipe-doc.

947

Acknowledgments

This work has been supported by Spanish
Ministry of Economy and Competitiveness
(MINECO/FEDER, UE), under the project
CROSSTEXT (TIN2015-72646-EXP) and the
Ramon y Cajal Fellowship RYC-2017-23647.

References
Rodrigo Agerri, Josu Bermudez, and German Rigau.

2014. IXA pipeline: Efficient and ready to use
multilingual NLP tools. In Proceedings of the
9th Language Resources and Evaluation Conference
(LREC2014).

Rodrigo Agerri and German Rigau. 2016. Robust
multilingual named entity recognition with shallow
semi-supervised features. Artificial Intelligence,
238:63–82.

Rodrigo Agerri and German Rigau. 2019. Language
independent sequence labelling for opinion target
extraction. Artificial Intelligence, 268:85–95.

Peter F Brown, Peter V Desouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics, 18(4):467–479.

Alexander Clark. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In Proceedings of the tenth conference on Eu-
ropean chapter of the Association for Computational
Linguistics-Volume 1, pages 59–66. Association for
Computational Linguistics.

M. Hu and B. Liu. 2004. Mining and summariz-
ing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

S. Mohammad, C. Dunne, and B. Dorr. 2009. Gen-
erating high-coverage semantic orientation lexicons
from overtly marked words and a thesaurus. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume
2-Volume 2, pages 599–608.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 31–41.
Association for Computational Linguistics.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2018. Automatic de-
tection of fake news. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 3391–3401. Association for Computa-
tional Linguistics.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models. Machine
learning, 34(1-3):151–175.

E. Riloff and J. Wiebe. 2003. Learning extraction pat-
terns for subjective expressions. In Proceedings of
the International Conference on Empirical Methods
in Natural Language Processing (EMNLP’03).

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 384–394, Up-
psala, Sweden. Association for Computational Lin-
guistics.

948

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 949–953
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Duluth at SemEval-2019 Task 4:
The Pioquinto Manterola Hyperpartisan News Detector

Saptarshi Sengupta and Ted Pedersen
Department of Computer Science

University of Minnesota
Duluth, MN 55812, USA

{sengu059,tpederse}@d.umn.edu

Abstract

This paper describes the Pioquinto Manterola
Hyperpartisan News Detector, which partici-
pated in SemEval–2019 Task 4. Hyperpartisan
news is highly polarized and takes a very bi-
ased or one–sided view of a particular story.
We developed two variants of our system, the
more successful was a Logistic Regression
classifier based on unigram features. This was
our official entry in the task, and it placed 23rd

of 42 participating teams. Our second variant
was a Convolutional Neural Network that did
not perform as well.

1 Introduction

Social media has become a vital source of news
for many people. It makes it possible to share use-
ful information widely and in a timely fashion, and
yet can also be misused to spread biased, mislead-
ing, or dangerous content.

Hyperpartisan news is a particular worry in that
it is premised on absolute allegiance to one par-
ticular point of view, and seeks to reinforce po-
tentially misinformed opinions held by its read-
ers. This has led to very real consequences in this
world. A tragic example can be found in Myan-
mar, where Buddhist ultranationalists relied on so-
cial media to spread hyperpartisan and fake news
in order to promote hatred and violence against
different Muslim communities (Fink, 2018).

While related, Hyperpartisan news is not the
same as fake news. The former shows a high de-
gree of bias, whereas the latter is more so an out-
right fabrication. However, the techniques applied
to detecting both are similar. For example, Pérez-
Rosas et al. (2018) detected fake news by training
Support Vector Machines using ngrams, punctua-
tion, and measures of readability. (Tacchini et al.,
2017) used likes of articles as features for building
a Logistic Regression classifier for fake news de-

tection. Potthast et al. (2018) identified hyperpar-
tisan news through the use of style and readability
features, and also employed a technique known as
unmasking (Koppel et al., 2007) to distinguish be-
tween hyperpartisan and mainstream news.

2 Task Description

SemEval–2019 Task 4 (Kiesel et al., 2019) chal-
lenged participants to detect whether an article is
hyperpartisan (H) or mainsteam (M). As such it
represents a binary classification task. The task or-
ganizers provided training data, and so we elected
to take a supervised learning approach.

There were two datasets provided by the orga-
nizers (Kiesel et al., 2018). The by-article data
is a smaller corpus of 645 news articles that have
been manually assigned to H (238 articles) or M
(407 articles). There was also the much larger
by-publisher data set with 750,000 articles where
classifications were made based on the source of
an article. Making classifications in this way is
possible since certain publishers are known to be
providers of hyperpartisan content. For our exper-
iments we elected to use the by-article data, but
plan to investigate the potential of the by-publisher
data in future work.

3 Methodology

We created two systems for the task.1 The first
was a Logistic Regression (LR) classifier trained
on unigram features, and the second a Convolu-
tional Neural Network (CNN) with word embed-
dings created from the training data.

During the development phase of our systems
we carried out 10-fold cross validation on the by-
article training data in order to tune both our LR
and CNN systems.

1https://github.com/saptarshi059/
SemEval2k19-Task4-UMD

949

3.1 Logistic Regression

Logistic Regression (LR) is a widely used method
for supervised learning. Each feature is assigned
a positive or negative weight which indicates the
contribution of that feature to the overall classifi-
cation of the system. We carried out our experi-
ments using scikit-learn (Pedregosa et al., 2011),
a Machine Learning toolkit for Python.

Our first step was to preprocess the text. This
consisted of converting all text to lowercase, and
removing stopwords and non-alphanumeric char-
acters.

Next, a word by article matrix was generated
for the training data. For our purposes words are
defined as space separated strings. Any word that
occurred less than 12 times in the training data was
removed and not considered a feature. We arrived
at this cutoff via our cross validation experiments,
where this value led to the most accurate results
(although other nearby values were nearly as ac-
curate).

Our LR model was trained using the default set-
tings for scikit-learn. We relied on the default lib-
linear algorithm (Fan et al., 2008) to optimize the
loss function, since it is known to be effective with
smaller amounts of training. data2

3.2 Convolutional Neural Network

Our initial focus was on our LR approach. How-
ever, the task allowed for two entries per team, and
so we decided to include a CNN given its history
of success in text classification tasks (e.g., (Liu
and Wu, 2018)). We used keras (Chollet et al.,
2015), a Python toolkit for Deep Learning that
provides a wrapper around TensorFlow.

Our CNN approach was also based on uni-
grams, although each unigram was represented by
an embedding created from the training data. We
started with an existing CNN for text classifica-
tion3 and made a few adjustments to some of the
hyperparameters. The maximum input vector size
was set to 10,000, our embeddings were of length
100, and we trained our model for 100 epochs.
We used Adam to optimize the loss function and
a GlobalMaxPooling1D layer to reduce the size of
the input feature vectors.

We did not experiment with these hyperparam-
eters extensively, but instead relied on what we

2https://scikit-learn.org/stable/modules/generated/
sklearn.linear model.LogisticRegression.html

3https://realpython.com/python-keras-text-classification/

Model Accuracy P R F1
LR 0.70 0.74 0.63 0.68

CNN 0.58 0.87 0.18 0.30

Table 1: Final Evaluation Results.

found to be fairly common settings and defaults
provided by keras.

4 Experimental Results

The formal task evaluation was carried on vir-
tual systems provided by the organizers using the
TIRA system (Potthast et al., 2019). We trained
both our LR and CNN on the entire by-article
training corpus and saved the resulting models to
disk (so they could be ported over to the evaluation
system).

We decided to use LR and CNN as our two
entries to the task, since during our development
phase they had very similar results on 10-fold
cross validation : LR accuracy was 0.77 ± 0.06
while CNN was at 0.75± 0.05.

However, on the official evaluation run (using
a held out set of test data the systems had never
seen), the CNN performed poorly and only at-
tained accuracy of 0.58. LR on the other hand
reached accuracy of 0.70 and so was selected by
the organizers as our official entry to the task.
Other evaluation metrics including Precision (P),
Recall (R), and F1 are shown in Table 1.

The confusion matrix for our LR system is
shown in Table 2 and for the CNN system in Table
3. In these matrices the distribution of correct or
gold standard answers are shown in the columns
(with sums 314) and the system predictions are
shown across in the rows. While the evaluation
phase test data is balanced between the classes H
and M, the by-article training data was not (238 H
versus 407 M).

Table 2 shows that LR predicted a somewhat
more balanced distribution of classes (266 H vs.
362 M), which is reflected in the relatively sim-
ilar Precision and Recall scores found in Table
1. However, Table 3 shows that the CNN pro-
duced a much more skewed result (67 H vs. 561
M) which led to very high Precision for the CNN
(0.87) while the Recall was extremely low (0.18).

We hypothesize that the difference between the
distribution of classes in the training versus eval-
uation data at least partially explains this result.
Given more examples of mainstream news (M),

950

H M
H 197 69 266
M 117 245 362

314 314 628

Table 2: LR Confusion Matrix.

H M
H 58 9 67
M 256 305 561

314 314 628

Table 3: CNN Confusion Matrix.

both models learned this class more thoroughly
and so tended to classify articles into this category.

The LR model appears to be more robust in that
it performed at approximately the same level of ac-
curacy both during development phase cross vali-
dation and the final evaluation round (despite the
difference in the distribution of classes).

The CNN on the other hand appears to have
been very negatively affected by the shift in the
distribution of classes from training to evaluation
data, and performed significantly worse on the
evaluation data as compared with cross validation
on the training set. We are uncertain as to the
causes of the CNN result. It is important to note
that the by-article data is relatively small and that
this may put the CNN at a disadvantage. We also
noticed that the accuracy of the CNN on the train-
ing data was 1.00 and much lower on the evalua-
tion data, which is a common sign of overfitting.

5 Feature Analysis

An appealing quality of Logistic Regression is that
it is somewhat transparent and allows us to see
which features are contributing more to classifi-
cation decisions. Table 4 shows the top 30 fea-
tures for LR based on the weights learned from the
training data. Positive weights are associated with
the hyperpartisan (H) class, and negative weights
indicate the mainstream (M) class. We’ve put the
words with negative weights in upper case to im-
prove readability, however remember in our data
that all text was lower cased.

While the highly weighted individual features
are of interest, it is important to remember that Lo-
gistic Regression performs classification based on
the combined weight of all the features present in
an article. As a result a single highly weighted
feature for one class may be overridden by the

Hyperpartisan Mainstream
sponsored .603 DONALD -.611
women .489 ISIS -.610
americans .473 TOOK -.500
change .471 SATURDAY -.417
proud .463 TWITTER -.414
hillary .459 THINK -.393
arpaio .440 WATTERS -.392
racist .436 WORLD -.389
someone .433 CLAIMS -.372
outrage .423 RUN -.353
mexican .373 WEDNESDAY -.351
threat .371 ASKED -.348
political .370 FREEDOM -.343
democracy .369 BORDER -.334
planned .366 VIDEO -.333
supremacist .364 CONVENTION -.332
clintons .337 STATES -.326
department .335 ELECT -.321
use .329 DEBATE -.321
desperate .329 PAST -.320
originally .329 SESSIONS -.316
killer .323 MORNING -.316
certainly .322 SAID -.313
conservative .320 COUNTY -.311
father .313 FOX -.310
fine .302 ADVERTISEMENT -.310
hitler .302 CONTINUE -.308
wants .302 UNITED -.303
maria .301 BUSINESS -.303
make .299 PRISON -.301

Table 4: Top 30 LR features : positive weights associ-
ated with H, negative with M.

presence of multiple lesser weighted values for the
other class.

The data for this task consists of articles from
2016 – 2018, starting around the time of the 2016
US presidential election, where Donald Trump de-
feated Hillary Clinton after a bitterly contested
campaign.

In general the top features contain many terms
associated with elections or political figures. We
note a few more person names among the top 30
features for the H class (5) versus the M class (3).
These features are in bold face in Table 4. It is
significant to note that one of the person names
that appears as a hyperpartisan feature is Hitler,
suggesting that he may have been used as a basis
for comparison in such articles. The name Arpaio

951

refers to a controversial sheriff in Arizona who ran
for re-election in 2016 (and was defeated). Maria
is Hurricane Maria, which devastated Puerto Rico
in September 2017. The recovery from this natural
disaster became a political issue and so its use as a
feature in hyperpartisan news seems likely.

The mainstream features (in upper case) include
Donald and Twitter. Candidate (and now Presi-
dent) Trump is well known as an enthusiastic Twit-
ter user, so these features would certainly occur in
mainstream news coverage. Jesse Watters is a Fox
News reporter who hosts a person on the street
style interview program which drew some news
coverage. Jeff Sessions was an early supporter of
Donald Trump and became Attorney General after
the election and so was often in the news.

6 Error Analysis

We divided the by-article training data into a set
of 585 training examples and 60 test instances (30
from each class). We used this data to train and
evaluate our LR classifier. We categorized our
results as True Positive (H classified as H), True
Negative (M classified as M), False Positive (M
classified as H), and False Negative (H classified
as M). Below we discuss an article from each cat-
egory, where each is identified via (by-article id
number, word count).

True Positive (1, 259): This article takes a
mocking and sarcastic tone regarding President
Trump’s campaign promises to fix infrastructure.
It points out that Hurricane Maria (H feature) did
extensive damage but that Trump was indifferent
because Puerto Rico did not vote for him. This is
an obvious example of hyperpartisan news.

True Negative (14, 225): Ivana Trump, Don-
ald’s ex-wife, talks about his punctuality in his
personal and professional life. The article is very
matter of fact and simply describes her observa-
tions without embellishment or bias, and is pretty
clearly mainstream.

False Positive (4, 929): This is a very long arti-
cle that was classified as H despite not having any
obvious signs of bias. Rather it compares the un-
settled state of America now with the very turbu-
lent year of 1968. However, the article uses many
rare and emotional words such as nihilism, mal-
ady, and hysteria which may have caused it to be
classified as hyperpartisan.

False Negative (2, 189): This is a highly opin-
ionated response to Joyce Newman’s (Democrat)

stance on gun control. It is a very emotional piece,
however, it also provides facts and figures to bol-
ster the position of the author. We believe it is the
latter which caused the LR to (incorrectly) classify
it as mainstream.

We also noticed that the 30 H articles in our
test data had on average much larger word counts
(1,178.9) versus the 30 M articles (503.4). (Pot-
thast et al., 2018) used average paragraph length
as a feature when detecting H news, and this seems
like it would have been a useful feature in this task
as well.

7 Future Work

There are numerous possible directions for future
work. We are interested in exploring the use of the
much larger by-publisher training data. This could
be of particular assistance in improving the results
from CNNs. We also plan to revisit our prepro-
cessing steps and perform named entity recogni-
tion since proper nouns represent important infor-
mation for this problem.

We would also like to explore variations in our
feature sets for LR. In our current experiments we
do not have any requirement that a feature occur in
a certain minimum number of articles (in addition
to occurring at least 12 times). As a result we no-
ticed several features that occurred many times in
just a few articles were strongly weighted and yet
would be unlikely to generalize well. We would
also like to explore the use of TF-IDF in place of
simple frequency counts for feature selection.

Finally, our error analysis suggested that hyper-
partisan news tends to use emotional language as
well as unusual or rare words. Given this we are
interested in the possibilities offered by sentiment
analysis, as well as the inclusion of structural and
style features.

8 Namesake

Pioquinto Manterola is a fictional journalist cre-
ated by Paco Ignacio Taibo II. He is a central
character in The Shadow of a Shadow (Ignacio
Taibo II, 1991) and Returning as Shadows (Igna-
cio Taibo II, 2003). These novels are set in Mex-
ico City, the first in 1922 and the second in 1941-
1942. In both stories Manterola is teamed with a
poet to investigate mysterious circumstances that
lead to uncovering even more complex and sinis-
ter wrongdoing. As such he seemed an appropriate
namesake for our team in this task.

952

References

François Chollet et al. 2015. Keras. https://keras.io.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

Christina Fink. 2018. Dangerous speech, anti-muslim
violence, and facebook in myanmar. Journal of In-
ternational Affairs, 71(1.5):43–52.

Paco Ignacio Taibo II. 1991. The Shadow of the
Shadow. Viking Books, New York City.

Paco Ignacio Taibo II. 2003. Returning as Shadows.
Thomas Dunne Books, New York City.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, David Corney, Payam Adineh,
Benno Stein, and Martin Potthast. 2018. Data for
PAN at SemEval 2019 Task 4: Hyperpartisan News
Detection.

Moshe Koppel, Jonathan Schler, and Elisheva
Bonchek Dokow. 2007. Measuring differentiability:
Unmasking pseudonymous authors. Journal of
Machine Learning Research, 8:1261–1276.

Yang Liu and Yi-fang Brook Wu. 2018. Early detec-
tion of fake news on social media through prop-
agation path classification with recurrent and con-
volutional networks. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 354–361.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2018. Automatic de-
tection of fake news. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 3391–3401. Association for Computa-
tional Linguistics.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Eugenio Tacchini, Gabriele Ballarin, Marco L. Della
Vedova, Stefano Moret, and Luca de Alfaro. 2017.
Some like it hoax: Automated fake news detection
in social networks. CoRR, abs/1704.07506.

953

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 954–956
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Fermi at SemEval-2019 Task 4: The sarah-jane-smith Hyperpartisan
News Detector

Nikhil Chakravartula1,3 Vijayasaradhi Indurthi1,2, Bakhtiyar Syed2,
1 Teradata, 2 IIIT Hyderabad

1{nikhil.chakravartula,vijayasaradhi.indurthi}@teradata.com
2{vijaya.saradhi, syed.b}@research.iiit.ac.in

3{nikhil.chakravartula}@gmail.com

Abstract
This paper describes our system (Fermi) for
Task 4: Hyper-partisan News detection of
SemEval-2019. We use simple text classifi-
cation algorithms by transforming the input
features to a reduced feature set. We aim
to find the right number of features useful
for efficient classification and explore multiple
training models to evaluate the performance
of these text classification algorithms. Our
team - Fermi’s model achieved an accuracy of
59.10% and an F1 score of 69.5% on the offi-
cial test data set.

In this paper, we provide a detailed description
of the approach as well as the results obtained
in the task.

1 Introduction

Hyper-partisan refers to a person or a group’s ten-
dency to be extremely partisan or biased towards
a person or a group and specifically towards a po-
litical person or a political party. With the tremen-
dous increase in citizen-based journalism, where
anyone can create a website and post his (biased)
views, there is a new phenomenon called fake
news and it’s potential role in affecting the elec-
tion results, and has the ability to modify and im-
pact the public’s perception towards various peo-
ple, companies and political parties. These kind of
’news’ are usually one-sided, inflammatory, emo-
tional and mostly woven around untruths. Com-
bined with the proliferation of social media plat-
forms, these ’fake news’ signals get amplified and
may potentially mask the signal of the real news.
The fake news phenomenon hype has caused ir-
reparable loss to many politicians, companies and
in some cases involved the death of fellow citizens.

While Social media platforms can be used for
constructive ideas, a small group of people can
propagate their notions including hatred or affin-
ity towards or against an individual, or a group or

a race to the entire world in a few seconds. This
necessitates the need to come up with computa-
tional methods to identify hyper-partisan news in
user generated content.

Using computational methods to identify hyper-
partisan news has been gaining attention in recent
years as evidenced in (Potthast et al., 2018).

2 Related Work

In this section, we briefly describe other work in
this area.

Hyper-partisan news detection is a new area and
to the best of the knowledge of the authors, not
much work has been done in this area. However,
a close and related task is that of fake news de-
tection. (Pérez-Rosas et al., 2017) use linguis-
tic features to distinguish between fake and legiti-
mate news content. (Wang, 2017) collect a decade
long manually labelled sor statements in various
context from a political fact checking website and
create fake news classifiers using surface level lin-
guistic patterns. (Tschiatschek et al., 2018) lever-
age crowd signals for detecting fake news. (Long
et al., 2017) tackles the problem of fake news
through multi-perspective speaker profiles.

Papers published in the last two years include
the surveys by (Zhou and Zafarani, 2018), (Zhou
et al., 2019) and (Shu et al., 2017), the paper by
(Kumar and Shah, 2018).

A shared task on Hyper-partisan News detec-
tion(Kiesel et al., 2019) was announced as part of
the annual workshop SemEval 2019. The task was
to find if the given news article text and classify
if it follows a hyper-partisan argumentation, i.e.,
whether it exhibits blind, prejudiced, or unreason-
ing allegiance to one party, faction, cause, or per-
son.

954

3 Methodology and Data

The data collection methods used to compile the
data set in Hyperpartisan news detection is de-
scribed in (Kiesel et al., 2019). We tackle the prob-
lem of identifying a piece of news as hyperparti-
san or not by formulating it as a text classification
problem. We use bag of words representation to
transform the individual documents into vectors.
After the transformation, we reduce the number of
dimensions by using chi-square feature selection
technique. In this method, the chi-square statis-
tics between every feature variable and the target
variable are computed, and then the existence of
a relationship between the variables and the target
is calculated. If the target variable is independent
of the feature variable, that feature variable is not
useful for prediction. If the two are dependent,
then that feature variable is very important. In text
classification, the feature selection is the process
of selecting a specific subset of the terms of the
training set and using only them in the classifica-
tion algorithm. The feature selection process takes
place before the training of the classifier. We use
Random Forest Classifier from scikit-learn1 ma-
chine learning library to generate models on these
reduced features. The number of estimators in all
the experiments is 20. All other parameters are
default.

Our results on the different number of important
features have been mentioned and described in the
results section.

We haven’t used any external datasets to aug-
ment the data for training our models.

No of features F1 (macro) Accuracy
200 0.39 0.51
400 0.40 0.51
600 0.42 0.51
800 0.44 0.52
1000 0.46 0.52

Table 1: Dev set Accuracy and Macro-F1 scores on
labels by publisher dataset.

Dataset F1 (macro) Accuracy
Labels-by-article 0.69 0.59
Labels-by-publisher 0.66 0.61

Table 2: Test set Accuracy and Macro-F1 scores.

1https://scikit-learn.org/

4 Results and Analysis

Table 2 shows the dev set macro-averaged F-1 and
accuracy for different number of important fea-
tures.

We notice that the best performance was bagged
by the model which uses 1000 features with Ran-
dom Forest. We submitted this best model for
evaluation on the test data and Table 4 shows the
results.

The potential applications of this work show
how different number of important features affect
the performance of the classification task.

5 Future Work

Due to some constraints on the TIRA2 platform,
we were unable to use state-of-the-art deep learn-
ing techniques for text classification, which gained
immense popularity in the past few years. In the
future, we would like to explore transfer learning
and deep learning algorithms to create models for
and evaluate their performance for this task.

References
Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-

manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Srijan Kumar and Neil Shah. 2018. False information
on web and social media: A survey. arXiv preprint
arXiv:1804.08559.

Yunfei Long, Qin Lu, Rong Xiang, Minglei Li,
and Chu-Ren Huang. 2017. Fake news detection
through multi-perspective speaker profiles. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 252–256.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexan-
dra Lefevre, and Rada Mihalcea. 2017. Auto-
matic detection of fake news. arXiv preprint
arXiv:1708.07104.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

2https://tira.io

955

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and
Huan Liu. 2017. Fake news detection on social me-
dia: A data mining perspective. ACM SIGKDD Ex-
plorations Newsletter, 19(1):22–36.

Sebastian Tschiatschek, Adish Singla, Manuel
Gomez Rodriguez, Arpit Merchant, and Andreas
Krause. 2018. Fake news detection in social
networks via crowd signals. In Companion of the
The Web Conference 2018 on The Web Conference
2018, pages 517–524. International World Wide
Web Conferences Steering Committee.

William Yang Wang. 2017. ” liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648.

Xinyi Zhou and Reza Zafarani. 2018. Fake news: A
survey of research, detection methods, and opportu-
nities. arXiv preprint arXiv:1812.00315.

Xinyi Zhou, Reza Zafarani, Kai Shu, and Huan Liu.
2019. Fake news: Fundamental theories, detec-
tion strategies and challenges. In Proceedings of
the Twelfth ACM International Conference on Web
Search and Data Mining, pages 836–837. ACM.

956

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 957–961
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Harvey Mudd College at SemEval-2019 Task 4: The Carl Kolchak
Hyperpartisan News Detector

Celena Chen
cechen@hmc.edu

Celine Park
cpark@hmc.edu

Jason Dwyer
jdwyer@hmc.edu

Julie Medero
jmedero@hmc.edu

Abstract
We use various natural processing and ma-
chine learning methods to perform the Hyper-
partisan News Detection task. In particular,
some of the features we look at are bag-of-
words features , the title’s length, number of
capitalized words in the title, and the sentiment
of the sentences and the title. By adding these
features, we see improvements in our evalua-
tion metrics compared to the baseline values.
We find that sentiment analysis helps improve
our evaluation metrics. We do not see a bene-
fit from feature selection. Overall, our system
achieves an accuracy of 0.739, finishing 18th
out of 42 submissions to the task. From our
work, it is evident that both title features and
sentiment of articles are meaningful to the hy-
perpartisanship of news articles.

1 Introduction

In 2019, Task 4 of the SemEval Workshop asked
participants to automatically identify hyperparti-
san texts (Kiesel et al., 2019). Hyperpartisan news
detection is the problem of building a classifier us-
ing natural language processing techniques in or-
der to label news articles as either hyperpartisan or
neutral in content bias. Hyperpartisan articles, in
this case, can be defined as articles which are very
polarized and extremely biased towards one polit-
ical party. This task is quite relevant in today’s po-
litical climate, with reports of ”fake news” articles
heavily influencing votes and people’s support of
some candidates running for government offices.
The issue is especially egregious because these bi-
ased news articles are informing political opinions
of people who believe them to be factual and im-
partial, with no easy way to remove or detect hy-
perpartisan news articles. This is also a non-trivial
task, as hyperpartisan news is not extremely ex-
plicit in its bias, and even human readers do not
always agree on which articles should be classified
as hyperpartisan or what about those articles mer-
its such a classification. There is no one unifying

feature of hyperpartisan news, and even news pub-
lishers which do produce hyperpartisan news are
not guaranteed to only publish hyperpartisan news.
Therefore, each article must be evaluated for its
degree of hyperpartisanship, along many different
axes of measurements.

A functional and accurate hyperpartisan news
detector would be useful for social media sites and
other carriers of news to make sure that their news
content is unbiased, and to be able to detect and
perhaps remove or block sources of hyperparti-
san news. Facebook, for example, has been un-
der great public scrutiny due to the quantity and
popularity of hyperpartisan news on its site. Hy-
perpartisan news detection could also be useful for
researchers seeking to understand the scope and
impact of hyperpartisan news on the 2016 presi-
dential election and how it can continue to inform
voters today and in future elections.

2 Previous Work

Hyperpartisan news detection has become a popu-
lar application of natural language processing due
to its relevance in contemporary politics. Specifi-
cally, there has been research to hash out what fea-
tures are prevalent in hyperpartisan articles. Buz-
zfeed conducted a manual analysis of nine dif-
ferent pages on Facebook: three that were main-
stream news, three that were hyperpartisan left,
and three hyperpartisan right (Silverman et al.,
2018). They rated every post as mostly false, mix-
ture of true and false, mostly true, or not factual,
for posts like memes or jokes. They determined
that hyperpartisan articles on both the left and the
right side have more in common with each other
than with articles in the mainstream, and detecting
whether or not an article was hyperpartisan was
easier than detecting the actual orientation of the
bias (Potthast et al., 2017). Likewise, in our ap-
plication, we build a hyperpartisan news detector
which labels hyperpartisanship but not whether an

957

article is left- or right-leaning.
Fake news, which hyperpartisan sites are more

likely to produce, tends to have certain qualities
about its titles that make them distinct (Horne
and Adali, 2017). These qualities are longer ti-
tles, simpler, more readable vocabulary words, and
multiple words in the title which are all capitals.
We use these qualities to inform our feature ex-
traction of the article title, extracting the length of
titles, the average length of title words, and the
number of words in all capitals and adding these
features to our larger feature matrix.

Polarity indicates how positive or negative a text
may be, or the direction of the bias, while sub-
jectivity indicates how strongly the text represents
an opinion versus an objective fact, or the magni-
tude of the bias (Liu, 2010). We hypothesize that
hyperpartisan news articles will carry relatively
strong observable opinionation in comparison to
non-hyperpartisan articles, so we use the two met-
rics of subjectivity and polarity as an addition to
the other features in our feature matrix.

In this vein, one past study used sentiment anal-
ysis on the comment sections of articles about the
Trayvon Martin case. It determined that more well
known commentators tended to have stronger sen-
timent in their comments (Ignatow et al., 2016),
implying that sentiment is a useful metric for an-
alyzing opinions on the World Wide Web. An-
other study that used sentiment analysis on so-
cial media data showed that sentiment analysis
was a key technique for extracting features of an
opinion, allowing the researchers to propose mod-
els for simulating and forecasting online opinions
(Kaschesky et al., 2011). This research in particu-
lar was interesting, because it covers a similar area
of interest as hyperpartisan news detection. That
is, it examines the far-reaching effects of politi-
cal opinions and their proliferation on the World
Wide Web, and also uses similar natural language
processing techniques to extract information about
these opinions. This tells us that sentiment analy-
sis is an important tool for computational analysis
of political opinions.

3 Methodology

Our model was trained and tested on the pre-
labeled dataset provided by the SemEval group
and the basis of our approach was a bag-of-words
model. In order to improve upon the bag-of-words
model and integrate some known salient features

of hyperpartisan news, we also included headline
features as well as sentiment analysis scores of the
articles.

3.1 Data Set
To train our model, we use training data provided
by the SemEval 2019 Hyperpartisan News Detec-
tion task organizers (Kiesel et al., 2019). These
data come in the form of news articles given in
XML format. Each article was given with title and
article body text, and had labels provided in a sep-
arate file to indicate whether they had been flagged
as hyperpartisan.

This data came in two distinct training sets as
provided by the task organizers. The larger of
the two sets, with about 800,000 labeled articles,
was labeled by publisher; that is, publishers were
grouped by whether they were known to be hy-
perpartisan in general, and the corresponding label
was applied to all articles by a given publisher. A
smaller set, comprising around 650 articles, was
entirely hand-labeled; that is, human readers de-
termined on an article-by-article basis whether a
given article should be labeled as hyperpartisan.

It should be noted here that the smaller set la-
bels are more true to what is expected of this task.
Specifically, it is more of interest to us whether
we can detect hyperpartisanship of articles based
on how humans would judge it. Though the la-
beling by publisher is useful for obtaining a larger
data set, it introduces some error due to the pos-
sibility that hyperpartisan sources may sometimes
publish non-hyperpartisan articles and vice versa.
Despite the advantages of the hand-labeled data
set, its small size makes it much less feasible as
a training set, so we also made substantial use of
the larger set as we were tuning our model.

The content of each article was pre-processed
with the Python library spaCy to tokenize and
sentence-segment the text (AI, 2016–).

3.2 Feature Extraction
We used a bag-of-words approach to use for our
main set of features, using a vocabulary of com-
mon English words. Unknown words were ig-
nored. We filtered out 100 stop words, and used
a vocabulary of 30,000 words.

We also included features from the titles, as cer-
tain qualities about the titles in hyperpartisan arti-
cles may be different than mainstream articles. We
included the number of words in the title, hypoth-
esizing that long titles can often indicate the arti-

958

cle is misleading, or very biased. We included the
number of fully capitalized words, which can of-
ten indicate that the article is not mainstream. Fi-
nally, we added a feature for the average length of
the words in the title, as some research shows that
hyperpartisan or biased articles tend to use more
short, easily understood, words to appeal to the av-
erage reader (Horne and Adali, 2017).

We used the Python library TextBlob to do sen-
timent analysis on the articles and their titles (Lo-
ria, 2018). TextBlob has a sentiment analysis tool
that provides both the subjectivity and polarity of
a given sentence. We found the average subjectiv-
ity and average polarity of all the sentences in the
article and used it as a feature. We also used the
sentiment subjectivity and polarity of the article’s
title as a feature.

As our vocabulary used for extracting bag-of-
words features was quite large, we used the built-
in SelectKBest feature selection class pro-
vided by scikit-learn (Pedregosa et al., 2011) to
narrow down the set of features we were using.
However, testing with adjusting the parameters for
feature selection did not seem to yield better re-
sults than simply using all possible features, so our
final system made used of all of the available fea-
tures.

3.3 Classifier

We feed our features to a multinomial naive Bayes
(NB) classifier in scikit-learn (Pedregosa et al.,
2011). For comparison to a baseline, we also use
a majority-class dummy classifier.

4 Results

Table 1 shows the results of training with 10-fold
cross-validation for each of our classifiers. As ex-
pected, the dummy classifier did not perform well.
It represents a majority class baseline, though, and
is useful for comparison purposes.

Our evaluation metrics improved with adding
sentiment analysis and features of the title. Our fi-
nal model does better than all of our previous mod-
els for every metric, including the dummy clas-
sifier, multinomial naive Bayes on BoW features,
and adding title features. With an F-measure of
0.800, our precision and recall are well-balanced,
and both are around 80%.

On the hand labeled SemEval test set, we
achieved an accuracy of 0.739 and an F1 score of
0.745. Overall, our system ranked 18th out of 42

by accuracy, and 11th by F1 measure.

5 Discussion

We can infer from the results of our system that the
features we extracted from the text, such as title
features and sentiment, were significant and corre-
lated to the hyperpartisanship of articles. This was
expected, as the design of our classifier was based
on previous work which determined that such fea-
tures were useful for detecting bias in text. Since
we combined different aspects of other studies, we
were able to build upon previous findings and gain
a more holistic view of hyperpartisan news arti-
cles Since this is the first offering of the SemEval
Hyperpartisan News Detection task, we see our
work as providing a foundation for future groups
to build on as they attempt to fine-tune and im-
prove a classifier for this important task.

There are still many questions regarding hy-
perpartisan news identification that remain unan-
swered. For example, it would be interesting to
incorporate bigrams or trigrams of words instead
of just using the bag-of-words approach. We also
hypothesize that noun phrase chunks would be in-
dicative of hyperpartisanship due to the ubiquity of
certain controversial noun phrases in current me-
dia. The temporal nature of these features presents
a unique challenge, though,

We could also use sentiment analysis in other
ways. For instance, instead of just taking the av-
erage subjectivity and average polarity, it might
also be interesting to find the percentage of sen-
tences with a absolute value of polarity above a
certain threshold. This could indicate an article is
hyperpartisan if there are a lot of sentences that
are above some threshold for polarity, that is, very
opinionated sentences either strongly positive or
strongly negative.

It would also be interesting to be able to look
into the comment sections of the articles and deter-
mine if the sentiment of the comments can indicate
hyperpartisanship. It seems probable that hyper-
partisan articles would tend to attract more hyper-
partisan viewers than mainstream articles would,
and these people would have similarly strong opin-
ions and be willing to voice them. The alignment
of the comments may not even be aligned with the
article, as the article may attract people from the
other side, looking to critique or complain about
the article. This data was not available for the Se-
mEval task, but polarity and subjectivity also seem

959

Classifier Accuracy Precision Recall F-measure
DC: most frequent 0.553 0.553 1.0 0.712
NB (BoW only) 0.552 0.61 0.297 0.401

+title features 0.556 0.615 0.315 0.417
+sentiment features 0.793 0.781 0.820 0.800

Table 1: Cross-validation results for dummy classifier and a Naive Bayes classifier using bag of words features
with and without additional features related to article title and sentiment.

like they would be useful metrics to extract from
article comments.

In addition to the comments, it would be in-
teresting to analyze how often the articles were
shared, viewed, commented on, or in other ways
interacted with. As the Buzzfeed study showed,
hyperpartisan articles and articles that may not be
entirely true tended to get more shares than non-
partisan, as these are more interesting and inflam-
matory, and so this may be another feature that
would have helped determine the hyperpartisan-
ship of the article (Silverman et al., 2018).

Trying different classifiers would also be an ap-
propriate next step. We focused on feature se-
lection above experimenting with different clas-
sifiers because we believed that feature selection
would give more meaningful insights into the na-
ture of hyperpartisan articles than merely optimiz-
ing a classifier, but both are likely necessary to
successfully identifying hyperpartisan articles.

6 Namesake

Our system is named after Carl Kolchak, the main
character from the television series Kolchak: The
Night Stalker, which aired in 1974-75. On the
show, Kolchak investigated mysterious cases that
had been abandoned by the police. We believe the
unlikely and often unbelievable scenarios encoun-
tered by Kolchak would have been likely fodder
for fake and hyperpartisan news during its time,
and hope that our system will contribute to a com-
munity effort to automatically separate truth from
fiction (Wikipedia contributors, 2019).

References
Explosion AI. 2016–. spacy: Industrial-strength natu-

ral language processing.

ClassicBecky. 2011. Kolchak: The night stalker ... ”the
ripper”. Accessed: 2019-02-20.

Benjamin D. Horne and Sibel Adali. 2017. This just in:
Fake news packs a lot in title, uses simpler, repetitive

Figure 1: Darren McGavin, who portrayed Carl
Kolchak in the TV Series Kolchak: The Night Stalker
(ClassicBecky, 2011).

content in text body, more similar to satire than real
news. CoRR, abs/1703.09398.

Gabe Ignatow, Nicholas Evangelopoulos, and Kon-
stantinos Zougris. 2016. Sentiment Analysis of Po-
larizing Topics in Social Media: News Site Read-
ers Comments on the Trayvon Martin Controversy,
chapter 10. Emerald Group Publishing Limited.

Michael Kaschesky, Pawel Sobkowicz, and Guillaume
Bouchard. 2011. Opinion mining in social me-
dia: Modeling, simulating, and visualizing political
opinion formation in the web. In Proceedings of
the 12th Annual International Digital Government
Research Conference: Digital Government Innova-
tion in Challenging Times, dg.o ’11, pages 317–326,
New York, NY, USA. ACM.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Bing Liu. 2010. Sentiment analysis and subjectivity. In
Handbook of Natural Language Processing, Second
Edition. Taylor and Francis Group, Boca.

960

Steven Loria. 2018. Textblob: Simplified text pro-
cesssing.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2017. A sty-
lometric inquiry into hyperpartisan and fake news.
CoRR, abs/1702.05638.

C. Silverman, L. Strapagiel, Shaban H., E. Hall,
and J. Singer-Vine. 2018. Hyperparti-
san facebook pages are publishing false
and misleading information at an alarming
rate. https://www.buzzfeednews.
com/article/craigsilverman/
partisan-fb-pages-analysis. Accessed:
2018-12-22.

Wikipedia contributors. 2019. Darren mcgavin —
Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=
Darren_McGavin&oldid=883055125.
[Online; accessed 19-February-2019].

961

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 962–966
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Harvey Mudd College at SemEval-2019 Task 4: The Clint Buchanan
Hyperpartisan News Detector

Mehdi Drissi, Pedro Sandoval, Vivaswat Ojha, and Julie Medero
Harvey Mudd College, CA

{mdrissi, psandovalsegura, vmojha, jmedero}@hmc.edu

Abstract

We investigate the recently developed Bidirec-
tional Encoder Representations from Trans-
formers (BERT) model (Devlin et al., 2018)
for the hyperpartisan news detection task. Us-
ing a subset of hand-labeled articles from Se-
mEval as a validation set, we test the perfor-
mance of different parameters for BERT mod-
els. We find that accuracy from two different
BERT models using different proportions of
the articles is consistently high, with our best-
performing model on the validation set achiev-
ing 85% accuracy and the best-performing
model on the test set achieving 77%. We fur-
ther determined that our model exhibits strong
consistency, labeling independent slices of the
same article identically. Finally, we find that
randomizing the order of word pieces dramat-
ically reduces validation accuracy (to approxi-
mately 60%), but that shuffling groups of four
or more word pieces maintains an accuracy of
about 80%, indicating the model mainly gains
value from local context.

1 Introduction

SemEval Task 4 (Kiesel et al., 2019) tasked par-
ticipating teams with identifying news articles that
are misleading to their readers, a phenomenon of-
ten associated with “fake news” distributed by par-
tisan sources (Potthast et al., 2017).

We approach the problem through transfer
learning to fine-tune a model for the document
classification task. We use the BERT model based
on the implementation of the github repository
pytorch-pretrained-bert1 on some of the data pro-
vided by Task 4 of SemEval. BERT has been used
to learn useful representations for a variety of nat-
ural language tasks, achieving state of the art per-
formance in these tasks after being fine-tuned (De-
vlin et al., 2018). It is a language representation

1https://github.com/huggingface/pytorch-pretrained-
BERT

model that is designed to pre-train deep bidirec-
tional representations by jointly conditioning on
both left and right context in all layers. Thus, it
may be able to adequately account for complex
characteristics as such blind, prejudiced reason-
ing and extreme bias that are important to reliably
identifying hyperpartisanship in articles.

We show that BERT performs well on hyper-
partisan sentiment classification. We use unsuper-
vised learning on the set of 600,000 source-labeled
articles provided as part of the task, then train us-
ing supervised learning for the 645 hand-labeled
articles. We believe that learning on source-
labeled articles would bias our model to learn the
partisanship of a source, instead of the article. Ad-
ditionally, the accuracy of the model on validation
data labeled by article differs heavily when the ar-
ticles are labeled by publisher. Thus, we decided
to use a small subset of the hand-labeled articles
as our validation set for all of our experiments. As
the articles are too large for the model to be trained
on the full text each time, we consider the number
of word-pieces that the model uses from each arti-
cle a hyperparameter.

A second major issue we explore is what in-
formation the model is using to make decisions.
This is particularly important for BERT because
neural models are often viewed like black boxes.
This view is problematic for a task like hyperpar-
tisan news detection where users may reasonably
want explanations as to why an article was flagged.
We specifically explore how much of the article is
needed by the model, how consistent the model
behaves on an article, and whether the model fo-
cuses on individual words and phrases or if it uses
more global understanding. We find that the model
only needs a short amount of context (100 word
pieces), is very consistent throughout an article,
and most of the model’s accuracy arises from lo-
cally examining the article.

In this paper, we demonstrate the effectiveness

962

of BERT models for the hyperpartisan news clas-
sification task, with validation accuracy as high
as 85% and test accuracy as high as 77% 2. We
also make significant investigations into the im-
portance of different factors relating to the articles
and training in BERT’s success. The remainder
of this paper is organized as follows. Section 2
describes previous work on the BERT model and
semi-supervised learning. Section 3 outlines our
model, data, and experiments. Our results are pre-
sented in Section 4, with their ramifications dis-
cussed in Section 5. We close with an introduction
to our system’s namesake, fictional journalist Clint
Buchanan, in Section 6.

2 Related Work

We build upon the Bidirectional Encoder Rep-
resentations from Transformers (BERT) model.
BERT is a deep bidirectional transformer that has
been successfully tuned to a variety of tasks (De-
vlin et al., 2018). BERT functions as a language
model over character sequences, with tokeniza-
tion as described by Sennrich et al. (2016). The
transformer architecture (Vaswani et al., 2017) is
based upon relying on self-attention layers to en-
code a sequence. To allow the language model
to be trained in a bidirectional manner instead of
predicting tokens autoregressively, BERT was pre-
trained to fill in the blanks for a piece of text, also
known as the Cloze task (Taylor, 1953).

Due to the small size of our training data, it
was necessary to explore techniques from semi-
supervised learning. Dai and Le (2015) found
pre-training a model as a language model on a
larger corpus to be beneficial for a variety of ex-
periments. We also investigated the use of self-
training (Zhu, 2005) to increase our effective train-
ing dataset size. Lastly, the motivation of ex-
amining the effective context of our classification
model was based on Brendel and Bethge (2019).
It was found that much higher performance than
expected was achieved on the ImageNet dataset
(Li Fei-Fei et al., 2009) by aggregating predictions
from local patches. This revealed that typical Im-
ageNet models could acquire most of their perfor-
mance from local decisions.

2All of our code can be found here,
https://github.com/hmc-cs159-fall2018/final-project-team-
mvp-10000

3 Methodology

Next, we describe the variations of the BERT
model used in our experiments, the data we used,
and details of the setup of each of our experiments.

3.1 Model

We adjust the standard BERT model for the hy-
perpartisan news task, evaluating its performance
both on a validation set we construct and on the
test set provided by Task 4 at SemEval. The train-
ing of the model follows the methodology of the
original BERT paper.

We choose to experiment with the use of the two
different pre-trained versions of the BERT model,
BERT-LARGE and BERT-BASE. The two differ in
the number of layers and hidden sizes in the un-
derlying model. BERT-BASE consists of 12 layers
and 110 million parameters, while BERT-LARGE
consists of 24 layers and 340 million parameters.

3.2 Training and Test Sets

We focus primarily on the smaller data set of 645
hand-labeled articles provided to task participants,
both for training and for validation. We take the
first 80% of this data set for our training set and the
last 20% for the validation set. Since the test set
is also hand-labeled we found that the 645 articles
are much more representative of the final test set
than the articles labeled by publisher. The model’s
performance on articles labeled by publisher was
not much above chance level.

Due to an intrinsic limitation of the BERT
model, we are unable to consider sequences of
longer than 512 word pieces for classification
problems. These word pieces refer to the byte-
pair encoding that BERT relies on for tokeniza-
tion. These can be actual words, but less common
words may be split into subword pieces (Sennrich
et al., 2016). The longest article in the training set
contains around 6500 word pieces. To accommo-
date this model limitation, we work with truncated
versions of the articles.

We use the additional 600, 000 training articles
labeled by publisher as an unsupervised data set to
further train the BERT model.

3.3 Experiments

We first investigate the impact of pre-training on
BERT-BASE’s performance. We then compare the
performance of BERT-BASE with BERT-LARGE.
For both, we vary the number of word-pieces from

963

each article that are used in training. We perform
tests with 100, 250 and 500 word pieces.

We also explore whether and how the BERT
models we use classify different parts of each in-
dividual article. Since the model can only con-
sider a limited number of word pieces and not a
full article, we test how the model judges different
sections of the same article. Here, we are inter-
ested in the extent to which the same class will
be assigned to each segment of an article. Fi-
nally, we test whether the model’s behavior varies
if we randomly shuffle word-pieces from the arti-
cles during training. Our goal in this experiment
is to understand whether the model focuses on in-
dividual words and phrases or if it achieves more
global understanding. We alter the the size of the
chunks to be shuffled (N) in each iteration of this
experiment, from shuffling individual word-pieces
(N = 1) to shuffling larger multiword chunks.

4 Results

Our results are primarily based on a validation set
we constructed using the last 20% of the hand-
labeled articles. It is important to note that our
validation set was fairly unbalanced. About 72%
of articles were not hyperpartisan and this mainly
arose because we were not provided with a bal-
anced set of hand-labeled articles. The small val-
idation split ended up increasing the imbalance in
exchange for training on a more balanced set. The
test accuracies we report were done on SemEval
Task 4’s balanced test dataset.

4.1 Importance of Pre-training

Our first experiment was checking the importance
of pre-training. We pre-trained BERT-base on
the 600,000 articles without labels by using the
same Cloze task (Taylor, 1953) that BERT had
originally used for pre-training. We then trained
the model on sequence lengths of 100, 250 and
500. The accuracy for each sequence length af-
ter 100 epochs is shown in 1 and is labeled as
UP (unsupervised pre-training). The other column
shows how well BERT-base trained without pre-
training. We found improvements for lower se-
quence lengths, but not at 500 word pieces. Since
the longer chunk should have been more informa-
tive, and since our hand-labeled training set only
contained 516 articles, this likely indicates that
BERT experiences training difficulty when deal-
ing with long sequences on such a small dataset.

As the cost to do pre-training was only a one time
cost all of our remaining experiments use a pre-
trained model.

Max Seq Len BERT-base BERT-base + UP
100 76.7 79.8
250 75.9 82.9
500 79.1 75.2

Table 1: Validation accuracy for BERT-base with and
without Unsupervised Pre-training (UP).

We evaluated this model on the SemEval 2019
Task 4: Hyperpartisan News Detection com-
petition’s pan19-hyperpartisan-news-detection-
by-article-test-dataset-2018-12-07 dataset using
TIRA (Potthast et al., 2019). Our model, with a
maximium sequence length of 250, had an accu-
racy of 77%. It had higher precision (83.2%) than
recall (67.8%), for an overall F1-score of 0.747.

4.2 Importance of Sequence Length

Next, we further explore the impact of sequence
length using BERT-LARGE. The model took ap-
proximately 3 days to pre-train when using 4
NVIDIA GeForce GTX 1080 Ti. On the same
computer, fine tuning the model on the small train-
ing set took only about 35 minutes for sequence
length 100. The model’s training time scaled
roughly linearly with sequence length. We did a
grid search on sequence length and learning rate.

Table 2 shows that the model consistently per-
formed best at a sequence length of 100. This
is a discrepancy from BERT-BASE indicating that
the larger model struggled more with training on
a small amount of long sequences. For our best
trained BERT-LARGE, we submitted the model for
evaluation on TIRA. Surprisingly, the test perfor-
mance (75.1%) of the larger model was worse than
the base model. The experiments in (Devlin et al.,
2018) consistently found improvements when us-
ing the large model. The main distinction here is a
smaller training dataset than in their tasks. The ex-
periments in the remaining sections use the same
hyperparameters as the optimal BERT-LARGE.

4.3 Model Consistency

Due to the small training dataset, we tried self-
training to increase our effective training set. We
trained the model for 40 epochs. For the remain-
ing 60 epochs, after each epoch we had the model
make predictions on five slices of 500 unlabeled

964

Max Seq Len
Learning Rate

5e-7 1e-6 1.5e-6 2e-6 2.5e-6 3e-6

50 78.3 80.6 79.8 79.1 79.1 77.5
100 83.7 83.7 86.1 86.1 85.3 84.5
150 77.5 79.8 81.4 80.6 79.8 79.8
200 81.4 80.6 79.8 84.5 83 81.4

Table 2: Validation Accuracy on BERT-LARGE across sequence length and learning rate.

articles. If an article had the same prediction for
more than four slices, we added it to the labeled
training data. The model always added every ar-
ticle to the training set, though, since it always
made the same prediction for all 5 slices. This
caused self-training to be ineffective, but also re-
vealed that the model’s predictions were very con-
sistent across segments of a single article.3

4.4 Effective Model Context
Finally, we investigate whether the model’s ac-
curacy primarily arose from examining words or
short phrases, or if the decisions were more global.
We permuted the word pieces in the article at var-
ious levels of granularity. At the finest level (per-
mute ngrams = 1), we permuted every single word
piece, forcing the model to process a bag of word
pieces. At coarser levels, ngrams were permuted.
As the sequence length for these experiments was
100, permute ngrams = 100 corresponds to no per-
mutation. The results can be found in 3.

permute ngrams Validation Accuracy
1 67.4
2 62.8
3 75.2
4 83.0
5 76.0
10 82.2
20 76.7
50 79.8
100 84.5

Table 3: BERT-LARGE across permute ngrams.

Accuracy drops a lot with only a bag of word
pieces, but still reaches 67.4%. Also, most of
the accuracy of the model (within 2%) is achieved
with only 4-grams of word pieces, so the model is
not getting much of a boost from global content.

3We also tried training a model that averaged its predic-
tions across multiple slices. This turned out to be slightly
worse, likely due to the model’s high consistency.

5 Discussion

Our successful results demonstrate the adaptabil-
ity of the BERT model to different tasks. With
a relatively small training set of articles, we were
able to train models with high accuracy on both
the validation set and the test set.

Our models classified different parts of a given
article identically, demonstrating that the overall
hyperpartisan aspects were similar across an ar-
ticle. In addition, the model had significantly
lower accuracy when word pieces were shuffled
around, but that accuracy was almost entirely re-
stored when shuffling around chunks of four or
more word pieces, suggesting that most of the im-
portant features can already be extracted at this
level.

In future work, we we would like to make use of
the entire article. Naively, running this over each
chunk would be computationally infeasible, so it
may be worth doing a full pass on a few chunks
and cheaper computations on other chunks.

6 Namesake

Figure 1: Jerry verDorn as Clint Buchanan.

Our system is named after Clint Buchanan4, a
fictional journalist on the soap opera One Life to
Live. Following the unbelievable stories of Clint
and his associates may be one of the few tasks
more difficult than identifying hyperpartisan news.

4http://abc.go.com/shows/one-life-to-live/bio/clint-
buchanan/165745

965

References
Wieland Brendel and Matthias Bethge. 2019. Ap-

proximating CNNs with bag-of-local-features mod-
els works surprisingly well on imagenet. In Interna-
tional Conference on Learning Representations.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems
28, pages 3079–3087. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv e-prints.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Li Fei-Fei, Wei Dong, Jia Deng, Kai Li, R. Socher, and
Li-Jia Li. 2009. ImageNet: A large-scale hierar-
chical image database. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, pages
248–255.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. Tira integrated research archi-
tecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2017. A sty-
lometric inquiry into hyperpartisan and fake news.
CoRR, abs/1702.05638.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725. Association for Computational Linguistics.

Wilson L Taylor. 1953. cloze procedure: A new
tool for measuring readability. Journalism Bulletin,
30(4):415–433.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Xiaojin Jerry Zhu. 2005. Semi-supervised learning
literature survey. Technical report, University of

Wisconsin-Madison Department of Computer Sci-
ences.

966

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 967–970
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics1

Harvey Mudd College at SemEval-2019 Task 4: The D.X. Beaumont
Hyperpartisan News Detector

Evan Amason
Harvey Mudd College
301 Platt Boulevard

Claremont, CA 91711
eamason@hmc.edu

Jake Palanker
Harvey Mudd College
301 Platt Boulevard

Claremont, CA 91711
jpalanker@hmc.edu

Mary Clare Shen
Harvey Mudd College
301 Platt Boulevard

Claremont, CA 91711
mshen@hmc.edu

Julie Medero
Harvey Mudd College
301 Platt Boulevard

Claremont, CA 91711
jmedero@hmc.edu

Abstract
We use the 600 hand-labelled articles from Se-
mEval Task 4 (Kiesel et al., 2019) to hand-
tune a classifier with 3000 features for the Hy-
perpartisan News Detection task. Our final
system uses features based on bag-of-words
(BoW), analysis of the article title, language
complexity, and simple sentiment analysis in
a naive Bayes classifier. We trained our fi-
nal system on the 600,000 articles labelled by
publisher. Our final system has an accuracy of
0.653 on the hand-labeled test set. The most
effective features are the Automated Readabil-
ity Index and the presence of certain words in
the title. This suggests that hyperpartisan writ-
ing uses a distinct writing style, especially in
the title.

1 Introduction

Hyperpartisan news is becoming more mainstream
as online sources gain popularity. Hyperpartisan
news is news written from an extremely partisan
perspective, such that the goal is reinforcing exist-
ing belief structures in the party’s ideology rather
than conveying facts. Such hyperpartisan writing
tends to amplify political divisions and increase
animosity between opposing political ideologies.
Hyperpartisan news sources also output fake news
at startling rates (Silverman et al., 2016). Auto-
matic detection of fake news is difficult, but de-
tecting hyperpartisan news can help, and it can
also expose biases in journalism. This task is
challenging to automate because it is even diffi-
cult for humans: fake and biased news articles
get shared on social media at high rates, and even
labels that were hand-generated by professionals
have errors (Silverman et al., 2016). We attempt
to use various features of political news articles
to train a multinomial Naive Bayes classifier to
complete this task. We use a set of bag-of-words
(BoW) features for words appearing in the title of
each article, and for words appearing in the arti-
cle text. With these features, we identified a set

of words that characterize hyperpartisan writing.
We also considered complexity features such as
type-to-token ratio and automated readability in-
dex. Based on the performance of these features
we attempt to answer the question of whether hy-
perpartisan writing is more or less complex than
non-hyperpartisan writing. A successful classifier
could be very useful in today’s society. For exam-
ple, it could be used to create a browser plug-in
to check online articles for political bias in real
time as the user reads. People on social media
could use it to verify the legitimacy of a political
article before sharing it with their followers. En-
couraging people to share factual news rather than
inflammatory hyperpartisan articles would hope-
fully improve communication between opposing
parties and create a more informed population.

The rest of this paper begins with a descrip-
tion of previous work on the related task of fake
news detection in Section 2. We then describe our
model and features in Section 3, and our results
in Section 4. Section 5 discusses some lessons
learned with respect to what features are most use-
ful in identifying hyperpartisan news, and Sec-
tion 6 closes with a brief description of our sys-
tem’s namesake, fictional magazine editor D.X.
Beaumont.

2 Previous Work

Since the 2016 election, there has been a lot of in-
terest in fake news, which is closely related to the
hyperpartisan news we focus on. Our approach
to the hyperpartisan news task leverages lessons
learned in prior work on fake news detection, and
explores the extent to which that work is success-
ful in a different but related task. Fake news de-
tection has been widely studied (e.g., the survey
paper by Fuhr et al. (Fuhr et al., 2018)), and we
base many of our classifier’s features on previous
studies of fake news.

The content of fake and real news articles differ

967

2

substantially. Fake news articles have been found
to require a lower reading level than real news arti-
cles, to be less technical, and to use more personal
pronouns. Further, their titles tend to be longer,
use more proper nouns, and use more words that
are all capitalized (Horne and Adali, 2017). Our
work differs in that we were trying to determine
whether an article is hyperpartisan, which is sim-
ilar to but not the same as identifying fake news
articles. In particular, a hyperpartisan news arti-
cle may be factually correct (i.e., not contain any
mistruths) but still be written with a hyperparti-
san slant. We hypothesize, nonetheless, that the
stylistic features that distinguish between real and
fake news may be useful in identifying hyperpar-
tisan news articles. Potthast, et. al., also showed
that there are significant stylistic differences be-
tween hyperpartisan and mainstream news articles
(Potthast et al., 2017). Consequently, we include
reading level and features of each article’s title as
features in our model.

The success of these features on identifying
fake news motivates our decision to focus on arti-
cle titles as a differentiating feature, and to include
reading level in the set of features available to our
model.

Perez-Rosa et al. also examine fake news ar-
ticles to create a classifier for them (Prez-Rosas
et al., 2018). Their results identify additional fea-
tures related to text readability, with fake news
articles tending to be written at a lower reading
level than real news articles. We incorporate fea-
tures from their work, including Average Word
Length, Type-Token-Ratio, and SMOG Readabil-
ity Formula .

3 Methodology

Each article’s content and title was tokenized us-
ing spacy’s default English model (AI, 2016–).

We use a multinomial naive Bayes classifier
from scikit-learn, extracting a large number
of features and then using feature selection to re-
duce the number of features available to our clas-
sifier.

3.1 Features
We make use of features related to the words in the
article as a whole, the title of the article, sentiment,
and text complexity.

Bag of Words Features: Using a vocabulary of
30,000 words, we count the number of times

each vocabulary word occurs in the full arti-
cle text. We then drop a fixed number stop
words, selected automatically by frequency.
We experimented with both 50 and 100 stop
words, and the run of our system that was
submitted to the SemEval task used 50 stop
words.

Title Bag of Words: Next, using the same vocab-
ulary but without excluding stop words, we
add word counts for the title of the article.
We also count the number of words in the title
that are entirely capitalized, generally a fea-
ture of hyperpartisan titles (Horne and Adali,
2017).

Sentiment Analyzer: We use two sentiment lex-
icons (Hu and Liu, 2004). The first con-
tains 2000 words with positive sentiment, and
the second contains 4000 words with neg-
ative sentiment. We count the occurrence
of words from each list, hypothesizing that
hyperpartisan articles will likely have many
more words with polarized sentiment than
non-hyperpartisan articles.

Complexity Features: Finally, we include fea-
tures designed to capture the articles’ com-
plexity. This category includes features such
as Average Word Length, Type-Token-Ratio,
and SMOG Readability Formula. Each of
these is designed to capture the complexity
of a given text; Average Word Length gives
us insights into the vocab choices and uses
of ”advanced” words, Type-Token-Ratio mea-
sures the amount of ”novel” words in the text,
the SMOG Readability Formula is based on
the number of polysyllabic words per sen-
tence (which is influenced both by vocabu-
lary choice, and sentence length). Since prior
work shows that hyper-partisan articles are
often written at an easier reading level, with
more repeating words, and simpler sentence
structure, we expect that these complexity
features will be useful in identifying hyper-
partisan articles.

3.2 Feature Selection
The above feature space was very large compared
to the number of available articles, so we imple-
mented two different methods of feature selection:
one using variance, and one using a χ2 test. In
each case, we perform statistics on the training set,

968

3

attempting to describe which features are the most
distinguishing. Given these statistics, we score
each feature, and select a subset of the total feature
set using either a threshold score or a target fea-
ture count. By experimenting on the smaller hand-
labeled data set, we found that reducing to the best
3000 features maximized our performance for 10-
fold cross validation. This modification was made
after the evaluation, however; our results on the
SemEval task represent the performance of our
task without feature selection.

4 Results

Our final system achieved an accuracy of 0.653,
which ranked 28th out of 42 submissions on the
test set hand-labeled by article.

4.1 Feature Selection
As part of additional analysis, we examined the
effectiveness of feature selection on the validation
set. Table 1 shows that reducing the number of
features to 3000 had a negligible effect on both ac-
curacy and f-measure. Since the validation set is
qualitatively different from the hand-labeled test
set used in the official competition, these results
are not directly comparable to our final system per-
formance. In particular, we note that our system
performs slightly better on the validation set than
on the test set regardless of the number of fea-
tures used, which may indicate that our classifier
learned some characteristics of the source-labeled
validation set that distinguished it from the hand-
labeled test set.

Feature Accuracy f1-measure
Selection
all 0.611 0.675
3000 0.5983 0.667

Table 1: Validation set performance using all of our
features or the 3000 most informative features.

5 Discussion

Hyperpartisan news has been a concern since the
rise of social media, and that concern has only
grown since the 2016 election. Giving consumers
of social media the knowledge of whether or not
what they are reading is hyperpartisan could help
to reduce the number of people fooled by fake or
misleading facts, and it could help to reduce the
partisan divide within the United States.

Feature Title Category χ2 p-value
”trump” Polarity 416 1.77e-92
A.R.I. Complexity 377 3.67e-84
”*” Title 208 2.95e-47
”class” Title 179 9.45e-41
”american” Title 170 7.41e-39
”most” Title 143 5.04e-33
”political” Title 137 1.08e-31
”israel” Title 133 1.16e-30
”like” Polarity 128.7 7.85e-30
”these” Title 126 2.92e-29

Table 2: Highest ranked features from our hand labeled
data-set.

Using our χ2 feature selection system, we found
the top 10 features over the hand-labeled article
set, shown in Table 2. The size of the hand-labeled
set is rather small, so the extremely small p-values
are likely inflated by this.

The Automated Readability Index feature (a
complexity feature measuring word length and
sentence length) is the second highest performing,
indicating that this way of capturing complexity is
worthy of further study.

A number of BoW features on the title are also
important. The selected words included fall un-
der a few categories such as controversial topic
(trump, Israel), generalization (most, these), and
political terms (political, class). Some, like the
presence of ”*” in title, seem like strange outliers
that are likely a consequence of a combination of
formatting artifacts and the small size of the hand-
labeled dataset.

While an earlier, simpler version of our model
achieved 10-fold cross-validation accuracy of .787
on the hand-labeled training set, the submission
we submitted performed much more poorly on the
final test set. We hypothesize that one source of
this difference may have been in the tuning of our
hyper-parameter related to feature selection. We
tuned this parameter manually using results from
10-fold cross-validation on the hand labeled data-
set. Because the hand labeled data was signifi-
cantly smaller, it is possible that it took far fewer
features to properly classify the space. Improved
tuning of this parameter on a larger set could have
given us better results. Nonetheless, our work
demonstrates that BoW, complexity, and polarity
features are all useful in identifying hyperpartisan
news articles.

969

4

6 Namesake

Our system is named after D.X. Beaumont, a mag-
azine editor and publisher on the short-lived TV
Series My Sister Eileen that aired on CBS in 1960-
61 (Wikipedia contributors, 2018). The series,
based on autobiographical short stories published
in The New Yorker by Ruth McKenney (Lippman,
2018). Ruth, who aspired to be a writer, worked
for Beaumont (shown in Figure 1 as portrayed by
Raymond Bailey). We imagine that the prolifer-
ation of hyperpartisan news in modern communi-
cation would have caused the orderly Ruth a great
deal of frustration, and hope that our contribution
to this task will benefit future writers and their
publishers.

Figure 1: Darren McGavin, who portrayed D.X. Beau-
mont in the TV Series My Sister Eileen(NBC Televi-
sion, 2017).

Acknowledgments

We would like to thank our stalwart grutor (a
Harvey Mudd portmanteau of grader and tutor!),
Jonah Rubin, for his help at all hours on our
coursework during the semester that led to this
system submission.

References
Explosion AI. 2016–. spacy: Industrial-strength natu-

ral language processing.

Norbert Fuhr, Anastasia Giachanou, Gregory Grefen-
stette, Iryna Gurevych, Andreas Hanselowski,
Kalervo Jarvelin, Rosie Jones, YiquN Liu, Josiane
Mothe, Wolfgang Nejdl, Isabella Peters, and Benno

Stein. 2018. An information nutritional label for on-
line documents. SIGIR Forum, 51(3):46–66.

Benjamin D. Horne and Sibel Adali. 2017. This just in:
Fake news packs a lot in title, uses simpler, repetitive
content in text body, more similar to satire than real
news. In The 2nd International Workshop on News
and Public Opinion at ICWSM. Cornell University.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In KDD.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Laura Lippman. 2018. In praise of ruth mckenney. The
New York Times. [Online; accessed 18-February-
2019].

NBC Television. 2017. Accessed: 2019-02-20 (Public
domain). [link].

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2017. A sty-
lometric inquiry into hyperpartisan and fake news.
CoRR, abs/1702.05638.

Vernica Prez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2018. Automatic de-
tection of fake news. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics.

Craig Silverman, Lauren Strapagiel, Hamza Shaban,
Ellie Hall, and Jeremy Singer-Vine. 2016. Hyper-
partisan facebook pages are publishing false and
misleading information at an alarming rate.

Wikipedia contributors. 2018. My sister eileen —
Wikipedia, the free encyclopedia. [Online; accessed
18-February-2019].

970

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 971–975
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NLP@UIT at SemEval-2019 Task 4: The Paparazzo Hyperpartisan News
Detector

Duc-Vu Nguyen♦, Dang Van Thin♦, and Ngan Luu-Thuy Nguyen♥
♦Multimedia Communications Laboratory

♥Faculty of Computer Science
University of Information Technology, Vietnam National University Ho Chi Minh City, Vietnam

{vund,thindv,ngannlt}@uit.edu.vn

Abstract

This paper describes the system of NLP@UIT
that participated in Task 4 of SemEval-2019.
We developed a system that predicts whether
an English news article follows a hyperparti-
san argumentation. Paparazzo is the name of
our system and is also the code name of our
team in Task 4 of SemEval-2019. The Pa-
parazzo system, in which we use tri-grams
of words and hepta-grams of characters, offi-
cially ranks thirteen with an accuracy of 0.747.
Another system of ours, which utilizes tri-
grams of words, tri-grams of characters, tri-
grams of part-of-speech, syntactic dependency
sub-trees, and named-entity recognition tags,
achieved an accuracy of 0.787 and is proposed
after the deadline of Task 4.

1 Introduction

Fake news is a noteworthy term in recent years.
The rise of users and rapid spread information on
social networking have made on automatic con-
trolling of fake news more difficult. Fake news ar-
ticles are typically extremely one-sided (hyperpar-
tisan), inflammatory, emotional, and often riddled
with untruths (Potthast et al., 2018). The influence
of misinformation varies depending on the style
it is written in. For example, sarcasm in a sports
news article will have less of an impact than news
written in the hyper-partisan argumentation style,
which can sway voter decision in an election.

Hyperpartisan detection in news articles is one
of the ways to control fake news on the media
and public. Kiesel et al. (2019) provided a new
task, which they name “Hyperpartisan News De-
tection,” to decide whether a news article text fol-
lows a hyperpartisan argumentation. We approach
this task following traditional text classification by
extracting style features. The bag-of-words model
is the way of text representation and is applied to
sentiment analysis effectively (Pang et al., 2002).

Matsumoto et al. (2005) applied text mining tech-
niques on dependency sub-trees as features for
sentiment analysis at the document level. Our re-
sults show that n-grams of words and dependency
sub-trees features from sentences of the document
have certain impacts on the performance of the
classifier. The details of the features in our sys-
tems and the results are described in Section 3 and
Section 4.

2 Task Description

SemEval2019 Task 4 has only one task, in which
participants are required to build the systems
for hyperpartisan news detection. The task is
to predict which category (“hyper-partisan” vs.
“not hyper-partisan”) an argumentation belongs to
when given the news article in English (Kiesel
et al., 2019). There are 645 articles in the
for-ranking training set, and 628 articles in the
for-ranking testing set (all of them are labeled
through crowdsourcing on an article basis). Be-
sides, the organizers of this task provided another
dataset with the training/validation/testing set hav-
ing 600,000/150,000/4,000 articles (all of them are
labeled in accordance with the judgment of the
publisher). The organizers use the accuracy as the
main metric in the for-ranking testing set to eval-
uate the performance of the participants’ systems.
All submissions and results are validated by the or-
ganizers via the evaluation service TIRA (Potthast
et al., 2019).

3 System Description

In this section, we describe the major stages we
followed, as well as the prediction models we uti-
lized in our detection system.

971

Title

HTML <p> tag

Text

HTML <p> tag

sentence1

sentence1, sentence2, ..., sentencem

sentence1, sentence2, ..., sentencen

sentence1, sentence2, ..., sentencep

Input Extracted sentences

Figure 1: Diagram of data preprocessing.

3.1 Data Preprocessing

Data preprocessing of the given input is the im-
portant phase for every task related to natural lan-
guage processing. The input of SemEval-2019
Task 4 is an XML file, containing a title and many
paragraphs in the body text. Paragraph segmen-
tation is based on the HTML ăpą tag because
the ăpą tag defines a paragraph. While many
paragraphs are wrapped by the ăpą tag, some are
not. Observation of some inputs from the dataset
shows that paragraphs that are not wrapped by any
HTML tag may contain “noise,” such as advertise-
ments and the browser’s error messages. On the
other hand, texts displayed in HTML ăpą tags
can also contain “noise,” such as notifications for
redirecting a page (e.g., “Click here to...”). We did
not handle the aforementioned noises in our exper-
iment.

The next step after paragraph segmentation is
sentence segmentation. During this process, we
used spaCy tool (Honnibal and Montani, 2017) to
extract sentences from titles, HTML ăpą tags,
and paragraphs not wrapped in any HTML tag of
input (as we can see the diagram in Figure 1).

3.2 Features Extraction

3.2.1 N-grams of words
Before extracting n-grams of words, we break the
sentences into words in three ways:

1. WS1: The sentence is split by space/multi-
space into tokens.

2. WS2: The sentence is split by space/multi-
space into tokens. After that, we discard to-
kens which are punctuations or English stop-
words.

3. WS3: The sentence is segmented into words.
And then, we lemmatize words into lemmas.
All is done by using the spaCy tool (Honnibal
and Montani, 2017).

After splitting/segmenting the sentence into to-
kens/words, we put tokens/words are all in lower-
case and implement extracting n-grams of them.
The specific values of n for prediction models are
mentioned in section 3.3.

3.2.2 N-grams of characters
Extracting n-grams of words is effective for text
classification that is word-based representation,
but this approach requires reliable tokenizers for
breaking the sentences into words. Experiments
on unsolicited e-mail messages (spam) and a va-
riety of evaluation measures, Kanaris et al. (2007)
show that n-grams of characters are more reliable
to classify texts than n-grams of words. Potthast
et al. (2018) show how a style analysis can dis-
tinguish hyperpartisan news from the mainstream,
and they also use tri-grams of characters as fea-
tures for the classifier in their experiments. As we
described in section 3.1, unfortunately, the input of
SemEval-2019 Task 4 contains a small number of
strange n-grams of characters towards the tokeniz-
ers. Therefore, we decide to use n-grams of char-
acters as the features in our system. We use the
sentence with all of its tokens being rejoined af-
ter the segmentation in WS1 (we described in sec-
tion 3.2.1) with character space for extracting n-
grams of characters. In our experiments, the value
of n ranging from 2 to 7 and the specific values for
prediction models are mentioned in section 3.3.

3.2.3 N-grams of part-of-speech
Argamon et al. (2003) found that n-grams of part-
of-speech can efficiently capture syntactical infor-
mation and gender-based style of the writer. Pot-
thast et al. (2018) used tri-grams of part-of-speech
to make a comparative style analysis of hyperpar-
tisan (extremely one-sided) news and fake news.
Although the efficacy of using n-grams of part-
of-speech on fake news was not examined in their
study, we decided to experiment by using n-grams
of part-of-speech as features for hyper-partisan
news detection. We used the spaCy tool (Honnibal
and Montani, 2017) for part-of-speech tagging and
extract tri-grams of part-of-speech as features.

3.2.4 Sub-trees of dependency tree
In our experiment, dependency parsing involves
extracting from a dependency tree a dependency
sub-tree, which is defined by Matsumoto et al.
(2005) as “a tree obtained by removing zero or
more nodes and branches from the original de-

972

“

INTJ

She

PRON

’s

VERB

the

DET

one,

NOUN

and

CCONJ

PER_X,

PROPN

that

ADJ

caused

VERB

the

DET

violence,”

NOUN

PER_Y

PROPN

said.

VERB

nsubj

ccomp

det

attr
cc

npadvmod

conj

det

dobj

nsubjnsubj

Figure 2: Visualization of the dependency tree of the sentence within the bracket (“She’s the one, and PER X, that
caused the violence,” PER Y said.). This sentence is taken from a news article of the training for-ranking training
set which is mentioned in Section 2. The person’s name is replaced by PER {uppercase letter} in this example (we
did not do that in our experiment).

­PRON­

’s

,

’s

PER_Y

say

,

say

,

’s

­PRON­ ,

say

.

,

say

. ’s

Figure 3: Visualization of seven sub-trees which are
extracted from the dependency tree in Figure 2. There
are four sub-trees with two nodes, two sub-trees with
three nodes, one sub-tree with four nodes in the current
figure. All words in this example are lemmatized.

pendency tree.” Figure 2 illustrates a dependency
tree of a sentence parsed with spaCy tool (Honni-
bal and Montani, 2017), and its shortcoming that
shows the double quotation mark on the left does
not have any child node or parent node. This short-
coming, however, did not affect the extraction of
all sub-trees of the dependency tree, but we re-
solved this issue by considering each group of sub-
trees as one connected component, and the depen-
dency tree as a graph that can contain more than
one connected component. Figure 3, the num-
ber of nodes in a sub-tree can range from 2 to 4,
and NetworkX tool (developed by Hagberg et al.
(2008)) was used to extract all the sub-trees of the
original dependency tree as one connected com-
ponent for each node. All words at each node of
sub-trees are lemmatized in our experiment. As
we can see in Figure 3, some sub-trees can capture
words which are not located close to each other.

3.2.5 Named-entity recognition tags

Characteristics of the input of SemEval-2019 Task
4 contains names of people, names of organiza-
tions. Therefore, we decided to use mentions of
specific terms in named-entity recognition as fea-
tures. In our experiments, a feature is represented
by concatenating a mention and a named-entity
recognition tag. We used the spaCy tool (Honnibal
and Montani, 2017) for the named-entity recogni-
tion task.

3.3 Prediction Models

In this section, we describe the four models which
we have summited to the organizers. In all models,
we used linear SVM (SGDClassifier from Scikit-
learn (Pedregosa et al., 2011)) as the classifier, and
the loss function which is hinge loss with L2 reg-
ularization. In all models, we did not run valida-
tion experiments for turning regularization term α
of all models. We used just the default value of
α “ 0.0001 following SGDClassifier from Scikit-
learn (Pedregosa et al., 2011). Most importantly,
we concatenated different count vectors by way of
extracting features described in section 3.2, to ob-
tain the input representation of the model.

3.3.1 First model

This model uses tri-grams of words which are
split from the text of the article (we did not seg-
ment the text into sentences) the way described in
WS1 in section 3.2.1). Besides, the first model
uses hepta-grams of characters from the text of
the article as features. We discarded the title when
extracting the features for the first model, and we
do not distinguish between texts with the HTML
ăpą tag wrapping and those without (as men-
tioned in section 3.1).

973

3.3.2 Second model
We extracted bi-grams of characters from the body
text regardless of whether the text is wrapped by
the HTML ăpą tag or not, and for the title,
we followed the way mentioned in WS2 in sec-
tion 3.2.1) to extract its bi-grams of words. Addi-
tionally, we extracted all mentions of named-entity
recognition from all sentences of the article, and
we distinguished between features from the title
and those from the body text.

3.3.3 Third model
This model shares similar features with the second
one, except for our extraction of the dependency
sub-trees.

3.3.4 Fourth model
In this model, the title, the text with the HTML
ăpą wrapping, and those without are distin-
guished. All sentences are segmented to tokens in
the same way described in WS3 in section 3.2.1).
We used tri-grams of words, tri-grams of char-
acters, tri-grams of part-of-speech, syntactic de-
pendency sub-trees, and named-entity recognition
tags to extract the text before performing the TF-
IDF transformation with Scikit-learn tool (devel-
oped by Pedregosa et al. (2011)) on the combined
features with min df at 0.05 and max df at 0.95.

4 Results

Accuracy Precision Recall F1
First model1 0.747 0.754 0.732 0.743
Second model 0.685 0.687 0.678 0.683
Third model 0.707 0.666 0.831 0.739
Fourth model2 0.787 0.796 0.771 0.783

Table 1: Metric summary of fully trained models on
the official test dataset.

We did not use the training dataset of 600,000
articles for training all the models in our exper-
iments. The result (Table 1) shows a decrease
in performance of the second and the third mod-
els when the n-grams of words were not used as
features. The accuracy of the third model, how-
ever, increased by 2% compared with the second
model when the extra dependency sub-trees were
used as features. On the other hand, the fourth
model achieved the highest accuracy, up to 0.787.

1The first model officially ranks thirteen in Sem-Eval
2019 Task 4.

2The fourth model is proposed after the deadline of Sem-
Eval 2019 Task 4.

This accuracy level, however, is still lower than
that achieved via deep learning techniques, such as
the Convolutional neural network and pre-trained
ELMo representations, employed by “Bertha von
Suttner” team who were ranked first in SemEval-
2019 Task 4.

5 Conclusion

Our major contribution to SemEval-2019 Task 4
is that using n-grams of words and dependency
sub-trees as features for extracting has a posi-
tive impact on the performance of the classifier:
In our experiment, we were able to achieve the
accuracy of 0.787 with the proposed model that
uses tri-grams of words, tri-grams of characters,
tri-grams of part-of-speech, syntactic dependency
sub-trees, and named-entity recognition tags. That
model can also capture words which are not lo-
cated close to each other through dependency sub-
trees. The disadvantages of our models, how-
ever, are that extraction of dependency sub-trees
is a time-consuming process, and the relations be-
tween sentences of the articles are not represented.

References
Shlomo Argamon, Moshe Koppel, Jonathan Fine, and

Anat Rachel Shimoni. 2003. Gender, genre, and
writing style in formal written texts. Text, 23:321–
346.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
2008. Exploring Network Structure, Dynamics, and
Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, pages 11 – 15.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Ioannis Kanaris, Konstantinos Kanaris, Ioannis Hou-
vardas, and Efstathios Stamatatos. 2007. Words ver-
sus Character n-Grams for Anti-Spam Filtering. In-
ternational Journal on Artificial Intelligence Tools,
16:1047–1067.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Shotaro Matsumoto, Hiroya Takamura, and Manabu
Okumura. 2005. Sentiment Classification Using
Word Sub-sequences and Dependency Sub-trees. In

974

Advances in Knowledge Discovery and Data Min-
ing, pages 301–311, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment Classification using
Machine Learning Techniques. In Proceedings of
the 2002 Conference on Empirical Methods in Natu-
ral Language Processing, pages 79–86. Association
for Computational Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

975

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 976–980
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Orwellian-times at SemEval-2019 Task 4:
A Stylistic and Content-based Classifier

Jürgen Knauth
Institute of Computer Science

University of Goettingen
jknauth@uni-goettingen.de

Abstract

While fake news detection received quite a
bit of attention in recent years, hyperparti-
san news detection is still an underresearched
topic. This paper presents our work towards
building a classification system for hyperpar-
tisan news detection in the context of the Se-
mEval2019 shared task 4. We experiment with
two different approaches - a more stylistic one,
and a more content related one - achieving av-
erage results.

1 Introduction

Recent years have seen a noticeable change in the
political discourse: Political polarization has in-
creased and political opinions have become more
hyperpartisan (Doherty, 2017). This affects the
media, especially news media and is therefore a
topic of considerable interest for science and soci-
ety.

We present an approach for the detection of high
polarization and hyperpartisan news articles. Our
approach addresses stylistic and content related
features. The latter are implemented by identify-
ing n-grams that are typical for either a hyperpar-
tisan or a more balanced perspective.

1.1 The Task

The goal of the SemEval2019 Hyperpartisan News
Detection Task (Kiesel et al., 2019) is to build a
system capable of classifying arbitrary articles ei-
ther as non-hyperpartisan or hyperpartisan.

1.2 The Dataset

For building a classification system the organiz-
ers of the task provided several data sets extracted
from different American news sites:

a) a set of 600.000 articles for training (classifica-
tion: by publisher’s general orientation)

b) a set of 150.000 articles for validation (classifi-
cation: by publisher’s general orientation)

c) 645 training articles (classified individually by
humans using a crowd sourcing approach)

d) validation set (classified by publisher, un-
known size as this data set has been hidden dur-
ing the task)

e) validation set (classified individually, unknown
size as this data set has been hidden during the
task)

All data - the articles themselves as well as
the ground truth data - is provided in an propri-
etary but simple and well parsable XML format
defined by the task owners. The individual data
records includes a globally unique ID, the title,
the source URL and publication time. Addition-
ally the ground truth data for a) and b) contains
information about a left-right bias of the publisher
in general.

2 Related Work

Not so much research has been done in regard
to hyperpartisan news detection. Other work is
primarily addressing related fields such as ideol-
ogy detection, fake news detection. For exam-
ple (Hutto et al., 2015; Hamborg et al., 2018) ad-
dresses identification and quantification of media
bias. (Iyyer et al., 2014) addresses political ide-
ology detection using recursive neural networks.
(Rashkin et al., 2017) is analyzing language in
fake news for automated political fact-checking.
One interesting work directly targeting hyperpar-
tisan news is the work of (Potthast et al., 2018)
identifing hyperpartisan news articles via style.

976

3 Methodology

3.1 PoS Tagging

As we hypothesize that not all parts-of-speech are
equally important for distinguishing hyperparti-
san and non-hyperpartisan articles, we lemmatized
and pos-tagged the dataset.

Initially, we experimented with the TreeTagger
(Schmid, 1994), however since this turned out not
to be sufficiently robust for the noisy input data,
which included encoding errors as well as portions
of JavaScript code, we later adopted the Stanford
CoreNLP tagger (Manning et al., 2014).

3.2 Feature Extraction

We used a total of 108 features for our experi-
ments. The next sections discusses our features
in detail.

3.2.1 Linguistic Complexity and Style
Features

Basic complexity: We hypothesize that hyperpar-
tisan texts are stylistically less complex than non-
hyperpartisan texts (Potthast et al., 2018), hence
we implemented a number of features measuring
linguistic complexity. We measure the distribu-
tion characteristics of paragraph lengths, sentence
lengths and word lengths. Individual features were
derived from that data like minimum, maximum,
variance, mean, et cetera.

Number of words in main part-of-speech cate-
gories: We collect the number of verbs, nouns,
adjectives and adverbs in articles and derive dis-
tribution features from it. While not every part-of-
speech category will have the same importance we
rationalize that at least the distribution character-
istics of nouns, adjectives and adverbs could be a
style hint for hyperpartisan or non-hyperpartisan.

Simple form of lexical density: As “lexical den-
sity” we here consider the ratio of words being not
part of the NLTK stop-words in comparison to the
total number of words. The idea behind this fea-
ture is to detect articles with lower or higher in-
formation character and take some stylistic aspect
into account.

Huffman compression ratio: Our huffman com-
pression feature is used with similar intention.
First: The general idea behind huffman compres-
sion (Huffman, 1952) is to build a dictionary of
words ordered by frequency in a binary tree. This
is done in such a way that in the end high fre-
quency words can be encoded with a shorter bit

code than low frequency words. The rationale in
our approach here is to perform a compression of
individual articles: The better this compression
works the more an author of an article reuses his
own words. The more difficult this compression
is, the higher is the variety of words used by an
author. For speed reasons we intentionally do not
perform a full compression here but build a huff-
man compression tree and then estimate the size
the indices would take in a full compression. We
then put this information into relation to the total
number of tokens of an article and use this as a
feature.

Readability scores: A set of readability scores
is used. Readability scores express the simplicity
of a text in various different ways - at least to some
extent - as well as give a rough judgement for the
reading competence level of an audience required
to understand the text. We implemented features
based on four readability scores: ARI (Smith and
Senter, 1967), Coleman-Liau (Coleman and Liau,
1975), Flesch-Kincaid (Kincaid et al., 1975) and
Gunning-Fog (Gunning, 1952).

Vocabulary variety: The vocabulary variety
classifier is calculating the ratio of uniquely used
words in relation to the total number of words.
This way this classifier assists in judging the com-
plexity of the text in an article as well.

3.2.2 Arousal vs. Rationality
Distribution parameters of business words: We
assume that news articles addressing business re-
lated topics are inherently not particularly hyper-
partisan. Based on manual inspection of training
data, we therefore created a list of 27 words, which
we consider to be expressing business related top-
ics, for example “sales”, “growth”, “CEO”, “op-
portunity”, “revenue”, “Q1”, “shareholder” and
similar terms.

Distribution parameters of words of disgust: In
a similar way to business words the corpus lemmas
are judged whether they express some kind of dis-
gust. For this purpose a hand picked vocabulary of
246 words had been created from publically avail-
able online dictionaries such as LEO (LEO), Wic-
tionary (Wictionary) and similar that genuinely
express some kind of disgust. Though this dictio-
nary likely is not complete the assumption is, that
it gives a general insight into whether a writer ex-
presses disgust at least to some extend, e.g. “disac-
cord”, “rupture”, “distaste”, “scandalous” or even
words like “rotten”. We intended here not to detect

977

only archetypical words such as “awful” but also
more uncommon words that might typically not
be seen in news so frequently. The rationale be-
hind this is that we noticed the phenomenon of hy-
perpartisan authors to attempt to use a more vivid
and strong language with sometimes less common
words.

Cardinal number ratio: Detecting cardinal
numbers is another feature addressing very spe-
cific aspects of articles: The idea behind this fea-
ture is that more fact-based communication might
more likely make use of numbers in order to ex-
press and proof their positions. While we can not
check the truth of claims involving cardinal num-
bers we at least try to detect the quantity of such
claims.

Pronouns before “need” and “must”: Two fea-
ture detectors address pronouns directly proceed-
ing the words “need” or “must”. We noticed
hyperpartisan articles where the authors directly
address the reader and give advice how society
should proceed. This is done in an inclusive way,
so sequences like “we must (do sth)” or “we need
(to do sth)” could be observed.

3.2.3 Content Features
To address content specifically we implemented
features derived from the provided test data itself,
though this way these features can cover only lim-
ited and existing content.

Attributively used adjectives: According to the
theories behind framing in psychology, political
influence can be produced by repeating specific
kind of wordings (Wehling, 2016). We noticed
that this technique seems to be used sometimes
quite extensively by authors of more extreme posi-
tions in recent years as they have a quite unchang-
ing perspective about topics, persons and events.
For example in the manually classified data the
term “jewish” is used to characterize a follow-
ing noun about five times more often in hyper-
partisan than non-hyperpartisan articles, “holistic”
about 30 times and “immediate” only about a third
of the times compared to non-hyperpartisan news.
Based on this phenomenon a dictionary of adjec-
tives which discriminate a following noun have
been extracted from non-hyperpartisan and hyper-
partisan pos-tagged training data in a separate pro-
cessing process, resulting in 2720 adjectives for
our use. Our feature is then measuring whether
more non-hyperpartisan or hyperpartisan use of
such adjectives can be observed in an article.

Lemma-bigram similarity scores: While our
attributively-used-adjectives-feature focuses on
the adjectives themselves and is therefore a sin-
gle word feature, we additionally used lemma
based bigram features. We extracted all bigrams
in sentences for a window of four tokens from
the manually tagged training data (and for exper-
iments from the larger data set) and associated
them with either non-hyperpartisan or hyperpar-
tisan labels. For example the lemmas “obama”
directly followed by “administration” appear sig-
nificantly more often in hyperpartisan than non-
hyperpartisan articles. It’s even more extreme
with “obamacare” and “act”, sequences of “bad”
and “happen” or “disastrous” and “war”: The
latter having even no mentions at all in non-
hyperpartisan articles. Interestingly some bigrams
are less characteristic as one would expect: For
example “illegal” and “immigration” is used quite
frequently by both classes. Again other bigrams
seem to be more typical for non-hyperpartisan
news articles, e.g. “fake” and “story”.

For our implementation we determined the re-
lation of how often either hyperpartisan and non-
hyperpartisan bigrams appeared per paragraph:

f = (nH − nNH)/(nH + nNH) (1)

where nH and nNH refer to the number of
hyperpartisan/non-hyperpartisan bigrams. This
value will be positive or negative depending on
the surplus of non-hyperpartisan vs. hyperparti-
san bigrams encountered in unseen text. We do
this for directly adjacent lemmas, for two lemmas
skipping one token, two tokens and three tokens
and calculate the four medians so that we end up
with a set of feature values, each one expressing
content similarity to our reference data.

3.3 Machine Learning

We built two different models by training a sup-
port vector machine with an rbf-kernel (libsvm).
The first one is based only on the stylistic features
and has been submitted for the first evaluation run
of the task, the second one is based only on the
content features which has been submitted for the
second evaluation run of the task.

For training of the first model 100.000 arti-
cles have been selected by random with strati-
fied sampling, arriving at 25.000 articles classified
as hyperpartisan left, 25.000 hyperpartisan right
and 50.000 non-hyperpartisan. Selecting a sub-

978

Dataset Acc Prec Rec F1
M1 by-pub. 0.505 0.503 0.949 0.657
M2 by-pub. 0.537 0.530 0.658 0.587
M2 by-art. 0.671 0.654 0.729 0.689

Table 1: Results, Model 1 and Model 2 with validation
dataset used, accuracy, precision, recall and F1 score.

set of the available articles was necessary as part-
of-speech tagging with first the TreeTagger and
then the CoreNLP tagger took quite some time
to complete. As mentioned before we ran into
some tagging problems because of errors in the
corpus data and limited capabilities of the existing
Python adapters for CoreNLP. Additionally we en-
countered some problems with larger amounts of
data which surprisingly caused crashes in the C
implementation of the SVM (NuSVC of sklearn)
for unknown reasons. So in the end we limited
ourselves to these 100.000 random articles to cope
with these difficulties.

As we recognized during our work that the
training data classified by-pubisher was - by nature
- not so accurately labeled, we train our second
model on the gold standard data with 645 manu-
ally labeled articles to avoid any noise for our fea-
tures as much as possible. For this model we used
only the content features.

4 Results and Conclusions

To train our models we used the provided training
data “by-publisher” and “by-article” as described
in the last section. Evaluation runs have then been
performed on the validation data “by-publisher”
and “by-article” (which were hidden during the
duration of the shared task). The results can be
seen in table 1.

Model 1 (which was trained on the 100.000 ran-
domly picked articles focusing on style features)
was tested against the validation data labeled by-
publisher. Model 2 (which was trained on the 645
articles focusing on content features) was tested
against the validation data labeled by-publisher
and the validation data by-article in two separate
runs. Our model 1 achieved better results than
model 2 during our evaluation runs on the by-
publisher data. It has been selected by the orga-
nizers for ranking in the leader board.

Validation showed that our first model exhibits a
trend to judge articles too easily as being hyperpar-
tisan. Though our second model exhibits a trend

to more easily classify articles as hyperpartisan as
well, this effect is not that strong.

Our second, content feature model did not per-
form that well on the test data labeled by-publisher
than the first, the style-based model. Interestingly
it performed better on evaluation data labeled by-
article. As our training data of 645 articles for
that model is small the second model likely suf-
fers from overfitting.

5 Further Work

In this paper we have presented a binary classifica-
tion system that assign labels “non-hyperpartisan”
and “hyperpartisan” for articles. While we could
achieve some results in that field we still think that
more work is needed here.

Results of competing teams in the Se-
mEval2019 shared task indicate that our current
approach has not yet been explored to full extent
in that regard: Better classification could be pos-
sible. We assume that additional effort should be
taken in selecting more and better style and con-
tent features. Though stylistic approaches seem
to be promising – comp. (Potthast et al., 2018) –
we assume that future work should focus more on
content and empathic perception of the content by
the reader. For example sentiment could be taken
into consideration as news articles tend to have
different point of views on different topics. As
there exists a variety of different sentiment tools of
varying quality experiments need to be performed
to explore possibilities of improving our models.
Attempts in this regard have been undertaken by
ourselves already but could not be completed for
this shared task. Additionally it would be inter-
esting to combine both approaches, something we
were not able to explore sufficiently during this
shared task.

Acknowledgments

This work was funded by the ministry of science
and culture of Lower Saxony (”Holen und Hal-
ten”).

References
M. Coleman and T. L. Liau. 1975. A computer read-

ability formula designed for machine scoring. In
Journal of Applied Psychology, volume 60(2), pages
283–28.

Carroll Doherty. 2017. Key takeaways on amer-
icans growing partisan divide over political

979

values. http://www.pewresearch.org/
fact-tank/2017/10/05/takeaways-on-
americans-growing-partisan-divide-
over-political-values/. Accessed:
2019-02-21.

Robert Gunning. 1952. The technique of clear writing.
New York: McGraw-Hill.

Felix Hamborg, Karsten Donnay, and Bela Gipp. 2018.
Automated identification of media bias in news arti-
cles: an interdisciplinary literature review. Interna-
tional Journal on Digital Libraries.

D. A. Huffman. 1952. A method for the construction
of minimum-redundancy codes. Proceedings of the
IEEE, formerly Proceedings of the IRE, 40(9):1098–
1101.

C.J. Hutto, Dennis Folds, and Scott Appling. 2015.
Computationally detecting and quantifying the de-
gree of bias in sentence-level text of news stories. In
The First International Conference on Human and
Social Analytics, pages 30–34.

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and
Ps Resnik. 2014. Political ideology detection using
recursive neural networks. In 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2014 - Proceedings of the Conference, vol-
ume 1, pages 1113–1122.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. Semeval-
2019 task 4: Hyperpartisan news detection. In Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval 2019). Association for
Computational Linguistics.

J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S.
Chissom. 1975. Derivation of new readability for-
mulas for navy enlisted personnel. Technical report.

LEO. Leo online dictionary. https://dict.leo.
org. Accessed: 2019-02-21.

libsvm. SVM implementation library libsvm.
https://www.csie.ntu.edu.tw/
˜cjlin/libsvm/index.html. Part of Scikit-
Learn; Authors: Chih-Chung Chang, Chih-Jen Lin;
Accessed: 2019-02-21.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A stylo-
metric inquiry into hyperpartisan and fake news. In

Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 231–240. Association for Com-
putational Linguistics.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and polit-
ical fact-checking. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2931–2937. Association for Com-
putational Linguistics.

Helmut Schmid. 1994. Probabilistic part-
of-speech tagging using decision trees.
http://www.cis.uni-muenchen.de/
˜schmid/tools/TreeTagger/. Accessed:
2019-02-21.

E. A. Smith and R. J. Senter. 1967. Automated read-
ability index. Technical report.

E. Wehling. 2016. Politisches Framing: Wie eine Na-
tion sich ihr Denken einredet - und daraus Politik
macht. Ullstein.

Wictionary. Wictionary, the free dictionary. http:
//en.wictionary.org. Accessed: 2019-02-
21.

980

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 981–984
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Rouletabille at SemEval-2019 Task 4:
Neural Network Baseline for Identification of Hyperpartisan Publishers

Jose G. Moreno and Yoann Pitarch and Karen Pinel-Sauvagnat and Gilles Hubert
IRIT / University of Toulouse

France
{jose.moreno, yoann.pitarch, karen.sauvagnat, gilles.hubert}@irit.fr

Abstract

This paper describes the Rouletabille partic-
ipation to the Hyperpartisan News Detection
task. We propose the use of different text clas-
sification methods for this task. Preliminary
experiments using a similar collection used in
Potthast et al. (2018) show that neural-based
classification methods reach state-of-the art re-
sults. Our final submission is composed of a
unique run that ranks among all runs at 3/49
position for the by-publisher test dataset and
43/96 for the by-article test dataset in terms of
Accuracy.

1 Introduction

Printed press have been in the last decades the
main way to access to news in written format.
This tendency is changing with the appearance of
online channels but usually the main factors of
the journalistic content generation are still there:
events, journalists, and editors. One of the prob-
lems of the generation of this content is the influ-
ence of each factor in the veracity of the generated
content. Two main factors may influence the final
view of an article: writer’s preferences and affilia-
tion of the editor house.

Identifying partisan preferences in news, based
only on text content, has been shown to be a chal-
lenging task (Potthast et al., 2018). This problem
requires to identify if a news article was written in
such a way that it includes an overrated apprecia-
tion of one of the participants in the news (a polit-
ical party, a person, a company, etc.). Despite the
fact that sharply polarized documents are not nec-
essarily fake, it is an early problem to solve for the
identification of fake content. A recent paper (Pot-
thast et al., 2018) claims that stylometric features
are a key factor to tackle this task.

In this paper, we present the description of our
participation to the Hyperpartisan classification

Classifier

Hyperpartisan

Mainstream

Pu
bl

is
he

r A
Pu

bl
is

he
r B

Figure 1: Publisher-based pipeline performed in train-
ing phase. During testing, different publishers were
used and labels were unknown.

task at SemEval-2019 (Kiesel et al., 2019). This
task was composed of two subtasks, the first con-
sist to identify hyperpartisan bias in documents
classified by its individual content (bias of the
writer or by-article category) and the second by
the editorial house that published the article (bias
of the editorial house or by-publisher category) as
depicted in Figure 11. To address this problem,
we experimented with well-known models based
on deep learning (Honnibal and Montani, 2017;
Kim, 2014). They achieve state-of-the-art results
on a publicly available collection (Potthast et al.,
2018), showing that neural models can effectively
address the task of hyperpartisan detection with-
out including stylometric features. Our final sub-
mission ranked in the top-3 for the by-publisher
category, and 43/96 for the by-article category (or
21/42 in the official ranking).

2 Classification Models

We have considered that the hyperpartisan classifi-
cation task can be addressed as a binary classifica-
tion task where only two classes (’hyperpartisan’
and ’mainstream’).

Three different models were considered for our
participation. The first of them is based on a
classical document-level representation and the

1More details of the dataset construction can be found in
Kiesel et al. (2019)

981

other two are based on word-level representations
through the use of word embedding. All of them
can be seen as baselines and no specific adaptation
to the dataset2 was performed.3

2.1 TF-IDF + Adaboost

For this model we represented our documents us-
ing the classical TF-IDF representation. Finally,
the Adaboost classifier (Freund and Schapire,
1997) is used under the default configuration.
Note that this is a very basic baseline, as it does
not use recent representation techniques such as
word embeddings.

2.2 SpaCy Model

In this case, we used the SpaCy (Honnibal and
Montani, 2017) library4. We used the text cate-
gorisation algorithm implemented in SpaCy which
is based on the hierarchical attention network pro-
posed in Yang et al. (2016). The main improve-
ment to the original model is the use of hash-
based embeddings. We only defined two hyper-
parameters for the model: number of epochs and
dropout rate. These parameters were set to 3 and
0.2, respectevelly.5

2.3 Convolutional Model

We also tested the neural classification model pro-
posed by Kim (2014). This model uses convolu-
tional neural networks that are finally reduced to a
binary classification. This method is known as a
highly competitive classification model for short
documents. As SpaCy, this model is based on
word embeddings representation. However, in this
case we preferred to use the pre-calculated embed-
dings of GloVe (Pennington et al., 2014). Hyper-
parameters were defined using the training data.

3 Experiments and Results

3.1 Experimental Setup

Experiments were performed using two collec-
tions, the ACL2018 collection (Potthast et al.,
2018) and the SemEval19 collection (Potthast
et al., 2019). The first collection is composed of
1627 articles including 801 hyperpartisan and 826

2Different to the classical training of the involved classi-
fiers.

3Further experiments were performed using network-
based models but as results did not show improvement in an
existing collection, we decided to not include these results.

4https://spacy.io/
5We based on SpaCy’s guidelines.

training validation test

by-article 645 - 628
by-publisher 600000 150000 4000

Table 1: Number of documents used for training, vali-
dation, and test used in the SemEval19 collection.

mainstream manually annotated documents. As
this collection is not originally split in training-test
sets, results are presented using cross-validation.
The second collection was split in train, valida-
tion, and test sets for the by-publisher category,
and in train and test for the by-article category as
presented in Table 1. Results in this second col-
lection are exclusively calculated using the TIRA
evaluation system (Potthast et al., 2019).

In order to determine the best configuration to
our participation using the SemEval collection, we
decided to perform experiments and fix hyperpa-
rameters using the ACL2018 collection.

3.2 Results in the ACL2018 Collection

Table 2 reported results of the 3 classification
models presented in section 2 (lines labelled TF-
IDF+Adaboost, SpaCy and CNN-Kim), as well as
results of the approach presented in Potthast et al.
(2018) (line labelled ACL18), on the ACL2018
collection.

We only used the first fold produced by the au-
thors’ code6. As our results are not directly com-
parable with the values reported in Potthast et al.
(2018), we re-evaluated their approach on this sin-
gle fold.

Values of the three F-measures were calculated
with sklearn7. Note that in binary classification,
micro F-measure values are equivalent to accuracy
values.

Two state-of-the-art models (SpaCy and Kim
(2014)) outperform the approach presented in Pot-
thast et al. (2018), showing that stylometric fea-
tures are probably not necessary for the task.

3.3 Results in the Semeval2019 Collection

Experiments on the official collection were per-
formed through the use of TIRA (Potthast et al.,
2019)8. As our previous experiments have not
shown clear improvement with the convolutional
model, we submitted our official runs using

6https://github.com/webis-de/ACL-18
7https://scikit-learn.org/
8https://www.tira.io/task/hyperpartisan-news-detection/

982

F-measure
macro accuracy

/micro
weighted

ACL18 0.7605 0.7509 0.7480
TF-IDF +
Adaboost

0.7069 0.7130 0.7039

SpaCy
(dp =0.2,
epochs=3)

0.8087 0.8091 0.8081

CNN-
Kim

0.8273 0.8306 0.8290

Table 2: Macro, micro and weighted F-measure for the
ACL2018 collection.

accuracy/micro f1

top1 0.7060 0.6825
top2 0.6998 0.6587
our (rank 3/49) 0.6805 0.7213
top4 0.6640 0.7061

Table 3: Official results for the by-publisher test
dataset.

SpaCy: it can be seen as an ’easy-to-implement’
but strong baseline. The same model was trained
on the by-publisher training set for both submis-
sions (on the by-publisher and by-article dataset).

Tables 3 and 4 respectively present official
results on the by-publisher9 and the by-article
datasets.

One can see that relative results (i.e. regarding
the official ranking) are strongly better on the by-
publisher dataset than on the by-article one. This
can be easily explained by the fact that collections
were differently annotated.

If we now compare accuracy scores of the
SpaCy model between the ACL2018 collection
and the SemEval2019 one, we can notice a de-
crease in performance (0.6640 vs 0.8091 on the

9https://www.tira.io/task/hyperpartisan-news-
detection/dataset/pan19-hyperpartisan-news-detection-
by-publisher-test-dataset-2018-12-12/ last visit 19/02/2019.

accuracy /micro f1

top1 0.8217 0.8089
top2 0.8201 0.8215
top3 0.8089 0.8046
our (rank 43/96) 0.7245 0.6905

Table 4: Official results for the by-article test dataset.

by-publisher dataset for example), leading us to
think that there exist some differences between the
two collections. Both collections seem to be com-
plementary for the evaluation of hyperpartisan de-
tection.

Another important observation is that the SpaCy
model performs remarkably well on the by-
publisher set, although not specifically tuned for
the hyperpartisan detection task. Indeed, we are
ranked first on the F1 metric, and 3rd on the Ac-
curacy one. Some other experiments are needed to
get a fine-tuned model for the task, but this version
can already be considered as a strong baseline for
the by-publiser subtask.

4 Conclusion

Our experiments and participation to the Hyper-
partisan task led us to conclude that:

• stylometric features seem not to be neces-
sary to achieve state-of-the-art results for hy-
perpartisan detection in the ACL2018 collec-
tion. This deserves a set of extra experi-
ments to better understand the real contribu-
tion of stylometric features when combined
with strong representations/classifiers to val-
idate the work of Potthast et al. (2018).

• a state-of-the-art classification model in its
default configuration (SpaCy) can be con-
sidered as a strong baseline for next exper-
iments. Indeed, SpaCy is top-ranked ac-
cording to the F1 metric on the by-publisher
dataset. One question is thus now if other
top-ranked approaches are also from the text
classification literature or dedicated ones.

References
Yoav Freund and Robert E Schapire. 1997. A decision-

theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci.,
55(1):119–139.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. https://spaCy.io.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

983

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A Sty-
lometric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

984

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 985–989
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Spider-Jerusalem at SemEval-2019 Task 4: Hyperpartisan News Detection

Amal Alabdulkarim
Department of Computer Science

Columbia University
amal.a@columbia.edu

Tariq Alhindi
Department of Computer Science

Columbia University
tariq@cs.columbia.edu

Abstract

This paper describes our system for detecting
hyperpartisan news articles, which was
submitted for the shared task in SemEval
2019 on Hyperpartisan News Detection. We
developed a Support Vector Machine (SVM)
model that uses TF-IDF of tokens, Language
Inquiry and Word Count (LIWC) features,
and structural features such as number of
paragraphs and hyperlink count in an article.
The model was trained on 645 articles from
two classes: mainstream and hyperpartisan.
Our system was ranked seventeenth out of
forty two participating teams in the binary
classification task with an accuracy score of
0.742 on the blind test set (the accuracy of the
top ranked system was 0.822). We provide a
detailed description of our preprocessing
steps, discussion of our experiments using
different combinations of features, and
analysis of our results and prediction errors.

1 Introduction

Fake news on various online media outlets
misinform the public and threaten the integrity of
journalism. This has serious effects on shaping
public opinions on controversial topics such as
climate change, and swaying voters in political
elections. Yellow press existed long before the
digital age but had limited reach when compared
to mainstream press. However, with the
introduction of social media, news that are
extremely biased (hyperpartisan) tend to spread
more quickly than the ones that are not (Vosoughi
et al., 2018). Therefore, there is a need for
automatic detection methods of hyperpartisan
news. Computational methods for fighting fake
news mainly focus on automatic fact-checking
rather than looking at writing styles of news
articles (Potthast et al., 2018). SemEval-2019
Hyperpartisan News Detection shared task aims
to study the ability of a system to detect if a given
article exhibits a hyperpartisan argumentation

writing style to convince readers of a certain
position. The shared task introduces a binary
classification task of classifying an article into
one of two possibilities: mainstream or
hyperpartisan. The data for the shared task was
introduced by (Kiesel et al., 2019) and consists of
645 of articles from mainstream, left-wing, and
right-wing publishers. The articles from both
left-wing and right-wing publishers were labeled
as hyperpartisan.

The baseline system to detect hyperpartisan
developed by (Potthast et al., 2018) uses
Unmasking (Koppel et al., 2007) and was trained
on 1,627 of articles. The articles are from nine
publishers in the US: three mainstream (ABC
News, CNN, and Politico), three left-wing
(Addicting Info, Occupy Democrats, and The
Other 98%), and three right-wing (Eagle Rising,
Freedom Daily, and Right Wing News). Their
model had a best accuracy of 75% by using
stylistic features. However, their model is not
directly comparable with ours since the dataset
for the shared task is different.

In the following sections, we describe our
system for identifying hyperpartisan news articles
as part of our participation in the Hyperpartisan
New Detection shared task in SemEval 2019
(Kiesel et al., 2019).

2 System Description

We trained a support vector machine model on a
feature vector representing each article in our
training dataset. To develop this model, we
processed the dataset and analyzed different
features and feature combinations.

2.1 Pre-processing

The training dataset contained 645 articles that
include 238 (37%) hyperpartisan and 407 (63%)
mainstream (Kiesel et al., 2018). The test dataset
is 628 articles (314 from each class).

985

We clean the articles and titles from
punctuation marks, stop words, none alphabetical
characters, lemmatized and tokenized using the
Natural Language Toolkit (NLTK) (Bird et al.,
2009) . After that, those tokens are processed
using the TF-IDF vectorizer in sci-kit-learn
(Pedregosa et al., 2011) and stored as a vector.

2.2 Feature Extraction

The features we chose to extract from the articles,
include the following:

1. Words vector. After pre-processing all the
unigrams in the articles and the titles are
stored in a TF-IDF vector.

2. Linguistic Inquiry and Word Count (LIWC)
features. The words in every article and
titles that are part of any dimension of the
Linguistic Inquiry and Word Count (LIWC)
dictionary. LIWC analyzes text by using a
dictionary of the most common words and
word stems. The dictionary is organized into
different categories, some of which are affect
words and function words. (Pennebaker
et al., 2012) are counted and stored in a
sixty-three dimensional TF-IDF vector.

3. Punctuation. The punctuation marks in the
title and articles were grouped into six
different categories and then counted and
stored separately from the article and then
stored in a six-dimensional TF-IDF vector.
Because we were specifically interested in
exclamation marks, question marks and
quotations we let those three punctuation
marks have their independent counts in the
vector. The other three dimensions are
colons and comma, dot, and parenthesis.

4. Article structure features:Paragraphs,
quotes, and external links are counted and
stored in a 3-dimensional vector.

5. Emotion features. The emotional content in
the articles is captured using the NRC
emotions lexicon (Mohammad and Turney,
2013). After counting the words in each
emotion category, we store the counts in a
ten-dimensional vector, where the elements
represent anger, anticipation, disgust, fear,
joy, negative, positive, sadness, surprise and
trust.

After pre-processing and extraction, we
experiment with different groupings of these
features in our model to see which group of
features is most effective for the given task. The
next section discusses those feature combinations.

Features
Title Article

F1
W L P E W L P E S

1 x x x x 0.48
2 x x x x 0.75
3 x x x x x 0.74
4 x x x x x x x x x 0.72
5 x x 0.76
6 x x x x x x x 0.71
7 x x x x 0.76
8 x x x x x x 0.74
9 x x 0.48
10 x x 0.48
11 x x 0.70
12 x x x x x 0.76

Table 1: Different feature combinations (W: Words
vector, L: LIWC features, P: Punctuation Marks, E:
Emotions and S: Articles Structure) and their weighted
F1 score on the local validation set.

2.3 Feature Selection

Now that we have the extracted features we began
grouping them and testing them in our model. We
tested the different combinations of these features
as shown in Table 1. In these experiments, the
most effective combination of features was
number 7 (the word tokens, LIWC, punctuation
marks, and the article structure), number 5 (the
word tokens of the article and title) and number
12 (all the features in 5 and 7). The other title
features did not provide a good contribution to the
model as we expected.

2.4 Model

The model1 is constructed using a sci-kit-learn
pipeline with two main steps. The first part is a
dimensionality reduction using latent semantic
indexing (Manning et al., 2008) using Truncated
Singular value decomposition (SVD). The
primary goal of using an SVD is to lower the rank
of the feature matrix by merging the dimensions
associated with terms that have a similar
meaning. The second step is a linear support
vector machine (SVM) model used in default
settings, which takes as input the output of the

1https://github.com/amal994/hyperpartisan-detection-
task

986

SVD. The SVM is useful in high dimensional
spaces and when the number of features is higher
than the number of articles in the dataset.

3 Results

In this section, we will review the results of our
model and show its performance on a local
validation set of size 129 articles (48
hyperpartisan, 81 not hyperpartisan) and the test
set on TIRA (Potthast et al., 2019).

Measure Validation Set Test Set
accuracy 0.767 0.742
f1-score 0.767 0.709
precision 0.767 0.814
recall 0.767 0.627
true positives 26 197
true negatives 73 269
false positives 8 45
false negatives 22 117

Table 2: Main task classification results of the local
validation and test datasets.

3.1 Main Task

For the main task, identifying hyperpartisan
articles from a dataset of manually labeled
articles, we created a local validation set, by
partitioning the by-article dataset into a training
and validation sets while keeping the split ratio
equal in both. We do not report any results on the
by-publisher datatset as we found class mismatch
for some articles across the two datasets (i.e.
some articles are labeled mainstream in the
by-article and hyperpartisan in the by-publisher).
Therefore, we decided to focus on the more
accurately labeled dataset (the by-article), which
is also the one used for share-task leaderboard
ranking.

Model Accuracy
validation set test set

SVM 0.767 0.742
Ensemble 0.829 0.640
Ensemble-RNN 0.76* 0.694

Table 3: Classification results of various models.
Ensemble-RNN model was tested using cross-
validation so it is not directly comparable with the
other two models in the validation scores.

In Table 2, we show the classification report of
the SVM model after running on a local
validation set and the official test set. When we
tested the SVM model locally, it gave a high
f1-score 0.767 which is the measure we relied on
locally because the data was not balanced.
On the task leaderboard, tested on the test set in
TIRA, the model ranked 17 among the 42
participating teams, with an accuracy of 0.742.

We also experimented with other machine
learning models and compared them with our
SVM model. We developed an ensemble model
that consists of an SVM classifier, a Gradient
Boosting Classifier and a Bagging Classifier with
a decision tree as its base estimator. But that
classifier only scored 0.64 accuracy on the test
set, even though it scored 0.829 accuracy on the
validation set. We also added an RNN classifier
that uses ELMO embeddings (Peters et al., 2018)
to the previously described ensemble model. That
model increased the accuracy on the test set by a
small value 0.694 but did not outperformed the
SVM model.

3.2 Meta Learning

We also participated in the meta-learning sub-task,
the task is to use all of the predictions from all of
the participating teams classifiers as an input and
come up with a meta classifier.

The dataset we were given is a list of
predictions from all the participating classifiers
and the gold labels for each article in this list.
The model we developed builds on the idea of a
weighted majority algorithm but with changes to
how the weights are being calculated. So instead
of dividing by the total number of elements to
calculate the weights, we have two separate
weights, one for each class, and then we
calculated those two weights for each classifier
using equation 1 where H in the equation
corresponds to the class (0 or 1), c is the classifier
and y is the true label.

w(c,H) =

∑n
i 1(y = H ∧ c(x) = H)∑n

i 1(y == H)
(1)

This classifier had a validation accuracy of 0.899
and the baseline majority vote classifier 0.884.
The model has only a slight advantage in its
accuracy which is beneficial for the competition.
Even though when used in real life the difference
between the two accuracies is negligible.

987

4 Discussion

We can observe from the results in Table 1 that
the TF-IDF features of articles and titles are the
most useful for this task. They consistently have
the highest accuracy score when combined with
other features or when used alone as shown in
feature set 5 in Table 1. This shows that it was
hard for LIWC features by themselves to capture
any linguistic patterns that correlate with
hyperpartisan news. The superiority of TF-IDF
could be due to trends related to a certain domain
or publisher rather than to a general hyperpartisan
trend. In order to examine the ability of other
approaches to detect hyperpartisan news articles,
we developed two other models. An Ensemble
model of three models and an Ensemble-RNN
model both described in Section 3.1. Both models
scored almost as good as the SVM on the
validation set (Ensemble-RNN model) or better
than the SVM (Ensemble model). However, both
scored significantly lower than the SVM model
on the blind test set. The Ensemble-RNN model
included a neural network which was trained on
our small training set of 645 articles. Given the
huge drop between validation and test scores,
especially for the ensemble mode which dropped
from 0.83 to 0.64, this indicates an overfitting on
the training data. Although the deep learning
models were not trained for more than five epochs
to avoid overfitting, they were not able to learn
beyond what was seen in the training data and
were possibly memorizing the data. The
complexity and subjectivity of the annotation task
could have made it harder for the model to
classify articles. We were also dealing with
imbalance class sizes which made the model learn
to predict one class better than the other. As for
the meta-learning experiment, we followed a
class-based weighted majority approach, where
the classifiers that are better in classification of
one class were given a higher weight for that class
predictions and lower weight for their predictions
in the other class. However, this approach only
had a one-point improvement over the baseline.
We analyzed the prediction errors of the SVM
model to further understand what causes the
model to make a wrong prediction.

4.1 Error Analysis

We looked more closely at four examples: one
correct and one wrong prediction from each class.

The first example is an article from Fox News
about the 2016 US presidential elections 2. This
article was labeled as mainstream and was
predicted correctly by our model. Although the
article was predicted correctly by the classifier, it
was not clear to us why this article was labeled as
mainstream as it has a somewhat one-sided view
to its story and thus could be labeled as
hyperpartisan. This points out the uncertainty or
noise in the annotation of some data points. The
second mainstream article is from Yahoo! news
and talks about Ivanka Trump 3. It was wrongly
classified as hyperpartisan by our model. This
could be due to the fact that the content of the
article is related to Trump, which appeared more
in the hyperpartisan class in our dataset. The third
article is labeled as hyperpartisan and predicted as
such. It is an opinion piece from Online Athens
about social justice 4. It has phrases such as
“so-called” and “Karl Marx would be so proud”
which could’ve helped the model to use the
learned TF-IDF features of the training data to
make a correct prediction. The final article we
looked at is from Real Clear Politics and talks
about a joke made by Jimmy Kimmel 5. This was
wrongly classified as mainstream by the model
which could be due to having structural features
of mainstream articles (long article and no
URLs). These four examples show that some of
our lexical and structural features did not
generalize well to the test set.

5 Conclusion

We presented an SVM model that detects
hyperpartisan news articles with a 0.742 accuracy
after it was trained on a total 645 articles from
mainstream and hyperpartisan classes. This task
was primarily challenging due to the complexity
in labeling such articles, and differences in
writing styles across domains, publishers and
individuals. The small size of the training data
along with the class imbalance also contributed to
the complexity, which made it harder for the
model to learn. We presented a summary of our
experiments and analysis of our results and
prediction errors.

2http://insider.foxnews.com/2016/10/14/
3http://www.yahoo.com/news/truck-ad-featuring-ivanka
4http://onlineathens.com/opinion/2017-10-19/
5https://www.realclearpolitics.com/articles/2017/09/22/

988

References
Steven Bird, Ewan Klein, and Edward Loper.

2009. Natural Language Processing with Python.
O’Reilly Media, Inc.

Johannes Kiesel, Maria Mestre, Rishabh Shukla,
Emmanuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection.
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019).

Johannes Kiesel, Maria Mestre, Rishabh Shukla,
Emmanuel Vincent, David Corney, Payam Adineh,
Benno Stein, and Martin Potthast. 2018. Data for
PAN at SemEval 2019 Task 4: Hyperpartisan News
Detection.

Moshe Koppel, Jonathan Schler, and Elisheva
Bonchek-Dokow. 2007. Measuring
Differentiability: Unmasking Pseudonymous
Authors. Journal of Machine Learning Research,
(8):1261–1276.

Christopher D. Manning, Prabhakar. Raghavan, and
Hinrich. Schutze. 2008. Introduction to information
retrieval. Cambridge University Press.

Saif M Mohammad and Peter D Turney. 2013.
Crowdsourcing a Word-Emotion Association
Lexicon. Computational Intelligence, 29:436–465.

Fabian Pedregosa, Vincent Michel, Olivier
Grisel OLIVIERGRISEL, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Jake Vanderplas, David
Cournapeau, Gal Varoquaux, Alexandre Gramfort,
Bertrand Thirion, Olivier Grisel, Vincent Dubourg,
Alexandre Passos, Matthieu Brucher, Matthieu
Perrot andÉdouardand, Anddouard Duchesnay, and
FRdouard Duchesnay EDOUARDDUCHESNAY.
2011. Scikit-learn: Machine Learning in Python
Gaël Varoquaux Bertrand Thirion Vincent Dubourg
Alexandre Passos PEDREGOSA, VAROQUAUX,
GRAMFORT ET AL. Matthieu Perrot. Technical
report, Parietal, INRIA Saclay.

James W Pennebaker, Roger J Booth, Ryan L Boyd,
and Martha E Francis. 2012. Linguistic Inquiry and
Word Count: LIWC2015 Operator’s Manual. In
Applied Natural Language Processing, pages 206–
229. IGI Global.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. 2018. Deep contextualized word
representations.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research
Architecture. In Information Retrieval Evaluation in
a Changing World - Lessons Learned from 20 Years
of CLEF. Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A

Stylometric Inquiry into Hyperpartisan and Fake
News. 56th Annual Meeting of the Association
for Computational Linguistics (ACL 2018), page
231240.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018.
The spread of true and false news online. Science
(New York, N.Y.), 359(6380):1146–1151.

989

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 990–994
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Steve Martin at SemEval-2019 Task 4: Ensemble Learning Model for
Detecting Hyperpartisan News

Youngjun Joo
Department of Computer Engineering

Yonsei University, Seoul, Korea
yj.joo@yonsei.ac.kr

Inchon Hwang
Department of Computer Engineering

Yonsei University, Seoul, Korea
ich0103@yonsei.ac.kr

Abstract

This paper describes our submission to task
4 in SemEval 2019, i.e., hyperpartisan news
detection. Our model aims at detecting hy-
perpartisan news by incorporating the style-
based features and the content-based features.
We extract a broad number of feature sets and
use as our learning algorithms the GBDT and
the n-gram CNN model. Finally, we apply
the weighted average for effective learning be-
tween the two models. Our model achieves an
accuracy of 0.745 on the test set in subtask A.

1 Introduction

The proliferation of misleading information in the
media has made it challenging to identify trust-
worthy news sources, thus increasing the need
for fake news detection tools able to provide in-
sight into the reliability of news contents. Since
the spread of fake news is causing irreversible re-
sults, near-real-time fake news detection is cru-
cial. However, knowledge-based and context-
based approaches to fake news detection can only
be applied after publication; they may not be fast
enough (Potthast et al., 2017).

As a practical alternative, style-based ap-
proaches try to detect fake news by capturing the
manipulators in the writing style of news con-
tent. This approach captures style signals that can
indicate a decreased objectivity of news content
and thus the potential to mislead consumers, such
as hyperpartisan style. Hyperpartisan style repre-
sents extreme behavior in favor of a particular po-
litical party, which often correlates with a strong
motivation to create fake news. Linguistic-based
features can be applied to detect hyperpartisan ar-
ticles (Potthast et al., 2017). Deep network mod-
els, such as convolution neural networks (CNN),
applied to classify fake news detection (Wang,
2017). In this paper, we employ the stylometry-

based approach and N-gram CNN model for de-
tecting hyperpartisan news.

2 System Overview

For this task, we extract a broad number of fea-
tures from the training data and then apply the
classifier model to make predictions. Our system
employs a gradient boosting decision tree (GBDT)
model and N-gram CNN model. In subsequent
sections, we describe data preprocessing, feature
engineering and learning algorithms.

2.1 Data Preprocessing

Before applying the models, we need to do some
transforming tasks of the article texts (i.e., xml
parsing, text tokenizing, stemming, lemmatization,
and removing stopwords) and extracting tasks of
the internal and external links for each article.
Apart from these tasks, we construct the bias do-
main dictionary from the mediabiasfactcheck site
1 to check the bias on the external linked domain in
the article. For this ends, we crawled the top-level
domain information from the sites corresponding
to the five categories associated with hyperparti-
san (e.g., Left, Center, Least Biased, Right-center
Bias, and Right Bias) respectively.

2.2 Feature Engineering

Since hyperpartisan news is intentionally created
for political gain rather than to report objective
claims, they often contain opinionated and inflam-
matory language. Thus, it is reasonable to ex-
ploit linguistic features that capture different writ-
ing styles to detect hyperpartisan news. Linguis-
tic features are extracted from the text content
in terms of document organizations at a different
level, such as characters, words, and sentences.
Typical common linguisitic features are: lexical

1 http://mediabiasfactcheck.com/

990

Type of Features Feature Count
Count features 10
External link bias 3
Sentiment features 8
Readability features 14
Term features 44
Grammar transformation 45
Psycholinguistic features 54
POS tags 36
Word2vec features 301
TF-IDF 10,000

Table 1: Statistics of features.

features, including character-level and word-level
features; syntactic features, including sentence-
level features (i.e., n-gram, POS tagging, etc.).

We start by extracting several sets of linguistic
features. These feature sets are designed to capture
hyperpartisan article from the training datasets.
Overall we selected 515 binary features and TF-
IDF features. Table 1 provides extracted features
on the training dataset.

Basic count features: Previous works on fake
news detection (Rubin et al., 2016) as well as on
opinion spam (Ott et al., 2011) suggest that the use
of punctuation is useful to differentiate deceptive
from truthful texts. We construct a basic count fea-
ture set including various punctuation characters
and other features.

External link bias: We extract bias counts
based on the bias domain dictionary for each exter-
nal linked domain in the article (i.e.,hyperpartisan
links count, non-hyperpartisan links count, and
unknown links count). To determine biases of
the external links, we exploit a biased domain
dictionary crawling from the mediabasisfactcheck
site, which consists of five categories for top-level
domains(i.e., left, right, left-center, center, right-
center). The external link bias is counted as the
hyperpartisan when the externally linked site is be-
longing to left and right among these categories.

Sentiment features: Our system used the
VADER sentiment analysis tools 2 to generate sen-
timent features on the title and body of articles.
The VADER not only tells about the Positivity and
Negativity score but also tells us about how posi-
tive or negative a sentiment is as shown in Figure
1.

2 https://github.com/cjhutto/vaderSentiment

Figure 1: An example of sentiment analysis.

Vocabulary richness and readability fea-
tures: We also extract features indicating arti-
cle understandability. These features include sev-
eral vocabulary richness and readability scores, in-
cluding the Brunet’s Measure W, Hapax DisLege-
mena, Hapax Legomenon, Honores R Measure,
Sichels Measure, Yules Characteristic K, Dale
Chall Readability Formula, Flesch Reading Ease,
Gunning Fog Index, Shannon Entropy, Simpson’s
Index etc3. Among this index, Simpson’s index
stems from the concept of biodiversity. We apply
this index to measure the diversity of a text.

Simpson’s Index (D) =
∑
(n/N)2

N = total number of words in a text
n = total number of unique tokens

Term features: Hyperpartisan news uses their
language strategically despite the attempt to con-
trol what they are saying. This language occurs
with certain verbal aspects and patterns of pro-
noun, conjunction, and negative emotional word
usage. Based on this assumption, we extract term
count features which count synonyms of several
terms (e.g., to obtain the ORDER term Feature,
we calculated the frequency of words such as com-
mand, demand, instruction, prescription, order in
each article).

Grammar transformation: Analysis of the
content-based approach is often not enough in pre-
dicting hyperpartisan news. Thus, we adopt lan-
guage structure (syntax) to predict this task. We
use spaCy tool 4 to transform news articles into a
set of parse tree describing syntax structure.

Psycholinguistic features: For psycholinguis-
tic features, we use the 2015 Linguistic Inquiry
and Word Count (LIWC5) lexicon to extract the
proportions of words that belong to the psycholin-
guistic categories. LIWC has two types of cat-
egories; the first kind captures the writing style

3https://en.wikipedia.org/wiki/Readability
4 https://spacy.io
5http://liwc.wpengine.com/

991

of the author by considering features like the
POS frequency or the length of the used words.
The second category captures content informa-
tion by counting the frequency of words related
to some thematic categories such as affective pro-
cesses(e.g., positive emotion, negative emotion,
anxiety, anger, sadness), social processes (e.g.,
family, friends, female references, male refer-
ences), etc. Regarding the use of this tool, we fo-
cus on the content information, and consequently,
we decide to ignore the style categories.

Part-of-Speech (POS) tags: Syntactic features
consist of function words and part-of-speech tags.
Syntactic pattern varies significantly from one au-
thor to another. These features were extracted us-
ing more accurate and robust text analysis tools
(i.e., part-of-speech taggers, and lemmatizers). In
our system, we expand the possibilities of word-
level analysis by extracting the utilities of features
like POS frequency. For the extraction of syntactic
features, we used NLTK POS tagger1.

Word2Vec features : Recently, word repre-
sentation model (e.g., word2vec, GloVe) based on
neural networks which represents a word into a
form of a real-valued vector have increased pop-
ularity (Mikolov et al., 2013). These approaches
proved to be advantageous in many NLP tasks,
such as Machine Translation, Question Answer-
ing, Document Classification, to name a few. We
adopted a pre-trained 300-dimensional word vec-
tor 6 to create a vector representation of the article,
with an average word2vec. Besides, we use the
word2vec feature to extract the cosine similarity
value between the news title and the text.

TF-IDF features: Finally, We extract uni-
grams, bigrams, and trigrams derived from the
bag of words representation of each news article.
To account for occasional differences in content
length between train dataset and test dataset, these
features are encoded as tf-idf values. We limit the
number of features that the vectorizer will learn to
10,000 features.

2.3 Learning Algorithms

Based on the above multiple features, we explore
several learning algorithms to build classification
models. We adopt the average weighted value for
effective learning between GBDT for the style-
based and content-based features and the N-gram

1https://www.nltk.org/
6 https://code.google.com/archieve/p/word2vec/

Layer # of layers hyperparameters
Embedding 1 l 5000

d 300

Convoulution 3 m [500,500,500]

w [3,4,5]

w max

Dense Layer 2 t 128

o 2

l: max sequence length d: embedding dimension
m: filter w: kernel size
w: max-pooling t: dense unit size
o: softmax

Table 2: N-gram CNN model hyperparameters.

CNN model. (see Figure 2).
For deep learning model, we adopt N-gram

CNN model proposed in (Shrestha et al., 2017).
As shown in Figure 2 (right), the model receives a
sequence of character n-gram as input. These N-
gram are then processed by four layers: (1) an em-
bedding layer, (2) a convolution layer, (3) a max-
pooling layer, and (4) a softmax layer. We briefly
sketch the processing procedure.

The network takes a sequence of character bi-
grams x =< x1, ..., xl > as input, and outputs
a multinomial over class labels as a prediction.
The model first look up the embedding matrix
to generate the embeddings sequence for x (i.e.,
the matrix C), and then pushes the embedding
sequence through convolutional filters of three
bigram-window sizes w = 3, 4, 5, each yielding
m feature maps. We then apply the max-pooling
to the feature maps of each filter, and concate-
nate the result vectors to obtain a single vector y,
which then generate a prediction through the soft-
max layer.

Based on this model, we modified the network
by adding a dense layer which helps detect hy-
perpartisan news features. After the experiment,
the result shows that the character bigram CNN
model outperforms the unigram CNN model. Ta-
ble 2 summarizes the sizes of various parameters
included in the N-gram CNN model. The official
evaluation measure for subtasks A is accuracy.

Table 3

3 Experiments and Results

3.1 Datasets
The statistics of the datasets provided by SemEval
2019 task 4 (Kiesel et al., 2019) are shown Table

992

Figure 2: Hyperpartisan news detection model.

Subtask A Hp(%) NHp(%)
train (645) 238(36.9) 407(63.1)
Subtask B Hp(%) NHp(%)
train (600k) 300k(50%) 300k(50%)
valid (150k) 75k(50%) 75k(50%)

Table 3: Statistics of data sets in SemEval 2019 Task 4
Hp: hyperpartisan news; NHp: non-hyperpartisan news.

3.

3.2 Experiments on the Train Dataset

We conduct several experiments on each feature
set to explore predictive separately. In these ex-
periments, we use the GDBC (i.e., XGBoost) for
the above feature set. For comparison with the N-
gram model, we used the Char-level CNN model
(Kim et al., 2016). The objective function was
minimized through stochastic gradient descent
over shuffled mini-batches with Adam(Kingma
and Ba, 2014).

The performance is evaluated using 5-fold cross
validation with accuracy and F-score. Table 4 lists
the experimental results for each feature set on the
training dataset. The prediction model through the
incorporation of the entire feature showed higher
accuracy than the prediction model for the individ-
ual feature.

3.3 Experiments on the Test Dataset

Our submission results to the subtask A on TIRA
(Potthast et al., 2019)–the web service platform
to facilitate software submissions into virtual
machine– achieve an accuracy of 0.745 (precision:

Features (# of features) Acc F1
Count features (10) 0.6977 0.60
External link bias (3) 0.6512 0.60
Sentiment features (8) 0.6124 0.61
Readability features (14) 0.7442 0.74
Term features (44) 0.6512 0.65
Grammar transformation (45) 0.7829 0.78
Psycholinguistic features (54) 0.7984 0.79
POS tags (36) 0.7132 0.72
Word2vec features (301) 0.7752 0.77
TF-IDF (10,000) 0.7364 0.73
Char CNN (unigram) 0.7442 0.73
N-gram CNN (bigram) 0.7752 0.78
All Features (train dataset) 0.8450 0.84
All Features (test dataset) 0.7450 0.70

Table 4: Experimental results on the subtask A dataset.

0.853, recall: 0.592, F1: 0.6999). We ranked the
14th for subtask A in terms of accuracy. The pre-
diction results of the test data are lower than the
results of the training set, especially gains huge
gap between precision and recall score.

4 Conclusion

Using a combination of the style-based ap-
proaches, the content-based approaches, and the
N-gram CNN model, we construct the model for
detecting hyperpartisan news. For this ends, we
extract a broad number of linguistic features and
employ GBDT model to make predictions. Fi-
nally, we adopted the weighted average value for
effective learning between the two models.

993

References
Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-

manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. Semeval-
2019 task 4: Hyperpartisan news detection. In In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T
Hancock. 2011. Finding deceptive opinion spam
by any stretch of the imagination. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1, pages 309–319. Association
for Computational Linguistics.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2017. A sty-
lometric inquiry into hyperpartisan and fake news.
arXiv preprint arXiv:1702.05638.

Victoria Rubin, Niall Conroy, Yimin Chen, and Sarah
Cornwell. 2016. Fake news or truth? using satirical
cues to detect potentially misleading news. In Pro-
ceedings of the Second Workshop on Computational
Approaches to Deception Detection, pages 7–17.

Prasha Shrestha, Sebastian Sierra, Fabio Gonzalez,
Manuel Montes, Paolo Rosso, and Thamar Solorio.
2017. Convolutional neural networks for authorship
attribution of short texts. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, volume 2, pages 669–674.

William Yang Wang. 2017. ” liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648.

994

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 995–998
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection

Niko Palić, Juraj Vladika, Dominik Čubelić, Ivan Lovrenčić,
Maja Buljan, Jan Šnajder

Text Analysis and Knowledge Engineering Lab
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia
{name.surname}@fer.hr

borat-sagdiyev team

Abstract

In this paper, we demonstrate the system built
to solve the SemEval-2019 task 4: Hyperpar-
tisan News Detection (Kiesel et al., 2019), the
task of automatically determining whether an
article is heavily biased towards one side of the
political spectrum. Our system receives an ar-
ticle in its raw, textual form, analyzes it, and
predicts with moderate accuracy whether the
article is hyperpartisan. The learning model
used was primarily trained on a manually pre-
labeled dataset containing news articles. The
system relies on the previously constructed
SVM model, available in the Python Scikit-
Learn library. We ranked 6th in the compe-
tition of 42 teams with an accuracy of 79.1%
(the winning team had 82.2%).

1 Introduction

The ability to quickly, precisely, and efficiently
discern if a given article is hyperpartisan can prove
to be beneficial in a multitude of different scenar-
ios. Should we, for example, wish to evaluate if
a certain news publisher delivers politically biased
content, the best way to do so would be analyz-
ing that very content. However, the sheer amount
of articles modern news companies produce nowa-
days asks for an automated approach to the prob-
lem.

Spotting bias in text is both a well-known and
challenging natural language problem. As bias can
manifest itself in a covert or ambiguous manner,
it is often hard even for an experienced reader to
detect it. There was some research done on similar
issues before (Doumit and Minai, 2011), but none
specifically on the subject of hyperpartisan news.

The system described in this paper was built for
Task 4 of the SemEval-2019 competition. The
goal of the system, as set by the task, is to pre-
dict, as accurately as possible, whether a given ar-
ticle is hyperpartisan. While there were other cri-

teria for evaluating the performance of the model
(precision, recall, F1), we decided to optimize the
program for the accuracy criterion, as the rankings
were based solely on this measure. Accuracy, in
this context, indicates the ratio of correctly pre-
dicted articles to the total number of articles. The
final model reached an accuracy of 79.1%, which
presents a decent score, considering the complex-
ity of the problem and the available technology.

The system we built is based on the SVM model
publicly available in Python’s SciKit-Learn library
(Pedregosa et al., 2011). Our model was trained
on a handful of carefully chosen features derived
from the given dataset and our understanding of
the nature of bias. The dataset was split into a
high-quality, manually labelled set of articles, and
a large, but sub-par set of automatically labelled
articles. By experimenting with the datasets, mod-
els, and features, we managed to create a system
which ranked 6th in this competition.

2 Dataset Description

The dataset, which was provided by the task or-
ganizers, was divided into two separate clusters.
The first and larger cluster consisted of one mil-
lion news articles labelled solely by the political
affiliation of the publisher. The second and much
smaller cluster consisted of one thousand news ar-
ticles labelled by people who read and evaluated
them.

There was a substantial difference in labelling
between these two datasets, so the quality and
accuracy of the smaller dataset greatly overshad-
owed the abundance of articles in the larger
dataset. Furthermore, the articles mostly came
from large U.S. news publishers, such as: Fox
News, CNN, Vox, etc. This predominance of
prominent U.S. news networks and the substantial
difference in quality largely impacted our feature

995

design and, ultimately, our model selection.
The task itself was not divided into subtasks, but

the submission on these two different datasets was
regarded as a different subtask. The final test set,
on which the main leaderboard is made, consisted
solely of the articles from the smaller and more
accurate dataset.

3 Model Description

Model selection and feature design were vastly in-
fluenced by the radical difference in quality be-
tween the two given datasets. As we mentioned,
the larger, publisher-based dataset had a high num-
ber of mislabelled articles. For example, arti-
cles about diet tips, weather forecasts, or some
other non-political news were often labelled as
hyperpartisan news, solely on the fact that the
publisher is classified as a generally biased news
source. This mislabelling often caused our mod-
els to wrongly guess on what really indicates hy-
perpartisanism in news articles. Since the larger
dataset often gave us relatively low accuracy, we
decided to try a different approach.

Our first submitted model was trained only on
the smaller and more accurate dataset. We de-
cided to use SVC with GridSearch to maximize
our accuracy on such a small dataset. Our best ac-
curacy on the validation set, after cross-validation
and with all features in place, was 77.9%. Further-
more, for our second submitted model, we decided
to use a self-learning method to acquire more qual-
ity data from the larger dataset. Our first step was
to train a logistic regression model on one-half of
the smaller dataset, and, once trained, we tested
that model on the larger dataset. All correctly clas-
sified articles were added to a new dataset. Once
we extracted and combined all high-quality arti-
cles, we again used the SVC model. Our final ac-
curacy on this model was also 77%.

4 Features

Our main tool used for processing news articles
was word2vec1 (Mikolov et al., 2013). Each word
was converted into a vector, and all the word vec-
tors generated from an article were then summed
up. To prepare the dataset for word2vec, we used
stemming and lemmatization tools from NLTK
toolkit (Bird et al., 2009), and eliminated standard

1Additionaly, we experimented with GloVe (Pennington
et al., 2014) and fastText (Bojanowski et al., 2016), but both
models were outperformed by word2vec.

English stopwords. Also, in our earlier stages of
development, we used chunking to get more mean-
ingful information from the text.

We ultimately ended up with a 300-dimensional
vector for every article. This was the result of
passing the preprocessed text into word2vec. Be-
low, we elaborate on some other features we intro-
duced to our model.

Publication date
Hyperpartisanism, or extreme bias, is a classifica-
tion closely related to politics. As we were dealing
predominatly with U.S. news outlets, we reasoned
that news articles occurring around certain dates
could demonstrate more hyperpartisanism. For ex-
ample, months leading up to and following annual
U.S. elections could be a mild indication of hyper-
partisanism. Our first intuition was to only include
months as a feature, since, in the U.S., certain elec-
tion processes take place yearly. With further tests,
we found that, if the year was also included, the
accuracy improved by over 2%. That improve-
ment could mean not only that elections produce
more hyperpartisan news, but the type of the elec-
tion, and maybe even the winner, could have an
impact on news bias.

Website referencing
After inspecting a number of news articles in the
dataset, we found that the majority of articles ref-
erence news sites whose objective political affilia-
tion may be easily determined. Using that fact, we
made a list of all known, extremely biased, U.S.-
based news sources, and a list of objectively neu-
tral news sources to counter the effect. By sim-
ply providing the number of extremely biased and
neutral references, we improved the accuracy of
our models by 2.3%. This could confirm that it is
generally more common for news sources to refer-
ence other news sources with whom they share a
similar political affiliation.

Sentiment analysis
Our initial assumption was that hyperpartisan arti-
cles tend to be more negative and aggressive than
non-hyperpartisan articles. We used the sentiment
intensity analyzer found in NLTK’s sentiment li-
brary. The analyzer provides the scores for posi-
tivity, negativity, neutrality, and a compound score
(i.e. aggregated score). We included these four
as features in our model, which proved our the-
ory correct and increased our accuracy results by
1.5%.

996

Model Accuracy

Word2vec 0.58370
with added sentiment factor 0.58589
with added quotation counter 0.59874
with added date (month) 0.61360
with added date (month and year) 0.61782
with added NER counter 0.62556

Table 1: Validation results for our first SVC model on
the by-publisher dataset, with particular features added
one by one.

Model Accuracy

Word2vec 0.75663
with added sentiment factor 0.76128
with added date (month and year) 0.76285
with added quotation counter 0.76904
with added trigger word counter 0.77981

Table 2: Validation results for our first SVC model
on the by-article dataset, with particular features added
one by one.

Trigger words
Analyzing the articles, we noticed that the writ-
ers of extremely biased news articles were prone
to using trigger words more often than the writers
of neutral news articles. With that in mind, we as-
sembled a list of possible trigger words (contain-
ing mostly profanities). For each article, we took
the count of trigger words in the text, and used it
as input in the feature vector.

Named entity recognition
A named entity is a real-world object, such as
a person, location, organization, product, etc.,
which can be denoted by a proper name. We de-
cided to count, and use as another feature, the
number politics-related named entities found in
the articles. We assumed that the more named en-
tities were found, the more biased an article would
be. We used the software library spaCy2 (Hon-
nibal and Montani, 2017) and its named entity
recognition tagger to extract mentions of various
named entities, such as organizations, people, lo-
cations, dates, percentages, time, and money. We
used the counts as inputs in the feature vector. Al-
though counting most of the entity types dropped
the total accuracy of the model, one type in partic-
ular was beneficial. It is a type called NORP and
it denotes nationalities, religious groups, and po-
litical groups. Counting only the number of these
named entities as a feature increased the model’s

2https://spacy.io

accuracy slightly, by about 1%.

5 Evaluation

First, we trained our model with the much larger
but subpar by-publisher dataset, and then fine-
tuned it using the much smaller but more precise
by-article dataset.

5.1 Larger Dataset

Labels of the by-publisher dataset weren’t as pre-
cise as the smaller dataset, which is why the accu-
racy results were lower, in the 58−62% range. Ta-
ble 1 showcases the results. We can see that adding
a sentiment factor as a feature didn’t change the
overall accuracy for this dataset, but we should
mention that it did increase the smaller dataset’s
accuracy much more. Adding the number of oc-
currences of biased publisher names quoted in the
article increased the accuracy by about 1.3%. The
largest increase in accuracy came with adding the
date as a feature. Adding only the month as a fea-
ture increased the accuracy by 1.5%, but adding
both month and year of article publication saw
an additional increase of about 0.5%. Adding a
counter of named entities (in particular: nation-
alities, religious groups, and political groups) in-
creased the overall accuracy by just under 1%.

5.2 Smaller Dataset

Finally, the model with all of the features ex-
plained above was trained on the by-article
dataset. While validating our results, the dataset
was divided into five parts. 4/5 were used for train-
ing, and the remaining 1/5 was used for valida-
tion. The datasets were permutated, and, in the
end, we took the average of the five permutations.
We trained the model using 10 different classifiers.
The validation results are shown in Table 3.

6 Conclusion

We described our system for hyperpartisan detec-
tion, developed for SemEval 2019 - Task 4. The
essence of our system was SVC with GridSearch
built on a variety of hand-crafted features. The
task itself was a complex NLP problem, as hyper-
partisanism detection in text often presents a prob-
lem even for an experienced human reader. Our
main mission was to extract a few quality features
that would help us tackle this convoluted problem.
Future work includes experiments with different

997

Classifier Accuracy

Logistic Regression 0.70246
SVC 0.76590
SVC GridSearch 0.77981
GaussianNB 0.68344
RandomForestClassifier 0.71649
MLPClassifier 0.76117
AdaBoostClassifier 0.70866
LinearSVC 0.69619
GradientBoostingClassifier 0.72242
IsolationForest 0.35153

Table 3: Validation results for the final model on the
by-article dataset. Classifier used for submission is in
boldface.

Team name Accuracy

bertha-von-suttner 0.822
vernon-fenwick 0.820
sally-smedley 0.809
tom-jumbo-grumbo 0.806
dick-preston 0.803
borat-sagdiyev 0.791
morbo 0.790
howard-beale 0.783
ned-leeds 0.775
clint-buchanan 0.771

Table 4: Final rankings on the main task. Our submis-
sion is in boldface.

classifiers, and possibly neural networks. Further-
more, our mission in feature extraction will con-
tinue and we hope to find more linguistic features
that would help us to improve and upgrade our
model.

References
Steven Bird, Ewan Klein, and Edward Loper. 2009.

Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Sarjoun Doumit and Ali Minai. 2011. Online news me-
dia bias analysis using an lda-nlp approach. In Inter-
national Conference on Complex Systems.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,

Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

998

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 999–1003
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Fernando-Pessa at SemEval-2019 Task 4:
Back to Basics in Hyperpartisan News Detection

André Ferreira Cruz
Universidade do Porto

Faculdade de Engenharia
andre.ferreira.cruz@fe.up.pt

Gil Rocha
Universidade do Porto

Faculdade de Engenharia
LIACC

gil.rocha@fe.up.pt

Rui Sousa-Silva
Universidade do Porto
Faculdade de Letras

CLUP
rssilva@letras.up.pt

Henrique Lopes Cardoso
Universidade do Porto

Faculdade de Engenharia
LIACC

hlc@fe.up.pt

Abstract
This paper describes our submission1 to the
SemEval 2019 Hyperpartisan News Detection
task. Our system aims for a linguistics-based
document classification from a minimal set
of interpretable features, while maintaining
good performance. To this goal, we follow
a feature-based approach and perform sev-
eral experiments with different machine learn-
ing classifiers. On the main task, our model
achieved an accuracy of 71.7%, which was
improved after the task’s end to 72.9%. We
also participate in the meta-learning sub-task,
for classifying documents with the binary clas-
sifications of all submitted systems as input,
achieving an accuracy of 89.9%.

1 Introduction

Hyperpartisan news detection consists in identify-
ing news that exhibit extreme bias towards a sin-
gle side (Potthast et al., 2018). The shift, in news
consumption behavior, from traditional outlets to
social media platforms has been accompanied by
a surge of fake and/or hyperpartisan news articles
in recent years (Gottfried and Shearer, 2017), rais-
ing concerns in both researchers and the general
public. As ideologically aligned humans prefer to
believe in ideologically aligned news (Allcott and
Gentzkow, 2017), these tend to be shared more of-
ten and, thus, spread at a fast and unchecked pace.
Moreover, there is a large intersection of ‘fake’
and ‘hyperpartisan’ news, as 97% of fake news ar-
ticles in BuzzFeed’s Facebook fact-check dataset
are also hyperpartisan (Silverman et al., 2016).

However, the detection/classification and con-
sequent regulation of online content must be done

1https://github.com/AndreFCruz/
semeval2019-hyperpartisan-news

with careful consideration, as any automatic sys-
tem risks unintended censorship (Akdeniz, 2010).
As such, we aim for a linguistically-guided model
from a set of interpretable features, together with
classifiers that facilitate inspection of what the
model has learned, such as Random Forests (Ho,
1995), Support Vector Machines (Cortes and Vap-
nik, 1995) and Gradient Boosted Trees (Drucker
and Cortes, 1996). Neural network models are left
out for their typically less self-explanatory nature.

The SemEval 2019 Task 4 (Kiesel et al., 2019)
challenged participants to build a system for hy-
perpartisan news detection. The provided dataset
consists of 645 manually annotated articles (by-
article dataset), as well as 750,000 articles auto-
matically annotated publisher-wise (by-publisher
dataset, split 80% for training and 20% for val-
idation). Systems are ranked by accuracy on a
set of unpublished test articles (from the by-article
dataset), which has no publishers in common with
the provided train dataset, preventing accuracy
gains by profiling publishers. All experiments on
this paper are performed on the gold-standard (by-
article) corpus, as this was the official dataset.

The rest of the paper is organized as follows.
Section 2 describes our pre-processing, feature se-
lection, and the system’s architecture. Section 3
analyzes our model’s performance, evaluates each
feature importance, and goes in-depth on some
classification examples. Finally, Section 5 draws
conclusions and sketches future work.

2 System Description

We propose a feature-based approach and exper-
iment with several machine learning algorithms,
namely support vector machines with linear ker-

999

nels (SVM), random forests (RF), and gradient
boosted trees (GBT). Our submission to the task
was a RF classifier, as this was the best perform-
ing at the time. However, after the task’s end
we found a combination of hyperparameters that
turned GBT into the best-performer. We detail all
results in the following sub-sections.

All classifiers were implemented using scikit-
learn (Pedregosa et al., 2011) for the Python pro-
gramming language, and all were trained on the
same dataset of featurized documents. In this sec-
tion we describe the data pre-processing, our se-
lection of features, as well as the classifiers’ grid-
searched hyperparameters.

2.1 Feature Selection

The statistical analysis of natural language has
been widely used for stylometric purposes, in par-
ticular in order to define linguistic features to mea-
sure author style. These include, among oth-
ers: document length, sentence and word length,
use of punctuation, use of capital letters, and fre-
quency of word n-grams; type-token ratio (John-
son, 1944); and frequency of word n-grams (see
e.g. Stamatatos (2009) for a thorough survey of au-
thorship attribution methods). Although these fea-
tures have been successfully used in authorship at-
tribution to establish the most likely writer of a tar-
get text among a range of possible writers (Sousa-
Silva et al., 2010, 2011), research on how these
features can be used to analyze group authorship –
and subsequently identify an ideological slant – is
less demonstrated. Therefore, we build upon pre-
vious research on Computer-Mediated Discourse
Analysis (Herring, 2004) to test the use of these
features to detect hyperpartisan news.

We compute a minimal set of style and com-
plexity features, partially inspired by Horne and
Adali (2017), as well as a bag of word n-grams.
For tokenization we use the Python Natural Lan-
guage Toolkit (Bird et al., 2009).

Our features are as follow: num sentences
(number of sentences in the document);
avg sent word len (average word-length of
sentences); avg sent char len (average character-
length of sentences); var sent char len (variance
of character-length of sentences); avg word len
(average character-length of words); var word len
(variance of character-length of words);
punct freq (relative frequency of punctuation
characters); capital freq (relative frequency of

capital letters); types atoms ratio (type-token
ratio, a measure of vocabulary diversity and
richness); and frequency of the k most frequent
word n-grams.

Regarding word n-grams, we use k = 50 and
n ∈ [1, 2], as we empirically found these val-
ues to perform well while maintaining a small
feature set. Moreover, we ignore n-grams whose
document frequency is greater than 95%, as well
as 1-grams from a set of known English stop-
words (from scikit-learn’s stop-word list), whose
frequency we assume to be too high to be distinc-
tive. Text tokens and stop words are stemmed us-
ing the Porter stemming algorithm (Porter, 1980).

2.2 Hyperparameters

For RF, we use the following hyperparameter val-
ues: 100 estimators; minimum samples at leaf = 1;
criterion = gini; minimum samples to split = 2.

For GBT, we use the following hyperparameter
values: 50 estimators; minimum samples at leaf =
3; loss = exponential; learning rate = 0.3; mini-
mum samples to split = 5; max depth = 8.

For SVM model, we use the following hyperpa-
rameter values: penalty parameter C = 0.9; penalty
= l2; loss function = squared hinge.

These hyperparameter values are the result of
extensive grid searching for each model, select-
ing the best performing models on 10-fold cross-
validated results.

3 Results and Discussion

Table 1 shows the results of the models over 10-
fold cross validation (top rows), and on the offi-
cial test set (bottom rows). Besides our models,
we show the performance of the provided baseline
as well as the best performing submission to the
task (last row). As results on the official test set
were hidden during the duration of the task, we
used cross-validated results to guide our decision-
making in improving the models.

3.1 Feature Analysis

Making use of our choice of classifiers, we are
able to interpret and analyze the most important
features, as well as trace back the decision path
for every document along each of the ensemble’s
estimators (RF and GBT).

Figures 1 and 2 show measures of feature im-
portance for the RF and GBT models. Figure 1
shows the top features by mean impurity decrease

1000

Dataset Model Accuracy Precision Recall F1

10-fold CV on
by-article-training

GBT 75.9 71.4 59.4 64.6
RF 76.3 74.6 55.4 63.3
SVM 72.7 71.3 45.5 55.1

by-article-test
(official)

GBT 72.9 78.1 63.7 70.2
RF 71.7 80.6 57.0 66.8
Baseline 46.2 46.0 44.3 45.1
Best Team 82.2 87.1 75.5 80.9

Table 1: Models performance: values in the top rows result from 10-fold cross-validation on the by-article-training
set, and values in the bottom rows report evaluation on the official test set through TIRA (Potthast et al., 2019). RF
refers to our task submission, while GBT is our best performing model, submitted after the task’s closing.

on a feature’s nodes, averaged across the ensem-
ble’s estimators/trees and weighted by the propor-
tion of samples reaching those nodes (Breiman,
2001). Similarly, Figure 2 shows the top features
by relative accuracy decrease (averaged across the
ensemble’s estimators) as the values of each fea-
ture are randomly permuted (Breiman, 2001).

Figure 1: Top features by mean impurity decrease,
sorted by average value among the two classifiers.

Interesting properties emerge from analyzing
feature importance, notably that the number of
sentences and the frequency of capital letters are
the most important features on both measures.
Moreover, the RF model tends to have a longer-
tailed distribution of feature importances, while
the GBT model tends to focus on a smaller sub-
set of features for classification.

Interestingly, two 1-grams make it into the top-
10 features by impurity decrease: ‘trump’ and

Figure 2: Top features by relative accuracy decrease,
sorted by average value among the two classifiers.

‘polit’. Reliance on n-grams could present a larger
problem, as these may refer to entities with a
high variance of media attention. For instance,
words like ‘Hillary’ or ‘Obama’ (which appear
in the top-20 features) are probably not seen as
often nowadays as they were back in 2016. As
such, we are confident in the generalization ca-
pacity of the models, as the most discriminative
features are mostly style and language-complexity
features, which do not suffer from the previously
stated biases of n-grams.

3.2 Analysis of Predictions

In order to better understand our model’s decision
making, we analyze differences in distributions of
document features for each predicted class, and
compare them with the gold-standard values.

1001

As seen in Table 2, articles predicted as hyper-
partisan have a higher number of sentences, but
each with lower length than mainstream articles,
and with decreased vocabulary diversity (smaller
type-token ratio). The frequency of the word
‘trump’ is also noticeably higher in hyperpartisan
articles. There is a good alignment of predicted
and gold articles, when projected onto this feature
space.

Feature
Pred. Avg. Gold Avg.
H M H M

num sentences 39.7 19.4 37.5 20.4
capital freq 0.046 0.058 0.046 0.058
punct freq 0.030 0.032 0.030 0.033
type atoms ratio 0.54 0.60 0.55 0.59
var word len 2.702 2.712 2.692 2.712

”trump” 6.13 2.54 5.86 2.64
var sen char len 91.52 1622 93.52 1622

avg sen char len 127 156 129 156
avg sen word len 24.9 29.2 25.1 29.1
”polit” 1.37 0.35 1.34 0.35

Table 2: Average values for articles predicted (Pred.)
hyperpartisan (H) or mainstream (M), and for their
ground-truth (Gold), for top-10 features by impurity
decrease.

4 Meta-learning Task

After the main task’s end, organizers challenged
participants to compete on a meta-learning task.
This task’s dataset consisted of the predictions
made by each of the 42 submitted systems on the
same test-set articles. Notably, a simple majority
vote classifier (with the predictions of all 42 sys-
tems as input) achieved accuracy of 88.5%, sub-
stantially better than the best performing system’s
accuracy of 82.2%.

While a voting classifier performed consider-
ably well, we intuitively postulated that the votes
of the best-n classifiers (accuracy-wise) would
perform better. Figure 3 shows the accuracy of
n majority vote classifiers, from the top-42 sys-
tems to the top-1 system. The best performance
is achieved using the top-12 classifiers. However,
in Figure 3, we can observe fluctuations in perfor-
mance while removing the worst classifiers. This
means that combining worst classifiers as we do
in this task can yield performance improvements.
We conclude that there is no discernible correla-
tion between performance and smaller n. We leave
as future work further investigation on what char-
acteristics of the classifiers contribute to the fluc-

tuations of the overall performance.

Figure 3: Performance of a majority vote classifier us-
ing the top-n best performing systems (by accuracy),
on the provided by-article-meta-training dataset.

Our final submission for this sub-task consisted
of a Random Forest model, whose features were
the predictions of all 42 submitted systems, as well
as an extra column with the average vote of all sys-
tems. See Table 3 for the final performance on the
official by-article-meta-test dataset.

Model A P R F1
RF 89.9 89.5 90.4 90.0
Majority Vote (42) 88.5 89.2 87.5 88.3
Baseline 52.9 52.5 59.6 55.9

Table 3: Performance on the meta-learning task, evalu-
ated on the by-article-meta-test dataset through TIRA.

5 Conclusions

We experimented with several models for hyper-
partisan news detection, supplied with a small set
of 9 linguistically-inspired features in addition to
the 50 most frequent n-grams. Our official submis-
sion is a Random Forest model, which achieved an
accuracy of 71.7%. On the meta-learning sub-task
we achieved an accuracy of 89.9%.

For future work, we intend to further explore
differences in writing style between hyperparti-
san and mainstream articles, as well as ensembles
of individually distinct classifiers, as it seems a
promising path towards more accurate hyperpar-
tisan news detection.

1002

Acknowledgments

André Ferreira Cruz is supported by the
Calouste Gulbenkian Foundation, under
grant number 226338. Gil Rocha is sup-
ported by a PhD studentship (with reference
SFRH/BD/140125/2018) from Fundação para
a Ciência e a Tecnologia (FCT). This research
is partially supported by project DARGMINTS
(POCI/01/0145/FEDER/031460), funded by FCT.

References
Yaman Akdeniz. 2010. To block or not to block: Euro-

pean approaches to content regulation, and implica-
tions for freedom of expression. Computer Law &
Security Review, 26(3):260–272.

Hunt Allcott and Matthew Gentzkow. 2017. Social me-
dia and fake news in the 2016 election. Journal of
economic perspectives, 31(2):211–36.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Leo Breiman. 2001. Random forests. Machine learn-
ing, 45(1):5–32.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

Harris Drucker and Corinna Cortes. 1996. Boosting
decision trees. In Advances in neural information
processing systems, pages 479–485.

Jeffrey Gottfried and Elisa Shearer. 2017. Americans
online news use is closing in on tv news use. Pew
Research Center.

Susan C Herring. 2004. Computer-Mediated Discourse
Analysis: An Approach to Researching Online Be-
havior. In S. A. Barab, R. Kling, and J. H. Gray, ed-
itors, Designing for Virtual Communities in the Ser-
vice of Learning, pages 338–376. Cambridge Uni-
versity Press, Cambridge.

Tin Kam Ho. 1995. Random decision forests. In
Proceedings of the 3rd International Conference
on Document Analysis and Recognition, volume 1,
pages 278–282. IEEE.

Benjamin D Horne and Sibel Adali. 2017. This just in:
fake news packs a lot in title, uses simpler, repetitive
content in text body, more similar to satire than real
news. In Eleventh International AAAI Conference
on Web and Social Media.

Wendell Johnson. 1944. Studies in language behavior:
A program of research. Psychological Monographs,
56(2):1–15.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program, 14(3):130–137.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Craig Silverman, Lauren Strapagiel, Hamza Shaban,
Ellie Hall, and Jeremy Singer-Vine. 2016. Hyper-
partisan facebook pages are publishing false and
misleading information at an alarming rate. Buz-
zfeed News.

Rui Sousa-Silva, Gustavo Laboreiro, Luı́s Sarmento,
Tim Grant, Eugénio Oliveira, and Belinda Maia.
2011. twazn me!!! ;(’ Automatic Authorship Anal-
ysis of Micro-Blogging Messages. In Lecture Notes
in Computer Science 6716 Springer 2011, volume
Natural La, pages 161–168, Berlin and Heidelberg.
Springer – Verlag.

Rui Sousa-Silva, Luı́s Sarmento, Tim Grant, Eugénio C
Oliveira, and Belinda Maia. 2010. Comparing
Sentence-Level Features for Authorship Analysis in
Portuguese. In Computational Processing of the
Portuguese Language, pages 51–54.

Efstathios Stamatatos. 2009. A Survey of Modern Au-
thorship Attribution Methods. Journal of the Ameri-
can Society for Information Science and Technology,
60(3):538–556.

1003

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1004–1006
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Harry Friberg at SemEval-2019 Task 4: Identifying Hyperpartisan
News through Editorially Defined Metatopics

Nazanin Afsarmanesh, Jussi Karlgren, Peter Sumbler, Nina Viereckel
Gavagai

Stockholm , Sweden
{nazanin, jussi, peter, nina}@gavagai.io

Abstract

This report describes the starting point for a
simple rule based hypothesis testing excercise
on identifying hyperpartisan news items car-
ried out by the Harry Friberg team from Gav-
agai. We used manually crafted metatopics,
topics which often appear in hyperpartisan
texts as rant conduits, together with tonality
analysis to identify general characteristics of
hyperpartisan news items. While the precision
of the resulting effort is less than stellar— our
contribution ranked 37th of the 42 successfully
submitted experiments with overly high recall
(95%) and low precision (54%)—we believe
we have a model which allows us to continue
exploring the underlying features of what the
subgenre of hyperpartisan news items is char-
acterised by.

1 Hyperpartisanism

Hyperpartisan news are news items that are
strongly argumentative and one-sided. However,
being biased is not enough to be characterised
as being hyperpartisan, neither is it enough for a
news item to use strong language. Confounders
for this task includes items that use strong lan-
guage without being partisan, items that are sub-
jective but not ”hyper”, and items that report dis-
passionately on typically hyperpartisan topics.

We hypothesise that authors of hyperpartisan
texts are in the process of performing a sub-genre
of their own, intended not as much to convey the
reader information about some state of the world
but to mobilise sentiment and affect in the read-
ership, and establishing a shared attitudinal space.
Taking this point of departure, we assume that the
linguistic items employed by the authors of hy-
perpartisan text are not only related to the topics
under discussions, nor to argumentation, but also
include some genre-specific features to explicitly
signal hyperpartisanness. This report describes

an experiment based on these starting points, per-
formed on data from the 2019 SemEval task on
Hyperpartisan News Detection. (Kiesel et al.,
2019)

2 Gavagai Explorer

The Gavagai Explorer is a commercially available
tool which provides an end-to-end solution for the
analysis of unstructured text data (Espinoza et al.,
2018). We have in these experiments made use
of its components for topic clustering, sentiment
analysis, and concept modelling.

2.1 Trigger Topics
The topic clustering is based on lexical cues, and
can be used to detect what themes and topics are
prevalent in some set of e.g. customer feedback
messages. Here, we used the topic clustering to
establish what sort of themes were frequent in the
hyperpartisan training set.

We postulate that many metatopics turn out to
become lightning rods for hyperpartisan argumen-
tation, somewhat (but not entirely) unpredictably.
A characteristic of some of the more extreme sam-
ple items was that a hyperpartisan rant will bring
in additional only marginally related topics into an
argumentation. We identified a small set of po-
tential rant metatopics using the topic clustering
mechanism in the Gavagai Explorer. A breakdown
of these topics with some example terms can be
found in Table 1.

2.2 Trigger Attitudes
The concept modeling tool allows an analyst to de-
fine measures based on lexical items. Sentiments
are a special case, applied to the palette of human
emotion. On entering some seed words, the user
is presented with semantically similar terms ac-
quired from a distributional model (Sahlgren et al.,
2016). The user accepts terms which are relevant,

1004

Topic Example terms
American across america, america first, god bless america, ...

Elites elite, establishment, oligarchy, ...
Freedom of Speech first amendment rights, freedom of speech, press freedom, ...

Islam islamist, islamism, muslim, ...
Media cable news, mainstream media, twitter, ...
People people, these people, the people, ...

Political Movements alt-right, bolshevik, marxist
Politicians party leaders, political party, politician, ...
Populism populism, populist, ...

Public Safety felon, incriminating, predator, ...
Race black lives matter, black people, white people, ...

Sexual Rights reproductive rights, same sex marriage, transgender, ...
Support support, supportive, supported, ...
Woman woman, women, ...

Table 1: Trigger topics and some of terms that indicate them. The full list with all terms is available at
https://www.gavagai.io/blog/2019/06/06/gavagai-identifying-hyperpartisan-news/ .

Concept Example terms
Certainty blatantly, undeniably, hands-down, ...
Cynical bizarre, far-fetched, ludicrous, ...

Exasperation and once again, for some reason, yet again, ...
Failure catastrophe, complete failure, disaster, ...

Nonsense arrogant, babble, claptrap, ...
Puffery landmark, pioneering, visionary, ...

Weasel Words recent study, widely acknowledged, been claimed, ...
Win and Lose bruised, humiliated, vanquished, ...

Table 2: Trigger attitudes and some of terms that indicate them. The full list with all terms is available at
https://www.gavagai.io/blog/2019/06/06/gavagai-identifying-hyperpartisan-news/ .

which are in turn used to provide more suggestions
in the following iteration. Here, we used the con-
cept modelling tool to define trigger attitudes such
as those shown in Table 2.

We find that strongly expressed attitudes not
necessarily mean that an article is hyperpartisan,
but that the combination of a trigger topic together
with negative sentiment appears to be indicative of
hyperpartisanism. The sentiment analysis compo-
nent identifies several types of polar language, and
measures the intensity of expression in each item
using both presence of polar terms and of amplifier
terms such as ”extremely” and ”very”. In addition
to standard polar sentiments we used the concept
modeling tool to build a set of concepts tailored to
observable presence in hyperpartisan texts (Karl-
gren et al., 2012).

2.3 Trigger Styles

Besides topical specificity we expect hyperpar-
tisan texts to be couched in specific styles, as
already established in previous studies (Potthast
et al., 2018). We compared some stylistic fea-
tures known to us to have discriminative power

in other contexts, such as counts of exclamation
marks, question marks, digits, capital letters, cap-
italised words, type token ratio, word length, sen-
tence length etc. We found that the strongest sin-
gle stylistic feature was the presence of many ex-
clamation marks, in conjunction with trigger top-
ics, while most other features on their own were
less indicative. This is an indication that the au-
thors of hyperpartisan texts appear to adhere to
most stylistic conventions of the news genre.

3 Rule Based Fusion

We combined the above evidence in a rule based
model, to achieve reasonably high explanatory
power of results for downstream application.
Through analysis of the training data, we distilled
the results into the following pieces of reasoning,
applied in the order given here:

1. Presence of many trigger topics (> 3) in an
article, indicates it is hyperpartisan.

2. Presence of at least one trigger topic and a
negative sentiment score for an article indi-
cates it is hyperpartisan.

1005

Figure 1: K W Gullers and Stieg Trenter, 1950s

3. A positive sentiment score combined with
lack of trigger topics indicates a non-
hyperpartisan article.

4. Presence of at least one trigger topic together
with a high type token ratio or high ratio of
questions in an article indicates it is hyper-
partisan.

5. A high trigger attitude score (given in Ta-
ble 2) indicates an article is hyperpartisan.

4 Results

The end results of our experiment on the by-article
test set were decidedly underwhelming, with our
contribution ranked 37th of 42 experiments. Our
combined experimental pipeline yielded high re-
call (95%) and low precision (54%), meaning that
it turned out to be overly sensitive to the features
it was trained on. The rule set given above trig-
gered for too many non-hyperpartisan items, with
the last rule being the most permissive. We still
believe that informed and hypothesis-driven anal-
ysis of content, rather than an end-to-end learning
models, will result in a model of greater general-
ity and greater explanatory power, but that the rule
based combination should have been done using
some learning scheme. While the precision of the
resulting effort is less than stellar, we believe we
have a model which allows us to continue explor-
ing the underlying features of what the sub-genre

of hyperpartisan news items is characterised by,
and we also believe that the explicit representation
of what features are in play will afford end users
greater trust in the system’s classification results.

5 Namesake

Harry Friberg was a fictional photojournalist and
the protagonist of a series of crime novels by Stieg
Trenter (1914-1967). The character first appeared
in the novel Farlig fåfänga, 1944, and continued in
a series of novels which have since become popu-
lar classics for their depiction of Stockholm in the
1950s. Harry Friberg was modeled on the interna-
tionally recognised photojournalist K W Gullers
(1916—1998), a friend of the author.

References
Fredrik Espinoza, Ola Hamfors, Jussi Karlgren,

Fredrik Olsson, Per Persson, Lars Hamberg, and
Magnus Sahlgren. 2018. Analysis of open an-
swers to survey questions through interactive clus-
tering and theme extraction. In Proceedings of the
2018 Conference on Human Information Interac-
tion&Retrieval, pages 317–320. ACM.

Jussi Karlgren, Magnus Sahlgren, Fredrik Olsson,
Fredrik Espinoza, and Ola Hamfors. 2012. Useful-
ness of sentiment analysis. In European Conference
on Information Retrieval, pages 426–435. Springer.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Magnus Sahlgren, Amaru Cuba Gyllensten, Fredrik
Espinoza, Ola Hamfors, Jussi Karlgren, Fredrik Ols-
son, Per Persson, Akshay Viswanathan, and An-
ders Holst. 2016. The Gavagai living lexicon. In
Language Resources and Evaluation Conference.
ELRA.

1006

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1007–1011
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Howard Beale at SemEval-2019 Task 4: Hyperpartisan News
Detection with BERT

Osman Mutlu∗

Koç University
İstanbul, Sarıyer

omutlu@ku.edu.tr

Ozan Arkan Can∗

Koç University
İstanbul, Sarıyer

ocan13@ku.edu.tr

Erenay Dayanık
University of Stuttgart

Stuttgart
erenaydayanik@gmail.com

Abstract

This paper describes our system for SemEval-
2019 Task 4: Hyperpartisan News Detection
(Kiesel et al., 2019). We use pretrained BERT
(Devlin et al., 2018) architecture and investi-
gate the effect of different fine tuning regimes
on the final classification task. We show that
additional pretraining on news domain im-
proves the performance on the Hyperpartisan
News Detection task. Our system1 ranked 8th
out of 42 teams with 78.3% accuracy on the
held-out test dataset.

1 Introduction

With the rapid spread of the Internet and next-
generation media development, people started to
follow news through the Internet by abandoning
de facto sources such as television and radio. Re-
cent studies reveal that 43% of Americans report
often getting news online (Shearer and Gottfried,
2017). In parallel with that, there also has been
a massive improvement in the NLP research in
news domain to keep the content true, fair and
unbiased. SemEval-2019 Task 4: Hyperpartisan
News Detection, is yet another attempt under this
objective. Hyperpartisan is defined as being ex-
tremely biased in favor of a political party (Bastos
and Mercea, 2017) and the aim of the shared task
is to detect hyperpartisan argumentation in news
text. Though it is an important task by itself, hy-
perpartisan argument detection is also considered
as a very first step (or even replacement) of fake
news detection, because it has been shown by (Pot-
thast et al., 2018) that there is a high positive cor-
relation between having a hyperpartisan argumen-
tation and being fake for news items.

In this shared task, we seek to model this prob-
lem as a text classification task. In general, the

∗equal contribution
1https://github.com/ozanarkancan/hyperpartisan

task aims to label the text in the question with
one or more classes or categories. The main ques-
tion of text classification is how to mathematically
represent the words/tokens such that they retain
their original meaning in the context they appear.
This question has been tried to be answered in
many different ways so far. In earlier work, peo-
ple mainly used the ”bag of words” approach in
algorithms such as Naive Bayes, Decision Tree,
and SVM. Then, (Mikolov et al., 2013) advanced
the field further by introducing word embeddings,
capturing a somewhat meaningful representation
of words. However, recent studies (Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2018)
showed that contextual word embeddings perform
quite better than traditional word embeddings in
many different NLP tasks as a result of their supe-
rior capacity of meaning representation. Among
those, BERT attracts researchers most because
of (i) its transformer based architecture enabling
faster training and (ii) state of the art results in
many different tasks.

Though it is quite new, BERT has been tried in
many different domains than the one proposed in
Devlin et al. (2018). However, almost all of these
studies have two things in common: they don’t
start training BERT from scratch and the target do-
main contains very limited data (Zhu et al., 2018;
Yang et al., 2019; Alberti et al., 2019). In this
study, on the other hand, we address (1) the per-
formance of BERT by comparing its domain spe-
cific pre-trained and fine-tuned performances, and
(2) in the setting where the target domain has ex-
tensively more data. In the following sections, we
first summarize the BERT architecture, then give
details of shared task data set, and then describe
experimental setups we used to train BERT model.
In the results section, we compare the performance
of BERT under different settings and share our
submission results for the shared task.

1007

2 Method

Transformer2 (Vaswani et al., 2017) originally
came out as a machine translation architecture and
it uses the idea of self attention mechanism (Parikh
et al., 2016; Lin et al., 2017). It has an encoder-
decoder design and both parts use the same novel
multi-head attention mechanism. The encoder part
takes an input sentence and derives a representa-
tion from it using this attention mechanism. Af-
terwards, the decoder generates the target sentence
by performing multi-headed attention over the en-
coder stack.

Figure 1: BERT Architecture (Devlin et al., 2018).

Figure 1 illustrates the architecture of the
model. BERT learns bidirectional representations
jointly on both left and right context of text mak-
ing use of the encoder part of the Transformer.
Devlin et al. (2018) introduced two unsupervised
tasks to pretrain this architecture, Next Sentence
Prediction and Masked Language Modeling. In
Next Sentence Prediction task, the goal is to deter-
mine whether the sentence comes after the spec-
ified previous sentence or not. It takes two sen-
tences as input, the latter being in its original form
50% of the time, while other times it can be any
random sentence from the corpus. In Masked Lan-
guage Modeling task, 15% of the words in the in-
put sentences are masked and the model tries to
predict these words. Training takes place with the
combined loss of these two unsupervised tasks.
Resulting representations can be further fine-tuned
with a task specific layer on the top for a number
of NLP tasks using appropriate supervised data.

2http://nlp.seas.harvard.edu/2018/04/03/attention.html

In this study, we use an open source PyTorch
implementation3 of BERT architecture. We make
use of BERT-Base pretrained model provided by
Devlin et al. (2018) in order to avoid pretraining
from scratch. Similar to Devlin et al. (2018), we
use the representation obtained from the last layer
for the first token (i.e. ”[CLS]”) for the sentence
representation and a softmax classifier on top of it
for predicting hyperpartisanship.

3 Experiments

In this section, we first introduce data provided
by the shared task and the data preprocessing
step. Then, we give the details of our experiments
and results with BERT under pretraining and fine-
tuning settings.

3.1 Data
Task provides data that consist of 750.000 articles
labelled portal-wise and 645 articles labelled man-
ually, and they divide the former into 600.000 and
150.000 as train and development set. Portal-wise
data is labelled as hyperpartisan or not, according
to publishers known affinities provided by Buz-
zFeed journalists or MediaBiasFactCheck.com. In
our experiments, we first shuffled and then split
the portal-wise data into three: 705.000, 40.000,
5.000 articles for train, development and test re-
spectively.

3.2 Preprocessing
For all our experiments we remove some un-
wanted text from the articles. We replaced HTML
character reference for ampersand and numeric
entity reference, and removed adjacent underscore
characters which is possibly used as a replace-
ment for classified information in data. We also
removed lines, solely containing ”*” characters,
used for separation of different news in the same
article.

3.3 Input Representation
BERT restricts the input length to a maximum of
512 tokens. We select the first n tokens from
the beginning of the article, because using the
lead sentences of a news article has been found
to be more effective for some NLP tasks (Wasson,
1998). We use the same tokenization method and
embeddings as Devlin et al. (2018) to represent the
words.

3https://github.com/huggingface/pytorch-pretrained-
BERT

1008

3.4 Fine-tuning Only

In order to show how BERT performs in news do-
main, our first attempt was to use the training data
to only fine-tune the pretrained model for classi-
fication. We used BERT-Base which consists of
12 transformer blocks on top of each other apply-
ing 12 headed attention mechanism, hidden size
of 768 and a total of 110 million parameters. We
set 16 as our batch size and 2e-5 as our learning
rate as recommended by Devlin et al. (2018) for
fine-tuning on classification tasks.

Max Length Dev Test
Accuracy F1 Accuracy F1

128 84.99 84.91 84.40 84.36
256 88.91 88.89 88.31 88.31
512 89.12 89.09 88.15 88.14

Table 1: Classification results on our portal-wise data
splits with fine-tuned BERT.

We performed experiments using 128, 256 and
512 as our maximum sequence lengths and found
out that 256 gives us the best test results, as shown
in Table 1. Although the results for experiments
with maximum sequence lengths of 256 and 512
are relatively close to each other, we chose 256
for computational efficiency. From these results,
we can argue that for news articles, the first 128
tokens do not carry enough information.

3.5 Pretraining + Fine-tuning

For the pretraining step, the data used by two unsu-
pervised tasks need to be generated. For the Next
Sentence Prediction task, originally, one would go
over the articles sentence by sentence to gener-
ate pretraining data, but our data is not made of
split sentences. To avoid using a tool for sentence
splitting, as it would take too much time in large
scale, for each document from the training data,
we extract a chunk of text with a random length
sampled from a uniform distribution defined as
an interval between %15 and %85 of the maxi-
mum sequence length. The reason for this is to
make the model more robust to non-sentential in-
put and leave space for the second sentence. As
the second sentence, 50% of the time, we select
the chunk following the original one with a length
that is complementing the first chunk’s length up
to maximum sequence length. Other times, when
we need the next sentence to be random, we take
a random chunk from other documents. We ex-
tract more than one sample from a single docu-

Model Combined Loss
BERT-Base 3.65
Our Version 1.79

Table 2: Results on the held-out dataset for pretraining
tasks.

ment, avoiding overlapping between chunks. For
Masked LM task, we follow the same approach
with Devlin et al. (2018).

At the end of pretraining data generation pro-
cess, we accumulated near 3.5 million samples,
only running the process once on our train split, so
without any duplication unlike Devlin et al. (2018)
because of time restrictions. We also generated a
small held-out dataset using our test split to use
in evaluation. Starting from the pretrained model
of BERT-Base instead of a cold start, we trained
the model with a learning rate of 3e-5 and 256
as the maximum sequence length for 290k itera-
tions. Table 2 presents the combined loss of two
unsupervised tasks on the held-out data for origi-
nal BERT-Base and further pretrained model with
the generated data. Results show that pretraining
BERT further with data from an unseen domain
greatly increases its representational power.

Model Dev Test
Accuracy F1 Accuracy F1

Fine-Tuning
Only

88.91 88.89 88.31 88.31

Pretraining
+Fine-Tuning

89.69 89.67 89.30 89.29

Table 3: Comparison of fine-tuning only and pretrain-
ing + fine-tuning models.

After this step, we applied the same fine-tuning
as previous section with the same parameters. Ta-
ble 3 demonstrates that pretraining BERT with do-
main specific data using unsupervised tasks im-
proves the performance of the model on the su-
pervised classificiation task.

4 Shared Task Results

The evaluation of SemEval-2019 Task 4, Hyper-
partisan News Detection task is done through the
online platform of TIRA (?). It serves as a means
of blind evaluation of the submitted model. Accu-
racy is used as the official evaluation metric and
the deciding test set is an another manually la-
belled news articles set named ”by-article-test-set”
which was kept hidden from the participants.

1009

Model article-test publisher-test
Accuracy Precision Recall F1 Accuracy Precision Recall F1

Fine-Tuning (publisher)
+ Fine-Tuning (article)

78.3 83.71 70.38 76.5 63.45 67.98 50.85 58.18

Pretraining (publisher)
+ Fine-Tuning (publisher)
+ Fine-Tuning (article)

73.4 66.81 92.99 77.76 64.15 60.64 80.6 69.21

Pretraining (publisher)
+Fine-Tuning (publisher)

60.82 57.11 86.94 68.93 67.25 62.45 86.5 72.53

Table 4: Shared task results.

In our first attempt, we fine-tuned BERT with
portal-wise train split using development set to get
the best model. After this we further train it with
645 manually labeled data (i.e. ”by-article-train-
set”), because it comes from the same sample as
test data.

In our last attempt, we pretrained BERT with
our portal-wise train split, and then fine-tune it as
described before. Again, we further fine-tune our
model with ”by-article-train-set” data. The results
of our two attempts can be seen in Table 4. The
third model in the table is to show the effect of the
last fine-tuning step on ”by-article-train-set”.

Looking at the results of second and third mod-
els on ”by-article-test-set” shows us, although
we fine-tune BERT with supervised data for
the same classification task, fine-tuning on ”by-
article-train-set” improves the results drastically.
This may be rooted from the domain difference in
between ”by-article-test-set” and portal-wise train
data.

Although our experiments (Table 3) show us
that pretraining BERT further with data from news
domain has a positive effect on overall accuracy,
we are not able to observe the similar effect on
”by-article-test-set”. The second model adapts to
the publisher domain more than the first model
does because of the extensive pretraining before
fine-tuning. As the difference between publisher
and article is highly notable from the findings be-
fore, overfitting to the publisher domain might end
up hurting the generalization of the model. So,
this would explain the unexpected drop of per-
formance between the second model and the first
model.

5 Conclusion

We presented a BERT baseline for the Hyperpar-
tisan News Detection task. We demonstrated that
pretraining BERT in an unseen domain improves

the performance of the model on the domain spe-
cific supervised task. We also showed that the dif-
ference in news source affects the generalization.
Our best performing system ranked 8th out of 42
teams with 78.3% accuracy on the held-out test
dataset. From our findings, we believe that domain
adaptation is important for the BERT architecture
and we would like to investigate the effect of from
scratch unsupervised pretraining on the supervised
task as future work.

Acknowledgments

We would like to thank task organizers for their
support. The study is funded by the European Re-
search Council (ERC) Starting Grant 714868.

Howard Beale

Figure 2: Howard Beale delivering his ”I’m as mad as
hell” speech.

Beale4 is a news anchor who decides to commit
suicide on live air. Instead, he gives his famous
speech about modern American life and convinces
American people to scream his words: ”I’m as
mad as hell, and I’m not going to take this any
more!”. But the media sees his breakdown as an
opportunity for huge ratings. We believe that the
speech is now more than ever relevant to our me-
dia. Choosing ”Howard Beale” as the team name
is our scream from the windows of Academia.

4https://www.imdb.com/title/tt0074958/

1010

References
Chris Alberti, Kenton Lee, and Michael Collins. 2019.

A bert baseline for the natural questions. arXiv
preprint arXiv:1901.08634. Version 1.

Marco T Bastos and Dan Mercea. 2017. The
brexit botnet and user-generated hyperpartisan
news. Social Science Computer Review, page
0894439317734157.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805. Version 1.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130. Ver-
sion 1.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781. Version 3.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2249–2255.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), volume 1,
pages 2227–2237.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Elisa Shearer and Jeffrey Gottfried. 2017. News use
across social media platforms 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Mark Wasson. 1998. Using leading text for news sum-
maries: Evaluation results and implications for com-
mercial summarization applications. In COLING
1998 Volume 2: The 17th International Conference
on Computational Linguistics, volume 2.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. arXiv preprint arXiv:1902.01718. Ver-
sion 1.

Chenguang Zhu, Michael Zeng, and Xuedong Huang.
2018. Sdnet: Contextualized attention-based deep
network for conversational question answering.
arXiv preprint arXiv:1812.03593. Version 5.

1011

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1012–1015
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team JACK RYDER at SemEval-2019 Task 4:
Using BERT Representations for Detecting Hyperpartisan News

Daniel Shaprin1, Giovanni Da San Martino2, Alberto Barrón-Cedeño2, Preslav Nakov2

1Sofia University “St Klimen Ohridski”, Sofia, Bulgaria
2Qatar Computing Research Institute, HBKU, Doha, Qatar

shaprin@uni-sofia.bg
{gmartino, albarron, pnakov}@hbku.edu.qa

Abstract

We describe the system submitted by the Jack
Ryder team to SemEval-2019 Task 4 on Hy-
perpartisan News Detection. The task asked
participants to predict whether a given article
is hyperpartisan, i.e., extreme-left or extreme-
right. We propose an approach based on BERT
with fine-tuning, which was ranked 7th out
28 teams on the distantly supervised dataset,
where all articles from a hyperpartisan/non-
hyperpartisan news outlet are considered to be
hyperpartisan/non-hyperpartisan. On a manu-
ally annotated test dataset, where human an-
notators double-checked the labels, we were
ranked 29th out of 42 teams.

1 Introduction

SemEval-2019 Task 4 (Kiesel et al., 2019) asks
to distinguish between articles that are extremely
one-sided, i.e., extreme-left or extreme-right, and
such that are not. The organizers provided two
datasets:

1. By article: A small dataset of 645 manually
annotated articles (BA in the following).

2. By publisher: A large dataset of 750,000
articles annotated using distant supervision,
where an article is considered hyperpartisan
if its source is labeled as such (BP in the fol-
lowing). The set is separated into 600,000
articles for training (BP-train) and 150,000
articles for validation (BP-val).

Furthermore, two test sets, one annotated by ar-
ticle (BA-test) and one annotated by publisher
(BP-test), were hidden from the participants and
they were used for getting the final scores for
the competition. The task is a binary classifica-
tion one, where each article is to be assigned one
of two possible classes: hyperpartisan and non-
hyperpartisan.

2 Related Work

Media bias was used as a feature for “fake news”
detection (Horne et al., 2018a). It has also been the
target of classification, e.g., Horne et al. (2018b)
predicted whether an article is biased (political or
bias) vs. unbiased. Similarly, Potthast et al. (2018)
classified the bias in a target article as (i) left vs.
right vs. mainstream, or as (ii) hyper-partisan vs.
mainstream. Left-vs-right bias classification at the
article level was also explored by Kulkarni et al.
(2018), who modeled both text and URL struc-
ture. Some work targeted bias at the phrase or
the sentence level (Iyyer et al., 2014), for politi-
cal speeches (Sim et al., 2013) or legislative docu-
ments (Gerrish and Blei, 2011), or targeting users
in Twitter (Preoţiuc-Pietro et al., 2017). More re-
cent work has targeted the political bias of entire
news outlets (Baly et al., 2018, 2019). Another
line of related work focused on propaganda, which
is a form of extreme bias (Rashkin et al., 2017;
Barrón-Cedeño et al., 2019a,b). See also a re-
cent position paper (Pitoura et al., 2018) and an
overview paper on bias on the Web (Baeza-Yates,
2018). Overall, most of the above work focused
on finding effective representations, e.g., in terms
of features, rather than investigating the impact of
sophisticated learning algorithms.

Recently, BERT, a pre-trained deep neural net-
work (Devlin et al., 2019), based on the Trans-
former (Vaswani et al., 2017), has improved the
state of the art for many natural language pro-
cessing tasks. For example, it reached a score of
80.4 on the GLUE benchmark1, 86.7% accuracy
on MultiNLI, and F1=93.2 on the SQuAD v1.1
question answering task. Currently, the top 11 sys-
tems in the SQuAD v2.0 use BERT.2

1https://gluebenchmark.com/.
2http://rajpurkar.github.io/

SQuAD-explorer/.

1012

3 Method

We hypothesize that hyperpartisanship and ex-
treme bias detection are related to sentiment anal-
ysis, which is one of the tasks in the GLUE bench-
mark. Given the recent success of BERT (Devlin
et al., 2019) for sentiment analysis and other lan-
guage processing tasks, we decided to experiment
with it for hyperpartisan news detection.

In order to have a reference, we also experi-
mented with Random Forests over TF.IDF repre-
sentations. We used two BERT models: BERT
without fine-tuning, and BERT with fine-tuning.
We describe them in more detail below. In each
case, we extracted features from the title and from
the main text of the articles separately.

3.1 TF.IDF Features

In order to have a reference to compare our BERT-
based approaches to, we also experimented with
word-level TF.IDF features. First, we converted
all text to lowercase and we stemmed it with the
Porter stemmer. Then, we removed words with
document frequency higher than 0.8. We then ex-
tracted two feature vectors by computing the term
frequency and the inverse document frequency
once on the title and separately on the body of the
articles. We ended up with feature vectors of size
110,229 for the title and 1,798,179 for the content
when TF.IDF vectors were computed on BP-train
and BA, and 95,806 for the title and 1,507,789 for
the content, when BA only was used.

We used the feature vectors in a Random For-
est classifier with 100 estimators. Note that, dif-
ferently from BERT, the TF.IDF representation is
able to use information from the entire article.

3.2 Pre-trained BERT Features

Our second approach uses features extracted from
Google’s BERT, a model with pre-training lan-
guage representations (Devlin et al., 2019). We
fed to the model (i) the entire title and (ii) the first
256 tokens from the body of the article as two sep-
arate inputs, and then we obtained vector repre-
sentations from the last layer of the BERT neural
network. Note that we used the pre-trained BERT
rather than training it with the data from the com-
petition. Next, we concatenated the vectorial rep-
resentations and we fed them to a two-layer feed-
forward neural network with 32 neurons in the hid-
den layer. We used tanh as the activation function
and a Gaussian noise with σ = 0.2.

3.3 Fine-tuned BERT Features
A natural extension of the approach in Section 3.2
is to fine-tune the BERT model on the datasets of
the competition, i.e., on BP+BA. We performed
fine-tuning on the same input used for computing
the TF.IDF representations and we obtained two
models, one from the titles only and one from the
content of the articles only. As we did for the pre-
trained model, we concatenated the internal vector
representations from the last layer for both models
and we passed them to the second neural network
as in Section 3.2.

4 Experiments

We performed a number of experiments in or-
der to select the best models to submit as official
runs for the competition. The best model for the
by-publisher dataset was selected on BP-val af-
ter training the models on BP-train. Since there
was no validation set for the by-article dataset and
BA was too small to be divided into training and
validation sets, we trained our models on BP and
we selected the best-performing one on BA. Ta-
ble 1 shows the obtained accuracy values on BP-
val (By-publisher) and BA (By-article) datasets.
As we can observe, the performance of the TF.IDF
model is behind those when using BERT, both
with and without fine-tuning.

As a result, we opted for the two BERT mod-
els, trained on BP+BA, as our submissions for the
competition. Table 2 shows the results on the hid-
den test sets.

Model By publisher By article

TF.IDF 56.13% 56.12%
BERT (no tuning) 61.20% 60.93%
BERT (fine-tuned) 61.70% 61.30%

Table 1: Validation results: Accuracy for our TF.IDF
and BERT models on the by-publisher validation (BP-
val) and on the by-article (BA) sets. The training was
performed on BP-train and BP, respectively.

Model By publisher By article

BERT (no tuning) 63.25% 64.49%
BERT (fine-tuned) 64.60% 64.50%

Table 2: Testing results: Accuracy on the hidden test
sets for the BERT models we submitted. Both models
were trained on BP+BA.

1013

99.25 99.49 99.58 99.63 99.63

89.65 91.51 92.69 93.52
94.17

56.83 58.42 58.07 58.22 58.17

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5

A
cc

u
ra

cy

Epochs

Fine tune on Title

T-T T1-T2 T-V

Figure 1: Title as input: Accuracy, at each epoch, for
the fine-tuned BERT model. T-T stands for training and
evaluating on BP-train, T1, T2 for training on the first
half of BP-train and evaluating on the second half, T-V
for training on BP-train and evaluating on BP-val.

4.1 Result Analysis and Post-Submission
Experiments

When developing the model for the submission,
we focused on the datasets with by-publisher an-
notation. This is probably the reason why we per-
formed much better on the by-publisher hidden
test set, 7th out 28 teams, than on the hidden by-
article test set, 29th out of 42 teams.

Another possible reason for the low results on
the by-article hidden test set is overfitting on BP:
our model might have learned to discriminate the
publishers appearing in BP instead of the required
labels hyperpartisan / non-hyperpartisan. Recall-
ing that BP-val does not contain any articles from
the publishers in BP-train, we conducted an exper-
iment to see whether there was a correlation be-
tween the articles in the different partitions of the
provided dataset. In particular, we created a re-
current model with a single layer of 1,024 GRUs,
and we trained it on 80% of the data and we evalu-
ated it on the remaining 20%. The model achieved
99.99% accuracy at predicting whether the article
was from BP-train or from BP-val.

We further performed three additional experi-
ments with the fine-tuned BERT model: (i) train-
ing and evaluating on BP-train, (ii) training on the
first half of BP-train and evaluating on the second
half of BP-train, and (iii) training on BP-train and
evaluating on BP-val.

Figure 1 shows the accuracy for BERT at each
epoch when using titles for the three configura-
tions (i)–(iii) above: T is BP-train, T1 and T2 are
the two halves of BP-train, and V is BA.

99.97 99.98 99.98 99.98 99.58

94.90 96.52 97.32 97.81
98.17

53.71

58.86 58.59 58.65
56.74

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5

A
cc

u
ra

cy

Epochs

Fine tune on Content

T-T T1-T2 T-V

Figure 2: Content as input: Accuracy, at each epoch,
for the fine-tuned BERT model. T-T stands for training
and evaluating on BP-train, T1, T2 for training on the
first half of BP-train and evaluating on the second half,
T-V for training on BP-train and evaluating on BP-val.

Figure 2 reports the performance for the same ex-
periments when using the body text of the articles
as input. While the accuracy for the curves T-T
and T1-T2 is close to 100% or is monotonically
increasing with respect to the number of training
epochs, the curve T-V does not show the same be-
havior, suggesting that 58.42% is close to the best
performance that can be achieved in this setting.
The accuracy values, although not directly com-
parable, show that there is a huge gap between the
performance on a dataset with the same set of pub-
lishers (T-T and T1-T2) vs. on a dataset where
the news comes from a different set of publishers
(T-V), thus supporting our hypothesis.

5 Conclusions and Future Work

We have described our participation in SemEval-
2019 task 4 on hyperpartisan news detection. In
particular, we explored using TF.IDF and BERT-
derived representations, and we found the latter
to be more informative. Thus, we submitted two
BERT models as our official runs to the competi-
tion: one with and one without fine-tuning. Inter-
estingly, fine-tuning the model did not yield any
sizable improvements. Our analysis suggests that
our BERT models might be learning the source of
the article, rather than whether it represents a piece
of hyperpartisan news.

In future work, we plan to experiment with the
big cased BERT model and to combine it with
stylistic features, which have been proven success-
ful for the hyperpartisanship detection task.

1014

References
Ricardo Baeza-Yates. 2018. Bias on the web. Com-

mun. ACM, 61(6):54–61.

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,
James Glass, and Preslav Nakov. 2018. Predict-
ing factuality of reporting and bias of news media
sources. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’18, pages 3528–3539, Brussels, Belgium.

Ramy Baly, Georgi Karadzhov, Abdelrhman Saleh,
James Glass, and Preslav Nakov. 2019. Multi-task
ordinal regression for jointly predicting the trustwor-
thiness and the leading political ideology of news
media. In Proceedings of the 17th Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT ’19, Minneapo-
lis, MN, USA.

Alberto Barrón-Cedeño, Giovanni Da San Martino, Is-
raa Jaradat, and Preslav Nakov. 2019a. Proppy: A
system to unmask propaganda in online news. In
Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI’19, Honolulu, HI,
USA.

Alberto Barrón-Cedeño, Giovanni Da San Martino, Is-
raa Jaradat, and Preslav Nakov. 2019b. Proppy: Or-
ganizing news coverage on the basis of their propa-
gandistic content. Information Processing and Man-
agement.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Annual Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics, NAACL-
HLT ’19, Minneapolis, MN, USA.

Sean M. Gerrish and David M. Blei. 2011. Predict-
ing legislative roll calls from text. In Proceedings of
the 28th International Conference on International
Conference on Machine Learning, ICML ’11, pages
489–496, Bellevue, Washington, USA.

Benjamin Horne, Sara Khedr, and Sibel Adali. 2018a.
Sampling the news producers: A large news and fea-
ture data set for the study of the complex media land-
scape. In Proceedings of the Twelfth International
Conference on Web and Social Media, ICWSM ’18,
pages 518–527, Stanford, CA, USA.

Benjamin D. Horne, William Dron, Sara Khedr, and
Sibel Adali. 2018b. Assessing the news landscape:
A multi-module toolkit for evaluating the credibility
of news. In Proceedings of the The Web Conference,
WWW ’18, pages 235–238, Lyon, France.

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection us-
ing recursive neural networks. In Proceedings of the

52nd Annual Meeting of the Association for Com-
putational Linguistics, pages 1113–1122, Baltimore,
MD, USA.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan news detection. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation, SemEval ’19, Minneapolis, MN,
USA.

Vivek Kulkarni, Junting Ye, Steven Skiena, and
William Yang Wang. 2018. Multi-view models for
political ideology detection of news articles. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’18, pages
3518–3527, Brussels, Belgium.

Evaggelia Pitoura, Panayiotis Tsaparas, Giorgos
Flouris, Irini Fundulaki, Panagiotis Papadakos,
Serge Abiteboul, and Gerhard Weikum. 2018. On
measuring bias in online information. SIGMOD
Rec., 46(4):16–21.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A stylo-
metric inquiry into hyperpartisan and fake news. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL ’18,
pages 231–240, Melbourne, Australia.

Daniel Preoţiuc-Pietro, Ye Liu, Daniel Hopkins, and
Lyle Ungar. 2017. Beyond binary labels: Political
ideology prediction of Twitter users. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL ’17, pages 729–
740, Vancouver, Canada.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and polit-
ical fact-checking. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’17, pages 2931–2937, Copen-
hagen, Denmark.

Yanchuan Sim, Brice D. L. Acree, Justin H. Gross, and
Noah A. Smith. 2013. Measuring ideological pro-
portions in political speeches. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’13, pages 91–101,
Seattle, WA, USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

1015

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1016–1020
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Kermit-the-frog at SemEval-2019 Task 4: Bias Detection Through
Sentiment Analysis and Simple Linguistic Features

Talita Anthonio
University of Groningen

University of the Basque Country
t.r.anthonio@student.rug.nl

Lennart Kloppenburg
lennartkloppenburg@live.nl

Abstract

In this paper we describe our participation in
the SemEval 2019 shared task on hyperpar-
tisan news detection. We present the sys-
tem that we submitted for final evaluation and
the three approaches that we used: sentiment,
bias-laden words and filtered n-gram features.
Our submitted model is a Linear SVM that
solely relies on the negative sentiment of a
document. We achieved an accuracy of 0.621
and a f1 score of 0.694 in the competition, re-
vealing the predictive power of negative sen-
timent for this task. There was no major im-
provement by adding or substituting the fea-
tures of the other two approaches that we tried.

1 Introduction

With the growing role of social media in politics it
becomes ever more important to safeguard the in-
tegrity of information people consume. News arti-
cles about important events in the world can affect
political choices. It is therefore crucial to pinpoint
what information people know to be trustworthy,
factual and unbiased. One way to do this is by
using a computational system that detects an au-
thor’s or publisher’s bias in a news article. In Pot-
thast et al. (2018) we have seen that it is possible
to build such a system by relying on the writing
characteristics of a text.

To shed more light on potential linguistic com-
putational methods for hyperpartisan news detec-
tion, we present our participation in the SemEval
2019 shared task on hyperpartisan news detection,
of which the purpose is to identify whether a news
article contains hyperpartisan (Kiesel et al., 2019)
content. For our contribution, we set out to ex-
periment with various types and levels of features,
such as a) sentiment that could indicate an au-
thor’s bias (Recasens et al., 2013), b) bias-laden
words such as assertives, factives and hedges, and

c) part-of-speech (from now on POS) filtered n–
grams. In the end, we decided to submit a model
that only uses the negative sentiment of an article
as a feature. We obtained an accuracy of 0.621 and
a f1 score of 0.694 on the by-article test set, which
resulted to the 30th place in the competition. On
the by-publisher test set, the systems accuracy was
0.589 and its f1 score 0.623 (20th place).

2 Related Work

One of the first studies on detecting linguistic bias
in online texts were mainly focused on detecting
biased language in Wikipedia articles. Despite the
domain difference, this task is related to ours be-
cause Wikipedia is also a source of information
which should contain unbiased language. Systems
that were employed for this task used a combina-
tion of linguistic features, such as POS n-grams
and binary features representing the usage of bias
words, assertive verbs, factive verbs, hedges and
sentiment features (Recasens et al., 2013; Hube
and Fetahu, 2018). Most of these features were
derived from existing lexicons. For sentiment fea-
tures, both studies used a sentiment polarity lexi-
con from Liu et al. (2005).

A similar set of features was used in Hutto et al.
(2015) to detect sentence based bias in news ar-
ticles. Yet, they obtained sentiment features us-
ing the VADER sentiment analysis tool (Hutto
and Gilbert, 2014). Because of their focus on
sentence-based bias detection and the high relat-
edness of their study, it was interesting to inves-
tigate whether we could use the same features on
document-level classification.

The studies that we discussed so far proved that
it is possible to detect bias by using simple compu-
tationally derived linguistic features. On the other
hand, we work with a much larger amount of doc-
uments which also come from a different genre.

1016

Because of these aspects, it was fruitful to investi-
gate how effective these features would be.

3 Data

We worked with the data provided by the orga-
nizers of the task. We show an overview of the
data we used for the competition in Table 1. The
sets named ’by-publisher’ are automatically la-
beled using the publisher of the article, whereas
the articles from the ’by-article’ set were manu-
ally labeled through crowd-sourcing (Vincent and
Mestre, 2019).

For the competition, we trained our models on
the by-publisher training set. We used this data
because of its size and the equal frequency dis-
tribution of the labels. We took the model with
the highest accuracy on the by-publisher valida-
tion set for our final submission. After the evalua-
tion period, we submitted several models that were
trained on the by-article training data to find out
whether we should have submitted a model that
was trained on the by-article data.

name function size distribution
by-publisher training set 600,000 50-50
by-publisher validation

set
150,000 50-50

by-publisher test set 4,000 50-50

by-article training set 645 37% hyper.
63% mainstr.

by-article test set for
competi-
tion

638 50-50

Table 1: An overview of the data that we used for the
shared task.

4 Final System

4.1 VADER Sentiment Analysis

The system we submitted for final evaluation is
a simple SVM classifier with a linear kernel. It
uses the LinearSVM1 implementation from scikit-
learn (Pedregosa et al., 2011) with default hyper-
parameter settings C=1.0, the ’squared hinge’ loss
function and the ’l2’ penalization norm. The only
features that the classifier uses to make a pre-
diction is the intensity of the negative sentiment
of each document which varies between 0 (neu-
tral) and 1.0 (extremely negative). This score is
computed by the freely available package Valence

1https://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.
html

Aware Dictionary and sEntiment Reasoner2 from
NLTK(Loper and Bird, 2002). VADER was de-
veloped by Hutto and Gilbert (2014) and is a
rule-based and lexical model for general sentiment
analysis. Even though VADER is specifically de-
veloped to perform sentiment analysis in social
media texts, the tool works reasonably well on de-
termining the sentiment of news articles according
to our observations.

4.2 Results

The system we submitted reached the 30th place
with an accuracy of 0.621. The other scores are
reported in Table 2. It also displays the perfor-
mance of our model on the by-publisher devel-
opment set and the by-article test set. We ob-
tained a high recall on the official test set, which
corresponds to the performance on the by-article
test set. Nonetheless, since the evaluation script
only tracked the hyperpartisan=true class and our
model was apparently biased towards a hyper-
partisan prediction, this metric is not informative
because it implies that the mirrored hyperparti-
san=false class has a much lower recall.

Furthermore, the scores in Table 2 show that
our model neither performed well on the by-article
(0.519 accuracy) nor the by-publisher (0.562 accu-
racy) development set. In particular, the accuracy
on the by-article set is even lower than the accu-
racy of the baseline. Nonetheless, the model per-
formed better on the official test set, since the ac-
curacy and f1 score were substantially higher. We
surmise that this is related to the inconsistent sim-
ilarities of the data sets rather than the predictive
power of the features.

Accuracy Precision Recall F1
official test set 0.621 0.582 0.860 0.694
by-publisher 0.562 0.559 0.585 0.572

Table 2: Evaluation metrics (of the true class) across
different data sets of correctly detecting the hyperparti-
san class.

5 Alternative Methods

Despite the low performance on the by-publisher
development set, we submitted our final system
because it had the highest accuracy on this devel-
opment set (0.562 accuracy) and the competition
evaluation was based on accuracy. In this section,

2https://www.nltk.org/_modules/nltk/
sentiment/vader.html

1017

Features Set-up Accuracy Precision Recall F1 score
Tf-idf Word uni-grams with default settings 0.5598 0.5412 0.7854 0.6408

Word uni-grams with default settings + negative sentiment 0.5597 0.5411 0.7858 0.6409
Sentiment positive score + negative score + compound 0.5247 0.5201 0.6373 0.5729

compound score 0.4310 0.4389 0.4962 0.4658
negative sentiment 0.5616 0.5589 0.5851 0.5717
positive sentiment 0.4752 0.4779 0.5354 0.5050

Table 3: Performance of other models trained on the by-publisher training set on predicting hyperpartisan.

we outline the two other approaches with which
we experimented: bias-laden words and filtered n-
grams. We also present our attempts to improve
the accuracy of our best model on the development
set by combining features from the other two ap-
proaches. The performance of these models and
other detrimental models on the development set
are shown in Table 3.

5.1 Sentiment

VADER Sentiment In addition to the negative
sentiment score, we also conducted experiments
with systems that used several combinations of the
negative, positive and compound score provided
by VADER. However, none of the combinations
outperformed the accuracy of the system that only
took the negative sentiment into account. More-
over, as shown in Table 2, the compound score
yielded the lowest performance. In our prelimi-
nary experiments, we also experimented with the
neutral sentiment score but this led to low accu-
racy scores compared to the other scores. Besides,
the evaluation procedure was based on predicting
the hyperpartisan is true class, for which we can
assume that its corresponding article is not neu-
tral.
We tried to improve the score of the submitted
model by using ordinal scales instead of interval
variables, in which documents with a negative sen-
timent score exceeding 0.5 were labeled as having
a ”high” negative sentiment and ”low” otherwise.
This did not lead to improvement, which reveals
that the raw sentiment score is a better predictor.

Other Sentiment Features We also developed
systems that calculated the overall sentiment of a
text by using the lexicons of positive and negative
words from Liu et al. (2005). We experimented
with two methods (1) by counting the amount of
positive/negative words and (2) by using binary
features where the value was True if it contained
one of the words in the lexicons. This method was
also used in Recasens et al. (2013). Nonetheless
both methods did not even reach an accuracy of

30 percent.

5.2 Bias-Laden Words

Verbs We experimented with the same set of verbs
as the mentioned previous studies: assertive verbs,
factive verbs and hedges (Hooper, 1975). These
words carry cues that may indicate bias. For in-
stance, assertive verbs can be used to assert the
truth of a proposition (i.e. point out, claim, states)
and factive verbs can be used to presuppose the
truth of their corresponding complement clause
(i.e. realize, revealed, indicated). The usage of
these verbs was encoded in the same way as we
did for the lexical sentiment features. Yet, it was
not possible to build accurate classifiers that used
these features, since the accuracy fluctuated be-
tween 0.20 and 0.30. Also, we could not increase
the performance of other systems by adding these
features.

N-gram BOW We additionally tried to derive
bias-laden words through BOW methods, as we
surmised that the hyperpartisan texts contained
more bias-laden words than legitimate news arti-
cles. Because of the size of the training set, we
only experimented with uni-gram features (with
tf-idf weighting). With this set-up, we obtained
a similar accuracy score as when we used only the
negative sentiment (see Table 2). Yet, we did not
submit the uni-gram model for the competition be-
cause we surmised that the effectiveness of bag-of-
word features would be more sensitive to the topic
of the articles. As an effect, the generalizability on
unseen data could be low.

5.3 POS-based N-gram Filtering

We experimented with POS-based features early
on in an attempt to model how and where hu-
mans would perceive bias in a text on word-level.
We found that adjectives, adverbs and (proper)
nouns all somewhat contributed to the tone of a
text. However, confidently identifying bias proved
rather challenging in many cases. Nouns fre-
quently provide thematic and topical information

1018

Training data System Accuracy Precision Recall F1 score
by-publisher Submitted system: negative sentiment only 0.621 0.582 0.860 0.694

Word uni-grams + negative sentiment 0.605 0.564 0.920 0.700
POS filtering** 0.657 0.636 0.738 0.683
Positive score + negative score + compound score 0.611 0.590 0.732 0.653

by-article Character 3-to-5 grams 0.772 0.825 0.691 0.752
Word uni-grams 0.755 0.803 0.675 0.734
POS filtering 0.537 0.522 0.863 0.650

Table 4: Performance of models on the by-article test set submitted after the evaluation period. **only trained on
100k randomly obtained documents of the by-publisher set (with a balanced frequency distribution of labels).

about a text and adverbs and adjectives can in-
dicate a level of subjectivity. Modals such as
would, could and must could additionally carry
assertiveness that could be related to bias (Re-
casens et al., 2013; Hube and Fetahu, 2018). We
tried modelling this by extracting n-grams that fol-
lowed certain patterns such as a) nouns in the
middle of a trigram b) particles in the middle of
a trigram c) modal verbs in the middle of a tri-
gram d) nouns and their closest preceding adjec-
tives/adverbs e) adjectives/adverbs and words af-
ter them. The n-grams essentially became a new,
filtered representation of the document and would
be weighted using tf-idf. We tested this intuition
by splitting the training data. The results were
quite promising as we (unofficially) achieved f1
scores of 75-85% using only 200,000 documents.
However, results disappointingly floated between
53% and 58% when tested on the development
data.

We concluded that the n-grams we extracted
were not indicative enough to generalize well
across different data sets, since they were essen-
tially only a subset of the total body of possible
n-grams.

6 Other Submissions

After the final submission deadline, we continued
submitting models to investigate differences be-
tween the by-article and by-publisher training data
sets. We also submitted models that solely relied
on bag-of-words features, with which we experi-
mented in early stages but discarded in our final
submission because of the low performances on
the by-publisher validation set.

The results of our submissions after the dead-
line (Table 4) reveal that bag-of-words and bag-
of-characters are indeed useful when the model is
trained on the by-article data. In particular, we
could have obtained a high accuracy in the compe-
tition with a model trained on the by-article set, for

instance by using character 3-to-5 grams (0.772
accuracy). Another observation is that the POS
filtering model obtained a low accuracy on the test
set, even when it was trained on the by-article data.
Thus, this seems to indicate that bag-of-words are
more effective than fine-grained POS filtering.

7 Conclusions

Detecting biased language is a difficult task be-
cause of the subjectivity of the task and the sub-
tlety of linguistic context cues. Bias is a broad
term which can be applied to many different ar-
eas and is not solely restricted to politics or eco-
nomics. Per our own observations, it was difficult
to exactly pinpoint the bias of a biased article.

We achieved promising results after our fi-
nal submission with bag-of-words and bag-of-
character n-grams. This indicates that a bag-of-
words approach is able to identify token-based
patterns in corpora that are related to bias. How-
ever, the reliability of a bag-of-words approach
does depend on the lexical similarity between
training and test data. We demonstrated this
through our contradicting results on the provided
validation and official test data.

Sentiment proved to be quite a strong feature
that can already separate biased from unbiased ar-
ticles, although more heuristics are needed. This
could be combined with the title of the article
which, much like sentiment, tells us something
about the entire article. It could also be interest-
ing to experiment with more general cues about
entire texts rather than treating texts as only bags-
of-words. This could help develop a system that
scales better across different corpora and domains.

References

Joan B. Hooper. 1975. On assertive predicates. In Syn-
tax and Semantics Volume 4, volume 4, pages 91 –
124. Academic Press, New York.

1019

Christoph Hube and Besnik Fetahu. 2018. Detect-
ing biased statements in wikipedia. In Compan-
ion Proceedings of the The Web Conference 2018,
WWW ’18, pages 1779–1786, Republic and Canton
of Geneva, Switzerland. International World Wide
Web Conferences Steering Committee.

C.J. Hutto, Scott Appling, and Dennis Folds. 2015.
Computationally detecting and quantifying the de-
gree of bias in sentence-level text of news stories.
HUSO 2015: The first international conference on
HUman and Social Analytics, pages 30–34.

Clayton J. Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In ICWSM. The AAAI Press.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Bing Liu, Minqing Hu, and Junsheng Cheng. 2005.
Opinion observer: analyzing and comparing opin-
ions on the web. page 342–351.

Edward Loper and Steven Bird. 2002. Nltk: The nat-
ural language toolkit. In In Proceedings of the ACL
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Compu-
tational Linguistics. Philadelphia: Association for
Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic models for ana-
lyzing and detecting biased language. In ACL (1),
pages 1650–1659. The Association for Computer
Linguistics.

Emmanuel Vincent and Maria Mestre. 2019. Crowd-
sourced measure of news articles bias: Assessing
contributors’ reliability. In CEUR Workshop Pro-
ceedings, volume 2276.

1020

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1021–1025
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Kit Kittredge at SemEval-2019 Task 4: LSTM Voting System

Rebekah Cramerus
Department of Linguistics

University of Potsdam
Potsdam, Germany

rebekah.cramerus@fulbrightmail.org

Tatjana Scheffler
Department of Linguistics

University of Potsdam
Potsdam, Germany

tatjana.scheffler@uni-potsdam.de

Abstract

This paper describes the approach of team Kit
Kittredge to SemEval 2019 Task 4: Hyper-
partisan News Detection. The goal was bi-
nary classification of news articles into the cat-
egories of “biased” or “unbiased”. We had two
software submissions: one a simple bag-of-
words model, and the second an LSTM (Long
Short Term Memory) neural network, which
was trained on a subset of the original dataset
selected by a voting system of other LSTMs.
This method did not prove much more suc-
cessful than the baseline, however, due to the
models’ tendency to learn publisher-specific
traits instead of general bias.

1 Introduction

With the proliferation of online news agencies af-
ter the rise of the Internet, access to information
about what is going on in the world has never
been more widespread. How that information is
presented, however, can have a large influence on
what conclusions the reader draws from it. Be-
ing able to automatically identify hyperpartisan-
ship (bias or adherence to one party or faction over
others) in a news article would help individuals in
their news consumption and potentially result in a
better-informed population.

As suggested, the challenge approached in this
paper is that of hyperpartisan news detection: a
binary classification problem (biased or unbiased)
with news articles as data. This task can be consid-
ered as related to stance detection and in general,
sentiment analysis. The challenge was organized
as Task 4 for SemEval 2019 (Potthast et al., 2018)
(Kiesel et al., 2019). Final submissions were sub-
mitted through TIRA, with the test datasets hidden
(Potthast et al., 2019).

First in this paper, Section 2 includes an in-
troduction of the provided dataset and a descrip-
tion of preprocessing techniques used for our ap-
proach. Section 3 describes the first submitted

software, a bag-of-words model. Section 4 contin-
ues with our second approach, an LSTM trained
on a subset of the original dataset, and a descrip-
tion of how that subset was selected.

Section 5 presents our results on the test set and
Section 6 delves into analysis, presenting potential
reasons why the models did not perform very well.

2 Data

During the course of the task participants were
granted access to different datasets with which to
work.

A training dataset of 600,000 articles and a val-
idation dataset of 150,000 articles were both re-
leased to participants. Both sets contain 50% un-
biased and 50% biased articles, and of the latter,
half are left-biased and the other half right-biased
(in terms of their placement on the political spec-
trum). Importantly, these articles were all labeled
with the overall bias of their publisher, which was
obtained by MediaBiasFactCheck.com and Buzz-
Feed. The set of publishers whose articles appear
in the training set has no overlap with the publish-
ers of the validation set, and neither has any over-
lap with the publishers whose articles appear in the
inaccessible test set.

We consider the labels of these datasets to be
noisy: though publishers may have an overall bias,
it is likely that most biased news agencies do not
publish only biased articles, just as most unbiased
news agencies may occasionally publish a biased
piece.

Also relevant is a third released dataset referred
to in this paper as the byarticle dataset. Unlike
the other datasets, this one contains articles which
were labeled individually through crowdsourcing.
It is small, at 645 articles, and unbalanced, at 63%
unbiased and 37% hyperpartisan.

1021

2.1 Preprocessing

Certain preprocessing tasks were carried out on
the entire dataset pre-training, and also applied to
the test set during evaluation.

Some cleaning tasks required segmentation of
texts into sentences or words using the Natural
Language Toolkit (NLTK) (Bird et al., 2009).

Special characters, double spaces, more than
three dots in a row, and any failures in charac-
ter translation (for example, “gun control” becom-
ing ?gun control?) were replaced or removed.
Regular expressions were used for some of these
tasks, as well as for removing img or html tags
and URLs. Another list of phrases were summar-
ily removed from each text: those which were
likely byproducts of the articles’ retrieval from
their websites. These included “Continue Reading
Below...”, “Image Source:”, “Opens a New Win-
dow”, and so on.

As will be discussed, a recurring problem en-
countered by our models was the tendency to learn
publisher-specific traits and not hyperpartisanship
itself. To combat this we included methods to re-
move potential publisher-specific text, especially
names and emails of the authors of the articles, in
our preprocessing step.

3 Software 1: Bag-Of-Words

Our first approach was a bag-of-words baseline for
initial exploration of the dataset and comparison
with the more complex second approach.

3.1 Tokenization / Lemmatization

Texts were tokenized into words, and the words
reduced to their lemmas, using spaCy (Honnibal
and Johnson, 2015).

3.2 Vectorization

First we created a vocabulary of the most common
4000 words in the overall corpus (all datasets), ex-
cluding stopwords from a list compiled by scikit-
learn (Pedregosa et al., 2011).

We also excluded from the vocabulary words
from an exceptions list, in an attempt to reduce
the problem of overfitting to the article publishers.
This exceptions list was formed by counting all
words in the training and validation datasets, and
gathering those words which appeared five times
more often (relative to the size of the corpus) in
one set than in the other. Some of these terms were
location-specific (abq, lobos, nmsu — likely a

publisher based in New Mexico) and others hinted
at coverage of a certain topic (samsung, boeing,
verizon — possibly a publisher which wrote of-
ten about the stock market). The intent behind this
was to help avoid the model picking up, for exam-
ple, that the presence of terms surrounding New
Mexico automatically meant a certain label.

With a final vocabulary, each text was then con-
verted to a vector of length 4000, wherein each
dimension is the count of the corresponding vo-
cabulary word in that text.

3.3 Model

Using scikit-learn, the training and validation
datasets were vectorized according to the previ-
ously described specifications and then fit to a lo-
gistic regression model. This was then submitted
to TIRA.

4 Software 2: LSTM

Long Short Term Memory networks (or LSTMs)
are a form of Recurrent Neural Networks (or
RNNs) which is capable of learning long-term de-
pendencies. Given the nature of the problem and
the data — a text being a sequence of words,
the relationship between them as important as the
words themselves — we chose to develop a model
with this architecture.

4.1 Word Embeddings

To transform the article texts into vectors able to
be processed by the neural network, we chose to
train our own skip-gram word embeddings on the
total given corpus (training, validation and byarti-
cle datasets). Embeddings of 50 dimensions (cho-
sen mostly arbitrarily, but in part due to computa-
tional limits) were trained using the Python pack-
age gensim, for 10 epochs, including words in the
vocabulary which appeared in the corpus over five
times (Řehůřek and Sojka, 2010). The total vocab-
ulary size was 457,197 words.

4.2 Vectorization

Texts were first transformed into arrays of the
shape (100, 50), wherein 100 was the cutoff or
maximum text length and 50 was the dimension-
ality of the word embeddings. Texts shorter than
100 words were padded with zero-vectors to keep
the shape consistent to feed into the network.

1022

Model Test Dataset Accuracy Precision Recall F1
Bag-of-Words byarticle 57.8 54.7 90.8 68.3
LSTM byarticle 58.3 55.8 79.2 65.5
Bag-of-Words bypublisher 61.2 57.8 83.4 68.2
LSTM bypublisher 65.2 64.7 67.1 65.9

Table 1: Results on the test datasets.

4.3 Architecture

The model consists of a single LSTM layer with
50 units, followed by a dropout wrapper with a
keep probability of 0.75 to help prevent overfit-
ting. Next is a standard feedforward neural net-
work output layer. AdamOptimizer was used with
a 0.001 learning rate as well as softmax cross-
entropy loss for optimization.

All LSTM models were trained using Tensor-
flow for approximately 2 epochs (Abadi et al.,
2015).

4.4 Voting System

Knowing that the biggest obstacle faced so far was
the tendency of models trained on the datasets to
overfit to the publishers and not bias itself, we
chose to pare down the dataset for the final sub-
mission. In theory the ideal dataset, in which there
is no noise from the publisher-based labels, is con-
tained within the original dataset. To find that sub-
set — or at least to get closer — we implemented
a voting system.

Three LSTMs of the previously described archi-
tecture were trained: one each on the training, val-
idation and byarticle datasets. We then collected
predictions from each LSTM, on each article in
each dataset. The articles which all three LSTM
models correctly labeled were pulled into a new
dataset labeled agree. This dataset, in total size
162,046 articles with 37% biased and 63% unbi-
ased labels, was what we trained our final model
on.

4.5 Retrained LSTM

Once the new datasets were compiled from the
voting system based on the originals, a new LSTM
with the same architecture was trained on the com-
bined data. This model was submitted to TIRA as
our second software.

5 Results

Both approaches were scored on the hidden test
datasets using TIRA. One of the two test datasets

was labeled individually by article, referred to in
this paper as the byarticle-test dataset, including
638 articles with no publisher overlap with any of
the given corpora. The other, like the training and
validation sets, was labeled overall by publisher,
here referred to as the bypublisher-test dataset,
with a total of 4000 articles, also including no pub-
lisher overlap with other datasets.

Results can be seen in Table 1. The LSTM
tended to outperform the Bag-of-Words model in
accuracy, but had lower f1 scores. All results
showed higher recall than precision — and except
for the case of the LSTM with the bypublisher-test
set, markedly higher. By accuracy, the best result
was the LSTM on the bypublisher-test set.

6 Discussion

In the published leaderboard, most teams had
higher scores on the test dataset which was labeled
by article rather than the one labeled by publisher;
overall, the highest accuracy was over 10% higher
on the byarticle-test set than on the bypublisher-
test one. Our approaches, on the other hand, both
performed better on the bypublisher-test dataset.
This could be in part because we did not spend
too much time optimizing over the small byarticle
dataset which was released to us — trying addi-
tional techniques to maximize performance over
this set could be a task for future work.

Why our results are better on the bypublisher-
test sets is an interesting question. Our efforts
in both approaches were focused on enabling
the models into generalizing about bias, instead
of on recognizing only which articles belong to
which publishers. Better performance on the
bypublisher-test run than on the byarticle-test run
suggests that our efforts may have paid off, but in
the sense that we are better able to identify biased
publishers instead of biased articles. That is, the
question that the first models were answering was,
“Does this article belong to X set of publishers,
or Y set of publishers?” We attempted to instead
answer the question, “Is this article biased?” But

1023

higher accuracy on the bypublisher-test dataset in-
dicates that we might instead answer the question,
“Does this article belong to a biased publisher?”

6.1 Precision/Recall
Across all models recall was consistently higher
than precision. Our approaches therefore were
correctly picking out hyperpartisan articles, but
also misclassifying unbiased articles as biased.
There are a variety of reasons why this could hap-
pen: quotes by partisan speakers could affect a rat-
ing of an unbiased article which discusses it, or
certain topics could be more often reported in a
partisan manner so that unbiased articles around
them are rare and misclassified. A closer exami-
nation of the test dataset results would be needed
for a more concrete discussion.

6.2 Software 1 Exceptions List
The exceptions list was created with the intent of
removing words from the vocabulary which were
extremely lopsided in their use between publish-
ers (as in, some publishers, or just one in partic-
ular, were much more likely to use the term than
others). While initial results looked promising, it
is possible that the method was not robust enough,
and some unigram indicators of a certain publisher
still ended up in the final model.

6.3 Software 2 Dataset: Voting System
The idea behind the voting system was to pare
down the original dataset, reducing noise and
therefore focusing on the data points where bias
was most salient — and could as such be picked
up by models trained on different publishers. The-
oretically these articles would all have character-
istics common to biased articles of all publish-
ers. When put together, then, the hope was that
a model trained on this subset of the dataset would
learn those common characteristics and not just
the publisher-specific ones.

There are many things that could have gone
wrong with this system, however. Our cutoff for
the news article length may have been too short,
for example. Secondly, Since the three models
used for voting did not have very high accuracy
on each other’s datasets in the first place, the level
of noise may not have been reduced at all. Fur-
thermore, the original training dataset was four
times as large as the validation dataset, and the
byarticle dataset was far smaller than either. Their
subsets after the voting system was applied were

equally unbalanced. When combined and used for
training the final LSTM, it could have been unbal-
anced enough that the model learned mostly from
the data from the original dataset, and the features
from those publishers.

7 Conclusion

In approaching Task 4 (Hyperpartisan News De-
tection) in SemEval 2019, we developed two mod-
els for submission: a Bag-of-Words logistic re-
gression model and an LSTM neural network
trained on a subset of the original training and val-
idation sets. While neither model reached high ac-
curacy rates on the test datasets, their methods still
provoke some discussion on how to better avoid
fitting to the publishers and not bias itself.

8 Namesake

Margaret Mildred “Kit” Kittredge is a character
from the American Girl doll and book series. She
was born in Ohio in the 1920s and wanted to be-
come a reporter when she grew up. In her room
in the attic, she would write her news articles on a
typewriter to share with her family.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Steven Bird, Edward Loper, and Ewan Klein. 2009.
Natural language processing with python. O’Reilly
Media Inc.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1373–1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,

1024

Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

1025

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1026–1031
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Ned Leeds at SemEval-2019 Task 4: Exploring Language Indicators
of Hyperpartisan Reporting

Bozhidar Stevanoski, Sonja Gievska
Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University
Rugjer Boshkovikj 16, Skopje, Republic of North Macedonia
bozidar.stevanoski@students.finki.ukim.mk

sonja.gievska@finki.ukim.mk

Abstract

This paper reports an experiment carried out
to investigate the relevance of several syntac-
tic, stylistic and pragmatic features on the task
of distinguishing between mainstream and par-
tisan news articles. The results of the eval-
uation of different feature sets and the extent
to which various feature categories could af-
fect the performance metrics are discussed and
compared. Among different combinations of
features and classifiers, Random Forest classi-
fier using vector representations of the head-
line and the text of the report, with the inclu-
sion of 8 readability scores and few stylistic
features yielded best result, ranking our team
at the 9th place at the SemEval 2019 Hyper-
partisan News Detection challenge.

1 Introduction

Current influential technological megatrends, such
as, smart phones and social networking often
come with some unwanted side effects - prolific
spread of false, biased and misleading informa-
tion, for instance. In the past few years, the po-
tential threats and consequences of disseminating
fake news has reinforced the discussion on the re-
sponsibility of social media and governments to
tackle the issue, sooner rather than later. Enabling
users to report on and be informed of untruth-
ful, deceitful and fraudulent content and sources
is expected to become a type of guiding principle
for those involved in publishing and disseminating
content online.

There is a blurred line between deceptive writ-
ing and hyperpartisan reporting, producing ex-
tremely biased articles in favor of one political
party, cause or individual, while preserving the
format and appearance of professional articles.
Adherence to the ethics and rules of objective re-
porting is frequently debatable when it comes to
political analysis in media articles. While certain

truthful facts are present, they are carefully en-
tangled in a narrative package with biased views,
populistic messages and divisive topics, using lan-
guage that polarizes and flares emotions. Rather
than labeling and grading news articles on the truth
continuum, researchers usually opt for identifica-
tion of the phenomenological and contextual fea-
tures of distinguishing hyperpartisanship in online
news articles.

People use diverse set of cues extrapolated
from published text and external knowledge and
sources, when verifying the veracity of informa-
tion imparted by others. A large body of evidence
documents the impact of deception has on lan-
guage choices people make. A notable body of
work exists revealing insights into the language of
deceit in interrogation context (Porter and Yuille,
1996), court hearings (Coulthard et al., 2016), or
personal relationships (Miller et al., 1986). Em-
pirical studies still remain the primary manner in
which manifestation of deceptive human behavior
online is studied. Analysis of political language
(Rashkin et al., 2017), partisan media (Gervais,
2014), and news publishing (Rubin et al., 2015)
were also guided broadly by the questions pertain-
ing to detecting deception in written language.

In what follows, we highlight the primary find-
ings of our empirical research in identifying tan-
gible verbal indicators as they relate to our cen-
tral commitment of detecting deception in text.
In this paper we examine the impact of grammar
and psycho-linguistic word categories, syntactic
word connotations and text complexity metrics on
the task of distinguishing hyperpartisanship in real
news articles.

2 Related Work

Given how prolific fake content has become, the
phenomenon has challenged the interdisciplinary

1026

research community and has been the focus of no-
table research studies, especially in the field of
natural language processing (NLP) and social net-
work analysis.

While it is beyond the scope of this paper to ex-
haust a review on the topic, of particular relevance
to the authors of this paper are the works in mon-
itoring and detecting what is considered untruth-
ful and deceitful content. The differences in the
type of conveyed text and the underlying context
are likely to afford contrasting models of decep-
tion i.e., combination of linguistic features and se-
lection of classification algorithm they rely upon.

It is interesting to note that rather simple lin-
guistic analysis could be successful on a number
of NLP tasks relating to detection of deceptive
text, such as fake news, opinions, trolling, hate
and abusive language, including hyperpartisan re-
porting. This indicates that it is not semantics,
but rather syntactic and pragmatics of the language
style of the author that give clues of the underlying
cognitive states relating to deception.

Low-level linguistic features such us word
counts and frequencies (Horne and Adali, 2017),
language modeling (Conroy et al., 2015; Potthast
et al., 2018; Pérez-Rosas et al., 2018), part-of-
speech tags (POS) (Lim et al., 2018; Conroy et al.,
2015), Probabilistic Context Free Grammar (Feng
et al., 2012), readability scores (Potthast et al.,
2018), and their combinations have proved to be
successful with varying performance and gener-
alization power, especially for testing on cross-
domain datasets. The research study most closely
related to ours, proposes a model for hyperpartisan
classification that yielded accuracy of 0.75 (Pot-
thast et al., 2018), which will be used as a baseline
accuracy against which our model will be com-
pared.

The use of deep learning architectures (Wang,
2017) have complemented the list of traditional
machine learning algorithms (ML), such as SVM
(Yang et al., 2017; Lim et al., 2018), logis-
tic regression, discriminant analysis, decision
trees (Potthast et al., 2018) and neural networks
(Vuković et al., 2009), used in the field of decep-
tive detection. An unavoidable discussion on the
trade-offs between generality and specificity of the
models has never ceased to flavor the interpreta-
tion of results and point out directions for future
improvements.

3 Dataset

Two datasets of news articles were available for
the SemEval 2019 Task 4: ”Hyperpartisan news
detection” (Kiesel et al., 2019), one labeled ”by-
article” by professional journalists, and the other
labeled ”by-publisher”.

Our empirical study was focused on the former
one, whose training dataset consists of 645 arti-
cles. The testing dataset, which is not publicly
released, are made available via TIRA (Potthast
et al., 2019), and it contains 628 by-article articles.
It is balanced and consists of articles from previ-
ously unseen publishers in the training sets. For
evaluation purposes, we randomly choose 80% of
the by-article data for training, and the remaining
20% for validation.

4 Our Methodology

In this paper, we further enhance the feature set
explored by related research, and explore few fea-
tures that appeared to be promising to capture syn-
tactic and pragmatic aspect of hyperpartisan re-
porting.

Word vector representations: Though previ-
ous research studies on this topic use language
modelling i.e., frequencies of n-grams in an arti-
cle to unmask the style of hyperpartisan reporting,
our view is that it is distributed word vector repre-
sentations might augment the model in capturing
the style of deceptive and biased political report-
ing.

Word2Vec has been emphasized as providing
better performance, generalizability and transfer
of knowledge on a number of related NLP prob-
lems. In consequence, word2vec, pre-trained on
part of the Google News dataset consisting of cca
100 billion words (Mikolov et al., 2013) was uti-
lized in our model.

Indication of hyperpartisan language and style
could be found in various parts of a journal article -
article headline and individual sentences could be
indicative of biased and partisan language. Trans-
mission of context, set by a sentence that is en-
tailed in the consecutive sentences in a document,
is the core idea underlying the proposed word vec-
tor representations on two different levels, one on
a sentence level and another on a document/article
level. Consequently, three word embeddings rep-
resenting the headline, the sentences and the entire
document text were concatenated creating the final
word2vec vector.

1027

For the word and sentence tokenization we use
the Natural Language Toolkit (NLTK)1.

Readability scores: Readability scores mea-
sure the ease of comprehension of a particular
style of writing based on metrics such as, word
and sentence length and various weighting fac-
tors and ratios, making them closely related to the
quantitative aspect of text complexity. In accor-
dance with successful practices reported in pre-
vious research in text deception detection (Pérez-
Rosas et al., 2018; Yang et al., 2017), we use
eight such scores2, namely Flesch Reading Ease
(Flesch, 1948), Flesch Kincaid Grade Level (Kin-
caid et al., 1975), Coleman Liau Index (Coleman
and Liau, 1975), Gunning Fog Index (Gunning,
1952), SMOG Index (Harry and Laughlin, 1969),
ARI Index (Senter and Smith, 1967), LIX Index
(Björnsson, 1968) and Dale-Chall Score (Chall
and Dale, 1995).

General stylistic measures: We also employ
elementary measures - number of characters, to-
tal words, different words, sentences, syllables,
polysyllable words, difficult words (as defined by
(Dale and Chall, 1948)), and words longer than 4,
6, 10 and 13 characters.

Psycho-linguistic features: Motivated by pre-
vious studies in the field of deceptive text analy-
sis, including fake news examination (Cunha et al.,
2018), exploring fraudulent hotel reviews (Fast
et al., 2016), characterizing and detecting hateful
Twitter users (Ribeiro et al., 2018), we explore the
effect of all 194 types of features from the Empath
(Fast et al., 2016) lexicon on the task of hyperpar-
tisan news detection.

Part-of-speech tagging: The frequencies of
part-of-speech (POS) categories of the words in
text, in particular frequencies of nouns, proper
singular nouns, personal and possesive pronouns,
wh-pronouns, determiners, wh-determiners, cardi-
nal digits, particles, interjections, adjectives, verbs
in base form, past tense, gerund, past participle,
3rd and non-3rd person singular present, were
added to our model.

Augmented stylistic feature set: Instead of
eliminating stop-words, we take the number of
their occurrences as a feature. We use the corpus
made available by NLTK. Frequencies of interrog-
ative (how, when, what, why) and all-caps words,
negations (not, never, no) and punctuation marks

1https://www.nltk.org/ Last accessed: 23 February 2019.
2https://pypi.org/project/ReadabilityCalculator. Last Ac-

cessed: 20 February 2019

are as stylistic features. The stylistic features were
normalized by article length.

Bag-of-words of hyperlinks: The links in each
article are abbreviated to their base URL form, us-
ing Python’s Urllib3, and further transformed into
a bag-of-words (BoW) representation. Both inter-
nal (anchor links) and external links in respect to
the articles, are taken into account for the BoW
representation.

5 Results and Discussion

The relationship between various predictive mod-
els and evaluation metrics has always been a topic
of interest in machine learning and NLP, and this
section describes the performance of the feature
sets we have experimented with. It is important to
note that since the features we test can take values
from different ranges, we perform min-max nor-
malization on all of them to bring them in the [0, 1]
interval.

We have experimented with various classifiers,
such as Logistic Regression, Multilayer Percep-
tron and Extra Trees, although the most success-
ful one was Random Forest (RF) classifier with
100 trees, which is in line with the findings of the
baseline model (Potthast et al., 2018). We use the
Python implementation of the classifiers from the
Scikit-learn library. 4

While aiming for achieving high accuracy,
avoiding overfitting was also an objective to en-
sure the model is robust enough to handle pre-
viously unseen data. The evaluation results ob-
tained by the models on by-article validation and
test datasets are presented in Table 1. A short de-
scription of the evaluated models follows:

• Model 1 - A model that incorporates three
concatenated word representation vectors,
eight readability scores and the general stylis-
tic features

• Model 2 - The set of features of Model 1 aug-
mented with psycho-linguistic features

• Model 3 - Frequencies of the POS tags and
additional stylistic features were added to the
set of features included in Model 2

• Model 4 - An extension of Model 1 feature
set that included hyperlink features

3https://docs.python.org/3/library/urllib.html Last Ac-
cessed: 23 February 2019.

4https://scikit-learn.org/ Last accessed: 23 February 2019.

1028

Models By-article test dataset By-article validation dataset
accuracy precision recall F1 score accuracy precision recall F1 score

1 0.775 0.865 0.653 0.744 0.837 0.857 0.652 0.741
2 0.769 0.860 0.643 0.736 0.798 0.833 0.543 0.658
3 0.760 0.844 0.637 0.726 0.814 0.844 0.587 0.692
4 0.763 0.851 0.637 0.729 0.837 0.903 0.609 0.727
5 0.710 0.784 0.580 0.667 0.806 0.784 0.630 0.699

Table 1: Performance comparison of models trained on the by-article dataset.

• Model 5 - Principal Component Analysis
(PCA) was used to reduce dimensionality of
Model 3 to 50 features

The model i.e., feature set that exhibits the
best performance is Model 1, that outperforms the
other models on the validation as well as on the by-
article test dataset, but also outperforms the base-
line accuracy results presented in (Potthast et al.,
2018) by 2.5%.

The attempts to improve the performance on the
same dataset by augmenting the set of features
with new ones were dissatisfactory and did not
lead to any performance advantage. Augmenting
the feature set with psycho-linguistic features or
POS tags in Model 2 and Model 3 respectively,
failed to gain any performance advantage com-
pared to Model 1 Model 4 yielded the worst re-
sults. Reducing the dimensionality of the feature
space of Model 3 to a 50-dimensional one by us-
ing PCA in Model 5, led to even greater degra-
dation of performance metrics. When testing the
predicting power of the hyperlink features inde-
pendently from all other features, the results were
significantly better than chance.

The weakness of the models can be explained
by the difficulty in defining general heuristics
with which to detect biased and deceptive reports.
Much of this research represents an effort to un-
derstand the clues which give insight into the un-
derlying conditions pertaining to such reporting in
news articles. Close inspection of data and com-
parative analysis with the models participating on
the same SemEval task could better support the in-
terpretation of our results. In addition, not having
information on the cases that were misclassified
by our models, makes it difficult to speculate and
offer solutions for proper treatment and improve-
ment of the limitations of our model.

6 Conclusion

In this paper, we report on an experiment that ex-
amines the predictive effect of the different fea-
ture sets on automatic detection of hyperpartisan
articles. Results implicate that the features exam-
ined in this research, to varying degree, capture
the syntactic and pragmatic aspects of hyperparti-
san style, and generalize well to a set of previously
unseen articles by unseen publishers. The find-
ings provide evidence of strong modeling capa-
bility of word vector embeddings combined with
text complexity metrics of the reports and psycho-
linguistic features, demonstrating that the model
accuracy rivals the performance of other teams
participating in the SemEval 2019 hyperpartisan
challenge, positioning our team at the 9th place on
the task’s leaderboard.

References
Carl-Hugo Björnsson. 1968. Läsbarhet: hur skall man

som författare nå fram till läsarna? Bokförlaget
Liber.

Jeanne Sternlicht Chall and Edgar Dale. 1995. Read-
ability revisited: The new Dale-Chall readability
formula. Brookline Books.

Meri Coleman and Ta Lin Liau. 1975. A computer
readability formula designed for machine scoring.
Journal of Applied Psychology, 60(2):283.

Niall J Conroy, Victoria L Rubin, and Yimin Chen.
2015. Automatic deception detection: Methods
for finding fake news. In Proceedings of the
78th ASIS&T Annual Meeting: Information Science
with Impact: Research in and for the Community,
page 82. American Society for Information Science.

Malcolm Coulthard, Alison Johnson, and David
Wright. 2016. An introduction to forensic linguis-
tics: Language in evidence. Routledge.

Evandro Cunha, Gabriel Magno, Josemar Caetano,
Douglas Teixeira, and Virgilio Almeida. 2018. Fake
news as we feel it: perception and conceptualization

1029

of the term fake news in the media. In International
Conference on Social Informatics, pages 151–166.
Springer.

Edgar Dale and Jeanne S Chall. 1948. A formula for
predicting readability: Instructions. Educational re-
search bulletin, pages 37–54.

Ethan Fast, Binbin Chen, and Michael S Bernstein.
2016. Empath: Understanding topic signals in large-
scale text. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems,
pages 4647–4657. ACM.

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012.
Syntactic stylometry for deception detection. In
Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Short
Papers-Volume 2, pages 171–175. Association for
Computational Linguistics.

Rudolph Flesch. 1948. A new readability yardstick.
Journal of applied psychology, 32(3):221.

Bryan T Gervais. 2014. Following the news? recep-
tion of uncivil partisan media and the use of incivil-
ity in political expression. Political Communication,
31(4):564–583.

Robert Gunning. 1952. The technique of clear writing.
McGraw-Hill, New York.

McLaughlin G Harry and M Laughlin. 1969. Smog
gradinga new readability formula. Journal of Read-
ing, 12(8):639–646.

Benjamin D Horne and Sibel Adali. 2017. This just in:
fake news packs a lot in title, uses simpler, repetitive
content in text body, more similar to satire than real
news. In Eleventh International AAAI Conference
on Web and Social Media.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel. Institute for Simulation and
Training, University of Central Florida.

Sora Lim, Adam Jatowt, and Masatoshi Yoshikawa.
2018. Understanding characteristics of biased sen-
tences in news. INRA 2018, October 2018, Turin,
Italy.

Tomas Mikolov, Kai Chen, G.s Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Proceedings of Workshop at
ICLR, 2013.

Gerald R Miller, Paul A Mongeau, and Carra Sleight.
1986. Invited article fudging with friends and ly-
ing to lovers: Deceptive communication in personal
relationships. Journal of Social and Personal Rela-
tionships, 3(4):495–512.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2018. Automatic de-
tection of fake news. Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 33913401 Santa Fe, New Mexico, USA, Au-
gust 20-26, 2018.

Stephen Porter and John C Yuille. 1996. The language
of deceit: An investigation of the verbal clues to de-
ception in the interrogation context. Law and Hu-
man Behavior, 20(4):443–458.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and polit-
ical fact-checking. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2931–2937. Association for Com-
putational Linguistics.

Manoel Horta Ribeiro, Pedro H Calais, Yuri A Santos,
Virgı́lio AF Almeida, and Wagner Meira Jr. 2018.
Characterizing and detecting hateful users on twit-
ter. In Twelfth International AAAI Conference on
Web and Social Media.

Victoria L Rubin, Niall J Conroy, and Yimin Chen.
2015. Towards news verification: Deception detec-
tion methods for news discourse. In Hawaii Inter-
national Conference on System Sciences.

RJ Senter and Edgar A Smith. 1967. Automated
readability index. Technical report, CINCINNATI
UNIV OH.

Marin Vuković, Krešimir Pripužić, and Hrvoje Belani.
2009. An intelligent automatic hoax detection sys-
tem. In International Conference on Knowledge-
Based and Intelligent Information and Engineering
Systems, pages 318–325. Springer.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 422–426. Association for
Computational Linguistics.

1030

Fan Yang, Arjun Mukherjee, and Eduard Dragut. 2017.
Satirical news detection and analysis using atten-
tion mechanism and linguistic features. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1979–1989.
Association for Computational Linguistics.

1031

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1032–1036
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Peter Brinkmann at SemEval-2019 Task 4: Detecting Biased News
Articles Using Convolutional Neural Networks

Michael Färber
University of Freiburg, Germany

michael.faerber@cs.uni-freiburg.de

Agon Qurdina
University of Prishtina, Kosovo

agon.qurdina@studentet.uni-pr.edu

Lule Ahmedi
University of Prishtina, Kosovo
lule.ahmedi@uni-pr.edu

Abstract

In this paper, we present an approach for clas-
sifying news articles as biased (i.e., hyperpar-
tisan) or unbiased, based on a convolutional
neural network. We experiment with various
embedding methods (pretrained and trained
on the training dataset) and variations of the
convolutional neural network architecture and
compare the results. When evaluating our best
performing approach on the actual test data
set of the SemEval 2019 Task 4, we obtained
relatively low precision and accuracy values,
while gaining the highest recall rate among all
42 participating teams.

1 Introduction

Hyperpartisan news detection describes the task of
given a news article text, decide whether it fol-
lows a hyperpartisan argumentation, i.e., whether
it exhibits blind, prejudiced, or unreasoning al-
legiance to one party, faction, cause, or person
(Kiesel et al., 2019). In recent years, hyperpartisan
news detection, which we consider synonymous to
news bias detection, has attracted the interest of
researchers and various approaches for news bias
detection have been developed (Recasens et al.,
2013; Baumer et al., 2015; Baly et al., 2018).
However, the definition of bias and the task set-up
of identifying biased news articles differs from au-
thors to authors. For instance, authors might con-
sider the bias in terms of the writing style, while
others might consider it in relation to fact selec-
tion (Hamborg et al., 2018). In this paper, we
use the definition and data set of SemEval 2019
Task 4 (Kiesel et al., 2019), which deliberately
uses the generic definition outlined at the begin-
ning. Note that news bias detection differs from
related tasks such as opinion finding (Ounis et al.,
2006; Macdonald et al., 2007), sentiment analy-
sis, fake news detection (Potthast et al., 2018),

claim assessment (Popat et al., 2016), argumenta-
tion mining on news articles (Palau and Moens,
2009), and personality detection based on texts
(Mairesse et al., 2007).

From a technical perspective, in recent years
deep learning techniques have outperformed tra-
ditional methods concerning various NLP tasks.
This also applies to news article classification
tasks (Ounis et al., 2006; Macdonald et al., 2007).
Indeed, in the SemEval Twitter sentiment analysis
competition in 2015, 2016, and 2017 (Rosenthal
et al., 2015; Nakov et al., 2016; Rosenthal et al.,
2017), among the most popular (and apparently
effective) deep learning techniques were convolu-
tional neural networks (CNNs). Thus, we decided
to build a hyperpartisan news classifier based on
a CNN. Next to our basic model, we also develop
and evaluate variations of our model.

2 Approach

In the following, we outline our approach for news
bias detection.1

2.1 Preprocessing

Given a set of news articles as input, we prepro-
cessed them along the following steps:

Text Cleaning. We replaced the new lines by
spaces, expanded contractions, and removed stop
words, HTML tags, and special characters from
the articles’ content.

Texts to Sequences. The articles’ content was
tokenized and a word dictionary (size: 1,207,438)
was generated.

Sequence Padding. We applied a padding with

1Note that our team’s name is dedicated to Peter
Brinkmann, the German journalist who asked the ques-
tion that ultimately fractured the Berlin wall in 1989.
The source code of the implementation is available
online at https://github.com/michaelfaerber/
SemEval2019-Task4.

1032

Convolutional layer,
with filters using a
window size of 4

The matrix d x l, representing
article word embeddings

Max Pooling
layer with a pool

size of 4

Fully connected
layer with 256

hidden neurons
Output layer

Convolutional layer,
with filters using a
window size of 4

Max Pooling
layer with a pool

size of 4

woman
arrived
home
collected
used
buy
thousands
pounds
worth
jewellery
released
photographs
woman
want
interview
connection
investigation
say
wig
time
pictures

Figure 1: Architecture of our system used for classifying sentences.

a fixed sequence length l. We set l = 5000. Thus,
around 0.04% of the sequences were truncated.

2.2 Basic Model Architecture

Our basic architecture is shown in the Figure 1.
We use a CNN architecture that is based on Kim
et al.’s approach for sentence classification (Kim,
2014). His proposed architecture has been widely
applied for various tasks in the past. The CNN
consists of two subsequent one-dimensional con-
volutional neural networks layers, appended by
MaxPooling layers, and a dense neural networks
layer processing the output of the second CNN
layer. The model is completed by a final output
layer that uses the sigmoid activation function to
return a binary output (i.e., the classification into
biased or non-biased).

In the following, we describe the architecture in
more detail:

Input layer. Considering article’s words were
embedded into d-dimensional vectors, the final
matrix used as input to the model can be writ-
ten as I = l × d where l is the chosen sequence
length (i.e., the length of the articles). Recall that
l = 5000 in our setting.

First convolutional layer. The first transforma-
tion this embedded input goes through is a con-
volutional layer with f 1-dimensional filters of
length k. Thus, the layer weights can be consid-
ered a matrix of shape Wc ∈ Rf×k.

We chose as filter size f = 64, while using a

filter length of k = 4. In our context, having 1-
dimensional filters means that for each word in an
article, its three adjacent words are considered as
the context of the word. The output of the con-
volutional layer then is C = conv(I,Wc) where
conv is the convolutional operation applied to in-
put I using the weights matrix Wc. This operation
includes applying the ReLu activation function to
complete weights calculations. Also, a dropout
function is used to prevent overfitting. We used
a dropout rate of 0.2, which means 20% of the
weights, chosen randomly, during each training
epoch are set to 0.

First max pooling layer. The above output C is
then considered the input to a 1-dimensional Max
Pooling layer. The purpose of the layer is to try
extracting only the most important features of the
convolution outputs. This is done by keeping only
the max value from a pool size p. As we chose
p = 4, the output of this layer can be written as
M = max pool(C, p). This operation reduces the
number of weights by four times.

Second convolutional layer and max pooling
layer. The output M of the max pooling layer is
the input of the second convolutional layer, and the
whole process described above is applied to this
input, to get a final output M2.

Fully connected layer. Given the two-
dimensional matrix of weights from the last step,
the next layer in the network is a fully connected
one with a size of 256 hidden neurons. But in or-

1033

Table 1: Distribution of biased and unbiased articles
(”a.” for articles) in the training and validation data set.

Training Test

Total # samples 588837 147210
samples w/ l > 2500 0.62% 0.58%
samples w/ l > 5000 0.04% 0.03%
of biased articles 290513 72629
non-biased articles 298324 74581
% biased articles 49.34 49.34
% of non-biased articles 50.66 50.66

der for the convolutional output to serve as an in-
put to this layer, it needs to be reduced in dimen-
sionality. The way we chose to do that was using
the flatten method, which keeps all of the values
but flatten them in a long vector. A ReLU activa-
tion function and a dropout layer with a rate of 0.5
were used here.

Output layer. The last layer is a fully con-
nected layer with one neuron. The sigmoid acti-
vation function is used to provide a binary output.

2.3 Architecture Variations
We developed and evaluated the following archi-
tecture variations:

1. The first variation only keeps the most impor-
tant features by using the GlobalMaxPooling
method. Keeping only the max values has
shown good results when used with convo-
lutional layers (Scherer et al., 2010).

2. The second variation uses the flatten method,
which also transforms the convolutional fil-
ters weights to a one-dimensional vector, but
does that by keeping all of the values (text
features) from the convolutional filters and
concatenates them in the resulting vector.
Obviously, the length of the output from this
method will be greater, usually much greater,
than the previous method.

3 Evaluation

3.1 Data Set
Note that the actual SemEval 2019 Task 4 test
data set is hidden and only used for submission.
Thus, we used the training and validation data set
of the SemEval 2019 Task 4 data set for training
and testing our models before the SemEval sub-
missions. Note also that, the biased news arti-
cles in the training and test data set always orig-
inate from sources other than the non-biased news

Table 2: Hyperparameters.
Parameter Value

CNN filter size for CNN 64
CNN kernel size for CNN 4
MaxPooling1D pool size 4
Dropout rate 0.2
Dense layer units 256
Layers Activation function ReLu
Optimizer Adam
Learning Rate Adaptive (0.001→0.00001)
Loss function Binary crossentropy
Batch Size 32

articles. Biased news articles originated mainly
from foxbusiness.com, counterpunch.
org, motherjones.com, truthdig.com,
and dailywire.com, while unbiased news arti-
cles originated mainly from abqjournal.com
and apnews.com. The SemEval 2019 Task 4 is,
thus, to some degree artificial, as, in reality, the
source of a given article could be used as a feature
for the classification.

Due to this correlation between the article’s bias
and its publisher, to have a generic model as much
as possible it was important to have articles from
the same publisher present in both sets. We de-
cided to merge the training and validation data
set, to shuffle the data randomly, and to split it
into a training, validation, and testing data set by
60:20:20. Table 1 shows basic statistics about the
used training data set and test data set.

3.2 Evaluation Settings

We developed our models using Keras v2.1.2 with
a Tensorflow v1.0.0 backend. Training the model
was performed on a machine with 64GB memory
and a GeForce GTX 1080 Ti GPU.

We implemented and evaluated our basic model
using several word-based embedding methods,
where an embedding vector is generated for each
unique word on the text corpus. These embed-
dings can be categorized into two main categories:
(1) pretrained word vectors and (2) custom word
vectors (here, trained on the articles’ content).

We fine-tuned the hyperparameters of our ba-
sic model using the dedicated validation data set.
In the end, we used the parameters as shown in
Table 2. Note that these optimal hyperparame-
ters showed to be the best-performing ones on
both Google’s prebuilt word2vec and the custom
word2vec which we had trained on our training
data.

1034

Table 3: Evaluation results on the custom validation split using various embedding methods.
Embedding # Dim. Accuracy Precision Recall F1

Google’s word2vec (general) 300 0.9255 0.9295 0.9197 0.9246
Stanford’s GloVe (general) 100 0.9198 0.9161 0.9216 0.9188
Facebook’s fastText (general) 300 0.9277 0.9378 0.9021 0.9196
Custom word2vec 100 0.9234 0.9246 0.9197 0.9222
Custom fastText 100 0.9114 0.9309 0.8860 0.9079
Custom news word2vec 100 0.9123 0.9142 0.9073 0.9108

Table 4: Results for the adapted CNN architecture.
Architecture Accuracy

Model using GlobalMaxPooling 0.9225
Model using Flatten 0.9255

3.3 Evaluation Results

3.3.1 Evaluating the Basic Architecture
Table 3 presents the evaluation results for all used
embedding methods. The embedding models gave
similar results, with some slight differences in the
model accuracies for some of them. Thus, we de-
cided to go with one of the better performing mod-
els for the final SemEval test runs (see Sec. 3.3.3).

Although the fastText word embeddings are
said to perform as well as word2vec embed-
dings while being trained much faster (Grave
et al., 2017) and although the domain-specific
pre-trained word2vec embeddings are said to per-
form better than the general pre-trained word2vec
embeddings (Kim, 2014), the general pre-trained
word2vec embeddings lead to the best results in
our evaluation. A reason for that could be that the
words used in the news articles are more spread in
terms of the domains to which they belong. Thus,
the word vectors trained by Google on 100 billion
words of Google News performed even better than
a specific word2vec model trained on millions of
news articles.

3.3.2 Evaluating the Architecture Variations
We trained the extended models with the same
hyperparameters as our basic model and used
Google’s word2vec as word embedding method
based on our results from Sec. 3.3.1. The eval-
uation results are shown in Table 4.

Even though the training times for the flatten
method were much longer due to the huge differ-
ence in terms of the number of trainable param-
eters, we obtained slightly better results than the
GlobalMaxPooling method. Thus, the model cho-
sen for the SemEval submission was the model

employing the flattening method.

3.3.3 Evaluating on SemEval’s Test Data Set
Applying our basic model – using our second ar-
chitecture variation, Google’s word2vec embed-
ding model, the hyperparameters shown in Table 2
and the model itself trained using our mixed, ”arti-
ficial” data sets – on the official SemEval test data
set via official approach submissions, we obtained
accuracy of 0.602, a precision of 0.560, a recall
of 0.955, and a F1 score of 0.706. It becomes ap-
parent that the precision value is considerably low,
while the recall rate is the highest achieved rate
among all submitted systems. Based on our inves-
tigations so far, we believe that one reason for the
low accuracy on the evaluation data set is the la-
beling of the used data sets: while the train and
test data set’s labels depend solely on the article’s
publisher, the labels of the evaluation data set were
hand-labeled on a single article basis.

4 Conclusion

In this paper, we presented a convolutional neu-
ral network architecture for determining whether
a given news articles is biased (i.e., hyperparti-
san) or not. In our experiments, we found that a
convolutional neural network containing the flat-
ten function and using Google’s word2vec em-
beddings performs best. In the official SemEval
2019 Task 4 test runs, we obtained comparably
low precision and accuracy values, while gaining
the highest recall rate among all 42 participating
teams. For the future, besides evaluating a deeper
CNN, we plan to develop two further approaches.
The first one will be based on LSTMs. The sec-
ond model will be a hybrid model, consisting of
a CNN layer, which is supposed to learn the text
features, appended by an LSTM layer for learning
sequence patterns of those features. Furthermore,
we plan to work on a non-deep learning approach
which assigns controversy scores to news articles
and, in this way, determines the bias of the articles.

1035

References
Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,

James R. Glass, and Preslav Nakov. 2018. Predict-
ing Factuality of Reporting and Bias of News Media
Sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3528–3539.

Eric Baumer, Elisha Elovic, Ying Qin, Francesca Pol-
letta, and Geri Gay. 2015. Testing and Comparing
Computational Approaches for Identifying the Lan-
guage of Framing in Political News. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT’15, pages 1472–1482.

Edouard Grave, Tomas Mikolov, Armand Joulin, and
Piotr Bojanowski. 2017. Bag of Tricks for Effi-
cient Text Classification. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, EACL’17, pages
427–431.

Felix Hamborg, Karsten Donnay, and Bela Gipp. 2018.
Automated identification of media bias in news arti-
cles: an interdisciplinary literature review. Interna-
tional Journal on Digital Libraries, pages 1–25.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP’14, pages 1746–1751.

Craig Macdonald, Iadh Ounis, and Ian Soboroff. 2007.
Overview of the TREC 2007 Blog Track. In Pro-
ceedings of The Sixteenth Text REtrieval Confer-
ence, TREC’07.

François Mairesse, Marilyn A. Walker, Matthias R.
Mehl, and Roger K. Moore. 2007. Using linguistic
cues for the automatic recognition of personality in
conversation and text. J. Artif. Intell. Res., 30:457–
500.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. SemEval-
2016 Task 4: Sentiment Analysis in Twitter. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation, SemEval@NAACL-HLT 2016,
pages 1–18.

Iadh Ounis, Craig Macdonald, Maarten de Rijke, Gi-
lad Mishne, and Ian Soboroff. 2006. Overview of
the TREC 2006 Blog Track. In Proceedings of the
Fifteenth Text REtrieval Conference, TREC 2006.

Raquel Mochales Palau and Marie-Francine Moens.
2009. Argumentation mining: the detection, clas-
sification and structure of arguments in text. In Pro-
ceedings of the 12th International Conference on Ar-
tificial Intelligence and Law, pages 98–107.

Kashyap Popat, Subhabrata Mukherjee, Jannik
Strötgen, and Gerhard Weikum. 2016. Credibility
Assessment of Textual Claims on the Web. In
Proceedings of the 25th ACM International Confer-
ence on Information and Knowledge Management,
CIKM 2016, pages 2173–2178.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A Sty-
lometric Inquiry into Hyperpartisan and Fake News.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL’18,
pages 231–240.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic Models for An-
alyzing and Detecting Biased Language. In Pro-
ceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics, ACL’13, pages
1650–1659.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in twitter.
In Proceedings of the 11th International Workshop
on Semantic Evaluation, SemEval@ACL’17, pages
502–518.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. SemEval-2015 Task 10: Sentiment
Analysis in Twitter. In Proceedings of the 9th
International Workshop on Semantic Evaluation,
SemEval@NAACL-HLT 2015, pages 451–463.

Dominik Scherer, Andreas C. Müller, and Sven
Behnke. 2010. Evaluation of Pooling Operations in
Convolutional Architectures for Object Recognition.
In Proceedings of the International Conference on
Artificial Neural Networks, ICANN’10, pages 92–
101.

1036

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1037–1040
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Peter-Parker at SemEval-2019 Task 4: BERT-Based Method in
Hyperpartisan News Detection

Zhiyuan Ning, Yuanzhen Lin, Ruichao Zhong
Department of Computer Science and Technology

Beijing Normal University - Hong Kong Baptist University United International College
Zhuhai, P.R.China

{chineseperson5, jeremy0077jj, answer980810}@gmail.com

Abstract

This paper describes the team peter-parker’s
participation in Hyperpartisan News Detection
task (SemEval-2019 Task 4), which requires to
classify whether a given news article is bias or
not. We decided to use JAVA to do the arti-
cle parser and the BERT model to do the bias
analysis and prediction. Furthermore, we will
show experiment results with analysis.

1 Introduction

As the Hyperpartisan News Detection is getting
more and more popular in NLP area in recen-
t years, our team decided to focus on such kind
of topic and choose task 4 in 2019 SemEval com-
petition, which requires to decide whether a given
news article is showing an unreasoning or blind al-
legiance to some specific groups or persons(Kiesel
et al., 2019). For the task, it also requires the com-
petitor’s model to classify the news article in one
of the two classes, bias or not. In previous Se-
mEval competition, the classification tasks were
mostly regarded as sentiment analysis on Twitter,
news or scientific paper and so on. For SemEval
2019, the task focus on bias detection, which gives
great help for people in daily life to acquire the
news and articles in a more objective way.

So far, the machine learning approaches to
do the bias detection were mostly using the
RNN(Iyyer et al., 2014) or the Word Vec-
tors(Anil Patankar and Bose, 2017), which can get
the accuracy for more than 70%.

To reach a greater performance, we decided
to adopt a state-of-the-art language model, BERT
(Devlin et al., 2018), which set new records on
many NLP tasks recently, into our political bias
task analysis.

For dealing with the given large dataset, JAVA
was used as a parser tool to help us make those
training articles more readable.

2 Model Description

Our task is to predict whether an article or news
is bias or not, which is entirely a binary classifi-
cation task. Recently, Google released an essay
about BERT and its code. They also provided the
performance of BERT model on different tasks in
the essay. One of them is similar to our task, which
is called SST-2. It is a binary classification task,
which is The Stanford Sentiment Treebank, a bina-
ry single-sentence classification task consisting of
sentences extracted from movie reviews with hu-
man annotations of their sentiment. According to
the result (about 95% accuracy), BERT perform
pretty well on SST-2 task.

We chose to use BERT to do the task since it
had better result on binary classification. We will
introduce the BERT model and its detailed imple-
mentation in this section. In the following part, we
will introduce the model architecture, input repre-
sentation, pre-training procedure, and fine-tuning
procedure.

2.1 Model Architecture
The architecture of BERT is a multi-layer bidirec-
tional Transformer encoder. In this model, it in-
dicates the number of layers as L, the hidden size
as H, and the number of self-attention heads as A.
It set the feed-forward/filter size to be 4H. It also
provides two model sizes.

• BERT-Base: L=12, H=768, A=12, Total Pa-
rameters=110M

• BERT-Large: L=24, H=1024, A=16, Total
Parameters=340M

2.2 Input Representation
No matter the input in one token sequence is a
single text sentence or a pair of text sentences,
BERT input representation is capable of represent-
ing them. To construct the input representation of

1037

a given token, we merged the corresponding token,
segment and position embeddings.

2.3 Google pre-trained BERT

Instead of using traditional left-to-right or right-to-
left language models, Google pre-train BERT us-
ing two new unsupervised prediction tasks which
are Masked LM and Next Sentence Prediction.

2.4 Fine-tuning Procedure

It is easy to do BERT fine-tuning for sequence-
level classification tasks. By construction corre-
sponds to the special [CLS] word embedding, we
take the final hidden state (i.e., the output of the
Transformer) for the first token in the input for the
interest of obtaining a fixed-dimensional pooled
representation of the input sequence. We denote
this vector as C ∈ RH . Additionally, the only
new parameters added during fine-tuning are for
a classification layer W ∈ RK∗H . (K is the num-
ber of classifier labels). The label probabilities P∈
RK are computed using a standard softmax, P =
softmax(CW T). All the parameters of BERT and
W are fine-tuned cooperatively to maximize the
log-probability of the correct label. Some modi-
fication must be done slightly on the above proce-
dure in a particular task manner for span-level and
token-level prediction tasks.

3 Experiments

3.1 Parse on the Datasets

A good training data cannot be made without data
cleaning. There were 600,000 training data (by
publisher) and 150,000 validation data (by pub-
lisher) and 645 training data (by article). For such
a huge dataset, we first split data into 75 separated
files, each contained 10,000 news articles so that
they were easy to be opened by text editors.

After doing this, we used JAVA to do data pars-
ing and cleaning and BERT model to do bias
analysis and prediction. In the articles, some
of the characters are escaped as HTML such as
that “ & “ became &. It was really easy to
unescape them with Java, which involved only
one line of method invocation: StringEscapeUti-
ls.unescapeHtml4().

There were some unknown Unicode characters
in the articles, so it is good to be removed. Unfor-
tunately, when applying some regular expression-
s to the articles to remove those characters, some
of the articles in other languages would be gone,

for example, Chinese, since it was hard to find all
the occurring unknown characters in all news arti-
cles and we had to use a simple method which was
blindly removing all the words, not in the range of
\x00 to \x7F in Unicode. So, all the unknown
characters could not be removed in order for re-
taining meaningful words in other languages.

Another problem was that most of the articles
contained too many urls and a number of html tags
because these articles are parsed from the internet.
These might affect the performance and accuracy,
so we used a set of regular expressions to catch
and remove all the urls and html tags in different
forms. Finally, another regular expression was ap-
plied to remove the duplicate punctuation such as
a line of only periods to divide the articles.

3.2 Models and Training
After cleaning the data, we used BERT to train it
with two procedures, which are pre-training and
fine-tuning procedures.

3.2.1 Pre-training Procedure
According to Google, BERT needs plenty of time
and resources to finish the pre-training procedure.
Google used 4 Cloud TPUs in Pod configuration
(16 TPU chips total) to train BERT-Base mod-
el. Considering the limited time and resource, we
decided to download the pre-training model from
Google instead of training it by ourselves. For
the reason that the data consisted of different lan-
guages and Google only released the base model
for multilingual data, we could only choose this,
which is shown below:

• BERT-Base, Multilingual Cased: 104lan-
guages, L=12, H=768, A=12, Total Param-
eters=110M

3.2.2 Fine-tuning procedure
3.2.2.1 Modify processor
BERT needs an explicit input to train or predict,
and it contains the processor to process the input
of the model. For our task, we created a new pro-
cessor for the dataset.

For a model that needs to perform a com-
plete process of training, cross-validation, and
testing, our custom processor needed to inher-
its the DataProcessor, overloads the get labels
function to gain label and also overloads the
get train examples function, get dev examples
function and get test examples function to get

1038

the individual input. These are invoked in the
main function flags.do train, flags.do eval, and
flags.do predict phases, respectively. The contents
of the three functions are much the same, excep-
t that you specify the address of the file to be read
into.

Modifying get train examples function, the
function needed to return a list which is made
up by InputExample class. The InputExam-
ple class only contained the initialization func-
tions. The initialization function only needed
the variable guid, which was used to distinguish
each example and it could be defined as train-
%d’%(i) way. text a is one string, text b is another
string. Text a and text b are two strings and they
were merged with [CLS] and [SEP] to become
[CLS]text a[SEP]text b[SEP]. This merged string
was then given to the model. The last parameter,
label, was also a string, and it should be guaran-
teed to appear in the list returned by the get labels
function.

Functions get dev examples and
get test examples were modified using the
same method above.

3.3 Results

The prediction procedure was done with the
TIRA(Potthast et al., 2019) machine provided by
the organizer.

Prediction on Training Set

We split the training set to get the validation set
and the test set. The first experiment contained
10000 training articles, 2000 validation articles,
2000 test articles. Also, the proportion of the
five categories was equal in the three sets mention
above. All the articles are received from them in
order from the given training set. Figure 1 shows
the result of our first experiments.

Prediction on Test Set

In the second experiment, we directly used the
aforementioned model to predict the given test set
(byarticle) since the result was so good in the first
experiment. But the accuracy was dropped down
to 0.6077. The results is shown on the figure 2.

Prediction on Final Test Set

The accuracy we obtained in the second exper-
iment was so bad and we thought that it was
due to a lack of training data. So, we antici-
pated that more training data would help. Nex-

Figure 1: First experiment accuracy:0.9125,
0 is not bias,1 is bias.

Figure 2: Second experiment accuracy:0.6077,
0 is not bias,1 is bias.

t, we trained all the data and predicted the
test set pan19-hyperpartisan-news-detectionby-
article-test-dataset-2018-12-07. The result was
even worse in this final experiment, which is
shown in the figure 3. The accuracy dropped to
the lowest point, 0.5031. It was just like random
guessing.

3.4 Error Analysis
We guess the reason why we get two different ac-
curacies in two kinds of articles (by publisher, by
article), is that the source of these two articles are
different. Data by publisher is decided by the press
and publisher, and the other is decided by manual
selection. We only trained the data by publisher,
so, it seems that it will not perform well on the
type of data by article.

4 Conclusion

It was a great experience to use BERT to do the
hyperpartisan news detection task although the
result was not quite promising compared with the

1039

Figure 3: Final experiment accuracy:0.5031.

one that Google has achieved. There are many
works we can improve in this task, for example,
we may do text summarization before training the
data since every article is very long. All in all,
more effort still need to be spent in the future time.

References
Anish Anil Patankar and Joy Bose. 2017. Bias discov-

ery in news articles using word vectors. pages 785–
788.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Mohit Iyyer, Peter Enns, Jordan L. Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection us-
ing recursive neural networks. In ACL.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

1040

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1041–1046
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team QCRI-MIT at SemEval-2019 Task 4:
Propaganda Analysis Meets Hyperpartisan News Detection

Abdelrhman Saleh1, Ramy Baly2, Alberto Barrón-Cedeño3,
Giovanni Da San Martino3, Mitra Mohtarami2, Preslav Nakov3, James Glass2

1Harvard University, MA, USA
2MIT Computer Science and Artificial Intelligence Laboratory, MA, USA

3Qatar Computing Research Institute, HBKU, Qatar
abdelrhman saleh@college.harvard.edu,

{baly, mitram, glass}@mit.edu
{albarron, gmartino, pnakov}@hbku.edu.qa

Abstract

We describe our submission to SemEval-2019
Task 4 on Hyperpartisan News Detection. We
rely on a variety of engineered features origi-
nally used to detect propaganda. This is based
on the assumption that biased messages are
propagandistic and promote a particular po-
litical cause or viewpoint. In particular, we
trained a logistic regression model with fea-
tures ranging from simple bag of words to vo-
cabulary richness and text readability. Our
system achieved 72.9% accuracy on the man-
ually annotated testset, and 60.8% on the test
data that was obtained with distant supervi-
sion. Additional experiments showed that sig-
nificant performance gains can be achieved
with better feature pre-processing.1

1 Introduction

The rise of social media has enabled people to eas-
ily share information with a large audience with-
out regulations or quality control. This has al-
lowed malicious users to spread disinformation
and misinformation (a.k.a. “fake news”) at an un-
precedented rate. Fake news is typically charac-
terized as being hyperpartisan (one-sided), emo-
tional and riddled with lies (Potthast et al., 2018).
The SemEval-2019 Task 4 on Hyperpartisan News
Detection (Kiesel et al., 2019) focused on the chal-
lenge of automatically identifying whether a text is
hyperpartisan or not.

While hyperpartisanship is defined as “exhibit-
ing one or more of blind, prejudiced, or unrea-
soning allegiance to one party, faction, cause, or
person”, we model this task as a binary document
classification problem. Scholars have argued that
all biased messages can be considered propagan-
distic, regardless of whether the bias was inten-
tional or not (Ellul, 1965, p. XV).

1Our system is available at https://github.com/
AbdulSaleh/QCRI-MIT-SemEval2019-Task4

Thus, we approached the task departing from
an existing model for propaganda identification
(Barrón-Cedeño et al., 2019). Our hypothesis is
that propaganda is inherent in hyperpartisanship
and that the two problems are two sides of the
same coin, and thus solving one of them would
help solve the other. Our system consists of a lo-
gistic regression model that is trained with a va-
riety of engineered features that range from word
and character TF.IDF n-grams and lexicon-based
features to more sophisticated features that repre-
sent different aspects of the article’s text such vo-
cabulary richness and language complexity.

Our official submission achieved an accuracy
of 72.9% (while the winning system achieved
82.2%). This was achieved using word and char-
acter n-grams. Moreover, post-submission ex-
periments have shown that further performance
improvements can be achieved by carefully pre-
processing the engineered features.

2 Related Work

The analysis of bias and disinformation has at-
tracted significant attention, especially after the
2016 US presidential election (Brill, 2001; Fin-
berg et al., 2002; Castillo et al., 2011; Baly et al.,
2018a; Kulkarni et al., 2018; Mihaylov et al.,
2018; Baly et al., 2019). Most approaches have
focused on predicting credibility, bias or stance.

Stance detection was considered as an inter-
mediate step for detecting fake claims, where
the veracity of a claim is checked by aggre-
gating the stances of the retrieved relevant ar-
ticles (Baly et al., 2018b; Nakov et al., 2019).
Several stance detection models have been pro-
posed including deep convolutional neural net-
works (Baird et al., 2017), multi-layer percep-
trons (Hanselowski et al., 2018), and end-to-end
memory networks (Mohtarami et al., 2018).

1041

The stylometric analysis model of Koppel et al.
(2007) was used by Potthast et al. (2018) to ad-
dress hyperpartisanship. They used articles from
nine news sources whose factuality has been man-
ually verified by professional journalists. Writ-
ing style and complexity were also considered
by Horne and Adal (2017) to differentiate real
news from fake news and satire. They used fea-
tures such as the number of occurrences of differ-
ent part-of-speech tags, swearing and slang words,
stop words, punctuation, and negation as stylistic
markers. They also used a number of readabil-
ity measures. Rashkin et al. (2017) focused on a
multi-class setting (real news vs. satire vs. hoax
vs. propaganda) and relied on word n-grams.

Similarly to Potthast et al. (2018), we believe
that there is an inherent style in propaganda, re-
gardless of the source publishing it. Many stylistic
features were proposed for authorship identifica-
tion, i.e., the task of predicting whether a piece of
text has been written by a particular author. One of
the most successful representations for such a task
are character-level n-grams (Stamatatos, 2009),
and they turn out to represent some of our most
important stylistic features.

More details about research on fact-checking
and the spread of fake news online can be found in
recent surveys (Lazer et al., 2018; Vosoughi et al.,
2018; Thorne and Vlachos, 2018).

3 System Description

We developed our system for detecting hyper-
partisanship in news articles by training a logistic
regression classifier using features such as char-
acter and word n-grams, lexicon-based indicators,
and readability and vocabulary richness measures.
Below, we describe these features in detail.

Character 3-grams. Stamatatos (2009) argued
that, for tasks where the topic is irrelevant,
character-level representations are more sensitive
than token-level ones. We hypothesize that this
applies to hyperpartisan news detection, since ar-
ticles on both sides of the political spectrum may
be discussing the same topics. Stamatatos (2009)
found that “the most frequent character n-grams
are the most important features for stylistic pur-
poses”. These features capture different style
markers, such as prefixes, suffixes and punctuation
marks. Following the analysis in Barrón-Cedeño
et al. (2019), we include TF.IDF-weighted charac-
ter 3-grams in our feature set.

Word n-grams Bag-of-words (BoW) features
are widely used for text classification. We ex-
tracted the k most frequent [1, 2]-grams, and we
represented them using their TF.IDF scores. We
ignored n-grams that appeared in more than 90%
of the documents, most of which contained stop-
words and were irrelevant with respect to hyper-
partisanship. Furthermore, we incorporated Naive
Bayes by weighing the n-grams based on their im-
portance for classification, as proposed by Wang
and Manning (2012). We define xi ∈ R|V | as
a row vector in the TF.IDF feature matrix, rep-
resenting the ith training sample with a target la-
bel yi ∈ {0, 1}, where V is the vocabulary size.
We also define vectors p = α +

∑
i:yi=1 xi and

q = α +
∑

i:yi=0 xi, and we set the smoothing
parameter α to 1. Finally, we calculate the vector:

r = log

(
p/ ‖ p ‖
q/ ‖ q ‖

)
(1)

which is used to scale the TF.IDF features to create
the NB-TF.IDF features as follows:

x′i = r ◦ xi, ∀i (2)

Bias Analysis We analyze the bias in the lan-
guage used in the documents by (i) creating bias
lexicons that contain left and right bias cues, and
(ii) using these lexicons to compute two scores for
each document, indicating the intensity of bias to-
wards each ideology. To generate the list of cues
that signal biased language, we use Semantic Ori-
entation (SO) (Turney, 2002) to identify the words
that are strongly associated with each of the left
and right documents in the training dataset. Those
SO values can be either positive or negative, in-
dicating association with right or left biases, re-
spectively. Then, we select words whose absolute
SO value is ≥ 0.4 to create two bias lexicons:
BLleft and BLright. Finally, we use these lexi-
cons to compute two bias scores per document ac-
cording to Equation (3), where for each document
Dj , the frequency of cues in the lexicon BLi that
are present in Dj is normalized by the total num-
ber of words in Dj :

biasi(Dj) =

∑

cue∈BLi

count(cue,Dj)

∑

wk∈Dj

count(wk, Dj)
(3)

1042

Lexicon-based Features. Rashkin et al. (2017)
studied the occurrence of specific types of words
in different kinds of articles, and showed that
words from certain lexicons (e.g., negation and
swear words) appear more frequently in propa-
ganda, satire, and hoax articles than in trustwor-
thy articles. We capture this by extracting features
that reflect the frequency of words from particu-
lar lexicons. We use 18 lexicons from Wiktionary,
Linguistic Inquiry and Word Count (LIWC) (Pen-
nebaker et al., 2001), Wilson’s subjectives (Wilson
et al., 2005), Hyland’s hedges (Hyland, 2015), and
Hooper’s assertives (Hooper, 1975). For each lex-
icon, we count the total number of words in the
article that appear in the lexicon. This resulted in
18 features, one for each lexicon.

Vocabulary Richness Potthast et al. (2018)
showed that hyperpartisan outlets tend to use a
writing style that is different from mainstream out-
lets. Different topic-independent features have
been proposed to characterize the vocabulary rich-
ness, style and complexity of a text. For this task,
we used the following vocabulary richness fea-
tures: (i) type–token ratio (TTR), or the ratio of
types to tokens in the text, (ii) Hapax Legomena,
or the number of word types appearing only once
in the text, (iii) Hapax Dislegomena, or the num-
ber of types appearing twice in the text, (iv) Hon-
ore’s R, which is calculated as a combination
of types, tokens, and hapax legomena (Honore,
1979):

Honore’s R =
100× log(|tokens|)

1− |Legomena|/|types| (4)

We further used (v) Yule’s characteristic K,
which is defined as the chance of a word occurring
in a text, estimated as following a Poisson distri-
bution (Yule, 1944):

Yule’s K = 104 ·

∑

i

i2|typesi| − |tokens|

|tokens|2 , (5)

where tokens refer to all words in a text (includ-
ing repetitions), types refer to distinct words, i are
the tokens’ frequency ranks (1 being the least fre-
quent), and typesi are the number of tokens with
the ith frequency.

Readability We also used the following read-
ability features, which were originally designed to
estimate the level of text complexity: (i) Flesch–
Kincaid grade level represents the US grade level
necessary to understand a text (Kincaid et al.,
1975), (ii) Flesch reading ease is a score for mea-
suring how difficult a text is to read (Kincaid et al.,
1975), and (iii) Gunning fog index estimates the
years of formal education necessary to understand
a text (Gunning, 1968).

4 Experiments and Results

4.1 Dataset

We trained our models on the Hyperpartisan News
Dataset from SemEval-2019 Task 4 (Kiesel et al.,
2019), which is split by the task organizers into

(i) Labeled by-Publisher, with 750K articles la-
beled via distant supervision, i.e., using labels for
their publisher.2 The labels are evenly distributed
between “hyperpartisan” and “not-hyperpartisan.”
This set is further split into 600K articles for train-
ing and 150K for validation.

(ii) Labeled by-Article: This set contains 645
articles labeled using crowd-sourcing (37% are
hyperpartisan and 63% are not). Only articles with
a consensus among the annotators were included.

4.2 Experimental Settings

We trained a logistic regression (LR) model with
a Stochastic Average Gradient solver (Schmidt
et al., 2017) due to the large size of the dataset. In
order to reduce overfitting, we used L2 regulariza-
tion (with C = 1 as the regularization parameter).
Moreover, feature normalization was needed since
the different features represent different aspects of
the text, and thus have very different scales. We
tried to normalize each feature set by subtracting
the mean and then scaling it to unit variance. How-
ever, we found that multiplying the features by
constant scaling factors resulted in better perfor-
mance. The scaling factor for each family of fea-
tures was a hyperparameter that we tuned on the
validation dataset.

We trained the classifier using the 600K training
examples annotated by-Publisher, then we used
the remaining 150K examples for evaluation. We
fine-tuned the hyperparameters on the 645 by-
Article examples.

2The publisher’s labels are identified by BuzzFeed jour-
nalists or by the Media Bias/Fact Check project

1043

Features
Labeled by-Article Labeled by-Publisher

Accuracy Prec. Rec. F1 Accuracy Prec. Rec. F1

1 BoW (TF.IDF) 67.8 53.8 89.1 67.1 56.7 55.1 72.5 62.6
2 BoW (NB-TF.IDF) 69.6 56.1 80.7 66.2 57.1 56.4 61.9 59.0
3

�

+ Char trigrams 74.0 62.5 73.5 67.6 54.8 54.3 60.8 57.4
4

�

+ Bias 75.2 67.7 62.6 65.1 54.5 55.0 50.4 52.6
5

�

+ Lexical 75.2 67.0 64.7 65.8 52.3 52.3 51.5 51.9
6

�

+ Vocab. Richness 75.8 67.1 67.6 67.4 50.9 50.8 52.5 51.7
7

�

+ Readability 76.0 66.4 70.6 68.4 51.6 51.5 53.9 52.7

Table 1: An incremental analysis showing the performance of different feature combinations, evaluated on the
validation datasets labeled by article and by publisher.

The hyper-parameters include the number of most
frequent word n-grams k, k ∈ [50, 200, 700]×10

3
,

and the scaling parameters of the features, except
for the n-grams. Eventually, we set k = 200, 000,
and we used the most-frequent word [1, 2]-grams.
Moreover, we assessed the different feature sets,
described in Section 3 by incrementally adding
each set, one at a time, to the mix of all features.

4.3 Results

Table 1 illustrates the results obtained on both
the by-Article set (which we used to fine-tune the
model’s hyper-parameters) and the by-Publisher
set (which we used for evaluation). Our results
suggest that scaling the TF.IDF values through
Naive Bayes is better than using raw TF.IDF
scores. Hence, this is what we used in subsequent
experiments. We can also see that adding each
group of features introduces a consistent improve-
ment in accuracy on the by-Article data. How-
ever, we observed an opposite behaviour on the by-
Publisher data. We believe this is due to the signif-
icant amount of noisy labels introduced by the dis-
tant supervision labeling strategy. Therefore, we
based our decisions on the results obtained on the
by-Article data since its labels are more accurate.

The normalization strategy, i.e., scaling the fea-
tures using calibrated scaling parameters, yielded
significant performance improvements. Unfortu-
nately, we could not perform this by the compe-
tition deadline, and thus we submitted the system
that was available at that time, which was based on
the BoW (NB-TF.IDF) and character 3-gram fea-
tures, as shown in row 3 in Table 1. Our system
achieved 72.9% accuracy on the test by-Article
data, ranking 20th/42, and 60.8% accuracy on the
test by-Publisher data, ranking 15th/42.

5 Conclusion

We presented our submission to SemEval-2019
Task 4 on Hyperpartisan News Detection. We
trained a logistic regression model with a fea-
ture set that included word and character n-grams,
weighted using TF.IDF, after scaling using Naive
Bayes. Our system achieved accuracy of 72.9%
and 60.8% on the test datasets that were labeled
by-Article and by-Publisher, respectively.

We further experimented with additional fea-
tures that represent different aspects of the article’s
text such as its vocabulary richness, the kind of
language it uses according to different lexicons,
and its level of complexity. Initial experiments
showed that these features hurt the model.

However, with proper pre-processing and scal-
ing, we were able to achieve significant perfor-
mance gains of up to 2% absolute in terms of
accuracy. Unfortunately, we only obtained these
results after the competition’s deadline, and thus
they were not considered as part of our submis-
sion. Yet, we have described them in order to fa-
cilitate further research.

Acknowledgments

This research is part of the Tanbih project,3 which
aims to limit the effect of “fake news”, propa-
ganda and media bias by making users aware of
what they are reading. The project is developed
in collaboration between the Qatar Computing
Research Institute (QCRI), HBKU and the MIT
Computer Science and Artificial Intelligence Lab-
oratory (CSAIL).

3http://tanbih.qcri.org/

1044

References
Sean Baird, Doug Sibley, and Yuxi Pan.

2017. Talos targets disinformation with
fake news challenge victory. https:
//blog.talosintelligence.com/2017/
06/talos-fake-news-challenge.html.

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,
James Glass, and Preslav Nakov. 2018a. Predict-
ing factuality of reporting and bias of news media
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP ’18, pages 3528–3539, Brussels, Bel-
gium.

Ramy Baly, Georgi Karadzhov, Abdelrhman Saleh,
James Glass, and Preslav Nakov. 2019. Multi-task
ordinal regression for jointly predicting the trustwor-
thiness and the leading political ideology of news
media. In Proceedings of the 17th Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT ’19, Minneapo-
lis, MN, USA.

Ramy Baly, Mitra Mohtarami, James Glass, Lluı́s
Màrquez, Alessandro Moschitti, and Preslav Nakov.
2018b. Integrating stance detection and fact check-
ing in a unified corpus. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT ’18, pages
21–27, New Orleans, LA, USA.

Alberto Barrón-Cedeño, Giovanni Da San Martino, Is-
raa Jaradat, and Preslav Nakov. 2019. Proppy: Or-
ganizing news coverage on the basis of their propa-
gandistic content. Information Processing and Man-
agement.

Alberto Barrón-Cedeño, Giovanni Da San Martino, Is-
raa Jaradat, and Preslav Nakov. 2019. Proppy: A
system to unmask propaganda in online news. In
Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI’19, Honolulu, HI,
USA.

Ann M Brill. 2001. Online journalists embrace new
marketing function. Newspaper Research Journal,
22(2):28.

Carlos Castillo, Marcelo Mendoza, and Barbara
Poblete. 2011. Information credibility on Twitter.
In Proceedings of the 20th International Conference
on the World Wide Web, WWW ’11, pages 675–684,
Hyderabad, India.

Jacques Ellul. 1965. Propaganda: The Formation of
Men’s Attitudes. Vintage Books, United States.

Howard Finberg, Martha L Stone, and Diane Lynch.
2002. Digital journalism credibility study. Online
News Association. Retrieved November, 3:2003.

Robert Gunning. 1968. The Technique of Clear Writ-
ing. McGraw-Hill.

Andreas Hanselowski, Avinesh PVS, Benjamin
Schiller, Felix Caspelherr, Debanjan Chaudhuri,
Christian M. Meyer, and Iryna Gurevych. 2018. A
retrospective analysis of the fake news challenge
stance-detection task. In Proceedings of the 27th
International Conference on Computational Lin-
guistics, COLING ’18, pages 1859–1874, Santa Fe,
NM, USA.

Anthony Honore. 1979. Some Simple Measures of
Richness of Vocabulary. Association for Literary
and Linguistic Computing Bulletin, 7(2):172–177.

Joan B. Hooper. 1975. On assertive predicates. In
J. Kimball, editor, Syntax and Semantics, volume 4,
page 91124. Academic Press, New York.

Benjamin D Horne and Sibel Adal. 2017. This just in:
Fake news packs a lot in title, uses simpler, repetitive
content in text body, more similar to satire than real
news. In Proceedings of the International Workshop
on News and Public Opinion at ICWSM, Montreal,
Canada.

Ken Hyland. 2015. The International Encyclopedia of
Language and Social Interaction, chapter Metadis-
course. American Cancer Society.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, David Corney, Payam Adineh,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan news detection. In Pro-
ceedings of the 13th International Workshop on Se-
mantic Evaluation, SemEval ’19, Minneapolis, MN,
USA.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel. Memphis TN Naval Air
Station, Research B.

Moshe Koppel, Jonathan Schler, and Elisheva
Bonchek-Dokow. 2007. Measuring differentiabil-
ity: Unmasking pseudonymous authors. Journal of
Machine Learning Research, 8:1261–1276.

Vivek Kulkarni, Junting Ye, Steve Skiena, and
William Yang Wang. 2018. Multi-view models for
political ideology detection of news articles. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’18,
pages 3518–3527, Brussels, Belgium.

David MJ Lazer, Matthew A Baum, Yochai Ben-
kler, Adam J Berinsky, Kelly M Greenhill, Filippo
Menczer, Miriam J Metzger, Brendan Nyhan, Gor-
don Pennycook, David Rothschild, et al. 2018. The
science of fake news. Science, 359(6380):1094–
1096.

Todor Mihaylov, Tsvetomila Mihaylova, Preslav
Nakov, Lluı́s Màrquez, Georgi Georgiev, and Ivan
Koychev. 2018. The dark side of news community
forums: Opinion manipulation trolls. Internet Re-
search, 28(5):1292–1312.

1045

Mitra Mohtarami, Ramy Baly, James Glass, Preslav
Nakov, Lluı́s Màrquez, and Alessandro Moschitti.
2018. Automatic stance detection using end-to-
end memory networks. In Proceedings of the 16th
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT ’18,
pages 767–776, New Orleans, LA, USA.

Preslav Nakov, Lluı́s Màrquez, Alberto Barrón-
Cedeño, Pepa Gencheva, Georgi Karadzhov, Tsve-
tomila Mihaylova, Mitra Mohtarami, and James
Glass. 2019. Automatic fact checking using context
and discourse information. ACM Journal of Data
and Information Quality.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
Liwc 2001. LIWC Operators Manual 2001.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A stylo-
metric inquiry into hyperpartisan and fake news. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL ’18,
pages 231–240, Melbourne, Australia.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and polit-
ical fact-checking. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’17, pages 2931–2937, Copen-
hagen, Denmark.

Mark Schmidt, Nicolas Le Roux, and Francis Bach.
2017. Minimizing finite sums with the stochastic av-
erage gradient. Mathematical Programming, 162(1-
2):83–112.

Efstathios Stamatatos. 2009. A Survey of Modern Au-
thorship Attribution Methods. Journal of the Ameri-
can Society for Information Science and Technology,
60(3):538–556.

James Thorne and Andreas Vlachos. 2018. Automated
fact checking: Task formulations, methods and fu-
ture directions. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
COLING ’18, pages 3346–3359, Santa Fe, NM,
USA.

Peter D. Turney. 2002. Thumbs up or thumbs down?:
Semantic orientation applied to unsupervised clas-
sification of reviews. In Proceedings of the 40th
Annual Meeting on Association for Computational
Linguistics, ACL ’02, pages 417–424, Philadelphia,
Pennsylvania.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018.
The spread of true and false news online. Science,
359(6380):1146–1151.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual

Meeting of the Association for Computational Lin-
guistics, ACL ’12, pages 90–94, Jeju Island, Korea.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the
Conference on Human Language Technology and
Empirical Methods in Natural Language Process-
ing, HLT-EMNLP ’05, pages 347–354, Vancouver,
Canada.

George Udny Yule. 1944. The Statistical Study of Lit-
erary Vocabulary. Cambridge University Press.

1046

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1047–1051
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Xenophilius Lovegood at SemEval-2019 Task 4: Hyperpartisanship
Classification using Convolutional Neural Networks

Albin Zehe, Lena Hettinger, Stefan Ernst, Christian Hauptmann and Andreas Hotho
DMIR Group, University of Wuerzburg

<surname>@informatik.uni-wuerzburg.de

Abstract

This paper describes our system for the Sem-
Eval 2019 Task 4 on hyperpartisan news de-
tection. We build on an existing deep learning
approach for sentence classification based on
a Convolutional Neural Network. Modifying
the original model with additional layers to in-
crease its expressiveness and finally building
an ensemble of multiple versions of the model,
we obtain an accuracy of 67.52% and an F1
score of 73.78% on the main test dataset. We
also report on additional experiments incorpor-
ating handcrafted features into the CNN and
using it as a feature extractor for a linear SVM.

1 Introduction

The goal of SemEval 2019 Task 4 is to determine
whether a news article blindly follows a political
argumentation or not, which is referred to as ”hy-
perpartisan news” (Kiesel et al., 2019). Instead of
predicting the exact political orientation, it focuses
on whether an article is hyperpartisan in any way.
This is a very topical issue since news are easily
able to reach millions of people over the internet,
and in recent years have been excessively used to
influence the population, for example regarding
elections. Specifically, one sided media coverage
influences a lot of readers without their knowledge,
demonstrating the necessity of automated detection
of hyperpartisan news.

Approach In this work, we make use of deep
learning models to address this task. We decided to
adapt the sentence CNN proposed by Kim (2014),
as it has been shown to be a strong baseline for text
classification tasks. Since the model was originally
designed for the classification of sentences, we had
to make some modifications in order to deal with
the longer texts provided in this task. While the
very shallow model originally proposed by Kim
(2014) is enough to adequately represent sentences,

we found that it is not expressive enough to model
entire news articles. Thus, we added a second con-
volutional layer and a batch normalization layer
(Ioffe and Szegedy, 2015) to the model. Addition-
ally, we specified a maximum length for articles,
after which they are cut off. These modifications
will be described in more detail in Section 3. We
also experiment with including some hand-crafted
features into the model in an attempt to improve
the performance. Finally, we build an ensemble of
multiple models to obtain our final results.

2 Feature Extraction

In order to train our models, we need to represent
the input texts in some machine readable form. The
data provided in the task contains multiple kinds of
information that we use in different parts of our sys-
tem, namely the CNN model and the hand-crafted
features extracted to provide additional informa-
tion.

2.1 CNN Model
On the one hand, our main CNN model is based
purely on the text of the articles and requires little
pre-processing. For this part, we built a specialized
parser1 to remove HTML tags and split the texts
into tokens, which are then directly used as input
to the CNN. We chose to allow some special char-
acters like punctuation marks to support the model
identifying different sentences. Contractions like
they’re or he’s are split to obtain separate tokens
which can then be mapped to existing ones.

An article is then represented as a sequence
of one-hot vectors, where each dimension corres-
ponds to a word in the vocabulary. This sequence
is concatenated to form a matrix M ∈ Nl×v, where
l is the length of the article and v is the vocabulary
size.

1https://github.com/o8Gravemind8o/nlp_
tokenizer

1047

Word Embeddings As is common for NLP
tasks, we use embedding vectors to represent the
semantic meaning of tokens. Since the provided
datasets are rather large and previous work has
shown that domain specific word embeddings can
greatly improve classifier performance compared
to general embeddings (Hettinger et al., 2018), we
train our embeddings on these datasets. More spe-
cifically, we use Word2Vec (Mikolov et al., 2013)
as well as FastText (Bojanowski et al., 2017) to
retrieve different embeddings and see how they
perform in different approaches.

Dealing with Variable Article Length Due to
CNNs not being able to process input of arbitrary
length, we decided to represent articles with a fixed
length of 2000 tokens. Articles that exceed this
length are cut off at 2000 tokens. This saves a lot
of training time and affects less than 3% of the
articles. In the same way, we pad articles shorter
than 2000 tokens with zeros to achieve a consistent
input size.

2.2 Hand-Crafted Features

On the other hand, we employ hand-crafted fea-
tures partially based on the metadata that is con-
tained in the HTML. We do this to enable our clas-
sifiers to use information that may not be contained
in the raw text and also possibly recover informa-
tion that is lost by the length limit we impose on
the articles. For this purpose, we choose several
kinds of information from the articles, inspired by
Potthast et al. (2018). First, we count (a) every
token in the article and (b) tokens which are placed
between quotation marks. Furthermore, we use
the corresponding HTML tag to count paragraphs
and calculate the average number of tokens per
paragraph. Finally, we use the overall number of
hyperlinks as well as the number of internal and
external links. These values are concatenated to
form a feature vector that can be used as input to
an SVM or as additional input to the CNN.

3 Model Architectures

In this section, we describe the architectures we
evaluated in our experiments, starting with the base
CNN model from Kim (2014) and extending this
model step by step. We also describe an experiment
to use the CNN model as a feature extractor for an
SVM.

Base Model: Sentence CNN We use the sen-
tence CNN from Kim (2014) as a starting point
for our model, illustrated in Figure 1. Articles
are fed into the CNN represented by the matrix
described in Section 2.1. The first layer of the net-
work then converts the one-hot representation to
an embedding representation. To obtain a vector
representation of the words, we use two different
approaches described in Kim (2014), CNN-Rand
and CNN-Static. With CNN-Rand, word vectors
are initialized randomly and learned during train-
ing. CNN-Static uses the embeddings described in
Section 2.1 and does not change them during train-
ing. The CNN extracts features from the articles
through a convolution layer followed by max-over-
time pooling. Classification of an article is obtained
by flattening the max-pool feature map and passing
the features through a fully connected layer.

First Extension: Article CNN As the base
model discards all but one feature from the con-
volution activation map of each filter by using max-
over-time pooling, a lot of features are lost. In the
model’s original task, which is sentence classific-
ation, this is not much of an issue. However, our
experiments show that for the classification of art-
icles (which are much longer than one sentence),
we need to keep more information.

Therefore, we modify the sentence CNN and use
this as a second model, which we call Article CNN.
We add a second convolutional layer after the first
one to learn features that cover a larger range in the
article. Furthermore, we add a batch normalization
layer after the first and after the second convolu-
tional layer to speed up the training process (Ioffe
and Szegedy, 2015).

Second Extension: Article CNN with Hand-
Crafted Features In an attempt to incorporate
additional information into our model, we provided
the model with some handcrafted features de-
scribed in Section 2.2. To make use of handcrafted
features, we append them to the flattened output
of the pooling layer of the Article CNN. Since we
found that the model can not learn from the com-
bination of CNN and hand-crafted features with
only one dense layer at the end, a second dense
layer is inserted before the first one. We refer to
the resulting third model as Article CNN HC.

Model Variant: CNN as a Feature Extractor
In an additional experiment, we use the CNN as a
feature extractor for an SVM. To this end, we first

1048

Figure 1: Architecture of sentence CNN by Kim (2014).

train the Article CNN regularly. We then convert an
article to a feature representation by feeding it into
the trained CNN and extracting the representation
before the first dense layer. This vector is concat-
enated with the hand-crafted features described in
Section 2.2 and used to train a linear Support Vec-
tor Machine (SVM) as an alternative to the neural
classifier of the CNN.

4 Evaluation

After defining our models, we now shortly describe
the datasets (for a more detailed description, see
Kiesel et al. (2019)) before presenting the results
of training and evaluation.

4.1 Data
For training and validation, the task provides
750 000 news articles, which are equally distrib-
uted into the two classes hyperpartisan and not
hyperpartisan. 600 000 of these were used for train-
ing, the remaining 150 000 for validation. These
articles have not been labeled individually, but ac-
cording to their publisher, making them a form
of weakly labelled data. The official evaluation
was then performed on two concealed datasets, one
with articles manually labeled by humans and one
again labeled by publisher. The evaluation data
contains 628 articles labeled individually and 4000
by publisher, with both being equally distributed
into the two classes.

4.2 Metrics
We determine the performance of our models by
measuring accuracy (Acc) and F1 score (F1). As ac-
curacy is the official evaluation metric of SemEval

Task 4, we optimize for this metric.

4.3 Training and Results

We chose to optimize the hyperparameters of our
models by random search (Bergstra and Bengio,
2012). The hyperparameters with the best accuracy
values of each architecture are shown in Table 1.
All configurations use the CNN-static variant. Mod-
els were trained for a maximum of 5 epochs with
a batch size of 256. We employed early stopping
when the validation accuracy did not improve for 8
consecutive batches.

Results on the Validation Dataset First, we re-
port the results obtained by our models on the valid-
ation dataset. All results on this dataset are shown
in Table 2. The best configuration of the Sentence
CNN achieves a maximum accuracy of 62.13%
and an F1 score of 70.47%.

Our first extension, the Article CNN, increases
the accuracy by 1.68 percentage points and F1
score by 6.09 percentage points. We attribute this
to the increased model capacity, which enables the
model to represent articles more adequately. With
the max-pooling layer after the first convolution
layer, the whole article is reduced to one value per
convolution filter, which covers a maximum of 11
words (filter size is 11). The second convolution
layer contains information of several outputs of the
first layer, hence learning higher level features. As
a result of that, less information about the article is
lost by max-pooling.

Our second modification, the Article CNN HC,
however, decreases the model’s performance, as
does using an SVM as a classifier instead of the

1049

Convolution 1 Convolution 2 Dense Layer Miscellaneous

Model Filter Size Filters Filter Size Filters Dropout keep Units Activation Embeddings

Sentence CNN 5 168 — — 0.9 168 tanh Word2Vec
Article CNN 9,10,11 306 7 199 0.837 4179 ReLU FastText
Article CNN HC 7 405 9 210 0.079, 0.274 1890+7, 123 ReLU Word2Vec

Table 1: Best hyperparameters obtained via random search. Article CNN HC has two dense layers, hence two
numbers for dropout and units. We evaluated multiple filter sizes for Article CNN only, due to time constraints.

Model F1 Acc

Sentence CNN 70.47 62.13
Article CNN 76.56 63.81
Article CNN HC 63.02 60.30
Article CNN + SVM 62.07 58.18
SVM HC 66.91 52.83
Ensemble 3 68.69 64.94
Ensemble 5 68.98 66.01

Table 2: Best results achieved on the validation dataset.

final fully-connected part of the CNN (Article CNN
+ SVM). We also trained an SVM purely on the
hand-crafted features for comparison (SVM HC),
leading to a lower accuracy but higher F1 score
than both variants of Article CNN HC.

Finally, we used an ensemble of multiple models
for prediction. To this end, we used either 3 or 5
of our best individual models and combined their
predictions by majority vote. Because of the non-
deterministic nature of training (shuffling of the
input data and random initialization of the network)
(Reimers and Gurevych, 2017), multiple versions
of the same model with similar accuracy may rely
on different features and make different mistakes.
Thus, a combined prediction by the best models
can improve overall accuracy. This is confirmed
by the results of Ensemble 3 and 5 presented in
Table 2, leading us to submit these ensembles as
our final systems. Our best model, Ensemble 5,
combines 5 individual Article CNNs.

Results on the Test Dataset For the final evalu-
ation, participants were able to submit two models
for evaluation on the non-public test sets. We sub-
mitted our two ensemble models comprised of mul-
tiple instances of the Article CNN. Additionally we
were able to evaluate our single best Article CNN
on both test sets, giving us the evaluation results
but not appearing on the scoreboard. Results on
the test dataset are shown in Table 3. As on the
validation dataset, the ensembles outperform the

Article Publisher

Model F1 Acc F1 Acc

Article CNN 70.26 64.81 67.81 66.78
Ensemble 3 72.05 65.29 70.09 66.08
Ensemble 5 73.78 67.52 69.85 66.28

Table 3: Results on the hidden test datasets.

Article CNN in prediction accuracy on the main
test set. Our best performing model, the Ensemble
5, reaches an accuracy of 67.52% on the by-article
test set and 66.28% on the by-publisher test set.
This corresponds to rank 25 of 42 on the Main
Leaderboard (by-article) and rank 4 out of 28 on
the by-publisher Leaderboard.2

5 Conclusion

In this paper, we have described our approach for
SemEval Task 4 to detect hyperpartisanship in news
articles. We trained a CNN for sentence classi-
fication and improved its performance by adding
a second convolution layer and batch normaliz-
ation. Moreover, we combined this model with
handcrafted features. However, this did not lead to
an improvement of classification performance, nor
did the use of an SVM as an alternative classifier.
Finally, an increase of accuracy was achieved by
combining our best models for ensemble predic-
tion. Through this approach, we obtained an ac-
curacy of 67.52% and F1 score of 73.78% on the
by-article test dataset as well as 66.28% accuracy
and 69.85% F1 score on the by-publisher data set.
For future research, possible modifications to our
Article CNN that may bring further improvement
are using more channels for the input or different
filter sizes for max pooling. Apart from that, using
Transformer models (Vaswani et al., 2017) could
be rewarding, as they have become the standard for
many tasks in Natural Language Processing.

2We would like to note that, by F1 score, we would rank
14 out of 42 in the Main Leaderboard (by-article).

1050

References
James Bergstra and Yoshua Bengio. 2012. Random

search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associ-
ation for Computational Linguistics, 5:135–146.

Lena Hettinger, Alexander Dallmann, Albin Zehe,
Thomas Niebler, and Andreas Hotho. 2018. Claire
at semeval-2018 task 7: Classification of relations
using embeddings. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
Conference on Machine Learning, pages 448–456.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. Semeval-
2019 task 4: Hyperpartisan news detection. Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval 2019).

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A stylo-
metric inquiry into hyperpartisan and fake news. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, pages 231–
240.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of lstm-networks for sequence tagging. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 338–
348.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

1051

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1052–1056
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team yeon-zi at SemEval-2019 Task 4: Hyperpartisan News Detection by
De-noising Weakly-labeled Data

Nayeon Lee∗, Zihan Liu∗, Pascale Fung
Center for Artificial Intelligence Research (CAiRE)

Department of Electronic and Computer Engineering
Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
[nyleeaa, zliucr].connect.ust.hk, pascale@ece.ust.hk

Abstract

This paper describes our system submitted to
SemEval-2019 Task 4: Hyperpartisan News
Detection. We focus on removing the inher-
ent noise in the hyperpartisanship dataset from
both data-level and model-level by leveraging
semi-supervised pseudo-labels and the state-
of-the-art BERT model. Our model achieves
75.8% accuracy in the final by-article dataset
without ensemble learning.

1 Introduction

With the ever-growing usage of internet, the prob-
lem of fake news that spreads in a destructive
speed has attracted many attention. Fake news is
a kind of news that is typically inflammatory, ex-
tremely one-sided (hyper-partisan) or untruthful to
mislead the public into having distorted belief.

Previous works attempted to solve fake news
problem from various aspects, ranging from
knowledge-based (Wu et al., 2014; Shi and
Weninger, 2016; Lee et al., 2018) to style-
based (Wang, 2017; Potthast et al., 2018). There
are some publicly available fake news datasets,
however, often too small in size to be suitable for
neural approaches (Horne and Adali, 2017; Pérez-
Rosas et al., 2017). Recently, the organizers of
SemEval2019 Task 4 (Kiesel et al., 2019) have re-
leased large-scale dataset to address fake news de-
tection as a hyper-partisan news detection prob-
lem. The task is to determine whether a given arti-
cle is hyper-partisan (extremely right-wing or left-
wing) or not (mainstream). Such task will allow
for pre-screening of semi-automatic fake news de-
tection, and more importantly, bring us one step
closer to solving fully automated fake news detec-
tion.

Initially, we focused on learning and utilizing
useful features such as topic and sentiment infor-

∗∗ These two authors contributed equally.

Figure 1: Illustration of filtering. Sample a and c are
removed as pseudo-label 6= by-publisher label. Sample
b and d are removed as their prediction confidence was
below threshold.

mation. Considering the purpose of hyper-partisan
news, we believed that the stance on politically
sensitive topics would be crucial in determining
hyperpartisanship. However, experiments showed
that the dataset contains some inherent noise that
acted as a big barrier to learning a good classi-
fier: 1) noisy text inputs from an article that con-
tain domain-specific (i.e. political) words, slangs
and spelling mistakes which are likely to be out of
vocabulary (OOV). 2) noisy labels that mainly re-
sulted from using publisher-level information for
labeling articles (i.e. all articles from left/right-
wing publishers are labeled as “hyper-partisan”.
For more detail, refer to Section 2).

Nevertheless, human-labeled large-scale dataset
creation is a very expensive and time-consuming
task, thus, it is crucial to find a better way to uti-
lize this weakly-labeled dataset. Therefore, we
experimented with reducing noise to help mod-
els learn better. In our work, we apply a semi-
supervised pseudo-labeling to de-noise the dataset
(Figure 1) and leverage the state-of-the-art pre-
trained BERT (Devlin et al., 2018) to obtain a bet-
ter representation of the noisy input.

1052

2 Data Analysis

Label Items Train Set % Val Set %
right 25% 25%

right-center 7.1% 8.8%
left 25% 25%

left-center 11.7% 15.7%
least bias 31.2% 25.5%

all 100% 100%
hyperpartisan 50% 50%
mainstream 50% 50%

Table 1: Data statistic of hyperpartisan and politi-
cal orientation on by-publisher dataset.

We use a publicly available dataset “SemEval
2019 Task 4 - Hyperpartisan News Detection” 1

that are labeled in two different ways - publisher
level and article level.

• Publisher-level (by-publisher): A total of
750K articles are labeled based on the po-
litical orientation of the publisher, with-
out considering the content. It has an
equal ratio (375K/375K) between hyperpar-
tisan and non-hyperpartisan. Among the hy-
perpartisan samples, there’s an equal ratio
(187.5K/187.5K) between right and left po-
litical orientation.

• Article-level (by-article): A total of 645 arti-
cles labeled on article-level by checking the
actual content. The data contains only arti-
cles for which a consensus among the crowd-
sourcing workers existed. Of these, 238
(37%) are hyperpartisan and 407 (63%) are
not.

2.1 Discussion on the Inherent Noise

By using human judgment, we discovered that
some article samples did not always have the cor-
rect labels. Since the political orientation of the
publisher was used as a sole criterion for the la-
bels, such labeling noise is not surprising. It can-
not be guaranteed that all articles from a hyper-
partisan publisher are hyper-partisan. Another
possible reason for such noise could be from not
having enough non-hyper-partisan publishers (i.e.
The percentage of “least bias” label items in Ta-
ble 1 is not 50%), thus, treating news from “right-
center” and “left-center” publishers also as non-
hyper-partisan.

1https://zenodo.org/record/1489920#.XAAoMJMzYWq

3 Methodology

In this section, we describe how we did de-noising
in our system in Figure 2. Our system consists
of two steps: 1) Obtaining de-noised by-publisher
dataset by leveraging clean by-article dataset. 2)
Leveraging the de-noised by-publisher dataset and
pre-trained BERT to train our final model. Note
that our code is publicly available for reproducibil-
ity 2.

3.1 Step 1: Filter Noise by Leveraging
Pseudo-labeling

To deal with the noise in the labels, we utilize
pseudo-label for filtering out noisy labels from
data-level (Figure 1). Pseudo-labeling is one of
the semi-supervised learning methods, which ap-
proximates the labels of unlabeled data by using a
model (M) trained on the labeled dataset. Origi-
nally, pseudo-labeling directly takes the prediction
from the model M as the label. This could result
in the final model trained on both human-labeled
and pseudo-labeled to be bounded by the accuracy
of the model M .

To avoid this problem: 1) We use the origi-
nal by-publisher label as the constraint. We fil-
ter out data points that have a mismatch in the by-
publisher label and pseudo-label to obtain cleaner
by-publisher. 2) To be robust to the errors made
by the model M , we set some thresholds to only
use pseudo-labels with relatively high confidence.
We only consider prediction scores that is big-
ger/smaller by margin = 0.2 than the mid-value
(0.5). By doing so, we can filter out noisy la-
bels with the guarantee that the noise level would
be at worst kept the same; the size of our de-
noised dataset is approximately 32K for both la-
bels, which is 8.5% of original data. Note that
in our system, the model M is a binary classifier
trained on top of fine-tuned BERT (refer to step 2)
using clean by-article dataset.

3.2 Step 2: Obtain Better Input
Representation using BERT

The article texts are noisy with a lot of political
words, slangs, and even spelling mistakes, many
of which are out of vocabulary (OOV) and harm-
ful to the sentence-level and article-level represen-
tation learning. We leverage state-of-the-art pre-
trained language representation model BERT to

2https://github.com/zliucr/hyperpartisan-news-detection

1053

Figure 2: Architecture of the proposed system. Colors represent the dataset used to train the corresponding model.

eliminate OOV problem, since it uses byte-pairs
vocabulary, and for a better input representation.

Since the pre-trained BERT model is trained
on BooksCorpus and Wikipedia which are not di-
rectly relevant to news, we fine-tune the BERT,
as in original paper, using our by-publisher news
dataset to learn a better representation for our data
domain. We build our proposed model by adding
title LSTM and article LSTM on top of the fine-
tuned BERT model to extract features that are
concatenated and fed into the final binary classi-
fier. We train our final classifier using the filtered
dataset from Step 1.

4 Experiments and Analysis

4.1 Experimental Setup

We use BERTBASE model from (Devlin et al.,
2018) which has 12 layers (i.e., Transformer
blocks) with a hidden size of 768 and 12 self-
attention heads. In step 1, the parameters of
BERT model were fixed after fine-tuned on by-
publisher datset, then we trained classifier on by-
article dataset by using 16 batch size. We used
10-fold cross-validation to choose the parameters
of the classifier, since the size of by-article dataset
is small. In step 2, we used 16 batch size to train
our LSTM for article model with a hidden size of
300 and LSTM for title model with a hidden size
of 100. The classifiers in step 1 and 2 both consist
of two linear layers with ReLU and batch normal-

ization in between.
For the evaluation metric, we mainly consid-

ered accuracy and F1 score as the main indicator
of performance. For analysis purpose, we also re-
port precision and recall. In the competition, there
were two types of test sets (i.e. by-publisher test
set and by-article test set). However, all of the re-
ported results are obtained from the by-article test
set for fair and correct comparison.

4.2 Results
We ran the experiment on 3 baseline models for
comparison and simple ablation study of our ap-
proach, and the results are presented in Table 2.

• 2 LSTM + Attention + Fine-tuned Classi-
fier (LSTMft)
A baseline model consisting of 2 LSTM mod-
els (one for the title, and another for the ar-
ticle) with attention layers and a multi-layer
perceptron (MLP) as a classifier on the top. It
was trained on by-publisher dataset directly,
then fine-tuned using the by-article dataset.

• Pre-trained BERT+Classifier (BERTpt)
This model uses the original pre-trained
BERT model to encode both article and ti-
tle, which get fed into multilayer percep-
tron (MLP) to predict the hyper-partisanship
of the given article. The parameters of the
BERT model was fixed when training the
MLP classifier on the by-article data.

1054

Models Accuracy Precision Recall F1
LSTMft 0.6258 0.5838 0.8758 0.7006
BERTpt 0.5669 0.8621 0.1592 0.2688
BERTft 0.6592 0.8378 0.3949 0.5368
BERTft + De-noise 0.758 0.744 0.7866 0.7647

Table 2: Results of our model and other baseline models on the final by-article test set.

• Fine-tuned BERT+Classifier (BERTft)
For this model, everything is kept the same as
BERTpt except for the fact that pre-trained
BERT was fine-tuned using by-publisher
dataset.

Firstly, we can observe that simply using pre-
trained BERT (BERTpt) to represent input can-
not out perform LSTM model entirely trained on
hyperpartisan dataset. However, by fine-tuning
BERT using our dataset (BERTft), we gain
improvement in performance by approximately
10% in accuracy, outperforming LSTMft by ≈
3%. Hence, we can infer that by injecting some
domain-specific data into the original BERT, we
can obtain an improved text representation for
solving our task. Note that the model sizes for Pre-
trained BERT + Classifier and Fine-tuned BERT +
Classifier are the same.

Secondly, by training the same fine-tuned BERT
model on the de-noised dataset mentioned in Sec-
tion 3.1, we observed a big improvement in accu-
racy, F1 and recall by ≈ 10%, ≈ 23% and ≈ 40%
respectively. This clearly illustrates the power of
de-noising the dataset using pseudo-labels as aux-
iliary reference label. We also would like to em-
phasize that we did not use any ensemble learning
or tricks, which normally gives extra 1− 2% gain
in the final performance. Our system ranked 11
out of 43 teams that participated.

Lastly, we would mention that our LSTMft

model is a strong baseline because it was able to
achieve a high score in the by-publisher test set by
obtaining 0.663 and 0.694 for accuracy and F1 re-
spectively (rank 5/28).

4.3 Interesting Analysis
Although our current system does not make direct
use of topic information, we present an interest-
ing result obtained while experimenting with topic
modeling for hyper-partisanship detection. We
used Latent Dirichlet allocation (LDA) for topic
modeling, and the results empirically showed in-
teresting relationships between topics and hyper-

partisanship. Sensitive topics such as war and
political parties tend to have more hyperpartisan
news than neutral-topics such as school and sports
games. We believe that leveraging such informa-
tion would be helpful in future works.

5 Related Works

In this part, we briefly review the prior work
in language representation as well as the semi-
supervised learning method we used.

5.1 Language Representation

(Kiros et al., 2015) tried to learn sentence embed-
ding by reconstructing the surrounding sentences
of an encoded passage. (Peters et al., 2018) pro-
posed to extract context-sensitive features from
a language model. (Devlin et al., 2018) jointly
conditioned on both left and right context and
obtained state-of-the-art results on eleven natural
language processing tasks.

5.2 Semi-supervised Learning

(Triguero et al., 2015) provided a survey of self-
labeled methods for semi-supervised classifica-
tion. (Zhu and Goldberg, 2009) showed self-
labeled techniques are typically divided into self-
training and co-training. (Lin et al., 2018) pro-
posed semi-supervised learning to leverage a small
amount of user-comment data to train a model and
then expand the dataset by that trained model.

6 Conclusion

To conclude, we successfully removed noise from
data-level and model-level by utilizing pseudo-
labels and state-of-the-art BERT. Compared to
other baselines, our de-noised model managed
to outperform all, and achieve rank 11 from 42
teams. Since the cost of manual labeling fake news
data is expensive, our approach to obtain cleaner
and larger dataset by leveraging smaller but clean
dataset is meaningful.

1055

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Benjamin D Horne and Sibel Adali. 2017. This just in:
fake news packs a lot in title, uses simpler, repetitive
content in text body, more similar to satire than real
news. In Eleventh International AAAI Conference
on Web and Social Media.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Nayeon Lee, Chien-Sheng Wu, and Pascale Fung.
2018. Improving large-scale fact-checking using
decomposable attention models and lexical tagging.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1133–1138.

Zhaojiang Lin, Genta Indra Winata, and Pascale
Fung. 2018. Learning comment generation by
leveraging user-generated data. arXiv preprint
arXiv:1810.12264.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexan-
dra Lefevre, and Rada Mihalcea. 2017. Auto-
matic detection of fake news. arXiv preprint
arXiv:1708.07104.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Baoxu Shi and Tim Weninger. 2016. Fact checking in
heterogeneous information networks. In Proceed-
ings of the 25th International Conference Compan-
ion on World Wide Web, pages 101–102. Interna-
tional World Wide Web Conferences Steering Com-
mittee.

Isaac Triguero, Salvador Garcı́a, and Francisco Her-
rera. 2015. Self-labeled techniques for semi-
supervised learning: taxonomy, software and em-
pirical study. Knowledge and Information systems,
42(2):245–284.

William Yang Wang. 2017. ” liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648.

You Wu, Pankaj K Agarwal, Chengkai Li, Jun Yang,
and Cong Yu. 2014. Toward computational fact-
checking. Proceedings of the VLDB Endowment,
7(7):589–600.

Xiaojin Zhu and Andrew B Goldberg. 2009. Intro-
duction to semi-supervised learning. Synthesis lec-
tures on artificial intelligence and machine learning,
3(1):1–130.

1056

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1057–1061
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

The Sally Smedley Hyperpartisan News Detector at SemEval-2019 Task 4:
Learning Classifiers with Feature Combinations and Ensembling

Kazuaki Hanawa*1,2, Shota Sasaki*1,2, Hiroki Ouchi1,2, Jun Suzuki2,1, Kentaro Inui2,1
(* equal contribution)

1RIKEN AIP, 2Tohoku University
{hanawa, sasaki.shota, hiroki.ouchi, jun.suzuki, inui}

@ecei.tohoku.ac.jp

Abstract

This paper describes our system submitted to
the formal run of SemEval-2019 Task 4: Hy-
perpartisan news detection. Our system is
based on a linear classifier using several fea-
tures, i.e., 1) embedding features based on
the pre-trained BERT embeddings, 2) arti-
cle length features, and 3) embedding fea-
tures of informative phrases extracted from
the by-publisher dataset. Our system
achieved 80.9% accuracy on the test set for
the formal run and got the 3rd place out of 42
teams.

1 Introduction

Hyperpartisan news detection (Kiesel et al., 2019;
Potthast et al., 2018) is a binary classification task,
in which given a news article text, systems have
to decide whether or not it follows a hyperparti-
san argumentation, i.e., “whether it exhibits blind,
prejudiced, or unreasoning allegiance to one party,
faction, cause, or person” (2019). As resources
for building such a system, the by-publisher
and by-article datasets are provided by the
organizer. The by-publisher dataset is a col-
lection of news articles labeled with the over-
all bias of the publisher as provided by Buz-
zFeed journalists or MediaBiasFactCheck.com.
The by-article dataset is a collection labeled
through crowdsourcing on an article basis. This
data contains only the articles whose labels are
agreed by all the crowd-workers. The performance
measure is accuracy on a balanced set of articles.

Our system is based on a linear classifier
using several types of features mainly consist-
ing of 1) embedding features based on the pre-
trained BERT embeddings (Devlin et al., 2018)
and 2) article length features and 3) embedding
features of informative phrases extracted from
by-publisher dataset. Our system achieved

80.9% accuracy on the test set for the formal run
and got 3rd place out of 42 teams in the formal
run.

2 System Description

This section first presents an overview of our sys-
tem and then elaborate on the feature set.

2.1 Overview of Our System
Our system is based on a linear classifier that mod-
els the conditional probability distribution over the
two labels (positive or negative) given features.
Let f be a feature vector. W denotes a trainable
weight matrix, and b is a trainable bias vector,
where f ∈ RD, W ∈ RD×2 and b ∈ R2, respec-
tively. Then, we compute the conditional proba-
bility as follows:

y = softmax(W>f + b). (1)

where, softmax(·) represent the softmax function
that receives an N -dimensional vector x and re-
turns another N dimensional vector, namely:

softmax(x) =
exp(x)∑
i exp(xi)

, (2)

and x = (x1, . . . , xN)>. After the softmax com-
putation, we obtain the two-dimensional vector
y ∈ R2. We assume that the first dimension of
this vector represents the probability of the pos-
itive label, and the second one represents that of
the negative label.

To boost the performance, we concatenate three
types of features, f1, f2, and f3, into the single fea-
ture vector f , where f1 ∈ RD1 , f2 ∈ RD2 and
f3 ∈ RD3 and D = D1 +D2 +D3.

As f1, f2 and f3, we design the following fea-
tures.

• f1: BERT feature (Section 2.2)

1057

• f2: Article length feature (Section 2.3)

• f3: Informative phrase feature (Section 2.4)

For training our classifiers, we used only
the by-article dataset but not the
by-publisher dataset. This is because
the labels of the by-publisher dataset turned
out rather noisy. In our preliminary experiments,
we found that the performance drops when
training the classifiers on the by-publisher
dataset.

Furthermore, we apply the following three tech-
niques.

1. Word dropout: We adopted word dropout
(Iyyer et al., 2015) for regularization. The
dropout rate was set to 0.3.

2. Over sampling: As mentioned above, the
gold label distribution of the training set is
unbalanced while that of the test set is bal-
anced. We deal with this imbalance problem
by sampling 169 (407− 238) extra examples
from hyperpartisan data.

3. Ensemble: We trained 100 models with dif-
ferent random seeds. In addition, we trained
models for 40, 50, 60 and 70 epochs for each
seed. Consequently, we finally average the
output of these 400 models.

2.2 BERT Feature
Our system uses BERT (Devlin et al., 2018). As a
strategy for applying BERT to downstream tasks,
Devlin et al. (2018) recommends a fine-tuning ap-
proach, which fine-tunes the parameters of BERT
on a target task. In contrast, we adopt a feature-
based approach, which uses the hidden states of
the pre-trained BERT in a task-specific model as
input representation. A main advantage of this
approach is computational efficiency. We do not
have to update any parameters of BERT. Once we
calculate a fixed feature vector for an article, we
can reuse it across all the models for ensemble.

In our system, we used BERT to compute a fea-
ture vector f1 for an input article. Specifically, we
first fed an article to the pre-trained BERT model
as input and extracted the representations of all the
words from the top four hidden layers. Then, to
summarize these representations into a single fea-
ture vector f1, we tried the following three meth-
ods.

1. Average: Averaging the representations of all
the words in an article.

2. BiLSTM: Using the representations as input
to BiLSTM. This is the same method as the
best performing one reported by Devlin et al.
(2018).

3. CNN: Using the representations as input to
CNN in the same way as Kim (2014).

As we describe in Section 3.2, we finally adopted
the averaged BERT vectors as f1.

2.3 Article Length Feature

As f2, we design a feature vector representing the
length of an input article. In our preliminary ex-
periments, we found a length bias in hyperparti-
san articles and non-hyperpartisan articles. Thus
a vector representing the length bias is expected
to be useful for discriminating these two types of
articles.

Specifically, we define a one hot feature vec-
tor f2 representing distribution of the lengths of
articles (the number of words in an article). To
represent the length of an article as a vector, we
make use of histogram bins. Consider the 100-
ranged histogram bins. The first bin represents
the length 1 to 100, and the second one repre-
sents the length 101 to 200. If the length of an
article is 255, the value of the third bin (201 to
300) takes 1. In the same way, the third element
of the length vector takes 1 and the others 0, i.e.,
f2 = [0, 0, 1, 0, 0, · · ·]. In our system, we set the
dimension of the vector as D2 = 11, whose last
(11-th) element corresponds to the length longer
than 1000.

2.4 Informative Phrase Feature

In the development set, we found some phrases in-
formative and useful for discriminating whether or
not a given article is hyperpartisan. We extracted
such informative phrases and mapped them to a
feature vector f3. In this section, we first explain
the procedure of extracting informative phrases,
and then we describe how to map them to a fea-
ture vector.

2.4.1 Phrase Set Creation
To create an informative phrase set, we exploit the
by-publisher articles. Basically, we take ad-
vantage of chi-squared statistics ofN -grams (N =
1, 2, 3).

Creation of Sh First, we calculate each chi-
squared value χxi of N -gram xi appearing in the

1058

by-publisher articles as follows:

χxi =
(O − E)2

E
. (3)

O and E are defined as follows:

O = ffalse(xi), (4)

E =
Tfalse × ftrue(xi)

Ttrue
, (5)

where ftrue(·) and ffalse(·) are functions that cal-
culate the frequency of xi in hyperpartisan articles
and non-hyperpartisan articles, respectively. Ttrue
and Tfalse are the summation of the frequency of
all N -grams in hyperpartisan articles and non-
hyperpartisan articles, respectively.

Then, based on the chi-squared values χxi , we
sort and select top-M N -grams. We can obtain a
typical N -gram set (hereinafter, referred to as Sh)
that is informative for judging whether an article
is hyperpartisan or not.1 In our system, we use
M = 200, 000.
Sh can mostly catch the characteristics of hy-

perpartisan articles. However, Sh may include
some N -grams that are typical of a certain pub-
lisher. This is because the by-publisher
dataset is labeled by the overall bias of the pub-
lisher as provided by BuzzFeed journalists or Me-
diaBiasFactCheck.com.

Creation of Sp To remedy this problem, we cre-
ate another phrase set Sp consisting of N -grams
that are typical of a publisher, and exclude them
from Sh.

Here we consider a certain publisher pl. First,
we calculate each chi-squared value of N -gram xi
in the same way as Eq 3,4,5 for Sh, but here we
consider true and false as appearing in articles
of publisher pl and articles of other publishers, re-
spectively, instead of appearing in hyperpartisan
articles and non-hyperpartisan articles. Then, we
pick up only N -gram xi where ftrue(xi) is less
than ffalse(xi) and sort all of them by the chi-
squared values. This is because we aim to ex-
clude only N -grams that are typical of a certain
publisher.

Next, we try four types of ways to create Spl
from sorted χx value statistics. Here j denotes the
index of the N -gram list sorted by χx values, i.e.,
χx1 is the highest value in all calculated χx values.

1Actually, we cut off N -gram x if ftrue(x) is more than
100,000 for Sh.

1. Top-To: The first setting is to select top-To
N -grams. Concretely, Spl is defined as fol-
lows:

Spl = {xj |j ≤ To}. (6)

2. χ-based: The second setting is to select N -
grams based on χ values. Concretely, Spl is
defined as follows:

Spl = {xj |χxj > Tc}. (7)

3. ftrue-based: The third setting is to select N -
grams based on ftrue(xj) values. Concretely,
Spl is defined as follows:

Spl = {xj |ftrue(xj) > Tf , j ≤ Tm}. (8)

4. ftrue-ffalse ratio-based: The fourth setting is
to select N -grams based on ratios between
ftrue and ffalse. Concretely, Spl is defined as
follows:

Spl =

{
xj

∣∣∣∣
ftrue(xj)

ffalse(xj)
> Tr, j ≤ Tm

}
. (9)

To, Tc, Tf , Tr and Tm are hyper-parameters2.
Next, we obtain Sp defined as follows:

Sp =
⋃

l

Spl . (10)

At last, we obtain an filteredN -gram set S defined
as follows:

S = Sh \ Sp. (11)

2.4.2 Phrase Embedding
We map each of the obtained N -gram phrase set
S to a feature vector f3. We exploited GloVe vec-
tors (Pennington et al., 2014) instead of one-hot
vectors in order to facilitate generalization.

First, we enumerate N -grams included in an ar-
ticle and compute each N -gram vector. Each vec-
tor is the average of GloVe vectors of included
words. For example, the vector for the phrase
“news article” is computed as follows:

GloVe(news) + GloVe(article)

2
.

Here, GloVe(w) denotes the GloVe
(glove.840B3) vector of the word w. Then, we
compute f3 as the average of all N -gram vectors
included in the article.

2In our experiments, we fix Tm to 200,000.
3https://nlp.stanford.edu/projects/

glove/

1059

Method Accuracy
Average 0.760
BiLSTM 0.712
CNN 0.758

Table 1: Accuracy of hyperpartisan classification for
each operation on BERT vectors.

3 Experiments

3.1 Settings
We trained linear classifiers on the by-article
dataset (not on the by-publisher dataset). In
order to estimate the performance in the test set
with each setting, we conducted 5-fold cross val-
idation on by-article dataset. For optimiza-
tion of the classifiers, we use Adam with learning
rate of 0.001, β1 = 0.9, β2 = 0.999. We set the
minibatch size to 32. Note that we did not take en-
semble approach in the experiments we report in
Section 3.2 and Section 3.3 for efficiency.

3.2 Operation on BERT Vectors
We conducted experiments on each of the
three methods for BERT vectors (BERT-Base,
Uncased4) mentioned in Section 2.2. In this ex-
periment, we only used f1 as a feature vector f ,
i.e., without using f2 and f3.

Table 1 shows the performance in each setting.
The averaging method was the best performance
this time. We therefore decided to adopt average
BERT vectors as f1 for the evaluation of the for-
mal run. In addition, we also used averaged BERT
vectors as f1 in the following experiments.

3.3 Method to Create N -gram Set
As mentioned in Section 2.4, we examined which
method is the best to create an informative N -
gram set S (and f3 derived from them). In this
experiment, we also used f1 and f2 with f3 as a
feature.

Table 2 shows the performance in each setting.
The performance was the best when we adopted
Top-To (To = 100) for Sp creation. We therefore
used f3 created in this setting.

3.4 Ablation
To verify the contribution of each three types of
features, we conducted feature ablation experi-
ments. In addition, we investigated to what extent

4https://github.com/google-research/
bert

Method Accuracy
Top-To (To = 100) 0.777
Top-To (To = 1000) 0.771
χ-based (Tc = 20000) 0.752
ftrue-based (Tf = 50) 0.754
ftrue-based (Tf = 150) 0.764
ftrue-ffalse ratio-based (Tr = 0.5) 0.754
ftrue-ffalse ratio-based (Tr = 0.8) 0.771
ftrue-ffalse ratio-based (Tr = 1.0) 0.756

Table 2: Accuracy of hyperpartisan classification for
each method to create N -gram set.

Features Ensemble Accuracy
f1, f2, f3 true 0.788
f1, f2, f3 false 0.777
f1, f2 false 0.769
f1 false 0.760

Table 3: Result of ablation.

ensemble approach improve the performance. In
this experiments, we use only 10 (not 100) differ-
ent random seeds for ensemble due to time con-
straints.

Table 3 shows the performance in each setting.
We found that f2 and f3 improved the accuracy by
about 0.01, respectively. Additionally, by using
the ensemble method, the accuracy increased by
about 0.01.

4 Conclusion

We described our system submitted to the formal
run of SemEval-2019 Task 4: Hyperpartisan news
detection. We trained a linear classifier using sev-
eral features mainly consisting of 1) BERT embed-
ding features, 2) article length features indicating
the distribution of lengths of articles and 3) em-
bedding features derived from filtered N -grams
that are typically found in hyperpartisan articles.
Our system achieved 80.9% accuracy on the test
set for the formal run and got 3rd place out of 42
teams.

Acknowledgments

This work was supported by JST CREST Grant
Number JPMJCR1301, Japan.

1060

References
2019. Pan @ SemEval 2019 - Hyperpartisan

News Detection. https://pan.webis.de/
semeval19/semeval19-web/index.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing, volume 1, pages 1681–1691.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. Semeval-
2019 task 4: Hyperpartisan news detection. In Pro-
ceedings of The 13th International Workshop on Se-
mantic Evaluation (SemEval).

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2018. A sty-
lometric inquiry into hyperpartisan and fake news.
In Proceedings of 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
231–240.

1061

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1062–1066
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Tintin at SemEval-2019 Task 4: Detecting Hyperpartisan News Article
with only Simple Tokens

Yves Bestgen
Centre for English Corpus Linguistics

Université catholique de Louvain
Place Cardinal Mercier, 10 1348 Louvain-la-Neuve, Belgium

yves.bestgen@uclouvain.be

Abstract

Tintin, the system proposed by the CECL for
the Hyperpartisan News Detection task of Se-
mEval 2019, is exclusively based on the tokens
that make up the documents and a standard su-
pervised learning procedure. It obtained very
contrasting results: poor on the main task, but
much more effective at distinguishing docu-
ments published by hyperpartisan media out-
lets from unbiased ones, as it ranked first. An
analysis of the most important features high-
lighted the positive aspects, but also some po-
tential limitations of the approach.

1 Introduction

This report presents the participation of Tintin
(Centre for English Corpus Linguistics) in Task
4 of SemEval 2019 entitled Hyperpartisan News
Detection. This task is defined as follows by the
organizers1: ”Given a news article text, decide
whether it follows a hyperpartisan argumentation,
i.e., whether it exhibits blind, prejudiced, or un-
reasoning allegiance to one party, faction, cause,
or person.”

This question is related to the detection of fake
news, a hot topic in our internet and social me-
dia world (Pérez-Rosas et al., 2017). There are,
however, essential differences between these two
tasks. An article can be hyperpartisan without
mentioning any fake content. Another difference
is that it is a news article (or even a claim) that is
fake whereas a news article but also a media outlet
(or publisher) can be considered as hyperpartisan.
The challenge organizers took these two possibili-
ties (i.e. an article or a publisher can be hyperpar-
tisan) into account by offering two test sets. The
main test set, the labels-by-article one, contained
documents that had been assessed as hyperparti-
san or not by human judges, while the documents

1https://pan.webis.de/semeval19/semeval19-web

in the secondary test set, the labels-by-publisher
one, had been categorized according to whether
their publishers were considered to be hyperpar-
tisan or not by organizations that disseminate this
type of evaluation. In both these test sets, partici-
pants had to decide whether a document expresses
a hyperpartisan point-of-view or not.

If the main task is particularly interesting, the
secondary task is also relevant because it is about
achieving through an automatic procedure what a
series of organizations manually perform in a way
that is sometimes called into question as to its im-
partiality and quality (Wilner, 2018). However, in
this context, the task would preferably be evalu-
ated, not at the document level, but at the publisher
level by providing several documents from a pub-
lisher and asking whether the publisher is biased
or not. Nevertheless, it can be assumed that many
systems developed for categorizing publishers will
start by evaluating each document separately and
thus getting good performance in the current sec-
ondary task is at least a first step.

To take up these tasks, the question is how to de-
termine automatically whether a document is hy-
perpartisan or not. This question has not attracted
much attention in the literature, but, very recently,
Potthast et al. (2018) proposed to use stylometric
features such as characters, stop words and POS-
tag n-grams, and readability measures. They com-
pared the effectiveness of this approach to sev-
eral baselines including a classical bag-of-words
feature approach2 (Burfoot and Baldwin, 2009).
Their stylistic approach obtained an accuracy of
0.75 in 3-fold cross-validation in which publish-
ers present in the validation fold were unseen dur-
ing the learning phase. The bag-of-words feature

2More specifically, Potthast et al. (2018) used the fre-
quency, normalized by the document length, of the tokens of
at least two characters that occurred in at least 2.5% of the
documents in the collection.

1062

approach obtained an accuracy of 0.71, which is
not much lower. These results were obtained on
a small size corpus (due to the cost of the man-
ual fact-checking needed for the fake-news part
of the study) containing only nine different pub-
lishers. It is therefore not evident that this corpus
was large enough to evaluate the degree of gen-
eralizability of the bag-of-words approach, espe-
cially since Potthast et al. (2018, p. 233) empha-
sizes that using bag-of-words features potentially
related to the topic of the documents renders the
resulting classifier not generalizable. In contrast,
the datasets prepared for the present challenge are
significantly larger since the latest versions avail-
able contain more than 750,000 documents and
more than 240 different media outlets.

Therefore, it seemed interesting to evaluate the
effectiveness of a bag-of-words approach for the
labels-by-publisher task, the one used by Potthast
et al. (2018). This is the purpose of this study.
Another reason why I chose to focus on the labels-
by-publisher task is that I was unclear about what
could be learned on the basis of the labels-by-
publisher sets for the labels-by-article test set. If
one can think that some publishers almost always
distribute hyperpartisan articles, it seems doubtful
that this is the case for all of them.

The next sections of this paper describe the
datasets, the developed system, and the obtained
results as well as an analysis of the most impor-
tant features.

2 Data

As explained in Kiesel et al. (2019), several
datasets of very different sizes were available for
this challenge. The learning labels-by-publisher
set contained 600,000 documents form 158 media
outlets in its final version. The corresponding val-
idation set contained 150,000 documents from 83
media outlets, and the test set consisted of 4,000
documents. The first labels-by-article set provided
to the participants contained 645 documents and
was intended for fine-tuning systems developed on
the labels-by-publisher sets. The test set contained
628 documents.

Some of these datasets could be downloaded
while those used to perform the final test were hid-
den on a TIRA server (Potthast et al., 2019). An
important feature of these data is that no publisher
in a dataset is present in any other dataset. This
has the effect of penalizing (usefully) any system

that learns to categorize on the basis of the pub-
lishers since generalization to unseen media out-
lets should be problematic.

3 System

3.1 The Bag-of-Words Feature Approach

The developed system, which implements the bag-
of-words approach, is very classical. It includes
steps for preprocessing the data, reading the doc-
uments, creating a dictionary of tokens (only uni-
gram tokens as bigrams did not appear to improve
performance), and producing the file for the super-
vised learning procedure. It was written in C, with
an initial data cleaning step in Perl, and was thus
very easy to install on a TIRA server. In this sec-
tion, only a few implementation details are men-
tioned.

During preprocessing, a series of character se-
quences like ;amp;amp;amp;, &#160; and
&amp;lt; were regularized. When reading a
document (both the title and the text), strings were
split by separating the following characters when
they were at the beginning or end of the strings and
they were outputted separately: ’ * ” ? . ; : / ! ,) (
} { [] -. Alphabetic characters were lowercased.
A binary feature weighting scheme was used.

3.2 Supervised Learning Procedure

During the development and test phases of the
challenge, the models were build using two solvers
available in the LIBLINEAR package (Fan et al.,
2008), the L2-regularized L2-loss support vector
classification (-s 1) and the L2-regularized logis-
tic regression (-s 7), which resulted in equivalent
performance. The regularization parameter C was
optimized on the labels-by-publisher validation set
using a grid search.

4 Analyses and Results

4.1 Official Results

On the main task of the challenge, the Tintin sys-
tem obtained an accuracy of 0.656, ranking 27th
out of 42 teams, very far from the best teams who
scored 0.82.

Twenty-nine teams submitted a system for the
labels-by-publisher task. Tintin ranked first, with
an accuracy of 0.706. This level of performance is
identical to that obtained by Potthast et al. (2018)
bag-of-words model in their experiments on a sig-
nificantly smaller dataset.

1063

In general, the performances of the different
teams on the second task were much lower than on
the main task. Tintin, on the other hand, achieved
a better score on the second task. It is not the only
system in this case since, of the 28 teams that par-
ticipated in the two tasks, three others also scored
better in the second task and one team only par-
ticipated in this task. Reading the papers describ-
ing these systems will make it possible to know
if these teams have also chosen to favor the sec-
ondary task. It is also noteworthy that the differ-
ence between the two best teams is much greater
in the secondary task (0.706 vs. 0.681) than in the
main task (0.822 vs. 0.820).

4.2 Analysis of the Most Important Features

In order to get an idea of the kind of features un-
derlying the system’s efficiency in the secondary
task, the 200 features (and thus tokens) that re-
ceived the highest weights (in absolute value) in
the logistic regression model3 were examined.

Table 1 shows the ten features that received
the highest weights as well as a series of fea-
tures selected because of their interest to under-
stand how the system works. Positive weights in-
dicate that the feature predicts the hyperpartisan
category, while negative weights are attributed to
features that are typical of the non-biased category.
The table gives in addition to the token and the
weight, the number of publishers (#Pub) and the
number of documents (#Doc) in which that token
appears for each of the two categories to be pre-
dicted. The maximum percentage of documents a
publisher represents in each category is also pro-
vided (Max%). The percentage for the category
that this feature predicts is boldfaced.

As expected, some of the most important fea-
tures are typical of a single publisher like glob-
alpost, which is present in 750 times more non-
biased than hyperpartisan documents, but 99.76%
of the non-biased documents come from the same
publisher (pri.org). Other tokens are not so
strongly associated with a single publisher. In the
8th position, the token h/t, a way of acknowledg-
ing a source, is present in 53 hyperpartisan media
outlets and 63% of the documents of this category
in which it occurs are not found in the publisher
that contains the most (dailywire.com). Jan is an
even more obvious example of features that are not

3As the features are binary coded, weight is the sole factor
that affect the classification function for an instance.

tied to a single publisher.
There are also in these particularly important

features some tokens that might not be seen as un-
expected such as leftists(s), shit, beast, right-wing,
hell... Other features, such as fla, beacon, alter-
net or via, are not related to a single publisher,
but their usefulness for categorizing unseen me-
dia outlets is no less debatable. For instance, via
can be used in many different contexts such as
via twitter, transmitted to humans via fleas, link-
ing Damascus to Latakia and Aleppo via Homs. It
is therefore widespread. However, its usefulness
in categorizing unseen media outlets is not neces-
sarily obvious since some part of its weight results
from its occurrence in all of the 976 documents
from thenewcivilrightsmov as each of these docu-
ments offers to subscribe to the New Civil Rights
Movement via email.

These observations lead to wonder whether the
system does not show a strong variability of effi-
ciency according to the unseen publishers to pre-
dict, working well for some, but badly for oth-
ers. It was not possible to evaluate this conjecture
by analyzing the system accuracy for the differ-
ent publishers in the test set since it is not pub-
licly available. However, an indirect argument in
its favor is provided by the meta-learning anal-
yses done by the task’s organizers that suggest
that some publishers are much easier to predict
than others. For these analyses, each set was ran-
domly split into two samples (2668 vs. 1332 for
the labels-by-publisher test set) and submitted to
a majority voting procedure. As this procedure is
unsupervised, the expected value of the difference
in accuracy between the two samples is 0. This
was not the case for the labels-by-publisher task
since it was larger than 0.23, an extremely signif-
icant difference (Chi-square test). The most obvi-
ous explanation is to consider that the need to put
each publisher in only one sample leads to a non-
random distribution in which the publishers of one
sample are much easier to predict.

5 Conclusion

The Tintin system, developed for the Hyperpar-
tisan News Detection task, is extremely simple
since it is exclusively based on the document to-
kens. If its performance on the main task was
poor, it ranked first when it was used to discrim-
inate documents published by hyperpartisan me-
dia outlets from unbiased ones. An analysis of the

1064

Unbiased Hyperpartisan
Rank Token Score #Pub #Doc Max% #Pub #Doc Max%

1 globalpost -2.40 4 10506 99.7 10 14 21.4
2 n.m -1.94 17 17951 96.1 18 107 21.4
3 upi -1.64 15 7541 94.6 24 186 48.3
4 > -1.36 13 2022 87.2 27 242 51.2
5 -1.17 8 7516 99.4 9 170 34.1
6 c© 1.16 15 1821 76.7 25 8840 53.1
7 h/t 1.06 11 71 33.8 53 3016 36.8
8 fe -1.03 20 13797 97.4 28 294 40.4
9 et 0.95 29 2326 28.3 76 13306 84.4

10 jan -0.90 38 19428 27.2 75 4937 45.7
22 trump’s 0.73 28 2966 31.6 62 9164 39.2
35 via 0.61 37 10738 31.3 104 24279 18.1
62 fla -0.51 26 3481 36.2 47 797 29.2
66 leftists 0.50 16 147 27.8 74 2984 30.6
67 leftist 0.49 19 895 26.0 79 4904 35.0
76 shit 0.47 18 136 27.2 67 2167 39.9
82 beast 0.46 26 887 25.7 79 3151 30.5
95 right-wing 0.44 26 1542 23.0 88 8608 32.7
97 beacon 0.43 26 569 27.5 72 2048 25.1

143 yesterday 0.37 32 3849 18.9 102 10018 21.4
171 hell 0.34 31 2518 28.9 97 8382 35.0
192 alternet 0.33 9 15 26.6 28 795 33.0

Table 1: Some of the 200 most useful features for predicting hyperpartisanship.

Figure 1: Main entrance of the Musée Hergé4.

most important features for predicting hyperparti-
sanship emphasizes the presence of tokens specific
to certain publishers, but also of tokens that could
have some degree of generalizability.

In future work, it might be interesting to use
other weighting functions than the binary one such
as the bi-normal separation feature scaling (For-
man, 2008) that has been shown to be particularly
effective for satire detection (Burfoot and Bald-

4 c©V. Pypaert, CC BY-SA 4.0, from Wikimedia.

win, 2009) or BM25 which has proved useful in
the VarDial challenge (Bestgen, 2017). Such de-
velopment, however, would only be justified if the
system is stable, that is to say, if it achieves good
performance for many publishers not seen dur-
ing learning. Designing a weighting function that
would favor the hyperpartisan distinction while si-
multaneously reducing the impact of the media
outlets could perhaps improve this stability.

6 Namesake: Tintin

I chose this fictitious reporter as my namesake
for this task because the Musée Hergé, an un-
usual looking building in front of which a huge
fresco represents this cartoon character, is located
a few tens of meters from my office in Louvain-
la-Neuve. Tintin is also a French interjection that
means nothing or No way!

Acknowledgments

The author is a Research Associate of the Fonds
de la Recherche Scientifique - FNRS.

1065

References
Yves Bestgen. 2017. Improving the character ngram

model for the DSL task with BM25 weighting and
less frequently used feature sets. In Proceedings of
the Fourth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial), pages 115–123,
Valencia, Spain. Association for Computational Lin-
guistics.

Clint Burfoot and Timothy Baldwin. 2009. Automatic
satire detection: Are you having a laugh? In Pro-
ceedings of the ACL-IJCNLP 2009 Conference Short
Papers, pages 161–164. Association for Computa-
tional Linguistics.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of Ma-
chine Learning Research, 9:1871–1874.

George Forman. 2008. BNS feature scaling: an im-
proved representation over tf-idf for svm text classi-
fication. In Proceeding of the 17th ACM conference
on Information and knowledge management, CIKM
’08, pages 263–270, New York, NY, USA. ACM.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra
Lefevre, and Rada Mihalcea. 2018. Automatic de-
tection of fake news. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 3391–3401. Association for Computa-
tional Linguistics.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Tamar Wilner. 2018. We can probably measure media
bias. but do we want to? Columbia Journalism Re-
view, Retrieved 2019-02-01.

1066

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1067–1071
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Tom Jumbo-Grumbo at SemEval-2019 Task 4: Hyperpartisan News
Detection with GloVe vectors and SVM

Chia-Lun Yeh1, Babak Loni2, and Anne Schuth2

1TU Delft, The Netherlands
2De Persgroep

c.yeh-1@student.tudelft.nl
{babak.loni, anne.schuth}@persgroep.net

Abstract

In this paper, we describe our attempt to learn
bias from news articles. From our experi-
ments, it seems that although there is a correla-
tion between publisher bias and article bias, it
is challenging to learn bias directly from the
publisher labels. On the other hand, using
few manually-labeled samples can increase
the accuracy metric from around 60% to near
80%. Our system is computationally inexpen-
sive and uses several standard document repre-
sentations in NLP to train an SVM or LR clas-
sifier. The system ranked 4th in the SemEval-
2019 task. The code is released for repro-
ducibility1.

1 Introduction

Bias is the inclination or prejudice for or against
one person or group. News articles that con-
tain extreme bias fail to provide fair and multi-
faceted views for readers and can create polariza-
tion within the society (Bernhardt et al., 2008). A
system that can detect bias in news articles is thus
relevant, especially in a time where an increas-
ing number of people consume news from online
sources that might not be trustful.

The SemEval-2019 task aims to detect hyper-
partisan news given the text of the news article,
where hyperpartisan news is defined to be an arti-
cle that overtly favors a side or view. The details
of the task can be found in Kiesel et al. (2019).
We are provided with a dataset of two parts. The
first part is labeled by the publishers (e.g. if a pub-
lisher is decided to be a hyperpartisan source, all
its articles are labeled as hyperpartisan), and split
into a training and validation set with no overlap-
ping publishers (which we will refer to as training-
1 and validation-1). The second part is crowd-
sourced and labeled per article (which we will call
training-2).

1https://github.com/chialun-yeh/
SemEval2019

Due to the large number of labeled samples, we
decide to use a supervised classification approach,
where features are extracted from the text and used
to train a classifier. Bag-of-words (BoW), TFIDF
weighting, and n-grams have been shown to be
strong baselines (Hu and Liu, 2004; Wang and
Manning, 2012). Other features such as Part-Of-
Speech (POS), counts of sentiment and bias words
have also been studied (Liu, 2012; Mukherjee and
Weikum, 2015). In a similar setting, Potthast et al.
(2018) uses features such as n-gram of charac-
ters, readability scores, dictionary, and the ratio
of quoted words to separate hyperpartisan news
from the mainstream. They trained a random for-
est classifier and achieved an accuracy of 75%.

Kulkarni et al. (2018) build a neural network to
predict the political ideology of news articles to
be either left, right or center. They combine in-
formation from the headlines, the links within an
article, and the content. They use a CNN (Kim,
2014) for the headlines, a Node2Vec (Grover and
Leskovec, 2016) to model the links and a hierar-
chical attention network (HAN) (Yang et al., 2016)
to extract features from the content. They com-
pare the model with several baselines, including
a BoW LR model, a fully-connected feedforward
network, and networks with only the individual
components. Their proposed model performs the
best. However, their system is trained and eval-
uated on only data with publisher labels. They
randomly split them into training and testing sets,
with overlapping publishers.

The main contribution of the paper is two-fold.
First, we analyze the problem of using the dataset
labeled by publishers, concluding that it is difficult
due to the noisy labels. Second, we train SVM
classifiers with different representations: TFDIF,
doc2vec and GloVe pre-trained vectors. The 300-
dimensional GloVe vectors obtain the best cross-
validation accuracy as well as the performance
metrics on the official test data.

1067

This paper is organized as follows. In section
2, we describe the data pre-processing. In section
3, we present the two systems that we devise and
explain how one motivates the other. In section
4, we present the performance of the final system.
We outline our main conclusions and future work
in section 5.

2 Pre-processing

Since the articles are collected from online news
platforms, they contain texts that are irrelevant to
the news itself. We use the following three steps
to clean the data:
(a) Remove online usage including links, hash-
tags, @-tag, and advertisements.
(b) Remove parentheses, brackets, and curly
brackets that contain additional information be-
cause the usage is often specific to publishers.
(c) Remove paragraphs that might reveal publisher
information. Some publishers use headers and
footers of specific patterns in their articles. We
try to remove them by discarding the first and
last paragraphs from the article if the article has
more than two paragraphs, assuming that these
two paragraphs have higher probabilities of being
headers and footers. This is by no means optimal
since the first paragraph often contains important
content if it is not a header. Some publishers also
inserted short text such as ”read more here” be-
tween paragraphs. To remove these irrelevant texts
that can reveal publisher pattern, we remove any
paragraph with less than ten words. Any article
with less than ten words after the cleaning is dis-
carded.

We consider (a) and (b) as basic data cleaning
and apply them on all data. On the other hand, (c)
is a more aggressive cleaning that is done only on
training-1. This is because we have a compara-
tively large training set where we can afford filter-
ing out information and even entire articles.

3 System Description

3.1 System 1

In the first method, we use training-1 to train our
models, validation-1 to choose hyperparameters,
and training-2 to test the models. As mentioned
earlier, training-1 is labeled by publishers. While
a biased publisher publishes more biased articles
on average, it is unlikely that all of its articles are
biased. Therefore, the labels are noisy, e.g., some

labels are flipped. It is, however, difficult to iden-
tify the articles that have the wrong labels without
manual inspection. We assume that the publisher
labels are correlated with true bias labels, thus pro-
viding information to learn bias. To have an idea
of to what extent this assumption holds, we inves-
tigate training-2. We select publishers of whom at
least five articles are included in the dataset and
whose media bias can be retrieved from Media-
Bias/FactCheck2. This results in a total of 24 pub-
lishers. The publisher bias ratings on the website
can be roughly mapped to 7 categories, extreme-
left, left, left-center, center, right-center, right, and
extreme-right. In Table 1, we list these publish-
ers along with the percentage of the articles that
are rated as hyperpartisan by crowd workers. The
number of articles per publisher range from 5 to
24. Figure 1 shows the percentage of hyperpar-
tisan articles in each category. We see that left-
center and center publishers indeed have consid-
erably less percentage of hyperpartisan articles.
However, right-center publishers are almost as bi-
ased as right publishers. The observation can be
due to the small sample size (the high percentage
is caused mainly by the publisher RealClearPoli-
tics). In general, there is a correlation between the
publisher and true hyperpartisanship.

Figure 1: Percentage of hyperpartisan articles in the
7 bias categories: extreme-left (EL), left (L), left-
center (LC), center (C), right-center (RC), right (R),
and extreme-right (ER).

We use BoW and n-grams (n=1,2) as features,
with different weighting schemes, including raw
counts, binary, and TFIDF. For BoW and n-grams,
the feature dimension is 50K and 500K respec-
tively. We train two classifiers on each rep-
resentation. The accuracy of the classifiers on
validation-1 is listed in Table 2. We include exper-
iments where training-1 is not cleaned with pre-

2https://mediabiasfactcheck.com/

1068

processing step (c) to make sure that the step helps
the task.

From the result, we observe that adding bigrams
doesn’t improve accuracy. We use the best model
(BoW and an SVM classifier) to predict the arti-
cles in training-2. The accuracy is 56%, which is
lower than the majority baseline of 63%.

Although we clean the dataset in an effort to
prevent the classifier from overfitting on the pub-
lisher, it seems that the classifier cannot general-
ize to unseen publishers, and fails to capture bias.
We also experiment with training a CNN (Kim,
2014) with the headlines, and a HAN (Yang et al.,
2016) with the content. However, the two mod-
els again fail to generalize to new publishers. The
observation makes us believe that the publisher la-
bels are too noisy to be used directly to learn true
bias. Another possible explanation could be that
the publishers have too distinct writing styles so
that the classifier focuses much on those features
when learning.

3.2 System 2

Due to the observation in system 1, we decide to
treat training-1 and validation-1 as unlabeled sam-
ples that can be used to train a feature extractor in
an unsupervised setting. We then train the classi-
fier using training-2. We use the first part of the
data by the following two extractors.

1. TFIDF: The data is used to build vocabulary
and record the inverse document frequency.
All terms that occur in more than 90% of
the documents are discarded, and we kept the
most frequent 50K terms.

2. Doc2Vec: The data is used to train a PV-DM
model proposed by Le and Mikolov (2014).
We discard all terms that occur in less than
10 documents or are shorter than two charac-
ters. We train the model for 20 epochs using
the implementation of gensim (Řehůřek and
Sojka, 2010). When inferencing new doc-
uments, the word vectors are fixed and the
model is trained for 100 epochs.

In addition, we experiment with using pre-
trained word embeddings since the meaning of
each word should not differ significantly in differ-
ent corpora. We use vectors trained with GloVe
algorithm (Pennington et al., 2014) on Wikipedia

and Gigaword 5 3. The vectors are chosen because
they are trained on Wikipedia and newswire text,
which provides general knowledge and news do-
main specific usage. We take the vectors of each
word in the document and average all the vectors.
Stop words are removed, and if the document has
more than 1000 words, we average over the first
1000 words (we find this to work better in our case
empirically).

We also experiment with a set of features in-
cluding normalized count of 5 POS tags, 6 read-
ability scores, 8 normalized sentiment and bias
word counts according to MPQA and bias lexi-
cons (Wilson et al., 2005; Recasens et al., 2013),
number of quotes, words, capitalized words, stop
words, and sentences, and average length of words
and sentences. This result in a total of 27 features
which we call Feat.

For supervised training, we split training-2 into
two sets. The first half, with 322 samples, is used
to train and choose hyperparameters in a 10-fold
cross validation setting. The second half, with
323 samples, is used for testing. We train LR
and SVM on the features. Both linear SVM and
SVM with rbf kernels are experimented with. We
also have some initial experiments of single layer
and two-layer neural networks of different hidden
layer sizes but the small sample size makes them
difficult to generalize.

4 Results

We first train LR and SVM with different GloVe
vector dimensions. Table 3 shows the accuracy on
the test set. SVM with rbf kernel works consis-
tently better. The best vector dimension is 300.

We then compare different features, including
TFIDF, Doc2Vec, GloVe, and the effect of adding
Feat. Table 4 shows the accuracy on the test set.
It shows that SVM performs better than LR, and
only in the case of TFIDF does a linear SVM out-
performs kernel SVM. It also shows that the pre-
trained GloVe vectors achieve better performance
than the vectors that are trained on our data. The
ability to generalize might result from the larger
corpus that is used to train the vectors. Adding
simple lexical and sentiment features hurts the per-
formance.

The three representations are furthered evalu-
ated on another test set (the official test set of the

3https://catalog.ldc.upenn.edu/
LDC2011T07

1069

category publisher doc(%) category publisher doc(%)
extreme-right thegatewaypundit.com 94.44 left salon.com 100.00
extreme-right dcclothesline.com 85.71 left gq.com 60.00
extreme-left trueactivist.com 62.50 left rawstory.com 40.00
right pjmedia.com 100.00 left opednews.com 100.00
right express.co.uk 36.84 left people.com 20.00
right opslens.com 100.00 right-center realclearpolitics.com 92.86
right insider.foxnews.com 27.27 right-center circa.com 12.50
right foxnews.com 50.00 left-center cbsnews.com 11.11
right washingtonexaminer.com 57.14 left-center heavy.com 7.69
right bizpacreview.com 40.00 left-center nytimes.com 30.00
right nypost.com 66.67 center snopes.com 8.33
right bearingarms.com 66.67 center nfl.com 0.00

Table 1: Selected publishers with their bias categories and percentage of biased articles in the dataset.

Features Classifier
LR SVM

BoW (without (c)) 58.83 59.72
BoW 60.67 60.93
BoW-binary 60.61 60.68
BoW-TFIDF (without (c)) 60.15 59.61
BoW-TFIDF 60.86 60.90
N-grams 60.73 59.13
N-grams-binary 60.18 59.74
N-grams-TFIDF (without (c)) 59.65 59.72
N-grams-TFIDF 60.51 60.61

Table 2: Validation accuracy after fine-tuning. Without
(c) means that the training set is not cleaned with the
pre-processing step (c). Cleaning helps improve accu-
racy.

Features Dim. LR SVM
GloVe 100 72.45 78.33 (rbf)
GloVe 200 72.76 76.78 (rbf)
GloVe 300 72.45 79.57 (rbf)

Table 3: Accuracy of different GloVe vector dimen-
sions.

Features Dim. LR SVM
TFIDF 50K 77.09 77.71 (linear)
GloVe 300 72.45 79.57 (rbf)
GloVe + Feat 327 75.85 78.33 (rbf)
Doc2Vec 400 71.83 78.95 (rbf)
Doc2Vec + Feat 427 77.71 75.85 (rbf)

Table 4: Accuracy of our model that is trained using
training-2. The majority baseline is 63% accuracy.

task) that is labeled by crowd workers. Since the
additional feature set does not improve the perfor-

mance, it is not further evaluated. In Table 5, the
accuracy, precision, recall, and F1-score on the
held-out test set are shown. Our classifiers tend
to have a higher false negative rate. This can be
due to the imbalance in the training data. Further
experiments would be required to see whether re-
sampling to have a balanced training set can im-
prove that.

Features Acc. Precision Recall F1
TFIDF 74.36 80.00 64.97 71.70
GloVe 80.57 85.82 73.25 79.04
Doc2Vec 73.89 82.61 60.51 69.85

Table 5: Submission results on the held-out test set,
with metrics including accuracy, precision, recall, and
F1-score.

5 Conclusion and Future Work

In this paper, we present the system we use to com-
pete in the SemEval-2019 hyperpartisan news de-
tection task. The final model we use is a kernel
SVM trained with pre-trained GloVe vectors. It
turns out that a simple method which requires the
least training time performs the best in this case.

Both system 1 and system 2 have interesting fu-
ture work to be done. For system 1, it is interesting
to correct the labels or filter the articles in order to
obtain a cleaner data to learn from. For system
2, we plan to use contextual embeddings (Peters
et al., 2018) or pre-trained language models (Rad-
ford, 2018; Devlin et al., 2018) to extract repre-
sentations that are then fed into downstream clas-
sifiers. The high performances of the models made
them interesting to compare with.

1070

References
Mark Daniel Bernhardt, Stefan Krasa, and Mattias K

Polborn. 2008. Political polarization and the elec-
toral effects of media bias. Journal of Public Eco-
nomics, 92(5-6):1092–1104.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Aditya Grover and Jure Leskovec. 2016. Node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22Nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
KDD ’16, pages 855–864, New York, NY, USA.
ACM.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751. As-
sociation for Computational Linguistics.

Vivek Kulkarni, Junting Ye, Steve Skiena, and
William Yang Wang. 2018. Multi-view models for
political ideology detection of news articles. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3518–
3527. Association for Computational Linguistics.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Inter-
national Conference on Machine Learning - Volume
32, ICML’14, pages II–1188–II–1196. JMLR.org.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Morgan & Claypool Publishers.

Subhabrata Mukherjee and Gerhard Weikum. 2015.
Leveraging joint interactions for credibility analy-
sis in news communities. In Proceedings of the
24th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’15, pages
353–362, New York, NY, USA. ACM.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Ja-
nek Bevendorff, and Benno Stein. 2018. A Stylo-
metric Inquiry into Hyperpartisan and Fake News.
In 56th Annual Meeting of the Association for Com-
putational Linguistics (ACL 2018), pages 231–240.
Association for Computational Linguistics.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic models for an-
alyzing and detecting biased language. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1650–1659. Association for Computa-
tional Linguistics.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Sida Wang and Christopher D. Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and
topic classification. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics: Short Papers - Volume 2, ACL ’12,
pages 90–94, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the Con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing,
HLT ’05, pages 347–354, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489. ACL.

1071

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1072–1077
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UBC-NLP at SemEval-2019 Task 4:
Hyperpartisan News Detection With Attention-Based Bi-LSTMs

Chiyu Zhang Arun Rajendran Muhammad Abdul-Mageed
Natural Language Processing Lab

The University of British Columbia
chiyu94@alumni.ubc.ca, arun95@math.ubc.ca, muhammad.mageeed@ubc.ca

Abstract
We present our deep learning models sub-
mitted to the SemEval-2019 Task 4 compe-
tition focused at Hyperpartisan News Detec-
tion. We acquire best results with a Bi-LSTM
network equipped with a self-attention mecha-
nism. Among 33 participating teams, our sub-
mitted system ranks top 7 (65.3% accuracy)
on the labels-by-publisher sub-task and top
24 out of 44 teams (68.3% accuracy) on the
labels-by-article sub-task (65.3% accuracy).
We also report a model that scores higher than
the 8th ranking system (78.5% accuracy) on
the labels-by-article sub-task.

1 Introduction

Spread of fake news (e.g., Allcott and Gentzkow
(2017); Horne and Adali (2017)) (or ‘low-quality’
information (Qiu et al., 2017), among other terms)
can have destructive economic impacts (San-
doval, 2008), result in dangerous real world con-
sequences (Akpan, 2016), or possibly undermine
the very democratic bases of modern societies
(Qiu et al., 2017; Allcott and Gentzkow, 2017).
Several approaches have been employed for de-
tecting fake stories online, including detecting the
sources that are highly polarized (or hyperparti-
san)] (Potthast et al., 2017). Detecting whether a
source is extremely biased for or against a given
party can be an effective step toward identifying
fake news.

Most research on news orientation prediction
employed machine learning methods based on fea-
ture engineering. For example, Pla and Hurtado
(2014) use features such as text n-grams, part-of-
speech tags, hashtags, etc. with an SVM classifier
to tackle political tendency identification in twit-
ter. Potthast et al. (2017) investigate the writing
style of hyperpartisan and mainstream news using
a random forest classifier (Koppel et al., 2007).
Further, Preoţiuc-Pietro et al. (2017) use a linear

regression algorithm to categorize Twitter users
into a fine-grained political group. The authors
were able to show a relationship between language
use and political orientation.

Nevertheless, previous works have not consid-
ered the utility of deep learning methods for hy-
perpartisanship detection. Our goal is to bridge
this gap by investigating the extent to which
deep learning can fare on the task. More pre-
cisely, we employ several neural network architec-
tures for hyperpartisans news detection, including
long short-term memory networks (LSTM), con-
volutional neural networks (CNN), bi-directional
long short term memory networks (Bi-LSTM),
convolutional LSTM (CLSTM), recurrent convo-
lutional neural network (RCNN), and attention-
based LSTMs and Bi-LSTMs.

We make the following contributions: (1) we in-
vestigate the utility of several deep learning mod-
els for classifying hyperpartisan news, (2) we test
model performance under a range of training set
conditions to identify the impact of training data
size on the task, and (3) we probe our models with
an attention mechanism coupled with a simple vi-
sualization method to discover meaningful contri-
butions of various lexical features to the learning
task. The rest of the paper is organized as follows:
data are described in Section 2, Section 3 de-
scribes our methods, followed by experiments in
Section 4. Next, we explain the results in de-
tail and our submission to SemEval-2019 Task4 in
Section 4. We present attention-based visualiza-
tions in Section 5, and conclude in Section 6.

2 Data

Hyperpartisan news detection is the SemEval-
2019 task 4 (Kiesel et al., 2019). The task
is set up as binary classification where data re-
leased by organizers are labeled with the tagset

1072

Labels-by-Publisher Labels-by-Article

Train Dev Test Total Train Test Total

Hyperpartisan 383,151 66,849 50,000 500,000 214 24 238
Non- Hyperpartisan 416,849 33,151 50,000 500,000 366 41 407

Total 800,000 100,000 100,000 1,000,000 580 65 645

Table 1: Distribution of labels over our data splits.

{hyperpartisan, not-hyperpartisan}. The dataset
has two parts, pertaining how labeling is per-
formed. For Part 1: labels-by-publisher, labels
are propagated from the publisher level to the arti-
cle level. Part 1 was released by organizers twice.
First 1M articles (less clean) were released, but
then 750K (cleaner, de-duplicated) articles were
released. We use all the 750K articles but we also
add 250K from the first release, ensuring there
are no duplicates in the articles and we also per-
form some cleaning of these additional 250K ar-
ticles (e.g., removing error symbols). We ensure
we have the balanced classes {hyperpartisan, not-
hyperpartisan}, with 500K articles per class. For
experiments, we split Part 1 into 80% train, 10%
development (dev), and 10% test.

The labeling method for Part 1 assumes all ar-
ticles by the same publisher will reflect the pub-
lisher’s same polarized category. This assumption
is not always applicable, since some articles may
not be opinion-based. For this reason, organiz-
ers also released another dataset, Part 2: labels-
by-article, where each individual article is as-
signed a label by a human. Part 2 is smaller, with
only 645 articles (238 hyperpartisan and 407 non-
hyperpartisan). Since Part 2 is smaller, we split it
into 90% train and 10% test. Since we do not have
a dev set for Part 2, we perform all our Hyper-
parameter tuning on the Part 1 dev set exclusively.
Table 1 shows the statistics of our data.

3 Methods

3.1 Pre-processing

We lowercase all the 1M articles, tokenize them
into word sequences, and remove stop words us-
ing NLTK 1. For determining parameters like max-
imum sequence length and vocabulary size, we an-
alyze the 1M articles, and find the number of total
tokens to be 313,257,392 and the average length
of an article to be 392 tokens (with a standard de-

1https://www.nltk.org/

viation of 436 tokens), and the number of types
(i.e., unique tokens) to be 773,543. We thus set
the maximal length of sequence in our models to
be 392, and choose an arbitrary (yet reasonable)
vocabulary size of 40,000 words.

3.2 Architectures

Deep learning has boosted performance on several
NLP tasks. For this work, we experiment with a
number of methods that have successfully been
applied to text classification. Primarily, we em-
ploy a range of variations and combinations of re-
current neural networks (RNN) and convolutional
neural networks (CNN). RNNs are good sum-
marizers of sequential information such as lan-
guage, yet suffer from gradient issues when se-
quences are very long. Long-Short Term Mem-
ory networks (LSTM) (Hochreiter and Schmid-
huber, 1997) have been proposed to solve this
issue, and so we employ them. Bidirectional
LSTM (Bi-LSTM) where information is summa-
rized from both left to right and vice versa and
combined to form a single representation has also
worked well on many tasks such as named entity
recognition (Limsopatham and Collier, 2016), but
also text classification (Abdul-Mageed and Un-
gar, 2017; Elaraby and Abdul-Mageed, 2018). As
such, we also investigate Bi-LSTMs on the task.
Attention mechanism has also been proposed to
improve machine translation (Bahdanau et al.,
2014), but was also applied successfully to var-
ious other tasks such as speech recognition, im-
age captioning generation, and text classification
(Xu et al., 2015; Chorowski et al., 2015; Bazio-
tis et al., 2018; Rajendran et al., 2019). We em-
ploy a simple attention mechanism (Zhou et al.,
2016b) to the output vector of the (Bi-)LSTM
layer. Although CNNs have initially been pro-
posed for image tasks, they have also been shown
to work well for texts (e.g., (Kim, 2014)) and
so we employ a CNN. In addition, neural net-
work architectures that combine different neural

1073

network architectures have shown their advantage
in text classification (e.g., sentiment analysis). For
example, improvements on text classification ac-
curacy were observed applying a model built on
a combination of Bi-LSTM and two-dimensional
CNN (2DCNN) compared to separate RNN and
CNN models (Zhou et al., 2016a). Moreover, a
combination of CNN and LSTM (CLSTM) out-
perform both CNN and LSTM on sentiment clas-
sification and question classification tasks (Zhou
et al., 2015). The experiments of Lai et al. (2015)
demonstrate that recurrent convolutional neural
networks (RCNNs) outperforms CNN and RNN
on text classification. For these reasons, we also
experiment with RCNN and CLSM.

3.3 Hyper-Parameter Optimization

For all our models, we use the top 40K words
from Part 1 training set (labels-by-publisher) as
our vocabulary. We initialize the embedding lay-
ers with Google News Word2Vec model. 2 For all
networks, we use a single hidden layer. We use
dropout (Srivastava et al., 2014) for regulariza-
tion.

Models Hidden
No.

Drop
out

Kernel
size

Kernel
No

LSTM 300 0.1 N/A N/A
Bi-LSTM 200 0.0 N/A N/A
LSTM+Attn 500 0.0 N/A N/A
Bi-LSTM+Attn 500 0.0 N/A N/A
CNN N/A 0.1 [4,5,6] 200
RCNN 200 0.3 N/A N/A
CLSTM 200 0.3 [2,3,4] 70

Table 2: Our best Hyper-parameters.

For the best Hyper-parameters for each net-
work, we use the Part 1 dev set to identify the num-
ber of units (between 100 and 600) in each net-
work’s hidden layer and the dropout rate (choos-
ing values between 0 and 1, with 0.1 increments).
For the CNNs (and their variations), we use 3 ker-
nels with different sizes (with groups like 2,3,4)
and identify the best number of kernel filters (be-
tween 30 to 300). All Hyper-parameters are iden-
tified using the Part 1 dev set. Table 2 presents
the detailed optimal Hyper-parameters for all our
models. 3

2https://github.com/mmihaltz/
word2vec-GoogleNews-vectors

3For all our networks, we identify our best learning rate
as 0.001. For this reason, we do not provide learning rate in
Table 2.

4 Experiments & Results

We run two main sets of experiments, which we
will refer to as EXP-A and EXP-B. For EXP-A,
we train on the labels-by-publisher (Part 1) train
set, tune on dev, and test on test. All related re-
sults are reported in Table 3. As Table 3 shows,
our best macro F1 as well as accuracy is acquired
with Bi-LSTM with attention (Bi-LSTM+ATTN).
For EXP-B, we use Part 1 and Part 2 datasets in
tandem, where we train on each train set indepen-
dently and (1) test on its test data, but also (2) test
on the other set’s test data. We also (3) fine-tune
the models pre-trained on the bigger dataset (Part
1) on the smaller dataset (Part 2), to test the trans-
ferrability of knowledge from these bigger mod-
els. Related results (only in accuracy, for space)
are in Table 4. Again, the best accuracy is ob-
tained with Bi-LSTM with attention.

SemEval-2019 Task 4 Submissions: We sub-
mitted our Bi-LSMT+Attention model from EXP
A to the labels-by-publisher leaderboard in TIRA
(Potthast et al., 2019), and it ranked top 7 out of
the 33 teams, scoring at accuracy=0.6525 on the
competition test set. 4 From EXP-B, we submit-
ted our model based on Bi-LSMT+Attention that
was trained on Part 2 train exclusively dataset (by-
ATC in Table 4) to the labels-by-article leader-
board. It ranked top 24th out of 44 teams (ac-
curacy=0.6831). Post-competition, we submit-
ted our EXP-B model that is pre-trained on the
by-publisher data and fine-tuned on the by-article
data (by-PSH+by-ATC in Table 4) to the labels-
by-article leaderboard. It ranked top 8th, with
78.50% accuracy. This might be due to the ability
of this specific model to transfer knowledge from
the big (by-publisher) training set to the smaller
(by-article) data (i.e., better generalization).

5 Attention Visualization

For better interpretation, we present a visualiza-
tion of words of our best model from EXP-B (by-
PSH+by-ATC in Table 4) attends to across the two
classes, as shown in Figure 1. The color inten-
sity in the Figure corresponds to the weight given
to each word by the self-attention mechanism and
signifies the importance of the word for final pre-
diction. As shown in Figure 1 (a), some heavily
polarized terms such as ‘moron’, ‘racism’, ‘shit’,

4The competition test set is different from our own test
set, which we created by splitting the data we received.

1074

Models Test
Accuracy

Precision Recall F1

Hyper Non-hyper Hyper Non -hyper Hyper Non-hyper

LSTM 0.9174 0.8927 0.9422 0.9392 0.8977 0.9154 0.9203
CNN 0.9147 0.9179 0.9115 0.9121 0.9173 0.9150 0.9114
Bi-LSTM 0.9196 0.9097 0.9295 0.9281 0.9114 0.9188 0.9203
LSTM+ATTN 0.9071 0.8755 0.9388 0.9347 0.8829 0.9041 0.9100
Bi-LSTM+ATTN 0.9368 0.9493 0.9262 0.9347 0.9480 0.9376 0.9360
CLSTM 0.8977 0.9181 0.8773 0.9147 0.8821 0.8956 0.8998
RCNN 0.9161 0.9380 0.8946 0.8972 0.9364 0.9171 0.9150
Random Forest 0.7723 0.5312 0.9456 0.8824 0.7333 0.6628 0.8260

Table 3: Performance of Predicting Hyperpartisan News (EXP-A).

(a) Hyperpartisan.

(b) Non-hyperpartisan.

Figure 1: Attention heat-map for article examples.

Test on
Train on

by-PSH by-ATC by-PSH
+by-ATC

LSTM by-PSH 0.9174 0.5331 0.8369
by-ATC 0.5917 0.7833 0.7667

BiLSTM by-PSH 0.9196 0.5562 0.8089
by-ATC 0.5783 0.6540 0.7833

LSTM+A by-PSH 0.9071 0.7397 0.8509
by-ATC 0.5783 0.8166 0.7833

BiLSTM+A by-PSH 0.9368 0.5412 0.7908
by-ATC 0.5504 0.8615 0.8153

Table 4: Results with Part 1 and Part 2 datasets
(EXP-B). Last column “by-PSH +by-ATC” is the
setting of our models pre-trained on Part 1 and
fine-tuned on Part 2. +A= added attention.

‘scream’, and ‘assert’ are associated with the hy-
perpartisan class. It is clear from the content of the
article from which the example is drawn that it is a
highly opinionated article. In Figure 1 (b), items
such as ‘heterosexual marriage’, ‘gay’, ‘July’, and
‘said’ carry more weight than other items. These

items are not as much opinionated as those in 1
(a), and some of them (e.g., ‘July’ and ‘said’) are
more of factual and reporting devices than mere
carriers of ad hominem attacks. These features
show that some of the model attentions are mean-
ingful.

6 Conclusion

In this paper, we described our system of hyper-
partisan news detection to the 4th SemEval-2019
shared task. Our best models are based on a
Bi-LSTM with self-attention. To understand our
models, we also visualize their attention weights
and find meaningful patterns therein.

7 Acknowledgement

We acknowledge the support of the Natural
Sciences and Engineering Research Council of
Canada (NSERC), the Social Sciences Research
Council of Canada (SSHRC), WestGrid (www.
westgrid.ca), and Compute Canada (www.
computecanada.ca).

1075

References
Muhammad Abdul-Mageed and Lyle Ungar. 2017.

Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 718–728.

Nsikan Akpan. 2016. The very real consequences of
fake news stories and why our brain cant ignore
them. PBS News Hour.

Hunt Allcott and Matthew Gentzkow. 2017. Social me-
dia and fake news in the 2016 election. Technical
report, National Bureau of Economic Research.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Christos Baziotis, Nikos Athanasiou, Alexandra
Chronopoulou, Athanasia Kolovou, Georgios
Paraskevopoulos, Nikolaos Ellinas, Shrikanth
Narayanan, and Alexandros Potamianos. 2018.
Ntua-slp at semeval-2018 task 1: Predicting affec-
tive content in tweets with deep attentive rnns and
transfer learning. arXiv preprint arXiv:1804.06658.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy
Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
2015. Attention-based models for speech recogni-
tion. In Advances in neural information processing
systems, pages 577–585.

Mohamed Elaraby and Muhammad Abdul-Mageed.
2018. Deep models for arabic dialect identification
on benchmarked data. In Proceedings of the Fifth
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial 2018), pages 263–274.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Benjamin D Horne and Sibel Adali. 2017. This just in:
Fake news packs a lot in title, uses simpler, repetitive
content in text body, more similar to satire than real
news. arXiv preprint arXiv:1703.09398.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Moshe Koppel, Jonathan Schler, and Elisheva
Bonchek-Dokow. 2007. Measuring differentiabil-
ity: Unmasking pseudonymous authors. Journal of
Machine Learning Research, 8(Jun):1261–1276.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In AAAI, volume 333, pages 2267–
2273.

Nut Limsopatham and Nigel Collier. 2016. Learn-
ing orthographic features in bi-directional lstm for
biomedical named entity recognition. In Pro-
ceedings of the Fifth Workshop on Building and
Evaluating Resources for Biomedical Text Mining
(BioTxtM2016), pages 10–19.

Ferran Pla and Lluı́s-F Hurtado. 2014. Political ten-
dency identification in twitter using sentiment anal-
ysis techniques. In Proceedings of COLING 2014,
the 25th international conference on computational
linguistics: Technical Papers, pages 183–192.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2017. A sty-
lometric inquiry into hyperpartisan and fake news.
arXiv preprint arXiv:1702.05638.

Daniel Preoţiuc-Pietro, Ye Liu, Daniel Hopkins, and
Lyle Ungar. 2017. Beyond binary labels: political
ideology prediction of twitter users. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 729–740.

Xiaoyan Qiu, Diego FM Oliveira, Alireza Sahami Shi-
razi, Alessandro Flammini, and Filippo Menczer.
2017. Limited individual attention and online viral-
ity of low-quality information. Nature Human Be-
havior, 1:0132.

Arun Rajendran, Chiyu Zhang, and Muhammad
Abdul-Mageed. 2019. Happy together: Learning
and understanding appraisal from natural language.
In Proceedings of the AAAI2019 Second Affective
Content Workshop (AffCon 2019), pages 00–00.

Greg Sandoval. 2008. Whos to blame for spreading
phony jobs story? CNet News, pages 4–46.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1785–1794.

1076

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A c-lstm neural network for text clas-
sification. arXiv preprint arXiv:1511.08630.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016a. Text classi-
fication improved by integrating bidirectional lstm
with two-dimensional max pooling. arXiv preprint
arXiv:1611.06639.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016b. Attention-
based bidirectional long short-term memory net-
works for relation classification. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
volume 2, pages 207–212.

1077

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1078–1082
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Vernon-fenwick at SemEval-2019 Task 4: Hyperpartisan News Detection
using Lexical and Semantic Features

Vertika Srivastava
Sudeep Kumar Sahoo

Ankita Gupta
Rohit R.R

Divya Prakash
Yeon Hyang Kim

Samsung R&D Institute India, Bangalore
{v.srivastava, gupta.ankita, p.divya,

sudeep.sahoo, rohit.r.r, purine.kim}@samsung.com

Abstract

In this paper, we present our submission for
SemEval-2019 Task 4: Hyperpartisan News
Detection. Hyperpartisan news articles are
sharply polarized and extremely biased (one-
sided). It shows blind beliefs, opinions and un-
reasonable adherence to a party, idea, faction
or a person. Through this task, we aim to de-
velop an automated system that can be used to
detect hyperpartisan news and serve as a pre-
screening technique for fake news detection.
The proposed system jointly uses a rich set
of handcrafted textual and semantic features.
Our system achieved 2nd rank on the primary
metric (82.0% accuracy) and 1st rank on the
secondary metric (82.1% F1-score), among all
participating teams. Comparison with the best
performing system on the leaderboard1 shows
that our system is behind by only 0.2% abso-
lute difference in accuracy.

1 Introduction

Today in the age of digitization, a smartphone
has become an indispensable tool for information
sharing and consumption. It is much more conve-
nient for users to read news through online articles
and social media platforms. These platforms pro-
vide them quick and easy access to information
almost everywhere. However, it is highly possi-
ble that the shared information is unverified and
may bias the reader’s opinions. This issue is ex-
acerbated by the fact that most of the people find
it difficult to distinguish between what’s real and
objective, what’s fake and what’s partisan.

Although these online news articles are ex-
pected to be written well-balanced without any
prejudices, the authors/media houses may at times
spill their standpoints and beliefs. Instead of pro-
viding a holistic view to the readers, the author

1https://pan.webis.de/semeval19/semeval19-
web/leaderboard.html

tries to convey a picture with which he agrees and
thus making the audience biased towards a party or
a faction. When these news articles are extremely
polarized towards one side of the argument, they
are referred to as “Hyperpartisan News Articles”.

This extreme polarization can leave users vul-
nerable to detrimental arguments and cloud their
judgment to make objective decisions. These hy-
perpartisan articles may also carry some common
elements of fake news. They are typically used to
spread propaganda and manipulate readers. It tar-
gets human psychology by creating confirmation
bias and echo chambers and therefore impairing
their ability to dispel the hyperpartisan articles in
favor of neutral articles.

SemEval-2019 Task 4 aims to solve this issue
of hyperpartisanship. The objective of this task is
to detect if a given news article has hyperpartisan
arguments (extremely one-sided). In this paper,
we have described our system that automates the
process of identifying and annotating news articles
as hyperpartisan or not.

2 Related Work

The problem of fake news and hyperpartisan has
been discussed earlier by Potthast et al. (2017).
They followed a style based approach to tackle the
problem and have also suggested that writing style
of left-wing and right-wing news are quite similar.
Apart from this, there hasn’t been much work in
hyperpartisan news detection. Our approach is in-
spired by some recent work in the domain of senti-
ment analysis (Pontiki et al., 2016) and bias detec-
tion (Patankar et al., 2018; Recasens et al., 2013;
Patankar and Bose, 2017; Baly et al., 2018). Jian
and Wilson (2018) have explored linguistic signals
embedded in news articles. They have used these
linguistic clues to detect the spread of misinfor-
mation via social media. Iyyer et al. (2014) have

1078

studied the impact of words in identifying people’s
ideology and have proposed RNN to capture se-
mantic features of a sentence.

3 System Description

Our hyperpartisan news detection system consists
of three phases: 1) preprocessing, 2) generating
article representation, and 3) training a classifier.
An overview of our system is shown in Figure 1.

Figure 1: System Pipeline.

3.1 Preprocessing
The original dataset consisted of news articles
along with HTML tags. Hyperpartisan news de-
tection cleaner2 was used to convert original text
to plain text by removing tags. In the next step,
further rudimentary cleaning of articles was done.
We have also expanded contractions in the dataset
like ‘shan’t’ was converted to “shall not”, ‘don’t’
to “do not” etc.

3.2 Article Representation
Hyperpartisan news articles are extremely one
sided and exhibits blind beliefs as compared to a
neutral news articles. We have observed that writ-
ers of such articles generally, manifest usage of
harsh tone and inflammatory language, they even
exaggerate and convey opinions to stress their ide-
ology. Hyperpartisan news articles tend to use su-
perlatives and comparatives frequently to drama-
tize or exaggerate situations.

Polarity at an article level can capture emotions
and sentiments of the article, it may also cap-
ture contextual polarity. Polarity at sentence level
helps to identify bias localized to a sentence which
might not be perceptible at an article level. It
helps to shift the focus on bias-heavy sentences.
By combining polarity at both levels, we can cap-
ture the tone, overpraise and sentiment in an arti-

2https://github.com/webis-de/semeval19-hyperpartisan-
news-detection-article-cleaner

cle. Subjectivity, modality and bias lexicons help
to discover the attitude, prejudice and beliefs ex-
pressed by the author. Building from these in-
sights, we created a set of handcrafted textual fea-
tures (HF), which are based on writing style, lin-
guistics, and lexicons.

The problem with handcrafted features is that
they don’t capture the semantic relationship
among the sentences. To solve this problem, we
incorporated semantic features (SF) that can cap-
ture long-range dependencies of sentences and
bring out the semantics of the article. The draw-
back of semantic features obtained via word based
embeddings like Glove, is that it ignores word
sequencing. In our approach, we have also ex-
plored features generated via distributed docu-
ment representation (Universal Sentence Encoder
or Doc2Vec) that are agnostic to word orderings
and captures the semantics of an article.

Consider a set of N news articles A =
{a1...aN}. Each article ai has a set of S =
{s1...sm} sentences and a set of W = {w1...wl}
words, where l is the length of the article. We
jointly used HF and SF to obtain article represen-
tation (ArtRep), where ⊕ is concatenation opera-
tor:

ArtRep = HF ⊕ SF (1)

Handcrafted features used in our system is de-
scribed in Section 4 and semantic features are dis-
cussed in Section 5.

4 Handcrafted Features

Bias Score: For identifying bias words in an ar-
ticle, bias lexicon built from NPOV corpus of
Wikipedia articles (Recasens et al., 2013) was
used. Wikipedia advocates Neutral Point of View
policy (NPOV), articles falling under NPOV dis-
pute category were used to build this corpus. Bias
score is the frequency of article words that occur
in bias lexicon.

Article Level Polarity: Polarity of an article
(APol) was extracted using MPQA Subjectivity
lexicon (Wilson et al., 2005) (SLex), which lists
around 8000 words with their prior polarity and
their subjectivity type. Let a set of prior positive
polarity words in an article be PLexi and negative
polarity words be NLexi. We computed positive
(APol+i) and negative polarity score (APol−i) of

1079

an article ai, where 1 is an indicator function:

APol+i =
1

l

l∑

j=1

1(wj ∈ (PLexi ∩ SLex)) (2)

APol−i =
1

l

l∑

j=1

1(wj ∈ (NLexi ∩ SLex)) (3)

Sentence Level Polarity: Polarity was further
fine-grained to generate features for sentences of
a news article using Pattern toolkit for English
3. A sentence sj was given as an input to the
toolkit and a polarity score αj in the range of [-
1.0, 1.0] was obtained. Positive (PolScore+i),
negative (PolScore−i) and neutral polarity score
(PolScoreNeu

i) of an article ai was computed
with |0.1| as a threshold as it gave the best results
for our system:

PolScore+i =
m∑

j=1

1(αj > 0.1) (4)

PolScore−i =

m∑

j=1

1(αj < −0.1) (5)

PolScoreNeu
i =

m∑

j=1

1(−0.1 ≤ αj ≤ 0.1) (6)

Subjectivity and Modality: Subjectivity score
is computed using Sentiment module of Pattern
toolkit for English3. Toolkit gives a score based
on adjectives and their context in the range of [0.0,
1.0]. Modality is a measure of the degree of cer-
tainty. It was computed using Modality module of
Pattern toolkit for English3.

Superlatives and Comparatives : Intensifying
lexicons like adjectives and adverbs in superlative
and comparative degree were used. We ran POS
tagger from NLTK (Bird and Loper, 2004) on the
article text to identify Subjective and Compara-
tive adjectives and adverbs and their correspond-
ing frequencies in the text were used as a feature.

5 Semantic Features

5.1 Glove
Glove (Pennington et al., 2014) provides distri-
butional vector representations of words in the

3https://www.clips.uantwerpen.be/pages/pattern-en

Dataset Articles

Hyperpartisan 238
Non-Hyperpartisan 407

Table 1: ByArticle Dataset statistics.

semantic space. We have used 300-dimensional
Glove embeddings trained on Common Crawl data
of 2.2 million words and 840 billion tokens. An ar-
ticle was tokenized into sentences and further into
words to obtain it’s article representation. Each
of these words was vectorized using Glove pre-
trained embeddings. Article representation was
generated by averaging (Wieting et al., 2015) these
300-dimensional word embeddings.

5.2 Doc2Vec

Doc2Vec (D2V) (Le and Mikolov, 2014) is an
unsupervised algorithm to learn distributed rep-
resentation of multi-word sequences in semantic
space. We have used Python implementation of
Doc2Vec provided by gensim to learn embeddings
for the news articles. For our experiments, we
have used 512-dimensional embeddings generated
from D2V on article text.

5.3 Universal Sentence Encoder

Universal Sentence Encoder (USE) (Cer et al.,
2018) is a pretrained model to generate embed-
dings for sentences, phrases and much larger
multi-word sequences. It has shown good per-
formance on diverse NLP tasks for e.g., phrase
level opinion extraction and sentiment classifica-
tion. USE takes English text as an input and gener-
ates 512-dimensional embedding. In our best sys-
tem, we have used these 512-dimensional article
embeddings, generated on feeding article text to
USE.

6 Experiments

6.1 Dataset

We have used ByArticle dataset provided in the
task, which is labeled through crowdsourcing.
Dataset consists of 645 news articles and a label
to denote if it is hyperpartisan or not, details of the
dataset are provided briefly in Table 1. More in-
formation on the dataset can be found in (Kiesel
et al., 2019).

1080

Model Acc. Prec. Recall F1

Baseline 46.18 46.03 44.27 45.13
1st ranked system 82.17 87.13 75.48 80.90
SM 58.76 58.51 60.19 59.34
SC 65.76 70.37 54.46 61.40
B 68.63 73.31 58.60 65.13
SP 68.63 72.24 60.51 65.86
AP 65.13 64.90 65.92 65.40
HF 70.22 72.76 64.65 68.47
D2V+HF 73.41 69.60 83.12 75.76
Glove+HF 78.34 82.01 72.61 77.03
USE+HF 82.01 81.50 82.80 82.15

Table 2: SemEval-2019 Task 4 Performance compari-
son on hidden test data (SM: Subjectivity and Modality,
SC: Superlatives and Comparatives, B: Bias Score, AP:
Article Level Polarity, SP: Sentence Level Polarity, HF:
set of all Handcrafted Features). All results reported in
the table are in percentage and rounded to 2 decimal
places.

6.2 Results and Analysis

Handcrafted features were concatenated with se-
mantic features, to generate a rich article repre-
sentation which was fed to the classifier as an
input. A L2-regularized logistic regression (Pe-
dregosa et al., 2011) classifier was trained with 10-
fold cross-validation. Since the training dataset is
unbalanced, we have used class weighted logistic
regression by weighing classes inversely propor-
tional to their frequency.

For evaluation, a balanced hidden test data
(ByArticle) was provided by the organizers
through TIRA (Potthast et al., 2019). We have
used accuracy for performance evaluation, which
was a primary performance measure in the task.
Apart from this, we have also reported precision,
recall, and F1-score on the dataset.

Table 2 shows the performance of our various
approaches against the baseline results (Task 4
semeval-pan-2019-baseline on TIRA4). From the
results, we can observe that our best performing
system has outperformed the baseline by a huge
margin, recording an absolute jump of 35.83% ac-
curacy. We can also see that our system is as good
as the best system (bertha-von-suttner4) submitted
for the task, which has 82.17% accuracy, showing
that we were behind by only 0.16%.

In order to assess the importance of each hand-

4https://www.tira.io/task/hyperpartisan-news-
detection/dataset/pan19-hyperpartisan-news-detection-
by-article-test-dataset-2018-12-07/

crafted feature, we performed experiments by
using individual features and their combination
(HF). In fact, Table 2 highlights that all the fea-
tures jointly perform well with 70.22% accuracy.
We found that bias lexicon and polarity based fea-
tures are the most informative ones.

In an attempt to further improve our model’s
performance, we experimented by combining se-
mantic features with handcrafted features as de-
scribed in Section 3.2. Our results have also shown
that handcrafted features alone aren’t sufficient
and better performance can be achieved by com-
bining them with semantic features. USE+HF has
beaten all our other models and showed an abso-
lute improvement of 11.79% accuracy over the HF
model. It also attained 1st rank on the leaderboard
(based on F1-score) and 2nd overall rank (based
on Accuracy).

The poor performance of D2V+HF can be at-
tributed to the training of D2V as typically D2V
requires large data for training. Results have
also shown that USE+HF performed better than
Glove+HF, and thus validating our earlier claim of
limitations of word-based embeddings.

7 Conclusion and Future Work

In this paper, we proposed a novel approach to
detect hyperpartisan arguments in a news article.
Our system ranked 2nd in SemEval-2019 Task 4.
Our approach leverages rich semantic and hand-
crafted textual features. In the paper, we have also
studied the importance of capturing semantic re-
lationship among sentences of an article. Our sys-
tem employed linguistic and lexical features to de-
tect polarity, sentiments and blind beliefs exhib-
ited in an article. Experiments with various model
configurations demonstrated the effectiveness of
our approach.

Detecting hyperpartisan in news articles should
also, involve incorporation of world knowledge, as
statements as an individual may not be extremely
biased but when seen from a global perspective,
they turn out to be hyperpartisan. As a future
work, we would like to exploit the use of exter-
nal knowledge. We would also like to investigate
the role of credibility of news sources (Baly et al.,
2018; Popat et al., 2018) in detecting hyperparti-
san news articles.

1081

References
Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,

James Glass, and Preslav Nakov. 2018. Predict-
ing factuality of reporting and bias of news media
sources. arXiv preprint arXiv:1810.01765.

Steven Bird and Edward Loper. 2004. Nltk: the nat-
ural language toolkit. In Proceedings of the ACL
2004 on Interactive poster and demonstration ses-
sions, page 31. Association for Computational Lin-
guistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection us-
ing recursive neural networks. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1113–1122.

Shan Jiang and Christo Wilson. 2018. Linguistic sig-
nals under misinformation and fact-checking: Evi-
dence from user comments on social media. Pro-
ceedings of the ACM on Human-Computer Interac-
tion, 2(CSCW):82.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 Task 4: Hyperpartisan News Detection. In
Proceedings of The 13th International Workshop on
Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages
1188–1196.

Anish Anil Patankar and Joy Bose. 2017. Bias dis-
covery in news articles using word vectors. In
2017 16th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), pages
785–788. IEEE.

Anish Anil Patankar, Joy Bose, and Harshit Khanna.
2018. A bias aware news recommendation system.
arXiv preprint arXiv:1803.03428.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Maria Pontiki, Dimitris Galanis, Haris Papageor-
giou, Ion Androutsopoulos, Suresh Manandhar, AL-
Smadi Mohammad, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, et al. 2016.
Semeval-2016 task 5: Aspect based sentiment anal-
ysis. In Proceedings of the 10th international work-
shop on semantic evaluation (SemEval-2016), pages
19–30.

Kashyap Popat, Subhabrata Mukherjee, Andrew Yates,
and Gerhard Weikum. 2018. Declare: Debunking
fake news and false claims using evidence-aware
deep learning. arXiv preprint arXiv:1809.06416.

Martin Potthast, Tim Gollub, Matti Wiegmann, and
Benno Stein. 2019. TIRA Integrated Research Ar-
chitecture. In Nicola Ferro and Carol Peters, edi-
tors, Information Retrieval Evaluation in a Chang-
ing World - Lessons Learned from 20 Years of CLEF.
Springer.

Martin Potthast, Johannes Kiesel, Kevin Reinartz,
Janek Bevendorff, and Benno Stein. 2017. A sty-
lometric inquiry into hyperpartisan and fake news.
arXiv preprint arXiv:1702.05638.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic models for an-
alyzing and detecting biased language. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 1650–1659.

John Wieting, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Towards universal para-
phrastic sentence embeddings. arXiv preprint
arXiv:1511.08198.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of the con-
ference on human language technology and empiri-
cal methods in natural language processing, pages
347–354. Association for Computational Linguis-
tics.

1082

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1083–1089
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

AndrejJan at SemEval-2019 Task 7: A Fusion Approach for Exploring the
Key Factors pertaining to Rumour Analysis

Andrej Janchevski, Sonja Gievska
Faculty of Computer Science and Engineering

Ss. Cyril and Methodius University
Rugjer Boshkovikj 16, Skopje, Republic of North Macedonia
andrej.jancevski@students.finki.ukim.mk

sonja.gievska@finki.ukim.mk

Abstract

The viral spread of false, unverified and mis-
leading information on the Internet has at-
tracted a heightened attention of an inter-
disciplinary research community on the phe-
nomenon. This paper contributes to the re-
search efforts of automatically determining the
veracity of rumourous tweets and classifying
their replies according to stance. Our research
objective was to investigate the interplay be-
tween a number of phenomenological and con-
textual features of rumours, in particular, we
explore the extent to which network struc-
tural characteristics, metadata and user pro-
files could complement the linguistic analysis
of the written content for the task at hand. The
current findings strongly demonstrate that sup-
plementary sources of information play signif-
icant role in classifying the veracity and the
stance of Twitter interactions deemed to be ru-
mourous.

1 Introduction

Social networks continue to contribute to the
way people connect, stay informed and contribute
above and beyond what concerns their lives. How-
ever, these platforms currently play a crucial role
in viral spreading of false information, and no
doubt will become even more instrumental in
the future. Consequently, it will be increasingly
important to devise systems and establish prac-
tices of automatically identifying, filtering and la-
beling false information in order to help people
make sense of information dispersed through so-
cial channels.

The damaging consequences of malicious in-
tents to misinform, confuse and provoke through
social media platforms remain persistently high
in the discussions of researchers and practition-
ers. Perhaps even more so than the benefits of
information dissemination. While the veracity of

some false information can be determined unam-
biguously from external sources, it is a major chal-
lenge to verify the truthfulness of rumourous post-
ings. Indeed, predictive analysis remains the pri-
mary manner in which social platforms could face
the challenge of identifying rumours and taking
appropriate actions. Over the past several years,
research has emerged and at the same time, many
challenges remain.

Decoding elusive social phenomenon such as
spreading rumours is challenging not only due
to their complexity, but also due to the diver-
sity of the underlying causes and heterogeneity
in their manifestations. Rumours represent in-
tertwined threads of sensemaking Bordia and Di-
fonzo (2004) that are initiated and spread by peo-
ple trying to explain, solve and remove uncertainty
relating to events and persons that attract public
interest Peterson and Gist (1951). We argue that
solutions that address these multi-dimensional is-
sues cannot solely rely on natural language pro-
cessing (NLP). Combining natural language pro-
cessing with social analytics extends beyond the
traditional realms of either technology to a variety
of emerging applications, including rumour anal-
ysis.

The analysis of rumours can take on different
meanings depending on the application domain -
this research focuses on identifying the veracity of
a rumourous tweet (Task B) and the stance of its
replies i.e., classifying responses to a rumourous
post as supporting, denying, querying or com-
menting (SDQC) the claim (Task A), both part of
the RumourEval 2019 Gorrell et al. (2019). While
this work was developed on the foundations laid
out by previous research in the field Derczynski
et al. (2017), it is among the rare solutions that
explore complementary types of information that
could augment the linguistic analysis when ana-
lyzing rumourous tweets. After a brief discussion

1083

of relevant research that is closely related to our
objective, we highlight the primary findings of our
research.

2 Related work

Our research follows the line of work of the re-
search groups that have contributed to the dis-
course on the rumour analysis with several exper-
imental studies. A review of past SemEval re-
lated tasks points out that much of the research of
the problem of examining the veracity and support
for rumours focused more on language analysis
and less on utilizing the external information made
available by the Twitter dataset. The findings that
extend across several studies is how rather sim-
plistic NLP techniques and analysis are capable
of obtaining satisfactory results when classifying
the support of rumourous posting. The similarities
and differences between the work presented in this
paper and previous research is discussed.

A model for automatic identification of ru-
mourous tweets and classification of their re-
sponses into two denying and supporting classes,
presented in Qazvinian et al. (2011), is based on
linguistic features, such as, unigrams, bigrams,
POS tags, URLs, and hashtags. While, we built
upon the experiences of this research, especially
in the approach of replacing a multi-class classifi-
cation problem with a hierarchical pipeline of bi-
nary classifiers, our approach differs in a number
of aspects. In particular, we further enhance the
representation of rumourous posts with a number
of features, from word embeddings, sentiment and
stylistic features to structural properties of interac-
tion threads. In addition, we argue that a suitable
preprocessing of tweets is essential for successive
NLP steps, which is in contrast to their decision
not to perform any preprocessing of the text.

The research study by Lukasik et al. (2015) ex-
tends on the work of Qazvinian et al. (2011), espe-
cially by incorporating preprocessing steps, bag-
of-words (BoW) and word clustering. The ap-
proach presented in this paper follows some of
these ideas, although it differs in the scope and
the way features are operationalized. For instance,
TF-IDF n-gram counts and clusters of Word2Vec
embeddings were used in our model.

Based on the premise that psychological and so-
ciological information could play a key role in de-
termining the truthfulness of rumours and inspired
by the research of Mihaylova et al. (2018) on fact

checking of questions posted on online forums, we
have further explored the effect of various meta-
data and information from users profiles on the
performance of the task.

3 Methods

3.1 Dataset

The dataset used for evaluating the model pro-
posed in this research was made available by Zubi-
aga et al. (2016b). The rumourous tweets and their
corresponding interactions threads were harnessed
in 2016, verified and labeled by journalists and so-
ciologists using crowdsourcing platforms Zubiaga
et al. (2016a). The dataset contains rumourous
tweets written in English, associated with nine
events, five being news stories and four concerning
specific events. Out of a total of 4560 tweets, 297
represent rumourous posts annotated for veracity,
while the rest are responses to the original rumour,
annotated according to their stance i.e., support-
ing, denying, querying or commenting the initial
claim.

3.2 Preprocessing

Tokenization, part-of-speech tagging, lemmatiza-
tion, and substitutions were used as preprocess-
ing techniques; the set and order of preprocessing
steps varies between features. In addition, a num-
ber of context-appropriate corrections of language
variations of English e-dialect were performed:

• Characters are converted to lower-case let-
ters; for sentiment feature extraction the orig-
inal letter case was preserved;

• URLs, numerical sequences, email addresses
were replaced with special tokens (e.g., URL,
NUM, EMAIL). Special tokens, QUOTE and
USER, were used whenever the original ru-
mour tweet was quoted or a user is mentioned
in a response tweet;

• For each hashtag, the # sign is replaced with
a special token HASHTAG, while the text of
the hashtag was kept for further analysis;

• Emojis are identified and each was repre-
sented as a different token;

• Consecutive repetitions of a character in a
word were contracted to 2 instances of the
character;

1084

• All special characters were removed, with the
exception of \s\n\r.,?!:-+ that were
treated as separate tokens

3.3 Feature Extraction
Automatic extraction of information related to lan-
guage, discourse and context is a difficult task.
Among different combinations of features, the
model that yielded the best result is described.
Linguistic analysis for extraction of seven types of
features was performed on the preprocessed text
of each tweet. In addition, we have analyzed the
content of user profiles, including profiles of the
initiators of rumours and those replying to initial
posts. Our assumption was that while tweet analy-
sis captures indicators pertaining to a particular ru-
mour thread, the language analysis of a user profile
could provide insights into personality, attitudes
and online behavior of a user.

Language style features - In examining previ-
ous research on rumour analysis, we found that
stylistic features are frequently presented as sim-
ple statistical features which had an effect on the
performance of the task. We have considered the
following: number of words and sentences, aver-
age number of words per sentence, ratio of word
vs. non-word tokens, percentage of present dic-
tionary words, mean and variance of word length,
and percentage of unique words. The same set of
stylistic features were calculated for the content of
each tweet as well the text content found in the
profile of the user who has posted the tweet.

Language model n-grams - Unigrams, bi-
grams and trigrams were extracted from the tweets
and users profiles, keeping only 1/8, 1/16 and 1/20
of the most frequent unique unigrams, bigrams
and trigrams respectively. Six vocabularies were
created; three n-gram vocabularies for the tweets
and three vocabularies of n-grams found in user
profiles. Term frequency-inverse document fre-
quency (TF-IDF) values were calculated and uti-
lized as the final language model features.

POS tags - In accordance with the well-
established practice to complement the language
model n-grams with their part-of-speech tags, TF-
IDF values were calculated for two POS tag vo-
cabularies, one relating to tweets, the other to self-
descriptions left by users in their profiles.

Word2Vec embeddings - Stop-words were re-
moved and lemmatization was performed on the
tweets as well as user profile text. Two Word2Vec
models were trained on the SemEval 2019 dataset,

one was trained on the sentences of the tweets, the
other on the content of user profiles. The dimen-
sionality of the vectors was set to 500. A con-
text window of size 5 was used, while words with
frequencies above 0.001 were subsampled. The
two vocabularies of embedding vectors were clus-
tered using the K-Means algorithm; the parameter
K was set automatically to ensure that each word
cluster will contain an average of 10 items. At last,
for each token list, a Bag-of-Centroids feature vec-
tor was calculated by counting the word clusters
the tokens belong to.

Sentiment features - Consistent with related
studies, which suggest the predictive power of
affective words on the task relating to detect-
ing deception in online text, we perform a polar-
ity sentiment analysis on the tweets, calculating
three polarity scores, positive, negative and neu-
tral for each sentence. The NLTK, Vader Sen-
timent Intensity Analyzer, was used because of
its reported robustness to the style of online e-
language (e.g., capitalization, punctuation, slang)
Hutto and Gilbert (2014). A sentiment feature vec-
tor for each tweet was generated from the mean
and variance for each polarity score.

Network structure - Social network commu-
nication exchanges (e.g., tree-structured threads
of tweets) are naturally represented as graphs
(DAG) - nodes represent rumour posts and their
responses, while directed edges of the graph as-
sociate responses (e.g., reply, comments) with the
target of their response. Based on the premise that
variations in the structural properties of the under-
lying rumour threads could play an important role
in identifying and classifying the veracity of ru-
mours tweets and their responses, the following
network characteristics were used: DFS and BFS
priority, degree centrality, betweenness centrality,
closeness centrality, HITS hub score and PageR-
ank.

Twitter metadata - Several Twitter metadata
were retrieved and included in our model. The
following list of information were considered to
be relevant and were added as separate features:
the number of characters in a tweet, the number
of favorites and retweets and the number of days
since initial posting. For each user, the informa-
tion whether the user account is verified, the num-
ber of user’s followers, the number of statuses, the
number of friends, the number of favorites, num-
ber of times listed and how long the user has had

1085

a Twitter account were also included. Some addi-
tional information on the graphical design choices
a user made were also considered. For example,
whether there is a background image or a default
image was used and the colors selected for the text,
border, sidebar, background and hyperlinks.

Similarity measure - Transmission of context
shared by the initial rumour tweet and its re-
sponses was postulated to be important for the task
of classifying the support of the responses (task
A). Consequently, it was decided to calculate the
differences between the feature vectors of each re-
sponse tweet and the rumour tweet it replies to.

3.4 Feature Selection
The feature extraction process resulted in a set of
approximately 14000 features for each tweet, in
addition to the ones resulting from textual analy-
sis of the user profile. Appropriate feature selec-
tion is essential for achieving good performance
and avoiding overfitting by removing uninforma-
tive, redundant or noisy information. First, the
features were normalized to the interval [-1, 1] us-
ing generalized Min-Max normalization. Then, a
Random Forest classifier was used as a basis for
calculating the information gain of each feature.
The features with an above-average information
gain score were selected, reducing the number of
features by a factor of 10. It was decided not to
eliminate any correlated features as the number of
samples is quite low and any detected correlation
might be due to statistical falsehood.

3.5 Model training
At the outset of our explorations in order to cir-
cumvent the difficulties imposed by a multi-class
classification problem, presented as task A, a hi-
erarchical one-vs-rest approach was adopted. To
this end, a binary classifier was used to classify
each response tweet into two classes, comment or
non-comment; the next step classifies each non-
comment tweet as a query or a non-query type. In
the end, each non-query response was classified
as being in support or denial of the original ru-
mourous post.

Balancing of the datasets was a necessary step
during the training of the models for task A, as
the distribution of the original four SDQC classes
was not uniform. The balancing process was
performed by repeated random sampling. Thirty
candidate datasets with uniform class distribution
were formed by random sampling the more preva-

lent class and the best candidate was chosen using
3-fold cross validation with a Naive Bayes classi-
fier.

The models used for Task A and B are ensem-
bles of six different classifiers, including: Naive-
Bayes, K-Nearest-Neighbours, Logistic Regres-
sion, Support Vector Machine, Neural Network
and Random Forest. The ensemble classifier for
task A was operationalized as majority voting,
while for task B, probability-weighted voting was
used (probability weights correspond to the confi-
dence level of the veracity scores).

In order to train and evaluate the ensemble, each
dataset was split into a training and a validation set
using 3-fold cross-validation with stratified sam-
pling. This process was repeated 10 times and
the final evaluation scores were calculated by av-
eraging the scores from each iteration. For some
training runs, the parameters of the classifiers had
been optimized by 3-fold cross validation using
grid search. However, no notable improvements
in evaluation results were witnessed.

The system1 was implemented using Python
3.6, with the ScikitLearn, NLTK, gensim and Net-
workX packages Pedregosa et al. (2011); Bird
et al. (2009); Řehůřek and Sojka (2010); Hagberg
et al. (2008).

4 Discussion of results

The performance results obtained by the model
that included all categories of features, discussed
in the previous section, when tested on our val-
idation set are presented in Table 1. The same
model was used to create our final submission for
SemEval Task 7. It is worth noting that the best re-
sults were obtained for identifying queries in task
A, obtaining an accuracy of 0.784, demonstrating
that the model accuracy rivals the performance of
domain experts. We would like to highlight the
consideration that no external sources were used
for determining the veracity of a rumour posting,
including the resources deemed as appropriate by
the task organizers, which might explain the lower
performances on the second task B.

Although the aforementioned results provide
compelling evidence suggesting that fusing lin-
guistic analysis, metadata, user profiles and ru-
mour thread structure can lead to satisfactory re-
sults for classifying the stance of a response to a

1The complete source code is available at:
https://github.com/Bani57/rumourEval2019.

1086

Model Accuracy Precision Recall F1 ROC AUC Log loss
Task A - Comment 0.767632 0.773194 0.767632 0.766449 0.767632 /
Task A - Query 0.784186 0.790382 0.784186 0.783002 0.784190 /
Task A - Support/Deny 0.682915 0.687301 0.682915 0.681009 0.682702 /
Task B - Veracity 0.681707 0.693103 0.681707 0.677606 0.681707 0.600458

Table 1: Evaluation metrics on a randomly-created validation set

rumourous tweet, we have conducted two ablation
studies, to find evidence of the performance gains
that could be contributed to each category of fea-
tures on both tasks.

The present study suggests that text analysis of
rumourous tweets is the most important, yet not
the sole constituent element when detecting the
veracity of rumourous tweet and distinguishing
the stance of the social response. While we are
not in position to ascribe sound theoretical reason
to all effects, we present the trends that appeared
interesting and highlight the sensitivity of the per-
formance results towards a particular category of
features.

Table 2 displays the F1 results of ablation study
when training the models for task A, removing one
category of features at a time. The results affirm
that capturing the metadata relating to the users
profile and structural properties of the tree-like
threads of tweet exchange complement the lin-
guistic features and improve the predictive accu-
racy, especially for distinguishing between query,
support and denial stance in rumour replies.

The ablation analysis strongly demonstrates
that Twitter metadata has the most dramatic ef-
fect on distinguishing comments from all other
rumour responses - removal of this category re-
sults in lowering the F1 values by 0.17. It appears
that user’s historical and behavioral metadata add
to the prediction performance complementing the
relevant n-grams in the content of the tweet and
user profile. Some of the most relevant indicators
in the rumourous comment include: end of sen-
tence punctuation, hashtags, user mentioned in the
tweet, pronouns and words such as: reported, hap-
pening, as well as n-grams extracted from the user
profile, such as: blog, I am, concerned citizen, cul-
ture, enthusiast, living, etc.

Language model and word vectors representa-
tion of the content of tweets and user profiles
were indicated as better predictors when identify-
ing replies in the form of queries, resulting in 0.12
decrease in F1 values, if removed from the model.

Some of the most relevant features were not sur-
prisingly related to detecting question forms: why,
where, question mark at the end of a sentence,
who was, what is, confirm, need, and a number
of word2vec clusters. In addition, language style,
sentiment and Twitter interaction threads have also
ranked in the top 10% of the most relevant fea-
tures.

Sentiment and structural features have a more
notable effect on discriminating between support-
ive and denying responses. We could hypothe-
size that the affective content of a tweet is a crucial
indicator when distinguishing positive (confirma-
tive) vs. negative (opposing) opinion toward the
source tweet with rumourous claim. The top 10%
of the best predictive indicators were the sentiment
words, and n-grams, such as: not, believe, know,
oh, ugh, such, yeah, understand, socially offensive
words etc.

Table 3 shows the cross-entropy loss yielded by
the models after each ablation step trained for pre-
dicting the veracity of a rumour (task B). The find-
ings highlight the ability of language indicators
to model the truthfulness or deception of a claim.
The features with most predictive power were lan-
guage model and word vector clusters, especially
numbers and URLs in the tweet text, and words
obtained from the user profile, such as: deliver-
ing you, insightful analysis, breaking news, con-
tact, facebook, latest, tweets, we, views, EMAIL,
online news, around the world, channel, bbc, bbc-
sport, cnn, etc.

The current findings demonstrate surprisingly
low accuracies, (F1 = 0.21645 for Task A, F1 =
0.3326 for Task B) when evaluated on the testing
dataset, although in line with the results of pre-
vious tasks on the same dataset Derczynski et al.
(2017). Collecting larger quantities of Twitter data
and optimization techniques could improve the
consistency of the results obtained on the training
and validation sets. Importance of close inspec-
tion of data, and comparative analysis with other
research on the same task could better support the

1087

Ablation Comment F1 Query F1 Support/Deny F1
Baseline 0.795715 0.804499 0.707801
Without language style 0.795715 0.794216 0.707801
Without n-grams and embeddings 0.785013 0.681081 0.618934
Without sentiment 0.784082 0.791145 0.666029
Without network structure 0.793228 0.789274 0.693583
Without Twitter metadata 0.628665 0.804499 0.691252

Table 2: Evaluation results from the ablation experiment for Task A performed on a randomly-created validation
set

Ablation Veracity cross-entropy loss
Baseline 0.591780
Without language style 0.605128
Without n-grams and embeddings 0.667380
Without sentiment 0.600889
Without network structure 0.591780
Without Twitter metadata 0.596146

Table 3: Evaluation results from the ablation experiment for Task B performed on a randomly-created validation
set

interpretation of the results. We defer such discus-
sion and directions for future research, until a de-
tailed analysis of misclassified cases is done and
proper treatment and improvements of such sce-
narios could be speculated.

5 Conclusion

The present research explores a hybrid approach
to the problem of analyzing the veracity of ru-
mours and the support for rumours on social media
platforms. Following the results of previous re-
search in this field, different combinations of fea-
tures were examined, while also leveraging a vari-
ety of tangible indicators not accounted for in re-
lated research. The recurrent challenges in fully
elucidating the language ambiguities of complex
phenomena such as rumour spreading led us in a
direction of including distal contextual indicators.
In particular, the models were augmented with lan-
guage indicators extrapolated from the content of
user profiles, Twitter metadata, and thread struc-
tural characteristics of rumourous tweets. Their
relevance and predictive effects have been con-
firmed with the results, providing exciting direc-
tions for further research on the problem.

References
Steven Bird, Ewan Klein, and Edward Loper.

2009. Natural Language Processing with Python.
O’Reilly Media.

Prashant Bordia and Nicholas Difonzo. 2004. Problem
solving in social interactions on the internet: Rumor
as social cognition. Social Psychology Quarterly,
67(1):33–49. https://doi.org/10.1177/
019027250406700105.

Leon Derczynski, Kalina Bontcheva, Maria Liakata,
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz
Zubiaga. 2017. Semeval-2017 task 8: Rumoureval:
Determining rumour veracity and support for ru-
mours. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 69–76, Vancouver, Canada. Associ-
ation for Computational Linguistics. http://
www.aclweb.org/anthology/S17-2006.

Genevieve Gorrell, Kalina Bontcheva, Leon Derczyn-
ski, Elena Kochkina, Maria Liakata, and Arkaitz Zu-
biaga. 2019. SemEval-2019 Task 7: RumourEval:
Determining rumour veracity and support for ru-
mours. In Proceedings of SemEval. ACL. https:
//arxiv.org/pdf/1809.06683.pdf.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
2008. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the
7th Python in Science Conference, pages 11 – 15,
Pasadena, CA USA.

Clayton J Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth international AAAI
conference on weblogs and social media.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Classifying tweet level judgements of ru-
mours in social media. Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-

1088

guage Processing. http://dx.doi.org/10.
18653/v1/D15-1311.

Tsvetomila Mihaylova, Preslav Nakov, Lluis Marquez,
Alberto Barron-Cedeno, Mitra Mohtarami, Georgi
Karadzhov, and James Glass. 2018. Fact checking in
community forums. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence (AAAI-18). https:
//arxiv.org/pdf/1803.03178.pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Warren A. Peterson and Noel P. Gist. 1951. Rumor
and public opinion. American Journal of Sociol-
ogy, 57(2):159–167. https://doi.org/10.
1086/220916.

Vahed Qazvinian, Emily Rosengren, Dragomir R.
Radev, and Qiaozhu Mei. 2011. Rumor has
it: Identifying misinformation in microblogs.
In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing,
EMNLP ’11, pages 1589–1599, Stroudsburg, PA,
USA. Association for Computational Linguis-
tics. http://dl.acm.org/citation.cfm?
id=2145432.2145602.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geral-
dine Wong Sak Hoi, and Peter Tolmie. 2016a.
Analysing how people orient to and spread rumours
in social media by looking at conversational threads.
PLOS ONE, 11(3):1–29. https://doi.org/
10.1371/journal.pone.0150989.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geral-
dine Wong Sak Hoi, and Peter Tolmie. 2016b.
Pheme rumour scheme dataset: journalism use case.
https://figshare.com/articles/
PHEME_rumour_scheme_dataset_
journalism_use_case/2068650/2.

1089

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1090–1096
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

BLCU NLP at SemEval-2019 Task 7: An Inference Chain-based GPT
Model for Rumour Evaluation

Ruoyao Yang, Wanying Xie, Chunhua Liu, Dong Yu (�)

Beijing Language and Culture University, Beijing, China
{yangruoyao97, xiewanying07, chunhualiu596}@gmail.com

yudong@blcu.edu.cn

Abstract

Researchers have been paying increasing at-
tention to rumour evaluation due to the rapid
spread of unsubstantiated rumours on social
media platforms, including SemEval 2019 task
7. However, labelled data for learning ru-
mour veracity is scarce, and labels in rumour
stance data are highly disproportionate, mak-
ing it challenging for a model to perform
supervised-learning adequately. We propose
an inference chain-based system, which fully
utilizes conversation structure-based knowl-
edge in the limited data and expand the train-
ing data in minority categories to alleviate
class imbalance. Our approach obtains 12.6%
improvement upon the baseline system for
subtask A, ranks 1st among 21 systems in sub-
task A, and ranks 4th among 12 systems in
subtask B.

1 Introduction

With the universality of the Internet, social media
has become the main channel for acquiring and ex-
changing information. However, the free flow of
information has given rise to the prevalence of ru-
mours, among which fake ones are harmful since
they are generally convincing and hard to distin-
guish. To address this problem, we need automatic
rumour veracity classification on social media. A
large amount of rumour stance instances on social
media have been employed to assist the model in
making better predictions regards the rumour’s ve-
racity.

Rumour stance classification and rumour ve-
racity classification are two subtasks of SemEval
2017 Task 8 (Derczynski et al., 2017) and Se-
mEval 2019 Task 7 (Gorrell et al., 2018). Sub-
task A predicts the stance of a post replying to a
rumourous post, in terms of supporting, denying,
querying and commenting the rumour. Subtask B
anticipates the veracity of a rumour as true or false

given the rumourous post and a set of additional
resources.

Apart from variations in models, research in this
area mainly focuses on the special characteristics
of data coming from social media: conversation
structure, rich intrinsic features, skewed distribu-
tion toward the comment class in rumour stance
data and scarcity of available data for rumour ve-
racity classification. While most pioneering works
treated rumour evaluation as a single-tweet task,
attempts to utilize the conversation structure in-
cluded pairing source and replies together to make
up input (Singh et al., 2017), and adopting the
full conversation thread as input in the time se-
quence (Kochkina et al., 2017). With the real-
ization of rich features hidden in tweet contexts,
Qazvinian et al. (2011) was one of the first who
extracted them and combined them with model in-
put. The feature sets were augmented during the
following work. In trying to acquire more com-
prehensive information, not only features of the
tweet for prediction were taken into considera-
tion, but also features from its conversation con-
text (Enayet and El-Beltagy, 2017). To address
the class imbalance problem, Wang et al. (2017)
transformed subtask A into a two-step classifica-
tion task: they first classified comments and non-
comments, and then categorized non-comments
into the other three classes. Finally, in order to
make up for the absence of abundant accessible
training data in the rumour veracity classification
task, external resources usage such as Wikipedia
dumps and news articles was encouraged in both
RumourEval contests.

In our work, we find that simply taking the
whole conversation as input is inadequate. We
have to recognize the role each part assumes in
the conversation thread and mark them accord-
ingly in the input. Instead of filtering features
solely based on the system performance, we pre-

1090

fer to run a feature selection before adding to the
system and choose those that can bring a high de-
viation degree between data categories. Follow-
ing the feature extraction work of Enayet and El-
Beltagy (2017), we consider introducing more fea-
tures from the conversation context to further as-
sist model judgment. We alleviate class imbalance
in stance classification by expanding training data
in the under-represented classes with pre-screened
external data from similar datasets. At last, we
approach the data insufficiency issue by setting
an average length limit and cutting the overlength
ones to enlarge training data.

We propose an inference chain-based system
for this paper. A conversation thread starts with
a source tweet, and follows by replies, in which
each one responds to an earlier one in time se-
quence. When we infer the stance of one tweet,
the source or earlier replies in the same thread can
give abundant additional hints. Therefore, we take
each conversation thread as an inference chain and
concentrate on utilizing it to solve the data issues
discussed earlier.

Our approach for both tasks is fine-tuned
on Generative Pre-trained Transformer (OpenAI
GPT) (Radford et al., 2018), a model that has per-
formed well in 9 NLP tasks. Our work primar-
ily focuses on subtask A rumour stance classifica-
tion, in which we expand training data from simi-
lar datasets, extract features and join separate parts
to form input according to their roles in inference
chain. For subtask B rumour veracity classifica-
tion, we apply similar feature extraction and in-
put concatenation process, except for replacing the
data expansion step with data slicing. With the
above implementation, our model outperforms all
other systems in subtask A and places 4th in sub-
task B in SemEval 2019.

2 System Description

We propose a system that focuses on inference
chain-based knowledge enhancement. The oper-
ations involved are displayed in Figure 1. We
first perform data preprocessing on the raw dataset
(Section 2.1) to fetch tweet content and facilitate
the subsequent feature extraction step. Then we
implement two data extension mechanisms on the
training data: to relieve class imbalance toward
one category in subtask A, we expand training
data with external datasets (Section 2.2); to alle-
viate data sparsity and try to avoid under-fitting

Figure 1: The operational flowchart for our system.

on the training set in subtask B, we set a length
limit for each part of the input and split data in-
stances accordingly (Section 2.3) to enlarge the
amount of data. In trying to better utilize inference
chain-based features, we extract word-level and
tweet-level features and filter them for each sub-
task (Section 2.4). Finally, we concatenate each
part in the inference chain with its features to-
gether (Section 2.5) and feed them in the model.
After model classification, we adjust some of the
results(Section 2.6) according to the organizers’
requirements.

An illustration of our system is shown in Fig-
ure 2. How our base model GPT performs on the
two classification tasks is depicted in the upper left
corner. The right side presents how we organize
our input for subtask A and B. In the lower left
corner, we give an example of an inference chain
(conversation thread) in the training data. To help
understand, we define each part of it for the rest
of this passage. For subtask A, we divide an in-
ference chain into four parts: source tweet, other
tweets, parent tweet and target tweet. For subtask
B, an inference chain constitutes of a source tweet
and a thread content. To better clarify, a thread
content is defined as a whole inference chain ex-
cluding the source tweet, and we also define a
whole inference chain excluding the target tweet
as a conversation context. As depicted in the up-
per left corner, the goal is to predict the stance of
a target tweet toward a rumour for subtask A, and
the veracity of a rumour(usually contained in the
source tweet) for subtask B.

2.1 Data Preprocessing

After extracting the tweet content out of the orig-
inal data, we first perform word tokenization with
Stanford CoreNLP1, Spacy2 and NLTK tools3,
among which the result of Stanford CoreNLP

1https://stanfordnlp.github.io/CoreNLP/
2https://spacy.io/
3http://www.nltk.org/

1091

Figure 2: An overview of our system. The upper left corner is a diagram of how our base model GPT performs on
the two classification tasks. The upper right corner is how we organize our input for subtask A and B. The lower
left corner is a data example which helps explain “inference chain”, “source tweet”, “other tweets”, “parent tweet”,
“target tweet”, “thread content” and “conversation context” in the input. The lower right corner is the features we
combined in the input.

proves to be the best. Then we fix some tokeniza-
tion inaccuracies in the result. Blanks, emoticons
and uncommon punctuations are removed to re-
duce the amount of Out of Vocabulary (OOV). Be-
sides, we transform all user mentions into “@”
and all URLs into “urlurlurl” in order to increase
the repetition rate of these features and allow the
model to learn them better. Finally, we convert all
letters into their lower case for the same purpose.

2.2 Traning Data Expansion

We find that the data distribution in the training set
is skewed toward comment in subtask A, which
explains why it is hard for the model to reach
high precision and recall scores in the other three
classes. Thus we expand the training data with
datasets on similar tasks with labels corresponding
to the three minority classes in seeking for better
class balance and more sufficient training.

For support and deny, we take each claim as
both the target tweet and its conversation con-
text in stance classification datasets SemEval 2016
task 6 dataset (Mohammad et al., 2016), Emer-
gent (Ferreira and Vlachos, 2016), and twitter sen-
timent analysis dataset sentiment140 (Go et al.,
2009). For query, we use passages as the conversa-

Training Set
Class Origin Extended Sum
support 925(18%) 797 1722(23%)
deny 378(7%) 696 1074(14%)
query 395(8%) 912 1307(17%)
comment 3519(67%) 0 3519(46%)

Table 1: Distribution of tweets between classes before
and after data expansion in the training set for subtask
A.

tion context, unanswerable questions as the target
tweet in reading comprehension datasets SQuAD
2.0 (Rajpurkar et al., 2018) and CoQA (Reddy
et al., 2018).

The acquirement of extended data takes two
steps. We first calculate the sentence similarity of
each data piece in external datasets with all sen-
tences in the original dataset in terms of Leven-
shtein Distance, and only keep instances whose
minimal distances with the original dataset are be-
low 0.7. Then we test them in a model trained
with the original dataset. If the model predic-
tion is identical to the label we expect, we append
this instance in our training set for subtask A. The
data distribution before and after data expansion is

1092

shown in Table 1.

2.3 Traning Data Slicing
The training set for subtask B only has 327 pieces.
Since the organizers define subtask B as a binary
classification task, which classifies instances into
two categories: true and false, and takes pieces
whose confidence scores below 0.5 as unverified,
the unverified class in the training set is entirely
useless, which takes up 98 pieces. Discard of this
class only makes the data scarcity problem worse
and may lead to under-fitting on the training set.

We try to extend the training set from a differ-
ent angle. We look at the distribution of sequence
length and set a length restriction for each conver-
sation context to 70 tokens and each target tweet
to 28 tokens. For those that exceed the limit in
the training set, we truncate each piece to the edge
to create multiple instances and thus enlarge the
training set. For the development set and test set,
the length restrictions are also set, but only the first
truncated piece for each instance is taken as in-
put. Although data slicing may hurt long-distance
dependency, the experiment result shows that this
method performs better than the original.

2.4 Feature Extraction
Inspired by the features extracted by Kochkina
et al. (2017) and Bahuleyan and Vechtomova
(2017), we collect 56 word-level features and 16
tweet-level features. For word-level features, we
calculate their distribution percentage on the four
categories in subtask A and the three categories in
subtask B in the training and development set, and
only apply those that mark a clear distinction be-
tween the classes for each subtask. For the numer-
ical tweet-level features, we cluster each one into
several groups according to their values and deter-
mine a common value for the whole group. Where
to add the features is illustrated on the right side in
Figure 2.

After selection, the word-level features we ap-
ply to subtask A and B are as below:
Subtask A: Whether the tweet content has ques-
tion marks, hashtags, URLs, “RT”(refers to
retweet), positive words, negative words, swear-
words, query words, forbidding verbs, accusing
verbs, complaining verbs, warning verbs, permit-
ting verbs, praising verbs, etc.
Subtask B: Whether the tweet content has ex-
clamation marks, positive words, negative words,
query words, false synonyms, false antonyms,

declaring verbs, confirming verbs, arguing verbs,
etc.

The tweet-level features we add for subtask A
are as below:
Features for both Twitter and Reddit: Tweet
favourite count, tweet depth in the thread and
whether the user has user description.
Twitter-specific features: User-related features
include whether the user is verified, user-related
URLs, whether the user uses the default profile,
user followers count, user friends count, user listed
groups count, and user statuses count. Tweet-
related features include tweet retweet count.
Reddit-specific features: Whether the tweet has
self-text, tweet kind, whether the tweet is archived,
whether the tweet is edited, whether the user is a
submitter.

We’ve tried to add the above tweet-level fea-
tures to input for subtask B, but unfortunately ob-
serve no performance improvement in our experi-
ment, so the official submission for subtask B in-
volves no tweet-level features.

As indicated in Enayet and El-Beltagy (2017),
whether the users of the source and parent tweet
are verified are useful in performance improve-
ment for subtask A. So we speculate that word-
level features and other tweet-level features may
also be necessary hints for model prediction. We
find that the model always creates mispredictions
because the stance of the target tweet toward the
rumour is indirect. Since many tweets express di-
rect stances toward their parent tweets, we can in-
fer their stances toward the rumour with the help of
their parent. In addition, the model often mistakes
the stance of target tweet toward source tweet as its
stance toward the rumour. But in cases where the
source tweet expresses deny towards the rumour,
the two stances above are not consistent. There-
fore, parent tweet and source tweet assume sig-
nificant roles in an inference chain and we need to
acquire more knowledge from them to improve the
prediction accuracy of the target tweet. So we ap-
ply all filtered word-level and tweet-level features
for the source, the parent and the target to the input
for subtask A.

2.5 Input Concatenation

As described above, the model is likely to make
correct predictions when it learns information
from earlier tweets in the inference chain. We plan
to concatenate the contexts in the inference chain

1093

with the target tweet to make up for input. The in-
put concatenation method is depicted in the upper
right corner of Figure 2. We concatenate source
tweet with thread content to form an input struc-
ture for subtask B. We apply two methods in sub-
task A. At first we concatenate the conversation
context and the target tweet with the same struc-
ture as subtask B. However, this method often re-
sults in the model’s confusion between the stance
of the target tweet toward the source and the par-
ent. Thus, we decide to mark the position of the
source and the parent in the conversation thread
with delimiters and connect them with the rest of
the conversation (other tweets) together. Each part
is marked by delimiters and features are inserted
behind them in the input.

2.6 Model

We employ OpenAI GPT that has been pretrained
on BooksCorpus (Zhu et al., 2015) as our base
model for task-specific fine-tuning. We’ve tried
different activation functions, optimizers and hy-
perparameters but observe no performance im-
provement. So we use the default model config-
uration for the official submission. GPT requires
its input length to be less than 512 tokens. For in-
puts that exceed this limit, we choose to cut off the
“other tweets” sequence to fit this restriction.

Result Postprocessing As required by the or-
ganizers, we transform the labels of all blank in-
stances into comment for subtask A, and take
pieces whose confidence levels are below 0.5 as
unverified in subtask B in the model prediction re-
sults.

3 Evaluation

We conduct experiments on data expansion, input
format adjustment and word & tweet-level feature
adding for subtask A, and perform data slicing and
feature adding for subtask B. The dataset we used
for this task is obtained from Zubiaga et al. (2016).
We primarily focus on achieving a higher macro f1
score for both subtasks. We also display the com-
parison of the results on the test set between our
official system and the baseline systems provided
by the organizer.

3.1 Experiment Results

The following are the steps we conduct experi-
ments toward creating the system for official sub-
mission.

Subtask A Our experiments conduct on the
development set for subtask A is shown in Ta-
ble 2. With the first input format (A), we achieve
an initial result of 53.48%. Combining word-
level, tweet-level features (B), and processing data
expansion (C) brings an increase of 0.99% and
1.61% respectively. After converting to the second
input format (D), we’ve seen a rise of 2.03% com-
pared to A. Training data expansion (E) is also im-
plemented on this input, but a decrease of 0.86%
is observed. We suspect that after enhancing the
percentage of the source and parent tweet in new
input, data dissimilarity brought by the external
dataset is aggravated. However, this inferior posi-
tion is reversed by employing features. Word-level
features (F) alone bring a 2.04% growth. Though
tweet-level features alone haven’t led in any ex-
tra increase, adding them together with word-level
features (G) produces a result above 56%. Our fi-
nal result for subtask A is ensembled on three runs
(F1, F2, G) that achieve the best performance on
the development set.

Subtask A
Systems MacroF

A. GPT(1st input) 0.5348
B. GPT(1st input)+WF+TF 0.5447
C. GPT(1st input)+DE 0.5509
D. GPT(2nd input) 0.5551
E. GPT(2nd input)+DE 0.5465
F1. GPT(2nd input)+DE+WF 0.5644
F2. (another run) 0.5669
G. GPT(2nd input)+DE+WF+TF 0.5631

Table 2: Ablation results on the development set for
subtask A. MacroF means macro f1 score. 1st input
consists of conversation context and target tweet, while
a 2nd input constitutes of source tweet, other tweets,
parent tweet and target tweet. WF and TF refer to
word-level and tweet-level features respectively. DE
represents data expansion.

Subtask B Our experiments conducted on the
development set for subtask B is shown in Table 3.
Word features bring an increase of 3.71%. Tweet
features prove to be disruptive and lead to a drop
of up to 11.6%. So we discard this type of feature
in subtask B entirely. The result we’ve submitted
for subtask B is ensembled on two runs (B) that
get the highest values on the development set.

Final Result Our final result on the test set
and the comparison with the baseline systems are
shown in Table 4. BranchLSTM and NileTMRG
are two baselines implemented by the organizers.

1094

Subtask B
Systems MacroF

A. GPT+DS 0.4701
B. GPT+DS+WF 0.5072
C. GPT+DS+WF+TF 0.4143

Table 3: Ablation results on the development set for
subtask B. DS refers to training data slicing. WF and
TF are the same meaning as Table 2.

Our system is 12.6% higher than the baseline sys-
tem in macro f1 for subtask A, but 8.3% and 5.6%
lower in macro f1 for subtask B compared with
BranchLSTM and NileTMRG respectively. Our
system ranks first in subtask A and fourth in sub-
task B.

Official Submission
Subtask A Subtask B

System MacroF MacroF RMSE
BranchLSTM 0.493 0.336 0.781
NileTMRG 0.309 0.769
Our System 0.6187 0.2525 0.8179

Table 4: Official submission results on the test set for
our system and the organizers’ baselines.

3.2 Error Analysis
We perform error analysis for the results on the
test set. Classification reports for both subtasks
are provided in Table 5. The problem for subtask
A lies in that the model often confused the com-
ment class with the other three classes. The pos-
sible reason can be the relatively larger proportion
of comment data. None of the classes performs
well in prediction for subtask B, though results are
better for the true class comparing with the other
two classes. Precision, recall and macro f1 scores
go extremely low for the unverified class. A rea-
sonable explanation may be the unverified class is
not directly acquired from the model but comes
from the other two classes.

3.3 Comparison with ESIM
Since rumour evaluation can be seen as a task that
given a target tweet and its background conversa-
tion, infer the target label of this tweet, they can
be treated as a subtask of natural language infer-
ence, so we employ ESIM (Chen et al., 2016) in
this task.

The results are shown in Table 6. The input for-
mat is the same as subtask B in GPT. We also try
to apply features and change word embeddings in
ESIM. But no results reach the result in GPT with

Subtask A
prec. rec. f1 distribution

support 0.89 0.93 0.91 1476
deny 0.45 0.51 0.48 101
query 0.62 0.59 0.60 93

comment 0.66 0.38 0.48 157
Subtask B

prec. rec. f1 distribution
true 0.46 0.47 0.47 40
false 0.22 0.13 0.16 31

unverified 0.09 0.20 0.13 10

Table 5: Classification report on the test set for both
subtasks.

an equivalent configuration. So the base model we
employ for the system is GPT instead of ESIM.

Subtask A
Systems MacroF

A. ESIM(glove) 0.434
B. ESIM(glove)+WF+TF 0.452
C. ESIM(google news)+WF+TF 0.466

Subtask B
Systems MacroF

A. ESIM(glove) 0.473

Table 6: ESIM results on the development set for both
subtasks.

4 Conclusions

We introduce a framework with a strong focus
on inference chain-based knowledge enhancement
for determining rumour stance and veracity in Se-
mEval 2019 task 7. In order to address the prob-
lems of class imbalance, training data scarcity,
model’s insufficient learning of features and tree-
structured conversations, we employ data expan-
sion, data slicing, feature extraction, and input
concatenation mechanisms in our system respec-
tively. Our system takes first place in subtask A
and fourth place in subtask B.

In future, we would like to introduce synonyms,
tweet similarity and sentiment features in our
model to further facilitate the recognition of re-
lations between tweets. We will also utilize the
prediction results from stance classification, ex-
pand training data with external datasets and intro-
duce additional knowledge base such as Wikipedia
to assist the model prediction in rumour veracity
classification.

1095

Acknowledgments

This work is funded by Beijing Advanced In-
novation for Language Resources of BLCU
(TYR17001J); the Fundamental Research
Funds for the Central Universities in BLCU
(No.17PT05) and the BLCU Academic Talents
Support Program for the Young and Middle-Aged.

References
Hareesh Bahuleyan and Olga Vechtomova. 2017.

Uwaterloo at semeval-2017 task 8: Detecting stance
towards rumours with topic independent features. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 461–
464.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei,
Hui Jiang, and Diana Inkpen. 2016. Enhanced
lstm for natural language inference. arXiv preprint
arXiv:1609.06038.

Leon Derczynski, Kalina Bontcheva, Maria Liakata,
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz
Zubiaga. 2017. Semeval-2017 task 8: Rumoureval:
Determining rumour veracity and support for ru-
mours. arXiv preprint arXiv:1704.05972.

Omar Enayet and Samhaa R El-Beltagy. 2017.
Niletmrg at semeval-2017 task 8: Determining ru-
mour and veracity support for rumours on twitter. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 470–
474.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In
Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: Human language technologies,
pages 1163–1168.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Genevieve Gorrell, Kalina Bontcheva, Leon Derczyn-
ski, Elena Kochkina, Maria Liakata, and Arkaitz
Zubiaga. 2018. Rumoureval 2019: Determining
rumour veracity and support for rumours. arXiv
preprint arXiv:1809.06683.

Elena Kochkina, Maria Liakata, and Isabelle Augen-
stein. 2017. Turing at semeval-2017 task 8: Sequen-
tial approach to rumour stance classification with
branch-lstm. arXiv preprint arXiv:1704.07221.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 31–41.

Vahed Qazvinian, Emily Rosengren, Dragomir R
Radev, and Qiaozhu Mei. 2011. Rumor has it: Iden-
tifying misinformation in microblogs. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 1589–1599. Asso-
ciation for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2018. Coqa: A conversational question answering
challenge. arXiv preprint arXiv:1808.07042.

Vikram Singh, Sunny Narayan, Md Shad Akhtar, Asif
Ekbal, and Pushpak Bhattacharyya. 2017. Iitp
at semeval-2017 task 8: A supervised approach
for rumour evaluation. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 497–501.

Feixiang Wang, Man Lan, and Yuanbin Wu. 2017.
Ecnu at semeval-2017 task 8: Rumour evaluation
using effective features and supervised ensemble
models. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 491–496.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE
international conference on computer vision, pages
19–27.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geral-
dine Wong Sak Hoi, and Peter Tolmie. 2016.
Analysing how people orient to and spread rumours
in social media by looking at conversational threads.
PloS one, 11(3):e0150989.

1096

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1097–1104
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

BUT-FIT at SemEval-2019 Task 7: Determining the Rumour Stance with
Pre-Trained Deep Bidirectional Transformers

Martin Fajcik, Lukas Burget, Pavel Smrz
Brno University of Technology, Faculty of Information Technology

612 66 Brno, Czech Republic
{ifajcik,burget,smrz}@fit.vutbr.cz

Abstract

This paper describes our system submitted to
SemEval 2019 Task 7: RumourEval 2019: De-
termining Rumour Veracity and Support for
Rumours, Subtask A (Gorrell et al., 2019).
The challenge focused on classifying whether
posts from Twitter and Reddit support, deny,
query, or comment a hidden rumour, truthful-
ness of which is the topic of an underlying dis-
cussion thread. We formulate the problem as a
stance classification, determining the rumour
stance of a post with respect to the previous
thread post and the source thread post. The re-
cent BERT architecture was employed to build
an end-to-end system which has reached the
F1 score of 61.67 % on the provided test data.
Without any hand-crafted feature, the system
finished at the 2nd place in the competition,
only 0.2 % behind the winner.

1 Introduction

Fighting false rumours at the internet is a tedious
task. Sometimes, even understanding what an ac-
tual rumour is about may prove challenging. And
only then one can actually judge its veracity with
an appropriate evidence. The works of Ferreira
and Vlachos (2016) and Enayet and El-Beltagy
(2017) focused on predictions of rumour veracity
in thread discussions. These works indicated that
the veracity is correlated with discussion partici-
pants’ stances towards the rumour. Following this,
the SubTask A SemEval-2019 Task 7 consisted in
classifying whether the stance of each post in a
given Twitter or Reddit thread supports, denies,
queries or comments a hidden rumour.

Potential applications of such a function are
wide, ranging from an analysis of popular events
(political discussions, academy awards, etc.) to
quickly disproving fake news during disasters.

Stance classification (SC), in its traditional
form, is concerned with determining the attitude

of a source text towards a target text (Mohammad
et al., 2016). It has been studied thoroughly for
discussion threads (Walker et al., 2012; Hasan and
Ng, 2013; Chuang and Hsieh, 2015). However, the
objective of SubTask A SemEval-2019 Task 7 is to
determine the stance to a hidden rumour which is
not explicitly given (it can be often inferred from
the source post of the discussion – the root of the
tree-shaped discussion thread – as demonstrated in
Figure 1). The competitors were asked to classify
the stance of the source post itself too.

.@AP I demand you retract the lie that
people in #Ferguson were shouting "kill the police",
local reporting has refuted your ugly racism
Figure 1: An example of discussion’s source post
denying the actual rumour which is present in the
source post – annotated with red cursive

The provided dataset was collected from Twitter
and Reddit tree-shaped discussions. Stance labels
were obtained via crowdsourcing. The discussions
deal with 9 recently popular topics – Sydney siege,
Germanwings crash etc.

The approach followed in our work builds
on recent advances in language representation
models. We fine-tune a pre-trained end-to-
end BERT (Bidirectional Encoder Representations
from Transformers) model (Devlin et al., 2018),
while using discussion’s source post, target’s pre-
vious post and the target post itself as inputs to de-
termine the rumour stance of the target post. Our
implementation is available online.1

2 Related Work

Previous SemEval competitions: In recent years,
there were two SemEval competitions targeting
the stance classification. The first one focused on
the setting in which the actual rumour was pro-
vided (Mohammad et al., 2016). Organizers of

1www.github.com/MFajcik/RumourEval2019

1097

SemEval-2016 Task 6 prepared a benchmarking
system based on SVM using hand-made features
and word embeddings from their previous system
for sentiment analysis (Mohammad et al., 2013),
outperforming all the challenge participants.

The second competition was the previous Ru-
mourEval won by a system based on word vectors,
handcrafted features2 and an LSTM (Hochreiter
and Schmidhuber, 1997) summarizing informa-
tion of the discussion’s branches (Kochkina et al.,
2017). Other submissions were either based on
similar handcrafted features (Singh et al., 2017;
Wang et al., 2017; Enayet and El-Beltagy, 2017),
features based on sets of words for determining
language cues such as Belief or Denial (Bahuleyan
and Vechtomova, 2017), post-processing via rule-
based heuristics after the feature-based classifica-
tion (Srivastava et al., 2017), Convolutional Neu-
ral Networks (CNNs) with rules (Lozano et al.,
2017), or CNNs that jointly learnt word embed-
dings (Chen et al., 2017).

End-to-end approaches: Augenstein et al.
(2016) encode the target text by means of a bidi-
rectional LSTM (BiLSTM), conditioned on the
source text. The paper empirically shows that
the conditioning on the source text really matters.
Du et al. (2017) propose target augmented embed-
dings – embeddings concatenated with an average
of source text embeddings – and apply them to
compute an attention based on the weighted sum
of target embeddings, previously transformed via
a BiLSTM. Mohtarami et al. (2018) propose an
architecture that encodes the source and the tar-
get text via an LSTM and a CNN separately and
then uses a memory network together with a simi-
larity matrix to capture the similarity between the
source and the target text, and infers a fixed-size
vector suitable for the stance prediction.

3 BUT-FIT’s System Description

3.1 Pre-processing

We replace URLs and mentions with special
tokens URL and $mention$ using tweet-
processor3. We use spaCy4 to split each post into

2The features included: a flag indicating whether a tweet
is a source tweet of a conversation, the length of the tweet, an
indicator of the presence of URLs and images, punctuation,
the cosine distance to the source tweet and all other tweets in
the conversation, the count of negation and swear words, and
an average of word vectors corresponding to the tweet.

3https://github.com/s/preprocessor
4https://spacy.io/

S D Q C Total
train 925 378 395 3519 5217
in % 18 7 8 67
dev 102 82 120 1181 1485
in % 7 6 8 80
test 157 101 93 1476 1827
in % 9 6 5 81

Table 1: Distribution of examples across classes
in the training/development/test data set. The ex-
amples belong to 327/38/81 training/development/test
tree-structured discussions.

sentences and add the [EOS] token to indicate ter-
mination of each sentence. We employ the tok-
enizer that comes with the Hugging Face PyTorch
re-implementation of BERT5. The tokenizer low-
ercases the input and applies the WordPiece en-
coding (Wu et al., 2016) to split input words into
most frequent n-grams present in the pre-training
corpus, effectively representing text at the sub-
word level while keeping a 30,000-token vocab-
ulary only.

3.2 Model

Following the recent trend in transfer learning
from language models (LM), we employ the pre-
trained BERT model. The model is first trained on
the concatenation of BooksCorpus (800M words)
(Zhu et al., 2015) and English Wikipedia (2,500M
words) using the multi-task objective consisting
of LM and machine comprehension (MC) sub-
objectives. The LM objective aims at predict-
ing the identity of 15% randomly masked to-
kens present in the input6. Given two sentences
from the corpus, the MC objective is to clas-
sify whether the second sentence follows the first
sentence in the corpus. The sentence is re-
placed randomly in half of the cases. During
pre-training, the input consists of two documents,
each represented by a sequence of tokens divided
by the special [SEP] token and preceded by the
[CLS] token used by the MC objective, i. e.,
[CLS]document1[SEP]document2[SEP]. In-
put tokens are represented by jointly learned token
embeddings Et, segment embeddings Es, captur-
ing whether the word belongs into document1 or
document2, and positional embeddings Ep.

5https://github.com/huggingface/
pytorch-pretrained-BERT

6The explanation of token masking is simplified; details
can be found in the original paper (Devlin et al., 2018).

1098

[CLS] oh sweet and whole ##some red ##dit , is it true us citizens have to pay to use us dollar bills as currency ? [e ##os]
to use a dollar bill - no behind the scene taxes / fees - of course ! [e ##os] cu ##z . . . ' mu ##rica [e ##os] [SEP]

no , like we are tax ##ed as a country to use the usd [e ##os] [SEP]

Encoded Input

Transformer Encoder N times

Dense/Tanh

Dense/Softmax

Token embeddings Positional embeddings Segment embeddings+ +

Pre-trained parameters[CLS]-token level output

Figure 2: An architecture of BUT-FIT’s system. The text segment containing document1 is green, the segment
containing document2 (the target post) is blue. The input representation is obtained by summing input embedding
matrices E = Et + Es + Ep ∈ RL×d, L being the input length and d the input dimensionality. The input is
passed N times via the transformer encoder. Finally, the [CLS] token-level output is fed through two dense layers
yielding the class prediction.

Our system follows the assumption that the
stance of discussion’s post depends only on it-
self, on the source thread post and on the previous
thread post. Since the original input is composed
of two documents, we experimented with various
ways of encoding the input (see Section 5), ending
up with just a concatenation of the source and the
previous post as document1 (left empty in case of
the source post being the target post) and the tar-
get post as document2. The discriminative fine-
tuning of BERT is done using the [CLS] token
level output and passing it through two dense lay-
ers yielding posterior probabilities as depicted in
Figure 2. A weighted cross-entropy loss is used to
ensure a flat prior over the classes.

3.3 Ensembling

Before submission, we trained 100 models differ-
ing just by their learning rates. We experimented
with 4 different fusion mechanisms in order to in-
crease the F1 measure and compensate for overfit-
ting:
The TOP-N fusion chooses 1 model randomly and
adds it to the ensemble. Then, it randomly shuffles
the rest of the models and tries to add them into the
ensemble one at the time, while iteratively calcu-
lating ensemble’s F1 by averaging the output prob-
abilities, effectively approximating the Bayesian
model averaging. If a model increases the total
F1 score, the model is permanently added to the
ensemble. The process is repeated until no further
model improving the ensemble’s F1 score can be
found. This procedure resulted in a set of 17 best

models.
The EXC-N fusion chooses all models into the en-
semble and then iteratively drops one model at the
time, starting from that which dropping results in
the largest increase of the ensemble’s F1. The pro-
cess stops when dropping any other model cannot
increase the F1 score. Using this approach, we
ended up using 94 models.
The TOP-Ns is analogous to the TOP-N fusion,
but we average pre-softmax scores instead of out-
put class probabilities.
The OPT-F1 fusion aims at learning weights sum-
ming up to 1 for the weighted average of output
probabilities from models selected via the proce-
dure used in the TOP-N strategy. The weights are
estimated using modified Powell’s method from
the SciPy package to maximize the F1 score on
the development dataset.

4 Experimental Setup

We implemented our models in PyTorch, taking
advantage of the Hugging Face re-implementation
(see Footnote 5), with the ”BERT-large-uncased”
setting, pre-trained using 24 transformer layers,
having the hidden unit size of d = 1024, 16 atten-
tion heads, and 335M parameters. When building
the ensemble, we picked learning rates from the
interval [1e−6, 2e−6]. Each epoch iterates over
the dataset in an ordered manner, starting by the
shortest sequence. We truncate sequences at max-
imum length l = 200 with a heuristic – firstly we
truncate the document1 to length l/2, if that is
not enough, then we truncate the document2 to

1099

#Θ Acctest macro F1dev macro F1test F1S F1Q F1D F1C
Branch-LSTM 453K 84.10 - 49.30 43.80 55.00 7.10 91.30
FeaturesNN 205K 82.84 45.46± 1e−2 44.55± 2e−2 40.29 40.12 17.69 80.43
BiLSTM+SelfAtt 28M 83.59 47.55± 6e−3 46.81± 6e−3 42.21 45.20 17.75 81.92
BERTbase 109M 84.67 51.40± 1e−2 53.39± 3e−2 43.49 59.88 18.42 90.36
BERTbig−noprev 335M 84.33 52.61± 2e−2 52.91± 4e−2 42.37 55.17 24.44 90.15
BERTbig−nosrc 335M 84.51 53.72± 2e−2 55.13± 3e−3 43.02 56.93 26.53 90.51
BERTbig 335M 84.08 56.24± 9e−3 56.70± 3e−2 44.29 57.07 35.02 90.41
BERTbig EXC-N

∗ - 85.50 58.63 60.28 48.89 62.80 37.50 91.94
BERTbig TOP-N

∗ - 85.22 62.58 60.67 48.25 62.86 39.74 91.83
BERTbig OPT-F1 - 85.39 62.68 61.27 48.03 62.26 42.77 92.01
BERTbig TOP-Ns - 85.50 61.73 61.67 49.11 64.45 41.29 91.84

Table 2: Overview of the results. The values for each single model were obtained by averaging results of 11 mod-
els. We report the mean and the standard deviation in these cases. #Θ denotes the number of parameters. Columns
F1S to F1C report individual F1 scores for each class. All ensemble models have the F1 score optimized on
the development dataset. BiLSTM+SelfAtt contains 4.2M parameters, without pre-trained BERT embeddings.
BERTbig−nosrc and BERTbig−noprev denote system instantiations with an empty source and an empty target post,
respectively. Note that the accuracy is biased towards different training data priors as shown in Table 1. SemEval
submissions are denoted by ∗.

the same size. We keep the batch size of 32 ex-
amples and keep other hyperparameters the same
as in the BERT paper. We use the same Adam op-
timizer with the L2 weight decay of 0.01 and no
warmup. We trained the model on the GeForce
RTX 2080 Ti GPU.

5 Results and Discussion

We compare the developed system to three base-
lines. The first one is the branch-LSTM base-
line provided by the task organizers7 – inspired
by the winning system of RumourEval 2017.
The second baseline (FeaturesNN) is our re-
implementation of the first baseline in PyTorch
without the LSTM – posts are classified by means
of a 2-layer network (ReLU/Softmax), using only
the features defined in Footnote 2. In the third
case (BiLSTM+SelfAtt), we use the same in-
put representation as in our submitted model but
replace the BERT by an 1-layer BiLSTM network
followed by a self-attention and a softmax layer,
inspired by Lin et al. (2017).

The results are shown in Table 2. BERT mod-
els had to cope with a high variance during the
training. This might be caused by the problem dif-
ficulty, the relatively small number of training ex-
amples, or the complexity of the models. To deal
with the problem, we decided to discard all models
with F1 scores of less than 55 on the development
dataset and we averaged the output class probabil-

7http://tinyurl.com/y4p5ygn7

ity distributions when ensembling. Our initial ex-
periments used sequences up to the length of 512,
but we found no difference when truncating them
down to 200.

What features were not helpful: We tried
adding a number of other features, including those
indicating positive, neutral, or negative sentiment,
and all the features used by the FeaturesNN
baseline. We also tried adding jointly learned
POS, NER, and dependency tag embeddings, as
well as the third segment embeddings8. We also
experimented with an explicit [SEP] token to sep-
arate the source and the previous post in the BERT
input. However, none of the mentioned changes
led to a statistically significant improvement.

6 Conclusions and Future Directions

The system presented in this paper achieved the
macro F1 score of 61.67, improving the baseline
by 12.37%, while using only the source post of
discussion, the previous post and the target post to
classify the target post’s stance to a rumour.

A detailed analysis of the provided data shows
that the employed information sources are not suf-
ficient to correctly classify some examples. Our
future work will focus on extending the system by
a relevance scoring component. To preserve the
context, it will evaluate all posts in a given dis-
cussion thread and pick up the most relevant ones
according to defined criteria.

8We tried adding the learned representations to the input
the same way the segment/positional embeddings are added.

1100

Acknowledgments

This work was supported by the Czech Ministry of
Education, Youth and Sports, subprogram INTER-
COST, project code: LTC18054.

References
Isabelle Augenstein, Tim Rocktäschel, Andreas Vla-

chos, and Kalina Bontcheva. 2016. Stance detec-
tion with bidirectional conditional encoding. arXiv
preprint arXiv:1606.05464.

Hareesh Bahuleyan and Olga Vechtomova. 2017.
Uwaterloo at semeval-2017 task 8: Detecting stance
towards rumours with topic independent features. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 461–
464.

Yi-Chin Chen, Zhao-Yang Liu, and Hung-Yu Kao.
2017. Ikm at semeval-2017 task 8: Convolutional
neural networks for stance detection and rumor ver-
ification. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 465–469.

Ju-han Chuang and Shukai Hsieh. 2015. Stance clas-
sification on ptt comments. In 29th Pacific Asia
Conference on Language, Information and Compu-
tation Proceedings of PACLIC 2015: Poster Papers,
page 27.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jiachen Du, Ruifeng Xu, Yulan He, and Lin Gui. 2017.
Stance classification with target-specific neural at-
tention networks. International Joint Conferences
on Artificial Intelligence.

Omar Enayet and Samhaa R El-Beltagy. 2017.
Niletmrg at semeval-2017 task 8: Determining ru-
mour and veracity support for rumours on twitter. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 470–
474.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In
Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: Human language technologies,
pages 1163–1168.

Genevieve Gorrell, Kalina Bontcheva, Leon Derczyn-
ski, Elena Kochkina, Maria Liakata, and Arkaitz Zu-
biaga. 2019. SemEval-2019 Task 7: RumourEval:
Determining rumour veracity and support for ru-
mours. In Proceedings of SemEval. ACL.

Kazi Saidul Hasan and Vincent Ng. 2013. Stance
classification of ideological debates: Data, mod-
els, features, and constraints. In Proceedings of
the Sixth International Joint Conference on Natural
Language Processing, pages 1348–1356.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Elena Kochkina, Maria Liakata, and Isabelle Augen-
stein. 2017. Turing at semeval-2017 task 8: Sequen-
tial approach to rumour stance classification with
branch-lstm. arXiv preprint arXiv:1704.07221.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Marianela Garcı́a Lozano, Hanna Lilja, Edward
Tjörnhammar, and Maja Karasalo. 2017. Mama
edha at semeval-2017 task 8: Stance classifica-
tion with cnn and rules. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 481–485.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 31–41.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. In Pro-
ceedings of the seventh international workshop on
Semantic Evaluation Exercises (SemEval-2013), At-
lanta, Georgia, USA.

Mitra Mohtarami, Ramy Baly, James Glass, Preslav
Nakov, Lluı́s Màrquez, and Alessandro Mos-
chitti. 2018. Automatic stance detection using
end-to-end memory networks. arXiv preprint
arXiv:1804.07581.

Vikram Singh, Sunny Narayan, Md Shad Akhtar, Asif
Ekbal, and Pushpak Bhattacharyya. 2017. Iitp
at semeval-2017 task 8: A supervised approach
for rumour evaluation. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 497–501.

Ankit Srivastava, Georg Rehm, and Julian Moreno
Schneider. 2017. Dfki-dkt at semeval-2017 task 8:
Rumour detection and classification using cascading
heuristics. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 486–490.

Marilyn A Walker, Pranav Anand, Robert Abbott, and
Ricky Grant. 2012. Stance classification using di-
alogic properties of persuasion. In Proceedings of
the 2012 conference of the North American chap-
ter of the association for computational linguistics:
Human language technologies, pages 592–596. As-
sociation for Computational Linguistics.

1101

Feixiang Wang, Man Lan, and Yuanbin Wu. 2017.
Ecnu at semeval-2017 task 8: Rumour evaluation
using effective features and supervised ensemble
models. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 491–496.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE
international conference on computer vision, pages
19–27.

A Supplemental Material

A.1 Dataset Insights

The dataset contains a whole tree structure and
metadata for each discussion from Twitter and
Reddit. The nature of the data differs across the
sources (for example, the Reddit subset includes
upvotes).

When analysing the data, we spotted several
anomalies:

• 12 data points do not contain any text. Ac-
cording to the task organizers, they were
deleted by users at the time of data download
and been left in the data not to break the con-
versational structure.

• The query stance of some examples taken
from subreddit DebunkThis9 is dependent on
the domain knowledge. The class of some
examples is ambiguous; they should be prob-
ably labelled by multiple classes.

A.1.1 Domain knowledge dependency

Examples from subreddit DebunkThis have all
the same format ”Debunk this: [statement]”, e.g.
”Debunk this: Nicotine isn’t really bad for you,
and it’s the other substances that makes tobacco
so harmful.”. All these examples are labelled as
queries.

9https://www.reddit.com/r/DebunkThis/

A.1.2 Class ambiguity
The source/previous post ”This is crazy!
#CapeTown #capestorm #weatherforecast
https://t.co/3bcKOKrCJB” and the target post
”@RyGuySA Oh my gosh! Is that not a tornado?!
Cause wow, It almost looks like one!”, labelled
as a comment in the dataset, might be seen as a
query as well.

A.2 Additional Introspection
Figures 3, 4, 5, and 6 demonstrate attention ma-
trices A, derived from the multi-head attention de-
fined as:

A =
QK>√

dk
, (1)

where Q,K ∈ RL×dk are the matrices containing
query/value vectors and dk is the key/value dimen-
sion. The insights are selected from the heads at
the first layer of the transformer encoder.

1102

Figure 3: Intra-segment attention – the attention is made only between the subword units from the same segment.

Figure 4: Attention matrix capturing the subword similarity.

1103

Figure 5: ’Soft’ local context aggregation.

Figure 6: ’Hard’ local context aggregation – the signal is mostly sent further to another transformer encoder layer.

1104

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1105–1109
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CLEARumor at SemEval-2019 Task 7:
ConvoLving ELMo Against Rumors

Ipek Baris1,∗ and Lukas Schmelzeisen1,∗ and Steffen Staab1, 2

1Institute for Web Science and Technologies (WeST), University of Koblenz-Landau, Germany
2Web and Internet Science Group (WAIS), University of Southampton, United Kingdom

ibaris@uni-koblenz.de, lukas@uni-koblenz.de, staab@uni-koblenz.de

Abstract

This paper describes our submission to
SemEval-2019 Task 7: RumourEval: Deter-
mining Rumor Veracity and Support for Ru-
mors. We participated in both subtasks. The
goal of subtask A is to classify the type of
interaction between a rumorous social media
post and a reply post as support, query, deny,
or comment. The goal of subtask B is to pre-
dict the veracity of a given rumor. For subtask
A, we implement a CNN-based neural archi-
tecture using ELMo embeddings of post text
combined with auxiliary features and achieve
a F1-score of 44.6%. For subtask B, we em-
ploy a MLP neural network leveraging our es-
timates for subtask A and achieve a F1-score of
30.1% (second place in the competition). We
provide results and analysis of our system per-
formance and present ablation experiments.

1 Introduction

Online social media has changed the way of com-
municating and disseminating media content and
opinions, but also paved the way for spreading
false or unverified rumors.

RumourEval 2019 (Gorrell et al., 2019) pro-
vides a dataset of labelled threads from Twitter and
Reddit where each source post mentions a rumor.
Subtask A (SDQC) consists of deciding for each
post in a thread whether it is in a support, deny,
query, or comment relation to the rumor. The goal
of subtask B (Verification) it to classify the verac-
ity of the rumor as true, false, or unverified. Fig-
ure 1 clarifies our terminology and the tasks.

Automated rumor classification is a challenging
task as there is no definite evidence (e.g., autho-
rized confirmation). In its absence, stance analysis
is a useful approach. Systems that employ neural
network architectures showed promising results in
RumourEval 2017 (Derczynski et al., 2017), with

∗The first two authors contributed equally.

Figure 1: An example Twitter thread from the training
dataset with SDQC labels for each post and a veracity
label for the thread’s source post. Any post that does
not reply to another is a source post. Reply posts can be
direct replies (replies to a source post) or nested replies
(replies that reply to another reply post). A thread is the
set containing a source post and all its reply posts.

the LSTM-based sequential model of Kochkina
et al. (2017) performing best.

In this paper, we describe our approach
CLEARumor (ConvoLving ELMo Against Ru-
mors) for solving both subtasks and provide em-
pirical results and ablation experiments of our ar-
chitecture. We make our PyTorch-based imple-
mentation and trained models publicly available1.

2 System Description

After preprocessing the post text (Section 2.1) and
embedding it with ELMo (Section 2.2), our ar-
chitecture for subtask A (Section 2.3) passes the
embedded text through a convolutional neural net-
work (CNN) block, adds auxiliary features, and

1https://github.com/Institute-Web-
Science-and-Technologies/CLEARumor

1105

uses a multilayer perceptron (MLP) block for es-
timating class membership. These estimates are
combined with further auxiliary features and fed
into an MLP block for the classification for sub-
task B (Section 2.4).

2.1 Preprocessing

For preprocessing, we rely mostly on Erika Varis
Doggett’s tokenizer for Twitter and Reddit2, with
which we strip away all user handles (e.g., “@Fut-
bolLife”), remove the number sign in front of hash
tags (e.g., “#Ebola” becomes “Ebola”), remove
URLs, and limit repetitions of the same charac-
ter to at most three times (e.g., “heeeeey” be-
comes “heeey”). We further decided to lowercase
all text, which resulted in improved performance
over mixed case in initial experiments. Last, all
posts are truncated after 32 tokens3.

2.2 ELMo Embeddings

The task of word embedding is to represent each
word in a given sentence by a vector, which among
other things allows for encoding words at the input
layer in a neural network architecture. Traditional
embedding methods such as word2vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014)
work independently of context and always map the
same word to the same vector.

In contrast, ELMo (Peters et al., 2018) is a re-
cent embedding approach based on bidirectional
LSTM networks that considers the context a word
occurs in and is thereby able to address certain lin-
guistic peculiarities, e.g., that the same word can
have different meanings depending on its context.
Further, ELMo incorporates subword units and is
thereby able to represent words not seen during
training successfully, an important benefit for the
social media domain, where users frequently mis-
spell existing words or introduce new ones. For-
mally, given a sequence of words w1w2 . . . wn

ELMo represents the k-th word wk as

ELMotask
k = γtask

L∑

j=0

staskj hk,j , (1)

where L gives the number of internal layers that
were used to train ELMo, hk,j is the contextual

2https://github.com/erikavaris/
tokenizer

3Only 10 out of the total 6634 Twitter posts are longer
than this, while a few Reddit posts are up to 1,000 tokens
long which would result in very impractical batch sizes.

Figure 2: CLEARumor architecture for subtask A.

vector representation of layer j for word k, and
γtask and the staskj are scalars that can be tuned
specifically for the task at hand.

We report results for the pretrained model
elmo_2x4096_512_2048cnn_2xhighway
_5.5B4 for which L = 2 and which outputs
1024-dimensional embedding vectors (but didn’t
notice drastic improvements over the much
smaller models). ELMo allows us to fine-tune
γtask, staskj , and even the hk,j by backpropagating
gradients to them, but we decided against this,
because the RumourEval dataset is very small (cf.
Table 1) adjusting these weights can quickly lead
to overfitting, and keeping the weights constants
allows us to precompute and store all ELMo
embeddings once before the training process
which results in a major boost in performance.

2.3 Subtask A

Our architecture for subtask A is visualized in
Fig. 2. First, the tokenized text of the post that
is to be classified as either support, deny, query,
or comment is represented with an ELMo embed-
ding. Next, the embedded text is fed into Lconv-
many convolutional layers. Here, a single convolu-
tional layers consists of multiple 1D-convolution
operations with a set of different kernel sizes
S, each mapping onto C convolutional channels,
which are then concatenated along the channel
axis. Each convolution operation is batch normal-
ized (Ioffe and Szegedy, 2015) after a ReLU acti-
vation. To maintain an equal sequence length, se-
quences are padded with zero vectors. The result-

4https://allennlp.org/elmo

1106

ing sequence representation is transformed into a
single |S| · C-dimensional vector via global aver-
age pooling. This sequence vector is concatenated
with a vector of auxiliary features that encodes
meta information about the post under classifica-
tion (detailed in the next paragraph). Following is
a stack of Ldense-many dense layers, for which
dropout-regularization (Srivastava et al., 2014) is
performed after ReLU activation. Finally, a sin-
gle linear layer that is softmax-activated yields the
four estimates of class membership. Parameters
are optimized using Adam (Kingma and Ba, 2015)
and a cross-entropy loss.

We use the following auxiliary features:
(1) a two-dimensional Boolean vector encod-
ing whether the post is from Twitter or Reddit;
(2) a five-dimensional real-valued vector encod-
ing meta-information for the post author: whether
the user is verified or not, the number of follow-
ers they have, the number of accounts they fol-
low themselves, and a ratio of the latter two num-
bers5; (3) the cosine similarity of the averaged
ELMo embeddings of the post under classification
to those of the thread’s source post (defined to be
1 for source posts); and (4) a three-dimensional
Boolean vector encoding whether the post is a
source post, a direct reply, or a nested reply.

As hyperparameters, we employ a learning rate
of 10−3, a batch size of 512, and train for 100
epochs. In our loss function, we weigh the es-
timates of support, deny, and query equally but
that of comment at only a fifth of the strength be-
cause of the imbalance of the dataset. We add L2-
regularization with a weight of 10−2. In our re-
ported results we use Lconv = 1 convolutional
layer, with kernel sizes S = {2, 3} each map-
ping into C = 64 channels, after which follow
Ldense = 3 dense layers with 128 hidden units
each and a dropout of 0.5.

2.4 Subtask B
For subtask B we build a single feature vector that
we feed into a MLP classifier. We reuse all the
auxiliary features from subtask A except the last
two, because all posts under classification in sub-
task B are source posts. We further add the fol-
lowing features: (1) a two-dimensional Boolean
vector encoding whether media (an image or a
URL) is attached to the post, (2) the upvote-

5We use min-max scaling based on the training data for
these features. For Reddit the respective concepts don’t exist
and a vector of zeros is used instead.

to-downvote ratio of the post for Reddit (manu-
ally set to 0.5 for Twitter), (3) a two-dimensional
real-valued vector encoding which fraction of the
thread’s posts are direct replies and which frac-
tion are nested replies, (4) the averaged support,
deny, and query probability estimates from sub-
task A averaged over all posts in the thread. Sim-
ilarly to subtask A, this feature vector is fed into
a stack of Ldense-many dense layers with dropout-
regularization (Srivastava et al., 2014) after ReLU
activation, after which a single softmax-activated
linear layer yields estimates for the three classes
true, false, or unverified.

Our model was trained with a learning rate of
10−3 and a batch size of 128 for 5000 epochs.
In our loss calculation, we weigh the unverified
class at 0.3 of the strength of the other two, and
add a L2-regularization weight of 10−2. We used
Ldense = 2 dense layers with 512 hidden units
each and a dropout of 0.25.

3 Evaluation

The dataset of RumourEval 2019 is summarized
in Table 1. Our results for subtask A and B are

Subtask A S D Q C Σ

Train Twitter 910 344 358 2907 5217
Reddit 15 34 37 612

Dev Twitter 94 71 106 778 1485
Reddit 8 11 14 403

Test Twitter 141 92 62 771 1827
Reddit 16 9 31 705

Σ 1184 561 608 6176 8529

Subtask B T F U Σ

Train Twitter 137 62 98 327
Reddit 7 17 6

Dev Twitter 8 12 8 38
Reddit 2 7 1

Test Twitter 22 30 4 81
Reddit 9 10 6

Σ 185 138 133 456

Table 1: Number of labelled instances for both sub-
tasks of the RumourEval 2019 dataset broken down
into (1) class frequencies, per (2) social media plat-
form, and (3) training, development, and test dataset.

1107

Subtask A Dev Test CV

Macro-F1 Macro-F1 S-F1 D-F1 Q-F1 C-F1 Macro-F1

Always Comment 22.1 22.3 0.0 0.0 0.0 89.4 —
Submitted 41.3 37.4 46.7 0.0 11.7 91.2 —
CLEARaux 44.8±0.6 42.7±0.6 29.6±0.6 17.8±2.4 43.9±1.0 79.5±1.3 47.1±4.5
CLEARaux

MLP 42.2±1.2 40.7±1.6 30.7±2.7 0.0±0.0 51.6±3.2 80.5±2.7 44.7±4.2
CLEARCNN+MLP 39.7±2.0 39.0±2.2 16.2±2.3 14.8±3.4 41.0±6.7 84.0±2.6 43.3±4.5
CLEARaux

CNN+MLP 42.9±2.2 44.6±2.6 34.6±3.7 15.4±3.1 42.2±8.3 86.1±1.1 47.2±3.8

Table 2: Evaluation results for subtask A. All reported scores are multiplied by 100. We provide the macro-
averaged F1-score for the development (Dev), the test (Test) datasets and for 10-fold cross validation (CV). For
the test dataset, we further provide the individual F1-scores per class. “Always Comment” is a baseline predict-
ing always the most common class. “Submitted” are the results we officially submitted to RumourEval 2019. For
our CLEARumor architecture we provide multiple ablation experiments. CLEARaux

CNN+MLP is our full system,
CLEARCNN+MLP the same but without the auxiliary features, CLEARaux

MLP instead uses no convolutional layers,
and CLEARaux just concatenates averages ELMo embeddings with auxiliary features uses a single linear layer.

Subtask B Dev Test CV

Macro-F1 RMSE Macro-F1 RMSE Macro-F1 RMSE

Submitted 41.7 0.743 28.6 0.764 — —
CLEARSubtask-B 35.4±0.5 0.676±0.005 30.1±0.8 0.754±0.005 26.7±13.4 0.733±0.113
CLEARNileTMRG 53.5 0.761 18.6 0.846 — —

Table 3: Evaluation results for subtask B. We report F1 (multiplied by 100) and RMSE (root mean squared error)
scores for the development (Dev), the test (Test) datasets and for 10-fold cross validation (CV). CLEARSubtask-B
is our subtask B architecture using the subtask A estimates from CLEARaux

CNN+MLP. CLEARNileTMRG uses the
same estimates but computes task B results using the NileTMRG system (Enayet and El-Beltagy, 2017).

detailed in Table 2 and Table 3, respectively.
The reported results differ from our official sub-

mission, because we continued to tune hyperpa-
rameters afterwards. We report results as trained
on the training dataset and then evaluated on the
development and test datasets, as provided by
the RumourEval organizers. Because neural net-
work experiments are naturally nondeterministic
(Reimers and Gurevych, 2018) and we did in-
deed notice huge variances when retraining mod-
els, we report the mean and standard deviation
over 10 runs for each experiment. Additionally, we
report scores from a 10-fold cross validation over
the whole dataset. Simple cross-validation would
be inappropriate in our setting, because for ex-
ample a split could result in the case where the
same rumors occur in both the training and the test
dataset which would allow a model to just memo-
rize which posts are rumorous. We ensure that this
does not happen in our case, by keeping all posts
belonging to the same rumor6 in the same cross

6For Twitter posts, the dataset contains rumor-topic labels

validation fold. Note that scores on the organizer
split and the cross validation are not directly com-
parable as different fractions of the whole dataset
are used for training (~60-70% for the organizer
split and ~90% for 10-fold cross validation).

4 Conclusion

We have presented CLEARumor, our architecture
for the RumourEval 2019 shared tasks. In future
we aim to generalize our approach, e.g., we cur-
rently use domain-specific features for character-
izing the post author popularity, such as number
of followers for Twitter, which are not available
for all social media platforms. Besides investi-
gating how well our approach translates to other
languages, we are interested in studying the re-
sults for other pretrained word representation ap-
proaches, e.g., BERT (Devlin et al., 2018).

for each thread, so we ensure that each topic only occurs in
one fold. For Reddit posts, no labelling is available, so we can
only ensure that all posts of a thread occur in the same fold.

1108

Acknowledgments

Ipek Baris works for the EU-Project Co-Inform
which has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 770302.
Lukas Schmelzeisen is supported by the German
Research Foundation (DFG) as part of the Open
Argument Mining project (grant STA 572/18-1).

References
Leon Derczynski, Kalina Bontcheva, Maria Liakata,

Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz
Zubiaga. 2017. SemEval-2017 Task 8: Ru-
mourEval: Determining rumour veracity and support
for rumours. In SemEval@ACL, pages 69–76. ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. CoRR, abs/1810.04805.

Omar Enayet and Samhaa R. El-Beltagy. 2017.
NileTMRG at SemEval-2017 Task 8: Determining
Rumour and Veracity Support for Rumours on Twit-
ter. In SemEval@ACL, pages 470–474. ACL.

Genevieve Gorrell, Kalina Bontcheva, Leon Derczyn-
ski, Elena Kochkina, Maria Liakata, and Arkaitz Zu-
biaga. 2019. SemEval-2019 Task 7: RumourEval:
Determining Rumour Veracity and Support for Ru-
mours. In SemEval@NAACL-HLT. ACL. To ap-
pear.

Sergey Ioffe and Christian Szegedy. 2015. Batch Nor-
malization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In ICML, vol-
ume 37 of JMLR Workshop and Conference Pro-
ceedings, pages 448–456. JMLR.org.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In ICLR.

Elena Kochkina, Maria Liakata, and Isabelle Augen-
stein. 2017. Turing at SemEval-2017 Task 8: Se-
quential Approach to Rumour Stance Classification
with Branch-LSTM. In SemEval@ACL, pages 475–
480. ACL.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed Rep-
resentations of Words and Phrases and their Compo-
sitionality. In NIPS, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global Vectors
for Word Representation. In EMNLP, pages 1532–
1543. ACL.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In NAACL-HLT, pages 2227–2237.
ACL.

Nils Reimers and Iryna Gurevych. 2018. Why Com-
paring Single Performance Scores Does Not Allow
to Draw Conclusions About Machine Learning Ap-
proaches. CoRR, abs/1803.09578.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. JMLR, 15(1):1929–
1958.

1109

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1110–1114
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Columbia at SemEval-2019 Task 7: Multi-task Learning for Stance
Classification and Rumour Verification

Zhuoran Liu* Shivali Goel*
Department of Computer Science, Columbia University

{zhuoran.liu, shivali.goel, my2541}@columbia.edu

Mukund Yelahanka Raghuprasad

Smaranda Muresan
Data Science Institute, Columbia University

sm761@columbia.edu

Abstract
The paper presents Columbia team’s participa-
tion in the SemEval 2019 Shared Task 7: Ru-
mourEval 2019. Detecting rumour on social
networks has been a focus of research in re-
cent years. Previous work suffered from data
sparsity, which potentially limited the appli-
cation of more sophisticated neural architec-
ture to this task. We mitigate this problem by
proposing a multi-task learning approach to-
gether with language model fine-tuning. Our
attention-based model allows different tasks to
leverage different level of information. Our
system ranked 6th overall with an F1-score of
36.25 on stance classification and F1 of 22.44
on rumour verification.

1 Introduction

The ubiquity of social media is allowing unverified
news and rumours to spread easily. Efforts have
been made to explore automated methods for ru-
mour detection and verification (Derczynski et al.,
2017; Zubiaga et al., 2016, 2018), and has shown
promising potential to tackle this issue at scale.

RumourEval 2019 Shared Task 7 tackles the
problem of predicting the veracity of rumours and
stance of replies. It consists of two subtasks: task
A (SDQC), in which stance (support, deny, query-
ing, comment) of responses to a rumourous state-
ment are predicted, and task B (verification), in
which the statement’s veracity is to be predicted.
Size of training data provided for Task A is 5,217
and for Task B is 327.

In this paper, we proposed several methods to
alleviate data sparsity and unleash the power of so-
phisticated neural models:

1. Jointly learning to perform rumour verifica-
tion and stance detection. Training a neural

* Equal contribution.

network on limited amount of data for a sin-
gle task is hard, especially in a sentence clas-
sification task. This is because of the weak
supervision signal caused by the information
asymmetry between the source text and the
target labels. With supervision signal from
multiple tasks, a neural network can exploit
information in the training data more thor-
oughly.

2. Using self-attention. To predict the stance of
a post, we want to selectively pay attention
to some other posts that are relevant to this
post. We use a QKV-style attention (Query,
Key, Value) (Vaswani et al., 2017) to sum-
marize the post context into a single vector
(where in practice one attention head is usu-
ally enough). In addition, we use representa-
tions at different levels for different tasks.

3. Using language model fine-tuning for stance
classification. We use the Universal Lan-
guage Model Fine-tuning (ULMFiT) (Ruder
and Howard, 2018) to improve our stance
classifier. We begin with a generic language
model trained on the Wikitext 103 dataset
(Merity et al., 2016). This dataset consists
of a large collection of pre-processed English
Wikipedia articles. This enables the language
model to properly model the general prop-
erties of language. Next, we fine-tune this
language model on task specific data: Ru-
mourEval2019 dataset. Finally, a classifi-
cation layer is added and the model is ini-
tialized with parameters from the fined-tuned
language model.

Our system, which relies on these three key fac-
tors, are now publicly available.2

2Github repository: https://github.com/
joelau94/rumour2019-experiments

1110

2 Related Work

Rumour Detection. Recently there has been a
growing interest on developing methods for the
task of rumour detection (Zubiaga et al., 2018), in-
cluding a shared task in 2017 (Derczynski et al.,
2017), which established a strong baseline for
stance classification — task A(Kochkina et al.,
2017), while (Enayet and El-Beltagy, 2017) es-
tablished the same for veracity — task B. Dungs
et al. (2018) discuss how stance information can
facilitate veracity classification, while (Zubiaga
et al., 2017) explore the use of contextual infor-
mation for rumour detection. These results show
that stance information and context information
are important for rumour verification.

Multi-task Learning. Text classification tasks
invariably suffer from the weak supervision signal
due to loss of information in projecting text to task
labels. There has been a growing number of works
that explore multi-task learning for text classifica-
tion (Zhang et al., 2017; Xiao et al., 2018). For the
task of rumour detection specifically, there were
attempts in jointly train for stance classification
and rumour verification (Kochkina et al., 2018).
Our muti-task approach uses a different, more ad-
vanced sentence embedding approach and uses the
same LSTM for both tasks but with hidden states
from different levels, which can be considered as
different level representations of sentences. Em-
pirically we found that higher levels of representa-
tion performs better for stance classification, while
lower levels are better for veracity classification.

Transfer Learning with pre-trained Language
Models. To alleviate the problem of data
scarcity, researchers have proposed various ap-
proaches for pre-training language models on
large-scale monolingual corpora, such as ELMo,
ULMFiT, BERT, GPT, and have shown their effec-
tiveness on several NLP tasks (Peters et al., 2018;
Ruder and Howard, 2018; Devlin et al., 2018; Rad-
ford, 2018). In our work we use ULMFiT (Ruder
and Howard, 2018) for stance classification.

3 System Description

We propose two system configurations:

1. System1: A joint-learning for task A and task
B without using language model fine-tuning.

2. System2: Language model fine-tuning for
task A.

3.1 System1: Joint Training for Stance
Classification and Rumour Verification

We formulate the joint learning of Task A and B
as follows: Given a branch of conversation X con-
taining n posts

X = (x1,x2, · · · ,xn),

where each post xk is a sequence of mk words:

xk = (xk,1, xk,2, · · · , xk,mk
).

The goal is to build two neural proba-
bilistic models p(ystance|X; θ, φstance) and
p(yveracity|X; θ, φveracity), where θ is the shared
parameters, φs are parameters unique to each task,
ystance = (y1, y2, · · · , yn) are stance labels, and
yveracity is the veracity label.

To estimate θ and φs, we perform maximum
likelihood estimation (MLE) over the training
dataset D = {(Xd,yd)}Nd=1, with optimization
objectives being negative log-likelihoods:

Jstance = −
∑

d

log p(ystance|X; θ, φstance)

= −
∑

d

∑

i

log p(yi)stance|X; θ, φstance)

Jveracity = −
∑

d

log p(yveracity|X; θ, φveracity)

Rumour verification and stance classification
are highly-related tasks that can potentially pro-
vide useful information for each other. Therefore
we integrate the two tasks for joint training, allow-
ing more accurate estimation of the shared part of
parameters θ.

To find an appropriate balance between the su-
pervision signals from the two tasks, we introduce
a tunable hyper-parameter λ. We then rewrite our
objective function as follows:

J = λ · Jstance + (1− λ) · Jveracity

We designed an effective neural net-
work to model p(ystance|X; θ, φstance) and
p(yveracity|X; θ, φveracity), which provides latent
structures to capture subtleties of conversations.
This model architecture is described below.

Neural Network Architecture
Inspired by the idea of BranchLSTM (Kochkina
et al., 2017), we propose a model based on a sin-
gle branch from the conversation tree. Our model
is different from BranchLSTM (Kochkina et al.,
2017) in the following ways:

1111

Figure 1: Model Architecture.

1. The sentence vector representation (sentence
embedding) is generated with a bi-directional
LSTM, as compared to simply taking the av-
erage of word vectors in BranchLSTM. This
allows sentence embeddings to selectively
encode important words and capture long-
distance dependency in the sentence.

2. We apply a Transformer-style attention
(Vaswani et al., 2017) on top of branch-level
LSTM. This enables the most important in-
formation to flow in when trying to decide the
stance of a post.

3. Rumour verification is incorporated as a task
being jointly learnt together with stance clas-
sification, yet exploiting information at a dif-
ferent level from stance classification. In
practice, hidden states at different levels of
LSTM is being used for different tasks.

Figure 1 shows our overall model architecture,
which we describe in more detail below.

Word Embeddings. The word embedding
space is adjustable in our model. We initialize the
word embedding matrix with pre-trained GloVe
embeddings (Pennington et al., 2014). While
we fix most word embedding vectors, we also
keep some of the most frequent word embeddings
trainable, allowing the word embedding space to
adjust itself.

Sentence Embeddings. We consider each post
as a sentence and we encode it with a bi-
directional LSTM. We then take the last hidden
state of the forward LSTM and first hidden state of
the backward LSTM and concatenate them. The
resulting vector can be considered as a dynami-
cally generated sentence embedding.

Stacked Branch Encoder. To capture the inter-
action between posts in a branch of conversation,
we use a stacked Bi-LSTM to encode the sen-
tence embeddings obtained from previous steps.
This results in a higher level representation of each
post, which is fully aware of the conversation con-

1112

text. The higher the level in the LSTM stack, the
more the representation is aware of context.

Attention. To predict the stance of a post, we
want to selectively pay attention to some other
posts that are relevant to this post. We use a QKV-
style of attention (Vaswani et al., 2017) to summa-
rize the post context into a single vector (where in
practice one attention head is usually enough).

Stance Classifier. We first send the highest-
level representation of posts to a QKV-style self-
attention, which produces an attention-weighted
context vector for each post in a branch. We then
concatenate each post’s representation with its cor-
responding context vector, and feed it through an
MLP followed by a softmax for stance classifica-
tion. During our experiment, we found that one
attention head is good enough and is better than
using multi-head attention.

Veracity Classifier. We take the representation
of the original post (which is the first post in each
conversation) from some intermediate layer, and
feed it through an MLP followed by a softmax for
veracity classification. This design corresponds to
the intuition that when judging the authenticity of
a post, the model should focus more on the post
itself and less on how people judge it.

All hyperparameters can be found in our code
with default settings.

3.2 System2: LM fine-tuning for Stance
Classification

We also tried improving our stance classifier
by using the Universal Language Model Fine-
tuning (ULMFiT). After training a generic lan-
guage model trained on Wikitext 103 dataset, we
fine-tuned the LM on RumourEval2019 dataset.

Pre-processing was inspired by BranchLSTM
system (Kochkina et al., 2017). Tweets along a
particular branch were concatenated starting from
the source tweet till the target node and consid-
ered as one training instance. The SDQC label of
the last node concatenated was considered to be
the label of the training instance. Here, replies are
being referred to as nodes. For instance, source +
reply 1 + reply 2, label of reply 2 was one training
instance.

Finally, we used a BiLSTM max pooling net-
work which was presented in (Conneau et al.,
2017) and is shown in Figure 3. This model was
initialized with parameters from the fined tuned

language model. In this architecture, the represen-
tation generated by the BiLSTM was max pooled,
i.e. the maximum value over each dimension was
selected to form a fixed-size vector and was fol-
lowed by softmax for stance classification.

Figure 2: Max pooling in System2

4 Results and Analysis

For System1, we achieved an F1-score of 22.44
on task B and an F1-score of 34.04 on task A. For
System2, we achieved F1-score of 36.25 on task A
(System2 is only applied to task A). Performance
of System1 on task A is slightly lower than the per-
formance of System2, because we only treat task
A as an auxiliary task for task B and did not ap-
ply ULMFiT to task A. Our final submission con-
sisted of using System 2 for task A and System1
for task B. Our final submission ranked 6th in the
final leaderboard.

Verif RMSE SDQC

System 1 0.2244 0.8623 0.3404
System 2 0.3625

Final Submission 0.2244 0.8623 0.3625

Table 1: Performance of two systems on test set.

Unbalanced Class Labels. The model in Sys-
tem1 suffers heavily from an unbalanced class
problem. From Table 2, we can see that the model
is not giving any predictions of D (Deny) and Q
(Query), which is why even though it has high ac-
curacy (83%+), its F1 is lower than that of Sys-
tem2.

1113

S D Q C

System 1 81 0 0 1746

System 2 62 16 84 1665

Table 2: Predicted class frequencies of SDQC classifi-
cation on test data.

This problem is mitigated a little bit in Sys-
tem2, as we witnessed a few examples of D and
Q predictions. This could potentially be because
of the general knowledge gained by pre-training
on large-scale Wikipedia text. Even then, D and Q
classes are rare in the model predictions.

Instability in Training. System1 shows a per-
turbing training loss after it decrease to a certain
level. After a certain point, the F1 score and accu-
racy on development set begins decreasing. One
explanation is that the size of training data is too
small and noise in the data negatively impacts the
model.

5 Conclusion

In this work, we present the Columbia Team’s sys-
tem submission for the RumourEval 2019 shared
task. We tackle the issue of data sparsity by multi-
task learning which fully utilizes the training data.
In addition, we also apply pre-training techniques
such as ULMFiT which was effective in improv-
ing results on task A.

References

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loı̈c Barrault, and Antoine Bordes. 2017. Su-
pervised learning of universal sentence representa-
tions from natural language inference data. CoRR,
abs/1705.02364.

Leon Derczynski, Kalina Bontcheva, Maria Liakata,
Rob Procter, Geraldine Wong Sak Hoi, and Arkaitz
Zubiaga. 2017. Semeval-2017 task 8: Rumoureval:
Determining rumour veracity and support for ru-
mours. In SemEval@ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. CoRR, abs/1810.04805.

Sebastian Dungs, Ahmet Aker, Norbert Fuhr, and
Kalina Bontcheva. 2018. Can rumour stance alone
predict veracity? In COLING.

Omar Enayet and Samhaa R. El-Beltagy. 2017.
Niletmrg at semeval-2017 task 8: Determining ru-
mour and veracity support for rumours on twitter. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 470–
474, Vancouver, Canada. Association for Computa-
tional Linguistics.

Elena Kochkina, Maria Liakata, and Isabelle Augen-
stein. 2017. Turing at semeval-2017 task 8: Sequen-
tial approach to rumour stance classification with
branch-lstm. In SemEval@ACL.

Elena Kochkina, Maria Liakata, and Arkaitz Zubiaga.
2018. All-in-one: Multi-task learning for rumour
verification. In COLING.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. CoRR, abs/1609.07843.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke S. Zettlemoyer. 2018. Deep contextualized
word representations. In NAACL-HLT.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training. In Preprint.

Sebastian Ruder and Jeremy Howard. 2018. Universal
language model fine-tuning for text classification. In
ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Liqiang Xiao, Honglun Zhang, and Wenqing Chen.
2018. Gated multi-task network for text classifica-
tion. In NAACL-HLT.

Honglun Zhang, Liqiang Xiao, Yongkun Wang, and
Yaohui Jin. 2017. A generalized recurrent neural
architecture for text classification with multi-task
learning. In IJCAI.

Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva,
Maria Liakata, and Rob Procter. 2018. Detection
and resolution of rumours in social media: A survey.
ACM Comput. Surv., 51:32:1–32:36.

Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob
Procter, and Michal Lukasik. 2016. Stance classi-
fication in rumours as a sequential task exploiting
the tree structure of social media conversations. In
COLING.

Arkaitz Zubiaga, Maria Liakata, and Rob Procter.
2017. Exploiting context for rumour detection in so-
cial media. In SocInfo.

1114

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1115–1119
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

GWU NLP at SemEval-2019 Task 7: Hybrid Pipeline for Rumour
Veracity and Stance Classification on Social Media

Sardar Hamidian and Mona Diab
Department of Computer Science

The George Washington University
Washington DC, USA

{sardar, mtdiab} @gwu.edu

Abstract

Social media plays a crucial role as the main re-
source news for information seekers online. How-
ever, the unmoderated feature of social media plat-
forms lead to the emergence and spread of un-
trustworthy contents which harm individuals or
even societies. Most of the current automated
approaches for automatically determining the ve-
racity of a rumor are not generalizable for novel
emerging topics. This paper describes our hybrid
system comprising rules and a machine learning
model which makes use of replied tweets to iden-
tify the veracity of the source tweet. The proposed
system in this paper achieved 0.435 F-Macro in
stance classification, and 0.262 F-macro and 0.801
RMSE in rumor verification tasks in Task7 of Se-
mEval 2019.
1 Introduction

The number of users who rely on social me-
dia to seek daily news and information rises daily,
but not all information online is trustworthy. The
unmoderated feature of social media makes the
emergence and diffusion of misinformation even
more intense. Consequently, the propagation of
misinformation online could harm an individual
or even a society. Most of the current approaches
on verifying credibility perform well for the un-
fold topics which are already verified by a trust-
worthy resource (Qazvinian et al., 2011; Hamid-
ian and Diab, 2015). However, the performance
suffers when it comes to real life application for
dealing with the emerging rumors which are pri-
orly unknown. Identifying the emerging rumor
and veracity of the rumor by relying on previ-
ous observations is a challenging task as the new
emerging rumor could be entirely new regarding
the event, propagation pattern, and also the prove-
nance. Despite these challenges, many researchers

have been studying the generalizable metrics that
could be aggregated from the source, replied posts,
or network information (Vosoughi et al., 2018b;
Kochkina et al., 2018; Grinberg et al., 2019). Our
first mission in this paper is to automatically de-
termine the veracity of rumors as part of the Se-
mEval task. SemEval is an ongoing shared task
for evaluations of computational sentiment anal-
ysis systems. Task 7 (RumourEval19) (Gorrell
et al., 2019) is one of the twelve tasks, consist-
ing of two subtasks. Task A is about stance orien-
tation of people as supporting, denying, querying
or commenting (SDQC) in a rumor discourse and
Task B is about the verification of a given rumor.
We propose a hybrid model with rules and a neural
network machine learning scheme for both tasks.
For task A we rely on the text content of the post,
and its parent. In Task B not only do we aggregate
contextual information of the source of the rumor
but also using the veracity orientation of the others
in the same conversation. We devise some rules to
improve the performance of the model on query,
deny, and support cases which are relatively es-
sential classes in the verification tasks. Integrating
the rule-based component we could reach a bet-
ter performance in both tasks in comparison with
a model which only relied on a machine learning
approach.

2 Related work

There are several studies about the behavior of
misinformation on social media, how it is distin-
guished and how social media users react to it.
Most of these studies use data from Twitter since
it has an infrastructure which allows researchers
to access network information and meta informa-
tion of all the users through Twitter APIs. In
this section, we mainly focus on machine learning
approaches in the study of rumor credibility and
stance on Twitter.

1115

One of the earliest work and the most relevant
work to this task is that reported in Qazvinian
et al. (2011), which addresses rumor detection
(rumor/Not-rumor/undetermined) and opinion
classification (deny/support/question/neutral) on
Twitter using content-based as well as microblog-
specific meme features. According to this work,
content-based features performed better than
meta information and network features for rumor
identification and opinion classification tasks. In
another study (Castillo et al., 2013), leveraged
both information cascade and content features of
the tweets by applying a supervised mechanism
to identify credible and newsworthy content.
According to Castillo’s work “confirmed truth,”
or the rumors which are verified as true, are less
likely to be questioned than false rumors regard-
ing their validity. In mor recent study, (Vosoughi,
2015) proposes his two-step rumor detection
and verification model on the Boston Marathon
bombing tweets. The Hierarchical-clustering
model is applied for rumor detection, and after
the feature engineering process, which contains
linguistic, user identity, and pragmatic features,
the Hidden Markov model is applied to find the
veracity of each rumor. Vosoughi (2015) also
analyses the sentiment classification of tweets
using the contextual Information, which shows
how tweets in different spatial, temporal, and
authorial contexts have, on average, different
sentiments. In his recent work (Vosoughi et al.,
2018a) he analyzed the spread of false and true
news on Twitter on a large dataset. According to
his research, fake news is more likely to diffuse
deeper and longer in the information network than
sound news. Moreover, his research suggests that
false news are more novel and likely to be shared
in comparison to the true news. Vosoughi et al.
(2018a) also studied the false and true stories from
an emotional perspective. According to his work,
false stories inspired fear, disgust, and surprise in
replies, while true stories inspired anticipation,
sadness, joy, and trust.

3 Dataset
The dataset provided for this task contains Twit-

ter and Reddit conversation threads associated
with rumors about nine different topics on Twit-
ter and thirty different topics on Reddit. The Ot-
tawa shootings, Charlie Hebdo, the Ferguson un-
rest, Germanwings crash, and Putin missing are

some of the rumors in this dataset. The overall size
of the data including the development and evalu-
ation set is 65 rumors on Reddit and 37 rumors
with 381 conversations on Twitter. Table 1 illus-
trates all the information of underlying replies and
source rumor in both social media platforms.

Reddit Twitter
#Src #Rep #Src #Rep

Training 30 667 297 4222
Development 10 426 28 1021
Evaluation 25 736 56 1010
Total 65 1829 381 6253

Table 1: Number of source (Src) conversations and
replies (Rep) on Reddit and Twitter in the training, de-
velopment and Evaluation sets.

3.1 Data insight
Figure 1 shows the distribution of the tags for

both tasks across different platforms. According
to the table, the stance orientation of the rumor
conversations varies between Twitter and Reddit.
In general, Reddit users leave more comments
than Twitter users and this is regardless of the ru-
mor veracity. In false rumors Twitter conversa-
tions are more oriented toward denial than Red-
dit’s conversations; however, Twitter users support
and deny false rumors to relatively the same ex-
tent. Twitter users are more supportive and ask
more questions in regards to true rumors than the
Reddit users, but they both deny true rumors to al-
most the same amount.
Interestingly, in both platforms, people question
unverified rumors more than true and false rumors.
For the source of conversation, Reddit and Twitter
are significantly different. Regardless of the ve-
racity, the source in Reddit conversations is more
skewed to the query than the other stance tags,
while Twitter is more toward the support. Despite
some common characteristics Reddit and Twitter
users behave differently when it comes to rumors.
Reddit users do not deny the TRUE or UNVERI-
FIED rumors and question more when the rumor is
false, yet Twitter users support more without any
inquiries. It is worth noting that the conclusions
mentioned in this section could only be valid for
the data provided and in other conditions the same
correlations might not be present.
4 System Description

For both tasks, we mainly rely on the content
to determine the stance and verification of the

1116

Figure 1: The distribution percentage of stance
and verification tags on Twitter and Reddit dataset.
“TaskB Source” (exp. False Source) indicate the veri-
fication tag of the source of conversation.

sources in the conversation. Our primary analysis
in the insight section showed that there is a signif-
icant correlation between the two tasks. For the
unverified rumors, the stance orientation is more
toward queries rather than concluding support or
denial; on the other hand, for true rumors, people
are more likely to support or comment on the con-
versation than question or deny. Therefore, stance
is key information to determine the veracity of the
source rumor in the conversation. Task A is a four-
way classification experiment in which we pro-
pose a hybrid model including a neural network-
based (NN) model to encode the contextual rep-
resentation of the post and its parent and then a
rule-based model which is mainly designed to im-
prove the performance on the minority classes in-
cluding “support,” “deny,” and also “query.” Task-
B is a three-way classification task (True, False,
and Unverified) in which we rely on both source
and conversation content. We expand the verac-
ity tags for the source of the conversation to the
underlying posts and create a new set of verac-
ity tags including Source True, Source False, and
Source Unverified (Six-way classification). We
first apply a sequential neural network-based ap-

proach to identify the veracity tag of the source
and also replied posts. From the sources with a
low confidence value a voting mechanism is ap-
plied among all the posts in associated conversa-
tion, i.e. if the majority of the tweets in the con-
versation classified as Parent true then the source
of the conversation will be labeled as True.
4.1 Neural Network Approach

Given the success of recurrent neural networks
(RNN) on language problems, we build a standard
Bi-LSTM network for both tasks as illustrated in
Figure 2. We also investigated the effectiveness of
multitask learning in this experiment by sharing
the information of two tasks in the same pipeline,
but it does not lead to noticeable improvement in
the performance.

Figure 2: Illustration of the hybrid network comprising
the rule-based and Bi-LSTM-Softmax network on Task
A and Task B.

4.1.1 Input Representations
Recent studies on NLP applications are re-

ported to have good performance applying the pre-
trained word embedding (Socher et al., 2013). We
adopted two widely-used methods including the
character embedding and pre-trained word vec-
tors, i.e., GloVe (Pennington et al., 2014). We use
a Bi-LSTM network to encode the morphology
and word embeddings from characters. Intuitively
the concatenated fixed size vectors WCharacter

capture word morphology. WordCharacter is con-
catenated with a pre-trained word embedding from
GloVe Wpre−trained−Glove to get the final word
representation. For Contextual Encoding, once
the word embedding is created we use another
Bi-LSTM layer to encode the contextual meaning
from the sequence of word vectors W1,W2, ...,Wt

1117

Task A Task B
Accuracy Macro-F Support Query Deny Comment Accuracy Macro-F True False Unverified

Dev 0.802 0.487 0.420 0.586 0.058 0.885 0.315 0.187 0.418 0.0 0.142
Test 0.796 0.435 0.446 0.408 0.0 0.886 0.382 0.262 0.525 0.0 0.260

Table 2: Accuracy and F score (macro-averaged) results on the development and test sets of Task A and B.

and consequently obtain a vector representation of
a sentence from the final hidden state of the LSTM
layer. The input representation would capture the
word level syntax, semantics and contextual in-
formation. For Twitter data, we only rely on the
tweet content for both source and replies, but for
the Reddit rumor we use the “title” and “selftext”
and only “body” for the replies.
4.2 Rule-based components

The first analysis of the data showed that stance
knowledge could significantly help the determina-
tion of the source rumor in the conversation. How-
ever, due to imbalanced data, identifying the mi-
nority classes including deny, query, and support
is challenging. We devise a new set of rules to im-
prove the performance of Task A. Using the con-
fidence values of the NN model we only selected
the cases with low confidence for the rule-based
experiments. We relied on simple rules for each
stance class. For Query, a new set of rules was de-
signed to identify the query cases using question
marks and syntactic information of the sentence.
For Deny, we calculated the cosine similarity of
the source and response in addition to sentiment
differences of the source and replied post. For
the support cases, we mainly relied on the URL
and picture existence in the content. The domain
of the URL checked for being a fact-checking or
news source. We also checked the existence of the
picture in the post and consider that as one of the
conditions for the supporting tweets.
5 Experimental Setup

The shared task dataset is split into training, de-
velopment and test sets by the SemEval-2019 task
organizers. We conducted and tuned the optimal
set of hyperparameters by testing the performance
on the development set and the output of the final
model on the test set evaluated by the organizers.
The statistics of the dataset are shown in Table 1.
5.1 Preprocessing

We applied various degrees of preprocessing
on the content, we first removed the very short,
deleted, and also the removed cases (Those that
are labeled [deleted] or [removed] by the task
organizers) from the dataset. We replaced the

URLs from news sources with the token NURL
and all the fact-checking URLs with FURLs. For
compound words and hashtags, we used a simple
heuristic. If the hashtag or a word contained an up-
percase character in the middle of the word, then
we split it before the uppercase letter. For instance,
#PutinMissing are separating into two words Putin
Missing.
5.2 Training

For all of the pipelines, the network is trained
with backpropagation using Adam (Kingma and
Ba, 2014), Root Mean Square Propagation (Rm-
sProp), and Stochastic Gradient Descent (SGD)
optimization algorithms. The parameters get up-
dated in every training epoch. The character and
Glove pre-trained embedding size [100, 200, 300]
are examined with batch size 20 with 100 epochs.
The training is stopped after no improvements in
five consecutive epochs to ensure the convergence
of the models. The highest performance on the
development set was achieved under the following
parameters: hidden size of Bi-LSTM (100); opti-
mization (RMSprop); initial learning rate (0.003);
L2 (Lambda = 0.1); character and word embed-
ding size (300, 100); dropout size (0.3).
6 Result and Evaluation

In this section, we discuss the experimental re-
sults in both tasks. Table 2 shows overall and per
category results for Task A and B. The proposed
model achieved 0.435 F-Macro in stance classi-
fication, and 0.262 F-macro and 0.801 RMSE in
rumor verification tasks. In overall evaluation, we
ranked as the third group in Task B and tenth in
Task A out of twenty-five teams.
7 Conclusion

Identifying rumor veracity is an important and
challenging task. Our first mission in this paper is
to automatically determine the veracity of rumors
as part of the SemEval task. We proposed a hy-
brid model comprising the rules and NN machine
learning approach to identify the stance in the ru-
mor conversation and the veracity of the source in
Twitter and Reddit datasets. The proposed sys-
tem achieved the third best performance for Ru-
mourEval, Task7 of Semeval 2019.

1118

—

References
Carlos Castillo, Marcelo Mendoza, and Barbara

Poblete. 2013. Predicting information credibility
in time-sensitive social media. Internet Research,
23(5):560–588.

Genevieve Gorrell, Kalina Bontcheva, Leon Derczyn-
ski, Elena Kochkina, Maria Liakata, and Arkaitz Zu-
biaga. 2019. SemEval-2019 Task 7: RumourEval:
Determining rumour veracity and support for ru-
mours. In Proceedings of SemEval. ACL.

Nir Grinberg, Kenneth Joseph, Lisa Friedland, Briony
Swire-Thompson, and David Lazer. 2019. Fake
news on twitter during the 2016 us presidential elec-
tion. Science, 363(6425):374–378.

Sardar Hamidian and Mona Diab. 2015. Rumor De-
tection and Classification for Twitter Data. SOTICS
2015: The Fifth International Conference on Social
Media Technologies, Communication, and Informat-
ics, (c):71–77.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Elena Kochkina, Maria Liakata, and Arkaitz Zubiaga.
2018. All-in-one: Multi-task Learning for Rumour
Verification.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Vahed Qazvinian, Emily Rosengren, Dragomir R
Radev, and Qiaozhu Mei. 2011. Qazvinian et al. -
2011 - Rumor has it Identifying Misinformation in
Microblogs(2). Conference on Empirical Methods
in Natural Language Processing, pages 1589–1599.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Soroush Vosoughi. 2015. Automatic detection and ver-
ification of rumors on Twitter. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018a.
The spread of true and false news online. Science,
359(6380):1146–1151.

Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018b.
The spread of true and false news online. Science,
359(6380):1146–1151.

—

1119

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1120–1124
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SINAI-DL at SemEval-2019 Task 7: Data Augmentation and Temporal
Expressions

Miguel Ángel García-Cumbreras1, Salud María Jiménez-Zafra1,
Arturo Montejo-Ráez1, Manuel Carlos Díaz-Galiano1, Estela Saquete2

1CEATIC / Universidad de Jaén
1{magc, sjzafra, amontejo, mcdiaz}@ujaen.es

2DLSI / Universidad de Alicante
2stela@dlsi.ua.es

Abstract

This paper describes the participation of the
SINAI-DL team at RumourEval (Task 7 in Se-
mEval 2019, subtask A: SDQC). SDQC ad-
dresses the challenge of rumour stance clas-
sification as an indirect way of identifying po-
tential rumours. Given a tweet with several re-
plies, our system classifies each reply into eit-
her supporting, denying, questioning or com-
menting on the underlying rumours. We ha-
ve applied data augmentation, temporal ex-
pressions labeling and transfer learning with a
four-layer neural classifier. We achieve an ac-
curacy of 0.715 with the official run over reply
tweets.

1 Introduction

Fake news has been identified as “news stories
that have no factual basis but are presented as
news” (Allcott and Gentzkow, 2017). On a con-
ceptual level, we can define hoaxes or rumours as
false information spread across social media with
the intention to be picked up by traditional news
websites (Rubin et al., 2015). Rumours have been
around for millennia, as attested by the ancient
(and modern) Greek word ‘pheme’, which means
rumour or inaccurate information.

We have participated in RumourEval (SemEval
2019 Task 7, Subtask A), named SDQC: Determi-
ning support for rumours, with the complementary
objective of tracking how other sources orient to
the accuracy of the rumourous story by looking at
the replies to the tweet that presented the rumou-
rous statement (Gorrell et al., 2019).

These replies are extracted from Twitter and
Reddit, but we have only processed the tweet re-
plies, obtaining a good score in terms of accuracy.

The rest of the paper is organized as follows.
Section 2 is a brief overview of the task. Data
analysis is shown in section 3. Section 4 describes
the neural network architecture. The experiments

and results are analyzed in section 5. Finally, con-
clusions and proposals for further experimentation
are provided in section 6.

2 Related Work

The previous edition of RumorEval was organized
as part of the SemEval 2017 workshop. Thirteen
systems were presented in that edition. Most of the
systems presented face this task as a tweet clas-
sification task with four categories. Some partici-
pants use neural networks such as LSTM (Kochki-
na et al., 2017) and CNN (Chen et al., 2017; Gar-
cía Lozano et al., 2017), or SVM machine learning
algorithm (Wang et al., 2017; Singh et al., 2017),
using as main feature word embeddings. Most sys-
tems add lexical, syntactic and semantic features
to word embeddings.

3 Data analysis

The data provided by the organization consist of a
set of tweets and replies. Replies can be origina-
ted from two different sources: Reddit or Twitter.
We have only worked with Twitter replies because
features of Reddit replies and tweets are different,
especially in regards to the length. In Table 1 we
present the datasets distribution.

Dataset Tweets Replies Tweets replies
train_EN 327 5,217 4,244
dev_EN 38 1,485 1,025
test_EN 56 1,746 1,010

Table 1: Datasets distribution (only tweets).

The objective of task A is to determine whet-
her each reply supports, denies, queries or com-
ments the rumour. The classification of tweet re-
plies in each of the four categories established is
shown in Table 2. We can conclude that although

1120

the labels show a realistic situation in terms of user
comments, the classes are very unbalanced.

Category train_EN dev_EN test_EN
Comment 2,897 779 771
Deny 335 70 92
Query 358 107 56
Support 634 69 91

Table 2: Tweets replies distribution.

In order to decide which window size to use in
our system, we generated a cumulative histogram
according to the different lengths of the tweets re-
plies. Our objective was to select a size that could
cover a high rate of tweets replies. In Table 3 we
summarize the quantiles at 80 % and 90 % for the
different datasets. Based on the values we decided
to select a window size with 30 words because
approximately 90 % of training and development
tweet replies have a length of 30 words or less.

Data Quantile 0.8 Quantile 0.9
train_EN 25 29
dev_EN 28 30

Table 3: Length of tweet replies covering 80 % and
90 % of cases.

4 System overview

Nowadays, deep neural architectures are popu-
lating the scientific playground in many scena-
rios: image recognition, speech recognition (Gra-
ves et al., 2013) and synthesis (Ze et al., 2013),
and, of course, text classification (Zhang et al.,
2015). But these supervised learning algorithms
demand certain requirements that sometimes are
difficult to meet. One of the most difficult to over-
come in some cases is the need for a large and va-
ried learning data set. When there is a lack of data,
two main strategies can be followed: transfer lear-
ning and data augmentation.

4.1 Model description
We have implemented the proposed neural net-
work using the Keras1 library for Python, running
on TensorFlow over an NVIDIA Titan X card.
Each model took approximately 15 minutes to get
trained and few seconds to classify development
or test sets. The architecture of our neural network
follows a sequence of layers as follows:

1http://keras.io

1. First layer: An embedding layer that is loa-
ded with pre-trained weights, and converts
each word into a 200-dimensional vector of
real values.

2. Second layer: A bi-directional LSTM recu-
rrent network with 512 activations and a dro-
pout value of 0.5.

3. Third layer: A dense network with 128 ac-
tivations and the ReLU function as activation
function. A dropout of 0.5 is also applied af-
ter this network.

4. Fourth layer: last classification layer, with 4
activations on the final softmax function.

Figure 1 shows the neural network model with
the four layers.

Figure 1: Neural network model.

The model has been trained with the hyperpara-
meters values specified in Table 4 (ce means cross-
entropy).

Parameter value
Batch size 512
Loss function categorical ce
Optimization algorithm Adam
Sequence length 30 terms
No. Epochs 50

Table 4: Hyperparameters

The texts have been preprocessed as follows:

1. Lower case is applied.

2. Hashtags are split into several tokens accor-
ding to a camel case approach. For exam-
ple, “#MeToo” is converted into the terms
“<BOH>me too <EOH>”.

1121

3. Mentions are replaced by the token
<MENTION>

4. Unknown terms (those not found in the em-
bedding dictionary) are replaced by the token
<UNK>.

5. A final token <EOT> is added at the end of
the tweet.

We have taken an already trained word embed-
ding matrix for the first layer, allowing the weights
of the these learned model to get retrained during
the learning process. We have used the weights
from the GloVe Twitter model provided by the
Stanford NLP Group, which is built over 2 billion
tweets (27B tokens, 1.2M vocab, uncased, 200-
dimensional vectors, 1.42 GB download).

4.2 Data augmentation

There are two important reasons for proposing da-
ta augmentation. On the one hand, deep neural
models require a significant amount of training da-
ta to extract relevant features. On the other hand,
as we can see in the section 3 there is a strong class
imbalance between the samples (in dev and train
datasets more than 75 % of the tweets are labeled
as comments).

For each tweet, our system expands the infor-
mation using paraphrasing. To express the same
message with different words, we applied the onli-
ne tool RewriterTools2. For instance, the paraphra-
se of the tweet “EU’s hailed migrant plan ‘a road
to Hell’ Czech Republic refuses involvement” is
“EU’s hailed migrant layout ’a avenue to Hell’
Czech Republic refuses involvement”.

4.3 Temporal expressions

As human beings, we tend to organize the flux in
structured units known as events. Events take pla-
ce at certain times, which are expressed in the text
in the form of temporal expressions. However, the-
se expressions are not always explicit dates that
a computer is able to understand. For this reason,
we decided to add a module that is capable of pro-
cessing temporal information at the level of events
and temporal expressions and annotate and resol-
ve this information, so that it can be used in the
detection of a rumor.

TimeML (Saurí et al., 2006) is the most standar-
dized schema to annotate temporal information.

2https://www.rewritertools.com/paraphrasing-tool

They defined the event as “something that can be
said to obtain or hold true, to happen or to occur”.
This annotation schema annotates not only events
and temporal expressions, but also temporal rela-
tions, known as links (Pustejovsky et al., 2003).
Example below shows a sentence annotated with
TimeML temporal expressions (TIMEX3), events
(EVENT), and the links between them (TLINK).

John <EVENT
eid=’e1’>came</EVENT> on <TIMEX3
tid=’t1’>Monday</TIMEX3>
<TLINK eventInstanceID=’e1’
relatedToTime=’t1’
relType=’IS_INCLUDED’ />

In our approach, the Temporal Information Ex-
traction and Processing was performed by TIPSem
system (Temporal Information Processing using
Semantics) (Llorens et al., 2013, 2012)3. TIPSem
is able to automatically annotate all the temporal
information according to TimeML standard anno-
tation scheme (Saurí et al., 2006). In this first ap-
proach of the system, only the tags regarding tem-
poral expressions and events have been conside-
red and we will explore using the links as further
work.

5 Experiments and results

We performed an evaluation of the proposed neu-
ral network on the development set, but training a
model on two different official training sets: the
official ones and those augmented by paraphra-
sing the given tweets. The results were discou-
raging when paraphrased tweets are added to the
training set, as Table 5 shows. After checking the
tweets generated by the paraphrasing tool, we no-
ticed that the quality was low, with non-sense texts
in some cases and few structural variations from
the original tweet. Thus, we believe that the net-
work was not even less robust, but worse as a non-
realistic model was learned.

The detection of temporal expressions and the
inclusion of the generated tags into the model
didn’t report any improvement either. We believe
that the related embeddings (randomly initialized)
needed a far larger set to fit in the transferred lear-
ned embedding model for GloVe vectors.

Thus, our submission relies only on official trai-
ning data which was, as we know, not enough data
to ensure a good learning process. Anyhow, our
system performed in 9th position out from 21 in

3http://gplsi.dlsi.ua.es/demos/TIMEE/

1122

train data accuracy on dev data
official 0.690499

official + paraphrased 0.675808
official with temporal tags 0.684622

Table 5: Development experiments

subtask A, with an SDQC value of 0.3927 (F1-
score).

Table 6 shows the results obtained with the offi-
cial run over test set (only with the tweet replies).

truth label accuracy total correct
all labels 0.7148 1,066 762

support 0.0219 91 2
deny 0.1413 92 13

query 0.4285 56 24
comment 0.9377 771 723

Table 6: Test experiments: official run

In the first analysis of results we can verify that
the neural network system, on the base case, has
worked correctly (almost perfect) for the comment
class that have a sufficient number of examples of
train and dev, and much worse for those with very
few examples (classes support, deny and query).

We have to finish a more exhaustive analysis of
these results, especially of the mislabelled sam-
ples. For instance, in the analysis of the truth la-
bel support, our system tags the most of the cases
with the comment label. In this case, we can con-
clude that the comment label has been overtrained
because of the greater number of examples (high
bias).

6 Conclusions and future work

Our proposal explores how transferred embed-
dings and data augmentation may help in a text
classification task like RumourEval. By augmen-
ting official training data with paraphrasing, no
improvement is noticed on classifying develop-
ment data, due to the poor quality of the paraph-
rasing tool. So, we plan to explore other augmen-
tation strategies, like a forward-backward trans-
lation. Neither temporal expression detection has
been found useful in this task, at least with the
model proposed. We have found also that the mo-
dels trained exhibits high variance. That means
that we are overfitting the model on training data,
so despite the use of the dropout technique, early
stopping, fewer parameters or more training data

could help to produce a more robust model. Atten-
tion mechanism in the neural network could also
help (Wang et al., 2016), along with a pre-training
of the LSTM with a large corpus of tweets for a
language model (predicting next word) and then
transfer those weights and retrain them for this
specific task.

Finally, we intend to incorporate a module that
takes into account the reputation of the user who
makes comments, based on non-textual parame-
ters, such as the relationship between the user of
the original tweet and the user of the reply tweet,
number of followers, knowledge of the subject,
etc. We will use that information to work in the
second task, predicting the veracity of the original
tweet.

Acknowledgements

This research work is partially supported by a
grant from the Ministerio de Educación Cultura
y Deporte (MECD - scholarship FPU014/00983),
the project REDES (TIN2015-65136-C2-1-R) and
a grant from the Fondo Europeo de Desarrollo Re-
gional (FEDER).

References
Hunt Allcott and Matthew Gentzkow. 2017. Social me-

dia and fake news in the 2016 election. Journal of
Economic Perspectives, 31(2):211–236.

Yi-Chin Chen, Zhao-Yang Liu, and Hung-Yu Kao.
2017. IKM at SemEval-2017 Task 8: Convolutional
Neural Networks for stance detection and rumor ve-
rification. In Proceedings of SemEval-2017, pages
465–469, Vancouver, Canada. ACL.

Marianela García Lozano, Hanna Lilja, Edward Tjörn-
hammar, and Maja Karasalo. 2017. Mama Edha
at SemEval-2017 Task 8: Stance Classification with
CNN and Rules. In Proceedings SemEval-2017, pa-
ges 481–485, Vancouver, Canada. ACL.

Genevieve Gorrell, Kalina Bontcheva, Leon Derczyns-
ki, Elena Kochkina, Maria Liakata, and Arkaitz Zu-
biaga. 2019. SemEval-2019 Task 7: RumourEval:
Determining rumour veracity and support for ru-
mours. In Proceedings of SemEval. ACL.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recu-
rrent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

Elena Kochkina, Maria Liakata, and Isabelle Augens-
tein. 2017. Turing at SemEval-2017 Task 8: Sequen-
tial Approach to Rumour Stance Classification with

1123

Branch-LSTM. In Proceedings of SemEval-2017,
pages 475––480, Vancouver, Canada. ACL.

Hector Llorens, Estela Saquete, and Borja Navarro-
Colorado. 2012. Automatic System for Identif-
ying and Categorizing Temporal Relations in Natu-
ral Language. International Journal of Intelligent
Systems, 27(7):680–703.

Hector Llorens, Estela Saquete, and Borja Navarro-
Colorado. 2013. Applying Semantic Knowledge to
the Automatic Processing of Temporal Expressions
and Events in Natural Language. Information Pro-
cessing & Management, 49(1):179–197.

James Pustejovsky, José M. Castaño, Robert Ingria,
Roser Saurí, Robert J. Gaizauskas, Andrea Setzer,
Graham Katz, and Dragomir R. Radev. 2003. Ti-
meml: Robust specification of event and temporal
expressions in text. In New Directions in Question
Answering, Papers from 2003 AAAI Spring Sympo-
sium, Stanford University, Stanford, CA, USA, pages
28–34.

Victoria L. Rubin, Yimin Chen, and Niall J. Conroy.
2015. Deception detection for news: Three types
of fakes. In Proceedings of the 78th ASIS&T An-
nual Meeting: Information Science with Impact: Re-
search in and for the Community, ASIST ’15, pages
83:1–83:4, Silver Springs, MD, USA. American So-
ciety for Information Science.

Roser Saurí, Jessica Littman, Robert Knippen, Ro-
bert Gaizauskas, Andrea Setzer, and James Puste-
jovsky. 2006. TimeML Annotation Guidelines 1.2.1
(http://www.timeml.org/).

Vikram Singh, Sunny Narayan, Md Shad Akhtar, Asif
Ekbal, and Pushpak Bhattacharyya. 2017. Iitp at
semeval-2017 task 8 : A supervised approach for ru-
mour evaluation. In Proceedings of SemEval-2017,
pages 497–501, Vancouver, Canada. ACL.

Feixiang Wang, Man Lan, and Yuanbin Wu. 2017. EC-
NU at SemEval-2017 Task 8: Rumour Evaluation
Using Effective Features and Supervised Ensemble
Models. In Proceedings of SemEval-2017, pages
491–496, Vancouver, Canada. ACL.

Yequan Wang, Minlie Huang, Li Zhao, et al. 2016.
Attention-based lstm for aspect-level sentiment clas-
sification. In Proceedings of the 2016 conference on
empirical methods in natural language processing,
pages 606–615.

Heiga Ze, Andrew Senior, and Mike Schuster. 2013.
Statistical parametric speech synthesis using deep
neural networks. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013 IEEE International
Conference on, pages 7962–7966. IEEE.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

1124

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1125–1131
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UPV-28-UNITO at SemEval-2019 Task 7: Exploiting Post’s Nesting and
Syntax Information for Rumor Stance Classification

Bilal Ghanem1, Alessandra Teresa Cignarella1,2,
Cristina Bosco2, Paolo Rosso1, Francisco Rangel1,3

1. PRHLT Research Center, Universitat Politècnica de València
2. Dipartimento di Informatica, Università degli Studi di Torino

3. Autoritas Consulting
bigha@doctor.upv.es, cigna@di.unito.it,

prosso@dsic.upv.es, bosco@di.unito.it, francisco.rangel@autoritas.es

Abstract

In the present paper we describe the UPV-
28-UNITO system’s submission to the Ru-
morEval 2019 shared task. The approach we
applied for addressing both the subtasks of the
contest exploits both classical machine learn-
ing algorithms and word embeddings, and it is
based on diverse groups of features: stylistic,
lexical, emotional, sentiment, meta-structural
and Twitter-based. A novel set of features that
take advantage of the syntactic information in
texts is moreover introduced in the paper.

1 Introduction

The problem of rumor detection lately is attracting
considerable attention, also considering the very
fast diffusion of information that features social
media platforms. In particular rumors are facili-
tated by large users’ communities, where also ex-
pert journalists are unable to keep up with the huge
volume of online generated information and to de-
cide whether a news is a hoax (Procter et al., 2013;
Webb et al., 2016; Zubiaga et al., 2018).

Rumour stance classification is the task that in-
tends to classify the type of contribution to the
rumours expressed by different posts of a same
thread (Qazvinian et al., 2011) according to a set
of given categories: supporting, denying, query-
ing or simply commenting on the rumour. For in-
stance, referring to Twitter, once a tweet that intro-
duces a rumour is detected (the “source tweet”), all
the tweets having a reply relationship with it, (i.e.
being part of the same thread), are collected to be
classified.

Our participation to this task is mainly focused
on the investigation of linguistic features of social

media language that can be used as cues for de-
tecting rumors1.

2 Related work

The RumorEval 2019 shared task involves two
tasks: Task A (rumour stance classification) and
Task B (verification).

Stance Detection (SD) consists in automatically
determining whether the author of a text is in
favour, against, or neutral towards a given tar-
get, i.e. statement, event, person or organiza-
tion, and it is generally indicated as TARGET-
SPECIFIC STANCE CLASSIFICATION (Mohammad
et al., 2016).

Another type of stance classification, more
general-purpose, is the OPEN STANCE CLASSIFI-
CATION task, usually indicated with the acronym
SDQC, by referring to the four categories ex-
ploited for indicating the attitude of a message
with respect to the rumour: Support (S), Deny (D),
Query (Q) and Comment (C) (Aker et al., 2017).
Target-specific stance classification is especially
suitable for analyses about a specific product or
political actor, being the target given as already
extracted, e.g. from conversational cues. On this
regard several shared tasks have been organized
in recent years: see for instance SemEval-2016
Task 6 (Mohammad et al., 2017) considering six
commonly known targets in the United States, and
StanceCat at IberEval-2017 on stance and gender
detection in tweets on the matter of the Indepen-
dence of Catalonia (Taulé et al., 2017). On the
other hand, the open stance classification, (i.e. the
task addressd in this paper), is more suitable in

1Source code is available on GitHub: https://
github.com/bilalghanem/UPV-28-UNITO

1125

classifying emerging news or novel contexts, such
as working with online media or streaming news
analysis.

Provided that attitudes around a claim can act
as proxies for its veracity, and not only of its con-
troversiality, it is reasonable to consider the appli-
cation of SDQC techniques for accomplishing ru-
mour analysis tasks. A first shared task, concern-
ing SDQC applied to rumor detection, has been
organized at SemEval-2017, i.e RumorEval 2017
(Derczynski et al., 2017). Furthermore, several re-
search works have analyzed the open issue of the
impact of rumors in social media (Resnick et al.,
2014; Zubiaga et al., 2015, 2018), for instance ex-
ploiting linguistic features (Ghanem et al., 2018).
Such a kind of approaches may be also found in
works which deal with the problems of Fake News
Detection (Ciampaglia et al., 2015; Hanselowski
et al., 2018).

Furthermore, a rumor is defined as a “circulat-
ing story of questionable veracity, which is appar-
ently credible but hard to verify, and produces suf-
ficient scepticism and/or anxiety so as to motivate
finding out the actual truth” (Zubiaga et al., 2015).

Concerning veracity identification, increasingly
advanced systems and annotation schemas have
been developed to support the analysis of rumour
veracity and misinformation in text (Qazvinian
et al., 2011; Kumar and Geethakumari, 2014;
Zhang et al., 2015).

3 Description of the task

The RumorEval task is articulated in the follow-
ing sub-tasks: Task A (open stance classifica-
tion – SDQC) is a multi-class classification for
determining whether a message is a “support”, a
“deny”, a “query” or a “comment” wrt the orig-
inal post; Task B (verification) is a binary clas-
sification for predicting the veracity of a given ru-
mour into “true” or “false” and according to a con-
fidence value in the range of 0-1.

3.1 Training and Test Data

The RumourEval 2019 corpus contains a total of
8,529 English posts, namely 6,702 from Twitter
and 1,827 from Reddit.

The portion of data from Twitter has been built
by combining the RumorEval 2017 training and
development datasets (Derczynski et al., 2017),

and includes 5,568 tweets: 325 source tweets
(grouped into eight overall topics such as Char-
lie Hebdo attack, Ottawa shooting, Germanwings
crash...), and 5,243 discussion tweets collected in
their threads.
The dataset from Reddit, which has been instead
newly released this year, is composed by 1,134
posts: 40 source posts and 1,094 collected in their
threads.

Training Test
Twitter 5,568 1,066
Reddit 1,134 761
Total 6,702 1,827

Table 1: Training and test data distribution.

All data have been split in training and test set with
a proportion of approximately 80%−20% (see Ta-
ble 1).

4 UPV-28-UNITO Submission

The approach and the features selection we ap-
plied is the same for both tasks and is based on
a set of manual features described in Section 4.1.
We built moreover another set of features (i.e.
second-level features) extracted by using the man-
ual features together with features based on word
embeddings (see Section 4.2 for a detailed de-
scription). For modeling the features distribution
with respect to each thread, we used for task B the
same features as in task A. Then, in both tasks,
we fed the features to a classical machine learning
classifier.

4.1 Manual Features
For enhancing the selection of features, we inves-
tigated the impact of diverse groups of them: emo-
tional, sentiment, lexical, stylistic, meta-structural
and Twitter-based. Furthermore, we introduced a
novel set of syntax-based features.

Emotional Features - We exploited several emo-
tional resources in order to build features for our
system. Three lexica: (a) EmoSenticNet, a lexi-
con that assigns six WordNet Affect emotion la-
bels to SenticNet concepts (Poria et al., 2013);
(b) the NRC Emotion Lexicon, a list of English
words and their associations with eight basic emo-
tions (anger, fear, anticipation, trust, surprise, sad-
ness, joy, and disgust) and two sentiments (nega-
tive and positive) (Mohammad and Turney, 2010);

1126

and (c) SentiSense, an easily scalable concept-
based affective lexicon for Sentiment Analysis
(De Albornoz et al., 2012). We also exploited two
tools: (d) Empath, a tool that can generate and
validate new lexical categories on demand from
a small set of seed terms (Fast et al., 2016); and
(e) LIWC a text analysis dictionary that counts
words in psychologically meaningful categories
(Pennebaker et al., 2001).

Sentiment Features - Our sentiment features
were modeled exploiting sentiment resources such
as: (a) SentiStrength, a sentiment strength detec-
tion program which uses a lexical approach that
exploits a list of sentiment-related terms (Thelwall
et al., 2010); (b) AFINN, a list of English words
rated for valence with an integer between minus
five (negative) and plus five (positive) (Nielsen,
2011); (c) SentiWordNet, a lexical resource in
which each WordNet synset is associated to three
numerical scores, describing how objective, posi-
tive, and negative the terms contained in the synset
are (Esuli and Sebastiani, 2007); (d) EffectWord-
Net, a lexicon about how opinions are expressed
towards events, which have positive or negative
effects on entities (+/-effect events) (Choi and
Wiebe, 2014); (e) SenticNet, a publicly available
resource for opinion mining built exploiting Se-
mantic Web techniques (Cambria et al., 2014); and
(f) the Hu&Liu opinion lexicon2.

Lexical Features - Various lexical features al-
ready explored in similar Sentiment Analysis tasks
were employed: (a) the presence of Bad Sexual
Words, a list extracted from the work of Frenda
et al. (2018); (b) the presence of Cue Words re-
lated to the following categories: belief, denial,
doubt, fake, knowledge, negation, question, re-
port (Bahuleyan and Vechtomova, 2017); the cat-
egories an, asm, asf, qas, cds of the multilingual
hate lexicon with words to hurt HurtLex (Bassig-
nana et al., 2018); (d) the presence of Linguistic
Words related to the categories of assertives, bias,
fatives, implicatives, hedges, linguistic words, re-
port verbs; (e) the presence of specific categories
present in LIWC: sexual, certain, cause, swear,
negate, ipron, they, she, he, you, we, I. (Pen-
nebaker et al., 2001).

Stylistic Features - We employed canonical
2http://www.cs.uic.edu/liub/FBS

stylistic features, already thoroughly explored in
Sentiment Analysis tasks and already proven use-
ful in multiple domains: (a) the count of question
marks; (b) the count of exclamation marks; (c)
length of a sentence; (d) the uppercase ratio; (e)
the count of consecutive characters and letters3

(f) and the presence of URLs.

In addition to the above-listed, common features
exploited in Sentiment Analysis tasks, in this
work we introduce two novel sets of features: (1)
Problem-specific features (considering the fact
that the dataset is composed by Twitter data and
Reddit data) and (2) Syntactical features.

Meta-structural features - Since training and test
data are from Twitter and Reddit both, we ex-
plored meta-structural features suitable for data
coming from both platforms: (a) the count of
favourites/likes, in which we have two different
value distribution (Twitter vs. Reddit), so we nor-
malized them in a range 0-100; (b) the creation
time of a post, encoded in seconds; (c) the count
of replies; and (d) the level, i.e. the degree of
“nestedness” of the post in the thread.

Twitter-only Features - Because of the duplici-
tous nature of the RumorEval 2019 dataset (Twit-
ter and Reddit), some of the several features, al-
ready thoroughly used in Sentiment Analysis tasks
and based on Twitter metadata, could not be used
in this task4. As follows: (a) the presence of hash-
tags; (b) the presence of mentions; (c) the count
of retweets. And also some user-based features:
(d) whether the user is verified or not; (f) the count
of followers; (g) the count of listed (i.e. the num-
ber of public lists of which this user is a mem-
ber of); (h) the count of statuses; (i) the count of
friends (i.e. the number of users that one account
is following); (l) the count of favourites.

Syntactic Features - In our system some feature
has been also modeled by referring to syntactic in-
formation involved in texts (Saif et al., 2016). Af-
ter having parsed5 the dataset in the Universal De-

3We considered 2 or more consecutive characters, and 3
or more consecutive letters.

4For the instances from Reddit, that did not have a repre-
sentation of one of the following features, the empty values
has been filled with a weighted average of the values obtained
by other similar instances.

5The parsing system we applied is UDPipe, available at:
https://pypi.org/project/ufal.udpipe/

1127

pendency6 format, thus obtaining a set of syntac-
tic “dependency relations” (deprel), we were able
to exploit: (a) the ratio of negation dependencies
compared to all the other relations; (b) the Bag of
Relations (BoR all) considering all the deprels at-
tached to all the tokens; (c) the Bag of Relations
(BoR list) considering all the deprels attached to
the tokens belonging to a selected list of words
(from the lists already made explicit in the para-
graph “Lexical Features” in Section 4.1); and fi-
nally (d) Bag of Relations (BoR verbs) consider-
ing all the deprels attached to all the verbs, thus
fully exploiting morpho-synctactic knowledge.

4.2 Second-level Features

For the second-level features, we employed (a)
the cosine similarity of one instance wrt its par-
ents and (b) information of the tree structure of a
thread, exploiting its “nesting” and depth from the
source tweet.

Similarity with Parents - In this feature, we used
the cosine similarity to measure the similarity be-
tween each post with its parents. The parents of
a reply are the (A) direct upper-level post and (B)
the source post in the thread (see Figure 1).

Figure 1: An example for reply 2.2 parents.

We extracted the cosine similarity in A and B
by using the manual features’ final vector and
words embeddings average vectors of the posts;
the words embeddings average vector for a post
is extracted by averaging the embeddings of the
post’s words7.

6The de facto standard for the representation of syn-
tactical knowledge in the NLP community: https://
universaldependencies.org/

7We used the pre-trained Google News word embed-
dings in our system: https://code.google.com/
archive/p/word2vec/

SDQC Depth-based Clusters - We built level-
based stance clusters from the posts. For each
stance class (SDQC), we extracted all the belong-
ing posts that correspond to one of the four classes
and we computed the average value of the feature
vectors (as one unique cluster). Since we have four
main stances, this process ended with four main
clusters. For the feature extraction, we measured
the cosine similarity for each post wrt these four
clusters. As done in the previous feature described
above, we built these clusters by using both the
manual features’ vectors and word embeddings’
vectors of the posts, so each stance cluster is rep-
resented in two ways. In these four main clusters,
we didn’t consider the nesting of the posts in the
thread.

Also, we obtained the same clusters but instead
of averaging all the posts that correspond to a
stance, we considered the nesting of the posts in
the thread. We split the nesting of the threads
into five groups: posts with depth one, two, three,
four, five or larger. For each of these levels,
we extracted four SDQC clusters (depth-based).
For instance, if a post occurs in depth two, we
measured the cosine similarity between this post
and 1) the four main SDQC clusters8, 2) the four
depth-based SDQC clusters two.

Concerning task B, we modeled the distribution of
the features used for task A. For each thread we
did the following:
1. We counted how many posts in the thread cor-
respond to each of the stances.
2. We extracted the averaged features’ vectors for
each stance’s posts in the thread.
3. We extracted the standard deviation for each
stance’s posts in the thread.

5 Experiments

We tested different machine learning classifiers
in each task performing 10-fold cross-validation.
The results showed that the Logistic Regression
(LR) produces the highest scores. For tuning the
classifier, we used the Grid Search method. The
parameters of the LR are: C = 61.5, penalty =
L2, and since the dataset is not balanced, we used
different weights for the classes as COMMENT =

8Four features using the manual features, and another four
using the words embeddings.

1128

0.10, DENY = 0.35, SUPPORT = 0.20 and QUERY =
0.35. We conducted an ablation test on the features
employed in task A in order to investigate their
importance in the classification process. Table 2
presents the ablation test results as well as the sys-
tem performance using 10-fold cross-validation.

SET FEATURE M-F1
A All features 54.9
B A - Emotional features 54.5
C A - Sentiment features 54.7
D A - Lexical features 53.6
E A - Syntactic features 54.7
F A - Stylistic features 50.1
G A - Meta-structural features 54.5
H A - Twitter-only features 54.9
I A - Cosine similarity with parents 55.3
I.1 I using only manual features 54.9
I.2 I using only words embeddings 54.9
J A - SDQC depth-based clusters 47.7
J.1 J using only manual features 53.3
J.2 J using only words embeddings 51.1
K A-(C+E+I) 55.6
L A-(B+C+E+G) 55.7
M A-(B+C+E+G+I.2) 55.9

Table 2: Ablation test.

Provided that the organizers allowed two submis-
sions for the final evaluation, on both tasks we
used all the features (set A) in the first submission
and set M for the second submission. In Table 3
we present the final scores achieved on both tasks.

MACRO-F1 RMSE
Task A 48.95 –
Task B 19.96 82.64

Table 3: Final results.

6 Error Analysis

A manual error analysis allow us to see which cat-
egories and posts turned out to be the most diffi-
cult to be dealt with our system. We found out that
SUPPORT was misclassified 114 times, DENY 92
times, QUERY 44 times, and COMMENT 57 times.
Therefore, SUPPORT seems to be the hardest cate-
gory to be correctly classified.
Table 4 reports the detailed confusion matrix of
predicted vs. gold labels and shows that the
most of errors are related to the category SUP-
PORT (in the gold dataset) and COMMENT (in
our runs), while any error involves the more con-
trasting classes (e.g. SUPPORT and DENY). By
better investigating the gold test set, it should

PREDICTED
S D Q C

G
O

L
D S – 0 13 101

D 1 – 6 85
Q 5 1 – 38
C 5 17 35 –

Table 4: Confusion matrix of errors.

be moreover observed that several semantically
empty messages of the test set have been marked
using some class, while our system marks them as
COMMENT, i.e. selecting the more frequent class
when a clear indication of the content is lacking.

7 Conclusion

In this paper we presented an overview of the
UPV-28-UNITO participation for SemEval 2019
Task 7 - Determining Rumour Veracity and Sup-
port for Rumours.

We submitted two different runs in the detec-
tion of rumor stance classification (Task A) and
veracity classification (Task B) in English mes-
sages retrieved from Twitter and Reddit both. Our
approach was based on emotional, sentiment, lex-
ical, stylistic, meta-structural and Twitter-based
features. Furthermore, we introduced two novel
sets of features, i.e. syntactical and depth-based
features, which proved to be successful for the task
of rumor stance classification, where our system
ranked as 5th (out of 26) and, according to the
RMSE score, we ranked 6th in Task B for veracity
classification. Since the two latter groups of fea-
tures produced an interesting contribution to the
score for Task A, but they were fairly neutral in
Task B, we will follow this trail and try to inquire
more on these aspects in our future work.

Acknowledgments

The work of Cristina Bosco was partially
funded by Progetto di Ateneo/CSP 2016 (Im-
migrants, Hate and Prejudice in Social Media,
S1618L2BOSC01).

References
Ahmet Aker, Leon Derczynski, and Kalina Bontcheva.

2017. Simple open stance classification for rumour
analysis. arXiv preprint arXiv:1708.05286.

Hareesh Bahuleyan and Olga Vechtomova. 2017.
UWaterloo at SemEval-2017 Task 8: Detecting

1129

Stance Towards Rumours with Topic Independent
Features. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 461–464.

Elisa Bassignana, Valerio Basile, and Viviana Patti.
2018. Hurtlex: A Multilingual Lexicon of Words to
Hurt. In 5th Italian Conference on Computational
Linguistics, CLiC-it 2018, volume 2253, pages 1–6.
CEUR-WS.

Erik Cambria, Daniel Olsher, and Dheeraj Rajagopal.
2014. SenticNet 3: a Common and Common-
sense Knowledge Base for Cognition-driven Senti-
ment Analysis. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence.

Yoonjung Choi and Janyce Wiebe. 2014. +/-
effectwordnet: Sense-level Lexicon Acquisition for
Opinion Inference. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1181–1191.

Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis M
Rocha, Johan Bollen, Filippo Menczer, and Alessan-
dro Flammini. 2015. Computational Fact Checking
from Knowledge Networks. PloS one, 10(6).

Jorge Carrillo De Albornoz, Laura Plaza, and Pablo
Gervás. 2012. SentiSense: An Easily Scalable
Concept-based Affective Lexicon for Sentiment
Analysis. In LREC, pages 3562–3567.

Leon Derczynski, Kalina Bontcheva, Maria Li-
akata, Rob Procter, Geraldine Wong Sak Hoi,
and Arkaitz Zubiaga. 2017. SemEval-2017 Task
8: RumourEval: Determining Rumour Verac-
ity and Support for Rumours. arXiv preprint
arXiv:1704.05972.

Andrea Esuli and Fabrizio Sebastiani. 2007. Senti-
WordNet: a High-coverage Lexical Resource for
Opinion Mining. Evaluation, 17:1–26.

Ethan Fast, Binbin Chen, and Michael S. Bernstein.
2016. Empath: Understanding Topic Signals in
Large-scale Text. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Sys-
tems, pages 4647–4657. ACM.

Simona Frenda, Bilal Ghanem, and Manuel Montes-y
Gómez. 2018. Exploration of Misogyny in Spanish
and English Tweets. In 3rd Workshop on Evaluation
of Human Language Technologies for Iberian Lan-
guages (IberEval 2018), volume 2150, pages 260–
267. CEUR-WS.

Bilal Ghanem, Paolo Rosso, and Francisco Rangel.
2018. Stance Detection in Fake News A Com-
bined Feature Representation. In Proceedings of the
1st Workshop on Fact Extraction and VERification
(FEVER), pages 66–71.

Andreas Hanselowski, Avinesh PVS, Benjamin
Schiller, Felix Caspelherr, Debanjan Chaudhuri,
Christian M Meyer, and Iryna Gurevych. 2018. A
Retrospective Analysis of the Fake News Chal-
lenge Stance Detection Task. arXiv preprint
arXiv:1806.05180.

KP Krishna Kumar and G Geethakumari. 2014. De-
tecting misinformation in online social networks us-
ing cognitive psychology. Human-centric Comput-
ing and Information Sciences, 4(1):14.

Saif M. Mohammad, Svetlana Kiritchenko, Parinaz
Sobhani, Xiaodan Zhu, and Colin Cherry. 2016.
SemEval-2016 Task 6: Detecting Stance in Tweets.
In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages 31–
41.

Saif M. Mohammad, Parinaz Sobhani, and Svet-
lana Kiritchenko. 2017. Stance and Sentiment in
Tweets. ACM Transactions on Internet Technology,
17(3):26:1–26:23.

Saif M. Mohammad and Peter D. Turney. 2010. Emo-
tions Evoked by Common Words and Phrases: Us-
ing Mechanical Turk to Create an Emotion Lexicon.
In Proceedings of the NAACL HLT 2010, pages 26–
34. ACL.

Finn Årup Nielsen. 2011. A new ANEW: Evaluation of
a Word List for Sentiment Analysis in Microblogs.
arXiv preprint arXiv:1103.2903.

James W. Pennebaker, Martha E. Francis, and Roger J.
Booth. 2001. Linguistic Inquiry and Word Count:
LIWC 2001. Mahway: Lawrence Erlbaum Asso-
ciates, 71.

Soujanya Poria, Alexander Gelbukh, Amir Hussain,
Newton Howard, Dipankar Das, and Sivaji Bandy-
opadhyay. 2013. Enhanced SenticNet with Af-
fective Labels for Concept-based Opinion Mining.
IEEE Intelligent Systems, 28(2):31–38.

Rob Procter, Farida Vis, and Alex Voss. 2013. Reading
the Riots on Twitter: Methodological Innovation for
the Analysis of Big Data. International Journal of
Social Research Methodology, 16(3):197–214.

Vahed Qazvinian, Emily Rosengren, Dragomir R
Radev, and Qiaozhu Mei. 2011. Rumor has it: Iden-
tifying Misinformation in Microblogs. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 1589–1599. ACL.

Paul Resnick, Samuel Carton, Souneil Park, Yuncheng
Shen, and Nicole Zeffer. 2014. Rumorlens: A Sys-
tem for Analyzing the Impact of Rumors and Cor-
rections in Social Media. In Proceedings of the
Computational Journalism Conference.

1130

Hassan Saif, Yulan He, Miriam Fernandez, and Harith
Alani. 2016. Contextual Semantics for Sentiment
Analysis of Twitter. Information Processing &
Management, 52(1):5–19.

Mariona Taulé, Maria Antònia Martı́, Francisco
M. Rangel Pardo, Paolo Rosso, Cristina Bosco, and
Viviana Patti. 2017. Overview of the Task on Stance
and Gender Detection in Tweets on Catalan Inde-
pendence. In Proceedings of the 2nd Workshop on
Evaluation of Human Language Technologies for
Iberian Languages (IberEval 2017), volume 1881,
pages 157–177. CEUR-WS.org.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou,
Di Cai, and Arvid Kappas. 2010. Sentiment
Strength Detection in Short Informal Text. Journal
of the American Society for Information Science and
Technology, 61(12):2544–2558.

Helena Webb, Pete Burnap, Rob Procter, Omer Rana,
Bernd Carsten Stahl, et al. 2016. Digital Wildfires:
Propagation, Verification, Regulation, and Respon-
sible Innovation. ACM Transactions on Information
Systems (TOIS), 34(3):15.

Qiao Zhang, Shuiyuan Zhang, Jian Dong, Jinhua
Xiong, and Xueqi Cheng. 2015. Automatic detec-
tion of rumor on social network. In Natural Lan-
guage Processing and Chinese Computing, pages
113–122. Springer.

Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva,
Maria Liakata, and Rob Procter. 2018. Detection
and Resolution of Rumours in Social Media: A Sur-
vey. ACM Computing Surveys (CSUR), 51(2):32.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Kalina
Bontcheva, and Peter Tolmie. 2015. Towards De-
tecting Rumours in Social Media. In AAAI Work-
shop: AI for Cities.

1131

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1132–1137
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

BLCU NLP at SemEval-2019 Task 8: A Contextual Knowledge-enhanced
GPT Model for Fact Checking

Wanying Xie, Mengxi Que, Ruoyao Yang, Chunhua Liu, Dong Yu(�)

Beijing Language and Culture University, Beijing, China
{xiewanying07, quemengxi, yangruoyao97, chunhualiu596}@gmail.com

yudong@blcu.edu.cn

Abstract

Since the resources of Community Question
Answering are abundant and information shar-
ing becomes universal, it will be increasingly
difficult to find factual information for ques-
tioners in massive messages. SemEval 2019
task 8 is focusing on these issues. We par-
ticipate in the task and use Generative Pre-
trained Transformer (OpenAI GPT) as our sys-
tem. Our innovations are data extension, fea-
ture extraction, and input transformation. For
contextual knowledge enhancement, we ex-
tend the training set of subtask A, use several
features to improve the results of our system
and adapt the input formats to be more suitable
for this task. We demonstrate the effectiveness
of our approaches, which achieves 81.95% of
subtask A and 61.08% of subtask B in accu-
racy on the SemEval 2019 task 8.

1 Introduction

With the development of Community Question
Answering (cQA) forums, massive information is
being shared. However, not all information is
factual, which makes finding an appropriate an-
swer to satisfy the information needs of question-
ers more difficult. Previous work which concen-
trated on these problems (Nakov et al., 2017) re-
ranked the questions based on their relevance with
the original question. Šaina et al. (2017) treated
the similarity ranking task as a binary classifica-
tion problem. We study these issues in SemEval-
2019 Task 8 (Mihaylova et al., 2019) by using
the contextual Knowledge-enhanced GPT (Rad-
ford et al., 2018), which use Transformer (Vaswani
et al., 2017) as model architecture. The contextual
knowledge enhancement includes data extension,
feature extraction, and input transformation.

The task includes two subtasks and they are
both three classification problems. In subtask A,
we need to find out whether a question seeks a

factual answer, an opinion or just want to socialize
with others. We classify the answers for questions
that look for factual information in subtask A into
three classes in subtask B: true, false or nonfac-
tual. In this paper, we study both subtasks and use
a similar system to solve them.

Several challenges exist when doing this task.
The size of datasets for both subtasks is small.
The data contains a number of complex long text,
which makes extracting key information more dif-
ficult. The input format of GPT changes with dif-
ferent objectives of tasks, so it requires some mod-
ifications to fit specific tasks.

We apply three points to solve these problems.
We extend the training set of subtask A from
two other datasets: DailyDialog (Li et al., 2017)
and SQuAD2.0 (Rajpurkar et al., 2018). We use
two methods to guarantee the quality of expanded
datasets. Firstly we use the Levenshtein Distance
to screen similar data, and then we use the pre-
diction of the model to further screen the results
of the previous step. Goyal (2017) and Xie
et al. (2017) used various features. Le et al.
(2017) used keywords to solve the previous sim-
ilar problem. We follow their work in feature ex-
traction. Working on subtask A, we also use char-
acteristic words as features to improve the sys-
tem. Input transformation for classification task is
Start+Text+Extract, including randomly ini-
tialized start and end tokens. We concatenate the
text and features token sequences with a delimiter
token.

The remainder of this paper is organized as fol-
lows. Section 2 contains a description of our sys-
tem. The experiments and analysis of the results
are introduced in section 3. We describe the con-
clusions in section 4.

1132

2 System Description

As Figure 1 shows, our system is composed of the
following components: data extension, feature ex-
traction, input transformation, and model.

Figure 1: Flowchart of the system

Since the data provided by the task organizers
are insufficient, our model does not get a high ac-
curacy on such a small amount of data. We ap-
ply the data extension(Section 2.1) to address this
problem. The extended datasets are DailyDialog
and SQuAD2.0. We use two Levenshtein Distance
and model prediction to ensure the expanded data
similar enough to original data.

Since the data is composed of long text with
complex information, it is difficult for our model
to extract key information. We use feature extrac-
tion(Section 2.2) to solve this problem, which is
able to bring high discrimination between data cat-
egories. We add two kinds of features to the input:
original features directly extracted from the train-
ing data and observed features is summarized by
us. After feature extraction, the key information
gets enhanced and our model has easier access to
significant information of data.

Different types of tasks correspond to different
input transformation of GPT. We change the input
transformation(Section 2.3) to fit different tasks.
If a task is about classification, the input format
is supposed to be Start + Text + Extract. We
need to adjust the input of our model to adapt to
the specific task, also need to add features in the
data. We use special character Delim to connect
different features and the main text, then we use
the connected formats as our input.

2.1 Data Extension
This section briefly introduces the datasets of sub-
task A, subtask B, DailyDialog and SQuAD2.0.
Then we introduce data extension from DailyDia-
log and SQuAD2.0. Figure 2 shows the total pro-
cess of extending data for subtask A. We use two
approaches to ensure the data that we expanded
from other datasets similar enough with original
data. The two approaches are Levenshtein Dis-
tance screening and model prediction screening.

Data Overview The datasets we used for sub-
task A and subtask B are provided by the task

Figure 2: Flowchart of data extension. ALD represents
average Levenshtein distance. PL stands for perdicted
label and OL stands for original label. Since Opin-
ion and Socializing are both extended in Daily Dialog,
so we remove duplication in the alternative extended
datasets of Opinion.

organizers. We extend the training set of sub-
task A from two other datasets: DailyDialog and
SQuAD2.0.

• In subtask A, there are 1118 threads in
the original dataset. Each thread con-
sists of RelQBody, RelQSubjcet, RelQCat-
egory, RelQDate, RelQId, RelQUser Id and
RelQUsername. RelQBody is a complete
question description but its text is too long.
RelQSubject is short but lacks feature infor-
mation. RelQCategory is mentioned to show
the question’s category and it is useful in clas-
sifying the questions. Our emphasis is sub-
task A, which is working on deciding the
questions’ classification label Factual, Opin-
ion and Socializing. Specifically, the size of
each class is 311, 563 and 244. The Opinion
class accounts for more than half of the total
data.

• The dataset of Subtask B is similar to sub-
task A. There are 495 answers in the original
dataset. One question corresponds to one or
several answers. The purpose of subtask B

1133

is to divide the answers into three categories:
True, False and Nonfactual.

• DailyDialog is a multi-turn dialog dataset,
which includes questions and answers, and
the data size is 11318. The topic of Daily-
Dialog is about daily life, so we consider that
we expand Opinion and Socializing label data
from it.

• SQuAD2.0 is a reading comprehension
dataset, which intends to answer a question
according to the context. Absolutely, ques-
tions in this dataset all ask for factual infor-
mation since the answers can be found from
the context. We decided to extend the Factual
label data from the questions of this dataset.

Levenshtein Distance Screening Levenshtein
distance is also known as Editing distance, which
refers to the smallest number of editing operations
required to change one string into another. The
editing operation consists of three choices: replac-
ing one character with another, inserting one char-
acter, and deleting one character. When compar-
ing the two sentences, they will be more similar if
the Levenshtein distance is smaller.

Levenshtein distance is used to calculate the
similarity between two sentences. Since the length
of sentences in the dataset is uncertain, the Lev-
enshtein distance is an integer of indeterminate
size. We divide the Levenshtein distance by a
larger length of two sentences. Ultimately, what
we get is not an unlimited integer, but a deci-
mal between 0 and 1. In this paper, it is called
average Levenshtein distance, as shown in Equa-
tion(1), where ALD(s1,s2) represents the average
Levenshtein distance of sentence 1 and sentence 2.

ALD(s1, s2) =
LevenshteinDistance

max(len(s1), len(s2))
(1)

We regard the question data of the
cQA(community QA) forum as the original
data and divide it into three categories according
to the different labels of the questions. When
traversing instance in Opinion and Socializing, the
ALD between the original data and the question of
DailyDialog data is calculated. When traversing
the data of Factual, the ALD between the original
data and the question of SQuAD 2.0 data is
calculated.

We set a threshold of 0.7. At this threshold, we
are able to get more data which is guaranteed to
be sufficiently similar. After calculating the ALD,
if the value is less than the threshold, it means the
two sentences are sufficiently similar. Then we use
this data as alternative extended data. Finally, we
get three alternative extended datasets with their
original label. Since Opinion and Socializing are
both extended from DailyDialog, it will be some
plication in the two extended datasets. The origi-
nal Socializing data is less than Opinion, so we re-
move duplication in the extended datasets of Opin-
ion in order to get roughly the same amount of
data. It means if a data appears in the alternative
extended datasets of Socializing, then remove this
data in the alternative extended datasets of Opin-
ion.

Model Prediction Screening The question
dataset of the cQA forum is used as the training
set to train the GPT model, and the candidate ex-
tended dataset is used as the test set to predict. If
the predicted label is consistent with the original
label of the test set, then this data is considered to
be correct prediction data. As one of the extended
datasets, if the predicted label is inconsistent with
the original label, which means that it is wrong,
it is considered that this data is not helpful to the
model, so we discard this data.

original extended sum
factual 311 434 745
opinion 563 308 871
socializing 244 598 842

Table 1: Class distribution of subtask A

After screening by Levenshtein distance and
model prediction, we finally get 434, 308 and 598
for Factual, Opinion and Socializing to expand.
After expansion, the number of three classified
data is 745, 871 and 842, respectively. Table 1
shows the total data category distribution of the
subtask A.

2.2 Feature Extraction
We introduce two kinds of features and explain
how we apply these features to the GPT model in
detail.

Features Acquisition Subtask A includes two
kinds of features. One we call Original Features
is given directly in the dataset. The other we call
Observed Features is obtained from the data ob-
servation. For subtask B, we just use the features

1134

Figure 3: Input formats of subtasks. The input formats consist of text embedding and position embedding.
Subtasks A and B input to the model separately. In the model, it is a 12-layer decoder-only transformer with
masked self-attention heads. Text prediction and task classification are both the fine-tuning objective of the GPT
model.(Radford et al., 2018)

extracted directly in the dataset. We present two
kinds of features as follows.

Original Features In the dataset of subtask A,
each thread consists of RelQBody, RelQSubjcet,
RelQCategory, RelQDate, RelQId, RelQUser Id
and RelQUsername. The main text is RelQbody,
and we consider other information as features.
Through our screening, it is a suitable method to
regard RelQSubject and RelQCategory as original
features. For extended data, they are no original
features.

For subtask B, we choose RelQbody and RelQ-
Subject as the original features.

Observed Features The second kind of feature
is obtained from data observation in subtask A.
In Factual data, there are a lot of questions about
Visas for couples, working, pets and animals, op-
portunities, etc. In Opinion data, questions that
ask for advice are more common. In Socializing
data, the questions are more colloquial, so it may
include a word like qler. We chose the observed
characteristic words as features. There are several
examples for each class:

• Factual: visit, license, husband, wife, em-
bassy, sponsor

• Opinion: advice, school, suggestion, advise

• Socializing: ql, qler, weekend, love, going, to-
day

2.3 Model

Input Transformation Input sequence contains
three special characters Start, Extract and
Delim, representing the start, end, and delimiter
token respectively. We treat subtask A and B as

question classification tasks. Their input formats
are as follows.

• Subtask A: The most useful information in
the data is the complete problem description
RelQBody. We choose it as the main text
and RelQSubject and RelQCategory as the
original features. We employ the main text
and two original features as the input. The
observed features are also added to the in-
put. The final input representation is Start+
RelQBody + Delim + RelQSubject +
Delim + RelQCategory + Features +
Extract.

• Subtask B: We use RelCText as the main text,
and use RelQBody and RelQSubject as orig-
inal features. These features constitute the
model input. We do not employ observed fea-
tures in subtask B. So the final input format is
Start+RelQBody+Delim+RelCText+
Delim+RelQSubject+ Extract

Model Description GPT is a language model,
pre-trained on BooksCorpus (Zhu et al., 2015).
There are 12-layer Transformer blocks. When op-
timizing, the training loss is the sum of text pre-
diction loss and classification loss. Different tasks
correspond to different input formats when using
the GPT model for fine-tuning. Subtasks A and B
input separately to the model. Figure 3 shows the
input formats in detail.

3 Experiments

We present the experiments we conduct on our
system and make a detailed analysis. We compare
the performance between GPT and other models

1135

in subtask B. Follow Radford et al. (2018), we use
the default model configuration for our model.

3.1 Results

We evaluate the systems on the development set
and use accuracy as the main evaluation crite-
ria. We use the organizer’s score on the prac-
tice leaderboard of CodaLab as the baseline. Ta-
ble 2 shows our performances on subtask A in de-
tail. Original F and Observed F represent original
features and observed features respectively. DE
means Data Extension which we mentioned in sec-
tion 2.1. Our best system achieves 81.59% in the
development set.

Acc F1 AvgRec
GPT 0.7768 0.6392 0.6392
Above+Original F 0.7964 0.6738 0.6721
Above+Observed F 0.7992 0.6795 0.6771
Above+DE 0.8159 0.6959 0.6859

Table 2: Development result of subtask A. Acc means
accuracy. Above means that a new change is added to
the system which mentioned in previous row.

Table 3 shows our performances on subtask B.
F represent features in the original dataset. We get
69.05% in the development set.

Acc F1 AvgRec MAP
GPT 0.6369 0.4207 0.4312 0.7889
GPT+F 0.6905 0.4848 0.4789 0.7500

Table 3: Development result of subtask B. Acc means
accuracy.

Using our best system we evaluate in the test
set. As Table 4 shows, the score of our official sub-
mission is 81.95% in subtask A, which ranks sixth
in all participants. The baseline of the test set is
45.0% in accuracy which lower than all the partic-
ipants’ score. In subtask B, we achieve 61.08% in
the test set, which ranks seventh in all participants.
The baseline of subtask B is 83.0%.

Subtask A Subtask B
Baseline 0.450 0.830
Our System 0.8195 0.6108

Table 4: Official submissions results on the test set for
our system and the organizers’s baselines. The metric
is accuracy.

3.2 Analysis
Subtask A Adding original features proves to be
useful to GPT, which increases by 2% than sin-
gle GPT in accuracy. Observed features are not as
useful as original features are. They only improve
the result slightly. Data extension is also helpful,
which improves the score by 1.67%.

Subtask B Original features are helpful for
GPT and increase accuracy by 5.36%. It is a great
improvement. The possible explanation might be
that original features provide key information to
the classification task in subtask B. However, their
performance on the test set is not satisfactory,
which only achieves 61.08%.

We implement the ESIM model (Chen et al.,
2016) in subtask B, which applies bidirec-
tional Long Short Term Memory (Hochreiter and
Schmidhuber, 1997) and an alignment mecha-
nism, achieving 63.69% in accuracy of the de-
velopment set. Furthermore, we concatenate
glove embeddings with contextual embeddings
produced by ELMo (Peters et al., 2018) as fea-
tures, improving accuracy of the development set
by 2% in subtask B. Both results in subtask B are
less than the best result of GPT, which is 69.05%.
So we use GPT as our official system in subtask
B.

4 Conclusions

We use the GPT model to participate in SemEval
2019 task 8. The goal of this task is question clas-
sification and answer classification. We demon-
strate that large gains on fact checking can be re-
alized by data extension, feature extraction, and
input formats transformation. Our official submis-
sion achieves accuracy 81.95% of subtask A and
61.08% of subtask B, which ranks us 6th and 7th
in the competition. What’s more, features and data
expansion are both helpful to the system.

For future work, we think data extension may be
useful in subtask B since it performs well in sub-
task A. Furthermore, we would like to use external
information in this task.

Acknowledgments

This work is funded by Beijing Advanced In-
novation for Language Resources of BLCU
TYR17001J the Fundamental Research Funds for
the Central Universities in BLCU (No.17PT05)
and the BLCU Academic Talents Support Program
for the Young and Middle-Aged.

1136

References
Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei,

Hui Jiang, and Diana Inkpen. 2016. Enhanced
lstm for natural language inference. arXiv preprint
arXiv:1609.06038.

Naman Goyal. 2017. Learningtoquestion at semeval
2017 task 3: Ranking similar questions by learning
to rank using rich features. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 310–314.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Qi Le, Zhang Yu, and Ting Liu. 2017. Scir-qa at
semeval-2017 task 3: Cnn model based on simi-
lar and dissimilar information between keywords for
question similarity. In International Workshop on
Semantic Evaluation.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. arXiv preprint
arXiv:1710.03957.

Tsvetomila Mihaylova, Georgi Karadzhov, Atanasova
Pepa, Ramy Baly, Mitra Mohtarami, and Preslav
Nakov. 2019. SemEval-2019 task 8: Fact checking
in community question answering forums. In Pro-
ceedings of the International Workshop on Semantic
Evaluation, SemEval ’19, Minneapolis, MN, USA.

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. Semeval-2017
task 3: Community question answering. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 27–48.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Filip Šaina, Toni Kukurin, Lukrecija Puljić, Mladen
Karan, and Jan Šnajder. 2017. Takelab-qa at
semeval-2017 task 3: Classification experiments for
answer retrieval in community qa. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 339–343.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Yufei Xie, Maoquan Wang, Jing Ma, Jian Jiang, and
Zhao Lu. 2017. Eica team at semeval-2017 task
3: Semantic and metadata-based features for com-
munity question answering. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 292–298.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books.

1137

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1138–1143
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

CodeForTheChange at SemEval-2019 Task 8: Skip-Thoughts for Fact
Checking in Community Question Answering

Adithya Avvaru1,3 and Anupam Pandey2,3

1Teradata India Pvt. Ltd, India
2Qubole, India

3 International Institute of Information Technology, Hyderabad, India
{adithya.avvaru,anupam.pandey}@students.iiit.ac.in

Abstract
Community Question Answering (cQA) is one
of the popular Natural Language Processing
(NLP) problems being targeted by researchers
across the globe. Couple of the unanswered
questions in the domain of cQA are ‘can we
label the questions/answers as factual or not?’
and ‘Is the given answer by the user to a par-
ticular factual question is correct and if it is
correct, can we measure the correctness and
factuality of the given answer?’. We have
participated in SemEval-2019 Task 8 which
deals with these questions. In this paper, we
present the features used, approaches followed
for feature engineering, models experimented
with and finally the results. Our primary sub-
mission with accuracy (official metric for Se-
mEval Task 8) of 0.65 in Subtask B (An-
swer Classification) and 0.63 in Subtask A
(Question Classification) stood at 6th and 16th

places respectively.

1 Introduction

Community Question Answering (cQA) forums
such as Quora, StackOverflow, Yahoo! Answers,
Qatar Living etc., now-a-days are fast and effec-
tive means of getting answers for any question.
But the answers may or may not be correct and
factual always. The focus of cQA research, for the
last few couple of years, is revolving around deter-
mining the model which predicts the best answer
for the question, given a question and a number of
answers (might be hundreds or even thousands in
number).

cQA is one of the popular problems being
constantly in focus of SemEval organizers since
2015. The subtasks that were targeted earlier in-
clude (i) classifying the answer to a particular
question as good or potentially good or bad in
20151, (ii) three reranking subtasks i.e., Question-
Comment Similarity, Question-Question Similar-
ity and Question-External Comment Similarity in

1http://alt.qcri.org/semeval2015/task3/

20162 and (iii) Question Similarity (QS) to detect
duplicate questions and Relevance Classification
(RC) in 20173. Contrary to earlier tasks of Se-
mEval focusing mainly on classification and sim-
ilarity of questions and/or answers and/or com-
ments, SemEval-2019 targets the factuality of the
questions (whether the question is factual or not)
and the factuality of the answers (whether the an-
swers provided to the factual questions are factual
or not). The tasks become more challenging as
data have noisy (like !!!), and unstructured (like
Oh..) words.

SemEval-2019 Task 8 features the following
two subtasks:

Subtask A (Question Classification) - determine
whether a question asks for a factual informa-
tion, an opinion/advice or is just socializing.
Example from the “Qatar Living” forum
given in competition page4 for this subtask
is as follows:
Q: I have heard its not possible to extend visit
visa more than 6 months? Can U please an-
swer me.. Thankzzz...
answer 1: Maximum period is 9 Months....
answer 2: 6 months maximum
answer 3: This has been answered in QL so
many times. Please do search for information
regarding this. BTW answer is 6 months.
This subtask aims at building models to de-
tect true factual information in cQA forums.

Subtask B (Answer Classification) - determine
whether an answer to a factual question is
true, false, or does not constitute a proper an-
swer.
This subtask aims at building models that
classify the answers into the following three
categories, given a factual question: a) Fac-

2http://alt.qcri.org/semeval2016/task3/
3http://alt.qcri.org/semeval2017/task3/
4https://competitions.codalab.org/competitions/20022

1138

tual - True b) Factual - False and c) Non-Fac-
tual. The examples for each of them are as
follows:

• Factual - True:
Q: I wanted to know if there were any
specific shots and vaccinations I should
get before coming over [to Doha].
A: Yes there are; though it varies de-
pending on which country you come
from. In the UK; the doctor has a
list of all countries and the vaccinations
needed for each.
• Factual - False:

Q: Can I bring my pitbulls to Qatar?
A: Yes you can bring it but be careful
this kind of dog is very dangerous.
• Non-Factual:

Q: Which is suggested - buy a new car
or an used one?
A: Its better to buy a new one.

We participated in both the subtasks of
SemEval-2019 Task 8. For detailed description of
the task, different approaches used by other partic-
ipants and results obtained by all the participants,
please refer the task description paper (Mihaylova
et al., 2019).

The rest of the paper is organized as follows:
Section 2 describes the related work. Section 3
describes the data used for this SemEval task. Sec-
tions 4 and 5 elucidate the system architecture
(feature extraction and model building) and exper-
imentation details (along with the results) respec-
tively. Section 6 concludes the paper with focus
on future research on this task.

2 Related Work

Some of the earlier works on cQA include the
use of classification models - Support Vector Ma-
chines(SVMs) (Šaina et al., 2017; Nandi et al.,
2017; Xie et al., 2017; Mihaylova et al., 2016;
Wang and Poupart, 2016; Balchev et al., 2016) for
Similarity tasks; Convolutional Neural Networks
(CNNs) for Similarity tasks (Šaina et al., 2017;
Mohtarami et al., 2016) and for answer selection
(Zhang et al., 2017); Long-Short Term Memory
(LSTM) model for answer selection (Zhang et al.,
2017; Feng et al., 2017; Mohtarami et al., 2016);
Random Forests (Wang and Poupart, 2016); LDA
topic language model to match the questions at
both the term level and topic level (Zhang et al.,

2014); translation based retrieval models (Jeon
et al., 2005; Zhou et al., 2011); XgBoost (Feng
et al., 2017) and Feedforward Neural Network
(NN) (Wang and Poupart, 2016).

All of the above related works on cQA used the
features such as Bag of Words (BoW) (Franco-
Salvador et al., 2016), Bag of vectors (BoV) (Mo-
htarami et al., 2016), Lexical features (for ex-
ample, Cosine Similarity, Word Overlap, Noun
Overlap, N-gram Overlap, Longest Common Sub-
string/Subsequence, Keyword and Named Entity
features etc.) (Franco-Salvador et al., 2016; Mo-
htarami et al., 2016; Nandi et al., 2017); Seman-
tic features (for eg, Distributed representations of
text, Knowledge Graphs, Distributed word align-
ments, Word Cluster Similarity, etc.) (Franco-
Salvador et al., 2016); Word Embedding Fea-
tures (like Word2vec5 (Mikolov et al., 2013),
GloVe6(Pennington et al., 2014) etc.) (Wang and
Poupart, 2016; Mohtarami et al., 2016; Nandi
et al., 2017); Metadata-based features (like user
information, answer length, question length, ques-
tion marks in answer, question to comment length
etc.) (Mohtarami et al., 2016; Mihaylova et al.,
2016; Xie et al., 2017).

Another related task to cQA is Fact Checking
in Community Forums (Mihaylova et al., 2018).
This work doesn’t involve classification of ques-
tions/answers based on factuality but it determines
the veracity of the answer given a particular ques-
tion. This work is related to our task in a way that
the data being used in our task is annotated and
released to the research community by Tsvetomila
Mihaylova and her team.

The fact that this research problem is rela-
tively new, the strengths of the scalable gradi-
ent tree boosting algorithm, XGBoost (Chen and
Guestrin, 2016) and distributed sentence encoder,
Skip-Thought vectors (Kiros et al., 2015) are not
explored yet. We tried to apply and combine these
two effective methods for finding factual nature of
the questions and answers.

3 Data Description

The data for both Question Classification - Sub-
task A and Answer Classification - Subtask B, is
organized into train, dev and test sets. The num-
ber of samples in each of these datasets is shown
in the Table 1.

5https://code.google.com/archive/p/word2vec/
6http://nlp.stanford.edu/projects/glove/

1139

Subtask Datasets
Train Dev Test

A 1118 239 935
B 495 112 310

Table 1: Dataset Description

The data, in Question Classification, has both
subject and body for each question. Similarly, for
Answer Classification, the data has question sub-
ject, question body and an answer (as a comment
text). The data of both the subtasks also have other
information related to meta-data like user infor-
mation, date and time of the question and answer
post. The detailed description of data can be seen
in task description paper (Mihaylova et al., 2019).

4 System Description

4.1 Feature Extraction

4.1.1 Data pre-processing

We have applied some basic preprocessing tasks
like removing URLs, converting text to lowercase
along with removing stopwords.

4.1.2 Extract Skip-Thought vectors

We choose Skip-Thought Vectors as word embed-
dings for this task mainly because these are highly
generic sentence representations unlike GloVe or
Word2Vec which averages word embeddings of
each individual word to calculate the word embed-
ding for a complete sentence.

In subtask A, we have retrieved Skip-Thought
vectors for question body and question subject. In
subtask B, we extracted Skip-Thought vectors for
question body, question subject and answer com-
ment. For both the subtasks, we have used the
code7 written by the Skip-Thought vectors’ au-
thors.

4.2 Model Building

Once we have extracted Skip-Thought vectors,
we used these vectors to train different models
- AdaBoost Classifier (only in case of Subtask
B), DecisionTree Classifier, RandomForest Clas-
sifier, ExtraTrees Classifier, XGBoost Classifier
and Multi-layer Neural Network with dropout lay-
ers in between, Adam optimizer and softmax ac-
tivation in the final layer. The hyper-parameters

7https://github.com/ryankiros/Skip-Thoughts

of all the models is determined by applying Grid-
Search with 10-fold cross-validation. The hyper-
parameters are shown in the Table 2.

Classifier Hyper-parameters
Decision Tree min samples split = 2

Random Forest
n estimators = 25
min samples leaf = 1
min samples split = 2

Extra Trees n estimators = 20
max features = 37

XGBoost

learning rate = 0.1
n estimators = 100
max depth = 5
objective = ’multi:softprob’

Adaboost n estimators = 45
learning rate = 1.0

Table 2: Hyper-parameters used for models

5 Evaluation and Results

5.1 Subtask A (Question Classification)

For this subtask, we extract Skip-Thought vectors
as described in section 4.1.2. Once we get these
two vectors, we generated four different combina-
tions of vectors - (i) question body only, (ii) ques-
tion subject only, (iii) concatenation vector of
both question body and question subject and (iv)
average vector of both question body and question
subject. We trained all the models mentioned in
the section 4.2 with each one of these vectors. The
evaluation scores for these models on test data are
shown in the Table 3.

5.2 Subtask B (Answer Classification)

For this subtask, we extract Skip-Thought vectors
as described in section 4.1.2. Once we get these
three vectors, we generated two different combi-
nations of vectors - (i) concatenation vector of
question body, question subject & answer and (ii)
average vector of question body, question subject
& answer. We trained all the models mentioned in
the section 4.2 using each one of these embedding
vectors. The evaluation scores for these models
(except MAP scores) on test data are shown in the
Table 4.

In both the tables 3 and 4, the column Vec-
tor represents Skip-Thought vector combination
type (whether it is body only (in case of Sub-
task A) or subject only (in case of Subtask A) or

1140

Model Vector Accuracy F-score Avgrec

Decision
Tree

Bodies 0.5728 0.3550 0.3893
Subjects 0.5567 0.3308 0.3626
Avg 0.5966 0.3904 0.4277
Concat 0.5691 0.3498 0.3909

Extra
Trees

Bodies 0.5406 0.3015 0.4075
Subjects 0.5329 0.2992 0.4002
Avg 0.5315 0.2902 0.4015
Concat 0.5509 0.3158 0.4180

Random
Forest

Bodies 0.5476 0.3119 0.4161
Subjects 0.5329 0.2971 0.3950
Avg 0.5567 0.3275 0.4236
Concat 0.5446 0.3153 0.4139

Neural
Network

Bodies 0.6849 0.5118 0.5426
Subjects 0.6338 0.4404 0.4677
Avg 0.6884 0.5228 0.5561
Concat 0.6740 0.5007 0.5405

XGBoost

Bodies 0.6268 0.4382 0.5194
Subjects 0.5959 0.4032 0.4646
Avg** 0.6366 0.4474 0.5195
Concat* 0.6299 0.4416 0.5130

Table 3: Evaluation scores for Subtask A
∗ - marks the scores of our primary submission
∗∗ - marks the scores of our contrastive submission
Row in bold - post evaluation accuracy score (improved
over actual submission)

concatenation of vectors of body, subject and an-
swer/comment or average of vectors of body, sub-
ject and answer/comment). On dev data set, XG-
Boost Classifier with concatenated Skip-Thought
vectors generated best scores for both subtasks.
Hence, these are part of final submissions.

However, the rows which are marked in bold (in
both subtasks) produced best accuracy score with
Multi-layer Neural Network Classifier beating the
best score of our CodaLab final submission. The
Multi-layer Neural Network is designed to have
an input layer, 2 hidden layers and an output layer
with “relu” activations at input and hidden layers
and “sigmoid” activation at output layer. All the
layers are trained with 50 neurons except the out-
put layer which has one neural node. This model
counters overfitting problem by introduction of in-
termittent Dropout layers.

Another interesting observation that we found
is the models, surprisingly, performed better when
URLs are kept in the text compared to when URLs
were removed.

Model Vector Accuracy F-score Avgrec
Decision
Tree

Avg 0.5354 0.2755 0.3791
Concat 0.5438 0.2843 0.3284

Extra
Trees

Avg 0.5763 0.2845 0.3229
Concat 0.6021 0.3150 0.3558

Random
Forest

Avg 0.6215 0.3068 0.3285
Concat 0.6172 0.2890 0.2943

Adaboost Avg 0.5570 0.2607 0.2813
Concat 0.5743 0.2612 0.2564

Neural
Network

Avg 0.6129 0.3434 0.4036
Concat 0.6752 0.3420 0.3559

XGBoost Avg** 0.6150 0.3225 0.3529
Concat* 0.6537 0.3252 0.1555

Table 4: Evaluation scores for Subtask B
∗ - marks the scores of our primary submission
∗∗ - marks the scores of our contrastive submission
Row in bold - post evaluation accuracy score (improved
over actual submission)

6 Conclusion

The earlier works on cQA didn’t use Skip-
Thought vectors, to the best of our knowledge.
Hence, we used these vectors for both subtasks.
We also have tried unique combinations of Skip-
Thought vectors of question body, question sub-
ject and comments/answers (only in case of Sub-
task B) - either concatenation or average of vec-
tors with different models. Out of all the mod-
els, concatenated Skip-Thought vectors with XG-
Boost Classifier generated best result out of all
the combinations; as a result of which we stood
6th in Subtask B and 16th in Subtask A. How-
ever, post-evaluation submission which used con-
catenated Skip-Thought vectors with Neural Net-
work classifier produced better accuracy score of
0.6752 compared to 0.6537 (which is official best
result for Task B) and 0.6884 compared to 0.6299
(which is official best result for Task A). However,
in future we would like to extend our work with
other word embeddings like Word2vec, GloVe and
BERT (Devlin et al., 2018) features and compare
the results with current work using Skip-Thought
vectors.

Acknowledgments

This research is supported by Teradata, India
and Qubole, India in collaboration with Language
Technologies Research Centre (LTRC) of Interna-
tional Institute of Information Technology, Hyder-
abad, India.

1141

References
Daniel Balchev, Yasen Kiprov, Ivan Koychev, and

Preslav Nakov. 2016. PMI-cool at SemEval-2016
Task 3: Experiments with PMI and Goodness Po-
larity Lexicons for Community Question Answer-
ing. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 844–850, San Diego, California. Association
for Computational Linguistics.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A
Scalable Tree Boosting System. In Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data mining, pages
785–794. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv preprint arXiv:1810.04805.

Wenzheng Feng, Yu Wu, Wei Wu, Zhoujun Li, and
Ming Zhou. 2017. Beihang-MSRA at SemEval-
2017 Task 3: A Ranking System with Neural
Matching Features for Community Question An-
swering. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 280–286, Vancouver, Canada. Association for
Computational Linguistics.

Marc Franco-Salvador, Sudipta Kar, Thamar Solorio,
and Paolo Rosso. 2016. UH-PRHLT at SemEval-
2016 Task 3: Combining Lexical and Semantic-
based Features for Community Question Answer-
ing. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 814–821, San Diego, California. Association
for Computational Linguistics.

Jiwoon Jeon, W Bruce Croft, and Joon Ho Lee. 2005.
Finding Similar Questions in Large Question and
Answer Archives. In Proceedings of the 14th ACM
international conference on Information and knowl-
edge management, pages 84–90. ACM.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-Thought Vectors.
arXiv preprint arXiv:1506.06726.

Tsvetomila Mihaylova, Pepa Gencheva, Martin Boy-
anov, Ivana Yovcheva, Todor Mihaylov, Momchil
Hardalov, Yasen Kiprov, Daniel Balchev, Ivan Koy-
chev, Preslav Nakov, Ivelina Nikolova, and Galia
Angelova. 2016. SUper Team at SemEval-2016
Task 3: Building a Feature-Rich System for Com-
munity Question Answering. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 836–843, San Diego,
California. Association for Computational Linguis-
tics.

Tsvetomila Mihaylova, Georgi Karadzhov, Atanasova
Pepa, Ramy Baly, Mitra Mohtarami, and Preslav

Nakov. 2019. SemEval-2019 task 8: Fact Check-
ing in Community Question Answering Forums. In
Proceedings of the International Workshop on Se-
mantic Evaluation, SemEval ’19, Minneapolis, MN,
USA.

Tsvetomila Mihaylova, Preslav Nakov, Lluis Marquez,
Alberto Barron-Cedeno, Mitra Mohtarami, Georgi
Karadzhov, and James Glass. 2018. Fact Check-
ing in Community Forums. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In Advances in neural information processing
systems, pages 3111–3119.

Mitra Mohtarami, Yonatan Belinkov, Wei-Ning Hsu,
Yu Zhang, Tao Lei, Kfir Bar, Scott Cyphers, and Jim
Glass. 2016. SLS at SemEval-2016 Task 3: Neural-
based Approaches for Ranking in Community Ques-
tion Answering. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 828–835, San Diego, California. Asso-
ciation for Computational Linguistics.

Titas Nandi, Chris Biemann, Seid Muhie Yimam,
Deepak Gupta, Sarah Kohail, Asif Ekbal, and Push-
pak Bhattacharyya. 2017. IIT-UHH at SemEval-
2017 Task 3: Exploring Multiple Features for Com-
munity Question Answering and Implicit Dialogue
Identification. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 90–97, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Filip Šaina, Toni Kukurin, Lukrecija Puljić, Mladen
Karan, and Jan Šnajder. 2017. TakeLab-QA at
SemEval-2017 Task 3: Classification Experiments
for Answer Retrieval in Community QA. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 339–343,
Vancouver, Canada. Association for Computational
Linguistics.

Hujie Wang and Pascal Poupart. 2016. Overfitting at
SemEval-2016 Task 3: Detecting Semantically Sim-
ilar Questions in Community Question Answering
Forums with Word Embeddings. In Proceedings of
the 10th International Workshop on Semantic Eval-
uation (SemEval-2016), pages 861–865, San Diego,
California. Association for Computational Linguis-
tics.

Yufei Xie, Maoquan Wang, Jing Ma, Jian Jiang, and
Zhao Lu. 2017. EICA Team at SemEval-2017 Task
3: Semantic and Metadata-based Features for Com-
munity Question Answering. In Proceedings of the

1142

11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 292–298, Vancouver,
Canada. Association for Computational Linguistics.

Kai Zhang, Wei Wu, Haocheng Wu, Zhoujun Li,
and Ming Zhou. 2014. Question Retrieval with
High Quality Answers in Community Question An-
swering. In Proceedings of the 23rd ACM In-
ternational Conference on Conference on Informa-
tion and Knowledge Management, pages 371–380.
ACM.

Sheng Zhang, Jiajun Cheng, Hui Wang, Xin Zhang,
Pei Li, and Zhaoyun Ding. 2017. FuRongWang at
SemEval-2017 Task 3: Deep Neural Networks for
Selecting Relevant Answers in Community Ques-
tion Answering. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 320–325, Vancouver, Canada. Associ-
ation for Computational Linguistics.

Guangyou Zhou, Li Cai, Jun Zhao, and Kang Liu.
2011. Phrase-Based Translation Model for Question
Retrieval in Community Question Answer Archives.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 653–662.
Association for Computational Linguistics.

1143

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1144–1148
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ColumbiaNLP at SemEval-2019 Task 8: The Answer is Language Model
Fine-tuning

Tuhin Chakrabarty
Columbia University

Department Of Computer Science
tc2896@columbia.edu

Smaranda Muresan
Columbia University
Data Science Institute

smara@columbia.edu

Abstract
Community Question Answering forums are
very popular nowadays, as they represent ef-
fective means for communities to share infor-
mation around particular topics. But the in-
formation shared on these forums is often not
correct or misleading. This paper presents the
ColumbiaNLP submission for the SemEval-
2019 Task 8: Fact-Checking in Community
Question Answering Forums. We show how
fine-tuning a language model on a large unan-
notated corpus of old threads from Qatar Liv-
ing forum helps us to classify question types
(factual, opinion, socializing) and to judge the
factuality of answers on the shared task labeled
data from the same forum. Our system fin-
ished 4th and 2nd on Subtask A (question type
classification) and B (answer factuality predic-
tion), respectively, based on the official metric
of accuracy.

1 Introduction

Community Question Answering (cQA) forums
such as StackOverflow, Yahoo! Answers, and
Quora are very popular nowadays, as they repre-
sent effective means for communities to share in-
formation and to collectively satisfy their informa-
tion needs. Questions asked on these sites can be
of different types, and the answers can often be
false, misleading or irrelevant.

SemEval-2019 Task 8 is structured around two
subtasks. Subtask A is a question classification
task, where the questions types are:

• Factual: The question is asking for fac-
tual information, which can be answered by
checking various information sources, and it
is not ambiguous (e.g., “What is Ooredoo
customer service number?”).

• Opinion: The question asks for an opinion or
an advice, not for a fact. (e.g., “Can anyone
recommend a good Vet in Doha?””)

• Socializing: Not a real question, but intended
for socializing or for chatting. This can also
mean expressing an opinion or sharing some
information, without really asking anything
of general interest (e.g., “What was your first
car?”)

Subtask B is an answer classification task: are
the answers to factual questions factual or not, and
if they are factual are they true or false:

• Factual - TRUE: The answer is True and can
be proven with an external resource. (Q: “I
wanted to know if there were any specific
shots and vaccinations I should get before
coming over [to Doha].”; A: “Yes there are;
though it varies depending on which coun-
try you come from. In the UK; the doctor
has a list of all countries and the vaccinations
needed for each.”).

• Factual - FALSE: The answer gives a factual
response, but it is False, it is partially false
or the responder is unsure about (Q:“Can I
bring my pitbulls to Qatar?”; A: “Yes you can
bring it but be careful this kind of dog is very
dangerous.”).

• Non-Factual: When the answer does not
provide factual information to the question; it
can be an opinion or an advice that cannot be
verified (e.g., “It’s better to buy a new one.”).

2 Related Work

Yu and Hatzivassiloglou (2003) separated opin-
ions from fact, at both the document and sentence
level.

(Mihaylova et al., 2018) were the first to pro-
pose a novel multi-faceted model for fact checking
of answers on community question answering fo-
rums. Their proposed model captures information

1144

OPINION FACTUAL SOCIALIZING
586 311 254

Table 1: Size of Subtask A dataset (question types).

from the answer content (what is said and how),
from the author profile (who says it), from the rest
of the community forum (where it is said), and
from external authoritative sources of information
(external support). (Nakov et al., 2017) proposed
models for credibility assessment in community
question answering forums. However, credibil-
ity is different from veracity as it is a subjective
perception about whether a statement is credible,
rather than verifying whether it is true/false as a
matter of fact.

Recently there has been a lot of attention
on building models for fact checking. (Thorne
et al., 2018) introduce a new publicly avail-
able dataset for fact extraction and verification
(FEVER Shared Task). The dataset consists of
185,445 claims generated by altering sentences
extracted from Wikipedia, and the task is to
classify claims as SUPPORTED, REFUTED or
NOTENOUGHINFO. However, the verification
of the claims is limited to a particular database
(namely Wikipedia) unlike Subtask B. Also, the
claims are inherently less noisy as compared to an-
swers in Community Question Answering forums.

Pre-trained language models have been recently
used to achieve state-of-the-art results on a wide
range of NLP tasks (e.g., sequence labeling and
sentence classification). Some of the recent works
that have employed pre-trained language models
include (Howard and Ruder, 2018), (Peters et al.,
2018), (Yang et al., 2018), and (Radford et al.,
2018). In this paper, we show the effectiveness of
the Universal Language Model Fine-tunig (ULM-
FiT) method (Howard and Ruder, 2018) for both
question classification and answer fact checking.

3 Data

One of key challenges for both Subtask A and B is
the limited amount of annotated data. This poses a
challenge to apply state-of-the-art neural discrim-
ination models without using additional data.

3.1 Labeled Data

Subtask A has a total of 1,118 questions divided
into three types. Table 1 show the class distribu-
tion. Subtask B has a total of 495 answers divided

TRUE FALSE NON-FACTUAL
166 135 194

Table 2: Size of Subtask B dataset (answer types).

QUESTIONS ANSWERS
189,941 1,894,456

Table 3: External unannoted questions and answers.

into three types. Table 2 shows the class distribu-
tion.

3.2 Unlabeled Data

The task allows the use of external unnannoted
data of 189,941 threads from Qatar Living Forum.
Each of these threads have questions and answers
just as our training data but without any labels.
These threads may contain enough information to
estimate the factuality of the answers in Subtask B
as well as linguistic patterns in the questions asked
for Subtask A. We refer to the resulting collection
of comments as the QL dataset.

4 Model and Analysis

As the QL data is from the same distribution as
our shared task data (Quatar Living), we need a
method of incorporating this dataset into our mod-
els for both subtasks. We use a language model
fine-tuning approach, which requires only unla-
beled data similar to the task of interest.

The Universal Language Model Fine-Tuning
method (ULMFiT) (Howard and Ruder, 2018)
consists of the following stages: a) General-
domain LM pre-training b) Task-specific LM fine-
tuning and c) Task-specific classifier fine-tuning.
In stage (a), the language model is trained on
Wikitext-103 (Merity et al., 2017) consisting of
28,595 pre-processed Wikipedia articles and 103
million words capturing general properties of lan-
guage. Stage (b) fine-tunes the LM on task-
specific data, as no matter how diverse the general-
domain data used for pre-training is, the data of
the target task will likely come from a different
distribution. In stage (c), a classifier is trained on
the target task, fine-tuning the pre-trained LM but
with an additional layer for class prediction. The
models use a stacked Long Short Term Memory
(LSTM) network to represent each sentence. For
stages (a) and (b), the output of the LSTM is used
to make a prediction of the next token and the pa-
rameters from stage (a) are used to initialize stage

1145

Figure 1: Schematic of ULMFiT showing the three stages. The dashed arrows indicate that the parameters from
the previous step were used to initialize the next step.

Task Specific
LM Fine-Tuning

QL LM
Fine-Tuning

65 81

Table 4: Accuracy on the test splits while doing cross
validation on training data for Subtask A

(b). For stage (c), the model is initialized with the
same LSTM but with a new classifier layer given
the output of the LSTM.

This process is illustrated in Figure 1. We refer
the reader to Howard and Ruder (2018) for further
details. In our work, we maintain stages (a) and
(c) but modify stage (b) so that we fine-tune the
language model on the unlabelled data rather than
the task-specific data. The goal of ULMFiT is to
allow training on small datasets of only a few hun-
dred examples, but our experiments will show that
fine-tuning the language model on the QL data im-
proves over only task-specific LM fine-tuning.

4.1 Subtask A
For Subtask A we fine-tune a language model on
the 189,941 questions from the QL dataset. Our
initial experiments show that fine-tuning the LM
on the QL dataset give large performance gains
over fine-tuning on task specific data as demon-
strated in Table 4.

Lets take the following question:

Ramadan Working Hours? For compa-
nies who are operating 5 days a week;
what are your timings? Ours is 8:00am
to 3:00pm.?

This is a Factual question, but the task-specific
LM fine-tuning labels it as Socializing, while fine-

tuning on QL data allows the model to correctly
classify it as Factual. To understand why this
happens, we delve deeper into the unlabeled data
set where we find multiple similar questions based
on TF-IDF similarity, demonstrating that the LM
Fine-Tuning on QL data learns representations of
questions based on discriminatory phrases.

• Ramadan Working Hours? Eid holidays an-
nounced

• Ramadan Working Hours? good morning;
Did anybody knows what is the right time
timing or working hours during Ramadan?
Thanks and advance.

• Ramadan Working Hours? Ministry of Civil
Service Affairs and Housing has issued a cir-
cular in this regard defining the restricted
working hours. Can somebody help me to
find the English translation of that. Thank
you

• help pls! can somebody tell me the Ramadan
Working Hours? of ministry of Foreign Af-
fairs???

On the official test data, the ULMFiT approach
where the target task classifier is fine-tuned on the
LM fine-tuned on questions from QL data gives
us an accuracy of 83 placing us 4th on the leader-
board.

4.2 Subtask B
For Subtask B we followed a similar approach of
LM fine-tuning. We obtained representations of
answers by fine-tuning a LM on 1,894,456 an-
swers from the QL dataset. Next, we obtained

1146

ANSWER AVG COSINE
SIMILARITY

Medical Check is for everyone mate 0.81
The test is done for everyone; but is restricted to the above categories u mentioned. 0.44
Regardless what your job is...everybody gets tested for hepatitis B/C cheers Never say never 0.76
As I told u hepatitis B/C are checked for everyone applying for residence permit.If the result
is positive u go back where u came from. And I know all of the above because my husband
is a consultant pathologist. cheers

0.72

Table 5: Average Cosine Similarity scores of contextual representations of each answer to every
other answer in the thread

representations by fine-tuning a LM on 1,894,456
question-answer pairs, in order to capture whether
an answer is actually suited for the question asked
or something irrelevant. An answer which is rele-
vant to the question asked can then be easily dis-
cerned from an irrelevant one by a discriminative
classifier.

Our model did not take into account external ev-
idence from search engines as done by (Mihaylova
et al., 2018), so we had to rely on intra-forum
evidence for factuality features. Our hypothesis
is that for factual questions, the answers which
are factually true are similar to each other, while
answers which are false or irrelevant are differ-
ent from other answers. We incorporated this be-
haviour in our model: for every answer we com-
puted the cosine similarity between the contex-
tual representation of the answer obtained from
last layer of the LSTM used to train the language
model for answers. For each answer, we averaged
the cosine similarity between that answer and the
other answers in the same thread.

For example, take the question:

Hi all; are hepatitis B and C checked
for in the medical test for non-medical
professionals? Basically;I have been
getting conflicting information on this.
Some say that Hep B and C are tested
for everyone applying for residence per-
mit. Others say that only medical pro-
fessionals; primary school teachers and
food handlers are tested for Hep B and
C. Please discuss!

From Table 5 we see that the answer with
the lowest cosine similarity (0.44) is the answer
which is factually false, compared to the other an-
swers which are factually true and have a higher
cosine similarity.

We use these answer representations, question-
answer pair representations and the average cosine
similarity as features to train an XGB classifier to

FEATURES ACCUARCY
LM on answers 61
LM on Q-A pairs 64
LM on answers and Q-A pairs 72
LM on answers and Q-A pairs
+ Avg Cosine Similarity 79

Table 6: Ablation scores for Subtask B on the final test
set for Task 8.

obtain our final results. For threads with only 1
answer we took the cosine similarity as 0.5.

Table 6 shows us the ablation scores for each
approach. The best accuracy obtained is a combi-
nation of all the approaches together. We obtain an
accuracy of 79 placing us 2nd on the leaderboard.
The absence of true labels for both the dev and the
test set prevents us from conducting an error anal-
ysis.

5 Implementation

The language model is fine tuned for 15 epochs as
done in the ULMFIT original paper for both Sub-
tasks. For classifier fine-tuning we use the same
hyper-parameters as (Howard and Ruder, 2018)
except the learning rate which is set to .0001 . We
train our classifier for 5 epochs on both sub-tasks.
Each model was run 10 times to account for vari-
ance and the results reported for both the tasks are
the average of 10 runs. We did not use any spe-
cial pre-processing technique and use the same ap-
proach as done in the ULMFIT paper, i.e clean up
extra spaces, tab characters, new line characters
and other characters and replace them with stan-
dard ones. We also use Spacy library to tokenize
the data. The implementation can be found here 1

6 Conclusion

We show that fine-tuning a language model on
a large unsupervised corpus from the same com-
munity forum helps us achieve better accuracy
for question classification. Most community

1https://github.com/fastai/fastai/blob/master/courses/dl2/imdb.ipynb

1147

question-answering forums have such unlabeled
data, which can be used in the absence of large
labeled training data .

For answer classification we show how we can
leverage information from previously answered
questions on the thread through language model
fine tuning. Our experiments also show that mod-
eling an answer individually is not the best idea
for fact-verification and results are improved when
considering the context of the question.

Determining factuality of answers definitely re-
quires modeling world knowledge or external evi-
dence. The questions asked are often very noisy
and require reformulation. As a future step we
would want to incorporate external evidence from
the internet in the factual answer classification
problem.

References

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Long Pa-
pers), pages 328–339.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. In proceedings of the inter-
national conference on learning representations.

Tsvetomila Mihaylova, Preslav Nakov, Llu’is Mar-
quez, Alberto Barron-Cede’no, Mitra Mohtarami,
Georgi Karadzhov, and James Glass. 2018. Fact
checking in community forums. In Association for
the Advancement of Artificial Intelligence.

Preslav Nakov, Tsvetomila Mihaylova, Llu’is Mar-
quez, Y Shiroya, and I Koychev. 2017. Do not trust
the trolls: Predicting credibility in community ques-
tion answering forums. In Proceedings of the Inter-
national Conference on Recent Advances in Natural
Language Processing, pages 551–560.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of NAACL-HLT 2018.,
pages 809–819.

Zhilin Yang, Jake Zhao, Bhuwan Dhingra, Kaim-
ing He, William W. Cohen, Ruslan Salakhutdi-
nov, and Yann LeCun. 2018. Glomo: Unsupervis-
edly learned relational graphs as transferable. In
arXiv:1806.05662.

Hong Yu and Vasileios Hatzivassiloglou. 2003. To-
wards answering opinion questions: Separating facts
from opinions and identifying the polarity of opin-
ion sentences. In Proceedings of the 2003 Con-
ference on Empirical Methods in Natural Language
Processing.

1148

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1149–1154
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

DOMLIN at SemEval-2019 Task 8: Automated Fact Checking exploiting
Ratings in Community Question Answering Forums

Dominik Stammbach
DFKI, Saarbrücken, Germany
dominik.stammbach@dfki.de

Stalin Varanasi
DFKI, Saarbrücken, Germany

stalin.varanasi@dfki.de

Günter Neumann
DFKI, Saarbrücken, Germany

neumann@dfki.de

Abstract

In the following, we describe our system de-
veloped for the Semeval2019 Task 8. We fine-
tuned a BERT checkpoint on the qatar living
forum dump and used this checkpoint to train
a number of models. Our hand-in for subtask
A consists of a fine-tuned classifier from this
BERT checkpoint. For subtask B, we first have
a classifier deciding whether a comment is fac-
tual or non-factual. If it is factual, we retrieve
intra-forum evidence and using this evidence,
have a classifier deciding the comment’s ve-
racity. We trained this classifier on ratings
which we crawled from qatarliving.com.

1 Introduction

This paper contains our system description for the
SemEval2019 task 8 about Fact Checking in Com-
munity Forums. The task 8 is divided into two
subtasks: In subtask A, the goal is to determine
whether a question asks for a factual answer, an
opinion or is just posed to socialize. In subtask
B, if we have a question asking for a factual an-
swer, we classify the answers to such a question
into three categories, namely the answer is either
true, false or non-factual, i.e. it does not answer
the question in a factual way.

For subtask A, we trained a BERT classifier on
the training set and optimized hyper-parameters
on the development set. For subtask B, we de-
cided to tackle the challenge with two binary clas-
sifiers: Firstly, we decide whether a comment is
factual or not. If our classifier decides that a com-
ment is factual, we retrieve intra-forum evidence
to determine the comment’s veracity using a tex-
tual entailment approach. Given the small training
set for subtask B, we decided to leverage openly
available information on qatarliving.com to cre-
ate a medium-sized training set. We found that
comments on qatarliving.com are sometimes as-

sociated with ratings1 (ranging from 1 to 5) and
discovered that high ratings often correspond to
replies answering the question in a true way. If
a comment has recieved a low rating, we inferred
that the comment was most likely not helpful to
answer the question and therefore we decided to
treat it as a false reply.

2 Related Work

Automated Fact Checking is recently mostly per-
ceived as a number of tasks which can be pipelined
together. In the FEVER shared task, most par-
ticipating systems would first find evidence and
then train textual entailment models (Thorne et al.,
2018). Related work for Fact Checking in com-
munity forums considers a multi-faceted approach
incorporating firstly what is said, how it is said and
by whom and secondly external evidence from ei-
ther the web or from the forum itself (Mihaylova
et al., 2018). An SVM is trained on top of these
features to decide the veracity of a comment.

In our system, we took a similar approach by
first retrieving possible evidence, secondly filter-
ing such evidence (through another classifier) and
eventually train a system which decides the verac-
ity of a comment based on whether the comment
is entailed by the found evidence or not.

3 System Description

Recent progress in natural language understand-
ing shows that pre-training transformer decoders
on language modelling tasks leads to remarkable
transferable knowledge which boosts performance
on a wide range of NLP tasks (Radford et al.,
2018). The most recent development then is the

1We learnt after the deadline of the shared
task that these ratings were automatically gener-
ated: https://www.qatarliving.com/forum/technology-
internet/posts/searching-information-qatar-living-has-just-
grown-faster

1149

Deep Bidirectional Transformers (BERT) which
is jointly pre-trained on a masked language mod-
elling task (therefore bidirectional) and on a next-
sentence prediction task pushing already impres-
sive results even further (Devlin et al., 2018). All
our classifiers in our hand-in are fine-tuned BERT
models.

3.1 Domain Adaptation

We firstly fine-tuned a BERT checkpoint (pre-
trained on uncased English data only) on the unan-
notated dataset from Qatar Living with 189,941
questions and 1,894,456 comments (Nakov et al.,
2016). Fine-tuning a BERT checkpoint on a new
domain consists of further training it jointly on
the masked language modelling task and the next-
sentence prediction task. For this dataset, it is not
always trivial to decide what a sentence is and we
use whole comments later on anyways, so we re-
placed the next-sentence prediction task by a next-
comment prediction task, that is our model has to
guess whether two comments are appearing con-
secutively in a thread or not.

Given the peculiarities of the BERT tokenizer,
we cleaned the dataset through the following
steps:

• we lowercased all characters

• we replaced a character which appears more
than three times consecutively to only appear
three times (”!!!!!!!!!” then becomes ”!!!”)

• we removed user specific quotes

• we removed comments containing a
type/token ratio2of less than 0.15 (because
we noticed that they are mostly spam)

• we replaced urls with a special token ”url”,
phone numbers with a special token ”tel” and
email addresses with a special token ”email”

In Table 1, we show the masked language mod-
elling accuracy (MLM) and next-comment pre-
diction accuracy (NC) for the uncleaned and the
cleaned version, both fine-tuned for 100k steps.
We also show results for training a task-specific
model for subtask A (accuracy on the develop-
ment set) with the stand-alone BERT model, a
fine-tuned model on the raw data and a fine-tuned
model on the cleaned data.

2https://en.wikipedia.org/wiki/Lexical density

System MLM NC task A
not fine-tuned - - 0.80
fine-tuned raw data 0.68 1 0.79
fine-tuned cleaned data 0.57 0.89 0.84

Table 1: Effect of cleaning the dataset

We capped characters to only appear maximum
three times consecutively. If they appear more of-
ten, they would form a subword anyways and we
think it is too easy for the model to guess such sub-
words in longer sequences (consider the sequence
”!!!!<MASKED>!!!!!”). Users in the forum can
add specific quotes which are appended to their
posts, e.g. one user chose the ending life’s too
short so make the most of it; you only live but
once... which appears 3865 times in the data. We
refer to this as ”user specific quotes” and removed
them as we believe the model would overfit on
such quotes during fine-tuning and would not learn
useful knowledge about the domain while doing
so. Lastly, we believe that there is not much value
to be gained in learning urls, phone numbers and
emails, and they often get splitted into a long se-
ries of subword units (the vocabulary is managed
through byte-pair encoding). We think, these rea-
sons combined make the model learn such patterns
very well (resulting in a higher accuracy for the
BERT tasks for the model trained on the raw data),
but it does not gain much transferable knowledge
by doing so, resulting in a lower accuracy for sub-
task A.

3.2 Subtask A

For subtask A, we trained a task-specific BERT
classifier from the fine-tuned BERT checkpoint
explained above. Fine-tuning such a classifier con-
sists of learning embeddings for a special classifi-
cation token, let the model compute self-attention
over its 12 layers and finally gather the hidden rep-
resentation of the classification token (the first to-
ken in the sequence usually). This hidden repre-
sentation is fed into one hidden layer and lastly
one classification layer. The input to the model
is the concatenation of the question’s subject and
its body and we regularize the model by applying
a dropout of 0.1 on the classification layer. We
grid-searched over the proposed hyper-parameter
range in the BERT paper (that is initial learning
rate, batch-size and number of fine-tuning epochs)
(Devlin et al., 2018).

1150

In Table 2, we report the accuracy on the de-
velopment set for a number of experiments with
different features. RelQBody (the opening post by
the thread creator) is the question’s body, RelQ-
Subject the question’s subject (the title of a thread)
and RelQ Category its category (the name of the
sub-board it has been posted in). We concatenated
the different features with whitespaces in between.

Feature acc
RelQBody 0.82
RelQSubject + RelQBody 0.84
RelQ Category + RelQSubject + RelQBody 0.83

Table 2: Accuracy for different features for subtask A

Using only the question’s body results in
slightly worse results than the concatenated sub-
ject and body. We also tried to add the category,
that is the name of the sub-forum a question has
be posted in. The rationale here is that one sub-
board on qatarliving is called ”Socialising” and we
thought it might give the model a cue that ques-
tions there are more prone to be of the class social-
izing. However, we get slightly worse results by
including it. Our final hand-in eventually consists
of an ensemble of 5 models (the voting strategy is
majority voting) which are trained on the concate-
nation of the subject and the body of a question.

Our system ranked fifth with an accuracy of
82% on the test set.

3.3 Subtask B: Overview
As we described earlier, we decided to tackle sub-
task B as a series of different tasks and for each,
we trained different models:

1. decide whether a comment is factual or non-
factual

2. retrieve related threads (based on the question
of a thread)

3. filter for relevant comments in related threads

4. train a textual entailment3 system, that is
whether the evidence entails a claim or not

For the first step, we have fine-tuned a BERT
checkpoint on the SQuAD question answering
corpus (Rajpurkar et al., 2016). If a comment con-
tains the answer to a question, we consider it as
factual and have to check its veracity in a further
step. If the answer to a question can not be found
in the comment, we label it as non-factual. If the

3https://en.wikipedia.org/wiki/Textual entailment

answer can be found in a comment, i.e. we have a
factual comment, we continue with steps 2-4.

For the second step, we search for intra-forum
evidence in the qatar living forum dump (Nakov
et al., 2016). We concatenate the subject and body
of each thread. We lowercase all the tokens, re-
move all characters except the letters a-z and use
the snowball stemmer (Porter, 2001) for stemming
the tokens. Afterwards, we search for the most
similar threads using TF-IDF4 and keep the five
most similar threads.

We also manually evaluated whether gigablast5

and the duckduckgo API6 would yield useful evi-
dence, but after having checked 15 sampled ques-
tions from the development set manually, we de-
cided to not pursue this any further. First of all,
if we just use the question’s subject concatenated
with its body as the query for the search engine, it
would not be precise and most such queries would
not return relevant web pages. One has to sum-
marize this large text of the question automati-
cally into a query suitable for a web search en-
gine. We manually created search-engine search-
able queries for the 15 sampled questions and
found that only two of such queries returned rel-
evant results. This may be because there is less in-
formation available on the internet for queries re-
garding living in Qatar except for the forum qatar-
living.com itself. Hence, we decided to let go of
the idea of using publicly available web search
engines with automatically summarized questions
for this task.

For the third step, we trained a BERT model
on the concatenation of the SemEval2016 task 3
subtask A and subtask C data to filter the intra-
forum evidence. The input to the model is the
original question (the one we want to fact-check
comments for) and the found replies in the most
similar threads. The output is whether a comment
answers that question in a relevant way (yes or no).
For the test set for task B, we found 642 comments
via the TF-IDF search engine and after filtering the
comments, we are left with 162 comments as evi-
dence (24% of these 642 comments).

For the fourth and last step, we also used a
BERT model. This model should predict the ve-
racity of a comment given the retrieved evidence
in step two and three. However, given the small

4https://radimrehurek.com/gensim/
5https://www.gigablast.com/
6https://duckduckgo.com/api

1151

size of the training set for subtask B (135 false and
166 true comments), we did not manage to find
a suitable hyper-parameter configuration which
would yield a model with decent performance on
the development set.

3.4 Subtask B: Textual Entailment Model

While looking at the forum online, we noticed that
some comments in the forum are associated with
ratings (Figure 1). Such ratings can range from
1 to 5 and we found that comments with a rating
of 5 tend to answer questions in a true way and
comments with a rating of 2 or 3 tend to have not
been that helpful (we did not find any comments
with a rating of 1).

Hence, we have crawled the threads from the
forum dump (Nakov et al., 2016) online so that we
get the corresponding ratings. We found that the
url of a thread is a combination of the sub-forum
a thread has been posted in and its subject (with
whitespaces replaced with a ”+” and some stop-
words removed) and reverse engineered the name
of the urls. We ignored the threads for which we
couldn’t find the corresponding web page auto-
matically. After having crawled the website for
one night (with short pauses after each call to
the website), we ended up with 19’000 comments
with a rating of 5 and 13’000 comments with a
rating of 2 or 3, resulting in a corpus with 32’000
examples. With this corpus, we trained a textual
entailment system which predicts whether a com-
ment is associated with a rating of 2-3 or 5 (we
left out comments with a rating of 4 and comments
without a rating).

We then retrieved intra-forum evidence as de-
scribed above for all these 32’000 comments and
trained our BERT checkpoint (which was pre-
trained on the forum dump) on that corpus and ob-
tain ”question-comment-evidence” triplets. Let us
assume the question is ”Where can I get Potassium
Nitrate?”, the comment is ”Try Metco industrial
area. 465 1234” and we retrieve two evidence
texts ”potassium nitrate are not allowed to buy
here in qatar. you have to ask a permission from
the police department or to the civil defense...” and
”not sure if same as what you want; but i got
potassium before from pharmacies...”. We then
form two triplets (one for each evidence text) and
let the model predict an output for each.

Since the different retrieved evidence for each
claim is independent, we thought that it would be

a bad idea to just concatenate all the evidence and
use that as input to our classifier. We therefore de-
cided to aggregate the outputs of each triple using
the logsumexp function (Eq. 1) which is a smooth
version of the max function and allows the model
to back-propagate dense gradients (Verga et al.,
2018). We think this lets the model also figure out
on its own which evidence it should look out for.

scores(i) = log
∑

exp(Aij) (1)

A is a matrix with two columns (bad rating or
good rating) in which we stack the predictions for
each ”question-comment-evidence” triplet. That
is, each row in that matrix is the prediction for a
comment with a rating given one evidence com-
ment found in the forum. In comparison to the nor-
mal max function (which back-propagates sparse
gradients), we learn from each comment-evidence
pair and not only from the one with the highest
scores.

We trained that model with a batch-size of 8 an-
swers and for each answer, we retrieve 4 evidence
comments (resulting in 32 triplets). During test
time, we retrieve up to 8 evidence comments, pre-
dict results for each triplet and aggregate the pre-
dictions for each triplet using the logsumexp func-
tion to yield a final classification. In Table 3, we
show the results of our two classifiers on the train-
ing set of subtask B (because we did not use that
set for training at all).

class pr rc F1
non-factual 0.43 0.53 0.47
factual 0.63 0.53 0.58
factual false 0.36 0.52 0.42
factual true 0.71 0.56 0.62

Table 3: Results on training set of subtask B

The first two rows show the results of our BERT
model trained on the SQuAD corpus. The factual
class contains the examples which are true or false.
After having performed a manual error analysis
for the factual and non-factual class, we conclude
that we disagree with some of the annotations in
the training corpus. The last two rows show the
performance of our classifier trained on ratings on
the training set. For the true answers, it performs
better than for the false answers (which might be
due to a slight imbalance of training examples in
our compiled corpus).

1152

Figure 1: Comment with an associated Rating

3.5 Subtask B: Contrastive Runs

We only handed in contrastive runs for subtask B.
The difference to our original hand-in is solely the
classifier deciding whether a comment is factual or
non-factual. In our first contrastive run, we used
the BERT model pre-trained on the concatenation
of the SemEval2016 task 3 subtask A and C data
(the same we use to filter evidence). For our sec-
ond run, we used a ranking model to get a similar-
ity score between a question and a comment based
on the ratings. We minimized the following

loss =
∑

imax(0, δ − cos(qi, comment5i) +
cos(qi, comment0i))

where i is a data point from the web-crawled
corpus, comment5i is the vector obtained by the
model for a comment with rating 5, comment0i
is the obtained vector by the model for a comment
without a rating, qi is the model obtained vector
for the corresponding question, δ(=0.1) is the al-
lowed margin between a positive similarity and
a negative similarity which is chosen as a hyper-
parameter. All vectors are obtained by max pool-
ing the hidden states of an encoder BI-LSTM on
the input text (question/comment). Our assump-
tion is that the comment with rating 5 will be a fac-
tual answer in most of the cases (noisily labelled).
Furthermore, we fine-tuned this model for the an-
swer classification task on the training dataset for
the labels ’non-factual’ and ’true/false’. In table 4,
we report the results for our different runs on the
test set.

We also submitted an all non-factual baseline

run acc (%) F1 AvgRec MAP
main 0.72 0.4 0.44 0.27
1. Contrastive run 0.81 0.48 0.53 0.21
2. Contrastive run 0.48 0.21 0.31 0.29
non-factual baseline 0.83 0.28 0.33 0.29

Table 4: Results of different runs for subtask B on test-
set

on the test set and it scored 83% accuracy. We
think this biased test set hence does not reflect
the model’s ability to fact check comments. We
reckon that in further work on this dataset, one
should therefore not focus on accuracy but on a
different metric.

4 Conclusion

We described our hand-in for the semeval2019
task 8. For subtask A, we fine-tuned a BERT
checkpoint pretrained on a cleaned qatar living fo-
rum dump. For subtask B, we decided to use two
classifiers. One classifier decides whether a com-
ment is factual or non-factual. If it is factual, a sec-
ond classifier makes a prediction about the com-
ment’s veracity. Given the small size of the train-
ing dataset, we crawled qatarliving.com to gener-
ate a medium sized, weakly supervised training
corpus based on ratings in the forum. To train
our model, we searched for intra-forum evidence
for every comment and fine-tuned a BERT clas-
sifier for each question-comment-evidence triplet.
Since the retrieved evidence is independent of
each other, we did not concatenate all the evi-
dence for a question but aggregated results for
each triplet using the logsumexp function. We de-

1153

cided to use this function for aggregation because
it allows the model to send back dense gradients
and learn from all the comment-evidence pairs and
not only the evidence with the highest score.

5 Acknowledgements

This work was partially supported by the Ger-
man Federal Ministry of Education and Re-
search (BMBF) through the project DEEPLEE
(01IW17001).

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Tsvetomila Mihaylova, Preslav Nakov, Lluı́s Màrquez,
Alberto Barrón-Cedeño, Mitra Mohtarami, Georgi
Karadzhov, and James R. Glass. 2018. Fact check-
ing in community forums. In AAAI, pages 5309–
5316. AAAI Press.

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, abed Alhakim Frei-
hat, Jim Glass, and Bilal Randeree. 2016. Semeval-
2016 task 3: Community question answering. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pages 525–
545. Association for Computational Linguistics.

Martin F. Porter. 2001. Snowball: A language for
stemming algorithms. Published online. Accessed
11.03.2008, 15.00h.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2383–2392. Asso-
ciation for Computational Linguistics.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal.
2018. The fact extraction and verification (fever)
shared task. In Proceedings of the First Workshop on
Fact Extraction and VERification (FEVER), pages
1–9. Association for Computational Linguistics.

Patrick Verga, Emma Strubell, and Andrew McCallum.
2018. Simultaneously self-attending to all mentions
for full-abstract biological relation extraction. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 872–884. Associa-
tion for Computational Linguistics.

1154

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1155–1159
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

DUTH at SemEval-2019 Task 8:
Part-Of-Speech Features for Question Classification

Anastasios Bairaktaris Symeon Symeonidis Avi Arampatzis

Database and Information Retrieval research unit,
Department of Electrical and Computer Engineering,

Democritus University of Thrace, Xanthi 67100, Greece

{anasbair1,ssymeoni,avi}@ee.duth.gr

Abstract

This report describes the methods employed
by the Democritus University of Thrace
(DUTH) team for participating in SemEval-
2019 Task 8: Fact Checking in Commu-
nity Question Answering Forums. Our team
dealt only with Subtask A: Question Classi-
fication. Our approach was based on shal-
low natural language processing (NLP) pre-
processing techniques to reduce noise in data,
feature selection methods, and supervised ma-
chine learning algorithms such as NearestCen-
troid, Perceptron, and LinearSVC. To deter-
mine the essential features, we were aided by
exploratory data analysis and visualizations.
In order to improve classification accuracy, we
developed a customized list of stopwords, re-
taining some opinion- and fact-denoting com-
mon function words which would have been
removed by standard stoplisting. Furthermore,
we examined the usefulness of part-of-speech
(POS) categories for the task; by trying to re-
move nouns and adjectives, we found some ev-
idence that verbs are a valuable POS category
for the opinion-oriented question class.

1 Introduction

The significance of Community Question Answer-
ing (CQA) forums has risen in the past years.
Such forums represent a modern need for infor-
mation that comes with the abundance of online
sources and the needs of millions of people for
answers. Popular forums like StackOverflow, Ya-
hoo! Answers, and Answers.com provide plat-
forms for general or specific questions in a wide
range of topics by users’ and also a community-
based model for user interaction.

The large numbers of questions and answers lo-
cated in these forums generate many opportuni-
ties for information retrieval and data mining ap-
plications, such as query-intent detection, opinion
mining, fake news classification, etc. (Tsur et al.,

2016; Jo et al., 2018; Sethi, 2017). More ad-
vanced applications do not only aim at analyzing
opinions but—by categorizing the feelings of the
Q&As—they may be able to detect inappropriate
content such as hate speech and act accordingly
(Karadzhov et al., 2017; Baly et al., 2018).

The SemEval Task 8, Fact Checking in Com-
munity Forums, aims to determine whether the
answers that are provided for a question in a fo-
rum are true or false. While answers to fact-
oriented questions can be deemed true or false,
opinion-oriented and socializing questions evoke
answers for which a true/false categorization does
not make much sense. As a result, determining
the question type is a necessary first step. Conse-
quently, the subtask A of SemEval Task 8 has the
goal of classifying questions in three categories:
opinion, factual, or socializing.

The rest of this report is structured as follows.
Section 2 reviews some previous studies for CQA
classification. Section 3 describes our system,
while Section 4 presents experiments and results.
Conclusions are summarized in Section 5.

2 Related Work

In recent years, plenty of research work examined
the problem of classifying texts of CQA forums.
Some related work which we found useful or in-
spiring are mentioned below.

Mihaylova et al. (2018) proposed a novel ap-
proach based on multi-faceted modeling of facts,
which integrates knowledge from several comple-
mentary sources, such as the answer content (what
is said and how), the author profile (who says it),
the remainder of the community forum (where it
is said), and external authoritative sources of in-
formation (external support).

Another study which provided us with helpful
information about the importance of feature se-

1155

lection on the development of a question classi-
fier was by Huang et al. (2008). They demon-
strated the importance of using the wh-word
(what, which, when) in question classification.
Such words are commonly disregarded and used
in stopwords lists. Our approach is also trying to
use features such as imperative verbs that indicate
an opinion.

The SemEval-2015 Task 3, Answer Selection
in Community Question Answering, targeted to
classify comments in a thread as relevant, poten-
tially useful, or bad, concerning the thread ques-
tion (Nakov et al., 2015). This task encouraged so-
lutions for the question classification problem that
involved semantic or complex linguistic informa-
tion.

Finally, (Mihaylova et al., 2016; Baldwin et al.,
2016; Franco-Salvador et al., 2016) participated in
subtasks A, B, and C at SemEval-2016 Task 3 that
involved tasks for Question-Comment Similar-
ity, Question-Question Similarity, and Question-
External Comment Similarity. They proposed
classification models and provided results that
highlighted the importance of lexical and semantic
features.

The aforementioned studies help to identify
‘gaps’ in this research topic and ways to attempt
new and different approaches for question classifi-
cation.

3 System Description

In this section, we give the details of our ques-
tion classification model, applied pre-processing
techniques, as well as some statistics and visual-
izations for the dataset of the task.

3.1 Dataset

The organizers provided the dataset in an XML
format. The given training set consisted of 1,118
questions for Subtask A that were selected from
the Qatar Living forum.

We used Python’s Element Tree library to parse
and isolate specific content from the XML. The in-
teresting tags to select were RelQBody (the ques-
tion) and RELQ FACT LABEL (labeled question
by organizers).

Before pre-processing, an exploratory data
analysis gives us the opportunity to better under-
stand the dataset. Because we will develop a mul-
tipurpose model that classifies not only the opinion
but fact and socializing questions, it is helpful to

understand in depth the character of the questions.
A way to understand the contents of the forum is

to examine Table 1 where almost 50% of the ques-
tions are opinion oriented. Also, Figure 1 presents
the most common words in opinion questions.

Label Number of Questions
Opinion 563
Factual 311

Socializing 244

Table 1: Question types in the dataset

Figure 1: Most common words in opinion questions

3.2 Pre-processing

To reduce the noise of the text, based on the re-
sults of Symeonidis et al. (2018), we applied the
following pre-processing:

• Remove Numbers

• Remove Punctuation

• Remove Symbols

• Lowercase

• Replace all URL addresses, normalizing
them to ‘URL’

Figure 2 shows the most frequent words on the
dataset as a wordcloud.

The final steps of pre-processing are tokeniza-
tion and stemming. A basic process in NLP is to
identify tokens or those basic units which need not
be decomposed in subsequent processing.

The entity word is one kind of token for NLP
(Webster and Kit, 1992). Stemming is a process
of reducing words to their stems or roots to reduce
the vocabulary size and manage the case of data
sparseness (Lin and He, 2009). For example, con-
jugated verbs such as ‘goes’, ‘going’, and ‘gone’
are stemmed to the term ‘go’.

1156

Figure 2: Wordcloud of frequent words

We used Python’s SpaCy1 library to tokenize
the text and convert it to lemmas. This function
also removes symbols (or punctuation) such as
‘[’,‘...’,‘-’.

Stopwords are frequent words that appear in the
text, but they can have an impact on retrieval ef-
ficacy. The removal of stopwords also modifies
the document length and subsequently affects the
weighting process and efficiency during process-
ing of the collection (Kwok, 1998).

For our task, we found out that the most
commonly-used stopword lists contain words that
can be helpful. For example, the word ‘believe’
is included in most stopword lists. While it is
a ubiquitous word, it may also indicate an opin-
ion; therefore, it can be useful for our purpose. In
order to tackle this problem, we made a custom
stopword list that only removes pronouns such as
‘i’,‘he’,‘she’, etc. NLTK’s2 list of English stop-
words used as guideline and contained 127 words.

Although there is an abundance of stopwords
lists that contain even more words we used a small
one on purpose. We wanted to eliminate words
from our dataset that would not bear any signif-
icance in our task. The next step, based on the
vocabulary of the dataset, was to manually find
words that could help us identify whether the ques-
tion is opinion oriented, factual, or socializing. We
excluded, from the NLTK’s stopword list, words
such as ‘believe’, ‘think’, ‘mean’, ‘consider’, and
others. Our final revised stopword list consists of
50 words.

4 Experiments

This section summarizes our experiments in the
context of SemEval 2019 Task 8 Subtask A. Be-
yond our officially submitted runs, we present

1https://spacy.io
2https://www.nltk.org/

some additional experiments that although they
did not perform very well, there seems to be a
promising room for improvement in the future.

4.1 Machine Learning Methods

For the training of our classifiers, we used
Python’s Scikit-Learn library (Pedregosa et al.,
2011). We split the dataset into 749 training ques-
tions and 369 testing questions, i.e. a typical 2/3–
1/3 split (ratio 2:1). After the split, the questions
in the training set were shuffled for training. With
the class sklearn.pipeline, we performed a
sequence of different transformations and param-
eters.

Vectorizer: We compared three common vec-
torizers such as CountVectorizer, HashingVector-
izer, and TfidfVectorizer. Finally, our selection
was the TfidfVectorizer since it yielded the best
results when it comes to accuracy. The TfidfVec-
torizer converts a collection of raw documents to a
matrix of tf-idf weighted features.

Classifiers: We experimented with various
classifiers, and decided to use the following three
since they yielded the best accuracy results.

• NearestCentroid: Each class is represented
by its centroid, with test samples classified to
the class with the nearest centroid.

• Perceptron: It is a simple and efficient al-
gorithm to fit linear models, and suitable for
very large numbers of features.

• LinearSVC: An SVM algorithm which tries
to find a set of hyperplanes that separate
space into areas representing the classes. The
hyperplanes are chosen in a way to maximize
the distance from the nearest data point of
each class.

4.2 Results

The official run that we submitted for the compe-
tition proved to be the most successful. In the fol-
lowing tables, we present the produced test results
by using the three different classifiers, the Tfid-
fVectorizer, and the custom stopword list. The re-
sults are shown in Tables 2, 3, and 4. We can ob-
serve that the most accurate classifier overall is the
NearestCentroid.

We experimented further based on the hypothe-
sis that opinion classification can be more effec-
tive by using only verbs. Until recently, most

1157

LinearSVC accuracy recall f1-score
Factual 0.60 0.40 0.48
Opinion 0.62 0.82 0.70

Socializing 0.75 0.53 0.62
Total 0.64 0.64 0.62

Table 2: Test results with LinearSVC

NearestCentroid accuracy recall f1-score
Factual 0.63 0.49 0.55
Opinion 0.71 0.76 0.73

Socializing 0.70 0.77 0.73
Total 0.68 0.69 0.68

Table 3: Test results with NearestCentroid

classification techniques have considered adjec-
tives, adverbs, and nouns as features. The use-
fulness of part-of-speech categories in text clas-
sification was investigated as early as in (Aram-
patzis et al., 2000), where it was found that a
traditional keyword-based indexing set can be re-
duced to retain only its nouns and adjectives with-
out hurting effectiveness, even slightly improving
it. Nevertheless, the aforementioned work was on
topic classification; later, Karamibekr and Ghor-
bani (2012) showed that verbs are vital in classify-
ing opinion terms, particularly in social domains.

We conducted two experiments by removing ei-
ther nouns or adjectives from our dataset to help
our classifiers adjust mostly on verbs. We can ob-
serve, in Tables 5 and 6, that classifiers achieved
a better accuracy score when it comes to opin-
ion as opposed to fact and socializing questions.
Nevertheless, by removing either nouns or adjec-
tives, there is an overall drop in effectiveness in all
classes. Thus, there is evidence that verbs are a
useful part-of-speech category for opinion classi-
fication, but they are not sufficient by themselves.

Our official submission to the competition
ranked our team to the 16th place from 22 teams.

Perceptron accuracy recall f1-score
Factual 0.54 0.36 0.43
Opinion 0.62 0.79 0.70

Socializing 0.64 0.49 0.56
Total 0.60 0.61 0.59

Table 4: Test results with Perceptron

NearestCentroid accuracy recall f1-score
Factual 0.52 0.42 0.46
Opinion 0.68 0.66 0.67

Socializing 0.56 0.72 0.63
Total 0.61 0.61 0.60

Table 5: Test results without Nouns

NearestCentroid accuracy recall f1-score
Factual 0.51 0.40 0.45
Opinion 0.66 0.65 0.66

Socializing 0.53 0.69 0.60
Total 0.59 0.59 0.59

Table 6: Test results without Adjectives

The results of our model are shown in Table 7.

Accuracy F1 AverageRecall
0.71 0.56 0.60

Table 7: Official Results - Use of NearestCentroid

5 Conclusions

We presented a supervised learning model for
classifying questions from online Q&A forums in
three categories: factual, opinion, and socializing.
We used standard pre-processing techniques, and
made a custom stopword list to tackle the specific
task at hand. Using standard classification meth-
ods, we achieved satisfactory and promising re-
sults. We also tried to use verb-oriented feature
sets for classification which although they pro-
vided mixed results it seems that they can be im-
proved.

References
Avi Arampatzis, Th.P. van der Weide, C.H.A. Koster,

and P. van Bommel. 2000. An evaluation of
linguistically-motivated indexing schemes. In Pro-
ceedings of the 22nd BCS-IRSG Colloquium on IR
Research, pages 34–45.

Timothy Baldwin, Huizhi Liang, Bahar Salehi, Doris
Hoogeveen, Yitong Li, and Long Duong. 2016.
Unimelb at semeval-2016 task 3: Identifying similar
questions by combining a CNN with string similar-
ity measures. In (Bethard et al., 2016), pages 851–
856.

Ramy Baly, Mitra Mohtarami, James R. Glass, Lluı́s
Màrquez, Alessandro Moschitti, and Preslav Nakov.

1158

2018. Integrating stance detection and fact checking
in a unified corpus. CoRR, abs/1804.08012.

Steven Bethard, Daniel M. Cer, Marine Carpuat, David
Jurgens, Preslav Nakov, and Torsten Zesch, editors.
2016. Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval@NAACL-
HLT 2016, San Diego, CA, USA, June 16-17, 2016.
The Association for Computer Linguistics.

Marc Franco-Salvador, Sudipta Kar, Thamar Solorio,
and Paolo Rosso. 2016. UH-PRHLT at semeval-
2016 task 3: Combining lexical and semantic-based
features for community question answering. In
(Bethard et al., 2016), pages 814–821.

Zhiheng Huang, Marcus Thint, and Zengchang Qin.
2008. Question classification using head words and
their hypernyms. In 2008 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2008, Proceedings of the Conference, 25-27 October
2008, Honolulu, Hawaii, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
927–936. ACL.

Saehan Jo, Immanuel Trummer, Weicheng Yu, Daniel
Liu, and Niyati Mehta. 2018. The factchecker: Ver-
ifying text summaries of relational data sets. CoRR,
abs/1804.07686.

Georgi Karadzhov, Preslav Nakov, Lluı́s Màrquez,
Alberto Barrón-Cedeño, and Ivan Koychev. 2017.
Fully automated fact checking using external
sources. CoRR, abs/1710.00341.

Mostafa Karamibekr and Ali A. Ghorbani. 2012.
Verb oriented sentiment classification. In 2012
IEEE/WIC/ACM International Conferences on Web
Intelligence, WI 2012, Macau, China, December 4-
7, 2012, pages 327–331. IEEE Computer Society.

K. L. Kwok. 1998. Book review: Information storage
and retrieval by r. r. korfhage. Inf. Process. Manage.,
34(4):490–492.

Chenghua Lin and Yulan He. 2009. Joint senti-
ment/topic model for sentiment analysis. In Pro-
ceedings of the 18th ACM Conference on Infor-
mation and Knowledge Management, CIKM 2009,
Hong Kong, China, November 2-6, 2009, pages
375–384. ACM.

Tsvetomila Mihaylova, Pepa Gencheva, Martin Boy-
anov, Ivana Yovcheva, Todor Mihaylov, Momchil
Hardalov, Yasen Kiprov, Daniel Balchev, Ivan Koy-
chev, Preslav Nakov, Ivelina Nikolova, and Galia
Angelova. 2016. Super team at semeval-2016 task 3:
Building a feature-rich system for community ques-
tion answering. In (Bethard et al., 2016), pages 836–
843.

Tsvetomila Mihaylova, Preslav Nakov, Lluı́s Màrquez,
Alberto Barrón-Cedeño, Mitra Mohtarami, Georgi
Karadzhov, and James R. Glass. 2018. Fact check-
ing in community forums. In Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 5309–5316. AAAI
Press.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
Semeval-2015 task 3: Answer selection in com-
munity question answering. In Proceedings of the
9th International Workshop on Semantic Evalua-
tion, SemEval@NAACL-HLT 2015, Denver, Col-
orado, USA, June 4-5, 2015, pages 269–281. The
Association for Computer Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830.

Ricky J. Sethi. 2017. Crowdsourcing the verification
of fake news and alternative facts. In Proceedings of
the 28th ACM Conference on Hypertext and Social
Media, HT 2017, Prague, Czech Republic, July 4-7,
2017, pages 315–316. ACM.

Symeon Symeonidis, Dimitrios Effrosynidis, and Avi
Arampatzis. 2018. A comparative evaluation of pre-
processing techniques and their interactions for twit-
ter sentiment analysis. Expert Syst. Appl., 110:298–
310.

Gilad Tsur, Yuval Pinter, Idan Szpektor, and David
Carmel. 2016. Identifying web queries with ques-
tion intent. In Proceedings of the 25th International
Conference on World Wide Web, WWW 2016, Mon-
treal, Canada, April 11 - 15, 2016, pages 783–793.
ACM.

Jonathan J. Webster and Chunyu Kit. 1992. Tokeniza-
tion as the initial phase in NLP. In 14th Inter-
national Conference on Computational Linguistics,
COLING 1992, Nantes, France, August 23-28, 1992,
pages 1106–1110.

1159

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1160–1164
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Fermi at SemEval-2019 Task 8: An elementary but effective approach to
Question Discernment in Community QA Forums

Bakhtiyar Syed1, Vijayasaradhi Indurthi1,3, Manish Shrivastava1,
Manish Gupta1,2, Vasudeva Varma1

1 IIIT Hyderabad, 2 Microsoft, 3 Teradata
1{syed.b, vijaya.saradhi}@research.iiit.ac.in
1{m.shrivastava, manish.gupta, vv}@iiit.ac.in

2gmanish@microsoft.com
3vijayasaradhi.indurthi@teradata.com

Abstract

Online Community Question Answering Fo-
rums (cQA) have gained massive popularity
within recent years. The rise in users for such
forums have led to the increase in the need
for automated evaluation for question com-
prehension and fact evaluation of the answers
provided by various participants in the forum.
Our team, Fermi, participated in sub-task A
of Task 8 at SemEval 2019 - which tackles the
first problem in the pipeline of factual evalu-
ation in cQA forums, i.e., deciding whether
a posed question asks for a factual informa-
tion, an opinion/advice or is just socializing.
This information is highly useful in segregat-
ing factual questions from non-factual ones
which highly helps in organizing the questions
into useful categories and trims down the prob-
lem space for the next task in the pipeline
for fact evaluation among the available an-
swers. Our system uses the embeddings ob-
tained from Universal Sentence Encoder com-
bined with XGBoost for the classification sub-
task A. We also evaluate other combinations of
embeddings and off-the-shelf machine learn-
ing algorithms to demonstrate the efficacy of
the various representations and their combina-
tions. Our results across the evaluation test set
gave an accuracy of 84% and received the first
position in the final standings judged by the
organizers.

1 Introduction

The massive rise in popularity of Community
Question Answering (cQA) forums like Stack-
Overflow, Quora, Yahoo! Answers and Google
Groups have led to an effective means of infor-
mation dissemination for topic-centered commu-
nities to share and engage in knowledge consump-
tion needs. After a considerable time, information
becoming obsolete is a major problem which re-
sults in change of many of the facts that were pre-
viously true. Another problem is that most of the
forums lack exhaustive moderation and control –

which results in high-latency quality checks and
eventually results in the sharing of non-factual in-
formation. Various factors are responsible for this
– primarily being ignorance or misunderstanding
and sometimes, maliciousness of the responder to
the questions (Mihaylova et al., 2018).

In the pipeline of detection of whether the given
responses to a question are indeed factual, the nec-
essary first step is to discern what category the
question asked in the cQA forum falls into. As
an example, “What is Domino’s customer service
number?” is a factual question as it asks for a fact
rather than an opinion or discourse. In contrast,
consider the question “Can someone recommend a
good pediatrician in Mumbai?” asks for an opin-
ion rather than a particular factual information as
opinions on the matter of a good pediatrician may
be subjective and depend on various other factors
the conclusion of which is not universally true.

We tackle the problem proposed by organiz-
ers (Mihaylova et al., 2019) in sub-task A as a
multi-class classification problem, i.e., categoriz-
ing questions in cQA forums into one of the fol-
lowing three categories:

1. Factual: The question is asking for factual in-
formation, which can be answered by check-
ing various information sources, and it is not
ambiguous. (e.g., “What is the currency used
in Taiwan?”)

2. Opinion: The question asks for an opinion or
an advice, not for a fact. (e.g., “Can some-
body recommend good restaurants around
the SF Bay Area?”)

3. Socializing: Not a real question, but intended
for socializing or for chatting. This can also
mean expressing an opinion or sharing some
information, without really asking anything
of general interest. (e.g., “What was your
first bike?”)

1160

Our submission involves the use of pre-trained
models for generating sentence embeddings from
existing trained models and then employing the
use of off-the-shelf machine learning algorithms
for the multi-class prediction problem. The ap-
proach is described in Section 3 where we describe
our methodology in detail.

2 Related Work

For classification tasks like question similarity
across community QA forums, machine learning
classification algorithms like Support Vector Ma-
chines (SVMs) have been used (Šaina et al., 2017;
Nandi et al., 2017; Xie et al., 2017; Mihaylova
et al., 2016; Wang and Poupart, 2016; Balchev
et al., 2016). Recently, advances in deep neu-
ral network architectures have also led to the use
of Convolutional Neural Networks (CNNs) (Šaina
et al., 2017; Mohtarami et al., 2016) which per-
form reasonably well for selection of the correct
answer amongst cQA formus. Algorithms and
methods for answer selection also include works
by (Zhang et al., 2017) which use a Long-Short
Term Memory (LSTM) model for answer selec-
tion. Similarly, LSTMs for answer selection are
also used by (Feng et al., 2017; Mohtarami et al.,
2016). Other works in the space include use of
Random Forests (Wang and Poupart, 2016); topic
models to match the questions at both the term
level and topic level (Zhang et al., 2014). There
have also been works on translation based retrieval
models (Jeon et al., 2005; Zhou et al., 2011); Xg-
Boost (Feng et al., 2017) and Feedforward Neural
Networks (NN) (Wang and Poupart, 2016).

All of the above related works on cQA used the
features such as Bag of Words (BoW) (Franco-
Salvador et al., 2016); Bag of vectors (BoV) (Mo-
htarami et al., 2016); Lexical features (for ex-
ample, Cosine Similarity, Word Overlap, Noun
Overlap, N-gram Overlap, Longest Common Sub-
string/Subsequence, Keyword and Named Entity
features etc.) (Franco-Salvador et al., 2016; Mo-
htarami et al., 2016; Nandi et al., 2017); Seman-
tic features (for example, Distributed represen-
tations of text, Knowledge Graphs, Distributed
word alignments, Word Cluster Similarity, etc.)
(Franco-Salvador et al., 2016); Word Embedding
Features (like Word2vec, GloVe etc.) (Wang and
Poupart, 2016; Mohtarami et al., 2016; Nandi
et al., 2017); and Metadata-based features (Mo-
htarami et al., 2016; Mihaylova et al., 2016; Xie

et al., 2017).
In this work, we seek to evaluate pre-trained

sentence embeddings and how they perform across
comprehension of questions in the community QA
tasks. We now describe the methodology and data
in the following section.

3 Methodology and Data

The data supplied by organizers is used for the task
at hand. Specifically, for sub-task A, the subject
and body for each question is provided by the task
organizers. The data consists of 1118 training in-
stances along with 239 and 935 question instances
in the development and testing sets respectively.

3.1 Word Embeddings

Word embeddings have been widely used in mod-
ern Natural Language Processing applications as
they provide vector representation of words. They
capture the semantic properties of words and
the linguistic relationship between them. These
word embeddings have improved the performance
of many downstream tasks across many do-
mains like text classification, machine comprehen-
sion etc. (Camacho-Collados and Pilehvar, 2018).
Multiple ways of generating word embeddings ex-
ist, such as Neural Probabilistic Language Model
(Bengio et al., 2003), Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), and more
recently ELMo (Peters et al., 2018).

These word embeddings rely on the distribu-
tional linguistic hypothesis. They differ in the
way they capture the meaning of the words or the
way they are trained. Each word embedding cap-
tures a different set of semantic attributes which
may or may not be captured by other word em-
beddings. In general, it is difficult to predict the
relative performance of these word embeddings on
downstream tasks. The choice of which word em-
beddings should be used for a given downstream
task depends on experimentation and evaluation.

3.2 Sentence Embeddings

While word embeddings can produce representa-
tions for words which can capture the linguistic
properties and the semantics of the words, the idea
of representing sentences as vectors is an impor-
tant and open research problem (Conneau et al.,
2017).

Finding a universal representation of a sentence
which works with a variety of downstream tasks

1161

is the major goal of many sentence embedding
techniques. A common approach of obtaining a
sentence representation using word embeddings is
by the simple and naı̈ve way of using the sim-
ple arithmetic mean of all the embeddings of the
words present in the sentence. Smooth inverse fre-
quency, which uses weighted averages and modi-
fies it using Singular Value Decomposition (SVD),
has been a strong contender as a baseline over tra-
ditional averaging technique (Arora et al., 2016).
Other sentence embedding techniques include p-
means (Rücklé et al., 2018), InferSent (Conneau
et al., 2017), SkipThought (Kiros et al., 2015),
Universal Encoder (Cer et al., 2018).

We formulate sub-task A of Task 8 in SemEval
2019 as a text multi-classification task. In this pa-
per, we evaluate various pre-trained sentence em-
beddings for identifying each of the categories of
factual, socializing and opinion among the ques-
tions in community QA forums. We train multi-
ple models using different machine learning algo-
rithms to evaluate the efficacy of each of the pre-
trained sentence embeddings for the sub-task. In
the following, we discuss various popular sentence
embedding methods in brief.

• InferSent (Conneau et al., 2017) is a set
of embeddings proposed by Facebook. In-
ferSent embeddings have been trained using
the popular language inference corpus. Given
two sentences the model is trained to infer
whether they are a contradiction, a neutral
pairing, or an entailment. The output is an
embedding of 4096 dimensions.

• Concatenated Power Mean Word Embedding
(Rücklé et al., 2018) generalizes the concept
of average word embeddings to power mean
word embeddings. The concatenation of dif-
ferent types of power mean word embeddings
considerably closes the gap to state-of-the-
art methods mono-lingually and substantially
outperforms many complex techniques cross-
lingually.

• Lexical Vectors (Salle and Villavicencio,
2018) is another word embedding similar
to fastText with slightly modified objective.
FastText (Bojanowski et al., 2016) is another
word embedding model which incorporates
character n-grams into the skipgram model of
Word2Vec and considers the sub-word infor-
mation.

• The Universal Sentence Encoder (Cer et al.,
2018) encodes text into high dimensional
vectors. The model is trained and optimized
for greater-than-word length text, such as
sentences, phrases or short paragraphs. It is
trained on a variety of data sources and a va-
riety of tasks with the aim of dynamically ac-
commodating a wide variety of natural lan-
guage understanding tasks. The input is vari-
able length English text and the output is a
512 dimensional vector.

• Deep Contextualized Word Representations
(ELMo) (Peters et al., 2018) use language
models to get the embeddings for individ-
ual words. The entire sentence or paragraph
is taken into consideration while calculating
these embedding representations. ELMo uses
a pre-trained bi-directional LSTM language
model. For the input supplied, the ELMo ar-
chitecture extracts the hidden state of each
layer. A weighted sum is computed of the
hidden states to obtain an embedding for each
sentence.

Using each of the sentence embeddings we have
mentioned above, we seek to evaluate how each of
them performs when the vector representations of
the body of questions in the cQA forums are sup-
plied for classification with various off-the-shelf
machine learning algorithms. For each of the eval-
uation tasks, we perform experiments using each
of the sentence embeddings mentioned above and
show our classification performance on the dev set
given by the task organizers.

Model F-1 Acc
Universal Encoder + XGB 0.72 0.84

Table 1: Results showing Macro-F1 score and accuracy
for Sub-task A, using Universal Encoder Sentence em-
beddings and training the model with XGBoost.

4 Results

The official ranking metric is Accuracy. We have
included the F-1 score here as well for compari-
son. Table 1 provides the results on the system
runs for the evaluation phase as judged by the or-
ganizers on the CodaLab platform. Our system
ranked first among the participants in the evalu-
ation phase. We observe that Universal Sentence

1162

Model RF SVM-RBF XGBoost
Acc. F-1 Acc. F-1 Acc. F-1

Universal Sentence Encoder 68.66 72.32 67.38 68.25 73.73 73.56
InferSent 53.91 50.89 61.56 63.45 60.82 59.32
Concat-p mean 56.22 49.01 65.64 69.54 60.36 60.01
Lexical Vectors 62.80 62.11 72.42 71.55 71.30 68.30

Table 2: Dev Set Accuracy and Macro-F-1 scores (in percentage) for Sub-Task A of Task 8

Encoder representations with the XGBoost classi-
fier gives the best results on the test set.

As a way to elicit different performances for our
experiments, we also provide our results from the
system runs on the development set provided by
the organizers. These results are shown in Table 2.

5 Conclusions and Future Work

We see from the results that our system is able to
discern the type of questions asked in community
QA forums with high performance metrics. This
shows that using pre-trained embeddings with a
simple machine learning classification algorithm
often helps in greater understanding of the text at
hand – in this case, the questions in community
question-answering forums.

In future work, we also seek to evaluate differ-
ent transfer learning approaches which utilize pre-
trained language models (LMs) across different
base language corpora and see how varying these
base corpora for pre-training the language model
results in the performance change while finetun-
ing for question comprehension in cQA forums.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016.

A simple but tough-to-beat baseline for sentence em-
beddings.

Daniel Balchev, Yasen Kiprov, Ivan Koychev, and
Preslav Nakov. 2016. PMI-cool at SemEval-2016
Task 3: Experiments with PMI and Goodness Po-
larity Lexicons for Community Question Answer-
ing. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 844–850, San Diego, California. Association
for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-

tors with subword information. arXiv preprint
arXiv:1607.04606.

Jose Camacho-Collados and Mohammad Taher Pile-
hvar. 2018. From word to sense embeddings: A sur-
vey on vector representations of meaning. Journal
of Artificial Intelligence Research, 63:743–788.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Wenzheng Feng, Yu Wu, Wei Wu, Zhoujun Li, and
Ming Zhou. 2017. Beihang-MSRA at SemEval-
2017 Task 3: A Ranking System with Neural
Matching Features for Community Question An-
swering. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 280–286, Vancouver, Canada. Association for
Computational Linguistics.

Marc Franco-Salvador, Sudipta Kar, Thamar Solorio,
and Paolo Rosso. 2016. UH-PRHLT at SemEval-
2016 Task 3: Combining Lexical and Semantic-
based Features for Community Question Answer-
ing. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 814–821, San Diego, California. Association
for Computational Linguistics.

Jiwoon Jeon, W Bruce Croft, and Joon Ho Lee. 2005.
Finding Similar Questions in Large Question and
Answer Archives. In Proceedings of the 14th ACM
international conference on Information and knowl-
edge management, pages 84–90. ACM.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Tsvetomila Mihaylova, Pepa Gencheva, Martin Boy-
anov, Ivana Yovcheva, Todor Mihaylov, Momchil
Hardalov, Yasen Kiprov, Daniel Balchev, Ivan Koy-
chev, Preslav Nakov, Ivelina Nikolova, and Galia

1163

Angelova. 2016. SUper Team at SemEval-2016
Task 3: Building a Feature-Rich System for Com-
munity Question Answering. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 836–843, San Diego,
California. Association for Computational Linguis-
tics.

Tsvetomila Mihaylova, Georgi Karadzhov, Atanasova
Pepa, Ramy Baly, Mitra Mohtarami, and Preslav
Nakov. 2019. SemEval-2019 task 8: Fact checking
in community question answering forums. In Pro-
ceedings of the International Workshop on Semantic
Evaluation, SemEval ’19, Minneapolis, MN, USA.

Tsvetomila Mihaylova, Preslav Nakov, Lluı́s Màrquez
i Villodre, Alberto Barrón-Cedeño, Mitra Mo-
htarami, Georgi Karadzhov, and James R. Glass.
2018. Fact checking in community forums. In
AAAI.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Mitra Mohtarami, Yonatan Belinkov, Wei-Ning Hsu,
Yu Zhang, Tao Lei, Kfir Bar, Scott Cyphers, and Jim
Glass. 2016. SLS at SemEval-2016 Task 3: Neural-
based Approaches for Ranking in Community Ques-
tion Answering. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 828–835, San Diego, California. Asso-
ciation for Computational Linguistics.

Titas Nandi, Chris Biemann, Seid Muhie Yimam,
Deepak Gupta, Sarah Kohail, Asif Ekbal, and Push-
pak Bhattacharyya. 2017. IIT-UHH at SemEval-
2017 Task 3: Exploring Multiple Features for Com-
munity Question Answering and Implicit Dialogue
Identification. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 90–97, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Andreas Rücklé, Steffen Eger, Maxime Peyrard, and
Iryna Gurevych. 2018. Concatenated p-mean word
embeddings as universal cross-lingual sentence rep-
resentations. arXiv preprint arXiv:1803.01400.

Alexandre Salle and Aline Villavicencio. 2018. In-
corporating subword information into matrix fac-
torization word embeddings. arXiv preprint
arXiv:1805.03710.

Filip Šaina, Toni Kukurin, Lukrecija Puljić, Mladen
Karan, and Jan Šnajder. 2017. TakeLab-QA at
SemEval-2017 Task 3: Classification Experiments
for Answer Retrieval in Community QA. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval-2017), pages 339–343,
Vancouver, Canada. Association for Computational
Linguistics.

Hujie Wang and Pascal Poupart. 2016. Overfitting at
SemEval-2016 Task 3: Detecting Semantically Sim-
ilar Questions in Community Question Answering
Forums with Word Embeddings. In Proceedings of
the 10th International Workshop on Semantic Eval-
uation (SemEval-2016), pages 861–865, San Diego,
California. Association for Computational Linguis-
tics.

Yufei Xie, Maoquan Wang, Jing Ma, Jian Jiang, and
Zhao Lu. 2017. EICA Team at SemEval-2017 Task
3: Semantic and Metadata-based Features for Com-
munity Question Answering. In Proceedings of the
11th International Workshop on Semantic Evalua-
tion (SemEval-2017), pages 292–298, Vancouver,
Canada. Association for Computational Linguistics.

Kai Zhang, Wei Wu, Haocheng Wu, Zhoujun Li,
and Ming Zhou. 2014. Question Retrieval with
High Quality Answers in Community Question An-
swering. In Proceedings of the 23rd ACM In-
ternational Conference on Conference on Informa-
tion and Knowledge Management, pages 371–380.
ACM.

Sheng Zhang, Jiajun Cheng, Hui Wang, Xin Zhang,
Pei Li, and Zhaoyun Ding. 2017. FuRongWang at
SemEval-2017 Task 3: Deep Neural Networks for
Selecting Relevant Answers in Community Ques-
tion Answering. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 320–325, Vancouver, Canada. Associ-
ation for Computational Linguistics.

Guangyou Zhou, Li Cai, Jun Zhao, and Kang Liu.
2011. Phrase-Based Translation Model for Question
Retrieval in Community Question Answer Archives.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 653–662.
Association for Computational Linguistics.

1164

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1165–1171
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SolomonLab at SemEval-2019 Task 8: Question Factuality and Answer
Veracity Prediction in Community Forums

Sudeep Kumar Sahoo∗

Rohit R.R
Ankita Gupta∗

Vertika Srivastava
Divya Prakash

Yeon Hyang Kim

Samsung R&D Institute India, Bangalore
{gupta.ankita, sudeep.sahoo, p.divya,

rohit.r.r, v.srivastava, purine.kim}@samsung.com

Abstract
We describe our system for SemEval-2019,
Task 8 on “Fact-Checking in Community
Question Answering Forums (cQA)”. cQA
forums are very prevalent nowadays, as they
provide an effective means for communities to
share knowledge. Unfortunately, this shared
information is not always factual and fact-
verified. In this task, we aim to identify fac-
tual questions posted on cQA and verify the
veracity of answers to these questions. Our
approach relies on data augmentation and ag-
gregates cues from several dimensions such
as semantics, linguistics, syntax, writing style
and evidence obtained from trusted external
sources. In subtask A, our submission is
ranked 3rd, with an accuracy of 83.14%. Our
current best solution stands 1st on the leader-
board with 88% accuracy. In subtask B, our
present solution is ranked 2nd, with 58.33%
MAP score.

1 Introduction

With the rising popularity of online commu-
nity question answering (cQA) systems such as
Quora, StackOverflow, and Qatar Living forum
(QLF), the amount of information shared over
these platforms is also increasing rapidly with
time. These forums provide effective information
sharing mechanism to their users who can seek an-
swers to their queries as well as post answers to
the questions. However, the information shared on
such platforms may not always be factual and cor-
rect. The responders may misunderstand the ques-
tion being asked or merely ignore certain specific
details. At times, the information shared may even
be false or ambiguous in the desired context. This
is aggravated by lack of moderation and system-
atic control on cQA forums. The Semeval-2019
Task 81 on “Fact Checking in Community Ques-

∗*Equal Contribution
1http://alt.qcri.org/semeval2019/index.php?id=tasks

tion Answering Forums” aims to solve this real-
life problem.

The above task tries to explore the veracity of
an answers to a question posted on QLF. While
the precedent tasks such as SemEval (Nakov et al.,
2015, 2016, 2017), address the issue of ranking
answers according to their relevance to a question,
the task-at-hand is the first one to consider the cor-
rectness of answers. This task is formulated as a
two-stage problem. The first stage aims to iden-
tify the user posts asking for factual information.
The answers to the identified factual questions are
then fact-verified in the second stage. Both the
subtasks are designed as 3-class supervised clas-
sification problems.

More specifically, the first stage or subtask A
addresses the problem of determining whether the
posted question asks for factual information, an
opinion/advice or is just meant for socializing.
For example, “what is Ooredoo customer service
number?” asks for factual information, whereas
“What was your first car?” is socializing and
“which is the best bank around?” is seeking guid-
ance/opinion. Each data sample in subtask A is a
question posted by a user consisting of a subject,
body and meta information (user ID, username,
and the category of question, e.g., “Education,”
“Visa and Permits”, “Welcome to Qatar” etc.).

The second stage or subtask B focuses on deter-
mining whether an answer to a factual question is
true, false or does not constitute a proper answer,
in which case, it is labeled as non-factual. For ex-
ample, to the question “Can I bring my pitbulls
to Qatar?”, Answer A1: “Yes, you can bring it
but be careful this kind of dog is very dangerous”
is factual-false2, Answer A2: “No, you cannot as
they are banned” is factual-true2 and Answer A3:
“There goes another job opportunity for the sake

2can be verified at http://canvethospital.com/pet-
relocation/

1165

of two lovely animals. ” is non-factual. The data
is organized as a question-answer tuple: question
posted by a user and an answer (body, username
and answer ID) posted by the same or another user.
It has been ensured that all the questions in this
task are factual questions.

Our approach to solving this task is based on ex-
tracting rich-feature representation from the input
and training a classifier to make predictions. The
feature representation integrates knowledge from
various complementary sources, such as the ques-
tion/answer content, the content of other answers
in the thread, evidence from trustworthy external
sources of information, and the relevance of an
answer to the question. For subtask A, we rely
on question content (semantic, linguistic and syn-
tactic cues), whereas the evidence from external
sources and answer relevancy to the question are
essential aspects for subtask B. For both the sub-
tasks, we also leverage a data augmentation ap-
proach which facilitates the generalization ability
of learned classifier on unseen test data as well as
ameliorates the class imbalance issues present in
the training data.

The rest of the paper is organized as follows:
Section 2 gives an overview of our system. Sec-
tion 3-5 describe the details of our approach. Sec-
tion 6 demonstrates the experimental results. We
conclude in Section 7.

2 System Overview

Our proposed system primarily relies on follow-
ing key components (i) data augmentation (DA)
(ii) pre-processing of question/answer content and
(iii) feature extraction from multi-faceted sources.

Figure 1: System Overview for Subtask A

As depicted in Figure 1, following DA and pre-
processing of the question, our system for subtask
A extracts semantic (what is said), linguistic (how
it is said), syntactic (how it is structured) and writ-
ing style based features (how it is depicted) from
the processed question. These extracted features

are then combined to train a classifier for label pre-
diction.

Subtask B also leverages DA and pre-
processing as its first key steps. However, apart
from features extracted for subtask A (as men-
tioned above), it also utilizes external evidence
and forum-level features (Figure 2). The external
evidence is collected from trusted sources using a
search-engine. The forum-level features capture
the relevancy of an answer to the question and its
similarity to other answers in the same thread.

Figure 2: System Overview for Subtask B

3 Data Augmentation (DA)

Data augmentation (DA) is one of the main com-
ponents of our proposed system that resulted in
significant performance gains. For both the sub-
tasks, the training data is imbalanced. This moti-
vated us to look for ways to balance the distribu-
tion of data samples across classes and at the same
time incorporate adversarial examples which are
plausible in the real scenario but are not present in
the training data. We next discuss the DA details
for both the subtasks in the following subsections.

3.1 Subtask A
In the training data for subtask A, the number
of samples from the “opinion” class (563) is ob-
served to be twice as many samples from “factual”
(311) or “socializing” class (244). In order to bal-
ance the class distribution, we sought to oversam-
ple both of the non-majority classes based on the
domain knowledge.

For the “Factual” class, we leveraged the ques-
tions asked in subtask B. In subtask B, by its for-
mulation, one is supposed to verify the veracity
of answers to “factual questions.” Thus, we used
the training, development and test set of subtask B
to augment training data for subtask A (“factual”
class instances). This way, we extracted a total of
91 distinct factual questions. For the “socializing”
class, we utilized the QL-unannotated-data3 to se-

3additional resource by (Mihaylova et al., 2018)

1166

Class Question Body

Factual
Can someone please tell me where can i find Garlic Oil in Qatar? i heard it is good for hairfall. dont know if
its true or not but really want to try it. So help me guys!

Opinion
Is it right to resign from your job at this time of global crisis? the reason is i’m not doing anything in the off-
ice. I feel useless; but I’m hesistant to resign because of the condition today even that I’m on husband sponsor.

Socializing
Is this a beginning of a mutual friendship between Christianity and Islam in Qatar? I hope they’re going to
sell some Bibles in Villagio coz I can’t find somebody sellin’ it around here.

Table 1: Example for query-sentence selection. The highlighted text is considered as the query-sentence.

lect samples from categories (“Funnies,” “Good
News Everyone,” “Party on my mind,” “Recipes,”
“Press Releases”) that are assured to contain only
socializing content. In these categories, the users
are just trying to make conversation or share anec-
dotes. As the number of such samples is consid-
erably large, we sample 320 samples (using reser-
voir sampling (Vitter, 1985)) to balance the distri-
bution across classes in the original training data.

3.2 Subtask B

For subtask B, we consider an adversarial setting
closely related to the problem at hand. As men-
tioned before, each data sample in this subtask is
a question-answer tuple, and the answer can be ei-
ther “true”, “false” or “non-factual.” A related task
was demonstrated in Semeval 2016 task 3 “An-
swer Selection in cQA” (Nakov et al., 2016) where
the objective was to re-rank the answers based on
their relevancy to the question. In this task, the
replies such as follow-up question from other user,
clarifications, and acknowledgment from the user
himself were categorized as “Bad” answers. Al-
though, in the task-at-hand, the organizers have
omitted such answers, in the real-life scenario they
will also be present and should be categorized as
“non-factual” in our current problem setting.

Thus, to include such samples, we extract fac-
tual questions from the training data of subtask
A. For each of these questions, we select “bad
answers” from the data provided in the SemEval
2016 task. The chosen question-answer pair is
then annotated as “non-factual” and added to the
training data of subtask B.

4 Preprocessing

Before feature extraction, we pre-process the input
question/answer using several key steps. We ex-
pand the contractions and terms commonly used
on social media platforms such as ‘i’m: ‘i am,’
‘i’d: i would,’ ‘pls: please,’ ‘nt: not,’ ‘thru:
through’ etc. Furthermore, we use several mark-
ers such as URLs, images, emoticons, and punctu-

ation marks in the question/answer to extract writ-
ing style and syntactic features (described in Sec-
tion 5.3). For semantic and linguistic features, we
strip these markers.

4.1 Query Sentence Extraction

Based on the empirical evidence, we could in-
fer that the body of each question posed by the
user contains several sentences. However, among
all these sentences, only one or two convey the
query he/she really wants to ask. Also, the user
may post his question in the question subject itself.
Thus, we extract these “query-sentences” from the
question body and subject and use them to extract
linguistic, semantic features. An example of the
query-sentence and original question posted by the
user for each of the three classes corresponding to
subtask A is depicted in Table 1.

In order to extract query-sentence, we parse
each sentence in the question using Stanford
CoreNLP constituency parser (Manning et al.,
2014). A sentence is considered a query-
sentence if its parse-tree has SBARQ/SQ con-
stituent phrases. We also use some common
heuristics such as, whether the sentence ends
with a question-mark or starts with common “wh”
words (what, why, how etc).

5 Modeling Content : Feature Extraction

We use rich feature representation to model the
information conveyed in question/answer. In the
subsequent subsections, we describe the details of
each of these features.

5.1 Semantic Sentence Embedding

Following the pre-processing step, we compute
semantic sentence embedding for query-sentence
by using two approaches. The first approach uti-
lizes universal sentence encoder (USE) (Cer et al.,
2018). It has been known to perform well with
minimal amounts of supervised training data for
a downstream task, which is precisely our setting
for both the subtasks. The second approach appro-

1167

priates pre-trained word embeddings (glove) (Pen-
nington et al., 2014), averaged over each word in
a sentence to compute sentence-level embedding.

5.2 Linguistic Features

Often, forum users exhibit linguistic cues in writ-
ing questions and answers. For example, they may
use subjectively loaded words such as ‘awesome,’
‘worst’ etc. while asking for an opinion rather than
factual information. While answering on the fo-
rum, they may exhibit the degree of confidence in
the truthfulness of what they say by using words
like “most likely”, “probably”, “think” etc. We
therefore use linguistic markers such as hedges
(Hyland, 2018), weasels(Vincze, 2013), factives
(Hooper, 1974), assertives (Hooper, 1974), im-
plicatives (Karttunen, 1971), mood4, modality4,
subjectivity4, sentiment4 and polarity of subjec-
tive words (Riloff and Wiebe, 2003) based on re-
spective lexicons to compute a feature vector. (For
details, refer to (Mihaylova et al., 2018))

5.3 Writing Style Features

We extract writing style features from the ques-
tion/answer which capture the format of a user-
post. A socializing question is more likely to be
written informally as compared to factual/opinion
query. A non-factual answer which is not much in-
formative may also carry distinctive cues. To cap-
ture these aspects, we count the number of punc-
tuations, emoticons, NON-ASCII characters and
check the presence of URL, image, ALL CAPS,
consecutive character repetition (≥ 3 times). Ta-
ble 2 depicts how the number of samples exhibit-
ing a particular writing style feature vary across
the three classes in subtask A. A similar trend is
present for factual (true/false) versus non-factual
answers in subtask B.

Feature Opinion Factual Socializing
All Caps 8 1 4

URL 2 0 173
Image 0 0 3

Repetition 9 3 130

Table 2: Writing Style Based Feature Distribution across
Classes for Subtask A

5.4 Syntactic Features

We also examine syntactic features such as part-
of-speech (POS) and category of question encoded
as bag-of-words features. Further, we consider the

4https://www.clips.uantwerpen.be/pages/pattern-en

expected answer type for a question (QType) and
named-entity-type (NET) in an answer.

QType suggests the kind of information the
question is seeking such as “description”, “en-
tity”, “human”, “location”, “number”, “yes/no”
and “others” (extracted using work in (Madabushi
and Lee, 2016)). Such features help segregate the
socializing class in subtask A. For subtask B; we
exploit the relation between what type of informa-
tion the user wants to ask (QType) and what type
of information is provided in the answer (NET).
To capture this, we extract the type of all named-
entity mentions in the answer. We consider “per-
son”, “organization”, “location” and “quantity” as
possible NE tags extracted using spacy5.

5.5 External Evidence

In subtask B, the verification of an answer re-
quires external evidence to conclude about its ve-
racity. We extract external evidence by formulat-
ing a search-query from the question and answer
followed by a web search 6 of this search-query.
For each of the obtained search results, we com-
pute its similarity with the question and answer
respectively. These similarity scores are then used
as features to a classifier.

Search-Query Formulation In order to
search the web for relevant evidence, we formu-
late a search-query based on the question and
answer. We extract query-sentence from the
question posted by a user and append “Qatar” if
neither ‘Doha’ nor ‘Qatar’ is present in it.

Further, to incorporate relevant information
from the answer into this search-query, we find
the answer sentence that has the highest similar-
ity with the query-sentence. From this top-ranked
sentence, we extract up to 7 keywords based on
named entities, noun-chunks5 and unigrams sorted
by tf-idf scores, where named entities and noun-
chunks are given high priority. Query-sentence
combined with keywords from the answer is used
as search-query.

Search Results We collect search results
(snippets) from reputed sources (e.g., news, gov-
ernment websites, official sites of companies) (Mi-
haylova et al., 2018) for search-query formulated
as above. Since the search-query may not always
be perfect, we also obtain search results by drop-

5https://spacy.io/usage/linguistic-features
6Bing web search API

1168

Question Answer Evidence Source Class
how cold is 8-10 degree i guess Over the course of the year, the temperature Weatherspark False
doha during typically varies from 57 F (14 C) to 107 F
winter? (42C) and is rarely below 51F or above 112F
any private While Going to Shammal Qatar is a peninsula....This is a list of beach- Wikipedia True
beaches in after 40 KM from Doha es in Qatar. Contents.Al Ghariyah beach is
Qatar? you will find Al Ghariyah located 80 km north of Doha.

Table 3: Example of external evidence collected in Subtask B

ping a few keywords from the search-query. From
all the obtained search results, we select snippets
that are most relevant to the question and the an-
swer. Table 3 illustrates the external evidence re-
trieved for two question-answer pairs.

Similarity based Features For each
question-answer pair, we compute their simi-
larity with external search results obtained above.
We use three similarity metrics: containment
of unigrams, bigrams and trigrams (Lyon et al.,
2001), cosine similarity of USE embedding and
cosine similarity of tf-idf representation. For
each metric, we compute the similarity of the
snippet with: question, answer, query-sentence
+ top-answer sentence and all of them together.
We then take the average and maximum over
similarity scores for all the search results.

5.6 Forum-Level Features

These features capture the relevance of an answer
with respect to a question as well as to other an-
swers. An answer which contains information
similar to that specified in other answers is more
likely to be relevant and trustworthy. Thus, we
consider the similarity of the answer with the
question as well as its similarity with other an-
swers in that thread. Here, also we consider all
three similarity metrics mentioned before.

6 Experiments and Evaluation

6.1 Setting and Evaluation Metrics

We now utilize all features as portrayed in Fig-
ure 1 for subtask A and Figure 2 for subtask B. We
train two separate SVM classifiers (Burges, 1998)
on respective features for 3-class classification for
both the subtasks. We use 10-fold cross valida-
tion for hyper-parameter tuning of SVM based on
which, we choose “linear” kernel with C=0.5 (reg-
ularization parameter) for all the demonstrated ex-
periments. All the results are reported on the test
data with accuracy, recall, and F1 measure as eval-
uation metrics.

Additionally, we calculate Mean Average Pre-
cision (MAP) for subtask B, where the ‘True’ in-
stances are considered relevant examples (in the
context of Information Retrieval). MAP measures
the capability of the system to predict ‘True’ in-
stances with higher confidence.

6.2 Results for Subtask A
Table 4 shows the performance of the proposed
system (PS). From the results, we can observe that
our PS (excluding syntactic features) achieves an
impressive performance with accuracy of 84.12%
and 72.17% F1. Our submission (with all the fea-
tures in PS + (POS and QType)) achieved similar
performance and ranked 3rd on the leaderboard
(83% acc., 71% F1) with only a marginal differ-
ence with respect to the first (84% acc., 72% F1)
and second-ranked (83% acc., 72% F1) systems.
To push our system’s performance even further,
we experimented in the post-evaluation phase and
achieved 88.10% accuracy and 77.37% F1, high-
est on the post-evaluation leaderboard 7. This cur-
rent best solution leverages QType features, exten-
sive data augmentation using bagging technique
and excludes writing style features.

In order to appraise the importance of each fea-
ture, we conducted an ablation study by analyz-
ing individual features and their combinations. It
can be followed from the results that the seman-
tic embedding contributes most to the performance
of the system. However, embeddings derived us-
ing USE perform better than glove embeddings.
This difference is possibly due to the failure of
glove-based embedding in capturing word-order
and long-range dependencies.

The second most important contributor is the
data augmentation approach which resulted in no-
table accuracy gains (3.71% improvement). As
expected, it allows the system to generalize bet-
ter and ameliorates the issue of class imbalance.
Following it is the query-sentence extraction ap-
proach with ∼1% accuracy enhancement. The

7As reported on 23/2/2019

1169

Feature Type Acc F1 Rec Feature Type Acc F1 Rec MAP

PS+
Syntactic

POS 82.30 69.23 71.26
PS+
Syntactic

POS
Cat 83.77 71.61 73.52 Cat
QType 84.67 73.00 74.75 QType+NE 77.63 42.46 42.74 30.00

PS
USE 84.12 72.17 73.90

PS (Best)
USE 76.56 42.65 45.12 25.00

Glove 78.55 64.11 65.79 Glove 77.85 43.90 44.31 58.33
PS-WS 86.36 75.64 76.96 PS-Ext 78.71 45.75 46.08 25.00
PS-Ling 83.49 72.09 74.94 PS-Forum 75.48 41.30 42.25 62.50
PS-QSent 83.21 71.72 74.71 PS-Sem 73.98 42.08 45.42 23.81
PS-DA 80.41 67.53 71.17 PS-Reputed 72.90 37.93 39.09 29.17
PS-Sem 70.97 52.95 54.92 PS-DA 67.74 37.21 40.28 37.50
Submission Official 83.14 70.89 72.82 Submission Official 69.00 37.44 40.25 33.33
Best Ensemble 88.10 77.37 77.96 Baseline Majority 83.01 28.47 33.33 15.55

Table 4: Experimental Results. Subtask A (Left) and Subtask B(Right)
PS: Proposed System, WS: Writing Style, Ling: Linguistic, Qsent: Query Sentence, DA: Data Augmentation, Sem: Semantic

Embedding, Cat: Category, Ext: External Evidence, Forum: Forum level evidence, NE: Named Entity from answer

performance is in line with the expectations as
query-sentences are sufficient in capturing the
essence of user question. QType and linguistic
cues help improve the performance further.

However, we notice that the performance im-
proves by excluding the writing style features.
The possible reason for this observation can be
the absence of such features in the test data. In
the training and development data-sets, the pres-
ence/absence of these features was a distinguish-
ing factor among classes (see Table 2) which made
them worth considering.

6.3 Results for Subtask B

Table 4 shows the performance of PS with the
ablation study. Our PS (also our best7) achieves
an accuracy of 77.85% with 58.33 MAP (high-
est among all the participating systems). From
the ablation study, we observe that although re-
moval of external evidence results in slight accu-
racy gains (0.86%), it causes a drastic reduction
in MAP score (33.33 points). This signifies the
importance of external evidence as these features
enable the system to make better predictions for
the true/false classes.

We also conducted a majority baseline experi-
ment where all the samples are labeled as “non-
factual.” This experiment resulted in the best per-
formance on the leaderboard with 83% accuracy
and very poor MAP. This illustrates that the test
data has a majority of non-factual instances. Thus,
measuring the performance of any system solely
on accuracy for this problem is not fair.

As it can be inferred from the ablation
study, among all the features, reputed source
based search-results selection (contributing 4.95%
acc. gain) and forum-level features (contributing

2.37% acc. gain) are the most important. Reputed
source selection helps in relying on only trusted
sources for external evidence selection and hence
make better predictions for true/false classes. Fo-
rum level features help in distinguishing among
non-factual versus true/false samples.

Further, data augmentation in subtask B results
in significant performance gains of 10.11% accu-
racy. It helps the system learn about the charac-
teristics of “bad answers” which are not present in
the training data and hence enables the system to
generalize better on the test data. For this subtask
as well, semantic embedding plays a vital role in
capturing the essence of the question-answer pair,
contributing 3.87% gain in accuracy.

7 Conclusion

In this work, we have described our system for
Semeval-2019 Task 8 on Fact-checking in cQA
Forums. Our system leverages data augmentation
and integrates knowledge from various aspects,
such as the semantics, linguistics, syntax and writ-
ing style along with complementary information
from trustworthy external sources and QLF.

Our submission was ranked third in Subtask A
with marginal performance differences compared
to the best-ranked systems. Our current best so-
lution is ranked first on the leaderboard with 88%
accuracy7. In subtask B, our current best solution
is ranked 2nd, with 58.33% MAP score, highest
among all participating systems7.

However, none of the participating systems
could beat the majority baseline for subtask B in
terms of accuracy, which signifies that we are still
far from solving this task to its entirety with a de-
cent performance. Thus, there remains a lot of po-
tential in this research direction.

1170

References
Christopher JC Burges. 1998. A tutorial on support

vector machines for pattern recognition. Data min-
ing and knowledge discovery, 2(2):121–167.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Joan B Hooper. 1974. On assertive predicates. Indiana
University Linguistics Club.

Ken Hyland. 2018. Metadiscourse: Exploring interac-
tion in writing. Bloomsbury Publishing.

Lauri Karttunen. 1971. Implicative verbs. Language,
pages 340–358.

Caroline Lyon, James Malcolm, and Bob Dickerson.
2001. Detecting short passages of similar text in
large document collections. In Proceedings of the.

Harish Tayyar Madabushi and Mark Lee. 2016. High
accuracy rule-based question classification using
question syntax and semantics. In Proceedings of
COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers,
pages 1220–1230.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tsvetomila Mihaylova, Preslav Nakov, Lluis Marquez,
Alberto Barron-Cedeno, Mitra Mohtarami, Georgi
Karadzhov, and James Glass. 2018. Fact checking
in community forums. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. Semeval-2017
task 3: Community question answering. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 27–48.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
Semeval-2015 task 3: Answer selection in com-
munity question answering. In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 269–281.

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim
Freihat, Jim Glass, and Bilal Randeree. 2016.
SemEval-2016 task 3: Community question answer-
ing. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval ’16, San
Diego, California. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Ellen Riloff and Janyce Wiebe. 2003. Learning extrac-
tion patterns for subjective expressions. In Proceed-
ings of the 2003 conference on Empirical methods in
natural language processing.

Veronika Vincze. 2013. Weasels, hedges and peacocks:
Discourse-level uncertainty in wikipedia articles.

Jeffrey S Vitter. 1985. Random sampling with a reser-
voir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57.

1171

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1172–1175
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

TMLab SRPOL at SemEval-2019 Task 8: Fact Checking in Community
Question Answering Forums

Piotr Niewiński, Aleksander Wawer, Maria Pszona, Maria Janicka
Samsung R&D Institute Poland

pl. Europejski 1
00-844 Warsaw, Poland

{p.niewinski, a.wawer, m.pszona, m.janicka}@samsung.com

Abstract

The article describes our submission to SemE-
val 2019 Task 8 on Fact-Checking in Com-
munity Forums. The systems under discus-
sion participated in Subtask A: decide whe-
ther a question asks for factual information,
opinion/advice or is just socializing. Our pri-
mary submission was ranked as the second one
among all participants in the official evaluation
phase. The article presents our primary solu-
tion: Deeply Regularized Residual Neural Ne-
twork (DRR NN) with Universal Sentence En-
coder embeddings. This is followed by a de-
scription of two contrastive solutions based on
ensemble methods.

1 Introduction

Community question answering forums are good
platforms for knowledge sharing; hence, they are
widely used sources of information. The growing
popularity of such knowledge exchange leads to a
growing need to automate the process of verifying
the post quality. The first step, often overlooked,
is to categorize each question and establish what
kind of information the user seeks.

Question classification has been mainly used to
support question answering systems. Two main
method types have been proposed in the litera-
ture: (1) rule-based approaches with linguistic fe-
atures (Tomuro, 2004; Huang et al., 2008; Silva
et al., 2011), and (2) machine learning approaches
(Zhang and Lee, 2003; Metzler and Croft, 2005).
These methods are rather simple, due to the fact
that question classification is often just a prepro-
cessing step in a larger task. However, we can ob-
serve some recent advances in this area, such as
ULMFiT (Howard and Ruder, 2018), which achie-
ves state-of-the-art performance on the TREC da-
taset (Voorhees and Tice, 1999).

The present article describes our systems sub-
mitted to the SemEval 2019 competition Task 8

subtask A on question classification. The com-
petition data set consisted of QatarLiving forum
questions classified as FACTUAL, OPINION or
SOCIALIZING. The training data contained only
1,118 questions. Moreover, according to our eva-
luation, human-level accuracy on this data set was
about 0.75, which was relatively low. Therefore,
we approached the task as a challenging classifi-
cation problem.

The article is structured as follows. Section 2
presents our experiments with preprocessing me-
thods. Section 3 describes our official submission,
where we propose an architecture utilizing several
regularization methods to address the problem of
the small data set. For comparative purposes, sec-
tion 4 presents two ensemble models as contrastive
examples. Section 5 provides the results achieved
by the models. Lastly, section 6 concludes the di-
scussion.

2 Data Preprocessing

We tested a few simple text preprocessing setups.
Unfortunately, none of them helped the models
achieve improved results. Hence, they are here
presented as negative results, and for reference.

First, all emojis were removed from the text,
and all URLs were replaced with the string ‘url
link’. Next, all dates and hours were replaced with
‘date’ and ‘hour’, respectively. Ordinal numbers
– i.e. 1st, 2nd, 5th etc. – were replaced with
‘nth’, while the remaining numbers were substitu-
ted wtih ‘num’. All of these sequences were found
using regular expressions. Furthermore, if most of
the letters were uppercase, the whole text was lo-
wercased.

Second, some of the forum-specific jargon was
replaced with more generally used terms. This was
achieved by an internally prepared dictionary that
translated ‘qar’ into ‘Qatar currency’, ‘qling’ into

1172

‘browsing Qatar forum’, ‘ql’ into ‘Qatar forum’,
‘villagio’ to ‘Qatar shopping center’, etc. Addi-
tionally, it helped us to correct common spelling
errors, such as ‘doha’ for ‘Doha’ and ‘qatar’ for
‘Qatar’. Finally, spelling correction was perfor-
med by a custom character-based CNN language
model. This way, we hoped to obtain a better re-
presentation of texts when embedded into vectors.

However, the experiments showed that none of
these methods brought significant improvement in
classification accuracy. It seemed that noise re-
moval, combined with text normalization, depri-
ved the data of significant features and informa-
tion which carried crucial meaning for preparing
text embeddings. Therefore, we finally did not
perform any preprocessing and worked on raw qu-
estion subjects and body text.

3 Primary Submission

3.1 Features

The feature space for the models was created by
combining three different sources of information:

1. Universal Sentence Encoder – The concate-
nated post subject and body text were em-
bedded with the Universal Sentence Enco-
der (USE) (Cer et al., 2018) to create a 512-
dimensional vector representation.

2. fastText embeddings – The concatenated post
subject and body text were tokenized with
the Spacy library and embedded on the word
level with 300-dimensional fastText vectors.
Then, the vectors were averaged on the sequ-
ence dimension.

3. Category statistics – For each QL post cate-
gory, the ratio of the FACTUAL, OPINION
and SOCIALIZING labels was calculated.
The three numbers were normalized, forming
a 3-dimensional vector.

The three subfeature vectors were concatenated
to produce an 815-dimensional vector for each qu-
estion.

3.2 Model Architecture

We proposed the Deeply Regularized Residual
Neutral Network architecture, shown in Figure 1.

The model took as its input the 815-dimensional
vector of floats (concatenated USE embeddings,

Figure 1: The architecture of DRR NN (primary sub-
mission).

fastText embeddings averaged, and category stati-
stics). During the training, a large dropout of 0.73
was applied to the input vector.

The core of the model was a deep subnetwork
built of 12 stacked blocks. Each block contained
an 81-dimensional dense layer followed by ReLU
activation, residual connection, layer normaliza-
tion and 0.17 dropout. Finally the output of the
last block was projected with a dense layer into a
3-dim logits vector.

The model was trained with the Adam optimi-
zer, at a 6e-3 learning rate, and with 500-epoch li-
near warmup. We used softmax cross entropy loss
with 0.14 of L2 penalty regularization.

All model hyperparameters were optimized
with a randomized search algorithm and 5-fold
cross-validation over the training data set. The fi-
nal model size was 148K learnable variables.

1173

3.3 Model Training
The main idea behind the advanced training pro-
cedure was to split the training data into a bigger
learning part and a smaller validation part. The
loss was minimized on the learning part until the
accuracy on the validation part began to increase.

Generally, model performance depends on
many factors, such as training efficiency, model
architecture, optimization algorithms, etc. At the
same time, it is affected by sample distribution be-
tween learning and validation parts.

In order to aggregate more knowledge from
the training data, we used 5-fold cross-validation
splits. We prepared 4 such splits using different
random seeds. This procedure gave us a total of
20 different pairs of learning/validation sets.

We set the maximum number of epochs to 700.
The model was validated after each training epoch
and saved until its classification accuracy impro-
ved. Usually, the accuracy was improving for
about 300-600 epochs. For the final prediction, we
used the argmax of the summarized softmax of 20
models:

argmax

20∑

k=1

softmax(logitsk).

4 Contrastive Submissions

For the contrastive submissions, our overall idea
was to utilize multiple models that were as varied
as possible, and combine their outputs.

In the first step, we used the following systems
to obtain label probabilities for each question:

• ELMO (Peters et al., 2018) – a deep, conte-
xtualized word representation to obtain sen-
tence representation, followed by a neural ne-
twork of two dense layers. We arrived at the
following architecture and hyper-parameters
during the optimization: a dense layer of
48 neurons (dropout 0.5), followed by a se-
cond dense layer of 10 neurons (dropout
0.5). When tested on the training data in
cross-validation, this solution alone achieved
a micro-accuracy of 0.72.

• BERT (Devlin et al., 2018) – a deep, bidi-
rectional transformer model with sequence
classification layers on the top. The BERT
language model was pre-trained, so only the
sequence classifier was initialized and tra-
ined on the SemEval data. We used the Py-
Torch implementation of the case-insensitive

‘base’ version1 with the optimal number of
epochs (10) determined on the development
set. When tested on the training data in
cross-validation, this solution alone achieved
a micro-accuracy of 0.717.

• Bag-of-words – a machine learning solution
based on character n-gram vectorization with
TF-IDF weighting and a linear kernel SVM
classifier. We used the implementation from
the scikit-learn package (Pedregosa et al.,
2011). When tested on the training data in
cross-validation, this solution alone achieved
a micro-accuracy of 0.699.

In the second step, we prepared two different
ensemble models combining the probability out-
puts from ELMO, BERT, Machine Learning and
DRR NN.

The first contrastive submission (Contrastive-
1) used the SVM classifier with linear kernel.
The second contrastive submission (Contrastive-
2) was designed as a bagging classifier of 10 esti-
mators, each a voting ensemble of logistic regres-
sion, random forest and SVM with linear kernel.

5 Results

Table 1 contains the results of the evaluation on
the official test set. The primary submission and
both contrastive submissions were presented du-
ring the official phase of the contest. After the of-
ficial competition, we tested additional solutions.
Surprisingly, we achieved the best results with the
SVM classifier (RBF kernel) on the USE embed-
ding (Post-evaluation).

Model Accuracy F1 AvgRec
DRR NN (Primary) 0.83 0.72 0.76
Contrastive-1 0.83 0.72 0.76
Contrastive-2 0.81 0.69 0.73
Post-evaluation 0.87 0.77 0.78

Table 1: Official results of our submissions on the test
set.

6 Conclusions

According to the experiments, and as reflected in
the results on the test set, the best performing sys-
tem was DRR NN based on the Universal Sen-
tence Encoder. We attributed its good performance

1https://github.com/huggingface/
pytorch-pretrained-BERT

1174

on the small data set to the deep regularization
and the advanced training procedure. However,
the SVM classifier performed even better, proba-
bly thanks to its overfitting resistance (Xu et al.,
2009).

Additionally, we tested several approaches, inc-
luding the usual high performers, such as BERT or
ELMO, and the ensemble systems. None of them
was able to outperform our primary submission.
We attribute such behaviour to data over-fitting
and lack of ability to extract higher-level depen-
dencies from the provided samples.

Some influence on the results could have been
exerted by the significantly differing distributions
of post categories among the train, dev and test
sets. For example, while more than 30% of all qu-
estions from the test set belonged to the ‘Visas and
permits’ category, only 8% from the train set and
5% from the dev set fall into the same category.

Linear SVM with the USE embeddings reached
an accuracy of 0.84 on the dev set and 0.86 on
the test set. Surprisingly, with a different set of
parameters, we achieved 0.87 accuracy on the test
set, and only 0.81 accuracy on the dev set.

References
Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Ni-

cole Limtiaco, Rhomni St John, Noah Constant, Ma-
rio Guajardo-Cespedes, Steve Yuan, Chris Tar, et al.
2018. Universal sentence encoder. arXiv preprint
arXiv:1803.11175.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kri-
stina Toutanova. 2018. BERT: pre-training of deep
bidirectional transformers for language understan-
ding. CoRR, abs/1810.04805.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Zhiheng Huang, Marcus Thint, and Zengchang Qin.
2008. Question classification using head words and
their hypernyms. In Proceedings of the Conference
on Empirical Methods in Natural Language Proces-
sing, pages 927–936. Association for Computational
Linguistics.

Donald Metzler and W Bruce Croft. 2005. Analysis of
statistical question classification for fact-based qu-
estions. Information Retrieval, 8(3):481–504.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Du-
chesnay. 2011. Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research,
12:2825–2830.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word re-
presentations. In Proceedings of the 2018 Confe-
rence of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237. Association for Computational Lingu-
istics.

Joao Silva, Luı́sa Coheur, Ana Cristina Mendes, and
Andreas Wichert. 2011. From symbolic to sub-
symbolic information in question classification. Ar-
tificial Intelligence Review, 35(2):137–154.

Noriko Tomuro. 2004. Question terminology and re-
presentation for question type classification. Ter-
minology. International Journal of Theoretical
and Applied Issues in Specialized Communication,
10(1):153–168.

Ellen M Voorhees and Dawn M Tice. 1999. The trec-8
question answering track evaluation. In TREC, vo-
lume 1999, page 82. Citeseer.

Huan Xu, Constantine Caramanis, and Shie Mannor.
2009. Robustness and regularization of support vec-
tor machines. Journal of Machine Learning Rese-
arch, 10(Jul):1485–1510.

Dell Zhang and Wee Sun Lee. 2003. Question classi-
fication using support vector machines. In Proce-
edings of the 26th annual international ACM SIGIR
conference on Research and development in infor-
maion retrieval, pages 26–32. ACM.

1175

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1176–1179
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

TueFact at SemEval 2019 Task 8: Fact checking in community question
answering forums: context matters

Réka Juhász
University of Tübingen

Wilhelmstr. 19-23
72074 Tübingen, Germany
reka.juhasz@student
.uni-tuebingen.de

Franziska Barbara Linnenschmidt
University of Tübingen

Wilhelmstr. 19-23
72074 Tübingen, Germany
franziska-barbara.

linnenschmidt@student
.uni-tuebingen.de

Teslin Roys
University of Tübingen

Wilhelmstr. 19-23
72074 Tübingen, Germany
teslin.roys@student
.uni-tuebingen.de

Abstract

The SemEval 2019 Task 8 on Fact-Checking in
community question answering forums aimed
to classify questions into categories and ver-
ify the correctness of answers given on the
QatarLiving public forum. The task was di-
vided into two subtasks: the first classifying
the question, the second the answers. The Tue-
Fact system described in this paper used differ-
ent approaches for the two subtasks. Subtask
A makes use of word vectors based on a bag-
of-word-ngram model using up to trigrams.
Predictions are done using multi-class logistic
regression. The official SemEval result lists
an accuracy of 0.60. Subtask B uses vector-
ized character n-grams up to trigrams instead.
Predictions are done using a LSTM model and
achieved an accuracy of 0.53 on the final Se-
mEval Task 8 evaluation set. In a comparison
of contextual inputs to subtask B, it was de-
termined that more contextual data improved
results, but only up to a point.

1 Introduction

The SemEval 2019 Task 8 on Fact-Checking gave
us the opportunity to develop a system that evalu-
ates the factual content of questions and answers
in the field of community question answering fo-
rums. This popular niche on the internet pro-
vides helpful information for specific interests,
such as information on life in Qatar or elsewhere
in the world, coding help on Stack Overflow, or
answers to a wide range of questions on Quora,
Reddit/r/Ask or Yahoo! Answers. Often other re-
sources are not at hand or misleading, and it proves
difficult to find what one is looking for amid non-
relevant questions, let alone be sure the answers
found are correct. A system that can, with some
degree of accuracy, pick out the factual questions
and then predict the correctness of the given an-
swers, is a means to ensure quality in community

question answering forums. There may also be
many further applications in information retrieval
– ordering search results based on estimated fac-
tuality in a web query or even identifying truthful
answers in automatic question answering systems.

The task was divided into two subtasks. While
Subtask A required a classification of the ques-
tions into three distinct categories “Factual”, “So-
cializing”, and “Opinion”, Subtask B took the sub-
set of the “Factual” questions to classify them ac-
cording to either “True”, “False” or “NonFactual”
in terms of the actual answer. Similar tasks were
already part of SemEval 2015 (Nakov et al., 2015)
and SemEval 2016 (Nakov et al., 2016).

The Tuefact system follows this division, even
going as far as using different pre-processing to
accommodate for the different needs. While the
question classification is done with a bag of word
approach using word trigrams, the answer clas-
sification uses character trigrams. The models
used to make predictions are logistic regression for
Subtask A and a long short-term memory model
(LSTM) (Hochreiter and Schmidhuber, 1997) for
Subtask B.

The following section describes the data pro-
vided for the tasks. The next two sections describe
the two components of our language independent
system in detail together with a brief discussion
of failed approaches and changes that lead to im-
provements. In the last two sections we discuss
further work to be done on the TueFact system and
our conclusion about the current version of it.

2 The data

The pre-annotated data from the QatarLiving fo-
rum was provided in XML format. It was split
into two files: one for the question classification,
the other for the answer classification.

The data for Subtask A comprised a total of

1176

168 questions. Each question contained a sub-
ject line, i.e. a summary of the question, the de-
tailed question, and all answers given to the ques-
tion. The meta information contained amongst
others the date, user name, and id. The questions
were annotated into the three categories “Factual”,
“Opinion”, and “Socializing”. 33 of the questions
were labeled as “Factual”, 73 as “Opinion”, and
62 as “Socializing”. The longest question was 98
words long, the shortest only 5, the average length
of questions was 41.1 words.

The data provided for Subtask B contained a to-
tal of 95 questions labeled “Factual”. The meta
information was the same. Of the 356 given an-
swers 128 were labeled as “True”, 102 as “False”,
and 126 as “NonFactual”. The longest answer
was 195 words long, the shortest consisted of only
one word, the average length of answers was 31.5
words.

For further information about the data please re-
fer to the task description paper from Mihaylova
et. al (2019). No special data pre-processing steps
were used in preparation for either subtask – no
noticeable performance gains were observed when
stripping accents, punctuation symbols, or lower-
casing.

3 Question classification

The goal of this subtask was to classify the ques-
tions posted on the QatarLiving forum,1 a commu-
nity question answering forum, as either: 1. “Fac-
tual”, meaning that it asks about something spe-
cific, and can receive a correct or incorrect answer,
2. “Opinion”, in which the answers cannot be right
or wrong, as it does not ask for objective facts but
the personal input of the answering people, and 3.
“Socializing”, where the goal of posting the ques-
tion was not seeking information at all, but rather
looking for online communication.

1https://www.qatarliving.com/forum

3.1 Approach
We approached this task as a multi-class learn-
ing problem, instead of first dividing the questions
into “Factual” and “NonFactual”, and then further
dividing the “NonFactual” questions into “Opin-
ion” and “Socializing”. As baseline model we de-
cided to use multi-class logistic regression based
on character bigrams, and only the subject line
of the questions as input. Our reasoning for the
use of this baseline model was to see how such a
basic model would perform, and where we could
take it from there. It achieved an accuracy of just
over 50% on our development set, a randomly split
quarter from the data set provided.

The current model uses a multi-class logistic re-
gression model with a limited-memory Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (Sa-
putro and Widyaningsih, 2017) solver to predict
the labels. The labels were encoded using the
scikit-learn library (Pedregosa et al., 2011) and the
questions vectorized from word uni-, bi- and tri-
grams. We used raw counts for all word-grams,
and did not add weighting. We further decided not
to use a language dictionary as external feature, in
order to maintain language independence.

3.2 Results
For means of evaluating our models, and as the
data set was small, we have randomly split the
training data and used one quarter of it as a de-
velopment set. The development set was then not
only used to evaluate our model in terms of ac-
curcay, but also to compare the predicted to the
actual labels. Our system was best at correctly
predicting “Opinion” in an average of 10 cases
compared to an average of four misclassified cases
with no clear tendency of misclassifying it as ei-
ther “Factual” or “Socializing”. False predictions
were equally often made in the classification of
the labels “Socializing” and “Factual”, which sug-
gests further improvement possibilities.

Best training results on the development set
were achieved at an accuracy of 0.714. The of-
ficial SemEval result lists an accuracy of 0.60.

No CC Limited CC Subject + IDs
Only

Full CC

Accuracy 61.5 67.12 79.94 79.92

Table 1: Averaged 5-fold cross-validated accuracy on the development set for the character-based embeddings
variation.

1177

4 Answer classification

In this subtask, answers to the questions from the
first task were to be classified into “Factual” and
“Non-Factual”, and “Factual” items further classi-
fied into “True” or “False”. Unlike in the first task,
there is no distinction made between types of non-
factual comments (e.g. socializing or opinion).

4.1 Approach

Our approach to this task was to treat the problem
as a multiple-class learning problem with three
categories: “Non-Factual”, “True” and “False”.
Variations of the model which split it into two se-
quential learning problems – fact or non-fact, then
true or false – showed no significant difference.

The basic task B model consists of a LSTM net-
work architecture (Hochreiter and Schmidhuber,
1997) with an embedding layer, two hidden lay-
ers of 100 nodes followed by a softmax activa-
tion layer to permit multiple classification. Em-
beddings were trained using the top 400 uni-, bi-
and tri-gram features by frequency in the data. In
training, we used categorical cross-entropy as a
loss function. In all model variations, we trained
for 200 epochs with a batch size of 128 and used
L2 weight regularization with a factor of 0.012.

4.2 Variations and results

We examined three main variations of input to
the model for answer classification: no comment
chain (CC), limited comment chain, subject and
comment identifier only and full comment-chain
(see table 1). In no CC, we included only the com-
ment itself being classified. In limited CC, we in-
cluded the comment and all previous comments in
the chain. In the subject plus comment identifier
variation, we included the question subject head-
ing, the comment text and commenter identifier. In
the full CC variation we included the subject head-
ing and the entirety of all comments in the chain.
In tables 1 and 2, we abbreviate the same way.

Next, we experimented with word-level versus
character-level embeddings (see table 2). In the
end, unfortunately, our best results for task B on

the evaluation set (also with the subject and iden-
tifiers only variation) were less encouraging at 53
percent.

5 Future work

Due to time constraints, several improvements
to the models for both tasks weren’t completed
in time for the final evaluation. For the ques-
tion classification task, we aimed to experiment
with word- or character-embeddings instead of
only a bag-of-n-grams approach in order to enable
work on a multi-channel convolutional neural net-
work model, which is also being pursued further.
In some NLP tasks, CNNs have been shown to
outperform not only traditional machine learning
models but recurrent neural networks as well, and
this may also be the case here (Wu et al., 2016).

For the answer classification task, work is un-
derway on a model variation which tags comments
based on the proportion of their content that can be
found on multiple websites from a web query con-
sisting of the question subject line.

6 Conclusions and analysis

For Subtask A, we considered two approaches:
simple logistic regression, and a convolutional
neural network approach. The initial success of
the logistic regression approach on the develop-
ment data suggests a ‘simplicity first’ strategy is
sensible in this case, but its mediocre performance
on the evaluation data indicates it is not especially
robust.

In Subtask B, we examined only a single ap-
proach using a LSTM trained with embeddings,
but with a number of variations. Variations includ-
ing more of the comment chain as input were more
successful than using single-comment answers as
input, however we found little difference between
including the entire comment chain and includ-
ing only the subject question and comment iden-
tifiers. We suspect this is due to the fact that all
answers include each other at least once in the full-
chain variation, so it provides less to distinguish
the answers from one another. Further, all vari-

No CC/WB Limited CC/WB Full CC/WB

Accuracy 59.87 66.97 79.14

Table 2: Averaged 5-fold cross-validated accuracy on the development set for the word-based embeddings varia-
tion.

1178

ations using character-based embeddings slightly
outperformed model variations employing word-
based embeddings (1 to 5 percent). This isn’t
entirely unexpected – solely character embedding
based models performed very well in the SemEval
2018 Irony Detection task (Van Hee et al., 2018)
as well, which bore similarities. One hypothesis
for this result is that with small input sizes (such
as tweets or forum posts) word-based embeddings
may distinguish fewer distinctions, but it may also
simply be that there is no significant performance
difference. In which case, character- embeddings
should be preferred as they do not require a main-
tenance of a large dictionary.

Overall, the TueFact system is an acceptable
baseline and a solid starting point for further work
in the direction of fact checking in community
question answering forums. But perhaps of great-
est interest are our comparative results under dif-
ferent input. The significance of input choice on
performance is highlighted: our results show that
while inclusion of more context can certainly be
useful, the intuition that more data will always im-
prove performance in this task should not be taken
as a given.

References

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Tsvetomila Mihaylova, Georgi Karadzhov, Atanasova
Pepa, Ramy Baly, Mitra Mohtarami, and Preslav
Nakov. 2019. SemEval-2019 task 8: Fact checking
in community question answering forums. In Pro-
ceedings of the International Workshop on Semantic
Evaluation, SemEval ’19, Minneapolis, MN, USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
Semeval-2015 task 3: Answer selection in com-
munity question answering. In Proceedings of the
9th International Workshop on Semantic Evalua-
tion, SemEval@NAACL-HLT 2015, Denver, Col-
orado, USA, June 4-5, 2015, pages 269–281.

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim
Freihat, Jim Glass, and Bilal Randeree. 2016.

Semeval-2016 task 3: Community question answer-
ing. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval@NAACL-
HLT 2016, San Diego, CA, USA, June 16-17, 2016,
pages 525–545.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Dewi Retno Sari Saputro and Purnami Widyaningsih.
2017. Limited memory broyden-fletcher-goldfarb-
shanno (l-bfgs) method for the parameter estimation
on geographically weighted ordinal logistic regres-
sion model (gwolr). In AIP Conference Proceed-
ings, volume 1868, page 040009. AIP Publishing.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. Semeval-2018 task 3: Irony detection in en-
glish tweets. In Proceedings of The 12th Interna-
tional Workshop on Semantic Evaluation, pages 39–
50.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

1179

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1180–1184
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

YNU-HPCC at SemEval-2019 Task 8: Using A LSTM-Attention Model
for Fact-Checking in Community Forums

Peng Liu, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact:xjzhang@ynu.edu.cn

Abstract
The objective of the task, Fact-Checking in
Community Forums , is to determine whether
an answer to a factual question is true, false,
or whether it even constitutes a proper answer.
In this paper, we propose a system that uses a
long short-term memory with attention mech-
anism (LSTM-Attention) model to complete
the task. The LSTM-Attention model uses two
LSTM(Long Short-Term Memory) to extract
the features of the question and answer pair.
Then, each of the features is sequentially com-
posed using the Attention mechanism, con-
catenating the two vectors into one. Finally,
the concatenated vector is used as input for the
MLP (Multi-Layer Perceptron) and the MLP’s
output layer uses the softmax function to clas-
sify the provided answers into three categories.
This model is capable of extracting the fea-
tures of the question and answer pair well. The
results show that the proposed system outper-
forms the baseline algorithm.

1 Introduction

Many questions pertaining to various fields are
posted to QA forums by users every day, where
they collect answers. However, the answers do
not always address the question asked. Indeed, in
some cases, the answer has nothing to do with the
question. There are several reasons why this is the
case. For example, the responder could have mis-
understood the question and so provided a wrong
answer. Most QA forums have little control over
the quality of the answers posted. Moreover, in
our dynamic world, the true answer was true in the
past, but it may be false now . Figure 1 presents an
example from the Qatar Living forum. In this case,
all three answers could be considered to be good
since they formally answer the question. Never-
theless, a1 contains false information, whereas a2
and a3 are correct, as can be established from the
official government website.

Figure 1: An example from the Qatar Living forum

In this study, we aim to solve the problem of de-
tecting true factual information in online forums.
Given a question requesting factual information,
the goal is to classify the provided answers into
the following categories.

(i) Factual - True: The answer is true and can
be proved by cross referencing with an external
resource.

(ii) Factual - False: The answer gives a factual
response, but it is either false, partially false, or the
responder is uncertain about their response.

(iii) Non-Factual: The answer does not provide
factual information relevant to the question; it is
either an opinion or an advice that cannot be veri-
fied.

To the best of our knowledge, various ap-
proaches have been proposed for the purposes of
fact-checking in community forums (Mihaylova
et al., 2018), such as long short-term memory
(Gers et al., 2000) .

In this paper, we provide an LSTM-Attention
model for fact-checking in community question
answering forums. In our approach, we use pre-
trained word vectors for word embedding. The
LSTM layer is used to extract features from the
question and answer sentences. Finally, these
features are used by the Attention Mechanism
(Vaswani et al., 2017) with a focus on extracting
useful information from the features that are sig-
nificantly relevant to the current output.

The remainder of this paper is organized as fol-

1180

Figure 2: LSTM-Attention Model

lows. In section 2, we described the LSTM, Atten-
tion model, and their combination. Section 3 sum-
marizes the comparative results of the proposed
model against the baseline algorithm. Section 4
concludes the paper.

2 LSTM-Attention Model for
Fact-Checking

Figure 2 shows the architecture of our model.
First, a sentence is transformed into a feature ma-
trix. The feature matrix is then passed into the
LSTM to extract salient features.

A simple tokenizer is used to transform each
sentence into an array of tokens, which consti-
tute the input to the model. This is then mapped
into a feature matrix or sentence matrix by an em-
bedding layer. The n-gram features are extracted
when the feature matrix passes through the LSTM,
and the output of the LSTM is passed into the Self-
Attention layer. This layer composes the useful
features to output the final regression results by
means of a linear decoder.

2.1 Embedding Layer

Vectors encoded using the one-hot method have
large dimensions and are sparse. Suppose we
encounter a 2,000-word dictionary in natural
language processing (NLP). When the one-hot
method is used for coding, each word will be rep-

Figure 3: LSTM

resented by a vector containing 2,000 integers. If
the dictionary is larger, this method will be very
inefficient.

The one-hot-vector method has many defects
when used for word encoding. One is that it has
too much redundancy; the other is that the dimen-
sion of the vector is too high. The vector will have
as many dimensions as there are words, which will
increase the computational complexity. Word-
embedding Mikolov et al. (2013) transforms an
original high-dimensional redundant vector into a
low-latitude vector with strong information con-
tent. No matter how many words there are, the
converted vector generally has only 256 dimen-
sions to 1024 dimensions.

The embedding layer is the first layer of the
model. Each sentence is regarded as a sequence
of word tokens t1, t2...tn , where n is the length of
the token vector.

2.2 Long Short-Term Memory

In theory, RNN Tsoi and Back (1994) should be
able to handle such long-term dependency. We can
pick and choose the parameters carefully to solve
the most elementary form of this type of problem
(Le et al., 2015). However, in practice, RNN is not
able to learn this knowledge successfully. There-
fore, the LSTM was designed to solve the problem
of long-term dependency. In practice, the LSTM
excels at dealing with long-term dependency in-
formation rather than the ability to acquire it at
great cost. RNN has a chain of repeating neural
network modules. In standard RNN, the repeating
module has a very simple structure. LSTM has the
same structure, but the structure of repeating mod-
ules is more complex. This is different from that
of the single neural network layer. Figure 3 shows
the detailed structure of an LSTM. The LSTM cal-

1181

Figure 4: Attention

culates hidden states Ht and outputs Ct using the
following equations.
• Gates:

it = σ (Wxixt +Wxiht−1 + bi)

ft = σ (Wxfxt +Whfht−1 + bf)

ot = σ (Wxoxt +Wxoht−1 + bo)

(1)

• Input transformation:

c int = tanh (Wxixt +Wxiht−1 + bin) (2)

• State update:

ct = ft ⊗ ct−1 + it ⊗ c int
ht = ot ⊗ tanh (ct)

(3)

Here, xt is the input vector; ct is the cell state vec-
tor; W and b are layer parameters; ft , it , and
ot are gate vectors; and σ is the sigmoid function.
Note that ⊗ denotes the Hadamard product. Bidi-
rectional LSTM comprises a forward LSTM and
a reverse LSTM. It captures context feature infor-
mation very well as compared to LSTM. There-
fore, bidirectional LSTM usually performs better
than LSTM and we use it to process the sequences.
Among the many hidden layers of deep neural net-
works, the earlier layers learn simple low-level
features, and later layers combine simple features
to predict more complex things. Therefore, we use
several hidden layers to make predictions more ac-
curate.

2.3 Attention Mechanism

The concept of the Attention mechanism came
from the human visual attention mechanism (But-
terworth and Cochran, 1980). When people per-
ceive things visually, they usually do not observe
the scene end-to-end. Instead, they tend to observe
specific parts according to their needs. When peo-
ple find that a scene has something they want to
observe in a certain part, they will learn to pay
attention to that part in the future when similar
scenes appear. With RNN or LSTM, the informa-
tion accumulation of several time steps is needed
to connect long-distance interdependent features.
However, the longer the distance is, the less likely
it is to be captured effectively. In the Attention cal-
culation process, the connection between any two
words in a sentence is directly established through
one calculation step. Thus, the distance between
long-distance dependent features is greatly short-
ened, which is conducive to the effective use of
these features. Obviously, it is easier to capture
the long-distance interdependent features in sen-
tences after the introduction of Attention. In fig-
ure 4, self attention can be described as mapping
a query and a set of key-value pairs to an out-
put. The calculation of Attention is mainly di-
vided into three steps. The first step calculates the
similarity between query and each key to get the
weight. The second step uses a softmax function
(Jean et al., 2015) to normalize these weights. Fi-
nally, the weight and the corresponding key value
are weighted and summed to get the final Atten-
tion. Currently, in NLP research, the key and value
are always the same, that is, key=value. In this
part, we use self-attention, which is denoted as
key=value=query (Firat et al., 2016).

Attention(Q,K) =
n∑

n=1

Similarity(Q,Ki) ∗ Vi
(4)

2.4 MLP Layer

This layer is a fully connected layer that multi-
plies the results of the previous layer with a weight
matrix and adds a bias vector. The ReLU (Jarrett
et al., 2009) activation function is also applied in
this layer. The final result vectors are finally input
to the output layer.

1182

2.5 Output Layer

This layer outputs the final classification result. It
is a fully connected layer that uses softmax as an
activation function.

3 Experiments and Evaluation

3.1 Data Preprocessing

The organizers of the competition provided the
training data that included one question and a
number of answers. Each of answer was to be
classified into the categories: (Factual - TRUE,
Factual - FALSE, Non-Factual). We extracted the
questions and corresponding answers, and then
concatenated them into the form of a question-
answer pair. As all of the data was provided by
the ”Qatar Living” forum, the content primarily
contained English text, and all non-english char-
acters were ignored. We converted all letters into
lower case to accommodate the known tokens in
word2vec pretrained word vectors. We counted
the sentence length of questions and answers.
Most of them were no more than 80 words. There-
fore, we set the length of the sentence to 80 words.
The word2vec pretrained data was used to initial-
ize the weight of the embedding layer. word2vec
is a popular unsupervised machine learning algo-
rithm to acquire word embedding vectors. We
used 100-dimension word vectors to initialize the
weight of the embedding layer.

3.2 Implementation

We used Keras with TensorFlow backend. The
hyper-parameters were tuned in train and dev sets
using the scikit-learn grid search function that can
iterate through all possible parameter combina-
tions to identify the one that provides the best per-
formance. The optimal parameters found are as
follows. The LSTM layer count is 2, and the di-
mension of the LSTM hidden layer (d) is 200. The
dropout rate is 0.3. The training has a batch size
of 128 and runs for 30 epochs. The results also re-
vealed that the model using pre-trained word2vec
vectors and an Adam optimizer achieved the best
performance.

3.3 Evaluation Metrics

The system was scored based on Accuracy, macro-
F1, and AvgRec where the ”Factual - True” in-
stances were considered to be positive, and the re-
maining instances to be negative.

3.4 Results and Discussion

To prove the advantages of our system architec-
ture, we ran a 6-fold cross validation on different
sets of layers. On training data, the trial data ex-
periment results shown in Table 1:

Model F1-score
CNN 0.483

LSTM 0.498
BiLSTM 0.514

BiLSTM-Attention 0.548

Table 1: The trial data experiment results.

Our system achieved 0.548 accuracy on Subtask
B. The evaluation results revealed that our pro-
posed system showed considerable improvement
over the average baseline, which we attribute to
our LSTM with Attention architecture. Our sys-
tem can effectively extract features from question
and answer. Using this, prediction can be made
on whether the answers are actually factual and
whether the fact is true or not.

4 Conclusion

In this paper, we described our submission to the
SemEval 2019 Workshop Task 8, which involved
Fact-Checking in Community Forums. The pro-
posed LSTM-Attention model combines LSTM
and Attention. LSTM extracts local information
within both the answer and question. The Atten-
tion Mechanism resolves the issue of poor learn-
ing effect on the long input sequence. The official
results reveal that our system output performed
all baseline algorithms and ranked 9th on Subtask
B. In future work, we will query a search engine
to fetch relevant documents from the Internet to
achieve an improved classification system.

Acknowledgements

This work was supported by the National Nat-
ural Science Foundation of China (NSFC) un-
der Grants No.61702443 and No.61762091, and
in part by Educational Commission of Yunnan
Province of China under Grant No.2017ZZX030.
The authors would like to thank the anonymous
reviewers and the area chairs for their constructive
comments.

1183

References
George Butterworth and Edward Cochran. 1980. To-

wards a mechanism of joint visual attention in hu-
man infancy. International Journal of Behavioral
Development, 3(3):253–272.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine
translation with a shared attention mechanism.

F. A. Gers, J Schmidhuber, and F Cummins. 2000.
Learning to forget: continual prediction with lstm.
Neural Computation, 12(10):2451–2471.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ran-
zato, and Yann Lecun. 2009. What is the best
multi-stage architecture for object recognition? vol-
ume 12.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. Com-
puter Science.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton.
2015. A simple way to initialize recurrent networks
of rectified linear units. Computer Science.

Tsvetomila Mihaylova, Preslav Nakov, Lluis Marquez,
Alberto Barron-Cedeno, and James Glass. 2018.
Fact checking in community forums.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Computer Science.

A C Tsoi and A D Back. 1994. Locally recurrent glob-
ally feedforward networks: a critical review of archi-
tectures. IEEE Transactions on Neural Networks,
5(2):229–39.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

1184

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1185–1191
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

DBMS-KU at SemEval-2019 Task 9: Exploring Machine Learning
Approaches in Classifying Text as Suggestion or Non-Suggestion

Tirana Noor Fatyanosa1, Al Hafiz Akbar Maulana Siagian1,3, Masayoshi Aritsugi2
1Computer Science and Electrical Engineering

Graduate School of Science and Technology, Kumamoto University, Japan
2Big Data Science and Technology

Faculty of Advanced Science and Technology, Kumamoto University, Japan
3Indonesian Institute of Sciences, Indonesia

{fatyanosa,alha002}@dbms.cs.kumamoto-u.ac.jp
aritsugi@cs.kumamoto-u.ac.jp

Abstract
This paper describes the participation of
DBMS-KU team in the SemEval 2019 Task
9, that is, suggestion mining from online
reviews and forums. To deal with this
task, we explore several machine learning ap-
proaches, i.e., Random Forest (RF), Logis-
tic Regression (LR), Multinomial Naive Bayes
(MNB), Linear Support Vector Classification
(LSVC), Sublinear Support Vector Classifica-
tion (SSVC), Convolutional Neural Network
(CNN), and Variable Length Chromosome Ge-
netic Algorithm-Naive Bayes (VLCGA-NB).
Our system obtains reasonable results of F1-
Score 0.47 and 0.37 on the evaluation data
in Subtask A and Subtask B, respectively. In
particular, our obtained results outperform the
baseline in Subtask A. Interestingly, the results
seem to show that our system could perform
well in classifying Non-suggestion class.

1 Introduction

Nowadays, a huge number of texts are posted in
online reviews or discussion forums. Such media
can be a valuable source for obtaining a suggestion
about products or services (Negi and Buitelaar,
2015; Negi et al., 2016). The obtained suggestion
is not only useful for readers but also important
information for stakeholders (Negi et al., 2016).
Indeed, such advice can be used to improving the
quality of products or giving helpful recommenda-
tions (Brun and Hagege, 2013). However, identi-
fying a suggestion from a lot of reviews or com-
ments needs extra effort and time. Moreover, such
online texts are mostly in unstructured form (Negi
et al., 2018; Negi and Buitelaar, 2017). Thus, au-
tomatically mining the suggestion from given texts
is challenging and significant (Negi et al., 2016).

Suggestion mining is relatively a new research
interest in text classification tasks (Negi and Buite-
laar, 2015). Several studies have initiated to min-
ing suggestions from online texts (Negi et al.,

2018; Negi and Buitelaar, 2017; Negi et al.,
2016; Negi, 2016; Negi and Buitelaar, 2015;
Brun and Hagege, 2013; Ramanand et al., 2010;
Dong et al., 2013; Wicaksono and Myaeng, 2012,
2013). Particularly, (Negi and Buitelaar, 2015;
Brun and Hagege, 2013; Ramanand et al., 2010)
have tried to identify suggestions from customer
reviews. Meanwhile, (Negi, 2016; Dong et al.,
2013; Wicaksono and Myaeng, 2012, 2013) have
mined such advice by using Twitter or discussion
forums dataset. Then, (Negi et al., 2018; Negi and
Buitelaar, 2017) have utilized WikiHow and open
domain corpora for their work. However, they
concluded that it is not easy to identify sugges-
tion texts automatically. In other words, it still has
room to improving the classification result in the
suggestion mining task. The task of suggestion
mining from online reviews and forums, namely,
Task 9 (Negi et al., 2019), is opened in the Inter-
national Workshop on Semantic Evaluation 2019
(SemEval-2019).

This paper delineates the participation of
DBMS-KU team in both Subtask A and Sub-
task B of Task 9 of SemEval-2019 (Negi et al.,
2019). To address these two Subtasks, we uti-
lize several approaches, namely, Random For-
est (RF), Logistic Regression (LR), Multinomial
Naive Bayes (MNB), Linear Support Vector Clas-
sification (LSVC), Sublinear Support Vector Clas-
sification (SSVC), Convolutional Neural Network
(CNN), and Variable Length Chromosome Ge-
netic Algorithm Naive Bayes (VLCGA-NB). The
obtained results of our experiments are encourag-
ing and show a promising improvement in identi-
fying Suggestion and Non-suggestion.

The rest of this paper is organized as follows.
Section 2 explains the problem definition, prob-
lem formulation, and dataset. Section 3 presents
the tools and libraries used in this work. Section 4
describes our employed methods. Section 5 repre-

1185

sents our experiments that consist of data prepro-
cessing, parameter, and evaluation measurement.
Section 6 discusses our obtained results. Finally,
we conclude this work in Section 7.

2 Problem Definition

Suggestion mining is a binary classification prob-
lem. Particularly, suggestion mining is a task that
labels sentences as Suggestion or Non-suggestion.
However, suggestion sentences can have very
broad meaning. Thus, the domain and scope of
the suggestion text classification should be de-
scribed. The Task 9 of SemEval-2019 consists
of Subtask A and Subtask B that are classifying a
suggestion in intra-domain and cross-domain, re-
spectively (Negi et al., 2019).

2.1 Problem Formulation

Suggestion text classification consists of assigning
suggestion, nonsuggestion to (si, lj) ∈ SxL,
where S is sentences and L = [l1, ..., ln] is a set
of n predefined labels. Each sentence is classified
as Suggestion or Non-suggestion class.

2.2 Datasets

Dataset used in Task 9 of SemEval-2019 is di-
vided into training, trial, and evaluation parts
(Negi et al., 2019). The dataset consists of three
columns: id, sentence, and label (see Table 1). The
provided dataset is imbalanced in which, over-
all, Non-suggestion class is larger than Suggestion
one.

3 Tools and Libraries

The common classification methods, such as Sup-
port Vector Machine, Random Forest Classifier,
Linear Regression, and Naive Bayes application
are facilitated by the most outstanding library
for machine learning, namely, SciKit-Learn (Pe-
dregosa et al., 2011). Correspond to its name,
NLTK (Bird et al., 2009) is used as the toolkit
for Natural Language Processing (NLP) opera-
tions such as tokenization, stemming, metrics, cor-
pus, and classification. Pandas (McKinney, 2010)
is chosen as the tools for collection and format the
data because of its ease of use. The Keras library
(Chollet et al., 2015) that runs on top of Tensor-
flow (Abadi et al., 2015) is also utilized for build-
ing high-level neural networks, i.e., for building
the Convolutional Neural Network in this work.

Furthermore, we utilize Seaborn1 and Matplotlib
library (Hunter, 2007) as confusion matrix visual-
ization.

4 Classification Methods

This section details the classification methods
used in our experiments on Suggestion classifica-
tion.

4.1 Baseline

Baseline method provided by organizer utilizes
the suggestion keyword, pattern string, and Part-
Of-Speech (POS) Tagger matching. The list of
suggestion keywords utilized in the baseline is
“suggest”, “recommend”, “hopefully”, “go for”,
“request”, “it would be nice”, “adding”, “should
come with”, “should be able”, “could come with”,
“i need”, “we need”, “needs”, “would like to”,
“would love to”, “allow”, and “add”. The baseline
method also utilizes the wishes identification pat-
tern string from (Goldberg et al., 2009). The POS
tag of each word in the sentences is also done to
collect Modal and Verb POS tag only. The classi-
fication is done by checking all words in the sen-
tence. If the sentence contains one of the three
matches, then the sentence is classified as a Sug-
gestion class.

4.2 Common Classification Methods

Common classification methods, such as Support
Vector Machine (SVM), Random Forest Classifier
(RF), Linear Regression (LR), and Naive Bayes
(NB) are employed in this research. Two types
of SVM are utilized, that is, Linear Support Vec-
tor Machine Classifier (LSVC) and Sublinear Sup-
port Vector Machine Classifier (SSVC). The im-
plementation of the common classification meth-
ods is available at (Fatyanosa, 2019c).

4.3 Variable Length Chromosome Genetic
Algorithm-Naive Bayes

Variable Length Chromosome Genetic Algorithm
- Naive Bayes (VLCGA-NB) is utilized for fea-
tures selection. We follow the model and param-
eter from (Fatyanosa et al., 2018). The first step
of VLCGA-NB is selecting initial features from
keywords that appear in the Suggestion sentences
but do not appear in the Non-suggestion ones in
the training data. Within the randomly determined
maximum chromosome size, these keywords are

1https://seaborn.pydata.org/generated/seaborn.heatmap.html

1186

Table 1: Dataset example

ID Sentence Label
9636 Make ProgressRing control available for Windows Phone just like Win8. 1

9706
Either one has to use .NET to access a library or Microsoft advises to do
a .NET app with native code in a WinRT
component.

0

9709 Don’t limit us artifically just because you don’t like native developers. 0

9735
These page templates should be updated to use the medium-sized
semibold font by default for the title text.

1

...

then randomly selected as genes in Genetic Algo-
rithm (GA). Therefore, each chromosome within
population will have different length with differ-
ent genes. All populations resulting from the ini-
tialization then evolve through generation by pass-
ing the crossover, mutation, and selection opera-
tor. A number of children produced by crossover
and mutation operator are based on Crossover
Rate (CR) and Mutation Rate (MR). Two types of
crossover are utilized in this research, viz., Union
Crossover and Intersection Crossover. The muta-
tion is done by changing the genes with another
feature which is not contained in the chromosome.
The gene which will be mutated within chromo-
some is selected by comparing the generated ran-
dom value with the MR. If the random value is
higher than MR, then the gene will be mutated.
The purpose of the crossover operator is to help
the algorithm to explore the search space, while
the purpose of mutation operator is to exploit cer-
tain area in the search space. With these opera-
tors, there will be diversity within the population
that can help to avoid early convergence. By rank-
ing the fitness value using elitist selection, the next
population for the next generation is selected from
the prior population and the produced children.
Only the chromosome with the highest ranking
within the number of population will be selected.
All these operators are then iterated until the max-
imum number of generations. The best chromo-
some produced in the last generation is then used
as the Suggestion keywords in the baseline code
provided by the organizer. GA, which is a well-
known evolutionary algorithm, is one of the pow-
erful stochastic and heuristic algorithms. The use
of GA is legion as it can provide search space ex-
ploration through crossover operator and exploita-
tion through mutation operator. Thus, GA is pos-
sible to search in a very wide search space and al-
low it to produce nearly optimal results. This abil-
ity becomes the motivation for feature selection

using GA. However, the drawback of the GA is
that it is not guaranteed to produce the global op-
timal, but instead satisfactory results. Moreover,
GA requires parameter tuning to find the appro-
priate parameter based on the dataset and needs a
longer runtime. Despite its drawback, we expect
that GA can produce a limited number of Sug-
gestion features which has a major contribution
to the Suggestion classification in this work. The
implementation of the VLCGA-NB is available at
(Fatyanosa, 2019b).

4.4 CNN

For our purpose in this work, we follow the
Keras model’s architecture from (Chollet, 2017)
as shown in Figure 1. This architecture tends to
obtain high accuracy when applied on the News-
group dataset. The text classification using CNN
is done in four steps. First, all sentences are con-
verted into word index order. Only 20,000 fre-
quently words with the upper limit length of 1000
words will be considered. Next, 100-dimensional
Global Vectors for Word Representation (GloVe)
embeddings are utilized as the embedding matrix.
Then, this matrix is loaded into Embedding layer
of Keras. Finally, the Softmax function is used in
the final layer of CNN. The implementation of the
CNN is available at (Fatyanosa, 2019a). Although
there are several pre-trained word vectors, GloVe
and word2vec are considered as the most popular
vectors (Lee et al., 2016). Based on (Pennington
et al., 2014), their GloVe vector has outperformed
other word representations in terms of word com-
parison, correlation, and named entity recognition.
We thus use the GloVe vector as our pre-trained
word embedding in this work.

5 Experiments

We conducted the experiments with the seven clas-
sification methods in this section. We employed
the datasets from both Subtasks for evaluating the

1187

Figure 1: CNN Architecture from (Chollet, 2017)

performance of those classification methods. We
compared the performance of seven classification
methods against the baseline provided by the or-
ganizer.

5.1 Data Preprocessing

We performed a sequence of preprocessing steps
to address noise in the data. For RF, MNB, LSVM,
and LR, all features were converted into numerical
feature vectors using the Term Frequency-Inverse
Document Frequency (tf-idf) from SciKit-Learn
with parameter sublinear tf=True, min df=5,
norm=’l2’, encoding=’latin-1’, ngram range=(1,
2), stop words=’english’. The obtained number
of features was 3166. While the parameters of
SSVM were sublinear tf=True, analyzer=’word’,
tokenizer=tokenize, lowercase=True,
ngram range=(1, 1), stop words=en stopwords,
norm=’l2’, min df=3. The obtained number of
features was 3844.

The series of VLGCA-NB preprocessing was
different from other classification methods be-
cause it did not need the vector form of words.
All words were converted to lowercase. Number,
stop words, punctuation, non-English words, non-
alphabetic characters, and words smaller than two
characters were removed, lemmatization was per-
formed, and all contractions were replaced by their
real words or phrases. The number of features was
decreased to 493 after the preprocessing step.

5.2 Parameters

To apply CNN to the classification, we used
fixed parameters with maximumEpoch =
10 and batchSize = 100. We also em-
ployed fixed parameters for VLCGA-NB with
Populationsize = 100, Generationsize = 50,
Crossoverrate = 0.7, and Mutationrate =
0.3.

RF, CNN, and VLCGA-NB are stochastic algo-

rithms which mean the results will differ for each
run. Therefore, those algorithms were run five
times. The best result among the five attempts was
selected for comparison with other algorithms.

5.3 Evaluation Measurement

Classifier performance evaluation using accuracy
is often considered as a suited measurement. How-
ever, the datasets from both subtasks were imbal-
anced. Majority class is often reckoned by the
classifier, thus, higher accuracy will be achieved
for it. Therefore, in this research, we used Pre-
cision, Recall, and F1-Score as the main evalu-
ation measures. Accuracy measurement (Equa-
tion (1)) was still used in the fitness function of
VLCGA-NB. F1-Score (Equation (4)) computa-
tion relied on Precision (Equation (2)) and Recall
(Equation (3)) measurements. As the Suggestion
results were more concerned, the evaluation of this
competition was the Suggestion results’ F1-Score.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-Score = 2x
PrecisionxRecall

Precision+Recall
(4)

where :

TP = True Positive
TN = True Negative
FP = False Positive
FN = False Negative

Evaluation measurement for VLCGA-NB was
done in every generation using Fitness Function
based on the result of Naive Bayes classification.

1188

The Fitness value was found by addition of ac-
curacy, F1-Score of Suggestion and F1-Score of
Non-suggestion, which were defined as follows:

Fitness = Accuracy + F1-Scoresuggestion

+ F1-Scorenon−suggestion
(5)

6 Results and Discussion

In this section, we evaluated the classification per-
formance of the seven classification methods with
the baseline for both Subtasks. The methods per-
formance was evaluated on Precision, Recall, and
F1-Score metrics, except for the VLCGA-NB, we
still used accuracy in the fitness function.

A typical observation from the confusion ma-
trix produced in this research was that the number
of correct classification was higher than the num-
ber of misclassified for the Non-suggestion class,
except for baseline of Subtask A. This result was
unvaried across all methods, with a little difference
of the whole classification count. Though Subtask
A aimed to classify Suggestion in the same do-
main, the number of correct classification of Sug-
gestion class was lower than the number of mis-
classified for most of the classification methods.
In particular, baseline and SSVC obtained better
results than other utilized methods. Furthermore,
as Subtask B aimed to classify Suggestion in the
different domain, eventually it was hard for all
classification methods to obtain even fair results.
All of them failed to obtain a higher number of
correct classification of the Suggestion class.

Table 2 shows the precision, recall, and F1-
Score comparisons for each class in Subtask A.
We noted that the obtained result of all classifica-
tion methods outperformed that of the baseline for
the Non-suggestion class. MNB yielded the best
results with 0.95.

In terms of F1-Score of the Suggestion class,
refer to Table 2, we noted that RF, SSVC, and
VLCGA-NB obtained a competitive result outper-
forming baseline for Suggestion class. The highest
F1-Score was obtained by SSVC at 0.47. RF and
VLCGA-NB produced F1-Score at 0.29 and 0.31,
respectively. Overall, note that MNB and SSVC
obtained the best F1-Score for Non-suggestion
and Suggestion classes, respectively.

Table 3 shows the experimental results for the
dataset in Subtask B. We noted that the F1-Score
of Non-suggestion yielded a good result with the
higher F1-Score obtained by RF classifier. How-
ever, the F1-Score of Suggestion class produced

poor finding, except for the baseline. F1-Score of
Suggestion class using the baseline achieved sur-
prisingly well considering their simplicity, which
yielded 0.73. A possible reason for this finding
might be that the manually selected keywords and
patterns based on which usually used to suggest
something would make use of the common Sug-
gestion sentence that a machine might not be able
to discover. A possible problem with the baseline
approach was probably that the keywords and pat-
terns for Suggestion class might be also used for
Non-suggestion class. Therefore, it might be diffi-
cult for baseline to define which keywords and pat-
terns actually used in Suggestion sentences. This
could be proven from the F1-Score results for the
Non-suggestion class in Subtask A which yielded
the lowest result of 0.59.

Regarding the number of features selected by
VLCGA-NB, the features were decreased from
493 to 372. Refer to our defined expectation in
4.3, VLCGA-NB was able to produce a limited
number of features which has major contribution
to the Suggestion classification. This could be
proven from its F1-Score results which yielded
higher value compared to the baseline in Subtask
A.

7 Conclusion

This paper has described our approach for partici-
pating in both Subtask A and Subtask B of Task 9
of SemEval-2019, that is, suggestion mining from
online reviews and forum (Negi et al., 2019). Our
approach explored and compared various classifi-
cation methods, namely, Random Forest, Logistic
Regression, Multinomial NB, Linear SVC, Sub-
linear SVC, CNN, and VLCGA-NB. Since the
datasets provided by the organizer were imbal-
anced data, it was more important to correctly
classify a sentence as a Suggestion class. Thus,
the F1-Score of the Suggestion class was more
considered. Compared to the baseline, all algo-
rithms performed better classification for the Non-
suggestion class in both Subtask A and Subtask
B. In contrast, they performed worse classification
than the baseline for the Suggestion class in both
Subtask A and Subtask B. This poor performance
was except for the RF, SSVC, and VLCGA-NB
that could outperform the baseline for classifying
the Suggestion class in Subtask A. Based on our
results, we observed that besides the imbalanced
data, the implicit meaning problem related to the

1189

Table 2: Metrics Report Subtask A

Method Precision Recall F1-Score
Non

suggestion Suggestion Non
suggestion Suggestion Non

suggestion Suggestion

Baseline 0.98 0.16 0.42 0.92 0.59 0.27
Random Forest 0.92 0.34 0.94 0.25 0.93 0.29

Logistic Regression 0.9 0.36 0.98 0.1 0.94 0.16
Linear SVC 0.91 0.21 0.87 0.3 0.89 0.25

Sublinear SVC 0.97 0.35 0.84 0.75 0.9 0.47
Multinomial NB 0.9 0.62 1 0.06 0.95 0.11

CNN 0.9 0.08 0.98 0.01 0.94 0.02
VLCGA-NB 0.92 0.45 0.97 0.23 0.94 0.31

Table 3: Metrics Report Subtask B

Method Precision Recall F1-Score
Non

suggestion Suggestion Non
suggestion Suggestion Non

suggestion Suggestion

Baseline 0.82 0.69 0.74 0.78 0.78 0.73
Random Forest 0.59 0.49 0.88 0.15 0.93 0.29

Logistic Regression 0.58 0.41 0.95 0.05 0.72 0.08
Linear SVC 0.6 0.55 0.9 0.17 0.72 0.26

Sublinear SVC 0.64 0.68 0.9 0.29 0.74 0.37
Multinomial NB 0.57 0.13 0.97 0.01 0.72 0.01

CNN 0.58 0.51 0.96 0.05 0.73 0.1
VLCGA-NB 0.6 0.69 0.96 0.11 0.74 0.19

Suggestion class was also the challenge of the sug-
gestion mining. The feature selection corresponds
with the Suggestion class will be our future inten-
tion. In addition, it might be valuable to inspect
further the use of our approach to other text classi-
fication tasks such as deceptive opinions (Siagian
and Aritsugi, 2017, 2018) and fake news identifi-
cations.

Acknowledgments

The authors acknowledge the anonymous review-
ers for their valuable comments and suggestions
regarding this paper. A. H. A. M. Siagian thanks
the scholarship support from RISET-Pro (Re-
search and Innovation in Science and Technology
Project) KEMENRISTEKDIKTI (Ministry of Re-
search, Technology and Higher Education of the
Republic of Indonesia).

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Caroline Brun and Caroline Hagege. 2013. Suggestion
mining: Detecting suggestions for improvement in
users comments. volume 70, pages 199–209. Re-
search in Computing Science.

François Chollet et al. 2015. Keras. https://
keras.io.

François Chollet. 2017. Using pre-trained word
embeddings in a Keras model. In The Keras
Blog. https://blog.keras.io/using-
pre-trained-word-embeddings-in-a-
keras-model.html.

Li Dong, Furu Wei, Yajuan Duan, Xiaohua Liu, Ming
Zhou, and Ke Xu. 2013. The automated acquisition
of suggestions from tweets. In Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intel-
ligence, AAAI’13, pages 239–245. AAAI Press.

Tirana Noor Fatyanosa. 2019a. Neu-
ral network for text classification.
https://github.com/TiraNosa/
NeuralNetworkForTextClassification.

1190

Tirana Noor Fatyanosa. 2019b. Text classification
using vlcga-nb. https://github.com/
TiraNosa/Text-Classification-
using-VLCGA-NB.

Tirana Noor Fatyanosa. 2019c. Text classification
with scikit-learn. https://github.com/
TiraNosa/Text-Classification-with-
Scikit-Learn.

Tirana Noor Fatyanosa, Fitra A. Bachtiar, and Mahen-
dra Data. 2018. Feature Selection using Variable
Length Chromosome Genetic Algorithm for Senti-
ment Analysis. In 2018 International Conference
on Sustainable Information Engineering and Tech-
nology (SIET), Malang.

Andrew B. Goldberg, Nathanael Fillmore, David An-
drzejewski, Zhiting Xu, Bryan Gibson, and Xiaojin
Zhu. 2009. May All Your Wishes Come True: A
Study of Wishes and How to Recognize Them. In
The 2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 263–271.

J. D. Hunter. 2007. Matplotlib: A 2d graphics en-
vironment. Computing In Science & Engineering,
9(3):90–95.

Yang-Yin Lee, Hao Ke, Hen-Hsen Huang, and Hsin-
Hsi Chen. 2016. Combining word embedding and
lexical database for semantic relatedness measure-
ment. In Proceedings of the 25th International Con-
ference Companion on World Wide Web, WWW ’16
Companion, pages 73–74, Republic and Canton of
Geneva, Switzerland. International World Wide Web
Conferences Steering Committee.

Wes McKinney. 2010. Data structures for statistical
computing in python. In Proceedings of the 9th
Python in Science Conference, pages 51 – 56.

Sapna Negi. 2016. Suggestion mining from opinion-
ated text. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
– Student Research Workshop, pages 119–125.

Sapna Negi, Kartik Asooja, Shubham Mehrotra, and
Paul Buitelaar. 2016. A study of suggestions in
opinionated texts and their automatic detection. In
Proceedings of the Fifth Joint Conference on Lexi-
cal and Computational Semantics, pages 170–178.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167.

Sapna Negi and Paul Buitelaar. 2017. Inducing dis-
tant supervision in suggestion mining through part-
of-speech embedding. arXiv:1709.07403. Version
2.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
SemEval-2019 Task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sapna Negi, Maarten de Rijke, and Paul Buitelaar.
2018. Open domain suggestion mining: Problem
definition and datasets. arXiv:1806.02179. Version
2.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Janardhanan Ramanand, Krishna Bhavsar, and Niran-
jan Pedanekar. 2010. Wishful thinking: Finding
suggestions and ’buy’ wishes from product reviews.
In Proceedings of the NAACL HLT 2010 Workshop
on Computational Approaches to Analysis and Gen-
eration of Emotion in Text, CAAGET ’10, pages 54–
61, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Al Hafiz Akbar Maulana Siagian and Masayoshi Arit-
sugi. 2017. Combining word and character n-grams
for detecting deceptive opinions. In 2017 IEEE 41st
Annual Computer Software and Applications Con-
ference, COMPSAC, pages 828–833, Washington,
DC, USA. IEEE Computer Society.

Al Hafiz Akbar Maulana Siagian and Masayoshi Ar-
itsugi. 2018. Exploiting function words feature
in classifying deceptive and truthful reviews. In
2018 Thirteenth International Conference on Digi-
tal Information Management, ICDIM, pages 51–56,
Washington, DC, USA. IEEE Computer Society.

Alfan Farizki Wicaksono and Sung-Hyon Myaeng.
2012. Mining advices from weblogs. In Proceed-
ings of the 21st ACM International Conference on
Information and Knowledge Management, CIKM
’12, pages 2347–2350, New York, NY, USA. ACM.

Alfan Farizki Wicaksono and Sung-Hyon Myaeng.
2013. Automatic extraction of advice-revealing sen-
tences foradvice mining from online forums. In Pro-
ceedings of the Seventh International Conference
on Knowledge Capture, K-CAP ’13, pages 97–104,
New York, NY, USA. ACM.

1191

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1192–1198
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

DS at SemEval-2019 Task 9: From Suggestion Mining with neural
networks to adversarial cross-domain classification

Tobias Cabanski
t.cabanski@posteo.de

Abstract

Suggestion Mining is the task of classifying
sentences into suggestions or non-suggestions.
SemEval-2019 Task 9 sets the task to mine
suggestions from online texts. For each of the
two subtasks, the classification has to be ap-
plied on a different domain. Subtask A ad-
dresses the domain of posts in suggestion on-
line forums and comes with a set of training
examples, that is used for supervised training.
A combination of LSTM and CNN networks
is constructed to create a model which uses
BERT word embeddings as input features. For
subtask B, the domain of hotel reviews is re-
garded. In contrast to subtask A, no labeled
data for supervised training is provided, so that
additional unlabeled data is taken to apply a
cross-domain classification. This is done by
using adversarial training of the three model
parts label classifier, domain classifier and the
shared feature representation. For subtask A,
the developed model archives a F1-score of
0.7273, which is in the top ten of the leader
board. The F1-score for subtask B is 0.8187
and is ranked in the top five of the submissions
for that task.

1 Introduction

For getting feedback from costumers or users, an
organization often uses forums and social media
channels. Also ratings of products on rating plat-
forms can be an useful feedback to make a product
better. The feedback from a customer can be in the
form of a suggestion which appears in a rating text
or is directly asked from the customer. The task
of suggestion mining can be defined as the extrac-
tion of sentences that contain suggestions from un-
structured text (Negi et al., 2018). SemEval-2019
Task 9 Subtask A provides the challenge to do sug-
gestion mining on data from an online suggestion
forum. For that subtask, a train and validation set
is provided so that it is possible to apply super-

vised training. For subtask B, suggestions in hotel
reviews should be identified. An additional dif-
ficulty for that subtask is that no labeled data is
given except a small validation set, which is not al-
lowed to be used for supervised training. For both
tasks, silver standard datasets are allowed to use,
which means that data that is likely to belong to a
certain class can be taken as long as it is not manu-
ally labeled. A more detailed task description can
be found in (Negi et al., 2019).

2 Data

The dataset for subtask A provides an overall
count of 8500 examples, where 6415 examples are
labeled as non-suggestion and 2085 as suggestion.
Also a trial dataset is provided that contains 592
examples, divided in 296 examples for each class.
Every example contains only one sentence, which
could be part of a whole post in the forum where
it was extracted.

The domain of software suggestion forum posts
in general provides more balanced data than other
domains, for example hotel reviews. Also the do-
main contains very specific vocabulary which is
frequently used in software development, so that
it can be difficult to use a trained model of this
domain for other domains (Negi et al., 2018).

For subtask B, only a validation dataset is pro-
vided. The set contains an overall count of 808 ex-
amples with 404 examples for each class. As men-
tioned in the introduction, it is not allowed to use
the validation data for supervised learning for this
subtask. The data is only allowed to be used for
model evaluation and error analysis and also for
automatic hyperparameter tuning. The presented
solution in this paper uses the validation data for
early stopping at a fixed count of train steps after
the best score is reached. The model state at the
best score is then returned and used for the predic-

1192

tion of the test data.
For both subtasks, additional data is allowed

that is not manually labeled. In this work, the hotel
review dataset, which is presented in (Wachsmuth
et al., 2014), is used to apply cross-domain clas-
sification for subtask B. The dataset comes with
nearly 200k examples of hotel reviews without la-
bels.

3 Related Work

The task of text classification improved a lot dur-
ing the last years. In the past, machine learning
techniques like support vector machines were used
to assign a class to a text. In (Joachims, 1998), a
text classification with support vector machines is
presented. For that, a document vector is extracted
for the whole text and used as the feature vector for
the classification.

Since such methods can provide a good base
line today, the increasing popularity of neural net-
work approaches provides new methods that can
classify texts more exactly. Especially the intro-
duction of word embeddings in (Mikolov et al.,
2013) was a big step forward in the field of
text processing and opened new opportunities for
many natural language processing tasks. Also for
the task of text classification, word embeddings
are useful features and can lead to good results.
Since the release of these word embeddings, many
other word embedding approaches have been in-
troduced. A very recent one is shown in (Devlin
et al., 2018) and is called BERT: Bidirectional En-
coder Representations from Transformers. These
embeddings are the result of the training process
of transformer, which is described in (Vaswani
et al., 2017) and delivers a state-of-the-art method
for different natural language generation tasks, es-
pecially for translation.

To use the word embeddings as features for text
classification, a commonly used approach is Long-
short term memory (LSTM), which is described in
(Hochreiter and Schmidhuber, 1997). The advan-
tage of using LSTM cells over support vector ma-
chines as classifier is the processing of features in
time steps. By passing a single word embedding
into a single time step of the LSTM, every feature
is processed separately. Since the features are pro-
cessed one after the other, also the order of the fea-
tures has influence on the classification process. In
addition to that, LSTM cells have a state that en-
ables them to save information for many previous

time steps. For text classification, this can be use-
ful when there are connections between words in
a text that are far apart.

Another method to process word embeddings
are convolutional neural networks (CNN), which
are introduced in (LeCun and Bengio, 1998). With
the ability to extract features of two-dimensional
input data by defining a sliding window of vari-
ables, the method is often used for image process-
ing. But also good results for text classification are
reported, for example in (Kim, 2014). The results
show that even a simple CNN with one layer per-
forms very well and a tuning of hyperparameters
brings an improvement of the performance.

For subtask B, the focus gets in the direction
of methods for cross-domain classification. By
the introduction of Generative Adversarial Nets
(GAN) in (Goodfellow et al., 2014), a new way for
training neural networks was provided that leads
to new opportunities for different task, especially
image generation. In (Chen and Cardie, 2018) is
shown that this training technique could also be
used for cross-domain classification of texts of dif-
ferent domains. As the main four components, a
shared feature extractor, a domain feature extrac-
tor, a text classifier and a domain discriminator
are introduced. The main goal of that system is
to learn a domain invariant feature representation
by training the shared feature extractor with the
discriminator and the text classifier. The discrimi-
nator learns to separate the domains and the train-
ing goal for the shared feature extractor is to in-
crease the loss of the discriminator. The extracted
features become invariant for the domains, so that
the text classifier results improve for the domain
where no labels are given.

4 Models

In this section, the models for subtask A and B are
presented. The overall idea of the model for sub-
task A is using an ensemble of LSTM and CNN
networks. As input features, pre-trained BERT
embeddings for the texts are used.

For subtask B, the idea is to extend the model
from subtask A with a domain discriminator and
shared features. Since that adds a lot of parame-
ters to the model, the text classifier has a simpler
structure than in subtask A and uses only CNNs
for classification. The full TensorFlow implemen-
tation of the models can be found at GitHub.1

1https://github.com/tocab/semeval2019Task9

1193

4.1 BERT embeddings

For both subtasks, BERT embeddings are used to
create a representation of the text. The Tensor-
Flow implementation, which is openly available
and comes with pre-trained multi-language em-
beddings, is taken for that.2 The model for cre-
ating the embeddings is the small uncased model,
which has been trained on lower cased wikipedia
texts. It has a total count of twelve layers and a
layer size of 768 in each hidden layer. The whole
model has a 110 million parameters in total.

To extract the embeddings out of the model, the
text gets tokenized and mapped into a sequence of
integers by using the vocabulary of the pre-trained
model. This representation is then given into the
network, where it passes the different transformer
layers. The embeddings are delivered by the hid-
den layers of the model. In this project, the output
from the last four layers before the output layer is
taken as the representation of a word, so that ev-
ery word is represented by a vector of the shape
(4, 768).

4.2 Subtask A

For subtask A, a text classification ensemble of
LSTM and CNN is built. To bring all sentences
to the same length, a maximum sequence length
of 40 is defined. With that sequence length, for
around 95% of all train data sentences all words
are taken as input. Only for the remaining 5%
which have more than 40 words, the texts are cut to
the maximum sequence length. If a text is shorter
than 40 words, it is filled with zeros. Using the
batch size of 64, the input shape for a batch for the
training process is (64, 40, 768) for every of the
four extracted input features from BERT.

One problem of the data is the imbalance of the
classes. When taking random batches out of the
whole dataset, it is likely that the count of one
class is always higher than of the other. The al-
gorithm learns to predict the class with the higher
example count with a higher probability. To avoid
that, the technique of oversampling is applied to
the training process. The data is separated into
two sets, each for every of the two classes and then
fed into the network alternately. When all exam-
ples of the class with the lower count were used as
training input, the set gets repeated so that these
examples occur more often as training input.

2https://github.com/google-research/bert

The model structure for subtask A can be di-
vided into the three following main parts:

• Processing of single words with dense layers.

• Processing of the whole text with LSTM
cells.

• Processing of sliding windows through the
text with CNN.

For the processing of the dense layer and the
LSTM, separated graphs are created for each of
the input features from BERT. As mentioned be-
fore, four embeddings for a word are gathered,
each of a different hidden layer of the transformer.
Thus four graphs of dense layers and LSTM layers
are created, each for processing a different embed-
ding type of the input text.

The first step is a transformation of every single
input word with a dense layer. This approach is
applied to focus on single signal words that can oc-
cur in the text. For example, the occurrence of the
word recommend could be a hint for a suggestion,
without regarding other words. The outputs of the
single word processings are concatenated and for-
warded to a dense layer to reduce the dimension.

The LSTM is represented by two cells to re-
alize a bidirectional approach. The output of
the two cells is concatenated and followed by a
GlobalMaxPool-Layer, which takes the maxi-
mum of the output’s timestep axis to bring it into
a one-dimensional representation. To do a further
feature transformation, a dense layer is applied to
the output. The result is concatenated to the output
of the previous described single word approach.

Unlike the single word processing dense layer
and the LSTM, the CNN approach processes all
four BERT features for the words in the same net-
work. When using CNNs for image processing,
the colors of an image are arranged as additional
channels that the CNN can process. For feeding
the CNN with all BERT features for the words,
they are shaped similarly to an image and can be
seen as the channels of the word. By using that
approach, the words are given with four channels
into the CNN. The output of the CNN is then pro-
cessed by a dense layer. The CNN approach can
be seen as an bag of words approach, which takes
the words within a sliding window until the end of
text is reached. The amount of words is fixed, the
approach is build for each of 2-5 words.

1194

At the end of the processing, the dense- and
LSTM-features and the CNN-features are concate-
nated and given to the classification layer, which
is composed of two dense layers. For more ro-
bust predictions, three graphs are build to get
three predictions, the final result is formed by the
mean. For training the model, the cross-entropy-
loss is used. The model gets optimized with
AdamOptimizer. On every training step, the
model is validated with the provided validation
dataset, and the model weights on the best F1-
score are taken to predict the test examples.

4.3 Subtask B

For subtask B, a similar model as in (Chen and
Cardie, 2018) is built to do cross-domain classi-
fication. The model in this work is composed of
three major parts:

• Label classifier: Model that predicts if an ex-
ample is a suggestion.

• Domain classifier: Model for the prediction
of the domain of an example.

• Shared features: Model that applies a trans-
formation on the input features.

The training of the model can be split into two
phases: The pre-training phase of the supervised
label classifier and the adversarial training of the
domain classifier and the shared features.

In the pre-training phase, the model uses super-
vised training like for subtask A. In this phase, the
label classifier and the shared features are trained
to get the best score on the suggestion data of the
domain of online suggestion forums. The shared
features get the word embeddings as input and ap-
ply a CNN on each BERT embedding. The size of
the CNNs is the same as the length of the embed-
ding, so that the projected word features are of the
same shape as the input features.

In the next step, the projected features are clas-
sified with the label classifier. Unlike to subtask
A, only the CNN part is used for the classification
because of the amount of additional parameters of
the shared features and the domain classifier. The
CNN works like in subtask A and processes the
four BERT features as single channels. In this
task, a sliding window of the word counts from 2-
6 words is taken. The optimization is applied with
AdamOptimizer and stops when the best score
is reached on the validation data of subtask A.

train val test pred
#examples 8500 592 833 833
#suggestions 2085 296 87 133
#non-suggestions 6415 296 746 700

Table 1: Count of the examples for the different
datasets and the prediction on the test set for sub-
task A.

In phase two, the domain classifier starts with
the training and learns to choose the right domain
for the examples. To do that, also examples of
the unlabeled hotel review dataset are given into
the net. The domain classifier has the same struc-
ture as the text classifier and uses CNNs to find the
right label for an example.

After one train step of the domain classifier,
the shared features are retrained in an adversar-
ial way to maximize the loss of the domain classi-
fier. To realize this, the parameters are trained with
the switched labels for the hotel review examples
which are marked as suggestions for this training
step.

After the training step of the domain classifier
and the shared features, the validation examples
of subtask B are used to predict a score. To do
that, the examples are predicted with the text clas-
sifier, which uses the updated shared features to
make a prediction if the example is a suggestion.
Early stopping is used to find the best model with
the validation data, so the model stops at the maxi-
mum F1-score for the validation set for subtask B.

5 Results

In this section, the results for subtask A and B are
discussed. Also the test data, which has been pro-
vided to the participants after the evaluation phase,
is used for the analysis.

5.1 Subtask A
For subtask A, the best model reached a F1-score
of 0.7273 for the test data. This model archived
a validation F1-score of 0.875 which is a notice-
able difference to the test data score. To find the
difference in the datasets, the example counts are
compared in Table 1. It can be seen that there are
differences in the ratio of the data. While the train
data contains about 25% of examples for sugges-
tions, for the test data there are only about 15%.
Since oversampling is used to tackle the problem
of class imbalance, this difference of train and test

1195

0 100 200 300 400
train steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f1
-s

co
re

validation score
test score

Figure 1: Comparison of the F1-scores for valida-
tion and test set during training for subtask A.

data should not have much influence on the result.
Also the counts of predicted classes for the test
set can be seen in the table, which show a simi-
lar amount like the test classes, but has some more
predictions for the class of suggestions.

Another factor for the gap between validation
and test score could be explained by very differ-
ent examples in the two sets. In addition to that,
the validation set may be better represented by the
train set. That could lead to bad results for the test
data when stopping at a good F1-score for the vali-
dation data. For analyzing this, another train run is
started and the curve for the F1-score for the val-
idation set and the test set plotted. The outcome
can be seen in Figure 1.

It can be seen that the test F1-score is constantly
lower than the validation score. Also there are
much variations in the test score, even in a late
train phase. Overall it can be determined that the
train data describes the validation data better than
the test data with the given model for subtask A.

5.2 Subtask B

The model for subtask B reached a final F1-score
on the test data of 0.8187. In comparison to sub-
task A, it can be seen that the final score on the test
data is higher, although no labeled data is given
for that task except the validation data. The reason
for this could be the use of the external hotel re-
view dataset that inputs many new examples into
the model. The overall count of examples for ho-
tel reviews is much higher than the labeled data
in subtask A, so that the higher score can be ex-
plained with the presence of more data.

val test pred
#examples 808 824 824
#suggestions 404 348 402
#non-suggestions 404 476 422

Table 2: Subtask B dataset and prediction counts.

Also the validation score of 0.884 doesn’t differ
to the test score as much as in subtask A. This also
shows that the use of external data improves the
overall result of the model. The validation data
for subtask B was used to apply early stopping
and saving the weights at the best validation F1-
score. Like for subtask A, the class counts for the
different datasets are shown in Table 2. It can be
seen that the distribution of the classes in the test
and validation set is more equal than in subtask
A, what could be a reason why the model archived
better results. To verify this, another training run is
started to compare the test and validation F1-score
over the training epochs. The results can be seen in
Figure 2. The validation data score for subtask A
and B and the test score for subtask B is plotted for
every training step. Since the training is separated
into two phases, the left graph shows the scores for
the pre-training phase and the right graph for the
adversarial training.

In the pre-training phase of the model, the score
of the validation data of subtask A improves as
expected since supervised training is performed.
Also it can be seen that the subtask B data score
shows a high variance over the epochs, but de-
creases slightly. Over all epochs, the test and vali-
dation score of subtask B is nearly the same what
could be a hint that the difference between the
datasets is very small. This is confirmed in phase
two of the training, where the validation and test
score increase in the first epochs. Although the
validation score reaches a higher peak for the F1-
score, the peak of the test score is found in around
the same region of train steps. The validation score
for subtask A decreases in the adversarial train
phase, what could be caused by a overfitting to the
hotel review domain. Also the validation score of
subtask B decreases after about 50 epochs. The
reason for that could be that the amount of non-
suggestions in very high in the hotel reviews data,
so that the model unlearns to distinguish between
the two classes.

1196

50 100 150 200
train steps

0.0

0.2

0.4

0.6

0.8

f1
-s

co
re

Pre-training

Subtask A: Validation score
Subtask B: Validation score
Subtask B: Test score

0 20 40 60 80 100
train steps

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

f1
-s

co
re

Adversarial training

Subtask A: Validation score
Subtask B: Validation score
Subtask B: Test score

Figure 2: Two training phases for subtask B: First the pre-training with the subtask A data, then the
adversarial training with the hotel review dataset.

6 Conclusion and Future Work

In this work, for each subtask of SemEval-2019
Task 9 a solution is presented. For subtask A, a su-
pervised model is built on the neural network tech-
niques CNN and LSTM. As input features, BERT
word embeddings are taken, which are pre-trained
on huge datasets. One problem in subtask A is the
class imbalance of the data, which is tackled with
oversampling. Another problem that occurred dur-
ing the evaluation of the training phase is the dif-
ference of examples in the validation and the test
set, what could be one of the reasons why the val-
idation score is much higher than the test score. In
future works, it can be tried to extend the labeled
data with additional unlabeled data to tackle the
problem of class imbalance and too few examples.
Since extending the data works for subtask B, it
could also work for subtask A and the domain of
suggestion forum posts.

Subtask B sets the task to classify sentence as
suggestion or non-suggestion for the domain of
hotel reviews. Unlike to subtask A, only a small
validation set is given as labeled data which is not
allowed to be used for supervised training. To
solve the problem of not having labeled data, the
technique of cross-domain classification has been
used. This is done by building a neural network
model, which is trained in an adversarial way.
Like in subtask A, a classification model for the
suggestions is given. In addition to that, a shared
feature representation and a domain classifier are
added. The domain classifier is trained to assign
the right domain label to a sentence. The shared

feature representation is trained adversarial to the
domain classifier, so that it learns to generate a
global representation for both domains. For that,
an unlabeled external dataset is taken which con-
tains examples for the domain of hotel reviews.

The results for subtask B show that the adver-
sarial training can improve the F1-score for the do-
main with no labeled data. This happens with the
cost of lowering the score for the labeled data, on
which the model was pre-trained. Also the score
for the hotel review data falls down after the peak
is reached. This makes it necessary to have at least
a small dataset which contains labeled data for
subtask B to measure the score during the train-
ing and stop when best score has been reached.
For future work, it could be tried to develop a bet-
ter shared features method where a good feature
representation for both domains is formed. That
would give a classifier that could be used to predict
sentences of both domains. Another improvement
could be archived by developing a model where
the curve for the unlabeled data doesn’t fall down
that sharply in the late train phase. This could lead
to a method were no labeled data is needed to stop
the training at a good point.

References

Xilun Chen and Claire Cardie. 2018. Multinomial ad-
versarial networks for multi-domain text classifica-
tion. CoRR, abs/1802.05694.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of

1197

deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates,
Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In Proceedings of the 10th European
Conference on Machine Learning, ECML’98, pages
137–142. Springer-Verlag.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Yann LeCun and Yoshua Bengio. 1998. The handbook
of brain theory and neural networks. chapter Con-
volutional Networks for Images, Speech, and Time
Series, pages 255–258. MIT Press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. CoRR, abs/1310.4546.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sapna Negi, Maarten de Rijke, and Paul Buitelaar.
2018. Open domain suggestion mining: Problem
definition and datasets. CoRR, abs/1806.02179.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
Gregor Engels, and Tsvetomira Palakarska. 2014.
A review corpus for argumentation analysis. In
Proceedings of the 15th International Conference
on Intelligent Text Processing and Computational
Linguistics, pages 115–127, Berlin Heidelberg New
York. Springer.

1198

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1199–1203
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Hybrid RNN at SemEval-2019 Task 9: Blending Information Sources for
Domain-Independent Suggestion Mining

Aysu Ezen-Can
SAS Inst.

aysu.e.can@gmail.com

Ethem F. Can
SAS Inst.

ethfcan@gmail.com

Abstract

Social media has an increasing amount of in-
formation that both customers and companies
can benefit from. These social media posts can
include Tweets or be in the form of vocaliza-
tion of complements and complaints (e.g., re-
views) of a product or service. Researchers
have been actively mining this invaluable in-
formation source to automatically generate in-
sights. Mining sentiments of customer reviews
is an example that has gained momentum due
to its potential to gather information that cus-
tomers are not happy about. Instead of read-
ing millions of reviews, companies prefer sen-
timent analysis to obtain feedback and to im-
prove their products or services.

In this work, we aim to identify informa-
tion that companies can act on, or other cus-
tomers can utilize for making their own expe-
rience better. This is different from identify-
ing if reviews of a product or service is neg-
ative, positive, or neutral. To that end, we
classify sentences of a given review as sug-
gestion or not suggestion so that readers of
the reviews do not have to go through thou-
sands of reviews but instead can focus on ac-
tionable items and applicable suggestions. To
identify suggestions within reviews, we em-
ploy a hybrid approach that utilizes a recurrent
neural network (RNN) along with rule-based
features to build a domain-independent sug-
gestion mining model. In this way, a model
trained on electronics reviews is used to ex-
tract suggestions from hotel reviews.

1 Introduction

With the growth of social media usage, the inter-
est in text mining approaches has increased. One
task that has gained momentum recently is senti-
ment analysis where the goal is to determine opin-
ions/emotions from a text input, generally a prod-
uct or service review. Different approaches have
been proposed for sentiment analysis task such as

multilingual models to be used with limited data
(Can et al., 2018) and sentiment lexicons (Banea
et al., 2008). Twitter posts also has been one
source of reviews to be mined in terms of sen-
timent (Pak and Paroubek, 2010; Ezen-Can and
Can, 2018; Tellez et al., 2017).

The task of suggestion mining is similar to sen-
timent analysis in that the input is the same (e.g.,
customer reviews). However, the output of a sen-
timent analysis model and a suggestion mining
model is different. While sentiment classifiers fo-
cus on grouping reviews as positive or negative,
suggestion mining models identify the reviews
that have suggestions/actionable items/advice to
other people/service providers.

In this paper, we present a suggestion mining
model that takes product/service reviews and clas-
sifies each sentence in a given review as sugges-
tion or not suggestion. To that end, we employ a
hybrid LSTM model that utilizes both the textual
reviews and features extracted from a rule-based
approach.

2 Related Work

For the suggestion mining task, there is not a large
body of work in the NLP community. (Brun and
Hagege, 2013) use a corpus of reviews of print-
ers made by different manufacturers. Their ap-
proach relies on linguistic information such as
thesaurus, parser and patterns. (Goldberg et al.,
2009) address the task of suggestion mining as a
‘wish detection’ task and use templates to detect
wishes on product reviews and political discus-
sion posts. (Dong et al., 2013) focus on Tweets
and classify them as containing suggestion or not
by using factorization machines. (Wicaksono and
Myaeng, 2013) employed Hidden Markov mod-
els with three different sets of features: syntactic,
contextual, and sentence informativeness features.

1199

Figure 1: Distribution of classes in the training, trial
and test sets.

Figure 2: Word cloud of the reviews in the test set.

Recently, (Negi and Buitelaar, 2017) collected a
new corpus for suggestion mining (not available
at the time of this writing).

Our approach is different from the existing prior
work in that we use a hybrid approach where a
deep learning model is used in addition to a rule-
based technique. The features extracted by rule-
based approach are utilized as information sources
to an LSTM network where the customer reviews
are also fed into as textual input. In this way,
we intend to use as many information sources as
possible to improve results of a suggestion mining
classifier.

3 Corpus

The corpus provided by the Semeval 2019 Sug-
gestion Mining Challenge (Negi et al., 2019) was
highly imbalanced as can be seen in Figure 1.
There was a total of 8500 reviews, only 2085 of
which were suggestions. The test set consisted of
824 observations.

Due to the nature of the challenge, the train-
ing set and the test set were from different do-
mains. While the training set contained soft-
ware/application reviews, test set was collected
from hotel reviews. An excerpt from the training
set can be seen in Table 1. The word clouds for

Figure 3: Word cloud of the reviews in the training set.

Review Class

“I would like to be able to enable
WP alerts be forwarded to XBox
One when I am near it or manu-
ally configured for it.”

Suggestion

“When you apply new policies
on already existing, especially if
it is related to name, all the ex-
isting credibility and market is
lost.”

Non-
suggestion

“I find myself having to man-
ually tab out get figures, enter
them in.”

Non-
suggestion

“Possible solution: Route class
implements IRoutePath.”

Non-
suggestion

“Street names color stays black
and not being centered.”

Non-
suggestion

Table 1: Excerpt from the training set.

these two datasets (Figures 2 and 3) show the dif-
ference in the most frequently used words.

4 Methodology

In this section, we explain the model architecture
used for the task of suggestion mining and the fea-
tures utilized by the model.

4.1 Features

For suggestion mining, we used two sets of fea-
tures: rule-based and model-generated from word
embeddings. In this section, we describe each of
these features.

4.1.1 Rule-Based Features
The rule-based features are extracted from the
heuristics used in the baseline system for this chal-
lenge. Below are explanations of each of these
rule-based feature.

1200

Figure 4: RNN architecture incorporating two different sources of information.

• Rule-Based Feature 1: the first rule-based
feature is using a pattern matching algorithm
based on regular expressions. This heuris-
tic focuses on finding keywords and patterns
within the input text such as ‘.*would \s
like.*if.*’ and ‘.*i \s wish.*’. Existence of at
least one of these patterns in the review trig-
gers a value of 1 for this feature, 0 otherwise.
There are 13 patterns for this heuristic.

• Rule-Based Feature 2: the second rule-based
feature utilizes keywords without any pat-
terns such as ‘suggest’, and ‘recommend’.
Once one of the keywords in the list is present
in the given review, the rule flags a 1 value
indicating that the review contains a sugges-
tion. There are 17 keywords in total.

• Rule-Based Feature 3: the third rule-based
feature relies on part of speech tags. There
are two part of speech tags that this heuristic
is looking for (i.e., MD and VB) to be present
in the tagged review to come to the conclu-
sion that the given review is a suggestion.

4.1.2 Word Embeddings
Recurrent neural networks requires a mechanism
to convert textual input to numerical vectors to
be able to perform computations. To this end,
we used pre-trained word embeddings where each
word in the embedding table has a vector of size
100. In this study Glove embeddings is used which
was trained on Wikipedia 2014 and Gigaword 5
corpora (Pennington et al., 2014).

4.2 RNN Architecture

As part of the RNN architecture, we used a fully-
connected layer that takes the rule-based features
and the review as the inputs. Then two bidirec-
tional LSTM layers follow for modeling the tex-
tual input. Before the softmax layer, an LSTM
layer takes the advantage of both learned repre-
sentations form bidirectional layers and the rule-
based features. Figure 4 depicts the architecture
of the RNN model.

In the bidirectional layers, we used a dropout
of 0.2 and MSRA initialization (He et al., 2015)
in all layers. The training set is shuffled randomly
before the first epoch. During training, ADAM op-
timizer (Kingma and Ba, 2014) with gradient clip-
ping is used.

4.3 Ensemble

To fuse the different approaches utilized during
the modeling phase, we used an ensemble tech-
nique. This technique take the outputs of both the
rule-based features and the RNN model. If one
of the rule-based features classify the review as
a suggestion, the ensemble concludes that the re-
view is a suggestion. If rule-based features clas-
sify the review as a non-suggestion and RNN clas-
sifies as a suggestion, the overall ensemble labels
the observation as a suggestion. Otherwise, a non-
suggestion tag is used. It is important to note that,
RNN is also incorporating the rule-based features
in the model. As can be seen in Figure 4, two main
sources of information are fed into the model.

1201

Figure 5: Pie chart showing false / true positives / neg-
atives in the final predictions on the test set.

“and I was woken by the early morning firing
up of the local bus service (a courtyard-facing
room is essential unless you have industrial
strength earplugs.)...”
“Don’t eat breakfast in the restaurant, too
costly.”
“Look around the same area for another ho-
tel.”
“Avoid these rooms - it is very clear why they
do not have a photograph of them on their web
site.”

Table 2: Samples from true positives.

5 Results

In this section, we report the results for the test set
as well as discussion on the results.

5.1 Experimental Results
For the trial dataset, where the domain was hotel
reviews and the majority baseline was 50%, the
hybrid approach achieved F1 measure of 77.70%.
It is important to note that, trial dataset has not
been used to tune or validate the model. With the
test dataset, the model obtained 74.49% F1 score
where the majority baseline was 57.77%.

5.2 Discussion
Figure 5 shows the ratios of true/false positives
and true/false negatives. From our investigation,
we found out that the hybrid approach was useful
in generalization of the model where the reviews
did not have any keywords or patterns defined in
the rules. Since RNN used generic pre-trained
word embeddings (not specifically trained on ei-
ther of the domains of the training set or the test

“Only one almost useless pillow per person
though (think no thicker than a cracker) and
no availability of additional bed linen as most
other hotels would normally provide.”
“Leaving your bedroom window open is not
an option as my heavily bitten body will tes-
tify!”
“No shampoo provided in the room, Shower
Gel dispensers don’t work well.”
“Put your towel on the wet floor or you will
definitely slip.”

Table 3: Samples from false positives.

set), generalization is expected for RNN. Some ex-
amples of such test observations can be seen in Ta-
ble 2.

An interesting finding in the results is about
false positives. The trend observed in the false
positives is that, the reviews that were helping
other customers and giving hints to the customers
rather than to the service providers were consid-
ered as suggestions by the model. Table 3 shows
examples of those reviews where the ground
truth considered these reviews as non-suggestions.
However, they are suggestions to the receiving end
of the service. This finding shows the difficulty of
classifying this dataset because suggestions to cus-
tomers and service providers can both be consid-
ered as suggestions (although not labeled as such
in the ground truth).

6 Conclusion

Suggestion mining is a crucial task for mining so-
cial media data so that companies can focus on ser-
vices that need improvement. Most of the times,
obtaining labeled data in several different domains
is not easy. Therefore, in this paper, we focused
on domain-independent suggestion mining models
where the training set and test set have reviews for
different domains. To make our model robust, we
utilized a hybrid approach that incorporates both
rule-based features and relationships extracted by
LSTM from raw text input. Instead of having to
decide between rule-based approaches and deep
learning, we fused the information sources in two
ways. First by using external features in RNN
and second by ensembling the result of RNN with
rule-based features. By incorporating multiple in-
formation sources, we showed that the suggestion
mining accuracies outperformed the baseline.

1202

References
Carmen Banea, Rada Mihalcea, and Janyce Wiebe.

2008. A bootstrapping method for building subjec-
tivity lexicons for languages with scarce resources.
In LREC, volume 8, pages 2–764.

Caroline Brun and Caroline Hagege. 2013. Suggestion
mining: Detecting suggestions for improvement in
users’ comments. Research in Computing Science,
70(79.7179):5379–62.

Ethem F Can, Aysu Ezen-Can, and Fazli Can.
2018. Multilingual sentiment analysis: An rnn-
based framework for limited data. arXiv preprint
arXiv:1806.04511.

Li Dong, Furu Wei, Yajuan Duan, Xiaohua Liu, Ming
Zhou, and Ke Xu. 2013. The automated acquisition
of suggestions from tweets. In AAAI.

Aysu Ezen-Can and Ethem F Can. 2018. Rnn for af-
fects at semeval-2018 task 1: Formulating affect
identification as a binary classification problem. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 162–166.

Andrew B Goldberg, Nathanael Fillmore, David An-
drzejewski, Zhiting Xu, Bryan Gibson, and Xiaojin
Zhu. 2009. May all your wishes come true: A study
of wishes and how to recognize them. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 263–271. Association for Computational Lin-
guistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classifi-
cation. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Sapna Negi and P Buitelaar. 2017. Suggestion mining
from opinionated text. Sentiment Analysis in Social
Networks, pages 129–139.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREC, volume 10.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Eric S Tellez, Sabino Miranda-Jiménez, Mario Graff,
Daniela Moctezuma, Ranyart R Suárez, and Oscar S
Siordia. 2017. A simple approach to multilingual
polarity classification in twitter. Pattern Recognition
Letters, 94:68–74.

Alfan Farizki Wicaksono and Sung-Hyon Myaeng.
2013. Automatic extraction of advice-revealing sen-
tences foradvice mining from online forums. In Pro-
ceedings of the seventh international conference on
Knowledge capture, pages 97–104. ACM.

1203

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1204–1207
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

INRIA at SemEval-2019 Task 9: Suggestion Mining Using SVM with
Handcrafted Features

Ilia Markov
INRIA

Paris, France
ilia.markov@inria.fr

Eric Villemonte De la Clergerie
INRIA

Paris, France
eric.de la clergerie@inria.fr

Abstract

We present the INRIA approach to the sugges-
tion mining task at SemEval 2019. The task
consists of two subtasks: suggestion mining
under single-domain (Subtask A) and cross-
domain (Subtask B) settings. We used the
Support Vector Machines algorithm trained on
handcrafted features, function words, senti-
ment features, digits, and verbs for Subtask A,
and handcrafted features for Subtask B. Our
best run archived a F1-score of 51.18% on
Subtask A, and ranked in the top ten of the sub-
missions for Subtask B with 73.30% F1-score.

1 Introduction

Suggestion mining can be viewed as a task of ex-
tracting suggestions from unstructured text sam-
ples (Ramanand et al., 2010; Negi and Buitelaar,
2015). The task goes beyond the sentiment polar-
ity detection and is useful for a variety of purposes,
e.g., organizations can improve their products bas-
ing on the suggestions from online sources without
the need of manually analyzing large amounts of
unstructured data (Dong et al., 2013).

In this first edition of the suggestion mining
SemEval task (Negi et al., 2019), two settings of
the task are addressed: single-domain (or domain-
specific) suggestion mining, where the training,
development, and test sets belong to the same do-
main (in the context of this shared task, sugges-
tion forum for Windows platform developers), and
cross-domain setting, where training and develop-
ment/test sets belong to different domains (train-
ing on developer suggestion forums and testing on
hotel reviews). In the both domains, only explicit
expressions of suggestions are considered: lexical
cues of a suggestion are explicitly mentioned in
the text (Negi et al., 2018).

We approach the task from a machine-learning
perspective as a binary classification of given

sentences into suggestion and non-suggestion
classes. We propose a straightforward approach
that can be applied when the availability of train-
ing/evaluation data and external linguistic re-
sources is scarce, and evaluate it in the context of
this shared task. We were particularly interested in
evaluating our approach under cross-domain con-
ditions (Subtask B), since this setting is more com-
mon in a real-word scenario of the task.

Further, we briefly describe the datasets used in
the competition and focus on the configuration of
our system.

2 Data

The training dataset provided by the organizers, as
well as the development and test sets for Subtask A
consist of explicit suggestion and non-suggestion
sentences extracted from the feedback posts on
the Universal Windows Platform1, while the de-
velopment and test sets for Subtask B are on a
different domain: a subset of the sentiment anal-
ysis dataset of hotel reviews from the TripAdvisor
website (Wachsmuth et al., 2014).

The training, development (dev.), and test
datasets statistics in terms of the total number (no.)
of sentences, the number of suggestion sentences,
and the percentage (%) of suggestion sentences is
provided in Table 1. A more detailed description
of the datasets used in the shared task can be found
in (Negi et al., 2019).

Dataset Total no.
of sentences

No. of
suggestions

% of
suggestions

Training 8,500 2,085 24.53%
Dev. (Subtask A) 592 296 50.00%
Dev. (Subtask B) 808 404 50.00%
Test (Subtask A) 833 87 10.44%
Test (Subtask B) 824 348 42.23%

Table 1: Suggestion mining datasets statistics.

1https://www.uservoice.com

1204

As one can see from Table 1, the distribution of
the suggestion and non-suggestion classes is bal-
anced in the development sets, but imbalanced in
the training and test data, which is closer to the
usual distribution of the suggestion sentences in
online reviews and forums (Asher et al., 2009;
Negi and Buitelaar, 2015; Negi et al., 2018).

3 Methodology

In this section, we describe the features we used
and the experimental setup of our best run.

3.1 Features

Handcrafted features Following previous stud-
ies on suggestion mining (Ramanand et al., 2010;
Brun and Hagège, 2013; Negi and Buitelaar,
2015), we manually selected a list of representa-
tive keywords and patterns of a suggestion from
the training and development data. It has been
shown that suggestion expressions often contain
modal verbs (Ramanand et al., 2010), e.g., should,
would, which are included in our list. We also con-
sider some verbs in their infinitive form, e.g., sug-
gest, recommend, as well as other lexical cues such
as comparative adjectives, e.g., better, worse. For
Subtask A, we used a set of 57 handcrafted key-
words and 77 keywords were used for Subtask B.
Some of the keywords used for Subtask B did not
contribute to the results obtained on the subtask A
development data, and therefore were discarded.
The number of such heuristic keywords in each
sentence was used as a feature for the machine-
learning algorithm.

Function words Function words are consid-
ered one of the most important stylometric fea-
tures (Kestemont, 2014). We hypothesize that
the distribution of function words is different for
suggestion and non-suggestion sentences. The
function word feature set consists of 318 English
function words from the scikit-learn package (Pe-
dregosa et al., 2011). Each function word was con-
sidered as a separate feature for Subtask A.

Sentiment features As mentioned in (Brun and
Hagège, 2013; Negi et al., 2018), suggestions are
usually expressed when a person is not entirely
satisfied with the product. To capture this, we used
the sentiment information from the NRC Word-
Emotion Association Lexicon (Mohammad and
Turney, 2013) focusing on words with negative
polarity. The number of negative sentiment words

in each sentence was used as a feature for Subtask
A.

Digits We used the number of digits in a sen-
tence as a feature for Subtask A. This feature is
used to evaluate wether the language used in sug-
gestion expressions is more “concrete” (as op-
posed to abstract) and digits usage can be one of
such indicators. Other types of named and nu-
meric entities we examined did not improve our
results.

Verbs Following the work by Negi and Buitelaar
(2015), we used the number of verbs in a sentence
as a feature for Subtask A. The parts-of-speech
(POS) tags were obtained using the TreeTagger
software package (Schmid, 1995).

When used for Subtask B, function words, sen-
timent features, digits, and verbs did not improve
the performance of our system.

3.2 Experimental setup

Classifier We used the scikit-learn (Pedregosa
et al., 2011) implementation of the Support Vec-
tor Machines (SVM) algorithm, which is consid-
ered among the best-performing algorithms for
text classification tasks in general, including when
cross-domain conditions and binary classification
are concerned (Markov et al., 2017), and for
the suggestion mining task in particular (Negi
and Buitelaar, 2015; Negi et al., 2016). We set
the class weight parameter to ‘balanced’ and the
penalty parameter (C) to 0.01 for Subtask A and
to 0.0001 for Subtask B, tuning the parameters ac-
cording to the results on the development data.

Weighting scheme We used term frequency
(tf) weighting scheme, i.e., the number of times
a term occurs in a sentence.

Evaluation For the evaluation of our system, we
conducted experiments on the development sets
for Subtasks A and B measuring the results in
terms of precision, recall, and F1-score for the
positive class (the official metric). For training
our system, we used only the data provided by
the organizers: when evaluating on the develop-
ment data, we trained our system on the training
datasets, while when evaluating on the test data,
we merged the training and Subtask A develop-
ment sets.2

2Participants were prohibited from using additional hand-
labeled training data of the same domain for Subtask B.

1205

4 Results and discussion

First, we present the results in terms of preci-
sion (%), recall (%), and on F1-score for the posi-
tive class (%) obtained on the Subtask A develop-
ment data. The contribution of each feature type
incorporated in our system is shown through an
ablation study in Table 2. The number of features
(No.) is also provided.3 The handcrafted features
and function words are the most indicative features
in our system (when used in isolation they achieve
a F1-score of 72.76% and 69.77%, respectively),
while other types of features slightly improve the
performance of our system.

Features Precision Recall F1-score No.
All features 77.93 78.72 78.32 275
– handcrafted 75.00 66.89 70.71 274

Drop: 2.93 11.83 7.61
– function words 71.72 71.96 71.84 4

Drop: 6.21 6.76 6.48
– sentiment features 77.29 77.03 77.16 274

Drop: 0.64 1.69 1.16
– digits 77.52 78.04 77.78 274

Drop: 0.41 0.68 0.54
– verbs 77.67 78.72 78.19 274

Drop: 0.26 0.00 0.13

Table 2: Ablation study of the feature types used for
Subtask A.

The results in terms of precision, recall, and F1-
score on the development sets for Subtasks A and
B, as well as the official results obtained on the
test sets are provided in Table 3. The results for
the rule-based baseline approach proposed by the
organizers are also presented.

Subtask A Precision Recall F1-score
Baseline dev. 58.72 93.24 72.06
Our dev. 77.93 78.72 78.32
Baseline test 15.66 91.95 26.76
Our test 38.92 74.71 51.18
Subtask B Precision Recall F1-score
Baseline dev. 72.85 81.68 77.01
Our dev. 85.42 82.67 84.03
Baseline test 68.86 78.16 73.22
Our test 73.62 72.99 73.30

Table 3: Results for the INRIA and the baseline ap-
proaches on the development (dev.) and test sets for
Subtasks A and B.

3Note that we use function words as features (274 fea-
tures), while the number of occurrences of the handcrafted
keywords, sentiment features, digits, and verbs is considered
as a feature (4 features in total).

Though the F1-score achieved by our system
is higher than the one achieved by the official
baselines in all cases, there is a considerable drop
on the test sets: 27.14% F1-score drop for Sub-
task A and 10.73% for Subtask B. For Subtask
A, the drop is mainly caused by the low precision
achieved on the test set (precision of 77.93% on
the development set and 38.92% on the test set).

After the evaluation period, in order to examine
whether the drop in precision and the large num-
ber of false positives provided by our system on
the Subtask A test set is partly related to the differ-
ent distribution of classes in the development and
test data – 50% and 10.44% of suggestions, re-
spectively (see Table 1) –, we balanced the classes
in the training and test sets to be in phase with each
other and evaluated the impact of classes distribu-
tion on the results achieved by our system:

• Test-like distribution: we randomly removed
positive examples from the training data so
that the distribution of classes in the training
set is the same as in the test set (10.44% of
positive examples instead of 26.19% in the
merged training and Subtask A development
data).

• Train-like distribution: we removed negative
examples from the test data so that the distri-
bution of positive classes in the test set is the
same as in the training data (26.19% instead
of 10.44%).

The results for these two experiments are shown
in Tables 4 and 5.4

Setting Precision Recall F1-score
Original distribution 38.92 74.71 51.18
Test-like distribution 41.96 75.86 54.03

Gain: 3.04 1.15 2.85

Table 4: Results for the original and test-like distribu-
tions of positive classes.

Setting Precision Recall F1-score
Original distribution 38.92 74.71 51.18
Train-like distribution 64.87 74.71 69.07

Gain: 25.95 0.00 17.89

Table 5: Results for the original and train-like distribu-
tions of positive classes.

4The result for the test-/train-like distributions was calcu-
lated as average over three experiments removing three dif-
ferent sets of positive/negative examples.

1206

As one can see from Tables 4 and 5, balancing
the distribution of positive classes, so that it is the
same in the training and the evaluation data, en-
hances the performance of our system (by around
3% in the test-like setting and around 18% in the
train-like setting) mainly due to the increase in
precision, which indicates that the distribution of
calsses should be taken into account when devel-
oping a robust suggestion mining system.

5 Conclusions

We presented the description of the best submis-
sion of the INRIA team to the suggestion min-
ing shared task at SemEval 2019. Our approach
is based on the Support Vector Machines algo-
rithm trained on handcrafted features, function
words, sentiment features, digits, and verbs for
Subtask A (single-domain setting). For Subtask B
(cross-domain setting), only handcrafted features
are used. Our best run showed 51.18% F1-score
for Subtask A and 73.30% for Subtask B. The re-
sults obtained on the test sets are lower than on
the development data. Additional experiments re-
vealed that the drop in F1-score is partly related to
the different distribution of classes in the training
data and in the development set used to evaluate
and tune our system. In future work, we plan to
improve our list of handcrafted features to make
our system robust to variations in the distribution
of classes and across different suggestion mining
domains.

References

Nicholas Asher, Farah Benamara, and Yannick Math-
ieu. 2009. Appraisal of opinion expressions in dis-
course. Lingvistic Investigationes, 31:279–292.

Caroline Brun and Caroline Hagège. 2013. Suggestion
mining: Detecting suggestions for improvement in
users’ comments. Research in Computing Science,
70:199–209.

Li Dong, Furu Wei, Yajuan Duan, Xiaohua Liu, Ming
Zhou, and Ke Xu. 2013. The automated acquisi-
tion of suggestions from tweets. In Proceedings of
the 27th AAAI Conference on Artificial Intelligence,
Bellevue, Washington, USA. AAAI Press.

Mike Kestemont. 2014. Function words in authorship
attribution. From black magic to theory? In Pro-
ceedings of the 3rd Workshop on Computational Lin-
guistics for Literature, pages 59–66, Gothenburg,
Sweden. ACL.

Ilia Markov, Helena Gómez-Adorno, Grigori Sidorov,
and Alexander Gelbukh. 2017. The winning ap-
proach to cross-genre gender identification in Rus-
sian at RUSProfiling 2017. In FIRE 2017 Working
Notes, volume 2036, pages 20–24, Bangalore, India.
CEUR-WS.org.

Saif Mohammad and Peter Turney. 2013. Crowdsourc-
ing a word-emotion association lexicon. Computa-
tional Intelligence, 29:436–465.

Sapna Negi, Kartik Asooja, Shubham Mehrotra, and
Paul Buitelaar. 2016. A study of suggestions in
opinionated texts and their automatic detection. In
Proceedings of the Fifth Joint Conference on Lexi-
cal and Computational Semantics, pages 170–178,
Berlin, Germany. ACL.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Pro-
cessing, Association for Computational Linguistics,
pages 2159–2167, Lisbon, Portugal. ACL.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sapna Negi, Maarten de Rijke, and Paul Buite-
laar. 2018. Open domain suggestion mining:
Problem definition and datasets. arXiv preprint
arXiv:1806.02179.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Jaiprakash Ramanand, Krishna Bhavsar, and Niranjan
Pedanekar. 2010. Wishful thinking – finding sug-
gestions and ‘buy’ wishes from product reviews. In
Proceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Genera-
tion of Emotion in Text, pages 54–61, Los Angeles,
California, USA. ACL.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to German. In
Proceedings of the ACL SIGDAT-Workshop, pages
47–50, Dublin, Ireland. ACL.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
Gregor Engels, and Tsvetomira Palakarska. 2014. A
review corpus for argumentation analysis. In Pro-
ceedings of the 15th International Conference on
Computational Linguistics and Intelligent Text Pro-
cessing, volume 8404, pages 115–127, Kathmandu,
Nepal. Springer.

1207

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1208–1212
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Lijunyi at SemEval-2019 Task 9: An attention-based LSTM model and
ensemble of different models for suggestion mining from online reviews

and forums

Junyi Li, Haiyan Ding∗

School of Information Science and Engineering
Yunnan University, Yunnan, P.R. China

∗Corresponding author: hyding@ynu.edu.cn

Abstract

In this paper, we describe a suggestion min-
ing system that participated in SemEval 2019
Task 9, SubTask A - Suggestion Mining from
Online Reviews and Forums. Given some
suggestions from online reviews and forums
that can be classified into suggestion and non-
suggestion classes. In this task, we combine
the attention mechanism with the LSTM mod-
el, which is the final system we submitted. The
final submission achieves 14th place in Task 9,
SubTask A with the accuracy of 0.6776. After
the challenge, we train a series of neural net-
work models such as convolutional neural net-
work(CNN), TextCNN, long short-term mem-
ory(LSTM) and C-LSTM. Finally, we make an
ensemble on the predictions of these models
and get a better result.

1 Introduction

Suggestion mining can be defined as the extrac-
tion of suggestions from unstructured text, where
the term “suggestions” refers to the expressions
of tips, advice, recommendations etc(Negi et al.,
2019). These suggestions largely express positive
and negative sentiments towards a given entity, but
also tend to contain suggestions for improving the
entity. Suggestion mining remains a relatively y-
oung area compared to Sentiment Analysis, es-
pecially in the context of recent advancements in
neural network based approaches for learning fea-
ture representations. In this task, suggestion min-
ing that classified sentences into suggestion and
non-suggestion classes was defined by the orga-
nizer.

In this paper, we mainly use an attention-based
LSTM model(Hochreiter and Schmidhuber, 1997)
for this task. The word-embedding used for al-
l models in this task is Word2Vec. Then, the word
vectors are fed into the long short-term memo-
ry (LSTM) layer. Finally, an attention mechanis-

Figure 1: An example from the SemEval 2019 Task 9
dataset

m(Luong et al., 2015) is added into the neural net-
works, and the prediction results are output via the
softmax activation. What’s more, we try a num-
ber of other models (such as the TextCNN(Kim,
2014), the C-LSTM(Zhou et al., 2015) and the
attention-based Bi-LSTM(Lai et al., 2015)) for
comparative experiments. Furthermore we com-
bine all of the above models to get results by soft
voting.

The rest of our paper is structured as follows.
Section 2 introduces models. Section 3 describes
data preparation. Experiments and evaluation are
described in Section 4. The conclusions are drawn
in Section 5.

2 Model

For this task, we use 6 models for experiments.
Among these models, the attention-based LSTM
models can get the best results. This model com-
bines the attention mechanism with the LSTM.
The attention mechanism is a good solution to the
information vanish problem in long sequence in-
put situations. When dealing with machine com-
prehension problems, the LSTM and the attention
mechanism are more effective than they are used
individually.

For this task, we have 4 chances to submit our
result in the final submission. We use differen-

1208

t methods that are the attention-based LSTM, C-
LSTM and ensemble different models.

In this task, we not only select some single
models but also use the ensemble model architec-
ture(Sarle, 1996). The ensemble model(Kuncoro
et al., 2016) architecture, shown in figure 1, is
an ensemble of many single models(We call them
sub models)(Dietterich, 2000). Because each sub
model is independent of each other, their weights
are not shared and just use the same word embed-
ding when training each sub model. The process
of the whole ensemble model is carried out model
by model. First, each model is run independently,
and then the result file is saved. After running all
the independent models, the result files are taken
out and the final result is determined by the soft
vote(Rokach, 2010).

Figure 2: The architecture of the models ensemble

2.1 CNN and TextCNN

The convolutional neural network was original-
ly used to process image data. In recent years,
the application of convolutional neural networks
has gradually penetrated into many different field-
s, such as speech recognition and natural lan-
guage processing. The convolutional neural net-
work consists of three parts. The first part is the in-
put layer. The second part consists of n cyclic lay-
ers and collection layers. The third part consists of
a fully connected multi-layer perceptual classifi-
er. The difference between a cyclic neural network
and a common neural network is that the convolu-
tional neural network consists of a feature extrac-

tor with a convolutional layer and a sub-sampling
layer. In the convolutional layer, one neuron is on-
ly connected to several adjacent neurons.

TextCNN is a model that uses multiple convolu-
tional neural networks to output in tandem (Kim,
2014). In the model, the convolution window of
each convolutional neural network is different in
size. The convolution results obtained by convolu-
tion windows of different sizes are combined and
output.

In our task, we also use the basic convolutional
neural network and TextCNN to conduct experi-
ments(Zhang and Wallace, 2015). For this task,
we find that TextCNN can get a better result than
a single convolutional neural network. So, we will
be more inclined to choose a TextCNN model in-
stead of a single CNN model for our task.

2.2 LSTM

Traditional recursive neural networks are ineffec-
tive when dealing with very long sentences. The
LSTM (Hochreiter and Schmidhuber, 1997) mod-
el is developed to solve the gradient vanishing or
exploding problems in the RNN. Currently, the L-
STM is mainly used in natural language process-
ing such as speech recognition and machine trans-
lation. Compared with the traditional RNN, an
LSTM unit is added to the traditional model for
judging the usefulness of information. Each unit
mainly contains three gates (the forget gate, the in-
put gate, and the output gate) and a memory cell.
The system will judge the usefulness of the infor-
mation after the input information is fed into an
LSTM(Liu et al., 2016). Only the information that
matches the rules of the algorithm will be saved,
and the other information will be discarded by the
forget gate.

2.3 Bi-LSTM

Single direction LSTM(Lai et al., 2015) suffers a
weakness of not using the contextual information
from the future tokens. Bidirectional LSTM (Bi-
LSTM) exploits both the previous and future con-
text by processing the sequence on two direction-
s and generates two independent sequences of L-
STM(Kim et al., 2016) output vectors(Liu et al.,
2016). One processes the input sequence in the
forward direction, while the other processes the in-
put in the backward direction.

In this task, we also use the Bi-LSTM to get
a better result(Huang et al., 2015). We select the

1209

model that can be compared with other models as
comparative experiments.

2.4 C-LSTM

It has been successfully demonstrated that neu-
ral network models can achieve good results in
tasks such as sentence and document classifica-
tion. Convolutional neural networks (CNN) and
recurrent neural networks (RNN) are two main-
stream methods for this classification task (Zhou
et al., 2015). At the same time, these two methods
can also be used for our tasks, which use a com-
pletely different approach to understanding natural
language. In this model, we combine the advan-
tages of both CNN and RNN models and call it C-
LSTM for sentence representation and text classi-
fication. C-LSTM uses CNN to extract a series of
higher-level phrase representations and feeds them
to the Long-Term Short-Term Memory Recurrent
Neural Network (LSTM) for sentence representa-
tion(Stollenga et al., 2015). C-LSTM captures lo-
cal features of phrases as well as global and tem-
poral sentence semantics. Then, we predict the re-
sults based on the labels of the sentences (Zhou
et al., 2015).

Figure 3: C-LSTM model for our task

In our experiments, the C-LSTM model is com-
pared with a single CNN model, TextCNN, and a
single LSTM, Bi-LSTM model. The results show
that the C-LSTM model can achieve a better result
in this task.

2.5 Attention-based LSTM model

The LSTM model can alleviate the problem of gra-
dient vanishing, but this problem persists in long
range reading comprehension contexts. The at-
tention mechanism(Bahdanau et al., 2014) breaks
the constraint on fix-length vector as the contex-
t vector, and enables the model to focus on those
more helpful to outputs. After LSTM layer, we
use the attention mechanism on the output vectors

produced by previous layer. It is proven effective
to improve the performance of our model.

Figure 4: An attention-based LSTM model for our task

In the attention-based LSTM model, all sen-
tences and labels are converted to word vectors
by the word embedding layer. These word vec-
tors will be fed to the LSTM layer. Subsequently,
the word vector is represented as a hidden vector.
Next, the attention mechanism assigns weights to
each hidden vector, and the mechanism produces
attention weight vectors and weighted hidden rep-
resentations. Note that the weight vector is mainly
obtained by calculating the similarity. An atten-
tion weight vector is generated by calculating a
sentence vector matrix and a label vector matrix.
The attention weight vector is then fed to the soft-
max layer.

The attention mechanism allows the model to
retain some important hidden information when
the sentence is long. In our mission, the informa-
tion of sentences and tags is kept for a relatively
long time. Using the standard LSTM may result in
the loss of hidden information. To solve this pos-
sible problem, we have facilitated the attention-
based LSTM model.

In our task, the attention mechanism(Yang et al.,
2016) can get better results. We think that the at-
tention mechanism(Vaswani et al., 2017) can im-
prove the efficiency of task. So, we combine the
attention mechanism with the LSTM model. This
model can get the best results among the single
models, which is the final system we submitted.

1210

3 Data Preparation

The organizers provided training, trial, and test
sets, containing 8500, 592 and 833 sentences re-
spectively(Negi et al., 2019). Each sentence cor-
responds to one label, 0 or 1. Although official
data is regular, we need to do a further normaliza-
tion. We want to make it possible to read these
sentences easily. First of all, we have completely
restored the abbreviated words. For example “i’m
not asking microsoft to gives permission like an-
droid so any app can take my data” will become “i
am not asking microsoft to gives permission like
android so any app can take my data”. In this sen-
tence “i’m” is an abbreviation. So, we found these
abbreviations and restored it by creating a list.

examples normalization
i’m i am

doesn’t dose not
can’t can not
i’ll i will
i’ve i have
... ...
i’d i would
it’s it is

Table 1: normalization patterns

Then we noticed that it is also very importan-
t to remove some unnecessary characters, such as
“!”,“?” etc. What’s more, we find that the link to
the web-page is useless for this task. So we re-
move all urls.

For data pre-processing, we wrote the code to
realize the functions and we can improve the ef-
ficiency of our final experimental results through
these data pre-processing methods.

4 Experiments and evaluation

After data pre-processing, we start the main part of
the experiment. The preprocessed data is feed in-
to our prepared model for experimentation. At the
same time, we do experiments on different model-
s to compare the test results. In the experiments,
we also find that the same model will get different
results under different parameter adjustments. For
example, we use the C-LSTM model for exper-
iments, and our experimental results range from
0.67 to 0.78 with different parameters in the tri-
al data. Therefore, reasonable adjustment of pa-
rameters during the experiment is also a factor in

obtaining a good experimental result.
We run each individual model 5 times and use

the average as the final result of this model. In all
of models, dropout parameters are changed from
0.2 to 0.6, What’s more, in the LSTM model, we
also select the recurrent dropout (Srivastava et al.,
2014) that are set between 0.2 and 0.45. And we
set epoch = 10 and batch size = 64.

In this task, we mainly select 6 models and en-
semble all of these models. In the table 3 we post
the F1-score and recall of the model.

Model Recall F1-score
CNN 0.78 0.5523

TextCNN 0.80 0.5908
LSTM 0.81 0.6104

C-LSTM 0.83 0.6222
Attention-BiLSTM 0.85 0.6610
Attention-LSTM 0.84 0.6776
ensemble models 0.82 0.6806

Table 2: Recall and F1-score for each models on task
test data

5 Conclusion

In this task, we accomplish this task by integrat-
ing LSTM and attention mechanism. After com-
petition, we try various structurally different mod-
els and an ensemble of all the models. The per-
formance of a single model is slightly worse than
the ensemble model. And there are certain differ-
ences between the different parameter results of
the same model. Our results are still not as satis-
fying as the top teams on the leaderboard.

However, in this task, we have some problem-
s which we can’t solve. For example, we can not
successfully solve the problem of data imbalance.
We can not consider the problem of model opti-
mization too much and we don’t try more ways of
ensemble model.

In the future, we will continue to adjust the
model, improve the hardware configuration of the
computer, collect more external data, and conduct
more experiments to get better results. Further-
more, we will try again to solve the problem of
data imbalance. We will continue to do model op-
timization and we will try more ways of ensemble
model.

1211

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arX-
iv:1409.0473.

Thomas G Dietterich. 2000. Ensemble methods in ma-
chine learning. In International workshop on multi-
ple classifier systems, pages 1–15. Springer.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Yoon Kim. 2014. Convolutional neural network-
s for sentence classification. arXiv preprint arX-
iv:1408.5882.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A Smith. 2016. Distill-
ing an ensemble of greedy dependency parsers into
one mst parser. arXiv preprint arXiv:1609.07561.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for tex-
t classification. In Twenty-ninth AAAI conference on
artificial intelligence.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification
with multi-task learning. arXiv preprint arX-
iv:1605.05101.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Lior Rokach. 2010. Ensemble-based classifiers. Artifi-
cial Intelligence Review, 33(1-2):1–39.

Warren S Sarle. 1996. Stopped training and other
remedies for overfitting. Computing science and s-
tatistics, pages 352–360.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Marijn F Stollenga, Wonmin Byeon, Marcus Liwick-
i, and Juergen Schmidhuber. 2015. Parallel multi-
dimensional lstm, with application to fast biomedi-
cal volumetric image segmentation. In Advances in
neural information processing systems, pages 2998–
3006.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A c-lstm neural network for text clas-
sification. arXiv preprint arXiv:1511.08630.

1212

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1213–1217
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

MIDAS at SemEval-2019 Task 9: Suggestion Mining from Online Reviews
using ULMFiT

Sarthak Anand,3 Debanjan Mahata,1 Kartik Aggarwal, 3 Laiba Mehnaz,2 Simra Shahid,2

Haimin Zhang,1 Yaman Kumar,5 Rajiv Ratn Shah,4 Karan Uppal1

1Bloomberg, USA, 2DTU-Delhi, India, 3NSIT-Delhi, India, 4IIIT-Delhi, India, 5Adobe, India,
sarthaka.ic@nsit.net.in, dmahata@bloomberg.net, kartik.mp.16@nsit.net.in,

laibamehnaz@dtu.ac.in, simrashahid bt2k16@dtu.ac.in, hzhang449@bloomberg.net,
ykumar@adobe.com, rajivratn@iiitd.ac.in, kuppal8@bloomberg.net

Abstract

In this paper we present our approach and the
system description for Sub Task A of SemEval
2019 Task 9: Suggestion Mining from On-
line Reviews and Forums. Given a sentence,
the task asks to predict whether the sentence
consists of a suggestion or not. Our model
is based on Universal Language Model Fine-
tuning for Text Classification. We apply vari-
ous pre-processing techniques before training
the language and the classification model. We
further provide detailed analysis of the results
obtained using the trained model. Our team
ranked 10th out of 34 participants, achieving
an F1 score of 0.7011. We publicly share our
implementation1.

1 Introduction and Background

Suggestion mining can be defined as the process
of identifying and extracting sentences from un-
structured text that contain suggestion (Negi et al.,
2018). Suggestions in the form of unstructured
text could be found in various social media plat-
forms, discussion forums, review websites and
blogs. They are often expressed in the form of ad-
vice, tips, recommendations, warnings, things to
do, and various other forms in an explicit as well
as an implicit way.

Identifying and retrieving suggestions from text
can be useful in an industrial setting for enhanc-
ing a product, summarizing opinions of the con-
sumers, giving recommendations and as an aid in
decision making process (Jijkoun et al., 2010). For
normal users of online platforms it could help in
seeking advice related to general topics of inter-
est like travel, health, food, shopping, education,

1https://github.com/isarth/SemEval9_
MIDAS

and many more. Given the abundance of textual
information in the Internet about a variety of top-
ics, suggestion mining is certainly an useful task
interesting to researchers working in academia as
well as industry.

Most of the previous efforts in the direction of
understanding online opinions and reactions have
been limited to developing methods for areas like
sentiment analysis and opinion mining (Medhat
et al., 2014; Baghel et al., 2018; Kapoor et al.,
2018; Mahata et al., 2018a,b; Jangid et al., 2018;
Meghawat et al., 2018; Shah and Zimmermann,
2017). Mining and understanding suggestions can
open new areas to study consumer behavior and
tapping nuggets of information that could be di-
rectly linked with the development and enhance-
ment of products (Brun and Hagege, 2013; Dong
et al., 2013; Ramanand et al., 2010), improve cus-
tomer experiences (Negi and Buitelaar, 2015), and
aid in understanding the linguistic nuances of giv-
ing advice (Wicaksono and Myaeng, 2013).

Suggestion mining is a relatively new domain
and is challenged by problems such as ambiguity
in task formulation and manual annotation, under-
standing sentence level semantics, figurative ex-
pressions, handling long and complex sentences,
context dependency, and highly imbalanced class
distribution, as already mentioned by (Negi et al.,
2018). Similar problems are also observed in the
dataset shared by the organizers for the SemEval
task, as it is obtained from a real-world applica-
tion comprising of suggestions embedded in un-
structured textual content.
Problem Definition - The problem of suggestion
mining as presented in the SemEval 2019 Task 9
(Negi et al., 2019), is posed as a binary classifica-
tion problem and could be formally stated as:

1213

Given a labeled dataset D of sentences, the
objective of the task is to learn a clas-
sification/prediction function that can predict
a label l for a sentence s, where l ∈
{suggestion, nonsuggestion}.
Our Contributions - Some of the contributions that
we make by participating in this task are:
• To our knowledge we are the first one to use Uni-
versal Language Model Fine-tuning for Text Clas-
sification (ULMFiT) (Howard and Ruder, 2018),
for the task of suggestion mining and show the ef-
fectiveness of transfer learning.
• We perform an error analysis of the provided
dataset for Sub Task A, as well as the predictions
made by our trained model.

Next, we give a detailed description of our sys-
tem and the experiments performed by us along
with explaining our results.

2 Experiments

2.1 Dataset

The dataset used in all our experiments was pro-
vided by the organizers of the task and consists
of sentences from a suggestion forum annotated
by humans to be a suggestion or a non-suggestion.
Suggestion forums are dedicated forums used for
providing suggestions on a specific product, ser-
vice, process or an entity of interest. The pro-
vided dataset is collected from uservoice.com2,
and consists of feedback posts on Universal Win-
dows Platform. Only those sentences are present
in the dataset that explicitly expresses suggestions,
for example - Do try the cupcakes from the bakery
next door, instead of those that contain implicit
suggestions such as - I loved the cup cakes from
the bakery next door (Negi et al., 2018).

Label Train Trial
Suggestion 2085 296
Non Suggestion 6415 296

Table 1: Dataset Distribution for Sub Task A - Task 9:
Suggestion Mining from Online Reviews.

For Sub Task A, the organizers shared a train-
ing and a validation dataset whose label distribu-
tion (suggestion or a non-suggestion) is presented
in Table 1. The unlabeled test data on which the
performance of our model was evaluated was also
from the same domain. As evident from Table

2https://www.uservoice.com/

1, there is a significant imbalance in the distribu-
tion of training instances that are suggestions and
non-suggestions, which mimics the distributions
of these classes in the real-world datasets. Al-
though the dataset was collected from a suggestion
forum and is expected to have a high occurrence of
suggestions, yet the imbalance is more prominent
due to the avoidance of implicit suggestions.

2.2 Dataset Preparation

Before using the provided dataset for training a
prediction model, we take steps to prepare it as
an input to our machine learning models. We pri-
marily use Ekphrasis3 for implementing our pre-
processing steps. Some of the steps that we take
are presented in this section.

2.2.1 Tokenization

Tokenization is a fundamental pre-processing step
and could be one of the important factors influenc-
ing the performance of a machine learning model
that deals with text. As online suggestion forums
include wide variation in vocabulary and expres-
sions, the tokenization process could become a
challenging task. Ekphrasis ships with custom
tokenizers that understands expressions found in
colloquial languages often used in forums and has
the ability to handle hashtags, dates, times, emoti-
cons, besides standard tokenization of English lan-
guage sentences. We also had to tokenize certain
misspellings and slangs (eg. “I’m”, “r:are”) after
carefully inspecting the provided dataset.

2.2.2 Normalization

After tokenization, a range of transformations
such as word-normalization, spell correction and
segmentation are applied to the extracted tokens.
During word-normalization, URLs, usernames,
phone numbers, date, time, currencies and special
type of tokens such as hashtags, emoticons, cen-
sored words etc. are recognized and replaced by
masks (eg. <date>, <hashtag>, <url>). These
steps results in a reduction in the vocabulary size
without the loss of informative excerpts that has
signals for expressing suggestions. This was vali-
dated manually by analyzing the text after apply-
ing the different processing steps. Table 2 shows
an example text snippet and its form after the ap-
plication of the pre-processing steps.

3https://github.com/cbaziotis/ekphrasis

1214

Text Snippet
before Pre-processing

Text Snippet
after Pre-processing

ie9mobile does not do this :(ie mobile does not do this <emsad>

For example if you want a feed for every Tumblr
feed containing the hashtags “ “#retail #design ” ”;
“ “http://www.tumblr .com/tagged/retail+ design””;
would be a feedly feed.”

For example if you want a feed
for every tumblr feed containing
the hashtags <hashtag>retail
<hashtag>design <url>would
be a feedly feed

Table 2: Text snippet from the dataset before and after applying pre-processing steps.

2.2.3 Class Imbalance
As already pointed in Section 2.1, class imbalance
is a prevalent challenge in this domain and is re-
flected in the provided dataset. We use oversam-
pling technique in order to tackle this challenge.
We duplicate the training instances labeled as sug-
gestions and boost their number of occurrences ex-
actly to double the amount present in the original
dataset.

3 Model Architecture Training and
Evaluation

We show the effectiveness of transfer learning for
the task of suggestion mining by training Univer-
sal Language Model Fine-tuning for Text Classifi-
cation (ULMFiT) (Howard and Ruder, 2018). One
of the main advantages of training ULMFiT is that
it works very well for a small dataset as provided
in the Sub Task A and also avoids the process of
training a classification model from scratch. This
avoids overfitting. We use the fast.ai4 implemen-
tation of this model.

The ULMFiT model has mainly two parts, the
language model and the classification model. The
language model is trained on a Wiki Text corpus
to capture general features of the language in dif-
ferent layers. We fine tune the language model
on the training, validation and the evaluation data.
Also, we additionally scrap around two thousand
reviews from the Universal Windows Platform for
training our language model. After analysis of the
performance we find optimal parameters to be:

• BPTT: 70, bs: 48.

• Embedding size: 400, hidden size: 1150,
num of layers: 3

We also experiment with MultinomialNB, Lo-
gistic Regression, Support Vector Machines,

4https://docs.fast.ai/text.html

LSTM. For LSTM we use fasttext word em-
beddings5 having 300 dimensions trained on
Wikipedia corpus, for representing words.

Table 3, shows the performances of all the mod-
els that we trained on the provided training dataset.
We also obtained the test dataset from the organiz-
ers and evaluated our trained models on the same.
The ULMFiT model achieved the best results with
a F1-score of 0.861 on the training dataset and
a F1-score of 0.701 on the test dataset. Table 4
shows the performance of the top 5 models for Sub
Task A of SemEval 2019 Task 9. Our team ranked
10th out of 34 participants.

Model F1 (train) F1 (test)
Multinomial Naive Bayes
(using Count Vectorizer) 0.641 0.517

Logistic Regression
(using Count Vectorizer) 0.679 0.572

SVM (Linear Kernel)
(using TfIdf Vectorizer) 0.695 0.576

LSTM
(128 LSTM Units) 0.731 0.591

Provided Baseline 0.720 0.267
ULMFit* 0.861 0.701

Table 3: Performance of different models on the pro-
vided train and test dataset for Sub Task A.

Ranking Team Name Performance
(F1)

1 OleNet 0.7812
2 ThisIsCompetition 0.7778
3 m y 0.7761
4 yimmon 0.7629
5 NTUA-ISLab 0.7488
10 MIDAS (our team) 0.7011*

Table 4: Best performing models for SemEval Task 9:
Sub Task A.

5https://fasttext.cc/docs/en/pretrained-vectors.html

1215

4 Error Analysis

In this section, we analyse the performance of
our best model (ULMFiT) on the training data as
shown by the confusion matrix presented in Fig-
ure 1. We specially look at the predictions made
by our model that falls into the categories of False
Positive and False Negative, as that gives us in-
sights into the instances which our model could
not classify correctly. We also present some of the
instances that we found to be wrongly labeled in
the provided dataset.

Figure 1: Confusion matrix training data

False Positives (Labeled or predicted wrongly
as suggestion) Some examples that seems incor-
rectly labeled as suggestion in training data are
given below:

• Id 2602: Current app extension only supports
loading assets and scripts.

• Id 3388: One is TextCanvas for Display and
Editing both Text and Inking.

• Id 0-1747: Unfortunately they only pull their
feeds from google reader

Some examples that are incorrectly predicted by
the model as suggestions are:

• Id 1575: That’s why I’m suggesting a spe-
cialized textbox for numbers.

• Id 1462: If you have such limits publish them
in the API docs.

• Id 1360-2: Adding this feature will help alot.

False Negatives (Labeled or predicted wrongly
as Non Suggestion) Some examples that seems
incorrectly labeled as non suggestion in the train-
ing data:

• Id 0-1594: Please consider adding this type
of feature to feedly.

• Id 3354: Please support the passing of all se-
lected files as command arguments.

• Id 0-941: Microsoft should provide a SDK
for developers to intergate such feedback sys-
tem in their Apps.

Some examples that are incorrectly predicted by
the model as non-suggestions:

• Id 0-757: Create your own 3d library.

• Id 834-15: Please try again after a few min-
utes” in Firefox.

• Id 4166: I want my user to stay inside my
app.

We also find that 77% of the false positives
have keywords (want, please, add, support, would,
could, should, need), with would being highest i.e.
around 30%.

5 Conclusion and Future Work

In this work we showed how transfer learning
could be used for the task of classifying sentences
extracted from unstructured text as suggestion and
non-suggestions. Towards this end we train a
ULMFiT model on the dataset (only Sub Task A)
provided by the organizers of the SemEval 2019
Task 9 and rank 10th in the competition out of 34
participating teams.

In the future we would like to experiment and
show the effectiveness of our trained model in
Sub Task B where the training dataset remains the
same, but the test dataset consists of suggestions
from a different domain. It would be interesting
to see how our model performs in predicting out-
of-domain suggestions and show the ability of the
ULMFiT model to fine-tune itself to a completely
new domain with the already existing pre-trained
model. Another interesting area would be to ex-
plore Multi Task Learning models and see how
the domain of suggestion mining could get ben-
efited by borrowing weights from models trained
on other related tasks and similar tasks across dif-
ferent domains.

1216

References
Nupur Baghel, Yaman Kumar, Paavini Nanda, Ra-

jiv Ratn Shah, Debanjan Mahata, and Roger Zim-
mermann. 2018. Kiki kills: Identifying dangerous
challenge videos from social media. arXiv preprint
arXiv:1812.00399.

Caroline Brun and Caroline Hagege. 2013. Suggestion
mining: Detecting suggestions for improvement in
users’ comments. Research in Computing Science,
70(79.7179):5379–62.

Li Dong, Furu Wei, Yajuan Duan, Xiaohua Liu, Ming
Zhou, and Ke Xu. 2013. The automated acquisition
of suggestions from tweets. In Twenty-Seventh AAAI
Conference on Artificial Intelligence.

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. CoRR,
abs/1801.06146.

Hitkul Jangid, Shivangi Singhal, Rajiv Ratn Shah, and
Roger Zimmermann. 2018. Aspect-based financial
sentiment analysis using deep learning. In Compan-
ion of the The Web Conference 2018 on The Web
Conference 2018, pages 1961–1966. International
World Wide Web Conferences Steering Committee.

Valentin Jijkoun, Wouter Weerkamp, Maarten de Rijke,
Paul Ackermans, and Gijs Geleijnse. 2010. Min-
ing user experiences from online forums: an explo-
ration. In Proceedings of the NAACL HLT 2010
Workshop on Computational Linguistics in a World
of Social Media, pages 17–18.

Raghav Kapoor, Yaman Kumar, Kshitij Rajput, Ra-
jiv Ratn Shah, Ponnurangam Kumaraguru, and
Roger Zimmermann. 2018. Mind your language:
Abuse and offense detection for code-switched lan-
guages. arXiv preprint arXiv:1809.08652.

Debanjan Mahata, Jasper Friedrichs, Rajiv Ratn Shah,
and Jing Jiang. 2018a. Detecting personal intake
of medicine from twitter. IEEE Intelligent Systems,
33(4):87–95.

Debanjan Mahata, Jasper Friedrichs, Rajiv Ratn Shah,
et al. 2018b. # phramacovigilance-exploring deep
learning techniques for identifying mentions of
medication intake from twitter. arXiv preprint
arXiv:1805.06375.

Walaa Medhat, Ahmed Hassan, and Hoda Korashy.
2014. Sentiment analysis algorithms and applica-
tions: A survey. Ain Shams engineering journal,
5(4):1093–1113.

Mayank Meghawat, Satyendra Yadav, Debanjan Ma-
hata, Yifang Yin, Rajiv Ratn Shah, and Roger Zim-
mermann. 2018. A multimodal approach to pre-
dict social media popularity. In 2018 IEEE Con-
ference on Multimedia Information Processing and
Retrieval (MIPR), pages 190–195. IEEE.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sapna Negi, Maarten de Rijke, and Paul Buite-
laar. 2018. Open domain suggestion mining:
Problem definition and datasets. arXiv preprint
arXiv:1806.02179.

Janardhanan Ramanand, Krishna Bhavsar, and Niran-
jan Pedanekar. 2010. Wishful thinking: finding sug-
gestions and’buy’wishes from product reviews. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 54–61. Association for
Computational Linguistics.

Rajiv Shah and Roger Zimmermann. 2017. Multi-
modal analysis of user-generated multimedia con-
tent. Springer.

Alfan Farizki Wicaksono and Sung-Hyon Myaeng.
2013. Automatic extraction of advice-revealing sen-
tences foradvice mining from online forums. In Pro-
ceedings of the seventh international conference on
Knowledge capture, pages 97–104. ACM.

1217

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1218–1223
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NL-FIIT at SemEval-2019 Task 9:
Neural Model Ensemble for Suggestion Mining

Samuel Pecar, Marian Simko, Maria Bielikova
Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies
Ilkovicova 2, 842 16 Bratislava, Slovakia

{samuel.pecar, marian.simko, maria.bielikova}@stuba.sk

Abstract

In this paper, we present neural model archi-
tecture submitted to the SemEval-2019 Task 9
competition: "Suggestion Mining from Online
Reviews and Forums". We participated in both
subtasks for domain specific and also cross-
domain suggestion mining. We proposed a re-
current neural network architecture that em-
ploys Bi-LSTM layers and also self-attention
mechanism. Our architecture tries to encode
words via word representations using ELMo
and ensembles multiple models to achieve bet-
ter results. We performed experiments with
different setups of our proposed model involv-
ing weighting of prediction classes for loss
function. Our best model achieved in official
test evaluation score of 0.6816 for subtask A
and 0.6850 for subtask B. In official results,
we achieved 12th and 10th place in subtasks A
and B, respectively.

1 Introduction

Review-based portals and online forums contain
plethora of user-generated text. We can con-
sider customer reviews and inputs from online fo-
rums as an important source of novel information.
These texts often contain many different opinions,
which are the subject of research in area of opinion
mining.

On the other hand, there can be also different
types of information within these texts, such as
suggestions. Unlike opinions, suggestions can ap-
pear in different parts of text and also appear more
sparsely. Suggestion mining, as defined in this
task, can be realized as standard text classification.
We perform classification to two classes, which
are suggestion and non-suggestion.

As presented by organizers, suggestion mining
has different challenges (Negi et al., 2019):

• Class imbalance - suggestions appear very
sparsely in reviews and forums and most of

the samples are negatively sampled,

• Figurative expressions - expression can be of-
ten found in social networks but it is not al-
ways in form of suggestion,

• Context dependency - some sentences can be
viewed as a suggestion, if it appears in spe-
cific domain or surrounded by specific sen-
tences,

• Long and complex sentences - suggestions
can be expressed as only small part of orig-
inal sentence, which can be much longer.

Unlike opinions, suggestions can be more likely
extracted also by pattern matching. We can ex-
tract suggestions by different heuristic features
and keywords, such as suggest, recommend, ad-
vise (Negi and Buitelaar, 2015). Some works
deal with domain terminology, thesaurus, linguis-
tic parser and extraction rules (Brun and Hagege,
2013). Linguistic rules were also used for iden-
tification and extraction in sentiment expression
(Viswanathan et al., 2011).

We believe that different extracted information
from customer reviews and online forums can of-
fer a valuable input for both customers and owners
of products or forums and this information can be
also a subject for automatic opinion summariza-
tion (Pecar, 2018).

In this paper, we present a neural network ar-
chitecture consisting of different types of layers,
such as embedding, recurrent, transformer or self-
attention layer. We continued in our previous work
on multi-level pre-processing (Pecar et al., 2018).
We performed experiments with different word
representations, such as ELMo, BERT or GloVe.
We report results of our experiments along with
error analysis of our models.

1218

2 Model

In this SemEval task, we experimented with mul-
tiple setups based on different types of neural lay-
ers on the top of an embedding layer. In Figure
1, we show general architecture of our proposed
model. We also experimented with a transformer
encoder, which is described in the paragraph on
encoder layer below.

Word 1 Word 2 Word 4Word 3

ELMo word representations

Self-attention layer

predicted Y

Linear decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Figure 1: Proposed neural model architecture

Preprocessing We consider preprocessing of in-
put samples as one of the most important phases in
natural language processing. For user generated
content, preprocessing is even more important due
to noisy and ungrammatical text. We performed a
study on the impact of preprocessing in our previ-
ous work (Pecar et al., 2018).

For this suggestion mining task, we used pre-
processing in several stages, which were per-
formed in order as follows:

1. text cleaning – removing all characters from
not Latin alphabet, such as Cyrillic, Greek or
Chinese characters,

2. character and word normalization – normal-
ization of different use of characters and
words, such as apostrophe, punctuation, date
and time (e.g. ‘’ for apostrophe and ”“„ for
quotation),

3. shorten phrase expanding – expanding all
shorten phrases to their appropriate long form
(e.g. I’ll to I will),

4. expanding negations – expanding all negation
forms, which appeared in short form to their
appropriate long form (e.g. aren’t, won’t to
are not, will not),

5. punctuation escaping – escaping all punctua-
tion with spaces do separate those characters
from words.

Word Representations To represent words
from samples, we used deep contextualized word
representations (Peters et al., 2018) also known
as ELMo along with its available pre-trained
model1. We also experimented with transform-
ers model word representations known as BERT
(Devlin et al., 2018) and its pre-trained model2.
For language modeling in subtask B, we also ex-
perimented with GloVe embeddings (Pennington
et al., 2014).

Encoder layer Word representations are fed
into different encoder layers. Mostly, we used
different setups of Bi-LSTM. We experimented
with multiple stacked recurrent layers with differ-
ent number of units within layers. In both cases
(only one layer, multiple stacked layers) we used
also self-attention mechanism to improve results
and reduce over-fitting to the train dataset. We also
tried to experiment with different attention lay-
ers and used transformer encoder (Vaswani et al.,
2017) but due to very high requirements for mem-
ory, we were not able to run model with full size of
this network and smaller networks produced sig-
nificantly worse results.

Decoder Layer We used standard linear layer
to decode output representation of recurrent lay-
ers with self-attention mechanism to class proba-
bilities. In case of model ensemble, we needed to
employ also another logarithmic softmax function
for better interpretations of probabilities of sam-
ples for both classes.

Loss Function For a loss function, we experi-
mented with the standard cross-entropy loss and
the negative log likelihood loss in case a logarith-
mic softmax were used. We also experimented
with weight setup for classes for loss contribution.

Model Ensemble Model ensemble can be con-
sidered as a useful technique to obtain better re-
sults than using only single model for predictions.

1https://allennlp.org/elmo
2https://github.com/google-research/bert

1219

We experimented with different size of model en-
semble and also two different types. In one model,
we tried averaging model prediction probabilities
and in second one, we used voting mechanism and
predicted class with more votes.

Regularization To reduce possibilities of over-
fitting to train dataset, we used also dropout as
a regularization technique. We used dropout on
embedding layer output, on encoder output along
with dropout between stacked RNN layers and
also at the output of attention layer. We used dif-
ferent dropout probabilities in range from 0.2 to
0.6.

3 Evaluation

In this section, we briefly summarize basic infor-
mation about used dataset. Later, we describe dif-
ferent setups of our model. Each team could sub-
mit in total 4 submission as an official results. For
evaluation, binary F1 measure (F1 score over pos-
itive labels) was taken as an official results of sub-
mission.

3.1 Dataset
The dataset for suggestion mining task consists
of feedback posts on Universal Windows Platform
available on uservoice.com. The dataset contains
only labels for two categories: the text is sugges-
tion or it is not. The train dataset contains approx-
imately 9 thousands of text samples. For valida-
tion, there were available approximately 600 sam-
ples for subtask A and 800 samples for subtask B.
The size of test datasets were approximately 800
and 1000 samples for subtask A and B, respec-
tively. More detailed information can be found in
the main paper of the task (Negi et al., 2019).

3.2 Results
In Table 1, we provide basic information about se-
tups of performed submission. For every setup,
we used ELMo word representations as an em-
bedding layer, different setups of dropout in each
layer of neural network in the range from 0.3 to
0.6. Each LSTM layer has its hidden size set to
1024 units per layer. For some submissions, we
also experimented with model ensemble. We took
different number of models, which had the best
performance on development (trial) set and used
averaging predicted probabilities to get final pre-
diction or voting mechanism and get label with
more votes. In subtask A, we used 5 best trained

models for voting model ensemble and 3 models
for mean model ensemble. In subtask B, we used
3 best trained models for model ensemble.

In Table 1, we show also results of submitted
all models in 3 measures, micro F1, macro F1 and
binary F1 (F1 score over positive samples). As
an official results, binary F1 measure was taken.
From these results, we can observe that model en-
semble can significantly help obtain better results
for both subtasks.

3.3 Model ensemble results

In this section, we discuss results of each model
from model ensemble in detail for both subtasks.

Table 2 shows results of each model used for
model ensemble for subtask A. We can observe
that the best model obtained binary F1 score
0.6609 and both types of model ensembles get bet-
ter results up to 2 percents than each model sepa-
rately. For mean model ensemble first 3 models
were used and for voting ensemble all 5 models
were used.

Table 3 shows results of each model used for
model ensemble for subtask B. We can see that the
best model obtained binary F1 score 0.6770 and
both types of model obtained better results than
each model separately. For both types of model
ensemble all 3 models were used. Results for vot-
ing ensemble were not part of the official submis-
sions.

3.4 Error analysis

We provide also error analysis of proposed model
for both subtasks. We made 3 official submissions
for subtask A and 2 for subtask B.

In Table 4, we show simple results from con-
fusion matrix for subtask A and also for subtask
B. For subtask A, we can observe that the main
problem of our proposed models was high num-
ber of false positive labels and our models pre-
dicted presence of suggestion too often. In sub-
task B, there is more problematic prediction of
non-suggestion labels, where number of false neg-
ative samples is much bigger. This problem can
be caused also due to different distributions in
training and test datasets. We also used for train-
ing dataset from a different domain, which even
highlighted this problem. We used the same class
weight modification for loss in subtask B as was
used in subtask A.

1220

task submission layers model micro F1 macro F1 binary F1ensemble

A
1 2 Bi-LSTM Mean 0.9147 0.8162 0.6816
2 2 Bi-LSTM Voting 0.9116 0.8091 0.6696
3 2 Bi-LSTM None 0.9051 0.8029 0.6609

B 1 1 LSTM Mean 0.7779 0.7567 0.6850
2 1 LSTM None 0.7463 0.7306 0.6656

Table 1: Official submission results in different measures

model micro F1 macro F1 binary F1
1 0.9051 0.8029 0.6609
2 0.9050 0.8000 0.6550
3 0.9075 0.8021 0.6577
4 0.9099 0.8013 0.6543
5 0.9159 0.8061 0.6601

mean 0.9147 0.8162 0.6816
voting 0.9116 0.8091 0.6696

Table 2: Results of unsubmitted models in different
measures for subtask A

model micro F1 macro F1 binary F1
1 0.7742 0.7517 0.6770
2 0.7730 0.7446 0.6593
3 0.7463 0.7306 0.6656

mean 0.7779 0.7567 0.6850
voting 0.7574 0.7803 0.6830

Table 3: Results of unsubmitted models in different
measures for subtask B

3.5 Unsubmitted models

In this section, we present results of models, which
were not used to make an official submission. We
experimented with these models for subtask A and
also subtask B. Results can be found in Table 5
and 6. Each model in this section is used without
model ensemble and we can compare results with
the best models themselves. In each table, best
model indicates best submitted model without any
model ensemble.

The only modification used for model 1 is re-
placing ELMo word representation with BERT.
Obtained word representations from pre-trained
BERT performed much worse than ELMo repre-
sentation. This fact was also observed while eval-
uating on development (trial) dataset.

Model 2 had a more significant modification,
where LSTM encoder was replaced with trans-
former network (Vaswani et al., 2017). Due to

task submission TP FP FN TN

A
1 76 60 11 686
2 75 62 12 684
3 77 69 10 677

B 1 199 34 149 442
2 208 69 140 407

Table 4: Error analysis for submissions

high memory requirements of this model we were
not able to run full encoder of the original network
and used only smaller part with 6 layers and 4 head
attention layers.

As we observed in error analysis of submit-
ted results (see Table 4), one of the significant
problems was predicting too many positive labels.
For all submissions, we used re-balancing class
weights for loss function based on distribution in
train dataset (0.6625, 2.0384). In model 3, we
changed class weights to be more balanced (1.0
and 2.0). In model 4, we used completely balanced
weights (1.0 and 1.0) and in model 5, we tried to
change class weights to prefer negative labels (2.0
and 1.0).

model micro F1 macro F1 binary F1
best 0.9051 0.8029 0.6609

1 0.8415 0.7214 0.5384
2 0.9123 0.7952 0.6404
3 0.9314 0.8440 0.7272
4 0.9459 0.8577 0.7457
5 0.9495 0.8479 0.7236

Table 5: Results of unsubmitted models in different
measures for subtask A

For subtask B, we also experimented with use
of pre-trained weights from language model. We
trained language model on dataset of hotel reviews
– arguana (Wachsmuth et al., 2014). Unfortu-
nately, without fine-tuning on in-domain dataset

1221

used for classification, this model did not obtained
better results. We show results of this experi-
ment as model 1 in Table 6. We suppose that
further experiment would be needed with combi-
nation of class re-balancing for loss and also fix-
ing pre-trained weights. Since our language model
was trained with GloVe embeddings, we had to use
GloVe also in training for this task. Models 2 and
3 show results with change of class weight for loss
function to prefer positive labels (1.0, 4.0 and 1.0,
5.0).

model micro F1 macro F1 binary F1
1 0.7208 0.6698 0.5401
2 0.7961 0.7844 0.7341
3 0.8264 0.8186 0.7810

Table 6: Results of unsubmitted models in different
measures for subtask B

As we showed in this section, our further exper-
iments along with error analysis showed also sig-
nificant improvement in comparison to performed
official submissions. We believe further work can
provide even better results, especially in combina-
tion with model ensemble.

4 Conclusions

We proposed a neural model architecture for sug-
gestion mining. For subtask A, we employed bidi-
rectional LSTM encoder, which consisted from
2 stacked layers followed by self attention. For
subtask B, better performance proved only one
layer in one direction to reduce learning process
and over-fitting to train domain. Our experi-
ments showed that pre-trained ELMo word repre-
sentations performed much better than pre-trained
BERT. We also performed other experiments with
different setups of our architecture, which were
not submitted as official results. As we showed,
model ensemble can significantly improve results
compared when using only single models.

To obtain better results, we would need to em-
ploy transfer learning to a much bigger extent,
especially for subtask B. We could also consider
further experiments with re-balancing of class
weights for loss function, as we predicted too
many suggestions, especially for subtask A. An-
other possible experiments would employ trans-
former network, which we were not able to fully
employ due to high resource requirements. Inter-
esting would be also employing some pattern ap-

proaches, which proved as very successful for sub-
task B in baseline provided by organizers. Code
for our submission can be found in GitHub repos-
itory3.

Acknowledgments

This work was partially supported by the Slovak
Research and Development Agency under the con-
tracts No. APVV-17-0267 and No. APVV SK-IL-
RD-18-0004, and by the Scientific Grant Agency
of the Slovak Republic grants No. VG 1/0725/19
and No. VG 1/0667/18. The authors would like
to thank for financial contribution from the STU
Grant scheme for Support of Young Researchers.

References
Caroline Brun and Caroline Hagege. 2013. Suggestion

mining: Detecting suggestions for improvement in
users’ comments. Research in Computing Science,
70(79.7179):5379–62.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2159–2167. Association for Compu-
tational Linguistics.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Samuel Pecar. 2018. Towards opinion summarization
of customer reviews. In Proceedings of ACL 2018,
Student Research Workshop, pages 1–8. Association
for Computational Linguistics.

Samuel Pecar, Michal Farkaš, Marian Simko, Peter
Lacko, and Maria Bielikova. 2018. NL-FIIT at
IEST-2018: Emotion recognition utilizing neural
networks and multi-level preprocessing. In Pro-
ceedings of the 9th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 217–223. Association for Com-
putational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language

3https://github.com/SamuelPecar/NL-FIIT-SemEval19-
Task9

1222

Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Amar Viswanathan, Prasanna Venkatesh, Bintu G Va-
sudevan, Rajesh Balakrishnan, and Lokendra Shas-
tri. 2011. Suggestion mining from customer re-
views. In AMCIS.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
Gregor Engels, and Tsvetomira Palakarska. 2014.
A review corpus for argumentation analysis. In
Proceedings of the 15th International Conference
on Intelligent Text Processing and Computational
Linguistics, pages 115–127, Berlin Heidelberg New
York. Springer.

1223

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1224–1230
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

NTUA-ISLab at SemEval-2019 Task 9: Mining Suggestions in the wild

Rolandos Alexandros Potamias, Alexandros Neofytou, Georgios Siolas
Intelligent Systems Laboratory,

National Technical University of Athens,
Zografou, Athens , Greece

rolpotamias@gmail.com, alex.neofytou@gmail.com
gsiolas@islab.ntua.gr

Abstract

As online customer forums and product com-
parison sites increase their societal influence,
users are actively expressing their opinions
and posting their recommendations on their
fellow customers online. However, systems
capable of recognizing suggestions still lack in
stability. Suggestion Mining, a novel and chal-
lenging field of Natural Language Process-
ing, is increasingly gaining attention, aiming
to track user advice on online forums. In this
paper, a carefully designed methodology to
identify customer-to-company and customer-
to-customer suggestions is presented. The
methodology implements a rule-based classi-
fier using heuristic, lexical and syntactic pat-
terns. The approach ranked at 5th and 1st

position, achieving an f1-score of 0.749 and
0.858 for SemEval-2019/Suggestion Mining
sub-tasks A and B, respectively. In addition,
we were able to improve performance results
by combining the rule-based classifier with a
recurrent convolutional neural network, that
exhibits an f1-score of 0.79 for subtask A.

1 Introduction

Nowadays, online platforms and e-commerce sites
have become increasingly popular. In such online
environments people are willingly sharing views,
feelings and opinions about specific products and
services by conveying written recommendations
on several topics. The pool of advising items
that float in contemporary e-commerce environ-
ments posts a critical task: how to identify, capture
and extract useful information from them. Dig-
ging into these information pools of unstructured
commenting dialogues about ideas and thoughts
expressed by reviewers on the product, its fea-
tures, components or functions can be seen as an
Opinion Mining (OM) problem (Banitaan et al.,
2010), with the relevant research gaining increas-
ingly significant attention.

However, OM strategies attempt to extract the
sentiment of users written passages, failing to cor-
rectly capture putative advice, especially in the
presence of mixed emotions. For example, a sug-
gestion in an online trip advising platform could
contain the sentence “If you sleep lightly, this
would be a problem because of all the trams that
go by - so ask for an interior room.”. The pas-
sage conveys a negative sentiment which is im-
possible to grasp correctly. Confronted with this
problem, computational methodologies that auto-
matically identify and highlight clear-cut advice in
written recommendations raises as a major need.
Towards this end, Suggestion Mining (SM) strives
to track suggestions and tips in passages. Sug-
gestive sentences could be positive, negative or
they may not contain any sentiment at all, a fact
that makes their tracking quite puzzling (Negi and
Buitelaar, 2015). In general, advice may be ex-
pressed by using either explicit suggestions, which
propose direct and conventionalized forms of rec-
ommendations (Martı́nez Flor, 2005), or implicit
suggestions where the precise recommendation is
in a way veiled and should be inferred (Negi and
Buitelaar, 2015).

The work reported in this paper copes mainly
with explicitly expressed suggestions, ignoring in-
direct recommendations, such as The best thing
about the Westin, as everybody has already stated,
is the location. where, via the expressed posi-
tive response, the writer implies a recommenda-
tion about Westin hotel. In particular, we tackle
the problem of detecting suggestive comments by
carefully devising a number of heuristic features to
represent various lexical and imperative patterns
that are indicative of explicit advice. The basic
contributions of the proposed SM approach are:

• Implementation of a robust and extended
identifier of imperative, prompting and solic-

1224

itation clauses in sentences that are mostly re-
lated with advice and suggestions.

• Extension and elaboration on existing dictio-
naries and respective lexical patterns that are
indicative of advice and suggestions, focus-
ing on reviews related to electronics and ho-
tels.

• Composition of a fully equipped and highly
accurate suggestion mining framework that
compares and outperforms other related ap-
proaches.

2 Related Work

Even if SM is still in its youth, few related studies
aim towards the extraction of suggestions. Gold-
berg et al. (2009) introduced a pattern-based ap-
proach to capture the desires of customers regard-
ing company suggestions, utilizing a Support Vec-
tor Machines (SVM) classifier. A similar study,
conducted by Ramanand et al. (2010), on extract-
ing suggestions and purchase desires for product
services is founded on a pattern-based approach
and the devise of respective rules. The first study
that focused on the extraction of exact suggestions
from product reviews and utilized feature-based
classification techniques is reported in (Brun and
Hagege, 2013). The same line of research is fol-
lowed in Negi and Buitelaar (2015) where, an
SVM approach is employed to classify heuristi-
cally devised sequential features. In a follow-up
work (Negi et al., 2016) it was demonstrated that
the utilization of deep learning techniques, such as
Convolutional Neural Network (CNN) and Long-
Short-Term-Memory (LSTM) architectures, may
improve prediction performance. In a similar set-
ting, in Golchha et al. (2018) a hybrid deep learn-
ing framework is introduced, which is composed
by both recurrent and convolutional network ar-
chitectures, coupled with linguistic features. A
different approach is proposed in Gottipati et al.
(2018) that exploits suggestions on student feed-
back comments utilizing a decision tree classifica-
tion approach.

3 Experimental Setup

3.1 Dataset
The SemEval-2019/SM task 9 (Negi et al., 2019),
targets the handling of different suggestion forms.
It provides a 9K training dataset with sentences re-
lated to customer suggestions that were extracted

from the “Universal Windows Platform (available
from uservoice.com).The provided dataset
is imbalanced as only 26% of cases are classified
as suggestions. The provided test dataset for sub-
task A was also imbalanced as it contains only 87
suggestive instances from a total of 833 sentences.
Data for subtask B was extracted from TripAdvi-
sor forum1, and carries different aspects of advice
between customers. The provided test set contains
824 sample instances, 348 of which indicate ex-
plicit suggestions.

3.2 Preprocessing: To do or not to do?
Suggestions often comprise phrases, expressions
and lexical patterns to denote their suggestion con-
tent. Such patterns may contain several stop-
words such as be or should. We claim that re-
taining stop-words is needed in order to identify
special lexical patterns like for example, “be sure”
or “would be nice”, which are indicative of the
suggestion mood and content of sentences. To
this end, we keep the prepossessing step as sim-
ple as possible by just lowering uppercase letters
and deleting repeated punctuation. We also apply
pyspellchecker2 to correct any misspelled
words.

4 Method

Our approach to the SM task is founded on the
careful identification of lexical patterns and the
assignment of contextual importance weights to
them. A respective rule-based classifier is then
formed that computes the degree of a sentence’s
suggestion content according to the importance of
the included patterns. The identified patterns for
both subtasks A and B are acquired by utilizing a
common dictionary of suggestion patterns and re-
lated corpora, as well as imperative featured pat-
terns described in Section 4.1. In addition, the
submitted classifier for subtask A was further im-
proved by coupling it with a convolutional recur-
rent neural network (Section 5).

4.1 Detection of Imperative Forms
As a linguistic property the imperative mood is
found to be deeply connected to suggestions in
various studies Wicaksono and Myaeng (2012).
Thorough observation and analysis of the linguis-
tic characteristics related to both subtasks, led us

1https://www.tripadvisor.com.gr/
2https://pypi.org/project/

pyspellchecker/

1225

Figure 1: Imperative mood patterns based on Part of Speech Tags. Notation: Si,j denotes POS tag of word j in
clause i and Wi,j the mentioned word.

Pattern list Pc - Task A Pattern list Pb - Task B
should [not/be/take/include/start] [do not]/[if only]
be [better] [so/before/can/for/if] you
[that way]/[so that]/[why not] you [will/need/can/may]
[suggestion is]/[good solution]/[the idea] [make/be sure]/[watch out]
to allow [go/going/asking/wishing] for
would make would advise
[will/would] be [Positive Sentiment] [will/would/could] be [Positive Sentiment]
[to/would/could] enable be [prepared/careful/warned/forewarned]
[i/would/id] [like/prefer] [i/would/i’d] [like/prefer]
am asking for highly recommended
look into [look/looking] [into/for/up/around]
make it why not
at least is there
we need we need

Table 1: Sequential patterns indicating suggestive mood; left column: patterns related to subtask A; right column:
patterns related to subtask B; “/” denotes logical or.

to extend the idea of an imperative mood detector
for a task-independent and rule-based detection al-
gorithm, able to identify the presence of prompt-
ing or solicitation clauses. The ensemble of these
key features is accomplished by a mixture of rules
that check both word and Part-of-Speech (POS)
tag combinations, as POS tags usually avoid the
sparse nature of word-based patterns. Our algo-
rithmic approach unfolds in three steps:

• Each sentence undergoes basic preprocess-
ing, including the replacement of each word
with a tuple that contains the word and its
POS tag, and enable the formation of mixed
rules. In order to minimise POS errors that
could lead to misclassification due to incor-
rect pattern recognition, a combination of the
TextBlob library API3 and the tagged Brown
Corpus were utilized to assure correct word
tagging.

• Each sentence is split into separate clauses
that may independently indicate imperative
mood, depending on their first word or verb

3https://textblob.readthedocs.io/

phrase. Sentences are split at certain punctu-
ation marks, special characters and the word
‘please’, as the latter provides almost abso-
lute evidence of a following verb phrase.

• Each clause is then checked for the occur-
rence of certain POS tag patterns (see Figure
1), which are strong indicators of imperative
mood.

4.2 Subtask A
The devised rule-based classifier assigns confi-
dence scores to sentences on the basis of lexical-
patterns organised in pre-specified categories and
respective lists (detailed below). For subtask A we
developed two lexical lists and one pattern-based
list that vary according to their semantic content.
The confidence score for each sentence is com-
puted by a weighed additive formula that sums
the hit-rates of all engaged features. A sentence
is considered as suggestion if it exceeds a score of
0.15. The specific threshold is fixed after extensive
experimentation on the given input dataset. Fur-
thermore, we applied a 0.2 penalty for short phrase
sentences that contain less than five words, as they

1226

are considered to lack explicit suggestion content.
In Table 2 we present performance results for each
of these lists, as well as the prediction performance
figures achieved by their combination (submitted
results).

List PA
a . The first high rated list is composed

by word features that are indicative and capture
writers suggestive mood, e.g., suggest , should ,
shouldn’t, needs, idea, helpful, consider , allow,
disallow. Such words urge developers and sup-
ply companies to improve products and services
by tracking words with directive, e.g., (should,
suggest) or advisory content, e.g., (idea, consider,
helpful). Sentences containing features from this
list are considered as putative suggestions, as-
signed a 0.3 confidence score

List PA
b .The second list is composed by fea-

tures that represent lexical patterns which, even
if they do not contain individual words indica-
tive of suggestive expressions, could be utilised
when they emerge together in order to better
grasp suggestive content and improve classifier’s
confidence. This list contains modal words,
would, could, as well as their negations, wouldn’t,
couldn’t. In addition, the list is enhanced with
two developer related verbs, create, include. A
sentence that contains both could and create, and
which is rationally considered as suggestion, is:
“Read/write access to email sync settings could
enable applications to create custom sync profiles
(based on week-days time position etc).”. Each hit
from this list assigns a 0.1 weight to the sentence
confidence score.

Patterns PA
c . Along with single word features

we enhance our classifier with pattern-based fea-
tures, elaborating on an earlier related work (Gold-
berg et al., 2009). To this end, we utilized several
sequential lexical features as shown in Table 1. In
addition, claiming that phrases like will/would be
followed by words of positive polarity, e.g., help-
ful, very very nice are most of the times indica-
tive of suggestions, we counted the total polarity
of the three words following the phrase will/would
be. When such patterns occur, the sentence’s con-
fidence score is increased by 0.25.

4.3 Subtask B

Following the same methodology as in subtask A
we acquire a list of lexical features along with a
list of weighted sequential lexical patterns. To
develop lexical and n-gram patterns we extracted

Dev Test
Feature Set Prec Rec F1 Prec Rec F1
PA
a + PA

b 0.86 0.4 0.55 0.67 0.64 0.66
PA
c 0.87 0.35 0.5 0.7 0.41 0.53

Imperative 0.83 0.23 0.36 0.67 0.21 0.32
Submitted-All 0.81 0.71 0.76 0.66 0.86 0.74

Table 2: Comparison between different lexical patterns
on the development and test sets for subtask A.

Dev Test
Feature Set Prec Rec F1 Prec Rec F1
PB
a 0.94 0.47 0.62 0.93 0.49 0.65

PB
b 0.98 0.52 0.68 0.89 0.49 0.64

Imperative 0.97 0.38 0.54 0.93 0.36 0.52
Submitted-All 0.94 0.78 0.86 0.90 0.82 0.86

Table 3: Comparison between different lexical patterns
on the development and test sets for subtask B.

the most frequent patterns from Wachsmuth et al.
(2014), keeping those with the most advising con-
tent. For this subtask we consider a sentence as
suggestive if it exceeds a 0.1 confidence score.

List PB
a . In contrast with subtask A, where

suggestions appear between customers and com-
panies, in subtask B most of the suggestions refer
just to customers. Thus, we acquired a number of
lexical features indicating a warning, an advice or
a desire in order to capture suggestions in travel
forums.

Caution words: avoid, beware,don’t, expect, re-
member

Advice words: tip, advise, advice, recom-
mended, recommendation, suggest, suggestion,
ask, bring, pick, consider, spend, expect, can

Wish words: please, can, hopefully, enjoying,
want, wanting, prefer

The occurrence of each of the above listed
words in a sentence is assigned a weight of 0.25.

List PB
b . As in subtask A we used several se-

quential lexical patterns to identify and capture bi-
grams and tri-grams with suggestive content. All
lexical patterns of this list are summarized in the
second column of Table 1.

5 Improving Predictions with Recurrent
Convolutional Neural Networks -
(R-CNN)

As simple and carefully devised lexical patterns
are able to capture suggestive content in reviews
and customer-to-customer conversations, we at-
tempted to create an even more robust classifier

1227

Figure 2: The recurrent convolutional neural network architecture (R-CNN).

on customer-to-companies suggestions. Thus, we
coupled and enhanced our subtask A submitted
classifier with a deep learning (DL) LSTM-CNN
neural architecture.

5.1 Embedding Layer
DL is a very powerful classification approach,
with the Word Embeddings machinery to be an im-
portant and necessary part for their training, es-
pecially for recurrent neural network (RNN) ar-
chitectures (Mikolov et al., 2013). Word em-
beddings project each word to its semantic and
highly dimensioned vector representation, and are
induced by exhaustive training of huge corpora. In
the present work we utilized 300-dimensional pre-
trained Standford GloVe embeddings (Pennington
et al., 2014).

5.2 Bidirectional LSTM
Due to the sequential nature of textual information
neural architectures able to capture time-depended
information are needed. This property is offered
by RNN, and especially Long-short-term-memory
(LSTM) architectures (Hochreiter and Schmidhu-
ber, 1997). Forward LSTMs processes input in-
formation x = (x0, x1, ..., xn) from first word x0
to the last one xn educing relative hidden states
ht for each time step t. However, a lot of se-
quential information may be hidden in long distant
dependencies. Thus, to enhance forward LSTMs
performance we utilized bidirectional LSTMs (Bi-
LSTM) processing input from both directions, for-
ward (from x0 to xn) and backward (from xn to
x0). Thus, for a given time sample t, the hidden

state ht is defined as the concatenation of forward
and backward hidden states:

ht =
−→
ht ||←−ht , ht ∈ R2∗L (1)

where
−→
ht ,
←−
ht denotes forward and backward hid-

den states respectively, and mathitL denotes the
number of units in each LSTM cell.

5.3 Convolutional Layer
Convolutional layers are the basic component of
Convolutional Neural Networks (CNN), contain-
ing m convolutional filters aiming to reduce fre-
quency variations. The convolution layer maps in-
put matrix S ∈ Rl×D into c ∈ R|s|+h−1 using
convolutional filters F with length h, and calculat-
ing each component ci by:

ci =
∑

k,j

(S[i:i+h])k,j · Fk,j (2)

Filters F slide over the input matrix, performing
element wise product between a column slice of
input s and filter matrix k, in order to produce
each vector component ci. Finally, vectors ci ag-
gregate over all filters, producing a feature map
matrix C ∈ Rm×|s|+h−1, which is passed through
a non-linear ReLu activation function.

5.4 Pooling Layer
To reduce the spatial size of the convolutional
layer output we use a pooling layer. Pooling layers
manage to tune and reduce the amount of network
parameters preventing overfitting. In the current
work, a MaxPooling layer is used over the con-
volutional layers, performing a maximum element

1228

selection of n non-overlapping intervals. Thus,
MaxPooling layer results in Cpool ∈ Rm× |s|+h−1

n .

5.5 The Enhanced Classifier

The devised recurrent convolutional neural net-
work (R-CNN) architecture is shown in Figure
2. Each Bi-LSTM layer, comprised by 164 units
each, was fed with 300-dimensions embedding
vectors. The output of Bi-LSTM is processed
by two 1-d convolutional-pooling layers contain-
ing 128 ReLU activated filters of length 5. Each
convolutional layer is followed by a max-pooling
layer of size 5 to reduce networks parameters. For
the final pooling layer we utilize a global pool-
ing that maps all sequential patterns to a feature
vector, followed by a softmax activated dense net-
work. The classification result coming from the
R-CNN network couples the rule-based classifica-
tion (presented in Section 4.2) following a parallel
fail-safe mode, that is: in the event that the soft-
max output exceeds a certain confidence threshold
limit for a specific class label (as shown in Table
4), and the rule-based classification induces the
opposite label, the finally assigned class label is
the one induced by the R-CNN.

5.6 Training

The proposed rule-based and R-CNN coupled
model was trained following a combination of
train-and-trial one epoch mode. In addition, we
applied several regularization techniques to pre-
vent overfitting. In particular, we adopted Dropout
(Srivastava et al., 2014; Gal and Ghahramani,
2016), empirically set to 0.3, in order to randomly
deactivate 30% of recurrent neuron connections
between LSTM units. Finally, to optimize net-
work training performance we adopted Adam op-
timizer as proposed by Kingma and Ba (2014), us-
ing cross-entropy loss function.

6 Results

Our officially submitted results ranked in the 5th

and 1st place for subtasks A and B, respectively
(results are presented in Tables 2 and 3). Our
rule-based approach that expand proposed lexical
and pattern-based lexical features tend to perform
significantly well for both suggestion domains,
customer-to-company and customer-to-customer.
As shown in Table 3, the proposed model achieves
almost the same results on both development and
test datasets, as well as stable precision and re-

Test-Subtask A
Method Prec Rec F1
R-CNN 0.64 0.79 0.71
Submitted 0.66 0.86 0.74
Proposed-0.75 0.73 0.78 0.77
Proposed-0.80 0.73 0.84 0.78
Proposed-0.85 0.74 0.85 0.79

Table 4: Comparison between rule-based submitted re-
sults, R-CNN and their combination. The proposed
method tested on several confidence thershold limits as
defined in Section 5.5.

call performances. The combination of lexical, se-
quential and imperative mood features attains 0.86
f1-score and robust performance over all metrics.
Similar to subtask B, the submitted results for sub-
task A exhibit almost the same f1-scores on both
development and test datasets, 0.76 and 0.74, re-
spectively. However, and in contrast to subtask B,
one may observe a slight unstable performance be-
tween precision and recall, as shown in Table 2. To
this end, and in order to improve precision perfor-
mance, we introduced the ensemble-like combina-
tion of R-CNN and rule-based classifiers (Section
5.5). As illustrated in Table 4, the combined clas-
sifier achieves increased precision figures by up to
8%, and manages to outperform related submit-
ted systems, and attain state-of-the-art prediction
scores.

7 Conclusion & Future Work

The presented work, introduces and implements
a pattern/rule-based classification methodology on
two SM tasks that shows very good performance.
In addition, we introduce and propose a combi-
nation of the pattern/rule-based classifier with a
carefully devised R-CNN classifier that achieves
highly accurate and state-of-the-art results. Due to
the different hyperparameters and rule weight op-
timization needed for each dataset, our implemen-
tation is currently split into two content-specific
classifiers. Therefore, a robust classifier detecting
cross-domain suggestions, regardless of the input
content, is an important goal to fulfill and we plan
to work towards this target.

References
Shadi Banitaan, Saeed Salem, Wei Jin, and Ibrahim

Aljarah. 2010. A formal study of classification

1229

techniques on entity discovery and their application
to opinion mining. In Proceedings of the 2nd in-
ternational workshop on Search and mining user-
generated contents, pages 29–36. ACM.

Caroline Brun and Caroline Hagege. 2013. Suggestion
mining: Detecting suggestions for improvement in
users’ comments. Research in Computing Science,
70(79.7179):5379–62.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Hitesh Golchha, Deepak Gupta, Asif Ekbal, and Push-
pak Bhattacharyya. 2018. Helping each other:
A framework for customer-to-customer suggestion
mining using a semi-supervised deep neural net-
work. arXiv preprint arXiv:1811.00379.

Andrew B Goldberg, Nathanael Fillmore, David An-
drzejewski, Zhiting Xu, Bryan Gibson, and Xiaojin
Zhu. 2009. May all your wishes come true: A study
of wishes and how to recognize them. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 263–271. Association for Computational Lin-
guistics.

Swapna Gottipati, Venky Shankararaman, and
Jeff Rongsheng Lin. 2018. Text analytics approach
to extract course improvement suggestions from
students feedback. Research and Practice in
Technology Enhanced Learning, 13(1):6.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alicia Martı́nez Flor. 2005. A theoretical review of the
speech act of suggesting: Towards a taxonomy for
its use in flt. Revista alicantina de estudios ingleses,
No. 18 (Nov. 2005); pp. 167-187.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Sapna Negi, Kartik Asooja, Shubham Mehrotra, and
Paul Buitelaar. 2016. A study of suggestions in
opinionated texts and their automatic detection. In
Proceedings of the Fifth Joint Conference on Lexi-
cal and Computational Semantics, pages 170–178.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global Vectors for Word
Representation. In EMNLP, volume 14, pages
1532–1543.

Janardhanan Ramanand, Krishna Bhavsar, and Niran-
jan Pedanekar. 2010. Wishful thinking: finding sug-
gestions and’buy’wishes from product reviews. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 54–61. Association for
Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
Gregor Engels, and Tsvetomira Palakarska. 2014. A
review corpus for argumentation analysis. In In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 115–127.
Springer.

Alfan Farizki Wicaksono and Sung-Hyon Myaeng.
2012. Mining advices from weblogs. In Proceed-
ings of the 21st ACM international conference on In-
formation and knowledge management, pages 2347–
2350. ACM.

1230

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1231–1236
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

OleNet at SemEval-2019 Task 9: BERT based Multi-Perspective Models
for Suggestion Mining

Jiaxiang Liu, Shuohuan Wang, and Yu Sun

Baidu Inc., Beijing, China,
{liujiaxiang, wangshuohuan, sunyu02}@baidu.com

Abstract

This paper describes our system participated
in Task 9 of SemEval-2019: the task is fo-
cused on suggestion mining and it aims to
classify given sentences into suggestion and
non-suggestion classes in domain specific and
cross domain training setting respectively. We
propose a multi-perspective architecture for
learning representations by using different
classical models including Convolutional Neu-
ral Networks (CNN), Gated Recurrent Units
(GRU), Feed Forward Attention (FFA), etc.
To leverage the semantics distributed in large
amount of unsupervised data, we also have
adopted the pre-trained Bidirectional Encoder
Representations from Transformers (BERT)
model as an encoder to produce sentence and
word representations. The proposed architec-
ture is applied for both sub-tasks, and achieved
f1-score of 0.7812 for subtask A, and 0.8579
for subtask B. We won the first and second
place for the two tasks respectively in the fi-
nal competition.

1 Introduction

Suggestion mining, which can be defined as the
extraction of suggestions from unstructured text,
where the term suggestions refers to the expres-
sions of tips, advice, recommendations etc. (Negi
et al., 2018). For example, I would recommend
doing the upgrade to be sure you have the best
chance at trouble free operation. and Be sure to
specify a room at the back of the hotel. should be
a suggestion for electronics and hotel separately.
Collecting suggestions is an integral step of any
decision making process. A suggestion mining
system could extract exact suggestion sentences
from a retrieved document, which would enable
the user to collect suggestions from a much larger
number of pages than they could manually read
over a short span of time.

Suggestion mining remains a relatively young
area. So far, it has usually been defined as
a problem of classifying sentences of a given
text into suggestion and non-suggestion classes.
Mostly rule-based systems have so far been de-
veloped, and very few statistical classifiers have
been proposed (Negi and Buitelaar, 2017) (Negi
et al., 2016) (Negi and Buitelaar, 2015) (Brun and
Hagège, 2013). A related field to suggestion min-
ing is sentiment classification which given a sen-
tence or a document, it should infer the sentiment
polarity e.g. positive, negative, neutral. So, many
classical sentiment classification systems can be
used in suggestion mining like the widely used
CNN-based models (Kim, 2014) or RNN-based
models (Kawakami, 2008). However, there are
still many challenges in this suggestion mining
task. First of all, both of the subtasks suffers from
severely lack of data. Second, one of the sub-
tasks requires the model should have transferabil-
ity without seeing any of the target domain data.
To tackle those problems, knowledge transfer or
transfer learning between domains would be desir-
able. In recent years, transfer learning techniques
have been widely applied to solve domain adap-
tation problem, e.g. (Ganin et al., 2016). And in
our system, considering the simplicity for training
a model, we turn to taking use the power of large
amount of unsupervised data for knowledge repre-
sentations for both same domain and cross domain
tasks.

Recently researches have shown that pre-
training unsupervised language model can be very
effective for learning universal language represen-
tations by leveraging large amounts of unlabeled
data, e.g. the pre-trained Bidirectional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2018). It has shown that BERT can be
fine-tuned to create state-of-the-art models for a
range of NLU tasks, such as question answering

1231

Figure 1: An overall framework and pipeline of our system for suggestion mining

and natural language inference. To further make
use of the model in our task, various of different
task specified layers are devised. The experiment
on test datasets shows that with the devised task
specified layers, a higher f1 scores can be got in
both tasks, and moreover, benefiting from the large
amount of unlabeled data, it is very easy to train
cross domain models.

The paper is organized as follows: Section 2
describes the key models proposed for the Se-
mEval 2019 Task 9 (Negi et al., 2019). Section
3 shows the experiment details including dataset
preprocessing method, experiment configurations,
threshold selection strategy and the alternatives we
explored with respect to sublayers and their com-
bination, and performances of different models.
Finally, we conclude our analysis of the challenge,
as well as some additional discussions of the fu-
ture directions in Section 4.

2 System for Suggestion Mining

2.1 Multi-Perspective Architecture

As shown in Figure 1. our model architecture is
constituted of two modules which includes a uni-
versal encoding module as either a sentence or a
word encoder, and a task specified module used
for suggestion classification. To fully explored the
information generated by the encoder, we stack a
serious of different task specified modules upon
the encoder according to different perspective. In-
tuitively, we could use the sentence encoding di-

rectly to make a classification, to go further be-
yond that, as language is time-series information
in essence, the time perspective based GRU cells
can also be applied to model the sequence state
to learn the structure for the suggestion mining
task. Similarly, the spatial perspective based CNN
can be used to mimic the n-gram model, as well.
Moreover, we also introduce a convenient atten-
tion mechanism FFA (Raffel and Ellis, 2015) to
automatically learns the combination of most im-
portant features. At last, we ensemble those mod-
els by a voting strategy as final prediction by this
system. The different task specified modules will
be described below.

2.2 Sentence Perspective Encoding

In the sentence encoder module, a special mark
[CLS] is added to the front of each sentence to
help the encoder to encode all the input sentence.
As a result, the output corresponds the first token
is regarded as the sentence representation,

{
c = E(wt), t = 0

et = E(wt), t ∈ [1, T]
(1)

where E is the encoder module, which we user
BERT in practice, c, et is sentence and word rep-
resentation respectively, T is the total length of in-
put sequences. We fed c into a logistic network to
classify the suggestions.

1232

2.3 Time Perspective Encoding

The Gated Recurrent Unit (GRU)(Cho et al., 2014)
is famous for processing sequence data, e.g. sen-
tences, with less parameters. In our task, we feed
the et into GRU cells to get word representation
from a time series perspective ht,

zt = σ
(
etU

z + ht−1W z
)

rt = σ
(
etU

r + ht−1W r
)

h̃t = tanh
(
etU

h + (rt ∗ ht−1)W h
)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t
u =

1

T

∑(
ht
)

v = max
1≤t≤T

(ht)

c = [u; v] (2)

where ht is hidden state of GRU of time step t,
u is a mean pooling vector of ht, and v is a max
pooling vector of ht. In practice, not only the ht
is used to feed into the classification layer, but the
concatenated vector c is also used to train a binary
classification logistic layer.

2.4 Spatial Perspective Encoding

To model the spatial connections of adjacent
words, we use Convolutional Neural Network
(CNN) (Kim, 2014), which is easy to implement
and very fast for train. In our system, two CNN
layers are stacked upon BERT model and the batch
normalization (Ioffe and Szegedy, 2015) is applied
in each layer. Also, the ReLu (Nair and Hinton,
2010) function is chosen as activation function.
And we use max pooling to fuse the output of con-
volutional layers.

2.5 Attention Perspective Encoding

A recently proposed method for easier modeling
of long-term dependencies is attention (Bahdanau
et al., 2014). Attention mechanism allows for a
more direct dependence between the state of the
model at different points in time. Intuitively, the
model with less parameters is easier to train based
on small dataset, therefore, we try to use a more
straight and simplified attention model, Feed For-
ward Attention (FFA) (Raffel and Ellis, 2015),
which would allow it to be used to produce a sin-
gle vector v from an entire sequence, the process
could be formulated as follows:

st = f(et)

αt =
exp(st)∑T
k=1 exp(sk)

l =
T∑

t=1

αtet (3)

where, f is a function mapping et to a unnormal-
ized scaler st indicating the importance of word
wt. The l is used to make a classification to decide
which input sentence is a suggestion.

But what should be noticed here is that, sub-
task B, whose trial data and test data are all from
hotel review domain and no training data from
same domain as test data is provided, is substan-
tially a transfer learning problem. It can only learn
from windows forum corpus provided in subtask
A. Therefore, squeeze more cross-domain features
and drop the noise is critical for subtask B. So
we also introduce the hard attention mechanism
(Shankar et al., 2018) :

l′ =
∑

α∈TopK(~α)

αht (4)

we select top k important words by the attention
weights α. At last the vector l and l′ are used to
train a binary classification logistic layer for the
subtasks.

2.6 Ensemble

As shown in Figure 1., cross validation was
adopted to ensure robustness for each model to the
task 9 of SemEval-2019. In subtask A, after the 10
folds cross validation in training set has finished,
the result for each fold is concatenated and used to
select best classification threshold to decide a test
sample from label 0 to 1. The model trained in
each fold is also used to predict on test data, so the
10 test predictions is fused by mean pooling as a
final prediction. Finally the simple voting method
is used to fuse different model’s result. In subtask
B, we use the trial data as dev set to select best
hyper parameters, so no cross validation is used.

3 Experiment

3.1 Dataset

The statistics of datasets provided by SemEval
2019 Task 9 are show in Table 1.

In both subtasks, no extra data are used for train-
ing models. As shown in Table 1, there are 8500

1233

(a) Subtask A (b) Subtask B

Figure 2: Mean f1 score for trial set of different models for every epoch. In subtask A, f1 score incre-
mentally increase and fall after the 3rd epoch, while in subtask B, f1 score of initial epoch is always
surprisingly high and decreases thereafter.

Subtask A Suggestion(%) Non-Suggestion (%)
train 2085 (0.24) 6415 (0.75)
trial 296 (0.50) 296 (0.50)
test 87 (0.10) 746 (0.89)

Subtask B Suggestion(%) Non-Suggestion(%)
trial 404 (0.49) 405 (0.50)
test 348 (0.42) 476 (0.57)

Table 1: Dataset statistics for subtask A and sub-
task B

train examples, 592 labeled trial examples and 833
unlabeled test examples in subtask A. Different
from subtask A, there are only 808 labeled trial
examples, and 824 unlabeled test examples in sub-
task B, no training data from same domain as test
data is provided. So, we use all labeled data in sub-
task A as the training data to do a transfer learning
task to help learn subtask B. In both subtasks, the
trial sets are used to help select the best model.

3.2 Details

Data Preprocessing: We use the same data clean-
ing method as (Cho et al., 2014), which removed
the special marks. The sample is forced to unk if
the cleaned sentence is empty.

Data augmentation method was also used in
subtask A. During the error analysis procedure,
we found that the model has strong tendency to
learn specific terms for the task, which means the
model is overfitting training data. To tackle this
problem, not only dropout method is used, but also
we introduce a auxiliary model to identify the im-
portance terms according feature scores, e.g. the
feature weights in a linear model. In our experi-

ment, we use linear-kernel SVM as the auxiliary
model. Specifically, we first run a linear-kernel
SVM on training set. To get best performance of
SVM, grid search is used to choose best hyper-
parameters. When finished training SVM model,
the coefficients of features in the model is col-
lected. Then, according to the value of coefficient,
the most J important word are selected as key fea-
tures. Finally, we replicate training samples with
random dropping those important words with drop
rate α to force the model to not only rely on spe-
cific terms, but also learn sentence structure of this
task. In our experiment, we take J as 100, and α
0.5.

In subtask B, besides cleaning data, we combine
subtask A train set and subtask A trial set to form
a bigger training set. But the drop important word
strategy is not applied.

Threshold choosing: As suggestion mining
is introduced as a binary classification problem,
choosing appropriate threshold for the logit is vi-
tal to the performance. In subtask A, a 10-fold
cross validation is executed and we obtain the best
threshold by calculating f1-score between the con-
catenated 10 validation results and training set.

In subtask B, all the data of subtask A is used as
training data, and the threshold is chosen by using
the subtask B trial dataset.

Empirically, the representations from BERT is
universal, so after task specified fine-tuning, the
performance will increases as it is show in Fig-
ure 2a. But, for the subtask B, training dataset of
subtask A have a different distribution from data
of subtask B. However, we assume that they still
share some underlying semantics. Therefore by

1234

Models CV f1-score test score
BERT-Large-Logistic 0.8522 (±0.0213) 0.7697
BERT-Large-Conv 0.8520 (±0.0231) 0.7800
BERT-Large-FFA 0.8516 (±0.0307) 0.7722
BERT-Large-GRU 0.8503 (±0.0275) 0.7725
Ensemble – 0.7812

Table 2: SubtaskA models performances. CV f1-
score is used to record cross validation dev set
scores, and the test score is generated by trained
model predicting on released labeled test data.

Models
Subtask B

Trial set score
Subtask B

Test set score
BERT-Large 0.8695 0.8302
BERT-Large-Conv 0.9001 0.8425
BERT-Large-FFA 0.8795 0.8409
BERT-Large-GRU 0.8796 0.8486
Ensemble – 0.8579

Table 3: Subtask B models performances. We use
labeled data from subtask A as training set, sub-
task B trial data as dev set to select best hyper-
parameters, and test score is generated by trained
model predicting on released labeled test data

training with subtask A data, the model should
also works in the subtask B.

As shown in Figure 2a we noticed that, in sub-
task A, there is an obvious increasing tendency of
f1 score until the 3rd epoch indicating the model
have found the optimal parameters for fine-tuning.
And for subtask B, which is shown in Figure 2b,
best performance is always achieved in very early
steps of initial epoch when fine-tuning the model
and decrease all the way down, which proves that
the model are learning common features cross the
two different domains, but as the training process
proceeds, more and more features about subtask A
are learned, which cause the performance of sub-
task B decrease.

Learning rate tricks: Considering that the
number of training dataset is too small to train a
complex model, different learning rate are applied
for different layers. Specifically, we apply a small
learning rate for pre trained BERT layers, and a
larger learning rate for new task specified layer.

3.3 Results

In the early stage of this competition, we have tried
many non-BERT models, e.g. CNN (Kim, 2014),
Transformer Encoder (Vaswani et al., 2017), Cap-

sule Networks (Gong et al., 2018). However, none
of the results from those models are competitive
with the models based on BERT . The scores are
summarized in Table 2 and 3. The result have
shown that with the ensemble strategy of different
models, scores of both tasks increases.

It should be noted here that, for every model of
subtask A, we run 5-10 times training process re-
peatedly with different random seeds to ensure we
can get a reliable evaluation result. For the final
submission, we use the voting strategy to fuse all
predictions of each model, and the ensemble re-
sults is 0.7812 and 0.8579 for subtask A and B
respectively.

4 Conclusion

In this paper, we have introduced an empirical
multi-perspective framework for the suggestion
mining task of SemEval-2019. We propose an en-
semble architecture for learning representations by
using different classical models including CNN,
GRU, FFA Network, etc. According to the ob-
tained promising performances on both subtasks,
we found that the pre-trained model by a large
amount of unlabeled is critical for most nlp tasks,
even for domain adaptation tasks without a spe-
cific neural architecture. In the future, in order
to make more use of the dataset from different
domains, adversarial gradient or common domain
feature learning methods can be adopted along
with pre-trained models to reach a better perfor-
mance.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. Computer Science.

Caroline Brun and Caroline Hagège. 2013. Suggestion
mining: Detecting suggestions for improvement in
users’ comments. Research in Computing Science.

Kyunghyun Cho, Bart Van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. Computer Sci-
ence.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

1235

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. The Journal of Machine Learning Research,
17(1):2096–2030.

Jingjing Gong, Xipeng Qiu, Shaojing Wang, and Xu-
anjing Huang. 2018. Information aggregation via
dynamic routing for sequence encoding. CoRR,
abs/1806.01501.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR,
abs/1502.03167.

Kazuya Kawakami. 2008. Supervised sequence la-
belling with recurrent neural networks. Ph.D. thesis,
Ph. D. thesis, Technical University of Munich.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. CoRR, abs/1408.5882.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on International Conference on Machine Learning,
ICML’10, pages 807–814, USA. Omnipress.

Sapna Negi, Kartik Asooja, Shubham Mehrotra, and
Paul Buitelaar. 2016. A study of suggestions
in opinionated texts and their automatic detection.
pages 170–178.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews.

Sapna Negi and Paul Buitelaar. 2017. Inducing dis-
tant supervision in suggestion mining through part-
of-speech embeddings. CoRR, abs/1709.07403.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sapna Negi, Maarten De Rijke, and Paul Buitelaar.
2018. Open domain suggestion mining: Problem
definition and datasets.

Colin Raffel and Daniel P. W. Ellis. 2015. Feed-
forward networks with attention can solve
some long-term memory problems. CoRR,
abs/1512.08756.

Shiv Shankar, Siddhant Garg, and Sunita Sarawagi.
2018. Surprisingly easy hard-attention for sequence
to sequence learning. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 640–645.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

1236

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1237–1241
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

SSN-SPARKS at SemEval-2019 Task 9: Mining Suggestions from Online
Reviews using Deep Learning Techniques on Augmented Data

Rajalakshmi S, Angel Deborah S, S Milton Rajendram, Mirnalinee T T
Department of Computer Science and Engineering

SSN College of Engineering
Chennai 603 110, Tamil Nadu, India

rajalakshmis@ssn.edu.in, angeldeborahs@ssn.edu.in
miltonrs@ssn.edu.in, mirnalineett@ssn.edu.in

Abstract

This paper describes the work on mining the
suggestions from online reviews and forums.
Opinion mining detects whether the comments
are positive, negative or neutral, while sugges-
tion mining explores the review content for the
possible tips or advice. The system developed
by SSN-SPARKS team in SemEval-2019 for
task 9 (suggestion mining) uses a rule-based
approach for feature selection, SMOTE tech-
nique for data augmentation and deep learning
technique (Convolutional Neural Network) for
classification. We have compared the results
with Random Forest classifier (RF) and Multi-
Layer Perceptron (MLP) model. Results show
that the CNN model performs better than other
models for both the subtasks.

1 Introduction

Sentiment analysis is a process of computationally
identifying and categorizing the opinions from un-
structured data. This can be used to identify a
user’s perspective of a product — positive, nega-
tive or neutral. Opinion mining is used to identify
whether the product is a success in the market or
not. Suggestion mining finds out ways to enhance
the product to satisfy the customers.

Review texts are mainly used to identify the sen-
timents of the user. Besides sentiments, review
texts also contain valuable information such as ad-
vice, recommendations, tips and suggestions on a
variety of points of interest (Negi and Buitelaar,
2017a). These suggestions will help other cus-
tomers make their choices, on the one hand, and
the sellers improve their products, on the other
hand.

Suggestion mining is relatively a young field of
research compared to sentiment analysis. While
mining for suggestions, the propositional aspects
like mood, modality, sarcasm, and compound
statements have to be considered. It is observed

that, in some cases, grammatical properties of the
sentence alone can be used to identify the label,
while in other cases semantics play a significant
role in label classification (Negi and Buitelaar,
2017b).

“Task 9 – Suggestion mining from online re-
views and forums” has two subtasks (Negi et al.,
2019). Subtask A is to classify a sentence into a
suggestion or a non-suggestion. Subtask B is a
cross-domain testing in which the model learned
from a domain-specific dataset is used to classify
dataset from a new domain. We have built clas-
sifiers using MultiLayer Perceptron (MLP), Ran-
dom Forest (RF) and Convolutional Neural Net-
work (CNN) models. However, due to the im-
balance in the data, we have augmented it us-
ing Synthetic Minority Over-sampling TEchnique
(SMOTE). We found that the CNN model per-
forms better compared to RF and MLP classifiers
for both the subtasks.

2 Related Work

Ramanand et al. (2010) discusses the rule-based
method to find out the suggestions from the re-
views. They have identified two kinds of ‘wishes’
viz the desire to improve the product and the desire
to purchase the product. They have formulated
the rules using modal verbs and certain sentence
patterns. Viswanathan et al. (2011) develops an
ontology-based knowledge representation for sug-
gestion mining.

Customer-to-customer (CTC) suggestions are
extracted by Negi and Buitelaar (2015) using key-
words, POS tags, and imperative mood patterns.
Customers feedback are analyzed using CNN and
GRU network by Gupta et al. (2017). Long Short-
Term Memory (LSTM) and CNN are used for sen-
tence classification by Negi and Buitelaar (2017a).

A Linguistic-based approach is used to analyze

1237

customer experience feedback by Ordenes et al.
(2014) and Brun and Hagege (2013). We have
used MultiLayer Perceptron for performing task
1 and task 3 in SemEval 2018. Task 1 was to
identify the affect in tweets (Angel Deborah et al.,
2018) and task 3 was to identify the irony in En-
glish tweets (Rajalakshmi et al., 2018).

3 System Description

Suggestions are mined mainly for business people
to improve the product or for fellow customers to
detect advice (Negi et al., 2016). We have used
a linguistic rule-based method for feature extrac-
tion. Data is augmented to balance the imbalance
in the data. The extracted Bag of Words (BOW)
features are used in MLP, RF and CNN classifier
for suggestion mining.

3.1 Feature extraction

The dataset is preprocessed to remove the stop
words and non-printable characters using the
NLTK functions. The features from the un-
structured text are extracted using parts-of-speech
(POS) tag. Modal verbs (MD) and the base form
of verbs (VB) are considered to be suggestion fea-
tures. Since the dataset has an imbalance, we have
fewer examples for the suggestion class. Hence
we have added synonyms and certain keywords
used in baseline to enhance the BOW feature set.
Top 5 synonyms for a particular word is obtained
using synsets function from wordnet and key-
words such as ‘suggest’, ‘recommend’, ‘add’, ‘ex-
tend’, ‘idea’, ‘enhance’, ‘helpful’, and ‘useful’are
added to enhance the feature set.

3.2 Handling imbalanced data

Imbalance in data is a scenario where the number
of observations of one class is significantly lower
than those of other classes (Chawla, 2009). This
problem is predominant in fraudulent transactions,
rare disease identification, criminal detection and
also in suggestion mining. The model developed
on this dataset will be inaccurate and biased since
the traditional machine learning algorithms do not
consider the distribution of the classes.

Imbalance in data can be remedied using the
following methods.

1. Data level resampling

(a) Random undersampling
(b) Random oversampling

(c) Cluster based oversampling

(d) Synthetic Minority Oversampling Tech-
nique (SMOTE)

(e) Modified Synthetic Minority Oversam-
pling technique (MSMOTE)

2. Algorithmic ensemble techniques

(a) Bagging

(b) Boosting: Ada boost, Gradient tree
boosting, XG boost

Data augmentation can be done in data space or
feature space. SMOTE algorithm is used to create
augmented samples in feature space (Wong et al.,
2016). A subset of minority data is used to gen-
erate similar instances, synthetically. Synthetic
data are generated based on the k nearest neigh-
bours. These synthetic data are added to the origi-
nal dataset to balance it.

The procedure for balancing the minority class
data (Chawla et al., 2002) is outlined in Algorithm
1. SMOTE algorithm is applied on the minority
sample BOW feature vectors to generate the syn-
thetic data.
Algorithm 1: SMOTE Algorithm
Input: Unbalanced dataset.
Output: Balanced dataset
begin

1. Set the balancing ratio as auto to balance the
given dataset equally.

2. For each instance i in the minority sample
(a) Compute k nearest neighbours.
(b) For each instance n in neighbour list

i. diffi,n = difference between i and n.
ii. rand = Generate a random number

between 0 and 1.
iii. synthetic sample = i+rand∗diffi,n

iv. Add the synthetic sample to original
dataset

end

3.3 Classifier algorithms

MultiLayer Perceptron, Random Forest and Con-
volutional Neural Network algorithms are used to
build models. The augmented data is given to
each of these classifiers and the models are built
in Python programming environment. The results
show that the CNN model performs better than
MLP and RF.

1238

3.3.1 MultiLayer Perceptron
MLP is a feedforward neural network mainly used
for classification. It comprises an input layer, one
or more hidden layers, and an output layer. The
number of neurons in the input layer is decided
by the number of features in the feature vector.
The number of neurons in the output layer de-
pends upon the number of classes. In our network,
we have 5048 input neurons and 2 output neurons
for suggestion/non-suggestion classification. We
have used two hidden layers with 512 and 256 neu-
rons respectively. Relu activation function is used
for the input and hidden layers, while the softmax
function is used for the output layer. Nadam gra-
dient descent algorithm is used for optimization of
the model.

3.3.2 Random Forest
Random forest classifier is an ensemble learning
technique that uses decision tree as a basic learn-
ing algorithm. This is used to overcome the over-
fitting problem present in decision tree. Random
forest creates a set of decision trees for randomly
selected subsets of training data. It then aggregates
the results of all these decision trees to make the fi-
nal prediction. We have used 100 decision trees to
build the random forest classifier and information
gain as the measure of split criteria.

3.3.3 Convolutional Neural Network
Convolutional neural network is a deep learning
technique that has already achieved remarkable re-
sults in computer vision. In text processing, deep
learning techniques are used to learn the word vec-
tor representation through various neural models
(Kim, 2014) and (Zhang and Wallace, 2015). We
have used input embedding layer, convolutional
one dimension layer with 32 filters, max-pooling
layer with pool-size as 2, flatten layer, fully con-
nected dense layer and output layer. We have
added the dropout layer as 0.2 to regularize the
network (Srivastava et al., 2014). The batch size
of the model is set as 128 and the learning rate as
0.01. Softmax activation function is used in out-
put layer and relu activation function is used in all
other layers. Nadam algorithm is used for opti-
mization.

3.4 Algorithm

The procedure for suggestion mining is outlined in
Algorithm 2:
Algorithm 2: Suggestion Classification

Input: Augmented dataset.
Output: Suggestion/Non-Suggestion class labels
begin

1. Preprocess the dataset
(a) Separate labels and sentences.
(b) Remove the stop words and non-ascii

characters from the sentences using
NLTK functions.

(c) Perform tokenization and Parts-of-
Speech tagging using functions of the
NLTK toolkit.

2. Feature selection
(a) Identify the features using MD (Modal

verbs) and basic form of verbs (VB).
(b) Add the features and their synonyms

into BoW.
(c) Encode the features of sentences as a

one-hot vector.
(d) Represent the labels as a one-hot encod-

ing of binary class in target vector.
3. Balance the dataset using SMOTE technique.
4. Build models (MLP, RF, CNN) with BoW

feature vectors and target vectors.
5. Predict the labels for the test dataset.

(a) Preprocess the test dataset
(b) Represent the sentences as one hot vec-

tor with the help of BoW features of the
training set.

(c) Predict the labels of the test sentences by
giving the BoW feature vector as input
to the built model.

6. Calculate the accuracy and F1 score.

end

4 Dataset

The dataset given for suggestion mining task is
prepared by a study of suggestions which ap-
peared in different domains (Negi et al., 2018).
For subtask-A, suggestion forum dataset is used
for training and testing. For subtask-B, suggestion
forum dataset is used for training and hotel review
dataset (Wachsmuth et al., 2014) is used for testing
purposes. The suggestion forum training dataset
has 2085 instances of suggestion class and 6415
instances of non-suggestion class. The trial test
set for suggestion forum dataset has equal number
of instances (296) for both classes. The trial test
set for hotel review dataset has an equal number
of instances (404) for both the classes.

1239

5 Performance Evaluation

The performance of the system is measured us-
ing precision, recall and F1-score for suggestion
examples alone, using formulas shown in Equa-
tions 1 to 3.

Precision (Psugg) =
TP

TP + FP
(1)

Recall (Rsugg) =
TP

TP + FN
(2)

F1 scoresugg = 2× Psugg × Rsugg

Psugg + Rsugg
(3)

where TP is True Positive, TN is True Negative,
FP is False Positive and FN is False Negative.

The F1 score for subtask A and subtask B using
various models are shown in Table 1 and 2 respec-
tively. Results show that CNN performs slightly
better than MLP and RF models. The performance
of the CNN model depends on the dataset size.
Hence on increasing the data, we can get better
results in CNN.

F1-Score Value
MLP 0.45
RF 0.4
CNN 0.49
Baseline 0.2676

Table 1: Performance for Subtask A

F1-Score Value
MLP 0.154
CNN 0.155

Table 2: Performance for Subtask B

We also worked with original data as such
(without balancing) and created models using
MLP, RF, and CNN. The F1 score for those models
are very low, as almost all the samples are clas-
sified to non-suggestion class. CNN model with
hand-selected features converges in less time with
the same accuracy when compared to the CNN
model with pre-trained Word2Vec embeddings.
We intend to further investigate the model behav-
ior using the variations of SMOTE such as bor-
derline SMOTE, ADASYN and MSMOTE. For
subtask B, the results are very low, since we have
used the model built for suggestion forum dataset
to make the prediction on hotel reviews dataset.

The performance can be increased by incorporat-
ing transfer learning.

6 Conclusion and Future Scope

Customers generally express their opinions about
an item through online reviews, blogs, discussion
forums, or social media platforms. These opinions
not only contain positive or negative sentiments
but also contain suggestions to improve the item
or advice to other customers. We have used CNN
for suggestion mining. Dataset is augmented using
SMOTE technique to handle the imbalance. Rule-
based approach is used for feature extraction.

The performance can be improved by extract-
ing the features using lexicons and increasing the
number of convolutional layers in CNN structure.
We intend to work with variations of SMOTE al-
gorithm for balancing data and compare the re-
sults. We would also like to investigate the per-
formance of Recurrent Neural Network (RNN) for
mining suggestions from unstructured data.

References
S Angel Deborah, S Rajalakshmi, S Milton Rajendram,

and TT Mirnalinee. 2018. Ssn mlrg1 at semeval-
2018 task 1: Emotion and sentiment intensity detec-
tion using rule based feature selection. In Proceed-
ings of The 12th International Workshop on Seman-
tic Evaluation, pages 324–328.

Caroline Brun and Caroline Hagege. 2013. Suggestion
mining: Detecting suggestions for improvement in
users’ comments. Research in Computing Science,
70(79.7179):5379–62.

Nitesh V Chawla. 2009. Data mining for imbalanced
datasets: An overview. In Data mining and knowl-
edge discovery handbook, pages 875–886. Springer.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Deepak Gupta, Pabitra Lenka, Harsimran Bedi, Asif
Ekbal, and Pushpak Bhattacharyya. 2017. Iitp at
ijcnlp-2017 task 4: Auto analysis of customer feed-
back using cnn and gru network. Proceedings of the
IJCNLP 2017, Shared Tasks, pages 184–193.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Sapna Negi, Kartik Asooja, Shubham Mehrotra, and
Paul Buitelaar. 2016. A study of suggestions in
opinionated texts and their automatic detection. In
Proceedings of the Fifth Joint Conference on Lexi-
cal and Computational Semantics, pages 170–178.

1240

Sapna Negi and P Buitelaar. 2017a. Suggestion mining
from opinionated text. Sentiment Analysis in Social
Networks, pages 129–139.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167.

Sapna Negi and Paul Buitelaar. 2017b. In-
ducing distant supervision in suggestion mining
through part-of-speech embeddings. arXiv preprint
arXiv:1709.07403.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sapna Negi, Maarten de Rijke, and Paul Buite-
laar. 2018. Open domain suggestion mining:
Problem definition and datasets. arXiv preprint
arXiv:1806.02179.

Francisco Villarroel Ordenes, Babis Theodoulidis,
Jamie Burton, Thorsten Gruber, and Mohamed Zaki.
2014. Analyzing customer experience feedback us-
ing text mining: A linguistics-based approach. Jour-
nal of Service Research, 17(3):278–295.

S Rajalakshmi, S Milton Rajendram, TT Mirnalinee,
and S Angel Deborah. 2018. Ssn mlrg1 at semeval-
2018 task 3: Irony detection in english tweets us-
ing multilayer perceptron. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion, pages 633–637.

Janardhanan Ramanand, Krishna Bhavsar, and Niran-
jan Pedanekar. 2010. Wishful thinking: finding sug-
gestions and’buy’wishes from product reviews. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 54–61. Association for
Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Amar Viswanathan, Prasanna Venkatesh, Bintu G Va-
sudevan, Rajesh Balakrishnan, and Lokendra Shas-
tri. 2011. Suggestion mining from customer re-
views. In AMCIS.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
Gregor Engels, and Tsvetomira Palakarska. 2014. A
review corpus for argumentation analysis. In In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 115–127.
Springer.

Sebastien C Wong, Adam Gatt, Victor Stamatescu, and
Mark D McDonnell. 2016. Understanding data aug-
mentation for classification: when to warp? In 2016
international conference on digital image comput-
ing: techniques and applications (DICTA), pages 1–
6. IEEE.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

1241

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1242–1246
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Suggestion Miner at SemEval-2019 Task 9: Suggestion Detection in
Online Forum using Word Graph

Usman Ahmed1, Humera Liaquat2, Luqman Ahmed3 and Syed Jawad Hussain1

1Department of Computer Science and IT, The University of Lahore, Islamabad, Campus
2Department of Computer Science, COMSAT, Islamabad, Pakistan

3Department of Computer Science, UET, Taxila, Pakistan
usman.ahmed@cs.uol.edu.pk
humaira.699@gmail.com
aluqman734@gmail.com

jawad.hussain@cs.uol.edu.pk

Abstract

This paper describes the suggestion miner sys-
tem that participates in SemEval 2019 Task 9
- SubTask A - Suggestion Mining from Online
Reviews and Forums. The system participated
in the subtasks A. This paper discusses the re-
sults of our system in the development, eval-
uation and post evaluation. Each class in the
dataset is represented as directed unweighted
graphs. Then, the comparison is carried out
with each class graph which results in a vec-
tor. This vector is used as features by a ma-
chine learning algorithm. The model is evalu-
ated on, hold on strategy. The organizers ran-
domly split (8500 instances) training set (pro-
vided to the participant in training their sys-
tem) and testing set (833 instances). The test
set is reserved to evaluate the performance of
participants systems. During the evaluation,
our system ranked 31 in the Coda Lab result
of the subtask A (binary class problem). The
binary class system achieves evaluation value
0.35.

1 Introduction

Suggestion mining or identification of suggestions
within the text is a relatively new area which is
gaining popularity among many private and pub-
lic sector organizations, service providers and con-
sumers/customers at large due to its number of
uses. Suggestion mining, in general, refers to
the extraction of tips, advise or recommendations
from an unstructured text, which can lead to a
number of use cases (Negi et al., 2018). Currently,
suggestion mining is considered to be an intrinsic
part of any decision-making process, used by dif-
ferent entities to get an insight into people’s per-
spectives and improve their products or services
(Negi et al., 2018), (Jijkoun et al., 2010). To get
reviews and suggestions, organizations either ask
them from users explicitly or extract them from
online reviews, blogs, discussion forums, social

media etc. This is because, these platforms are
progressively gaining popularity (due to their ex-
peditious advancements and ease of use) for ob-
taining public opinions towards events, brands,
products, services, entities etc. Consider some ex-
amples which have been seen among many online
reviews, giving useful suggestions to whom it may
concern: ”I would recommend doing the upgrade
to be sure you have the best chance at trouble-free
operation.”, ”Be sure to specify a room at the back
of the hotel” (Negi et al., 2018), ”Make sure you
bring plenty of sun tan lotion-very expensive in
the gift shop” (Negi and Buitelaar, 2015). We can
clearly see that these reviews contain suggestions
and recommendations for others to make use of
a service or a product if they want to avail it at
its best. Before the advent and realization of the
importance and use of suggestion mining, opinion
mining has been used by stakeholders to mine text
with a perspective of summarizing opinions on the
basis of sentiment polarities (Liu, 2012). Though
identifying negative and positive sentiment distri-
bution within a text is important from a lot of per-
spectives, however, identification of a suggestion
oriented text would be more useful for stakehold-
ers looking for improvements in their services or
products, and also, for the services seeker and po-
tential buyers of a product (Negi and Buitelaar,
2015). Thus, automatic identification and classi-
fication of suggestion oriented text from a large
corpus of raw text is the need of the hour, as, is
not feasible manually.
Some empirical analysis has been done previously
for automatic suggestion mining, as, (Negi and
Buitelaar, 2015) used Support Vector Machine
(SVM) to identify suggestion oriented sentences
within customer reviews. In another study ((Negi
et al., 2016)) the authors used Neural Network ar-
chitecture to classify suggestions from raw text.
(Negi and Buitelaar, 2017) used Long Short Term

1242

Figure 1: Graph Construction with vicinity size 2 illustrates how the vicinity size move toward the end of the tweet;
in this example, the frame is the two following words and for each word some edges and nodes are added to the
graph.

Memory (LSTM) model to classify sentences as
suggestions or non-suggestions. The authors, in
their study trained word embeddings on sugges-
tions (taken from WikiHow ”Tips” section) and
the resulting LSTM model, showed higher perfor-
mance from the previous ones. The graph-based
centrality measure is also used to classify short
text analysis(Ishtiaq et al., 2019). Lubna et al.
proposed word sense disambigousness technique
to evaluate the adverb, adjectives, and verb com-
bination (Zafar et al., 2017).

By analysing the current suggestion mining
techniques and studies ((Negi et al., 2018), (Negi
and Buitelaar, 2017)), it is realized that sugges-
tion calcification task face many overlapping chal-
lenges as with other sentence classification prob-
lems. They include: annotations of data, compre-
hending sentence-level semantics, making sense
of figurative and sarcastic expressions, long and
complex sentences (covering multiple aspects and
diverse domains), catering diverse domain sen-
tences (rather than classifying domain specific
ones), imbalanced class distributions (due to the
imbalanced availability of suggestion oriented text
within the raw text in certain domains) etc (Negi
et al., 2018).

This paper describes our proposed model for
the SemEval-2019 pilot challenge for suggestion
mining’s Sub-Task A, i.e classify a given text as
a suggestion or non-suggestion text, using same
domain training and testing data. As described in
the challenge highlights, the data set will belong
to a particular domain i.e. suggestion forum for
windows platform developers, which needs to be
classified as a suggestion or non-suggestion class.

For this challenge, our proposed model is a hy-
brid one, inspired by two previous studies ((Gian-
nakopoulos et al., 2008) and (Maas et al., 2011)),
in combination with some additional features and
word graph similarity score as used by Usman et al
(Ahmed et al., 2018). The word graph model used
in this research is adopted from Usman et al tech-
nique of Iron detection (Ahmed et al., 2018). The
detailed description of our model is given under
the proposed model section. Rest of the paper in-
cludes task overview, data set description, results
and evaluation, followed by discussion and con-
clusion.

2 Task Overview

In SemEval-2019, task 9 contains two sub-tasks A
and B, for suggestion mining from a given text.
The text (dataset) for this challenge which needs
to be classified against each subtask is taken from
two domains, i.e. suggestion forums and hotel re-
views (Negi et al., 2019).

In this paper, we are focusing on sub-task
A, which is, detection of a suggestion or non-
suggestion text, from, the text of suggestion fo-
rums (dedicated resources used to provide sugges-
tions for improvements in any under-discussed en-
tity). For this task, the training and validation data
sets will belong to one domain, and the details of
it are covered in the dataset overview section.

3 Proposed Model

Our proposed model is a hybrid approach, in
which the given text is represented as a directed
unweighted word graph at first (for both the

1243

Figure 2: Graph Similarity Feature Extraction for one
measure. The graph of a forum review used to com-
pare with training data class graphs, in order to produce
two numbers (depending upon the numbers of classes).
These numbers will be used as a feature vector. The
feature vector is provided to the trained model to pre-
dict the class of the new forum review.

classes). The edge between each word is cre-
ated based on the vicinity window size, as ex-
plained in the subsection Graph construction. Af-
ter graph construction, a comparison is carried out
between each graph for construction of a feature
vector, which is later used as an input for our ma-
chine learning algorithm. The graph is constructed
based on a class assignment, which is later used
to measure the similarity of a text with each class
graph (suggestion or non-suggestion). For similar-
ity measurement between the class graph and text
graph, we used containment similarity, maximum
common subgraph similarity and its variant com-
pare graph in terms of similarity.

3.1 Dataset Overview
For the training, trial and evaluation
dataset are provided by the organizer
via Github: https://github.com/
Semeval2019Task9/Subtask-A. The
dataset for this task is annotated in two phases
(Negi et al., 2019). In the first phase, crowd-
sourced annotators are involved for performing
the annotations, whereas in the second phase
in-house expert annotators are used (Negi et al.,
2019). The finalized datasets include only those
sentences which explicitly express suggestions
rather than those that only provide information
which can be used to infer suggestions. The
dataset is collected from a particular suggestion
forum’s reviews (uservoice.com) on universal

Table 1: Feature Set
No. Features
1 Containment Similarity UniGram
2 Containment Similarity BiGram
3 Maximum Common Subgraph Node Similarity

(MCSNS)
4 Maximum Common Subgraph Edge Similarity

(MCSES)
5 Maximum Common Subgraph Directed Edge

Similarity (MCSDS)
6 Number of Characters
7 Number of Words

Table 2: Dataset Statistics
Class Train set Trial Test set Test set

Suggestions 2085 296 87
Non-suggestions 6415 296 746

windows platform (Negi et al., 2019). The number
of sentences in the dataset is shown in Table 2.

3.2 Graph Construction

For the graph construction, we consider the given
text (which needs to be classified as either sugges-
tion or non-suggestions) as a set of words, based
on their vicinity. Each word is considered as a la-
belled node in a graph, which is joined with a di-
rected edge, depending on the window size. For
our analysis, we used a vicinity size of 2, adopted
by analysing our results during the tuning phase of
our model. Figure 1 illustrates the complete graph
construction process of a sentence, with vicinity
size 2. We can clearly see how nodes and edges
are added in the graph against each word. Fur-
ther, in order to check text graph similarity with
the class graph, our model makes use of the con-
tainment similarity (non-normalized value), maxi-
mum common subgraph similarity and its variant
compare graph.

4 Feature Engineering

4.1 Containment Similarity

Containment similarity measure is used to mea-
sure two graphs similarity by calculating the com-
mon edges between them by the number of edges
of the smaller graph (Aisopos et al., 2012). Equa-
tion 1 illustrates the mathematical expression of
containment similarity measure, where GT (target
graph) is the text word graph, Gs (source graph) is
the word graph of suggestion class. e is the edge
of a word graph and the size of the graph is the

1244

Figure 3: Precision Recall Curve of Binary Class prob-
lem

number of nodes or edges.

CS(G T , G S) =

∑
e=G T

µ(e,G S)

min(|G T |, |G S |)
(1)

4.2 Maximum Common Sub Graph
We used three variations of maximum common
sub graph metric to find similarity between text
graph and class graph. Equation 2 illustrates the
node similarity calculation method, equation 3 il-
lustrates the edge similarity of the two graphs
where as equation 4 illustrates directed edge simi-
larity.

MCSNS =
MCSN(|G T |, |G S |)
min(|G T |, |G S |)

(2)

Maximum Common Sub graph Node Similar-
ity (MCSNS) is the difference of target (GT) and
source graph (GS).

MCSUES =
MCSUE(|G T |, |G S |)
min(|G T |, |G S |)

(3)

Maximum Common Sub graph Edge Similarity
(MCSUE) is the total number of edges contained
in the MCS after taking the difference of target
graph (GT) and source graph (GS), without con-
sidering the direction.

MCSDES =
MCSDE(|G T |, |G S |)
min(|G T |, |G S |)

(4)

MAximum Common Sub graph Directed Edge
Similarity (MCSDES) is the number of the edges
contained in the MCS that have the same direction
in the graphs. A full feature set is mentioned in
Table 1.

Figure 4: Precision Recall Curve of Multi Class prob-
lem

4.3 Model Selection

To solve binary class suggestive review classifi-
cation, we used Tree-based Pipeline Optimization
Tool (TPOT), (Olson et al., 2016). The labelled
data is given as an input to TPOT, which re-
turns the hyper tuned model for the binary class
classification problem. After close analysis
it is observed that the data suffers from class
imbalance problem. To handle this problem, we
used SMOTE ((Cummins et al., 2017)) a Python
toolbox. TPOT gives extreme gradient boosting
classifier tune parameters i.e. GradientBoost-
ingClassifier(learning rate=1.0, max depth=7,
max features=0.35, min samples leaf=19,
min samples split=10, n estimators=100, sub-
sample=1.0) for binary classification.

5 Result Analysis and Conclusion

The model achieved rank in the Coda Lab chal-
lenge is 31, with an evaluation value of 0.34. Af-
ter the release of Gold set, the model is tuned again
using the same TPOT library, which is then trained
and evaluated. The results are shown in the figure
and .

This work describes our suggestion mining
technique which is a hybrid of graph struc-
turing and classification algorithm. Our tech-
nique uses graph similarity metrics to find sim-
ilar graphs from the dataset, which later serves
as an input (feature vector) to the classifica-
tion algorithm. The technique generates word
graphs against given reviews which are replicated
throughout the dataset using graph similarity tech-
niques. Though the results need improvement

1245

however they are convincing enough to show that
use of word graphs with different vicinity window
can be helpful in classifying suggestions related
reviews within a domain. For further model im-
provements, use of different similarity metrics can
be adopted as well as graph constructions using
different vicinity window size can be tested.

References
Usman Ahmed, Lubna Zafar, Faiza Qayyum, and

Muhammad Arshad Islam. 2018. Irony detector
at semeval-2018 task 3: Irony detection in english
tweets using word graph. In Proceedings of The
12th International Workshop on Semantic Evalua-
tion, pages 581–586.

Fotis Aisopos, George Papadakis, Konstantinos Tser-
pes, and Theodora Varvarigou. 2012. Content vs.
context for sentiment analysis: a comparative anal-
ysis over microblogs. In Proceedings of the 23rd
ACM conference on Hypertext and social media,
pages 187–196. ACM.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and
Hugh Leather. 2017. Synthesizing benchmarks for
predictive modeling. In 2017 IEEE/ACM Interna-
tional Symposium on Code Generation and Opti-
mization (CGO), pages 86–99. IEEE.

George Giannakopoulos, Vangelis Karkaletsis, George
Vouros, and Panagiotis Stamatopoulos. 2008. Sum-
marization system evaluation revisited: N-gram
graphs. ACM Transactions on Speech and Language
Processing (TSLP), 5(3):5.

Asra Ishtiaq, Muhammad Arshad Islam, Muham-
mad Azhar Iqbal, Muhammad Aleem, and Usman
Ahmed. 2019. Graph centrality based spam sms de-
tection. In 2019 16th International Bhurban Confer-
ence on Applied Sciences and Technology (IBCAST),
pages 629–633. IEEE.

Valentin Jijkoun, Wouter Weerkamp, Maarten de Rijke,
Paul Ackermans, and Gijs Geleijnse. 2010. Min-
ing user experiences from online forums: an explo-
ration. In Proceedings of the NAACL HLT 2010
Workshop on Computational Linguistics in a World
of Social Media, pages 17–18.

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142–150. Asso-
ciation for Computational Linguistics.

Sapna Negi, Kartik Asooja, Shubham Mehrotra, and
Paul Buitelaar. 2016. A study of suggestions in
opinionated texts and their automatic detection. In
Proceedings of the Fifth Joint Conference on Lexi-
cal and Computational Semantics, pages 170–178.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167.

Sapna Negi and Paul Buitelaar. 2017. Induc-
ing distant supervision in suggestion mining
through part-of-speech embeddings. arXiv preprint
arXiv:1709.07403.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sapna Negi, Maarten de Rijke, and Paul Buite-
laar. 2018. Open domain suggestion mining:
Problem definition and datasets. arXiv preprint
arXiv:1806.02179.

Randal S Olson, Nathan Bartley, Ryan J Urbanowicz,
and Jason H Moore. 2016. Evaluation of a tree-
based pipeline optimization tool for automating data
science. In Proceedings of the Genetic and Evolu-
tionary Computation Conference 2016, pages 485–
492. ACM.

Lubna Zafar, Muhammad Tanvir Afzal, and Usman
Ahmed. 2017. Exploiting polarity features for de-
veloping sentiment analysis tool. In EMSASW@
ESWC.

1246

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1247–1253
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Team Taurus at SemEval-2019 Task 9: Expert-informed pattern
recognition for suggestion mining

Nelleke Oostdijk
Centre for Language Studies

Radboud University
Nijmegen, The Netherlands
N.Oostdijk@let.ru.nl

Hans van Halteren
Centre for Language Studies

Radboud University
Nijmegen, The Netherlands

hvh@let.ru.nl

Abstract
This paper presents our submissions to
SemEval-2019 Task9, Suggestion Mining.
Our system is one in a series of systems in
which we compare an approach using expert-
defined rules with a comparable one using ma-
chine learning. We target tasks with a syntac-
tic or semantic component that might be better
described by a human understanding the task
than by a machine learner only able to count
features. For Semeval-2019 Task 9, the expert
rules clearly outperformed our machine learn-
ing model when training and testing on equally
balanced testsets.

1 Introduction

In the field of natural language processing, ap-
proaches featuring machine learning (ML) nowa-
days predominate. These have been shown to
be quite effective with a wide range of tasks, in-
cluding text mining, authorship attribution, and
text classification. They are particularly suited
for dealing with large data volumes and are ro-
bust in the sense that they can handle quite ‘noisy’
data. Unlike expert-informed approaches where
rules need to be hand-crafted and apply only under
predefined conditions, ML approaches learn from
training data and are able to extrapolate. Propo-
nents of ML approaches tend to dismiss the en-
terprise of hand-crafting rules as difficult, error-
prone, time-consuming, and generally ineffective
as even an extensive set of complex rules is bound
to be incomplete and difficult to maintain.

Over the past years we have conducted a num-
ber of studies directed at the extraction of ac-
tionable information from microblogs. These in-
clude a range of topic areas and domains, in-
cluding the detection of threatening tweets (Oost-
dijk and van Halteren, 2013a,b), the identifica-
tion of potentially contaminated food supplements
in forum posts (Oostdijk et al., submitted), and

topic/event detection in tweets about natural dis-
asters (floods (Hürriyetoğlu et al., 2016), earth-
quakes (Hürriyetoğlu and Oostdijk, 2017; Oost-
dijk and Hürriyetoğlu, 2017)), about traffic flow
(Oostdijk et al., 2016) and about outbreaks of the
flu (Hürriyetoğlu et al., 2017). In each case we
have been exploring the role of the human ex-
pert in an expert-informed pattern recognition ap-
proach and a comparable ML approach, seeking
out the strengths and weaknesses of either and at-
tempting to arrive at a superior hybrid approach.

Semeval-2019, Task 9, Suggestion Mining
(Negi et al., 2019), appeared to be another task that
would lend itself to human rule building. As sug-
gestions may be phrased in many different ways,
successfully recognising that an utterance contains
a suggestion requires human understanding of the
context. Also, the amount of available training
data was quite limited so that bringing into play
the human expert’s knowledge of the forms that
suggestions may take would be an advantage, even
though the task was not too clearly defined.

As a counterpart to the human rules, we built a
machine learning system. For easier comparison
of the patterns suggested by the machine learner
and by the human expert, the learning component
was a rather simple odds-based technique which
still proved competitive in VarDial2018 (van Hal-
teren and Oostdijk, 2018). As features we used
character and token n-grams as well as syntac-
tic patterns. In addition, the machine learner
was somewhat expert-informed, as it was provided
with several word lists related to suggestions.

Below we first describe the rule systems built
by the human expert (Section 2) and the machine
learner (Section 3) in some more detail. Then we
proceed to the quantitative evaluation (Section 4),
followed by a qualitative analysis of the evaluation
phase (Section 5). We conclude with a discussion
of what we learned in this shared task (Section 6).

1247

2 Recognition with expert rules

The expert-rule-based system we applied uses a
dedicated (task-specific) lexicon and set of hand-
crafted rules in order to generate search queries.
The system only targets suggestions, i.e. we only
specify rules for patterns that should identify sug-
gestions. Furthermore, we chose to design and ap-
ply one and the same set of rules and lexicon for
both evaluation sets.

The lexicon comprises 1256 entries. Most of
the entries are single words. However, we also in-
cluded some multi-word items such in order to,
for example, at least and be able to as well as
phrase-like items such why not and how about.
The lexicon includes a few frequently observed
spelling variants, for example pls, plz, dont and
kinda. With each entry, part-of-speech-like infor-
mation is provided (e.g. verb, adjective, adverb
but also please, which is given its own class). Typ-
ical examples of some of the lexicon entries are:

awesome ADJ would AUXwould
just ADV very ADVintens
provide Vimp provide Vinfin

The rule set consists of 138 finite state rules.
They describe how lexical items can combine to
form search queries made up of multi-word n-
grams. To give some examples, AUXwould - BE

- ADVintens - ADJ matches e.g. would be very
helpful and would be really awesome; AUXshould
- ADV - Vinfin matches e.g. should directly
see and should properly support; and PLEASE -

Vimp e.g. please provide and pls fix. Rules
typically combine two to five elements (parts of
speech; POS). Given that some lexical entries are
multi-word items, the patterns actually describe
strings up to a length of nine words (one of the
strings matching the rule AUXcould - ADV - BE

- ADVintens - ADJ is, for example, could at the
very least be even more robust).

In previous tasks, pattern recognition using
word n-grams has been proven to be very ef-
fective. Moreover, the specification of the rules
and the lexicon is much easier and far less time-
consuming than would be the case for an all-
encompassing description, as human experts need
not concern themselves with describing elements
and details irrelevant to the task at hand. In this
particular case, trying to recognize suggestions,
we experienced the drawback of only having ac-
cess to the raw text input, something that did not

bother us as much with other tasks. What we
found was that in order to be able to recognize the
many suggestions that take the form of an imper-
ative sentence, we somehow needed to be able to
distinguish between an imperative verb form and
an infinitive or present tense verb. Noting that
imperative verbs tend to occur (near) sentence-
or clause-initially, we tried to account for this in
our rules. In some cases we could make use of
the presence of a comma, semi-colon or colon,
that would identify the (potential) beginning of a
clause. In such cases the punctuation mark was
included as an element in the rules describing im-
perative structures. In order to identify the begin-
ning of a sentence, we decided to automatically
insert markers in the input during the preprocess-
ing phase. These markers would also indicate the
type of sentence (interrogative MRKques vs declar-
ative or imperative MRKsint). Here the distinction
between interrogatives and other types of sentence
helped in distinguishing between do/don’t/dont as
an operator (auxiliary verb) in a question and as
an operator in an imperative sentence. MRKsint -

Vimp matches e.g Allow applications to define ...
and Ask for a room in ...; and MRKsint - ADV -

Vimp matches e.g. At least support ... and Just
don’t forget ...

3 Recognition by machine learning

For the ML approach we tried to use quite a wide
spread of feature types, namely (a) character n-
grams, with n ranging from 3 to 9; (b) token un-
igrams; (c) token n-grams, with n ranging from
2 to 4 (in which the individual positions can be
filled with the actual token, the POS tag, or the
word group (see below)); (d) syntactic structure of
the main clause; (e) syntactic rewrites of all con-
stituents; (f) syntactic n-grams (i.e. selected sub-
trees from the complete parse tree, e.g. function
and category of a mother and two daughters).

For the character n-grams and the tokens, we
applied a minimal level of pre-processing. In the
training data, we cleaned up misplaced quotes and
commas in the provided .csv-files. In the (later)
trial data and in the evaluation data, which came
in an HTML-format, we also replaced SGML-
entities by their character counterpart, e.g. "
was replaced by ".

The POS tags and syntactic structure were pro-
duced by the Stanford NLP system (Manning
et al., 2014). The dependency parse labeling was

1248

then transformed to a constituency tree that con-
formed (as much as feasible) to our own view of
English syntactic structure, being that developed
in the TOSCA project (Aarts et al., 1998). All syn-
tactic features were derived in either a fully lexi-
calized or fully unlexicalized version. Although
we feel the syntactic features can be of consid-
erable value, we consider this component a weak
spot in the current system, as the parser regularly
produces incorrect analyses. In the current task,
this was especially the case for the training data.

In the lexicalized syntactic features, as well
as in the token n-grams, a token slot could also
be filled with a word group indicator. We found
candidates for these lists by searching the 2006
Google n-gram collection (Brants and Franz,
2006) with some regular expressions, and then
cleaned them up manually. There were four word
groups. GrpADJgood contains 100 positive adjec-
tives, e.g. better and advisable, being the first 100
manually approved from 1774 sorted matches with
e.g. ˆit (would|could|might|may) be (.*)

(to|if). GrpADVinten covers 37 intensifying ad-
verbs, e.g. very and critically, selected from 448
matches with e.g. ˆ(would|could|might|may)

be (.*) ($adjgood) (to|if). GrpVadvise

contains 723 verbs that indicate what is
being suggested, e.g. adopt and edit, se-
lected from 987 matches with e.g. ˆ(i|we)

(suggest|advise|propose|request) you to

(.*). And GrpADVdescr has 41 adverbs that
can modify the advised action, e.g. always
and never, selected from 212 matches with e.g.
ˆ(suggest|advise|propose|request) that

you (.*) ($vadvise). When used in a feature,
each group indicator is concatenated with the
POS tag. The introduction of the word groups
appears to be effective: one of the strongest
markers, found 82 times with suggestions and
only twice with non-suggestions, is “It would be
GrpADJgoodJJ”.

Our choice of recognition system was influenced
by the desire to compare to the human rules. Af-
ter successful recognition, we wanted to be able to
identify which features contributed to the success.
For this experiment, we chose a very simple algo-
rithm. We counted the occurrences of each feature
in the training items marked as suggestions or as
non-suggestions and compared the two counts to
derive odds. For example, the character 8-gram
Please a was found 60 times in suggestion items

and once in non-suggestion items. Correcting for
the different numbers of items in the two classes,
and adding one to avoid division by zero, this led
to odds of 45.89 in favour of suggestions. In order
to avoid exaggerated counts because of repeated
items, we only used the first occurrence of each
item, leaving us with 1758 suggestions and 5339
non-suggestions. This removal was done even if
the repeated items had different suggestion labels.
For the actual recognition, we only used features
that had odds higher than or equal to 3:1. In the
prediction phase, the odds of all features present in
an item were taken and their sum was compared to
a threshold, which we chose by tuning on the trial
data.

As with other tasks, we investigated hybridization
of our two approaches. In this case, straightfor-
ward combination of the final choices seemed not
very fruitful on the trial data. However, when we
compared the suggestions for each individual fea-
ture type in the machine learning with those of
the expert rules, we found especially syntactic n-
grams were able to identify suggestions not found
by the rules, which were limited to contiguous
n-grams. We therefore built a combination that
marked those items as suggestions that were rec-
ognized as such by the rules, plus those for which
the recognition score by only the syntactic n-gram
features was over the optimal threshold for the trial
data. The relative quality of rules and machine
learning on the trial data for Subtask B made us
decide not to attempt combination there.

4 Quantitative evaluation

In this discussion, we do not want to compare to
other systems in the shared task. For this we re-
fer the reader to the task description paper (Negi
et al., 2019), where it can be seen that more in-
tricate machine learning systems, especially those
using pre-trained language models, perform much
better. We will rather examine how our inter-
nally comparable systems behave on the four item
sets. In order to make the measurements com-
patible, we first have to make some adjustments.
Both trial sets contained equal numbers of sugges-
tions and non-suggestions, so that precision and
recall were equally valuable. In the evaluation
sets, there were more non-suggestions than sug-
gestions, so that precision has more influence than
recall. For comparison we needed to recalculate
precision (and hence F1; recall is unchanged) by

1249

Approach Meas TrialA EvalA EvalBalA TrialB EvalB EvalBalB
Rules Prec 0.8213 0.4521 0.8761 0.9673 0.8669 0.8991

Rec 0.8851 0.7586 0.7586 0.8045 0.7299 0.7299
F1 0.8520 0.5665 0.8132 0.8784 0.7925 0.8057

Learn Prec 0.7914 0.4848 0.8898 0.5802 0.5099 0.5873
Rec 0.8716 0.7356 0.7356 0.9134 0.8851 0.8851
F1 0.8296 0.5848 0.8054 0.7096 0.6471 0.7061

Combo Prec 0.8179 0.4558 0.8778 NA
Rec 0.8953 0.7701 0.7701 NA
F1 0.8548 0.5726 0.8204 NA

Baseline Prec 0.5872 0.1566 0.6141 0.7277 0.6877 0.7507
Rec 0.9324 0.9195 0.9195 0.8267 0.7845 0.7845
F1 0.7206 0.2676 0.7364 0.7740 0.7329 0.7672

Table 1: Quality of submitted systems and organiser baseline.

Approach TrialA EvalA EvalBalA TrialB EvalB EvalBalB
Weighted sum 0.8291 0.6429 0.8110 0.7109 0.6637 0.7170
Char n-grams 0.7968 0.6444 0.7781 0.6782 0.6113 0.6748
Token 1-gram 0.7492 0.5411 0.7444 0.6006 0.5320 0.5563
Token 2-gram 0.8045 0.5882 0.7100 0.6006 0.5256 0.5436
Token 3-gram 0.7968 0.5342 0.6436 0.3955 0.3363 0.3420
Token 4-gram 0.7664 0.4348 0.5023 0.1201 0.1027 0.1029
Structure main clause 0.7580 0.4667 0.5588 0.3866 0.3029 0.3090
Syntactic rewrites 0.4888 0.3068 0.4454 0.1849 0.2085 0.2126
Syntactic n-grams 0.7601 0.5069 0.7297 0.7419 0.6946 0.7416

Table 2: F1-score for each test set for each feature type, using model learned from training material for Subtask
A, and oracle thresholds.

extrapolating the systems’ behaviour to a balanced
testset. E.g., the expert rules had 80 false ac-
cepts on a total of 146, so a precision of 66/146
i.e. 0.4521. In a balanced dataset, 87 instead of
746 non-suggestions, not 80/746, but 9.3298/87
would be falsely accepted. Precision would be
66/(66 + 9.3298) i.e. 0.8761. We stress that we
are not trying to make out results look more im-
pressive, but merely want to make behaviour on
trial and evaluation sets comparable.

Table 1 shows the evaluation results for our
three systems and the organisers’ baseline, with
the adjusted scores shown in the columns marked
EvalBal. Here, we can see that the enormous drops
in quality between TrialA and EvalA were an il-
lusion, caused by the difference in balance. Also,
our three systems are now consistent in their order:
expert rules outperform machine learning, but the
(very eclectic) combination scores yet a bit better.
In fact, we now see that all systems gain preci-
sion when going from TrialA to EvalA, but at the

cost of recall. For the machine learner, this is not
exclusively due to overtraining in threshold opti-
mization, as we see below in the discussion of Ta-
ble 2. A discussion of the results for the expert
rules can be found in Section 5. The lower de-
gree of change for the baseline can probably be
explained by the rather general level of the rules
there. Going from Subtask A to Subtask B, the
machine learner suffers a substantial loss in qual-
ity, which is understandable as it is trained only
on Subtask A data. Interestingly, there are almost
no differences between TrialB and EvalB. For the
expert rules, the situation is rather different. From
TrialA to TrialB, we see a precision gain and re-
call loss, leading to a slight increase in F1; but the
move from TrialB to EvalB leads to a serious drop
in both precision and recall.

In Table 2, we show the F1-score for each indi-
vidual feature type, as well as for the sum for com-
parison. On TrialA, the most useful individual fea-
ture types appear to be token bi- and trigrams and

1250

Feature TrainA TrialA EvalA TrialB EvalB
Total items 1758/ 296/ 87/ 404/ 348/

5339 296 746 404 476
CG8 ##Allow# 63/2 14/0 5/0 0/0 0/0
T4 WWWG It would be GrpADJgoodJJ 82/2 13/1 4/0 0/0 0/0
CG7 re#shou 31/1 8/0 0/1* 0/0 0/0
CG8 Please#a 60/1 6/0 2/0 0/0 0/0
SRFC S V VP A VBx OD NP A PP 28/0 4/0 1/0 0/0 1/0
SCFFCCL S CS AJP(nice) A SBAR(if) 20/1 4/0 1/0 1/0 0/1
CG8 #Provide 20/0 3/0 1/0 0/0 0/0
SCFFCCL ROOT UTT S(suggest) NOFUpunc .(.) 14/0 3/0 1/0 4/0 5/0
T3 WWW # I ’d 24/0 4/1 0/3* 2/0 1/0
SCFFCCL VP AVB MD(should) MVB VBN(GrpVadvise) 46/5 4/1 3/1 1/0 3/1*

Table 3: Ten high-odds features (excluding correlated ones), with effectiveness on all test sets. Each cell contains
observation counts in suggestions/non-suggestions. Hash marks indicate spaces and out-of-sentence positions. The
asterisk (*) means we disagree on one of the non-suggestions, but did use the provided labels.

character n-grams. The other feature types lag be-
hind, but do help reach a higher score with the sum
of all feature scores. Syntactic rewrites by them-
selves have a much lower F1, but this is due to
their low recall potential (precision 0.7267, recall
0.3682). When moving to EvalA, we see that char-
acter n-grams and token unigrams maintain their
quality, indicating that the same kind of words are
being used, but higher n-grams and syntax lose
severely, which suggests that EvalA is more dif-
ferent from the training data than TrialA in how
words are combined.

When we proceed to Subtask B, all feature types
lose quality. As we moved to a different domain,
and a different genre, this is not surprising. Ma-
chine learning depends on having training and test
data that is as similar as possible. It is encourag-
ing to see that the syntactic n-grams do manage to
perform similarly to Subtask A. This means that
machine learning at a more abstract level is able to
move to another domain more easily.

If we examine which features are responsible
for the recognition, we see that all play some role.
There are, however, some more effective ones.
We show ten of these in Table 3. Note that this
is a manual selection, as simply taking the ten
highest scoring ones would show only two basic
patterns in various guises, e.g. Please as several
character n-grams, as token unigram, in a token
bigram, and as an adverbial in a syntactic n-gram.
Some of the ten patterns need explanation:
CG7 re#shou is part of the token bigram there
should. SRFC S V VP A VBx OD NP A PP means that

a sentence is being rewritten as a verb phrase (i.e.
a sequence of verb with possibly additional inter-
nal adverbials), followed by an adverbial realized
by a non-finite verb, then a direct object realized
by a noun phrase, and finally an adverbial realized
by a prepositional phrase. If we search for exam-
ples, we find e.g. Please allow the access to phone
filesystem.. It turns out that Stanford CoreNLP
marks Please as a verb, placing allow as head
of an “xcomp” clause, which confuses our anal-
ysis transformer and makes allow an adverbial.
This is clearly wrong but, as it is done consis-
tently, this pattern still provides a good marker.
SCFFCCL VP AVB MD(should) MVB VBN(GrpVadvise)

indicates that within a verb phrase, we find both
the modal should and a past participle of one
of the verbs for something that is advisable.
SCFFCCL S CS AJP(nice) A SBAR(if) represents
a sentence with a subject complement nice
and an adverbial clause headed by if. And
SCFFCCL ROOT UTT S(suggest) NOFUpunc .(.)

represents a sentence with a main verb with
lemma suggest, combined with a period as punc-
tuation, which nicely rules out questions with
suggest. All these patterns have a good precision,
but their recall is obviously limited. The first two
manage to get about 5 percent on Subtask A, then
we quickly drop to 2.5 and 1. In general, recall
is similar for TrialA and EvalA. However, the
strongest markers are absent altogether in Subtask
B, where suggestions are apparently worded
differently. Only the final two syntactic n-grams
show a significant presence, which is in line with

1251

the discussion on feature types above.

5 Qualitative evaluation

Upon inspection of the results obtained on the
evaluation set with the expert rules, we specifically
looked at the false accepts and false rejects. Con-
trary to what we thought might happen, only very
few cases were missed out on due to omissions in
the lexicon.

With cases that we missed (i.e. where we failed
to recognize a suggestion) we did not find any
clear clues as to what could be added to the pat-
terns already specified in our rules set. There were
some cases involving imperatives that we missed
due to the fact that the punctuation mark we re-
lied upon appeared to be absent, while gleaning
the sentence type (interrogative) from the input fi-
nal punctuation mark failed in cases where the in-
put consisted of two or more sentences.

As for false accepts, we found that several cases
were wrongly taken to be suggestions on the basis
of a matching imperative pattern. Here the ear-
lier problem of being unable to distinguish impera-
tive verb forms from infinitives and present tenses
no longer presented itself. Instead, word forms
that are ambiguous between noun and verb such as
map and phone were mistakenly held to be imper-
ative verbs. Other false accepts were cases where
otherwise highly successful rules proved to be too
limited in their scope. For example, the pattern
AUXwould - Vinfin would match would allow
but then the sentence actually continues with but
so that what initially looks like a suggestion turns
out to be an observation, e.g. The control would
allow for the use of the contact picker but allows
for manual entry and deletion of contacts. Simi-
lar cases involving but were found with other pat-
terns. In the cases of single instances slight modi-
fications of the rules might have avoided wrong-
fully identifying something as a suggestion but
there is very little evidence to go by, so there is no
telling how it would impact on a different dataset.

We also noticed that some patterns occurred (al-
most) exclusively in Subtask A or B. Building sep-
arate rule sets for the two tasks might hence have
been beneficial. However, the whole point of the
exercise in Task 9 was to see whether a rule set can
be ported to a new, mostly unknown, domain.

6 Discussion

The task was more difficult than we had expected.
When we set out, we thought we knew what a
suggestion was. However, after confronting our
first version of the expert pattern system with the
training data, we needed to review our ideas. Af-
ter careful error analysis, we adapted our system
and came to achieve quite acceptable results on the
trial data, yet there remained a gap between what
we (intuitively, as experienced language users)
would consider a suggestion and quite a number
of other cases which were labelled as such. In
our view, there is a fine line between a sugges-
tion and a non-suggestion, and perhaps one needs
more context than a single sentence in order to tell
which it is. We speculate that this may well ex-
plain the drop in performance. This is in line with
the fact that the datasets provided, i.e. the train-
ing, trial and evaluation data, were rather different
in nature: the training data comprised many inputs
that were made up of multiple sentences, while the
trial data and certainly the evaluation data mostly
comprised single sentence inputs. Another factor
which may have been at play here (and again we
can only speculate), is that the annotations pro-
vided were made by different groups of annota-
tors. This would then also explain some of the in-
consistencies in the labeling, where similar cases
were labeled differently.

Moving to our system, the expert-informed rule
approach used previously with other tasks once
more showed its strengths. The word n-gram pat-
terns used are simple yet quite robust and effec-
tive, targeting specifically those parts of the input
that are deemed relevant for the task at hand, with-
out requiring these to be linguistically complete
or well-formed phrases or clauses. There are no
a priori limitations as to the length of the word
n-grams. Compiling a lexicon and a set of rules
requires limited effort. More than before, how-
ever, with the present task we experienced the lim-
itations of using only contiguous word n-grams.
Moreover, having only access to the raw text, in-
formation about the syntactic structure of a sen-
tence was lacking, which in specific cases is key
to being able to successfully identify a suggestion.
We were able to fill some of this gap by combining
with the ML approach, but improvements were as
yet meagre as the parser was not performing opti-
mally. Still, we have good hopes for this form of
expert-informed hybridization.

1252

References
Jan Aarts, Hans van Halteren, and Nelleke Oostdijk.

1998. The linguistic annotation of corpora: The
TOSCA analysis system. International journal of
corpus linguistics, 3(2):189–210.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram
Version 1. Linguistic Data Consortium, Philadel-
phia.

Hans van Halteren and Nelleke Oostdijk. 2018. Iden-
tification of differences between Dutch language va-
rieties with the VarDial 2018 Dutch-Flemish subtitle
data. In Proceedings of the Fifth Workshop on NLP
for Similar Languages, Varieties and Dialects (Var-
Dial 2018), Santa Fe, New Mexico, USA. Associa-
tion for Computational Linguistics.

Ali Hürriyetoğlu, Nelleke Oostdijk, Mustafa Erkan
Başar, and Antal van den Bosch. 2017. Supporting
experts to handle tweet collections about significant
events. In International Conference on Applications
of Natural Language to Information Systems, pages
138–141. Springer.

Ali Hürriyetoğlu, Jurjen Wagemaker, Antal van den
Bosch, and Nelleke Oostdijk. 2016. Analysing the
role of key term inflections in knowledge discovery
on twitter. In Proceedings of the 2nd International
Workshop on Knowledge Discovery on the Web (KD-
WEB16). Cagliari, Italy.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Nelleke Oostdijk, Ali Hürriyetoğlu, Marco Puts, Piet
Daas, and Antal van den Bosch. 2016. Informa-
tion extraction from the social media: A linguis-
tically motivated approach. In Actes de la con-
frence conjointe JEP-TALN-RECITAL 2016, volume
10: Risque et TAL: 21-33. PARIS Inalco du 4 au 8
juillet 2016.

1253

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1254–1261
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ThisIsCompetition at SemEval-2019 Task 9:
BERT is unstable for out-of-domain samples

Cheoneum Park*1 and Juae Kim*2 and Hyeon-gu Lee*1 and Reinald Kim Amplayo*3

Harksoo Kim1 and Jungyun Seo2 and Changki Lee1
(* equal contribution)

1Kangwon National University, South Korea
2Sogang University, South Korea
3University of Edinburgh, UK

Abstract

This paper describes our system, Joint
Encoders for Stable Suggestion Inference
(JESSI), for the SemEval 2019 Task 9: Sug-
gestion Mining from Online Reviews and Fo-
rums. JESSI is a combination of two sentence
encoders: (a) one using multiple pre-trained
word embeddings learned from log-bilinear re-
gression (GloVe) and translation (CoVe) mod-
els, and (b) one on top of word encodings
from a pre-trained deep bidirectional trans-
former (BERT). We include a domain adver-
sarial training module when training for out-
of-domain samples. Our experiments show
that while BERT performs exceptionally well
for in-domain samples, several runs of the
model show that it is unstable for out-of-
domain samples. The problem is mitigated
tremendously by (1) combining BERT with a
non-BERT encoder, and (2) using an RNN-
based classifier on top of BERT. Our final
models obtained second place with 77.78%
F-Score on Subtask A (i.e. in-domain) and
achieved an F-Score of 79.59% on Subtask B
(i.e. out-of-domain), even without using any
additional external data.

1 Introduction

Opinion mining (Pang and Lee, 2007) is a huge
field that covers many NLP tasks ranging from
sentiment analysis (Liu, 2012), aspect extraction
(Mukherjee and Liu, 2012), and opinion summa-
rization (Ku et al., 2006), among others. De-
spite the vast literature on opinion mining, the task
on suggestion mining has given little attention.
Suggestion mining (Brun and Hagège, 2013) is
the task of collecting and categorizing suggestions
about a certain product. This is important because
while opinions indirectly give hints on how to im-
prove a product (e.g. analyzing reviews), sugges-
tions are direct improvement requests (e.g. tips,
advice, recommendations) from people who have

used the product.
To this end, Negi et al. (2019) organized a

shared task specifically on suggestion mining
called SemEval 2019 Task 9: Suggestion Mining
from Online Reviews and Forums. The shared task
is composed of two subtasks, Subtask A and B. In
Subtask A, systems are tasked to predict whether
a sentence of a certain domain (i.e. electronics)
entails a suggestion or not given a training data
of the same domain. In Subtask B, systems are
tasked to do suggestion prediction of a sentence
from another domain (i.e. hotels). Organizers
observed four main challenges: (a) sparse occur-
rences of suggestions; (b) figurative expressions;
(c) different domains; and (d) complex sentences.
While previous attempts (Ramanand et al., 2010;
Brun and Hagège, 2013; Negi and Buitelaar, 2015)
made use of human-engineered features to solve
this problem, the goal of the shared task is to lever-
age the advancements seen on neural networks,
by providing a larger dataset to be used on data-
intensive models to achieve better performance.

This paper describes our system JESSI (Joint
Encoders for Stable Suggestion Inference). JESSI
is built as a combination of two neural-based en-
coders using multiple pre-trained word embed-
dings, including BERT (Devlin et al., 2018), a
pre-trained deep bidirectional transformer that is
recently reported to perform exceptionally well
across several tasks. The main intuition behind
JESSI comes from our finding that although BERT
gives exceptional performance gains when applied
to in-domain samples, it becomes unstable when
applied to out-of-domain samples, even when us-
ing a domain adversarial training (Ganin et al.,
2016) module. This problem is mitigated using
two tricks: (1) jointly training BERT with a CNN-
based encoder, and (2) using an RNN-based en-
coder on top of BERT before feeding to the classi-
fier.

1254

JESSI is trained using only the datasets given
on the shared task, without using any additional
external data. Despite this, JESSI performs second
on Subtask A with an F1 score of 77.78% among
33 other team submissions. It also performs well
on Subtask B with an F1 score of 79.59%.

2 Related Work

Suggestion Mining The task of detecting sug-
gestions in sentences is a relatively new task, first
mentioned in Ramanand et al. (2010) and for-
mally defined in Negi and Buitelaar (2015). Early
systems used manually engineered patterns (Ra-
manand et al., 2010) and rules (Brun and Hagège,
2013), and linguistically motivated features (Negi
and Buitelaar, 2015) trained on a supervised clas-
sifier (Negi et al., 2016). Automatic mining of
suggestion has also been suggested (Dong et al.,
2013). Despite the recent successes of neural-
based models, only few attempts were done, by
using neural network classifiers such as CNNs
and LSTMs (Negi et al., 2016), by using part-
of-speech embeddings to induce distant supervi-
sion (Negi and Buitelaar, 2017). Since neural net-
works are data hungry models, a large dataset is
necessary to optimize the parameters. SemEval
2019 Task 9 (Negi et al., 2019) enables training of
deeper neural models by providing a much larger
training dataset.

Domain Adaptation In text classification, train-
ing and test data distributions can be different,
and thus domain adaptation techniques are used.
These include non-neural methods that map the se-
mantics between domains by aligning the vocabu-
lary (Basili et al., 2009; Pan et al., 2010) and gen-
erating labeled samples (Wan, 2009; Yu and Jiang,
2016). Neural methods include the use of stacked
denoising autoencoders (Glorot et al., 2011), vari-
ational autoencoders (Saito et al., 2017; Ruder and
Plank, 2018). Our model uses a domain adversar-
ial training module (Ganin et al., 2016), an elegant
way to effectively transfer knowledge between do-
mains by training a separate domain classifier us-
ing an adversarial objective.

Language Model Pretraining Inspired from
the computer vision field, where ImageNet (Deng
et al., 2009) is used to pretrain models for other
tasks (Huh et al., 2016), many recent attempts in
the NLP community are successful on using lan-
guage modeling as a pretraining step to extract

BERT
Word Encoder

CNN
Word Encoder

!1 !2 … !$

BiSRU
Sentence Encoder

Attention
Sentence Encoder

Suggestion
Classifier

Domain
Classifier

%& %'

(%&
()& * (%'()'

(%&
()+

−* (%'()+

-

input: sentence

./0.10.20 ./3.13.23

4(0) 4(3)

output: suggestion

Figure 1: The overall architecture of JESSI for
Subtask B. The thinner arrows correspond to the
forward propagations, while the thicker arrows
correspond to the backward propagations, where
gradient calculations are indicated. For Subtask
A, a CNN encoder is used instead of the BiSRU
encoder, and the domain adversarial training mod-
ule is not used.

feature representations (Peters et al., 2018), and to
fine-tune NLP models (Radford et al., 2018; De-
vlin et al., 2018). BERT (Devlin et al., 2018) is
the most recent inclusion to these models, where
it uses a deep bidirectional transformer trained on
masked language modeling and next sentence pre-
diction objectives. Devlin et al. (2018) reported
that BERT shows significant increase in improve-
ments on many NLP tasks, and subsequent stud-
ies have shown that BERT is also effective on
harder tasks such as open-domain question an-
swering (Yang et al., 2019), multiple relation ex-
traction (Wang et al., 2019), and table question an-
swering (Hwang et al., 2019), among others. In
this paper, we also use BERT as an encoder, show
its problem on out-of-domain samples, and miti-
gate the problem using multiple tricks.

3 Joint Encoders for Stable Suggestion
Inference

We present our model JESSI, which stands for
Joint Encoders for Stable Suggestion Inference,
shown in Figure 1. Given a sentence x =
{w1, w2, ..., wn}, JESSI returns a binary sugges-
tion label y = {0, 1}. JESSI consists of four im-
portant components: (1) A BERT-based encoder
that leverages general knowledge acquired from

1255

a large pre-trained language model, (2) A CNN-
based encoder that learns task-specific sentence
representations, (3) an MLP classifier that predicts
the label given the joint encodings, and (4) a do-
main adversarial training module that prevents the
model to distinguish between the two domains.

BERT-based Encoder Fine-tuning a pre-
trained BERT (Devlin et al., 2018) classifier
then using the separately produced classification
encoding [CLS] has shown to produce significant
improvements. Differently, JESSI uses a pre-
trained BERT as a word encoder, that is instead
of using [CLS], we use the word encodings
e
(b)
1 , e

(b)
2 , ..., e

(b)
n produced by BERT. BERT is still

fine-tuned during training.
We append a sentence encoder on top of BERT,

that returns a sentence representation s(b), which
is different per subtask. For Subtask A, we use a
CNN encoder with max pooling (Kim, 2014) to
create the sentence embedding. For Subtask B,
we use a bidirectional simple recurrent units (Lei
et al., 2018, BiSRU), a type of RNN that is highly
parallelizable, as the sentence encoder.

CNN-based Encoder To make the final classi-
fier more task-specific, we use a CNN-based en-
coder that is trained from scratch. Specifically,
we employ a concatenation of both pre-trained
GloVe (Pennington et al., 2014) and CoVe (Mc-
Cann et al., 2017) word embeddings as input
wi, 1 ≤ i ≤ n. Then, we do convolution opera-
tions Conv(wi, hj) using multiple filter sizes hj to
a window of hj words. We use different paddings
for different filter sizes such that the number of
output for each convolution operation is n. Fi-
nally, we concatenate the outputs to obtain the
word encodings, i.e. e

(c)
i = ⊕j(Conv(wi, hj)),

where ⊕ is the sequence concatenate operation.
We pool the word encodings using attention

mechanism to create a sentence representation
s(c). That is, we calculate attention weights using
a latent variable v that measures the importance
of the words e(c)i , i.e., ai = softmax(v>f(e(c)i)),
where f(·) is a nonlinear function. We then use ai
to weight-sum the words into one encoding, i.e.,
s(c) =

∑
i aie

(c)
i .

Suggestion Classifier Finally, we use a multi-
layer perceptron (MLP) as our classifier, us-
ing a concatenation of outputs from both the
BERT- and CNN-based encoders, i.e., p(y) =

MLPy([s
(b); s(c)]). Training is done by minimiz-

ing the cross entropy loss, i.e., L = − log p(y).

Domain Adversarial Training For Subtask B,
the model needs to be able to classify out-
of-domain samples. Using the model as is
decreases performance significantly because of
cross-domain differences. To this end, we use
a domain adversarial training module (Ganin
et al., 2016) to prevent the classifier on distin-
guishing differences between domains. Specif-
ically, we create another MLP classifier that
classifies the domain of the text using the
concatenated sentence encoding with reverse
gradient function GradRev(·), i.e., p(d) =
MLPd(GradRev([s(b); s(c)])). The reverse gradi-
ent function is a function that performs equiva-
lently with the identity function when propagating
forward, but reverses the sign of the gradient when
propagating backward.

Through this, we eliminate the possible ability
of the classifier to distinguish the domains of the
text. We train the domain classifier using the avail-
able trial datasets for each domain. We also use a
cross entropy loss as the objective of this classi-
fier. Overall, the objective of JESSI is to minimize
the following loss: L = − log p(y) − λ log p(d),
where λ is set increasingly after each epoch, fol-
lowing Ganin et al. (2016).

4 Experimental Setup

Dataset and Preprocessing We use the dataset
provided in the shared task: a training dataset from
the electronics domain, and labeled trial and unla-
beled test datasets from both the electronics and
hotels domain. Table 1 summarizes the dataset
statistics and shows the distribution differences
between two domains. During training, we use
the labeled training dataset to train the suggestions
classifier, and trial datasets, without the suggestion
labels, to train the domains classifier. For prepro-
cessing, we lowercased and tokenized using the
Stanford CoreNLP toolkit1 (Manning et al., 2014).

Implementation We use the pre-trained BERT
models2 provided by the original authors to initial-
ize the parameters of BERT. We use BERT-large

1https://stanfordnlp.github.io/
CoreNLP/

2https://github.com/google-research/
bert

1256

Subtask A B
Domain Electronics Hotels
#Training 8,230 0
#Trial 592 808
#Test 833 824
#Vocabulary 10,897 3,570
Ave. Tokens 19.0 16.8

Table 1: Dataset Statistics

for Subtask A and BERT-base for Subtask B3. For
our CNNs, we use three filters with sizes {3, 5, 7},
each with 200 dimensions. For the BiSRU, we use
hidden states with 150 dimensions and stack with
two layers. The MLP classifier contains two hid-
den layers with 300 dimensions.

We use dropout (Srivastava et al., 2014) on all
nonlinear connections with a dropout rate of 0.5.
We also use an l2 constraint of 3. During training,
we use mini-batch size of 32. Training is done
via stochastic gradient descent over shuffled mini-
batches with the Adadelta (Zeiler, 2012) update
rule. We perform early stopping using the trial
sets. Moreover, since the training set is relatively
small, multiple runs lead to different results. To
handle this, we perform an ensembling method as
follows. We first run 10-fold validation over the
training data, resulting into ten different models.
We then pick the top three models with the high-
est performances, and pick the class with the most
model predictions.

5 Experiments

In this section, we show our results and ex-
periments. We denote JESSI-A as our model
for Subtask A (i.e., BERT→CNN+CNN→ATT),
and JESSI-B as our model for Subtask B (i.e.,
BERT→BISRU+CNN→ATT+DOMADV). The
performance of the models is measured and com-
pared using the F1-score.

Ablation Studies We present in Table 2 abla-
tions on our models. Specifically, we compare
JESSI-A with the same model, but without the
CNN-based encoder, without the BERT-based en-
coder, and with the CNN sentence encoder of
the BERT-based encoder replaced with the BiSRU
variant. We also compare JESSI-B with the same

3Due to memory limitations, we are limited to use the
smaller BERT model for Subtask B. We expect an increase
in performance when BERT-large is used.

Model F-Score
JESSI-A 88.78

+ BERT→BISRU 86.01
– CNN→ATT 85.14
– BERT→CNN 83.89

(a) Subtask A

Model F-Score
JESSI-B 87.31

– CNN→ATT 84.01
– BERT→BISRU 81.13
+ BERT→CNN 70.21
– DOMADV 47.48

(b) Subtask B

Table 2: Ablation results for both subtasks using
the provided trial sets. The + denotes a replace-
ment of the BERT-based encoder, while the – de-
notes a removal of a specific component.

model, but without the CNN-based encoder, with-
out the BERT-based encoder, without the domain
adversarial training module, and with the BiSRU
sentence encoder of the BERT-based encoder re-
placed with the CNN variant. The ablation stud-
ies show several observations. First, jointly com-
bining both BERT- and CNN-based encoders help
improve the performance on both subtasks. Sec-
ond, the more effective sentence encoder for the
BERT-based encoder (i.e., CNN versus BiSRU)
differs for each subtask; the CNN variant is bet-
ter for Subtask A, while the BiSRU variant is bet-
ter for Subtask B. Finally, the domain adversarial
training module is very crucial in achieving a sig-
nificant increase in performance.

Out-of-Domain Performance During our ex-
periments, we noticed that BERT is unstable when
predicting out-of-domain samples, even when us-
ing the domain adversarial training module. We
show in Table 3 the summary statistics of the
F-Scores of 10 runs of the following models:
(a) vanilla BERT that uses the [CLS] clas-
sification encoding, (b-c) our BERT-based en-
coders BERT→CNN and BERT→BISRU that
use BERT as a word encoder and use an additional
CNN/BiSRU as a sentence encoder, (d) JESSI-
B that uses BERT→BISRU and CNN→ATT as
joint encoders, and (e) CNN→ATT that does
not employ BERT in any way. The results
show that while CNN→ATT performs similarly
on different runs, BERT performs very unsta-

1257

Model min max mean std
BERT 0.00 70.59 22.52 31.0
BERT→CNN 0.00 74.62 28.23 34.1
BERT→BISRU 54.00 88.83 74.86 8.8
JESSI-B 69.28 89.21 82.41 5.6
CNN→ATT 68.19 77.06 72.50 2.5

Table 3: Summary statistics of the F-Scores of 10
runs of different models on the trial set of Subtask
B when doing a 10-fold validation over the avail-
able training data. All models include the domain
adversarial training module (+DOMADV), which
is omitted for brevity.

bly, achieving varying F-Scores as low as zero
and as high as 70.59, with a standard deviation
of 31. Appending a CNN-based sentence en-
coder (i.e., BERT→CNN) increases the perfor-
mance, but worsens the stability of the model.
Appending an RNN-based sentence encoder (i.e.,
BERT→BISRU) both increases the performance
and improves the model stability. Finally, combin-
ing a separate CNN-based encoder (i.e., JESSI-B)
improves the performance and stability further.

Test Set Results Table 4 presents how JESSI
compared to the top performing models during the
competition proper. Overall, JESSI-A ranks sec-
ond out of 33 official submissions with an F-Score
of 77.78%. Although we were not able to sub-
mit JESSI-B during the submission phase, JESSI-
B achieves an F-Score of 79.59% on the official
test set. This performance is similar to the perfor-
mance of the model that obtained sixth place in the
competition. We emphasize that JESSI does not
use any labeled and external data for Subtask B,
and thus is just exposed to the hotels domain us-
ing the available unlabeled trial dataset, contain-
ing 808 data instances. We expect the model to
perform better when additional data from the ho-
tels domain.

Performance by Length We compare the per-
formance of models on data with varying lengths
to further investigate the increase in performance
of JESSI over other models. More specifically,
for each range of sentence length (e.g., from
10 to 20), we look at the accuracy of JESSI-A,
BERT→BISRU, and BERT→CNN on Subtask
A, and the accuracy of JESSI-B, BERT→BISRU,
and BERT→CNN, all with domain adversarial
training module, on Subtask B. Figure 2 shows the

Rank Model F-Score
1 OleNet 78.12
2 JESSI-A 77.78
3 m y 77.61

(a) Subtask A

Rank Model F-Score
1 NTUA-ISLab 85.80
2 OleNet 85.79
3 NL-FIIT 83.13
* JESSI-B 79.59
11 CNN→ATT+DOMADV 64.86

(b) Subtask B

Table 4: F-Scores of JESSI and top three models
for each subtask. Due to time constraints, we were
not able to submit JESSI-B during the competi-
tion. For clarity, we also show our final official
submission (CNN→ATT+DOMADV).

0.50

0.60

0.70

0.80

0.90

5 15 25 35 45 55

A
cc

u
ra

cy

Input sentence length

JESSI-A

BERT→BiSRU

BERT→CNN

(a) Subtask A

0.30

0.40

0.50

0.60

0.70

0.80

0.90

5 15 25 35 45 55

A
cc

u
ra

cy

Input sentence length

JESSI-B

BERT→BiSRU

BERT→CNN

(b) Subtask B

Figure 2: Accuracy over various input sentence
length on the test set.

plots of the experiments on both subtasks. On both
experiments, JESSI outperforms the other models

1258

when the sentence length is short, suggesting that
the increase in performance of JESSI can be at-
tributed to its performance in short sentences. This
is more evident in Subtask B, where the differ-
ence of accuracy between JESSI and the next best
model is approximately 20%. We can also see a
consistent increase in performance of JESSI over
other models on Subtask B, which shows the ro-
bustness of JESSI when predicting out-of-domain
samples.

6 Conclusion

We presented JESSI (Joint Encoders for Stable
Suggestion Inference), our system for the Se-
mEval 2019 Task 9: Suggestion Mining from On-
line Reviews and Forums. JESSI builds upon
jointly combined encoders, borrowing pre-trained
knowledge from a language model BERT and a
translation model CoVe. We found that BERT
alone performs bad and unstably when tested on
out-of-domain samples. We mitigate the prob-
lem by appending an RNN-based sentence en-
coder above BERT, and jointly combining a CNN-
based encoder. Results from the shared task show
that JESSI performs competitively among partici-
pating models, obtaining second place on Subtask
A with an F-Score of 77.78%. It also performs
well on Subtask B, with an F-Score of 79.59%,
even without using any additional external data.

Acknowledgement

This research was supported by the MSIT (Min-
istry of Science ICT), Korea, under (National Pro-
gram for Excellence in SW) (2015-0-00910) and
(Artificial Intelligence Contact Center Solution)
(2018-0-00605) supervised by the IITP(Institute
for Information & Communications Technology
Planning & Evaluation)

References
Roberto Basili, Diego De Cao, Danilo Croce, Bonaven-

tura Coppola, and Alessandro Moschitti. 2009.
Cross-language frame semantics transfer in bilin-
gual corpora. In Computational Linguistics and In-
telligent Text Processing, 10th International Confer-
ence, CICLing 2009, Mexico City, Mexico, March
1-7, 2009. Proceedings, pages 332–345.

Caroline Brun and Caroline Hagège. 2013. Suggestion
mining: Detecting suggestions for improvement in
users’ comments. Research in Computing Science,
70:199–209.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. 2009. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, pages 248–255.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Li Dong, Furu Wei, Yajuan Duan, Xiaohua Liu, Ming
Zhou, and Ke Xu. 2013. The automated acquisition
of suggestions from tweets. In Proceedings of the
Twenty-Seventh AAAI Conference on Artificial In-
telligence, July 14-18, 2013, Bellevue, Washington,
USA.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor S. Lempitsky.
2016. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research,
17:59:1–59:35.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Pro-
ceedings of the 28th International Conference on
Machine Learning, ICML 2011, Bellevue, Washing-
ton, USA, June 28 - July 2, 2011, pages 513–520.

Mi-Young Huh, Pulkit Agrawal, and Alexei A. Efros.
2016. What makes imagenet good for transfer learn-
ing? CoRR, abs/1608.08614.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
arXiv preprint arXiv:1902.01069.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006.
Opinion extraction, summarization and tracking in
news and blog corpora. In Computational Ap-
proaches to Analyzing Weblogs, Papers from the
2006 AAAI Spring Symposium, Technical Report
SS-06-03, Stanford, California, USA, March 27-29,
2006, pages 100–107.

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav
Artzi. 2018. Simple recurrent units for highly par-
allelizable recurrence. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 4470–4481.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Synthesis Lectures on Human Language Tech-
nologies. Morgan & Claypool Publishers.

1259

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, System Demonstrations, pages 55–60.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural
Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA,
pages 6297–6308.

Arjun Mukherjee and Bing Liu. 2012. Aspect extrac-
tion through semi-supervised modeling. In The 50th
Annual Meeting of the Association for Computa-
tional Linguistics, Proceedings of the Conference,
July 8-14, 2012, Jeju Island, Korea - Volume 1: Long
Papers, pages 339–348.

Sapna Negi, Kartik Asooja, Shubham Mehrotra, and
Paul Buitelaar. 2016. A study of suggestions in
opinionated texts and their automatic detection. In
Proceedings of the Fifth Joint Conference on Lexical
and Computational Semantics, *SEM@ACL 2016,
Berlin, Germany, 11-12 August 2016.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2015, Lisbon, Portugal, September 17-
21, 2015, pages 2159–2167.

Sapna Negi and Paul Buitelaar. 2017. Inducing dis-
tant supervision in suggestion mining through part-
of-speech embeddings. CoRR, abs/1709.07403.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain senti-
ment classification via spectral feature alignment. In
Proceedings of the 19th International Conference on
World Wide Web, WWW 2010, Raleigh, North Car-
olina, USA, April 26-30, 2010, pages 751–760.

Bo Pang and Lillian Lee. 2007. Opinion mining and
sentiment analysis. Foundations and Trends in In-
formation Retrieval, 2(1-2):1–135.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), pages 2227–2237.

Alec Radford, Karthik Narasimhan, Time Salimans,
and Ilya Sutskever. 2018. Improving language un-
derstanding with unsupervised learning. Technical
report, Technical report, OpenAI.

J. Ramanand, Krishna Bhavsar, and Niranjan
Pedanekar. 2010. Wishful thinking - finding
suggestions and ’buy’ wishes from product reviews.
In Proceedings of the NAACL HLT 2010 Workshop
on Computational Approaches to Analysis and
Generation of Emotion in Text, pages 54–61.
Association for Computational Linguistics.

Sebastian Ruder and Barbara Plank. 2018. Strong
baselines for neural semi-supervised learning under
domain shift. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2018, Melbourne, Australia, July 15-
20, 2018, Volume 1: Long Papers, pages 1044–1054.

Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada.
2017. Asymmetric tri-training for unsupervised do-
main adaptation. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 2988–2997.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

Xiaojun Wan. 2009. Co-training for cross-lingual sen-
timent classification. In ACL 2009, Proceedings
of the 47th Annual Meeting of the Association for
Computational Linguistics and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP, 2-7 August 2009, Singapore, pages
235–243.

Haoyu Wang, Ming Tan, Mo Yu, Shiyu Chang, Dakuo
Wang, Kun Xu, Xiaoxiao Guo, and Saloni Pot-
dar. 2019. Extracting multiple-relations in one-
pass with pre-trained transformers. arXiv preprint
arXiv:1902.01030.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. arXiv preprint arXiv:1902.01718.

Jianfei Yu and Jing Jiang. 2016. Learning sentence em-
beddings with auxiliary tasks for cross-domain sen-
timent classification. In Proceedings of the 2016

1260

Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 236–246.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

1261

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1262–1266
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

WUT at SemEval-2019 Task 9: Domain-Adversarial Neural Networks for
Domain Adaptation in Suggestion Mining

Mateusz Klimaszewski Piotr Andruszkiewicz
Institute of Computer Science

Warsaw University of Technology, Poland
mk.klimaszewski@gmail.com, P.Andruszkiewicz@ii.pw.edu.pl

Abstract

We present a system for cross-domain sugges-
tion mining, prepared for the SemEval-2019
Task 9: Suggestion Mining from Online Re-
views and Forums (Subtask B). Our submit-
ted solution for this text classification problem
explores the idea of treating different sugges-
tions’ sources as one of the settings of Trans-
fer Learning - Domain Adaptation. Our ex-
periments show that without any labeled tar-
get domain examples during training time,
we are capable of proposing a system, reach-
ing up to 0.778 in terms of F1 score on test
dataset, based on Target Preserving Domain-
Adversarial Neural Networks.

1 Introduction

Suggestion mining is an emerging task in a natu-
ral language processing (NLP) field. Definition of
suggestion mining task differs in NLP’s commu-
nity. Close areas of study like opinion mining or
sentiment analysis get a lot of attention not only
from academic, but also industrial researchers.
From a linguistic point of view, while these areas
treat neutral polarity of a statement as an absence
of opinion (Liu, 2009), suggestion does not have
to be connected with positive or negative emotion
and can be treated as complementary information
(Negi and Buitelaar, 2015). Lack of sensitivity
to statement’s sentiment and various suggestions’
realization strategies (Martı́nez Flor, 2005) make
suggestion mining task interesting and challeng-
ing from a NLP’s standpoint.

In this work, we present a system for cross-
domain suggestion mining, ranked in the 7th place
in SemEval-2019 Task 9 Subtask B. The train-
ing data for this task was collected from feedback
posts on Universal Windows Platform. On the
other hand, the test dataset comes from the dif-
ferent domain of hotel reviews from the TripAd-
visor website (Negi et al., 2019). In this work we

will refer to those datasets’ domain as source do-
main and target domain accordingly. For sugges-
tion mining task in this context, we employ en-
semble of Domain-Adversarial Neural Networks
(DANN) where we use Structured Self-Attentive
Sentence Embedding (Lin et al., 2017) as a fea-
ture extractor. Moreover, to achieve better adap-
tation towards target domain, we follow the ap-
proach of Gui et al. (2017) for the part-of-speech
tagging and extend DANN with a Target Preserv-
ing component in a form of words decoder for tar-
get domain sentences. We train all of the parts of
the described system using modified domain ad-
versarial training procedure than the one proposed
in (Ganin et al., 2016).

2 Data preparation

2.1 Dataset augmentation

Training dataset for Subtask B was built using
only sentences from source domain. In order to
train DANN we take advantage of an additional
set of unlabeled sentences from the same domain
as a test dataset. We use a subset of data from an-
other corpora (Wachsmuth et al., 2014) consisting
of hotel’s reviews.

The selection of the subset is as follows, first
we take benefit of a “weak” classifier in the form
of the baseline, rules-based system provided by
the organizers, to predict a class in the mentioned
corpora. After that we choose the subset with the
same distribution of classes (2085 suggestions and
6415 no suggestions) and remove too short state-
ments to obtain a histogram of sentences’ lengths
close to the rest of datasets.

2.2 Preprocessing

We use Keras (Chollet et al., 2015) to perform
preprocessing such as removing punctuation signs
and lower-casing sentences. Considering that our

1262

Figure 1: DANN for cross-domain suggestion min-
ing task.

model is based on recurrent neural network, we
also pad sentences or shorten them to have max-
imum count of 50 tokens. Finally, as the source
domain has a lot of urls, we replace all of them
with a single “https” token.

2.3 Word embeddings

Last step is mapping sentences to mathematically
computable form. We leverage the existing lan-
guage models, which are pre-trained on huge vol-
umes of raw text. Following the recent research,
showing superiority of the contextual word em-
beddings over theirs predecessors, we apply Em-
beddings from Language Models (ELMo) (Peters
et al., 2018) provided by Tensorflow Hub (Abadi
et al., 2015). However, we do not fine-tune them
with our model.

3 Model description

3.1 Domain-Adversarial Neural Networks

Ganin et al. (2015; 2016) proposed a system for
unsupervised Domain Adaptation problem, adapt-
able to any neural network architecture. It consists
of three components: a feature extractor, a label
predictor and a domain discriminator. Last one,
thanks to gradient reversal layer (GRL), which re-
verses flow of a gradient with respect to hyper-
parameter λ, allows to force the feature extractor
to learn domain-invariant representations. Fig. 1
presents high level overview of the proposed ar-
chitecture.

DANN minimizes loss presented in Eq. 1,
where y stands for suggestion classifier, d domain

descriptor and f for feature extractor presented in
the following Section. An upper index in loss L
symbolizes examples’ domain.

E(θf ,θy, θd) =
1

n

n∑

s=1

Lsy(θf , θy)

− λ(1
n

n∑

s=1

Lsd(θf , θd)

+
1

n′

N∑

t=n+1

Ltd(θf , θd))

(1)

3.2 Structured Self-Attentive Sentence
Embedding

We model sentences using Structured Self-
Attentive Sentence Embedding (SSASE) as fea-
ture extractor. Taking ELMo word embeddings as
an input, followed by Bidirectional LSTM (BiL-
STM) layer, SSASE used extended self-attention
represented as an attention matrix (A) regularized
by a penalization term as in Eq. 2, where || • ||F
is Frobenius norm of a matrix and I is an identity
matrix. Impact of penalization is controlled by hy-
perparameter α.

P = α||(AAT − I)||2F (2)

The attention matrix is calculated as shown in Eq.
3, where H is BiLSTM concatenated output, W1

and W2 are matrices of weights.

A = softmax(W2tanh(W1H
T)) (3)

3.3 Target Preserving component
To prevent erasing targets domain specific fea-
tures, we extend DANN with a target do-
main words decoder (model further referred as
TPDANN-SSASE). The decoder is formed by
an LSTM layer followed by one fully-connected
layer. It takes as input a matching timestep of
SSASE’s BiLSTM outputs and predicts the input
word.

In terms of the objective function, decoder’s
loss was limited by hyperparameter γ = 0.4 as
in Eq. 4, where θr stands for decoder’s parame-
ters and θ∗f - parameters of feature extractor’s BiL-
STM.

E(θf ,θy, θd, θr) = E(θf , θy, θd)

+ γ
1

n′

N∑

t=n+1

Ltr(θ∗f , θr)
(4)

1263

3.4 Training algorithm

We apply a modification of domain-adversarial
training procedure (Ganin et al., 2016). We treat
an architecture as two separate networks with
shared parameters of a feature extractor and a do-
main descriptor (θd and θf). In each training step,
taking regular DANN as an example, we first up-
date parameters trained using source domain Eq.
5, 6, 7 and then with a target domain examples
as shown in Eq. 8, 9, where θ′ stands for temporal
state of parameters between those two updates and
η denotes learning rate. The proposed change in
the learning algorithm has been beneficial in terms
of exploration properties.

θ′f ←− θf − η(
∂Lsy
∂θf
− λ∂L

s
d

∂θf
) (5)

θy ←− θy − η
∂Lsy
∂θy

(6)

θ′d ←− θd − η
∂Lsd
∂θd

(7)

θd ←− θ′d − η
∂Ltd
∂θ′d

(8)

θf ←− θ′f − η(−λ
∂Ltd
∂θ′f

) (9)

4 Evaluation

4.1 Results

The metric which was taken into account in
SemEval-2019 Task 9 Subtask B was F1 score.
Table 1 presents results for tested architectures
for validation and test datasets. Our baseline
method is fastText (Joulin et al., 2017). It achieves
higher score (F1 = 0.684) on Subtask’s A vali-
dation dataset (source domain) than on target do-
main, indicating that there is a shift between do-
mains. We notice the same behaviour while test-
ing SSASE model with only a label classifier. By
adding domain adaptation components we manage
to limit that problem. DANN-SSASE* is trained
using default domain-adversarial training proce-
dure (Ganin et al., 2016), while further models
benefit from our proposed algorithm. We achieve
final score, resulting in the 7th place, by creating
unweighted ensemble of three TPDANN-SSASE
models.

4.2 Hyperparameters

We use default ELMo embeddings with length of
1024. Each LSTM layer has 300 units (BiLSTM
600). Attention matrix dimensions are accord-
ingly equal to 400 and 9 for W1 and W2. We set a
penalization hyperparameter α to 0.45.

4.3 Domains shift

(a) SSASE

(b) DANN-SSASE

(c) TPDANN-SSASE

Figure 2: Domains shift reduction between mod-
els.

1264

Method Validation dataset Test dataset

fastText 0.532 0.591
SSASE 0.517 0.467
DANN-SSASE* 0.616 0.558
DANN-SSASE 0.781 0.753
TPDANN-SSASE 0.831 0.764
TPDANN-SSASE ensemble 0.836 0.778

Table 1: F1 score on target domain validation and test datasets.

Method Source Target

SSASE 8.26 8.78
DANN-SSASE 8.08 8.55
TPDANN-SSASE 7.24 7.56

Table 2: Mean count of the 10 nearest neighbours
from the same domain. Desired score is equal to
5. To build kNN model, a representation of sen-
tences was extracted from the last layer of a fea-
ture extractor and distance was measured using a
Euclidean distance.

To measure a problem of domains shift and
impact of domain adaptation components in our
models we propose a metric based on number of
nearest neighbours from the same domain. As-
suming that there is no shift between domains,
mean number of k nearest neighbours from partic-
ular domain over the whole dataset is equal to k

2 .
On the other hand to perfect overlap, it would be
equal to k, as each sample could only have neigh-
bours from the same domain.

We take the last layer of a feature extractor as
the representations for which euclidean distance
metric was employed to find nearest neighbours.
Results presented in Tab. 2 indicate that mod-
els with better domain-invariant properties have
better results in terms of suggestion mining task,
TPDANN-SSASE achieves the closest values to
k
2 . In order to present how the domains over-
lap changed over models, we visualize them using
T-SNE (van der Maaten and Hinton, 2008) (Fig.
2). The visualization confirms results presented
in Tab. 2 - we observe the highest overlap for
TPDANN-SSASE.

5 Conclusion

In this work, we introduced a new system for
cross-domain suggestion mining based on the
domain-adversarial neural networks. Domains
shift reduction led to improvement of classifica-
tion accuracy in target domain. Our proposed
modification of adversarial training procedure al-
lowed ensemble of TPDANN-SASSE models to
reach F1 value of 0.778.

References
Martı́n Abadi et al. 2015. TensorFlow: Large-scale

machine learning on heterogeneous systems. Soft-
ware available from tensorflow.org.

François Chollet et al. 2015. Keras. https://
keras.io.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pages 1180–1189,
Lille, France. PMLR.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research,
17(59):1–35.

Tao Gui, Qi Zhang, Haoran Huang, Minlong Peng, and
Xuanjing Huang. 2017. Part-of-speech tagging for
twitter with adversarial neural networks. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2411–
2420. Association for Computational Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association

1265

for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Association for Computational
Linguistics.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding.

Bing Liu. 2009. Web Data Mining: Exploring Hyper-
links, Contents, and Usage Data. Springer-Verlag,
Berlin, Heidelberg.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Alicia Martı́nez Flor. 2005. A theoretical review of the
speech act of suggesting: towards a taxonomy for its
use in flt. Revista Alicantina de Estudios Ingleses.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167, Lisbon, Portugal. Associa-
tion for Computational Linguistics.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
Gregor Engels, and Tsvetomira Palakarska. 2014. A
review corpus for argumentation analysis. In Com-
putational Linguistics and Intelligent Text Process-
ing, pages 115–127, Berlin, Heidelberg. Springer
Berlin Heidelberg.

1266

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1267–1271
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Yimmon at SemEval-2019 Task 9: Suggestion Mining with Hybrid
Augmented Approaches

Yimeng Zhuang
Samsung Research China - Beijing (SRC-B)

ym.zhuang@samsung.com

Abstract

Suggestion mining task aims to extract tips,
advice, and recommendations from unstruc-
tured text. The task includes many chal-
lenges, such as class imbalance, figurative ex-
pressions, context dependency, and long and
complex sentences. This paper gives a de-
tailed system description of our submission in
SemEval 2019 Task 9 Subtask A. We trans-
fer Self-Attention Network (SAN), a success-
ful model in machine reading comprehen-
sion field, into this task. Our model con-
centrates on modeling long-term dependency
which is indispensable to parse long and com-
plex sentences. Besides, we also adopt tech-
niques, such as contextualized embedding,
back-translation, and auxiliary loss, to aug-
ment the system. Our model achieves a per-
formance of F1=76.3, and rank 4th among 34
participating systems. Further ablation study
shows that the techniques used in our system
are beneficial to the performance.

1 Introduction

Suggestion mining is a trending research domain
that focuses on the extraction of extract tips,
advice, and recommendations from unstructured
text. To better recognize suggestions, instead of
only matching feature words, one must have the
ability to understand long and complex sentences.

SemEval-2019 Task 9 provides the suggestion
mining task (Negi et al., 2019). The task can be
recognized as a text classification task, given a
sentence collected from user feedback, participat-
ing systems are required to give a binary output by
marking it as suggestion or non-suggestion.

To address this problem, we focus on solving
long-term dependency on long and complex sen-
tences. Consequently, we transfer Self-Attention
Network (SAN), a successful model in machine
reading comprehension field, in which long-term

dependency is crucial, into this task. Furthermore,
we also utilize multiple techniques to improve the
suggestion mining system.

2 System description

In this paper, we consider suggestion mining as a
text classification task. Figure 1 gives an overview
of our model. First, the input text is converted into
word embeddings with linguistic features. Then,
we use several stacked semantic encoders to gen-
erate the hidden representations for each token.
On top of that, a softmax output layer estimates
the probability of the text being a suggestion.

2.1 Input encoding

The input encoding layer is in charge of encoding
each token of the input text to singular vectors. To-
kenization is completed during preprocessing. In
our work, we adopt WordPiece embedding (Wu
et al., 2016) and feed it into a pretrained lan-
guage model (LM) to generate contextualized em-
beddings. Compared to context independent word
vectors, such as widely used GloVe (Pennington
et al., 2014), SGNS (Mikolov et al., 2013), con-
textualized vectors show significant advantages in
disambiguation and sentence modeling. Besides,
well-pretrained language model also transfers ex-
ternal knowledge to this task, full use of transfer
learning is the key to the advance in modern neu-
ral natural language processing. On the choice
of the pretrained language model, we compared
two publicly available models ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2018), and we fi-
nally choose BERT for better performance. Due to
the out-of-memory issues 1, we do not update the
parameters of BERT during training, thus we only
use it as a static feature extractor.

1https://github.com/google-research/
bert#out-of-memory-issues

1267

Text

LM
POS | TAG | NER

Pad

Concat

Highway

Position encoding

Layer norm

Conv

...

Layer norm

Self-Attention

Layer norm

Feedforward layer

X 3

X 2

Split

Linear & softmax

Score

In
pu

t
en

co
d

in
g

M
o

de
l e

n
co

de
r

O
u

pu
t

la
ye

r

Figure 1: Overview of our system

Also, linguistic features are extracted to im-
prove system performance further. In this work,
we extract part-of-speech (POS) and named en-
tities (NER) by spaCy 2. Two kinds of part-of-
speech granularity are used, primary POS and ex-
tended POS tag (TAG). In order to obtain linguis-
tic feature sequences with the same length as the
BERT outputs, we pad zero vectors at the start and
end position of the linguistic feature sequences.
Then, the contextualized vectors and linguistic
feature vectors are concatenated. A two layers
highway network (Srivastava et al., 2015) is also
adopted on top of this representation. The vectors

2https://spacy.io

are projected to d dimensions immediately.

2.2 Model encoder
The model encoder is the central part of our sys-
tem, and it is in charge of modeling long-term de-
pendency and extracting deep features. Because
of the success of Self-Attention Network (SAN)
(Shen et al., 2018) in various NLP tasks, we adopt
a structure from QANet (Yu et al., 2018), which is
a variant of Self-Attention Network, as our model
encoder.

As is shown in the middle part of Figure 1, the
model encoder is a combination of convolution,
self-attention and feed-forward layer. This struc-
ture is repeated three times. The input vectors of
this structure are firstly added by sinusoidal posi-
tion embedding (Gehring et al., 2017) to encode a
notion of the order in the sequence. The position
embedding is calculated as follows:

PEi,2j = sin(i/100002j/d)

PEi,2j+1 = cos(i/100002j/d)
(1)

After that there are convolution blocks, follow-
ing (Yu et al., 2018), depth-wise separable con-
volution layers are chosen for better generaliza-
tion and memory efficiency. The model encoder
is highly dependent on input layer normalization
and residual connections, each block is in a uni-
form structure: layer normalization / operation /
residual connection. In our system, we repeat con-
volution blocks two times for better and deeper lo-
cal feature extraction.

In the self-attention layer, the scaled dot-
product attention is computed:

Ai = softmax(
QKT

√
d

) · V (2)

Where Q, K, and V are query, key, and value re-
spectively, they are the linear projection of each
position in the input. As in (Vaswani et al., 2017),
multi-head attention mechanism is adopted which
integrates multiple scaled dot-product attentions.

A = [A1; · · · ;Ai; · · · ;An] ·WA (3)

whereAi denotes the i-th head, [·] is concatenation
operator, WA is a trainable parameter.

At last, there is a fully connected block. In our
method, it is a little different from the original
work (Yu et al., 2018). We append a gate mech-
anism to refine tokens by their importance (Wang

1268

et al., 2017).

S = FFN2(LayerNorm(H))�G+H (4)

G = G∗/max(G∗) (5)

G∗ = sigmoid(LayerNorm(H) ·WG + bG)
(6)

where we assume the input of this block is H ∈
Rm×d, m is the sequence length, FFN2 denotes
a 2-layer non-linear feed-forward network, S ∈
Rm×d represents the output of this fully connected
block. G ∈ Rm×1 and G∗ ∈ Rm×1 are the output
weight of the gate. WG ∈ Rm×1 and bG ∈ R1

are trainable parameters. The maximum operation
aims to select the maximum element in G∗, and
the division operation normalizes these weights so
that the maximum weight in G is always one.

2.3 Output layer

Given the output S = [s1, s2, · · · , sm] of previ-
ous layers, this output layer converts these hidden
representations into the final probability. Since we
have adopted BERT in the input encoding layer,
the first vector of the sequence is a special clas-
sification token [CLS], which can be used as the
representation of the whole sentence. We split the
matrix S and take the first vector s1 ∈ Rd. The
probability of the input text being a suggestion text
is estimated as follows.

p = softmax(W p · s1 + bp) (7)

where W p ∈ R2×d and bp ∈ R2 are trainable pa-
rameters, p ∈ R2 denotes the output probabilities
including “yes” probability p1 and “no” probabil-
ity p0.

2.4 Loss

We treat this task as a text classification problem
and use log-loss as the loss function.

L0 =
1

N

N∑

i=1

yilog(p1i) + (1− yi)log(p0i) (8)

where N is the number of examples, yi ∈ {0, 1}
represents the label of i-th example, p1i and p0i are
the predictions.

Besides, in order to better recognize important
tokens and filter trivial tokens out, we add an aux-
iliary loss to discourage large weights in G in
Equation 4. Thus only those tokens that have

contributions to the classification have non-zero
weights in G.

L1 = β
1

N

N∑

i=1

‖Gi‖1 (9)

where ‖·‖1 denote 1-norm, β is a hyper-parameter,
we use β = 10−3 in this work. The final loss is the
sum of L0 and L1.

2.5 Class imbalance
As is pointed out in (Negi et al., 2019), sugges-
tions appear sparsely in online reviews and fo-
rums, and this makes class imbalance a critical
problem. For simplicity, we do not take measures
during training. In inference, we slightly adjust
the predicted probability and divide it by a priori,
which is the rate of positive examples in training
data.

p = softmax((W p · s1 + bp)× 10)

p1∗ = p1/priori

p0∗ = p0/(1− priori)

(10)

where p1∗ and p0∗ are the actual predictions for
inference, the system outputs “yes” when p1∗ is
larger than p0∗. Other symbols are the same as in
Equation 7.

2.6 Back-translation
Because the given training data set is not large, we
also utilize a data augmentation technique to en-
rich the training data. The data augmentation tech-
nique we used is back-translation (Yu et al., 2018).
Specifically, we first translate the given training
data into Chinese by a neural machine translation
system and then translate it back into English by
another neural machine translation system. The
two neural machine translation systems are trained
on a subset of the WMT18 data sets 3. Both origi-
nal training data and the augmented data are ap-
plied to train our text classification system, but
the augmented data is given a small weight (=0.2)
when calculating the loss.

3 Experiments

3.1 Setup
SemEval 2019 Task 9 Subtask A 4 provides a sug-
gestion mining data set collected from feedback

3http://statmt.org/wmt18
4https://competitions.codalab.org/

competitions/19955

1269

posts on Universal Windows Platform. The data
set is split into an 8980-example training set, a
592-example validation set, and an 833-example
test set. Since the organizer does not limit the us-
age of the validation set, we merge it into training
data and train our model through the k-fold cross-
validation method. Specifically, we split all train-
ing data into eight subsets, and guarantee the rate
between the number of positive examples and the
number of negative examples is about 1:3 in each
subset. The preprocessing process is implemented
as the description in section 2.1.

The kernel size of convolution layers is 7, and
the hidden size d is 256, the number of heads
is 8 in multi-head self-attention layers. Adam
optimizer (Kingma and Ba, 2014) with learning
rate 0.0008 is used for tuning the model param-
eters. The mini-batch size is 32. For regulariza-
tion, the dropout rate is set to 0.1. The submission
predictions are obtained by integrating eight runs
through voting.

Approach Test F1
Baseline 26.8
1st ranked system 78.1
2nd ranked system 77.8
3rd ranked system 77.6
Our system 76.3
5th ranked system 74.9
Ablation - single model F1 ∆

Our full system 73.3 -
- Contextualized embedding 67.6 -5.7
- Back-translation 71.4 -1.9
- Priori 72.5 -0.8
- Linguistic features 72.6 -0.7
- Auxiliary loss 72.7 -0.6

Table 1: Performance of the Top 5 systems on the
leaderboard of subtask A, and our ablation experi-
ments.

3.2 Results
Table 1 shows the main results on the test set.
Compared with the rule baseline, participants im-
prove their performance with substantial gains.
Our system achieved F1=76.3 on the test set and
ranked 4th among all 34 teams.

In order to evaluate the individual contribution
of each feature, we run an ablation study. Con-
textualized embedding is most critical to the per-
formance, and it concludes that transferring com-
mon sense by learning large corpus is vital for this

task. Back-translation accounts for about 2% of
the performance degradation, which clearly shows
the effectiveness of data augmentation. Besides,
linguistic features, auxiliary loss, and priori are
also beneficial to the system.

Base Large
F1 F1 F1 F1

72.9 71.8 75.4 75.9
72.9 70.6 73.9 76.6
74.3 74.8 74.0 76.2
75.3 73.5 76.3 75.1

Ensemble
F1 # F1
2 72.9 8 74.5
4 74.7 12 75.5
16 76.3 Oracle 79.6

Table 2: Performance of every single model and en-
semble models.

3.3 Ensemble models

Table 2 reports the effect of ensemble. To ob-
tain the submission predictions, we trained eight
models on the eight subsets mentioned in sec-
tion 3.1. Four of these models are based on a
110M parameters base BERT model, and the other
four are based on a 340M parameters large BERT
model. The performance of every single model is
reported. It is evident that different data partition
causes quite a large performance variance. Thus,
ensemble is necessary. The result shows that as
the number of models increases the ensemble ef-
fect improves. Also, we experiment by searching
the optimal model combination assuming the test
label is known to show the performance limitation
(the Oracle performance).

4 Conclusion

In this work, we adopt multiple techniques to im-
prove a suggestion mining system. The core of
our system is a variant of Self-Attention Network
(SAN), which originates from the machine reading
comprehension field. Based on this model, tech-
niques, such as contextualized embedding, back-
translation, linguistic features, and auxiliary loss,
are investigated to improve the system perfor-
mance further. Experimental results illustrate the
effect of our system. Our model achieves a perfor-
mance of F1=76.3, and rank 4th among 34 partic-
ipating systems.

1270

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), volume 1,
pages 2227–2237.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
and Chengqi Zhang. 2018. Bi-directional block self-
attention for fast and memory-efficient sequence
modeling. arXiv preprint arXiv:1804.00857.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 189–198.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. arXiv preprint arXiv:1804.09541.

1271

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1272–1276
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

YNU DYX at SemEval-2019 Task 9: A Stacked BiLSTM Model for
Suggestion Mining Classification

Yunxia Ding, Xiaobing Zhou∗, Xuejie Zhang
School of Information Science and Engineering

Yunnan University, Yunnan, P.R. China
∗Corresponding author:zhouxb@ynu.edu.cn, ynudyx@gmail.com

Abstract
In this paper we describe a deep-learning sys-
tem that competed as SemEval 2019 Task 9-
SubTask A: Suggestion Mining from Online
Reviews and Forums. We use Word2Vec to
learn the distributed representations from sen-
tences. This system is composed of a Stacked
Bidirectional Long-Short Memory Network
(SBiLSTM) for enriching word representa-
tions before and after the sequence relation-
ship with context. We perform an ensemble to
improve the effectiveness of our model. Our
official submission results achieve an F1-score
0.5659.

1 Introduction

Suggestions in the Oxford Dictionary are defined
as ideas or plans for consideration. Some of
the listed synonyms of suggestions are propos-
al, proposition, recommendation, advice, hint, tip,
clue. In general, other types of text and sugges-
tions are easily distinguished by the definition of
the suggestion (Negi and Buitelaar, 2015).

Suggestion mining can be defined as the extrac-
tion of suggestions from unstructured text, where
the term ‘suggestions’ refers to the expressions of
tips, advice, recommendations etc. We often see
comments on products in product forums which
are recommended or not recommended, and some
users will consider whether to purchase the prod-
uct based on these comments. Suggestion mining
is also defined as automatic extraction of recom-
mendations from a given text. These texts that ex-
press user suggestions can usually be found in so-
cial media platforms, blogs, or product online fo-
rums (Negi and Buitelaar, 2017; Negi et al., 2016).

Suggestion mining remains a relatively young
area compared to Sentiment Analysis (Negi and
Buitelaar, 2017), due to the lack of a large num-
ber of tagged datasets. SemEval 2019 Task 9-
SubTask A is mainly a binary classification, iden-

tifying sentences which express suggestions in a
given text. And we need to classify each sentence
of given text, the categories being suggestions or
non suggestions. This is similar to the polarity
analysis of emotions, as positive or negative in-
stances, respectively.

In the past, classification problems in natu-
ral language processing were solved by tradition-
al methods, such as sentiment analysis (Nielsen,
2011; Go et al., 2009; Bollen et al., 2011; Mo-
hammad et al., 2013; Kiritchenko et al., 2014)
which were handled by classifiers such as Naive
Bayes (McCallum et al., 1998)and SVMs (Gun-
n et al., 1998). However, deep neural networks
achieve increasing performance compared to tra-
ditional methods, due to their ability to learn more
abstract features from large amounts of data, pro-
ducing state-of-the-art results in sentiment analy-
sis.

The SubTask-A is part of SemEval 2019 Task9:
Suggestion Mining from Online Reviews and Fo-
rums, and is concerned with classifying sugges-
tions forum for Windows platform developers—
suggestions or non suggestions. There are 34
teams who participated in the task(Negi et al.,
2019).

In this paper we describe our system designed
for this task. First, we model the sentence and
establish the vector representation of the sen-
tence through Word2Vec (Mikolov et al., 2013a),
a Stacked Bidirectional Long-Short Memory Net-
work(SBiLSTM) for enriching word representa-
tions with context. Finally, the sentence represen-
tation is projected into the label space through a
Dense Layer.

The rest of the paper is organized as follows:
Section 2 provides the details of the proposed
model; Data Processing and analysis are discussed
in section 3. Experiments and results are described
in Section 4. Finally, we draw conclusions in Sec-

1272

tion 5.

2 System Description

2.1 Network Architecture

First we use the embedding layer to get a dis-
tributed representation of the words, then feed the
results of the embedding layer to the first BiL-
STM layer. Using the LSTM model (Hochreiter
and Schmidhuber, 1997) can better capture long-
distance dependencies and learn what information
to remember and what information to forget by
training the model. BiLSTM captures the seman-
tic information of sentences from both forward
and reverse directions. In order to get more fine-
grained sentence information, we use 2-layer BiL-
STM. The features obtained from the first BiLST-
M are then put into the next BiLSTM (Graves and
Schmidhuber, 2005; Graves et al., 2013). The fi-
nal result is obtained by the softmax used as the
activation function in the Dense layer. The model
architecture is show in Figure 1.

2.2 Word Embedding

Word embedding is unarguably the most widely
known technology in the recent history of NLP.
It converts words into a distributed representa-
tion that can solve dimensional disaster problems
(Bengio et al., 2003). And it projects words from
high-dimensional space to a lower-dimensional
vector space through hidden layers and perform-
s semantic feature extraction (Kim, 2014). This
technology has a wide range of applications in
NLP. It is well-known that using pre-trained em-
bedding helps, as well.

Word embeddings can better measure the sim-
ilarity between words, and are also dense vector

representation of words that capture semantic and
syntactic information. So in this task we try to use
the Word2Vec (Mikolov et al., 2013b) and Glove
(Pennington et al., 2014) to get the vector repre-
sentations of the words.

3 Data Processing and Analysis

There are two categories: suggestion and non-
suggestion in the data set given in the shared task.
And the organizer provides the third version data
sets: a total of 8,500 sentences in training and 592
sentences in trial and 833 sentences in test.

3.1 Data Processing

We perform a series of specification processing on
the text in the dataset.

• All characters are converted to lowercase.

• Contraction normalization, like replacing
“don’t” and “dont” with “do not”, “cant” and
“can’t” with “can not” and so on.

• All hyperlinks are replaced by “url”.

After the above processing, we find that some
words in the text have not been segmented cor-
rectly. For example, the correct form of “support-
edcultures” should be “supported cultures”. There
are many such words in the dataset, and if we don’t
deal with them, there will be a lot of unknown
words in the vocabulary. In order to solve this
problem, we use Ekphrasis (Baziotis et al., 2017),
a tool geared towards text from social networks,
such as Twitter or Facebook. Ekphrasis performs
tokenization, word normalization, word segmenta-
tion (for splitting hashtags) and spell correction.

Figure 1: Our system architecture

1273

3.2 Data Analysis

Sentence length: In order to determine the length
of the training set sentence in the input model, af-
ter the data processing is finished, we analyze the
length of each sentence. First, we find that the
longest sentence is 495, the shortest is 0, and the
sentence length is shown in Figure 2.

Figure 2: Training set sentence length distribution

If the sentence is too long, the calculation time
will increase. If it is too short, the extra infor-
mation will be lost. Therefore, according to the
sentence length distribution map, the length of the
sentence in the input model is finally determined
to be 75.

Training set label: Table 1 shows the label dis-
tribution for the dataset.

Train set Trial set Test set
Suggestions 2085 296 87

Non-suggestions 6415 296 746

Table 1: Number of sentences in each dataset.

It can be seen from Table 1 that the label of the
training set is extremely unbalanced, and the ratio
of suggestion and non-suggestion reaches 1 : 3. In
order to balance the training set data, we process
those sentences labeled with the suggestions. We
use the shuffle data enhancement method, which
re-range the word order inside the sentences. We
performed two shuffle operations, and the last data
in the suggestions and non-suggestions in the final
dataset were 6255 and 6415, respectively.

4 Experiments and Results

We use Python based neural network library, K-
eras1, for the implementation. We train and vali-
date our models on the training and validation sets
provided by the organizer. The official evaluation
metric is based on macro average F1-score mea-
sure. More details about the data and the evalua-
tion metrics can be found in the task description
paper (Negi et al., 2019).

SBiLSTM: For the Stacked BiLSTM, the first
layer BiLSTM units = 256, and the second layer
BiLSTM units = 180.

Optimization: Optimization is carried out
with Adaptive Moment Estimation(Adam) (King-
ma and Ba, 2014), using the default learning rate
0.001, and hyperparameters β1 = 0.9, β2 = 0.999 .

Loss Function: Usually the multi-classification
problem uses categorical crossentropy as the loss
function. But our system uses binary crossentropy
in this binary classification.

As shown in Table 2, the number of unknown
words in the dataset in Word2Vec are less than
those in Glove. To reduce the number of unknown
words in the embedding, making the context se-
mantics better learned by the model. We random-
ly assign the vectors of unknown words. And we
experimented with the embedding of the words
Word2Vec and Glove, and found that the results
of Word2Vec performed better than Glove.

Embedding Ukw Evaluation set F1
Glove 394 0.5422

Word2Vec 231 0.5482

Table 2: Comparison between Word2Vec and Glove on
DBiLSTM models.

We compare the two network structures of S-
tacked LSTM and Stacked BiLSTM. As can be
seen from the results in Table 3, the performance
of the Stacked BiLSTM is better than that of LST-
M.

Model Embedding Evaluation set F1
LSTM Word2Vec 0.5612

BiLSTM Word2Vec 0.5637

Table 3: Comparison of LSTM and BiLSTM.

Finally, we train the single model with the
dropouts of 0.55, 0.60, 0.65, respectively. Each

1http://keras.io/

1274

single model produces a soft probability, then we
use the sum of the probabilities as the final pre-
diction. We find that the performance of ensemble
model is better than a single model.

Dropout Evaluation set F1
0.55 0.5307
0.60 0.5214
0.65 0.5422

Ensemble 0.5659

Table 4: The model adopts Word2Vec, data enhance-
ments and Stacked BiLSTM architecture. Dropout is
recurrent-dropout in the BiLSTM layer.

5 Conclusion and Future Work

In this paper, we have presented a Stacked BiL-
STM(SBLSTM) model for predicting the sugges-
tion mining classification. The word embedding
Word2Vec is used in our system, an ensemble
method can significantly enhance the overall per-
formance.

In the future, we will try to use language models
to obtain the representation of sentences, and ex-
plore other NLP models to make the experimental
results better. At the same time, we will also try to
use transfer learning technology.

Acknowledgments

This work was supported by the Natural Sci-
ence Foundations of China under Grant Nos.
61463050, 61702443 and 61762091, and the
Project of Innovative Research Team of Yunnan
Province under Grant No. 2018HC019.

References
Christos Baziotis, Nikos Pelekis, and Christos Doulk-

eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Johan Bollen, Huina Mao, and Alberto Pepe. 2011.
Modeling public mood and emotion: Twitter sen-
timent and socio-economic phenomena. Icwsm,
11:450–453.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on, pages 6645–6649. IEEE.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Steve R Gunn et al. 1998. Support vector machines for
classification and regression. ISIS technical report,
14(1):5–16.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural network-
s for sentence classification. arXiv preprint arX-
iv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Andrew McCallum, Kamal Nigam, et al. 1998. A com-
parison of event models for naive bayes text classi-
fication. In AAAI-98 workshop on learning for text
categorization, volume 752, pages 41–48. Citeseer.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word rep-
resentations in vector space. arXiv preprint arX-
iv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Sapna Negi, Kartik Asooja, Shubham Mehrotra, and
Paul Buitelaar. 2016. A study of suggestions in
opinionated texts and their automatic detection. In
Proceedings of the Fifth Joint Conference on Lexi-
cal and Computational Semantics, pages 170–178.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167.

1275

Sapna Negi and Paul Buitelaar. 2017. Inducing
distant supervision in suggestion mining through
part-of-speech embeddings. arXiv preprint arX-
iv:1709.07403.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

1276

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1277–1281
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

YNU-HPCC at SemEval-2019 Task 9: Using a BERT and
CNN-BiLSTM-GRU Model for Suggestion Mining

Ping Yue, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, P.R. China

Contact: xjzhang@ynu.edu.cn

Abstract

Consumer opinions towards commercial enti-
ties are generally expressed through online re-
views, blogs, and discussion forums. These
opinions largely express positive and negative
sentiments towards a given entity; however,
they may also contain suggestions for improv-
ing the entity. In this task, we extract sugges-
tions from a given unstructured text, in con-
trast to the traditional opinion mining system-
s. This type suggestion mining is more ap-
plicable and extends capabilities. In this pa-
per, we propose the use of bidirectional en-
coder representation learned from transform-
ers (BERT) to address the problem of domain
specific suggestion mining in task A. In detail,
BERT is also used to extract feature vectors
and perform fine-tuning for the task . For Task
B, we applied an ensemble model to combine
the BiLSTM, CNN, and GRU models, which
can perform cross domain suggestion mining.
Officially released results show that our sys-
tem performs better than the baseline algorith-
m does.

1 Introduction

Suggestion mining is used to extract advice from
text such as that provided in online reviews, blogs,
discussion forums, and social media platform-
s where consumers share their opinions toward-
s commercial entities like brands, services, and
products. Most of the traditional sentiment anal-
ysis methods are emotion classifications. Opinion
mining can improve service and quality. Such sys-
tems have become an effective way for marketing,
economics, politics, and advertising. The applica-
tion of suggestion mining provides the motivation,
for the SemEval 2019 Task 9 (Negi et al., 2019),
which contains two subtasks that classify giv-
en sentences into suggestion and non-suggestion
classes. Subtask A requires a system to achieve
domain specific training, whereby the test dataset

will belong to the same domain as the training and
development datasets. This was part of a sugges-
tion forum for windows platform developers. Sub-
task B applies the system to cross domain training,
where training, development, and test datasets will
belong to different domains. Training and devel-
opment datasets will remain the same as Subtask
A, while the test dataset will belong to the domain
of hotel reviews.

There are many methods in sentiment analy-
sis. In many reports on this subject, it has been
implied that these models help improve classifi-
cation. Successful models include convolutional
neural networks (CNN), long short-term memory
(LSTM), and bi-directional LSTM (BiLSTM). C-
NN can capture local n-gram features, while LST-
M can maintain memory in the pipelines and solve
the problem of long sequence dependence in neu-
ral networks.

In this paper, we propose a bidirectional en-
coder representation learned from transformers
(BERT) model (Devlin et al., 2018) for Task A.
It comprises two phases. The first phase is called
pre-training and is similar to word embedding.
The second phase is called fine-tuning and uses
a pre-trained language model to complete specif-
ic NLP downstream tasks. We used a pre-trained
model that was provided by Google AI team. It in-
cluded weights for the pre-trained model and a vo-
cab file that maps component words of sentences
to indexes of words. It also included the JSON file,
which specifies the model hyper-parameters. Fine-
tuning was applied to sequence classification: the
BERT directly takes the final hidden state of the
first [CLS] token, adds a layer of weight, and then
softmax predicts the label probability. The struc-
ture is shown in Figure 2.

For Task B, we apply the bert model to test data,
the score is 0.343, it is very low. the reason is that
the task B is cross-domain training, so we intro-

1277

Embedding
Layer

Convolutional Layer Max-Pooling Layer

Dense Layer VotingInput BiLSTM

GRU

Output

Figure 1: The CNN-BiLSTM-GRU architecture

E1 E2 En

TrmTrmTrm

TrmTrm Trm

T1 T2 Tn

Figure 2: The architecture of BERT

duced an ensemble model that includes the CNN,
BiLSTM, and GRU model. The structure is shown
in Figure 1. We constructed the word vectors from
300-dimensional Glove vector. Then, a word vec-
tor matrix was loaded into the embedding layer.
After this, the CNN applies the convolutional lay-
er and max pooling layer to extract n-gram fea-
tures, and passes through the dense layer to clas-
sify the sentence. BiLSTM can obtain the seman-
tic information from the context. The forward and
backward layers are connected to the output layer.
GRU has a structure similar to that of LSTM, but
is simpler. Finally, we combined CNN with BiL-
STM and GRU using a soft-voting method, and
output the results. The experimental results show
that our model has good performance. According
to the official review, we achieved sixth place a-
mong the 34 teams working on Task A.

The rest of the paper is organized as follows. In
Section 2, we describe the BERT model. There,
we also detail CNN, BiLSTM, and GRU and their
combination. The comparative experimental re-

sults are presented in Section 3. Conclusions are
drawn in Section 4.

2 The BERT and CNN-BiLSTM-GRU
model

Figure 2 shows the BERT model. First, for each
token, a representation is generated by its corre-
sponding token embedding, segment embedding,
and position embedding. Word-Piece was embed-
ded (Wu et al., 2016) along with 30,000 token vo-
cabularies. Finally, an output layer was used to
fine-tune the parameters. Figure 1 shows the en-
semble model used to combine the CNN, BiLST-
M, and GRU models. First, all component words
were transformed to a feature matrix by an embed-
ding layer. Then a convolutional layer and a max
pooling layer, were used for feature extraction. To
avoid over-fitting, a dropout layer was used after
both convolution and max-pooling layers. BiLST-
M outputs predictive label sequence directly to in-
put sentences. GRU is a variant of LSTM that has
fewer parameters and is relatively easier to train.
We embedded these models with the vote method
and finally output the result.

2.1 Bidirectional Encoder Representations
from Transformers (BERT)

Input characterization. For the task of sentence
classification, BERT will add the [CLS] and [SEP]
identifiers to the beginning and end of each input
text; thus, the maximum sequence length can be
described as follows.

max seq = St + 2 (1)

where max seq denotes the maximum sequence
length, and St is the set text length. We set the
St=78, and max seq=80. For every input sen-
tence, BERT introduces masked language mode,
and next sentence prediction. Input embedding is

1278

the sum of token embedding, segmentation em-
bedding, and position embedding.

Transformer. The multi-layer transformer
Vaswani et al. (2017) structure operates through
the attention mechanism to convert the distance
between two words at any position into the numer-
al 1. Owing to the transformer’s overall architec-
ture, the input sequence will first be converted in-
to a word embedding vector, which can be used as
the input of the multi-head self-attention module
after adding the position coding vector. The out-
put of the module can be used as the output of the
encoder module after passing through a fully con-
nected layer.

Output.The highest hidden layer of [CLS] is di-
rectly connected to the output layer of softmax as a
sentence. The output result of BERT is label prob-
ability. The sum of the probabilities of all labels
is 1, and the probability value of returning a label
is the same as the order of setting labels in Mr-
pcProcessor. This task sets the labels to 0 and 1.
The probability of the first column returned in this
experiment is 0, and the probability of the second
column is 1.

2.2 CNN
Embedding Layer. The embedding layer is the
first layer of model. Load Glove (Lee et al., 2016;
Cun et al., 1990) with word embedding (Zahran
et al., 2015) and is used for model initialization
of online reviews. The embedded layer converts
a positive integer (subscript) into a vector of fixed
size N. N is defined as 80; any sentence exceeding
this size is reduced to 80, and any sentence with a
size less than 80 is padded to 80 by adding 0s.

Convolution Layer. The convolution layer is
used to extract n-gram features from the embed-
ding matrix. The calculation method of the convo-
lution layer is as follows,

conv = σ(Mat ◦W + b) (2)

where σ is an activation function, Mat indicates
an embedding matrix, W and b respectively
denote convolution kernel and bias. Here, ◦ is a
convolution operation. We use 3*3 convolution
kernels. The activation function is ReLU (Nair
and Hinton, 2010)

Max pooling layer. Pooling is selecting a part
of the input matrix and is used to choose the best
representative for the region. The max pooling

layer selects the max feature.

Dropout Layer. To avoid over-fitting, we in-
troduce the dropout layer (Hinton et al., 2012)
after both a convolution layer and max pooling
layer, which is to randomly throw away some
weight of the current layer. It can reduce model
complexity and enhance the generalization ability
of the model.

w1 w1 w1

w2 w2 w2 w2

w3
w4w4

w5w5w5w5

w6 w6 w6

w3 w3

w4 w4

Input Layer

Forward Layer

Backward Layer

OutputLayer

Figure 3: The architecture of BiLSTM

2.3 BILSTM and GRU

Bi-directional Long Short-Term Memory (BiL-
STM) (Brueckner and Schuller, 2014; Li and
Chang, 2015) is a variant of Recurrent Neural Net-
work (RNN). Owing to its design characteristic-
s, BiLSTM is ideal for modeling time-series data
such as text data. Figure 3 shows the BiLSTM
structure. BiLSTM is an abbreviation of LSTM
Graves (2012); Greff et al. (2016); Graves (2012),
which is a combination of forward LSTM and
backward LSTM. Both are often used to model
context information in natural language process-
ing tasks.

Gated Recurrent Unit (GRU)(Cho et al., 2014)
is a variant of LSTM, although the model is sim-
pler than the standard LSTM model. It combines a
forget gate and input gate into a single update gate.
It also mixes cell state with hidden state.

zt = σ(Wz · [ht−1, xt])
rt = σ(Wr · [ht−1, xt])

h̃t = tanh(W · [rt ∗ ht−1,xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t)
(3)

where ht is hidden states, xt is the input vector, σ
is the sigmoid function, and rt and zt are the reset
and update doors, respectively.

1279

2.4 Ensemble
Each classifier is independently classified, and the
integrated model can improve the correct rate. In
this task, each base learner has a predicted val-
ue, and we used a soft-voting classifier as the final
predicted value. The soft-voting classifier predicts
the class label based on the sums of the predict-
ed probabilities. The corresponding type with the
highest probability is the final prediction result.

Model Trial Test
CNN 0.505 0.216

BiLSTM 0.498 0.180
CNN-BiLSTM 0.667 0.210

BERT 0.851 0.735

Table 1: The experiment results.

Parameters BiLSTM/GRU CNN
Neurons 60 120

Dropout rate 0.4 0.0
Weight 2 5

Activation softmax softmax
Init mode LeCun LeCun

Learning rate 0.001 0.2
Momentum 0.4 0.4

Table 2: The best-tuned parameters.

3 Experiments and Evaluation

In this section, we report the experiments were
conducted to evaluate the proposed models on
both sub-tasks. We also report the results of the
official review. The details of the experiment are
described as follows.

3.1 Data Preparation
Subtask A. Organizers provided training data
from online forum comments that included three
parts: id, sentence, and label. The given label
is 0, indicating that the suggestion is not recom-
mended. Here, 1 indicates a positive suggestion.
This is equivalent to the suggestion mining used to
discover sentences with suggestions. The positive
and negative emotional statements of a given data
set are unbalanced, and the negative emotions are
three times more abundant than the positive emo-
tions. According to this situation, we used over-
sampling to process the data; the positive emo-
tional sentences were randomly copied from the

training set in the same proportion as the negative
emotional sentences. We extracted 0.2 ratio data
as a validation set in the training set. In this ex-
periment, we used the BERT-Base model which is
pre-trained by Google AI team to process the text.

Subtask B. To address the problem of imbalance
in data distribution, Task B uses the define loss
function. In our model, we introduced a focal-loss
function (Lin et al., 2017) that reduced the weight
of many negative samples in training. This loss
function is a dynamically scaled cross entropy loss
function. As the correct classification increases,
the scale factor in the function is reduced to ze-
ro. This scale factor can automatically reduce the
impact of simple samples during training. Quick-
ly focus your model on difficult samples. Da-
ta processing removes stop words, replaces URLs
with <urls>, and removes characters except for
alphanumeric characters and punctuation.

3.2 Implementation Details

Subtask A. In this experiment, TensorFlow (GPU
backed) was used. We used the BERT-Base mod-
el to process the data. We introduced other three
models (CNN, BiLSTM, and BiLSTM) as base-
line algorithms. We combined commonly used pa-
rameters to tune-in the training. For the task, the
batch size was 30, the learning-rate set was 2e-5,
and the number of the training epoch was 10.

Subtask B. We used Scikit-Learn to perform a
grid search (Pedregosa et al., 2013) to tune the
hyper-parameters, by which we could find the best
parameters to evaluate the system. The weight
indicates the weight constraint. The LeCun indi-
cates LeCun uniform. The fine-tuned parameters
are summarized in Table 2.

3.3 Evaluation Metrics

Classification performance of the submissions will
be evaluated based on binary F1-score for the pos-
itive class. Binary F1-score will range from 1 to
0.

3.4 Results and Discussion

The trial and test data for the baseline model and
the BERT model shows that our model has the best
score in Table 1.

Subtask A. Our system achieved the F1 score of
0.7353 on Subtask A, and the baseline score was
0.2676. The results show that our proposed sys-

1280

tem is a significant improvement over the base-
line. The main reason is that not only the BERT
is a multi-layer bidirectional transformer encoder,
but also the BERT-Base model is powerful pre-
training model.

Subtask B. Our model score was 0.5035, while
the baseline score was 0.7329. There is a need to
do more for improvement. For cross-domain sug-
gestion mining, it is necessary to increase the gen-
eralization ability of the training model to achieve
use in multiple domains.

4 Conclusion

In this paper, we describe a task system that we
submitted to SemEval-2019 for suggestion min-
ing. For Subtask A, we use the BERT model. For
Subtask B, we introduced CNN combined with
BiLSTM and GRU. The experimental results show
that the models we introduced achieved good per-
formance in the final evaluation phase. In future
research, we will attempt to generalize models
with better capabilities to obtain more better re-
sults.

Acknowledgements

This work was supported by the National Nat-
ural Science Foundation of China (NSFC) un-
der Grants No.61702443 and No.61762091, and
in part by Educational Commission of Yunnan
Province of China under Grant No.2017ZZX030.
The authors would like to thank the anonymous
reviewers and the area chairs for their constructive
comments.

References
Raymond Brueckner and Bjrn Schuller. 2014. Social

signal classification using deep blstm recurrent neu-
ral networks. In IEEE International Conference on
Acoustics.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. 1990. Hand-
written digit recognition with a back-propagation
network. Advances in Neural Information Process-
ing Systems, 2(2):396–404.

Jacob Devlin, Ming Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Alex Graves. 2012. Long Short-Term Memory.

K Greff, R. K. Srivastava, J Koutnik, B. R. Steunebrink,
and J Schmidhuber. 2016. Lstm: A search space
odyssey. IEEE Transactions on Neural Networks &
Learning Systems, 28(10):2222–2232.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arX-
iv:1207.0580.

Yang Yin Lee, Hao Ke, Hen Hsen Huang, and Hsin H-
si Chen. 2016. Less is more: Filtering abnormal
dimensions in glove. In International Conference
Companion on World Wide Web.

Tianshi Li and Baobao Chang. 2015. Semantic role
labeling using recursive neural network.

Tsung Yi Lin, Priya Goyal, Ross Girshick, Kaiming
He, and Piotr Dollar. 2017. Focal loss for dense ob-
ject detection. IEEE Transactions on Pattern Analy-
sis & Machine Intelligence, PP(99):2999–3007.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In International Conference on International Con-
ference on Machine Learning.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Fabian Pedregosa, Gal Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, and Vincent Dubourg. 2013. Scikit-learn:
Machine learning in python. Journal of Machine
Learning Research, 12(10):2825–2830.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Cao Yuan, Gao Qin, and Klaus
Macherey. 2016. Google’s neural machine transla-
tion system: Bridging the gap between human and
machine translation.

Mohamed A. Zahran, Ahmed Magooda, Ashraf Y.
Mahgoub, Hazem Raafat, Mohsen Rashwan, and
Amir Atyia. 2015. Word Representations in Vector
Space and their Applications for Arabic.

1281

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1282–1286
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

Zoho at SemEval-2019 Task 9: Semi-supervised Domain Adaptation using
Tri-training for Suggestion Mining

Sai Prasanna
Zoho

saiprasanna.r@zohocorp.com

sai.r.prasanna@gmail.com

Sri Ananda Seelan
Zoho

anandaseelan.ln@zohocorp.com

Abstract
This paper describes our submission for the
SemEval-2019 Suggestion Mining task. A
simple Convolutional Neural Network (CNN)
classifier with contextual word representations
from a pre-trained language model is used
for sentence classification. The model is
trained using tri-training, a semi-supervised
bootstrapping mechanism for labelling unseen
data. Tri-training proved to be an effective
technique to accommodate domain shift for
cross-domain suggestion mining (Subtask B)
where there is no hand labelled training data.
For in-domain evaluation (Subtask A), we use
the same technique to augment the training set.
Our system ranks thirteenth in Subtask A with
an F1-score of 68.07 and third in Subtask B
with an F1-score of 81.94.

1 Introduction

Task 9 of SemEval-2019 (Negi et al., 2019) fo-
cuses on mining sentences that contain sugges-
tions in online discussions and reviews. Sugges-
tion Mining is modelled as a sentence classifica-
tion task with two Subtasks:

• Subtask A evaluates the classifier perfor-
mance on a technical domain specific setting.

• Subtask B evaluates the domain adaptability
of a model by doing cross-domain suggestion
classification on hotel reviews.

We approached this task as an opportunity to
test the effectiveness of transfer learning and semi-
supervised learning techniques. In Subtask A, the
high class imbalance and relatively smaller size
of the training data made it an ideal setup for
evaluating the efficacy of recent transfer learn-
ing techniques. Using pre-trained language mod-
els for contextual word representations has been
shown to improve many Natural Language Pro-
cessing (NLP) tasks (Peters et al., 2018; Ruder

and Howard, 2018; Radford, 2018; Devlin et al.,
2018). This transfer learning technique is also
an effective method when less labelled data is
available as shown in (Ruder and Howard, 2018).
In this work, we use the BERT model (Devlin
et al., 2018) for obtaining contextual representa-
tions. This results in enhanced scores even for
simple baseline classifiers.

Subtask B requires the system to not use man-
ually labelled data and hence it lends itself to a
classic semi-supervised learning scenario. Many
methods have been proposed for domain adapta-
tion for NLP (Blitzer et al., 2007; Chen et al.,
2011; Chen and Cardie, 2018; Zhou and Li, 2005;
Blum and Mitchell, 1998). We use a label boot-
strapping technique called tri-training (Zhou and
Li, 2005) with which unlabelled samples are la-
belled iteratively with increasing confidence at
each training iteration(explained in Section 2.4).
Ruder and Plank (2018) shows the effectiveness of
tri-training for baseline deep neural models in text
classification under domain shift. They also pro-
pose a multi-task approach for tri-training, how-
ever we only adapt the classic tri-training proce-
dure presented for suggestion mining task.

Detailed explanation of the submitted system
and experiments are elicited in the following sec-
tions. Section 2 describes the components of the
system. Following this, Section 3 details the ex-
periments, results and ablation studies that were
performed.

2 System Description

The models and the training procedures are
built using AllenNLP library (Gardner et al.,
2018). All the code to replicate our experi-
ments are public and can be accessed from
https://github.com/sai-prasanna/
suggestion-mining-semeval19.

1282

2.1 Data cleaning and pre-processing

Basic data pre-processing is done to normalize
whitespace, remove noisy symbols and accents.
Very short sentences with less than four words are
disregarded from training.

2.2 Word Representations

We use GloVe word representations (Pennington
et al., 2014) and compare the performance im-
provement that we obtain with pre-trained BERT
representations (Devlin et al., 2018).

2.3 Suggestion Classification

Our baseline classifier is Deep Averaging Network
(DAN) (Iyyer et al., 2015). DAN is a neural bag-
of-words model that is considered as a strong base-
line for text classification. In DAN, a sentence
representation is obtained by averaging the word
level representations and is fed to a series of recti-
fied linear unit (ReLU) layers with a final softmax
layer.

A simple Convolutional Neural Network (CNN)
text classifier (Kim, 2014) is used for the final sub-
mission.

2.4 Training

We use the classic tri-training procedure for label
bootstrapping as mentioned in (Ruder and Plank,
2018). Consider a labelled dataset L from the
source domain S and an unlabelled dataset U from
the target domain T . The objective of tri-training
is to label U iteratively and augment it with L.
Three CNN +BERT classifiers M1, M2, M3 are
trained separately using subsets of L namely l1, l2,
l3 respectively. These subsets are obtained from L
using bootstrap sampling with replacement.

The above mentioned models are used to pre-
dict labels for the unlabelled set U . Predictions
which are agreed by two models is considered as a
new training example for the third model in the
next iteration. For example, an unlabelled sen-
tence U1 ∈ U is added as a labelled example to
l1, if and only if the label for U1 is agreed upon
by both M2 and M3. Same way, l2 is updated
with newly labelled data if those labels have been
agreed by M1 and M3 and so on. This constitutes a
single iteration of tri-training. The procedure that
is used for the training of our models is mentioned
in Algorithm 1.

In this way, the original training data gets added
with three newly labelled subsets which are again

used for the next training iteration. At the end of
each iteration, validation F1-score is calculated by
using the predictions that are obtained through a
majority vote. The procedure is continued until
there is no improvement in the validation score.

Algorithm 1 Tri-training
1: L← Labelled Data , |L| = m
2: U ← Unlabelled Data , |U | = n
3: for i← 1, 2, 3 do
4: li ← BootstrapSamples(L)
5: end for
6: repeat
7: for i← 1, 2, 3 do
8: Mi ← Train(li)
9: end for

10: for i← 1, 2, 3, do
11: li ← L
12: for j ← 1, n do
13: if Mp(Uj) == Mq(Uj)
14: where p, q 6= i then
15: li ← li + {(Uj ,Mp(Uj)}
16: end if
17: end for
18: end for
19: until no improvement in validation metrics

3 Experiments and Results

This section details the various experiments that
were performed using the above components for
our submissions.

3.1 Data
The test set provided during the trial phase of the
evaluation is used as the validation data for all our
experiments. For those experiments that do not
involve tri-training, we only use the provided la-
belled data from the technical domain for training.

In Subtask B, for those experiments that involve
tri-training, L is the same as mentioned above. U
here is obtained in two ways:

• Unlabelled data from final test set of Subtask
B.

• Unlabelled data from Yelp hotel reviews
(Blomo et al., 2013).

The results reported are mean and confidence
intervals of Precision, Recall and F1-score over
five runs of the same experiments with different
random seeds.

1283

Subtask A - Technical Domain

Experiment Validation Test
Precision Recall F1 Precision Recall F1

Organizer Baseline 58.72 93.24 72.06 15.69 91.95 26.80
DAN +glove 68.51±2.43 87.30±5.00 76.69±1.06 25.40±3.56 84.60±9.87 38.84±3.10
DAN +bert 76.06±1.31 90.27±1.71 82.55±0.50 45.80±4.49 90.80±1.75 60.82±3.99
DAN +bert w/o upsampling 79.04±2.67 83.38±2.73 81.11±0.68 55.06±6.36 83.68±2.75 66.28±4.28
CNN +bert 80.34±4.21 89.93±4.23 84.76±0.52 50.34±6.70 91.72±2.55 64.81±4.86
CNN +bert w/o upsampling 83.22±3.01 84.73±3.86 83.90±0.70 58.98±5.41 88.05±1.63 70.58±4.24
CNN +bert +tritrainTest* 83.06±1.96 89.19±1.88 86.00±0.35 52.89±2.69 90.80±2.02 66.81±1.90

Subtask B - Hotel Reviews Domain

Experiment Validation Test
Precision Recall F1 Precision Recall F1

Organizer Baseline 72.84 81.68 77.01 68.86 78.16 73.21
DAN +glove 82.00±4.25 52.97±9.25 64.01±5.75 73.32±3.50 46.09±7.21 56.35±4.71
DAN +bert 89.75±2.79 65.74±8.71 75.65±5.10 78.90±4.03 64.20±8.77 70.49±4.09
DAN +bert w/o upsampling 94.26±1.87 31.73±5.73 47.31±6.27 87.98±3.41 31.09±7.17 45.62±7.47
CNN +bert 93.77±1.34 51.88±6.88 66.65±5.68 90.17±2.45 50.34±8.71 64.31±6.72
CNN +bert w/o upsampling 93.94±1.36 45.99±7.59 61.53±6.73 89.75±4.41 44.08±9.38 58.66±7.79
CNN +bert +tritrainTest* 91.91±2.06 88.32±2.05 90.05±0.76 81.26±1.63 83.16±1.40 82.19±1.03
CNN +bert +tritrainY elp 88.09±0.62 87.13±0.38 87.61±0.42 78.01±5.42 86.67±3.96 81.98±2.05

Table 1: Performance metrics of different models on validation and test sets of both subtasks. Confidence intervals
for the metrics are reported for five runs using different random seeds on t-distribution with 95% confidence.
Upsampling is used in the training dataset unless otherwise specified. Single model from experiments with * was
used for the final submission.

3.2 Input

For input representations, we use 300d GloVe vec-
tors with dropout (Srivastava et al., 2014) of 0.2
for regularization. We also experiment with the
pre-trained BERT base uncased model. The BERT
model is not fine-tuned during our training. A
dropout of 0.5 is applied for the 768d represen-
tations obtained from BERT.

3.3 Baseline Deep Averaging Net

Our neural baseline is Deep Averaging Net (DAN)
(Section 2.3). When used with GloVe, the hidden
sizes of DAN are 300, 150, 75, and 2 respectively.
When BERT representations are used, the hidden
sizes of the network are 768, 324, 162, and 2 re-
spectively. We report an F1-score of 60.82 when
DAN is used with BERT in Subtask A and 70.49 in
Subtask B. Both these scores are a significant im-
provements from those obtained with GloVe rep-
resentations (Table 1).

We retain the same configuration of BERT em-
bedding layer for other experiments also. Training
is performed with Adam (Kingma and Ba, 2015)
optimizer with a learning rate of 1e−3 for all the
models.

3.4 CNN Classifier

The CNN classifier is composed of four 1-D con-
volution layers with filter widths ranging from two
to five. Each convolutional layer has 192 filters.
The output from each layer is max-pooled over se-
quence (time) dimension. This results in four 192d
vectors, which are concatenated to get a 768d out-
put.

The max-pooled outputs are passed through
four fully connected feed forward layers with hid-
den dimensions of 768, 324, 162, and 2 respec-
tively. The intermediate layers use ReLu activa-
tion and the final layer is a softmax layer. We use
dropout of 0.2 on all layers of the feed forward
network except for the final layer.

Without tri-training, this model obtains an ab-
solute improvement of ≈ 4% F1-score over DAN
in Subtask A. However in Subtask B, it performs
poorer than the baseline DAN model with an F1-
score of 64.31. This decrease in performance
could be because of overfitting on the source do-
main due to the larger number of parameters in
CNN compared to DAN.

1284

3.5 Tri-training

The aim of doing tri-training is for domain adap-
tation by labelling unseen data from a newer do-
main. For Subtask B, the CNN + BERT model
achieves an F1-score of 82.19 when trained with
the tri-training procedure mentioned in Algorithm
1. Tri-training is used to label the 824 unlabelled
sentences from the test set of Subtask B and aug-
mented with the original training data. This score
is a huge improvement from the classifier model
trained only on the given data which gets an F1-
score of 64.31.

We also do the same experiment using 5000 un-
labelled sentences from Yelp hotel reviews dataset
(Blomo et al., 2013). The model obtains a simi-
lar score of 81.98 which proves the importance of
tri-training in domain adaptation.

For Subtask A, we get an improvement in the
F1-score using tri-training, however the increase is
not as profound as we observe for Subtask B. We
compare the statistical significance of the different
models and experiments in Section 3.7.

3.6 Upsampling

We also wanted to find how the class balance in
the dataset has affected our model performance.
The class distribution of the datasets including the
test set distribution that was obtained after the final
evaluation phase are mentioned in Table 2.

Dataset Suggestions (%)

Training 23
Subtask A validation 50
Subtask B validation 50
Subtask A Test 10
Subtask B Test 42

Table 2: Label distribution

The original training data has a class imbalance
with only 23% of the sentences labelled as sugges-
tions. We tried to balance the labels by naive up-
sampling, ie., adding duplicates of sentences that
are labelled as suggestions. This allowed us to
have a balanced training dataset for our experi-
ments. This resulted in consistent gains over the
original dataset during the trial evaluation phase.

However during the final submission, in Sub-
task A we found that the model’s performance in
the test set did not correlate well with that of the
validation set as shown in Table 1. This could be

because the percentage of positive labels in the test
set is only 10% while the validation set has 50%.

Experiments without upsampling gives better
performance in test set even though there is a de-
crease in the validation score. For Subtask B how-
ever, upsampling has actually increased the model
performance. On hindsight, this could be because
of similar distribution of class labels in both vali-
dation and test sets.

The submitted models received an F1-score of
68.07 in Subtask A and 81.03 in Subtask B.

3.7 Statistical Significance Test

Reichart et al. (2018) suggests methods to measure
whether two models have statistically significant
differences in their predictions on a single dataset.
We incorporate a non-parametric testing method
for significance called the McNemar’s test recom-
mended by them for binary classification. Pair-
wise comparison of few of our models are reported
in Table 3. The table contains the p-values for the
null hypothesis. The null hypothesis is that two
models do not have significant differences in their
label predictions. In simpler words, a small p-
value for an experiment pair denotes a significant
difference in the prediction disagreement between
two models. For example, from Table 3, DAN +
GloVe and DAN + BERT models have a p-value
less than 0.05 in both sub-tasks. This indicates that
there is significant disagreement between the pre-
dictions of two models. Since DAN + BERT gets
a better F1-score and p < 0.05, we can confidently
assert that improvement is not obtained by chance.

We use majority voting from five random seeds
to get the final predictions on the test set for doing
the paired significance testing.

4 Conclusion

We discussed our experiments for doing sugges-
tion mining using tri-training. Tri-training com-
bined with BERT representations proved to be
an effective technique for doing semi-supervised
learning especially in a cross-domain setting. Fu-
ture work could explore more optimal ways of do-
ing tri-training, evaluate the effect of contextual
representations in tri-training convergence, and try
more sophisticated architectures for classification
that may include different attention mechanisms.

1285

Subtask Model A Model B p-value

A DAN +glove DAN +bert ≈ 0
A DAN +bert CNN +bert 0.046
A CNN +bert CNN +bert +tritrainTest 0.108
B DAN +glove DAN +bert 1.419e− 05
B DAN +bert CNN +bert 0.4208
B CNN +bert CNN +bert +tritrainTest 3.251e− 08
B CNN +bert +tritrainTest CNN +bert +tritrainY elp 0.5862

Table 3: Pairwise comparison of various models using the McNemar’s Test. p ≤ 0.05 indicates a significant
disagreement between the model predictions.

References
John Blitzer, Mark Dredze, and Fernando Pereira.

2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL.

Jim Blomo, Martin Ester, and Marty Field. 2013. Rec-
sys challenge 2013. In RecSys.

Avrim Blum and Tom M. Mitchell. 1998. Combin-
ing labeled and unlabeled data with co-training. In
COLT.

Minmin Chen, Kilian Q. Weinberger, and John Blitzer.
2011. Co-training for domain adaptation. In NIPS.

Xilun Chen and Claire Cardie. 2018. Multinomial ad-
versarial networks for multi-domain text classifica-
tion. In NAACL-HLT.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. CoRR, abs/1810.04805.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2018. Allennlp: A deep semantic natural language
processing platform. CoRR, abs/1803.07640.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-
Graber, and Hal Daumé. 2015. Deep unordered
composition rivals syntactic methods for text clas-
sification. In ACL.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the
13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke S. Zettlemoyer. 2018. Deep contextualized
word representations. In NAACL-HLT.

Alec Radford. 2018. Improving language understand-
ing by generative pre-training.

Roi Reichart, Rotem Dror, Gili Baumer, and Segev
Shlomov. 2018. The hitchhiker’s guide to testing
statistical significance in natural language process-
ing. In ACL.

Sebastian Ruder and Jeremy Howard. 2018. Universal
language model fine-tuning for text classification. In
ACL.

Sebastian Ruder and Barbara Plank. 2018. Strong
baselines for neural semi-supervised learning under
domain shift. In ACL.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: ex-
ploiting unlabeled data using three classifiers. IEEE
Transactions on Knowledge and Data Engineering,
17:1529–1541.

1286

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1287–1291
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ZQM at SemEval-2019 Task9: A Single Layer CNN Based on Pre-trained
Model for Suggestion Mining

Qimin Zhou, Zhengxin Zhang, Hao Wu*, Linmao Wang
School of Information Science and Engineering, Yunnan University

Chenggong Campus, Kunming, P.R. China
{zqmynu,zzxynu}@gmail.com, haowu@ynu.edu.cn, wlmdyx@gmail.com

Abstract

This paper describes our system that competed
at SemEval 2019 Task 9 - SubTask A: ”Sug-
gestion Mining from Online Reviews and Fo-
rums”. Our system fuses the convolutional
neural network and the latest BERT model to
conduct suggestion mining. In our system,
the input of convolutional neural network is
the embedding vectors which are drawn from
the pre-trained BERT model. And to enhance
the effectiveness of the whole system, the pre-
trained BERT model is fine-tuned by provid-
ed datasets before the procedure of embedding
vectors extraction. Empirical results show the
effectiveness of our model which obtained 9th
position out of 34 teams with F1 score equals
to 0.715.

1 Introduction

Suggestion mining is defined as the extraction of
suggestions from unstructured text (Negi et al.,
2018). Suggestion mining is still a relatively y-
oung research area as compared to other natural
language processing issues like sentiment analy-
sis (Negi and Buitelaar, 2015). While suggestion
mining is of great commercial value for organi-
sations to improve the quality of their entities by
considering the positive and negative opinions col-
lected from platforms. The target of this task is
to automatically classify the sentences collected
from online reviews and forums into two classes
which are suggestion and non-suggestion respec-
tively (Negi et al., 2019).

BERT which stands for Bidirectional Encoder
Representation from Transformers is the latest
breakthrough in the field of NLP provided by
Google Research (Devlin et al., 2018). It has
substantially advanced the state-of-the-art in many
NLP tasks, especially in question answering (Al-
berti et al., 2019). More importantly, it provides a

widely applicable tool for representation learning
which can be generalized to many NLP tasks.

For this subtask, we firstly learn the word
or sentence embeddings utilizing the pre-trained
BERT model. Then the embedding vectors are
extracted from BERT as the input of the subse-
quent model. It is worth noting that we have fine-
tuned the pre-trained BERT model with provided
dataset before the embedding vectors are extract-
ed. In other words, this part is equivalent to the
conventional embedding layer. This strategy is a
little bit like ELMO (Peters et al., 2018). As for
the upper layer of this system, convolutional neu-
ral network (CNN) is adopted herein to process
the features. Although CNN is originally invent-
ed for tackling computer vision issues, while it has
subsequently been shown to be effective for many
NLP tasks (Kim, 2014; Zhang and Wallace, 2015;
Dong et al., 2015).

The remainder of the paper is organized as fol-
lows. Section 2 describes the detailed architecture
of our system. Section 3 reports the experimental
results on the given datasets. Finally, conclusions
are drawn in Section 4.

2 System Description

Figure 1 gives a high-level overview of our ap-
proach. And we elaborate the details of implemen-
tation which mainly consists of following steps:
(1) the preprocessing of raw data, (2) the word
embedding learning via BERT model, (3) feature
processing via CNN and sentences classification.

2.1 Data Preprocessing
The provided dataset is collected from feedback
posts on Universal Windows Platform and anno-
tated by (Negi et al., 2018). But the text is not
standard enough as there are some spelling mis-
takes and few duplicate samples. To boost the per-
formance of our system, we conduct some pre-

1287

Figure 1: The architecture of our proposed model.

processing steps on the raw data. At first, web
links are removed through regular expression as
it does not contribute to the accuracy of classifi-
cation. After that, we can take more meaningful
words into consideration under the condition of a
finite sentence length. And ekphrasis 1, a text pro-
cessing tool, is utilized to conduct spelling correc-
tion (Baziotis et al., 2017). Then, all character-
s are converted to lowercase. Finally, duplicated
samples would be excluded from the dataset.

2.2 Embedding Learning via BERT

Embedding layer usually encodes each word in-
to a fixed-length vector for subsequent study.
Word2vec, Glove and FastText are the most simple
and popular word embedding algorithms (Mikolov
et al., 2013; Pennington et al., 2014; Bojanows-
ki et al., 2017). While there continue to be some
drawbacks, such as they cannot encode the con-
textual information well. Recently, a few effec-
tive algorithms have been put forward such as EL-
MO and openAI GPT (Peters et al., 2018; Rad-
ford et al., 2018). These two pre-trained language
models can encode rich syntactic and semantic in-
formation and distinguish the different meanings
of a polysemy in diverse contexts, which tradi-
tional word embeddings methods cannot handle
well. ELMO leverages the concatenation of in-
dependently trained left-to-right and right-to-left
LSTM to generate features. Though LSTM can
capture contextual information, the performance

1github.com/cbaziotis/ekphrasis

can be limited by the long distance of sequences
to some extent. In order to deal with this problem,
openAI GPT substitute Transformer for LSTM.
Transformer rely entirely on attention mechanis-
m to capture global dependencies (Vaswani et al.,
2017).

BERT is the latest language representation mod-
el which also takes advantage of Transformer.
Besides that, it uses the masked language mod-
el (MLM) and the bidirectional Transformers to
capture the contextual information which has been
proved to be effective (Devlin et al., 2018). In our
system, we employ BERT as the embedding lay-
er, in other words, we use the output of the last
transformer layer from BERT as word embedding
vectors. The version of pre-trained BERT model
we used is BERT-BASE which has 12 layers of
transformer blocks and the hidden size is equal to
768. It implies that the dimension of the output
embedding vectors is equal to 768. We choose not
to cover too much details of BERT as it has been
elaborated on its website 2.

To boost the performance of our system by mak-
ing this model better fit our data, a fine-tuning step
is conducted before extracting the word embed-
ding vectors from pre-trained model. And the fine-
tuning parameters are given in Section 3.2.

2.3 Feature processing via CNN

CNN is originally invented for tackling the issues
in the field of computer vision, while various C-

2https://github.com/google-research/bert

1288

NN models have subsequently been proven to be
effective for many NLP tasks (Kalchbrenner et al.,
2014; dos Santos and Gatti, 2014). In our work,
we train a single layer CNN on the word em-
bedding vectors drawn from BERT model. Let
ei ∈ Rk be the k-dimensional word embedding
vector corresponding to the i-th word in the sen-
tence. Then the vector representation of a sentence
is denoted as Eq.1:

e1:n = [e1 ‖ e2 ‖ e3 ‖ ... ‖ en], (1)

where n represents the length of sentences, and ‖
denotes concat operation which can maintain the
order of words in text. After that a filter involved
in one-dimensional convolution operation is de-
fined as w ∈ Rm×k, then the convolution process
can be defined as a function as Eq.2 (Kim, 2014):

pi = f(w · ei:i+m−1 + b), (2)

where pi is a scalar which stands for the new lo-
cal feature generated by a filter from a window
of words ei:i+m−1, in other words, only i-th to
i+m− 1-th words have been taken into consider-
ation when generate i-th local feature. m is filter
size which denotes m words is taken into calcula-
tion when generating a local feature. b is a bias and
f is an activation function, it is tanh exactly in our
system. Finally, there are n−m+1 local features
generated by a filter totally. Those local features
can be concatenated as a global feature P :

P = [p1 ‖ p2 ‖ p3 ‖ ... ‖ pn−m+1], (3)

where P ∈ Rn−m+1 represents a feature map gen-
erated by a filter. Then a max-over-time maxpool-
ing operation (Collobert et al., 2011) is applied to
the feature maps which means that only the maxi-
mum value of P is reserved. If there are Nf filter-
s, then Nf maximum values is generated through
maxpooling operations. Those values can be orga-
nized as a new vector Q ∈ RNf as Eq.4:

Q = [max(P1) ‖ max(P2) ‖ ... ‖ max(PNf
)],
(4)

2.4 Dense layers
The pooling layer is followed by two dense layers
with different number of neurons. Dropout (Hin-
ton et al., 2012) is utilized to alleviate overfitting
problem before the first dense layer. And we have
tried different dropout rates to search the best con-
figuration. Firstly, the output of pooling layer Q is

fed into the first dense layer with 200 hidden neu-
rons. The activation function of this dense layer
is relu (Xu et al., 2015). Next is the second dense
layer with two neurons and the corresponding ac-
tivation function is softmax. Final output is the
probability of which class the sample belongs to.

3 Experiments

3.1 Dataset

Classes Train set Trial Test set Test set
0 (non-suggestions) 6415 296 746

1 (suggestions) 2085 296 87

Table 1: Data distribution

The available dataset released by organizer is s-
plit into three parts: train set, trial test set and test
set. The positive and negative sample distribution
of each part is described as Table 1. Apparently,
there is class imbalance that the number of neg-
ative samples overwhelms the number of positive
samples both in training set and test set. So for
experiments, we fuse the train set and trail test set
into a larger training set, and then split 10% sam-
ples as validation set randomly (8183 samples for
training and 909 samples for validation). We train
our model on the train set, tune the model param-
eters on the validation set, evaluate the model per-
formance on the test set.

Model Dropout Macro average F1
Baseline - 0.2676

Word2vec+CNN 0.4 0.3789

our model

0.1 0.7459
0.2 0.7236
0.3 0.7407
0.4 0.7309
0.5 0.7179
0.6 0.7368
0.7 0.7029

Table 2: The performance comparison.

Classes Precision Recall F1 score
0 (non-suggestions) 0.98 0.96 0.97

1 (suggestions) 0.70 0.79 0.75

Table 3: The classification accuracy of different class-
es.

3.2 Experiment Results
As mentioned in Section 2.2, we conduct fine-
tuning operation before extracting the word em-
bedding vector from BERT. For fine-tuning, most
hyperparameters are the same as the parameters

1289

Figure 2: The impact of the number of filters.

Figure 3: The impact of filter size.

of pre-trained model, with the exception of batch
size, learning rate and number of training epochs.
The mini-batch size is set at 32 and learning rate is
set at 5e-5, the number of training epochs is con-
figured as 5. The maximal length of sentences is
configured as 50 and if the length of a sentence
is less than 50, it will be padded with zero; oth-
erwise, it will be truncated from the tail. For the
CNN component, the filter size m is configured
as 5 and the number of filters Nf is 64. And the
dropout rates we have tried are ranged from 0.1 to
0.7 with a step of 0.1. The experimental results
are shown in Table 2. In order to prove the effec-
tiveness of word embeddings derived from BERT,
we also employ Word2vec as comparison and the
corresponding best dropout rate is 0.4. Obviously,
no matter what the dropout rate is, our model con-
sistently outperforms other models. And the best
dropout rate of our model is around 0.1 for above-
mentioned configuration. While the best dropout
rate may vary with other parameter configuration
like filter size and the number of filters.

Table 3 shows the Precision, Recall and F1 s-
core in term of different classes. Obviously, the

system performance on negative samples is better
than the performance on positive samples which
is consistent with our intuition for the reason that
the number of negative samples overwhelms the
number of positive samples. Therefore, our sys-
tem can learn more features of negative samples,
which can help it recognize those negative samples
accurately.

We also investigate the impact of the number of
filters Nf on the classification performance with
fixing the filter size m at 5 and the dropout rate at
0.1. The experimental result is shown as Figure 2.
This model yields the best performance when the
number of filters is equal to 64. Less filters cannot
capture enough information while too many filters
can result in information redundancy to some ex-
tent.

The impact of filter size on classification accu-
racy is shown as Figure 3. The most suitable fil-
ter size which means the window size of convolu-
tional operation is m = 5. It is difficult for this
system to catch the global semantic information if
the window size is too small. While some local
semantic information would be ignored if the win-
dow size of filter is too large. Hence, choosing a
filter with moderate size is helpful for the perfor-
mance improvement.

4 Conclusions

In this paper, we have proposed a neural model
based on the pre-trained BERT model to deal with
suggestion mining task. Our system can learn the
representation of sentences or words effectively
by leveraging BERT. Then the representations ex-
tracted from BERT is fed into a simple CNN layer.
Experimental results show that our system is effi-
cient on the given dataset.

As for future work, it is of necessity to tackle the
imbalance between positive samples and negative
samples through oversampling or undersampling.
And we intend to study some innovative ways to
incorporate BERT model like extracting not only
the output of the last transformer layer but also the
output of different transformer layers and integrat-
ing them with different weights.

Acknowledgments

This work is partially supported by the National
Natural Science Foundation of China (61562090).

1290

References
Chris Alberti, Kenton Lee, and Michael Collins. 2019.

A bert baseline for the natural questions. CoRR, ab-
s/1901.08634.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research,
12(Aug):2493–2537.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu.
2015. Question answering over freebase with multi-
column convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), volume 1, pages
260–269.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arX-
iv:1207.0580.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In ACL.

Yoon Kim. 2014. Convolutional neural network-
s for sentence classification. arXiv preprint arX-
iv:1408.5882.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. arXiv preprint arX-
iv:1301.3781.

Sapna Negi and Paul Buitelaar. 2015. Towards the ex-
traction of customer-to-customer suggestions from
reviews. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2159–2167.

Sapna Negi, Tobias Daudert, and Paul Buitelaar. 2019.
Semeval-2019 task 9: Suggestion mining from on-
line reviews and forums. In Proceedings of the

13th International Workshop on Semantic Evalua-
tion (SemEval-2019).

Sapna Negi, Maarten de Rijke, and Paul Buitelaar.
2018. Open domain suggestion mining: Prob-
lem definition and datasets. arXiv preprint arX-
iv:1806.02179.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Cicero dos Santos and Maira Gatti. 2014. Deep con-
volutional neural networks for sentiment analysis
of short texts. In Proceedings of COLING 2014,
the 25th International Conference on Computation-
al Linguistics: Technical Papers, pages 69–78.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li.
2015. Empirical evaluation of rectified activation-
s in convolutional network. arXiv preprint arX-
iv:1505.00853.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

1291

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1292–1296
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

ProblemSolver at SemEval-2019 Task 10: Sequence-to-Sequence Learning
and Expression Trees

Xuefeng Luo, Alina Baranova, Jonas Biegert
Linguistics Department, University of Tuebingen, Germany

firstname.lastname@student.uni-tuebingen.de

Abstract

This paper describes our participation in
SemEval-2019 shared task “Math Question
Answering”, where the aim is to create a pro-
gram that could solve the Math SAT ques-
tions automatically as accurately as possible.
We went with a dual-pronged approach, build-
ing a Sequence-to-Sequence Neural Network
pre-trained with augmented data that could an-
swer all categories of questions and a Tree sys-
tem, which can only answer a certain type of
questions. The systems did not perform well
on the entire test data given in the task, but
did decently on the questions they were actu-
ally capable of answering. The Sequence-to-
Sequence Neural Network model managed to
get slightly better than our baseline of guess-
ing “A” for every question, while the Tree sys-
tem additionally improved the results.

1 Introduction

The data set for the task (Hopkins et al., 2019)
includes questions used in the Math SAT. There
are three broad categories of questions: closed-
vocabulary and open-vocabulary algebra ques-
tions, and geometry questions. All types of
questions consist in large part of natural lan-
guage. Closed-vocabulary algebra questions typ-
ically contain math equations and many math-
specific words, while open-vocabulary algebra
questions include more everyday vocabulary and
quantities which are expressed in letters, numbers
or a combination of both. Geometry questions
are usually provided with diagrams the analysis
of which is necessary for solving the problems.
Most questions of all categories are multiple-
choice questions with five possible options, but
some questions have a numeric answer.

We present two systems to tackle these math
problems. One of them, a sequence-to-sequence
LSTM model pre-trained with augmented data, is

applied to all three types of questions, while the
other, a system based on expression trees produces
answers exclusively for open-vocabulary algebra
questions.

2 Related Work

In their work, Roy and Roth (2015) introduced bi-
nary expression trees that represent and solve math
word problems. To choose the best expression
tree out of all possible trees, the authors employed
two classifiers: a relevance classifier, which de-
termined if the quantity should be included into
the expression tree, and a Lowest Common Ances-
tor (LCA) classifier, which output the most proba-
ble mathematical operation for a pair of quantities.
Both classifiers were trained on gold annotations.

Subsequently, two other systems were devel-
oped based on Roy and Roth (2015). One of
the systems belongs to the same authors and uses
the concept of Unit Dependency Graphs (UDGs)
to capture the information between units of the
quantities (Roy and Roth, 2017). UDGs are then
united with expression trees, allowing the infor-
mation about dependencies between units improve
the math problem solver.

Another system (Wang et al., 2018) suggests a
method to improve Roy and Roth’s approach. By
applying deep reinforcement learning, which has
proved to be suitable for problems with big search
space, the authors achieve better accuracy and ef-
ficiency.

An earlier system introduced by Wang et al.
(2017) used gated recurrent units (GRU, Chung
et al., 2014) and long short-memory (LSTM,
Hochreiter and Schmidhuber, 1997) to automati-
cally solve simple math word problems by con-
verting words into math equations.

1292

3 Model Description

3.1 Sequence-to-Sequence Neural Network

Our model is based on a sample implementa-
tion provided by the Keras team (Chollet et al.,
2015). This model was able to calculate addition,
such as from “535+61” to “596” with a Sequence-
to-Sequence model using LSTM (Hochreiter and
Schmidhuber, 1997). Similar to this model, our
model also had 128 hidden units and started with
an embedding layer with an alphabet of 96 char-
acters. The longest question was 650 characters.
Then, we used a LSTM as encoder. For all dights
in the answers, we have seperate vectors repre-
senting them. Thus, we have repeated vectors
of outputs 5 time, in order to represent 5 dights.
Our decoder was another LSTM layer with re-
turing sequences, followed by a time distributed
layer of dense layers where activation function
was softmax. In addition to this, we added a
0.2-rate Dropout layer (Srivastava et al., 2014) af-
ter embeding layer, encoder LSTM and decoder
LSTM, to prevent over-fitting. On top of that, we
found that reversing and doubling the inputs can
greatly improve training performance, according
to Zaremba and Sutskever (2015). The seq2seq
model is shown by Figure 1. We did not encoded
answers along with questions. We only compared
the answers strings to the questions’ choices and
made our decisions.

Math Questions

Embed

LSTM

RepeatVector

LSTM

Dense

TimeDistributed

Answers

Dropout

Dropout

Dropout

Figure 1: Seq2seq Model

We padded all answers into same length with
extra space characters, but our model still was not
able to produce exact answers with sequence-to-
sequence. However, the sequences the model pro-
duced were good enough to predict the correct an-
swer for multiple choice questions. For instance,
for question “If x+345 = 111, what is the value of

x?”, the output of the system would be “-234444”,
which is very close to the correct answer “-234”.
Thus, we wrote a program which was able to com-
pare the initial characters (including “-”) regard-
less the extra characters at the end with answer
options and predict the correct answer.

3.2 Tree System

The system of Roy and Roth (2015) has a lot of
advantages: for instance, it can solve math prob-
lems that require multiple steps and different op-
erations, and it can handle problems even if it did
not see similar problems in the training set. That
is why we chose to implement this approach for
solving open-vocabulary algebra questions.

The expression trees the authors used in their
system have a special structure that allows to cal-
culate them in a simple and unambiguous way. In
such a tree, the leaves are quantities extracted from
the problem text, and the internal nodes are mathe-
matical operations between the quantities. By cal-
culating values of all internal nodes, one can ob-
tain the value of the tree route, which corresponds
to the answer of the problem.

Similarly to Roy and Roth (2015), we used the
relevance and the LCA classifiers to evaluate all
possible expression trees and choose the one that
answers the problem correctly. However, instead
of using gold annotations, we decided to train the
classifiers on all the trees that result in right an-
swers, partly because annotations were not avail-
able, and partly because we were curious how well
the system could perform with no manual effort
invested in annotating training data.

Tree evaluation was done by two simple multi-
layer perceptrons. As described earlier, the first
one returns the probability of a given quantity to
be relevant, as in a tree that answers the question
correctly contains that quantity, the second one re-
turns the probabilities for each of the possible op-
erations to be the lowest common ancestor of a
pair of given quantities in a tree that answers the
question correctly.

For every possible tree per question, the product
of the probabilities of each quantity to be relevant
was added to the product of the probabilities of
the lowest common ancestor of each quantity pair
being correct. These scores, as well as the result of
the tree were put in a list and ordered by score. The
results of the trees were then matched against the
answer options of each question and the answer

1293

option that was first matched in the list was given
as the answer to the question. If the question had
no answer options, the result of the highest rated
tree was given as the answer to the question.

4 Experimental Settings

4.1 Sequence-to-Sequence Neural Network

4.1.1 Data Augmentation

Initially, we tried to trained our model directly on
the questions, but it turned out that model could
not learn at all. In total, we had slightly more than
1000 SAT questions, which was insufficient for an
RNN model. Not to mention that the small train-
ing set contained questions with a variety of types
– open- and closed-vocabulary algebra questions
as well as geometry questions, leaving an even
smaller training set for each subtype. Thus, data
augmentation was a necessary step. In order to
strengthen the connection of numbers, we did not
provide original SAT data with numbers modified,
but more than 600,000 simple closed-vocabulary
algebra questions.

Among them, there were two types of ques-
tions augmented for our model. These included
two types of questions within 3 digits like “If
x + 345 = 111, what is the value of x?” and “If
x− 345 = 111, what is the value of x?”. Not only
numbers and variable names were randomized
but the positions of variables were switched. In
toal, there were 614,236 questions, where “plus“
had 330,620 and “minus“ had 283,616 questions.
Even though augmented data had large differ-
ences with SAT questions, results showed they still
prodigiously contributed to our training.

4.1.2 Training

Rather than training our model together with orig-
inal SAT data and augmented data, we chose to
trained with augmented data first, and then con-
tinued to train with original data. There were 40
iterations of 614,236 questions dealing with addi-
tion and subtraction. Fractions were also present
in the training set. After training with the aug-
mented questions set, our model was trained with
actual questions from the Math SAT. In total, there
were 200 iterations of 805 Math SAT Questions.
Nevertheless, since the training data was so small,
it is highly possible that our model was prone to
over-fitting to the training data.

Example 1
On a certain map, 100 miles is represented
by 1 inch. What is the number of miles rep-
resented by 2.4 inches on this map?

4.2 Tree System
4.2.1 Quantities
Quantities were extracted from questions and an-
swers using a rule-based approach. Before the
extraction, all mentions of quantities were nor-
malized to digits (e.g. one to 1). Then, num-
bers, number-word combinations (e.g. 13-inch),
small letters denoting quantities (all letters except
a) and LATEX expressions were retrieved. LATEX ex-
pressions that contained only numbers were trans-
formed into numbers (e.g. \frac{1}{10} into 0.1).
In general, all questions that contained quantities
other than numbers or the answer of which had
several quantities were filtered out, leaving us with
75% of open-vocabulary questions from the train-
ing set. In the next stage, while constructing trees
for the training data, we heuristically set the max-
imum number of quantities in a question to 7,
which led to using 59% of the training data.

4.2.2 Operations and Tree Enumeration
Once quantities from the question were extracted,
all their possible combinations were obtained,
with size from two to the total number of quanti-
ties. The order of quantities in these combinations,
however, stayed the same. Consider Example 1.
For this word problem, the combination [100 2.4]
would be possible, but the combination [2.4 100]
would not.

For every combination obtained in the previ-
ous step, all possible expression trees with quanti-
ties as leaves and empty inner nodes were gener-
ated. These inner nodes were filled with all possi-
ble combinations of operation signs. As in earlier
studies (Roy and Roth, 2017; Wang et al., 2018),
we used six operations: apart from the standard +,
−, × and ÷, we included reverse operators −rev
and ÷rev to account for the fact that the order of
quantities stays the same in their combinations.

Like Roy and Roth (2015), we implemented
constraints that define monotonic trees. These
constraints are concerned with the order of mul-
tiplication operator in regard to division operator,
and the order of addition operator in relation to
subtraction operator. However, unlike the authors,
we used these constraints to decrease the number

1294

System Accuracy

Baseline (always “A”) 14.3%
Baseline + seq2seq 15.0%
Baseline + trees 15.9%
Baseline + seq2seq + trees 16.7%

Table 1: Results

of trees resulting in right answers, not to guarantee
that any monotonic tree for the solution expression
has the same LCA operation for any pair of quan-
tities in it, as in Roy and Roth (2015).

4.2.3 Features

We used UDPipe (Straka and Straková, 2017) to
parse questions’ text and extract features for the
classifiers. The features are identical to the ones
that Roy and Roth (2015) describe.

5 Results

The results that our systems achieved are shown in
Table 1. Our official submission consists only of
the neural network, which achieved 15%, with the
accuracy on closed-vocabulary algebra questions
being 16% and the accuracy on the other two cate-
gories being 15% each. This result, however, was
achieved by guessing “A” whenever the question
could not be answer by the model. When guess-
ing is removed, the overall accuracy drops to 2%.
However, on the 109 questions the model could
actually answer, it achieved 21% accuracy.

In post-evaluation, after combining the results
of the neural network and the tree system, we were
able to achieve 17% accuracy overall by increas-
ing the accuracy on open-vocabulary algebra ques-
tions by 20%. If we remove the guessing, the tree
system achieves 3% accuracy overall, which stems
from its 13% accuracy on open-vocabulary alge-
bra questions. If we only count the questions that
could actually be answered by the system, its ac-
curacy would be equal to 26%. Without guess-
ing, the combination of both systems produces 4%
accuracy overall, with the distribution being 2%
on closed-vocabulary algebra questions, 13% on
open-vocabulary algebra questions and 0.4% on
geometry questions. On the 205 questions an-
swered by the combination of both systems, the
accuracy was 23%.

6 Discussion/Conclusion

The results of our systems on the full data set are,
frankly put, rather poor. Nevertheless, the tree
system shows promising results in solving open-
vocabulary questions, if it is refined and improved,
while the neural network seems not to perform
well on any specific type of questions, although
its overall performance is similar to that of the tree
system.

Concerning the neural network, it might be ben-
eficial to focuse on specific types of questions, in-
stead of trying to train a model that deals with
mixed types of questions. RNN best learnt on
closed- and open-vocabulary algebra questions,
therefore training separate models for these types
could be one way to improve the system. In addi-
tion to that, a much larger dataset is critical in en-
hancing the model, thus promoting the accuracy of
its predictions. Lastly, data augmentation would
further improve the model. If we were to train a
versatile model for mixed types of math questions,
we could perform data augmentation on each type.

The current problem of the tree system lies to
a large extent within the quality of the tree eval-
uation. It heavily relies on answer options to be
available, as the average index of the first tree
that produces an answer option in the score list
is 47 (for the test data). Therefore, the answer
of the highest-rated tree would most likely be
wrong. Other aspects that could be improved in-
clude choosing other features for the classifiers,
decreasing the scores of trees with low amounts
of quantities (those trees are currently overrated)
or using a different machine learning algorithm al-
together, such as deep reinforcement learning (e.g
Wang et al., 2018).

Apart from that, using no additional quantities
in constructing trees, and including every quan-
tity once made it difficult to obtain trees that not
only gave the right result for the questions from the
training set, but also answered them in a right way.
Moreover, expanding expression trees to problems
that involve letters to denote quantities would def-
initely contribute to improving the performance of
the tree system.

7 Acknowledgements

Part of the experiments reported on this paper was
run on a Titan Xp donated by the NVIDIA Corpo-
ration.

1295

References
François Chollet et al. 2015. Keras. https://
keras.io.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS 2014 Workshop on Deep Learning,
December 2014.

Sepp Hochreiter and Jrgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Mark Hopkins, Ronan Le Bras, Cristian Petrescu-
Prahova, Gabriel Stanovsky, Hannaneh Hajishirzi,
and Rik Koncel-Kedziorski. 2019. Semeval-2019
task 10: Math question answering. In Proceedings
of International Workshop on Semantic Evaluation
(SemEval-2019), Minneapolis, USA.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1743–1752. Associa-
tion for Computational Linguistics.

Subhro Roy and Dan Roth. 2017. Unit dependency
graph and its application to arithmetic word problem
solving. In AAAI.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Milan Straka and Jana Straková. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018. Math-
dqn: Solving arithmetic word problems via deep re-
inforcement learning. In AAAI.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854.

Wojciech Zaremba and Ilya Sutskever. 2015. Learn-
ing to execute. Computing Research Repository,
arXiv:1410.4615. Version 3.

1296

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1297–1301
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

RGCL-WLV at SemEval-2019 Task 12: Toponym Detection

Alistair Plum1 ∗, Tharindu Ranasinghe1 ∗, Pablo Calleja2,
Constantin Orăsan1, Ruslan Mitkov1

1Research Group in Computational Linguistics, University of Wolverhampton, UK
2Ontology Engineering Group, Universidad Politécnica de Madrid, ES

{a.j.plum, t.d.ranasinghehettiarachchige}@wlv.ac.uk
{c.orasan, r.mitkov}@wlv.ac.uk

pcalleja@fi.upm.es

Abstract

This article describes the system submitted by
the RGCL-WLV team to the SemEval 2019
Task 12: Toponym resolution in scientific pa-
pers. The system detects toponyms using
a bootstrapped machine learning (ML) ap-
proach which classifies names identified using
gazetteers extracted from the GeoNames ge-
ographical database. The paper evaluates the
performance of several ML classifiers, as well
as how the gazetteers influence the accuracy of
the system. Several runs were submitted. The
highest precision achieved for one of the sub-
missions was 89%, albeit it at a relatively low
recall of 49%.

1 Introduction

Resolving a toponym, a proper name that refers to
a real existing location, is a non-trivial task closely
related to named entity recognition (NER) (Pisko-
rski and Yangarber, 2013). For this reason, us-
ing an NER system to detect and assign location
tags could seem a good way forward. However,
NER systems may not be able to detect whether a
name refers to a actual location or not (e.g., Lon-
don in London Bus Company). In addition, loca-
tion names are usually ambiguous, which means it
is crucial that these are disambiguated in order to
assign the correct coordinates.

While in the past the focus in toponym res-
olution has been on rule and gazetteer driven
methods (Speriosu and Baldridge, 2013), more
recent approaches also consider ML-based tech-
niques. DeLozier et al. (2015) describe their
ML-based approach, which does not require a
gazetteer. The approach calculates the geograph-
ical profile of each word, which is refined using
Wikipedia statistics, and then fed into an ML clas-
sifier. Speriosu and Baldridge (2013) also make

∗The first two authors contributed equally to the paper.

use of an ML classifier which is text-driven. Geo-
tags of documents are used to automatically gen-
erate a training set. Although the two previous ap-
proaches used two standard corpora for toponym
resolution, consisting of news articles and 19th
century civil war texts, there are wide areas of
application for toponym resolution. For instance,
Ireson and Ciravegna (2010) explore the use in so-
cial media, while Lieberman and Samet (2012) at-
tempt to analyse news streams. Spitz et al. (2016)
have also used an encyclopaedic dataset, compiled
from Wikipedia, WordNet and GeoNames.

The focus of the SemEval 2019 Task 12 was to-
ponym resolution in journal articles from the bio-
medical domain (Weissenbacher et al., 2019). The
articles that had to be processed were case stud-
ies on the epidemiology of viruses, meaning that
the developed systems can potentially be used to
track viruses. The task was composed of three
sub-tasks: (1) toponym detection, followed by (2)
disambiguation and the assignment of the appro-
priate coordinates, as well as (3) the development
of an end-to-end system.

This paper presents our participation in the first
sub-task. Our system performs first a gazetteer
look-up for locations, and then uses machine
learning (ML) to classify whether or not it rep-
resents an actual location. The gazetteers are
extracted from the online geographical database
GeoNames, whilst the classification is carried out
by feeding the context of potential locations in
an ML classifier. The rest of the paper presents
the system developed (Section 2), followed by its
evaluation (Section 3). The paper finishes with
conclusions.

2 System Description

The system developed for this task was designed
as a pipeline consisting of three stages: text clean-

1297

ing, text processing and identification of locations.
The rest of this section presents each of these
stages. The system has been made available on
online. 1

2.1 Text Cleaning

The first processing stage identifies parts of the
text which do not contain any locations that have
to be identified according to the task guidelines.
These parts include the references section of each
text and the information about authors of the jour-
nal articles. In addition, the texts also contain
genome sequences and abbreviations of chemi-
cals, which resemble abbreviations for locations.
Regular expressions were used to replace these
text sequences with spaces. We chose to replace
the sequences rather than remove them in order to
keep the correct offsets of entities which are cru-
cial in the evaluation process.

Not all the genome sequences were correctly
identified due to the variability of how they are
represented. As a result, not all these sequences
were being replaced by spaces. This introduced
noise in our processing pipeline. In addition, in
some cases the regular expressions for excluding
the references section would fail to correctly iden-
tify the boundaries of this section. Since this left
large amounts of these texts blank, three texts did
not have their respective references sections re-
moved.

2.2 Text Processing

Once cleaned, the texts were processed using com-
ponents from the ANNIE pipeline within GATE
(Cunningham et al., 2002, 2011). The ANNIE
pipeline was designed for named entity recogni-
tion tasks, but for our purpose we used only the
tokeniser and gazetteer lookup components.

We produced three different gazetteers. The
first one contained all locations from the GeoN-
ames geographical database. The second gazetteer
contained a list of cities from GeoNames with a
population of over 5,000. The third gazetteer fea-
tures a list of countries, capitals, and cities with
a population larger than 15,000 people extracted
from GeoNames. The default list of regions in-
cluded with ANNIE was also used. A list of US re-
gions as well as their abbreviated forms was added
manually.

1https://github.com/TharinduDR/SemEval-2019-Task-
12-Toponym-Resolution-in-Scientific-Papers

The output of this module was a list of anno-
tations, including tokens boundaries and tokens
matching the gazetteer entries. This information
is then used by the ML classifier in the next step.

2.3 Identification of Locations
Once the texts are processed, the next task is to
detect whether a candidate location really refers to
a location. In addition to cases of common nouns
which may also be used as a location, there are
also cases where the location names were used as
adjectives. For example, in the sentence Other mu-
tations observed in the HA gene of the Kentucky
isolates have also been reported by others, even
though the gazetteer identifies Kentucky as a loca-
tion it is actually referring to a virus entity. Ac-
cording to the guidelines, this should not be anno-
tated as a location, making the task quite difficult.

Analysis of examples from the training data in-
dicated that the context of candidate locations can
be used to assess whether the detected word is
an actual location or not. For this reason, we
trained a machine learning model which uses the
context of candidates to distinguish between real
locations and falsely identified locations by the
gazetteer look-up component. For the experiments
presented here, we used a window of two words
before and two words after the candidate location
to obtain its context. More precisely, if the de-
tected word from the gazetteer is ωi, the context ci
was defined as,

ci = ωi−2 + ωi−1 + ωi + ωi+1 + ωi+2 (1)

The annotated gold standard provided by the
task organisers was used to create a training set
which contained both positive and negative in-
stances. Two machine learning approaches were
considered for this word window classification
task. The first approach was to use traditional ma-
chine learning models, while the other approach
was to use neural network models.

2.3.1 Traditional ML Approach
There are multiple ways that words can be trans-
lated into a numerical representation before they
can be used as features for a machine learning
model. The commonly used representations con-
vert sequences of words to a bag of words or tf-idf
vectors. However, since their introduction, word
embedding models (Mikolov et al., 2013) have
been widely used as features for text classifica-
tion tasks and have proven successful. In addition,

1298

they have the capability to represent the context
better than tf-idf vectors. For this reason, we used
the 300 dimensional word2vec embedding model
trained on the Google news corpus.

The word windows had to be represented by a
vector that can be fed as features to a machine
learning model, while retaining a unique length
over all the training and testing examples, in or-
der to be input into a traditional machine learning
model. There are many ways to represent a text
window with word embeddings. Simply averag-
ing the word embeddings of all words excluding
stop words in a text has proven to be a strong base-
line or feature across a multitude of tasks, such
as short text similarity tasks (Kenter et al., 2016).
Following that, the mean of word vectors in a par-
ticular word window was calculated in order to
represent the whole word window with a vector,
which is a 300 dimensional vector in this scenario.
The vector calculated was used as features and
fed into several machine learning classifiers such
as Support Vector Machines (Cortes and Vapnik,
1995), Random Forest classifier (Breiman, 2001)
and XGBoost (Chen and Guestrin, 2015). The pa-
rameters were tuned using 10-fold cross valida-
tion. For the implementation scikit-learn in python
3.6 was used.

2.3.2 Neural Network Architectures
The representation described above performs
poorly on classification tasks such as sentiment
analysis, because it loses the word order in the
same way it happens with the standard bag-of-
words model, and fails to recognise many sophis-
ticated linguistic phenomena (Le and Mikolov,
2014). For this reason, the second approach relies
on neural networks which receive as input the em-
bedding vectors corresponding to the context, but
without performing any modification on it. Keras
was used to implement these neural architectures.

Two neural architectures were developed. The
first one was adopted from text classification re-
search (Coates and Bollegala, 2018). As depicted
in figure 1 it contains variants of Long Short-Term
Memories (LSTMs) with self attention followed
by average pooling and max pooling layers. It
also has a dropout (Srivastava et al., 2014) be-
tween 2 dense layers after the concatenate layer.
The model was trained with cyclical learning rate
(Smith, 2017).

The pooling layers in the first architecture are
considered as a very primitive type of routing

Figure 1: LSTM variant with self attention

Figure 2: Capsule net architecture

mechanism. The solution that is proposed is a
capsule network (Sabour et al., 2017). A capsule
network with a bi-directional GRU was also ex-
perimented with for this data set. The complete
architecture is shown in figure 2. There is a spa-
tial drop out (Tompson et al., 2015) between the
embedding layer and bi-directional GRU layer and
there is also a dropout (Srivastava et al., 2014) be-
tween two dense layers after the capsule layer.

The results and evaluation criteria of both tradi-
tional approaches and neural network approaches
are reported in the results section 3.

3 Results

3.1 Gazetteers
As described in the previous section, three differ-
ent gazetteers were tested using the development
and training sets. As the machine learning com-
ponent of the system would make the final pre-
diction, it was important to ensure the maximum
number of candidate locations. Therefore, it was

1299

Gazetteer Precision Recall F-Score
GN all 0.2359 0.7699 0.3612
GN 5000+ 0.3584 0.7563 0.4863
GN custom 0.3546 0.7678 0.4851

Table 1: Gazetteer evaluation results

vital to ensure the highest possible recall, while
achieving acceptable precision results.

Table 1 shows the precision, recall and F-score
values for each of the gazetteers, described in sec-
tion 2, run on the training set. Rows one and two
had a high recall but low precision, and a higher
precision, but lower recall, respectively. Row three
shows the results for the final gazetteer. It has the
best balance between precision and recall, and was
selected for use in the final system.

3.2 Identification of Locations

Locations in the training set were matched us-
ing the gazetteers and then extracted together with
their respective word window, in order to com-
pile a separate data set. This data was split into
a training set and an evaluation set for the ma-
chine learning classifiers. The training set con-
sisted of 80% of the total data set and the eval-
uation set, containing the gold standard annota-
tions from the previous training set, had the rest
of the 20%. The accuracy of each machine learn-
ing model evaluated on the evaluation set is shown
in Table 2. Predictions were considered to be ac-
curate if the machine learning model and the gold
standard matched, including correct and incorrect
classifications. All other cases were considered to
be non-accurate.

Our baseline - a zero-R classifier predicting ev-
ery instance as a falsely identified location had an
accuracy of 71.95%. All of our machine learn-
ing models were able to outperform the baseline
model significantly, even though the data set is
in-balanced. The capsule net architecture, which
provided the best performance at an accuracy of
88.73%, was selected for use in the final system.

3.3 Submission Results

After we had determined the best components for
the system, the GN custom gazetteer and the bi-
GRU + Capsule architecture, the whole system
was evaluated on the test set. The submission re-
sults are presented in four categories, determined
by the organisers. Table 3 shows the results for

ML Model Accuracy
Zero-R 71.95%
Random Forest 84.21%
SVM 83.44%
XGBoost 85.80%
Bi-LSTM/Bi-GRU + Max Pooling 87.75%
Bi-GRU + Capsule 88.73%

Table 2: ML models evaluation results

Test Precision Recall F-Score
Strict macro 0.8280 0.4746 0.6034
Strict micro 0.8168 0.3396 0.4798
Overlap macro 0.8980 0.4969 0.6398
Overlap micro 0.8936 0.3654 0.5187

Table 3: Final submission results

each. Overall, our system achieves the highest val-
ues in the overlap macro class, with the lowest in
the strict micro class. The system tends to achieve
acceptable precision scores, but at low recall val-
ues. This trend can most probably be explained
by the fact that many candidate locations are not
detected by the gazetteers. Together with the ma-
chine learning part discarding some proper loca-
tions, this has a dramatic affect on the recall.

4 Conclusion and Future Work

This paper presented the system we submitted to
the SemEval 2019 Task 12: Toponym resolution
in scientific papers. Evaluation of the system has
shown that a pipeline that combines traditional
string matching and advanced machine learning
can offer promising results. It has demonstrated
that a larger size of the gazetteer does not neces-
sarily have a positive effect on performance. It
has also made clear that a higher recall value for
the gazetteer look-up component could provide a
much better basis on which to train machine learn-
ing approaches. On the machine learning side, we
have demonstrated that employing word embed-
dings together with state-of-the-art algorithms can
be a viable way of classifying toponyms.

Due to time constraints, a large amount of
different parameters, as well as optimizing the
lookup algorithm and underlying gazetteers were
not tested or carried out. For future research we
hope to address these problems, so that a better
basis on which to train machine learning architec-
tures can be achieved, as well as more deep learn-
ing architectures.

1300

References
Leo Breiman. 2001. Random forests. Machine Learn-

ing, 45:5–32.

Tianqi Chen and Carlos Guestrin. 2015. Xgboost : Re-
liable large-scale tree boosting system.

Joshua Coates and Danushka Bollegala. 2018. Frus-
tratingly easy meta-embedding - computing meta-
embeddings by averaging source word embeddings.
In NAACL-HLT.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20:273–297.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. 2002. GATE:
A Framework and Graphical Development Envi-
ronment for Robust NLP Tools and Applications.
In Proceedings of the 40th Anniversary Meeting
of the Association for Computational Linguistics
(ACL’02).

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Niraj Aswani, Ian
Roberts, Genevieve Gorrell, Adam Funk, Angus
Roberts, Danica Damljanovic, Thomas Heitz,
Mark A. Greenwood, Horacio Saggion, Johann
Petrak, Yaoyong Li, and Wim Peters. 2011. Text
Processing with GATE (Version 6).

Grant DeLozier, Jason Baldridge, and Loretta London.
2015. Gazetteer-independent toponym resolution
using geographic word profiles. In Twenty-Ninth
AAAI Conference on Artificial Intelligence.

Neil Ireson and Fabio Ciravegna. 2010. Toponym reso-
lution in social media. In The Semantic Web – ISWC
2010, pages 370–385, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Tom Kenter, Alexey Borisov, and Maarten de Ri-
jke. 2016. Siamese cbow: Optimizing word
embeddings for sentence representations. CoRR,
abs/1606.04640.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML.

Michael D. Lieberman and Hanan Samet. 2012. Adap-
tive context features for toponym resolution in
streaming news. In Proceedings of the 35th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’12,
pages 731–740, New York, NY, USA. ACM.

Tomas Mikolov, Kai Chen, Gregory S. Corrado,
and Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. CoRR,
abs/1301.3781.

Jakub Piskorski and Roman Yangarber. 2013. Infor-
mation extraction: Past, present and future. In
Multi-source, multilingual information extraction
and summarization, pages 23–49. Springer.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton.
2017. Dynamic routing between capsules. CoRR,
abs/1710.09829.

Leslie N. Smith. 2017. Cyclical learning rates for train-
ing neural networks. 2017 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages
464–472.

Michael Speriosu and Jason Baldridge. 2013. Text-
driven toponym resolution using indirect supervi-
sion. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 1466–1476.

Andreas Spitz, Johanna Geiß, and Michael Gertz. 2016.
So far away and yet so close: Augmenting toponym
disambiguation and similarity with text-based net-
works. In Proceedings of the Third International
ACM SIGMOD Workshop on Managing and Min-
ing Enriched Geo-Spatial Data, GeoRich ’16, pages
2:1–2:6, New York, NY, USA. ACM.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15:1929–1958.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann
LeCun, and Christoph Bregler. 2015. Efficient ob-
ject localization using convolutional networks. 2015
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 648–656.

Davy Weissenbacher, Arjun Magge, Karen O’Connor,
Matthew Scotch, and Graciela Gonzalez. 2019.
Semeval-2019 task 12: Toponym resolution in sci-
entific papers. In Proceedings of The 13th Interna-
tional Workshop on Semantic Evaluation. Associa-
tion for Computational Linguistics.

1301

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1302–1307
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

THU NGN at SemEval-2019 Task 12: Toponym Detection and
Disambiguation on Scientific Papers

Tao Qi , Suyu Ge , Chuhan Wu , Yubo Chen , Yongfeng Huang
Tsinghua National Laboratory for Information Science and Technology,

Department of Electronic Engineering, Tsinghua University Beijing 100084, China
{qit16,gesy17,wuch15,chen-yb18,yfhuang}@mails.tsinghua.edu.cn

Abstract

Toponym resolution is an important and chal-
lenging task in the neural language processing
field, and has wide applications such as emer-
gency response and social media geographi-
cal event analysis. Toponym resolution can
be roughly divided into two independent steps,
i.e., toponym detection and toponym disam-
biguation. In order to facilitate the study on
toponym resolution, the SemEval 2019 task
12 is proposed, which contains three subtasks,
i.e., toponym detection, toponym disambigua-
tion and toponym resolution. In this paper, we
introduce our system that participated in the
SemEval 2019 task 12. For toponym detec-
tion, in our approach we use TagLM as the ba-
sic model, and explore the use of various fea-
tures in this task, such as word embeddings
extracted from pre-trained language models,
POS tags and lexical features extracted from
dictionaries. For toponym disambiguation, we
propose a heuristics rule-based method using
toponym frequency and population. Our sys-
tems achieved 83.03% strict macro F1, 74.50
strict micro F1, 85.92 overlap macro F1 and
78.47 overlap micro F1 in toponym detection
subtask.

1 Introduction

Toponym resolution is an important task in the nat-
ural language processing field and has many ap-
plications such as emergency response and social
media geographical event analysis(Gritta et al.,
2018). Toponym resolution is usually modelled as
a two-step task. The first step is toponym detec-
tion, which is a typical named entity recognition
(NER) task. The second step is toponym disam-
biguation, which aims to map locations to its co-
ordinates in the real world.

NER is a widely explored task and most NER
methods can be applied to toponym detection. For
example, Ratinov and Roth (2009) used n-grams,

history predictions as the input features of con-
ditional random fields (CRF) for toponym detec-
tion. Usually the performance of these methods
heavily relies on the quality of hand-crafted fea-
tures. However, manually selected features may
be sub-optimal. Also, these methods cannot ef-
fectively exploit contextual information due to the
dependency on bag-of-word features. In recent
years, many neural network based methods have
been proposed for NER. For example, Ma and
Hovy (2016) proposed a CNN-LSTM-CRF model
for NER. They use CNN layer to learn character
features of each word, LSTM layer to learn the
contextual word representations and CRF layer to
predict the label jointly. Gregoric et al. (2018)
proposed Parallel RNN architecture. They split a
single LSTM into multiple equally-size ones with
a penalty to promote diversity. However, these
methods cannot utilize external knowledge to rec-
ognize entities, which is usually important to to-
ponym detection. Usually, linguistic knowledge
such as part-of-speech and dictionary knowledge
may be useful for toponym detection, and they are
easy to obtain. Therefore, in this paper, we aim
to incorporate these external knowledge sources to
enhance our neural model for toponym detection.

Similarly, there are many works on toponym
disambiguation. Most of them are rule-based
methods. They use some heuristics to rank the
candidates and choose the highest one(Gritta et al.,
2018). For example, Karimzadeh et al. (2013)
used the geographical level(e.g. country, province
and city), the Levenshtein Distance and the pop-
ulation of potential candidates to rank the candi-
date toponym and choose the highest one. How-
ever, the result of toponym disambiguation relied
on corpus domain and the rule should be reconsid-
ered when applied to different corpus.

For the toponym detection task, we use
TagLM(Peters et al., 2017) as the basic model.

1302

In our model, we first learn word representations
from original characters, then learn contextual
word representations by a stacked Bi-LSTM net-
work, and finally use a CRF layer to jointly decode
the label sequence. To enrich the representations
of words, we incorporate various features such as
pre-trained word embeddings, POS tags and lex-
icon features. For the toponym disambiguation
task, we design a rule-based heuristics method
by using toponym frequency and population to
rank candidate toponyms. Our systems achieved
83.03% strict macro F1 in the toponym detection
task, 67.21% in the toponym disambiguation task
and 61.31% strict macro F1 in toponym resolution.

2 Our Approach

2.1 Toponym Detection

Our model is based on TagLm (Peters et al., 2017).
As shown in Fig. 1, our model have three major
components, i.e., character encoder, feature con-
catenation and toponym detector.

Usually, character patterns are important clues
for toponym detection. For example, starting
with a capital letter (e.g. Eastern Europe), all
cased word (e.g. UK) and mixed cased word
(e.g. HongKong) are very common in toponym
names. Thus, we use a character encoder module
to learn word representations from original char-
acters. There are two layers in the character en-
coder. The first one is a character embedding
layer. It converts each character in a word into a
low-dimensional dense vector. The second one is
a character-level CNN layer. It was used to cap-
ture local contextual information. We also apply
a max pooling layer to build word representations
by selecting the most salient features.

The feature concatenation module is used to
concatenate different types of features. There are
four types of additional features in our model,
i.e., pre-trained word embeddings, pre-trained lan-
guage model word representations, POS tag rep-
resentations and lexicon representations. Usually,
word embeddings are pre-trained on a large cor-
pus and can provide rich semantic information.
Thus, we use pre-trained word embeddings to en-
rich word representations by incorporating seman-
tic information . However, word embeddings usu-
ally do not contain contextual information. Thus,
we also incorporate word representations gener-
ated by pre-trained language models. Usually, to-
ponyms have specific POS tags such as nouns.

Following Wu et al. (2018), we also incorporate
POS tag information to guide our model. There
are two layers in our model to learn POS tag rep-
resentations. The first one is a POS tag embed-
ding layer, which learns low-dimensional embed-
ding vectors for POS tags. The second one is a Bi-
GRU layer. It was used to learn the syntax struc-
ture of sentences and output the hidden POS tag
representations. In addition, since many toponyms
can be found in toponym databases, lexical fea-
tures may be useful for toponym detection. Due to
our observations, toponym names are more likely
to have low occurrence frequency in documents
and less number of matched toponyms in the to-
ponym database. Thus we constructed three one-
hot vectors as lexical features. First, we counted
the number of matched toponyms in the database
for every word. They were quantified to different
levels and represented by the first one-hot vectors.
The second one-hot vectors were used to repre-
sent whether the first matched toponym ’s names
returned from the database were perfect matches.
The third one-hot vectors were used to represent
quantified occurrence frequency in the training set
of every word. Besides, a three-layer feed-forward
neural network (FFNN) was used to learn lexical
representations for every word as a lexical repre-
sentation.

The toponym detector module aims to predict
the label of each word from its representations.
There are two submodule in the toponym detector.
The first one is a stacked Bi-LSTM network. Usu-
ally, global contexts are important for toponym
detection. For example, in the sentence “Beijing
is the capital of China”, the words “capital” and
“China” are all informative for toponym detection.
Thus, we use a stacked Bi-LSTM network to learn
hidden word representations based on global con-
texts. The second one is a CRF layer, which is
used to decode the label sequence jointly (Lafferty
et al., 2001). Usually, there is relatedness between
the labels of neighbor words. For example, the
label “I” (inside) can only appears after “B” (be-
ginning). Thus, we use CRF to do joint label de-
coding.

2.2 Toponym Disambiguation

Toponym disambiguation is a down-stream task
of toponym detection. Due to the lack of dictio-
nary knowledge, it’s difficult for a neural network
to do toponym disambiguation. Thus, we propose

1303

�Z���������u����]vP

�

®

�Z���������u����]vP

�

®

�Z���������u����]vP

�

®

®

®

®

®

�

�ÝÚ �Ý� �Ýz�ÝÛ �Ýz?Ú

®

®

®

®

�5

�6 �Ü �Ç?5 �Ç

�5 �6 �Ü �Ç?5 �Ç

®®

®®

®

>D

�u����]vP

t}��

�u����]vP

WK^��P

�u����]vP

>�Æ]��o

&���µ���

�Z�������

&���µ���

>^dD

>^dD

�Z&

�5

�5

�5

�5

�5

�6

�6

�6

�6

�6

�Ü

�Ü

�Ü

�Ü

�Ü

�Ç?5

�Ç?5

�Ç?5

�Ç?5

�Ç?5

�Ç

�Ç

�Ç

�Ç

�Ç

D�Æ�W}}o]vP D�Æ�W}}o]vP D�Æ�W}}o]vP

�Z�������

�}vÀí�

?55 ?56 ?57 ?58 ?Ü5 ?Ü6 ?Ü7 ?Ü8 ?Ç5 ?Ç6 ?Ç7 ?Ç8

Figure 1: The architecture of our model for toponym
detection.

a rule-based heuristic method for toponym disam-
biguation. An observation is that among the to-
ponym candidates returned by the database, the to-
ponym with higher frequency is more likely to be
mentioned. In addition, the toponym with higher
population may also have a higher probability to
be mentioned. Therefore, we propose a heuristic
algorithm named Most Frequency - Most Popula-
tion (mFmP). If a toponym appears in the train set,
we will select the highest frequency id as the out-
put. Otherwise, we will select the toponym with
the most population as output.

3 Experiment

3.1 Experimental Settings

We conduct experiments on science reports pro-
vided the SemEval-2019 task 12. The data set is
composed of 72 full-text journal articles in open
access. There are four different metrics to eval-
uate the prediction performance, i.e., strict macro
F1, strict micro F1, overlap macro F1 and overlap
micro F1.

In the toponym detection task, we used NLTK1

for sentence segmentation, word tokenization and
POS tagging. We used ELMo(Reimers and
Gurevych, 2017) and BERT(Devlin et al., 2018)
model to generate 1024-dimensional contextual-
ized word embeddings. We used GeoNames2

1https://www.nltk.org
2http://www.geonames.org

to construct lexical feature. The BIO tagging
scheme(Sang and Veenstra, 1999) was used in the
toponym detection task. In the toponym disam-
biguation task, we use GeoNames database to re-
trieve candidate toponyms.

In our approach, the three word embed-
ding vectors we used (Glove(Pennington et al.,
2014), word2vec(Mikolov et al., 2013), fast-
text(Bojanowski et al., 2017)) were all 300-
dimensional. The dimension of the character em-
bedding was set to 100. The character CNN had
100 filters, and their window size was set to 3.
The sizes of the 3-layer FFNN were respectively
set to 256, 256, and 128. We set the dimension
of POS tag embeddings to 128. The Bi-GRU
layer for POS tag representation learning was 64-
dimensional. The two Bi-LSTM layers for cap-
turing long-distance and short-distance informa-
tion were 128-dimensional and 64-dimensional.
To mitigate overfitting, we added 20% dropout to
each layer. We used Adam as the optimizer for
model training.

In our approach, we used transductive learn-
ing techniques to further improve the performance
of our approach. We first trained our model on
the train set, and then applied our model to the
test set to generate pseudo labeled data. Finally,
we jointly trained our model on the combination
of the training and test sets. In addition, we use
model ensemble strategy to reduce the uncertainty
of our model(Wu et al., 2017). We trained our
model for 10 times independently and the final
predictions are made by voting.

3.2 Performance Evaluation

In this section, we compare our approach with
several baseline methods to evaluate the perfor-
mance of our approach. The baseline methods
are listed as follows. (1) Baseline: a baseline
system provided by SemEval 2019 task 12(Davy
et al., 2019). It uses n-grams as input and a FFNN
network to predict label. The input features in-
cludes word embedding and character features. (2)
CNN-CRF: a two-layer CNN and a CRF layer
with word embedding for toponym detection. (3)
LSTM-CRF: a two layer LSTM and a CRF layer
with word embedding for toponym detection.

The comparative results are listed in Table 1.
According to these experimental results, we have
several observations. First, LSTM-CRF outper-
forms CNN-CRF. This may be because CNN can

1304

method SMA SMI OMA OMI
baseline 75.56 69.84 80.55 82.60
CNN-CRF 51.28 42.20 61.23 52.51
LSTM-CRF 61.26 47.73 73.26 61.56
Our approach 84.10 82.36 91.36 90.72

Table 1: Performance of different toponym detection
methods. SMA, SMI, OMA, and OMI respectively de-
note the strict macro F1, strict micro F1, overlap macro
F1 and overlap micro F1.

method strict macro F1 strict micro F1
baseline 84.00 77.59
mFmP 83.58 78.14

Table 2: Performance evaluation of toponym disam-
biguation.

only capture local information, instead, LSTM can
utilize global information. This indicates that cap-
turing global contextual information have the po-
tential to improve the performance of toponym de-
tection. Second, the baseline method outperforms
LSTM-CRF and CNN-CRF. This may because
LSTM-CRF and CNN-CRF did not use character-
level features, which shows the effect of character-
level information on the performance of toponym
detection. In addition, the performances of CNN-
CRF and LSTM-CRF are very poor. This may be-
cause these two models only use word embedding
to enhance the model’s semantic information. And
this word embedding is not trained on science re-
ports dataset, which may make these two methods
lack of semantic information. Third, our approach
outperformed all these baseline methods. This is
because our approach use pre-trained word em-
beddings and language model to enhance the se-
mantic information of model, use character-level
word representations to capture character patterns
of toponym names, and features, i.e., lexicon fea-
tures and POStag features, to add extract informa-
tion. This result validates the effectiveness of our
model.

The results for toponym disambiguation are
listed in Table 2. Baseline method selected to-
ponym with highest population among candidate
toponyms. The performance of our method is sim-
ilar to baseline method. This may be because high
frequency toponyms are often with large popula-
tion.

Method SMA SMI OMA OMI
WE 77.50 62.61 83.82 69.33
WE+CE 81.75 66.16 85.78 70.16
TagLM 85.04 81.78 90.39 89.61
TagLM+POS 83.64 78.35 90.03 88.87
TagLM+LEX 85.37 77.77 90.91 86.57
TagLM+POS+LEX 84.10 82.36 91.36 90.72

Table 3: Influence of different features on the perfor-
mance of our model. WE, CE, POS, LEX respectively
denote toponym detector using word embedding, char-
acter encoder, POS tag representations and lexicon rep-
resentations as input.

3.3 Influence of Different Features

In this section, we conduct several experiments
to evaluate the effect of each type of features we
used. We added different types of features to our
toponym detector gradually to conduct our exper-
iments. The experimental results are listed in Ta-
ble. 3. According to Table. 3, we have several ob-
servations.

First, the WE+CE method consistently out-
performs WE. This indicates that character-level
word representations can make our model detect
toponym names effectively. Second, the perfor-
mance of TagLM is much better than the perfor-
mances of WE and WE+CE. This may because
WE and WE+CE method can only obtain seman-
tic information from word embedding and train-
ing data, which is not enough. Incorporating word
embedding vectors generated by pre-trained lan-
guage models could enhance the semantic infor-
mation of our model. Third, after incorporating
POS tag embedding or lexical feature into our
model separately, the performances of these two
models declined. This may be because the POS
tag and lexical features of several samples are in-
accurate, which incorporate misleading informa-
tion into our model. Forth, incorporating these two
features into our model together improve the per-
formance of our model. This may be because both
features have inherent relatedness and our model
is more easily to exploit useful information from
the combination of both features.

3.4 Influence of Transductive Learning and
Model Ensemble

In this section, we conduct several experiments to
evaluate the influence of transductive learning and
model ensemble on the performance of our model.
The experimental results are shown in Figure. 2.

1305

SMA SMI OMA OMI
80

84

88

92
F1

 sc
or

es
/%

w/o Transductive Learning
+ Transductive Learning

(a) Influence of transductive
learning.

SMA SMI OMA OMI
80

84

88

92

F1
 sc

or
es

/%

w/o Ensemble
+ Ensemble

(b) Influence of model en-
semble

Figure 2: Influence of transductive learning and model
ensemble.

According to Figure. 2, we can find both transduc-
tive learning and ensemble strategy can improve
the performance of our model. This indicates that
our model could be more robust by incorporating
more training samples and voting scheme.

4 Conclusion

In this paper, we introduce our system participat-
ing in the SemEval-2019 task 12. For the toponym
detection, we use a TagLM model with various
features to enrich word representations. In addi-
tion, we use a transductive learning method and
ensemble strategy to further improve the perfor-
mance of our model. For toponym disambigua-
tion, we propose a heuristics rule-based method
based on toponym frequency and population. Our
systems achieve 83.03% strict macro F1 in to-
ponym detection, 67.21% strict macro F1 in to-
ponym disambiguation and 61.31% strict macro
F1 in toponym resolution.

Acknowledgments

This work was supported by the National Key Re-
search and Development Program of China un-
der Grant number 2018YFC1604002, and the Na-
tional Natural Science Foundation of China under
Grant numbers U1836204, U1705261, U1636113,
U1536201, and U1536207.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Weissenbacher Davy, Magge Arjun, O’Connor Karen,
Scotch Matthew, and Gonzalez Graciela. 2019.
Semeval-2019 task 12: Toponym resolution in sci-
entific papers. In Proceedings of The 13th Interna-
tional Workshop on Semantic Evaluation. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Andrej Zukov Gregoric, Yoram Bachrach, and Sam
Coope. 2018. Named entity recognition with paral-
lel recurrent neural networks. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 69–74.

Milan Gritta, Mohammad Taher Pilehvar, Nut Lim-
sopatham, and Nigel Collier. 2018. Whats missing
in geographical parsing? Language Resources and
Evaluation, 52(2):603–623.

Morteza Karimzadeh, Wenyi Huang, Siddhartha
Banerjee, Jan Oliver Wallgrün, Frank Hardisty,
Scott Pezanowski, Prasenjit Mitra, and Alan M
MacEachren. 2013. Geotxt: a web api to lever-
age place references in text. In Proceedings of the
7th workshop on geographic information retrieval,
pages 72–73. ACM.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew E Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
arXiv preprint arXiv:1705.00108.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning, pages 147–
155. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 338–348, Copenhagen, Denmark.

Erik F Sang and Jorn Veenstra. 1999. Representing text
chunks. In Proceedings of the ninth conference on

1306

European chapter of the Association for Computa-
tional Linguistics, pages 173–179. Association for
Computational Linguistics.

Chuhan Wu, Fangzhao Wu, Yongfeng Huang, Sixing
Wu, and Zhigang Yuan. 2017. Thu ngn at ijcnlp-
2017 task 2: Dimensional sentiment analysis for chi-
nese phrases with deep lstm. Proceedings of the
IJCNLP 2017, Shared Tasks, pages 47–52.

Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan,
and Yongfeng Huang. 2018. A hybrid unsupervised
method for aspect term and opinion target extrac-
tion. Knowledge-Based Systems, 148:66–73.

1307

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1308–1312
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UNH at SemEval-2019 Task 12: Toponym Resolution in Scientific Papers

Matthew Magnusson
Department of Computer Science

University of New Hampshire
mfm2@cs.unh.edu

Laura Dietz
Department of Computer Science

University of New Hampshire
dietz@cs.unh.edu

Abstract

The SemEval-2019 Task 12 is toponym resolu-
tion in scientific papers. We focus on Subtask
1: Toponym Detection which is the identifi-
cation of spans of text for place names men-
tioned in a document. We propose two meth-
ods: 1) sliding window convolutional neu-
ral network using ELMo embeddings (CNN-
ELMo), and 2) sliding window multi-Layer
perceptron using ELMo embeddings (MLP-
ELMo). We also submit a bi-directional
LSTM with Conditional Random Fields (bi-
LSTM) as a strong baseline given its state-
of-art performance in Named Entity Recogni-
tion (NER) task. Our best performing model is
CNN-ELMo with a F1 of 0.844 which was be-
low bi-LSTM F1 of 0.862 when evaluated on
overlap macro detection. Eight teams partici-
pated in this subtask with a total of 21 submis-
sions.

1 Introduction

Toponyms are textual spans of text identifying
geospatial locations. This can range from the
canonical name of populated places, such as “Lon-
don” to direct or indirect mentions of geographic
entities. The parsing of geographic locations from
unstructured text is considered an open challenge
due to domain diversity, place name ambiguity,
metonymic language and often limited leverag-
ing of context (Gritta et al., 2018). Many scien-
tific publications contain toponyms which can be
challenging to extract automatically. Specifically,
names of institutions and viruses often contain ge-
ographic references which may confuse the ex-
tractor. Often, the extractor needs to handle noisy
text parsed from PDF versions of scientific articles
which can introduce artifacts.

In Task 12, a toponym is defined to include
proper names and geographic entities but to ex-
clude indirect mentions of places and metonyms.

Additional discussion of the motivation and task
description is available at the task web site.1

2 Related Work

There is significant work in the area of toponym
detection (Matsuda et al., 2015; D. Lieberman
et al., 2010) and the closely related fields of named
entity recognition (NER) (Li et al., 2018) and en-
tity mention detection (EMD) (Shen et al., 2015)
with many different approaches. State-of-the-art
named entity detection models have historically
employed a combination of hand-crafted features,
rules, natural language processing (NLP), string-
pattern matching, and domain knowledge using
supervised learning on manually annotated cor-
pora (Piskorski and Yangarber, 2018). A common
approach to toponym detection has been to utilize
place name gazetteers which are directories of ge-
ographic names and their corresponding geoloca-
tions to perform string matching of place names in
text (D. Lieberman et al., 2010).

Contemporary approaches in entity detection
have utilized neural-based architectures. (Col-
lobert et al., 2011) propose a window-based,
multi-layer, dense feed-forward neural architec-
ture using word embeddings concatenated with
orthographic features and a gazetteer as an in-
put layer with a hard Tanh output layer for supe-
rior performance on a standard NER task. Huang
et al. (2015) utilise a bi-directional LSTM with
a sequential conditional random layer using a
gazetteer and Senna word embeddings to ob-
tain superior performance. Magge et al. (2018)
achieves state-of-the-art results in toponym de-
tection by utilizing a window-based deep neural
network, word embeddings trained on a domain-
specific corpus, orthographic features, and a
gazetteer.

1https://competitions.codalab.org/competitions/19948

1308

Table 1: Gold Standard Corpus Statistics

Documents Tokens Toponyms

Train 72 396,668 3,637
Valid 32 179,443 2,141
Test 45 253,159 4,616

Total 149 829,720 10,394

3 Data

A gold standard corpus, composed of 150 full
text journal articles in open access from PubMed
Central (PMC), is provided by the task organiz-
ers.2 Additional information can be found at Weis-
senbacher et al. (2017) for the general approach
followed by the task organizers for developing the
corpus. Table 1 highlights the gold standard cor-
pus statistics.

4 Approach

Our approach is motivated by the simplicity and
strong performance of windows-based approaches
on the NER and toponym task with the strong per-
formance of deep contextual embeddings on re-
lated NLP tasks. Two different neural based ap-
proaches are undertaken by the team: 1) sliding
windows convolutional neural network using deep
embeddings, and 2) sliding window multi-layer
perceptron using deep embeddings. The embed-
dings are composed of an ELMo contextual em-
bedding concatenated with hand-crafted features.

4.1 Embeddings
The ELMo embeddings (Gardner et al., 2018) are
learned functions of the internal states of a deep
bidirectional language model (biLM) that has been
pre-trained on the 1B Word Benchmark. These
vectors are developed from the concatenation of
each of the 1,024 length vector outputs from the
model for each token and are a function of the
complete input sentence.

For each token in the context of its sentence,
a vector representation is generated by concate-
nating the ELMo model embedding with the one-
hot encoding of orthographic features and an addi-
tional flag bit indicating if the token was contained
within the set of gazetteer tokens. This resulted in
a vector of length 3,081 for each token. A padding

2We are unable to successfully parse one of the documents
from the train set due to an encoding error

vector of all 0s was used for the sliding window
neural models.

4.2 Hand-crafted Features
Hand-crafted features were added as they slightly
improve model performance when compared to
using the ELMo embeddings alone for the input
layer to the neural models.

Orthographic Features: a one hot encoding is
assigned to each token based on its orthographic
structure: only numeric, all lower case alpha-
betic characters, all upper case alphabetic charac-
ters, title-case alphabetic characters, mixed case
(not title-case) alphabetic characters, alphabetic
characters with numeric, padding token, and the
“other” for the remaining tokens not matched by
previously listed features. Alphabetic characters
are UTF-8.

Gazeteer Features: a set of toponynm tokens
is generated from the entries in GeoNames.3 For
example, for the entry in Geonames,“Gulf of Mex-
ico”, the tokens “Gulf”, “of”, and “Mexico” are
added to the toponym set. This is used as a binary
feature for the presence of the parsed token in the
constructed Geonames token set.

4.3 Implementation details
The documents are parsed into sentences and tok-
enized using the open-source NLP library Spacy.4

Pre-trained embeddings are provided by
Pyysalo et al. (2013).5 which are generated from
Wikipedia, PubMed, and PMC texts using the
word2vec tool. They are 200-dimensional vectors
trained using the skip-gram model with a window
size of 5, hierarchical softmax training, and a
frequent word subsampling threshold of 0.001.
These vectors are used in the baseline and the
bi-LSTM with CRF models.

ELMo embeddings are generated using the Al-
lenNLP tool .6 The deep learning library Keras
2.2.1 7 is used for training the neural models. Ten-
sorflow 1.128 is the backend used for training and
evaluating all of the models attempted. In training
the models, the Adam optimizer in Keras is used.
Additional code and data will be available in an
on-line appendix.9

3https://www.geonames.org/export/
4https://spacy.io/
5http://bio.nlplab.org/
6https://github.com/allenai/allennlp/
7https://keras.io/
8https://www.tensorflow.org/
9 https://cs.unh.edu/ mfm2/index.html

1309

4.4 Models

We compare the following models:
MLP-ELMo: A sliding window (size = 5) is

applied to each sentence with padding vectors ap-
plied to boundary tokens. The input layer to the
neural models is a 5 x 3081 matrix using the
ELMo-based embeddings. The input layer is con-
nected to two fully connected layers with 128 hid-
den units each and relu activation. The output is
a sigmoid with a binary output to indicate if the
token is part of a toponym.

CNN-ELMo: A sliding window (size = 5) is
applied to each sentence with padding vectors ap-
plied to boundary tokens. The input layer is a 5
x 3081 layer. The input layer is two 1d convolu-
tional layers with filter sizes of 250 and a kernel
size of 3. A global 1-d max pooling layer follows
the convolutional layers. Two fully connected lay-
ers with 100 hidden units each and relu activation
follow max pooling. A sigmoid function is applied
in output layer to indicate if the token is part of a
toponym.

4.5 Baseline

Two models are used for evaluation: 1) a slid-
ing window mlp provided by the task organizers,
and 2) bi-LSTM with CRF. The bi-LSTM with
CRF model demonstrates state-of-the-art results
on NER and is used as an additional strong bench-
mark for model comparison.

MLP-Baseline: The task organizers provide a
state-of-the-art geoparser as a strong baseline. The
system has a specific component for toponym de-
tection using a two-layer feedforward neural net-
work (200 hidden units per layer) as described
in Magge et al. (2018). The baseline features
a sliding window (size = 5) over each sentence
using Wikipedia-Pubmed-PMC word2vec embed-
dings for token encoding. The baseline did not in-
clude a gazetter-based lookup but did incorporate
orthographic structure of the tokens: 1) All Caps
- ASCII, 2) First letter capitalized - ASCII, and
3) first letter not-capitalized - ASCII. The base-
line also uses separately trained vectors if the to-
ken contained a digit or unknown token in the vo-
cabulary.

Bi-LSTM-Baseline: This strong baseline im-
plementation utilizes the code developed by
Reimers and Gurevych (2017).10 Input sentences
for the model are generated in the CoNLL format

10https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf

with the IOB representation for labeled toponyms
in the training data. The embeddings are the
Wikipedia-Pubmed-PMC word2vec vectors. Each
LSTM has a size of 100 and is trained with a
dropout of 0.25. Character embeddings are gen-
erated using a convolutional neural network and
the maximum character length is 50. The model is
fit over 25 training epochs.

5 Experiment Evaluation

5.1 Metrics

The metrics for evaluation are precision, recall
and F-measure. Two variants are provided for
toponym detection: strict and overlapping mea-
sures. In the strict measure, mentions match the
gold standard if they match exact span boundaries.
In the overlapping measure, a match occurs when
the mention and gold standard share any common
span of text.

There are two methods for computing precision
and recall: micro averaging, and macro averag-
ing. In micro averaging the corpus of documents
is treated as one large document when calculating
precision and recall. In macro averaging precision,
recall and f-measure are calculated on a per docu-
ment basis, and then the results are averaged.

5.2 Results

The model results are shown in Tables 2, 3, 4,
and 5. The best model in the task by the Team
“DM NLP” (Davy Weissenbacher, 2019) is pro-
vided for comparison with the results our team
achieves. The F1 scores of the two sliding window
models and the bi-LSTM benchmark outperforms
the task benchmark on all metrics. Each model
is run once with a random model parameter ini-
tialization. The MLP-ELMo model had a similar
feedforward structure and approach as the baseline
neural model. The primary difference is the em-
bedding vectors used. For both strict and overlap
toponym detection, MLP-ELMo model achieves
the same or higher precision and recall than the
baseline.

The convolutional network using the ELMo-
based embeddings exhibits higher performance on
the f1 score relative to MLP-ELMo, however pre-
cision is higher and recall is lower for both strict
and overlap measures.

The best performing model is the bi-LSTM with
CRF method. This shows that the sliding win-
dow models with deep contextual embeddings did

1310

Table 2: Overlap Macro

Run P R F1

Bi-LSTM-Baseline 0.910 0.819 0.862
CNN-ELMo 0.908 0.788 0.844
MLP-ELMo 0.886 0.798 0.840
MLP-Baseline 0.864 0.797 0.829

DM NLP 0.946 0.924 0.935

Table 3: Overlap Micro

Run P R F1

Bi-LSTM-Baseline 0.897 0.704 0.789
CNN-ELMo 0.913 0.697 0.791
MLP-ELMo 0.890 0.737 0.807
MLP-Baseline 0.880 0.687 0.772

DM NLP 0.954 0.880 0.915

not achieve state-of-art performance on this task.
However, bi-LSTM with CRF has lower perfor-
mance than the best model submitted for the task
which indicates that other approaches can exceed
the performance of a state-of-the-art Named Entity
Recognition model.

Fine tuning shows that a window size of 5 yields
the best performance on the validation set dur-
ing training for the sliding window neural models.
The sliding window neural models do not require
many epochs of training with approximately only
three required before overfitting of the training
data becomes evident. Adding dropout to training
did not appear to improve sliding window model
performance.

6 Conclusion

The best performing submission by our team is
bi-LSTM with CRF. This is not surprising as this
technique has achieved state-of-the-art results in
NER NLP tasks. The sliding window models we
propose are similar in the approach as the task
baseline model. The ELMo-based embeddings do
achieve a boost in performance relative to base-
line given the richer context and character struc-
ture they embed. This indicates that the ELMo-
derived embeddings are superior in the task to
embeddings trained on a domain-specific corpus
using word2vec. However, for both overlap and
strict macro the recall for MLP-ELMo is identical
to the baseline model.

Bi-LSTM with CRF and the baseline neural
model are noteworthy in that they are both able

Table 4: Strict Macro

Run P R F1

Bi-LSTM-Baseline 0.862 0.781 0.819
CNN-ELMo 0.836 0.737 0.784
MLP-ELMo 0.811 0.740 0.774
MLP-Baseline 0.791 0.740 0.764

DM NLP 0.927 0.906 0.916

Table 5: Strict Micro

Run P R F1

Bi-LSTM-Baseline 0.835 0.650 0.731
CNN-ELMo 0.807 0.618 0.700
MLP-ELMo 0.782 0.646 0.707
MLP-Baseline 0.775 0.603 0.678

DM NLP 0.929 0.856 0.891

to extract toponym mentions only using context
from embeddings to acheive high-quality results
without relying on the presence of a gazetteer.
An open question is if a gazetter or other knowl-
edge graph structure could be incorporated into a
deep neural model using contextual embeddings
to achieve superior performance. It is also not
clear why CNN-ELMo has lower recall than MLP-
ELMo and baseline.

The results suggest that a sliding window model
can be enhanced by better-quality embeddings and
a convolutional component. The sliding window
model approach is attractive due to its relatively
straight-forward implementation and quick train-
ing time. The results achieved by bi-LSTM with
CRF and the model submitted by DM NLP, sug-
gest that other approaches may ultimately gener-
ate superior performance on the toponym detec-
tion task.

Acknowledgements
This material is based upon work supported by
the National Science Foundation under Grant No.
1846017. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References
Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

1311

Michael D. Lieberman, Hanan Samet, and Jagan
Sankaranarayanan. 2010. Geotagging: Using prox-
imity, sibling, and prominence clues to understand
comma groups.

Karen O’Connor Matthew Scotch Graciela Gonzalez
Davy Weissenbacher, Arjun Magge. 2019. Semeval-
2019 task 12: Toponym resolution in scientific pa-
pers. In Proceedings of The 13th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2018. AllenNLP: A deep semantic natural language
processing platform. In ACL workshop for NLP
Open Source Software.

Milan Gritta, Mohammad Taher Pilehvar, Nut Lim-
sopatham, and Nigel Collier. 2018. What’s miss-
ing in geographical parsing? Lang. Resour. Eval.,
52(2):603–623.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. CoRR,
abs/1508.01991.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2018. A survey on deep learning for named entity
recognition. CoRR, abs/1812.09449.

Arjun Magge, Matthew Scotch, Abeed Sarker, Davy
Weissenbacher, and Graciela Gonzalez-Hernandez.
2018. Deep neural networks and distant supervision
for geographic location mention extraction. Bioin-
formatics, 34(13):i565–i573.

Koji Matsuda, Akira Sasaki, Naoaki Okazaki, and Ken-
taro Inui. 2015. Annotating geographical entities on
microblog text. In Proceedings of The 9th Linguistic
Annotation Workshop, pages 85–94. Association for
Computational Linguistics.

Jakub Piskorski and Roman Yangarber. 2018. Chapter
2 information extraction : Past , present and future.

Sampo Pyysalo, Filip Ginter, Hans Moen, Tapio
Salakoski, and Sophia Ananiadou. 2013. Distribu-
tional semantics resources for biomedical text pro-
cessing.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 338–348, Copenhagen, Denmark.

W. Shen, J. Wang, and J. Han. 2015. Entity linking
with a knowledge base: Issues, techniques, and so-
lutions. IEEE Transactions on Knowledge & Data
Engineering, 27(2):443–460.

Davy Weissenbacher, Abeed Sarker, Tasnia Tahsin,
Matthew Scotch, and Graciela Gonzalez. 2017. Ex-
tracting geographic locations from the literature for
virus phylogeography using supervised and distant
supervision methods. AMIA Jt Summits Transl Sci
Proc, 2017:114–122. 28815119[pmid].

1312

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1313–1318
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

UniMelb at SemEval-2019 Task 12: Multi-model Combination for
Toponym Resolution

Haonan Li♠ Minghan Wang♠ Maria Vasardani♥
Martin Tomko♥ Timothy Baldwin♠

♠ School of Computing and Information Systems
♥ Department of Infrastructure Engineering

The University of Melbourne
{haonanl5,minghanw}@student.unimelb.edu.au,

{maria.vasardani, tomkom}@unimelb.edu.au, tb@ldwin.net

Abstract

This paper describes our submission to
SemEval-2019 Task 12 on toponym resolution
in scientific papers. We train separate NER
models for toponym detection over text ex-
tracted from tables vs. text from the body of
the paper, and train another auxiliary model
to eliminate mis-detected toponyms. For to-
ponym disambiguation, we use an SVM clas-
sifier with hand-engineered features. Our best
model achieved a strict micro-F1 score of
80.92% and overlap micro-F1 score of 86.88%
in the toponym detection subtask, ranking 2nd
out of 8 teams on F1 score. For toponym dis-
ambiguation and end-to-end resolution, we of-
ficially ranked 2nd and 3rd, respectively.

1 Introduction

Toponym resolution (TR) refers to the task of
automatically assigning geographic references to
place names in text, which has applications in
question answering and information retrieval tasks
(Leidner, 2008; Daoud and Huang, 2013; Vasar-
dani et al., 2013), user geolocation prediction
(Roller et al., 2012; Han et al., 2014; Rahimi
et al., 2015), and historical research (Grover et al.,
2010).

This paper describes our system entry to the To-
ponym resolution in scientific paper task of Se-
mEval 2019 (Weissenbacher et al., 2019). The task
consists of three subtasks: toponym detection, to-
ponym disambiguation, and end-to-end toponym
resolution.

For the toponym detection task, we extract ta-
bles from the full text and train separate BiLSTM-
ATTN models for each. For tables, the model cap-
tures the horizontal row-wise structure of the ta-
ble. For non-table content, the model can capture
syntactic and semantic features. In both cases, we
use a deep contextualized word representation —
ELMo (Peters et al., 2018) — to represent each

token. After detecting toponyms, we use an orga-
nization name detection model to eliminate mis-
detected toponyms that are actually part of an or-
ganization name. For the toponym disambiguation
task, we first construct a candidate set by search-
ing toponyms on GeoNames.1 Then, we manu-
ally construct features based on search results, and
finally, train an SVM model to disambiguate the
locations. For the end-to-end resolution task, we
pipeline the two aforementioned steps.

Our work makes the following contributions:

• we show that training separate models for ta-
ble and non-table portions of the paper is bet-
ter than simply training one model over the
full text;

• we show that contextualized word represen-
tation boosts performance;

• we show that auxiliary organization name
recognition model is helpful for toponym
detection, and better than training a single
named entity recognizer (NER).

2 Toponym Detection

Figure 1 shows our workflow on the toponym de-
tection task, which consist of 4 parts: (a) pre-
processing, which contains tokenization, table ex-
traction and sentence segmentation; (b) training
and inference for the toponym detection model; (c)
post-processing, to combine detected words into
toponyms; and (d) refinement of the results by in-
corporating an auxiliary model.

2.1 Pre-processing

Tables are ubiquitous in scientific articles, and dif-
fer in structure to text in the body of the paper, in

1GeoNames, https://www.geonames.org/ is a
freely available global placename database.

1313

Input

LSTM-Attn

Post-processingAux NER

LSTM-Attn

Relabel

Output

Rule-based table
detection

Table part Non-table
 part

Figure 1: Toponym detection workflow

terms of syntactic structure. As such, training a
single text embedding model over both the main
body of text and tables will likely lead to sub-
optimal representations, leading us to train sepa-
rate models for: (1) tables, and (2) the remainder
of the text content of the paper. To extract tables
from the plain text dump provided by the shared
task organisers, we use a rule-based table detec-
tion method.

We first tokenize the entire article, as part of
which we treat all punctuation as a separator. In
the process of table extraction, we process the raw
text line-by-line rather than performing sentence
tokenization. We treat numbers, OOV tokens (us-
ing GloVe vocabulary), |, and - as table elements,
and consider lines with more than 70% of table
elements to be table rows. Three or more consec-
utive table rows are considered to make up a table.
In this way, we extract tables from the plain text
dump of the articles. Note that the original PDF
versions of papers were not made available by the
task organizers, meaning that it wasn’t possible to
use vision-based methods to identify tables.

For the remainder of the text dump not detected
as tables, we perform tokenization, remove hy-
phens caused by line breaks, and then perform sen-
tence segmentation using SpaCy.2 Sentences that

2https://spacy.io

are shorter than 5 tokens in length are concate-
nated with the preceding and proceeding sentences
to make up a single sentence. By expanding short
sentences, richer context can be exploited by both
ELMo and the RNN-based model.

2.2 Contextual Representation
We use ELMo (Peters et al., 2018) word repre-
sentations in this paper, which are learned from
the internal states of a deep bidirectional language
model (biLM), pre-trained on a large text cor-
pus. ELMo representations are purely character-
based, allowing the network to use morphologi-
cal clues to form robust representations for out-
of-vocabulary tokens unseen in training. They are
also robust to syntactic disfluencies caused by the
fine-grainedness of word segmentation. For the
purposes of empirical comparison, we also report
on experiments using GloVe (Pennington et al.,
2014) embeddings.

2.3 Models
For toponym extraction in the table part, we ex-
perimented with two kinds of models. The first is
a token-level model which is described in Magge
et al. (2018). In this model, each training instance
consists of an input word, the word’s context, and
a label indicating whether the word is a part of a
toponym. The context of the word is formed by the
words in its neighbourhood, which is a window
of words centred on the given word. We exper-
imented with two- and three-layer feed-forward
models.

The second model is built with RNN and self-
attention (Vaswani et al., 2017). Although an RNN
is able to make predictions over long sequences,
the documents in this task are too long for an
RNN, and at the same time, the size of the train-
ing data is not sufficient to train an RNN. As such,
we split each document with several sentences and
make predictions on separate sentences (hidden
states are not passed through sentences). We use
a two-layer bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) to capture the sequential in-
formation of the body and table contents, and use
self-attention to enhance the connection of each
token in the line. We consider the paper body
content to have semantic information which can
be captured by a sequential model like a BiLSTM.
However, for tables, it is not clear that sequential
information across cells in a table row should be
processed as a sequence. Therefore, we use self-

1314

attention to learn the table structure over an entire
line. We consider each sentence as a matrix which
we denote as L, where L ∈ Rt×h; t represents
the number of tokens in the line, and h is the di-
mensionality of the embedding representation. To
improve training efficiency, we pack l lines into a
single batch, thereby making L become a three-
dimensional tensor L ∈ Rl×t×h. We pad short
lines to make the same length as the longest line
in a batch, and set the embedding of each padding
word to a zero vector with dimensionality h.

We first encode each line with a two-layer bi-
directional LSTM, denoted as:

L′ = BiLSTM(L) (1)

Then, we feed L′ into the attention model to en-
code structural information. The attention model
can be denoted as follows:

Attn(Q,K, V ; θQ, θK , θV) =

Softmax
(
f(Q; θQ)f(K; θK)>√

h

)
f(V ; θV)

(2)

This style of attention is named scaled dot-
product attention by Vaswani et al. (2017), where
Q,K, V ∈ Rt×h represent the query, key, and
value, respectively, and can be described as map-
ping a query and a set of key–value pairs to an
output, where the query, keys, values, and output
are all vectors. In this model, we use tokens in the
same line to represent the query, key, and value,
and use the attention function Attn to find self-
correlations among them. Meanwhile, in Eqn 2 we
define f to be a one-layer feed-forward network
with different parameter sets θQ, θK , θV , which
we denote as f(X; θ). This allows us to learn the
correlation with these three parameter sets. We use
the following attention function:

L′′ = Attn(L′, L′, L′) (3)

Finally, we pass L′′ into a 3-layer feed-forward
network denoted as g, using layer normalization
in each layer to increase the training speed. The
output of the feed-forward block is passed into the
output layer with a residual connection with L′′,
denoted as:

ŷ = φ(g(L′′) + L′′) (4)

The architecture of the model is shown in Fig-
ure 2.

Output

LSTM
← −−−−

LSTM
← −−−−

LSTM
← −−−−

LSTM
← −−−−

LSTM
− →−−−

LSTM
− →−−−

LSTM
− →−−−

LSTM
− →−−−

L
′

L
′

L
′

0 1 1 0

L
′

L
′′Self-Attention

BiLSTM

Input
L L L L

Figure 2: RNN with self attention

2.4 Post-processing

Since we are training a sequence labelling model,
result segmentation and combination is necessary.
For instance, the sentence AIV H9N2 was spread
to New York, Washington DC and Ottawa con-
tains three toponyms, and 5 tokens which are con-
tained in those toponyms (e.g. the words New and
York are combined into one toponym). An exter-
nal gazetteer3 downloaded from GeoNames, and
an in-house place name abbreviation library were
used.

We first restore all abbreviations in order to fa-
cilitate matching in the gazetteer. We then com-
bine all consecutive tokens that were labelled as a
toponym. After this, two different segmentation
methods were used: (1) longest string match in
the gazetteer; and (2) no segmentation. The result
shows that the second method is better because of
the limitation of string matching. We think us-
ing a better toponym match method like searching
via Geonames rather than string matching could
achieve better results.

2.5 Auxiliary Model

The single NER model picks up on features such
as the word-initial character being uppercase, that
are also common in non-toponym named entities,
possibly resulting in toponym named entity FPs.

3http://download.geonames.org/export/
dump/allCountries.zip

1315

Model Overlap Micro Strict Micro

Precision Recall F1 Precision Recall F1

Table
BiLSTM 78.11 69.54 73.58 74.91 65.77 70.04

BiLSTM+Attn 80.27 73.06 76.50 76.63 69.14 72.69

Non-table
BiLSTM 93.37 90.69 92.01 89.64 84.55 87.02

BiLSTM+Attn 93.65 90.38 91.99 90.11 84.78 87.36
BiLSTM+Attn+Aux 94.66 90.23 92.39 90.98 84.50 87.62

Single BiLSTM+Attn+Aux 90.15 85.22 87.62 85.73 71.67 78.07
Combined BiLSTM+Attn 90.77 86.27 88.46 85.02 72.59 78.31
Combined BiLSTM+Attn+Aux 91.35 82.83 86.88 84.69 77.48 80.92

Table 1: Performance of different models. “Table” refers to the performance on the table part, and “Non-table”
the non-table part; “Single” refers to the single model on the entire article; “Combined” refers to the combination
of the two models on table and non-table parts; and “+Aux” refers to the use of the auxiliary model to eliminate
misdetected toponyms.

For example, in the phrase The Royal Melbourne
Hospital, the word Melbourne should not be de-
tected as toponym according to the competition
setting. This issue was also identified by Dredze
et al. (2009).

In this paper, we use two methods to tackle
this. The first is to train a single NER to detect
toponyms and organization names together. The
second is to train an organization name recognizer
to correct misdetected toponyms in organization
names.

We used the WikiNER (Nothman et al., 2012)
dataset to train an organization detection model,
and applied it to our dataset. Then we build an
organization type set containing Institute, School,
Hospital etc.. Finally, we re-label toponyms that
are part of a corresponding organization name as
non-toponyms.

3 Toponym Disambiguation

We used a support vector machine to disambiguate
toponyms. For each detected toponym, we first
search for it on Geonames, and keep the top 20
records as candidate results. Features are con-
structed from this, as follows:

• History Result: If the toponym appears in
the training set, history result refers to the
ranking of the number of times the Geon-
ames ID appears as a standard answer. For
instance, the toponym Melbourne appears 13
times in training, of which 12 occurrence
have Geonames ID 2158177 and 1 has ID
7839805, so the history result feature for

2158177 is 1, 7839805 is 2, and all other
Geonames IDs are 3.

• Population: The ranking of the population of
the candidate.

• GeoNames Feature Codes: The feature
class codes of Geonames records, e.g. A rep-
resents country, state, region,...; P city, vil-
lage,...; etc.

• Name Similarity: The ranking of the string
similarity of the toponym and Name item in
each record.

• AncestorsNames Correlation: The ranking
of matching words of the AncestorsNames
item in each record.

4 Experiments and Results

4.1 Experiment Setting

The model architecture used for the toponym de-
tection task is depicted in Figure 2. We use
the Adam (Kingma and Ba, 2015) optimizer with
β1 = 0.9, β2 = 0.999, ε = 10−9 and an ini-
tial learning rate of 1e−3. A dropout (Srivastava
et al., 2014) rate of 0.5 is used to prevent overfit-
ting. The hidden size (d) of the model is 300, and
cross-entropy loss is used for training.

To compare different word embeddings, we use
pre-trained 300-dimensional GloVe embeddings
and pre-trained 1024 dimensional EMLo embed-
dings, respectively. We do not update the word
embeddings during training.

1316

Embedding Precision Recall F1

GloVe 80.47 75.03 77.65
ELMo 84.69 77.48 80.92

Table 2: Performance of different word representations

4.2 Results
We randomly selected 10 articles from the train-
ing set to manually evaluate the table extraction
method: 26 out of 27 tables were detected, and 3
non-table parts were misidentified as tables. 62%
of tables are exactly accurate, or in other words,
38% tables have some lines misidentified.

Table 1 shows the subtask 1 performance (pre-
cision, recall and F1 score) of different models on
the table and non-table parts. Strict and overlap-
ping micro measures results are reported. In the
strict measure, model outputs are considered to
match with the gold standard annotations if they
cover the exact same span of text; whereas in the
overlapping measure, the model output is consid-
ered to match if it overlap in span with the gold-
standard. From Table 1, we see that self-attention
improves the results on both table and non-table
parts, but is particularly effective for the table
part. Experimental results on the non-table part
are further improved by incorporating the auxil-
iary model. Finally, the combined model perform
is better than a single model on entire articles.

Table 2 shows the subtask 1 performance of dif-
ferent word representations. From that, we find
that using ELMo representation is much better
than using GloVe embeddings. The reason is that
our tokenization method separates many words
like I’m, let’s, which ELMo can generate a contex-
tualized representation for, while GloVe cannot.
Furthermore, there are many numbers and OOVs
in the tables, the GloVe embedding for which is a
random 300-dimensional vector that does not pro-
vide useful context information.

5 Conclusions

In this work, we presented a method for toponym
detection and disambiguation in scientific papers,
in the context of Sem-Eval 2019 Task 12, using an
LSTM model and SVM model respectively. We
extract tables from plain text, and train a dedi-
cated model for each to improve overall perfor-
mance due to the different structures of tables and
the body of text. We also demonstrated the per-

formance of the different models for toponym de-
tection, with our final submission coming in 2nd
(among 8).

References
Mariam Daoud and Jimmy Xiangji Huang. 2013. Min-

ing query-driven contexts for geographic and tem-
poral search. International Journal of Geographical
Information Science, 27(8):1530–1549.

Mark Dredze, Partha Pratim Talukdar, and Koby Cram-
mer. 2009. Sequence learning from data with multi-
ple labels. In Proceedings of the ECML/PKDD 2009
Workshop on Learning from Multi-Label Data.

Claire Grover, Richard Tobin, Kate Byrne, Matthew
Woollard, James Reid, Stuart Dunn, and Julian
Ball. 2010. Use of the Edinburgh geoparser
for georeferencing digitized historical collections.
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
368(1925):3875–3889.

Bo Han, Paul Cook, and Timothy Baldwin. 2014. Text-
based Twitter user geolocation prediction. Journal
of Artificial Intelligence Research, 49:451–500.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations
(ICLR).

Jochen L Leidner. 2008. Toponym resolution in text:
Annotation, evaluation and applications of spatial
grounding of place names. Universal-Publishers.

Arjun Magge, Davy Weissenbacher, Abeed Sarker,
Matthew Scotch, and Graciela Gonzalez-Hernandez.
2018. Deep neural networks and distant supervision
for geographic location mention extraction. Bioin-
formatics, pages i565–i573.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R. Curran. 2012. Learning mul-
tilingual named entity recognition from Wikipedia.
Artificial Intelligence, 194:151–175.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2014), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pages 2227–2237.

1317

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2015. Twitter user geolocation using a unified text
and network prediction model. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 630–636.

Stephen Roller, Michael Speriosu, Sarat Rallapalli,
Benjamin Wing, and Jason Baldridge. 2012. Super-
vised text-based geolocation using language models
on an adaptive grid. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 1500–
1510.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

Maria Vasardani, Stephan Winter, and Kai-Florian
Richter. 2013. Locating place names from place de-
scriptions. International Journal of Geographical
Information Science, 27(12):2509–2532.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Annual Conference on Neural Informa-
tion Processing Systems (NIPS 2017), pages 6000–
6010.

Davy Weissenbacher, Arjun Magge, Karen O’Connor,
Matthew Scotch, and Graciela Gonzalez. 2019.
Semeval-2019 task 12: Toponym resolution in sci-
entific papers. In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation.

1318

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 1319–1323
Minneapolis, Minnesota, USA, June 6–7, 2019. ©2019 Association for Computational Linguistics

University of Arizona at SemEval-2019 Task 12:
Deep-Affix Named Entity Recognition of Geolocation Entities

Vikas Yadav, Egoitz Laparra, Ti-Tai Wang, Mihai Surdeanu, Steven Bethard
University of Arizona

{vikasy,laparra,twang03,msurdeanu,bethard}@email.arizona.edu

Abstract

We present the Named Entity Recognition
(NER) and disambiguation model used by the
University of Arizona team (UArizona) for
SemEval 2019 task 12. We achieved fourth
place on tasks 1 and 3. We implemented a
deep-affix based LSTM-CRF NER model for
task 1, which utilizes only character, word, pre-
fix and suffix information for the identification
of geolocation entities. Despite using just the
training data provided by task organizers and
not using any lexicon features, we achieved
78.85% strict micro F-score on task 1. We
used the unsupervised population heuristics
for task 3 and achieved 52.99% strict micro-F1
score in this task.

1 Introduction

Geoparsing is the task of detecting geolocation
phrases in unstructured text and normalizing them
to a unique identifier, e.g. GeoNames1 IDs. Al-
though many automatic resolvers have been re-
leased in the past years, their performance fluc-
tuates when applied to different domains (Gritta
et al., 2018b). Most have also not been applied to
and evaluated on scientific publications. The Sem-
Eval 2019 Shared Task 12: Toponym Resolution in
Scientific Papers (Weissenbacher et al., 2019) aims
to boost the research on geoparsing for the scien-
tific domain by focusing on epidemiology journal
articles.

The task includes three sub-tasks: toponym de-
tection, toponym disambiguation, and end-to-end
toponym resolution. The first one requires par-
ticipants to detect the text boundaries of all to-
ponym mentions in articles. In toponym disam-
biguation, the toponym mentions are known, and
the resolver has to align them to their precise coor-
dinates through GeoNames IDs. For the last sub-

1http://www.geonames.org/

task, the resolver must perform both detection and
disambiguation.

In this paper, we present the description of our
system for SemEval 2019 Shared Task 12, in which
we focus mainly on toponym detection. For this
sub-task, we propose a recurrent neural network
that combines word, character and affix informa-
tion. By making use of the baseline provided by the
organizers for toponym disambiguation, we also
obtain results for the end-to-end sub-task.

2 Related Work

Toponym detection and resolution has been widely
studied, and various systems (Gritta et al., 2018b)
have been proposed for these tasks. Toponym de-
tection has been implemented on texts from various
sources like social media (Karagoz et al., 2016),
PubMed articles (Magge et al., 2018) etc. Various
named entity recognition (NER) systems including
rule-based (Gritta et al., 2018b), machine learning-
based (Karagoz et al., 2016), and deep learning-
based (Magge et al., 2018) have been implemented
for detecting toponyms.

The disambiguation step has been tackled pre-
viously using both supervised models and unsu-
pervised heuristic based approaches. For example,
Turton (2008) presented a rule based system for
disambiguating locations from PubMed abstracts.
Weissenbacher et al. (2015) presented results from
Population and Distance heuristics (discussed
in Section 4.3) for the disambiguation task on
PubMed articles. The authors also presented an
SVM model with population, distance and set of
meta-data as input which achieved higher perfor-
mance than both the individual heuristics. Gritta
et al. (2018a) used a feedforward neural network
approach for the disambiguation of geolocations.

1319

Characters

Char Embedding

Char LSTM-F

Char LSTM-B

Word Features

Word Representation

Word LSTM-F

Word LSTM-B

Word CRF

Label

Y o r k

Yor ork York

B-LOC

C i t y

Cit ity City

I-LOC

’ s

∅ ∅ ’s

O

Figure 1: Word+character+affix neural network architecture from Yadav et al. (2018).

3 Data and Baseline

The corpus of the task is composed of 150 journal
articles downloaded from PubMed Central. After
removing the author names, acknowledgments and
references, titles and body text were fully annotated.
The annotators identified and labelled toponyms
with their corresponding coordinates according to
GeoNames. For cases not found in GeoNames,
they used Google Maps and Wikipedia. If the co-
ordinates of a toponym were not available in any
of these resources the special value N/A was used.
The data is provided in Brat format (Stenetorp et al.,
2012). The organizers also released a strong base-
line that combines the model by Magge et al. (2018)
for toponomy detection and the Population heuris-
tic described in (Weissenbacher et al., 2015) for
disambiguation.2

4 Approach

4.1 Preprocessing

We used the tokenizer included in the baseline pro-
vided by the organizers as we observed it provided
the best final results among other options (see Sec-
tion 5.3). Again using baseline system preprocess-
ing codes, we converted the data into CoNLL 2003
format (Tjong Kim Sang and De Meulder, 2003)
for task 1. Following our prior work (Yadav and
Bethard, 2018), we have used a BIO encoding in-
stead of the IO encoding provided by the baseline
system.

2https://github.com/amagge/

semeval-ffnn-baseline

4.2 Toponym Detection
We used the model proposed by Yadav et al. (2018)
for Named Entity Recognition (NER), shown in
figure 1, which uses character, word and affix infor-
mation. In this architecture, a word is represented
by concatenating its word embedding, an LSTM
representation over the characters of the word, and
learned embeddings for prefixes and suffixes of the
word3. Then another LSTM is used at the sentence
level to give a contextual representation of each
word. These representations of words in the sen-
tence are given to a CRF layer to finally predict the
NER label.

4.3 Toponym Resolution
Weissenbacher et al. (2015) presented two
heuristics for disambiguation of geolocation -
Population and Distance. These two heuristics
are often used as features with other meta-data such
as the user location meta-data in a Twitter account
(Zhang and Gelernter, 2014), GenBank meta-data
(Weissenbacher et al., 2015), etc.

In the Population heuristic, the system simply
assigns the geonameID of the most populous4 can-
didate for the current location. For the Distance
heuristic, the system selects the candidate which is
at the minimum distance from all candidates of all
other toponyms in the same document. Many previ-
ous works (Weissenbacher et al., 2015; Zhang and
Gelernter, 2014; Weissenbacher et al., 2019) have
shown that the most populous location is often ref-
erenced more in the text documents and performs

3The affix vocabulary consisted of all three-character af-
fixes that occurred at least 50 times in the training data.

4Population retrieved from the GeoNames database.

1320

better than the distance heuristics. Thus, we use
the Population heuristic as our disambiguation
model.

5 Experiments

Using the original fully annotated training set, we
achieved 77.3% strict micro-Fscore (mean perfor-
mance of 3 runs) on the validation set. However,
the organizers provided two additional large (but
weakly) annotated NER datasets: POS, which con-
tains sentences having at least 1 location phrase,
and NEG, which has sentences with no mention
of location entities. We experimented with both
these datasets in both joint and transfer learning.

5.1 Joint Learning

In the joint learning experiment, we trained the
model on a training set by concatenating the POS
data with the original training data. In this config-
uration, we achieved 81.4% strict micro-F score
(mean performance of 3 runs) on the validation
set, a 4 point improvement over the original experi-
ment.

5.2 Transfer Learning

In this experiment, we first trained our model on
just the POS set and further fine tuned it on the
original training data provided for the task. The
intuition here was to use the weakly annotated data
only to get a good initialization for the “real” train-
ing on the manually annotated data, rather than
training on both together and possibly getting mis-
led by the noise in the weakly annotated data. We
achieved 83.7% strict micro-F score (mean perfor-
mance of 3 runs) on the validation set. This is an
improvement of 2.3 F over the simple joint learning
experiment, and 6.4 F over the model using only
the original training data.

5.3 Effects of Tokenization

The effect of tokenization on NER performance
has been shown in the past (Akkasi et al., 2016;
Xu et al., 2018). For this reason, we evaluated our
model trained on the original training data, using
various custom tokenization functions, and saw the
strict micro-F1 score vary from 72% to 77% in the
validation set.

The NLTK regexp tokenizer resulted in 70%
strict F1-score. We wrote several rules to improve
this tokenizer which further improved the perfor-
mance by 4%.

Parameter value
Word embedding (GloVe) size 300
Character embedding size 50
Affix embedding size 30
Word LSTM hidden state size 50
Character LSTM hidden state size 25
Learning rate 0.15
Learning rate decay 0.99
Batch size 100
Optimizer SGD

Table 1: Hyperparameters for training the model.

However, the custom tokenization implemented
by the shared task organizers in the baseline model
performed the best, achieving 77% on the valida-
tion set when trained on just the original training
data. In this case, we also wrote a few additional
rules to improve the tokenization but achieved
marginal improvements in the overall performance.

5.4 Hyperparameters

We trained the Yadav et al. (2018) model using the
parameters in Table 1. For transfer learning from
POS data, we first trained the model for 40 epochs.
We then retrained this model on the original train-
ing data for 80 epochs with 20 as the early stopping
patience. After training on the original training
data, we retrained this model on train+development
data for another 40 epochs. For the final evaluation,
we submitted the models at epoch = 25, 35 and 40.
Epoch 35 achieved the best performance among
the three submissions.

The software is available at https://github.
com/vikas95/Pref_Suff_Span_NN.

6 Results

We achieved the 4th position in both task 1 (to-
ponym detection) and task 3 (end-to-end toponym
resolution) as shown in tables table 2 and table 3,
respectively. Although it has been shown previ-
ously that adding lexicon features improves the
overall performance of several NER models (Ya-
dav and Bethard, 2018; Gritta et al., 2018b), we
have focused on extraction of context information
using LSTMs over character, word and affixes of
the word. Hence, our resource-independent NER
model achieves competitive results, despite not us-
ing any dictionary information. Also, we have just
used the training data provided by the task orga-
nizers and did not use any external training data or

1321

Team strict Micro F strict Macro F
DM NLP 89.13 91.61
QWERTY 83.33 87.10
Newbee 80.92 87.11

Our model 78.75 84.52
THU NGN 74.96 83.23

UNH 73.12 81.93
RGCL-WLV 49.13 61.96
NLP IECAS 64.85 74.82

Table 2: Results of subtask 1 – toponym detection. We
include the best Micro F-score and best Macro F-score
of each team from their final 3 runs. Our model is
ranked fourth, despited the fact that it uses no external
knowledge.

Team strict Micro F strict Macro F
DM NLP 0.7291 0.7749
QWERTY 0.7128 0.7551
Newbee 0.6545 0.7355

Our model 0.5299 0.6487
THU NGN 0.5156 0.6131

NLP IECAS 0.5223 0.6019

Table 3: Results of subtask 3 - end-to-end toponym res-
olution. Our system is again ranked fourth.

lexicon resources.
We used the unsupervised Population heuristic

which is fast and simple to implement for disam-
biguating toponyms. As shown by Weissenbacher
et al. (2015), feeding features like population, dis-
tance, and other meta-data to machine learning
models often achieved higher performances. How-
ever, as shown here, the Population heuristic
serves as a strong baseline for this disambiguation
task.

7 Future Work

We plan to include the following features in our
current model:

• Part of Speech (POS) features – as per the an-
notations guidelines, locations that were used
as adjectives were not labelled in the anno-
tation process. We will explore the effect of
adding POS feature representation to the word,
character and affix representations.

• Inclusion of geoname dictionary – our current
approach is resource independent. We will
include dictionary features in the next version
of our model, to understand how much signal

can be inferred from local information, and
how much must come from world knowledge.

• Using domain-specific embeddings – we re-
lied on pretrained GloVe embeddings for our
submissions. In future versions of our soft-
ware, we will explore domain-specific embed-
dings, i.e., trained on scientific texts, as well
as contextualized embeddings such as FLAIR
(Akbik et al., 2018).

8 Acknowledgments

This work was supported by the Defense Ad-
vanced Research Projects Agency (DARPA) un-
der the World Modelers program, grant number
W911NF1810014. Mihai Surdeanu declares a fi-
nancial interest in lum.ai. This interest has been
properly disclosed to the University of Arizona In-
stitutional Review Committee and is managed in
accordance with its conflict of interest policies.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649.

Abbas Akkasi, Ekrem Varoğlu, and Nazife Dimililer.
2016. Chemtok: a new rule based tokenizer for
chemical named entity recognition. BioMed re-
search international, 2016.

Milan Gritta, Mohammad Taher Pilehvar, and Nigel
Collier. 2018a. Which melbourne? augmenting
geocoding with maps. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1285–1296.

Milan Gritta, Mohammad Taher Pilehvar, Nut Lim-
sopatham, and Nigel Collier. 2018b. Whats missing
in geographical parsing? Language Resources and
Evaluation, 52(2):603–623.

Pinar Karagoz, Halit Oguztuzun, Ruket Cakici, Ozer
Ozdikis, Kezban Dilek Onal, and Meryem Sagcan.
2016. Extracting location information from crowd-
sourced social network data. European Handbook
of Crowdsourced Geographic Information, 195.

Arjun Magge, Davy Weissenbacher, Abeed Sarker,
Matthew Scotch, and Graciela Gonzalez-Hernandez.
2018. Deep neural networks and distant supervision
for geographic location mention extraction. Bioin-
formatics, 34(13):i565–i573.

1322

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: A web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL ’12, pages 102–107, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142–147. Association for Computational Lin-
guistics.

Ian Turton. 2008. A system for the automatic compari-
son of machine and human geocoded documents. In
Proceedings of the 5th Workshop on Geographic In-
formation Retrieval, pages 23–24. ACM.

Davy Weissenbacher, Arjun Magge, Karen O’Connor,
Matthew Scotch, and Graciela Gonzalez. 2019.
Semeval-2019 task 12: Toponym resolution in sci-
entific papers. In Proceedings of The 13th Interna-
tional Workshop on Semantic Evaluation. Associa-
tion for Computational Linguistics.

Davy Weissenbacher, Tasnia Tahsin, Rachel Beard,
Mari Figaro, Robert Rivera, Matthew Scotch,
and Graciela Gonzalez. 2015. Knowledge-driven
geospatial location resolution for phylogeographic
models of virus migration. Bioinformatics,
31(12):i348–i356.

Dongfang Xu, Vikas Yadav, and Steven Bethard. 2018.
Uarizona at the made1. 0 nlp challenge. Proceed-
ings of machine learning research, 90:57.

Vikas Yadav and Steven Bethard. 2018. A survey on re-
cent advances in named entity recognition from deep
learning models. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2145–2158.

Vikas Yadav, Rebecca Sharp, and Steven Bethard. 2018.
Deep affix features improve neural named entity rec-
ognizers. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 167–172.

Wei Zhang and Judith Gelernter. 2014. Geocoding lo-
cation expressions in twitter messages: A preference
learning method. Journal of Spatial Information Sci-
ence, 2014(9):37–70.

1323

Index

Abdul-Mageed, Muhammad, 775, 1072
Abdullah, Malak, 200
Abend, Omri, 1
Adineh, Payam, 829
Afli, Haithem, 215
Afsarmanesh, Nazanin, 1004
Agerri, Rodrigo, 944
Aggarwal, Ishita, 185
Aggarwal, Kartik, 1213
Aggarwal, Piush, 678
Aglionby, Guy, 556
Agrawal, Parag, 266
Agrawal, Puneet, 39
Ahmed, Luqman, 1242
Ahmed, Usman, 1242
Ahmedi, Lule, 1032
Aizenbud, Zohar, 1
Aker, Ahmet, 845
Al-Omari, Hani, 200
Alabdulkarim, Amal, 985
Alhindi, Tariq, 985
Almatarneh, Sattam, 387
Alswaidan, Nourah, 247
Amason, Evan, 967
Ameer, Iqra, 382
Amini, Hessam, 153
Amplayo, Reinald Kim, 1254
Anand, Sarthak, 683, 1213
Andersen, Simon, 297
Anderson, Jacob, 302
Androutsopoulos, Ion, 571
Andruszkiewicz, Piotr, 1262
Anthonio, Talita, 1016
Anwar, Saba, 125
Aono, Masaki, 365
Arampatzis, Avi, 1155
Araque, Oscar, 396
Arefyev, Nikolay, 31, 125
Argota Vega, Luis Enrique, 447
Aritsugi, Masayoshi, 1185
Atanasova, Pepa, 860
Augenstein, Isabelle, 169
Avvaru, Adithya, 1138

Azé, Jérôme, 251

B, Geetika, 753
B, Logesh, 753
B, Senthil Kumar, 318, 739
Babaoğlu, Ismail, 503
Bae, Sanghwan, 312
Bairaktaris, Anastasios, 1155
Balan, Gheorghe, 355
Baldwin, Timothy, 1313
Baly, Ramy, 860, 1041
Banerjee, Somnath, 662
Bansal, Himanshu, 622
Baranova, Alina, 1292
Barbhuiya, Ferdous, 371
Baris, Ipek, 1105
Barrón-Cedeño, Alberto, 1012, 1041
Baruah, Arup, 371
Basile, Angelo, 330
Basile, Valerio, 54
Bassam, Nabeel, 200
Basu, Arpan, 494, 759
Bauwelinck, Nina, 436
Bean, Nigel, 292
Bechikh Ali, Chedi, 503
Bel-Enguix, Gemma, 447
Ben-David, Ziv, 426, 645
Benajiba, Yassine, 330
Benamara Zitoune, Farah, 489
Benballa, Miriam, 469
Benito, Diego, 396
Bestgen, Yves, 148, 1062
Bethard, Steven, 1319
Bhanodai, Guggilla, 547
Biegert, Jonas, 1292
Bielikova, Maria, 1218
Biemann, Chris, 125, 782
Bingel, Joachim, 169
Birkeneder, Bastian, 722
Biton, Dadi, 377
Bogdan, Dumitru, 225
Bojkovsky, Michal, 464
Bontcheva, Kalina, 840, 845
Bosco, Cristina, 54, 1125

1325

Bothe, Chandrakant, 261
Bouchekif, Abdessalam, 215
Bouchekif, Latifa, 215
Bravo Serrano, Àlex, 672
Bringay, Sandra, 251
Buitelaar, Paul, 877
Buljan, Maja, 995
Burget, Lukas, 1097
Bute, Iulian, 355
Buttery, Paula, 556

Cabanski, Tobias, 1192
Cahn, Eli, 426, 645
Caines, Andrew, 556
Calleja, Pablo, 1297
Camacho-Collados, Jose, 508
Can, Ethem F., 1199
Can, Ozan Arkan, 1007
Candito, Marie, 16
Cardiff, John, 770
Chakrabarty, Tuhin, 1144
Chakraborty, Tanmoy, 934
Chakravartula, Nikhil, 70, 205, 404, 954
Chand, Satish, 727
Chandrabose, Aravindan, 318, 739
Chatterjee, Ankush, 39
Chen, Celena, 957
Chen, Yubo, 1302
Chennuru, Maheswara Reddy, 547
Chinea Rios, Mara, 330
Chiril, Patricia, 489
Chittora, Kalpit, 241
Choi, Jihun, 312
Choshen, Leshem, 1
Choudhari, Jayesh, 236
Choudhary, Nitin, 241
Chy, Abu Nowshed, 365
Cignarella, Alessandra Teresa, 1125
Coheur, Luísa, 130
Collet, Sebastien, 469
Conrad, Stefan, 628
Cook, Paul, 514
Corney, David, 829
Cramerus, Rebekah, 1021
Cruz, André, 999
Čubelić, Dominik, 995
Cummings, Joseph, 159

D, Thenmozhi, 318, 739
Da San Martino, Giovanni, 1012, 1041
Damnati, Geraldine, 107
Dang, Thin, 971

Das, Amitava, 696
Das, Dipankar, 587
Daudert, Tobias, 877
David, Roy, 391
Davis, Chris, 556
Davletov, Adis, 31
Dayanik, Erenay, 1007
de Gemmis, Marco, 324
De la Clergerie, Eric Villemonte, 1204
De la Peña, Gretel Liz, 416, 582
Debrenne, Antoine, 297
Derczynski, Leon, 845
Dey, Kuntal, 371
Diab, Mona, 230, 1115
Díaz-Galiano, Manuel Carlos, 480, 1120
Didi, Gal, 426, 645
Dietz, Laura, 1308
Ding, Haiyan, 529
Ding, Keyu, 900
Ding, Yunxia, 535, 1272
Dixon, Lucas, 571
Doostmohammadi, Ehsan, 617
Drissi, Mehdi, 962
Dwyer, Jason, 957

Ekbal, Asif, 587
El-Zanaty, Zeyad, 823
Ernst, Stefan, 1047
Espinosa Anke, Luis, 929
Ezen-Can, Aysu, 1199

Fajcik, Martin, 1097
Färber, Michael, 1032
Farkas, Michal, 272
Farra, Noura, 75
Fatyanosa, Tirana, 1185
Fersini, Elisabetta, 54
Fong, Jefferson, 551
Fortuna, Paula, 745
Franco-Salvador, Marc, 330
Fung, Pascale, 142, 1052

Gamallo, Pablo, 387
Gambäck, Björn, 696
Garain, Avishek, 494, 759
García-Cumbreras, Miguel A., 480, 1120
Garcia-Garcia, Alberto, 508
Garcia-Rodriguez, Jose, 508
Garibo i Orts, Òscar, 460
Ge, Suyu, 340, 1302
Gelbukh, Alexander, 382
Gertner, Abigail, 453

Ghanem, Bilal, 1125
Gievska, Sonja, 1026, 1083
Gifu, Daniela, 635
Glass, James, 1041
Glocker, Kevin, 113
Goel, Bharti, 796
Goel, Rajat, 236
Goel, Shivali, 1110
Gómez-Adorno, Helena, 447
Gonçalves, Teresa, 524
Gonzalez-Hernandez, Graciela, 907
Gonzalez, Ana Valeria, 169
González, José-Ángel, 195
Gorrell, Genevieve, 845
Graff, Mario, 639
Granitzer, Michael, 722
Gratian, Vachagan, 137
Graumans, Leon, 391
Gupta, Ankita, 1078, 1165
Gupta, Manish, 70, 611, 1160
Gupta, Viresh, 934

HaCohen-Kerner, Yaakov, 426, 645
Haddad, Hatem, 503
Hajishirzi, Hannaneh, 893
Hakimi Parizi, Ali, 514
Hamidian, Sardar, 1115
Han, Jiahui, 652
Hanawa, Kazuaki, 1057
Hauptmann, Christian, 1047
Heinecke, Johannes, 107
Henderson, John, 453
Hershcovich, Daniel, 1
Hettinger, Lena, 1047
Hopkins, Mark, 893
Horsmann, Tobias, 441, 678
Hoste, Veronique, 436
Hotho, Andreas, 1047
Hu, Wenhui, 287
Huang, Chenyang, 49
Huang, Sheng, 92
Huang, Yongfeng, 340, 1302
Hubert, Gilles, 981
Hurtado, Lluís-F., 195
Hussain, Syed Jawad, 1242
Hwang, Inchon, 990

Iftene, Adrian, 355
Iglesias, Carlos A., 396
Indurthi, Vijayasaradhi, 70, 205, 611, 954, 1160
Inui, Kentaro, 1057
Isbister, Tim, 939

Jacobs, Gilles, 436
Jain, Akansha, 185
Jamatia, Anupam, 696
Janchevski, Andrej, 1083
Janicka, Maria, 1172
Jiang, Wei, 11
Jiang, Ye, 840
Jiménez-Zafra, Salud María, 480, 1120
Johansson, Fredrik, 939
Joo, Youngjun, 990
Joshi, Meghana, 39
Joshi, Praveen, 215
Juhasz, Reka, 1176
Jung, Kyomin, 256

Kallmeyer, Laura, 16
Kannan, Madeeswaran, 763
Kapil, Prashant, 587
Karadzhov, Georgi, 860
Karimi, Samaneh, 600
Karlgren, Jussi, 1004
Kaur Jolly, Baani Leen, 934
Kaur, Ramneek, 934
Kebriaei, Emad, 600
Kern, Roman, 431
Khan, Abdul Rafae, 92
Kharchev, Dmitry, 31
Kiesel, Johannes, 829
Kim, Hannam, 712
Kim, Harksoo, 1254
Kim, Juae, 1254
Kim, Yanghoon, 256
Kim, Yeon Hyang, 1078, 1165
King, Milton, 514
Klimaszewski, Mateusz, 1262
Kloppenburg, Lennart, 1016
Knauth, Jürgen, 976
Kochkina, Elena, 845
Kompatsiaris, Yiannis, 924
Koncel-Kedziorski, Rik, 893
Kordopatis-Zilos, Giorgos, 924
Kosseim, Leila, 153
Koziel, Krystian, 712
Kralj Novak, Petra, 604
Krumholc, Tymoteusz, 712
Kübler, Sandra, 788
Kumar, Abhishek, 489
Kumar, Ritesh, 75, 547
Kumar, Yaman, 683, 1213

Lacko, Peter, 272
Lafargue, Victor, 297

Laparra, Egoitz, 1319
Le Bras, Ronan, 893
Lee, Changki, 1254
Lee, Hyeon-gu, 1254
Lee, Nayeon, 1052
Lee, Sang-goo, 312
Lee, Yoonhyung, 256
Lefever, Els, 436
Lei, Tao, 870
Li, Changjie, 164
Li, Dawei, 360
Li, Haonan, 1313
Li, Junyi, 1208
Li, Linlin, 917
Li, Quanzhi, 855
Li, Wen, 87
Li, Zhenghua, 11
Liakata, Maria, 845
Liang, Xiao, 870
Liang, Xihao, 345
Liaquat, Humera, 1242
Lin, Yuanzhen, 1037
Lin, Zhaojiang, 142
Linnenschmidt, Franziska-Barbara, 1176
Liu, Chu, 917
Liu, Chunhua, 1090, 1132
Liu, Duoxing, 870
Liu, Jiaxiang, 1231
Liu, Peng, 1180
Liu, Ping, 87
Liu, Xinyu, 652
Liu, Yifan, 900
Liu, Zhuoran, 1110
Liu, Zihan, 1052
Löfflad, Denise, 498
Loni, Babak, 1067
Lopes Cardoso, Henrique, 999
Lovrencic, Ivan, 995
Lucaci, Diana, 355
Lungu, Diana Florina, 635
Luo, Xuefeng, 1292
Luque, Franco M., 64
Lv, Zhengwei, 870
Lyu, Weimin, 92

Ma, Chunping, 917
Ma, Luyao, 287
Ma, Ye, 345
Madotto, Andrea, 142
Magge, Arjun, 907
Magnusson, Matthew, 1308
Mahata, Debanjan, 683, 1213

Maity, Sourabh, 335
Majumder, Prasenjit, 577
Malmasi, Shervin, 75, 519
Manolescu, Mihai, 498
Markov, Ilia, 1204
Marsh, Amy, 453
Martin, Maite, 307, 476, 735
Martinc, Matej, 604
Martins de Matos, David, 130
Marzinotto, Gabriel, 107
Maynard, Diana, 840
Medero, Julie, 957, 962, 967
Mehnaz, Laiba, 683, 1213
Menai, Mohamed El Bachir, 247
Mendonça, Vânia, 130
Merkhofer, Elizabeth, 453
Mestre, Maria, 829
Miao, Chunyan, 282
Mihaylova, Tsvetomila, 860
Miranda-Jiménez, Sabino, 639
Mishra, Pushkar, 556
Mitchell, Lewis, 292
Mitkov, Ruslan, 1297
Mitrović, Jelena, 722
Modha, Sandip, 577
Mohamed Saber, Adham Nasser, 498
Mohammadi, Elham, 153
Mohtarami, Mitra, 860, 1041
Molina González, M. Dolores, 307, 476, 735
Montejo-Ráez, Arturo, 480, 1120
Moradipour Tari, Masoumeh, 498
Moreno, Jose G., 981
Moriceau, Véronique, 489
Može, Sara, 102
Mukherjee, Animesh, 241
Mukherjee, Preeti, 662
Mulki, Hala, 503
Muresan, Smaranda, 1110, 1144
Mut Altin, Lutfiye Seda, 672
Mutlu, Osman, 1007

Nagel, Daniel, 622
Nakov, Preslav, 75, 860, 1012, 1041
Narahari, Kedhar Nath, 39
Naskar, Sudip Kumar, 662
Negi, Sapna, 877
Neofytou, Alexandros, 1224
Neumann, Guenter, 1149
Nevidomsky, Alex, 31
Nguyen, Andrew, 292
Nguyen, Duc-Vu, 971
Nguyen, Ngan, 971

Niewiński, Piotr, 1172
Nikolov, Alex, 691
Nina-Alcocer, Victor, 409
Ning, Zhiyuan, 1037
Nogueira, Vitor, 524
Nourbakhsh, Aria, 484
Nozza, Debora, 54
Nunes, Sérgio, 745

Oberstrass, Alexander, 628
Ochoa, Daniela Alejandra, 639
O’Connor, Karen, 907
Ojha, Atul Kr., 668
Ojha, Vivaswat, 962
Okazaki, Naoaki, 350
Oostdijk, Nelleke, 1247
Orasan, Constantin, 1297
Orlova, Iryna, 712
Ouchi, Hiroki, 1057

Paetzold, Gustavo Henrique, 519, 801
Pal, Mainak, 662
Palanker, Jake, 967
Palić, Niko, 995
Pamnani, Arik, 236
Pamula, Rajendra, 547
Panchenko, Alexander, 31, 125
Pandey, Anupam, 1138
Papadopoulos, Symeon, 924
Papadopoulou, Olga, 924
Park, Celine, 957
Park, Cheoneum, 1254
Patel, Daksh, 577
Patel, Harsh, 190
Patras, Gabriel Florentin, 635
Patro, Jasabanta, 241
Patti, Viviana, 54
Pavlopoulos, John, 571
Pawar, Neha, 330
Pecar, Samuel, 1218
Pedersen, Ted, 593, 949
Pelicon, Andraž, 604
Pena, Francisco J. Ribadas, 387
Perełkiewicz, Michał, 180
Perelló, Carlos, 508
Perez Almendros, Carla, 929
Pérez, Juan Manuel, 64
Petrak, Johann, 840
Petrén Bach Hansen, Victor, 169
Petrescu-Prahova, Cristian, 893
Petruck, Miriam R L, 16
Picot-Clemente, Romain, 469

Pikuliak, Matus, 464
Pinel-Sauvagnat, Karen, 981
Pitarch, Yoann, 981
Pla, Ferran, 195
Plaza del Arco, Flor Miriam, 307, 476, 735
Plum, Alistair, 1297
Polignano, Marco, 324
Ponzetto, Simone Paolo, 125
Poświata, Rafał, 175
Potamias, Rolandos Alexandros, 277, 1224
Potthast, Martin, 829
Prakash, Divya, 1078, 1165
Prasanna, Sai, 1282
Pszona, Maria, 1172
Pütz, Tobias, 113

QasemiZadeh, Behrang, 16
Qi, Tao, 340, 1302
Quaresma, Paulo, 524
Que, Mengxi, 1132
Qurdina, Agon, 1032

Radivchev, Victor, 691
Ragheb, Waleed, 251
Raiyani, Kashyap, 524
Rajendram, S Milton, 753, 1237
Rajendran, Arun, 775, 1072
Ramakrishnan, Murugesan, 806
Ranasinghe, Tharindu, 1297
Rangel Pardo, Francisco Manuel, 54, 1125
Rani, Priya, 668
Rappoport, Ari, 1
Rebiai, Zinedine, 297
Rei, Marek, 556
Reyes Magaña, Jorge Carlos, 447
Ribeiro, Alison, 420
Ribeiro, Eugénio, 130
Ribeiro, Ricardo, 130
Rocha, Gil, 999
Rochman, Shalom, 426, 645
Rohanian, Omid, 102
Romberg, Julia, 628
Rosenthal, Sara, 75
Rosso, Paolo, 54, 582, 770, 1125
Roys, Teslin, 1176
Rozental, Alon, 377
R.R, Rohit, 1078, 1165
Ruppert, Eugen, 782
Rusert, Jonathan, 704

S, Dyaneswaran, 753
S, Harshini, 753

S, Rajalakshmi, 753, 1237
Sabri, Nazanin, 600
Saffar, Ali, 617
Sagae, Kenji, 119
Saggion, Horacio, 672
Sahoo, Sudeep Kumar, 1078, 1165
Saleh, Abdelrhman, 1041
Sameti, Hossein, 617
Sandoval Segura, Pedro, 962
Sanguinetti, Manuela, 54
Santos, Ana Lúcia, 130
Saquete, Estela, 1120
Sardinha, Alberto, 130
Sasaki, Shota, 1057
Scheffler, Tatjana, 1021
Schmelzeisen, Lukas, 1105
Schockaert, Steven, 929
Schuth, Anne, 1067
Scotch, Matthew, 907
Seelan, Sri Ananda, 1282
Seganti, Alessandro, 712
Sekiya, Toshiyuki, 888
Semeraro, Giovanni, 324
Sengupta, Saptarshi, 949
Seo, Jungyun, 1254
Servajean, Maximilien, 251
Shah, Rajiv, 1213
Shah, Rajiv Ratn, 683
Shahid, Simra, 683, 1213
Shakery, Azadeh, 600
Shaprin, Daniel, 1012
Sharavanan, Srinethe, 318, 739
Sharma, Ravi, 796
Shayovitz, Elyashiv, 426, 645
Sheludko, Boris, 31
Shen, Mary Clare, 967
Shi, Zhizhong, 870
Shin, Jamin, 142
Shrivastava, Manish, 70, 611, 1160
Shukla, Rishabh, 829
Shushkevich, Elena, 770
Shutova, Ekaterina, 556
Si, Luo, 855, 917
Siagian, Al Hafiz Akbar Maulana, 1185
Siddiqua, Umme Aymun, 365
Siddiqui, Muhammad Hammad Fahim, 382
Sidorov, Grigori, 382
Silva, Nádia, 420
Simionescu, Cristian, 355
Simko, Marian, 1218
Singh, Ankit, 185

Singh, Mayank, 236
Singh, Pardeep, 727
Siolas, Gergios, 277, 1224
Smetanin, Sergey, 210
Smrz, Pavel, 1097
Šnajder, Jan, 995
Sobol, Helena, 712
Søgaard, Anders, 169
Soler-Company, Juan, 745
Soloveva, Anita, 622
Song, Xingyi, 840
Sousa-Silva, Rui, 999
South, Tobin, 292
Sridharan, Murali, 540
Srinivasan, Padmini, 704
Srivastava, Vertika, 1078, 1165
Staab, Steffen, 1105
Štajner, Sanja, 330
Stammbach, Dominik, 1149
Staniszewski, Jakub, 712
Stanovsky, Gabriel, 893
Stein, Benno, 829
Stein, Lukas, 763
Stevanoski, Bozhidar, 1026
Stodden, Regina, 16
Stoleru, Ingrid, 355
Stoll, Anke, 628
Su, Weifeng, 551
Sulem, Elior, 1
Sumbler, Peter, 1004
Sun, Haifeng, 870
Sun, Weiwei, 92
Sun, Yu, 1231
Surdeanu, Mihai, 1319
Suri, Anshuman, 266
Suseelan, Angel, 753, 1237
Suzuki, Jun, 1057
Swamy, Steve Durairaj, 696
Syed, Bakhtiyar, 70, 611, 954, 1160
Symeonidis, Symeon, 1155

T T, Mirnalinee, 753, 1237
Tabari, Narges, 806
Tafreshi, Shabnam, 230
Taslimipoor, Shiva, 102
Tellez, Eric, 639
Thain, Nithum, 571
Tian, Zuoyu, 788
Timmerman, Gerben, 391
Tomás, David, 508
Tomko, Martin, 1313
Torres, Johnny, 657

TR, Swapna, 540
Trabelsi, Amine, 49
Tran, Trung, 97
Trandabat, Diana, 635
Tuan Nguyen, Dang, 97
Tuke, Jonathan, 292

Uppal, Karan, 683, 1213
Urena Lopez, L. Alfonso, 307, 476, 735
Ustalov, Dmitry, 125

Vaca, Carmen, 657
van der Goot, Rob, 484
van Halteren, Hans, 1247
Varanasi, Stalin, 1149
Varma, Vasudeva, 70, 611, 1160
Vasardani, Maria, 1313
Vermeer, Frida, 484
Viereckel, Nina, 1004
Vijlbrief, Sam, 350
Vincent, Emmanuel, 829
Vladika, Juraj, 995

Wang, Bin, 529, 818
Wang, Jianming, 551
Wang, Jin, 360, 812, 1180, 1277
Wang, Linmao, 1287
Wang, Minghan, 1313
Wang, Shuohuan, 1231
Wang, Ti-Tai, 1319
Wang, Xiaobin, 917
Wawer, Aleksander, 1172
Weissenbacher, Davy, 907
Wellner, Ben, 453
Wermter, Stefan, 261
Wiedemann, Gregor, 782
Wilson, Jason, 159
Wiltvank, Gijs, 484
Winata, Genta Indra, 142
Winter, Kevin, 431
Wojatzki, Michael, 441, 678
Wu, Chuhan, 340, 1302
Wu, Hao, 1287
Wu, Shengtan, 652
Wu, Zhenghao, 551

Xiao, Joan, 220
Xie, Pengjun, 917
Xie, Wanying, 1090, 1132
Xing, Yun, 164
Xu, Bing, 564
Xu, Jia, 92
Xu, Mingxing, 345

Xu, Peng, 142
Xu, Yan, 142

Yadav, Vikas, 1319
Yamamoto, Masahiro, 888
Yang, Lei, 870
Yang, Ruoyao, 1090, 1132
Yang, Zhishen, 350
Yannakoudakis, Helen, 556
Ye, Wei, 287
Yeh, Chia-Lun, 1067
Yelahanka Raghuprasad, Mukund, 1110
Yu, Dian, 119
Yu, Dong, 1090, 1132
Yue, Ping, 1277

Zadrozny, Wlodek, 806
Zaiane, Osmar, 49
Zampieri, Marcos, 75, 519
Zampoglou, Markos, 924
Zarrella, Guido, 453
Zehe, Albin, 1047
Zesch, Torsten, 441, 678
Zhang, Chiyu, 775, 1072
Zhang, Haimin, 683, 1213
Zhang, Huangpan, 441
Zhang, Long, 287
Zhang, Mike, 391
Zhang, Min, 11
Zhang, Qiong, 855
Zhang, Shengqiang, 92
Zhang, Xuejie, 360, 535, 812, 818, 1180, 1272,

1277
Zhang, Yaojie, 564
Zhang, Yu, 11
Zhang, Zhengxin, 1287
Zhao, Tiejun, 564
Zheng, Hao, 551
Zheng, Huafei, 917
Zhong, Peixiang, 282
Zhong, Ruichao, 1037
Zhou, Chengjin, 812
Zhou, Qimin, 1287
Zhou, Xiaobing, 535, 818, 1272
Zhou, Yi, 900
Zhu, Feng, 870
Zhu, Jian, 788
Zhuang, Yimeng, 1267
Zou, Liang, 87
Zubiaga, Arkaitz, 845

	Program
	SemEval-2019 Task 1: Cross-lingual Semantic Parsing with UCCA
	HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as Constituent Tree Parsing
	SemEval-2019 Task 2: Unsupervised Lexical Frame Induction
	Neural GRANNy at SemEval-2019 Task 2: A combined approach for better modeling of semantic relationships in semantic frame induction
	SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text
	ANA at SemEval-2019 Task 3: Contextual Emotion detection in Conversations through hierarchical LSTMs and BERT
	SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter
	Atalaya at SemEval 2019 Task 5: Robust Embeddings for Tweet Classification
	FERMI at SemEval-2019 Task 5: Using Sentence embeddings to Identify Hate Speech Against Immigrants and Women in Twitter
	SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)
	NULI at SemEval-2019 Task 6: Transfer Learning for Offensive Language Detection using Bidirectional Transformers
	CUNY-PKU Parser at SemEval-2019 Task 1: Cross-Lingual Semantic Parsing with UCCA
	DANGNT@UIT.VNU-HCM at SemEval 2019 Task 1: Graph Transformation System from Stanford Basic Dependencies to Universal Conceptual Cognitive Annotation (UCCA)
	GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional and Recurrent Neural Networks
	MaskParse@Deskin at SemEval-2019 Task 1: Cross-lingual UCCA Semantic Parsing using Recursive Masked Sequence Tagging
	Tüpa at SemEval-2019 Task1: (Almost) feature-free Semantic Parsing
	UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with Attention-based Decoder
	HHMM at SemEval-2019 Task 2: Unsupervised Frame Induction using Contextualized Word Embeddings
	L2F/INESC-ID at SemEval-2019 Task 2: Unsupervised Lexical Semantic Frame Induction using Contextualized Word Representations
	BrainEE at SemEval-2019 Task 3: Ensembling Linear Classifiers for Emotion Prediction
	CAiRE_HKUST at SemEval-2019 Task 3: Hierarchical Attention for Dialogue Emotion Classification
	CECL at SemEval-2019 Task 3: Using Surface Learning for Detecting Emotion in Textual Conversations
	CLaC Lab at SemEval-2019 Task 3: Contextual Emotion Detection Using a Combination of Neural Networks and SVM
	CLARK at SemEval-2019 Task 3: Exploring the Role of Context to Identify Emotion in a Short Conversation
	CLP at SemEval-2019 Task 3: Multi-Encoder in Hierarchical Attention Networks for Contextual Emotion Detection
	CoAStaL at SemEval-2019 Task 3: Affect Classification in Dialogue using Attentive BiLSTMs
	ConSSED at SemEval-2019 Task 3: Configurable Semantic and Sentiment Emotion Detector
	CX-ST-RNM at SemEval-2019 Task 3: Fusion of Recurrent Neural Networks Based on Contextualized and Static Word Representations for Contextual Emotion Detection
	ParallelDots at SemEval-2019 Task 3: Domain Adaptation with feature embeddings for Contextual Emotion Analysis
	E-LSTM at SemEval-2019 Task 3: Semantic and Sentimental Features Retention for Emotion Detection in Text
	ELiRF-UPV at SemEval-2019 Task 3: Snapshot Ensemble of Hierarchical Convolutional Neural Networks for Contextual Emotion Detection
	EmoDet at SemEval-2019 Task 3: Emotion Detection in Text using Deep Learning
	EMOMINER at SemEval-2019 Task 3: A Stacked BiLSTM Architecture for Contextual Emotion Detection in Text
	EmoSense at SemEval-2019 Task 3: Bidirectional LSTM Network for Contextual Emotion Detection in Textual Conversations
	EPITA-ADAPT at SemEval-2019 Task 3: Detecting emotions in textual conversations using deep learning models combination
	Figure Eight at SemEval-2019 Task 3: Ensemble of Transfer Learning Methods for Contextual Emotion Detection
	GenSMT at SemEval-2019 Task 3: Contextual Emotion Detection in tweets using multi task generic approach
	GWU NLP Lab at SemEval-2019 Task 3 :EmoContext: Effectiveness ofContextual Information in Models for Emotion Detection inSentence-level at Multi-genre Corpus
	IIT Gandhinagar at SemEval-2019 Task 3: Contextual Emotion Detection Using Deep Learning
	KGPChamps at SemEval-2019 Task 3: A deep learning approach to detect emotions in the dialog utterances.
	KSU at SemEval-2019 Task 3: Hybrid Features for Emotion Recognition in Textual Conversation
	LIRMM-Advanse at SemEval-2019 Task 3: Attentive Conversation Modeling for Emotion Detection and Classification
	MILAB at SemEval-2019 Task 3: Multi-View Turn-by-Turn Model for Context-Aware Sentiment Analysis
	MoonGrad at SemEval-2019 Task 3: Ensemble BiRNNs for Contextual Emotion Detection in Dialogues
	NELEC at SemEval-2019 Task 3: Think Twice Before Going Deep
	NL-FIIT at SemEval-2019 Task 3: Emotion Detection From Conversational Triplets Using Hierarchical Encoders
	NTUA-ISLab at SemEval-2019 Task 3: Determining emotions in contextual conversations with deep learning
	ntuer at SemEval-2019 Task 3: Emotion Classification with Word and Sentence Representations in RCNN
	PKUSE at SemEval-2019 Task 3: Emotion Detection with Emotion-Oriented Neural Attention Network
	Podlab at SemEval-2019 Task 3: The Importance of Being Shallow
	SCIA at SemEval-2019 Task 3: Sentiment Analysis in Textual Conversations Using Deep Learning
	Sentim at SemEval-2019 Task 3: Convolutional Neural Networks For Sentiment in Conversations
	SINAI at SemEval-2019 Task 3: Using affective features for emotion classification in textual conversations
	SNU IDS at SemEval-2019 Task 3: Addressing Training-Test Class Distribution Mismatch in Conversational Classification
	SSN_NLP at SemEval-2019 Task 3: Contextual Emotion Identification from Textual Conversation using Seq2Seq Deep Neural Network
	SWAP at SemEval-2019 Task 3: Emotion detection in conversations through Tweets, CNN and LSTM deep neural networks
	SymantoResearch at SemEval-2019 Task 3: Combined Neural Models for Emotion Classification in Human-Chatbot Conversations
	TDBot at SemEval-2019 Task 3: Context Aware Emotion Detection Using A Conditioned Classification Approach
	THU_NGN at SemEval-2019 Task 3: Dialog Emotion Classification using Attentional LSTM-CNN
	THU-HCSI at SemEval-2019 Task 3: Hierarchical Ensemble Classification of Contextual Emotion in Conversation
	TokyoTech_NLP at SemEval-2019 Task 3: Emotion-related Symbols in Emotion Detection
	UAIC at SemEval-2019 Task 3: Extracting Much from Little
	YUN-HPCC at SemEval-2019 Task 3: Multi-Step Ensemble Neural Network for Sentiment Analysis in Textual Conversation
	KDEHatEval at SemEval-2019 Task 5: A Neural Network Model for Detecting Hate Speech in Twitter
	ABARUAH at SemEval-2019 Task 5 : Bi-directional LSTM for Hate Speech Detection
	Amobee at SemEval-2019 Tasks 5 and 6: Multiple Choice CNN Over Contextual Embedding
	CIC at SemEval-2019 Task 5: Simple Yet Very Efficient Approach to Hate Speech Detection, Aggressive Behavior Detection, and Target Classification in Twitter
	CiTIUS-COLE at SemEval-2019 Task 5: Combining Linguistic Features to Identify Hate Speech Against Immigrants and Women on Multilingual Tweets
	Grunn2019 at SemEval-2019 Task 5: Shared Task on Multilingual Detection of Hate
	GSI-UPM at SemEval-2019 Task 5: Semantic Similarity and Word Embeddings for Multilingual Detection of Hate Speech Against Immigrants and Women on Twitter
	HATEMINER at SemEval-2019 Task 5: Hate speech detection against Immigrants and Women in Twitter using a Multinomial Naive Bayes Classifier
	HATERecognizer at SemEval-2019 Task 5: Using Features and Neural Networks to Face Hate Recognition
	GL at SemEval-2019 Task 5: Identifying hateful tweets with a deep learning approach.
	INF-HatEval at SemEval-2019 Task 5: Convolutional Neural Networks for Hate Speech Detection Against Women and Immigrants on Twitter
	JCTDHS at SemEval-2019 Task 5: Detection of Hate Speech in Tweets using Deep Learning Methods, Character N-gram Features, and Preprocessing Methods
	Know-Center at SemEval-2019 Task 5: Multilingual Hate Speech Detection on Twitter using CNNs
	LT3 at SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter (hatEval)
	ltl.uni-due at SemEval-2019 Task 5: Simple but Effective Lexico-Semantic Features for Detecting Hate Speech in Twitter
	MineriaUNAM at SemEval-2019 Task 5: Detecting Hate Speech in Twitter using Multiple Features in a Combinatorial Framework
	MITRE at SemEval-2019 Task 5: Transfer Learning for Multilingual Hate Speech Detection
	Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter at SemEval-2019 Task 5: Frequency Analysis Interpolation for Hate in Speech Detection
	STUFIIT at SemEval-2019 Task 5: Multilingual Hate Speech Detection on Twitter with MUSE and ELMo Embeddings
	Saagie at Semeval-2019 Task 5: From Universal Text Embeddings and Classical Features to Domain-specific Text Classification
	SINAI at SemEval-2019 Task 5: Ensemble learning to detect hate speech against inmigrants and women in English and Spanish tweets
	SINAI-DL at SemEval-2019 Task 5: Recurrent networks and data augmentation by paraphrasing
	sthruggle at SemEval-2019 Task 5: An Ensemble Approach to Hate Speech Detection
	The binary trio at SemEval-2019 Task 5: Multitarget Hate Speech Detection in Tweets
	The Titans at SemEval-2019 Task 5: Detection of hate speech against immigrants and women in Twitter
	TuEval at SemEval-2019 Task 5: LSTM Approach to Hate Speech Detection in English and Spanish
	Tw-StAR at SemEval-2019 Task 5: N-gram embeddings for Hate Speech Detection in Multilingual Tweets
	UA at SemEval-2019 Task 5: Setting A Strong Linear Baseline for Hate Speech Detection
	UNBNLP at SemEval-2019 Task 5 and 6: Using Language Models to Detect Hate Speech and Offensive Language
	UTFPR at SemEval-2019 Task 5: Hate Speech Identification with Recurrent Neural Networks
	Vista.ue at SemEval-2019 Task 5: Single Multilingual Hate Speech Detection Model
	YNU NLP at SemEval-2019 Task 5: Attention and Capsule Ensemble for Identifying Hate Speech
	YNU_DYX at SemEval-2019 Task 5: A Stacked BiGRU Model Based on Capsule Network in Detection of Hate
	Amrita School of Engineering - CSE at SemEval-2019 Task 6: Manipulating Attention with Temporal Convolutional Neural Network for Offense Identification and Classification
	bhanodaig at SemEval-2019 Task 6: Categorizing Offensive Language in social media
	BNU-HKBU UIC NLP Team 2 at SemEval-2019 Task 6: Detecting Offensive Language Using BERT model
	CAMsterdam at SemEval-2019 Task 6: Neural and graph-based feature extraction for the identification of offensive tweets
	CN-HIT-MI.T at SemEval-2019 Task 6: Offensive Language Identification Based on BiLSTM with Double Attention
	ConvAI at SemEval-2019 Task 6: Offensive Language Identification and Categorization with Perspective and BERT
	DA-LD-Hildesheim at SemEval-2019 Task 6: Tracking Offensive Content with Deep Learning using Shallow Representation
	DeepAnalyzer at SemEval-2019 Task 6: A deep learning-based ensemble method for identifying offensive tweets
	NLP at SemEval-2019 Task 6: Detecting Offensive language using Neural Networks
	Duluth at SemEval-2019 Task 6: Lexical Approaches to Identify and Categorize Offensive Tweets
	Emad at SemEval-2019 Task 6: Offensive Language Identification using Traditional Machine Learning and Deep Learning approaches
	Embeddia at SemEval-2019 Task 6: Detecting Hate with Neural Network and Transfer Learning Approaches
	Fermi at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media using Sentence Embeddings
	Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based Approach to Offensive Language Identification
	HAD-Tübingen at SemEval-2019 Task 6: Deep Learning Analysis of Offensive Language on Twitter: Identification and Categorization
	HHU at SemEval-2019 Task 6: Context Does Matter - Tackling Offensive Language Identification and Categorization with ELMo
	Hope at SemEval-2019 Task 6: Mining social media language to discover offensive language
	INGEOTEC at SemEval-2019 Task 5 and Task 6: A Genetic Programming Approach for Text Classification
	JCTICOL at SemEval-2019 Task 6: Classifying Offensive Language in Social Media using Deep Learning Methods, Word/Character N-gram Features, and Preprocessing Methods
	jhan014 at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media
	JTML at SemEval-2019 Task 6: Offensive Tweets Identification using Convolutional Neural Networks
	JU_ETCE_17_21 at SemEval-2019 Task 6: Efficient Machine Learning and Neural Network Approaches for Identifying and Categorizing Offensive Language in Tweets
	KMI-Coling at SemEval-2019 Task 6: Exploring N-grams for Offensive Language detection
	LaSTUS/TALN at SemEval-2019 Task 6: Identification and Categorization of Offensive Language in Social Media with Attention-based Bi-LSTM model
	LTL-UDE at SemEval-2019 Task 6: BERT and Two-Vote Classification for Categorizing Offensiveness
	MIDAS at SemEval-2019 Task 6: Identifying Offensive Posts and Targeted Offense from Twitter
	Nikolov-Radivchev at SemEval-2019 Task 6: Offensive Tweet Classification with BERT and Ensembles
	NIT_Agartala_NLP_Team at SemEval-2019 Task 6: An Ensemble Approach to Identifying and Categorizing Offensive Language in Twitter Social Media Corpora
	NLP@UIOWA at SemEval-2019 Task 6: Classifying the Crass using Multi-windowed CNNs
	NLPR@SRPOL at SemEval-2019 Task 6 and Task 5: Linguistically enhanced deep learning offensive sentence classifier
	nlpUP at SemEval-2019 Task 6: A Deep Neural Language Model for Offensive Language Detection
	Pardeep at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media using Deep Learning
	SINAI at SemEval-2019 Task 6: Incorporating lexicon knowledge into SVM learning to identify and categorize offensive language in social media
	SSN_NLP at SemEval-2019 Task 6: Offensive Language Identification in Social Media using Traditional and Deep Machine Learning Approaches
	Stop PropagHate at SemEval-2019 Tasks 5 and 6: Are abusive language classification results reproducible?
	TECHSSN at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Tweets using Deep Neural Networks
	The Titans at SemEval-2019 Task 6: Offensive Language Identification, Categorization and Target Identification
	TüKaSt at SemEval-2019 Task 6: Something Old, Something Neu(ral): Traditional and Neural Approaches to Offensive Text Classification
	TUVD team at SemEval-2019 Task 6: Offense Target Identification
	UBC-NLP at SemEval-2019 Task 6: Ensemble Learning of Offensive Content With Enhanced Training Data
	UHH-LT at SemEval-2019 Task 6: Supervised vs. Unsupervised Transfer Learning for Offensive Language Detection
	UM-IU@LING at SemEval-2019 Task 6: Identifying Offensive Tweets Using BERT and SVMs
	USF at SemEval-2019 Task 6: Offensive Language Detection Using LSTM With Word Embeddings
	UTFPR at SemEval-2019 Task 6: Relying on Compositionality to Find Offense
	UVA Wahoos at SemEval-2019 Task 6: Hate Speech Identification using Ensemble Machine Learning
	YNU-HPCC at SemEval-2019 Task 6: Identifying and Categorising Offensive Language on Twitter
	YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-embedding for identifying offensive language
	Zeyad at SemEval-2019 Task 6: That’s Offensive! An All-Out Search For An Ensemble To Identify And Categorize Offense in Tweets.
	SemEval-2019 Task 4: Hyperpartisan News Detection
	Team Bertha von Suttner at SemEval-2019 Task 4: Hyperpartisan News Detection using ELMo Sentence Representation Convolutional Network
	SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for Rumours
	eventAI at SemEval-2019 Task 7: Rumor Detection on Social Media by Exploiting Content, User Credibility and Propagation Information
	SemEval-2019 Task 8: Fact Checking in Community Question Answering Forums
	AUTOHOME-ORCA at SemEval-2019 Task 8: Application of BERT for Fact-Checking in Community Forums
	SemEval-2019 Task 9: Suggestion Mining from Online Reviews and Forums
	m_y at SemEval-2019 Task 9: Exploring BERT for Suggestion Mining
	SemEval-2019 Task 10: Math Question Answering
	AiFu at SemEval-2019 Task 10: A Symbolic and Sub-symbolic Integrated System for SAT Math Question Answering
	SemEval-2019 Task 12: Toponym Resolution in Scientific Papers
	DM_NLP at SemEval-2018 Task 12: A Pipeline System for Toponym Resolution
	Brenda Starr at SemEval-2019 Task 4: Hyperpartisan News Detection
	Cardiff University at SemEval-2019 Task 4: Linguistic Features for Hyperpartisan News Detection
	Clark Kent at SemEval-2019 Task 4: Stylometric Insights into Hyperpartisan News Detection
	Dick-Preston and Morbo at SemEval-2019 Task 4: Transfer Learning for Hyperpartisan News Detection
	Doris Martin at SemEval-2019 Task 4: Hyperpartisan News Detection with Generic Semi-supervised Features
	Duluth at SemEval-2019 Task 4: The Pioquinto Manterola Hyperpartisan News Detector
	Fermi at SemEval-2019 Task 4: The sarah-jane-smith Hyperpartisan News Detector
	Harvey Mudd College at SemEval-2019 Task 4: The Carl Kolchak Hyperpartisan News Detector
	Harvey Mudd College at SemEval-2019 Task 4: The Clint Buchanan Hyperpartisan News Detector
	Harvey Mudd College at SemEval-2019 Task 4: The D.X. Beaumont Hyperpartisan News Detector
	NLP@UIT at SemEval-2019 Task 4: The Paparazzo Hyperpartisan News Detector
	Orwellian-times at SemEval-2019 Task 4: A Stylistic and Content-based Classifier
	Rouletabille at SemEval-2019 Task 4: Neural Network Baseline for Identification of Hyperpartisan Publishers
	Spider-Jerusalem at SemEval-2019 Task 4: Hyperpartisan News Detection
	Steve Martin at SemEval-2019 Task 4: Ensemble Learning Model for Detecting Hyperpartisan News
	TakeLab at SemEval-2019 Task 4: Hyperpartisan News Detection
	Team Fernando-Pessa at SemEval-2019 Task 4: Back to Basics in Hyperpartisan News Detection
	Team Harry Friberg at SemEval-2019 Task 4: Identifying Hyperpartisan News through Editorially Defined Metatopics
	Team Howard Beale at SemEval-2019 Task 4: Hyperpartisan News Detection with BERT
	Team Jack Ryder at SemEval-2019 Task 4: Using BERT Representations for Detecting Hyperpartisan News
	Team Kermit-the-frog at SemEval-2019 Task 4: Bias Detection Through Sentiment Analysis and Simple Linguistic Features
	Team Kit Kittredge at SemEval-2019 Task 4: LSTM Voting System
	Team Ned Leeds at SemEval-2019 Task 4: Exploring Language Indicators of Hyperpartisan Reporting
	Team Peter Brinkmann at SemEval-2019 Task 4: Detecting Biased News Articles Using Convolutional Neural Networks
	Team Peter-Parker at SemEval-2019 Task 4: BERT-Based Method in Hyperpartisan News Detection
	Team QCRI-MIT at SemEval-2019 Task 4: Propaganda Analysis Meets Hyperpartisan News Detection
	Team Xenophilius Lovegood at SemEval-2019 Task 4: Hyperpartisanship Classification using Convolutional Neural Networks
	Team yeon-zi at SemEval-2019 Task 4: Hyperpartisan News Detection by De-noising Weakly-labeled Data
	The Sally Smedley Hyperpartisan News Detector at SemEval-2019 Task 4
	Tintin at SemEval-2019 Task 4: Detecting Hyperpartisan News Article with only Simple Tokens
	Tom Jumbo-Grumbo at SemEval-2019 Task 4: Hyperpartisan News Detection with GloVe vectors and SVM
	UBC-NLP at SemEval-2019 Task 4: Hyperpartisan News Detection With Attention-Based Bi-LSTMs
	Vernon-fenwick at SemEval-2019 Task 4: Hyperpartisan News Detection using Lexical and Semantic Features
	AndrejJan at SemEval-2019 Task 7: A Fusion Approach for Exploring the Key Factors pertaining to Rumour Analysis
	BLCU_NLP at SemEval-2019 Task 7: An Inference Chain-based GPT Model for Rumour Evaluation
	BUT-FIT at SemEval-2019 Task 7: Determining the Rumour Stance with Pre-Trained Deep Bidirectional Transformers
	CLEARumor at SemEval-2019 Task 7: ConvoLving ELMo Against Rumors
	Columbia at SemEval-2019 Task 7: Multi-task Learning for Stance Classification and Rumour Verification
	GWU NLP at SemEval-2019 Task 7: Hybrid Pipeline for Rumour Veracity and Stance Classification on Social Media
	SINAI-DL at SemEval-2019 Task 7: Data Augmentation and Temporal Expressions
	UPV-28-UNITO at SemEval-2019 Task 7: Exploiting Post’s Nesting and Syntax Information for Rumor Stance Classification
	BLCU_NLP at SemEval-2019 Task 8: A Contextual Knowledge-enhanced GPT Model for Fact Checking
	CodeForTheChange at SemEval-2019 Task 8: Skip-Thoughts for Fact Checking in Community Question Answering
	ColumbiaNLP at SemEval-2019 Task 8: The Answer is Language Model Fine-tuning
	DOMLIN at SemEval-2019 Task 8: Automated Fact Checking exploiting Ratings in Community Question Answering Forums
	DUTH at SemEval-2019 Task 8: Part-Of-Speech Features for Question Classification
	Fermi at SemEval-2019 Task 8: An elementary but effective approach to Question Discernment in Community QA Forums
	SolomonLab at SemEval-2019 Task 8: Question Factuality and Answer Veracity Prediction in Community Forums
	TMLab SRPOL at SemEval-2019 Task 8: Fact Checking in Community Question Answering Forums
	TueFact at SemEval 2019 Task 8: Fact checking in community question answering forums: context matters
	YNU-HPCC at SemEval-2019 Task 8: Using A LSTM-Attention Model for Fact-Checking in Community Forums
	DBMS-KU at SemEval-2019 Task 9: Exploring Machine Learning Approaches in Classifying Text as Suggestion or Non-Suggestion
	DS at SemEval-2019 Task 9: From Suggestion Mining with neural networks to adversarial cross-domain classification
	Hybrid RNN at SemEval-2019 Task 9: Blending Information Sources for Domain-Independent Suggestion Mining
	INRIA at SemEval-2019 Task 9: Suggestion Mining Using SVM with Handcrafted Features
	Lijunyi at SemEval-2019 Task 9: An attention-based LSTM and ensemble of different models for suggestion mining from online reviews and forums
	MIDAS at SemEval-2019 Task 9: Suggestion Mining from Online Reviews using ULMFit
	NL-FIIT at SemEval-2019 Task 9: Neural Model Ensemble for Suggestion Mining
	NTUA-ISLab at SemEval-2019 Task 9: Mining Suggestions in the wild
	OleNet at SemEval-2019 Task 9: BERT based Multi-Perspective Models for Suggestion Mining
	SSN-SPARKS at SemEval-2019 Task 9: Mining Suggestions from Online Reviews using Deep Learning Techniques on Augmented Data
	Suggestion Miner at SemEval-2019 Task 9: Suggestion Detection in Online Forum using Word Graph
	Team Taurus at SemEval-2019 Task 9: Expert-informed pattern recognition for suggestion mining
	ThisIsCompetition at SemEval-2019 Task 9: BERT is unstable for out-of-domain samples
	WUT at SemEval-2019 Task 9: Domain-Adversarial Neural Networks for Domain Adaptation in Suggestion Mining
	Yimmon at SemEval-2019 Task 9: Suggestion Mining with Hybrid Augmented Approaches
	YNU_DYX at SemEval-2019 Task 9: A Stacked BiLSTM for Suggestion Mining Classification
	YNU-HPCC at SemEval-2019 Task 9: Using a BERT and CNN-BiLSTM-GRU Model for Suggestion Mining
	Zoho at SemEval-2019 Task 9: Semi-supervised Domain Adaptation using Tri-training for Suggestion Mining
	ZQM at SemEval-2019 Task9: A Single Layer CNN Based on Pre-trained Model for Suggestion Mining
	ProblemSolver at SemEval-2019 Task 10: Sequence-to-Sequence Learning and Expression Trees
	RGCL-WLV at SemEval-2019 Task 12: Toponym Detection
	THU_NGN at SemEval-2019 Task 12: Toponym Detection and Disambiguation on Scientific Papers
	UNH at SemEval-2019 Task 12: Toponym Resolution in Scientific Papers
	UniMelb at SemEval-2019 Task 12: Multi-model combination for toponym resolution
	University of Arizona at SemEval-2019 Task 12: Deep-Affix Named Entity Recognition of Geolocation Entities

