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Introduction

Welcome to SemEval-2019!

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyse diverse semantic phenomena in text with the aim of extending the current state
of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2019 is the thirteenth workshop in the series of International Workshops on Semantic
Evaluation. The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004),
focused on word sense disambiguation, each time growing in the number of languages offered, in the
number of tasks, and also in the number of participating teams. In 2007, the workshop was renamed
to SemEval, and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond
word sense disambiguation. In 2012, SemEval turned into a yearly event. It currently runs every year,
but on a two-year cycle, i.e., the tasks for SemEval 2019 were proposed in 2018.

SemEval-2019 was co-located with the 17th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2019) in
Minneapolis, Minnesota, USA. It included the following 11 shared tasks organized in five tracks:

e Frame Semantics and Semantic Parsing

— Task 1: Cross-lingual Semantic Parsing with UCCA

— Task 2: Unsupervised Lexical Semantic Frame Induction

e Opinion, Emotion and Abusive Language Detection

Task 3: EmoContext: Contextual Emotion Detection in Text

Task 4: Hyperpartisan News Detection

Task 5: HatEval: Multilingual Detection of Hate Speech Against Immigrants and Women in
Twitter

Task 6: OffensEval: Identifying and Categorizing Offensive Language in Social Media
e Fact vs. Fiction

— Task 7: RumourEval 2019: Determining Rumour Veracity and Support for Rumours

— Task 8: Fact Checking in Community Question Answering Forums
e Information Extraction and Question Answering

— Task 9: Suggestion Mining from Online Reviews and Forums

— Task 10: Math Question Answering
e NLP for Scientific Applications

— Task 12: Toponym Resolution in Scientific Papers
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This volume contains both Task Description papers that describe each of the above tasks, and System
Description papers that present the systems that participated in these tasks. A total of 11 task description
papers and 220 system description papers are included in this volume.

We are grateful to all task organizers as well as to the large number of participants whose enthusiastic
participation has made SemEval once again a successful event. We are thankful to the task organizers
who also served as area chairs, and to task organizers and participants who reviewed paper submissions.
These proceedings have greatly benefited from their detailed and thoughtful feedback. We also thank the
NAACL HLT 2019 conference organizers for their support. Finally, we most gratefully acknowledge the
support of our sponsors: the ACL Special Interest Group on the Lexicon (SIGLEX) and Microsoft.

The SemEval 2019 organizers, Jonathan May, Ekaterina Shutova, Aurelie Herbelot, Xiaodan Zhu,
Marianna Apidianaki, Saif M. Mohammad
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Invited Talk: Task-Independent Sentence Understanding

Samuel R. Bowman
New York University

Abstract

This talk deals with the goal of task-independent language understanding: building machine learning
models that can learn to do most of the hard work of language understanding before they see a single
example of the language understanding task they’re meant to solve, in service of making the best of mod-
ern NLP systems both better and more data-efficient. I’ll survey the (dramatic!) progress that the NLP
research community has made toward this goal in the last year. In particular, I'll dwell on GLUE—an
open-ended shared task competition that measures progress toward this goal for sentence understand-
ing tasks—and I'll preview a few recent and forthcoming analysis papers that attempt to offer a bit of
perspective on this recent progress.

Biography

I have been on the faculty at NYU since 2016, when I finished my PhD with Chris Manning and Chris
Potts at Stanford. At NYU, I’'m a core member of the new school-level Data Science unit, which focuses
on machine learning, and a co-PI of the CILVR machine learning lab. My research focuses on data, eval-
uation techniques, and modeling techniques for sentence understanding in natural language processing,
and on applications of machine learning to scientific questions in linguistic syntax and semantics. I am
an area chair for *SEM 2018, ICLR 2019, and NAACL 2019; I organized a twenty-three person team
at JSALT 2018; and I earned a 2015 EMNLP Best Resource Paper Award and a 2017 Google Faculty
Research Award.
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ANA at SemEval-2019 Task 3: Contextual Emotion detection in Conversations
through hierarchical LSTMs and BERT
Chenyang Huang, Amine Trabelsi and Osmar Zaiane

12:30-14:00 Lunch

14:00-15:30 Tasks 5 and 6
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Thursday, June 6, 2019 (continued)

15:30-16:00

16:00-16:30

16:30-17:30

SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants
and Women in Twitter

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti,
Francisco Manuel Rangel Pardo, Paolo Rosso and Manuela Sanguinetti

Atalaya at SemEval 2019 Task 5: Robust Embeddings for Tweet Classification
Juan Manuel Pérez and Franco M. Luque

FERMI at SemEval-2019 Task 5: Using Sentence embeddings to Identify Hate
Speech Against Immigrants and Women in Twitter

Vijayasaradhi Indurthi, Bakhtiyar Syed, Manish Shrivastava, Nikhil Chakravartula,
Manish Gupta and Vasudeva Varma

SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social
Media (OffensEval)

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra
and Ritesh Kumar

NULI at SemEval-2019 Task 6: Transfer Learning for Offensive Language Detec-
tion using Bidirectional Transformers
Ping Liu, Wen Li and Liang Zou

Coffee

Discussion

Poster Session

CUNY-PKU Parser at SemEval-2019 Task 1: Cross-Lingual Semantic Parsing with
UCCA

Weimin Lyu, Sheng Huang, Abdul Rafae Khan, Shenggiang Zhang, Weiwei Sun
and Jia Xu

DANGNT@UIT.VNU-HCM at SemEval 2019 Task 1: Graph Transformation Sys-
tem from Stanford Basic Dependencies to Universal Conceptual Cognitive Annota-
tion (UCCA)

Dang Tuan Nguyen and Trung Tran

GCN-Sem at SemEval-2019 Task 1: Semantic Parsing using Graph Convolutional
and Recurrent Neural Networks
Shiva Taslimipoor, Omid Rohanian and Sara Moze

MaskParse @ Deskin at SemEval-2019 Task 1: Cross-lingual UCCA Semantic Pars-

ing using Recursive Masked Sequence Tagging
Gabriel Marzinotto, Johannes Heinecke and Geraldine Damnati
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Thursday, June 6, 2019 (continued)

Tiipa at SemEval-2019 Taskl: (Almost) feature-free Semantic Parsing
Tobias Piitz and Kevin Glocker

UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with Attention-based
Decoder
Dian Yu and Kenji Sagae

HHMM at SemEval-2019 Task 2: Unsupervised Frame Induction using Contextual-
ized Word Embeddings

Saba Anwar, Dmitry Ustalov, Nikolay Arefyev, Simone Paolo Ponzetto, Chris Bie-
mann and Alexander Panchenko

L2F/INESC-ID at SemEval-2019 Task 2: Unsupervised Lexical Semantic Frame
Induction using Contextualized Word Representations

Eugénio Ribeiro, Vania Mendonca, Ricardo Ribeiro, David Martins de Matos, Al-
berto Sardinha, Ana Lucia Santos and Luisa Coheur

BrainEE at SemEval-2019 Task 3: Ensembling Linear Classifiers for Emotion Pre-
diction
Vachagan Gratian

CAIRE_HKUST at SemEval-2019 Task 3: Hierarchical Attention for Dialogue
Emotion Classification

Genta Indra Winata, Andrea Madotto, Zhaojiang Lin, Jamin Shin, Yan Xu, Peng Xu
and Pascale Fung

CECL at SemEval-2019 Task 3: Using Surface Learning for Detecting Emotion in
Textual Conversations
Yves Bestgen

CLaC Lab at SemEval-2019 Task 3: Contextual Emotion Detection Using a Com-
bination of Neural Networks and SVM
Elham Mohammadi, Hessam Amini and Leila Kosseim

CLARK at SemEval-2019 Task 3: Exploring the Role of Context to Identify Emotion
in a Short Conversation
Joseph Cummings and Jason Wilson

CLP at SemEval-2019 Task 3: Multi-Encoder in Hierarchical Attention Networks
for Contextual Emotion Detection
Changjie Li and Yun Xing

CoAStal at SemEval-2019 Task 3: Affect Classification in Dialogue using Attentive
BilL.STMs

Ana Valeria Gonzalez, Victor Petrén Bach Hansen, Joachim Bingel, Isabelle Au-
genstein and Anders Sggaard

ConSSED at SemEval-2019 Task 3: Configurable Semantic and Sentiment Emotion
Detector

Rafat Poswiata B
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Thursday, June 6, 2019 (continued)

CX-ST-RNM at SemEval-2019 Task 3: Fusion of Recurrent Neural Networks Based
on Contextualized and Static Word Representations for Contextual Emotion Detec-
tion

Michat Peretkiewicz

ParallelDots at SemEval-2019 Task 3: Domain Adaptation with feature embeddings
for Contextual Emotion Analysis
Akansha Jain, Ishita Aggarwal and Ankit Singh

E-LSTM at SemEval-2019 Task 3: Semantic and Sentimental Features Retention for
Emotion Detection in Text
Harsh Patel

ELiRF-UPYV at SemEval-2019 Task 3: Snapshot Ensemble of Hierarchical Convo-
lutional Neural Networks for Contextual Emotion Detection
José-Angel Gonzélez, Lluis-F. Hurtado and Ferran Pla

EmoDet at SemEval-2019 Task 3: Emotion Detection in Text using Deep Learning
Hani Al-Omari, Malak Abdullah and Nabeel Bassam

EMOMINER at SemEval-2019 Task 3: A Stacked BiLSTM Architecture for Contex-
tual Emotion Detection in Text
Nikhil Chakravartula and Vijayasaradhi Indurthi

EmoSense at SemEval-2019 Task 3: Bidirectional LSTM Network for Contextual
Emotion Detection in Textual Conversations
Sergey Smetanin

EPITA-ADAPT at SemEval-2019 Task 3: Detecting emotions in textual conversa-
tions using deep learning models combination
Abdessalam Bouchekif, Praveen Joshi, Latifa Bouchekif and Haithem Afli

Figure Eight at SemEval-2019 Task 3: Ensemble of Transfer Learning Methods for
Contextual Emotion Detection
Joan Xiao

GenSMT at SemEval-2019 Task 3: Contextual Emotion Detection in tweets using
multi task generic approach
Dumitru Bogdan

GWU NLP Lab at SemEval-2019 Task 3 :EmoContext: Effectiveness ofContextual
Information in Models for Emotion Detection inSentence-level at Multi-genre Cor-

pus
Shabnam Tafreshi and Mona Diab

IIT Gandhinagar at SemEval-2019 Task 3: Contextual Emotion Detection Using

Deep Learning
Arik Pamnani, Rajat Goel, Jayesh Choudhari and Mayank Singh
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Thursday, June 6, 2019 (continued)

KGPChamps at SemEval-2019 Task 3: A deep learning approach to detect emotions
in the dialog utterances.
Jasabanta Patro, Nitin Choudhary, Kalpit Chittora and Animesh Mukherjee

KSU at SemEval-2019 Task 3: Hybrid Features for Emotion Recognition in Textual
Conversation
Nourah Alswaidan and Mohamed EI Bachir Menai

LIRMM-Advanse at SemEval-2019 Task 3: Attentive Conversation Modeling for
Emotion Detection and Classification
Waleed Ragheb, Jérdme Azé, Sandra Bringay and Maximilien Servajean

MILAB at SemEval-2019 Task 3: Multi-View Turn-by-Turn Model for Context-
Aware Sentiment Analysis
Yoonhyung Lee, Yanghoon Kim and Kyomin Jung

MoonGrad at SemEval-2019 Task 3: Ensemble BiRNNs for Contextual Emotion
Detection in Dialogues
Chandrakant Bothe and Stefan Wermter

NELEC at SemEval-2019 Task 3: Think Twice Before Going Deep
Parag Agrawal and Anshuman Suri

NL-FIIT at SemEval-2019 Task 3: Emotion Detection From Conversational Triplets
Using Hierarchical Encoders
Michal Farkas and Peter Lacko

NTUA-ISLab at SemEval-2019 Task 3: Determining emotions in contextual conver-
sations with deep learning
Rolandos Alexandros Potamias and Gergios Siolas

ntuer at SemEval-2019 Task 3: Emotion Classification with Word and Sentence
Representations in RCNN
Peixiang Zhong and Chunyan Miao

PKUSE at SemEval-2019 Task 3: Emotion Detection with Emotion-Oriented Neural
Attention Network
Luyao Ma, Long Zhang, Wei Ye and Wenhui Hu

Podlab at SemEval-2019 Task 3: The Importance of Being Shallow
Andrew Nguyen, Tobin South, Nigel Bean, Jonathan Tuke and Lewis Mitchell

SCIA at SemEval-2019 Task 3: Sentiment Analysis in Textual Conversations Using

Deep Learning
Zinedine Rebiai, Simon Andersen, Antoine Debrenne and Victor Lafargue
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Thursday, June 6, 2019 (continued)

Sentim at SemEval-2019 Task 3: Convolutional Neural Networks For Sentiment in
Conversations
Jacob Anderson

SINAI at SemEval-2019 Task 3: Using affective features for emotion classification
in textual conversations

Flor Miriam Plaza del Arco, M. Dolores Molina Gonzalez, Maite Martin and L.
Alfonso Urena Lopez

SNU IDS at SemEval-2019 Task 3: Addressing Training-Test Class Distribution
Mismatch in Conversational Classification
Sanghwan Bae, Jihun Choi and Sang-goo Lee

SSN_NLP at SemEval-2019 Task 3: Contextual Emotion ldentification from Textual
Conversation using Seq2Seq Deep Neural Network
Senthil Kumar B, Thenmozhi D, Aravindan Chandrabose and Srinethe Sharavanan

SWAP at SemEval-2019 Task 3: Emotion detection in conversations through Tweets,
CNN and LSTM deep neural networks
Marco Polignano, Marco de Gemmis and Giovanni Semeraro

SymantoResearch at SemEval-2019 Task 3: Combined Neural Models for Emotion
Classification in Human-Chatbot Conversations

Angelo Basile, Marc Franco-Salvador, Neha Pawar, Sanja Stajner, Mara Chinea
Rios and Yassine Benajiba

TDBot at SemEval-2019 Task 3: Context Aware Emotion Detection Using A Condi-
tioned Classification Approach
Sourabh Maity

THU_NGN at SemEval-2019 Task 3: Dialog Emotion Classification using Atten-
tional LSTM-CNN
Suyu Ge, Tao Qi, Chuhan Wu and Yongfeng Huang

THU-HCSI at SemEval-2019 Task 3: Hierarchical Ensemble Classification of Con-
textual Emotion in Conversation
Xihao Liang, Ye Ma and Mingxing Xu

TokyoTech_NLP at SemEval-2019 Task 3: Emotion-related Symbols in Emotion De-
tection
Zhishen Yang, Sam Vijlbrief and Naoaki Okazaki

UAIC at SemEval-2019 Task 3: Extracting Much from Little
Cristian Simionescu, Ingrid Stoleru, Diana Lucaci, Gheorghe Balan, Iulian Bute and
Adrian Iftene

YUN-HPCC at SemEval-2019 Task 3: Multi-Step Ensemble Neural Network for
Sentiment Analysis in Textual Conversation
Dawei Li, Jin Wang and Xuejie Zhang
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Thursday, June 6, 2019 (continued)

KDEHatEval at SemEval-2019 Task 5: A Neural Network Model for Detecting Hate
Speech in Twitter
Umme Aymun Siddiqua, Abu Nowshed Chy and Masaki Aono

ABARUAH at SemEval-2019 Task 5 : Bi-directional LSTM for Hate Speech Detec-
tion
Arup Baruah, Ferdous Barbhuiya and Kuntal Dey

Amobee at SemEval-2019 Tasks 5 and 6: Multiple Choice CNN Over Contextual
Embedding
Alon Rozental and Dadi Biton

CIC at SemEval-2019 Task 5: Simple Yet Very Efficient Approach to Hate Speech
Detection, Aggressive Behavior Detection, and Target Classification in Twitter
Igra Ameer, Muhammad Hammad Fahim Siddiqui, Grigori Sidorov and Alexander
Gelbukh

CiTIUS-COLE at SemEval-2019 Task 5: Combining Linguistic Features to Identify
Hate Speech Against Immigrants and Women on Multilingual Tweets
Sattam Almatarneh, Pablo Gamallo and Francisco J. Ribadas Pena

Grunn2019 at SemEval-2019 Task 5: Shared Task on Multilingual Detection of Hate
Mike Zhang, Roy David, Leon Graumans and Gerben Timmerman

GSI-UPM at SemEval-2019 Task 5: Semantic Similarity and Word Embeddings for
Multilingual Detection of Hate Speech Against Immigrants and Women on Twitter
Diego Benito, Oscar Araque and Carlos A. Iglesias

HATEMINER at SemEval-2019 Task 5: Hate speech detection against Immigrants
and Women in Twitter using a Multinomial Naive Bayes Classifier
Nikhil Chakravartula

HATERecognizer at SemEval-2019 Task 5: Using Features and Neural Networks to
Face Hate Recognition
Victor Nina-Alcocer

GL at SemEval-2019 Task 5: Identifying hateful tweets with a deep learning ap-
proach.
Gretel Liz De la Pefa

INF-HatEval at SemEval-2019 Task 5: Convolutional Neural Networks for Hate
Speech Detection Against Women and Immigrants on Twitter
Alison Ribeiro and N4dia Silva

JCTDHS at SemEval-2019 Task 5: Detection of Hate Speech in Tweets using Deep
Learning Methods, Character N-gram Features, and Preprocessing Methods
Yaakov HaCohen-Kerner, Elyashiv Shayovitz, Shalom Rochman, Eli Cahn, Gal
Didi and Ziv Ben-David
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Thursday, June 6, 2019 (continued)

Know-Center at SemEval-2019 Task 5: Multilingual Hate Speech Detection on
Twitter using CNNs
Kevin Winter and Roman Kern

LT3 at SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immi-
grants and Women in Twitter (hatEval)
Nina Bauwelinck, Gilles Jacobs, Veronique Hoste and Els Lefever

[tl.uni-due at SemEval-2019 Task 5: Simple but Effective Lexico-Semantic Features
for Detecting Hate Speech in Twitter
Huangpan Zhang, Michael Wojatzki, Tobias Horsmann and Torsten Zesch

MineriaUNAM at SemEval-2019 Task 5: Detecting Hate Speech in Twitter using
Multiple Features in a Combinatorial Framework

Luis Enrique Argota Vega, Jorge Carlos Reyes Magaia, Helena Gémez-Adorno and
Gemma Bel-Enguix

MITRE at SemEval-2019 Task 5: Transfer Learning for Multilingual Hate Speech
Detection

Abigail Gertner, John Henderson, Elizabeth Merkhofer, Amy Marsh, Ben Wellner
and Guido Zarrella

STUFIIT at SemEval-2019 Task 5: Multilingual Hate Speech Detection on Twitter
with MUSE and ELMo Embeddings
Michal Bojkovsky and Matus Pikuliak

Saagie at Semeval-2019 Task 5: From Universal Text Embeddings and Classical
Features to Domain-specific Text Classification
Miriam Benballa, Sebastien Collet and Romain Picot-Clemente

SINAI at SemEval-2019 Task 5: Ensemble learning to detect hate speech against
inmigrants and women in English and Spanish tweets

Flor Miriam Plaza del Arco, M. Dolores Molina Gonzalez, Maite Martin and L.
Alfonso Urena Lopez

SINAI-DL at SemEval-2019 Task 5: Recurrent networks and data augmentation by
paraphrasing

Arturo Montejo-Raez, Salud Maria Jiménez-Zafra, Miguel A. Garcia-Cumbreras
and Manuel Carlos Diaz-Galiano

sthruggle at SemEval-2019 Task 5: An Ensemble Approach to Hate Speech Detec-
tion
Aria Nourbakhsh, Frida Vermeer, Gijs Wiltvank and Rob van der Goot

The binary trio at SemEval-2019 Task 5: Multitarget Hate Speech Detection in

Tweets
Patricia Chiril, Farah Benamara Zitoune, Véronique Moriceau and Abhishek Kumar
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Thursday, June 6, 2019 (continued)

The Titans at SemEval-2019 Task 5: Detection of hate speech against immigrants
and women in Twitter
Avishek Garain and Arpan Basu

TuEval at SemEval-2019 Task 5: LSTM Approach to Hate Speech Detection in En-
glish and Spanish

Mihai Manolescu, Denise Lofflad, Adham Nasser Mohamed Saber and Masoumeh
Moradipour Tari

Tw-StAR at SemEval-2019 Task 5: N-gram embeddings for Hate Speech Detection
in Multilingual Tweets
Hala Mulki, Chedi Bechikh Ali, Hatem Haddad and Ismail Babaoglu

UA at SemEval-2019 Task 5: Setting A Strong Linear Baseline for Hate Speech
Detection

Carlos Perelld, David Tomads, Alberto Garcia-Garcia, Jose Garcia-Rodriguez and
Jose Camacho-Collados

UNBNLP at SemEval-2019 Task 5 and 6: Using Language Models to Detect Hate
Speech and Offensive Language
Ali Hakimi Parizi, Milton King and Paul Cook

UTFPR at SemEval-2019 Task 5: Hate Speech Identification with Recurrent Neural
Networks
Gustavo Henrique Paetzold, Marcos Zampieri and Shervin Malmasi

Vista.ue at SemEval-2019 Task 5: Single Multilingual Hate Speech Detection Model
Kashyap Raiyani, Teresa Gongalves, Paulo Quaresma and Vitor Nogueira

YNU NLP at SemEval-2019 Task 5: Attention and Capsule Ensemble for Identifying
Hate Speech
Bin Wang and Haiyan Ding

YNU_DYX at SemEval-2019 Task 5: A Stacked BiGRU Model Based on Capsule
Network in Detection of Hate
Yunxia Ding, Xiaobing Zhou and Xuejie Zhang

Amrita School of Engineering - CSE at SemEval-2019 Task 6: Manipulating At-
tention with Temporal Convolutional Neural Network for Offense Identification and
Classification

Murali Sridharan and Swapna TR
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bhanodaig at SemEval-2019 Task 6: Categorizing Offensive Language in social
media

Ritesh Kumar, Guggilla Bhanodai, Rajendra Pamula and Maheswara Reddy Chen-
nuru

BNU-HKBU UIC NLP Team 2 at SemEval-2019 Task 6: Detecting Offensive Lan-
guage Using BERT model
Zhenghao Wu, Hao Zheng, Jianming Wang, Weifeng Su and Jefferson Fong

CAMsterdam at SemEval-2019 Task 6: Neural and graph-based feature extraction
for the identification of offensive tweets

Guy Aglionby, Chris Davis, Pushkar Mishra, Andrew Caines, Helen Yan-
nakoudakis, Marek Rei, Ekaterina Shutova and Paula Buttery

CN-HIT-MI.T at SemEval-2019 Task 6: Offensive Language ldentification Based on
BiLSTM with Double Attention
Yaojie Zhang, Bing Xu and Tiejun Zhao

ConvAl at SemEval-2019 Task 6: Offensive Language Identification and Catego-
rization with Perspective and BERT
John Pavlopoulos, Nithum Thain, Lucas Dixon and Ion Androutsopoulos

DA-LD-Hildesheim at SemEval-2019 Task 6: Tracking Offensive Content with Deep
Learning using Shallow Representation
Sandip Modha, Prasenjit Majumder and Daksh Patel

DeepAnalyzer at SemEval-2019 Task 6: A deep learning-based ensemble method
for identifying offensive tweets
Gretel Liz De la Pefia and Paolo Rosso

NLP at SemEval-2019 Task 6: Detecting Offensive language using Neural Networks
Prashant Kapil, Asif Ekbal and Dipankar Das

Duluth at SemEval-2019 Task 6: Lexical Approaches to Identify and Categorize
Offensive Tweets
Ted Pedersen

Emad at SemEval-2019 Task 6: Offensive Language ldentification using Traditional
Machine Learning and Deep Learning approaches
Emad Kebriaei, Samaneh Karimi, Nazanin Sabri and Azadeh Shakery

Embeddia at SemEval-2019 Task 6: Detecting Hate with Neural Network and
Transfer Learning Approaches
AndraZ Pelicon, Matej Martinc and Petra Kralj Novak

Fermi at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language
in Social Media using Sentence Embeddings

Vijayasaradhi Indurthi, Bakhtiyar Syed, Manish Shrivastava, Manish Gupta and Va-
sudeva Varma
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Thursday, June 6, 2019 (continued)

Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based Approach to
Offensive Language ldentification
Ehsan Doostmohammadi, Hossein Sameti and Ali Saffar

HAD-Tiibingen at SemEval-2019 Task 6.: Deep Learning Analysis of Offensive Lan-
guage on Twitter: ldentification and Categorization
Himanshu Bansal, Daniel Nagel and Anita Soloveva

HHU at SemEval-2019 Task 6: Context Does Matter - Tackling Offensive Language
Identification and Categorization with ELMo
Alexander Oberstrass, Julia Romberg, Anke Stoll and Stefan Conrad

Hope at SemEval-2019 Task 6: Mining social media language to discover offensive
language
Gabriel Florentin Patras, Diana Florina Lungu, Daniela Gifu and Diana Trandabat

INGEOTEC at SemEval-2019 Task 5 and Task 6: A Genetic Programming Approach
for Text Classification
Mario Graff, Sabino Miranda-Jiménez, Eric Tellez and Daniela Alejandra Ochoa

JCTICOL at SemEval-2019 Task 6: Classifying Offensive Language in Social Media
using Deep Learning Methods, Word/Character N-gram Features, and Preprocess-
ing Methods

Yaakov HaCohen-Kerner, Ziv Ben-David, Gal Didi, Eli Cahn, Shalom Rochman
and Elyashiv Shayovitz

jhan014 at SemEval-2019 Task 6. Identifying and Categorizing Offensive Language
in Social Media
Jiahui Han, Shengtan Wu and Xinyu Liu

JTML at SemEval-2019 Task 6: Offensive Tweets Identification using Convolutional
Neural Networks
Johnny Torres and Carmen Vaca

JU_ETCE_17_21 at SemEval-2019 Task 6: Efficient Machine Learning and Neural
Network Approaches for ldentifying and Categorizing Offensive Language in Tweets
Preeti Mukherjee, Mainak Pal, Somnath Banerjee and Sudip Kumar Naskar

KMI-Coling at SemEval-2019 Task 6: Exploring N-grams for Offensive Language
detection
Priya Rani and Atul Kr. Ojha

LaSTUS/TALN at SemEval-2019 Task 6: Identification and Categorization of Of-
fensive Language in Social Media with Attention-based Bi-LSTM model
Lutfiye Seda Mut Altin, Alex Bravo Serrano and Horacio Saggion

LTL-UDE at SemEval-2019 Task 6: BERT and Two-Vote Classification for Catego-
rizing Offensiveness
Piush Aggarwal, Tobias Horsmann, Michael Wojatzki and Torsten Zesch
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MIDAS at SemEval-2019 Task 6: Identifying Offensive Posts and Targeted Offense
from Twitter

Debanjan Mahata, Haimin Zhang, Karan Uppal, Yaman Kumar, Rajiv Ratn Shah,
Simra Shahid, Laiba Mehnaz and Sarthak Anand

Nikolov-Radivchev at SemEval-2019 Task 6: Offensive Tweet Classification with
BERT and Ensembles
Alex Nikolov and Victor Radivchev

NIT_Agartala_NLP_Team at SemEval-2019 Task 6: An Ensemble Approach to
Identifying and Categorizing Offensive Language in Twitter Social Media Corpora
Steve Durairaj Swamy, Anupam Jamatia, Bjorn Gambick and Amitava Das

NLP@UIOWA at SemEval-2019 Task 6: Classifying the Crass using Multi-
windowed CNNs
Jonathan Rusert and Padmini Srinivasan

NLPR@SRPOL at SemEval-2019 Task 6 and Task 5: Linguistically enhanced deep
learning offensive sentence classifier

Alessandro Seganti, Helena Sobol, Iryna Orlova, Hannam Kim, Jakub Staniszewski,
Tymoteusz Krumholc and Krystian Koziel

nlpUP at SemEval-2019 Task 6: A Deep Neural Language Model for Offensive
Language Detection
Jelena Mitrovié, Bastian Birkeneder and Michael Granitzer

Pardeep at SemEval-2019 Task 6: Identifying and Categorizing Offensive Language
in Social Media using Deep Learning
Pardeep Singh and Satish Chand

SINAI at SemEval-2019 Task 6: Incorporating lexicon knowledge into SVM learn-
ing to identify and categorize offensive language in social media

Flor Miriam Plaza del Arco, M. Dolores Molina Gonzalez, Maite Martin and L.
Alfonso Urena Lopez

SSN_NLP at SemEval-2019 Task 6: Offensive Language Identification in Social
Media using Traditional and Deep Machine Learning Approaches
Thenmozhi D, Senthil Kumar B, Srinethe Sharavanan and Aravindan Chandrabose

Stop PropagHate at SemEval-2019 Tasks 5 and 6: Are abusive language classifica-
tion results reproducible?
Paula Fortuna, Juan Soler-Company and Sérgio Nunes

TECHSSN at SemEval-2019 Task 6: Identifying and Categorizing Offensive Lan-
guage in Tweets using Deep Neural Networks

Angel Suseelan, Rajalakshmi S, Logesh B, Harshini S, Geetika B, Dyaneswaran S,
S Milton Rajendram and Mirnalinee T T
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The Titans at SemEval-2019 Task 6. Offensive Language Identification, Categoriza-
tion and Target ldentification
Avishek Garain and Arpan Basu

TiiKaSt at SemEval-2019 Task 6: Something Old, Something Neu(ral): Traditional
and Neural Approaches to Offensive Text Classification
Madeeswaran Kannan and Lukas Stein

TUVD team at SemEval-2019 Task 6: Offense Target Identification
Elena Shushkevich, John Cardiff and Paolo Rosso

UBC-NLP at SemEval-2019 Task 6: Ensemble Learning of Offensive Content With
Enhanced Training Data
Arun Rajendran, Chiyu Zhang and Muhammad Abdul-Mageed

UHH-LT at SemEval-2019 Task 6: Supervised vs. Unsupervised Transfer Learning
for Offensive Language Detection
Gregor Wiedemann, Eugen Ruppert and Chris Biemann

UM-IU@LING at SemEval-2019 Task 6: Identifying Offensive Tweets Using BERT
and SVMs
Jian Zhu, Zuoyu Tian and Sandra Kiibler

USF at SemEval-2019 Task 6: Offensive Language Detection Using LSTM With
Word Embeddings
Bharti Goel, Ravi Sharma and Sriram Chellappan

UTFPR at SemEval-2019 Task 6: Relying on Compositionality to Find Offense
Gustavo Henrique Paetzold

UVA Wahoos at SemEval-2019 Task 6: Hate Speech Identification using Ensemble
Machine Learning
Murugesan Ramakrishnan, Wlodek Zadrozny and Narges Tabari

YNU-HPCC at SemEval-2019 Task 6: Identifying and Categorising Offensive Lan-
guage on Twitter
Chengjin Zhou, Jin Wang and Xuejie Zhang

YNUWB at SemEval-2019 Task 6: K-max pooling CNN with average meta-
embedding for identifying offensive language
Bin Wang, Xiaobing Zhou and Xuejie Zhang

Zeyad at SemEval-2019 Task 6: That’s Offensive! An All-Out Search For An En-

semble To Identify And Categorize Offense in Tweets.
Zeyad El-Zanaty
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Friday, June 7, 2019

09:00-09:30 SemEval 2020 Tasks

09:30-10:30 State of SemEval Discussion

10:30-11:00  Coffee

11:00-12:30 Tasks 4, 7 and 8

SemEval-2019 Task 4: Hyperpartisan News Detection
Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam
Adineh, David Corney, Benno Stein and Martin Potthast

Team Bertha von Suttner at SemEval-2019 Task 4: Hyperpartisan News Detection
using ELMo Sentence Representation Convolutional Network
Ye Jiang, Johann Petrak, Xingyi Song, Kalina Bontcheva and Diana Maynard

SemEval-2019 Task 7: RumourEval, Determining Rumour Veracity and Support for
Rumours

Genevieve Gorrell, Ahmet Aker, Kalina Bontcheva, Leon Derczynski, Elena
Kochkina, Maria Liakata and Arkaitz Zubiaga

eventAl at SemEval-2019 Task 7: Rumor Detection on Social Media by Exploiting
Content, User Credibility and Propagation Information
Quanzhi Li, Qiong Zhang and Luo Si

SemEval-2019 Task 8: Fact Checking in Community Question Answering Forums
Tsvetomila Mihaylova, Georgi Karadzhov, Pepa Atanasova, Ramy Baly, Mitra Mo-
htarami and Preslav Nakov

AUTOHOME-ORCA at SemEval-2019 Task 8: Application of BERT for Fact-
Checking in Community Forums

Zhengwei Lv, Duoxing Liu, Haifeng Sun, Xiao Liang, Tao Lei, Zhizhong Shi, Feng
Zhu and Lei Yang

12:30-14:00 Lunch

14:00-15:30 Tasks 9, 10 and 12
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Friday, June 7, 2019 (continued)

15:30-16:00

16:00-16:30

16:30-17:30

SemEval-2019 Task 9: Suggestion Mining from Online Reviews and Forums
Sapna Negi, Tobias Daudert and Paul Buitelaar

m_y at SemEval-2019 Task 9: Exploring BERT for Suggestion Mining
Masahiro Yamamoto and Toshiyuki Sekiya

SemEval-2019 Task 10: Math Question Answering
Mark Hopkins, Ronan Le Bras, Cristian Petrescu-Prahova, Gabriel Stanovsky, Han-
naneh Hajishirzi and Rik Koncel-Kedziorski

AiFu at SemEval-2019 Task 10: A Symbolic and Sub-symbolic Integrated System
for SAT Math Question Answering
Yifan Liu, Keyu Ding and Yi Zhou

SemEval-2019 Task 12: Toponym Resolution in Scientific Papers
Davy Weissenbacher, Arjun Magge, Karen O’Connor, Matthew Scotch and Graciela
Gonzalez-Hernandez

DM_NLP at SemEval-2018 Task 12: A Pipeline System for Toponym Resolution

Xiaobin Wang, Chunping Ma, Huafei Zheng, Chu Liu, Pengjun Xie, Linlin Li and
Luo Si

Coffee

Discussion

Poster Session
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Abstract

We present the SemEval 2019 shared task
on Universal Conceptual Cognitive Annota-
tion (UCCA) parsing in English, German
and French, and discuss the participating
systems and results. UCCA is a cross-
linguistically applicable framework for se-
mantic representation, which builds on exten-
sive typological work and supports rapid an-
notation. UCCA poses a challenge for ex-
isting parsing techniques, as it exhibits reen-
trancy (resulting in DAG structures), discon-
tinuous structures and non-terminal nodes cor-
responding to complex semantic units. The
shared task has yielded improvements over
the state-of-the-art baseline in all languages
and settings. Full results can be found in the
task’s website https://competitions.
codalab.org/competitions/19160.

1 Overview

Semantic representation is receiving growing at-
tention in NLP in the past few years, and many
proposals for semantic schemes have recently
been put forth. Examples include Abstract Mean-
ing Representation (AMR; Banarescu et al., 2013),
Broad-coverage Semantic Dependencies (SDP;
Oepen et al., 2016), Universal Decompositional
Semantics (UDS; White et al., 2016), Parallel
Meaning Bank (Abzianidze et al., 2017), and Uni-
versal Conceptual Cognitive Annotation (UCCA;
Abend and Rappoport, 2013). These advances in
semantic representation, along with correspond-
ing advances in semantic parsing, can potentially
benefit essentially all text understanding tasks, and
have already demonstrated applicability to a vari-
ety of tasks, including summarization (Liu et al.,
2015; Dohare and Karnick, 2017), paraphrase de-
tection (Issa et al., 2018), and semantic evaluation
(using UCCA; see below). In this shared task,
we focus on UCCA parsing in multiple languages.

1
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graduation John  moved
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to Paris

Figure 1: An example UCCA graph.

One of our goals is to benefit semantic parsing in
languages with less annotated resources by mak-
ing use of data from more resource-rich languages.
We refer to this approach as cross-lingual parsing,
while other works (Zhang et al., 2017, 2018) de-
fine cross-lingual parsing as the task of parsing
text in one language to meaning representation in
another language.

In addition to its potential applicative value,
work on semantic parsing poses interesting algo-
rithmic and modeling challenges, which are often
different from those tackled in syntactic parsing,
including reentrancy (e.g., for sharing arguments
across predicates), and the modeling of the inter-
face with lexical semantics.

UCCA is a cross-linguistically applicable se-
mantic representation scheme, building on the
established Basic Linguistic Theory typological
framework (Dixon, 2010b,a, 2012). It has demon-
strated applicability to multiple languages, includ-
ing English, French and German, and pilot an-
notation projects were conducted on a few lan-
guages more. UCCA structures have been shown
to be well-preserved in translation (Sulem et al.,
2015), and to support rapid annotation by non-
experts, assisted by an accessible annotation in-
terface (Abend et al., 2017).! UCCA has al-
ready shown applicative value for text simplifica-

"https://github.com/omriabnd/UCCA-App
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Scene Elements

All other types of non-Scene relations: (1) Rs that relate a C to some super-ordinate relation, and

P Process The main relation of a Scene that evolves in time (usually an action or movement).
S State The main relation of a Scene that does not evolve in time.
A Participant Scene participant (including locations, abstract entities and Scenes serving as arguments).
D  Adverbial A secondary relation in a Scene.
Elements of Non-Scene Units
C Center Necessary for the conceptualization of the parent unit.
E Elaborator A non-Scene relation applying to a single Center.
N  Connector A non-Scene relation applying to two or more Centers, highlighting a common feature.
R Relator
(2) Rs that relate two Cs pertaining to different aspects of the parent unit.

Inter-Scene Relations
H Parallel Scene A Scene linked to other Scenes by regular linkage (e.g., temporal, logical, purposive).
L Linker A relation between two or more Hs (e.g., “when”, “if”’, “in order to”).
G Ground A relation between the speech event and the uttered Scene (e.g., “surprisingly”).

Other

F  Function

Does not introduce a relation or participant. Required by some structural pattern.

Table 1: The complete set of categories in UCCA’s foundational layer.

tion (Sulem et al., 2018b), as well as for defining
semantic evaluation measures for text-to-text gen-
eration tasks, including machine translation (Birch
et al., 2016), text simplification (Sulem et al.,
2018a) and grammatical error correction (Choshen
and Abend, 2018).

The shared task defines a number of tracks,
based on the different corpora and the availabil-
ity of external resources (see §5). It received sub-
missions from eight research groups around the
world. In all settings at least one of the submitted
systems improved over the state-of-the-art TUPA
parser (Hershcovich et al., 2017, 2018), used as a
baseline.

2 Task Definition

UCCA represents the semantics of linguistic ut-
terances as directed acyclic graphs (DAGs), where
terminal (childless) nodes correspond to the text
tokens, and non-terminal nodes to semantic units
that participate in some super-ordinate relation.
Edges are labeled, indicating the role of a child
in the relation the parent represents. Nodes and
edges belong to one of several layers, each corre-
sponding to a “module” of semantic distinctions.
UCCA’s foundational layer covers the
predicate-argument structure evoked by pred-
icates of all grammatical categories (verbal,
nominal, adjectival and others), the inter-relations
between them, and other major linguistic phe-
nomena such as semantic heads and multi-word
expressions. It is the only layer for which an-
notated corpora exist at the moment, and is thus
the target of this shared task. The layer’s basic
notion is the Scene, describing a state, action,

movement or some other relation that evolves
in time. Each Scene contains one main relation
(marked as either a Process or a State), as well
as one or more Participants. For example, the
sentence “After graduation, John moved to Paris”
(Figure 1) contains two Scenes, whose main
relations are “graduation” and “moved”. “John”
is a Participant in both Scenes, while “Paris”
only in the latter. Further categories account for
inter-Scene relations and the internal structure
of complex arguments and relations (e.g., coor-
dination and multi-word expressions). Table 1
provides a concise description of the categories
used by the UCCA foundational layer.

UCCA distinguishes primary edges, corre-
sponding to explicit relations, from remote edges
(appear dashed in Figure 1) that allow for a unit
to participate in several super-ordinate relations.
Primary edges form a tree in each layer, whereas
remote edges enable reentrancy, forming a DAG.

UCCA graphs may contain implicit units with
no correspondent in the text. Figure 2 shows the
annotation for the sentence “A similar technique
is almost impossible to apply to other crops, such
as cotton, soybeans and rice.’> It includes a sin-
gle Scene, whose main relation is “apply”, a sec-
ondary relation “almost impossible”, as well as
two complex arguments: ‘“a similar technique”
and the coordinated argument “such as cotton,
soybeans, and rice.” In addition, the Scene in-
cludes an implicit argument, which represents the
agent of the “apply” relation.

While parsing technology is well-established

>The same example was used by Oepen et al. (2015) to
compare different semantic dependency schemes.



is IMPLICIT to

A similar technique almost impossible

U
apply
R/E|C E
to other crops
RC/U C C
such as  cotton soybeans and rice

Figure 2: UCCA example with an implicit unit.

for syntactic parsing, UCCA has several formal
properties that distinguish it from syntactic rep-
resentations, mostly UCCA’s tendency to abstract
away from syntactic detail that do not affect argu-
ment structure. For instance, consider the follow-
ing examples where the concept of a Scene has a
different rationale from the syntactic concept of a
clause. First, non-verbal predicates in UCCA are
represented like verbal ones, such as when they
appear in copula clauses or noun phrases. Indeed,
in Figure 1, “graduation” and “moved” are con-
sidered separate Scenes, despite appearing in the
same clause. Second, in the same example, “John”
is marked as a (remote) Participant in the grad-
uation Scene, despite not being explicitly men-
tioned. Third, consider the possessive construc-
tion in “John’s trip home”. While in UCCA “trip”
evokes a Scene in which “John” is a Participant, a
syntactic scheme would analyze this phrase simi-
larly to “John’s shoes”.

The differences in the challenges posed by syn-
tactic parsing and UCCA parsing, and more gen-
erally by semantic parsing, motivate the develop-
ment of targeted parsing technology to tackle it.

3 Data & Resources

All UCCA corpora are freely available.® For En-
glish, we use v1.2.3 of the Wikipedia UCCA cor-
pus (Wiki), v1.2.2 of the UCCA Twenty Thousand
Leagues Under the Sea English-French parallel
corpus (20K), which includes UCCA manual an-
notation for the first five chapters in French and
English, and v1.0.1 of the UCCA German Twenty

*https://github.com/
UniversalConceptualCognitiveAnnotation

Thousand Leagues Under the Sea corpus, which
includes the entire book in German. For consistent
annotation, we replace any Time and Quantifier la-
bels with Adverbial and Elaborator in these data
sets. The resulting training, development* and test
sets’ are publicly available, and the splits are given
in Table 2. Statistics on various structural proper-
ties are given in Table 3.

The corpora were manually annotated accord-
ing to v1.2 of the UCCA guidelines,® and re-
viewed by a second annotator. All data was passed
through automatic validation and normalization
scripts.” The goal of validation is to rule out cases
that are inconsistent with the UCCA annotation
guidelines. For example, a Scene, defined by the
presence of a Process or a State, should include at
least one Participant.

Due to the small amount of annotated data avail-
able for French, we only provided a minimal train-
ing set of 15 sentences, in addition to the devel-
opment and test set. Systems for French were
expected to pursue semi-supervised approaches,
such as cross-lingual learning or structure projec-
tion, leveraging the parallel nature of the corpus,
or to rely on datasets for related formalisms, such
as Universal Dependencies (Nivre et al., 2016).
The full unannotated 20K Leagues corpus in En-
glish and French was released as well, in order to
facilitate pursuing cross-lingual approaches.

Datasets were released in an XML for-
mat, including tokenized text automatically pre-

4http: //bit.ly/semeval2019taskltraindev

5http: //bit.ly/semeval20l9taskltest

Ohttp: //bit.ly/semeval2019tasklguidelines

"https://github.com/huji-nlp/ucca/
tree/master/scripts



train/trial dev

sentences ‘ tokens

corpus sentences ‘ tokens

English-Wiki 4,113 124,935 514
English-20K 0 0 0 0
French-20K 15 618 238
German-20K 5,211 119,872 651

17,784

6,374
12,334

test total
sentences \ tokens | passages \ sentences \ tokens
515 15,854 367 5,142 158,573
492 12,574 154 492 12,574
239 5,962 154 492 12,954
652 12,325 367 6,514 144,531

Table 2: Data splits of the corpora used for the shared task.

En-Wiki En-20K Fr-20K De-20K
# passages 367 154 154 367
# sentences 5,141 492 492 6,514
# tokens 158,739 12,638 13,021 144,529
# non-terminals 62,002 4,699 5,110 51,934
% discontinuous 1.71 3.19 4.64 8.87
% reentrant 1.84 0.89 0.65 0.31
# edges 208,937 16,803 17,520 187,533
% primary 9740 96.79 97.02 97.32
% remote 2.60 3.21 2.98 2.68
by category
% Participant 17.17 18.1 17.08 19.86
% Center 18.74 1631 18.03 14.32
% Adverbial 3.65 5.25 4.18 5.67
% Elaborator 1898 18.06 18.65 14.88
% Function 3.38 3.58 2.58 2.98
% Ground 0.03 0.56 0.37 0.57
% Parallel Scene 6.02 6.3 6.15 7.54
% Linker 2.19 2.66 2.57 2.49
% Connector 1.26 0.93 0.84 0.65
% Process 7.1 7.51 6.91 7.03
% Relator 8.58 8.09 9.6 7.54
% State 1.62 2.1 1.88 3.34
% Punctuation 11.28 10.55 11.16 13.15

Table 3: Statistics of the corpora used for the shared
task.

processed using spaCy (see §5), and gold-standard
UCCA annotation for the train and development
sets.® To facilitate the use of existing NLP tools,
we also released the data in SDP, AMR, CoNLL-U
and plain text formats.

4 TUPA: The Baseline Parser

We use the TUPA parser, the only parser for
UCCA at the time the task was announced, as a
baseline (Hershcovich et al., 2017, 2018). TUPA
is a transition-based DAG parser based on a
BiLSTM-based classifier.’” TUPA in itself has
been found superior to a number of conversion-
based parsers that use existing parsers for other
formalisms to parse UCCA by constructing a two-
way conversion protocol between the formalisms.
It can thus be regarded as a strong baseline for sys-

$https://github.com/
UniversalConceptualCognitiveAnnotation/
docs/blob/master/FORMAT .md

‘https://github.com/huji-nlp/tupa

tem submissions to the shared task.

5 Evaluation

Tracks. Participants in the task were evaluated
in four settings:

1. English in-domain setting, using the Wiki
corpus.

2. English out-of-domain setting, using the
Wiki corpus as training and development
data, and 20K Leagues as test data.

3. German in-domain setting, using the 20K
Leagues corpus.

4. French setting with no training data, using the
20K Leagues as development and test data.

In order to allow both even ground compari-
son between systems and using hitherto untried re-
sources, we held both an open and a closed track
for submissions in the English and German set-
tings. Closed track submissions were only allowed
to use the gold-standard UCCA annotation dis-
tributed for the task in the target language, and
were limited in their use of additional resources.
Concretely, the only additional data they were al-
lowed to use is that used by TUPA, which consists
of automatic annotations provided by spaCy:!°
POS tags, syntactic dependency relations, and
named entity types and spans. In addition, the
closed track only allowed the use of word em-
beddings provided by fastText (Bojanowski et al.,
2017)'! for all languages.

Systems in the open track, on the other hand,
were allowed to use any additional resource, such
as UCCA annotation in other languages, dictionar-
ies or datasets for other tasks, provided that they
make sure not to use any additional gold standard
annotation over the same text used in the UCCA

Yhttp://spacy.io
Uhttp://fasttext.cc



corpora.'? In both tracks, we required that sub-
mitted systems are not trained on the development
data. We only held an open track for French, due
to the paucity of training data. The four settings
and two tracks result in a total of 7 competitions.

Scoring. The following scores an output graph
G1 = (V4, E1) against a gold one, G2 = (V3, Es),
over the same sequence of terminals (tokens) V.
For a node v in Vj or Va, define yield(v) C W
as is its set of terminal descendants. A pair of
edges (v1,u1) € Eq and (vg,u2) € Ey with la-
bels (categories) ¢1, {5 is matching if yield(ui) =
yield(ug) and ¢1 = {o. Labeled precision and re-
call are defined by dividing the number of match-
ing edges in G; and G2 by |E| and |Es|, respec-
tively. F7 is their harmonic mean:

Precision - Recall

" Precision + Recall

Unlabeled precision, recall and F are the same,
but without requiring that £; = /5 for the edges to
match. We evaluate these measures for primary
and remote edges separately. For a more fine-
grained evaluation, we additionally report preci-
sion, recall and F; on edges of each category.'3

6 Participating Systems

We received a total of eight submissions to the
different tracks: MaskParse @ Deskiii (Marzinotto
et al., 2019) from Orange Labs and Aix-Marseille
University, HLT@SUDA (Jiang et al., 2019) from
Soochow University, TiiPa (Piitz and Glocker,
2019) from the University of Tiibingen, UC
Davis (Yu and Sagae, 2019) from the Univer-
sity of California, Davis , GCN-Sem (Taslimipoor
et al., 2019) from the University of Wolverhamp-
ton, CUNY-PekingU (Lyu et al., 2019) from the
City University of New York and Peking Uni-
versity, DANGNT@UIT.VNU-HCM (Nguyen and
Tran, 2019) from the University of Information
Technology VNU-HCM, and XLangMo from Zhe-
jiang University. Some of the teams partici-
pated in more than one track and two systems
(HLT@SUDA and CUNY-PekingU) participated in
all the tracks.

12We are not aware of any such annotation, but include this
restriction for completeness.

BThe official evaluation script providing both
coarse-grained and fine-grained scores can be found in
https://github.com/huji-nlp/ucca/blob/
master/scripts/evaluate_standard.py.

In terms of parsing approaches, the task
was quite varied. HLT@SUDA converted
UCCA graphs to constituency trees and trained
a constituency parser and a recovery mecha-
nism of remote edges in a multi-task frame-
work. MaskParse@ Deskiii used a bidirectional
GRU tagger with a masking mechanism. Tiipa
and XLangMo used a transition-based approach.
UC Davis used an encoder-decoder architecture.
GCN-SEM uses a BiLSTM model to predict Se-
mantic Dependency Parsing tags, when the syntac-
tic dependency tree is given in the input. CUNY-
PKU is based on an ensemble that includes dif-
ferent variations of the TUPA parser. DAN-
GNT@UIT.VNU-HCM converted syntactic depen-
dency trees to UCCA graphs.

Different systems handled remote edges differ-
ently. DANGNT@UIT.VNU-HCM and GCN-SEM
ignored remote edges. UC Davis used a different
BiLSTM for remote edges. HLT@SUDA marked
remote edges when converting the graph to a con-
stituency tree and trained a classification model
for their recovery. MaskParse @ Deskiii handles re-
mote edges by detecting arguments that are out-
side of the parent’s node span using a detection
threshold on the output probabilities.

In terms of using the data, all teams but one used
the UCCA XML format, two used the CoNLL-
U format, which is derived by a lossy con-
version process, and only one team found the
other data formats helpful. One of the teams
(MaskParse @ Deskiii) built a new training data
adapted to their model by repeating each sentence
N times, N being the number of non-terminal
nodes in the UCCA graphs. Three of the teams
adapted the baseline TUPA parser, or parts of it to
form their parser, namely TiiPa, CUNY-PekingU
and XLangMo; HLT@SUDA used a constituency
parser (Stern et al., 2017) as a component in their
model; DANGNT@UIT.VNU-HCM is arule-based
system over the Stanford Parser, and the rest are
newly constructed parsers.

All teams found it useful to use external re-
sources beyond those provided by the Shared
Task. Four submissions used external embed-
dings, MUSE (Conneau et al., 2017) in the case
of MaskParse @ Deskiii and XLangMo, ELMo (Pe-
ters et al., 2018) in the case of TiiPa,'* and BERT
(Devlin et al., 2018) in the case of HLT@SUDA.

1“GCN-Sem used ELMo in the closed tracks, training on
the available data.



Labeled Unlabeled

#  Team All  Prim. Rem. All  Prim. Rem.
English-Wiki (closed)
1  HLT@SUDA 77.4 779 522 872 87.9 525
2 baseline 72.8 733 472 850 85.8 484
3 Davis 722 73.0 0 855 86.4 0
4 CUNY-PekingU 71.8 723 495 845 852 50.1
5 DANGNT@UIT. 70.0 70.7 0 817 82.6 0
VNU-HCM
6 GCN-Sem 65.7 66.4 0 809 81.8 0
English-Wiki (open)
1  HLT@SUDA 80.5 81.0 588 89.7 90.3 60.7
2 CUNY-PekingU 80.0 80.2 66.6 894 89.9 67.4
3 baseline 735 739 535 851 85.7 543
3 TiiPa 735 74.1 425 853 86.2 43.1
4 XLangMo 73.1 735 532 851 85.7 535
5 DANGNT@UIT. 70.3 71.1 0 817 82.6 0
VNU-HCM
English-20K (closed)
1  HLT@SUDA 72.7 73.6 312 852 86.4 32.1
2 baseline 67.2 68.2 237 822 83.5 243
3 CUNY-PekingU 66.9 67.9 279 823 83.6 29.0
4 GCN-Sem 62.6 63.7 0 80.0 81.4 0
English-20K (open)
1  HLT@SUDA 76.7 71.7 392 88.0 89.2 414
2 CUNY-PekingU 739 74.6 457 864 87.4 48.1
3 TiiPa 70.9 71.9 29.6 844 85.7 30.7
4 XLangMo 69.5 70.4 36.6 835 84.6 385
5  baseline 68.4 69.4 259 825 83.9 26.2
German-20K (closed)
1  HLT@SUDA 832 83.8 592 92.0 92.6 60.9
2 CUNY-PekingU 79.7 80.2 59.3 902 90.9 59.9
3 baseline 73.1 73.6 478 859 86.7 48.2
4 GCN-Sem 71.0 72.0 0 851 86.2 0
German-20K (open)
1  HLT@SUDA 84.9 854 64.1 928 934 64.7
2 CUNY-PekingU 84.1 84.5 66.0 923 93.0 66.6
3 baseline 79.1 79.6 59.9 903 91.0 60.5
4 TiPa 78.1 78.8 408 894 90.3 41.2
5  XLangMo 78.0 784 61.1 894 90.1 61.4
French-20K (open)
1 CUNY-PekingU 79.6 80.0 645  89.1 89.6 71.1
2 HLT@SUDA 752 76.0 433 86.0 87.0 45.1
3 XLangMo 65.6 66.6 133 815 82.8 14.1
4 MaskParse @Deskifi 65.4 66.6 243 809 82.5 25.8
5  baseline 48.7 49.6 24 740 753 32
6  TiiPa 45.6 46.4 0 734 74.6 0

Table 4: Official Fl-scores for each system in each
track. Prim.: primary edges, Rem.: remote edges.

Other resources included additional unlabeled data
(TiiPa and CUNY-Pekingl), a list of multi-word
expressions (MaskParse @ Deskiii), and the Stan-
ford parser in the case of DANGNT@UIT.VNU-
HCM. Only CUNY-PKU used the 20K unlabeled
parallel data in English and French.

A common trend for many of the systems was
the use of cross-lingual projection or transfer
(MaskParse @ Deskiii, HLT@SUDA, TiiPa, GCN-
Sem, CUNY-PKU and XLangMo). This was nec-
essary for French, and was found helpful for Ger-
man as well (CUNY-PKU).

7 Results

Table 4 shows the labeled and unlabeled F1 for
primary and remote edges, for each system in each
track. Overall F1 (All) is the F1 calculated over
both primary and remote edges. Full results are
available online.'

Figure 3 shows the fine-grained evaluation by

Bnttp://bit.ly/semeval2019tasklresults

labeled F1 per UCCA category, for each system in
each track. While Ground edges were uniformly
difficult to parse due to their sparsity in the train-
ing data, Relators were the easiest for all systems,
as they are both common and predictable. The
Process/State distinction proved challenging, and
most main relations were identified as the more
common Process category. The winning system
in most tracks (HLT@SUDA) performed better on
almost all categories. Its largest advantage was
on Parallel Scenes and Linkers, showing was es-
pecially successful at identifying Scene bound-
aries relative to the other systems, which requires
a good understanding of syntax.

8 Discussion

The HLT@SUDA system participated in all the
tracks, obtaining the first place in the six En-
glish and German tracks and the second place in
the French open track. The system is based on
the conversion of UCCA graphs into constituency
trees, marking remote and discontinuous edges for
recovery. The classification-based recovery of the
remote edges is performed simultaneously with
the constituency parsing in a multi-task learning
framework. This work, which further connects be-
tween semantic and syntactic parsing, proposes a
recovery mechanism that can be applied to other
grammatical formalisms, enabling the conversion
of a given formalism to another one for parsing.
The idea of this system is inspired by the pseudo
non-projective dependency parsing approach pro-
posed by Nivre and Nilsson (2005).

The MaskParse@ Deskifi system only partici-
pated to the French open track, focusing on cross-
lingual parsing. The system uses a semantic tag-
ger, implemented with a bidirectional GRU and a
masking mechanism to recursively extract the in-
ner semantic structures in the graph. Multilingual
word embeddings are also used. Using the En-
glish and German training data as well as the small
French trial data for training, the parser ranked
fourth in the French open track with a labeled F1
score of 65.4%, suggesting that this new model
could be useful for low-resource languages.

The Tiipa system takes a transition-based ap-
proach, building on the TUPA transition system
and oracle, but modifies its feature representa-
tions. Specifically, instead of representing the
parser configuration using LSTMs over the par-
tially parsed graph, stack and buffer, they use feed-
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Figure 3: Each system’s labeled F1 per UCCA category in each track.



forward networks with ELMo contextualized em-
beddings. The stack and buffer are represented
by the top three items on them. For the partially
parsed graph, they extract the rightmost and left-
most parents and children of the respective items,
and represent them by the ELMo embedding of
their form, the embedding of their dependency
heads (for terminals, for non-terminals this is re-
placed with a learned embedding) and the embed-
dings of all terminal children. Results are gener-
ally on-par with the TUPA baseline, and surpass
it from the out-of-domain English setting. This
suggests that the TUPA architecture may be sim-
plified, without compromising performance.

The UC Davis system participated only in the
English closed track, where they achieved the sec-
ond highest score, on par with TUPA. The pro-
posed parser has an encoder-decoder architecture,
where the encoder is a simple BiLSTM encoder
for each span of words. The decoder iteratively
and greedily traverses the sentence, and attempts
to predict span boundaries. The basic algorithm
yields an unlabeled contiguous phrase-based tree,
but additional modules predict the labels of the
spans, discontiguous units (by joining together
spans from the contiguous tree under a new node),
and remote edges. The work is inspired by Kitaev
and Klein (2018), who used similar methods for
constituency parsing.

The GCN-SEM system uses a BILSTM encoder,
and predicts bi-lexical semantic dependencies (in
the SDP format) using word, token and syntac-
tic dependency parses. The latter is incorporated
into the network with a graph convolutional net-
work (GCN). The team participated in the English
and German closed tracks, and were not among
the highest-ranking teams. However, scores on
the UCCA test sets converted to the bi-lexical
CoNLL-U format were rather high, implying that
the lossy conversion could be much of the reason.

The CUNY-PKU system was based on an en-
semble. The ensemble included variations of
TUPA parser, namely the MLP and BiLSTM mod-
els (Hershcovich et al., 2017) and the BiLSTM
model with an additional MLP. The system also
proposes a way to aggregate the ensemble going
through CKY parsing and accounting for remotes
and discontinuous spans. The team participated in
all tracks, including additional information in the
open domain, notably synthetic data based on au-
tomatically translating annotated texts. Their sys-

tem ranks first in the French open track.

The DANGNT@UIT.VNU-HCM system partic-
ipated only in the English Wiki open and closed
tracks. The system is based on graph transfor-
mations from dependency trees into UCCA, using
heuristics to create non-terminal nodes and map
the dependency relations to UCCA categories.
The manual rules were developed based on the
training and development data. As the system con-
verts trees to trees and does not add reentrancies,
it does not produce remote edges. While the re-
sults are not among the highest-ranking in the task,
the primary labeled F1 score of 71.1% in the En-
glish open track shows that a rule-based system on
top of a leading dependency parser (the Stanford
parser) can obtain reasonable results for this task.

9 Conclusion

The task has yielded substantial improvements to
UCCA parsing in all settings. Given that the
best reported results were achieved with differ-
ent parsing and learning approaches than the base-
line model TUPA (which has been the only avail-
able parser for UCCA), the task opens a variety of
paths for future improvement. Cross-lingual trans-
fer, which capitalizes on UCCA’s tendency to be
preserved in translation, was employed by a num-
ber of systems and has proven remarkably effec-
tive. Indeed, the high scores obtained for French
parsing in a low-resource setting suggest that high
quality UCCA parsing can be straightforwardly
extended to additional languages, with only a min-
imal amount of manual labor.

Moreover, given the conceptual similarity
between the different semantic representations
(Abend and Rappoport, 2017), it is likely the
parsers developed for the shared task will directly
contribute to the development of other semantic
parsing technology. Such a contribution is facil-
itated by the available conversion scripts available
between UCCA and other formats.
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HLT@SUDA at SemEval-2019 Task 1: UCCA Graph Parsing as
Constituent Tree Parsing

Wei Jiang, Zhenghua Li; Yu Zhang, Min Zhang

School of Computer Science and Technology, Soochow University, China

Abstract

This paper describes a simple UCCA
semantic graph parsing approach. The
key idea is to convert a UCCA semantic
graph into a constituent tree, in which
extra labels are deliberately designed to
mark remote edges and discontinuous
nodes for future recovery. In this way,
we can make use of existing syntactic
parsing techniques. Based on the data
statistics, we recover discontinuous
nodes directly according to the output
labels of the constituent parser and
use a biaffine classification model
to recover the more complex remote
edges. The classification model and the
constituent parser are simultaneously
trained under the multi-task learning
framework. = We use the multilingual
BERT as extra features in the open tracks.
Our system ranks the first place in the
six English/German closed/open tracks
among seven participating systems. For
the seventh cross-lingual track, where
there is little training data for French, we
propose a language embedding approach
to utilize English and German training
data, and our result ranks the second
place.

1 Introduction

Universal Conceptual Cognitive Annotation
(UCCA) is a multi-layer linguistic framework
for semantic annotation proposed by Abend and
Rappoport (2013). Figure 1 shows an example
sentence and its UCCA graph. Words are
represented as terminal nodes. Circles denote
non-terminal nodes, and the semantic relation

"Corresponding author, hlt.suda.edu.cn/zhenghua
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Ich ging umher und tastete

Figure 1: A UCCA graph example from
the German data. The English translation is
“I went around and groped . We assign a number
to each non-terminal node to facilitate illustration.

between two non-terminal nodes is represented
by the label on the edge. One node may have
multiple parents, among which one is annotated
as the primary parent, marked by solid line
edges, and others as remote parents, marked by
dashed line edges. The primary edges form a
tree structure, whereas the remote edges enable
reentrancy, forming directed acyclic graphs
(DAGs).! The second feature of UCCA is the
existence of nodes with discontinuous leaves,
known as discontinuity. For example, node 3 in
Figure 1 is discontinuous because some terminal
nodes it spans are not its descendants.
Hershcovich et al. (2017) first propose a
transition-based UCCA Parser, which is used as
the baseline in the closed tracks of this shared
task. Based on the recent progress on transition-
based parsing techniques, they propose a novel set
of transition actions to handle both discontinuous
and remote nodes and design useful features
based on bidirectional LSTMs. Hershcovich et al.
(2018) then extend their previous approach and
propose to utilize the annotated data with other

The full UCCA scheme also has implicit and linkage
relations, which are overlooked in the community so far.

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 11-15
Minneapolis, Minnesota, USA, June 67, 2019. ©2019 Association for Computational Linguistics



semantic formalisms such as abstract meaning
representation (AMR), universal dependencies
(UD), and bilexical Semantic Dependencies
(SDP), via multi-task learning, which is used as
the baseline in the open tracks.

In this paper, we present a simple UCCA
semantic graph parsing approach by treating
UCCA semantic graph parsing as constituent
parsing. We first convert a UCCA semantic
graph into a constituent tree by removing
discontinuous and remote phenomena. Extra
labels encodings are deliberately designed
to annotate the conversion process and to
recover discontinuous and remote structures.
We heuristically recover discontinuous nodes
according to the output labels of the constituent
parser, since most discontinuous nodes share the
same pattern according to the data statistics. As
for the more complex remote edges, we use a
biaffine classification model for their recovery.
We directly employ the graph-based constituent
parser of Stern et al. (2017) and jointly train the
parser and the biaffine classification model via
multi-task learning (MTL). For the open tracks,
we use the publicly available multilingual BERT
as extra features. Our system ranks the first
place in the six English/German closed/open
tracks among seven participating systems. For
the seventh cross-lingual track, where there is
little training data for French, we propose a
language embedding approach to utilize English
and German training data, and our result ranks the
second place.

2 The Main Approach

Our key idea is to convert UCCA graphs into
constituent trees by removing discontinuous and
remote edges and using extra labels for their future
recovery. Our idea is inspired by the pseudo non-
projective dependency parsing approach propose
by Nivre and Nilsson (2005).

2.1 Graph-to-Tree Conversion

Given a UCCA graph as depicted in Figure 1, we
produce a constituent tree shown in Figure 2 based
on our algorithm described as follows.

1) Removal of remote edges. For nodes that
have multiple parent nodes, we remove all remote
edges and only keep the primary edge. To fa-
cilitate future recovery, we concatenate an extra
“remote” to the label of the primary edge, indicat-
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ROOT

/\\

H-ancestorl L-ancestorl

A
/\

Ich ging umbher

und tastete

Figure 2: Constituent tree converted from UCCA
gragh.

train | dev | total | percent(%)
ancestor 1 1460 | 149 | 1609 91.3
ancestor 2 96 19 | 115 6.5
ancestor 3 21 0 21 1.2
discontinuous | 16 18 1.0

Table 1: Distribution of discontinuous structures
in the English-Wiki data, which is similar in the
German data.

ing that the corresponding node has other remote
relations. We can see that the label of the child
node 5 becomes “A-remote” after conversion in
Figure 1 and 2.

2) Handling discontinuous nodes. We call
node 3 in Figure 1 a discontinuous node because
the terminal nodes (also words or leaves) it spans
are not continuous (“Ich ging umher und” are not
its descendants). Since mainstream constituent
parsers cannot handle discontinuity, we try to re-
move discontinuous structures by moving specific
edges in the following procedure.

Given a discontinuous node A = 3, we first
process the leftmost non-descendant node B
“Ich”. We go upwards along the edges until we
find a node C = 2, whose father is either the
lowest common ancestor (LCA) of A = 3 and
B = “lch” or another discontinuous node. We
denote the father of C =2 as D = 1.

Then we move C' = 2 to be the child of A =
3, and concatenate the original edge label with
an extra string (among “ancestor 1/2/3/..”” and
“discontinuous”) for future recovery, where the
number represents the number of edges between



Remote recovery

A

[Constituent Parsing]
A

[MLPs and Biafﬁnes]

Shared BiLSTMs

X

Figure 3: The framework of MTL.

the ancestor D = 1 and A = 3.

After reorganizing the graph, we then restart
and perform the same operations again until there
is no discontinuity.

Table 1 shows the statistics of the discontinuous
structures in the English-Wiki data. We can see
that D is mostly likely the LCA of A and B, and
there is only one edge between D and A in more
than 90% cases.

Considering the skewed distribution, we only
keep “ancestor 1” after graph-to-tree conversion,
and treat others as continuous structures for sim-
plicity.

3) Pushing labels from edges into nodes.
Since the labels are usually annotated in the nodes
instead of edges in constituent trees, we push all
labels from edges to the child nodes. We label the
top node as “ROOT”.

2.2 Constituent Parsing

We directly adopt the minimal span-based parser
of Stern et al. (2017). Given an input sentence
S = wj...wn, €ach word w; is mapped into a dense
vector x; via lookup operations.

X; =€y, ey, D...

where e, is the word embedding and e;, is the
part-of-speech tag embedding. To make use of
other auto-generated linguistic features, provided
with the datasets, we also include the embeddings
of the named entity tags and the dependency
labels, but find limited performance gains.

Then, the parser employs two cascaded bidirec-
tional LSTM layers as the encoder, and use the
top-layer outputs as the word representations.

Afterwards, the parser represents each span
w;...w; as

r;j = (f; —£) © (b; — by)

13

where f; and b; are the output vectors of the top-
layer forward and backward LSTMs.

The span representations are then fed into MLPs
to compute the scores of span splitting and label-
ing. For inference, the parser performs greedy top-
down searching to build a parse tree.

2.3 Remote Edge Recovery

We borrow the idea of the state-of-the-art biaffine
dependency parsing (Dozat and Manning, 2017)
and build our remote edge recovery model. The
model shares the same inputs and LSTM encoder
as the constituent parser under the MTL frame-
work (Collobert and Weston, 2008). For each
remote node, marked by “-remote” in the con-
stituent tree, we consider all other non-terminal
nodes as its candidate remote parents. Given a
remote node A and another non-terminal node B,
we first represent them as the span representations.
r;; and ry j, where 7,7, j, j/ are the start and end
word indices governed by the two nodes. Please
kindly note that B may be a discontinuous node.
Following Dozat and Manning (2017), we apply
two separate MLPs to the remote and candidate

parent nodes respectively, producing r{’*'¢ and
parent

Finally, we compute a labeling score vector via
a biaffine operation.
child T
Ti
1

where the dimension of the labeling score vector
is the number of the label set, including a “NOT-
PARENT” label.

Training loss. We accumulate the standard
cross-entropy losses of all remote and non-
terminal node pairs. The parsing loss and the
remote edge classification loss are added in the
MTL framework.

s(A <+ B) = Wil2isms (D)

2.4 Use of BERT

For the open tracks, we use the contextualized
word representations produced by BERT (Devlin
et al., 2018) as extra input features.> Following
previous works, we use the weighted summation
of the last four transformer layers and then mul-
tiply a task-specific weight parameter following
(Peters et al., 2018).

2We use the multilingual cased BERT from https://
github.com/google-research/bert.



3 Cross-lingual Parsing

Because of little training data for French, we bor-
row the treebank embedding approach of Stymne
et al. (2018) for exploiting multiple heterogeneous
treebanks for the same language, and propose a
language embedding approach to utilize English
and German training data. The training datasets
of the three languages are merged to train a single
UCCA parsing model. The only modification is
to concatenate each word position with an extra
language embedding (of dimension 50), i.e. x; @
€lang—en/de/fr O indicate which language this
training sentence comes from. In this way, we
expect the model can fully utilize all training
data since most parameters are shared except the
three language embedding vectors, and learn the
language differences as well.

4 Experiments

Except BERT, all the data we use, including the
linguistic features and word embeddings, are pro-
vided by the shared task organizer (Hershcovich
et al,, 2019). We also adopt the averaged FI
score as the main evaluation metrics returned by
the official evaluation scripts (Hershcovich et al.,
2019).

We train each model for at most 100 iterations,
and early stop training if the peak performance
does not increase in 10 consecutive iterations.

Table 2 shows the results on the dev data. We
have experimented with different settings to gain
insights on the contributions of different com-
ponents. For the single-language models, it is
clear that using pre-trained word embeddings out-
performs using randomly initialized word embed-
dings by more than 1% F1 score on both English
and German. Finetuning the pre-trained word
embeddings leads to consistent yet slight perfor-
mance improvement. In the open tracks, replacing
word embedding with the BERT representation is
also useful on English (2.8% increase) and Ger-
man (1.2% increase). Concatenating pre-trained
word embeddings with BERT outputs leads is also
beneficial.

For the multilingual models, using randomly
initialized word embeddings is better than pre-
trained word embeddings, which is contradictory
to the single-language results. We suspect this
is due to that the pre-trained word embeddings
are independently trained for different languages
and would lie in different semantic spaces with-
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Methods Fl score

Primary Remote Avg

Single-language models on English

random emb 0.778 0.542 0.774
pretrained emb (no finetune)| 0.790 0.494 0.785
pretrained emb 0.794  0.535 0.789

bert 0.821 0.593 0.817

pretrained emb & bert 0.825 0.603 0.821
official baseline (closed) 0.745 0.534 0.741
official baseline (open) 0.753 0.514 0.748

Single-language models on German

random emb 0.817 0.549 0.811
pretrained emb (no finetune)| 0.829  0.544 0.823
pretrained emb 0.831 0.536 0.825

bert 0.842 0.610 0.837

pretrained emb @ bert 0.849 0.628 0.844
official baseline (closed) 0.737 046 0.731
official baseline (open) 0.797 0.587 0.792

Multilingual models on French

random emb 0.688 0.343 0.681
pretrained emb 0.673  0.174 0.665
bert 0.796  0.524 0.789

official baseline (open) 0.523 0.016 0.514

Table 2: Results on the dev data.

out proper aligning. Using the BERT outputs is
tremendously helpful, boosting the F1 score by
more than 10%. We do not report the results
on English and German for brevity since little
improvement is observed for them.

5 Final Results

Table 3 lists our final results on the test data.
Our system ranks the first place in six tracks (En-
glish/German closed/open) and the second place
in the French open track. Note that we submitted
a wrong result for the French open track during
the evaluation phase by setting the wrong index
of language, which leads to about 2% drop of
averaged F1 score (0.752). Please refer to (Her-
shcovich et al., 2019) for the complete results and
comparisons.

6 Conclusions

In this paper, we describe our system submitted to
SemEval 2019 Task 1. We design a simple UCCA
semantic graph parsing approach by making full
use of the recent advance in syntactic parsing
community. The key idea is to convert UCCA
graphs into constituent trees. The graph recovery



Tracks F1 score

Primary Remote Avg
English-Wiki_closed| 0.779  0.522 0.774
English-Wiki_open | 0.810 0.588 0.805
English-20K _closed | 0.736  0.312 0.727
English-20K_open | 0.777 0.392 0.767
German-20K _closed| 0.838  0.592 0.832
German-20K_open | 0.854 0.641 0.849
French-20K_open | 0.779 0.438 0.771

Table 3: Final results on the test data in each
track. Please refer to the official webpage for more
detailed results due to the limited space

problem is modeled as another classification task
under the MTL framework. For the cross-lingual
parsing track, we design a language embedding
approach to utilize the training data of resource-
rich languages.
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Abstract

This paper presents Unsupervised Lexical
Frame Induction, Task 2 of the International
Workshop on Semantic Evaluation in 2019.
Given a set of prespecified syntactic forms in
context, the task requires that verbs and their
arguments be clustered to resemble semantic
frame structures. Results are useful in iden-
tifying polysemous words, i.e., those whose
frame structures are not easily distinguished,
as well as discerning semantic relations of the
arguments. Evaluation of unsupervised frame
induction methods fell into two tracks: Task
A) Verb Clustering based on FrameNet 1.7;
and B) Argument Clustering, with B.1) based
on FrameNet’s core frame elements, and B.2)
on VerbNet 3.2 semantic roles. The shared
task attracted nine teams, of whom three re-
ported promising results. This paper describes
the task and its data, reports on methods and
resources that these systems used, and offers a
comparison to human annotation.

1

SemEval 2019 Task 2 focused on the unsupervised
semantic labeling of a set of prespecified (seman-
tically) unlabeled structures (Figure 1). Unsuper-
vised learning methods analyze these structures
(Figure 1a) to augment them with semantic labels
(Figure 1b). The shape of the manually labeled in-
put frames is constrained to an acyclic connected
tree of lexical items (words and multi-word units)
of maximum depth 1, where just one root gov-
erns several arguments. The task used Berkeley
FrameNet (FN) (Ruppenhofer et al., 2016) and Q.
Zadeh and Petruck (2019), guidelines for this task,
to determine the arguments and label them with
semantic information.

We compared the proposed system results for
unsupervised semantic tagging with that of human
annotated (or, gold-standard) data in three differ-
ent subtasks (Figure 2). To evaluate the systems,
we computed distributional similarities between
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(a) Input: subcategorization frames.
COMMERCE_SELL
Agent
Theme skyscraper
' a wd:to
Exxon Mobil
sell \’
Buyer o
company
Recipient

(b) Output: Semantic Frame Tagging using labels
learned by Unsupervised methods.

Figure 1: Given semantically unlabeled structures
(1a), annotate the input with semantic information
learned via unsupervised methods (1b).

their generated unsupervised labeled data and hu-
man annotated reference data. For computing sim-
ilarities we used general purpose numeral methods
of text clustering, in particular BCUBED F-SCORE
(Bagga and Baldwin, 1998) as the single figure of
merit to rank the systems.

The most important result of the shared task is
the creation of a benchmark for a future complex
task. This benchmark includes a moderately sized,
manually annotated set of frames, where only the
verbs of each were included, along with their core
frame elements (which uniquely define a frame
as Ruppenhofer et al. describe). To complement
FN’s core frame elements that have highly specific
meanings, the benchmark also includes the anno-
tated argument structures of the verbs based on the
generic semantic roles proposed for verb classes
in VerbNet 3.2 (Kipper et al., 2000; Palmer et al.,
2017). The benchmark comes with simplified an-
notation guidelines and a modular annotation sys-

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 16-30
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tem with browsing and editing capabilities.! Com-
plementing the benchmarking are several state-of-
the-art competing baselines, from the participants,
that serve as a point of departure for improvements
in the future.’

The rest of this paper is organized as follows:
Section 2 contextualizes this task; Section 3 offers
a detailed task-description; Section 4 describes
the data; Section 5 introduces the evaluation met-
rics and baselines; Section 6 characterizes the par-
ticipating systems and unsupervised methods that
participants used; Section 7 provides evaluation
scores and additional insight about the data; and
Section 8 presents concluding remarks.

2 Background

Frame Semantics (Fillmore, 1976) and other the-
ories (Gamerschlag et al., 2014) that adopt typed
feature structures for representing knowledge and
linguistic structures have developed in parallel
over several decades in theoretical linguistic stud-
ies about the syntax—semantics interface, as well
as in empirical corpus-driven applications in natu-
ral language processing. Building repositories of
(Iexical) semantic frames is a core component in
all of these efforts. In formal studies, lexical se-
mantic frame knowledge bases instantiate foun-
dational theories with tangible examples, e.g., to
provide supporting evidence for the theory. Prac-
tically, frame semantic repositories play a pivotal
role in natural language understanding and seman-
tic parsing, both as inspiration for a representation
format and for training data-driven machine learn-
ing systems, which is required for tasks such as
information extraction, question-answering, text
summarization, among others.

However, manually developing frame semantic
databases and annotating corpus-derived illustra-
tive examples to support analyses of frames are
resource-intensive tasks. The most well-known
frame semantic (lexical) resource is FrameNet
(Ruppenhofer et al., 2016), which only covers a
(relatively) small set of the vocabulary of con-
temporary English. While NLP research has inte-
grated FrameNet data into semantic parsing, e.g.,
Swayamdipta et al. (2018), these methods can-
not extend beyond previously seen training labels,
tagging out-of-domain semantics as unknown at

"http://sfa.phil.hhu.de/.

2See  https://competitions.codalab.org/
competitions/19159 for accessing the task’s language
resources, tools, and further technical details.
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best. This limitation does not hinder unsupervised
methods, which will port and extend the coverage
of semantic parsers, a common challenge in se-
mantic parsing (Hartmann et al., 2017).

Unsupervised frame induction methods can
serve as an assistive semantic analytic tool, to
build language resources and facilitate linguis-
tic studies. Since the focus is usually to build
language resources, most systems (Pennacchiotti
et al. (2008); Green et al. (2004)) have used a lexi-
cal semantic resource like WordNet (Miller, 1995)
to extend coverage of a resource like FrameNet.
Some methods, e.g., Modi et al. (2012) and
Kallmeyer et al. (2018), tried to extract FrameNet-
like resources automatically without additional se-
mantic information. Others (Ustalov et al. (2018);
Materna (2012)) addressed frame induction only
for verbs with two arguments.

Lastly, unsupervised frame induction methods
can also facilitate linguistic investigations by cap-
turing information about the reciprocal relation-
ships between statistical features and linguistic or
extra-linguistic observations (e.g., Reisinger et al.
(2015)). This task aimed to benchmark a class of
such unsupervised frame induction methods.

3 Task Description

COMMERCE_SELL

l skyscraper
(@] nsubj dobj ©
\_/ D "
Exxon Mobil od:to
sell
©)

company
(a) Task A - Identifying Semantic Frames: Unsupervised
learned labels evaluated against FN’s lexical units

COMMERCE_SELL skyscraper

Seller l Goods o
O3 mi>q

Exxon Mobil
sell

dobj

Buyer

o
company
(b) Task B.1 - Full Frame Semantic Tagging: Unsupervised

labels evaluated against FN’s frames
Agent Theme

OX i~ o

mod:to
sell \
R

ecipient O

company

skyscraper

Exxon Mobil

(c) Task B.2 — Case Role Labeling: Unsupervised labels eval-
uated against generic semantic roles (VerbNet)

Figure 2: Subtasks of SemEval 2019 Task 2.



The ambitious goal of this task was the unsuper-
vised induction of frame semantic structures from
tokenized and morphosyntacally labeled text cor-
pora. We sought to achieve this goal by building
an evaluation benchmark for three tasks. Task A
dealt with unsupervised labeling of verb lemmas
with their frame meaning. Task B involved unsu-
pervised argument role labeling, where B.1 bench-
marked unsupervised labeling of frame-specific
frame elements (FEs) based on FN, and B.2
benchmarked unsupervised role labeling of argu-
ments in Case Grammar terms (Fillmore, 1968)
and against a set of generic semantic roles, taken
primarily from VerbNet.

The task was unsupervised in that it forbade the
use of any explicit semantic annotation (only per-
mitting morphosyntactic annotation). Instead, we
encouraged the use of unsupervised representation
learning methods (e.g., word embeddings, brown
clusters) to obtain semantic information. Hence,
systems learn and assign semantic labels to test
records without appealing to any explicit training
labels. For development purposes, developers re-
ceived a small labeled development set.

3.1 Task A: Clustering Verbs

The goal of this task was to identify verbs that
evoke the same frame. The task involved labeling
verb uses in context to resemble their categoriza-
tion based on Frame Semantics (Figure 2a). Here,
we used FN 1.7 as the reference for frame defini-
tions. Hence, the task constituted the unsupervised
induction of FN’s lexical units, where a lexical
unit (LU) is a pairing of a lemma and a frame. For
example, we expected that the LUs auction.v, re-
tail.v, sell.v, etc., which evoke the typed situation
of COMMERCE_SELL, be labeled with the same un-
supervised tag.?

The task resembles word sense induction in that
it assigns a class (or sense) label to a verb. In
word sense induction (WSI), labels are determined
and evaluated on word forms (lemma + part-of-
speech e.g., sell.v or auction.n). WSI evaluations
assume that the inventory of senses (set .S;s) for
different word forms f is devised independently.
For instance, assuming f; is labeled with the set
of senses S1 and fs with Sy, then S1 N Sy # ¢
only if fi = fo; and, if fi # fo then 51 NSy =
¢ (as in other SemEval benchmarks, including
Agirre and Soroa (2007); Manandhar et al. (2010);

3Dark red small caps indicate FN frames.
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Jurgens and Klapaftis (2013); Navigli and Van-
nella (2013)). For instance, in WSI evaluations
based on OntoNotes (Hovy et al., 2006), six dif-
ferent labels from S.;; are assigned to the lemma
sell.v, and one label s’ is assigned to auction.v,
knowing that s’ ¢ Ss.;. Typically, lexical se-
mantic relationships among members of S;s (e.g.,
synonymy, antonymy) are then analyzed indepen-
dently of WSI (e.g., Lenci and Benotto (2012);
Girju et al. (2007); McCarthy and Navigli (2007)).
In contrast, this task assumes that the sense inven-
tory is defined independent of word forms.

This task involves uncovering mapping between
word forms f and members of S such that differ-
ent word forms (i.e., f; # f;) can be mapped to
the same meaning (label), and the same meaning
(label) can be mapped to several word forms. We
defined S with respect to FrameNet and assumed
that its typed-situation frames are units of mean-
ing. So, COMMERCE_SELL captures the meaning
associated with both sell.v and auction.v., as well
as other selling-related words. Hence, in some
sense, Task A goes beyond the ordinary WSI task
as it also demands identifying (unspecified) lexical
semantic relationships between verbs.

3.2 Task B.1: Unsupervised Frame Semantic
Argument Labeling

Taking the frames as primary and defining roles
relative to each frame, the aim of Task B.1 was to
cluster prespecified verb-headed argument struc-
tures according to the principles of Frame Se-
mantics, where FrameNet served as the reference
for evaluation. This task amounted to unsuper-
vised labeling of frames and core FEs (Figure 2b).
Because FrameNet defines FEs frame-specifically,
Task B.1 entails Task A.

Given a set of semantically-unlabelled argu-
ments as input (e.g., Figure la), the root nodes
(i.e., verbs) are clustered and assigned to a set of
unsupervised frame labels m; (1 < ¢ < n, where
n is the number of latent frames). Then, the argu-
ments are labeled with semantic role labels (FEs)
interpreted locally given the frame. That is, for
any pair of 7, and 7, the set of assigned roles R,
to arguments under 7, are assumed to be indepen-
dent from R, labels for m, (R, N R, = ¢).

3.3 Task B.2: Unsupervised Case Role
Labeling

We defined Subtask B.2 in parallel to Subtask B.1
and involved an idea from Case Grammar. The ar-



guments of a verb in a set of prespecified subcat-
egorization frames were clustered according to a
common set of generic semantic roles (Figure 2c¢).
Here, the task assumed that semantic roles are uni-
versal and generic (e.g., Agent, Patient). Their
configuration determines the argument structure of
verb-headed phrases. We evaluated this unsuper-
vised labeling of arguments with semantic roles
independently of the class, sense, and word form
of a verb. We compared the role labels against a set
of semantic roles from VerbNet 3.2 (Kipper et al.,
2000). Given a verb instance, no guarantee ex-
ists that input argument structures for B.2 and B.1
would be the same.

4 Evaluation Dataset

The dataset consists of manual annotations for
verb-headed frame structures anchored in tok-
enized sentences. These frame structures were
manually annotated using the guidelines for this
task (Q. Zadeh and Petruck, 2019). For example,
as already illustrated, the verb come_from.v is an-
notated in terms of FN’s ORIGIN frame and its core
FEs, as Example 1 shows.

ey

Criticism of futures COMES FROM Wall Street.
ORIGIN

Criticism  come_from  Wall_Street

Also, using the set of 32 generic semantic role la-
bels in VerbNet 3.2 and two additional roles, COG-
NIZER and CONTENT, we annotated arguments of
the verb as the following graphic shows.

Criticism  come_from  Wall_Street

We assumed unique identifiers for sentences,
e.g., #s1 for Example 1. The evaluation record for
come_from.v (Task A) appears below, where #s1
45 specifies the position of the verb in the sen-
tence (Example 1).

A [#s1 4.5 come_from.ORIGIN]

Similarly, for Task B.1 and Task B.2, respectively,
the evaluation records are as follows here.

B.1 [#s1 4.5 come_from.ORIGIN Criticism-:-1-:-
ENTITY Wall_Street-:-6_7-:-ORIGIN]

B.2 [#s1 45 come_from.NA Criticism-:-1-:-
THEME Wall_Street-:-6_7-:-SOURCE]
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We stripped off the manually asserted labels from
the records and passed them to systems for assign-
ing unsupervised labels. Evidently, later a scorer
program (Section 5) compared system-generated
labels with the manually assigned labels.

4.1 Data Sampling

We sampled data from the Wall Street Journal
(WSJ) corpus of the Penn Treebank. Kallmeyer
et al. (2018) provided frame annotations similar
to those in this task for a portion of WSJ sen-
tences, using SemLink (Bonial et al., 2013) and
EngVallex (Cinkova et al., 2014) to generate frame
semantic annotations semi-automatically. That
work was based on FrameNet and the Prague
Dependency Treebank (PSD) (Hajic et al., 2012)
from the Broad-coverage Semantic Dependency
resource (Oepen et al., 2016). We started by anno-
tating a portion of the records in Kallmeyer et al.
(2018), and later deviated from this subset to cre-
ate a more representative sample of the overall di-
versity and distribution of verbs in the WSJ corpus
using a stratified random sampling method.

4.2 Guidelines

The annotation guidelines for this task were
slightly different from those of FrameNet and var-
ious semantic dependency treebanks. In contrast
to FN, which annotates a full span of text as an ar-
gument filler, or PropBank, which annotates syn-
tactic constituents of arguments of verbs (Palmer
et al.,, 2005), we identified the text spans and
only annotated a single word or a multi-word unit
(MWU), i.e., the semantic head of the span, like
annotations in Oepen et al. (2016) and Abstract
Meaning Representation (Banarescu et al., 2013).
To illustrate, in Example 1, FN would annotate
Criticism of futures as filling the FE ENTITY.
We only annotated Criticism, understanding it as
the LU that evokes JUDGMENT_COMMUNICATION,
which in turn represents the meaning of the whole
text span. Thus, we assumed that another frame f,
fills an argument of a frame. We annotated only
the main content word(s) that evoke(s) f,; these
main words are the semantic heads.*

Multi-word unit semantic heads (e.g., named
entities, word form combinations) are annotated as
if a single word form, such as Wall Street (# 1), ex-
cluding modifiers. In contrast to semantic depen-

“The annotation guidelines (Q. Zadeh and Petruck, 2019)
discuss decisions about marking semantic heads and the com-
plex situations resulting from it for argument annotation.



dency structures (e.g., DELPH-IN MRS-Derived
Semantic Dependencies, Enju Predicate Argument
Structures, and Tectogramatical Representation in
PSD (Oepen et al., 2016)), we did not commit to
the underlying syntactic structure of the sentence
since we were not obliged to relabel only syntac-
tic structures. Rather, we annotated words and
MWUs if the frame analysis permitted doing so.’

4.3 Annotation Procedure

We annotated the data in a modular manner and
in a semi-controlled environment using an annota-
tion system developed for this purpose. The proce-
dure consisted of four steps: 1) Reading and Com-
prehension; 2) Choosing a Frame; 3) Annotating
Arguments; and 4) Rating, Commenting, or Re-
vising. We tracked and logged all changes in the
data as well as annotator interaction with the anno-
tation system upon starting to annotate. The tool
measured the time that annotators spent on each
record and each annotation step, as well as how
annotators moved between steps.

In Step 1, annotators viewed a sentence with
one highlighted verb, as in Example 2.

(2) Criticism of futures COMES from Wall Street.

The goal of this step was understanding the
meaning of the verb and its semantic function, and
identifying semantic heads of arguments and their
associated words or MWUs. To continue, an anno-
tator must confirm the understanding of the verb’s
meaning of the verb, and can identify its seman-
tic arguments. Without confirmation, an annotator
would terminate the annotation process for that in-
put sentence and go to the next one.

If confirmed, Step 2 required the annotator to
choose the frame that the verb evoked. This
step may have included annotating multi-word
phrasal verbs, e.g., COMES+FROM (Example 2).
The annotation system assisted by providing a
list of likely frames for the verb, including a LU
lookup function (as in FN), an extended set of
LUs derived via statistical methods, and previ-
ously logged annotations. After reviewing the def-
initions of the proposed frames, annotators chose
one, or annotated the verb form with a different
existing FN frame. Otherwise, the annotator ter-
minated the process and the record moved to the
list of “skipped items”.

The annotation of arguments, Step 3, required

3Q. Zadeh and Petruck describe the issues in detail.
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that annotators label the core FEs of the cho-
sen frame by first identifying their semantic head,
which first may have required marking MWUs,
e.g., Wall+Street in Example 3, below.

(3) Criticism of futures comes from Wall Street.

The tool lists the core FEs and their definitions,
and checks the integrity of record annotations to
ensure that each core FE is annotated only once.
In parallel, annotators add the verb’s subcatego-
rization frame and its semantic role. We did not
annotate null instantiated FEs (but FN does). Dur-
ing step 3, annotators could go back to the previ-
ous step and change their choice of frame type.

For Step 4, annotators rated their annotation,
stating their opinion on how well the annotated in-
stance fit FrameNet’s definition and how it com-
pared to other annotated instances. In a sense, an-
notators measured their confidence in the assigned
labels. They did so by selecting a number on a
scale from 1 to 5, with 1 not confident at all and 5
the most confident, i.e., the annotation fit perfectly
to the chosen FrameNet frame, its definition, and
examples. Annotators had the option to add free
text comments on each record.

The annotation procedure was rarely straight-
forward. Given the interdependence of Steps 2
and 3, annotators usually moved back and forth
between them. In Step 2 an annotator might be-
lieve that a target verb did not belong in any ex-
isting FN frame. Likewise, annotators could ter-
minate the annotation process even upon reaching
the last step.

4.3.1 Quality Control

At least two annotators verified all annotation used
in the evaluation. A main annotator annotated all
records in the dataset; two other annotators veri-
fied or disputed those annotations. If annotators
could not reach an agreement, we removed the
record from the SemEval dataset.

A full analysis of annotator disagreement goes
beyond the scope of this work. While the source
of annotator disagreement may seem trivial and
simple (e.g., only one annotator understood the
sentence correctly), we believe that some sen-
tences may have more than one interpretation, all
of which are plausible. Like the disagreement re-
sulting from incorrect frame assignment, decid-
ing what frame a verb evokes may be challeng-
ing; and resolving the dilemma is not always sim-
ple. Choosing between two related frames (e.g.,



BUILDING vs. INTENTIONALLY_CREATE, related via
Inheritance in FN), or identifying metaphorical
and non-metaphorical uses of a verb requires sub-
tle and sophisticated understanding of the seman-
tics of the language, and of Frame Semantics. At
times, disagreements pointed to more complex lin-
guistic issues that remain in debate, e.g., choosing
the semantic head of a syntactically complex argu-
ment, treating quantifiers, conjunctions, etc.

4.4 Summary statistics

Table 1 shows a statistical summary of the annota-
tion task. The SemEval column reports the statis-
tics for the final set of records, i.e., gold records
with double-agreement between annotators, and
which we used to evaluate the systems. Total re-
ports the statistics of all analyzed records, from
which we chose our SemEval data. Skipped and
InProg show the statistics for discarded records
and records without a final decision, respectively.
Dev shows the statistics for the development set.

Each of the rows reports a value of a compo-
nent of the data or annotator interaction with the
data. Records indicates the number of annotated
verbs and their arguments. Sentences and Tokens
indicate the size of the sub-corpus of the anno-
tated records. VF is the number of distinct verb
lemmas (273), mapped to the number of distinct
frames that the Frames-Type row shows (149)
(Figure 3 in Appendix A.l1 plots their frequency
distribution.) FElements reports the number of
annotated FEs categorized under the number of
FE types shown in the FE-Type row. Sem-Arg
shows the number of annotated verb arguments
with VerbNet-like semantic roles, classified into
32 of 41 possible semantic role categories. Multi-
word lists the number of annotated MWUs

SemEval | Total Skipped | InProg || Dev
Records 4,620 5,637 301 716 594
Sentences 3,346 3,803 294 675 582
Tokens 90,460 102,067 | 8,329 19,151 15198
Verb-Forms | 273 373 93 210 35
Frame-Type | 149 234 75 185 37
#FEs 9,510 11,269 | 373 1,386 1,128
FE-Type 198 270 64 197 62
Sem-Arg 9,466 11,215 | 370 1,379 1,079
Multi-word | 2,366 2,773 61 346 368
‘ Confidence ‘ 3.30 32 241 2.5 H 3.34 ‘
Time 539h 742h 25h 177h 19h
Total-Move | 68,784 83,753 | 1,903 13,066 || 4,406

Table 1: Annotation and Data Statistical Summary

Confidence reports the average of annotator-
assigned confidence scores for annotations per

21

record. Although interpreting this measure de-
mands more work, the averages appear to be as
expected. Specifically, SemEval is higher in value
than both InProg and Skipped, facts that we as-
sociate with double agreement and the choice re-
viewing process. Still, many records with high
confidence scores remained as InProg given the
lack of double agreement. Table 5 (Appendix A.1)
lists the top 10 frames annotated with their respec-
tive highest and lowest confidence ratings aver-
aged by their frequency in SemEval.

The last two rows of Table 1 are meta-data on
the annotation process. Time reports the total time
annotators spent in active annotation, engaged in
the steps described above (742 hours), excluding
the reviewing process (Section 4.3.1) and includ-
ing the time to annotate MWUs. Total-Move is
the total number of logical moves for frame anno-
tation between annotators and the annotation sys-
tem, i.e., logged changes in the process of frame
and core FE annotation. This number excludes
annotation of verb subcategorization with generic
semantic roles.®

In SemEval, annotated frames had an average
of 2.15 arguments, requiring a minimum of five
logical moves to annotate (MWU-less sentences).
However, on average, each SemEval record re-
quired 14.8 moves. This number is even higher
for InProg (18.2); we believe that it indicates the
complexity of the annotation task. Table 4 (Ap-
pendix A.1) further details annotator activity, with
time spent and moves per annotation step. As ex-
pected, frame annotation of verbs (Step 2), was the
most time consuming part of the task.

4.5 Development Dataset

Shared task participants received a development
set consisting of 600 records from a total of 4,620
records, where Table 4 shows the statistics. The
development set contained gold annotations for all
three subtasks.

5 Evaluation Metrics

For all subtasks, as figure of merit, here we re-
port the performance of participating systems with
measures for evaluating text clustering techniques,
including the classic measures of Purity (PU),
inverse-Purity (IPU), and their harmonic mean
(P1F) (Steinbach et al., 2000), as well as the har-
monic mean for BCubed precision and recall (i.e.,

SWith the exception of a few verbs, annotators rarely

changed the annotation system’s rule-based suggestions of
VerbNet semantic roles.



BcP, BCR, and BCF, respectively) (Bagga and
Baldwin, 1998).

To compute these measures for the pairing of
reference-labeled data and unsupervised-labeled
data (with each having an exact set of annotated
items), we built a contingency table 7" with rows
for gold labels and columns for unsupervised sys-
tem labels. We filled the table with the number
of intersecting items, as done in cross-tabulation
of results in classification tasks to compute preci-
sion and recall. For Task A (Section 3), T' tracks
the unsupervised system labels and the gold refer-
ence labels assigned to verbs. For Task B.1, we
labeled the rows and columns of 7' with tuples
(ly, la), where [,, labels the frame evoking verb and
I, labels the FE filler. For Task B.2, the rows and
columns in 7' track the unsupervised system la-
bels and the gold reference labels (generic seman-
tic roles) assigned to arguments.

These performance measures reflect a notion
of similarity between the distribution of unsuper-
vised labels and that of the gold reference labels,
given certain criteria. Specifically, they define the
notions of consistency and completeness of au-
tomatically generated clusters based on the eval-
uation data. Each method measures consistency
and completeness in its own way, and alone may
lack sufficient information for a clear understand-
ing and analysis of system performance (Amigé
et al., 2009). But, as the single metric for system
ranking, we used the BCF measure, given its satis-
factory behavior in certain situations. Note that we
modeled the task and its evaluation as hard cluster-
ing, where a record receives only one label, with-
out overlap in any generated category of items.

5.1 Baselines

Similar to other clustering tasks, we use base-
lines of random, all-in-one-cluster (AIN1), and
one-cluster-per-instance (1CPI). Additionally, we
adapted the baseline of the most frequent sense
in WSI for these tasks by introducing the
one-cluster-per-head (1CPH) baseline in Task
A, and one-cluster-per-syntactic-category (1CPG)
for verb argument clustering in Task B.2.” For
Task B.1, we built a baseline, 1CPGH for label-
ing verbs with their lemmas (as in 1CPH) and
FEs with grammatical relation to their heads (as in
1CPG). We included two more labels Icmpx and

"We use syntactic dependencies of the Enhanced Univer-
sal Dependencies formalism (Schuster and Manning, 2016).
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rcmpx for frame fillers with no direct syntactic re-
lation to the head verb, if occurring left of or right
of the verb, respectively.

Both 1CPH and 1CPG (and their combination
for Task B.1) are hard to beat because of the long-
tailed distribution of the frequency of our test data.
E.g., most verbs frequently instantiate one par-
ticular frame and rarely other ones. Similarly, a
particular role (FE) frequently is filled by words
that have a particular grammatical relation to its
governing verb; e.g., most subjects of most verb
forms receive the agent label in their subcatego-
rization frame (or, an agent-like element in their
Frame Semantics representations). Evidently the
chosen labels for grammatical relations influences
1CPG and 1CPHG scores. Values reported later
(specifically, Tables 6 and 2) could be improved
by employing heuristics, e.g., relabeling enhanced
dependencies using a few rules.

We also employed one unsupervised and a sec-
ond supervised system baselines. For the unsuper-
vised one, we trained the system with data from
Kallmeyer et al. (2018). For the supervised one,
we used OPEN-SESAME, a state-of-the-art su-
pervised FrameNet tagger (Swayamdipta et al.,
2018). After converting its output to the format of
the present task, we evaluated it similar to other
systems. Both systems were trained out-of-the-
box with no additional tuning.

6 System Descriptions

We received submissions from nine teams (13 par-
ticipants). Only three chose to submit system de-
scription papers. Arefyev et al. (2019) provided a
solution for Task A and Task B.2, using both sets
of these results to address Task B.1. Task A used
language models and Hearst-like patterns to tune
and obtain contextualized vector representations
for the verbs in the test set. A hierarchical agglom-
erative clustering method followed, where hyper-
parameters were set with labeled and unlabeled
records from the development and test sets. Task
B.2 employed a logistic regression trained over the
development set to identify only the most frequent
labels. The classifier was based on features ob-
tained from a language model and hand-crafted
rules. Using logistic regression and training this
algorithm with the development set remains an is-
sue of concern, given the intended unsupervised
scenario. While we objected to using the devel-
opment set to train a supervised system for this



subtask, we still report its scores. The differences
between its results and those of the other systems
may be informative. Still, we considered Arefyev
et al.’s results for Task B only complementarily,
not to rank the systems.

Anwar et al. (2019) proposed a method that was
similar to that of Arefyev et al. (2019). Arefyev
et al. used contextualized word embeddings from
the BERT language modeling tool Devlin et al.
(2018), whereas Anwar et al. used pre-trained em-
beddings. They merged the outputs of Tasks A
and B.2 for Task B.1. Task A used agglomerative
clustering of vectors with concatenated verb rep-
resentation vectors and vectors that represent us-
age context. Task B.2 employed hand crafted fea-
tures, a method to encode syntactic information,
and again an agglomerative clustering method.

Ribeiro et al. (2019) also reported results for
all subtasks using similar techniques to those re-
ported in the other two submitted papers. Ribeiro
et al. (2019) used the bidirectional neural language
model BERT, which Arefyev et al. (2019) also
used. Task A employed contextualized word rep-
resentations proposed in (Ustalov et al., 2018), and
Biemann’s clustering algorithm (Biemann, 2000).
Compared to the two other systems, Ribeiro et al.
(2019) exploited input structures, weighted them,
and used them elegantly in its algorithm. With
the same method but different hyper-parameters
for B.2 along with combining results from Task
A, Ribeiro et al. (2019) offered a solution to B.1.

7 Results and Data Analysis

Table 2 reports the BCF scores for system submis-
sions along with a baseline for each task.® As the
table shows, each system performs best only in
one of the tasks. We report Arefyev et al.’s sub-
mission for Tasks B.1 and B.2 only to show the
benefit of using a small amount of training data
and a supervised method together with a cluster-
ing algorithm, provided that such training data is
available. As readers know, finding the optimal
(actual) number of clusters is an open research
area. Participants knew the number of clusters:
whereas Arefyev et al. and Anwar et al. used this
information, Ribeiro et al. opted for a statistical
method tuned with data that we provided.

The baseline systems, the unsupervised method
of Kallmeyer et al. (2018) performed the worst

8The full list of baselines and performance measures ap-
pear in Table 6 of the Appendix.
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System BCF BCF BCF
Arefyevetal. | 70.70 || 6342 6409
Anwar et al. 68.10 || 49.49 42.1
Ribeiro et al. | 65.32 42.75 45.65
BASELINE 65.35 45.79 39.03

Task A B.1 B2

Table 2: Summary of Results. The BASELINE for
Task A is 1CPH, and for B.1 and B.2 is 1CPHG.
Best results appear in bold face; discarded results
are crossed out. Table 6 lists all other baselines.

of all systems regarding BCF. This result is not
surprising since that work did not effectively han-
dle MWUs in the test, where only the head of the
MWU was kept. However, the output of Open-
SESAME, and its low BCF was indeed surprising.

We fed Open-SESAME the sentences from the
test set; it identified approximately 5k frames.
However, the overlap with the test set was only
1,216 records (identification problem in Open-
SESAME). These 1,216 records exhibit a mis-
match between 536 of the arguments and their re-
spective target verbs. We ignored the system’s
extra or incorrectly generated arguments, and re-
placed the missing items with those of the 1CPHG
baseline records. We then used the resulting
records for evaluation against the task’s gold data
as did the task’s participants. As Table 3 shows,
the unsupervised method outperforms the super-
vised system for all tasks by a wide margin, i.e.,the
unsupervised label set can carry more information
than does the supervised label set.

| BcP BCcR  BCF
Task A 84.52 44.67 5845
Task B.1 | 81.04 31.6 4547
Task B.2 | 3426 36.56 35.37

Table 3: Open-SESAME Performance

We compared results for confidence measure
that annotators assigned to records. First, we split
the evaluation records according to their assigned
confidence value into five subsets F;, 1 < 7 < 5,
such that subset F; contained only records with
confidence value 1, E5 contained only record with
confidence value 2, etc.. Then we evaluated sys-
tem outputs on each subset E; and logged that
BCF. Later, we performed this evaluation cumula-
tively using subsets Es by adding records from all
Ejs to E; where ¢ < j. Interpreting the obtained
values requires careful attention (e.g., changes in
the prior probabilities of gold clusters and their



cardinality must be taken into account), overall,
we observed a similar trend for all systems: as ex-
pected, namely a positive correlation between the
confidence value and BCF. Thus, what human an-
notators usually found hard to annotate, automatic
systems also found hard to cluster. (The reverse re-
lation does not hold). Or, pessimistically, the level
of noise in annotation increases as their associated
confidence decreases. (Table 7 in Appendix A.2
details the results.)

Finally, we wanted to identify the frames that
machines found difficult to cluster. To estimate
difficulty we used the differences in BCF under
the following conditions. We repeated the evalu-
ation process 1 < ¢ < n times (where n is the
number of gold labels for a task) for each sys-
tem. In each iteration ¢, we removed all data
items of a gold category 7. We measured and
noted the resulting BCF in the given iteration; we
deduced the score from the system performance
over the entire gold set. To cancel frequency ef-
fects, we normalized the differences by the num-
ber of gold data instances. We removed all records
annotated as COMMERCE_SELL from the evalua-
tion set E to form E’. We computed the BCF
of the systems over E’ (E' C FE), and measured
d = EBcF — Eig cp- We interpreted a positive
difference as an easy to cluster gold category i,
and a negative difference as a hard to cluster gold
category 1.

The heat maps in Table 8 and Table 9 show a
summary of the results for Task A and Task B.2,
respectively. All systems performed similarly for
approximately 30% of the gold classes. Compar-
ing differences across systems and the baselines
of 1cPH and 1CPG reveals (possibly) interest-
ing information. Thus, for example, in Task A,
most systems found COMMERCE_SELL hard and
COMMERCE_BUY easy to cluster. Interestingly, a
set of six verbs evokes each frame: buy, pur-
chase, buy_back, buy_up, buy_out, buy_into for
COMMERCE_BUY; and sell, retail, auction, place,
deal, resell for COMMERCE_SELL. From these two
sets of verbs, three are polysemous: buy in the for-
mer, and place and deal in the latter. Does the mor-
phology of the verbs (e.g., buy-back, resell) make
one easy to cluster? Alternatively, are other fac-
tors at play, such as the number of verb instances?
How these factors might influence the proposed
naive BCF-difference model is an open question.
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8 Concluding Remarks

We have presented the SemEval 2019 task on un-
supervised lexical frame induction. We described
the task in detail, provided a summary of methods
that participants developed, and compared the re-
sults. Although much room for improvement of
the task remains, we consider it a step forward.
It employed a well-motivated typology of lexi-
cal frames to distinguish lexical frame induction
tasks. The evaluation data derived from annota-
tions of a well-known resource, namely a portion
of WSJ sentences, perhaps the most annotated cor-
pus of English. These features provide opportuni-
ties for future investigation, in particular in stud-
ies related to reciprocal relations between syntac-
tic and lexical semantic frame structures.

One reason to promote using unsupervised
methods is their inherent flexibility to embrace un-
known data. These methods have a high margin of
tolerance for noise, and perform better than super-
vised method with insufficient training data. For
unsupervised data, obtaining or generating train-
ing data is easier than doing so with supervised
methods because they simply do not require an-
notation. For example, all participant systems
could collect similar unlabeled training data from
only syntactically annotated corpora to generate
more unlabeled records. Ultimately, such methods
can achieve respectable performance, and produce
clusters which are both more informative than the
unlabeled input and supervised categories (under
certain situations). As shown, unsupervised meth-
ods can even outperform a state-of-the-art Frame
Semantics parser by a wide margin (Section 7),
while a very large gap remains for improvements
in future work.
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A Appendices
A.1 Appendix I: Annotation Process

A.1.1 Time and Moves per Annotation Step

Table 4 shows the amount of effort to develop
the SemEval dataset in terms of time and moves

that the annotation system recorded. (See Sec-

tions 4.3, 4.4).
Annotator Activity Time Moves
Reading and Comprehension 78 4,795
Choosing a Frame 177 9,737
Annotating Arguments 81 19,510
Rating, Revising, Commenting 115 25,793
Multi-word Unit Annotation 89 8,949

539 68,784

Total

Table 4: Total hours and number of moves for each
annotation step for the 4,620 record dataset.

A.1.2 Plot of frequency of annotated frames

Figure 3 plots the frequency distribution of the an-
notated frames in the gold data (SemEval).

o
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65 Process_start

8

§ “1 Opinion
3 Prohibitinggorglicensing

[

32 Manufacturing
3 Communicate_categorization

19 lntentionally‘create

14 Filling
13 Coming‘togbelieve
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4 Imposing_obligation
3 Aiming
2 Self_motion
2 Affirm_or_deny

Figure 3: Frequency Distribution of Annotated

Frames

A.1.3 Some Frames and their Averaged
Confidence

Table 5 lists FN frames annotated with the high-

est and lowest confidence. Table 4 details hours

spent to derive the evaluation data set. Section 4.3

discusses both tables. The full list of annotations

in human readable form is available to browse
and comment on at http://corpora.phil.
hhu.de/fi/frames.html.

A.2 Appendix II: Statistical Summary of
Evaluation and System Submissions

A.2.1 Unabridged Results Table

Table 6 extends Table 2. Section 5 defines the ab-
breviations. A horizontal line separates participat-
ing systems and the baselines.

A.2.2 Confidence Measures and BCF
Performance

Table 7 shows system BCF scores for confidence.

The table shows changes in the BCF of systems

when altering the evaluation set based on the as-

signed confidence for an annotated record. (See

Section 7 for an explanation).

Frame Type #VF #Rec Conf
DECIDING 1 13 431
AGREE_OR_REFUSE_TO_ACT 1 15 4.13
TAKE_PLACE_OF 1 11 4
BEING_EMPLOYED 1 6 4
STATEMENT 8 149 3.97
TAKING_SIDES 3 16 3.88
ACTIVITY_STOP 4 16 3.88
COMMERCE _SELL 6 168 3.82
BRINGING 1 5 3.8
4 39 3.79

GIVE_IMPRESSION

(a) Frames with Highest Average Confidence

Frame Type #VF #Rec Conf
BEING_IN_.CONTROL 2 5 1.6
COMING_TO_BE 2 5 1.8
OPERATING_A_SYSTEM 2 10 1.8
AWARENESS 1 6 1.83
REMOVING 3 8 1.88
INTENTIONALLY_CREATE 6 19 1.95
CERTAINTY 1 68 2.03
OPINION 2 91 2.1
THWARTING 2 22 2.32
FIRST_RANK 1 21 2.38

(b) Frames with Lowest Average Confidence

Table 5: Frame types with the highest (5a) and
the lowest (5b) confidence (Conf) by number
of records (#Rec) with double annotator agree-
ment. #VF reports the number of distinct verb
forms that evoke a frame.
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System #C Pu 1Pu PiIF BcP BcCcR BcCF
Arefyev et al. 272 78.68 77.62 7815 70.86 70.54 70.7
Anwar et al. 150 72.4 81.49 76.68 62.17 7527 68.1
Ribeiro et al. 222 7284 77.84 7525 6125 6996 65.32
Kallmeyeretal. | 218 73.77 7286 7331 64.62 6548 65.05
1CprI 4620 100 3.23 6.25 100 323  6.25
AINI1 1 13.87 100 24.37 3.78 100  7.28
1CPH 273 82.16 6695 7378 7598 57.33 65.35
RANDOM 149 15.11 5.78 8.36 6.76 3.85 4.9
Task A
System #C Pu 1Pu PIF BcP BcR BcF
Arefyev et al. Fie 7247 7246 7231 6293 6351 6312
Anwar et al. 338 5574 67.79 61.18 4322 579 49.49
Ribeiro et al. 518 5229 5756 548 3943 46.69 42.75
Kallmeyer et al. | 1023 72.24 49.12 5848 62.71 3751 46.94
1CrI 9510 100 458 8.77 100 4.58 8.77
AIN1 1 6.55 100 123  1.56 100 3.08
1CPHG 1203 78.46 4599 5799 71.11 33.77 4579
RANDOM 436 11.34 604 788 6.03 481 535
Task B.1
System #C Pu 1P PIF BcP BcCcR BcF
Arefyev et al. + 7394 84 749 56225 7446 6409
Anwar et al. 2 5043 8047 62.00 29.58 73.00 42.1
Ribeiro et al. 7 5825 714 64.16 36.88 5991 45.65
Kallmeyer et al. 37 6144 5153 56.05 40.89 37.33 39.03
1CrPG 37 6144 51.53 56.05 40.89 3733 39.03
1CpI 9466 100 034  0.67 100 034 0.67
AIN1 1 34.34 100 51.13  21.66 100 35.6
RANDOM 32 3465 475 836 21.89 345 596
Task B.2

Table 6: Complete System Results and Baselines
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Cof | #1 | Arefyev  Anwar Ribeiro Cnf | #I | Arefyev Anwar Ribeiro
1 4620 70.7 68.10 65.32 1 286 | 73.79 70.57 67.70
2 4334 | 71.87 69.28 66.57 2 677 | 66.45 63.80 60.46
3 3657 74.64 72.22 70.17 3 1,115 76.71 75.98 70.01
4 2542 | 76.46 73.82 73.43 4 2,458 | 76.65 74.05 73.45
5 84 | 86.14 84.65 85.13 5 84 | 86.14 84.65 85.13
Task A Task A
Cnf | #1I Arefyev Anwar Ribeiro Cnf | #I Arefyev Anwar Ribeiro
1 9,510 | 63.12 49.52 42.75 1 493 68.57 55.37 51.84
2 9017 64.20 50.44 43.61 2 1,411 | 59.86 49.08 42.16
3 7,606 | 67.18 53.40 46.42 3 2,250 | 70.67 57.97 47.60
4 5,356 | 68.70 55.99 49.20 4 5,187 | 68.70 56.01 49.24
5 169 85.16 81.85 65.60 5 169 85.16 81.85 65.60
Task B.1 Task B.1
Cnf | #I | Arefyev Anwar Ribeiro Cnf | #I | Arefyev Anwar Ribeiro
1 9,466 | 64.09 42.12 45.65 1 553 52.69 39.82 38.21
2 8911 | 64.98 42.32 46.27 2 1,385 | 58.36 40.99 41.55
3 7,528 | 66.47 42.67 47.52 3 2,236 | 69.01 48.07 49.4
4 5,292 | 65.71 40.67 46.95 4 5,125 | 65.44 40.37 46.72
5 167 77.19 55.18 56.58 5 167 77.19 55.18 56.58
Task B.2 Task B.2
Cumulative Stratified

Table 7: Changes in BCF score of systems relative to changes in evaluation records based on assigned
confidence measure.
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Table 8: Task A — Part of a heat map from results
(Section 7), with cases that exhibit a range of dif-
ference values. Red denotes a positive and blue a
negative difference; white means no change (zero
difference). Differences (normalized by cluster
size) are in domain 0.01 to —0.01.
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Table 9: Heat map that visualizes Task B.2 data
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Abstract

We describe our solutions for semantic frame
and role induction subtasks of SemEval 2019
Task 2. Our approaches got the highest scores,
and the solution for the frame induction prob-
lem officially took the first place. The main
contributions of this paper are related to the se-
mantic frame induction problem. We propose
a combined approach that employs two differ-
ent types of vector representations: dense rep-
resentations from hidden layers of a masked
language model, and sparse representations
based on substitutes for the target word in the
context. The first one better groups synonyms,
the second one is better at disambiguating
homonyms. Extending the context to include
nearby sentences improves the results in both
cases. New Hearst-like patterns for verbs are
introduced that prove to be effective for frame
induction. Finally, we propose an approach to
selecting the number of clusters in agglomera-
tive clustering.

1 Introduction

Semeval-2019 Task 2 consisted of three subtasks,
this paper presents solutions to all three which
were all performing better than other submitted
approaches. The first solution officially took the
first place in the competition, the other two used
tuning on the development set provided by the or-
ganizers, which was then interpreted as using ad-
ditional corpora.

Semantic Frame Induction (Subtask A) is the
task of grouping target word occurrences in a
text corpus according to their frame (meaning
and semantic arguments structure). Target words
are usually verbs, nouns, and adjectives (these
have argument structure; however in the shared
task dataset only verbs were present). For in-
stance, the verbs rise, fall and climb in the sen-
tences The dollar is rising, which makes Rus-
sian economy unstable and The dollar fell 1% in
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September after climbing 2% in August should be
clustered together, while the verb climb in sen-
tences like People climb mountains should be clus-
tered separately. For the sake of brevity, occur-
rences of different words sharing the same frame
will be called synonyms, and occurrences of the
same word belonging to different frames will be
called homonyms. This may violate the traditional
meaning of these terms. For instance, fall and
rise are not considered synonyms in the classi-
cal sense. Semantic Role Induction refers to find-
ing realizations of semantic arguments in text and
relating them to corresponding semantic frame
slots. Generic role induction (subtask B.2) re-
quires a small number of frame-independent roles
like Agent, Patient, Theme, etc. Frame-specific
role induction (subtask B.1) allows labeling ar-
guments of each frame independently from other
frames. For instance, Microsoft in Microsoft
bought Github and Google in Google opened new
offices should be labeled as the same role in B.2
but may be labeled differently in B.1. For further
details please refer to QasemiZadeh et al. (2019).
In this paper, we focused mainly on the Frame
Induction subtask. The main contributions for this
subtask are the following. A combined approach
to semantic frame induction is introduced, which
clusters dense representations obtained from hid-
den layers of a masked LM first and sparse bag-of-
words representations of possible substitutes for
a word in context afterward. This approach re-
sulted in better clustering of both synonyms and
homonyms'. New Hearst-like patterns designed
specifically for verbs were used and they proved to
be beneficial for Semantic Frame Induction. Also,
a simple but effective semi-supervised approach to
selecting the number of clusters for agglomerative
clustering was proposed. Finally, we proposed ex-

!GRANNYy in the team name stands for General Relation
Acquisition with Neural Networks

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 31-38
Minneapolis, Minnesota, USA, June 67, 2019. ©2019 Association for Computational Linguistics



tending context with neighboring sentences which
have shown consistent improvements for both of
our representations. For solving subtask B.2 we
used a semi-supervised approach of training lo-
gistic regression over features that were partly de-
signed and partly learned in an unsupervised fash-
ion. To ensure the best performance on verbs that
were not present in training data (the majority of
examples in the test) we used cross-validation with
a lexical split, to select optimal features and hyper-
parameters. For solving subtask B.1 we trivially
reused labels from B.2

2 Related Work

This section describes previous work which our
approach is based on. Word Sense Induc-
tion (WSI) is the task of clustering occurrences
of an ambiguous word according to their mean-
ing which is similar to Frame Induction. One
of the major differences from Frame Induction is
that WSI doesn’t require grouping together dif-
ferent words with similar meanings, however, we
adopt some ideas from WSI in this work. In-
stead of graph or vector representation of word co-
occurrence information traditionally used to solve
WSI task, Baskaya et al. (2013) proposed ex-
ploiting n-gram language model (LM) to gener-
ate possible substitutes for an ambiguous word
in a particular context. Their approach was one
of the best in SemEval-2013 WSI shared task
(Jurgens and Klapaftis, 2013). Struyanskiy and
Arefyev (2018) proposed pretraining SOTA neu-
ral machine translation model built from Trans-
former blocks (Vaswani et al., 2017) to restore
target words hidden from its input (replaced with
a special token CENTERWORD). After pretrain-
ing, they exploited both predicted output em-
beddings to represent ambiguous words and at-
tention weights to better weigh relevant context
words in word2vec weighted average represen-
tation. A combination of these representations
achieved SOTA results on one of the datasets
from RUSSE’2018 Word Sense Induction for the
Russian language shared task (Panchenko et al.,
2018). Amrami and Goldberg (2018) develop
ideas from Baskaya et al. (2013) exploiting neu-
ral bidirectional LM ELMO (Peters et al., 2018)
instead of n-gram LM for generating substitutes.
To improve results further they propose using dy-
namic symmetric patterns “T and _”, “_ and T”
(here “T” stands for the target word and “_” for
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the position at which we collect LM predictions).
For instance, to represent the word orange in He
wears an orange shirt instead of predicting what
comes after wears in He wears they predict what
comes after and in He wears orange and (simi-
larly, for backward LM they predict what comes
before and in and orange shirt). This provides
more information to the LM because we don’t
hide the ambiguous word and forces it to produce
its co-hyponyms instead of all possible continu-
ations given a one-sided context. Other impor-
tant contributions include lemmatizing substitutes
to remove grammatical bias from representations
(which was especially important for verbs) and us-
ing IDF weights to penalize frequent substitutes,
which are probably worse for discriminating be-
tween senses. They achieve SOTA results on the
SemEval-2013 WSI dataset.

Devlin et al. (2018) proposed BERT (Bidi-
rectional Encoder Representations from Trans-
formers). Like the model from Struyanskiy and
Arefyev (2018), BERT is a deep NN built from
Transformer blocks and pretrained on the task of
restoring words hidden from its input (replaced
with a special token [MASK], hence they named
it masked LM). However they used much deeper
models, pretrained them on much more data and
predicted hidden words at each timestep rather
than generating them as an output sequence. Also
additional next sentence prediction task was used
to pretrain the model for sentence pairs classifi-
cation (like paraphrase detection and NLI). BERT
has shown better results than previous SOTA mod-
els on a wide spectrum of natural language pro-
cessing tasks.

3 Semantic Frame Induction

In this section, we describe our approaches to
building vector representations of an occurrence
of the target word (which is always a verb in
the SemEval-2019 Frame Induction task dataset).
The first approach exploits dense vector represen-
tations of the target word in a context obtained
from hidden layers of BERT model. Another ap-
proach builds sparse TF-IDF BOW vectors from
substitutes generated for the target word by BERT
masked LM. We found that each model has its own
downsides when used with non-trainable distance
functions like cosine and Euclidean, and with tra-
ditional clustering algorithms like agglomerative
clustering, DBScan, and affinity propagation. The



first approach didn’t discriminate different senses
of the same verb, the second one had problems
with clustering together similar senses of different
verbs. In preliminary experiments, we tried fixing
the first problem by learning a distance function
instead of using a fixed one, but this didn’t help,
presumably due to a very small amount of labeled
data provided and restrictions on using additional
labeled data. So our best performing algorithm is
two-stage: it groups examples to a relatively small
number of large clusters using the first representa-
tion (merging synonyms together while not taking
into consideration homonyms) and then splits each
of them into smaller clusters using the second rep-
resentation (disambiguating homonyms). Finally,
we describe our approach to clustering these vec-
tor representations and propose a technique for se-
lecting the appropriate number of clusters.

3.1 BERT Hidden Representations

In the preliminary experiments, we compared
dense representations from different layers of two
BERT models pretrained on English texts: bert-
base-uncased and bert-large-uncased with 3x more
weights. While being significantly slower, the
large model didn’t show better clustering results
for the development set, so we stuck to the base
model. Presumably, fine-tuning the large model
to the final task could reveal its superiority, but
this would require much more labeled data that
was provided. Interestingly, a weighted average
of word2vec embeddings for context words pro-
posed for WSI in Arefyev et al. (2018) showed
similar results, which also supports the hypothesis
that distance functions like cosine or Euclidean are
not appropriate for BERT hidden representations.
BERT-base consists of 12 Transformer blocks with
12 attention heads each, hidden state dimension-
ality is 768. It was pre-trained on lowercased
texts split into subword units. Hyperparameters
were selected on the development set, the best re-
sults were achieved using outputs of the layer 6 at
timestep when the first subword of the verb was
fed in. Also, better results were achieved when in-
put texts were lemmatized. This can be explained
by the large grammatical bias of LMs also no-
ticed by Amrami and Goldberg (2018): it is much
easier to correctly predict grammatical attributes
like number, gender, tense from contexts, so it is
more beneficial to assign higher probabilities to all
verbs with correct tense than to all verbs with cor-
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rect meaning when losses like cross-entropy are
used, which results in large distance between oc-
currences of the same verb in the same meaning,
but in different tenses.

3.2 Substitutes Representations

We adopt ideas from Amrami and Goldberg
(2018) for our second approach to Frame Induc-
tion, with several important differences. First, we
propose new patterns which are more suitable for
verbs. Secondly, we use BERT, which proved to
be better than ELMO for generating substitutes
in our series of preliminary experiments. This is
likely due to the fact that BERT takes into ac-
count the whole context in all of its layers, un-
like bidirectional LM in ELMO, which consists of
two independently trained language models, one
using only right context, and another only left con-
text. Lastly, we do hard clustering instead of soft
clustering required for SemEval-2013 WSI, hence
we do not sample from distributions predicted by
LM, but instead, take the topmost probable substi-
tutes. We found this approach works better than
one doing soft clustering and then selecting the
most probable cluster for each example.

To generate substitutes, a masked LM based on
the bert-base-uncased model was utilized. It is
likely that the large model could generate better
substitutes, but we left it for future work. Non-
lemmatized lowercased text was passed through
all the layers of the model. We didn’t add bi-
ases of the last linear layer to obtain less frequent
but more contextually suitable subwords. We took
K most probable substitutes to represent each ex-
ample (K=40 was selected on the development
set), lemmatized them to get rid of grammatical
bias, and then built TF-IDF bag-of-words vec-
tors. To improve results we employ symmetric
patterns. Symmetric patterns were first proposed
in Hearst (1992) and then used in many cases, in-
cluding Widdows and Dorow (2002), Panchenko
et al. (2012), Schwartz et al. (2015), to extract
lexical relations like hyponymy, hypernymy, co-
hyponymy, etc. from texts, and to augment lex-
ical resources. However, we were not aware of
any Hearst-like patterns designed specifically for
verbs. Along with “T and _” pattern and trivial “T”
and “_” patterns we proposed and experimented
with “T and then _, “T and will _”” and “T and then
will _” patterns. We suppose that the meaning of a
verb is better described not by its hypernyms or co-



hyponyms (which are traditionally extracted for
nouns using patterns like “_ such as T” or “T and
_”) but rather by preceding and following events
which are better extracted by the proposed pat-
terns. “T and then _” pattern has shown the best
results both for the development and the test sets.
For instance, to generate substitutes for the verb
build in They are building phones we pass They
are building and then [MASK] phones and collect
predictions at the masked timestep. We found that
among others, substitutes like export, distribute,
ship are generated for Manufacturing frame and
establish, open, close for Building frame of the
verb build allowing to discriminate between them.
See Appendix A for examples.

3.3 Clustering

We experimented with K-means, DBScan, Affin-
ity Propagation and Agglomerative clustering al-
gorithms implemented in the scikit-learn (Pe-
dregosa et al., 2011) and found agglomerative
clustering to achieve the best results. To select
hyperparameters of Agglomerative clustering for
dense representations (number of clusters and dis-
tance functions between points and clusters) we
used a simple yet effective semi-supervised ap-
proach: merge the development and test sets (la-
beled and unlabeled respectively) and perform
grid search for hyperparameters that provide clus-
tering with optimal value of the target metric
(BCubed-f1 in our case) on the labeled subset. Al-
most always optimal results were obtained using
cosine distance for points and average linkage for
clusters (average distance between elements).

3.4 Combined Approach

Our best performing submission was made of a
combination of techniques described above. At
phase 1, we clustered dense representations us-
ing proposed semi-supervised agglomerative clus-
tering. At phase 2, we split each cluster sep-
arately using sparse representations and conven-
tional agglomerative clustering with cosine dis-
tance and average linkage (selected on the devel-
opment set). We didn’t use the semi-supervised
tuning again because at that stage most clusters
didn’t contain labeled examples. During the blind
evaluation period, we simply split each cluster into
two (this method is denoted as Combined below).
In the post-evaluation period, we experimented
with more sophisticated approaches. Finally, our
best results (denoted as Combined2) were ob-
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tained when the number of clusters at phase 2 was
selected using silhouette score and small clusters
(with less than 20 examples) or clusters with dif-
ferent target verbs were left intact. Also, during
the post-evaluation period, we tried extending the
context with nearby sentences (sentences with ad-
jacent IDs in the Penn Treebank corpus). This al-
lowed us to incorporate more information about
the preceding and following events, which resulted
in improved performance of both representations.
In Combined2 we passed a large context of max-
imum 7 sentences to the left and to the right for
dense, and smaller context of 2 sentences on both
sides for sparse representations (selected on the
development set).

3.5 Dataset and Experiments

Due to limitations imposed by the task, we re-
stricted ourselves to only using labeled data pro-
vided by the organizers. For the majority of
our experiments, we used the development set
that consisted of 600 examples of 35 verbs clus-
tered into 41 frames. There are many examples
of synonymy in this dataset but not so many of
homonymy. Almost all ambiguous verbs have
less than 5 examples for all frames except their
most frequent frame, hence we used only verbs
Jjoin and believe (54/9 and 12/8 examples of their
first/second most frequent frame respectively) to
select hyperparameters likely resulting in a subop-
timal performance on the test.

For internal evaluation of different represen-
tations and hyperparameters selection, we used
the following procedure: the development set or
its subset was clustered many times using ag-
glomerative clustering with all feasible hyperpa-
rameter values, and maximum BCubed-fl1 value
(maxB3f1) was taken as a score for the represen-
tation. This allowed us to compare clusterability
of different representations while avoiding prob-
lems of selecting the number of clusters and other
hyperparameters. Of course, there is a possibil-
ity that other clustering algorithms might perform
better with different representations, however, we
didn’t see improvements from using other clus-
tering algorithms and stick to agglomerative clus-
tering. Table 1 shows maxB3fl for the whole
development set and for all examples of several
homonyms. Evidently, dense representations are
significantly better when clustering the whole de-
velopment set, while sparse representations with



dev join@dev  build@test  follow@test  start@test Method #cl PulpuF1 B3P B3R B3F1
sparse 091 0.98 0.83 0.96 0.75 Verb baseline 227 73.94 74.61 58.95 65.86
dense 094 092 0.70 0.80 0.72
Dense_ctx0+ss.agglo 126 76.24 60.5 77.61 68
Combined 239 77.03 6523  73.82  69.26
Table 1: Sparse vs. dense representations, maxB3f1 @Combinedtsep. sell 240 7886 7061 7382 7218
*Dense_ctx7+ss.agglo 194 77.52 66.68  72.67  69.55
*Combined2 272 78.15 70.86  70.54  70.70
ol = *Dense_ctx7+maxsil 126 7577 6023 7634 6733
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Figure 1: Recall for synonyms and homonyms w.r.t.
number of clusters for dense and sparse representations

an appropriate pattern are better for disambiguat-
ing homonyms.

We denote the proportion of synonyms shar-
ing common cluster as recall for synonyms and
the proportion of homonyms put in separate clus-
ters as recall for homonyms. Figure 1 shows
both metrics depending on the number of clus-
ters for agglomerative clustering of the whole de-
velopment set. It is evident that until a relatively
large number of clusters (30) almost all synonyms
are correctly clustered together when using dense
representations, yet homonyms are clustered to-
gether as well, which gives almost 1.0 recall for
synonyms and nearly 0.0 recall for homonyms.
MaxB3f1l of approximately 0.94 is achieved at
around 25-28 clusters (depending on the context
size) where synonyms are still clustered almost
perfectly. At the same time, sparse representations
split homonyms into different clusters even at very
small numbers of clusters, but simultaneously split
synonyms also, achieving lower maxB3f1 of 0.91
in a wider range of 25-40 clusters. To solve this
problem, our final solution clusters dense repre-
sentations first and then splits large clusters con-
taining examples of the same verb (to prevent
splitting synonyms) into a small number of clus-
ters to improve recall for homonyms.

Table 2 compares results on the test set. Verb
baseline assigns the first token of the verb to each
example as its cluster id. It overestimates the
real number of clusters in the test (149), giving
the highest precision but very low recall because
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Table 2: Subtask-A, results on test. x for post-eval re-
sults, @ for manual postprocessing (out of competition)

Pattern ctx  PulpuF1 B3P B3R B3F1 maxB3F1
T and then _ 2 78.15 70.86  70.54  70.70 71.34
Tand - 2 77.92 7043 70.16  70.30 71.16
- 2 77.80 7037  69.85  70.11 71.01
T 2 77.95 68.50 7197  70.19 71.15
T and then _ 0 77.79 70.56  69.67  70.11 71.06
T and then _ 1 77.93 7087  69.89 7038 71.38
T and then _ 2 78.15 70.86  70.54  70.70 71.34
T and then - 3 78.14 7052 70.66  70.59 71.29
T and then - 5 71.72 7029  70.10  70.19 71.13
T and then _ 7 77.94 7095 69.89 7041 71.24

Table 3: Subtask-A, effect of pattern and context size

synonyms are never clustered together. Dense
representation with semi-supervised agglomera-
tive clustering slightly underestimates the num-
ber of clusters in the test set (similarly to the de-
velopment set) resulting in the highest recall due
to merged synonyms. The combined approach
splits some clusters hurting BCubed-recall a bit
but increasing BCubed-precision, even more, re-
sulting in better BCubed-f1. The last row shows
that selecting the number of clusters which maxi-
mizes silhouette score (unsupervised approach) in-
stead of BCubed-fl of the labeled subset results
in much worse results, hence our semi-supervised
approach is beneficial. Finally, we noticed that the
largest cluster had all the examples of both sell and
buy, which were among the most frequent verbs
in the test set. In FrameNet, they are assigned to
Commerce_sell and Commerce_buy frames respec-
tively which is a questionable solution since these
are just different ways to put into words the same
type of event with the same participants (some-
thing like commercial-transfer-of-property). We
simply moved all examples of the verb sell into
a separate cluster which gave significant improve-
ment in BCubed-fl. However, this result is out
of competition due to the manual postprocessing.
Yet, our best result without manual postprocessing
is still ranked first.

In Table 3 we report the results of clustering
the test set depending on the pattern and the con-



text size used to build sparse representations at
phase 2. In addition to standard metrics, we report
maxB3F1 which excludes the effect of a subopti-
mal number of clusters selected on the compari-
son results. Our proposed pattern seems to give
small but consistent improvement as well as con-
text extension. The context of 1-3 sentences on
both sides is a reasonable choice for sparse repre-
sentations.

4 Semantic Role Induction

After looking at examples from the development
set we decided that the subtask B.2 (generic se-
mantic role induction) could be solved much more
effectively using a classifier than any kind of clus-
tering because generic roles look more like a high-
level linguistic abstraction than something natu-
rally occurring in texts. We used the development
set to trained logistic regression on top of repre-
sentations extracted from BERT and several hand-
crafted features. BERT was pretrained in unsuper-
vised fashion on large corpora and this results in
much better generalization of our semi-supervised
approach compared to a logistic regression trained
only on hand-crafted features (see ablation anal-
ysis below). To select hyperparameters we used
cross-validation with lexical split (i.e. there were
no common verbs in train and test subsets for each
fold) to ensure the best performance on new verbs
not seen during training. This approach was re-
jected as using an additional labeled corpora to
train a supervised component. However we hardly
see how the development set provided by the or-
ganizers can be considered as additional.

4.1 Model Description and Results

We trained a logistic regression classifier for the
14 most frequent semantic roles in the develop-
ment set. Following recommendations of Devlin
et al. (2018) we used outputs from the last four
layers of BERT as features. These outputs were
taken for two timesteps at which the target argu-
ment and its corresponding verb were fed. To be
exact, we found the first subword of the verb (for
instance, buy for buy out) and the last subword
for the argument (Union for European Union) per-
forming best. Additionally we used several hand-
designed features. Table 4 shows our submis-
sion results. Also, we display results when us-
ing only BERT and only hand-designed features
suggesting that both of them contribute positively
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Method #cl PulpuF1 B3P B3R B3F1
ClstPerGrType 37 56.05 40.89 3733 39.03
Logistic regression 14 77.47 56.21 7441  64.04
w/o designed feats. 14 76.93 54.71 73.55 62.75
w/o BERT feats. 13 65.08 4190 5501 4757

Table 4: Subtask-B.2, results on test

to the results but BERT features are much more
important. For additional details regarding hand-
designed features and ablation analysis please re-
fer to Appendix B. We didn’t experiment with sub-
task B.1 due to the lack of time, instead we used
labels predicted for subtask B.2 which resulted in
64.43 /73.11 BCubed-F1 / Pulpu-F1 compared to
45.79 1 57.99 of the best performing baseline.

5 Conclusions

We show how neural language models can be ef-
fectively used for unsupervised inference of se-
mantic structures. To improve the result of seman-
tic frame induction we used a combined approach
that utilizes two different vector representations,
and adjusted our clustering algorithm accordingly.
The design stemmed from our analysis of prob-
lems in use of neural language models for the pur-
pose of semantic frame induction; the experiments
showed that issues may be strongly related to how
the models treat such linguistic phenomena as syn-
onymy and homonymy. Designing a system that
addresses this problem directly allowed us to im-
prove the result significantly. We think that our
result could be additionally improved by finding
better parameters and/or model combinations. We
also think that further research in this direction
could lead to neural language models that explic-
itly address various linguistic phenomena by de-
sign, for even better inference of semantic proper-
ties.
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build: Manufacturing/
Building

follow: Compliance/
Relative_time

join: Participation/
Becoming_a_member

drive 0.61/0.031
export 0.5/0.031
import 0.67/0.046
distribute 0.72/0.092
manufacture 0.94/0.12
ship 0.5/0.077

release 0.5/0.092
make 0.56/0.11
assemble 0.78/0.18
deliver 0.89/0.22

rebuild 0.28/0.55
expand 0.33/0.75
acquire 0.22/0.58
finance 0.17/0.58
erect 0.11/0.43
open 0.11/0.77
fund 0.056/0.58
establish 0.056/0.6
close 0.0/0.42
start 0.0/0.43

execute 0.53/0.0

obey 0.47/0.0

keep 0.53/0.0

adopt 0.74/0.0

apply 0.68/0.013
maintain 0.63/0.013
use 0.63/0.013
enforce 0.47/0.013
ignore 0.42/0.013
implement 0.79/0.027

confirm 0.16/0.47
begin 0.16/0.48
end 0.11/0.64

see 0.053/0.43
include 0.053/0.55
come 0.0/0.41

be 0.0/0.49
,0.0/0.51

mark 0.0/0.53
after 0.0/0.61

end 0.5/0.15
support 0.81/0.32
continue 0.5/0.23
begin 0.44/0.21
follow 0.56/0.37
lead 0.88/0.77
start 0.5/0.56

leave 0.5/0.82
represent 0.31/0.52
rejoin 0.25/0.6

buy 0.062/0.47
found 0.0/0.4
oversee 0.0/0.4
serve 0.0/0.48
create 0.0/0.48
acquire 0.0/0.48
purchase 0.0/0.55
establish 0.0/0.6
form 0.0/0.63
become 0.0/0.82

Table 5: Examples of generated substitutes for template
“T and then _”

A Examples of generated substitutes

To show how substitutes can disambiguate
homonyms we generated substitutes for examples
of two most frequent frames for several verbs.
For each verb we excluded rare substitutes with
P(subs|frame;) < 0.4 for both frames. Then
we sorted the rest according to the probability ra-
tio P(Siéjr}b:l{: :;;Lfl)eifi. Table 5 shows substitutes
with the largest and the smallest ratio (most dis-

criminating substitutes).

B Features and ablation analysis for
Generic Semantic Role Induction

subtask

We used the following hand-crafted features: an
indicator that the argument is to the left of the verb
and an indicator that the particle by is between
them; categorical features for the output syntac-
tic relation of the argument, the last relation in the
path between the argument and the verb, the part
of speech of the first word of the argument, the
number of words and the number of words start-
ing with a capital letter in the argument. All these
features were concatenated, categorical features
were encoded with one-hot vectors. In the prelimi-
nary experiments we noticed that hand-crafted fea-
tures performed well by themselves but didn’t im-
prove results when concatenated with BERT out-
puts; this was resolved by multiplying the fea-
tures by 10 (we attribute the effect to very high di-
mensionality of BERT outputs compared to hand-
crafted features, which requires harmonizing the
variance each of them adds to the scalar product
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Method #cl PulpuF1 B3P B3R B3F1
ClstPerGrType 37 56.05 40.89 3733 39.03
Logistic regression 14 77.47 56.21 7441  64.04
w/o designed feats. 14 76.93 54.71 73.55 62.75
w/o BERT feats. 13 65.08 4190 5501 4757
w/o BERT @arg 14 73.45 51.60 6759  58.52
w/o BERT @verb 14 74.88 52.16  71.88  60.45
wi/o verb_input_rel 14 76.92 5545 7345  63.19
w/o by_between 14 76.92 55.55 7345 6325
w/o arg_is_left 14 77.25 55.65 7390  63.49
layer 0,1 14 73.56 50.34 6833 5797
layer O 14 73.69 50.52  68.88  58.29
layer 1 14 74.71 51.65 70.47 59.61
layer 2 14 75.13 52.18 71.16 60.21
layer 4 14 76.16 5411 7230  61.90
layer 11 14 75.98 5437 7219 62.02
layer 10,11 14 76.58 55.10 7325  62.89
layer 10 14 76.66 5551 7296  63.05
layer 6 14 76.98 5572 7329 6331
layer 8 14 77.40 56.33 7378  63.88

Table 6: Subtask-B.2, ablations on test set.

in the logistic regression). We tried multiplying
each feature by its own constant determined ana-
Iytically from its dimensionality, but this worsened
the results, so we left it for the future work.

Table 6 shows results for subtask B.2 after
removing features from input representation or
using different BERT layers instead of the last
four. For ablation analysis, we selected L2-
regularization strength using cross-validation with
a lexical split after removing each feature while
leaving all other hyperparameters intact. The fea-
tures with largest contribution to the result are
(from most to least important) BERT output at the
argument, at the verb, the last relation in the path
from the argument to the verb, the indicator that
the particle by is between them (which was de-
signed to fix errors due to passive voice) and the
indicator that the argument is to the left of the
verb. All other features’ contributions (not shown)
are small. Remarkably, removing all BERT fea-
tures gives very large decrease in performance (-
18 B3F1) while removing only outputs at the argu-
ment/verb gives only moderate decrease (-5.5/-3.5
B3F1) which can be explained by deeply bidirec-
tional nature of BERT resulting in some informa-
tion about both the verb and the argument present
in each of these outputs. Finally, we tried using
other BERT layers instead of the last four (lay-
ers 8-11) and found that intermediate layers per-
form best. For instance, layer 8 can replace the
last four layers with very little decrease in perfor-
mance, while the last two layers (10, 11) concate-
nated perform noticeably worse but much better
than the first layers.
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Abstract

In this paper, we present the SemEval-2019
Task 3 - EmoContext: Contextual Emotion
Detection in Text. Lack of facial expressions
and voice modulations make detecting emo-
tions in text a challenging problem. For in-
stance, as humans, on reading “Why don’t you
ever text me!” we can either interpret it as a
sad or angry emotion and the same ambigu-
ity exists for machines. However, the context
of dialogue can prove helpful in detection of
the emotion. In this task, given a textual dia-
logue i.e. an utterance along with two previ-
ous turns of context, the goal was to infer the
underlying emotion of the utterance by choos-
ing from four emotion classes - Happy, Sad,
Angry and Others. To facilitate the participa-
tion in this task, textual dialogues from user
interaction with a conversational agent were
taken and annotated for emotion classes af-
ter several data processing steps. A training
data set of 30160 dialogues, and two evalu-
ation data sets, Testl and Test2, containing
2755 and 5509 dialogues respectively were
released to the participants. A total of 311
teams made submissions to this task. The final
leader-board was evaluated on Test2 data set,
and the highest ranked submission achieved
79.59 micro-averaged F1 score. Our analysis
of systems submitted to the task indicate that
Bi-directional LSTM was the most common
choice of neural architecture used, and most
of the systems had the best performance for
the Sad emotion class, and the worst for the
Happy emotion class.

1 Introduction

Emotions are basic human traits and have been
studied by researchers in the fields of psychol-
ogy, sociology, medicine, computer science etc.
for several years. Some of the prominent work in
understanding and categorizing emotions include
Ekman’s six class categorization (Ekman, 1992)
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and Plutchik’s “Wheel of Emotion” (Plutchik and
Kellerman, 1986) which suggested eight primary
bipolar emotions . In recent times, several Arti-
ficial Intelligence (AI) agents like Siri, Cortana,
Alexa have emerged and they primarily focus on
providing users with assistance on specific tasks
such as booking tickets or scheduling meetings
etc. However, we believe that for machines and
humans to develop a deeper partnership, an In-
telligence Quotient (IQ) is not enough. These
agents need to also possess an Emotional Quotient
(EQ). Social conversational agents like Mitsuku'
or Ruuh 2 (Damani et al., 2018) are experimental
agents designed to have human-like persona, and
possess a deeper sense of EQ; understanding and
expressing emotions is an inherent aspect of these
agents.

Detecting emotions in textual dialogues is a chal-
lenging problem in absence of facial expressions
and voice modulations. Moreover, we observed
that context of ongoing dialogue can completely
change the emotion for an utterance as compared
to perceived emotion when the utterance is eval-
uated standalone. Table 1 presents few such ex-
amples. Note that, in the first example “I started
crying” will be perceived as ‘Sad’ by a majority,
however considering it in context, it turns out to
be a ‘Happy’ emotion. Similarly, in the second ex-
ample, the last turn “Try fo do that once” is very
likely to be perceived as ‘Others’, however again,
a majority will judge it as ‘Angry’ with the given
context.

Naturally, considering context to estimate emo-
tion of a text utterance becomes even more impor-
tant for aforementioned scenarios of digital assis-
tants and conversational agents, because of their
text-based conversational interface. This task was

!www.pandorabots.com/mitsuku
2www.ruuh.ai
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User Turn-1 Conversational Agent Turn-1 User Turn-2 True Class
I just qualified for the Nabard in- WOOT! Thats great news. Congratulations! I started crying Happy
ternship

How dare you to slap my child If you spoil my car, I will do that to you too  Just try to do that once Angry

I was hurt by u more You didn’t mean it. say u love me Sad

Table 1: Examples showing influence of context in determining emotion of last utterance.

designed to invite research interest in the area of
emotion detection in text. More details about the
task can be found on our web page’. The evalu-
ation data set served as a benchmark to compare
various techniques and the task received attention
from a wide range of researchers from industry as
well as academia. We believe continued interest
in this field will be beneficial towards making the
Al-agents more human-like.

2 Related Work

Researchers have achieved good results on image
based emotion recognition (Wang et al., 2018),
(Zhang et al., 2016) as well as voice based emo-
tion recognition (Pierre-Yves, 2003). Techniques
have been proposed to detect emotions in spoken
dialog systems (Liscombe et al., 2005). However,
classifying textual dialogues based on emotions is
relatively new research area. Emotion-detection
algorithms for text can be largely bucketized into
following two categories:

(a) Hand-crafted Feature Engineering Based
Approaches: - Many methods exploit the usage
of keywords in a sentence with explicit emo-
tional/affect value (Balahur et al., 2011), (Strap-
parava and Mihalcea, 2008), (Sykora et al., 2013).
To that end, several lexical resources have been
created, such as WordNet-Affect (Strapparava
et al.,, 2004) and SentiWordNet (Esuli and Se-
bastiani, 2007). Part-of-Speech taggers like the
Stanford POS tagger are also used to exploit the
structure of keywords in a sentence. These pat-
tern/dictionary based approaches, although attain-
ing high precision scores, suffer from low recall.

Hasan et al. (2014), Purver and Battersby
(2012), Suttles and Ide (2013) and Wang et al.
(2012) have also harnessed cues from emoticons
and hashtags. Other methods rely on extracting
statistical features such as presence of frequent n-
grams, negation, punctuation, emoticons, hashtags
to form representations of sentences which are

3Task webpage: humanizing-ai.com/emocontext.html
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then used as input by classifiers such as Decision
Trees, SVMs among others to predict the output
(Alm et al., 2005), (Balabantaray et al., 2012),
(Davidov et al., 2010), (Kunneman et al., 2014),
(Yan and Turtle, 2016). However, all of these
methods require extensive feature engineering
and they often do not achieve high recall due
to diverse ways of representing emotions. For
example, the following utterance, “Trust me! I am
never gonna order again”, contains no affective
words despite conveying an emotion of anger or
frustration perhaps.

(b) Deep Learning Based Approaches: - Deep
Neural networks have enjoyed considerable suc-
cess in varied tasks in text, speech and im-
age domains. Variations of Recurrent Neural
Networks, such as Long Short Term Memory
networks (LSTM) (Hochreiter and Schmidhuber,
1997) and Bidirectional LSTM (BiLSTM) (Schus-
ter and Paliwal, 1997) have been effective in mod-
eling sequential information. Also, Convolutional
Neural Networks (CNN) (Krizhevsky et al., 2012)
have been a popular choice in the image domain.
Their introduction to the text domain has proven
their ability to decipher abstract concepts from raw
signals (Kim, 2014).

Recently, approaches which employ Deep Learn-
ing for emotion detection in text have been pro-
posed. Zahiri and Choi (2017) predicts emotion
in a TV show transcript. Abdul-Mageed and Un-
gar (2017) and Koper et al. (2017) tries to under-
stand emotions of tweets. Li et al. (2017) learns
to detect emotions on user comments in Chinese
language. Felbo et al. (2017) learns representation
based on emoticons, and uses it for emotion de-
tection. A further detailed analysis of various ap-
proaches have been provided by Chatterjee et al.
(2019). It is worth noting that textual dialogues
are informal and laden with misspellings which
pose serious challenges for automatic emotion de-
tection approaches. Prior to this task, to the best of
our knowledge, the methods proposed by Mundra



et al. (2017) and Chatterjee et al. (2019) are some
of the few methods that tackled the problem of
emotion detection in English textual dialogues.

3 Task Details

Problem Definition: In a textual dialogue, given
an utterance along with its two previous turns of
context, classify the emotion of the utterance as
one of the following classes: Happy, Sad, Angry
or Others.

The motivation for restricting the number of
emotion classes stems from the popularity of these
emotions in conversational data. The task pro-
ceeded in two phases. A training corpus, Train, of
30160 dialogues was provided at the beginning of
Phase 1. The evaluation in this phase was done on
an evaluation data set, Testl, comprising of 2755
dialogues. The labels for Testl were made pub-
lic five weeks before the end of Phase 1, allowing
participants time and data to improve their models.
The final evaluation was carried out in Phase 2 on
a evaluation data set, Test2, which comprised of
5509 dialogues. It is important to note that while
the maximum number of submissions a participant
could make in Phase 1 was 20 per day, it was re-
duced to 10 per day during Phase 2.

4 Data Collection

A data set of textual dialogues was released to fa-
cilitate participation in this task. Several data pro-
cessing steps were performed to create the final set
of textual dialogues which are further explained in
this section.

4.1 Dialogue Collection and Processing

A dialogue mined from the user’s interaction with
agent is defined as a tuple of 3 values - User
Turn-1 (Utterance of the user), Conversational
Agent Turn-1 (Response by the agent), User Turn-
2 (User utterance as response to agent).

To begin with, user interactions with the agent
over a period of one year were considered and
over 2 million dialogues were randomly sampled.
These dialogues further went through the process-
ing and data cleaning as described in further sub-
sections.

4.1.1 Offensive filtering

All the dialogues were passed through a filtering
layer to remove offensive and sensitive content
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Figure 1: Comparison of class distribution in Training
vs Evaluation data sets.

Emotion Happy Sad Angry Others #
Train 4243 5463 5506 14948 30160
Testl 142 125 150 2338 2755
Test2 284 250 298 4677 5509

Table 2: Emotion label count across classes in Train, Testl
and Test2 data sets.

such as adult information, politically sensitive top-
ics, or ethnic-religious content, or other potentially
contentious material, such as inappropriate refer-
ences to violence, crime and illegal substances etc.
Several lexicons and human judgments were used
to achieve this filtering.

4.1.2 PII filtering

Personally Identifiable Information (PII) identifies
the unique identity of a given user. This includes
personal data like names, phone numbers, email
Ids, among others. Dialogues containing any PII
content were removed using hand crafted rules and
via human judgments.

4.1.3 Language filtering

Given that the agent was available for users across
geographies, the dialogues contained multiple lan-
guages and users employed code-mixed language
as well. We used language detectors as well as
user modeling to identify the language in the di-
alogues and filter non-English dialogues from the
data set.

4.2 Training Data Set Creation

In the collected textual dialogues the emotion
classes were not frequently expressed and hence
directly annotating a random sample of textual di-
alogues results in very low volume of textual di-
alogues with emotion class. This problem was
tackled by Gupta et al. (2017) and we used similar
heuristics and strategies to ensure a higher ratio of



textual dialogues with emotion classes. This exer-
cise was primarily conducted to reduce the cost of
human judgments and is further explained below.
We started with a small set (approximately 300)
of annotated dialogues per emotion class obtained
by showing a randomly selected sample to human
judges. Using a variation of the model described
by Palangi et al. (2016), we created embedding
for these annotated dialogues. Potentially simi-
lar dialogues were further identified from the en-
tire pool of dialogues using a threshold-based co-
sine similarity and these dialogues form our can-
didate set for each emotion class. Various heuris-
tics like presence of opposite emoticons (example
“’(” in a potential candidate set for Happy emo-
tion class), sentiment analysis, length of utterances
etc. are used to further prune the candidate set in
certain cases. The candidate set is then shown to
human judges to determine if they belong to an
emotion class. Using this method, we cut down
the amount of human judgments required by five
times as compared to showing a random sample of
dialogues and then choosing dialogues with emo-
tion class from them.

Data belonging to class “Others” is collected by
randomly selecting dialogues from our pool of di-
alogues and were human labelled to discard any
dialogues with emotion class such as Happy, Sad
or Angry.

Figure 1 shows the distribution of different classes
in training data set.

4.3 Evaluation Data Set Creation

Unlike training data set where we intentionally
over sampled dialogues from emotion classes to
help participants with a larger volume of data with
emotion classes, we maintained the natural distri-
bution of emotion classes in evaluation data sets.
We randomly sampled and annotated two eval-
uation sets, Testl and Test2, of size 2755 and
5509 respectively. Detailed distribution of emo-
tion classes in these sets is described in Table 2.

4.4 Emotion Class Labeling

For this specific task of emotion class labelling,
50 human judges were trained. Given a dialogue,
i.e an utterance with two previous turns as con-
text, a judge was asked to annotate the utterance
as belonging to one of the following four classes:
Happy, Angry, Sad or Others. All dialogues were
judged by 7 human judges and a majority con-
sensus was taken as the final class label. Fleiss’
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Figure 2: Comparison of word count of utterances per
emotion class. Emoticons were removed for this calcu-
lation, as a result of which the leftmost bin of 0 word
count can be seen as well.

Kappa score (Shrout and Fleiss, 1979) of 0.58 was
observed on training data set and of 0.59 on eval-
uation data set. Such a Kappa score indicates the
existence of multiple perspectives about the under-
lying emotion of a conversation.

5 Data Analysis

In this section we analyze the utterance in the di-
alogue that was judged by human judges for emo-
tion classes.

5.1 Word Count

Figure 2 shows the distribution of the word count
of utterances per emotion class. We observed
that users tend to repeat emoticons several times.
Hence emoticons were removed from utterances
for this calculation, as a result of which the ut-
terances which had only emoticons are clubbed
in the leftmost bin with utterance of length 0. It
can be observed that happiness is often expressed
through emoticons and hence happy emotion class
has highest count under the bin of 0 word count.
Also, happiness is often expressed in fewer words
as compared to other emotions can be observed
from the graph. Another point to note is that angry
emotion class is often expressed using more words
as compared to other emotion classes.

5.2 Top Unigrams

Figure 3 shows the most frequent unigrams per
emotion class in our data set. Note that emoticons
are not considered as unigrams for this analysis.
The length of the radius in the spiral graph denotes
the frequency of the unigram in all the utterances
belonging to that particular emotion class. In order
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Table 3: Top five emoticons per emotion class.
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to avoid neutral words like “my”, “what”, “sure”
from showing up in the analysis, we consider only
those unigrams which are not in the top 500 list of
most frequent unigrams of the “Others” class.

5.3 Top Emeoticons

Emoticons are frequently used in textual dia-
logues, as was observed by Gupta et al. (2017),
who found 21% of textual dialogues to contain
emoticons. Table 3 shows the top emoticons ob-
served in utterances per emotion class. While most
emoticons align with our expectations of the most
frequent emoticons, it is interesting to note the fre-
quent use of broken-heart emoticon to express sad
emotion.

6 Evaluation Metric

Evaluation was carried out using the micro-
averaged F1 score (F'1,) for the three emotion
classes - Happy, Sad and Angry on the submis-
sions made with predicted class of each sample in
the evaluation data set. To be precise, we define
the metric as following:

XTPF;

P, = ————VielH d, A

1 E(TPZ_{_FPZ)VZG{ appy,Sa ) ng?"y}
XTPF

R, = - Vie{ Happy, Sad, Angry}

S(TP; + FN;)
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where T'F; is the number of samples of class i
which are correctly predicted, F'N; and F'P; are
the counts of Type-I and Type-II errors * respec-
tively for the samples of class i.

Our final metric F'1, is calculated as the har-
monic mean of P, and R,.

F1, =2

m

7 Baseline Model

To encourage and assist participants in making
their first submission, we provided a starter Kkit,
which consisted of scripts for training a naive
baseline model. The script also enabled partic-
ipants to cross-validate their model and create a
submission file. This section explains the baseline
model in detail.

7.1 Data Processing

Minimal data pre-processing steps were provided.
These included replacing certain repeated punctu-
ation marks with their single instances, lower cas-
ing, removing extra space and tokenization. For
example, “I am so happy!!” was converted to “i
am so happy !”.

7.2 Model Architecture

We modeled the task of detecting emotions as a
multi-class classification problem where given a
dialogue, the model outputs probabilities of it be-
longing to four output classes - Happy, Sad, Angry
and Others. The three turns are concatenated us-
ing a special <eos> token. The concatenated in-
put is passed into a pre-trained word embedding

‘http://en.wikipedia.org/wiki/Type_I_
and_type_II_errors



Team GloVe Word2Vec | NTUA- BERT ELMO ULMFit Others
SLP
NELEC v’
SymantoResearch v’ v’ v’
ANA v’ v’ v’
CAIiRE_HKUST v’ v’ v v
SNU_IDS v’ v’ v’
THU-HCSI v v
Figure Eight v’ v v’ v
YUN-HPCC v v
LIRMM-Advanse v’
MILAB v’
PKUSE v
THU_NGN v’ v’ v

Table 4: Input representations used by top systems.

layer, which projects the words into continuous
vector representations. We used 100 dimensional
GloVe embeddings (Pennington et al., 2014) for
this purpose. The embeddings are processed by an
LSTM layer, which produces a 128 dimensional
representation of the sentence. This representation
is then mapped to a 4 dimensional output vector
which outputs probabilities per emotion class us-
ing a fully connected neural network. The archi-
tecture of the model was kept deliberately simple
and was intended to serve as a starting point for
participants. The baseline model achieved a F'1,,
score of 0.5861 on the final leader board and most
teams were able to beat the baseline model. Fur-
ther details on the model and its comparison with
other systems can be seen in Table 5.

8 Systems and Results

As mentioned earlier in section 3, the task was
conducted in two phases. The first phase saw a
participation from 311 teams and 164 teams par-
ticipated in the second phase. In this section, we
briefly describe the top systems >, followed by ob-
servations across systems regarding the techniques
used and their performance across different emo-
tion classes.

The top 2 systems - Leo1020 and Mfzszgs did not submit
system description papers, and hence have been omitted from
discussion in this Section.
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8.1 Top Systems

Due to the overwhelming number of participants,
we cannot describe all systems. We describe the
main features of the top few systems ranked ac-
cording to their final performance.

e NELEC uses a combination of lexical fea-
tures such as word and character grams,
along with additional signals like emotional
intensity, valence-arousal-dominance scores.
In addition, they use adult, offensive and sen-
timent classifiers’ scores from neural mod-
els. Using these features, the authors trained
a Light-GBM tree (Ke et al., 2017), which
achieves better performance than their deep-
learning based architecture.

SymantoResearch explores different deep-
learning based architectures, some of them
employing multi-task learning to better clas-
sify Others class vs. emotion classes. By en-
sembling such architectures with fine-tuned
BERT (Devlin et al., 2018) and USE (Cer
et al., 2018) models, the authors are able to
distinguish three emotions (Sad, Happy, An-
gry) and separate them from the rest (Others)
more accurately.

ANA uses an ensemble of fine tuned BERT
model and Hierarchical LSTMs, where the
semantic and emotional content of text is en-
coded via GloVe, ELMo (Peters et al., 2018)



Team Name ANGRY HApPPY SAD F1,
PRECISION RECALL F1 PRECISION RECALL F1 PRECISION RECALL F1
Leo1020 0.7723 0.8423  0.8058 0.804  0.7077 0.7528 0.8494 0.812 0.8303 0.7959
Mfzszgs 0.759  0.8456 0.8 0.7769  0.7113 0.7426 0.8595 0.832 0.8455 0.7947
NELEC 0.747 0.8322 0.7873 0.7632  0.7148 0.7382 0.7938 0.816 0.8047 0.7765
SymantoResearch 0.7807  0.7886 0.7846 0.738  0.7042 0.7207 0.8193 0.816 0.8176 0.7731
ANA 0.7198 0.8188 0.7661 0.7698  0.6831 0.7239 0.8458 0.812 0.8286 0.7709
CAIiRE_HKUST 0.6997 0.8289 0.7588 0.7301 0.743  0.7365 0.7774 0.852 0.813 0.7677
SNUIDS 0.7405 0.7852 0.7622 0.772  0.6796 0.7228 0.8135 0.82 0.8167 0.7661
THU-HCSI 0.7155 0.8356 0.7709 0.7702  0.6725 0.718 0.796 0.796  0.796 0.7616
Figure Eight 0.6954  0.8658 0.7713 0.7055 0.7254 0.7153 0.7695 0.828 0.7977 0.7608
YUN-HPCC 0.7198 0.8188 0.7661 0.7169  0.6866 0.7014 0.8016 0.824 0.8126 0.7588
LIRMM-Advanse 0.7229 0.8054 0.7619 0.7256 0.7077 0.7166 0.8291 0.776  0.8017 0.7582
MILAB 0.7295 0.8054 0.7656 0.7481 0.7007 0.7236 0.7652 0.808 0.786 0.7581
Huxiao 0.7362 0.8054 0.7692 0.7403 0.6725 0.7048 0.7757 0.816 0.7953 0.7564
PKUSE 0.745 0.755 0.75 0.7351 0.6937 0.7138 0.8056 0.812 0.8088 0.7557
THU_NGN 0.7329 0.7919 0.7613 0.7452 0.6796 0.7109 0.8117 0.776  0.7935 0.7542
Baseline 0.4777 0.7867 0.5945 0.5123 0.5845 0.5461 0.5163 0.7600 0.6149 0.5861

Table 5: Performance comparison of top 15 teams on leaderboard.

and DeepMoji (Felbo et al., 2017) embed-
dings, following which a contextual LSTM
encodes the entire dialogue for prediction.

CAiRE_HKUST experiments with combina-
tions of feature based models and end-to-end
neural models. The feature based models
use various pre-trained word embeddings and
emotional embeddings, combining them with
Logistic Regression and XGBoost (Chen and
Guestrin, 2016). For the end-to-end neural
models, the authors found the performance
of hierarchical models, which take sequential
nature of dialogue into account, to be better.

SNU_IDS proposes several methods for al-
leviating the problems caused by difference
in class distributions between training data
and test data. The authors also present
a semi-hierarchical neural architecture com-
bining character and word embeddings that
effectively encodes an utterance in context of
the previous utterances.

THU-HCSI is composed of three CNN-
based neural network models trained for
different base tasks - four-emotion classifi-
cation, Angry-Happy-Sad classification and
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Others-or-not classification respectively. The
authors use multiple steps of voting to com-
bine the predictions of these base classifiers,
resulting in a more accurate and robust model
performance.

Figure Eight uses an ensemble of transfer
learning models for capturing the represen-
tations of the utterances. Using sophisticated
fine-tuning techniques described in ULMFiT
(Howard and Ruder, 2018), the authors ob-
serve that transfer learning using pre-trained
language models outperforms models trained
from scratch.

8.2 Miscellaneous Observations

From the system description papers of the top 15
teams, we observed that BiILSTMs/LSTMs were
the most frequently used neural models. GRU
(Chung et al., 2014) and CNN models were used
by a few teams, and some variations of attention
mechanism were employed by most of the teams
to enhance performance of their models. Transfer
learning using BERT, ELMo, ULMFit was a
popular choice among top teams, and almost all
the teams used an ensemble of their best models
to create the final model.



F1,
Max 0.7959
Min 0.0143
Mean 0.6599
Median 0.694
1% Quartile  0.637
3" Quartile  0.7317
Std. Dev. 0.1264

Table 6: Performance statistics of all participants.

Table 4 shows the embeddings used by the top
5 teams. It can be observed that GloVe was used
most frequently. BERT and ELMo were the most
popular choice for transfer learning. NTUA-SLP
embeddings (Baziotis et al., 2018) were used as
well to leverage its affective information. Partici-
pant teams tried various ways to encode the emo-
tional content expressed by emoticons, and Deep-
moji and Emoji2Vec (Eisner et al., 2016) were uti-
lized in this regard. A good number of teams used
the “ekphrasis” package (Baziotis et al., 2017) for
tokenization, word normalization and word seg-
mentation.

8.3 Performance across Emotion Classes

Table 5 displays the detailed performance of the
top 15° participant teams. Upon inspection, it can
be observed that the performance of the systems
on the Happy class was not as good as the other
emotion classes for the evaluation set. We believe,
this is largely due to the natural ambiguity exist-
ing between neutral and happy utterances. For
example, a greeting like “Happy Morning” can
be thought of as expressing a happy emotion by
some, while being judged to be neutral by others.
We also observed that most systems performed
best for the Sad emotion class. Table 6 provides
some basic statistics on the results obtained by the
whole set of participants.

9 Conclusion

A total of 311 teams made submissions to the task.
The final leader-board was evaluated on Test2 data
set, and the highest ranked submission achieved
79.59 F'1,, score. Our analysis of systems submit-

SFinal rankings of all participating systems can
be consulted via the Codalab website of our task:
https://competitions.codalab.org/competitions/19790
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ted to the task indicate that Bi-directional LSTM
was the most common choice of network architec-
ture used by participants, and most systems had
best performance for Sad emotion class, and worst
for Happy emotion class. A large number of teams
have participated in the task but only 46 teams
submitted their final system description papers; in
fact, the top 2 teams in Phase 2 did not submit their
system description paper. It was also observed
that the ranking of various systems across both
the phases varied significantly. In this task, we
released the evaluation set without labels to par-
ticipants, in future tasks it might be useful to also
experiment with system submissions such that the
entire evaluation set is never seen, with or with-
out labels to the participants during the evaluation
phase in a bid to have completely blind evalua-
tion.
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Abstract

This paper describes the system submitted by
ANA Team for the SemEval-2019 Task 3:
EmoContext. We propose a novel Hierarchi-
cal LSTMs for Contextual Emotion Detection
(HRLCE) model. It classifies the emotion
of an utterance given its conversational con-
text. The results show that, in this task, our
HRCLE outperforms the most recent state-of-
the-art text classification framework: BERT.
We combine the results generated by BERT
and HRCLE to achieve an overall score of
0.7709 which ranked 5th on the final leader
board of the competition among 165 Teams.

1 Introduction

Social media has been a fertile environment for the
expression of opinion and emotions via text. The
manifestation of this expression differs from tradi-
tional or conventional opinion communication in
text (e.g., essays). It is usually short (e.g. Twit-
ter), containing new forms of constructs, including
emojis, hashtags or slang words, etc. This con-
stitutes a new challenge for the NLP community.
Most of the studies in the literature focused on the
detection of sentiments (i.e. positive, negative or
neutral) (Mohammad and Turney, 2013).
Recently, emotion classification from social
media text started receiving more attention (Yad-
dolahi et al., 2017; Mohammad et al., 2018). Emo-
tions have been extensively studied in psychology
(Ekman, 1992; Plutchik, 2001). Their automatic
detection may reveal important information in so-
cial online environments, like online customer ser-
vice. In such cases, a user is conversing with an
automatic chatbot. Empowering the chatbot with
the ability to detect the user’s emotion is a step
forward towards the construction of an emotion-
ally intelligence agent. Giving the detected emo-
tion, an emotionally intelligent agent would gener-
ate an empathetic response. Although its potential
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convenience, detecting emotion in textual conver-
sation has seen limited attention so far. One of the
main challenges is that one users utterance may
be insufficient to recognize the emotion (Huang
et al., 2018). The need to consider the context of
the conversion is essential in this case, even for
human, specifically given the lack of voice mod-
ulation and facial expressions. The usage of figu-
rative language, like sarcasm, and the class size’s
imbalance adds up to this problematic (Chatterjee
et al., 2019a).

Category
Classification

l Multi-head self-attention ‘

Utterance

Encoder

4 t 0 Utterance
o s . LSTM
ontext ontext ontext DeepMoji
LSTM LSTM LSTM A
T T T GloVe ELMo

Utterance Utterance | /| Utterance i
Encoder Encoder J | Encoder |

N

up [Z5) u

Figure 1: An illustration of the HRLCE model

In this paper, we describe our model, which was
proposed for the SemEval 2019-Task 3 competi-
tion: Contextual Emotion Detection in Text (Emo-
Context). The competition consists in classify-
ing the emotion of an utterance given its conver-
sational context. More formally, given a textual
user utterance along with 2 turns of context in a
conversation, the task is to classify the emotion
of user utterance as Happy, Sad, Angry or Others
(Chatterjee et al., 2019b). The conversations are
extracted from Twitter.

We propose an ensemble approach composed
of two deep learning models, the Hierarchi-
cal LSTMs for Contextual Emotion Detection
(HRLCE) model and the BERT model (Devlin
et al., 2018). The BERT is a pre-trained language
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model that has shown great success in many NLP
classification tasks. Our main contribution con-
sists in devising the HRLCE model.

Figure 1 illustrates the main components of the
HRLCE model. We examine a transfer learning
approach with several pre-trained models in or-
der to encode each user utterance semantically
and emotionally at the word-level. The pro-
posed model uses Hierarchical LSTMs (Sordoni
et al., 2015) followed by a multi-head self atten-
tion mechanism (Vaswani et al., 2017) for a con-
textual encoding at the utterances level.

The model evaluation on the competition’s test
set resulted in a 0.7709 harmonic mean of the
macro-F1 scores across the categories Happy, An-
gry, and Sad. This result ranked Sth in the final
leader board of the competition among 142 teams
with a score above the organizers’ baseline.

2 Overview

2.1 Embeddings for semantics and emotion

We use different kinds of embeddings that have
been deemed effective in the literature in capturing
not only the syntactic or semantic information of
the words, but also their emotional content. We
breifly describe them in this section.

GloVe, (Pennington et al., 2014) is a widely
used pre-trained vector representation that cap-
tures fine-grained syntactic and semantic regulari-
ties. It has shown great success in word similarity
tasks and Named Entity Recognition benchmarks.

ELMo, or Embeddings from Language Models,
(Peters et al., 2018) are deep contextualized word
representations. These representations enclose a
polysemy encoding, i.e., they capture the varia-
tion in the meaning of a word depending on its
context. The representations are learned functions
of the input, pre-trained with deep bi-directional
LSTM model. It has been shown to work well in
practice on multiple language understanding tasks
like question answering, entailment and sentiment
analysis. In this work, our objective is to detect
emotion accurately giving the context. Hence, em-
ploying such contextual embedding can be crucial.

DeepMoji (Felbo et al., 2017) is a pre-trained
model containing rich representations of emo-
tional content. It has been pre-trained on the task
of predicting the emoji contained in the text using
Bi-directional LSTM layers combined with an at-
tention layer. A distant supervision approach was
deployed to collect a massive (1.2 billion Tweets)
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dataset with diverse set of noisy emoji labels on
which DeepMoji is pre-trained. This led to state-
of-the art performance when fine-tuning Deep-
Moji on a range of target tasks related to senti-
ment, emotion and sarcasm.

2.2 Hierarchical RNN for context

One of the building component of our proposed
model (see Figure 1) is the Hierarchical or Con-
text recurrent encoder-decoder (HRED) (Sordoni
et al., 2015). HRED architecture is used for en-
coding dialogue context in the task of multi-turn
dialogue generation task (Serban et al., 2016). It
has been proven to be effective in capturing the
context information of dialogue exchanges. It
contains two types of recurrent neural net (RNN)
units: encoder RNN which maps each utterance
to an utterance vector; context RNN which fur-
ther processes the utterance vectors. HRED is ex-
pected to produce a better representation of the
context in dialogues because the context RNN al-
lows the model to represent the information ex-
changes between the two speakers.

2.3 BERT

BERT, the Bidirectional Encoder Representations
for Transformers, (Devlin et al., 2018) is a pre-
trained model producing context representations
that can be very convenient and effective. BERT
representations can be fine-tuned to many down-
stream NLP tasks by adding just one additional
output layer for the target task, eliminating the
need for engineering a specific architecture for a
task. Using this setting, it has advanced the state-
of-the-art performances in 11 NLP tasks. Using
BERT in this work has slightly improved the final
result, when we combine it with our HRLCE in an
ensemble setting.

2.4 Importance Weighting

Importance Weighting (Sugiyama and Kawanabe,
2012) is used when label distributions between the
training and test sets are generally different, which
is the case of the competition datasets (Table 2). It
corresponds to weighting the samples according to
their importance when calculating the loss.

A supervised deep learning model can be re-
garded as a parameterized function f(x;6). The
backpropagation learning algorithm through a dif-
ferentiable loss is a method of empirical risk mini-
mization (ERM). Denote (z!",y!"), i € [1...n4]



are pairs of training samples, testing samples are
(™, y), i € [1...n.

The ratio P(x)'/P(x)"" is referred as the im-
portance of a sample . When the label distribu-
tion of training data and testing data are different:
P(z'®) # P(z'"), the training of the model fq
is then called under covariate shift. In such situa-
tion, the parameter 6 should be estimated through
importance-weighted ERM:

. 1 & P(mte) tr tr,
arg;nm [n”; P(m“’)loss(yi S5 0)].
(1)
3 Models

Denote the input © = [uy, u2, us], where u; is the
ith penultimate utterance in the dialogue. y is the
emotion expressed in uz while giving u; and uo as
context.

To justify the effectiveness of the modules in
HRLCE, we propose two baseline models: SA-
LSTM (SL) and SA-LSTM-DeepMoji (SLD). The
SL model is part of the SLD model, while the
later one composes the utterance encoder of our
HRLCE. Therefore, we illustrate the models con-
secutively in Sections 3.1, 3.2, and 3.3.

3.1 SA-LSTM (SL)

Let  be the concatenation of u; ,us, and wus.
Hereby, © = [z1,22, -+ ,z,], where z; is the
ith word in the combined sequence. Denote the
pre-trained GloVe model as G. As GloVe model
can be directly used by looking up the word z;,
we can use G(z;) to represent its output. On the
contrary, ELMo embedding is not just dependent
on the word x;, but on all the words of the in-
put sequence. When taking as input the entire
sequence x, n vectors can be extracted from the
pre-trained EIMo model. Denote the vectors as
E = [Ey, Es, -+, E,]. E; contains both contex-
tual and semantic information of word x;. We use
a two-layer bidirectional LSTM as the encoder of
the sequence x. For simplicity, we denote it as
LSTMé. In order to better represent the informa-
tion of x;, we use the concatenation of G(x;) and
FE; as the feature embedding of x;. Therefore, we
have the following recurrent progress:

hi = LSTM®([G(xt); Et], hi_1)- (2)
¢ is the hidden state of encoder LSTM at time

step t, and h§ = 0. Let hg, = [h{, h{,--- , hf] be
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F1 Happy Angry Sad Harm. Mean
SL Dev | 0.6430 0.7530 0.7180 0.7016
Test | 0.6400 0.7190 0.7300 0.6939
SLD Dev | 0.6470 0.7610 0.7360 0.7112
Test | 0.6350 0.7180 0.7360 0.6934
Dev | 0.7460 0.7590 0.8100 0.7706
HRLCE Test | 0.7220 0.766  0.8180 0.7666
BERT Dev | 0.7138 0.7736 0.8106 0.7638
Test | 0.7151 0.7654 0.8157 0.7631

Table 1: Macro-F1 scores and its harmonic means of
the four models

the n hidden states of encoder given the input .
Self-attention mechanism has been proven to be
effective in helping RNN dealing with dependency
problems (Lin et al., 2017). We use the multi-head
version of the self-attention (Vaswani et al., 2017)
and set the number of channels for each head as 1.
Denote the self-attention module as S A, it takes as
input all the hidden states of the LSTM and sum-
marizes them into a single vector. This process
is represented as h* = SA(hS). To predict the
model, we append a fully connected (FC) layer to
project h3? on to the space of emotions. Denote
the FC layer as output. Let 05* = output(hi®),
then the estimated label of x is the arg max; (03 %),

€
where i is ith value in the vector 03" .

3.2 SA-LSTM-DeepMoji (SLD)

SLD is the combination of SA and DeepMoji. An
SLD model without the output layer is in fact the
utterance encoder of the proposed HRLCE, which
is illustrated in the right side of Figure 1. De-
note the DeepMoji model as D, when taking as
input x, the output is represented as h& = D(x).
We concatenate h? and h3® as the feature rep-
resentation of sequence of x. Same as SL, an
FC layer is added in order to predict the label:
03P = output([h'; hg]).

3.3 HRLCE

Unlike SL and SLD, the input of HRLCE is not
the concatenation of uq, uo, and us.

Following the annotation in Section 3.1 and 3.2,
an utterance u; is firstly encoded as Az and hﬁi.
We use another two layer bidirectional LSTM as
the context RNN, denoted as LST M¢€. Its hidden
states are iterated through:

hy = LSTMC([h3%;

Ut

thL h‘g—l)7

where hj = 0. The three hidden states h¢
[h§, h§, h§], are fed as the input to a self-attention

3)



layer. The resulting vector SA(h®) is also pro-
jected to the label space by an FC layer.

3.4 BERT

BERT (Section 2.3) can take as input either a sin-
gle sentence or a pair of sentences. A “sentence”
here corresponds to any arbitrary span of contigu-
ous words. In this work, in order to fine-tune
BERT, we concatenate utterances u; and ug to
constitute the first sentence of the pair. ug is the
second sentence of the pair. The reason behind
such setting is that we assume that the target emo-
tion y is directly related to w3, while u; and wuo
are providing additional context information. This
forces the model to consider ug differently.

4 Experiment

4.1 Data preprocessing

From the training data we notice that emojis are
playing an important role in expressing emotions.
We first use ekphrasis package (Baziotis et al.,
2017) to clean up the utterances. ekphrasis cor-
rects misspellings, handles textual emotions (e.g.
‘)))’), and normalizes tokens (hashtags, numbers,
user mentions etc.). In order to keep the semantic
meanings of the emojis, we use the emojis pack-
age! to first convert them into their textual aliases
and then replace the “:” and “_” with spaces.

4.2 Environment and hyper-parameters

We use PyTorch 1.0 for the deep learning frame-
work, and our code in Python 3.6 can be accessed
in GitHub?. For fair comparisons, we use the same
parameter settings for the common modules that
are shared by the SL, SLD, and HRLCE. The di-
mension of encoder LSTM is set to 1500 per di-
rection; the dimension of context LSTM is set to
800 per direction. We use Adam optimizer with
initial learning rate as Se-4 and a decay ratio of 0.2
after each epoch. The parameters of DeepMoji are
set to trainable. We use BERT-Large pre-trained
model which contains 24 layers.

happy angry sad others |size

Train|14.07% 18.26% 18.11% 49.56% |30160
Dev [5.15% 5.44% 4.54% 84.86% |2755
Test |4.28% 5.57% 4.45% 85.70%|5509

Table 2: Label distribution of train, dev, and test set

Uhttps://pypi.org/project/emoji/
*https://github.com/chenyangh/SemEval2019Task3

According to the description in (CodaLab,
2019), the label distribution for dev and test sets
are roughly 4% for each of the emotions. How-
ever, from the dev set (Table 2) we know that the
proportions of each of the emotion categories are
better described as %35 each, thereby we use %5
as the empirical estimation of distribution P(z*¢).
We did not use the exact proportion of dev set as
the estimation to prevent the overfitting towards
dev set. The sample distribution of the train set
is used as P(x'"). We use Cross Entropy loss for
all the aforementioned models, and the loss of the
training samples are weighted according to Eq. 1.

4.3 Results and analysis

We run 9-fold cross validation on the training set.
Each iteration, 1 fold is used to prevent the models
from overfitting while the remaining folds are used
for training. Therefore, every model is trained 9
times to ensure stability. The inferences over dev
and test sets are performed on each iteration. We
use the majority voting strategy to merge the re-
sults from the 9 iterations. The results are shown
in Table 1. It shows that the proposed HRLCE
model performs the best. The performance of SLD
and SL are very close to each other, on the dev set,
SLD performs better than SL but they have almost
the same overall scores on the test set. The Macro-
F1 scores of each emotion category are very differ-
ent from each other: the classification accuracy for
emotion Sad is the highest in most of the cases,
while the emotion Happy is the least accurately
classified by all the models. We also noticed that
the performance on the dev set is generally slightly
better than that on the fest set.

5 Conclusions

Considering the competitive results generated by
BERT, we combined BERT and our proposed
model in an ensemble and obtained 0.7709 on the
final test leaderboard. From a confusion matrix
of our final submission, we notice that there are
barely miss-classifications among the three cate-
gories (Angry, Sad, and Happy). For example, the
emotion Sad is rarely miss-classified as “Happy”
or “Angry”. Most of the errors correspond to clas-
sifying the emotional utterances in the Others cat-
egory. We think, as future improvement, the mod-
els need to first focus on the binary classifica-
tion “Others” versus “Not-Others”, then the “Not-
Others” are classified in their respective emotion.
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Abstract

The paper describes the organization of the
SemEval 2019 Task 5 about the detection of
hate speech against immigrants and women in
Spanish and English messages extracted from
Twitter. The task is organized in two related
classification subtasks: a main binary subtask
for detecting the presence of hate speech, and
a finer-grained one devoted to identifying fur-
ther features in hateful contents such as the ag-
gressive attitude and the target harassed, to dis-
tinguish if the incitement is against an individ-
ual rather than a group. HatEval has been one
of the most popular tasks in SemEval-2019
with a total of 108 submitted runs for Subtask
A and 70 runs for Subtask B, from a total of 74
different teams. Data provided for the task are
described by showing how they have been col-
lected and annotated. Moreover, the paper pro-
vides an analysis and discussion about the par-
ticipant systems and the results they achieved
in both subtasks.

1 Introduction

Hate Speech (HS) is commonly defined as any
communication that disparages a person or a group
on the basis of some characteristic such as race,
color, ethnicity, gender, sexual orientation, nation-
ality, religion, or other characteristics (Nockleby,
2000). Given the huge amount of user-generated
contents on the Web, and in particular on social
media, the problem of detecting, and therefore
possibly contrasting the HS diffusion, is becom-
ing fundamental, for instance for fighting against
misogyny and xenophobia.

Some key aspects feature online HS, such as vi-
rality, or presumed anonymity, which distinguish
it from offline communication and make it po-
tentially also more dangerous and hurtful. Often
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hate speech fosters discrimination against partic-
ular categories and undermines equality, an ever-
lasting issue for each civil society. Among the
mainly targeted categories there are immigrants
and women. For the first target, especially raised
by refugee crisis and political changes occurred in
the last few years, several governments and pol-
icy makers are currently trying to address it, mak-
ing especially interesting the development of tools
for the identification and monitoring such kind of
hate (Bosco et al., 2017). For the second one in-
stead, hate against the female gender is a long-time
and well-known form of discrimination (Manne,
2017). Both these forms of hate content impact
on the development of society and may be con-
fronted by developing tools that automatically de-
tect them.

A large number of academic events and shared
tasks for different languages (i.e. English, Span-
ish, Italian, German, Mexican-Spanish, Hindi)
took place in the very recent past which are cen-
tered on HS and related topics, thus reflecting the
interest by the NLP community. Let us men-
tion the first and second edition of the Workshop
on Abusive Language1 (Waseem et al., 2017), the
First Workshop on Trolling, Aggression and Cy-
berbullying (Kumar et al., 2018), that also in-
cluded a shared task on aggression identification,
the tracks on Automatic Misogyny Identification
(AMI) (Fersini et al., 2018b) and on Authorship
and Aggressiveness Analysis (MEX-A3T) (Car-
mona et al., 2018) proposed at the 2018 edition of
IberEval?, the GermEval Shared Task on the Iden-
tification of Offensive Language (Wiegand et al.,

"http://sites.google.com/view/alw2018/
http://sites.google.com/view/
ibereval-2018
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2018), and finally the Automatic Misogyny Identi-
fication task (AMI) (Fersini et al., 2018a) and the
Hate Speech Detection task (HaSpeeDe) (Bosco
et al., 2018) at EVALITA 2018 for investigating
respectively misogyny and HS in Italian.

HatEval consists in detecting hateful contents

in social media texts, specifically in Twitter’s
posts, against two targets: immigrants and women.
Moreover, the task implements a multilingual per-
spective where data for two widespread languages,
English and Spanish, are provided for training and
testing participant systems.
The motivations for organizing HatEval go beyond
the advancement of the state of the art for HS de-
tection for each of the involved languages and tar-
gets. The variety of targets of hate and languages
provides a unique comparative setting, both with
respect to the amount of data collected and an-
notated applying the same scheme, and with re-
spect to the results achieved by participants train-
ing their systems on those data. Such compara-
tive setting may help in shedding new light on the
linguistic and communication behaviour against
these targets, paving the way for the integration of
HS detection tools in several application contexts.
Moreover, the participation of a very large amount
of research groups in this task (see Section 4) has
improved the possibility of in-depth investigation
of the involved phenomena.

The paper is organized as follows. In the next
section, the datasets released to the participants
for training and testing the systems are described.
Section 3 presents the two subtasks and the mea-
sures we exploited in the evaluation. Section 4 re-
ports on approaches and results of the participant
systems. In Section 5, a preliminary analysis of
common errors in top-ranked systems is proposed.
Section 6 concludes the paper.

2 Data

The data have been collected using different gath-
ering strategies. For what concerns the time frame,
tweets have been mainly collected in the time
span from July to September 2018, with the ex-
ception of data with target women. Indeed, the
most part of the training set of tweets against
women has been derived from an earlier collection
carried out in the context of two previous chal-
lenges on misogyny identification (Fersini et al.,
2018a,b). Different approaches were employed

Shttp://evalita.org
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Training Test
Label Imm. Women Imm. Women
Hateful 39.76 44.44  42.00 42.00
Non-Hateful 60.24 55.56  58.00 58.00
Individual Target 5.89 64.94 3.33 80.63
Generic Target 94.11 35.06 96.67 19.37
Aggressive 55.08 30.06 59.84 34.44
Non-Aggressive ~ 44.92 69.94 40.16 65.56

Table 1: Distribution percentages across sets and cate-
gories for English data. The percentages for the target
and aggressiveness categories are computed on the to-
tal number of hateful tweets.

Training Test
Label Imm. Women Imm. Women
Hateful 41.93 41.38  40.50 42.00
Non-Hateful 58.07 58.62 59.50 58.00
Individual Target  13.72 87.58 32.10 94.94
Generic Target 86.28 1242 67.90 5.06
Aggressive 68.58 87.58 50.31 92.56
Non-Aggressive 3142 1242 46.69 7.44

Table 2: Distribution percentages across sets and cate-
gories for Spanish data. The percentages for the target
and aggressiveness categories are computed on the to-
tal number of hateful tweets.

to collect tweets: (1) monitoring potential vic-
tims of hate accounts, (2) downloading the his-
tory of identified haters and (3) filtering Twitter
streams with keywords, i.e. words, hashtags and
stems. Regarding the keyword-driven approach,
we employed both neutral keywords (in line with
the collection strategy applied in Sanguinetti et al.
(2018)), derogatory words against the targets, and
highly polarized hashtags, in order to collect a cor-
pus for reflecting also on the subtle but important
differences between HS, offensiveness (Wiegand
et al., 2018) and stance (Taulé et al., 2017). The
keywords that occur more frequently in the col-
lected tweets are: migrant, refugee, #buildthat-
wall, bitch, hoe, women for English, and inmigra-,
arabe, sudaca, puta, callate, perra for Spanish4.

The entire HatEval dataset is composed of
19,600 tweets, 13,000 for English and 6,600 for
Spanish. They are distributed across the targets as
follows: 9,091 about immigrants and 10,509 about
women (see also Tables 1 for English and 2 for
Spanish). Figures 1 and 2 show the distribution of
the labels in the training and development set data
according to the different targets of hate (woman
and immigrants, respectively).

“The complete set of keywords exploited is avail-
able here: https://github.com/msang/hateval/
blob/master/keyword_set.md



2.1 Annotation

The data are released after the annotation pro-
cess, which involved non-trained contributors on
the crowdsourcing platform Figure Eight (F8).
The annotation scheme applied to the HatEval data
is a simplified merge of schemes already applied
in the development of corpora for HS detection
and misogyny by the organizers (Fersini et al.,
2018a,b; Bosco et al., 2018), also in the context
of funded projects with focus on the tasks topics®
(Sanguinetti et al., 2018; Poletto et al., 2017). It
includes the following categories:

e HS - a binary value indicating if HS is occur-
ring against one of the given targets (women
or immigrants): 1 if occurs, 0 if not.

Target Range - if HS occurs (i.e. the value
for the feature HS is 1), a binary value indi-
cating if the target is a generic group of peo-
ple (0) or a specific individual (1).

Aggressiveness - if HS occurs (i.e. the value
for the feature HS is 1), a binary value in-
dicating if the tweeter is aggressive (1) or
not (0).

We gave the annotators a series of guidelines
in English and Spanish, including the definition
for hate speech against the two targets considered,
the aggressiveness’s definition and a list of ex-
amples’. As requested by the platform, we pro-
vided a restricted set of “correct” answers to test
the reliability of the annotators. We required to
collect at least three independent judgments for
each tweet. We adopted the default F8 settings
for assigning the majority label (relative major-
ity). The F8 reported average confidence (i.e., a
measure combining inter-rater agreement and re-
liability of the contributor) on the English dataset
for the fields HS, TR, AG is 0.83, 0.70 and 0.73
respectively, while for the Spanish dataset is 0.89,
0.47 and 0.47. The use of crowdsourcing has been
successfully already experimented in several tasks
and in HS detection too, both for English (David-
son et al., 2017) and other languages (Sanguinetti
et al., 2018). However, stimulated by the discus-
sion in (Basile et al., 2018), we decided to apply

Shttp://www.figure—eight.com/

®http://hatespeech.di.unito.it/
ihateprejudice.html.

" Annotation guidelines provided are accessible here:
https://github.com/msang/hateval/blob/
master/annotation_guidelines.md.
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Figure 1: Distribution of the annotated categories in
English and Spanish training and development set for
the target women.
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Figure 2: Distribution of the annotated categories in
English and Spanish training and development set for
the target immigrants.

a similar methodology by adding two more expert
annotations to all the crowd-annotated data, pro-
vided by native or near-native speakers of British
English and Castilian Spanish, having a long ex-
perience in annotating data for the specific task’s
subject. We assigned the final label for this data
based on majority voting from crowd, expertl, and
expert2. This does not erase the contribution of the
crowd, but hopefully maximises consistency with
the guidelines in order to provide a solid evalua-
tion benchmark for this task.

For data release and distribution each post has
been identified by a newly generated index which
substitutes the original Twitter’s IDs.

2.2 Training, Development and Test Data

Data for training and development were released
according to the distribution described in Figures 1
and 2 across languages (Spanish and English) and
targets (women and immigrants). For what con-
cerns Spanish, the training and development set
includes 5,000 tweets, (3,209 for the target women
and 1,991 for immigrants), while for English it in-



cludes 10,000 tweets (5,000 for each target). For
a cross-language perspective see Figures 1 and 2.
It can be also observed that the distribution across
categories is pivoting around the main task cate-
gory, HS, while the other ones more freely vary.
Indeed, in order to provide a more balanced dis-
tribution of the HS and non-HS categories in the
dataset released for Subtask A, we altered the nat-
ural distribution: both in the training and test set,
hateful tweets are over-represented with respect to
the distribution observed in the data we collected
from Twitter®. Instead, the distribution of the other
categories which are relevant for Subtask B is not
constrained, and naturally follows from the selec-
tion of tweets for representing the classes relevant
for the main Subtask A.

As far as the test set is concerned, 3,000 tweets
have been annotated for English, half with target
women and half immigrants, and 1,600 for Span-
ish distributed with the same proportion across the
targets of hate: 1,260 hateful tweets and 1,740
non-hateful tweets for English, 660 hateful tweets
and 940 non-hateful tweets for Spanish.

According to the schema described above, the
format of an annotated tweet in the training and
development set has the following pattern:

ID, Tweet-text, HS, TR, AG

where ID is a progressive number denoting the
tweet within the dataset, Tweet-text is the given
text of the tweet, while the other parts of the pat-
tern, given in the training data and to be predicted
in the test set, are: Hate Speech [HS] (1 or 0), Tar-
get Range [TR] (O for group or 1 for individual),
and Aggressiveness [AG] (0 or 1). Data included
in the test instead only include ID and Tweet-text,
the annotation of HS, TR and AG to be provided
by participants according to the subtask.

An example of annotation is the following:

7, lol, chop her head off and rape the bitch
https://t.co/ZB8CosmSDS8, 1, 1, 1

which has been considered by the annotators as
hateful, against an individual target, and aggres-
sive. The latter category is not necessarily asso-
ciated to HS, as shown in the following exam-
ple, where a hateful content is expressed against
a generic group of people in terms of disrespect
and misogynistic stereotypes rather than using an
aggressive language:

8The whole original annotated dataset was very skewed

towards the non-HS class (only about 10% of the annotated
data contained hate speech).
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11, WOW can'’t believe all these women riding the
subway today? Shouldn’t these bitches be making
sandwiches LOL #ihatefemales.., 1,0, 0

3 Task Description

The task is articulated around two related sub-
tasks. The first consists of a basic detection of
HS, where participants are asked to mark the pres-
ence of hateful content. In the second subtask in-
stead fine-grained features of hateful contents are
investigated in order to understand how existing
approaches may deal with the identification of es-
pecially dangerous forms of hate, i.e., those where
the incitement is against an individual rather than
against a group of people, and where an aggres-
sive behaviour of the author can be identified as a
prominent feature of the expression of hate. The
participants will be asked in this latter subtask to
identify if the target of hate is a single human or
a group of persons, and if the message author in-
tends to be aggressive, harmful, or even to incite,
in various forms, to violent acts against the target
(see e.g. (Sanguinetti et al., 2018)).

3.1 Subtask A - Hate Speech Detection
against immigrants and women

Subtask A is a two-class (or binary) classification
task where the system has to predict whether a
tweet in English or in Spanish with a given target
(women or immigrants) contains HS or not. The
following sentences present examples of a hate-
ful and non-hateful tweet where the targets are
women.

[hateful]

¥ [id: 32411] Céllate @ y la
gran puta madre que te repario. Que le
diste a la poltica...nada. Basura.

Shut up @
did you do for politics... nothing. Trash.’

you motherfucker. What

[non-hateful]

¥ [id: 33033] @ This is
inhumane & Karma is a bitch she Il get
around these brainless heartless assholes!

°The target of the misogynistic hate here is Victoria
Donda Prez, an Argentinian woman, human rights activist
and member of the Argentine National Congress (mentioned
in the at-mention of the original tweet).



3.2 Subtask B - Aggressive behaviour and
Target Classification

Next, in Subtask B systems are asked to classify
hateful tweets (e.g., tweets where HS against our
targets has been identified) regarding both aggres-
sive attitude and the target harassed. On one hand,
the kind of target must be classified, and the task
is binary:

o Individual: the text includes hateful mes-
sages purposely sent to a specific target.

e Generic: it refers to hateful messages posted
to many potential receivers.

[Individual]:

¥ [id: 4723] @
box | show you my cock darling

Come on

[Generic]:

¥ [id: 5823] Women are equal and deserve
respect. Just kidding, they should suck my
dick.

On the other hand, the aggressive behaviour has
to be identified, then we propose a two-class clas-
sification task also for this feature. A tweet must
be classified as aggressive or not:

[Aggressive]

¥ [id:1890] Sick barstewards! This is what
happens when we put up the refugees
welcome signs! They not only rape our
wives or girlfriends, our daughters but our
ruddy mothers too!! https://t.co/XAYLr6FjNk

[Non-Aggressive]

¥ [id: 945] @EmmanuelMacron Hello??
Stop groping my nation.Schneider: current
migrant crisis represents a plan
orchestrated and prepared for a long time
by international powers to radically alter
Christian and national identity of European
peoples.http

3.3 Evaluation Measures and Baseline

The evaluation of the results considers different
strategies and metrics for Subtasks A and B in or-
der to allow more fine-grained scores.

Subtask A. Systems will be evaluated using
standard evaluation metrics, including Accuracy,
Precision, Recall and macro-averaged F1-score.
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In order to provide a measure that is indepen-
dent on the class size, the submissions will be
ranked by macro-averaged F}-score, computed as
described in (Ozgiir et al., 2005). The metrics will
be computed as follows:

number of correctly predicted instances

Accuracy = 1

ceuracy total number of instances M
. number of correctly predicted instances
Precision = - (2)
number of predicted labels
number of correctly predicted labels

Recall = - 3
eea number labels in the gold standard 3)
Fy-score — 2 x Precision x Recall 4)

Precision + Recall
Subtask B. The evaluation of systems partici-
pating to Subtask B will be based on two crite-
ria: (1) partial match and (2) exact match. Re-
garding the partial match, each dimension to be
predicted (HS , TR and AG) will be evaluated in-
dependently from the others using standard evalu-
ation metrics, including accuracy, precision, recall
and macro-averaged Fi-score. We will report to
the participants all the measures and a summary of
the performance in terms of macro-averaged Fi-
score, computed as follows:

F1<HS) + Fl(AG) + Fl(TR)
3

&)

Fy-score =

Concerning the exact match, all the dimen-
sions to be predicted will be jointly considered
computing the Exact Match Ratio (Kazawa et al.,
2005). Given the multi-label dataset consisting of
n multi-label samples (z;,Y;), where x; denotes
the i-th instance and Y; represents the correspond-
ing set of labels to be predicted (HS € {0,1},
TR € {0,1} and AG € {0,1}), the Exact Match
Ratio (EMR) will be computed as follows:

Lo

EMR = — ; 1(Y;, Zy) (6)
where Z; denotes the set of labels predicted for
the i-th instance and [ is the indicator function.
The submissions will be ranked by EMR. This
choice is motivated by the willingness to capture
the difficulty of modeling the entire phenomenon,
and therefore to identify the most dangerous

behaviours against the targets.

Baselines. In order to provide a benchmark
for the comparison of the submitted systems, we



considered two different baselines. The first one
(MFC baseline) is a trivial model that assigns the
most frequent label, estimated on the training set,
to all the instances in the test set. The second one
(SVC baseline) is a linear Support Vector Machine
(SVM) based on a TF-IDF representation, where
the hyper-parameters are the default values set by
the scikit-learn Python library (Pedregosa et al.,
2011).

4 Participant Systems and Results

HatEval has been one of the most popular tasks
in SemEval-2019 with a total of 108 submitted
runs for Subtask A and 70 runs for Subtask B. We
received submission from 74 different teams, of
which 22 teams participated to all the subtasks for
the two languages'”.

Besides traditional Machine Learning ap-
proaches, it has been observed that more than
half of the participants investigated Deep Learning
models. In particular, most of the systems adopted
models known to be particularly suitable for deal-
ing with texts, from Recurrent Neural Networks to
recently proposed language models (Sabour et al.,
2017; Cer et al., 2018). Consequently, external
resources such as pre-trained Word Embeddings
on tweets have been widely adopted as input fea-
tures. Only a few works deepen the linguistic fea-
tures analysis, probably due to the high expec-
tations on the ability of Deep Learning models
to extract high-level features. Most of the sub-
mitted systems adopted traditional preprocessing
techniques, such as tokenization, lowercase, stop-
words, URLs and punctuation removal. Some par-
ticipants investigated Twitter-driven preprocessing
procedures such as hashtag segmentation, slang
conversion in correct English and emoji transla-
tion into words. It is worth mentioning that the
construction of customized hate lexicons derived
by the detection of language patterns in the train-
ing set has been preferred to the use of external
hate lexicons expressing a more universal knowl-
edge about the hate speech phenomenon, addition-
ally demonstrating the need of developing more
advanced approaches for detecting hate speech to-
wards women and immigrants.

0The evaluation results are published
here: https://docs.google.com/
spreadsheets/d/1wSFKhlhvwwQIoY8__

XBVkh jxacDmwXFpkshYzLx4dbw—-0/
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4.1 Subtask A - Hate Speech Detection
against immigrants and women

We received 69 submissions to the English Sub-
task A, of which 49% and 96% outperformed the
SVC and MFC baseline respectively, in terms of
macro-averaged Fj-score. Among the five best
performing teams, only the team of Panaetius,
which obtained the second position (0.571), has
not provided a description of their system. The
higher macro-averaged Fi-score (0.651) has been
obtained by the Fermi team. They trained a
SVM model with RBF kernel only on the pro-
vided data, exploiting sentence embeddings from
Google’s Universal Sentence Encoder (Cer et al.,
2018) as features. Both the third, fourth and fifth
ranked teams employ Neural Network models and,
more specifically, Convolutional Neural Networks
(CNNs) and Long Short Term Memory networks
(LSTMs). In particular, the third position has been
obtained by the YNU_DYX team, which system
achieved 0.535 macro-averaged F-score by train-
ing a stacked Bidirectional Gated Recurrent Units
(BiGRUs) (Cho et al., 2014) exploiting fastText
word embeddings (Joulin et al., 2017). Then, the
output of BiGRU is fed as input to the capsule
network (Sabour et al., 2017). The textual pre-
processing has been conducted with standard pro-
cedures, e.g. punctuation removal, tokenization,
contraction normalization, use of tags for hyper-
links, numbers and mentions. The fourth place
has been achieved by the team of alonzorz (0.535),
which used a novel type of CNN called Multi-
ple Choice CNN on the top of contextual embed-
dings. These embeddings have been created with
a model similar to Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
etal., 2018) trained using 50 million unique tweets
from the Twitter Firehose dataset. The SINAI-
DL team ranked fifth with a Fj-score of 0.519.
They employ a LSTM model based on the pre-
trained GloVe Word Embeddings from Stanford-
NLP group (Pennington et al., 2014). Since Deep
Learning models require a large amount of data for
training, they perform data augmentation through
the use of paraphrasing tools. For preprocessing
the texts in the specific Twitter domain, they con-
vert all the mentions to a common tag and they
tokenized hashtags according to the Camel Case
procedure, i.e. the practice of writing phrases such
that each word or abbreviation in the middle of the
phrase begins with a capital letter, with no inter-



vening spaces or punctuation.

For Subtask A in Spanish, we received 39 sub-
missions of which 51% and 100% outperformed
the SVC and MFC baseline respectively, in terms
of macro-averaged Fi-score. The Atalaya and
MineriaUNAM teams obtained the best macro-
averaged Fi-score of 0.73, both taking advan-
tage of Support Vector Machines. The Atalaya
team studied several sophisticated systems, how-
ever the best performances have been obtained by
a linear-kernel SVM trained on a text representa-
tion composed of bag-of-words, bag-of-characters
and tweet embeddings, computed from fastText
sentiment-oriented word vectors. The system pro-
posed by the MineriaUNAM team is based on a
linear-kernel SVM. The study has focused on a
combinatorial framework used to search for the
best feature configuration among a combination
of linguistic patterns features, a lexicon of aggres-
sive words and different types of n-grams (char-
acters, words, POS tags, aggressive words, word
jumps, function words and punctuation symbols).
The MITRE team has achieved the performance of
0.729, presenting a novel method for adapting pre-
trained BERT models to Twitter data using a cor-
pus of tweets collected during the same time pe-
riod of the HatEval training dataset. The CIC-2
team achieved 0.727 with a word-based represen-
tation by combining Logistic Regression, Multi-
nomial Naive Bayes, Classifiers Chain and Major-
ity Voting. They used TF and TF/IDF after remov-
ing HTML tags, punctuation marks and special
characters, converting slang and short forms into
correct English words and stemming. The partic-
ipants did not use external resources and trained
their systems only with the provided data. Finally,
the GSI-UPM team obtained the macro-averaged
F-score of 0.725 with a system where the linear-
kernel SVM has been trained on an automated se-
lection of linguistic and semantic features, senti-
ment indicators, word embeddings, topic model-
ing features, and word and character TF-IDF n-
grams.

Table 3 shows basic statistics computed both
for Subtasks A and B, with respect to the rela-
tive performance measures. The statistics com-
prise mean, standard deviation (StdDev), mini-
mum, maximum, median and the first and third
quartiles (Q1 and Q3). Concerning Subtask A,
we notice that the maximum value in Spanish
(0.7300) is higher than the English one (0.6510),
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Subtask A Subtask B

English Spanish English Spanish
Min. 0.3500  0.4930  0.1590  0.4280
Q1 04050  0.6665  0.2790  0.5820
Mean 0.4484  0.6821 0.3223  0.6013
Median 0.4500  0.7010 0.3120  0.6160
StdDev 0.0569  0.0521  0.0890  0.0662
Q3 0.4880  0.7165 0.3570  0.6365
Max. 0.6510  0.7300  0.5700  0.7050
SVC Baseline 0.451 0.701 0.308 0.588
MFC Baseline 0.367 0.370 0.580 0.605

Table 3: Basic statistics of the results for the partici-
pating system and baselines in Subtask A and Subtask
B expressed in terms of macro-averaged F}-score and
EMR respectively.

while the difference is even higher (23 points)
when considering the mean value, from 0.6821
to 0.4484. On the other hand, the variability is
very similar between English (0.0569) and Span-
ish (0.0521).

4.2 Subtask B - Aggressive behaviour and
Target Classification

For Subtask B in English, we received 39 submis-
sions, of which no system has been able to out-
perform the MFC baseline, which achieved 0.580
of EMR, while 61% outperformed the SVC base-
line. Among the five best performing teams, only
the team of scmhl5, which obtained the third posi-
tion (0.483), has not provided us with a description
of the system. The higher EMR result has been
obtained by the LT3 team with a value of 0.570.
They considered a supervised classification-based
approach with SVM models which combines a va-
riety of standard lexical and syntactic features with
specific features for capturing offensive language
exploiting external lexicons. The second position
has been obtained by the CIC-I team. The team
achieved 0.568 in EMR with Logistic Regression
and Classifier Chains. They trained their model
only with the provided data, with a word-based
representation and without external resources. The
only preprocessing action was stemming and stop
words removal. The fourth position was obtained
by the team named The Titans. They achieved
0.471 of EMR with LSTM and TF/IDF-based
Multilayer Perceptron. To represent the docu-
ments, they used the tweet words after removing
links, mentions and spaces. They also tokenized
hashtags into word tokens. The MITRE team ex-
ploits the same approach used for participating in
Subtask A, obtaining 0.399 EMR. It is worth men-



tioning that, despite the fact that the baseline could
not be overcome in terms of EMR, the five first
performing systems obtained higher F-values. For
example, while the baseline obtained 0.421, the
scmhl5 (0.632) and the MITRE team (0.614) sys-
tems obtained about 20 points over it.

For Subtask B in Spanish, we received 23 sub-
missions of which 52% and 70% outperformed the
SVC and MFC baseline respectively, in terms of
EMR. The first position has been achieved by the
CIC-2 team with 0.705 in terms of EMR, propos-
ing the same approach for Subtask A in Span-
ish. The CIC-1 and MITRE teams, described pre-
viously, achieved the second and third positions
with 0.675 and 0.675 in EMR respectively. The
fourth position was obtained by the Atalaya team
that achieved 0.657 EMR by extending the pre-
viously presented approach for Subtask A to a
5-way classification problem for all the possible
label combinations. Finally, the team of Oscar-
Garibo achieved the fifth position (0.6444) with
Support Vector Machines and statistical embed-
dings to represent the texts. The proposed method,
a variation of LDSE (Rangel et al., 2016), consists
of finding thresholds on the frequencies of use of
the different terms in the corpora depending on the
class they belong to. In this subtask, the correla-
tion between EMR and macro-averaged F-score
is more homogeneous than in English. However,
it is worth mentioning the case of the CIC-1 team
since its macro-averaged F’-score decreases with
respect to the EMR and is 10 points lower than the
rest of the best five performing teams.

The comparative results between all the per-
forming teams in the two languages show inter-
esting insights (see Table 3). Firstly, the best re-
sult is much higher in the case of Spanish (0.7050)
than in English (0.5700) in more than 13 points.
In the case of the fifth best results, the differ-
ence is much higher (0.2454), from 0.3990 in En-
glish to 0.6440 in Spanish. The average value
changes from 0.3223 in English to 0.6013 in Span-
ish, with a difference of 28 points. The variability
is also higher in English (0.0890) with respect to
the value in Spanish (0.0662).

We can also derive further conclusions by com-
paring the statistics of the two Subtasks. Looking
at the median, it is possible to notice that in both
languages, the performances obtained on Subtask
B are lower than the performances of Subtask A,
with a difference between Subtask A and B of 14
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and 8 points for English and Spanish respectively.
This suggests that participant systems found much
harder to predict the aggressiveness and targets
than just the presence of hate speech. The quartile
Q1 has highlighted that for the English language
75% of the systems obtained a score higher than
0.41 and 0.28 for Subtasks A and B, in particular
50 out of 69 for Subtask A and 31 out of 41 for
Subtask B. While Q3 shows that 25% of the sys-
tems achieved a score value higher than 0.49 and
0.36 for Subtasks A and B, in particular 18 out of
69 for Subtask A and 11 out of 41 for Subtask B.
For the Spanish language, the value of QI indi-
cates that 75% of the systems have a score higher
than 0.67 and 0.58 for Subtasks A and B, in par-
ticular 30 out of 39 for Subtask A and 17 out of 23
for Subtask B. Observing the quartile Q3, it is pos-
sible to observe that 25% of the systems achieved
a value higher than 0.72 and 0.64 for Subtasks A
and B, in particular 10 out of 39 for Subtask A and
6 out of 23 for Subtask B. Moreover, it is worth
mentioning that the smaller the standard deviation
the closer are the data to the mean value, highlight-
ing that the Subtask B has shown high variability
in terms of results than Subtask A. This statistics
remarks again the difficulties of addressing Sub-
task B compared to Subtask A.

5 Error Analysis

In order to gain deeper insight into the results of
the HatEval evaluation, we conducted a first error
analysis experiment. For both languages, we se-
lected the three top-ranked systems and checked
the instances in the test set that were wrongly la-
beled by all three of them.

In the English Subtask A, the three top systems
(Fermi, Panaetius, and YNU_DYX) predicted the
same wrong labels 569 times out of 2,971 (19.1%).
In the Spanish Subtask A, the three top systems
(Atalaya, mineriaUNAM, and MITRE) predicted
the same wrong labels 234 times out of 1,600
(14.6%). The results showing the percentages by
wrongly assigned labels are summarized in Ta-
ble 4.

Subtask Errors Predicted 1 Predicted 0
EN A 569 507 (89.1%) 62 (10.9%)
ES A 234 178 (76.1%) 56 (23.9%)

Table 4: Number of instances mislabeled by all the
three top-ranked systems, broken down by wrongly as-
signed label.



The common errors are highly skewed towards
the false positives. However, the unbalance is
stronger for English (89.1% false positives) than
for Spanish (76% false positives).

Two English examples, respectively a false pos-
itive and a false negative, are:

¥ [id: 30249] My mom FaceTimed me to
show off new shoes she got and was like “no
cabe duda que soy una Bitch” i love her &

¥ [id: 30542] @

@ There are NO IN-
NOCENT people in detention centres
#SendThemBack

The false positive contains a swear word (“Bitch”)
used in a humorous, not offensive context, which
is a potential source of confusion for a classifier.
The false negative is a hateful message towards
migrants, but phrased in a slightly convoluted way,
in particular due to the use of negation (“no inno-
cent people”™).

Similarly, a false positive and a false negative in
Spanish:

¥ [id: 33119] Soy un sudaca haciendo su-
dokus “* https://t.co/VA7nQsfm85

I am a sudaca doing sudokus

W [id: 34455] Estoy escuchando una puta
cancién y la pelotuda de Demi Lovato se
pone a hablar en el medio. CANTA Y
CALLATE LA BOCA.

I am listening to a fucking song and that asshole
Demi Lovato starts talking in the middle of it.
SING AND SHUT YOUR MOUTH.

Like in the English example, in this false positive
a negative word (“sudaca”) is used humorously,
for the purpose of a wordplay. In the false neg-
ative, there a misogynistic message is expressed,
although covertly, implying that the target should
“shut up and sing”.

6 Conclusion

The very high number of participating teams at
HatEval 2019 confirms the growing interest of the
community around abusive language in social me-
dia and hate speech detection in particular. The
presence of this task at SemEval 2019 was in-
deed very timely and the multilingual perspec-
tive we applied by developing data in two dif-
ferent widespread languages, English and Span-
ish, contributed to include and raise interest in
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a wider community of scholars. 38 teams sent
their system reports to describe the approaches and
the details of their participation to the task, con-
tributing in shedding light on this difficult task.
Some of the HatEval participants also participated
to the OffensEvall!, another task related to abu-
sive language identification, but with an accent on
the different notion of offensiveness, an orthogo-
nal notion that can characterize also expressions
that cannot be featured as hate speech!?. Overall,
results confirm that hate speech detection against
women and immigrants in micro-blogging texts is
challenging, with a large room for improvement.
We hope that the dataset made available as part of
the shared task will foster further research on this
topic, including its multilingual perspective.
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Abstract

In this article, we describe our participa-
tion in HatEval, a shared task aimed at the
detection of hate speech against immigrants
and women. We focused on Spanish sub-
tasks, building from our previous experiences
on sentiment analysis in this language. We
trained linear classifiers and Recurrent Neural
Networks, using classic features, such as bag-
of-words, bag-of-characters, and word embed-
dings, and also with recent techniques such as
contextualized word representations. In partic-
ular, we trained robust task-oriented subword-
aware embeddings and computed tweet rep-
resentations using a weighted-averaging strat-
egy. In the final evaluation, our systems
showed competitive results for both Spanish
subtasks ES-A and ES-B, achieving the first
and fourth places respectively.

1 Introduction

Hate speech against women, immigrants, and
many other groups is a pervasive phenomenon on
the Internet. On the early days of the World Wide
Web, many academics adventured that prejudices
and hatred would be removed in this space by the
dissolution of identities (Lévy, 2001; Rheingold,
1993). Twenty years after this hypothesis, we can
say that it has not been the case. The prevalence of
racism in the “World White Web” has been stud-
ied in a number of works (Adams and Roscigno,
2005; Kettrey and Laster, 2014) and so has been
the misogyny in the virtual world (Filipovic, 2007;
Mantilla, 2013).

Racist and sexist discourse are a constant in so-
cial media, but peaks are documented after “trig-
ger” events, such as murders with religious or po-
litical reasons (Burnap and Williams, 2015). Most
social media companies are concerned about this
issue and take actions against it; nonetheless, most
of the efforts still need human intervention, mak-
ing this task very expensive. Therefore, reducing
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human intervention is vital in order to have effec-
tive tools to avoid the escalation of hate speech.

HatEval (Basile et al., 2019) is a SemEval-2019
shared task aimed at the detection of hate speech
towards immigrants and women in tweets. It com-
prises two subtasks, with datasets in English (EN)
and Spanish (ES) for both of them, giving a total of
four subtasks. Subtask A is the binary classifica-
tion of tweets into hateful or not hateful (HS). Sub-
task B is a triple binary classification task where,
in addition to HS, tweets are classified into aggres-
sive or not aggressive (AG), and targets of hate
speech are classified into single humans or groups
of persons (TR).

In this article, we present our participation in
HatEval as team Atalaya. We focused our efforts
on subtask A for Spanish (ES-A) but also worked
at subtask B in Spanish (ES-B) and subtask A in
English (EN-A). Our systems are based on our
participation in the polarity classification task of
Spanish tweets TASS 2018 (Sentiment Analysis
at SEPLN) (Martinez-Camara et al., 2018; Luque
and Pérez, 2018).

To represent tweets, we experimented with
a mixed approach of bag-of-words, bag-of-
characters and tweet embeddings, which were cal-
culated from word vectors using different aver-
aging schemes. We used fastText (Bojanowski
et al., 2016) to get subword-aware representations
specifically trained for sentiment analysis tasks.

These word representations are robust to noise
since they can be computed for unseen words by
using subword embeddings. Moreover, we trained
them using a database of 90M tweets from various
Spanish-speaking countries, giving wide domain-
specific vocabulary coverage. We achieved ad-
ditional robustness by doing preprocessing us-
ing several text-normalization and noise-reduction
techniques.

Also, we experimented with ELMo (Peters
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et al.,, 2018), a deep contextualized word rep-
resentation that has drawn a lot of attention in
the last months. Unlike fastText, ELMo returns
context-dependent embeddings from a multi-layer
bidirectional-LSTM language model. These rep-
resentations improved the state-of-the-art of sev-
eral NLP tasks.

For the neural approach, we used bidirectional
LSTMs to combine the word embeddings. We
also did experiments that mix sequential models
with complementary representations such as bag-
of-words.

The rest of the paper is as follows. Next Sec-
tion presents the primary tools we used to build
our systems. Section 3 presents the configuration
and development of both linear and neural models.
Section 4 briefly shows our results in the competi-
tion, and Section 5 concludes the work with some
observations about our experience.

1.1 Previous Work

The detection of hate speech is a sentence classifi-
cation task quite related to sentiment analysis and
has been studied for several social media networks
(Thelwall, 2008; Pak and Paroubek, 2010; Saleem
et al., 2017). Regarding the detection of hateful
content, Greevy and Smeaton (2004) used bag-of-
words and SVMs to detect racist content in web
pages. Following a similar approach, Warner and
Hirschberg (2012) used unigrams and Brown clus-
ters with SVMs to detect anti-semitic messages on
Twitter.

Waseem and Hovy (2016) annotated a corpus
and used character n-grams to detect hateful com-
ments, and Badjatiya et al. (2017) used the same
dataset to train deep learning models and fine-
tuned embeddings along with Gradient Boosted
Trees. Zhang et al. (2018) trained a deep neural
network combining CNNs with Gated-recurrent
units (Cho et al., 2014), outperforming previous
systems in several datasets.

Anzovino et al. (2018) collected a corpus of
misogynous tweets and proposed a taxonomy to
distinguish them into different categories. The au-
thors proposed a number of different techniques
to classify them, showing that simple approaches
(as using linear models along with token n-grams)
achieve competitive performance on small-sized
datasets.

Regarding shared tasks, Fersini et al. (2018a)
presented a challenge on misogyny detection on
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Twitter —both in Spanish and English— whereas
Fersini et al. (2018b) posed a similar challenge but
in Italian and English. Bosco et al. (2018) pro-
posed an automatic detection contest over Twitter
posts and Facebook comments, comprising gen-
eral hate speech.

2 Techniques and Resources

2.1 Preprocessing

Preprocessing is crucial in NLP applications, es-
pecially when working with noisy user-generated
data. Here, we followed Luque and Pérez (2018),
defining two levels of preprocessing: basic and
sentiment-oriented preprocessing. We used one or
the other, depending on the configuration.

Basic tweet preprocessing includes tokeniza-
tion, replacement of handles, URLs, and e-mails,
and shortening of repeated letters.

Sentiment-oriented preprocessing includes low-
ercasing, removal of punctuation, stopword,
and numbers, lemmatization —using TreeTagger
(Schmid, 1995)- and negation handling. For nega-
tion handling, we followed a simple approach: We
find negation words and add the prefix ' NOT_’
to the following tokens. Up to three tokens are
negated, or less if a non-word token is found.

2.2 Bags of Words and Characters

The simplest approach considered to build tweet
representations was bag-of-words encoding. A
bag-of-words (BoW) builds feature vectors for
each token seen in training data. For a partic-
ular tweet, its BoW vector contains the number
of occurrences of each token on it, resulting in
high-dimensional and sparse vectors. Variations
of BoW include counting not only single tokens
but also n-grams of tokens, binarizing counts, and
limiting the number of features.

Character usage in tweets may also hold use-
ful information for sentiment analysis. Charac-
ter n-grams —such as the presence and repetition
of uppercase letters, emoticons, and exclamation
marks— may indicate a strong presence of senti-
ment of some kind, where others may indicate a
more formal writing style, and therefore an ab-
sence of sentiment.

To capture this information, we considered a
bag-of-characters (BoC) representation that en-
codes counts of character n-grams for some values
of n. These vectors are computed from original



texts of tweets, with no preprocessing at all. BoCs
have the same variants and parameters as BoWs.

2.3 Word Embeddings

We used fastText, a subword-aware embeddings
library (Bojanowski et al., 2016) to get context-
independent word representations. Instead of
using publicly available pre-trained vectors, we
trained our own embeddings on a dataset of ~
90 million tweets from various Spanish-speaking
countries. We prepared two versions of the data:
one using only basic preprocessing, and the other
using sentiment-oriented preprocessing (with the
exception of excepting lemmatization). For these
two datasets, skip-gram embeddings were trained
using different parameter configurations, includ-
ing a number of dimensions, size of word and sub-
word n-grams, and size of context window.

2.4 Tweet Embeddings

Linear combinations were used to compute a rep-
resentation for a single tweet. We followed two
simple approaches: plain average and weighted
average. In the second case, we used a scheme
that resembles Smooth Inverse Frequency (SIF)
(Arora et al., 2017), inspired by TF-IDF reweight-
ing. Each word w is weighted with —2—, where

a+p(w)
p(w) is the word unigram probability, and a is a

smoothing hyper-parameter. Big values of a mean
more smoothing towards plain averaging.

2.5 Context-Dependent Embeddings

After the great leap forward that represented
context-independent word embeddings, a new
wave came in the last years. Instead of having vec-
tors trained for each word, context-dependent rep-
resentations are generated for each token given a
sentence. For instance, McCann et al. (2017) used
a deep LSTM encoder for Machine Translation to
generate context-aware vectors.

ELMo (Peters et al., 2018) is one of these
context-dependent approaches and is based on a
deep bidirectional language model (biLM). The
architecture of the language model consists of L
layers of bidirectional LSTMs, plus a context-
independent token representation. Hence, for each
token in a sequence, we get 2L 4+ 1 vector repre-
sentations. To obtain a final vector for each token,
the authors suggest collapsing the layers into vec-
tors by means of a linear combination.

In this work, we used the implementation and
pre-trained models from Che et al. (2018). The
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Spanish model was trained with L = 2 layers and
1024 dimensions, and the linear combination was
done using a simple average.

3 Models

In this section, we describe the models we used in
the competition.

3.1 Linear Classifiers

The first set of models we trained were simple
classifying models implemented with scikit-learn
(Pedregosa et al., 2011).

We started from the optimal configuration from
Luque and Pérez (2018), that combines bag-of-
words (BoW), bag-of-characters (BoC) and tweet
embeddings as follows:

e BoW: All unigrams and bigrams of words,
with binarized counts and TF-IDF re-
weighting. For the Spanish training dataset,
this encoding gives 53504 sparse features.

BoC: All n-grams of characters for n <
5, with binarized counts and TF-IDF re-
weighting. For the Spanish training dataset,
it gives 226156 sparse features.

Tweet embeddings: Computed from fastText
sentiment-oriented word vectors of 50 di-
mensions. Weighted averaging was done as
described in Section 2.4, with a smoothing
value of a = 0.1.

Here, the only parameters specifically optimized
using the HatEval development set were the n-
gram ranges considered for Bow and BoC.

Using this vectorial representation we trained
logistic regressions and linear-kernel SVMs with
different hyperparameter values. The best results
are shown in the first block of Tab. 1, as LRy and
SVMy.

Next, to confirm the relevance of each of the
three components, we performed ablation tests for
each of them. Results are displayed as SVMp,w,
SVMp,c and SVM,,; in Tab. 1. Drops in the
performance show the relevance of all compo-
nents, especially for Bow and BoC.

Next, we tried adding tweet representations
computed from ELMo vectors. Full tweet vec-
tors were obtained by doing simple un-weighted
averaging. PCA was optionally used to reduce the
dimension of final vectors. The best results were



Model Acc Fl (avg)
LRy 0.84 0.84
SVM, 0.85 0.85
SVMpow  0.81 0.81
SVMp.c 0.81 0.81
SVMep 0.84 0.84
SVMgry, 0.84 0.84

Table 1: Experiments with logistic regressions (LRs)
and SVMs on the Spanish development set. Models
are described in Section 3.1. The best result is in bold.

obtained using PCA to reduce from the original
1024 to 100 dimensions.

Results are shown as SVMEgr . in Tab. 1. It
can be seen that, under this configuration, we are
not able to improve our results using ELMo.

To participate in the Spanish subtask B (ES-B)
we used a very naive approach. We didn’t develop
or tune a specific system for this subtask but in-
stead used the same system and configuration that
was found optimal for subtask A. To do this, we
first mapped the triple classification problem to a
5-way classification problem for all the possible
label combinations:

HS AG TR
0 0 0
1 0 0
1 0 1
1 1 0
1 1 1

Then, we simply trained the classifier using the
Spanish subtask B training dataset.

3.2 Neural Models

The second set of models we trained are neural
models. We trained Recurrent Neural Networks
(RNNS5) using pre-trained context-dependent rep-
resentations for Spanish.

The first model considered was a bidirectional
LSTM with a dense layer on top, consuming
ELMo vectors; we call this model LSTM-ELMo.
Also, we tried another model by adding a second
input consisting of a bag-of-words, as illustrated in
Figure 1. We call this model LSTM-ELMo+BoW.
Using fastText embeddings (of dimension 300 and
context window 5) instead of BoW was considered
as suggested by Peters et al. (2018) but discarded
as it had no positive impact in performance (in the
development dataset).

The biLSTM layer consists of 256 units. The
bag-of-words has the 3500 most-frequent n-grams
(having document-frequency less than 0.65), fol-
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lowed by a 512-unit dense layer. The two last
dense layers have 64 neurons.

We used Keras (Chollet et al., 2015) to imple-
ment and train our models. Adam (Kingma and
Ba, 2014) was the chosen optimizer, with [r
35 % 1075 and decay = 0.01. To regularize our
models, we applied dropout with keep-prob of 0.2
on the first layer, and 0.45 on the second, and we
also early-stopped the training monitoring the per-
formance on the development dataset. The hy-
perparameters were chosen from a small random
search, as training ELMo is computationally ex-
pensive.

ELMo BoW
BiLSTM Dense
Dense Dense

Sigmoid

Figure 1: The LSTM-ELMo+BoW architecture. ELMo
and BoW boxes represent inputs.

4 Results

Table 2 displays the evaluation results for the
three classifiers trained for subtask A: SVMj,
and both neural models LSTM-ELMo and LSTM-
ELMo+BoW. For Spanish, the best performing
system was SVMy. Despite its simplicity, it
ranked first in terms of average F1 in the official
results.

Among the neural models, LSTM-ELMo+BoW
performed best, and ranked in position 17 for
Spanish in terms of average F1.! We can observe
that LSTM-ELMo+BoW performs better on the de-
velopment set, although its performance decreases
sharply in the test set. In spite of the applied
regularization, we might have incurred in overfit-
ting during model selection (Cawley and Talbot,
2010) as the chosen model has higher variance

'Results shown in Tab. 2 differ from the ones in the leader-
board as we couldn’t exactly reproduce the experiments.



Spanish English
Dev Test Dev Test
Classifier Acc Fl1 (avg) Acc Fl1 (avg) Acc Fl1 (avg) Acc Fl1 (avg)
SVM, 0.850 0.850 0.731 0.730 — — — —
LSTM-ELMo 0.820 0.816 0.732 0.721 | 0.705 0.695 0.508 0.471
LSTM-ELMo+BoW 0.824 0.821 0.719 0.712 | 0.743 0.738 0.502 0.461

Table 2: Our evaluation results for subtask A on the development and test sets for Spanish and English. F1 (avg)

is the average on positive and negative classes.

than LSTM-ELMo. This last model achieved sim-
ilar results to SVM. This difference between the
models was not seen in English.

For the Spanish subtask B (ES-B), the same
SVM system was used, achieving an average F1
of 0.758 and an EMR score of 0.657 over the test
set (fourth place in terms of EMR).

5 Conclusion and future work

As in our previous experience with sentiment anal-
ysis, we found that linear models can be a match
for neural models. Moreover, this time our SVM
ranked in the first place in one of the subtasks.
We believe that —for this kind of challenges with
small-sized datasets— preprocessing techniques,
data normalization and robustness play a stronger
role than model design and hyperparameter tun-
ing. On the other hand, deep neural models are
highly expressive and prone to overfitting, requir-
ing being extremely careful with regularization.
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Abstract

This paper describes our system (Fermi) for
Task 5 of SemEval-2019: HatEval: Multilin-
gual Detection of Hate Speech Against Immi-
grants and Women on Twitter. We participated
in the subtask A for English and ranked first
in the evaluation on the test set. We evaluate
the quality of multiple sentence embeddings
and explore multiple training models to eval-
uate the performance of simple yet effective
embedding-ML combination algorithms. Our
team - Fermi’s model achieved an accuracy of
65.00% for English language in task A. Our
models, which use pretrained Universal En-
coder sentence embeddings for transforming
the input and SVM (with RBF kernel) for clas-
sification, scored first position (among 68) in
the leaderboard on the test set for Subtask A in
English language. In this paper we provide a
detailed description of the approach, as well as
the results obtained in the task.

1 Introduction

Microblogging platforms like Twitter provide
channels to exchange ideas using short messages
called tweets. While such a platform can be used
for constructive ideas, a small group of people can
propagate their notions including hatred against an
individual, or a group or a race to the entire world
in a few seconds. This necessitates the need to
come up with computational methods to identify
hate speech in user generated content.

Using computational methods to identify of-
fense, aggression and hate speech in user gener-
ated content has been gaining attention in the re-
cent years as evidenced in (Waseem et al., 2017;
Davidson et al., 2017; Malmasi and Zampieri,
2017; Kumar et al., 2018) and workshops such as
Abusive Language Workshop (ALW) ! and Work-

"https://sites.google.com/view/alw2018
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shop on Trolling, Aggression and Cyberbullying
(TRAC) 2.

2 Related Work

In this section we briefly describe other work in
this area.

A few of the early works related to hate speech
detection employed the use of features like bag of
words, word and character n-grams with relatively
off-the-shelf machine learning classifiers for de-
tection (Dinakar et al., 2011; Waseem and Hovy,
2016; Nobata et al., 2016). Deep learning methods
for hate speech detection were used by Badjatiya
et al. (2017) wherein the authors experimented
with a combination of multiple deep learning ar-
chitectures along with randomly initialized word
embeddings learned by Long Short Term Memory
(LSTM) models.

Papers published in the last two years include
the surveys by (Schmidt and Wiegand, 2017) and
(Fortuna and Nunes, 2018), the paper by (David-
son et al., 2017) which presented the Hate Speech
Detection dataset used in (Malmasi and Zampieri,
2017) and a few other recent papers such as (EISh-
erief et al., 2018; Gambick and Sikdar, 2017;
Zhang et al., 2018).

A proposal of typology of abusive language
sub-tasks is presented in (Waseem et al., 2017).
For studies on languages other than English see
(Su et al., 2017) on Chinese and (FiSer et al.,
2017) on Slovene. Finally, for recent discussion
on identifying profanity versus hate speech see
(Malmasi and Zampieri, 2018). This work high-
lighted the challenges of distinguishing between
profanity, and threatening language which may not
actually contain profane language.

Some of the similar and related previous work-
shops are Text Analytics for Cybersecurity and

https://sites.google.com/view/tracl

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 70-74
Minneapolis, Minnesota, USA, June 67, 2019. ©2019 Association for Computational Linguistics



Online Safety (TA-COS) 3, Abusive Language
Workshop 4, and TRAC 7. Related shared tasks
include GermEval (Wiegand et al., 2018) and
TRAC (Kumar et al., 2018).

3 Methodology

In this paper, we make use of several word embed-
ding and sentence embedding methods.

3.1 Word Embeddings

Word embeddings have been widely used in mod-
ern Natural Language Processing applications as
they provide vector representation of words. They
capture the semantic properties of words and
the linguistic relationship between them. These
word embeddings have improved the performance
of many downstream tasks across many do-
mains like text classification, machine comprehen-
sion etc. (Camacho-Collados and Pilehvar, 2018).
Multiple ways of generating word embeddings ex-
ist, such as Neural Probabilistic Language Model
(Bengio et al., 2003), Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), and more
recently ELMo (Peters et al., 2018).

These word embeddings rely on the distribu-
tional linguistic hypothesis. They differ in the
way they capture the meaning of the words or the
way they are trained. Each word embedding cap-
tures a different set of semantic attributes which
may or may not be captured by other word em-
beddings. In general, it is difficult to predict the
relative performance of these word embeddings on
downstream tasks. The choice of which word em-
beddings should be used for a given downstream
task depends on experimentation and evaluation.

3.2 Sentence Embeddings

While word embeddings can produce representa-
tions for words which can capture the linguistic
properties and the semantics of the words, the idea
of representing sentences as vectors is an impor-
tant and open research problem (Conneau et al.,
2017).

Finding a universal representation of a sentence
which works with a variety of downstream tasks
is the major goal of many sentence embedding
techniques. A common approach of obtaining a
sentence representation using word embeddings is

*http://ta-cos.org/
‘nttps://sites.google.com/site/alw2018
‘https://sites.google.com/view/tracl
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by the simple and naive way of using the sim-
ple arithmetic mean of all the embeddings of the
words present in the sentence. Smooth inverse fre-
quency, which uses weighted averages and modi-
fies it using Singular Value Decomposition (SVD),
has been a strong contender as a baseline over tra-
ditional averaging technique (Arora et al., 2016).
Other sentence embedding techniques include p-
means (Riicklé et al., 2018), InferSent (Conneau
et al., 2017), SkipThought (Kiros et al., 2015),
Universal Encoder (Cer et al., 2018).
Task A (Hate speech detection) is a two-class clas-
sification where systems have to predict whether a
tweet in English or in Spanish with a given target
(women or immigrants) is hateful or not hateful.
TASK B (Aggressive behavior and Target Clas-
sification) is a two-class classification where sys-
tems have to classify hateful tweets (e.g., tweets
where Hate Speech against women or immigrants
has been identified) as aggressive or not aggres-
sive, and second to identify the target harassed as
individual or generic (i.e. single human or group).

We formulate sub-task A of HatEval as a text
classification tasks. In this paper, we evaluate var-
ious pre-trained sentence embeddings for identify-
ing the offense, hate and aggression. We train mul-
tiple models using different machine learning al-
gorithms to evaluate the efficacy of each of the pre-
trained sentence embeddings for the downstream
task. We observe that there is a class label imbal-
ance in the dataset. To prevent any bias induced
due to imbalanced classes, we process the trans-
formed training dataset using SMOTE (Chawla
et al., 2002) which synthetically oversamples data
and ensures that all the classes have same number
of instances.

In the following, we discuss various popular
sentence embedding methods in brief.

e InferSent (Conneau et al., 2017) is a set
of embeddings proposed by Facebook. In-
ferSent embeddings have been trained using
the popular language inference corpus. Given
two sentences the model is trained to infer
whether they are a contradiction, a neutral
pairing, or an entailment. The output is an
embedding of 4096 dimensions.

Concatenated Power Mean Word Embedding
(Riicklé et al., 2018) generalizes the concept
of average word embeddings to power mean
word embeddings. The concatenation of dif-
ferent types of power mean word embeddings



Model LR RF SVM-RBF XGB
Acc. F1 Acc. F1 Acc. F1 Acc. F1

InferSent 64.26 | 64.34 | 63.96 | 62.45 | 57.13 | 41.54 | 71.18 | 71.21
Concat-p mean 63.35 | 6343 | 67.17 | 65.83 | 63.86 | 60.98 | 71.08 | 70.67
Lexical Vectors 67.27 | 66.61 | 67.97 | 67.09 | 58.53 | 46.03 | 67.87 | 68.31
Universal Encoder | 70.58 | 70.63 | 70.48 | 70.05 | 57.13 | 41.54 | 64.26 | 64.34
ELMo 69.68 | 69.78 | 65.96 | 65.12 | 68.37 | 68.44 | 66.57 | 66.59
NNLM 66.57 | 66.46 | 64.36 | 62.83 | 65.56 | 63.88 | 66.37 | 65.74

Table 1: Dev Set Accuracy and Macro-F1 scores(in percentage) for Sub-Task A- English.

considerably closes the gap to state-of-the-
art methods mono-lingually and substantially
outperforms many complex techniques cross-
lingually.

Lexical Vectors (Salle and Villavicencio,
2018) is another word embedding similar
to fastText with slightly modified objective.
FastText (Bojanowski et al., 2016) is another
word embedding model which incorporates
character n-grams into the skipgram model of
Word2Vec and considers the sub-word infor-
mation.

The Universal Sentence Encoder (Cer et al.,
2018) encodes text into high dimensional
vectors. The model is trained and optimized
for greater-than-word length text, such as
sentences, phrases or short paragraphs. It is
trained on a variety of data sources and a va-
riety of tasks with the aim of dynamically ac-
commodating a wide variety of natural lan-
guage understanding tasks. The input is vari-
able length English text and the output is a
512 dimensional vector.

Deep Contextualized Word Representations
(ELMo) (Peters et al., 2018) use language
models to get the embeddings for individ-
ual words. The entire sentence or paragraph
is taken into consideration while calculating
these embedding representations. ELMo uses
a pre-trained bi-directional LSTM language
model. For the input supplied, the ELMo ar-
chitecture extracts the hidden state of each
layer. A weighted sum is computed of the
hidden states to obtain an embedding for each
sentence.

Using each of the sentence embeddings we have
mentioned above, we seek to evaluate how each
of them performs when the vector representations
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are supplied for classification with various off-the-
shelf machine learning algorithms. For each of
the evaluation tasks, we perform experiments us-
ing each of the sentence embeddings mentioned
above and show our classification performance on
the dev set given by the task organizers.

Using each of the sentence embeddings we have
mentioned above, we seek to evaluate how each
of them performs when the vector representations
are supplied for classification with various off-the-
shelf machine learning algorithms. For each of
the evaluation tasks, we perform experiments us-
ing each of the sentence embeddings mentioned
above and show our classification performance on
the dev set given by the task organizers.

4 Dataset

The data collection methods used to compile the
dataset used in HatEval is described in (Basile
et al., 2019). We did not use any external datasets
to augment the data for training our models.

5 Results and Analysis

The official test set results scored on Codalab
have been presented below in Table 2.

Accuracy
0.65

F1 (macro)
0.65

System
Universal Encoder

Table 2: Results for Sub-task A using Universal En-
coder Sentence embeddings with SVM classifier using
RBF kernel.

Our results on the different algorithms from the
ones stated above have been mentioned henceforth
and described in Table 1.

As described in Table 1 the dev set macro-
averaged F-1 and accuracy is given for the task
A-English.



We notice the best performance for task A in
English on the official test set was bagged by
the model which used pretrained Universal sen-
tence embeddings using SVM with RBF ker-
nel. However, pretrained Infersent embeddings
along with XGBoost algorithm outperformed ev-
ery other combination on the dev test. This can be
probably due to the difference between the distri-
butions in the dev and the official test sets.

Overall, this work shows how different set
of pretrained embeddings trained from different
state-of-the-art architectures and methods when
used with simple machine learning classifiers per-
form very well in the classification task of catego-
rizing text as offensive or not.

6 Conclusions and Future Work

It is also important to note that the experiments are
performed using the default parameters, so there
is much scope for improvement with a lot of fine-
tuning, which we plan on considering for future
research purposes. Further, we can explore aug-
menting data from other similar shared tasks to
achieve better performance.
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Abstract

We present the results and the main findings of
SemEval-2019 Task 6 on Identifying and Cate-
gorizing Offensive Language in Social Media
(OffensEval). The task was based on a new
dataset, the Offensive Language Identification
Dataset (OLID), which contains over 14,000
English tweets. It featured three sub-tasks. In
sub-task A, the goal was to discriminate be-
tween offensive and non-offensive posts. In
sub-task B, the focus was on the type of of-
fensive content in the post. Finally, in sub-task
C, systems had to detect the target of the offen-
sive posts. OffensEval attracted a large num-
ber of participants and it was one of the most
popular tasks in SemEval-2019. In total, about
800 teams signed up to participate in the task,
and 115 of them submitted results, which we
present and analyze in this report.

1 Introduction

Recent years have seen the proliferation of offen-
sive language in social media platforms such as
Facebook and Twitter. As manual filtering is very
time consuming, and as it can cause post-traumatic
stress disorder-like symptoms to human annota-
tors, there have been many research efforts aim-
ing at automating the process. The task is usually
modeled as a supervised classification problem,
where systems are trained on posts annotated with
respect to the presence of some form of abusive
or offensive content. Examples of offensive con-
tent studied in previous work include hate speech
(Davidson et al., 2017; Malmasi and Zampieri,
2017, 2018), cyberbulling (Dinakar et al., 2011),
and aggression (Kumar et al., 2018). Moreover,
given the multitude of terms and definitions used
in the literature, some recent studies have investi-
gated the common aspects of different abusive lan-
guage detection sub-tasks (Waseem et al., 2017;
Wiegand et al., 2018).
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Interestingly, none of this previous work has stud-
ied both the type and the target of the offensive
language, which is our approach here. Our task,
OffensEval', uses the Offensive Language Identi-
fication Dataset (OLID)? (Zampieri et al., 2019),
which we created specifically for this task. OLID
is annotated following a hierarchical three-level
annotation schema that takes both the target and
the type of offensive content into account. Thus,
it can relate to phenomena captured by previous
datasets such as the one by Davidson et al. (2017).
Hate speech, for example, is commonly under-
stood as an insult targeted at a group, whereas cy-
berbulling is typically targeted at an individual.

We defined three sub-tasks, corresponding to
the three levels in our annotation schema:?

Sub-task A: Offensive language identification
(104 participating teams)

Sub-task B: Automatic categorization of offense
types (71 participating teams)

Sub-task C: Offense target identification (66 par-
ticipating teams)

The remainder of this paper is organized as
follows: Section 2 discusses prior work, includ-
ing shared tasks related to OffensEval. Section 3
presents the shared task description and the sub-
tasks included in OffensEval. Section 4 includes
a brief description of OLID based on (Zampieri
et al., 2019). Section 5 discusses the participating
systems and their results in the shared task. Fi-
nally, Section 6 concludes and suggests directions
for future work.

"http://competitions.codalab.org/
competitions/20011

http://scholar.harvard.edu/malmasi/
olid

3 A total of 800 teams signed up to participate in the task,
but only 115 teams ended up submitting results eventually.
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2 Related Work

Different abusive and offense language identifica-
tion problems have been explored in the literature
ranging from aggression to cyber bullying, hate
speech, toxic comments, and offensive language.
Below we discuss each of them briefly.

Aggression identification: The TRAC shared
task on Aggression Identification (Kumar et al.,
2018) provided participants with a dataset contain-
ing 15,000 annotated Facebook posts and com-
ments in English and Hindi for training and val-
idation. For testing, two different sets, one from
Facebook and one from Twitter, were used. The
goal was to discriminate between three classes:
non-aggressive, covertly aggressive, and overtly
aggressive. The best-performing systems in this
competition used deep learning approaches based
on convolutional neural networks (CNN), recur-
rent neural networks, and LSTM (Aroyehun and
Gelbukh, 2018; Majumder et al., 2018).

Bullying detection: There have been several stud-
ies on cyber bullying detection. For example, Xu
et al. (2012) used sentiment analysis and topic
models to identify relevant topics, and Dadvar
et al. (2013) used user-related features such as the
frequency of profanity in previous messages.

Hate speech identification: This is the most stud-
ied abusive language detection task (Kwok and
Wang, 2013; Burnap and Williams, 2015; Djuric
etal., 2015). More recently, Davidson et al. (2017)
presented the hate speech detection dataset with
over 24,000 English tweets labeled as non offen-
sive, hate speech, and profanity.

Offensive language: The GermEval* (Wiegand
et al., 2018) shared task focused on offensive lan-
guage identification in German tweets. A dataset
of over 8,500 annotated tweets was provided for a
course-grained binary classification task in which
systems were trained to discriminate between of-
fensive and non-offensive tweets. There was also
a second task where the offensive class was sub-
divided into profanity, insult, and abuse. This is
similar to our work, but there are three key differ-
ences: (i) we have a third level in our hierarchy,
(ii) we use different labels in the second level, and
(iii) we focus on English.

‘nttp://projects.fzai.h-da.de/iggsa/
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Toxic comments: The Toxic Comment Classifica-
tion Challenge® was an open competition at Kag-
gle, which provided participants with comments
from Wikipedia organized in six classes: toxic,
severe toxic, obscene, threat, insult, identity hate.
The dataset was also used outside of the compe-
tition (Georgakopoulos et al., 2018), including as
additional training material for the aforementioned
TRAC shared (Fortuna et al., 2018).

While each of the above tasks tackles a par-
ticular type of abuse or offense, there are many
commonalities. For example, an insult targeted at
an individual is commonly known as cyberbulling
and insults targeted at a group are known as hate
speech. The hierarchical annotation model pro-
posed in OLID (Zampieri et al., 2019) and used in
OffensEval aims to capture this. We hope that the
OLID’s dataset would become a useful resource
for various offensive language identification tasks.

3 Task Description and Evaluation

The training and testing material for OffensEval
is the aforementioned Offensive Language Identi-
fication Dataset (OLID) dataset, which was built
specifically for this task. OLID was annotated us-
ing a hierarchical three-level annotation model in-
troduced in Zampieri et al. (2019). Four examples
of annotated instances from the dataset are pre-
sented in Table 1. We use the annotation of each
of the three layers in OLID for a sub-task in Of-
fensEval as described below.

3.1 Sub-task A: Offensive language
identification

In this sub-task, the goal is to discriminate be-
tween offensive and non-offensive posts. Offen-
sive posts include insults, threats, and posts con-
taining any form of untargeted profanity. Each in-
stance is assigned one of the following two labels.

e Not Offensive (NOT): Posts that do not con-
tain offense or profanity;

Offensive (OFF): We label a post as offensive
if it contains any form of non-acceptable lan-
guage (profanity) or a targeted offense, which
can be veiled or direct. This category in-
cludes insults, threats, and posts containing
profane language or swear words.

5
http://kaggle.com/c/jigsaw-toxic-comment-classification-challenge



Tweet A B C
@USER He is so generous with his offers. NOT — —
IM FREEEEE!!!! WORST EXPERIENCE OF MY FUCKING LIFE OFF UNT —
@USER Fuk this fat cock sucker OFF TIN IND
@USER Figures! What is wrong with these idiots? Thank God for @USER OFF TIN GRP
Table 1: Four tweets from the OLID dataset, with their labels for each level of the annotation model.
3.2 Sub-task B: Automatic categorization of Confusion Matrix
ff
offense types o
In sub-task B, the goal is to predict the type of 0.7
offense. Only posts labeled as Offensive (OFF)
in sub-task A are included in sub-task B. The two B 06
categories in sub-task B are the following: i'é 0.5
f"__:’ 0.4
o Targeted Insult (TIN): Posts containing an in- 03
sult/threat to an individual, group, or others 02
(see sub-task C below);
0.1
0.0

e Untargeted (UNT): Posts containing non-
targeted profanity and swearing. Posts with
general profanity are not targeted, but they
contain non-acceptable language.

3.3 Sub-task C: Offense target identification

Sub-task C focuses on the target of offenses. Only
posts that are either insults or threats (TIN) arwe
considered in this third layer of annotation. The
three labels in sub-task C are the following:

e Individual (IND): Posts targeting an individ-
ual. It can be a a famous person, a named
individual or an unnamed participant in the
conversation. Insults/threats targeted at indi-
viduals are often defined as cyberbullying.

Group (GRP): The target of these offensive
posts is a group of people considered as a
unity due to the same ethnicity, gender or sex-
ual orientation, political affiliation, religious
belief, or other common characteristic. Many
of the insults and threats targeted at a group
correspond to what is commonly understood
as hate speech.

Other (OTH): The target of these offensive
posts does not belong to any of the previous
two categories, €.g., an organization, a situa-
tion, an event, or an issue.
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Figure 1: Example of a confusion matrix provided in
the results package for team NULI, which is the best-
performing team for sub-task A.

3.4 Task Evaluation

Given the strong imbalance between the number
of instances in the different classes across the three
tasks, we used the macro-averaged F1-score as the
official evaluation measure for all three sub-tasks.

At the end of the competition, we provided the
participants with packages containing the results
for each of their submissions, including tables and
confusion matrices, and tables with the ranks list-
ing all teams who competed in each sub-task. For
example, the confusion matrix for the best team in
sub-task A is shown in Figure 1.

3.5 Participation

The task attracted nearly 800 teams and 115 of
them submitted their results. The teams that sub-
mitted papers for the SemEval-2019 proceedings
are listed in Table 2.

SASE-CSE is for Amrita School of Engineering - CSE.



Team System Description Paper
Amobee (Rozental and Biton, 2019)
ASE-CSE (Sridharan and T, 2019)
bhanodaig (Kumar et al., 2019)
BNU-HKBU ... (Wu et al., 2019)
CAMsterdam (Aglionby et al., 2019)
CN-HIT-MIL.T (Yaojie et al., 2019)
ConvAI (Pavlopoulos et al., 2019)
DA-LD-Hildesheim (Modha et al., 2019)
DeepAnalyzer (la Pea and Rosso, 2019)
Duluth (Pedersen, 2019)

Emad (Kebriaei et al., 2019)
Embeddia (Pelicon et al., 2019)
Fermi (Indurthi et al., 2019)
Ghmerti (Doostmohammadi et al., 2019)
HAD-Tiibingen (Bansal et al., 2019)

HHU (Oberstrass et al., 2019)
Hope (Patras et al., 2019)
INGEOTEC (Graff et al., 2019)
JCTICOL (HaCohen-Kerner et al., 2019)
jhan014 (Han et al., 2019)

JTML (Torres and Vaca, 2019)
JUETCE_1721 (Mukherjee et al., 2019)
KMI_Coling (Rani and Ojha, 2019)
LaSTUS/TALN (Altin et al., 2019)
LTL-UDE (Aggarwal et al., 2019)
MIDAS (Mahata et al., 2019)

Nikolov-Radivchev
NIT_Agartala_NLP_Team

(Nikolov and Radivchev, 2019)
(Swamy et al., 2019)

NLP (Kapil et al., 2019)
NLP@UIOWA (Rusert and Srinivasan, 2019)
NLPR @SRPOL (Seganti et al., 2019)
nlpUP (Mitrovi€ et al., 2019)
NULI (Liu et al., 2019)

SINAI (Plaza-del Arco et al., 2019)
SSN_NLP (Thenmozhi et al., 2019)
Stop PropagHate (Fortuna et al., 2019)
Pardeep (Singh and Chand, 2019)
techssn (Setal., 2019)

The Titans (Garain and Basu, 2019)
TUVD (Shushkevich et al., 2019)
TiiKaSt (Kannan and Stein, 2019)
UBC-NLP (Rajendran et al., 2019)
UTFPR (Paetzold, 2019)

UHH-LT (Wiedemann et al., 2019)
UM-IU@LING (Zhu et al., 2019)

USF (Goel and Sharma, 2019)
UVA Wahoos (Ramakrishnan et al., 2019)
YNU-HPCC (Zhou et al., 2019)
YNUWB (Wang et al., 2019)

Zeyad (El-Zanaty, 2019)

Table 2: The teams that participated in OffensEval and
submitted system description papers.

78

4 Data

Below, we briefly describe OLID, the dataset used
for our SemEval-2019 task 6. A detailed descrip-
tion of the data collection process and annotation
is presented in Zampieri et al. (2019).

OLID is a large collection of English tweets an-
notated using a hierarchical three-layer annotation
model. It contains 14,100 annotated tweets di-
vided into a training partition of 13,240 tweets and
a testing partition of 860 tweets. Additionally, a
small trial dataset of 320 tweets was made avail-
able before the start of the competition.

A B C Train Test Total
OFF TIN IND 2,407 100 2,507
OFF TIN OTH 395 35 430
OFF TIN GRP 1,074 78 1,152
OFF UNT — 524 27 551
NOT — — 8,840 620 9,460

All 13,240 860 14,100

Table 3: Distribution of label combinations in OLID.

The distribution of the labels in OLID is shown
in Table 3. We annotated the dataset using the
crowdsourcing platform Figure Eight.” We en-
sured the quality of the annotation by only hiring
experienced annotators on the platform and by us-
ing test questions to discard annotators who did
not achieve a certain threshold. All the tweets
were annotated by two people. In case of dis-
agreement, a third annotation was requested, and
ultimately we used a majority vote. Examples of
tweets from the dataset with their annotation labels
are shown in Table 1.

5 Results

The models used in the task submissions ranged
from traditional machine learning, e.g., SVM and
logistic regression, to deep learning, e.g., CNN,
RNN, BiLSTM, including attention mechanism,
to state-of-the-art deep learning models such as
ELMo (Peters et al., 2018) and BERT (Devlin
et al.). Figure 2 shows a pie chart indicating the
breakdown by model type for all participating sys-
tems in sub-task A. Deep learning was clearly
the most popular approach, as were also ensem-
ble models. Similar trends were observed for sub-
tasks B and C.

"nttps://www.figure-eight.com/



Sub-task A Models

Deep
Learning
70%

6%

Machine
Learning
17%

B Machine Learning m Other EN/A
RNN, GRU m CNN H LSTM, BiLSTM
W BERT W Ensemble m DL Other

Figure 2: Pie chart showing the models used in sub-
task A. ‘N/A’ indicates that the system did not have a
description.

Some teams used additional training data, explor-
ing external datasets such as Hate Speech Tweets
(Davidson et al., 2017), toxicity labels (Thain
et al., 2017), and TRAC (Kumar et al., 2018).
Moreover, seven teams indicated that they used
sentiment lexicons or a sentiment analysis model
for prediction, and two teams reported the use of
offensive word lists. Furthermore, several teams
used pre-trained word embeddings from FastText
(Bojanowski et al., 2016), from GloVe, includ-
ing Twitter embeddings from GloVe (Pennington
et al., 2014) and from word2vec (Mikolov et al.,
2013; Godin et al., 2015).

In addition, several teams used techniques for
pre-processing the tweets such as normalizing the
tokens, hashtags, URLs, retweets (RT), dates,
hidden words (“cO0I” to “cool’””). Other techniques
include converting emojis to text, removing un-
common words, and using Twitter-specific tok-
enizers, such as the Ark Tokenizer® (Gimpel et al.,
2011) and the NLTK TweetTokenizer,” as well as
standard tokenizers (Stanford Core NLP (Manning
et al., 2014), and the one from Keras.!® Approxi-
mately a third of the teams indicated that they used
one or more of these techniques.

$http://www.cs.cmu.edu/~ark/TweetNLP

‘http://www.nltk.org/api/nltk.
tokenize.html

Ohttp://keras.io/preprocessing/text/
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The results for each of the sub-tasks are shown in
Table 4. Due to the large number of submissions,
we only show the Fl-score for the top-10 teams,
followed by result ranges for the rest of the teams.
We further include the models and the baselines
from (Zampieri et al., 2019): CNN, BiLSTM, and
SVM. The baselines are choosing all predictions
to be of the same class, e.g., all offensive, and
all not offensive for sub-task A. Table 5 shows
all the teams that participated in the tasks along
with their ranks in each task. These two tables
can be used together to find the score/range for a
particular team.

Below, we describe the overall results for each
sub-task, and we describe the top-3 systems.

5.1 Sub-task A

Sub-task A was the most popular sub-task with
104 participating teams. Among the top-10 teams,
seven used BERT (Devlin et al.) with varia-
tions in the parameters and in the pre-processing
steps. The top-performing team, NULI, used
BERT-base-uncased with default-parameters, but
with a max sentence length of 64 and trained for
2 epochs. The 82.9% F1 score of NULI is 1.4
points better than the next system, but the differ-
ence between the next 5 systems, ranked 2-6, is
less than one point: 81.5%-80.6%. The top non-
BERT model, MIDAS, is ranked sixth. They used
an ensemble of CNN and BLSTM+BGRU, to-
gether with Twitter word2vec embeddings (Godin
et al., 2015) and token/hashtag normalization.

5.2 Sub-task B

A total of 76 teams participated in sub-task B,
and 71 of them had also participated in sub-task
A. In contrast to sub-task A, where BERT clearly
dominated, here five of the top-10 teams used
an ensemble model. Interestingly, the best team,
Jjhan014, which was ranked 76th in sub-task A,
used a rule-based approach with a keyword filter
based on a Twitter language behavior list, which
included strings such as hashtags, signs, etc.,
achieving an F1-score of 75.5%. The second and
the third teams, Amobee and HHU, used ensem-
bles of deep learning (including BERT) and non-
neural machine learning models. The best team
from sub-task A also performed well here, ranked
4th (71.6%), thus indicating that overall BERT
works well for sub-task B as well.



Sub-task A

Sub-task B

Team Ranks F1 Range | Team Ranks F1 Range | Team Ranks F1 Range

1 0.829 1
2 0.815 2
3 0.814 3
4 0.808 4
5 0.807 5
6 0.806 6
7 0.804 7
8 0.803 8
9 0.802 9
CNN 0.800 CNN
10 0.798 10
11-12 793-.794 11-14
13-23 .182-789 15-24
24-27 J772-779 BiLSTM
28-31 .165-.768 25-29
32-40 .750-.759 SVM
BiLSTM 0.750 30-38
41-45 .740-.749 39-49
46-57 .130-.739 50-62
58-63 121-729 ALL TIN
64-71 13-719 63-74
72-74 .7104-709 75
SVM 0.690 76
75-89 .619-.699 All UNT
90-96 .500-.590
97-103 422-.492
Al NOT 0.420
All OFF 0.220
104 0.171

Sub-task C
0.755 1 0.660
0.739 2 0.628
0.719 3 0.626
0.716 4 0.621
0.708 5 0.613
0.706 6 0.613
0.700 7 0.591
0.695 8 0.588
0.692 9 0.587
0.690 10 0.586
0.687 11-14 .571-.580
.680-.682 15-18 .560-.569
.660-.671 19-23 .547-.557
0.660 24-29 .523-.535
.640-.655 30-33 S511-.515
0.640 34-40 .500-.509
.600-.638 41-47 .480-.490
.553-.595 CNN 0.470
.500-.546 BiLSTM 0.470
0.470 SVM 0.450
418-.486 46-60 401-.476
0.270 61-65 .249-.340
0.121 All IND 0.210
0.100 All GRP 0.180
ALL OTH 0.090

Table 4: F1-Macro for the top-10 teams followed by the rest of the teams grouped in ranges for all three sub-tasks.
Refer to Table 5 to see the team names associated with each rank. We also include the models (CNN, BiLSTM,
and SVM) and the baselines (All NOT and All OFF) from (Zampieri et al., 2019), shown in bold.

5.3 Sub-task C

A total of 66 teams participated in sub-task C,
and most of them also participated in sub-tasks
A and B. As in sub-task B, ensembles were quite
successful and were used by five of the top-
10 teams. However, as in sub-task A, the best
team, vradivchev_anikolov, used BERT after try-
ing many other deep learning methods. They also
used pre-processing and pre-trained word embed-
dings based on GloVe. The second best team,
NLPRQSRPOL, used an ensemble of deep learn-
ing models such as OpenAl Finetune, LSTM,
Transformer, and non-neural machine learning
models such as SVM and Random Forest.
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5.4 Description of the Top Teams

The top-3 teams by average rank for all three
sub-tasks were NLPRQSRPOL, NULI, and vradi-
vchev_anikolov. Below, we provide a brief de-
scription of their approaches:

NLPR@SRPOL was ranked 8th, 9th, and 2nd on
sub-tasks A, B, and C, respectively. They
used ensembles of OpenAl GPT, Random
Forest, the Transformer, Universal encoder,
ELMo, and combined embeddings from fast-
Text and custom ones. They trained their
models on multiple publicly available offen-
sive datasets, as well as on their own custom
dataset annotated by linguists.



Sub-task Sub-task Sub-task
Team A B C Team A B C Team A BC
NULI 1 418 resham 4043 - kroniker 79 71 -
vradivchev_anikolov 2 16 1 ~ Xcosmos 414729  aswathyprem 80 - -
UM-IUQLING 37627  jkolis 42 - - DeepAnalyzer 81 3845
Embeddia 4 18 5 NIT_Agartala NLP_Team43 5 38  Code Lyoko 82 - -
MIDAS 5 8 - Stop PropagHate 44 - - rowantahseen 83 - -
BNU-HKBU 6 6239 KVETHZ 455226  ramjib 84 - -
SentiBERT 7 - - christoph.alt 461436  OmerElshrief 85 - -
NLPRQSRPOL 8 9 2 TECHSSN 472216  desi 86 56 -
YNUWB 9 - - USF 483262  Fermi 87 313
LTL-UDE 10 - 19  Ziv_Ben_David 496433  mkannan 88 - -
nlpUP 11 - - JCTICOL 5063 - mking 89 3554
ConvAl 121135  TiiKaSt 512350 ninab 90 69 -
Vadym 1310 - Gal_DD 526625  dianalungu725 91 74 65
UHH-LT 142113  HAD-Tiibingen 535961  Halamulki 92 - -
CAMsterdam 151920 Emad 54 - - SSN_NLP 93 6564
YNU-HPCC 16 - - NLPQUIOWA 552737 UTFPR 9% - -
nishnik 17 - - INGEOTEC 561512  rogersdepelle 95 - -
Amobee 182 7 Duluth 573944  Amimul Thsan 96 - -
himanisoni 194611 Zeyad 583434  supriyamandal 97 75 -
samsam 20 - - ShalomRochman 597058  ramitpahwa 98 - -
JUETCE_1721 215047  stefanichegele 60 - - ASE - CSE 99 3332
DA-LD-Hildesheim 222821  NLP-CIC 614846  kripo 100 - -
YNU-HPCC 2312 4  Elyash 626740  garain 1014463
ChenXiuling 24 - 28 KMI_Coling 634553 NAYEL 102 - -
Ghmerti 2529 - RUG_OffenseEval 64 - - magnito60 103 - -
safina 26 - - jaypeel996 6541 - AyushS 10436 48
Arjun Roy 2717 - orabia 6655 8 UBC.NLP - 69
CN-HIT-ML.T 283022  v.gambhirl5 675860  bhanodaig - 57 -
LaSTUS/TALN 292015  kerner-jct.ac.il 686842  Panaetius - 60 -
HHU 303 - SINAI 69 - - eruppert - 61 -
nal4 312610  apalmer 701355  Macporal - 72 -
NRC 323724  ayman 715357  NoOffense - -6
NLP 335452  Geetika 7224 - HHU - - 14
JTML 34 - - Taha 735159  quanzhi - - 17
Arup-Baruah 352531  justhalf 74 - - TUVD - -23
UVA_Wahoos 3642 - Pardeep 75 741  mmfouad - - 51
NLP@UniBuc 377349  jhan014 76 1 30  balangheorghe - - 56
NTUA-ISLab 384043  liuxy9%4 77 - -
Rohit 3949 - ngre1989 78 - -

Table 5: All the teams that participated in SemEval-2019 Task 6 with their ranks for each sub-task. The symbol *-’
indicates that the team did not participate in some of the subtasks. Please, refer to Table 4 to see the scores based
on a team’s rank. The top team for each task is in bold, and the second-place team is underlined. Note: ASE - CSE
stands for Amrita School of Engineering - CSE, and BNU-HBKU stands for BNU-HKBU UIC NLP Team 2.
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NULI was ranked 1st, 4th, and 18th on sub-tasks
A, B, and C, respectively. They experimented
with different models including linear mod-
els, LSTM, and pre-trained BERT with fine-
tuning on the OLID dataset. Their final
submissions for all three subtasks only used
BERT, which performed best during devel-
opment. They also used a number of pre-
processing techniques such as hashtag seg-
mentation and emoji substitution.

vradivchev_anikolov was ranked 2nd, 16th, and
1st on sub-tasks A, B, and C, respectively.
They trained a variety of models and com-
bined them in ensembles, but their best sub-
missions for sub-tasks A and C used BERT
only, as the other models overfitted. For sub-
task B, BERT did not perform as well, and
they used soft voting classifiers. In all cases,
they used pre-trained GloVe vectors and they
also applied techniques to address the class
imbalance in the training data.

6 Conclusion

We have described SemEval-2019 Task 6 on Iden-
tifying and Categorizing Offensive Language in
Social Media (OffensEval). The task used OLID
(Zampieri et al., 2019), a dataset of English tweets
annotated for offensive language use, following
a three-level hierarchical schema that considers
(i) whether a message is offensive or not (for sub-
task A), (if) what is the type of the offensive mes-
sage (for sub-task B), and (iii) who is the target of
the offensive message (for sub-task C).

Overall, about 800 teams signed up for Of-
fensEval, and 115 of them actually participated
in at least one sub-task. The evaluation results
have shown that the best systems used ensembles
and state-of-the-art deep learning models such as
BERT. Overall, both deep learning and traditional
machine learning classifiers were widely used.
More details about the indvididual systems can be
found in their respective system description pa-
pers, which are published in the SemEval-2019
proceedings. A list with references to these pub-
lications can be found in Table 2; note, however,
that only 50 of the 115 participating teams submit-
ted a system description paper.

As is traditional for SemEval, we have made
OLID publicly available to the research commu-
nity beyond the SemEval competition, hoping to
facilitate future research on this important topic.
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In fact, the OLID dataset and the SemEval-2019
Task 6 competition setup have already been used
in teaching curricula in universities in UK and
USA. For example, student competitions based on
OffensEval using OLID have been organized as
part of Natural Language Processing and Text An-
alytics courses in two universities in UK: Impe-
rial College London and the University of Leeds.
System papers describing some of the students’
work are publicly accessible!! and have also been
made available on arXiv.org (Cambray and Pod-
sadowski, 2019; Frisiani et al., 2019; Ong, 2019;
Sapora et al., 2019; Puiu and Brabete, 2019;
Uglow et al., 2019). Similarly, a number of stu-
dents in Linguistics and Computer Science at the
University of Arizona in USA have been using
OLID in their coursework.

In future work, we plan to increase the size of
the OLID dataset, while addressing issues such
as class imbalance and the small size for the test
partition, particularly for sub-tasks B and C. We
would also like to expand the dataset and the task
to other languages.
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Abstract

Transfer learning and domain adaptive learn-
ing have been applied to various fields in-
cluding computer vision (e.g., image recog-
nition) and natural language processing (e.g.,
text classification). One of the benefits of
transfer learning is to learn effectively and ef-
ficiently from limited labeled data with a pre-
trained model. In the shared task of identi-
fying and categorizing offensive language in
social media, we preprocess the dataset ac-
cording to the language behaviors on social
media, and then adapt and fine-tune the Bidi-
rectional Encoder Representation from Trans-
former (BERT) pre-trained by Google Al Lan-
guage team'. Our team NULI wins the first
place (1Ist) in Sub-task A - Offensive Lan-
guage Identification and is ranked 4th and 18th
in Sub-task B - Automatic Categorization of
Offense Types and Sub-task C - Offense Tar-
get Identification respectively.

1 Introduction

Anti-social online behaviors, including cyberbul-
lying, trolling and offensive language (Xu et al.,
2012; Kwok and Wang, 2013; Cheng et al., 2017),
are attracting more attention on different social
networks. The intervention of such behaviors
should be taken at the earliest opportunity. Auto-
matic offensive language detection using machine
learning algorithms becomes one solution to iden-
tifying such hostility and has shown promising
performance.

In SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media
(Zampieri et al., 2019b), the organizers collected
tweets through Twitter API and annotated them hi-
erarchically regarding offensive language, offense
type, and offense target. The task is divided into
three sub-tasks: a) detecting if a post is offensive

"https://github.com/google-research/bert
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(OFF) or not (NOT); b) identifying the offense
type of an offensive post as targeted insult (TIN),
targeted threat (TTH), or untargeted (UNT); c) for
a post labeled as TIN/TTH in sub-task B, identify-
ing the target of offense as individual (IND), group
of people (GRP), organization or entity (ORG),
or other (OTH). The three sub-tasks are indepen-
dently evaluated by macro-F1 metric.

The challenges of this shared task include: a)
comparatively small dataset makes it hard to train
complex models; b) the characteristics of language
on social media pose difficulties such as out-of-
vocabulary words and ungrammatical sentences;
¢) the distribution of target classes is imbalanced
and inconsistent between training and test data. To
address the problem of out-of-vocabulary words
especially emoji and hashtags, we preprocess each
tweet by interpreting emoji as meaningful En-
glish phrases and segmenting hashtags into space
separated words. The classifiers we experiment
with include: linear model with features of word
unigrams, word2vec, and Hatebase; word-based
Long Short-Term Memory (LSTM); fine-tuned
Bidirectional Encoder Representation from Trans-
former (BERT) (Devlin et al., 2018). We choose
BERT for our official submission, since it per-
forms the best in our experiments.

In the rest of this paper, we organize the con-
tent as follows: related work of hostility on social
media is stated in section 2; section 3 introduces
data description, details of preprocessing, and the
methodology of our models; experimental results
are discussed in section 4. We also present the
conclusion of our work at the end of paper.

2 Related Work

Schmidt and Wiegand (2017) surveyed features
widely used for hate speech detection, includ-
ing simple surface feature, word generalization,
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knowledge-based features, etc. Davidson et al.
(2017) reported hate speech detection results us-
ing word n-grams and sentiment lexicon and pro-
vided insights on misclassified examples. A pro-
posal of typology of abusive language sub-tasks
is presented in (Waseem et al., 2017). (Liu et al.,
2018) also discuss that the forecasting of the fu-
ture hostility on Instagram can be divided into
two levels: presence and intensity. In addition
to English, researchers also investigated offen-
sive language detection for Chinese (Su et al.,
2017) and Slovene (FiSer et al., 2017). In the
shared task on aggression identification organ-
ised as part of the first workshop on trolling, ag-
gression and cyberbullying (TRAC - 1) at COL-
ING 2018, word/character n-grams and word em-
beddings were the most commonly used features
among the participants, and the most popular clas-
sifiers were SVM, LSTM, and RNN. The best per-
forming system employed bidirectional LSTM on
Glove embeddings.

3 Data and Methodology

3.1 Data Description

Offensive Language Identification Dataset (OLID)
(Zampieri et al., 2019a) is collected from Twit-
ter API by searching certain keywords set. The
keywords include some unbiased targeted phrase
such as ‘she is’, ‘he is’ and ‘you are’ which have
high proportional offensive tweets. The distribu-
tion of offensive tweets is controlled around 30%
by using different sampling methods. Another ob-
servation reported in the paper is political tweets
tend to be more likely offensive using keywords
as ‘MEGA’, ‘liberal’ and ‘conservative’.

The main task of this competition is decom-
posed into three different levels according to the
hierarchical annotation: a) Offensive Language
Detection b) Categorization of Offensive Lan-
guage c) Offensive Language Target Identifica-
tion. All the three different tasks share the same
dataset, and the latter one is the subset of the pre-
vious one.

The tasks release the dataset into three different
parts, which are the startingKit, training dataset
and testing dataset. The summary of dataset distri-
bution is concluded in the Tablel. From the table,
it is easy to observe that the distribution of three
splittings is a little twisted which should be ex-
pected in real life, and also make the tasks much
harder.
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Class StartKit Training Testing
NOT 243 8840 620
OFF 77 4400 280
TIN 38 3876 213
UNT 39 524 27
IND 30 2407 100
GRP 7 1074 78
OTH 2 395 35

Table 1: Data Distribution: The first two rows are the
class distribution of sub-task A. The mid part two rows
are the class distribution of sub-task B. The last three
rows are the class distribution of sub-task C.

3.2 Preprocessing

Emoji substitution We use one online emoji
project on github > which could map the emoji uni-
code to substituted phrase. We treat such phrases
into regular English phrase thus it could main-
tain their semantic meanings, especially when the
dataset size is limited.

HashTag segmentation The HashTag becomes
a popular culture cross multi social networks, in-
cluding Twitter, Instagram, Facebook etc. In order
to detect whether the HashTag contains profan-
ity words, we apply word segmentation using one
open source on the github 3. One typical example
would be ‘#LunaticLeft’ is segmented as ‘Lunatic
Left’ which is obviously offensive in this case.

Misc. We also convert all the text into lower
case. ‘URL is substituted by ‘http’, since ‘URL’
does not have embedding representation in some
pre-trained embedding and models. Consecutive
‘@USER’s are limited to three times to reduce the
redundancy.

3.3 Methodology

Linear model We firstly select Logistic Re-
gression as our baseline model to determine the
lower bound performance that we should com-
pare. First we cross-validate hyper-parameters of
different vectorizers to build bag of words rep-
resentation. Secondly, we adopt the pre-trained
word2vec model from google 4, then aggregate the
maximum and average value in each dimension.

Zhttps://github.com/carpedm20/emoji
3https://github.com/grantjenks/python-wordsegment
*https://code.google.com/archive/p/word2vec/



(a) Sub-task A

(b) Sub-task B

(c) Sub-task C

System  MacroF Acc System  MacroF Acc SA)IIIS tgr};lp l(:/lla ::?F (;A; 53
AIINOT 0.4004  0.6677 ANTIN 04686 0.8818 All IND 0:2554 0:6211
ANlOFF 0.2494  0.3323 ANNUNT 0.1057  0.1182 AILOTH 00623 0.1031
Linear 0.7102  0.7273 Linear 0.6028  0.8000 Cinear 05607 07062
LSTM 0.7166  0.7659 LSTM 0.5029  0.8795 LSTM 05056  0.7036
BERT 0.7826  0.8485 BERT 0.3830  0.8682 BERT 0.8435 07294

Table 2: Results on Dev Data.

Thirdly, we use the dictionary Hatebase API° to
aggregate the hate words in each category. We val-
idate all the features combinations, then report the
accuracy and F1 with the highest to determine the
model parameters.

LSTM Long Short-Term Memory is introduced
in 1991 (Hochreiter and Schmidhuber, 1997)
which is an more powerful extension of recurrent
neural network. The gates inside of LSTM could
prevent gradient vanishing problem, to memorize
the long time dependency. LSTM has been used
in tons of natural language processing task, such
as sentiment classification, neural translation, lan-
guage generation etc. We would also like to use
LSTM as our second powerful baseline model to
compare and report the result. The specific setting
is the following: the input is mapped from one-
hot encoder into a shared embedding layers with
dimension 140; the hidden units of LSTM is 64
and follower by a dropout layer with rate 0.5. The
maximum sequence length is 140, thus the sen-
tences would be either cut off or padded.

BERT Google research team releases Bidirec-
tional Encoder Representation from Transformer
(BERT) (Devlin et al., 2018) and achieve state of
the art results on many NLP tasks. BERT uses
identical multi-head transformer structure that is
introduced in (Vaswani et al., 2017). The model is
pre-trained on huge corpus from different sources.
Since the dataset size in this SemEval-2019 Task
6 is not that big, we pass the dataset into the pre-
trained BERT model, and report the loss and ac-
curacy at each epoch. The observation from ex-
periments shows that after 1st or 2nd epochs, the
model converges fast and always get very lower
loss on the validation set. In such case, in the
sub-task B and sub-task C, we report the macro-
F1 score after the model trains after 1st, 2nd and

>http://www.hatebase.org
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3rd epoch.

4 Experiment Results

The evaluation metric of this task is Macro-Fl1,
which is the unweighted-average F1 of all the
classes. The imbalance distribution makes the
macro-F1 hard to achieve, and usually the score
is penalized by the minority class. Weighted-loss
is one solution during the training time to balance
the model not to lead to the majority class predic-
tion.

In the table 2 and 3, we report the results of our
dev-dataset and final test dataset. From the table 2,
we list the performance of our three selected mod-
els for each sub-task. The data is stratified split
into 9:1 as train and test. There is also one inde-
pendent validation set to determine the model se-
lection that is split from train set. One observation
from the table shows the problem of imbalanced
data, so that higher accuracy does not guarantee
higher macro-F1 score. Thus the stop criterion is
based on average loss of validation set we men-
tioned before. Based on the results of validation,
we choose to use BERT as our selected model for
the final submission.

In the table 3, it shows the results on official
test dataset. It should be noticed that in the sub-
task A, we also submit one result of a Bagging
classifier with number 50, and Logistic Regression
is the weak classifier. The features are the same
with linear model we mentioned before. The re-
sult from BERT model sub-task A achieves the 1st
place among all the participants. BERT-3 denotes
we train BERT with only 3 epochs. Same notation
with the latter two sub-tables. In the sub-task B
and sub-task C, the results are not as good as sub-
task A due to two reasons: 1) the class distribu-
tion is more skewed than that of sub-task A. 2) the
number of training instance is much smaller than
sub-task A. The worst performance is sub-task C,



(a) Sub-task A

(b) Sub-task B

(c) Sub-task C

System  MacroF Acc System  MacroF Acc System  MacroF Acc

AIINOT 0.4189  0.7209 AIITIN 04702  0.8875 AIlGRP 0.1787  0.3662
ANlOFF 0.2182  0.2790 AILUNT 0.1011 0.1125 AILIND 0.2130  0.4695
Bagg 0.7558  0.8105 BERT-1 0.6932  0.8875 AllOTH 0.0941 0.1643
Linear 0.7501 0.7953 BERT-2 0.4702  0.8875 BERT-1 0.5267  0.7277
BERT-3 0.8286  0.8628 BERT-3 0.7159  0.8958 BERT-2 0.5598  0.6948

Table 3: Results on Test Data.
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Figure 1: Sub-task A, BERT model after fine-tuning

Confusion Matrix
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True label

UNT A

0.0
N

&
S

Predicted label

Figure 2: Sub-task B, BERT model after fine-tuning

since it is three-class classification, and the ‘OTH’
class has very few examples.

The confusion matrix of three sub-tasks are
shown in fig 1, 2, and 3. This is another way to
explain the results as we discussed before. The fig-
ures are provided by the organizers, and we use the
figures to summarize test distribution in the table
1. In the previous section, we mentioned the dis-
crepancy of class distribution between training and
test datasets. For example, in sub-task C, the class
‘OTH’ constitutes 0.101 of the training data, while
it makes up 0.164 of the test data. This adds diffi-
culty to the task, however, we are often confronted
with the same situation in real-world problems.
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Confusion Matrix

True label

Predicted label

Figure 3: Sub-task C, BERT model after fine-tuning

5 Conclusion

Offensive language and online hostility is crucial
on the social network. The minority proportion
of the nature and morphological language are the
difficulties to achieve high performance. The Di-
versity and evolution of the language at different
ages is another challenge for social media detec-
tion task. As a conclusion, our work shows the
competitive results in this shared task using cus-
tomized processing to dataset, as well as the power
of pre-trained model. In real life, labeled data
is always limited and requires expensive human
labors. In such case, transfer learning is always a
good option to get started. Domain adaption also
has prior knowledge of specific domain before do-
ing any modeling work on hand. How to tune the
parameters is nontrivial, and there are a lot of more
efficient ways to be explored, which could yield
better performance.
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Abstract

This paper describes the systems of the
CUNY-PKU team in “SemEval 2019 Task 1:
Cross-lingual Semantic Parsing with UCCA”!.
We introduce a novel model by applying a cas-
caded MLP and BiLSTM model. Then, we
ensemble multiple system-outputs by repars-
ing. In particular, we introduce a new
decoding algorithm for building the UCCA
representation.  Our system won the first
place in one track (French-20K-Open), sec-
ond places in four tracks (English-Wiki-Open,
English-20K-Open, German-20K-Open, and
German-20K-Closed), and third place in one
track (English-20K-Closed), among all seven
tracks.

1 Introduction

We participate in all seven tracks in Cross-lingual
Semantic Parsing at SemEval 2019. Our sub-
mission systems” are based on BiLSTM using
TUPA (Hershcovich et al., 2017a, 2018).

Then, we built a second single parser using Bil-
STM (Bi-directional LSTM) and Multi-Layer Per-
ceptron (MLP) with TUPA (Hershcovich et al.,
2017a, 2018). Most importantly, we introduce a
new model Cascaded BiLSTM by first pre-training
the BILSTM and MLP model and then to con-
tinue training another MLP model. The cascaded
BiLSTM parser significantly enhances the parsing
accuracy on all tasks. We also complete a Self-
Attentive Constituency Parser (Kitaev and Klein,
2018a,b) as comparison. Finally, we ensemble dif-
ferent parsers with a reparsing strategy (Sagae and
Lavie, 2006). In particular, we introduce a novel
algorithm based on dynamic programming to per-
form inference for the UCCA representation. This

"https://competitions.codalab.org/
competitions/19160

https://github.com/weiminl7/
semEval-taksl
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decoder can also be utilized as a core engine for a
single parser.

In the post-evaluation stage, our improved sys-
tems are ranked first in three tracks ( French-
20K-Open, English-20K-Open and English-Wiki-
Open) and second in the other four tracks. A
shared task summary paper (Hershcovich et al.,
2019) by competition organizers summaries the
results.

We will describe our systems in detail, includ-
ing three single parsers in Section 2 and a voter in
Section 3. We focus on two novel technical con-
tributions: the Cascaded BiLSTM model and the
Reparsing strategy. In Section 4 we will present
experimental setup and results.

2 Single Parsers

2.1 TUPA Parsers

The TUPA parser (Hershcovich et al., 2017a)
builds on discontinuous constituency and depen-
dency graph parsing and makes some improve-
ments especially for the UCCA representation.
The English parsing is based on Hershcovich
et al. (2017a), while French and German parsing
is based on Hershcovich et al. (2018).

It has been shown that the choice of model
plays an important role in transition-based pars-
ing (Hershcovich et al., 2017b). For TUPA, we
built parsers with different models: MLP, BilL-
STM, and also invent a new architecture, viz. Cas-
caded BiLSTM. The three single parsers are de-
scribed as the following:

The MLP parser (Hershcovich et al., 2017b)
applies a feedforward neural network with dense
embedding features to predict optimal transitions
given particular parser states. This parser adopts a
similar architecture to Chen and Manning (2014).

The BIiLSTM parser (Hershcovich et al.,
2018) applies a bidirectional LSTM to learn con-

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 92-96
Minneapolis, Minnesota, USA, June 67, 2019. ©2019 Association for Computational Linguistics



Parser State

Figure 1: Illustration of the multi-stage Cascaded BiL-
STM model. Top: parser state. Bottom: BiLTSM
with two MLP architectures. The red box represents
BiLSTM (Hershcovich et al., 2018), and the blue box
represents a MLP that we add after implementing the
BiLSTM architecture. Vector representation for the in-
put tokens is computed by two layers of bidirectional
LSTMs then fed into the double MLP with Softmax to
select the next transition.

textualized vector-based representations for words
that are then utilized for encoding a parser state,
similarly to Kiperwasser and Goldberg (2016).
The red box in Figure 1 shows the architecture
of BiLSTM model, indicating that the represen-
tations after BILSTM are fed into a Multiple-layer
perceptron.

The Cascaded BiLSTM parser combines the
above two parsing models, which contains a multi-
stage training process. First, we use BiLSTM
TUPA model to train 100 epochs, then retrain
the model using MLP TUPA model for another
50 epochs. It’s really interesting that the per-
formances remains as good as BiLSTM TUPA
model, even slightly better. Figure 1 shows the
architecture of Cascaded BiLSTM model.

2.2 Phrase Constituency Parser

We also built a Constituency Parser as compari-
son, which uses a self-attentive architecture that
makes explicit the manner considering informa-
tion propagating between different locations in the
sentences (Kitaev and Klein, 2018a,b). The con-
stituency parser uses parsing tree structures as in-
put and output. Therefore, we convert the phrase
structure tree format into UCCA XML formation
and vice versa.
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3 The Reparsing System

The reparsing system (voter) takes multiple single
parser (as in Section 2) results as input and pro-
duces a single, hopefully, improved UCCA graph
as output. Briefly, each input UCCA graph is en-
coded to a chart of scores for standard CKY de-
coding. In this step, we utilize a number of auxil-
iary labels to encode remote edges and discontinu-
ous constructions. These scores are summed up to
get a new chart, which is used for CKY decoding
for an immediate tree representation as the voting
result. An immediate tree is then enhanced with
reference relationships. Finally, a UCCA graph is
built via interpreting auxiliary labels.

Span representation Graph nodes in a UCCA
graph naturally create a hierarchical structure
through the use of primary edges. Following this
tree structure, we give the definition of span of
nodes.

Definition 1. The span of node z is:

1. empty if z is an implicit node;

2. [p, p+1)if x is a leaf node but not an implicit
node, where p is the position of the lexical unit
corresponding to x;

3. the union of spans of x’s children, otherwise.

Assuming that each span of nodes is consecu-
tive (we will deal with nonconsecutive spans in
Section 3). We encode the label of edge from x’s
parent to = as the label of span of x. If there
are some implicit nodes in x’s children, the la-
bels of edges from z to them are also encoded
by the label of the span of x. If the span of x is
the same as x’s parent, the label of this span will
be encoded ordered. This process is well-defined
due to the acyclic graph structure. Each parser is
assigned a weight to indicate its contribution to
reparsing. The spans with labels encoded from a
UCCA graph are assigned the same score accord-
ing to which parser they come from. Thus, there
is a set of scored spans for each UCCA graph.
Following the parsing literature, we call this set a
chart. We merge multiple charts produced by dif-
ferent parsers to a single chart simply by adding
the corresponding scores.

Handling Remote Edges A remote edge with
label L from node z to node y is equal to a pri-
mary edge with label L from x to an implicit node,
which is referred to node y. Hence, if we can find
the relationships of references, the remote edges
are able to be recovered.
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Figure 2: Remove nonconsecutive spans

Since all primary edges from nodes to their par-
ent are encoded in labels of spans, each node could
be represented as part of the label of a span. We
encode each reference of a remote edge as a pair of
two nodes with a score. After building all primary
edges through dynamic programming, we search
for available references with the maximum score
in each implicit node greedily and leverage these
references to recover remote edges.

Handling Discontinuous Spans Discontinuous
spans are removed by repeating the following
steps:

Step 1. Find a node x with a nonconsecutive
span with the minimum starting point and min-
imum height, supposed its consecutive sub-span
with minimum starting point is [a, b).

Step 2. Find a node y with a consecutive span
with starting point b and maximum height, sup-
posed the primary edge from ¥’s parent to y is e.

Step 3. Create a node z with a special type MIR-
ROR and create a primary edge with the label of e
from y’s parent to z. Remove the primary edge
e and create a primary edge with a special label
FAKE from z to y.

After each iteration, the span of y is added to
x, and the sum of the length of nonconsecutive
spans decreases. Each primary edge in an origi-
nal UCCA graph can only be removed once. To
that end, the running time of this algorithm is lin-
ear in the number of lexical units. If all references
of MIRROR nodes are correctly predicted, the ex-
pected UCCA graph will be obtained. In this way,
remote edges can be handled.

4 Experiments

4.1 Data Statistics

The semantic parsing task is carried out in three
languages: English, German and French, in-
cluding three training data sets and parallel four
test data sets. For English data, we use the
Wikipedia UCCA corpus (henceforth Wiki) as
training and development data, testing on English
UCCA Wikipedia corpus as the in-domain test.
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Trainin
Tracks Closed ngen Dev Test
En-Wiki | 4113 5132 514 515
En-20K 0 5132 0 492
Ge-20K | 5211 6360 651 632
Fr-20K 15 547 238 239

Table 1: Sentence number in training, dev, and test sets
for English, German and French UCCA data sets.

Meanwhile, English UCCA Twenty Thousand
Leagues Under the Sea English-French-German
parallel corpus (henceforth 20K Leagues) serves
as an out-of-domain test set. For German data, we
use 20K Leagues corpus for train, development,
and test sets. For French data, they provide only
limited training data, along with development and
test data sets.

Table 1 shows the sentences number of data sets
for all three languages. We use the closed track
data and UCCA’s annotation resources for open
tracks. We merge those resources and build our
open track data’.

4.2 TUPA Parsers

We build MLP and BiLSTM systems using
TUPA (Hershcovich et al., 2017b). For Cas-
caded BiLSTM model, we add another MLP af-
ter the BILSTM model, which forms a cascaded
BiSLTM. For closed tracks, we train models based
on the gold-standard UCCA annotation from offi-
cial resources. For open tracks, We use additional
UCCA data from other open sources as training
data set. We also generate synthetic data by auto-
matically translating text (Khan et al., 2018) and
its parsing labels across languages in our on-going
work.

Table 2 shows the results for four models in dif-
ferent tracks. The italicized values are our offi-
cial submission. However, we have made some
improvement after the Evaluation Phrase, and the
bold results are our best results. The first three
models are single systems and the fourth model
(Ensembled) ensembles different frameworks by
reparsing systems. The “baseline” represents the
baseline that competition provides for reference.

By using feedforward Neural Network and em-
bedding features, MLP models get the lowest
scores. BiLSTM models achieve better results
than MLP models in F1 scores, both in the in-
domain and out-of-domain data sets. However, the

*https://github.com/weiminl7/
semEval-taksl



Tracks MLP BiLSTM(Submit) Cascaded BILSTM Ensembled baseline
En-Wiki | 0.650 0.718 0.721 0.728 0.728
closed | En-20K | 0.617 0.669 0.673 0.681 0.672
Ge-20K | 0.699 0.797 0.797 0.797 0.731
En-Wiki | 0.784 0.800 0.843 0.846 0.735
open En-20K | 0.715 0.739 0.764 0.770 0.684
Ge-20K | 0.598 0.841 0.841 0.840 0.791
Fr-20K | 0.535 0.796 0.795 0.796 0.487

Table 2: F1 scores for both closed and open tracks in SemEval Task 1 2019 competition. The italic text represents
our official submission in competition and the bold text represents our best F1 scores.

Open Tracks | F1 Scores
English-Wiki 0.75
English-20K 0.785

Table 3: F1 scores on unlabeled data.

combination of BiSLTM and MLP models (Cas-
caded BiLSTM model) performs best among the
three models in all results of single systems.

Our in-house reparsing system ensembles the
above parsers as described in Section 3. We can
see that ensemble results are better at closed track,
but not as good as the best results by Cascaded
BiLSTM at Open track.

4.3 Phrase Constituency Parser

For Phrase Constituency Parer, we only test the
performance on unlabeled data instead of labeled
data, while for TUPA we test on labeled data.

First, we use Benepar®, a parsing tool using out-
of domain pre-trained models to predict the labels,
the outputs are parsing tree structures.

Second, we convert the constituency parsing
tree structure to Conllu Format. We develop a one-
shot tool to improve the efficiency of conversion
based on TreebankPreprocessing”, which can au-
tomatically convert a batch of files in one direc-
tory.

Finally, we convert Conllu format to UCCA
XML using format®.

We only experiment on English-Wiki and
English-20K open track, and the results are pretty
bad, as shown in Table 3. We hypothesize there are
two reasons: 1. The conversion process could un-

‘nttps://github.com/nikitakit/
self-attentive-parser

Shttps://github.com/hankcs/
TreebankPreprocessing

*https://github.com/huji-nlp/semstr/
blob/master/semstr/convert.py
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Models test sets dev sets
CharsLSTM 91.96 92.21
ELMO 94.31 94.75

Table 4: F1 scores for two constituency parsers on both
Penn Treebank dev and test data sets.

avoidably cause accuracy loss. 2. The third-party
pre-trained models are not as efficient as the mod-
els trained directly on the specific UCCA data.

To test the accuracy on unlabeled data and to
evaluate how many losses are there during the con-
version process, we evaluate the accuracy in the
parsing tree structure phrase before the conver-
sion. We experimentally validate our system on
the English Wiki data set. We use official training
data set as training data, splitting official dev set
into two parts and separately serving as our dev
set and test set. We also use two models of con-
stituency parser: ELMO and CharsLSTM, tested
on Penn Treebank (Cross and Huang, 2019) data.

Table 4 indicates that, for Penn Treebank data
sets, CharsLSTM model’s F1 score achieves 92.21
on dev data set, with F1 score 91.96 on the test
dataset. Using ELMo, The dev dataset’s F1 score
achieves 94.75, with F1 score achieves 94.31 on
test data set.

5 Summary

Our submission systems mainly contain a BilL-
STM, an MLP, and a cascaded BiLSTM parser, as
well as a voted system of above. Our final sys-
tem ranks first in three tracks, French-20K-Open,
English-20K-Open and English-Wiki-Open, and
the second place in the other four tracks in the
post-evaluation.
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Abstract

This paper describes the graph transfor-
mation system (GT System) for SemEval
2019 Task 1: Cross-lingual Semantic Pars-
ing with Universal Conceptual Cognitive
Annotation (UCCA)'. The input of GT
System is a pair of text and its unannotated
xml, which is a layer 0 part of UCCA
form. The output of GT System is the cor-
responding full UCCA xml. Based on the
idea of graph illustration and transfor-
mation, we perform four main tasks when
building GT System. At the first task, we
illustrate the graph form of stanford
dependencies? of input text. We then trans-
form into an intermediate graph in the sec-
ond task. At the third task, we continue to
transform into ouput graph form. Finally,
we create the output UCCA xml.

The evaluation results show that our
method generates good-quality UCCA xml
and has a meaningful contribution to the
semantic representation sub-field in Natu-
ral Language Processing.

1 Introduction

In the past few years, semantic representation is
receiving growing attention in NLP. Researchers
have recently proposed different semantic
schemes. Examples include Abstract Meaning
Representation (Banarescu et al. 2013), Broad-
coverage Semantic Dependencies (Oepen et al.
2014), Universal Decompositional Semantics
(White et al. 2016), Parallel Meaning Bank (Ab-
zianidze et al. 2016), Universal Conceptual Cog-
nitive Annotation (Abend and Rappoport 2013).
These advances in semantic representation, along
with corresponding advances in semantic parsing,
text understanding, summarization, paraphrase
detection, and semantic evaluation.

In SemEval 2019 Task 1: Cross-lingual Se-
mantic Parsing with Universal Conceptual Cogni-

ttrung@nlke-group.net

tive Annotation (UCCA)!, the Committee focuses
on parsing text according to the UCCA semantic
annotation. UCCA (Abend and Rappoport 2013)
is a cross-linguistically applicable semantic repre-
sentation scheme, based on Basic Linguistic The-
ory (Dixon 2010). In general, UCCA represents
the semantics of linguistic utterances as directed
acyclic graphs (DAGs). In one DAG, nodes and
edges belong to one of several layers. There are
two types of node: (i) terminal nodes express the
text tokens; (ii) non-terminal nodes express se-
mantic units. Edges are labelled, indicating the
role of a child in the relation the parent represents.
As an example, consider sentence in Example 1:
“The album was recorded in Switzerland .”. Two
layers of UCCA xml of this sentence:

e Layer0:

<root annotationID="0" passageID="503012">
<attributes />
<layer layerID="0">
<attributes />

<extra ... />
<node ID="0.1" type="Word">
<attributes ... text="The" />
<extra dep="det" ... tag="DT" />
</node>
</layer>
</root>

The relations of NodelD and corresponding lexi-

con:
{[ID="0.1" =>» dep="det" = “The”]

[ID="0.2" = dep="nsubj:pass” 2 “album”]
[ID="0.3" =» dep="aux:pass" = “was”]
[ID="0.4" =» dep="root" =» “recorded”]
[ID="0.5" =» dep="case" = “in”]
[ID="0.6" = dep="obl" = “Switzerland”]
[ID="0.7" =» dep="punct" = “.”]}

e Layerl:

<layer layerID="1">
<attributes />
<node ID="1.1" type="FN">
<attributes />

! https://competitions.codalab.org/competitions/19160

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 97-101
Minneapolis, Minnesota, USA, June 67, 2019. ©2019 Association for Computational Linguistics



<edge toID="1.2" type="H">
<attributes />
</edge>
</node>
<node ID="1.2" type="FN">
<attributes />
<edge toID="1.4" type="A">
<attributes />
</edge>
</node>
<node ID="1.4" type="FN">
<attributes />
<edge toID="1.10" type="E">
<attributes />
</edge>
</node>
<node ID="1.10" type="FN">
<attributes />
<edge toID="0.1" type="Terminal">
<attributes />
</edge>
</node>

</layer>

We have the graphical representation of the above
UCCA:

GIH[ N\

\\
4
) \7
Terrimrul

Terrinal
0.6 - Switzerland - NNP - obl
0.5-n-IN-case

| 0.4 recorded - VBN - oot ‘

Ternginal

(ERTERRE
Figure 1: Graph form of UCCA xml of sentence in Ex-
ample 1.
The primary purpose of this article is to present
our system called graph transformation system
(GT System) for Task!. We perform four tasks
when building GT System. At the first task, we il-
lustrate the graph form of Stanford dependencies?
(Manning et al. 2014; Marie-Catherine et al.
2014) of input text. We then transform into an in-
termediate graph in the second task. At the third
task, we continue to transform into ouput graph
form. Finally, we create the output UCCA xml.
The rest of article is separated as follows. We
briefly describe Stanford dependencies in Section
2. In Section 3, we introduce our GT system for
Task'. Section 4 details the experiments and

inal

2 https://stanfordnlp.github.io/CoreNLP/

analyzes the results. We offer conclusions in Sec-
tion 5.

2 Stanford Dependencies

Stanford dependencies® (Manning et al. 2014; Ma-
rie-Catherine et al. 2014; Marie-Catherine and
Manning 2008) provides a representation of
grammatical relations between words in a sen-
tence. Stanford dependencies (SD) have three
parts: name of the relation, governor and depend-
ent. Consider English sentence in Example 1, be-
low is the xml representation of SD basic depend-
encies. This representation is the result of running
Stanford CoreNLP pipeline (Manning et al. 2014).
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<dependencies type="basic-dependencies">
<dep type="root">
<governor 1idx="0">ROOT</governor>
<dependent idx="4">recorded</dependent>
</dep>
<dep type="det">
<governor idx="2">album</governor>
<dependent idx="1">The</dependent>
</dep>
<dep type="nsubjpass">
<governor idx="4">recorded</governor>
<dependent idx="2">album</dependent>
</dep>
<dep type="auxpass">
<governor idx="4">recorded</governor>
<dependent idx="3">was</dependent>
</dep>
<dep type="case">
<governor
idx="6">Switzerland</governor>
<dependent idx="5">in</dependent>
</dep>
<dep type="nmod">
<governor idx="4">recorded</governor>
<dependent
idx="6">Switzerland</dependent>
</dep>
</dependencies>

We have the graphical representation of the above
SD basic dependencies:

album - NN |5wmerland - NNP|

det

case

Y k.
The - DT in-IN

Figure 2: Graph form of SD basic dependencies of sen-
tence in Example 1.




3 The Graph Transformation System

In this section, we express our GT system for cre-
ating UCCA xml of the input text. The general ar-
chitecture is represented in Figure 2:

Graph Viewing of SD Basic Dependencies
Transforming to Intermediate Graph

Figure 3: Architecture of Graph Transformation Sys-
tem.

When building GT System, we perform two pro-
cesses: training and testing process. At training
process, we build the intermediate graph from
UCCA and SD basic dependencies of training da-
ta'. At the testing process, which can be called the
inverse process of training, we build the ouput
UCCA from intermediate graph of testing data.

3.1

In general, the intermediate graph is an irreducible
representation of UCCA graph form. This inter-
mediate graph is quite similar to graph form of SD
basic dependencies. The main difference of the in-
termediate graph and graph form of SD basic de-
pendencies is: each edge label in the intermediate
graph is the combination of UCCA categories
(Abend and Rappoport. 2013) and Stanford de-
pendency relations (Marie-Catherine and Man-
ning 2008a, 2008b).

Below is the intermediate graph of sentence in
Example 1. This graph is the reduction of graph in
Figure 1, and quite similar to graph in Figure 2.

Intermediate Graph

Figure 4: Intermediate graph of sentence in Example 1.

3.2

Firstly, at training process, we consider train data'
and performed main tasks. The first and second

Training Process
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task is in turn viewing the graph from of SD basic
dependencies and UCCA of input text. At the third
task, we propose Left-First-Search liked algorithm
with Bottom-Up idea to reduce the graph form of
UCCA to intermediate graph. At the final task, we
propose rules and heuristics for matching graph
form of SD basic dependencies and intermediate
graph.

The main steps of Left-First-Search (LFS) al-
gorithm is as follow. Step 1. Browse to terminal
on the left. Step 2. Back to parent node of this
terminal. Check if parent having any other child
or not. Step 2.1. If yes. Repeat Step 1 with root is
this child node. Step 3. Swap the position of root
of sub-tree with position of child having important
annotation. Step 4. Back to parent node of this
root. Repeat Step 2 with this parent.

To perform LFS algorithm, we determine the
priority of SD and UCCA annotations according
to two factors. First. The meaning of each annota-
tion, representing the dependency relations and
grammatical roles of lexicons. Second. The posi-
tion of each node in graph.

Apply LFS algorithm for graph in Figure 3, we
in turn have three level reductions in Figure 5, 6, 4
(respectively):

p.—.:-_
01 rh -oT

02- mmm ‘

Figure 5: First reduction of Graph form in Figure 1.

& o & é & \@

Figure 6: Second reduction of Graph form in Figure 1.
After having the final reduction, which is inter-
mediate graph, of graph form of UCCA, we com-
pare with graph form of SD basic dependencies.
We consider the similarities between two graphs
and propose rules and heuristics to (i) determine
the level of one node, and (ii) determine the group

opl
o
0.6 - Switzerland - NNP

‘ 0.4-recorded - VN |

12-P

f \

,’



of UCCA annotation for each level. The general

idea of mechanism is:

e Collect all SD-type of relations in UCCA and
SD basic dependencies of training data. Be-

low is the collection:

SD basic aclrelcl / expl / csubjpass / cop / aux / conj / acl /
dependencies xcomp / dep / appos / advmod / neg / det /
cc:preconj / nmod:tmod / ccomp / root / advel /
nsubj / case / iobj / cc / det:predet / nmod:poss /
compound:prt / csubj / nsubjpass / nummod /
nmod:npmod / nmod / auxpass / parataxis / amod
/ compound / discourse / mwe / dobj / mark

UCCA aclrelcl / expl / obl:npmod / cop / aux / conj / acl

/ appos / xcomp / goeswith / advmod / det /

ccomp / nsubj:pass / cc:preconj / nmod:tmod /

flat / root / obl:tmod / advcl / punct / nsubj / case

/ iobj / cc / vocative / det:predet / nmod:poss /

compound:prt / csubj / nummod / nmod:npmod /

nmod / parataxis / amod / list / compound / dis-

course / aux:pass / obj / obl / fixed / mark

e Determine the priority order of SD-type rela-
tions.

Example 2: dobj -> amod -> dep ->nmod -> case.

e Determine the compound (UCCA and SD) re-
lation in each node level.

Example 3: type conj at level 7: “H-A-E-C-C-C-

.99
conj

3.3 Testing Process

At the testing process, which can be called the in-
verse process of training, we considered develop-
ment and test data' and performed main tasks. The
first task is viewing the graph from of SD basic
dependencies of input text. At the second task, we
applied proposed rules and heuristics to transform
this graph to intermediate graph. We then, at the
final task, we proposed Breadth-First-Search liked
algorithm with Top-Down idea to re-create the
graph form of UCCA from intermediate graph.
This BFS algorithm is, in fact, the inverse mecha-
nism of LFS algorithm in Section 3.2.

The main steps of Breadth-First-Search (BFS)
algorithm is as follow. Step 1. Reduce the first
level of node. Step 2. Determine the intergrated-
Child which adheres to this node. Step 3. If there
is no intergratedChild. Step 3.1. Repeat Step 1 un-
til node come down to terminal position. Step 3.2.
Repeat from Step 1 to Step 4 with each child of
this node. Step 4. If there is intergratedChild. Step
4.1. Repeat from Step 1 to Step 4 with each child
of this node which are different from intergrated-
Child. Step 4.2. Repeat from Step 1 to Step 4 with
this node. Step 4.3. Repeat from Step 1 to Step 4
with intergratedChild.

4 Experiment and Evaluation

At the evaluation phase, we focus on English in-
domain setting, using the Wiki corpus. In testing
data, this domain consists of 515 small texts with
corresponding unannotated UCCA xmls.

We test our method for both open and closed
track in the English setting: (i) closed track sub-
mission is only allowed to use the gold-standard
UCCA annotation distributed for the task in the
target language, and limited in its use of additional
resources; (ii) open track submission is allowed to
use any additional resource.

Table 1 and 2 view the results of testing data for
open and closed tracks with labeled (first row) and un-
labeled scores (second row).

Averaged P R F1

F1

0.708 Primary 0.738 0.694 0.715
Remote 1.000 0.000 0.000

0.822 Primary 0.857 0.806 0.831
Remote 1.000 0.000 0.000

Table 1: Results of testing data in open track.

Averaged P R F1

F1

0.706 Primary 0.737 0.692 0.714
Remote 1.000 0.000 0.000

0.825 Primary 0.860 0.808 0.833
Remote 1.000 0.000 0.000

Table 2: Results of testing data in closed track.

The testing results show that our GT system
creates good quality UCCA semantic representa-
tions in English Wiki testing data.

5 Conclusion

We have presented the graph transformation
method for creating UCCA semantic representa-
tion from English in-domain setting, using the
Wiki corpus'. Our method performs four main
tasks: (i) illustrate the graph form of Stanford de-
pendencies? of input text; (ii) transform into an in-
termediate graph; (iii) continue to transform into
ouput graph form; (iv) create the output UCCA
xml. The experiment results show that our method
meets the requirements from SemEval Task'.

In future works, we intend to improve the trans-
formational algorithms and propose more accurate
rules for selecting best nodes and dependency
tags. Besides, we expand our method and test with
other datasets for a broader comparison.
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Abstract

This paper describes the system submitted to
the SemEval 2019 shared task 1 ‘Cross-lingual
Semantic Parsing with UCCA’. We rely on the
semantic dependency parse trees provided in
the shared task which are converted from the
original UCCA files and model the task as tag-
ging. The aim is to predict the graph structure
of the output along with the types of relations
among the nodes. Our proposed neural archi-
tecture is composed of Graph Convolution and
BiLSTM components. The layers of the sys-
tem share their weights while predicting de-
pendency links and semantic labels. The sys-
tem is applied to the CONLLU format of the
input data and is best suited for semantic de-
pendency parsing.

1 Introduction

Universal Conceptual Cognitive Annotation
(UCCA) (Abend and Rappoport, 2013) is a
semantically motivated approach to grammatical
representation inspired by typological theories of
grammar (Dixon, 2012) and Cognitive Linguistics
literature (Croft and Cruse, 2004). In parsing,
bi-lexical dependencies that are based on binary
head-argument relations between lexical units
are commonly employed in the representation of
syntax (Nivre et al., 2007; Chen and Manning,
2014) and semantics (Haji¢ et al., 2012; Oepen
et al., 2014; Dozat and Manning, 2018).

UCCA differs significantly from traditional de-
pendency approaches in that it attempts to ab-
stract away traditional syntactic structures and re-
lations in favour of employing purely semantic
distinctions to analyse sentence structure. The
shared task, ‘cross-lingual semantic parsing with
UCCA’ (Hershcovich et al., 2019) consists in pars-
ing English, German, and French datasets using
the UCCA semantic tagset. In order to enable
multi-task learning, the UCCA-annotated data is
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automatically converted to other parsing formats,
e.g. Abstract Meaning Representation (AMR) and
Semantic Dependency Parsing (SDP), inter alia
(Hershcovich et al., 2018).

Although the schemes are formally different,
they have shared semantic content. In order to
perform our experiments, we target the converted
CONLLU format, which corresponds to tradi-
tional bi-lexical dependencies and rely on the con-
version methodology which is provided in the
shared task (Hershcovich et al., 2019) to attain
UCCA graphs.

UCCA graphs contain both explicit and implicit
units ! However, in bi-lexical dependencies, nodes
are text tokens and semantic relations are direct
bi-lexical relations between the tokens. The con-
version between the two format results in partial
loss of information. Nonetheless, we believe that
it is worth trying to model the task using one of
the available formats (i.e. semantic dependency
parsing) which is very popular among NLP re-
searchers.

Typically, transition-based methods are used in
syntactic (Chen and Manning, 2014) and seman-
tic (Hershcovich et al., 2017) dependency parsing.
By contrast, our proposed system shares several
similarities with sequence-to-sequence neural ar-
chitectures, as it does not specifically deal with
parsing transitions. Our model uses word, POS
and syntactic dependency tree representations as
input and directly produces an edge-labeled graph
representation for each sentence (i.e. edges and
their labels as two separate outputs). This multi-
label neural architecture, which consists of a Bil-
STM and a Graph Convolutional Network (GCN),
is described in Section 3.

"Explicit units (terminal nodes) correspond to tokens in
the text, but implicit (semantic) units have no corresponding
component in the text.
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2 Related Work

A recent trend in parsing research is sequence-to-
sequence learning (Vinyals et al., 2015b; Kitaev
and Klein, 2018), which is inspired from Neural
Machine Translation. These methods ignore ex-
plicit structural information in favour of relying on
long-term memory, attention mechanism (content-
based or position-based) (Kitaev and Klein, 2018)
or pointer networks (Vinyals et al., 2015a). By do-
ing so, high-order features are implicitly captured,
which results in competitive parsing performance
(Jia and Liang, 2016).

Sequence-to-sequence learning has been partic-
ularly effective in Semantic Role Labeling (SRL)
(Zhou and Xu, 2015). By augmenting these
models with syntactic information, researchers
have been able to develop state-of-the-art systems
for SRL (Marcheggiani and Titov, 2017; Strubell
etal., 2018).

As information derived from dependency parse
trees can significantly contribute towards under-
standing the semantics of a sentence, Graph Con-
volutional Network (GCN) (Kipf and Welling,
2017) is used to help our system perform semantic
parsing while attending to structural syntactic in-
formation. The architecture is similar to the GCN
component employed in Rohanian et al. (2019) for
detecting gappy multiword expressions.

3 Methodology

For this task, we employ a neural architecture util-
ising structural features to predict semantic pars-
ing tags for each sentence. The system maps a
sentence from the source language to a probability
distribution over the tags for all the words in the
sentence. Our architecture consists of a GCN layer
(Kipf and Welling, 2017), a bidirectional LSTM,
and a final dense layer on top.

The inputs to our system are sequences of
words, alongside their corresponding POS and
named-entity tags.”> Word tokens are repre-
sented by contextualised ELMo embeddings (Pe-
ters et al., 2018), and POS and named-entity tags
are one-hot encoded. We also use sentence-level
syntactic dependency parse information as input
to the system. In the GCN layer, the convolu-
tion filters operate based on the structure of the
dependency tree (rather than the sequential order

2spaCy (Honnibal and Johnson, 2015) is used to generate
POS, named-entity and syntactic dependency tags.
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of words).

Graph Convolution. Convolutional Neural Net-
works (CNNs), as originally conceived, are se-
quential in nature, acting as detectors of N-
grams (Kim, 2014), and are often used as feature-
generating front-ends in deep neural networks.
Graph Convolutional Network (GCN) has been in-
troduced as a way to integrate rich structural rela-
tions such as syntactic graphs into the convolution
process.

In the context of a syntax tree, a GCN can be
understood as a non-linear activation function f
and a filter W with a bias term b:

c=f(Y Wai+b)

ier(v)

(1

where r(v) denotes all the words in relation with
a given word v in a sentence, and c represents the
output of the convolution. Using adjacency matri-
ces, we define graph relations as mask filters for
the inputs (Kipf and Welling, 2017; Schlichtkrull
etal., 2017).

In the present task, information from each graph
corresponds to a sentence-level dependency parse
tree. Given the filter W and bias b, we can there-
fore define the sentence-level GCN as follows:

Cs=f(W,XTA+0,) )

where X, xy, Anxn, and C,x, are tensor rep-
resentation of words, the adjacency matrix, and
the convolution output respectively.> In Kipf
and Welling (2017), a separate adjacency matrix
is constructed for each relation to avoid over-
parametrising the model; by contrast, our model
is limited to the following three types of relations:
1) the head to the dependents, 2) the dependents
to the head, and 3) each word to itself (self-loops)
similar to Marcheggiani and Titov (2017). The fi-
nal output is the maximum of the weights from the
three individual adjacency matrices.

The model architecture is depicted in Figure 1.

4 Experiments

Our system participated in the closed track for En-
glish and German and the open track for French.
We exclusively used the data provided in the
shared task. The system is trained on the train-
ing data only, and the parameters are optimised us-
ing the development set. The results are reported

3o output dimension; v: word vectors dimension; n: sen-
tence length
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Figure 1: A GCN-based recurrent architecture.

on blind-test data in both in-domain and out-of-
domain settings. We focus on predicting the pri-
mary edges of UCCA semantic relations and their
labels.

4.1 Data

The datasets of the shared task are devised for four
settings: 1) English in-domain, using the Wiki cor-
pus; 2) English out-of-domain, using the Wiki cor-
pus as training and development data, and 20K
Leagues as test data; 3) German in-domain, using
the 20K Leagues corpus; 4) French setting with
no training data (except trial data), using the 20K
Leagues corpus as development and test data.

Whilst the annotated files used by the shared
task organisers are in the XML format, several
other formats are also available. We decided to
use CONLLU, as it is more interpretable. How-
ever, according to the shared task description,4 the
conversion between XML and CONLLU, which is
a necessary step before evaluation, is lossy. Her-
shcovich et al. (2017) used the same procedure of
performing dependency parsing methods on CON-
LLU files and converting the predictions back to
UCCA.

4.2 Settings

We trained ELMo on each of the shared task
datasets using the system implemented by Che
et al. (2018). The embedding dimension is set to
1024. The number of nodes is 256 for GCN and
300 for BiLSTM, and we applied a dropout of 0.5
after each layer. We used the Adam optimiser for
compiling the model.

We tested our model in four different settings,

*nttps://competitions.codalab.org/
competitions/19160#fnl
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as explained in Section 4.1. The parameters are
optimised on the English Wiki development data
(batch-size = 16 and number of epochs = 100) and
used for all four settings. As no training data was
available for French, the trained system on English
Wiki was used to parse French sentences of 20K
Leagues. For this reason the French model is eval-
uated within the open track.

4.3 Official Evaluation

Our model predicts two outputs for each dataset:
primary edges and their labels (UCCA semantic
categories). °

Table 1 shows the performance (in terms of pre-
cision, recall, and F1-score) for predicting primary
edges in both labeled (i.e. with semantic tags) and
unlabeled settings (i.e. ignoring semantic tags).
Table 2 shows Fl-scores for each semantic cate-
gory separately. Although the overall performance
of the system, as shown in the official evaluation
in Table 1, is not particularly impressive, there are
a few results worth reporting. These are listed in
Table 2.

Our system is ranked second in predicting four
relations, i.e. L (linker), N (Connector), R (Rela-
tor), and G (Ground), in all settings displayed in
bold. A plausible explanation would be that these
relations are somewhat less affected by the loss of
information incurred as a result of the conversions
between formats.

5 Discussion

Our neural model is applied to UCCA corpora,
which are converted to bi-lexical semantic depen-
dency graphs and represented in the CONLLU for-
mat. The conversion from UCCA annotations to
CONLLU tags appears to have a distinctly neg-
ative impact on the system’s overall performance.
As reported in the shared task description, convert-
ing the English Wiki corpus to the CONLLU for-
mat and back to the standard format results in an
F1-score of only 89.7 for primary labeled edges.
This means that our system cannot go beyond this
upper limit.

Since our system is trained on CONLLU files
and the evaluation involves converting the CON-
LLU format back to the standard UCCA format,

SFor more details about UCCA semantic categories and
the way they are used for the shared task, see https:
//competitions.codalab.org/competitions/
19160#learn_the_details-overview. Our system
does not predict remote edges defined in UCCA.



labeled unlabeled
dataset track | Avg. Fl1 P R F1 | Avg. F1 P R F1
UCCA _English-Wiki | closed | 0.657 0.673 0.655 0.664 | 0.809 0.829 0.807 0.818
UCCA _English-20K | closed | 0.626  0.632 0.642 0.637 0.8 0.808 0.821 0.814
UCCA _German-20K | closed | 0.71 0.72 0.72 072 | 0.851 0.863 0.862 0.862
UCCA French-20K* | open | 0.438 0.443 0.447 0.445| 0.690 0.698 0.705 0.702

Table 1: Official results of the shared task evaluation for predicting different semantic category labels. (* The

results for French are for Post-Evaluation.)

dataset ® © N & ® GG O H A B U R (S (Terminal)
English-Wiki| 0.7 0.708 0.866 0.738 0.801 0.286 0.836 0.289 0.582 0.451 0.948 0.914 0 0.997
English-20K | 0.521 0.733 0.776 0.743 0.647 0.04 0.719 0.248 0.538 0.527 0.978 0.844 0 0.997
German-20K | 0.691 0.813 0.796 0.82 0.845 0.778 0.834 0.375 0.697 0.561 0.997 0.916 O 0.998
French-20K* | 0.223 0.569 0.579 0.551 0.378 0.000 0.536 0.118 0.314 0.358 0.987 0.711 O 0.993

Table 2: Official results of the shared task evaluation for predicting Primary edges and their labels. (* The results

for French are for Post-Evaluation.)

the reported results for our system can be mislead-
ing. In order to further investigate this issue, we
performed an evaluation using the English Wiki
development data, comparing the predicted labels
with the gold standard in development set in the
CONLLU format. The average F1-score for la-
belled edges was 0.71 compared to the 0.685 score
our system achieved on the development set using
the official evaluation script.

This clearly demonstrates that our system fares
significantly better if it receives its input in the
form of bi-lexical dependency graphs. Therefore,
the system is best suited for semantic dependency
parsing, although we believe that promising re-
sults could also be achieved in UCCA annota-
tion if the conversion between the CONLLU and
UCCA formats is improved to map and preserve
information more accurately.

6 Conclusion and Future Work

In this paper, we described the system we sub-
mitted to the SemEval-2019 Task 1: ‘Semantic
Parsing using Graph Convolutional and Recurrent
Neural Networks’. The model performs semantic
parsing using information derived from syntactic
dependencies between words in each sentence. We
developed the model using a combination of GCN
and BiLSTM components. Due to the penalisation
resulting from the use of lossy CONLLU files, we
argue that the results cannot be directly compared
with those of the other task participants. ¢

In the future, we would like to build on the work

®The code is available at https://github.com/
shivaat/GCN-Sem.
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presented in this paper by applying the architec-
ture to the standard UCCA dataset, or possibly
training the system to perform bi-lexical semantic
dependency annotation.
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Abstract

This paper describes our recursive system for
SemEval-2019 Task 1: Cross-lingual Seman-
tic Parsing with UCCA. Each recursive step
consists of two parts. We first perform seman-
tic parsing using a sequence tagger to estimate
the probabilities of the UCCA categories in the
sentence. Then, we apply a decoding policy
which interprets these probabilities and builds
the graph nodes. Parsing is done recursively,
we perform a first inference on the sentence to
extract the main scenes and links and then we
recursively apply our model on the sentence
using a masking feature that reflects the deci-
sions made in previous steps. Process contin-
ues until the terminal nodes are reached. We
choose a standard neural tagger and we fo-
cused on our recursive parsing strategy and on
the cross lingual transfer problem to develop
a robust model for the French language, using
only few training samples.

1 Introduction

Semantic representation is an essential part of
NLP. For this reason, several semantic represen-
tation paradigms have been proposed. Among
them we find PropBank (Palmer et al., 2005) and
FrameNet Semantics (Baker et al., 1998), Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), Universal Decompositional Seman-
tics (White et al., 2016) and Universal Conceptual
Cognitive Annotation (UCCA) (Abend and Rap-
poport, 2013). These constantly improving rep-
resentations, along with the advances in semantic
parsing, have proven to be beneficial in many NLU
tasks such as Question Answering (Shen and La-
pata, 2007), text summarization (Genest and La-
palme, 2011), dialog systems (Tur et al., 2005), in-
formation extraction (Bastianelli et al., 2013) and
machine translation (Liu and Gildea, 2010).
UCCA is a cross-lingual semantic representa-
tion scheme, has demonstrated applicability in En-
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glish, French and German (with pilot annotation
projects on Czech, Russian and Hebrew). De-
spite the newness of UCCA, it has proven useful
for defining semantic evaluation measures in text-
to-text generation and machine translation (Birch
et al., 2016). UCCA represents the semantics of
a sentence using directed acyclic graphs (DAGSs),
where terminal nodes correspond to text tokens,
and non-terminal nodes to higher level semantic
units. Edges are labelled, indicating the role of
a child in the relation to its parent. UCCA pars-
ing is a recent task and since UCCA has several
unique properties, adapting syntactic parsers or
parsers from other semantic representations is not
straight-forward. Current state of the art parser
TUPA (Hershcovich et al., 2017) uses a transition
based parsing to build UCCA representations.
Building over previous work on FrameNet Se-
mantic Parsing (Marzinotto et al., 2018a,b) we
chose to perform UCCA parsing using sequence
tagging methods along with a graph decoding pol-
icy. To do this we propose a recursive strategy in
which we perform a first inference on the sentence
to extract the main scenes and links and then we
recursively apply our model on the sentence with
a masking mechanism at the input in order to feed
information about the previous parsing decisions.

2 Model

Our system consists of a sequence tagger that is
first applied on the sentence to extract the main
scenes and links and then it is recursively applied
on the extracted element to build the semantic
graph. At each step of the recursion we use a
masking mechanism to feed information about the
previous stages into the model. In order to convert
the sequence labels into nodes of the UCCA graph
we also apply a decoding policy at each stage.
Our tagger is implemented using deep bi-

Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval-2019), pages 107-112
Minneapolis, Minnesota, USA, June 67, 2019. ©2019 Association for Computational Linguistics



directional GRU (biGRU). This simple architec-
ture is frequently used in semantic parsers across
different representation paradigms. Besides its
flexibility, it is a powerful model, with close to
state of the art performance on both PropBank (He
etal., 2017) and FrameNet semantic parsing (Yang
and Mitchell, 2017; Marzinotto et al., 2018b).
More precisely, the model consists of a 4 layer
bi-directional Gated Recurrent Unit (GRU) with
highway connections (Srivastava et al., 2015). Our
model uses has a rich set of features including syn-
tactic, morphological, lexical and surface features,
which have shown to be useful in language ab-
stracted representations. The list is given below:

1

Word embeddings of 300 dimensions .
Syntactic dependencies of each token?.
Part-of-speech and morphological features
such as gender, number, voice and degree?.
Capitalization and word length encoding.
Prefixes and Suffixes of 2 and 3 characters.
A language indicator feature.

Boolean indicator of idioms and multi word
expression. Detailed in section 3.2.

Masking mechanism, which indicates, for a
given node in the graph, the tokens within the
span as well as the arc label between the node
and its parent. See details in section 2.1.

Except for words where we use pre-trained em-
beddings, we use randomly initialized embedding
layers for categorical features.

2.1 Masking Mechanism

We introduce an original masking mechanism in
order to feed information about the previous pars-
ing stages into the model. During parsing, we
first do an initial inference step to extract the main
scenes and links. Then, for each resulting node,
we build a new input which is essentially the same,
but with a categorical sequence masking feature.
For the input tokens in the node span, this feature
is equal to the label of the arc between the node
and its parent. Outside of the node span, this mask
is equal to O. A diagram of this masking process
is shown in figure 1. The process continues and
the model recursively extracts the inner semantic
structures (the node’s children) in the graph, until
the terminal nodes are reached.

!Obtained from https://github.com/facebookresearch/MUSE

2 Using Universal Dependencies categories.
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To train such a model, we build a new training
corpus in which the sentences are repeated several
times. More precisely, a sentence appears N times
(N being the number of non terminal nodes in the
UCCA graph) each one a with different mask.

2.2  Multi-Task UCCA Objective

Along with the UCCA-XML graph representa-
tions, a simplified tree representation in CoNLL
format was also provided. Our model combines
both representations using a multitask objective
with two tasks. TASKI1 consists in, for a given
node and its corresponding mask, predicting the
children and their arc labels. TASK1 encodes
the children spans using a BIO scheme. The
TASK2 consists in predicting the CoNLL sim-
plified UCCA structure of the sentence. More
precisely, TASK2 is a sequence tagger that pre-
dicts the UCCA-CoNLL function of each token.
TASK2 is not used for inference purposes. It is
only a support that help the model to extract rele-
vant features, allowing it to model the whole sen-
tence even when parsing small pre-terminal nodes.

2.3 Label Encoding

We have previously stated that TASK1 uses BIO
encoded labels to model the structure of the chil-
dren of each node in the semantic graph. In some
rare cases, the BIO encoding scheme is not suf-
ficient to model the interaction between parallel
scenes. For example, when we have two paral-
lel scenes and one of them appears as a clause
inside the other. In such cases, BIO encoding
does not allow to determine whether the last part
of the sentence belongs to the first scene or to
the clause. Despite this issue, prior experiments
testing more complete label encoding schemes
(BIEO, BIEOW) showed that BIO outperforms the
other schemes on the validation sets.

2.4 Graph Decoding

During the decoding phase, we convert the BIO la-
bels into graph nodes. To do so, we add a few con-
straints to ensure the outputs are feasible UCCA
graphs that respect the sentence’s structure:

e We merge parallel scenes (H) that do not have
either a verb or an action noun to the nearest
previous scene having one.

e Within each parallel scene, we force the ex-
istence of one and only one State (S) or
Process (P) by selecting the token with the
highest probability of State or Process.
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Figure 1: Masking mechanism through recursive calls. Step 1 parses the sentence to extract parallel
scenes (H) and links (L). Then Steps 2.A 2.B use a different mask to parse these scenes and extract
arguments (A) and processes (P) which will be recursively parsed until terminal nodes are reached.

e For scenes (H) and arguments (A) we do not
allow to split multi word expressions (MWE)
and chunks into different graph nodes. If the
boundary between two segments lies inside a
chunk or MWE segments are merged.

2.5 Remote Edges

Our approach easily handles remote edges. We
consider remote arguments as those detected out-
side the parent’s node span (see REM in Fig.1). Our
earlier models showed low recall on remotes. To
fix this, we introduced a detection threshold on the
output probabilities. This increased the recall at
the cost of some precision. The optimal detection
threshold was optimized on the validation set.

3 Data

3.1 UCCA Task Data

In table 1 we show the number of annotations for
each language and domain. Our objective is to
build a model that generalizes to the French lan-
guage despite of having only 15 training samples.

When we analyse data in details we observe that
there are several tokenization errors. Specially in
the French corpus. These errors propagate to the
POS tagging and dependency parsing as well. For
this reason, we retokenized and parsed all the cor-
pus using a enriched version of UDpipe that we
trained ourselves (Straka and Strakova, 2017) us-

Corpus Train Dev Test
English Wiki 4113 514 515
English 20K - - 492
German 20K 5211 651 652
French 20K 15 238 239

Table 1: number of UCCA annotated sentences in
the partitions for each language and domain

ing the Treebanks from Universial Dependencies®.

For French we enriched the Treebank with XPOS
from our lexicon. Finally, since tokenization is
pre-established in the UCCA corpus we projected
the improved POS and dependency parsing into
the original tokenization of the task.

3.2 Supplementary lexicon

We observed that a major difficulty in UCCA pars-
ing is analyzing idioms and phrases. The unaware-
ness about these expressions, which are mostly
used as links between scenes, mislead the model
during the early stages of the inference and er-
rors get propagated through the graph. To boost
the performance of our model when detecting
links and parallel scenes we developed an inter-
nal list with about 500 expression for each lan-
guage. These lists include prepositional, adverbial
and conjunctive expressions and are used to com-
pute Boolean features indicating the words in the
sentence which are part of an expression.

‘https://universaldependencies.org/
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Ours Labeled Ours Unlabeled TUPA Labeled TUPA Unlabeled

Open Tracks Avg | Prim | Rem | Avg | Prim | Rem | Avg | Prim | Rem | Avg | Prim | Rem

F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1
Dev English Wiki | 70.8 713 587 | 825 838 375|748 753 514|863 870 514
Dev German 20K | 74.7 754 405|874 88.6 409 |79.2 79.7 58.7|90.7 91.5 59.0
Dev French20K | 63.6 644 190|789 79.6 205|514 523 1.6 749 762 1.6
Test English Wiki | 68.9 694 425|823 83.1 428|735 739 535|851 857 543
Test English 20K | 66.6 67.7 24.6 | 820 834 249|684 694 259|825 839 262
Test German 20K | 74.2 74.8 473 | 87.1 88.0 47.6 |79.1 79.6 599|903 91.0 60.5
Test French 20K | 654 66.6 243 | 809 825 258 |48.7 49.6 24 |740 753 32

Table 2: Our model vs TUPA baseline performance for each open track

Tracks D C N E F G L H A P U R S
EN Wiki | 64.3 | 71.4 | 68.5 | 69.6 | 76.7 | 0.0 | 71.4 | 61.3 | 60.0 | 64.0 | 99.7 | 89.2 | 25.1
EN20K | 472|752 (625|723 | 715 | 0.2 | 579 |49.5 | 557 |69.8 | 99.7 | 83.2 | 19.5
DE 20K | 69.4 | 83.8 | 57.7 | 80.5 | 83.8 | 59.2 | 68.4 | 62.2 | 67.5 | 689 | 97.1 | 869 | 259
FR20K | 46.1 | 76.0 | 589 | 71.2 | 53.3 | 4.8 | 594 | 504 | 52.8 | 67.6 | 99.6 | 83.5 | 169

Table 3: Our model’s Fine-grained F1 by label on Test Open Tracks

3.3 Multilingual Training

This model uses multilingual word embeddings
trained using fastText (Bojanowski et al., 2017)
and aligned using MUSE (Conneau et al., 2017).
This is done in order to ease cross-lingual training.
In prior experiments we introduced an adversarial
objective similar to (Kim et al., 2017; Marzinotto
et al., 2019) to build a language independent rep-
resentation. However, the language imbalance on
the training data did not allow us to take advantage
from this technique. Hence, we simply merged
training data from different languages.

4 Experiments

We focus on obtaining the model that best general-
izes on the French language. We trained our model
for 50 epochs and we selected the best one on the
validation set. In our experiments we did not use
any product of experts or bagging technique and
we did not run any hyper parameter optimization.

We trained several models building different
training corpora composed of different language
combinations. We obtained our best model us-
ing the training data for all the languages. This
model FR+DE+EN achieved 63.6% avg. F1 on
the French validation set. Compared to 63.1% for
FR+DE, 62.9% for FR+EN and 50.8% for only FR.

4.1 Main Results

In Table 2 we provide the performance of our
model for all the open tracks and we provide the
results for TUPA baseline in order to establish a
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comparison. Our model finishes 4th in the French
Open Track with an average F1 score of 65.4%,
very close to the 3rd place which had a 65.6%
F1. For languages with larger training corpus, our
model did not outperform the monolingual TUPA.

4.2 Error Analysis

In Table 3 we give the performance by arc type.
We observe that the main performance bottleneck
is in the parallel scene segmentation (H). Due to
our recursive parsing approach, this kind of er-
ror is particularly harmful to the model perfor-
mance, because scene segmentation errors at the
early steps of the parsing may induce errors in the
rest of the graph. To assert this, we used the vali-
dation set to compare the performance of the mono
scene sentences (with no potential scene segmen-
tation problems) with the multi scene sentences.
For the French track we obtained 67.2% avg. F1
on the 114 mono scene sentences compared to
61.9% avg. F1 on the 124 multi scene sentences.

5 Conclusions

We described an original approach to recursively
build the UCCA semantic graph using a sequence
tagger along with a masking mechanism and a de-
coding policy. Even though this approach did not
yield the best results in the UCCA task, we believe
that our original recursive, mask-based parsing
can be helpful in low resource languages. More-
over, we believe that this model could be further
improved by introducing a global criterion and by
performing further hyper parameter tuning.
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Abstract

Our submission for Task 1 ‘Cross-lingual Se-
mantic Parsing with UCCA’ at SemEval-2018
is a feed-forward neural network that builds
upon an existing state-of-the-art transition-
based directed acyclic graph parser. We re-
place most of its features by deep contextu-
alized word embeddings and introduce an ap-
proximation to represent non-terminal nodes
in the graph as an aggregation of their termi-
nal children. We further demonstrate how aug-
menting data using the baseline systems pro-
vides a consistent advantage in all open sub-
mission tracks. We submitted results to all
open tracks (English, in- and out-of-domain,
German in-domain and French in-domain,
low-resource). Our system achieves compet-
itive performance in all settings besides the
French, where we did not augment the data.
Post-evaluation experiments showed that data
augmentation is especially crucial in this set-
ting.

1 Introduction

Semantic Parsing is the task of assigning an ut-
terance a structured representation of its mean-
ing. The goal is to assign similar structures to
utterances with similar meanings, regardless of
their syntactic realizations. In Syntactic Parsing,
for instance, the sentence ‘John saw Paul.” will
have a different structure than ‘Paul was seen by
John’. Semantic Parsing, in contrast, aims to
solely encode the fact that John saw Paul. De-
riving a semantic representation of an utterance
has various applications. It can serve as a start-
ing point for the evaluation of machine translation
systems, as the structure of the semantic represen-
tation should be similar across languages. Birch
et al. (2016) use human annotated scores of indi-
vidual UCCA semantic units in their HUME met-
ric to provide a fine-grained analysis of transla-
tion quality and improve scalability to longer sen-
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tences by approximating human judgement semi-
automatically from the annotated scores of each
unit. Explicit semantic representations could also
provide the structured information necessary to
alleviate recent issues in Natural Language In-
ference (NLI) where McCoy and Linzen (2019)
showed that state-of-the-art NLI systems fail to
recognize that e.g. ‘Alice believes Mary is lying.’
does not entail ‘Alice believes Mary.”. Using pre-
cise semantic representations of the sentences a
theorem could be built on which various logical in-
ferences can be performed with a theorem prover
such as in Martinez-Gémez et al. (2016).

Universal Conceptual Cognitive Annotation
(UCCA) (Abend and Rappoport, 2013) is a se-
mantic grammar formalism where natural lan-
guage expressions are analyzed as deep directed
acyclic graph (DAG) structures, deep meaning
the graphs feature non-terminal nodes. Due
to it’s coarse-grained representation using cogni-
tively motivated categories it is both domain and
language independent and quickly learned even
by annotators without a linguistic background
(Abend and Rappoport, 2013).

The goal of the SemEval-2018 Task 1 ‘Cross-
lingual Semantic Parsing with UCCA’” was to de-
velop a parser producing UCCA-DAG structures
trained on articles from Wikipedia in English
and passages from the book “Twenty Thousand
Leagues Under the Sea” in French and German.
The parsers were evaluated on the DAG-F1 met-
ric on in-domain passages in English, French and
German as well as out-of-domain passages in En-
glish in both an open and a closed track (Hersh-
covich et al., 2018b). Since we made extensive
use of external resources we participated only in
the open track of all settings.

For our participation, we build upon the
transition-based DAG parser Tupa (Hershcovich
et al., 2017). Our adaptation reuses the transition
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system and oracle. We extend Tupa with respect to
its representations of non-terminal nodes in a way
that they are an aggregation of all their terminal
nodes. While Tupa uses a Recurrent Neural Net-
work, our system is a simple feed-forward network
that uses a small set of features and ELMo con-
textualized embeddings (Peters et al., 2018) made
available by Che et al. (2018)! and Fares et al.
(2017).

2 Background

Until recently, semantic parsers were exclusively
symbolic rule-based systems (Bos, 2005). These
systems rely on complex hand-written and neces-
sarily language-specific sets of rules, requiring a
re-implementation for every new language. More
recently, neural methods have also arrived in the
domain of Semantic Parsing. They achieve state-
of-the-art results while being largely language-
agnostic. Since these systems usually require large
amounts of annotated data, this line of work is
largely concerned with the augmentation of train-
ing data. Hershcovich et al. (2018a) recognize the
similarity between several annotation schemes and
jointly learn to parse other semantic formalisms in
a multi-task setting, while van Noord et al. (2018)
add large amounts of automatically annotated data
to their training data. Both approaches led to sig-
nificant improvements over not using the addi-
tional data.

3 Silver Data

We created additional training data for both En-
glish and German using the open track baseline
systems. The English silver data was taken from
the 1B word benchmark (Chelba et al., 2014), the
German from the archive of the newspaper taz. For
both languages, we took the first 15,000 sentences
of the corpora and added UCCA annotation using
the baseline systems. Our training datasets then
consisted of the concatenation of gold and silver
data, and another gold only set. Due to a lack of
time we did not create silver data for our French
submission. Post-evaluation results for French,
trained on v2.0 of the GSD treebank” provided by
Universal Dependencies (Nivre et al., 2016), are
presented in Section 6.1.

"https://github.com/HIT-SCIR/
ELMoForManyLangs/

https://universaldependencies.org/
treebanks/fr_gsd/
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Figure 1: Illustration of the features used by Tiipa. The
final feature vector results from the concatenation of all
stack and buffer features with the global features. Fea-
tures dropped after preliminary experiments are omit-
ted for brevity.

4 System

Our system is an ensemble of small feed-forward
neural networks. We use three global features:
typed absolute counts for previous parser ac-
tions and action- and node-ratios (Hershcovich
et al., 2017). We further follow the standard in
transition-based parsing and extract a set of fea-
tures based on the top three items on stack and
buffer. To capture some of the structure of the par-
tially built graph, we extract the rightmost and left-
most parents and children of the respective items,
following Hershcovich et al. (2017). Each of these
items is represented by the ELMo embedding of
its form, the embedding of its dependency head
and the embeddings of all terminal children. We
use the average over all ELMo layers to retrieve
the embedding of a word. Non-terminal nodes do
not have a form or dependency head, hence these
are represented by a learned non-terminal embed-
ding. Both the non-terminals and terminals have
a third feature, a representation of their children.
In the case of terminals, this feature is equal to its
form feature. For the non-terminals, it is an ag-
gregation of all its children, produced by the child
representation module. Figure 1 illustrates the set
of features used by our system. We experimented
with richer feature sets, including the last parser
actions, named-entity, part-of-speech and depen-
dency types, but dropped them after performing
preliminary experiments. The input to the feed-
forward module is the concatenation of all features
with the output of the child representation module.
The classification portion of the system was imple-



mented using Tensorflow (Abadi et al., 2015).

4.1 Representing Non-Terminals

The child representation module aims to enrich the
representation of non-terminal nodes. Our initial
representation for non-terminal nodes was a set of
discrete features describing the number of typed
in- and outgoing edges and the nodes’ height in
the tree. While this might be informative on an
abstract level, it does not provide any information
about the content covered by this node. We solve
this poverty of information by concatenating each
of the embeddings of the terminal children of a
node with an embedding for the first edge type
leading to them. The resulting combination is fed
through a dense layer with d neurons, resulting in
n vectors with d dimensions where n is the num-
ber of terminals under the node. We then reduce
the n vectors into a single d dimensional vector
by taking the maximum value of each dimension.
Figure 2 depicts how the representation of a non-
terminal node is obtained. While it would be de-
sirable to process the children using context-aware
methods, such as RNNs or self attention, it is not
feasible since some of the nodes can have more
than 100 children. Future work should explore re-
cursive formulations for representing a node by its
direct children instead of relying on all terminal
children, performing largely redundant operations
for higher nodes.

4.2

We apply dropout (Srivastava et al., 2014) with a
keep probability of 0.8 to the inputs of all layers.
The child processing module is a single layer feed-
forward network with 256 hidden units. The feed-
forward module is single layer feed-forward net-
work with 512 hidden units. Both modules use the
ReLU activation function. Training is performed
with the Adam optimizer (Kingma and Ba, 2014)
using an initial learning rate of 8e—5 that is halved
every two epochs without an improvement on de-
velopment accuracy. We halt the training after
five epochs without an improvement on develop-
ment transition accuracy. The models were first
trained on the concatenation of the silver and gold
data and following the early stopping another time
only on the gold data using the same parameters.
We use mini-batches of size 192 and evaluate on
the development set every 1000 mini-batches. As
training time imposes a serious limitation, we did
not perform an extensive hyperparameter search

Hyperparameters
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DAG-F1 Primary F1 Remote F1 Tupa-DAG

English Wiki 0.735 0.741 0.425 0.735
English 20k 0.709 0.719 0.296 0.684
German 20k 0.781 0.788 0.408 0.791
French 20k 0.456 0.464 0 0.487

Table 1: DAG-F1, primary F1 and remote F1 scores
with the DAG-F1 score of the baseline on the test sets
in the open tracks.

and settled on these after initial experiments.

5 Results and Discussion

Table 1 shows the submission scores of our parser
trained using the hyperparameters described in
Section 4.2 on the test datasets in the open tracks.
Since only 15 French passages were available
for training, our French results were obtained by
first training a model on the concatenation of the
French passages and the German 20k training
dataset using French ELMo embeddings. After
convergence, it was fine-tuned on only the French
passages for two epochs. However, this did not
provide a significant increase in F1 score over a
model trained exclusively on the French passages.
All results were produced using a five model en-
semble, consisting of the model with the best tran-
sition accuracy and the four following it before
early stopping. The results show that our parser
achieves competitive performance to the baseline
while relying on fewer features. In particular, for
the English in-domain data, we achieve the same
performance as the baseline, for the out-of-domain
data we surpass it by 0.025 DAG-F1. In German
and French where only in-domain data exists our
approach is outperformed by the baseline which
we partially attribute to issues in the creation of
the silver data. Post-submission results obtained
after performing a more exhaustive hyperparam-
eter search on the development set and with cor-
rect silver-data surpass the baseline performance
on the test sets in all open settings.

6 Further Experiments

In this section, we will describe the findings of
our post-evaluation experiments. We evaluated
the effect of silver data and provide results for
French with silver data. We further performed
experiments on non-terminal representations and
investigated the effect of model size. Since this
only covers a fraction of our experiments and
describing them all would be out of scope, we
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Figure 2: Depiction of a non-terminal representation. The terminal children dominated by the grey node are
concatenated with the first edge leading to them and fed through a fully-connected layer. The multiple resulting
vectors are reduced into a single one by taking the maximum value of each dimension.

Full Submission Forms only Data avg. F1 remote F1
Gold 0.724 0.733 0.679 Gold 0.456 0.0
Silver+Gold  0.739 0.744 0.688 Silver+Gold  0.557 0.025

Table 2: DAG F1 scores on the English development = Table 3: DAG F1 Scores on the French test set with

set after training with gold and gold+silver data. Silver =~ and without silver data. Here in the low-resource set-

data provides a boost for all combinations. ting, the effect of additional data is the largest. Without
silver data, the parser did not predict any remote edges
correctly.

provide the full results alongside their hyperpa-

rameters at https://twuebi.github.io/ Full Submission

publications/ucca_post_eval.pdf.

Discrete 0.723 0.688
6.1 Silver Data Aggregated 0.739 0.744

We measured the effect of silver data on English  Table 4: Effect of discrete and aggregated non-terminal
and French by evaluating several model configu-  representations on the DAG F1 score on the English de-
rations in two settings. The first setting matches  velopment set. The aggregated representation provides
the training data used for the submission and is @ clear advantage over the discrete one.

the concatenation of the gold and silver data. In
the second setting, the only available data is the
gold data.

English: We trained three models for English.
The first model configuration uses all features and
corresponds to the model described in the end of  To measure the effectiveness of our non-terminal
Section 4, the second is our submission, described  representation, we ran two experiments using sil-
in Section 4. The last model uses only embeddings  ver and gold data. In both cases, we trained one
of the forms and dependency heads. As shown in  model with aggregated non-terminal representa-
Table 2, additional training data provides a consis-  tions and one with the discrete representations
tent boost in F1 score across all tested feature com-  of typed in- and outgoing edges and the nodes’
binations. Moreover, it seems that there is a larger ~ heights in the tree. The first experiment used all
effect of the silver data on models with more fea-  available features. The second was trained with
tures, indicating a better estimation of the feature  the features of our submission. Table 4 presents

remote edges for the gold-only model.

6.2 Non-Terminal Representation

representations based on the additional data. the results of the experiments. The explicit child

Low resource setting: Table 3 demonstrates  representations provide a clear improvement over
the effect of silver data on French for the submis-  the discrete representation. In the second experi-
sion model configuration. The effect of additional =~ ment, where no in- and outgoing edges were used
data is the largest in the low-resource setting, pro-  and the only non-terminal representations are the

viding a boost of 0.1 in average F1 score. Adding  left- and rightmost children, the gap increased
the silver data also leads to some of the remote  even further, in fact it is the worst F1 score of all
edges being correct, whereas there are no correct  models trained on silver data.
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Figure 3: DAG F1 scores on English development data
on the y-axis. Million parameters in the models on the
x-axis. Larger models seem provide some improve-
ments that begin to level off for big models.

6.3 Bigger means better?

Figure 3 contrasts the number of trainable param-
eters of the models in our experiments with the F1
score on the English development set. While there
are some improvements for larger models, it can
be seen that the effect begins to level off at 200M
parameters and eventually leads to a small regres-
sion with the largest model. Possible causes are
overfitting and a lack of training data. Future work
should explore whether additional training data al-
lows for larger models. Additional regularization
such as L2 regularization might also prove useful.
For our experiments, this was out of scope since
training so many models was not feasible.

7 Conclusion

In this work, we presented a parser for the seman-
tic grammar formalism UCCA. Our parser relies
on a small set of features and achieves competi-
tive performance on the English and German data,
but lags behind on French where almost no train-
ing data is available. We demonstrated, using ab-
lation experiments, that the explicit representation
of non-terminals and additional silver data are cru-
cial for our result. We have further shown that sil-
ver data is especially helpful in the low-resource
setting where it boosts the average F1 score from
0.456 to 0.557. Future work should investigate
how much more improvement additional data can
provide. This should be explored both in form of
other formalisms (Hershcovich et al., 2018a) and
silver data (van Noord et al., 2018). Besides the
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data aspect, we also believe that improving the
non-terminal representation will lead to significant
gains. The goal should be to find a representation
that leverages the recursive structure of the par-
tially built graph.
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Abstract

We present a simple and accurate model for
semantic parsing with UCCA as our submis-
sion for SemEval 2019 Task 1. We propose an
encoder-decoder model that maps strings to di-
rected acyclic graphs. Unlike many transition-
based approaches, our approach does not use
a state representation, and unlike graph-based
parsers, it does not score graphs directly.
Instead, we encode input sentences with a
bidirectional-LSTM, and decode with self-
attention to build a graph structure. Results
show that our parser is simple and effective for
semantic parsing with reentrancy and discon-
tinuous structures.

1 Introduction

Semantic parsing aims to capture structural re-
lationships between input strings and graph rep-
resentations of sentence meaning, going beyond
concerns of surface word order, phrases and re-
lationships. The focus on meaning rather than
surface relations often requires the use of reen-
trant nodes and discontinuous structures. Uni-
versal Conceptual Cognitive Annotation (UCCA)
(Abend and Rappoport, 2013) is designed to sup-
port semantic parsing with mappings between sen-
tences and their corresponding meanings in a
framework intended to be applicable across lan-
guages.

SemEval 2019 Task 1 (Hershcovich et al.,
2018b, 2019) focuses on semantic parsing of texts
into graphs consisting of terminal nodes that repre-
sent words, non-terminal nodes that represent in-
ternal structure, and labeled edges representing re-
lationships between nodes (e.g. participant, cen-
ter, linker, adverbial, elaborator), according to
the UCCA scheme. Annotated datasets are pro-
vided, and participants are evaluated in four set-
tings: English with domain-specific data, English
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with out-of-domain data, German with domain-
specific data, and French with only development
and test data, but no training data. Additionally,
there are open and closed tracks, where the use of
additional resources is and is not allowed, respec-
tively. Our entry in the task is limited to the closed
track and the first setting, domain-specific English
using the Wiki corpus, where the relatively small
dataset (4113 sentences for training, 514 for devel-
opment, and 515 for testing) consists of annotated
sentences from English Wikipedia.

Our model follows the encoder-decoder archi-
tecture commonly used in state-of-the-art neural
parsing models (Kitaev and Klein, 2018; Kiper-
wasser and Goldberg, 2016b; Cross and Huang,
2016; Chen and Manning, 2014). However, we
propose a very simple decoder architecture that
relies only on a recursive attention mechanism
of the encoded latent representation. In other
words, the decoder does not require state encod-
ing and model-optimal inference whatsoever. Our
novel model achieved a macro-averaged F1-score
of 0.753 in labeled primary edges and 0.864 in
unlabeled primary edge prediction on the test set.
The results confirm the suitability of our proposed
model to the semantic parsing task.

2 Related work

Leveraging parallels between UCCA and known
approaches for syntactic parsing, Hershcovich
et al. (2017) proposed TUPA, a customized
transition-based parser with dense feature repre-
sentation. Based on this model, Hershcovich
et al. (2018a) used multitask learning effectively
by training a UCCA model along with similar
parsing tasks where more training data is avail-
able, such as Abstract Meaning Representation
(AMR) (Banarescu et al., 2013) and Universal De-
pendencies (UD) (Nivre et al., 2016). Due to
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Terminal Terminal

Figure 1: Illustration of the decoder for the beginning of a sentence, “Mariah Carey turned it down, and ...”.
Each v; represents the context embedding for each word ¢ from the BILSTM encoder. Words on edges represent
category labels between nodes, where A is participant and P is process. Circles represent nodes in the graph, each
with a pair in indices. Circles with 0 as the first index are terminal nodes, and circles with 1 as the first index
are non-terminal nodes. (1). Dashed green lines represent the attention mechanism for the word Carey, which
forms a continuous proper noun “Mariah Carey”. (2). Dashed red lines represent the attention mechanism for the
word down, which forms a discontinuous unit “turned ... down”. (3). Dotted blue lines represent the attention
mechanism for node; 4. The darker the color, the higher the attention score.

the requirements of reentrancy, discontinuity, and
non-terminals, other powerful parsers were shown
to be less suitable for parsing with UCCA (Hersh-
covich et al., 2017).

3 Parsing Model

BiLSTM models are capable of providing feature
representations with sequential data, and atten-
tion mechanisms (Vaswani et al., 2017) have been
applied successfully to parsing tasks (Kitaev and
Klein, 2018). Inspired by their success, our model
uses a BiLSTM encoder and a self-attention de-
coder. The encoder represents each node (terminal
and non-terminal) in the DAG without the need
to encode features and the current parser state.
The proposed decoder takes the encoded repre-
sentation as the configuration and uses attention
mechanism. Without any additional feature ex-
traction, it serves a similar role as an oracle and a
transition-system in transition-based parsers. We
jointly train a label prediction model and a discon-
tinuity prediction model. We predict remote edges
with a different encoder. An example of the pars-
ing model can be seen in Figure 1.

3.1 Terminal Nodes

To mitigate sparsity due to the small amount of
training data available, we concatenate part-of-
speech tags embeddings to word embeddings in
terminal nodes. In addition, because the connec-
tions between terminal nodes and non-terminal
nodes often require identification of named enti-
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ties, we also added entity type and case informa-
tion as additional knowledge. Given a sentence
X = 71, ..., Ty, the vector for each input token is
thus represented as u; = emb(z;) o emb(pos;) o
emb(entity_type;)oemb(case;), where case; is 1
if the first character of the word is capitalized and
0 otherwise. We use pretrained word embeddings
from fastText!' for emb(z;). POS tags and entity
types are predicted using external models> and are
provided in the training corpus. Each word repre-
sentation from the encoder is v; = BiLST M (u;).
We assign these contextual word embeddings as
vectors to terminal nodes.

3.2 Non-terminal Nodes

For non-terminal nodes with only one terminal
node as the child, the representation is the same as
its corresponding terminal node, i.e. a contextual
word embedding from the BiLSTM encoder. For
other non-terminal nodes that have more than one
terminal children or non-terminal children (i.e.
represent more than one word in the text), we use
a span representation. Following Cross and Huang
(2016), we represent the span between the words
Tij, TjaAS Vj 5 = (f] _fi)o(bi_bj) where fo, ceny fn
and by, ..., b, are the output of the forward and
backward directions in the BiLSTM, respectively.
However, the linear subtractions from a nonlinear
recurrent neural network (RNN) as a span approx-
imation is not intuitive. Instead, we experimented

"https://fasttext.cc/
https://spacy.io/



with an additional BiLSTM on the target span
T, Tit1, .-, Tj, similar to the recursive tree repre-
sentations in (Socher et al., 2013; Kiperwasser and
Goldberg, 2016a) but replaced the feed-forward
network with an LSTM. In our experiments with
the small dataset in the closed track of the English
domain-specific track, this method did not result
in improved performance.

3.3 Attention Mechanism For Decoding

Our basic decoding model is inspired by the global
attention mechanism used in machine translation.
The attention averages the encoded state in each
time step in the sequence with trainable weights
(Luong et al., 2015). We set a maximum sequence
length and calculate the attention weights (in prob-
ability) for the left boundary index of the span
given the node representation v; ; (i < j):

hspa,n = MLP(’UZ'J‘) (1)

)

where M LP is a multilayer perceptron and hspan
is of size (1, max_sequence_length). We choose
arg max; Pleft_poundary a the index of the left
boundary of the predicted span. Let j; denote the
index of the left most child of the node j (for ex-
ample, in Figure 1, j; for node; 5 is 1 and j; for
nodey g is 6)°. If i > 71, then the node attends
to itself to indicate that a span cannot be created
yet (as is the case for node; g in Figure 1). Oth-
erwise, there is a span that forms a semantic unit
and we need to create a parent node. For example,
1 = 1 for the nodeq 4, SO we create a new nodeq 5
which connects the nodes within the span [1: 5],
i.e. node 1, nodeq 3, and node; 4.

We do this recursively to attend to a previous in-
dex until the node attends to itself. Then we repeat
the procedure on the next word in the sequence.
The illustration is shown in Figure 1 with dotted
blue lines. The algorithm is presented in Algo-
rithm 1 below. primary_parent indicates the par-
ent node to which the current node is not a remote
child (in the DAG setting, a child node may have
multiple parents). We set the maximum number of
recurrence to be 7 to prevent excessive node cre-
ation during inference.

Despite its simplicity, there are two limitations
to this method. One is the restriction of the maxi-
mum sequence length. The other is the distinction

Pieft_boundary = softmal'(hspan)

3For simplicity, word indices start at 1 in the Figure.
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Algorithm 1 Index-attention decoder
1: for recur_num

1 to max_recur do

2 if : > j; then

3: break

4: end if

5: hspan = MLP(’UZ'J'>

6: tattn = argmax softmax(hspan)
7: i= primaryl,parent(viam)l

8: end for

between the indices and the actual words in each
sentence. The model may cheat during training to
attend to specific indices regardless of the actual
words in these indices.

Motivated by the success of biaffine atten-
tion(Dozat and Manning, 2016) and self-attention
models (Vaswani et al., 2017), we replace the in-
dex attention decoder with a multiplication model
where we can leverage fast optimized matrix mul-
tiplication. Similar to the left most child, let j,
denote the index of the right most child of node;.
vo = wv[l : j,] where v is the output from the
encoder of size (sequence_length, batch_size, hid-
den_size). The scoring function is defined as:

hi = ReLU(W X v; + b) 3)

ho = ReLU(W X v, +b) 4)

mm = matriz_multiplication(h;, hL)  (5)
Dleft_boundary = S0ftmax(mm) (6)

Compared to the index attention decoder above,
this decoder considers both the index and the span
representation and thus is more flexible and ro-
bust to new texts. The recurrence call remains the
same by replacing line 5 and 6 in Algorithm 1 with
equations 3 — 6.

3.4 Label Prediction

Contextual information is important to label pre-
diction. For instance, in the sentence “It an-
nounced Carey returned to the studio to start ... 7,
the phrase “Carey returned to the studio” should
be labeled as a participant (A) instead of a scene
(H) according to the context. Ideally the encoder
will capture the information from the whole sen-
tence so that we only need the current span to pre-
dict its label (since the span has the context infor-
mation from both sides). However, as shown in



previous research with RNN models, the contex-
tual information is lost for a relatively long sen-
tence. Therefore, similar to the label prediction
problem with dependency parsers, we use a MLP
to predict the label of a span v; ; given its context
p = primary_parent(v; ;).
h=ReLUW} x (pow;) +b1)  (7)
I = argmaz softmax(W2  h + b})
l
We also experimented with only using span repre-
sentation as seen in constituency parsing (Gaddy
etal., 2018) by replacing (pov; ;) with v; ; in equa-
tion 7. Surprisingly, this increased the F1 score on
the development set by 1.4 points. We conjecture
that this is due to the limited amount of training
data, which makes it more difficult to learn noisier
representations.

®)

3.5 Discontinuous Unit

After finding the left boundary of the current span
unit as shown in section 3.3, we use two MLPs
for binary classification to check (1) if the span
forms a proper noun with which we need to com-
bine multiple terminal nodes to one non-terminal
node (as “Mariah Carey” in Figure 1) and (2) if the
span forms a discontinuous unit (such as “turn ...
down” in Figure 1).

Probpropn = W x ReLU(W, x vy j + b)) + by
©)
probgiscont = Wa x ReLU (W} x v j + b)) + b3
(10)

If the node span attends to a node in the left
and the model predicts a proper noun, we will cre-
ate a non-terminal node and links all the terminal
nodes ¢, + 1, ..., j as its terminal children (shown
as dashed green lines in Figure 1).

If the model predicts that the span is a discon-
tinuous unit, instead of connecting all the terminal
nodes as its children, the new created node only
connects node; and node;, and do the recurrence
checks afterwards as shown in Algorithm 1 (illus-
trated as dashed red lines in Figure 1).

3.6 Remote Edges

We predict remote edges the same way as the ma-
trix multiplication decoder for primary edges. We
use a different BILSTM encoder to learn represen-
tations and avoid confusion between attention to
primary edges and remote edges.
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unlabeled(F1) | labeled(F1)
official 0.746 0.866
+ max_recur = 7 0.747 0.867
+ child_pred 0.760 0.87
+ 082 =0.9